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Abstract

The present document is dedicated to the analysis of functional data and the definition of
multi-task models for regression and clustering. The purpose of this work is twofold and
finds its origins in the problem of talent identification in elite sports. This context provides a
leading thread illustrative example for the methods and algorithms introduced subsequently
while also raising the problem of studying multiple time series, assumed to share information
and generally observed on irregular grids. The central method and the associated algorithm
developed in this thesis focus on the aspects of functional regression by using multi-task
Gaussian processes (GPs) models. This non-parametric probabilistic framework proposes
to define a prior distribution on functions, generating data associated with several individ-
uals. Sharing information across those different individuals, through a mean process, offers
enhanced modelling compared to a single-task GP, along with a thorough quantification of
uncertainty. An extension of this model is then proposed from the definition of a multi-task
GPs mixture. Such an approach allows us to extend the assumption of a unique underlying
mean process to multiple ones, each being associated with a cluster of individuals. These
two methods, respectively called Magma and MagmaClust, provide new insights on GP
modelling as well as state-of-the-art performances both on prediction and clustering aspects.
From the applicative point of view, the analyses focus on the study of performance curves
of young swimmers, and preliminary exploration of the real datasets highlights the exis-
tence of different progression patterns during the career. Besides, the algorithm Magma
provides, after training on a dataset, a probabilistic prediction of the future performances
for each young swimmer, thus offering a valuable forecasting tool for talent identification.
Finally, the extension proposed by MagmaClust allows the automatic construction of clus-
ters of swimmers, according to their similarities in terms of progression patterns, leading
once more to enhanced predictions. The methods proposed in this thesis have been entirely
implemented and are freely available.

Keywords: Gaussian Processes, multi-task learning, functional data, curve clustering, EM
algorithms, variational inference
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Résumé

Ce manuscrit de thèse est consacré à l’analyse de données fonctionnelles et la définition de
modèles multi-tâches pour la régression et la classification non supervisée. L’objectif de ce
travail est double et trouve sa motivation dans la problématique d’identification de jeunes
sportifs prometteurs pour le sport de haut niveau. Ce contexte, qui offre un fil rouge illus-
tratif des méthodes et algorithmes développés par la suite, soulève la question de l’étude de
multiples séries temporelles supposées partager de l’information commune, et généralement
observées à pas de temps irréguliers. La méthode centrale développée durant cette thèse,
ainsi que l’algorithme d’apprentissage qui lui est associé, se concentrent sur les aspects de
régression fonctionnelle à l’aide d’un modèle de processus Gaussiens (GPs) multi-tâche. Ce
cadre probabiliste non-paramétrique permet de définir une loi a priori sur des fonctions, sup-
posées avoir généré les données de plusieurs individus. Le partage d’informations communes
entre les différents individus, au travers d’un processus moyen, offre une modélisation plus
complète que celle d’un simple GP, ainsi qu’une pleine prise en compte de l’incertitude. Un
prolongement de ce modèle est par la suite proposé via la définition d’un mélange de GPs
multi-tâche. Cette approche permet d’étendre l’hypothèse d’un unique processus moyen sous-
jacent à plusieurs, chacun associé à un groupe d’individus. Ces deux méthodes, nommées
respectivement Magma et MagmaClust, offrent de nouvelles perspectives de modélisation
ainsi que des performances remarquables vis-à-vis de l’état de l’art, tant sur les aspects de
prédiction que de clustering. D’un point de vue applicatif, l’analyse se concentre sur l’étude
des courbes de performances de jeunes nageurs, et une première exploration des données
réelles met en évidence l’existence de différents patterns de progression au cours de la car-
rière. Par la suite, l’utilisation de l’algorithme Magma, entrainé sur la base de données, at-
tribue à chaque sportif une prédiction probabiliste de ses performances futures, offrant ainsi
un précieux outil d’aide à la détection. Enfin, l’extension via l’algorithme MagmaClust
permet de constituer automatiquement des groupes de nageurs de part les ressemblances
de leurs patterns de progression, affinant de ce fait encore les prédictions. Les méthodes
détaillées dans ce manuscrit ont également été entièrement implémentées et sont partagées
librement.

Mots-Clefs : Processus Gaussiens, apprentissage multi-tâche, données fonctionnelles, cluste-
ring de courbes, algorithmes EM, méthodes variationnelles
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Contributions

Contexte
L’étude des données fonctionnelles constitue un thème important des recherches en statis-
tique des dernières décennies. De nombreuses observations venant du monde réel peuvent
être vues comme intrinsèquement fonctionnelles dès lors qu’elles dépendent du temps, ou de
tout autre continuum. Parmi les domaines d’application, celui encore largement inexploité
des sciences du sport fournit de nombreuses données et problématiques qui s’inscrivent dans
ce cadre. La collaboration avec des fédérations sportives, notamment la Fédération Française
de Natation (FFN) que l’on remercie, autour de la problématique de la détection des jeunes
sportifs prometteurs est à l’origine de cette thèse, et les données associées constituent le fil
rouge illustratif des méthodologies présentées dans ce manuscrit. Des études récentes (Boc-
cia et al., 2017 ; Kearney and Hayes, 2018) sur les carrières de nombreux sportifs suggèrent
une faible relation entre le niveau de performance dans les jeunes années et celui à l’âge
adulte. En vue d’éclairer la problématique de l’identification des jeunes talents, notre travail
s’intéresse principalement à deux questions : Existe-t-il des profils typiques de progression
pour les sportifs ? Est-il possible d’utiliser ces éventuelles similarités entre individus pour
améliorer des prédictions de la performance future ?

Les données présentées sont issues d’un recueil rétrospectif des performances en com-
pétition des licenciés de la FFN. Pour une épreuve donnée, la fonction représentative du
niveau d’un sportif au cours du temps est appelée courbe de performance et constitue notre
principal objet d’étude. Les observations ponctuelles de cette courbe étant fournies par les
résultats en compétition, notre jeu de données regroupe un ensemble de séries temporelles
observées irrégulièrement d’un individu à l’autre. La relative parcimonie et l’irrégularité
des données observées, illustrées sur la Figure 1, ont constitué les principaux moteurs des
développements méthodologiques proposés dans cette thèse. En effet, les problématiques
classiques d’apprentissage supervisé et non-supervisé dans un tel contexte souffrent d’un
manque de modélisations pertinentes disponibles, notamment dans un cadre probabiliste.
Après un état de l’art des méthodes existantes et utiles à nos développements (chapitre 1),
les trois principaux chapitres de la thèse aspirent à proposer des réponses d’efficacité crois-
sante à nos enjeux. Le chapitre 2 offre une première exploration du jeu de données et met
en évidence la présence de profils de performance à travers une application de méthodes de
clustering de courbes. Ensuite, nous développons dans le chapitre 3 un nouveau modèle de
processus Gaussiens multi-tâches pour la régression, ainsi que l’algorithme d’apprentissage
et les formules de prédictions associées, fournissant une modélisation probabiliste adaptée
et des performances supérieures à l’état de l’art. Enfin, reprenant l’idée des structures de
groupe introduite au chapitre 1, le chapitre 4 propose une généralisation du modèle précé-
dent à l’aide d’un mélange de processus Gaussiens multi-tâches, permettant d’effectuer des
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Figure 1 – Exemple de données observées pour 3 nageurs différents (respectivement en bleu, rouge et noir).
L’age des abscisses indique l’âge du nageur. L’axe des ordonnées indique la performance en course en secondes,

ici pour des compétitions de 50m nage libre homme.

prédictions cluster-spécifiques pondérées.

Clustering de courbes de progression de nageurs
Dans la lignée de la revue des différentes méthodes de clustering de courbes existantes,
une étude comparative sur données synthétiques de plusieurs algorithmes, regroupés dans le
package R funcy, est proposée en introduction. La première modélisation de notre exemple fil
rouge se fait en deux étapes. Pour parer à la problématique des séries temporelles observées
irrégulièrement, nous décomposons premièrement nos données dans une même base de B-
splines, définissant ainsi des données fonctionnelles comparables d’un individu à l’autre.
Ainsi, les méthodes classiques d’analyse de données fonctionnelles (FDA, pour Functional
Data Analysis en anglais) peuvent être appliquées et nous avons choisi l’algorithme funHDDC
(Bouveyron and Jacques, 2011 ; Schmutz et al., 2018) pour ses performances et la possibilité
d’étudier des fonctions multidimensionnelles. En effet, un clustering utilisant simplement
les coefficients des B-splines comme variable d’entrée fournit des groupes peu informatifs,
surtout représentatifs de la position des courbes les unes par rapport aux autres sur l’axe
des ordonnées. Une idée intéressante, comme souvent en FDA, consiste à utiliser les dérivées
des courbes de progression comme variable supplémentaire pour apporter de l’information
sur les dynamiques d’évolution. Nous montrons que cette approche apporte une plus-value
et un regroupement fidèle à ce que les experts des fédérations observent en pratique. Nous
identifions en particulier des patterns de progressions plus ou moins tardifs, permettant
par exemple de rattraper un retard initial dans les performances des plus jeunes années
(voir Figure 2). Cette approche, bien qu’ayant mis en évidence la présence de structures de
groupes dans les données, souffre de plusieurs faiblesses de modélisation. D’une part, le peu
de données disponibles pour certains individus complique le cadre paramétrique global de la
décomposition B-splines, menant à des modélisations individuelles parfois insatisfaisantes.
D’autre part, cette approche fréquentiste n’offre pas de quantification de l’incertitude, pour
la modélisation et/ou la prédiction, qui serait pourtant précieuse dans ce type de problème
d’aide à la décision. Autant d’obstacles menant aux développements méthodologiques au
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Figure 2 – Courbes moyennes (gauche) et dérivées moyennes (droite) issues du clustering en 5 groupes des
courbes de performance de nageurs français entre 12 et 20 ans pour le 100m nage libre masculin.

coeur de cette thèse, qui prennent place dans le cadre probabiliste non-paramétrique des
processus Gaussiens (GPs, pour Gaussian processes en anglais).

Processus Gaussiens multi-tâches avec processus moyen partagé
Le cadre des GPs offre une modélisation élégante pour les données fonctionelles, mais souffre
toutefois de limitations lorsque les points d’observations sont peu nombreux et/ou mal ré-
partis sur le domaine d’étude. Notre jeu de données étant composé de nombreux individus
(' 104) ayant chacun peu d’observations (' 101), la définition d’un modèle multi-tâche au-
torisant le partage d’informations entre individus permet de tirer le meilleur parti de cette
situation. L’originalité de l’approche repose sur l’introduction d’un processus moyen, com-
mun à tous les individus, qui fournit une valeur a priori pour la prédiction, embarquant de
l’information sur tout le domaine d’étude. Pour un individu i, la donnée fonctionnelle yi(t)
est supposée générée par le modèle suivant :

yi(t) = µ0(t) + fi(t) + εi(t), ∀i,∀t,

avec µ0 le GP moyen commun à tous, fi un GP centré spécifique à l’individu i, et εi un
terme de bruit. A l’aide de données, l’inférence de ce modèle consiste alors à estimer les
hyper-paramètres des différents noyaux de covariance associés à ces GPs, et à calculer la
loi hyper-posterior du processus µ0. Ces quantités étant interdépendantes, nous dérivons un
algorithme Espérance-Maximisation (EM)(voir Algorithm 2) qui est utilisé pour les estimer
alternativement. Ensuite, nous établissons les Proposition 3.4 et Proposition 3.5 permettant
de déduire des formules de prédiction GP exactes, qui intègrent à la fois l’information du
processus moyen et son incertitude dans la loi a posteriori finale. Cette loi prédictive multi-
tâche étend la pertinence de la modélisation GP sur un large domaine d’étude, même en
l’absence d’observations individuelles, comme le montre la Figure 3. Le partage d’information
entre individus, à travers le processus µ0, s’avère également efficace dans le cadre des courbes
de nageurs, sur lesquelles les performances prédictives sont très satisfaisantes. L’algorithme
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Figure 3 – Courbe de prédiction (bleu) et intervalle de crédibilité à 95% (gris) d’un nouvel individu pour la
régression GP classique (gauche) et pour Magma (droite). Le processus moyen µ0 est représenté en ligne brisée,

les points d’observation en noir, et les points de test en rouge. Les points colorés en arrière plan illustrent les
d’observations des individus ayant servi pour l’entrainement du modèle.

implémentant cette méthode, appelé Magma (pour Multi-tAsk Gaussian processes with
common MeAn), présente de meilleurs résultats et fournit un nouveau cadre d’application
plus général que les alternatives.

Clustering de courbes et prédiction groupe-spécifique de GPs multi-tâche
Reprenant l’idée d’une possible structure de groupe dans les données, une généralisation
du modèle précédent à l’aide d’un mélange de GPs est ensuite proposée. En effet, pour
certains jeux de données, l’hypothèse d’un unique processus central sous-jacent peut être
trop restrictive. Ainsi, le modèle génératif se définit à présent comme suit :

yi(t) = µk(t) + fi(t) + εi(t), ∀i, ∀t, (1)

avec µk(t) le GP moyen spécifique au k-ème groupe, alors que fi(t) et εi(t) restent, respective-
ment, le GP et le bruit spécifique à l’individu i. Ce nouveau modèle dépend également d’une
variable multinomiale latente Zi, contrôlant l’appartenance des individus à chaque cluster.
Dans cette approche, il est à présent nécessaire d’estimer les hyper-paramètres des noyaux de
covariance, conjointement des lois hyper-posterior des processus µk et des variables Zi. Les
dépendances a posteriori entre ces dernières quantités nous forcent maintenant à introduire
un algorithme Variationnel EM (VEM) (voir Algorithm 3) pour l’inférence. Nous dérivons
les lois variationnelles approximées dans les propositions Proposition 4.1 et Proposition 4.2,
permettant leur utilisation ultérieure dans de nouvelles formules de prédiction GP. Un al-
gorithme EM est également établi pour estimer les hyper-paramètres associés à un nouvel
individu, partiellement observé, ainsi que ses probabilités d’appartenance aux différents clus-
ters. Par intégrations successives sur les processus moyens µk (Proposition 4.4), puis sur les
Zi (Proposition 4.5), une loi de mélange Gaussien multi-tâche peut à nouveau être déduite,
définie comme une somme pondérée de prédictions GP cluster-spécifiques. L’algorithme as-
socié est appelé MagmaClust et fournit une implémentation complète de cette méthode.
Nous illustrons au travers de simulations l’intérêt d’une telle approche et sa supériorité
lorsque les données présentent des structures de groupes. Finalement, nous apportons une
conclusion aboutie à la problématique des courbes de progressions des nageurs (Figure 4),
leur clustering, et la prédiction probabiliste des performances futures. Cette approche re-
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groupe ainsi les différents aspects balayés durant cette thèse, fournissant à la fois une réponse
satisfaisante aux attentes applicatives initiales, ainsi qu’un apport méthodologique notable
pour étudier des problèmes connexes.

Figure 4 – Gauche : données femmes. Droite : données hommes. Distribution prédictive de la courbe de
performance d’un nageur pris au hasard, obtenue par régression GP (haut), Magma (milieu), et MagmaClust
(bas). Les processus moyens sont représentés en lignes brisées, les points d’observation en noir, et les points de

test en rouge. Les points colorés en arrière plan illustrent les d’observations des individus ayant servi pour
l’entrainement du modèle.
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Implementations
Les algorithmes décris dans les chapitres 3 et 4 ont été implémentés en packages R, qui
constituent la contribution pratique de cette thèse. Une version courante de ces codes peut
être librement trouvée aux adresses suivantes :

• Magma : https://github.com/ArthurLeroy/MAGMA,

• MagmaClust : https://github.com/ArthurLeroy/MAGMAclust.
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1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Functional data analysis and sports science applications
The purpose of this section is twofold: at first, the sports science literature provides ref-
erences to introduce the talent detection problem in sports as well as an overview of the
longitudinal data studies in this field. Secondly, we present different aspects of the functional
data analysis (FDA) and some of the associated classical methods, along with a brief review
of the curve clustering state-of-the-art.

1.1.1.a Talent detection in sports
In the elite sport context, a classical problem lies in the detection of promising young ath-
letes (Johnston et al., 2018). With professionalisation and evolution of training methods,
differences in competitions became tighter and tighter in recent years (Berthelot et al., 2015).
Besides, it has been shown (Moesch et al., 2011) that the development of some specific abili-
ties during adolescence is a key component of improvement. Hence, many sports federations
or structures have paid interest in the subject and tried to understand the mechanisms be-
hind what could be called talent (Vaeyens et al., 2008), and its evolution during the young
years of a career. A key feature to take into account is morphology since it obviously in-
fluences performance in many sports (Mohamed et al., 2009; Pla et al., 2019). Morphology
is also known as a major noise factor of the talent detection paradigm since the differences
in physical maturity lead to promote some young athletes over others (Goto et al., 2018)
just because of their temporary advantages in height and/or weight. Well-known prob-
lems occur when these maturity rhythms are ignored, such as in training centres, with an
over-representation of athletes born during the first months of the year (Wattie et al., 2015).
Moreover, it appeared in several studies (Boccia et al., 2017) that performance at young ages
provides in itself a poor predictor of the future competition results. Only a small portion of
elite athletes before 16 years old remains at a top level of performance later (Kearney and
Hayes, 2018). Thereby, it seems clear that the classical strategy, which consists in training
intensively in specific structures only the best performers of a young age range, reaches its
limits. Although there are numerous elements that influence performance (Vaeyens et al.,
2009), several works (Ericsson et al., 2018) seem to indicate that the evolution of an athlete
over time is more suited to predict future abilities than raw values at given ages. Different
patterns of progression may exist, and it might be important to take them into account if
one wants to improve the quality of talent detection strategies. Our work in this context
aims at providing a more global vision of the progression phenomenon by saving its genuine
continuous nature. Therefore, modelling performance data as functions over time and study
them as such might offer new perspectives and provide insights to sport structures for their
future decisions.

1.1.1.b Longitudinal data in sports
For a long time, sports science has been interested in time-dependent phenomenons. If at
first, people only kept track of performance records, there is currently a massive amount
of various available data. Among them, one specific type is generally called time series
or longitudinal data. Many of the data recorded and studied in sports science nowadays
can be considered as time series depending on the context. From the heart rate during a
sprint race (Lima-Borges et al., 2018), the number of injuries in a team over a season (Carey
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et al., 2018), to the evolution of performances during a whole career (Boccia et al., 2017),
the common ground remains the evolution of a characteristic regarding a time period. An
interesting property of such data lies in the dependency between two observations at two
different instants, leading to the fact that the independent and identically distributed (iid)
hypotheses are generally not verified. However, most of the usual statistical tools classically
used in sports science, such as the law of large number or central limit theorem, need these
properties∗. Thus, all the statistical methods based on these results (hypothesis testing,
method of moments, ...) collapse, and specific tools are required to study time series. There
is a whole literature related to this subject, and we defer to the monograph Brockwell and
Davis (2013) for details. These methods focus on the study of time-dependent processes
that generate discrete observations. For instance, since a recurrent topic in this manuscript
concerns clustering, a really comprehensive review about the clustering of time series can
be found in Warren Liao (2005).

Despite the usefulness of the time series approach, new modellings have been proposed
(de Boor, 1972) for longitudinal data. In many cases, the studied phenomenon is actually
changing continuously over time. Thus, the object we want to know about is generally more
of a function than a series of points. Moreover, the authors in Carey et al. (2018) highlight
that it may be damageable to discretise phenomenons that are intrinsically functional. They
claim that continuous methods perform better than discrete ones on the specific case of the
relationship between training load and injury in sports.

In some particular cases, it thus seems natural to model a continuous phenomenon as a
random function of time, formally a stochastic process, and consider our observations as just
a few records of an infinite-dimensional object. The field of functional data analysis (FDA)
then gives a new range of well-suited methods to work on longitudinal data. There has been
substantial theoretical improvements in this area for the past two decades, and some of the
tools have been successfully applied to sports science problems. We can cite Forrester and
Townend (2015) in which curve clustering is used to analyse the foot-strike of runners or
Mallor et al. (2010) for a thorough FDA on the muscle fatigue. Another example is given by
Helwig et al. (2016) that proposes a functional version of ANOVA using splines to overcome
common issues that occur in sports medicine. Finally, the work presented in Liebl et al.
(2014) uses curve clustering methods to study different types of footfall in running. The
methodology used in this paper is closely related to the one we present in Chapter 2, and
the authors claim that this approach improved analysis of footfall compared to former em-
pirical and observational ways to classify runners. We exhibit in the following sections that
FDA can be used to handle some of the questions we deal with in this thesis such as: How
to study the evolution of swimmers’ performances from their racing times in competition?
Competitors probably participate to different numbers of races during their careers, and
their performances are recorded at different ages, leading to difficulties when it comes to
comparing them, keeping in mind that discretisation has been shown problematic in Wattie
et al. (2015).

If FDA remains marginally applied in the sports field, many examples can be found
in a wide range of other domains. We can cite for instance meteorology, with the article
of Ramsay and Dalzell (1991) that describes the study of temperatures among Canadian
weather stations, which has become a classic dataset over the years. Another famous dataset

∗Note that there exist several versions of these theorems with more or less flexible hypotheses, depending
on the context. We talk here about the most common versions, classically used in applied science.
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is presented in Gasser et al. (1984) as an application to biology by studying the growth of
children as a time-continuous phenomenon. Those works and datasets are today considered
as benchmarks to test new methods, but many fields such as economy (Liebl, 2013), energy
(Bouveyron et al., 2018), medicine (Shen et al., 2017) or astronomy (Velasco Herrera et al.,
2017) have used FDA and contribute to this active research topic.

1.1.1.c Functional data analysis
Although we previously mentioned several real-life phenomenons behaving over a continuum,
one may fairly argue that there are no such things as infinite-dimensional data in practice.
In reality, even in the case of functional data, the actual observations come as a set of finite-
dimensional objects. Whereas models and methods developed for functional data sometimes
resemble those of the conventional multivariate case, the underlying functions that generated
the observations are assumed to be smooth at a certain degree. Without this smoothness
property no real gain could be expected from this approach, and speaking rather loosely, a
functional data can be thought of as a multivariate data with order on its dimensions.

We have seen that FDA allows us to take into account the intrinsic nature of functional
data, but apart from this philosophical advantage in terms of modelling, it also provides
answers to recurrent problems in some datasets. For example, how to compare time series
observed on irregular grids of measurement? This question occurs in the following chapters,
where we develop several strategies to tackle this issue. Another fundamental advantage of
FDA lies in the ability to work on the derivatives of the observed functions since it is often
interesting to look at the dynamic of time-dependent processes. Even the second derivative,
often referred to as acceleration, or superior order derivatives might provide valuable infor-
mation in practice. As time is often the continuum over which functional data are observed,
it becomes usual in the following that we refer to the input variables as timestamps. How-
ever, different continua might be involved, such as spatial, frequency, position, and so forth.

The first and fundamental step of a functional data analysis generally lies in the recon-
struction of the functional signal from a discrete set of observations. Let us assume to collect
a set of data points y = {y1, . . . , yN} observed at timestamps t = {t1, . . . , tN} coming from
a model of the type:

yj = x(tj) + εj , ∀j = 1, . . . , N,

where x(·) represents some functional relationship between input and output variables, and
εj is a noise term (due to genuine uncertainty, measurement error, ...). In this case, we can
proceed to a prior smoothing step, which consists in the reconstruction of a functional signal
supposed to be close to the observed points. The most common way to define a function from
the data points is to use basis expansion. A basis of functions is a set {φ1, . . . , φB} coming
from a functional space S, such as each element of S can be defined as a linear combination
of the {φb}b=1,...,B . Formally, we can define the basis expansion of x(t), ∀t ∈ T , as:

x(t) =

B∑
b=1

αb φb(t)

= αᵀφ,

where α = (α1, . . . , αB) is a vector of real valued coefficients, and φ is the vector of basis
functions evaluated at timestamp t. If we assume to observe (y, t) and fix a basis of functions,
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we may derive a least squares estimation (LSE) for α by minimising:

LSE(y | α) =

N∑
j=1

[
yj −

B∑
b=1

αbφb (tj)

]2
(1.1)

= (y −Φα)ᵀ(y −Φα), (1.2)

where Φ is the N × B matrix containing the values φb(tj),∀b,∀j. If we assume Gaussian
white noise residuals, then the estimate α̂ is given by:

α̂ = (ΦᵀΦ)
−1

Φᵀy,

and we can derive the vector of fitted values:

ŷ = Φα̂ = Φ (ΦᵀΦ)
−1

Φᵀy.

Several other solutions may be derived for more sophisticated assumptions on the resid-
uals or the model. In the presence of noisy data, the over-fitting/under-fitting issues may
generally occur. According to the smoothness we expect for the resulting curves, it can
be well advised to use regularisation through the introduction of a penalty term in (1.1).
Thereby, a smoothing parameter has to be determined to define how regular the result-
ing functions are assumed, which might be estimated with cross-validation techniques, for
instance. Although defining a consistent value for the smoothing parameter is an initial
task in itself, it also enables to control the signal-on-noise ratio of the data explicitly. This
topic being far beyond the scope of the present thesis, we refer to Ramsay and Silverman
(2005, Chapter 4&5) for details. In the case where we collect M different sources (individ-
uals or batches) of functional data {y1, . . . , yM}, observed on a common grid of timestamps
t = {t1, . . . , tN}, we have the overall formulation for the associated M ×N matrix x(t):

x(t) =

 x1(t1) · · · x1(tN )
...

. . .
...

xM (t1) · · · xM (tN )

 =

 α11 · · · α1B

...
. . .

...
αM1 · · · αMB


 φ1(t1) · · · φ1(tN )

...
. . .

...
φB(t1) · · · φB(tN )

 ,

and we may still derive analytical solutions to estimate the matrix of coefficients through
straightforward linear algebra. Intuitively, when a common basis Φ is fixed to fit multiple
functions, the information that is specific to the i-th individual is contained in the vector of
coefficients {αi1 . . . , αiB}, hence providing a parametric representation for infinite dimen-
sional objects. Therefore, a naive approach consists in performing classical multivariate
methods directly on these coefficients (Abraham et al., 2003). Among the most common
basis used in practice, we can cite Fourier basis and wavelets, which are well suited to model
periodic data (Ramsay and Silverman, 2002). Fourier basis is a widespread choice that
works well when data present a repetitive pattern (such as day/night cycles for example)
since the basis functions are sinusoids. However, their efficiency decreases when data are
less regular, especially on the modelling of derivatives. Wavelet basis are designed to settle
this sensibility to irregular signals. Although coefficients are slightly longer to compute,
this basis has really nice mathematical properties and progressively replaced Fourier basis
in several applications (Giacofci et al., 2013; Ramsay et al., 2009). For non-periodic data,
a somehow classical choice is to use spline basis (de Boor, 1972) in practice. For example,
B-splines are piecewise polynomial functions that require few coefficients to define a good
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approximation, which makes them especially suited when observations are sparse on the
input domain. B-splines allows the approximation of a wide range of shapes with rather
good smoothness. From a practical point of view, the comprehensive R package fda contains
methods to fit observations into functional data and way more tools for FDA. An overview
of the fda package can be found in Ramsay and Silverman (2002). Once the functional sig-
nal has been reconstructed for the data, some classical statistical tools have been extended
in the functional context to pursue analysis. One of the first and crucial method that has
been adapted in the early literature on FDA (Rao, 1958; Tucker, 1958) was the functional
principal component analysis (FPCA).

FUNCTIONAL PCA
Several reasons are explaining the central role that FPCA plays when it comes to analysing

functional data. This method provides a precious explanatory tool for detecting the main
features and modes of variation in a dataset as well as a dimensionality reduction technique.
Moreover, as for the covariance matrix in the multivariate standard case, the covariance
functions characterising functional variables remain difficult to interpret, and FPCA aims
at expressing data as a linear combination of uncorrelated functions. If we consider an L2

stochastic process X(t), t ∈ T , its mean function is defined as:

µ(t) = E(X(t)),

which can be estimated in practice by averaging over a set of M observations of the process

µ̂ (t) =
1

M

M∑
i=1

xi(t), ∀t ∈ {t1, . . . , tN},

if all the functional data are observed on a dense regular grid (one may first use basis
expansion otherwise). Moreover, we can express the covariance function as:

Cov(X(s), X(t)) = E[(X(s)− µ(s))(X(t)− µ(t))],

which can be naturally estimated with empirical data as well. From the Karhunen-Loève
theorem (Loève, 1946; Karhunen, 1947), we can express the centred process as an eigenfunc-
tion expansion:

X(t)− µ(t) =

∞∑
q=1

ξqϕq(t),

with

ξq =

∫
T
(X(t)− µ(t))ϕq(t)dt,

where {ϕq}q≥1 are the orthonormal eigenfunctions of the autocovariance operator, associated
with the non-negative and decreasing eigenvalues {λq}q≥1. The random variables {ξq}q≥1,
called principal component scores, are also centred and E[ξqξl] = δqlλq. Note that the FPCA
leads to the best empirical basis expansion for functional data in terms of mean integrated
square error. Moreover, each eigenfunction ϕq is supposed to represent the main mode of
variation, under the constraint to be uncorrelated to the previous ones:

ϕq = arg max
‖ϕ‖=1,〈ϕ,ϕj〉=0,j=1,...,q−1

{
V
(∫

T
(X(t)− µ(t))ϕ(t)dt

)}
.
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In practice, a truncation of the Karhunen-Loève expansion is used to extract the p most
important modes of variation associated with the Q greatest eigenvalues:

X(t) ≈ XQ(t) = µ(t) +

Q∑
q=1

ξqϕq(t).

Thereby, the remaining terms of the sum are assumed to be negligible as it corresponds
to low informative features with eigenvalues usually close to 0. This approximation is used
in many other methods of FDA since it may be considered as the most parsimonious way
to correctly represent a functional data with a given number of basis functions. Let us
stress that, although the variables in multivariate PCA can be permuted without effect on
the analysis, the order in functional data matters, and their underlying smoothness allows
FPCA to still perform well in high dimensions context. Many other standard statistical tools
have also been adapted to the functional context such as functional canonical correlation,
discriminant analysis and functional linear models (Ramsay and Silverman, 2005). For
the sake of completeness, let us mention another non-linear generalisation that has been
proposed for PCA, namely the principal curves (Hastie and Stuetzle, 1989), which can even
be learnt sequentially from data streams (Guedj and Li, 2019).

NON-PARAMETRIC FDA
So far, we have presented approaches generally relying on the assumption that we can

characterise infinite-dimensional functions with a set of relevant parameters. However, the
field of non-parametric statistics has tried for a long time to weaken such an assumption,
and the approach focusing on distribution-free or parameters-free methods has been adapted
to the functional case. According to Ferraty and Vieu (2006), a functional non-parametric
model consists in the introduction of constraints on the form of infinite-dimensional processes
that cannot be indexed by a finite number of elements. This framework is sometimes called
double infinite-dimensional because the infinite aspect occurs both from the functional and
the non-parametric context. Many notions and methods developed in this case lie on the key
notion of semi-metrics. Contrarily to the finite-dimensional norms that are all equivalent,
this property disappears in the functional framework, and the choice of the preliminary
norm becomes crucial. As some of the non-parametric methods make use of usual heuristics,
although replacing the classical metrics by an adequate functional notion of closeness, we
present below three different semi-norms and their scope of use. First, the PCA-type semi-
norm is defined by using the FPCA expansion presented before on a centred functional data
x(t), for which we only retain the Q first eigenfunctions. Formally:

‖x‖PCA
Q =

√√√√ Q∑
q=1

(∫
x(t)ϕq(t)dt

)2

.

We can naturally deduce the associated semi-metric:

DPCA
Q (x1, x2) =

√√√√ Q∑
q=1

(∫
[x1(t)− x2(t)]ϕq(t)dt

)2

.

This kind of semi-metric is expected to provide interesting results when studying rough
datasets. Secondly, the partial least square (PLS) semi-metrics (Wold, 1966) rely on the same
kind of definition, except we need to use output variables as well to define it. By computing a
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decomposition with p components that maximises the covariance between input and output
variables, we can again use it to define a semi-norm based on the L2 norm. The PLS
semi-metric that is constructed from it is generally recommended in the case of multivariate
output variables. Finally, the derivatives-type uses, as indicated by its name, the derivatives
of an arbitrary order u ∈ N to define a semi-norm and the corresponding semi-metric as
such:

D(u)(x1, x2) =

∫ (
x
(u)
1 (t)− x

(u)
2 (t)

)2
dt.

This type is usually well adapted for relatively smooth datasets. On another aspect, the
notion of small ball probabilities (Delaigle and Hall, 2010) also plays a major role in the
definition and practical use of statistical objects such as mean, median, quantiles as well as
their conditional counterpart. The quantities also lie at the centre of the non-parametric
regression and clustering methods. From this notion, we can also introduce the concept of
kernel local smoothing in the functional case. As often in non-parametric statistics, kernels
also play a central role in non-parametric FDA, and a paragraph is dedicated to a more
thorough inspection of these objects in the sequel.

We previously mentioned that an interesting property arises in the functional framework
with the possible cancelling of the curse of dimensionality. This particularity only hap-
pens if the correlation between the points on the curve is important enough. Contrarily
to the multidimensional framework, and even in the case of many data points, an impor-
tant smoothness of the underlying function indicates a behaviour that can be considered
as almost unidimensional (because naturally constrained). For weak correlations though,
or functional data with too abrupt leaps, the curse of dimensionality reappears. It is also
important to note that the non-parametric framework remains poorly adapted to treat the
case of irregular measurements in the input space. In particular, most methods fall down
in the case of sparse datasets, which makes this approach difficult to use for the applicative
problems in our scope.

1.1.1.d Clustering functional data
FAMILIES OF CURVE CLUSTERING METHODS

In this section, we focus on the clustering problem, which provides insights about the
eventual group structures in a functional dataset or may serve as a starting point to more
elaborate analyses. Non-supervised learning in the functional case focuses on the definition
of sub-groups of curves that make sense according to an appropriate measure of similarity.
Given K the number of clusters, a clustering algorithm would apply one or several rules
to allocate the functional data presenting common properties into the same group. This
problem has been largely explored for the past years in the functional context, and a few
elements summarising the state-of-the-art are provided in this paragraph. According to the
survey Jacques and Preda (2014), functional data clustering algorithms can be sorted into
three distinct families, detailed below. We do not develop on direct clustering on raw data
points that does not take into account the functional nature of the data and usually leads
to poor results.

(i) 2-steps methods. The first step aims at fitting functions from data as detailed pre-
viously, by choosing a common basis for all curves. Then, a clustering algorithm, such as
k-means (Abraham et al., 2003) for instance, is applied on the basis coefficients. If this
vector of observations is high-dimensional, we can proceed first to an FPCA step, before
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using the clustering method on the scores coming from the first eigenfunctions of the FPCA.

(ii) Non-parametric clustering. As previously discussed, some approaches of curve clus-
tering can be adapted in the context of non-parametric FDA (Ferraty and Vieu, 2006). From
the notions of functional semi-metrics and small-ball probabilities, we can define a notion of
heterogeneity within a set of functions. By using such a quantity, a descending hierarchical
heuristic can be defined by considering a parent set of functions and build splitting scores
based on the gain or loss of heterogeneity in the resulting split sets. Another heuristic that
has been adapted is k-means. The authors in Cuesta-Albertos and Fraiman (2007) propose
a closeness notion based on the trimmed mean for function data, whereas derivative-based
distances are used in Ieva et al. (2013) instead.

(iii) Model-based clustering. As the 2-step approach, model-based methods often use ba-
sis expansion and/or FPCA to fit the data. However, rather than proceeding in two steps,
the clustering procedure is performed simultaneously. As we apply a model-based clustering
algorithm in our exploratory study in Chapter 2, more details on this subject are provided
in a subsequent dedicated paragraph.

Note that the literature does not provide specific indications about the family of methods
that should be used according to the context. Nevertheless, one should keep in mind that
the appropriate way to handle functions often depends on the nature of the original data.
Additional references are provided in Chapter 2, where we present and compare several usual
curve clustering algorithms implemented in the R package funcy. Below, Figure 1.1, inspired
by a representation from Jacques and Preda (2014), summarizes these different families and
the clustering process in a functional context.

MODEL-BASED CURVE CLUSTERING
As briefly mentioned above, model-based clustering aims at defining probabilistic tech-

niques to deal with the appropriate grouping of functional data. The representation of a
functional data still relies on finite-dimensional coefficients that can be obtained through
a basis of functions expansion or from the resulting scores of an FPCA. However, those
coefficients are now considered as realisations of random variables instead of as simple pa-
rameters. In such context, it becomes possible to make assumptions on the probability
distribution they are sampled from, and in particular, cluster-specific distributions can be
defined. For example, as proposed in James and Sugar (2003), we can assume that a spline
basis coefficient αk comes from a Gaussian distribution, specific to the k-th cluster:

αk ∼ N (µk,Σ) ,

where µk is a cluster-specific mean and Σ a common variance for all groups. Such an as-
sumption implies an underlying Gaussian mixture model, and the inference procedures then
rely on the simultaneous estimation of the basis coefficients and the proportions of the mix-
ture. The use of spline basis remains convenient for smooth data, although wavelet-based
approaches have also been adapted (Giacofci et al., 2013) when a wider range of functional
shapes are needed.

On the other hand, Delaigle and Hall (2010) introduced an approximation of the notion of
probability density for random functions, based on the truncated FPCA expansion and the
density of the resulting principal components. A similar approximation is used in Bouveyron
and Jacques (2011) to establish a mixture model where principal components are supposed
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Figure 1.1 – Summary of the different approaches to perform clustering on functional data, from raw data (top)
to final clusters (bottom).

to come from a Gaussian distribution. The idea relies on the application of an FPCA
to each cluster separately and the derivation of an EM algorithm (see Section 1.1.3.a) to
alternatively compute the component scores and the proportion of the mixture. Adapting
ideas previously introduced in the multivariate context (Bouveyron et al., 2007) to functional
data, the authors propose different parsimonious assumptions on the variance structure,
resulting in various sub-models. The overall clustering algorithm is called funHDDC, and
this method is applied for a preliminary analysis of the sports dataset used as illustrative
example in this thesis (see Section 2.3). Another way to introduce some parsimony in the
model is suggested in Jacques and Preda (2013b) by defining a truncation order for the
Karhunen-Loève expansion that is cluster-specific. Finally, an extension of funHDDC to
the case of multivariate functional data have been described in Schmutz et al. (2018). In
this approach, the practical choice on which sub-models to use is handled by model selection,
thanks to criteria such as BIC (Schwarz, 1978) or the slope heuristic (Birgé and Massart,
2006; Arlot, 2019).

BAYESIAN FDA
Let us finally raise recent theoretical advances on the matter of online clustering (Li

et al., 2018) that make use of another perspective, namely, generalised Bayesian learning
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algorithms and the PAC-Bayesian framework (Guedj, 2019). Besides, Chapter 3 and Chap-
ter 4 focus on multi-task time series forecasting, which may present connections to the study
of multiple curves proposed in FDA. Contrarily to the approaches described above, we aim
at proposing a probabilistic framework in these chapters. Some Bayesian FDA methods have
been developed in Thompson and Rosen (2008) or Crainiceanu and Goldsmith (2010), which
inspired some aspects our models. Moreover, as initially proposed in Rice and Silverman
(1991), it remains possible to model and learn mean and covariance structures simultane-
ously from a non-parametric probabilistic point of view, even when data are curves. Such
an approach leads to the introduction of a popular object in the machine learning field:
Gaussian processes (GPs), which are at the core of discussions in the subsequent section.

1.1.2 Gaussian processes
In statistics, the classical supervised learning problem implies the estimation from data of
an underlying function f that maps an input x onto an output y such as:

y = f(x).

This learning problem is called inductive, as we infer on the value of f from observed data,
in order to make predictions on y values for any new input x∗ afterwards. In practice, it
seems vain to expect this relation to be verified exactly in real-world observations (because of
genuine randomness or measurement errors for example), and the introduction of an additive
noise term would indicate that we seek an appropriate approximation. Besides, the infinite
number of candidates offering a solution to this problem generally leads to consider additional
hypotheses on the class of functions we should pick from. Although we account for another
approach in the subsequent paragraphs, a classical assumption involves the restriction to a
reasonable class of functions that constrains the form of f . A usual trade-off then occurs,
since we expect enough flexibility to provide a good fit of the data whereas avoiding to run
into the danger of overfitting, which deteriorates the generalisation performance. Among
the many forms we may consider, the linear model often offers a straightforward choice by
assuming that the output value changes proportionally to the input. If one could fairly argue
that the linear model remains too restrictive, it only serves here as a convenient motivation
to introduce Gaussian processes as an answer to the regression problem (we purposefully set
aside the case of classification, see Rasmussen and Williams (2006, Chapter 3) for details).

1.1.2.a From linear model to Gaussian Processes

Let us assume that x ∈ Rd and y ∈ R. Defining a linear model implies to express the
relationship between theses variables through the following equation:

y = βᵀx+ ε,

where β would typically be a d-dimensional real-valued vector in a frequentist context.
However, from a Bayesian point-of-view, we shall assume a prior distribution over β, like
an isotropic Gaussian β | α ∼ N

(
0, α−1Id

)
for example. Moreover, let ε | σ2 ∼ N

(
0, σ2

)
be a Gaussian white noise as well. In this case, when provided with an iid training sample
of data D = {(y1, x1), . . . , (yN , xN )}, let us define y the corresponding output vector and X
the N × d design matrix, such as:

y = Xβ + ε,
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where ε | σ2 ∼ N
(
0, σ2IN

)
. If we assume β and ε to be independent, y is defined as a linear

combination of Gaussian variables and thus remains Gaussian. Therefore, we only need to
specify its mean parameter:

E
[

y | X, σ2, α
]
= XE [β | α ] + E

[
ε | σ2

]
= 0,

as well as its covariance matrix:

V
[

y | X, σ2, α
]
= E

[
yyᵀ | X, σ2, α

]
= E

[
XββᵀXᵀ + Xβεᵀ + εβᵀXᵀ + εεᵀ | X, σ2, α

]
= XE [ββᵀ | α ]Xᵀ + E

[
εεᵀ | σ2

]
=

XXᵀ

α
+ σ2IN .

Hence, the conditional likelihood of the model is given by:

p
(
y | X, σ2, α

)
= N

(
y; 0,K + σ2IN

)
, (1.3)

where we purposefully define K =
1

α
XXᵀ to be a N × N matrix, which elements are

[K ]uv = k(xu, xv) =
1

α
xᵀuxv, ∀u, v = 1, . . . , N . Hence, while the observations are assumed

to be iid, integrating over β induces a dependence structure between the predictions. This
conditional integrated likelihood can be used to learn the (hyper-)parameters of the model,
whether by defining adequate priors and computing their posterior distributions in a fully
Bayesian treatment or with an empirical Bayes approach by directly maximising (1.3) (more
details in Section 1.1.2.c). As we shall demonstrate further on, this model defines a first
and particular example of Gaussian process regression. Letting this aspect aside, let us
look more closely at the function k(·, ·) defined above, which only depends on the inner
product between the observed inputs. We have seen that the linear model often remains too
restrictive in the form of relationship it defines. However, let us recall that Section 1.1.1.c
introduced the expansion of a non-linear function as a linear combination of basis functions.
This representation can be seen as a linear model in the space of the basis functions φ(x),
i.e. the (often) higher-dimensional space on which the input variables x are projected by the
map φ(·). Hence, we can derive the same model as previously except Φ(X) substitutes X
everywhere, and thus imply non-linear relationships between x and y. In practice though,
the explicit choice of an adequate mapping φ(·) remains complicated. However, we can notice
that the mapping only appears in the linear model through the calculus of an inner product
φ(xu)

ᵀφ(xv) in the corresponding space. Fortunately, this quantity might be expressed as a
function of the original input points kφ(xu, xv) = φ(xu)

ᵀφ(xv), namely a kernel function. For
the identity mapping φ(x) = x and α = 1, we would retrieve kφ(xu, xv) = k(xu, xv) = xᵀuxv,
which we shall refer to as a linear kernel. Conversely, by using a more elaborate kernel
function and thus specifying a different covariance structure in (1.3), we would imply a
transformation of the input representation leading to non-linear interactions with the output.
This approach is known as the kernel trick (Aiserman et al., 1964) and constitutes the
key idea behind kernel methods, for which the Gaussian process regression is a particular
example.

1.1.2.b Kernel methods
First of all, we were able to define kφ(·, ·) thanks to the Mercer theorem (Mercer and Forsyth,
1909), which states that a positive-definite kernel is a symmetric function that can be ex-
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pressed as the inner product between the evaluations of a fixed mapping φ(·) at points
x, x′ ∈ RN . Roughly speaking, a kernel is often seen as a way to measure the similarity be-
tween two inputs (or a notion of closeness), although it more exactly computes the similarity
between two evaluations of a map. Moreover, the N × N Gram matrix (simply called co-
variance matrix in the GP context) Kφ, associated with the kernel kφ(·, ·), must be positive
semi-definite (Shawe-Taylor and Cristianini, 2004) as well. The term kernel methods then
refers to a class of algorithms making use of those objects to solve learning tasks. Among
the most well-known kernel methods, we can cite support vector machines (SVM)(Boser
et al., 1992; Cortes and Vapnik, 1995) that allow, inter alia, the definition of non-linear
frontiers in classification problems. Using kernel functions enables to work implicitly in
high-dimensional feature spaces without explicitly computing the coordinate of data in that
space.

There exists a variety of different kernels, regrouped in families (Genton, 2002) according
to the properties they imply on the method using them. First, we call stationary a kernel
that is defined as a function of x−x′. This type of kernel is then invariant to translation and
only depends on the lag separating two inputs. Furthermore, if we now consider a function
of |x− x′|, the kernel becomes isotropic and remains insensitive to motions in any direction.
Conversely, the name nonstationary refers to the most general class of kernels, which depend
explicitly on the values of the inputs. In addition to the interaction between inputs, most of
the kernels depend upon a set of parameters that specify their exact forms. In the context
of GPs, those are often called hyper-parameters, since they are related to a distribution over
functions instead of a function directly. Let us give the examples of a few classical kernels
we may encounter, especially when it comes to defining a GP model. In the first place, we
already saw an example of linear kernels that can be expressed as such:

kLin(x, x
′) = σ2

s(x− c)(x′ − c),

with c ∈ RN , and σ2
s ∈ R a scale factor that appears in every kernel. The linear kernel is

non-stationary, thus the value of the inputs matters even if its parameters are kept fixed.
This kernel is often used in combination with others to indicate an increasing or decreasing
tendency in the data. A second example can be seen with the periodic kernel, which is
isotropic and generally serves to represent phenomenons with repeating structures:

kPer(x, x
′) = σ2

s exp
(
− 2

`2
sin2

(
π
|x− x′|
ω

))
,

where ω indicates the period between two repetitions of the pattern, and ` is a lengthscale
parameter that controls the smoothness of the kernel. Among the most common choices
of kernel for GPs or SVM lies the exponentiated quadratic (EQ) (sometimes called squared
exponential or Gaussian kernel):

kEQ(x, x
′) = σ2

s exp

(
− (x− x′)

2

2`2

)
,

where the parameters are the same as previously. This isotropic kernel presents nice proper-
ties and is well-suited for interpolating smooth functions since it is infinitely differentiable.
If the EQ has somehow become a go-to choice for many applications, some authors (see
Stein (1999) for instance) argue that such smoothness assumption might be unrealistic for
modelling many real-life phenomenons and recommend the following Matérn class. The
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Matérn kernel (Matérn, 2013) can be seen as the generalisation of the previous EQ and is
defined as:

kMatern(x, x
′) = σ2

s

21−ν

Γ(ν)

(√
2ν

|x− x′|
`

)ν

Kν

(√
2ν

|x− x′|
`

)
,

where Γ is the gamma function, Kν is the modified Bessel function of the second kind,
and ν and ` are non-negative parameters controlling the smoothness of the kernel. The
Matérn kernel, which converges to an EQ when ν → ∞, provides a flexible choice that has
been proved useful for many applications (Minasny and McBratney, 2005; Yang et al., 2016).

Once we know the characteristics of some simple kernels, we may take advantage of several
convenient properties for combining them into more elaborate ones. Let us assume k1(x, x′)
and k2(x, x

′) to be valid kernels. Then the following kernels are also valid (Bishop, 2006,
Chapter 6):

k (x, x′) = ck1 (x, x′) ,

k (x, x′) = g(x)k1 (x, x′) g (x′) ,

k (x, x′) = q (k1 (x, x′)) ,

k (x, x′) = exp (k1 (x, x′)) ,

k (x, x′) = k1 (x, x′) + k2 (x, x′) ,

k (x, x′) = k1 (x, x′) k2 (x, x′) ,

k (x, x′) = k3 (φ(x), φ (x′)) ,

k (x, x′) = xTAx′,

with c ∈ R+, g(·) an arbitrary function, q(·) ∈ R[X] a polynomial, k3(·, ·) a valid kernel of
the features space, and A a symmetric positive semi-definite matrix. As presented above,
there exists a large variety of operations that can be used to manipulate kernels and enhance
the set of desired properties for our model. However, the specific effect of those operations
on the resulting kernels constitutes a topic that is beyond the scope of the present thesis. For
a comprehensive review on the subject along with automated methods to construct them,
we can refer to Duvenaud (2014). By specifying an appropriate kernel for a GP, it is possible
to derive a variety of models such as linear regression, splines or Kalman filters, those just
being the most commons among a wide choice. In the sequel, the terms kernel, covariance
function, kernel function, or covariance kernel refers all to the same object when working in
context of GPs.

1.1.2.c Gaussian process regression
NONPARAMETRIC PROBABILISTIC FRAMEWORK

According to Rasmussen and Williams (2006), a Gaussian process can be defined as a
collection of random variables (indexed over a continuum), any finite number of which
having a joint Gaussian distribution. Hence, a GP provides a generalisation to the notion of
multivariate Gaussian distribution in the infinite-dimensional context. Although GPs have
been introduced (Wiener, 1949) and studied (Thompson, 1956; Matheron, 1973; Cressie,
1993) for quite a long time, they regained much interested with the development of Bayesian
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learning methods for regression problems (O’Hagan, 1978; Williams and Rasmussen, 1996).
We have previously seen that the class in which the regression function f belongs often
needs to be restricted by hypotheses on its form. However, there is an alternative to this
strategy where we keep the functional space large enough while favouring some properties
in a probabilistic fashion. Roughly speaking, assuming a prior distribution over f would
specify an occurrence probability to every admissible choice of functions. Thereby, we could
attribute higher probabilities to functions that we consider more likely to occur in the
context of the modelling. While appealing, this approach seems unrealistic in the first
place, considering the uncountable infinite set of functions to deal with. Gaussian processes,
however, offer an elegant framework that combines both a distribution over a functional
space and a modelling that remains tractable. Although we would only work in practice
with finite numbers of evaluations of the function f , the properties that are deduced on the
full process are the same whether we consider the infinitely remaining input points or not
(they are implicitly integrated out). Let us assume t ∈ T , with T ⊂ R (we still use a temporal
vocabulary for convenience though the following remains true for other input spaces such
as T = Rd for instance). Saying that f is a Gaussian process, i.e. f(·) ∼ GP (µ(·), k(·, ·)),
implies that its distribution is entirely specified through its mean function:

µ(t) = E [ f(t) ] , ∀t ∈ T ,

and its covariance function, expressed as a kernel:

k(t, t′) = cov (f(t), f(t′)) = E [ (f(t)− µ(t))(f(t′)− µ(t′)) ] , ∀t, t′ ∈ T .

Generally, the mean function is supposed to equal zero everywhere since it can simply
be integrated into the kernel as an additional term. However, this quantity being of critical
importance in our forthcoming contributions (see Chapters 3 and 4), we shall keep the term
µ(t) explicit in the following expressions. By doing so, we emphasise on its role (or absence
of role actually) in the classical approaches, which will serve our purpose later. Regardless
of this remark, the mean function µ is at this stage a modelling choice, considered as fixed
and known in the remainder of the section. On the other hand, most of the attention is
usually paid to the covariance structure. The choice of the kernel determines a relationship
between input values that induces the covariance between the outputs. Hence, setting an
appropriate kernel is of major influence on the generalisation performances of the model,
since the covariance structure controls the way we should extrapolate from new data. Once
the parameters of the prior distribution are stated, we may derive the model likelihood that
lies in the centre of the inference procedure.

MARGINAL PRIOR DISTRIBUTION
First, let us recall the expression of the GP regression model:

y(t) = f(t) + ε, t ∈ T ,

where f(·) ∼ GP (µ(·), k(·, ·)) is a GP as previously described, and ε ∼ N
(
0, σ2

)
is a

Gaussian white noise independent from f . If we consider the finite-dimensional evaluations
of the output y = {y(t1), . . . , y(tN )} and the GP f = {f(t1), . . . , f(tN )} at timestamps
t = {t1, . . . , tN}, the following conditional distribution can be derived:

p(y | f, σ2) = N
(
y; f, σ2IN

)
, (1.4)
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along with the finite-dimensional distribution over f:

p(f | t) = N (f;µ(t),K) , (1.5)

where K is the N × N Gram matrix associated with the kernel k(·, ·), and µ(t) the N -
dimensional vector of the mean function, both being evaluated at the observed timestamps
t. Making use of (1.4) and (1.5), we can derive the marginal prior distribution p(y | t, σ2)
explicitly (Bishop, 2006, Section 2.3.3) by integration over all possible f:

p(y | t, σ2) =

∫
p(y, f | t, σ2)df

=

∫
p(y | f, σ2)p(f | t)df

=

∫
N
(
y; f, σ2IN

)
N (f, µ(t),K)df

= N (y;µ(t),Ψ)

where Ψ = K + σ2IN . This distribution can be derived for any finite-dimensional vector y,
implying that y(·) is a GP as well, with a mean function µ(·) and a covariance kernel ψ(t, t′) =
k(t, t′) + δt,t′σ

2, ∀t, t′ ∈ T . Speaking rather loosely, we notice that f has been ’replaced’
by its mean parameter when integrated out. Moreover, this expression highlights that two
independent Gaussian sources of randomness simply add to each other, and thus define
a new covariance structure for the resulting GP. This kind of convenient marginalisation,
with a closed-form in the Gaussian case, also serves us to derive one of our key result
(Proposition 3.5) in Chapter 3.

LEARNING THE HYPER-PARAMETERS
Let us stress that we purposefully omitted to mention the parametric nature of the kernel

k(·, ·) in the previous expressions for the sake of simplicity. However, although the form of
the kernel is set as a modelling choice, we generally want to keep some fitting flexibility by
learning kernel’s hyper-parameters from data. Let us note θ the set of hyper-parameters
that specify the kernel kθ(·, ·), which will be used in the current paragraph. The inference
procedure in GP regression then requires the estimation of Θ = {θ, σ2}. Let us assume now
that we observe an N -dimensional dataset (y, t), defined as previously. From the marginal
distribution, we may establish the likelihood of the model p(y | t,Θ) as a function of Θ.
There exist several approaches to make use of this likelihood function for the learning. In a
fully Bayesian treatment, we would need to introduce a prior over each element of Θ and use
Bayes theorem to derive their posterior distributions. However, the normalisation term in
the formula often remains intractable in practice, and we shall make use of approximations
such as MCMC methods, which might be time-consuming. On the other hand, another
hybrid approach called empirical Bayes allows us to derive point estimates through direct
optimisation. Whether we seek a maximum likelihood or a maximum a posteriori estimate,
we can maximise respectively the likelihood with respect to Θ or the posterior distributions.
For the latter, we would still need to define prior distributions over the hyper-parameters,
whereas the former provides a simpler approach on which we focus. In practice, we generally
prefer to manipulate the log-likelihood L(Θ; y, t) = log p(y | t,Θ), which is more convenient
to handle (in numerical implementations as well since it avoids instability when dealing with
small probabilities):
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L(Θ; y, t) = −1

2

(
log |ΨΘ|+N log(2π) + (y − µ(t))ᵀΨ−1

Θ (y − µ(t))
)
. (1.6)

To efficiently maximise this function, we would often take advantage of gradient-based
algorithms, such as conjugate gradients (Hestenes and Stiefel, 1952) or BFGS methods
(Nocedal, 1980), for instance. Hence, if we assume the evaluation of Ψθ’s derivatives to be
straightforward (which is true for the kernels we presented before), we can simply express
the log-likelihood derivatives as:

dL(Θ; y, t)
dθi

=
1

2

(
(y − µ(t))ᵀΨ−1

Θ

dΨΘ

dθi
Ψ−1

Θ (y − µ(t))− tr
(
Ψ−1

Θ

dΨΘ

dθi

))
, ∀θi ∈ Θ.

PREDICTION
In this paragraph, we consider that the hyper-parameters Θ̂ have been learned and we

thus omit the dependencies on them for the sake of clarity. As usual in regression problems,
we now observe a new input t∗ (that could be a vector of timestamps as well), for which we
want to predict the associated output y∗. Since y(·) is assumed to be a GP, its evaluation on
the (N +1)-dimensional vector of timestamps (t, t∗)ᵀ remains a joint Gaussian distribution:

p (y, y∗ | t, t∗) = N
([

y
y∗

]
;

[
µ(t)
µ(t∗)

]
,

(
Ψ ψ(t∗, t)

ψ(t, t∗) ψ(t∗, t∗)

))
where ψ(t∗, t) denotes the column-vector of all kernel evaluations ψ(t∗, t), ∀t ∈ t. By
displaying the expression in this detailed form, we can keep track of all elements that appear
in the predictive distribution. It can be easily demonstrated (Bishop, 2006, Section 2.3.1)
that if we condition y∗ over the variables y that have been observed, the conditional remains
Gaussian, thus providing a predictive distribution for y∗:

p(y∗ | y, t, t∗) = N
(
y∗; µ̂(t∗), Ψ̂∗

)
(1.7)

with:

• µ̂(t∗) = µ(t∗) + ψ(t∗, t)Ψ−1(y − µ(t)),

• Ψ̂∗ = ψ(t∗, t∗)− ψ(t∗, t)Ψ−1ψ(t, t∗).

As D = {y, t, t∗} constitutes the set of data that we assume observed, we can call (1.7) the
posterior distribution of y∗. This quantity offers a thorough probabilistic prediction for the
output value at timestamp t∗. In order to display this results more easily, we often extract
a maximum a posteriori estimate ŷMAP

∗ = E [ y∗ | D ] = µ̂(t∗) along with credible intervals,
constructed from the posterior variance V [ y∗ | D ] = Ψ̂∗. Let us stress that this result
stands if t∗ represents an arbitrary vector of timestamps, providing a multivariate Gaussian
distribution as a prediction. In this case, we would even acquire a full covariance matrix at
the target timestamps instead of simple point-wise variances. In practical applications, it
is in common usage to compute the predictions on a fine grid for displaying purpose, as we
propose on Figure 1.2. This comparison highlights the evolution of the GP modelling as we
add information through data, and provides examples of functional realisations of the prior
and posterior processes.
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Figure 1.2 – Left: Example of curves sampled from the same GP prior distribution. Middle: Example of curves
sampled from the associated posterior distribution with respect to the points displayed in black. Right: GP

prediction (blue) with the associated 95% credible interval (grey band) coming from the posterior distribution

Let us give some additional intuitions on the parameters of this predictive distribution.
We can note that the posterior mean µ̂(t∗) is expressed as a linear combination of the data
points y, re-centred around the corresponding prior values of the mean function µ(t), added
with the prior mean value at the target timestamps µ(t∗). Moreover, the weights of the
linear combination appear to be proportional to the covariance between the observed and
target outputs, through the kernel evaluations ψΘ̂(t∗, t). Roughly speaking, this indicates
that the closer a data point lies to the target, the higher it contributes to the prediction,
and conversely. Such a behaviour remains quite intuitive and implies that a prediction
far from observed data almost exclusively depends upon the prior mean µ(t∗). We would
advise the reader to keep these aspects in mind for the subsequent chapters as it highlights
the often underrated potential of specifying an adequate mean function for the unobserved
timestamps. Regarding the covariance term, it still consists of a prior (co-)variance term
ψΘ̂(t∗, t∗), at which we subtract a positive quantity that decreases as we move away from
data points. This means that the prediction uncertainty is gradually adapting to the distance
between observed and target values, thus quantifying rather smartly the increasing difficulty
in performing reliable long-term forecasts.

ADVANTAGES OF GAUSSIAN PROCESSES
The GP framework presents several useful properties, which makes it particularly well-

suited to handle the regression problem. First, it offers an analytical procedure with a
closed-form predictive posterior expressed as a Gaussian distribution. Moreover, GPs pro-
vide convenient building blocks for constructing more elaborate models. In the same way
as for linear models, for which GPs can be seen as an extension (Rasmussen and Williams,
2006, Chapter 2), it seems easier in the first place to derive sophisticated methods from a
tractable and well-understood skeleton. Furthermore, we can express a broad range of hy-
potheses (Duvenaud, 2014) solely through the definition of the covariance function. These
assumptions being encoded in an adequate kernel with a usually limited number of param-
eters to estimate. This particularity reduces the requirement for regularisation schemes or
complex optimisation and often allows us to avoid the pitfall of over-fitting. Nonetheless,
this elegant GP framework and its modelling advantages also have a price when it comes to
practical implementation.
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1.1.2.d Limits and extensions
We exhibited in the previous paragraphs the convenient manner for deriving probabilistic
predictions that made GP regression a popular method in the machine learning community.
Despite their undeniable qualities, GPs also suffer from limitations that prevent wider prac-
tical applicability. As we previously mentioned, the various range of properties that GPs can
model is strongly related to the choice of the kernel. This flexibility also raises the practical
question of what kernel’s form is the most adapted to each particular structure of data.
This issue remains often addressed by human experts although automatic kernel construc-
tion methods have recently been proposed (Duvenaud, 2014; Gómez-Bombarelli et al., 2018).

Besides, as we may notice in (1.6), the learning stage in GP requires a matrix inversion
that may lead to a computational bottleneck. This inversion of the N×N covariance matrix
induces a O

(
N3
)

complexity for learning, whereas the vector-matrix products in (1.7) at
the prediction step necessitate O

(
N2
)

operations. Hence, GPs scale up quickly with the
number of data points, and we generally consider that it may only be applied directly to
moderate data sets (up to 104 observations approximately). As this aspect constitutes the
main obstacle to GP usage in modern applications, abundant literature has concentrated in
the past two decades on the diverse ways to tackle this issue. A classical idea behind the
sparse approximations of GPs rely on the introduction of pseudo-inputs u = {u1, . . . , un} as
latent evaluations of the GP at locations tu, which are assumed to be in number n << N .
By this mean, the learning procedure only lies on a covariance matrix of dimension n × n
and induces a computational cost reduced to O(Nn2) (and O(n2) for prediction). We only
present here some ideas behind this approach and a few examples that have been the suc-
cessive state-of-the-art on this question. For a more thorough analysis and comparisons we
can refer to Rasmussen and Williams (2006, Chapter 8), Quiñonero-Candela and Rasmussen
(2005), or Bauer et al. (2016).

Keeping the previous notation, let us yet rewrite the covariance matrices Ka,a = k(ta, ta),
with a ∈ {f,u} corresponding respectively to the vectors of observed and latent inputs.
First note that we can always write the prior distribution p (f∗, f) by integrating over the
pseudo-inputs:

p (f∗, f) =
∫
p (f∗, f,u)du =

∫
p (f∗, f | u) p(u)du,

where p(u) = N (0,Ku,u) by definition, for the any finite-dimensional evaluations of the GP.
Then, we can make the approximation assumption that f∗ and f are independent condition-
ally to u, and thus derive an approximate joint posterior:

p (f∗, f) ' q (f∗, f) =
∫
q (f∗ | u) q(f | u)p(u)du.

We often refer to u as the inducing variables, since all the dependencies between f and f∗
are then induced through u. Note that the location of those pseudo-inputs could be chosen
randomly as a subset of the initial observations, but this approach is generally suboptimal
compared to data-driven methods. We now present three of the principal approximations
for q(·, ·) that have been proposed in the literature. Following the formalism introduced
by Quiñonero-Candela and Rasmussen (2005), these methods can be expressed instead in
regards to the approximation they provide for the exact conditional likelihood p (y | f) =
N
(
y; f, σ2IN

)
. First, the deterministic training conditional (DTC) approximation (Seeger

et al., 2003) is based on the projection f ' Kf,uK
−1
u,u u:
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p(y | f) ' q(y | u) = N
(
y;Kf,uK

−1
u,u u, σ2IN

)
.

Secondly, the fully independent training conditional (FITC) approximation (Csató and
Opper, 2002; Snelson and Ghahramani, 2006) proposes a more elaborate expression of the
covariance:

p(y | f) ' q(y | u) = N
(
y;Kf,uK

−1
u,u u,diag

[
Kf,f −Kf,uK

−1
u,uKu,f

]
+ σ2IN

)
.

Let us mention that there exist many different ways to come up with this method: from ap-
proximation of the conditional likelihood as above; as a result of the expectation-propagation
algorithm; or as an initial modification of the prior over f. Finally, the method that might
probably be considered as the current state-of-the-art (Bauer et al., 2016) is called varia-
tional free energy (VFE) (Titsias, 2009). This approach jointly infers the inducing inputs
along with the kernel hyper-parameters. VFE makes use of variational inference to derive
and maximise a lower bound for the true marginal likelihood p(y) (and then approximates
the true posterior distribution):

log p(y) ≥
∫
q(f,u) log p(y | f)p(u)

q(u) dudf,

where the variational distribution is assumed to factorize as such q(f,u) = p(f | u)q(u), and
an optimal distribution can be derived for q(u) (see Section 1.1.3.b for details on variational
inference).

Although a large part of the early literature addressed the computational issue, several
other problems and extensions that been studied in the GP context are worth a mention.
First, we would often want to enable the assumption of non-Gaussian likelihoods, since it
may sometimes be an unsuitable modelling of the phenomenons, for example in the presence
of outliers or heavy tails. If we generally lose the explicit expressions by working out of the
Gaussian framework, several inference approximations have been proposed (Neal, 1997) and
implemented (Rasmussen and Nickisch, 2010; Vanhatalo et al., 2013) to extent GPs to a
broad variety of likelihoods. In line with more elaborate likelihoods, we may also want to
construct a model based on a mixture of GPs in an analogous way that Gaussian mixtures
provide a prolific framework to handle diverse problems, such as unsupervised learning.
Initial contributions (Tresp, 2001; Rasmussen and Ghahramani, 2002) proposed mixture of
GP experts models to deal with local region of the input space. In the context of curve
clustering, other approaches (Shi and Wang, 2008) lie on the concept of latent clusters and
a mixture of GPs to retrieve the group structure in a dataset. Chapter 4 actually wraps
this idea around the initial method presented in Chapter 3 to provide a cluster-specific
extension. It might also appear too restrictive to manipulate a unique output variable in
several applications, for instance in geostatistics that first focused on this problem. However,
it remains possible to construct adequate covariance matrices to deal with this issue, and
several models and approximations of multiple output GPs have been introduced (Boyle and
Frean, 2005; Álvarez and Lawrence, 2011). A recent discussion on the subject can be found in
Liu et al. (2018). With the boom of connected devices, the machine learning field has recently
paid much attention to online applications and most of the classical algorithms have been
extended to enable adding data and updating results on the flow. The GP framework does
not make exception and several recent works (Bijl et al., 2015; Clingerman and Eaton, 2017;
Moreno-Muñoz et al., 2019) proposed online extensions. Besides, the multi-task learning
paradigm and its adaptation to GPs, which constitutes the main contribution of the present
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thesis, shall be discussed more thoroughly in Section 1.1.4.b. Beforehand, although we gave
an overview of the classical learning procedure in GPs, we did not introduce yet the practical
methods that serve the inference purpose in our work. Moreover, we discussed several
extensions proposed in the literature, and some of them lie on variational approximations,
which has not been presented yet. To this end, we now take a quick detour through EM-like
algorithms and variational inference before diving into deeper aspects of the multi-task GP
framework.

1.1.3 Inference with Expectation-Maximisation procedures

1.1.3.a EM algorithm and Gaussian mixture models
The Expectation-Maximisation (EM) algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 2007) has initially been introduced to compute maximum likelihood estimators
in missing data models. However, this approach covers today a broader range of problems
where the equations cannot be solved directly, for example, when latent variables are involved
in the model. A typical example of the use of EM occurs in mixture models where a latent
variable is associated with each data point to define from which component this observation
comes. Notice that the EM algorithm can also be used to find maximum a posteriori (MAP)
estimates for the sought parameters. In this section, we first describe the EM algorithm in
a general setting, before illustrating its practical application in the classical context of the
Gaussian mixture models.

GENERAL EM
Let us define X a set of N observations generated from a given statistical model, and Z

a set of latent (or missing) variables. Note that the present section is illustrated by using
continuous latent variables, although discrete ones could be considered as well. We also note
θ the vector of parameters to be estimated and L(θ;X,Z) = p(X,Z | θ) the complete-data
likelihood function. In order to compute the maximum likelihood estimates (MLE) for θ,
we would usually maximise the following marginal likelihood of the observed data:

L(θ;X) = p(X | θ) =
∫
p(X,Z | θ)dZ.

However, optimising over this quantity directly might be difficult or, as we shall see in
Chapter 3, we may want to take advantage of the introduction of the latent variables Z. For
any θold, let us write the following relation:

log p(X | θ) = log
∫
p(X,Z | θ)dZ (1.8)

= log
∫

p(X,Z | θ)
p(Z | X,θold)

p(Z | X,θold)dZ (1.9)

= logEp(Z|X,θold)

[
p(X,Z | θ)
p(Z | X,θold)

]
(1.10)

≥ Ep(Z|X,θold)

[
log p(X,Z | θ)

p(Z | X,θold)

]
(1.11)

= Ep(Z|X,θold) [ log p(X,Z | θ) ]− Elog p(Z|X,θold)

[
p(Z | X,θold)

]
(1.12)

= Ep(Z|X,θold) [ logL(θ;X,Z) ] + C. (1.13)
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The expression above comes from Jensen’s inequality associated with the concavity of
log function, and stands for any latent variables Z (for discrete distributions we may simply
replace integrals by sums). Because the expectation would be taken over a constant in (1.11),
the inequality turns into equality for θold = θ. From this result, we can deduce that if a
simple formulation exists for L(θ;X,Z), it might be used for the optimisation of θ instead
of the marginal likelihood, and we shall see that the EM algorithm takes advantage of this
property. In practice, by assuming that θold is known, we can usually derive a closed-form
expression for Ep(Z|X,θold) [ logL(θ;X,Z) ]. The idea behind the EM algorithm lies in the
computing of this quantity alternatively with the optimisation of θ. More precisely, for an
arbitrary threshold ε, we would repeat the two following steps until

∣∣θnew − θold
∣∣ < ε:

Expectation step (E step): Compute Q
(
θ | θold

)
to be the expected value of the data-

complete log-likelihood with respect to posterior distribution of Z with known θold:

Q
(
θ | θold

)
= Ep(Z|X,θold)[logL(θ;X,Z)]. (1.14)

Maximization step (M step): Find the parameters that maximise the previous quantity:

θnew = arg max
θ

Q
(
θ | θold

)
Interestingly, increasing Q

(
θ | θold

)
implicitly indicates that the marginal log-likelihood

log p(X | θ) improves at least by the same quantity at each iteration (Little and Rubin, 2019).
At the beginning of the procedure, θ is set to a random value or initialised using smarter
strategies according to the context. In general, the EM algorithm is only assured to converge
to local maxima (Wu, 1983; Hathaway, 1986) of the likelihood function. However, many
heuristics have been developed over the years to overcome this issue, such as a stochastic
version (Celeux et al., 1992), simulated annealing (Ueda and Nakano, 1998) or repeated
short runs (Biernacki et al., 2003).

GAUSSIAN MIXTURE MODELS
A typical situation where the learning procedure is handled by an EM algorithm happens

to be the inference in Gaussian mixture models. Often used in clustering problems, a
Gaussian mixture assumes the presence of K different sets of mean vector and covariance
matrix {µk,Σk} in the generative model of the data. Moreover, an associated vector π =

(π1, . . . , πK), satisfying πk > 0,∀k, and
K∑

k=1

πk = 1, defines the proportion of each component

of the mixture. Formally, we say that an observation xi comes from a Gaussian mixture
distribution if:

p
(

xi | π, {µk,Σk}k=1,...,K

)
=

K∑
k=1

πk N (xi;µk,Σk) .

A way to come up with such a distribution lies on the definition and marginalisation over
a latent variable Zi = (Zi1, . . . , Zik), where Zik = 1 if the i-th observations belongs to
the cluster k, and 0 otherwise. We first assume that Zi is sampled from a multinomial
distribution:

p (Zi | π) = M (Zi; 1,π)

=

K∏
k=1

πZik

k .
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Moreover, the i-th data point is sampled from a Gaussian distribution according to its
class k:

p (xi | Zik = 1,µk,Σk) = N (xi;µk,Σk) .

Hence, from a sample of independent observations X = {x1, . . . , xN} and by writing
θ = {π, {µk,Σk}k=1,...,K}, we have the following complete-data likelihood:

L(θ;X,Z) = p(X,Z | θ)

=

N∏
i=1

p(xi,Zi | θ)

=
N∏
i=1

p(xi | Zi, {µk,Σk}k=1,...,K)p(Zi | π)

=

N∏
i=1

K∏
k=1

p (xi | Zik = 1,µk,Σk)
Zik πZik

k

=

N∏
i=1

K∏
k=1

(
πk N (xi;µk,Σk)

)Zik

.

We can then deduce the corresponding log-likelihood:

logL(θ;X,Z) =
N∑
i=1

K∑
k=1

Zik

(
logπk + logN (xi;µk,Σk)

)
. (1.15)

Recalling that (1.14) requires to take the expectation of the above expression with respect
to the posterior distribution of Z, we see that in this context, the E step consists in the
computation of τik := Ep(Z|X,θold) [Zik ] , ∀i,∀k. From the Bayes rule, we can retrieve a
factorized form for the posterior distribution of Z:

p(Z | X,θ) = p(X,Z | θ)
p(X | θ)

=

N∏
i=1

p (xi,Zi | θ)
p (xi | θ)

=

N∏
i=1

K∏
k=1

 πkN (xi;µk,Σk)
K∑
l=1

πlN (xi;µl,Σl)


Zik

=

N∏
i=1

M (Zi; 1,τi = (τi1, . . . , τiK)
ᵀ
) ,

with:
τik =

πkN (xi;µk,Σk)
K∑
l=1

πlN (xi;µl,Σl)

, ∀i,∀k.

Thus, making use of the parameters θold coming from a former M step or the initialisation,
we have a closed-form expression to update the value of τik. This posterior probability for
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the i-th observations to belong k-th class, sometimes called responsibility, shall now be
plugged into (1.15) to define the optimisation function:

Q
(
θ | θold

)
= Ep(Z|X,θold)[logL(θ;X,Z)]

=

N∑
i=1

K∑
k=1

τik

(
logπk + logN (xi;µk,Σk)

)
.

The M step requires to maximise the function Q
(
θ | θold

)
with respect to the parameters

θ = {π, {µk,Σk}k=1,...,K}, which are noticed to occur in independent terms of the overall
sum. In this case, by setting the corresponding gradients to 0, we can first retrieve explicit
weighted MLE for the mean and covariance of a Gaussian distribution:

µnew
k =

N∑
i=i

τikxi

N∑
i=i

τik

, Σnew
k =

N∑
i=i

τik(xi − µk)(xi − µk)
ᵀ

N∑
i=i

τik

, ∀k = 1, . . . ,K.

Intuitively, we see that these expressions correspond to weighted averages using every
data points. Since the weights {τik}k=1,...,K represent the posterior probabilities of lying in
a cluster, an observation can be thought as contributing to each class proportionally to its
belonging probability. To conclude, the optimisation over π requires some cautions regarding

the constraint
K∑

k=1

πk = 1. By using a Lagrange multiplier and setting the gradients to 0, it

remains pretty straightforward to retrieve the MLE for the multinomial distribution:

πnew
k =

1

N

N∑
i=i

τik, ∀k = 1, . . . ,K.

A somehow standard procedure to initialise the classes relies on the use of results from
a previous clustering algorithm such as k-means for example. We terminate the alternated
updates when

∣∣∣θnew − θold
∣∣∣ < ε , with ε > 0 an arbitrary threshold, or when the likelihood

has converged. The model selection problem of finding the right number of clusters K
comes with extensive literature in itself. However, we may recall some classic criteria such
as the AIC (Akaike, 1974), BIC (Schwarz, 1978), and ICL (Biernacki et al., 2000), or
efficient heuristics like the slope heuristic (Birgé and Massart, 2006; Baudry et al., 2012) for
instance. Comprehensive comparisons and discussions on the subject can also be found in
Biernacki and Govaert (1999) or McLachlan and Peel (2004).

1.1.3.b Variational EM
We introduce in the following some tools from the calculus of variations (Bishop, 2006,
Chapter 10) that lead to an extension of the EM algorithm called Variational EM (VEM).
The inference procedure in Gaussian mixture models still serves as an illustrative example
throughout the section. As we mentioned before, the E step of the algorithm necessitates
the explicit computing of the posterior distribution of the latent variables thanks to the
previously estimated parameters θold. However, let us recall that this distribution is defined
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as:

p(Z | X,θold) =
p(X | Z,θold)p(Z | θold)

p(X | θold)

=
p(X | Z,θold)p(Z,θold)∫

Z p(X,Z | θold)dZ
.

In many cases, this posterior distribution is intractable whether because of the marginali-
sation at the denominator or, as we shall see in our model in Chapter 4, because some inter-
dependent latent variables prevent from an exact formulation. In such a context, we may
still want to derive an efficient algorithm by computing an approximation q(Z) ≈ p(Z | X) of
the desired quantity. The idea behind this approximation would be to define an analytical
expression, typically by restricting the choice to an usual family of distributions and picking
the one that minimises the Kullback-Leibler (KL) divergence to the true posterior. In order
to get the closest possible approximation, the appropriate family of distributions to consider
depends on the model since we should take it as rich and flexible as possible once the mini-
mal requirements for a tractable expression are fulfilled. Let us expand a new formulation
for log p(X | θ), expressed from the KL divergence between q(Z) and p(Z | X, θ):

KL(q‖p) =
∫
q(Z) log q(Z)

p(Z | X, θ) dZ

=

∫
q(Z)

[
log q(Z)

p(Z,X | θ)
+ log p(X | θ)

]
dZ

=

∫
q(Z)[log q(Z)− log p(Z,X | θ)]dZ +

∫
q(Z)[log p(X | θ)]dZ

=

∫
q(Z)[log q(Z)− log p(Z,X | θ)]dZ + log p(X | θ).

From the formulation above, we can rewrite the observed-data log-likelihood of the model
as:

log p(X | θ) = KL(q(·)‖p(· | X,θ))− Eq(Z)[log q(Z)− log p(Z,X | θ)]
= KL(q(·)‖p(· | X,θ)) + L(q;θ),

where L(q;θ) is a functional both of the distribution q(Z) and the parameters θ. As
we know that a KL divergence is always non-negative, L(q;θ) provides a lower bound for
log p(X | θ), with equality when q(Z) = p(Z | X,θ) (i.e., KL(q(·)‖p(· | X,θ)) = 0). If we
assume θold known, we may derive the E step of the VEM algorithm from the maximisation
of the lower bound L(q;θ) with respect to q(Z), which is equivalent to minimising the
KL divergence. A typical choice for the approximation q(Z) is to consider a family of
usual parametric distributions (e.g. Gaussian), and the problem of maximisation over a
distribution reduces to the optimisation of the associated parameters (mean and covariance
in the Gaussian case). In practice, we often do not need to state this explicitly, and we may
simply induce an adequate family by assuming that the distribution over the latent variables
factorizes over some convenient partition Z1, . . . ,ZJ :

q(Z) =
J∏

j=1

qj (Zj) .
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For example, if we switch back to the Gaussian mixture problem where we add some addi-
tional latent variables U to the model, we now want to compute the posterior distribution of
Z+ = {Z1, . . . ,ZN ,U}. However, if the posteriors of U and Z = {Z1, . . . ,ZN} depend upon
each other (as in our model in Chapter 4), the explicit computation becomes intractable
and we need to define an appropriate approximation. A clever approach in this context is
to seek an analytical approximation that belongs to the family of distributions induced by
the assumption of independence we lack: q(Z+) = qU(U)qZ(Z). Such an assumption is the
minimum we need to derive explicit formulations, and it naturally implies that the posterior
approximations remain of the same form as the prior distributions whenever these prior
distributions are members of the exponential family. In our example, we would even get a

’free’ additional factorisation over the classes q(Z+) = qU(U)
N∏
i=1

qi(Zi), and the approximate

posterior over each Zi would remain a multinomial distribution.

With some tools from the calculus of variations, it can be proved (Bishop, 2006, Chap-
ter 10.1.1) that the optimal distributions q∗j (Zj) (minimising the KL divergence and max-
imising the lower bound) are given by:

q∗j (Zj) = El 6=j [ log p(X,Z) ] + constant , (1.16)

where El 6=j indicates that the expectation is taken over all the variables of the parti-
tion Z1, . . . ,ZJ except the j-th. The constant is an explicit term of normalisation that we
can retrieve by inspection of the distribution in practice. In our example, it would mean
that for any i, if we consider {q1, . . . , qi−1, qi+1, . . . , qN} and qU fixed and known, we can
compute the optimal distribution q∗i (Zi) by taking the expectation of the complete-data log-
likelihood with respect to them. Conversely, the solution for the additional latent variable
U is expressed as:

q∗U(U) = Ei=1,...,N [ log p(X,Z) ] + constant , (1.17)

where Ei=1,...,N is the expectation associated with the distributions qi(Zi), ∀i = 1, . . . , N .

As the expressions (1.16) and (1.17) provide solutions that depend upon each other,
it suggests the derivation of a cyclic estimation procedure where we first initialise all the
factors appropriately, and then iteratively compute each optimal distribution thanks to the
others. For each {Zi}i=1,...,N , we would identify the form of the multinomial distribution
for q∗i (Zi) and deduce an explicit updating formula for its parameters τik, as in the EM.
Moreover, if the prior over U belongs to the exponential family, like the Gaussian distribution
for example, we could also retrieve a Gaussian approximate posterior by inspection and
derive the associated analytical expressions for the mean and covariance parameters. Such
a procedure is assured to converge by convexity of the lower bound with respect to each
factor (Boyd and Vandenberghe, 2004). Once q∗(Z) is held fixed, the M step still requires
to maximise the lower bound L(q;θ) but this time with respect to θ, necessarily causing
the observed-data log-likelihood log p(X | θ) to increases as well. The overall algorithm also
converges to (local) maxima, and we provide the pseudo-code of a generic VEM algorithm
in Algorithm 1 to clarify the different steps.

Let us stress that we only present here EM and VEM versions designed to find MLE of
the parameters, as these methods are respectively used in Chapter 3 and Chapter 4 in the
learning procedures of the algorithms we develop. However, the philosophy behind these
approaches has a wider area of application and may be used to find MAP estimates or even
handle inference in a fully Bayesian model. In order to treat the parameters in a Bayesian
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Algorithm 1 The Variational EM algorithm
// INITIALISATION

Initialise the set of (hyper-)parameters θ.
Initialise the distributions qj(Zj), ∀j = 1, . . . , J .

// OPTIMISATION

while did not converge do

E step: Maximise L(q;θold) with respect to q(Z):
q∗j (Zj) = Ej 6=l

[
log p(X,Z | θold)

]
+ constant , ∀j = 1, . . . , J .

M step: Maximise L(q∗;θ) with respect to θ:
θnew = argmax

θ
Eq∗(Z) [ p(X,Z | θ) ] .

end while

fashion, we would also need to define corresponding prior distributions and compute their
posteriors for inference, as we did with latent variables. Such a model is somehow more
general and powerful since it offers a full distribution, and thus uncertainty quantification,
instead of point-wise estimates for the parameters. It also tackles the problem of the sin-
gularities that may arise in maximum likelihood estimation (Attias, 1999). However, this
approach comes with an additional computational cost if an MCMC algorithm handles the
inference, or with extra calculus and potentially complex derivations if variational inference
is used instead. The variational Bayes EM (VBEM) algorithm offers a powerful way to pro-
vide analytical approximations of the posterior distributions in such models and has raised
much interest in the past two decades (Beal and Ghahramani, 2003; Latouche et al., 2012).

1.1.4 Multi-task learning

1.1.4.a The multi-task paradigm
According to the comprehensive survey Zhang and Yang (2018), the multi-task learning
(MTL) is ”a learning paradigm in machine learning that aims to leverage useful information
contained in multiple related tasks to help improve the generalisation performance of all
the tasks”. The term MTL has been introduced by Caruana (1997) with an illustration on
shared hidden units in neural networks, and the initial ideas, as well as new ones, are since
then adapted in many fields of machine learning. For a clear understanding, let us stress
that we call task a process generating a batch of output data from the associated inputs. In
this regard, different tasks may result in different outputs for the same set of input values,
and we can see tasks as a higher level of hierarchy or structure in a dataset. Regardless of
the specific models and algorithms that are used in practice, the MTL covers a wide range
of designs supposed to be meaningful when it comes to sharing knowledge between multiple
tasks. Among the important concepts, we can report the feature learning approach (Argyriou
et al., 2007, 2008), where we assume that all tasks share the same feature representation. The
main work then involves constructing this relevant new expression from the original data.
For example, Maurer et al. (2013) proposes to derive a sparse representation using a linear
transformation of the initial features. On the other hand, the well-named task clustering
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approach (Thrun and O’Sullivan, 1996) aims at defining groups of similar tasks in the same
fashion that classical clustering algorithms define clusters of resembling data points. In this
framework, the answered question is more about which tasks should share information than
in the way it is actually shared (Kang et al., 2011), and task clustering might be thought
in combination with other approaches. By loosening the strict belonging to a cluster, we
would fall into the spectrum of task relation learning (Evgeniou et al., 2005) where the
relation between tasks is rather quantified through a similarity or a covariance measure. In
this sense, most of the multi-task models expressed in terms of Gaussian processes, which
we discuss further on, live in this category. Last but not least, the decomposition approach
is somehow a meta-view on the multi-task paradigm that associates different regularisation
strategies on the model parameters. Jalali et al. (2010), for instance, make use of both `1
and `∞ regularisation to offer a sparse representation in two different aspects, but this idea
may be enhanced, even to tree-structured levels of regularisation (Jawanpuria and Nath,
2012).

1.1.4.b Multi-task Gaussian processes models
There have been several different approaches in the literature claiming for the title of multi-
task Gaussian process models. We have seen in the previous section that this paradigm can
be developed from many perspectives and offers more of a general philosophy on the learning
process than a well-defined model or heuristic. When it comes to GP, we can still highlight
the work developed in Bonilla et al. (2008) that has had much influence over the years,
leading to further developments (Zhang and Yeung, 2012; Chen et al., 2018) and numerous
applications (Williams et al., 2009; Ghassemi et al., 2015). To introduce some aspects of this
model, we need to adjust a bit the notation introduced in Section 1.1.2.d to the multi-task
framework. As the data are supposed to come from different sources, we introduce the index
i = 1, . . . ,M to differentiate the individuals (we use this word instead of tasks, batches, or
others for consistency when it comes to our main illustrative example). As before however,
we observe the outputs yi = {yi(t1), . . . , yi(tNi)} for the i-th individual at timestamps
ti = {t1, . . . , tNi}. Let us stress that the number of timestamps Ni as well as their location

might be different from one individual to another in general. We also note t =
M⋃
i=1

ti, the

N -dimensional set of pooled timestamps. With our notation, the case where all individuals
are observed on the same grid exactly is equivalent to assume N = Ni, ∀i = 1, . . . ,M , and
we suppose it to be the case in the following for simplicity. The regression model in this
context becomes:

yi(t) = fi(t) + εi, ∀i = 1, . . . ,M, ∀t ∈ T .

The idea behind the so-called multi-task Gaussian process (Bonilla et al., 2008) model is
based on the introduction of a specific kernel form with two factors. As we want to introduce
some task-related influence between the individuals, the function f is supposed to be a GP
(with zero mean for simplicity) with an evaluation of its covariance function on observed
inputs defined such as:

cov (fi(tk), fj(tl)) =
[

Kf
]
ij
kt(tk, tl), ∀i, j = 1, . . . ,M, ∀tk, tl ∈ t,

where Kf is a M×M positive semi-definite matrix specifying the inter-task similarities, and
the notation [ · ]ij stands for the extraction of the i-th line and j-th column of a matrix. The
kernel kt(·, ·) defines, as for usual covariance structures in GPs, the relationships between the
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inputs. Assuming a noise variance σ2
i for the i-th individual, the conditional distributions

remain:
p(yi | fi, σ2

i ) = N
(
yi; fi, σ2

i IN
)
, ∀i = 1, . . .M.

Then, we way still derive the marginal joint distribution over {yi}i = {y1, . . . , yM}, by
integrating out the {fi}i:

p({yi}i | Θ, t) = N ({yi}i ; 0,Σ) ,

where Θ is the set of all hyper-parameters and Σ = Kf ⊗ Kt + D ⊗ IN is an MN ×MN
matrix. Moreover, Kt is the N ×N Gram matrix associated with kt(·, ·), D is the M ×M
diagonal matrix of task noises such as [D ]ij = δijσ

2
i , and ⊗ stands for the Kronecker prod-

uct. Considering this joint distribution and what we said about GP’s prediction formula in
Section 1.1.2.c, it appears obvious that we can derive the posterior distribution as usual.
This prediction would take into account the observations of every individual, and weight
them both in regards to the covariance between the timestamps, as usual, but also to the
covariance between tasks. This way, we have a contribution of all individuals and a way of
sharing information across them that we hope to enhance the results. This model provides
an elegant framework to integrate the philosophy of multi-task learning into the GP regres-
sion while keeping closed-form expression throughout.

However, we can notice a major drawback, especially in the light of our previous re-
marks on the scalability of GPs. The covariance matrix thereby defined Σ has a dimension
MN ×MN , and then a computational cost in O(M3N3) for inversion, which may discard
its applicability in most cases. Moreover, the inference procedure necessitates estimating
the hyper-parameters Θ = {θt,D,Kf}, where the M ×M inter-task covariance matrix may
become unrealistic to learn when the number of individual increases. It remains possible,
however, to maximise the marginal likelihood directly through gradient-based methods and
using Cholesky decomposition for Kf to remain positive semi-definite, but authors in Bonilla
et al. (2008) proposed another solution. Indeed, by exploiting the Kronecker product struc-
ture of Σ, it is possible to derive an EM algorithm with closed-form updates for Kf (which
will remain positive semi-definite as well) and D, to decouple their learning to θt’s. Hence,
by computing a new likelihood formula with current values Θ̂ at the E-step, and updating
matrices after θt’s optimisation at the M-step, we can iterate until convergence to complete
the inference. This approach tackles the issue of optimising too many parameters while leav-
ing unchanged the computational cost. As we have previously seen, there yet exist many
approaches to provide sparse GP approximations (see Section 1.1.2.d) and authors propose
an adaptation of these methods to reduce the computational burden to O(MNP 2Q2), where
P < M and Q < N . Once more, let us advise to keep these values in mind for comparison
purpose when we discuss the computational cost of our multi-task GP proposal in Chap-
ter 2 (which remains in O(MN3

i +N3) before any sparse approximation). As an additional
remark, if we consider the noise free case, i.e. p({yi}i | Θ, t) = N

(
{yi}i ; 0,Kf ⊗ Kt

)
and

a block-design of the covariance matrix, a decorrelation phenomenon appears and Kf does
not influence the prediction any more. Hence, although this property may seem appealing
regarding the computational cost reduction, it remains pointless in practice since this would
cancel all inter-task transfer, which is the whole purpose of the model.

Many direct extensions have been proposed (Hayashi et al., 2012; Rakitsch et al., 2013)
in the literature to provide additional features to this approach. There also exist alternative
models (Teh et al., 2005) that are worth a mention, such as models with conditionally inde-
pendent {yi}i, sharing the same covariance function across individuals (Schwaighofer et al.,
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2005; Yu et al., 2006). In particular, the geostatistics field have developed (Zhang, 2007;
Genton and Kleiber, 2015) many aspects on related problems although using a different vo-
cabulary, namely the intrinsic model of coregionalization. An interesting application of the
multi-task Gaussian process models occurs in the framework of Bayesian optimisation (Swer-
sky et al., 2013). The problem of finding an appropriate setting for hyper-parameters being
unfortunately often neglected, this work proposes to leverage previously trained models in
order to quickly tune new ones, resulting in valuable enhancements of the optimisation pro-
cess. Another notable application can be reported with the use of multi-task GP for causal
inference (Alaa and van der Schaar, 2017), which aims at helping to define individualised
treatments for medical purpose. Besides, as the issue of computing cost always remains
an important topic, Zhu and Sun (2014) introduce a multi-task sparsity regulariser for the
subset selection of multiple Gaussian processes. Finally, the recent work of Clingerman and
Eaton (2017) develops a lifelong learning approach that enables online transfer between GP
models in order to learn multiple tasks consecutively.

On the other hand, several other methods have been named using the term multi-task
GP over time while referring to different strategies. In particular, some models have been
developed (Yu et al., 2005; Shi et al., 2007; Yang et al., 2016, 2017) not only focusing on
the covariance structure, but also considering the mean function in the multi-task strategy.
Since our forthcoming developments have been inspired by some of these ideas, let us provide
insights on their work and thus motivate the interest of sharing information through the mean
function in GP models for multi-task learning purpose. Originally, Yu et al. (2005) offered
an extensive study of the relationships between the Bayesian hierarchical linear models
and GPs to develop a corresponding multi-task GP formulation. Hierarchical Bayesian
modelling provides a natural way of specifying a relation between tasks by assuming that
model parameters are drawn from a common hyper-prior distribution. Let us introduce their
ideas by recalling the linear model with y ∈ RN and X ∈ RN×d, in a Bayesian point-of-view:

y = Xβ + ε,

where β is a d-dimensional random vector such as β ∼ N
(
β;µβ ,Cβ

)
, and ε a Gaussian

white noise N -dimensional vector. In this hierarchical approach, the aim is to obtain type
II maximum likelihood estimates for the parameters {µβ ,Cβ} by assuming the following
hyper-prior distribution, which is conjugated with the multivariate Gaussian likelihood of
the model:

p
(
µβ ,Cβ

)
= p

(
µβ | Cβ

)
p (Cβ)

= N
(
µβ ;µβ0

,
1

π
Cβ

)
IW (Cβ ; τ,Cβ0

) ,

where π, τ , µβ0
and Cβ0

are fixed scalars, vector and matrix to set. By this mean, an EM
algorithm can be derived with closed-form updates for µβ , Cβ and the noise variance. In
the case where we only focus on the function values and the covariance matrix on a finite set
of data, and we explicitly know coordinates of the inputs in the feature space (quite unusual
in the GP context), an adaptation to the GP framework is proposed with:

p (µf,K) = N
(
µf | 0,

1

π
K
)
IW(K | τ,κ), (1.18)

where we consider f ∼ N (µf,K) a GP evaluated on the set of inputs, π still is a fixed scalar,
and κ is the kernel defined by the inner product between inputs. The Normal-inverse-
Wishart hyper-prior distribution above still allows for the derivation of an EM algorithm for
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inference as before. This so-called transductive multi-task GPs approach is, in general, not
convenient in practice because each observation of new test data forces to re-run the EM
algorithm. An inductive multi-task GP model is finally proposed, thanks to the definition
of parametric representations of the target mean µf and covariance K. An EM algorithm
and explicit updates formulas are again provided for both those quantities and the newly
introduced parameters. As this approach remains a bit unclear on the way the parametric
approximation is derived though, we prefer to remain careful on the interpretations of this
model. However, this approach inspired the further work of Yang et al. (2016), which gives a
generalisation of this model for tackling the FDA problem of simultaneously smooth multiple
curves. By assuming general covariances structures and a fully Bayesian hierarchical model,
an MCMC algorithm has to be derived for inference. As a consequence, this very flexible
model may suffer from a computational burden that motivated the introduction (Yang et al.,
2017) of a more efficient approximation using a basis functions representation.

Finally, let us conclude this state-of-the-art chapter by reporting the series of articles (Shi
et al., 2005, 2007; Shi and Wang, 2008; Wang and Shi, 2014) and the gathering book (Shi and
Choi, 2011) presenting the so-called Gaussian process functional regression framework. The
kind of tackled problems and the point-of-view of this approach somehow resembles some
aspects of the present thesis, both in sharing information through the mean function in GP
regression (Shi et al., 2007) (Chapter 3) and in the further extension to a GPs mixture model
for cluster-specific predictions (Shi and Wang, 2008) (Chapter 4). Although these models
are not introduced as multi-task learning methods, we can retrieve a common philosophy in
the will of handling simultaneously multiple curves to improve each individual modelling.
This work particularly focuses on data that are considered as functional and thus makes use
of several models we previously introduced, such as basis functions or GP regression. Let
us highlight only a few aspects of these methods as a transition to the following chapters of
the present manuscript while avoiding too many overlaps. The considered regression model
is somehow more general than the previous ones since we still use t ∈ T as an input, but
also introduce a set of additional functional covariates xi(t) = {x1i (t), . . . , xri (t)} along with
scalar ones ui = {u1i , . . . , uhi }, such as:

yi(t) = fi (t, xi(t),ui) + ε, ∀i = 1, . . . ,M, ∀t ∈ T .

The form of the function fi is chosen to be, for all individuals, the sum of a mean
deterministic function µi and a centred Gaussian process τi(·), such as:

fi(t) = µi(ui, t) + τi(xi(t)), ∀i = 1, . . . ,M, ∀t ∈ T ,

with τi(·) ∼ GP (0, k(·, ·)) and µi(ui, t) = uᵀ
i β(t) being a linear combination of the scalar

inputs with a functional term to estimate (a modelling choice proposed in Ramsay and
Silverman, 2005). This functional term is common to all individuals and estimated thanks
to basis function expansion (see Section 1.1.1.c). We can thus deduce an estimation µ̂i for
the mean function:

µ̂i(t) = uᵀ
i B̂φ(t), ∀i = 1, . . . ,M, ∀t ∈ T ,

where φ(t) = {φ1, . . . , φB(t)} is a vector of fixed basis functions and B̂ the corresponding
h × B matrix of coefficients estimated from the dataset. Plugging this estimate into the
model evaluated on the input points, the authors define the estimated evaluation τ̂ i of the
centred GP:

τ̂ i = yi − µ̂i(t), ∀i = 1, . . . ,M.
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These values are then used in the likelihood of the GP model to estimate the hyper-
parameters of the kernel k(·, ·) as usual. Finally, the classical prediction formulas for GP
can be derived for prediction purpose. As mentioned initially, this model raised the idea
of a shared mean function estimated with data from all individual as a way of borrowing
information across individuals. However, some modelling choices remain rather arbitrary,
and the use of a parametric basis function expansion for the mean function may seem
odd in a GP framework, which we have presented here as a convenient extension of this
approach. Moreover, the basis function modelling drags in the model its usual practical
inconveniences such as smoothing parameter selection, explicit choice of the basis, difficulties
in handling uncommon grids of inputs. Although we became aware of this work after the
beginning of our own developments, it remains accurate to consider the models presented in
Chapter 3 and Chapter 4 as an extension to a fully non-parametric GP framework. In this
consideration, our multi-task GPs with common mean approach offers both modelling and
practical improvements, as detailed in the subsequent section.

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.1 Context
Functional data analysis (FDA) has been an active area of research in statistics for the
past two decades. Many real-world data that are currently collected can be considered as
intrinsically functional as they come from time-dependent phenomenons or are observed
over a continuum. Among the diversity of applicative fields, sports science still appear as
mainly unexplored, although promising in regards to the diversity of available datasets and
interesting related questions. This thesis initially took its roots from the collaboration with
sports federations around the problem of talent detection among young athletes. Recent
studies (Boccia et al., 2017; Kearney and Hayes, 2018) reporting careers of thousands of
athletes exhibit only a weak relationship between the performances at young and adult age.
In order to enlighten some aspects of the talent identification decision-making process, our
work focuses on two main questions: Are there such things as typical patterns of progression
among athletes? Can we imagine using similar features between individuals to improve the
forecast of future performances? The French Swimming Federation (FFN) provided several
datasets that serve as a leading thread application to illustrate the methodologies developed
throughout this manuscript. In the sequel, we mainly focus on two datasets (one for women,
one for men) that gather the performances of the FFN members between 2000 and 2016 in
competitions of 100m freestyle (50m pool). During its career, we assume that the athlete’s
performance level over time can be represented by a function called progression curve, which
constitutes our main object of interest. The point-wise observations of these curves being
provided by the competition results, our data consist of a set of time series, observed irreg-
ularly among individuals. As illustrated on Figure 1.3, the sparsity and irregularity in the
observations offer a significant challenge when it comes to comparing individual from one
another and proceed to thorough analyses.

The three main chapters of this thesis propose methodological developments and solutions
of increasing efficiency to our two main questions. Chapter 2 offers an initial exploration of
the datasets and highlights the existence of different patterns of progression thanks to the
application of curve clustering methods. Then, we introduce in Chapter 3 a novel multi-
task Gaussian processes model along with the associated learning algorithm and prediction
formulas, providing a well suited probabilistic modelling. Finally, reusing the idea of group

32



Figure 1.3 – Example of data points associated with 3 different swimmers (respectively in blue, red and black).
Inputs are the age at the competition’s day. Outputs are the racing time in competition (here for the male 50m

freestyle).

structures in the data, Chapter 4 proposes a generalisation of the previous model by devel-
oping a multi-task GPs mixture model, allowing for weighted cluster-specific predictions.

1.2.2 Exploration and clustering of the swimmers' progression curves
Following the path of the quick review proposed in Section 1.1.1.d about curves cluster-
ing methods, we start this chapter with a comparison on synthetic data between several
state-of-the-art algorithms, gathered within the R package funcy. Three different situations
of increasing difficulty are proposed, and the algorithms are compared (Table 2.2) both on
their capacity to retrieve the correct cluster for each curve and on their running time. The
performances of each method are analysed in regards to their ability to deal with the differ-
ent problems, and the advantages and drawbacks of the various approaches are discussed.

Subsequently, we propose a first attempt to model and analyse the swimmers’ progression
curves as functional data. As we illustrate our methods on time series, we generally use the
corresponding vocabulary and refers to the input values as timestamps. Moreover, we also
call individual each entity possessing its own batch or set of data, to remain consistent
with the swimmers’ application. A dataset is composed of M individuals, each of them
observed on Ni (potentially different from one individual to another) data points. Thus,
for all i = 1, . . . ,M , we are provided with a set {

(
t1i , yi(t

1
i )
)
, . . . ,

(
tNi
i , yi(t

Ni
i )
)
} of inputs

and associated outputs. Since many objects are defined for all individuals in the sequel,
we shorten our notation as such: for any object x existing for all i, we denote {xi}i =
{x1, . . . , xM}. Convenient notation follows:

• ti = {t1i , . . . , t
Ni
i }, the set of timestamps for the i-th individual,

• yi = yi(ti), the vector of outputs for the i-th individual,
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• t =
M⋃
i=1

ti, the pooled set of timestamps among individuals,

• N = #{t}, the total number of observed timestamps.

For each individual, a common B-spline basis
{
B1, . . . ,BB

}
is defined for a decomposition

such as:

yi(t) =

B∑
b=1

αb
iBb(t), ∀i,∀t.

This way, the individual-specific information of each functional data is represented by the
set

{
α1
i , . . . , α

B
i

}
∈ RB of the B-spline coefficients. This set of coefficients being of equal

dimension for each curve, any classical curve clustering algorithm can now be applied. We
choose to use the funHDDC algorithm proposed in (Bouveyron and Jacques, 2011; Schmutz
et al., 2018) both for its performance and the ability to deal with multidimensional func-
tions. As we exhibit it in a prior exploration of the dataset through an FPCA, the different
modes of variation among curves and their derivatives suggest that they bring essential in-
formation altogether. By performing a curve clustering solely using the splines coefficients,
the resulting groups appear as uninformative, mainly using the relative position of curves
from one another on the y-axis and ignoring more subtle modes of variation. Therefore, we
include the coefficients of the curves’ derivative as an additional functional variable, in order
to bring complementary features about the progression dynamics into the clustering. Such
an approach gives satisfactory results since the compromise between the level of performance
and progression patterns offers a broader view on the way swimmers improve over time. The
resulting groups proved to be coherent with the knowledge of experts from the swimming
federation. In particular, we identify specific patterns of early or late progression, high-
lighting that many swimmers can fill a gap at older ages with a higher rate of improvement
(see Figure 1.4). Although this approach allows us to enlighten some important features of
the dataset and group structures, it also suffers from several modelling issues. On the one
hand, the lack of available data points for some individuals makes the global parametric
B-splines decomposition difficult, sometimes leading to unsatisfactory individual modelling.
On the other hand, this frequentist approach does not offer uncertainty quantification either
for modelling or prediction purpose, which would yet be valuable in such a decision-making
problem. These many obstacles lead us to the methodological developments at the heart
of this thesis, taking place in the non-parametric and probabilistic framework of Gaussian
processes.

1.2.3 Multi-task Gaussian processes with common mean process
The Gaussian process framework offers an elegant way to model the underlying function,
mapping an input variable onto the output in a supervised context. Despite many nice
properties, GPs suffer from their computational cost in O(N3), which we will not focus
on here, and from generalisation issues when data points are whether sparsely or poorly
distributed over the input domain. As our applicative datasets contain many individuals
(' 104) each one observed on only a few locations (' 101), the definition of a multi-task
model would offer the opportunity of sharing information across the individuals to tackle
this issue. The novelty of this approach lies in the introduction of a mean process, common
to all individuals. This mean function is defined as a Gaussian process, for which the hyper-
posterior distribution is tractable, and provides to each individual a prior mean value that
contains information over the whole domain and thus improves the predictive capacities.
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Figure 1.4 – Mean curves (left) and mean derivatives (right) resulting from the clustering of the swimmers’
progression curves into 5 groups.
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Figure 1.5 – Graphical model of dependencies between variables in our Multi-task GPs model.

The functional data yi(t) associated with the i-th individual is assumed to be generated
from the following model:

yi(t) = µ0(t) + fi(t) + εi(t), ∀i,∀t,

where µ0 is the common mean GP, fi is a centred individual-specific GP, and εi a noise
term. The assumptions on the model are summarized in the graphical model displayed
on Figure 1.5. Thanks to a sample of data {ti, yi}i, the inference of such model requires
the estimation of the hyper-parameters associated with the GPs’ covariance kernel and the
computing of µ0’s hyper-posterior distribution.

Those quantities being interdependent, an Expectation-Maximisation (EM) algorithm
is derived for this purpose. In the E-step, the hyper-posterior distribution of µ0 can be
computed explicitly using the current values of the hyper-parameters, as detailed in Propo-
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Prediction Estimation µ0

MSE CI95 MSE CI95
Magma 18.7 (31.4) 93.8 (13.5) 1.3 (2) 94.3 (11.3)
GPFDA 31.8 (49.4) 90.4 (18.1) 2.4 (3.6) ?

GP 87.5 (151.9) 74.0 (32.7)

Table 1.1 – Average MSE (sd) and average CI95 coverage (sd) on 100 runs for GP, GPFDA and Magma. (? :
99.6 (2.8), the measure of incertitude from the GPFDA package is not a genuine credible interval)

sition 3.1. Conversely, Proposition 3.2 and Proposition 3.3 detail the hyper-parameters opti-
misation formulas that operate in the M-step of the algorithm. Explicit gradients associated
with the functions to maximise can be derived for facilitating the optimisation procedure
in practice. By alternatively repeating those two steps, we converge to local optima of the
likelihood and reach appropriate estimates for the desired quantities.

The subsequent prediction procedure is operated in a few different steps. If we observe a
new individual, called ∗, at timestamps t∗ for whom we want to predict its output values at
timestamps tp, we shall define the corresponding pooled grid tp∗. Depending on the assump-
tion on the model, it might also be necessary to compute the hyper-parameters associated
with the covariance kernel of the new individual. Then, the µ0’s hyper-posterior is computed
on the grid of timestamps tp∗ (Proposition 3.4) and integrated out in the proposition below,
expressing the prior multi-task distribution for the new individual:

Proposition 1.1. For a set of timestamps tp∗, the multi-task prior distribution of y∗ is given
by:

p(y∗(tp∗) | {yi}i) = N
(
y∗(tp∗); m̂0(tp∗),Γp

∗

)
.

The quantities m̂0(tp∗) and Γp
∗ involved in this expression are all known from the learning or

the previous steps. Finally, we establish the posterior distribution as usual in GP regression:

p(y∗(tp) | y∗(t∗), {yi}i) = N
(
y∗(tp); µ̂p

0, Γ̂
p
)
,

where:

• µ̂p
0 = m̂0(tp) + Γp∗Γ

−1
∗∗ (y∗(t∗)− m̂0(t∗)) ,

• Γ̂p = Γpp − Γp∗Γ
−1
∗∗ Γ∗p.

The final predictive formula above integrates both the information and the uncertainty
over the mean process. This posterior multi-task distribution provides a significant improve-
ment in the predictive performances over a wide domain of timestamps, even in the absence
of individual-specific observations.

The algorithmic complexity of the whole method is discussed as we need to pay the price
O(M × N3

i + N3) because of the multi-task framework, although once the training step
is performed in advance, the on-the-fly prediction remains equivalent to a single task GP.
The overall algorithm implementing this method is called Magma (standing for Multi-tAsk
Gaussian processes with common MeAn). We propose an extensive simulation study to
illustrate several properties of our approach as well as to compare its performance to com-
peting state-of-the-art methods. Contrarily to the alternative algorithm GPFDA described
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Figure 1.6 – Prediction curves (blue) for a testing individual with associated 95% credible intervals (grey) for
GP regression (left) and Magma (right), for both women (top) and men (bottom). The dashed lines represent
the mean functions of the hyper-posterior mean process. Observed data points are in black, testing data points
are in red. The colourful backward points are observations from the training dataset, each colour corresponding

to a different individual.

in Shi and Choi (2011), Magma accounts for µ0’s uncertainty and handle uncommon grids
of observations while maintaining explicit formulations. The comparisons both in µ0’s esti-
mation and predictive performances between GPFDA, usual GP regression, and Magma are
summarised in Table 1.1. We observe that our method outperforms the alternatives both in
mean squared error (MSE) and in the ratio of 95% credible interval (CI95) coverage, a quan-
tity measuring the adequacy of the uncertainty quantification. Sharing information across
individuals through the process µ0 also proves to be efficient in the context of swimmers’
progression curves, on which the predictive results remain highly satisfactory. An illustra-
tion of the predictive advantage of our multi-task approach in this context is displayed on
Figure 1.6 where we compare GP regression to Magma on data coming from a random
individual for both men and women.

1.2.4 Multi-task Gaussian processes mixture and curve clustering
The idea behind this chapter comes from our leading thread example, as we recall that some
datasets present group structures and we may take advantage of such a feature. Therefore,
we propose an extension of the previous model by defining a multi-task mixture of GPs
model. To tackle the problem of a unique underlying mean process hypothesis that might
appear as too restrictive, we introduce a set of K mean processes, each one being associated
with a specific cluster. Assuming that the i-th individual belongs to the k-th cluster, we
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define the generative model for yi(t) as:

yi(t) = µk(t) + fi(t) + εi(t),∀t,

where µk is the k-th cluster-specific mean GP while fi and εi remain respectively the i-th
individual-specific GP and the noise term. This new model also depends on latent multino-
mial variables {Zi}i controlling the memberships of the mixture. The overall interactions
between those quantities are summarised in the graphical model displayed on Figure 1.7.
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i
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∀k = 1, . . . ,K

Figure 1.7 – Graphical model of dependencies between variables in our multi-task GPs mixture model.

This novel approach requires to estimate the hyper-parameters of each GP’s covariance
kernel jointly with the hyper-posterior distributions over the {µk(·)}k processes and {Zi}i
variables. The posterior dependencies between those last quantities now force us to develop
a variational EM (VEM) algorithm to handle the inference procedure. In the E-step, as
we consider the current values of the hyper-parameters known, we establish a variational
formulation by assuming the factorisation q({Zi}i , {µk(·)}k) = qZ({Zi}i)qµ({µk(·)}k), where
q(·) represents the approximation to the true hyper-posterior. For all k = 1, . . . ,K, we
deduce in Proposition 4.2 the variational distribution for µk, which remains analogous to the
expression established in Chapter 3. These quantities are computed iteratively along with
the variational distributions for {Zi}i variables, providing for all individuals i = 1, . . . ,M ,
the updated probabilities to belong to each cluster, defined as:

τik =
π̂kN

(
yi; m̂k(ti),Ψti

θ̂i,σ̂2
i

)
exp

(
− 1

2 tr
(
Ψti

θ̂i,σ̂2
i

−1Ĉti
k

))
K∑
l=1

π̂lN
(

yi; m̂l(ti),Ψti
θ̂i,σ̂2

i

)
exp

(
− 1

2 tr
(
Ψti

θ̂i,σ̂2
i

−1Ĉti
l

)) , ∀i,∀k.
The M-step remains roughly similar as before, and we derive in Proposition 4.3 four dif-
ferent optimisation formulas for each corresponding model assumptions. Explicit gradients
associated with the functions to maximise can be derived for facilitating the optimisation
procedure in practice. Alternatively repeating E and M steps until convergence we still ob-
tain estimates for the desired quantities, enabling the subsequent derivation of approximated
versions of the multi-task GP prediction formulas previously introduced.

Once more, if we observe a new individual, called ∗, at timestamps t∗ for whom we want to
predict its output values at timestamps tp, we shall define the corresponding pooled grid tp∗.
Depending on the model assumptions, an EM algorithm may need to be derived to estimate
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the hyper-parameters associated to the new individual along with its probabilities {τ∗k}k
of belonging in each cluster. In some particular cases, we may only have to compute the
updated proportions of the mixture from explicit expressions. Afterwards, we first integrate
out the mean processes {µk(·)}k in order to get the multi-task prior distributions for the
new individual, namely:

Proposition 1.2. For a set of timestamps tp∗, the multi-task prior distribution of y∗ knowing
its clustering latent variable is given by:

p(y∗(tp∗) | Z∗, {yi}i) =
K∏

k=1

N
(
y∗(tp∗); m̂k(tp∗), Γ̂

tp∗
∗k

)Z∗k

.

Then, the corresponding cluster-specific multi-task posteriors can be derived in the same
manner as previously:

p(y∗(tp) | Z∗k = 1, y∗(t∗), {yi}i) = N
(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

)
, ∀k,

where:

• µ̂∗k(tp) = m̂k(tp) + Γtpt∗
k Γt∗t∗

k

−1
(y∗(t∗)− m̂k(t∗)) , ∀k,

• Γ̂
tp

∗k = Γtptp
k − Γtpt∗

k Γt∗t∗
k

−1
Γt∗tp
k , ∀k.

To conclude, by integrating out the variable Z∗ we can formulate the final posterior distri-
bution as a weighted sum of the cluster-specific predictions:

Proposition 1.3. The multi-task GPs mixture distribution for y∗(tp) takes the form below:

p(y∗(tp) |, y∗(t∗), {yi}i) =
K∑

k=1

τ∗k N
(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

)
.

We called MagmaClust the overall algorithm implementing this method.

MSE WCIC95 Training time Prediction time
GP 138 (174) 78.4 (31.1) 0 (0) 0.6 (0.1)

Magma 31.7 (45) 84.4 (27.9) 61.1 (25.7) 0.5 (0.2)
MagmaClust 3.7 (8.1) 95 (13.2) 132 (55.6) 0.6 (0.2)

Table 1.2 – Average (sd) values of MSE, WCIC95, training and prediction times (in secs) on 100 runs for GP,
Magma and MagmaClust.

This approach takes advantage of the multiple mean processes for handling datasets pre-
senting group structures. We provide a comparison to alternatives both in regards to the
clustering ability (Figure 1.8) and the predictive performances (Table 1.2). Finally, we bring
a final touch to the swimmers’ progression curves problem, the associated clustering, and the
probabilistic forecast of future performances. Our approach proves to be particularly effi-
cient, and an example of application on both men and women is displayed on Figure 1.9. This
contribution gathers in one method the different aspects scanned during the thesis, providing
both a satisfactory answer to the initial applicative issue and a significant methodological
contribution we hope to be useful for working on related problems.
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Figure 1.8 – Rand Index values between the true clusters and the partitions estimated by kmeans, funHDDC,
and MagmaClust. The value of K is set to the true number of clusters for all methods. The RI is computed

on 100 datasets for different generating model’s assumptions Hki,Hk0,H0i, and H00.

1.2.5 Published articles and preprints
The work presented in this manuscript led to one publication (Leroy et al., 2018) (Chap-
ter 2), and two articles currently under review (Leroy et al., 2020b,a) (Chapters 3 and 4).
Besides, two additional papers (Moussa et al., 2019; Pla et al., 2019) have been co-written
and published during this thesis on sports-science topics, distant from those of the present
document. Let us provide below the detailed list of publications:

• A. Leroy, A. Marc, O. Dupas, J. L. Rey, and S. Gey. Functional Data Analysis in Sport
Science: Example of Swimmers’ Progression Curves Clustering. Applied Sciences, 8
(10):1766, Oct. 2018. doi: 10.3390/app8101766

• A. Leroy, P. Latouche, B. Guedj, and S. Gey. MAGMA: Inference and Prediction with
Multi-Task Gaussian Processes. PREPRINT arXiv:2007.10731 [cs, stat], July 2020b

• A. Leroy, P. Latouche, B. Guedj, and S. Gey. Cluster-Specific Predictions with Multi-
Task Gaussian Processes. PREPRINT arXiv:2011.07866 [cs, LG], Nov. 2020a

• I. Moussa, A. Leroy, G. Sauliere, J. Schipman, J.-F. Toussaint, and A. Sedeaud. Robust
Exponential Decreasing Index (REDI): Adaptive and robust method for computing
cumulated workload. BMJ Open Sport & Exercise Medicine, 5(1):e000573, Oct. 2019.
ISSN 2055-7647. doi: 10.1136/bmjsem-2019-000573

• R. Pla, A. Leroy, R. Massal, M. Bellami, F. Kaillani, P. Hellard, J.-F. Toussaint, and
A. Sedeaud. Bayesian approach to quantify morphological impact on performance in
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international elite freestyle swimming. BMJ Open Sport & Exercise Medicine, 5(1):
e000543, Oct. 2019. ISSN 2055-7647. doi: 10.1136/bmjsem-2019-000543

1.2.6 Implementations
The algorithms described in Chapter 3 and Chapter 4 have been implemented into R pack-
ages that constitute the practical contributions of the present thesis. The current versions
of the codes are freely available at the following addresses:

• Magma: https://github.com/ArthurLeroy/MAGMA,

• MagmaClust: https://github.com/ArthurLeroy/MAGMAclust.

Figure 1.9 – Left: women dataset. Right: men dataset. Prediction and uncertainty obtained through GP (top),
Magma (middle), and MagmaClust (bottom) for a random swimmer. The dashed lines represent the mean
parameters from the mean processes estimates. Observed data points are in black, testing data points are in

red. Backward points are the observations from the training dataset.
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1.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXTENSION TO MORE GENERAL INPUT VARIABLES
Whereas the models introduced in Shi et al. (2007) and Shi and Choi (2011) do not

apply with irregular timestamps and lack an uncertainty quantification, they somehow deal
with a more general framework in terms of input variables. In many medical applications
proposed by the authors, enabling the introduction of different types of functional or scalar
input variables often constitutes a useful improvement. As we currently only account for
the influence of timestamps on the output values, our multi-task approach might naturally
take advantage of sharing more information across the individuals.

ONLINE VERSION
In our approach, most of the computing time concentrates on learning the mean process.

As we previously evoked the appetite for online algorithms in recent learning applications,
it would be interesting to derive formulas allowing for a fast update of µ0’s hyper-posterior
when a new individual is added to the training set. Since computing the hyper-posterior
can already be seen as iterative with respects to the individuals, this issue seems reasonably
manageable in the case where we would let the hyper-parameters unchanged. However, for
the exact trade-off that we would need to set between computing time and memory usage,
and the possibility to update the hyper-parameters quickly as well, the door remains open
to further developments.

SPARSE APPROXIMATIONS
Although we do not study this matter thoroughly, the scalability of GPs with large

datasets remains of paramount importance when it comes to practical implementation. In
order to widen the applicability of our algorithms, it would seem valuable to adapt at least
one of the sparse approximations that have been proposed in the literature (Snelson and
Ghahramani, 2006; Bauer et al., 2016). In particular, the variational approach introduced
in Titsias (2009) to selects the pseudo-inputs along with hyper-parameters learning would
prove useful in the estimation of our mean processes {µk(·)}k. The inference procedure in
the case of MagmaClust already relying on a variational approach, it might be tempting to
combine both approximations. The more recent works about variational stochastic inference
(Hensman et al., 2013) would also be worth a look for this purpose.

MULTI-TASK MODELLING OF THE COVARIANCE STRUCTURE
As previously mentioned, the multi-task term in the GP literature mostly refers to the

way of modelling the covariance structure. In our work, we keep the covariance functions
as simple as possible to focus on the mean process, but using a more elaborate structure
as in Bonilla et al. (2008) might bring the best of both worlds in a multi-task perspective.
Defining explicit relationships across individuals through a covariance matrix would add a
shared-features aspect to our underlying common mean framework. However, this method
suffers from a high computational complexity and might slow down our current approach.
Besides, the different assumptions proposed in our model for the hyper-parameters already
define a multi-task aspect regarding the covariance, and we could easily imagine to extend
this feature to sharing more general structures of covariance across individuals.

DEDICATED MODEL SELECTION TOOLS
The matter of model selection happens to be of primary importance in practical implemen-
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tations, for instance when it comes to choose the number of groups in clustering problems.
Tackling this issue, which is required in our GPs mixture model, is generally non-trivial
and many approaches have been developed in this sense over the years. As we mainly work
with tractable likelihoods, the adaptation of efficient heuristics to develop specific model
selection tools seems achievable, although the presence of multiple latent processes needs to
be carefully dealt with. In particular, under the assumption of iid individuals within the
clusters (hypotheses H00 and Hk0 in Chapter 4), we could probably expect to reach an ICL
(Biernacki et al., 2000) formulation. However, when lacking this property (hypotheses H0i

and Hki in Chapter 4), this approach seems off the table, and we shall certainly seek an
efficient heuristic in the kind of the slope heuristic (Birgé and Massart, 2006).

STUDY OF SWIMMERS' PROGRESSION CURVES
The collaboration with the French Swimming Federation (FFN) has proved fruitful over

the past three years and should continue with the implementation of our algorithm within
their performance analysis software. Some work remains necessary to allow for fast on-
line predictions once the model is pre-trained on a fine grid of timestamps. Furthermore,
the automatic update of the training database and the subsequent re-computation of the
model’s parameters still need to be implemented. Regardless of such technical details, we
are currently discussing whether to organise prospective forecasts with long-term follow-up
of young swimmers, for real-life validation purpose.
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The following work proposes a motivational introduction to the applied problematic of the
present thesis. It aims at providing a first explanatory study of the swimmers’ performance
dataset that led to the further methodological contributions, developed afterwards. This
chapter is based on the article Leroy et al. (2018) that was written as an introduction to
functional data analysis (FDA) methods, with a focus on curve clustering, for sport-scientist
practitioners. The purpose of this work is twofold. First, we propose a presentation of several
curve clustering algorithms along with a practical comparison on simulated data within a
convenient implemented framework. Secondly, we illustrate in more details the preliminary
work of data exploration and the complete procedure of curve clustering on our sport-related
applicative example.
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2.2 Comparison of curves clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1 Presentation of the methods
As an introduction to the matter of clustering functional data in practice, a comparative
study between several usual algorithms is proposed on simulated data. Below, we provide a
few information on the methods being compared, along with references to the corresponding
papers, and recall into which family they belong according to the classification evoked in
Section 1.1.1.d. For this work, the R package funcy, which compiles seven state-of-the-art
algorithms, has been used for comparison purpose. This implementation gives a common
syntax to perform clustering on data with functional structure, and the different approaches
for managing such a task follows.

Distance-based algorithms:

• distclust(Peng and Müller, 2008): An approximation of the L2 distance between curves
is defined, and a k-means heuristic makes use this measure to handle the functional
data. This method is well designed in the context of sparsely observed functions with
irregular measurements.

Model-based algorithms:

• fitfclust(James and Sugar, 2003): One of the first algorithm to use a Gaussian mix-
ture model for clustering univariate functions. This heuristic holds for all following
algorithms described as Gaussian mixture methods. Functions are represented using
basis functions, and the associated coefficients are supposed to come from Gaussian
distributions. Given a number K of different means and covariances parameters cor-
responding to the K clusters, an EM algorithm is used to estimate the probability of
each observational curves to belong to a cluster. After convergence (various stopping
criteria exist), an individual is affected to its most likely cluster. A preliminary step of
FPCA can be added to work on lower-dimensional vectors and thus offering a sparse
representation of the data. The algorithm fitfclust is assumed to perform well in the
context of sparsely observed functions.

• iterSubspace(Chiou and Li, 2007): A non-parametric method based on a random-effect
model. This approach uses the Karhunen-Loeve expansion of the curves, and perform
a k-centres algorithm on the scores of FPCA and the mean process. This method can
be useful when the Gaussian assumption does not hold, but k-centres approaches are
reported to lead to unstable results.

• funclust (Jacques and Preda, 2013a): An algorithm based on Gaussian mixture model.
This method uses the Karhunen-Loeve expansion of the curves as well. Moreover, it al-
lows for different sizes of expansion’s coefficients vector across clusters, according to the
quantity of variance expressed by the corresponding FPCA. The algorithm also enables
different covariance structures between clusters and thus generalizes some methods such
as iterSubspace.

• funHDDC(Bouveyron and Jacques, 2011): An algorithm based on a Gaussian mixture
model. This method presents many common characteristics with funclust but addi-
tionally allows for clustering multivariate functions. The algorithm also provides six
assumptions on the modelling of covariates structures, especially to deal with the extra
dimension of the FPCA.
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• fscm (Jiang and Serban, 2012): A non-parametric model-based algorithm. Each cluster
is modelled by a Markov random field, and functions are clustered by shape regardless
of the scale. Observation curves are considered as locally-dependent, and a K-nearest
neighbours heuristic is proposed to define the proximity structure. Then, an EM algo-
rithm estimates the parameters of the model. This method is well designed when the
assumption of independence between curves does not hold.

• waveclust (Giacofci et al., 2013): An algorithm designed from a linear Gaussian mixed
effect model. This approach performs dimension reduction using wavelet decomposition
(rather than classic FPCA). An EM algorithm is derived to compute parameters of the
model and probabilities to belong to each cluster. This method is well-suited for high-
dimensional curves when variations such as peaks appear in data, and thus wavelets
perform better than splines.

Unfortunately, the available version (1.0.0) of the funcy package encounters troubles
with the funHDDC implementation, which is not currently supported. All the remaining
algorithms were applied on three simulated data sets, with K = 4 groups. The resulting
clusterings are compared to real group distributions using the Rand Index (RI)(Rand, 1971).
This measure, given as a real number between 0 and 1, accounts for the according pairs
of individuals between the different partitions of a data set. The RI values are provided
to highlight the ability of each procedure to retrieve the actual groups. Then, graphs of
centres of each curve clusters are displayed to analyze the consistency of the resulting groups
according to the ones of synthetic data.

2.2.2 Description of the simulated datasets
Three different datasets have been simulated to test the algorithms of the funcy package on
different contexts. We used the included function sampleFuncy that provides a convenient
way to simulate datasets suited for direct application of the aforementioned methods. The
synthetic datasets are sampled from four different processes of the form f(t)+ε, with f and ε
detailed in Table 2.1 below. For each process, 25 curves are simulated, thereby leading to 100
curves in each sample. The following clustering procedure aims to gather themselves curves
that correspond to the same underlying process. An additional goal would be to retrieve,
at least approximately, the shapes of the underlying functions f that generated each data
curves within a cluster. Speaking rather loosely, Sample 1 depicts a straightforward situation
with low noise and well-separated processes, whereas Sample 2 represents the same processes
in a higher variance context. Finally, Sample 3 corresponds to a high-noise and crossing
processes context, which is designed to be trickier. Moreover, in the case of Sample 3,
observations of the curves are irregular on t-axis, and thus, we had to proceed to a previous
fitting step for three out of six algorithms of the package that are not implemented in this
case. The function regFuncy of the package is used for this purpose.
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Data set Functions Noise Grid on t-axis
Sample 1 t 7−→ t− 1

t 7−→ t2

t 7−→ t3

t 7−→
√
t

ε ∼ N (0, 0.05) 10 regular points

Sample 2 t 7−→ t− 1

t 7−→ t2

t 7−→ t3

t 7−→
√
t

ε ∼ N (0, 0.1) 10 regular points

Sample 3 t 7−→ t− 1

t 7−→ −t2

t 7−→ t3

t 7−→ sin(2πt)

ε ∼ N (0, 0.5) ≤ 10 irregular points

Table 2.1 – Details on the simulated samples. Processes are defined as f(t) + ε with 4 different functions f in
each sample and a varying noise ε.

2.2.3 Comparative study
The Table 2.2 below displays the results of the comparison between the six studied algo-
rithms. These values remain mainly illustrative, and we acknowledge that the quality of
a clustering algorithm cannot fully be addressed through simulation. However, it can give
some clues on the type of situations where algorithms seem to perform properly or not. The
Sample 1 was designed to be easy to manage, and most model-based algorithms perform
well as expected. Nevertheless, they are outperformed by the only distance-based method
distclust gives almost perfect results. As Sample 2 proposes a noisier version of Sample 1,
the problem becomes harder and results slightly decrease. Let us notice that, although the
stochastic processes we sampled from are identical to Sample 1, the relative performances
between methods change. This might indicate differences at noise robustness between the
methods. For example, performances of the fcsm algorithm decrease only slightly compared
to distclust. Finally, as expected, the results deteriorate greatly on the fuzzy situation of
Sample 3. Only three methods achieve moderate performances, and we may note that there
is an algorithm of both families among them. Although Table 2.2 informs us of the cluster-
ing performances, it does not give information on the ability of the methods to retrieve the
actual shape of the underlying functions. To this end, the following graphs provide some an
illustration on this aspect according to the best performing method in each context.
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Method Sample 1 Sample 2 Sample 3 Running speed
fitfclust 0.945 (0.14) 0.857 (0.01) 0.307 (0.06) 2.8
distclust 0.996 (0.01) 0.888 (0.05) 0.523 (0.07) 19.2

iterSubspace 0.938 (0.14) 0.850 (0.12) 0.527 (0.07) 1
funclust 0.450 (0.17) 0.418 (0.16) 0.084 (0.07) 1

fscm 0.948 (0.12) 0.902 (0.01) 0.527 (0.07) 7
waveclust 0.920 (0.12) 0.810 (0.01) 0.324 (0.13) 34

Table 2.2 – Mean Rand Index and (Standard Deviation) on 100 simulations of the tree samples. Each algorithm
runs in at most few seconds on our simulated data sets. Comparison in speed between algorithms is given as a

multiple of the fastest which is set arbitrarily to 1.

Figure 2.1 proposes a representation of the Sample 1 curves along with cluster centres
coming from the distclust algorithm. As expected, Sample 1 remains quite simple to deal
with, since curves of different groups are well separated. Moreover, the distclust clustering
algorithm satisfyingly figures out the actual shape of each underlying function.
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Figure 2.1 – All curves (dotted lines) and cluster centres curves (plain lines) obtained with distclust algorithm
for Sample 1. The algorithm correctly clusters curves and retrieves the underlying shapes of generating functions.

Furthermore, we can notice on Figure 2.2 that, although the noisier situation of Sample 2
affects the RI scores, the shapes of the generating functions remain correctly approximated
by clusters centres of fscm.

The Sample 3 was designed to be trickier since curves cross each other and the overall
signal thus appears rather noisy. In this context, Figure 2.3 reveals that the iterSubspace
algorithm still retrieve approximately the true shapes of the underlying functions. How-
ever, while the sinus function (in black) seems correctly identified, the method struggles to
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Figure 2.2 – All curves (dotted lines) and cluster centres curves (plain lines) obtained with fscm algorithm for
the simulated Sample 2. Clustering becomes more difficult between curves (e.g. blue and green curves) but the

algorithm still performs well to figure out the underlying shapes.

separate the polynomial functions.

2.3 Clustering swimmers' progression curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.1 Description of the dataset
The real data presented in this work have been collected by the French Swimming Federation.
It gathers all the performances in competition of french male swimmers, since 2002, for the
100m freestyle in a 50m pool. Because of confidentiality issues, the names of athletes are
replaced by identifying numbers. The data set is composed of 46115 values of performance
and age for 1468 different swimmers. Raw data consists of time series where the racing time
constitutes the output variable associated with the age of the swimmer as input. The number
of competitions and the age at which swimmers participate differs from one to another,
leading to strongly uncommon grids of timestamps. This particularity of the dataset (as
well as the ability to work on derivatives) led to model the observations as functions rather
than time series. Thus, a preliminary step of fitting is performed to extract the functional
nature of the data and deal with the random fluctuations in the observations. All the
algorithms were run on the R software, and the corresponding packages are named in the
sequel.
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Figure 2.3 – All curves (dotted lines) and cluster centres curves (plain lines) obtained with iterSubspace
algorithm for the simulated Sample 3. Both clustering and detecting underlying shapes become difficult. The

high noise makes the clustering fuzzy, which is affecting the central cluster curves.

2.3.2 Methodology
As mentioned above, the real data set is very irregular, with no accordance in time and
number of measurements between athletes. Thus, the first step of the analysis aims at
defining a common representation for data through a smoothing procedure. According to
the non-periodic form of the curves and the relatively low sampling of observational points
(around 30) for each athlete, a B-spline basis is chosen. The study focuses on the age period
from 12 to 20 years old, which is crucial in the progression phenomenon that we aimed at
studying. A basis of seven B-splines of order 4 was defined so that the derivatives remain
smooth enough to work on derivatives. Since we do not wish to focus on a specific time
period, the knots are equally placed on ages 13 to 19. Let us note that data are considered
as realizations of underlying stochastic processes, and thus raw data are assumed to contain
random fluctuations. The function that is fitted using the B-spline basis should represent
the true signal properly, although the well known over/under-fitting issue may appear in this
case. In order to differentiate the true signal from the noise, several methods can be used,
knowing that there is always a trade-off between smoothness of the function and closeness
to data points. A classical approach consists of using a penalization term in the least-square
fitting calculation, and the signal-on-noise ratio would be controlled by a unique hyper-
parameter. In our case, a cross-validation criterion is used to compute an optimal value
for this hyper-parameter, and the resulting functional data were considered as coherent by
swimming experts. This whole fitting procedure was performed thanks to R (version 3.5.0)
software, and especially the fda (version 2.4.8) package. To efficiently manage a real dataset,
a thorough exploration step generally helps to figure out the more suited algorithms for the
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analysis, in particular when dealing with infinite-dimensional objects like functions. For this
purpose, an FPCA is performed on the progression curves and their derivatives separately.
By inspection of the percentage of variance explained by each eigenfunction and the shapes
of them, the main modes of variations of the curves can be highlighted. One can see on
Figure 2.6 in the appendix that main variations among the levels of performance appear at
young ages and a clustering procedure on the sole progression curves tends to simply group
individuals according to this criterion. As displayed on Figure 2.7, first eigenfunctions of
the derivatives represent three different modes of variations localized at young, middle, and
older ages. These characteristics of data would be relevant to include to the clustering pro-
cedure besides the level of performance information. To this end, the funHDDC algorithm
is used as clustering procedure, since this is one of the rare implemented methods that works
in a multivariate case and thus allow us to consider both curves and their derivatives simul-
taneously. Let us refer to the subsequent section for more details about the reasons for this
choice. Although implemented in the funcy package, we choose to work with the original
funHDDC R package, because of the current implementation issues. Several features of the
package are used, such as Bayesian Information Criterion (BIC), Integrated Classification
Likelihood (ICL) and slope heuristic, to deal with the problems of model selection and choice
of the number K of clusters. Since no particular assumptions were made on the covariance
structure or the number of clusters form a sports expert point of view, the hyper-parameters
of the model have been optimized from data. All available models for funHDDC are com-
puted for different values of K and the best one (the sense of the term best is developed in
Section 2.3.3) is retained as our result clustering. In the funHDDC algorithm, each cluster
is considered to be fully characterized by a Gaussian vector, from which scores on eigen-
functions of the FPCA are assumed to come. Thus, the clustering procedure becomes a
likelihood maximization problem that aims at finding the adequate values of means and
covariance matrices fitting the best to data, along with probabilities for each of data curves
to belong to a cluster. Since all parameters influence the values of each other, this classical
issue is addressed thanks to an Expectation-Maximization (EM) algorithm that computes
approximations of optimal parameters efficiently. At the end of the procedure, a data curve
is considered to belong to the cluster within which it has the highest probability to come
from. The clustering is performed on the curves and their derivatives separately at first.
Then, the resulting clusters are compared thanks to the Adjusted Rand Index (ARI) Rand
(1971), which is an extended version of the RI to partitions with a different number of
clusters. This measure allows us to quantify the adequacy between groups defined whether
by a clustering the progression curves or the derivatives. Note that many other indices
exist, such as Silhouette index (Rousseeuw, 1987) or Jaccard index (Rogers and Tanimoto,
1960) for example. Although our results were quite comparable using one or another, an
extensive comparative study of the different indexes can be found in Arbelaitz et al. (2013).
Noticing that athletes are clustered differently according to the situation, providing two
types of information, a third clustering procedure is proposed. This time, the multivariate
clustering version on the funHDDC algorithm is used. The term multivariate refers here to
a clustering algorithm that deals with multidimensional functions. The progression curves
are defined as a functional variable, while the derivatives are another. Finally, the results
were analyzed and discussed with swimming experts to confront the computed clusters with
practical knowledge on this matter.
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2.3.3 Results of the curve clustering
The choice of the funHDDC algorithm was motivated by two main arguments. First, it
provides a flexible method that has been shown efficient in various cases (Bouveyron et al.,
2018; Martínez-Álvarez et al., 2019). Secondly, because of the results of the FPCA performed
to explore the data set. As presented on the top graph on Figure 2.6, we notice that the
underlying dimension of the data seems lower than the original one: most of the variance
in the dataset can be expressed according to only two eigenfunctions. An analogous result
with three underlying modes on variation for the derivatives is displayed on Figure 2.7.
Thus, it seems natural to work with an FPCA-based method to efficiently account for
this sparsity property. Furthermore, FunHDDC provides a flexible way to deal with the
”extra-dimensions”, proposing six sub-models, corresponding to different assumptions on
the structure of covariance matrices. As advised by the authors in Schmutz et al. (2018),
the BIC (Schwarz, 1978) is used for model selection, whereas the choice of the appropriate
number of clusters relies on the slope heuristic (Birgé and Massart, 2006; Arlot, 2019).
According to these criteria, the most suited models are composed of 5 clusters for the
progression curves alone, and 4 clusters when working solely on derivatives. Resulting
cluster centres are represented on Figure 2.8 and Figure 2.9 respectively. At this stage, the
Adjusted Rand Index (ARI) is used to compare theses two different ways to regroup athletes
and give a value of 0.41. The value of ARI would be around 0.20 for a completely random
clustering procedure. This result, far from an ARI equals to 1 that would indicate complete
adequacy, lets us think that the curves and derivatives imply different data features when
it comes to building the clusters in each context. Swimming experts highlighted that the
clustering on progression curves mainly regroup the athletes according to their final level of
performance. In contrast, the derivatives clustering seems to gather individuals presenting
similar trends of progression (at a particular age, or with the same dynamic, for example).
These conclusions guided us to the multivariate clustering procedure, for which results are
presented on Figure 2.4 and Figure 2.5. Each athlete is represented thanks to its performance
curve, where the colour indicates in which cluster it belongs. A close look at the groups and
their trends on Figure 2.4 seems to indicate that multivariate clustering clusters combine
information both on level of performance and trends of evolution as expected. As the full
display of all curves can be tough to analyze, the Figure 2.5 presents the cluster centre
curves for a clearer view of the main tendencies.
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Figure 2.4 – All progression curves of swimmers (left) and derivatives (right) coloured by clusters, obtained with
the multivariate funHDDC algorithm.
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Figure 2.5 – Cluster centres curves of swimmers (left) and derivatives (right) coloured by clusters, obtained
with the multivariate clustering funHDDC algorithm.
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2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As mentioned in the simulated dataset context, we shall emphasize that no objective crite-
rion might reflect the quality of a clustering procedure correctly. The authors of von Luxburg
et al. (2012) recall that all clustering algorithms remain in some way, subjective regarding
how they gather individuals or which metric they use. However, it generally offers a new
point of view to potentially detect perspectives that might be hidden in the raw data. In
this work, we presented some classical methods for curve clustering along with some handy
practical implementations. Moreover, the comparative simulation study provides some in-
sights on the particularities of the different algorithms. We may notice that distance-based
methods generally lie on simple heuristics and offer rather good results in simple contexts.
On the other hand, model-based algorithms are built on more complicated designs, although
remaining well suited on a wider range of problems. These valuable performances offer to
this family of methods to be of high consideration in the current literature on curve clus-
tering Jacques and Preda (2014) and might partly explain why hey constitutes most of the
algorithms implemented in funcy. Algorithms using Gaussian mixtures are naturally more
flexible than methods like k-means since they might be considered as a generalization with
elliptic clusters rather than circular ones. However, let us also stress that this flexibility
sometimes comes with additional running time. Even if the EM-based inference provides
efficient implementations to manage Gaussian mixture models, the multiplicity of models
and the number of clusters to test might results in non-negligible computing time (a few
hours in our case). For our purpose, which is to help the swimming federation with the
detection of young promising athletes, computational time was not an issue since the aim
was more about the long term decision making. Nevertheless, many current sport-related
problems need to be solved quickly, or even online, and our methodological choices would
have been different under such constraints.

About the results on the swimming dataset, we observe consistent outcomes from both
mathematical and sports point of views. Moreover, although our work does not provide
predictive results on the progression phenomenon of young swimmers, it still offers some
enlightenment of its general pattern along with a practical tool to gather similar profiles.
Moreover, using functional data analysis tools, we were able to figure out valuable infor-
mation from strongly irregular time series. Using smooth functions instead of raw data
points provides a first understanding of the main trends and the continuous nature of the
progression phenomenon. In order to improve the quality of the approximation, though,
the collection of additional data such as training performances would be valuable. Nev-
ertheless, these results might help the detection of promising young athletes with both a
better understanding and graphical outcomes to support the decision process. Notice that
this work remains descriptive and thus preliminary, but proposes a first step for further
predictive analysis. Although we do not discuss here findings concerning any particular
swimmer for confidentiality concerns, let us still stress some points that seem interesting
to swimming experts. First, as previously mentioned in Boccia et al. (2017) and Kearney
and Hayes (2018), it does not seem easy to precisely detect young talents before 16 years
because of the high-speed improvement at these ages. However, we can observe between
14 and 16 years old a significant decrease in the value of the derivatives and thus of the
speed of progression. Moreover, athletes that seem to perform better at 20 years old are
often those who continue to progress, even slightly, after 16 years old. A classical pattern,
confirmed with swimming experts, is the presence of a cluster of swimmers who are always
among best performers. These athletes are typically often detected and can benefit from
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the best conditions to improve their performances. However, two clusters of athletes, often
slightly slower than previous ones at young ages, present opposite behaviours. As one group
stops its progression early and performs rather modestly at 20 years old, another cluster
gathers swimmers with a fast improvement who often perform as good as best swimmers
when older. These young athletes are usually thought as the main target for a detection
program since they often remain away from top-level structures at young ages.

2.4.1 Further work
While providing first exploratory results by analyzing group structures, the present work
lacks predictive results and adequate modelling of the functional data. The irregular and
sparse nature of the studied time series often lead to unrealistic reconstructions of functional
signals, preventing from efficient forecasting at the scale of one individual. Moreover, the
FDA tools presented until now remain of frequentist nature and thus account for uncertainty
neither in modelling nor in prediction. Since a probabilistic view appears highly desirable in
such a decision-making context, the subsequent chapters aim at providing a new framework
for an enhanced analysis, adapted to the problematic we just introduced.

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us provide in this section a few complementary graphs supporting some of the assertions
of the previous analysis on swimmers’ progression curves. The selection of the most relevant
eigenfunctions and derivatives are displayed along with there associated modes of variations.
Besides, the results of the univariate curve clustering for both performance curves and their
derivatives is presented as well.
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Figure 2.6 – Results of the FPCA on the progression curves. Top: Proportion of variance explained by each
eigenfunction. With only 2 eigenfunctions, around 90% of the total variance can be expressed. Bottom: Values

of the two first eigenfunctions. Eigenfunctions are orthogonal each others and display the main modes of
variation of the curves. The first eigenfunction mainly informs on differences at young ages, while the second

focuses on the opposition between speeds at young and older ages.
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Figure 2.7 – Results of the FPCA on the derivatives of the progression curves. Top: Proportion of variance
explained by each eigenfunction. With only 3 eigenfunctions, around 90% of the total variance can be expressed.
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Figure 2.8 – Clusters centres of the progressions curves computed with the univariate funHDDC algorithm.
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This chapter is based on the article Leroy et al. (2020b), which is currently under review.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gaussian processes (GPs) are a powerful tool, widely used in machine learning (Bishop,
2006; Rasmussen and Williams, 2006). The classic context of regression aims at inferring the
underlying mapping function associating input to output data. In a probabilistic framework,
a typical strategy is to assume that this function is drawn from a prior GP. Doing so,
we may enforce some properties for the function solely by characterising the mean and
covariance function of the process, the latter often being associated with a specific kernel.
This covariance function plays a central role and GPs are an example of kernel methods.
We refer to Álvarez et al. (2012) for a comprehensive review. The mean function is generally
set to 0 for all entries assuming that the covariance structure already integrates the desired
relationship between observed data and prediction targets. In this section, we consider
a multi-task learning framework with a series of Gaussian processes sharing a common
mean function. We demonstrate that modelling this function can be key to obtain relevant
predictions.

RELATED WORK
A major drawback of GPs lies in the O(N3) computational cost of the training step, where

N denotes the number of observations in the training sample. Many approaches to mitigate
this problem with sparse approximations have been proposed in the last two decades. One
of the most popular methods can be found in Snelson and Ghahramani (2006), introducing
elegant ideas to select pseudo-inputs, and a subsequent review came in Quiñonero-Candela
et al. (2007). Titsias (2009) proposed to use variational inference for sparse GPs, and Hens-
man et al. (2013) extended the idea for larger data sets, whereas Banerjee et al. (2013) used
linear projections onto low-dimensional subspaces. Besides, some state-of-the-art approxi-
mations have been theoretically studied in Bauer et al. (2016). Another approach to deal
with numerical issues has recently been proposed in Wilson et al. (2020) to sample from
GP efficiently in MCMC algorithms. Bijl et al. (2015) proposed an online version of some
of the sparse approximations mentioned above, while Clingerman and Eaton (2017) and
Moreno-Muñoz et al. (2019) developed continual learning methods for multi-task GP.

The multi-task framework consists in using data from several tasks (or batches of individ-
uals) to improve the learning or predictive capacities compared to an isolated model. It has
been introduced by Caruana (1997) and then adapted in many fields of machine learning.
GP versions of such models where introduced by Schwaighofer et al. (2004), and they pro-
posed an EM algorithm for learning. Similar techniques can be found in Shi et al. (2005).
Meanwhile, Yu et al. (2005) offered an extensive study of the relationships between the linear
model and GPs to develop a multi-task GP formulation. However, since the introduction
in Bonilla et al. (2008) of the idea of two matrices modelling covariance between inputs and
tasks respectively, the term multi-task Gaussian process has mostly referred to the choice
made regarding the covariance structure. Some further developments were discussed by
Hayashi et al. (2012), Rakitsch et al. (2013) and Zhu and Sun (2014). Let us also mention
the work of Swersky et al. (2013) on Bayesian hyper-parameter optimisation in such models.
Real applications were tackled by similar models in Williams et al. (2009) and Alaa and van
der Schaar (2017).
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As we focus on multi-task time series forecasting, there is an immediate connection to
the study of multiple curves, or functional data analysis (FDA). As iniatially proposed in
Rice and Silverman (1991), it is possible to model and learn mean and covariance structures
simultaneously in this context. We also refer to the monographs (Ramsay and Silverman,
2005; Ferraty and Vieu, 2006). In particular, these books introduced several usual ways
to model a set of functional objects in frequentist frameworks, for example by using a
decomposition in a basis of functions (such as B-splines, wavelets, Fourier). Subsequently,
some Bayesian alternatives were developed in Thompson and Rosen (2008), and Crainiceanu
and Goldsmith (2010).

OUR CONTRIBUTIONS
Our aim is to define a multi-task GP framework with common mean process, allowing

reliable probabilistic forecasts even in multiple-step-ahead problems, or for sparsely observed
individuals. For this purpose, (i) We introduce a GP model where the specific covariance
structure of each individual is defined through a kernel and its associated set of hyper-
parameters, whereas a mean function µ0 overcomes the weaknesses of classic GPs in making
predictions far from observed data. To account for its uncertainty, we propose to define
the common mean process µ0 as a GP as well. (ii) We derive an algorithm called Magma
(available as a R package at https://github.com/ArthurLeroy/MAGMA) to compute µ0’s
hyper-posterior distribution together with the estimation of hyper-parameters in an EM
fashion, and discuss its computational complexity. (iii) We enrich Magma with explicit
formulas to make predictions for a new, partially observed, individual. The hyper-posterior
distribution of µ0 provides a prior belief on what we expect to observe before seeing any of
the new individual’s data, as an already-informed process integrating both trend and uncer-
tainty coming from other individuals. (iv) We illustrate the performance of our method on
synthetic and two real-life datasets, and obtain state-of-the-art results compared to alterna-
tive approaches.

OUTLINE
The remainder of this chapter is organised as follows. We introduce our multi-task Gaus-

sian process model in Section 3.2, along with notation. Section 3.3 is devoted to the inference
procedure, with an Expectation-Maximisation (EM) algorithm to estimate the Gaussian
process hyper-parameters. We leverage this strategy in Section 3.4 and derive a prediction
algorithm. In Section 3.5, we analyse and discuss the computational complexity of both the
inference and prediction procedures. Our methodology is illustrated in Section 3.6, with
a series of experiments on both synthetic and real-life datasets, and a comparison to com-
peting state-of-the-art algorithms. On those tasks, we provide empirical evidence that our
algorithm outperforms other approaches. Section 3.7 draws perspectives for future work,
and we defer all proofs to original results to Section 3.8.

3.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1 Notation
While GPs can handle many types of data, their continuous nature makes them particularly
well suited to study temporal phenomena. Throughout, the term individual is used as a
synonym of task or batch, and adopt notation and vocabulary of time series to remain con-
sistent with the real datasets application we provide in Section 3.6.5, which addresses young
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Figure 3.1 – Graphical model of dependencies between variables in the Multi-task Gaussian Process model.

swimmers performances’ forecast. These time series are considered as pointwise observations
of functions we try to reconstruct thanks to the following generative model.

We are provided with functional data coming from M ∈ I different individuals, where
I ⊂ N. For each individual i, we observe a set of inputs and outputs {

(
t1i , yi(t

1
i )
)
, . . . ,(

tNi
i , yi(t

Ni
i )
)
}, where Ni is the number of data points for the i-th individual. Since many

objects are defined for all individuals, we shorten our notation as follows: for any object
x existing for all i, we denote {xi}i = {x1, . . . , xM}. Moreover, as we work in a temporal
context, the inputs

{
tki
}
i,k

are referred to as timestamps. In the specific case where all
individuals are observed at the same timestamps, we call common the grid of observations.
On the contrary, a grid of observations is uncommon if the timestamps are different in
number and/or location among the individuals. Some convenient notation:

• ti = {t1i , . . . , t
Ni
i }, the set of timestamps for the i-th individual,

• yi = yi(ti), the vector of outputs for the i-th individual,

• t =
M⋃
i=1

ti, the pooled set of timestamps among individuals,

• N = #(t), the total number of observed timestamps.

3.2.2 Model and hypotheses
Suppose that a functional data is coming from the sum of a mean process, common to
all individuals, and an individual-specific centred process. To clarify relationships in the
generative model, we illustrate our graphical model in Figure 3.1.

Let T be the input space, our model is

yi(t) = µ0(t) + fi(t) + εi(t), t ∈ T , i = 1, . . . ,M,

where µ0(·) ∼ GP(m0(·), kθ0(·, ·)) is the mean common process and fi(·) ∼ GP(0, cθi(·, ·)) the
individual specific process. Moreover, the error term is supposed to be εi(·) ∼ GP(0, σ2

i I).
The following notation is used for parameters:

• kθ0(·, ·), a covariance kernel of hyper-parameters θ0,
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• ∀i, cθi(·, ·), a covariance kernel of hyper-parameters θi,

• σ2
i ∈ R+, the noise term for individual i,

• ∀i, ψθi,σ2
i
(·, ·) = cθi(·, ·) + σ2

i I,

• Θ = {θ0, {θi}i ,
{
σ2
i

}
i
}, the set of all hyper-parameters of the model.

We also assume that

• {fi}i are independent,

• {εi}i are independent,

• ∀i, µ0, fi and εi are independent.

It follows that {yi | µ0}i=1,...,M are independent from one another, and for all i ∈ I:

yi(·) | µ0(·) ∼ GP(µ0(·), ψθi,σ2
i
(·, ·)).

Although this model is based on infinite-dimensional GPs, the inference will be conducted
on a finite grid of observations. According to the aforementioned notation, we observe
{(ti, yi)}i, and the corresponding likelihoods are Gaussian:

yi | µ0(ti) ∼ N (yi;µ0(ti),Ψti
θi,σ2

i
),

where Ψti
θi,σ2

i
= ψθi,σ2

i
(ti, ti) =

[
ψθi,σ2

i
(k, l)

]
k,`∈ti

is a Ni ×Ni covariance matrix. Since ti
might be different among individuals, we also need to evaluate µ0 on the pooled grid t:

µ0(t) ∼ N
(
µ0(t);m0(t),Kt

θ0

)
,

where Kt
θ0

= kθ0(t, t) = [kθ0(k, `)]k,l∈t is a N ×N covariance matrix.

An alternate hypothesis consists in considering hyper-parameters {θi}i and
{
σ2
i

}
i

equal
for all individuals. We call this hypothesis Common HP in the Section 3.6. This particular
case models a context where individuals represent different trajectories of the same process,
whereas different hyper-parameters indicate different covariance structures and thus a more
flexible model. For the sake of generality, the remainder of the chapter is written with θi
and σ2

i notation, when there are no differences in the procedure. Moreover, the model above
and the subsequent algorithm may use any covariance function parametrised by a finite set
(usually small) of hyper-parameters. For example, a common kernel in the GP literature is
known as the Exponentiated Quadratic kernel (also called sometimes Squared Exponential
or Radial Basis Function kernel). It depends only on two hyper-parameters θ = {v, `} and
is defined as:

kEQ (x, x′) = v2 exp

(
− (x− x′)

2

2`2

)
. (3.1)

The Exponentiated Quadratic kernel is simple and enjoys useful smoothness properties.
This is the kernel used in our implementation (see Section 3.6 for details). Note that there
is a rich literature on kernel choice, their construction and properties, which is beyond the
scope of the present work: we refer to Rasmussen and Williams (2006) or Duvenaud (2014)
for comprehensive studies.

65



3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Learning
Several approaches to learn hyper-parameters for Gaussian processes have been proposed in
the literature, we refer to Rasmussen and Williams (2006) for a comprehensive study. One
classical approach, called empirical Bayes (Casella, 1985), is based on the maximisation of
an explicit likelihood to estimate hyper-parameters. This procedure avoids to sample from
intractable distributions, usually resulting in additional computational cost and complicating
practical use in moderate to large sample sizes. However, since the likelihood of the model
depends on µ0, we cannot maximise it directly. Therefore, we propose an EM algorithm
(see the pseudocode in Algorithm 2) to learn the hyper-parameters Θ. The procedure
alternatively computes the hyper-posterior distribution p(µ0 | (yi)i, Θ̂) with current hyper-
parameters, and then optimises Θ according to this hyper-posterior distribution. This EM
algorithm converges to local maxima (Dempster et al., 1977), typically in a handful of
iterations.

E STEP
For the sake of simplicity, we assume in that section that for all i, j, ti = tj = t, i.e.

the individuals are observed on a common grid of timestamps. The E-step then consists in
computing the hyper-posterior distribution of µ0(t).

Proposition 3.1. Assume the hyper-parameters Θ̂ known from initialisation or estimated
from a previous M step. The hyper-posterior distribution of µ0 remains Gaussian:

p
(
µ0(t) | {yi}i , Θ̂

)
= N

(
µ0(t); m̂0(t), K̂t

)
, (3.2)

with

• K̂t =

(
Kt

θ̂0

−1
+

M∑
i=1

Ψt
θ̂i,σ̂2

i

−1
)−1

,

• m̂0(t) = K̂t
(

Kt
θ̂0

−1
m0 (t) +

M∑
i=1

Ψt
θ̂i,σ̂2

i

−1yi

)
.

Proof. We omit specifying timestamps in what follows since each process is evaluated on t.

p
(
µ0 | {yi}i , Θ̂

)
∝ p

(
{yi}i | µ0, Θ̂

)
p
(
µ0 | Θ̂

)
∝

{
M∏
i=1

p
(

yi | µ0, θ̂i, σ̂
2
i

)}
p
(
µ0 | θ̂0

)
∝

{
M∏
i=1

N
(

yi;µ0,Ψθ̂i,σ̂2
i
)
)}

N
(
µ0;m0,Kθ̂0

)
.
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The term L1 = −(1/2) log p(µ0 | {yi}i , Θ̂) may then be written as

L1 = −1

2
log p(µ0 | {yi}i , Θ̂)

=

M∑
i=1

(yi − µ0)
ᵀ
Ψ−1

θ̂i,σ̂2
i

(yi − µ0) + (µ0 −m0)
ᵀ K−1

θ̂0
(µ0 −m0) + C1

=

M∑
i=1

µᵀ
0Ψ

−1

θ̂i,σ̂2
i

µ0 − 2µᵀ
0Ψ

−1

θ̂i,σ̂2
i

yi + µᵀ
0K−1

θ̂0
µ0 − 2µᵀ

0K−1

θ̂0
m0 + C2

= µᵀ
0

(
K−1

θ̂0
+

M∑
i=1

Ψ−1

θ̂i,σ̂2
i

)
µ0 − 2µᵀ

0

(
K−1

θ̂0
m0 +

M∑
i=1

Ψ−1

θ̂i,σ̂2
i

yi

)
+ C2.

Identifying terms in the quadratic form with the Gaussian likelihood, we get the desired
result.

Let us stress here that the above result assumes common timestamps among individuals,
which is a simplified setting. We provide a generalisation of this proposition in Section 3.4:
Proposition 3.4 holds with uncommon grids of timestamps ti.

The maximisation step depends on the assumptions on the generative model, resulting in
two versions for the EM algorithm (the E step is common to both, the branching point is
here).

M STEP: DIFFERENT HYPER-PARAMETERS
Assuming each individual has its own set of hyper-parameters {θi, σ2

i }, the M step is
given by the following.

Proposition 3.2. Assume p(µ0 | {yi}i) = N
(
µ0(t); m̂0(t), K̂t

)
given by a previous E step.

For a set of hyper-parameters Θ = {θ0, {θi}i ,
{
σ2
i

}
i
}, optimal values are given by

Θ̂ = argmax
Θ

Eµ0|{yi}i
[ p({yi}i , µ0(t) | Θ) ] ,

inducing M + 1 independent maximisation problems:

θ̂0 = argmax
θ0

Lt (m̂0(t);m0(t),Kt
θ0

)
,

(θ̂i, σ̂
2
i ) = argmax

θi,σ2
i

Lti(yi; m̂0(t),Ψti
θi,σ2

i
), ∀i,

where
Lt (x;m,S) = logN (x;m,S)− 1

2
Tr
(

K̂tS−1
)
.

Proof. One simply has to distribute the conditional expectation in order to get the right
likelihood to maximise, and then notice that the function can be written as a sum of M+1
independent (with respect to the hyper-parameters) terms. Moreover, by rearranging, one
can observe that each independent term is the sum of a Gaussian likelihood and a correction
trace term. See Section 3.8.2 for details.
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M STEP: COMMON HYPER-PARAMETERS
Alternatively, assuming all individuals share the same set of hyper-parameters {θ, σ2},

the M step is given by the following.

Proposition 3.3. Assume p(µ0 | {yi}i) = N
(
µ0(t); m̂0(t), K̂t

)
given by a previous E step.

For a set of hyper-parameters Θ = {θ0, θ, σ2}, optimal values are given by

Θ̂ = argmax
Θ

Eµ0|{yi}i
[ p({yi}i , µ0(t) | Θ) ] ,

inducing two independent maximisation problems:

θ̂0 = argmax
θ0

Lt (m̂0(t);m0(t),Kt
θ0

)
,

(θ̂, σ̂2) = argmax
θ,σ2

LM (θ, σ2),

where

LM (θ, σ2) =

M∑
i=1

Lti(yi; m̂0(t),Ψti
θ,σ2).

Proof. We use the same strategy as for Proposition 3.2, see Section 3.8.2 for details.

In both cases, explicit gradients associated with the likelihoods to maximise are available,
facilitating the optimisation with gradient-based methods.

3.3.2 Initialisation
To implement the EM algorithm described above, several constants must be (appropriately)
initialised:

• m0(·), the mean parameter from the hyper-prior distribution of the mean process µ0(·).
A somewhat classical choice in GP is to set its value to a constant, typically 0 in the
absence of external knowledge. Notice that, in our multi-task framework, the influence
of m0(·) in hyper-posterior computation decreases quickly as M grows.

• Initial values for kernel parameters θ0 and {θi}i. Those strongly depend on the chosen
kernel and its properties. We advise initiating θ0 and {θi}i with close values, as
a too large difference might induce a nearly singular covariance matrix and result in
numerical instability. In such pathological regime, the influence of a specific individual
tends to overtake others in the calculus of µ0’s hyper-posterior distribution.

• Initial values for the variance of the error terms
{
σ2
i

}
i
. This choice mostly depends

on the context and properties of the dataset. We suggest avoiding initial values with
more than an order of magnitude different from the variability of data. In particular,
a too high value might result in a model mostly capturing noise.

As a final note, let us stress that the EM algorithm depends on the initialisation and
is only guaranteed to converge to local maxima of the likelihood function (McLachlan and
Krishnan, 2007). Several strategies have been considered in the literature to tackle this issue
such as simulated annealing and the use of multiple initialisations (Biernacki et al., 2003).
In this work, we choose the latter option.
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3.3.3 Pseudocode
We wrap up this section with the pseudocode of the EM component of our complete algo-
rithm, which we call Magma (standing for Multi tAsk Gaussian processes with common
MeAn). The corresponding code is available at https://github.com/ArthurLeroy/MAGMA.

Algorithm 2 Magma: EM component
Initialise m0 and Θ =

{
θ0, {θi}i ,

{
σ2
i

}
i

}
.

while not converged do
E step: Compute the hyper-posterior distribution

p(µ0 | {yi}i , Θ̂) = N (m̂0, K̂).

M step: Estimate hyper-parameter by maximising
Θ̂ = argmax

Θ
Eµ0|{yi}i

[ p(µ0, {yi}i | Θ) ] .

end while
return Θ̂, m̂0, K̂.

3.3.4 Discussion of EM algorithms and alternatives
Let us stress that even though we focus on prediction purpose in this chapter, the output
of the EM algorithm already provides results on related FDA problems. The generative
model in Yang et al. (2016) describes a Bayesian framework that resembles ours to smooth
multiple curves simultaneously. However, modelling variance structure with an Inverse-
Wishard process forces the use of an MCMC algorithm for inference or the introduction of a
more tractable approximation in Yang et al. (2017). One can think of the learning through
Magma and applying a single task GP regression on each individual as an empirical Bayes
counterpart to their approach. Meanwhile, µ0’s hyper-posterior distribution also provides
the probabilistic estimation of a mean curve from a set of functional data. The closest
method to our approach can be found in Shi et al. (2007) and the following book Shi
and Choi (2011), though by several aspects, authors dealt with more general features like
multidimensional or non-functional inputs. The authors also work in the context of a multi-
task GP model, and one can retrieve the idea of defining a mean function µ0 to overcome
the weaknesses of classic GPs in making predictions far from observed data. Since their
model uses B-splines to estimate this mean function, thanks to information from multiple
individuals, this method only works if all individuals share the same grid of observation,
and does not account for uncertainty over µ0.

3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once the hyper-parameters of the model have been learned, we can focus on our main goal:
prediction at new timestamps. Since Θ̂ is known and for the sake of concision, we omit
conditioning on Θ̂ in the sequel. Note there are two cases for prediction (referred to as Type
I and Type II in Shi and Cheng, 2014, Section 3.2.1), depending on whether we observe
some data or not for any new individual we wish to predict on. We denote by the index
∗ a new individual for whom we want to make a prediction at timestamps tp. If there are
no available data for this individual, we have no ∗-specific information, and the prediction
is merely given by p(µ0(tp) | {yi}i). This quantity may be considered as the ’generic’ (or
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Type II ) prediction according to the trained model, and only informs us through the mean
process. Computing p(µ0(tp) | {yi}i) is also one of the steps leading to the prediction for a
partially observed new individual (Type I ). The latter being the most compelling case, we
consider Type II prediction as a particular case of the full Type I procedure, described below.

If we observe {t∗, y∗(t∗)} for the new individual, the multi-task GP prediction is obtained
by computing the posterior distribution p(y∗(tp) | y∗(t∗), {yi}i). Note that the conditioning
is taken over y∗(t∗), as for any GP regression, but also on {yi}i, which is specific to our
multi-task setting. Computing this distribution requires the following steps.

1. Choose a grid of prediction tp and define the pooled vector of timestamps tp∗,

2. Compute the hyper-posterior distribution of µ0 at tp∗: p(µ0(tp∗) | {yi}i),

3. Compute the multi-task prior distribution p(y∗(tp∗) | {yi}i),

4. Compute hyper-parameters θ∗ of the new individual’s covariance matrix (optional),

5. Compute the multi-task posterior distribution: p(y∗(tp) | y∗(t∗), {yi}i).

3.4.1 Posterior inference on the mean process
As mentioned above, we observed a new individual at timestamps t∗. The GP regression
consists of arbitrarily choosing a vector tp of timestamps on which we wish to make a
prediction. Since a GP is an infinite-dimensional object, we can pick a finite-dimensional
vector at any new location. Then, we define new notation for the pooled vector of timestamps

tp∗ =

[
tp
t∗

]
, which will serve as a working grid to define the prior and posterior distributions

involved in the prediction process. One can note that, although not mandatory in theory,
it is often a good idea to include the observed timestamps of training individuals, t, within
tp∗ since they match locations which contain information for the mean process to ’help’ the
prediction. In particular, if tp∗ = t, the computation of µ0’s hyper-posterior distribution is
not necessary since p(µ0(t) | {yi}i) has previously been obtained with the EM algorithm.
However, in general, it is necessary to compute the hyper-posterior p(µ0(tp∗) | {yi}i) at the
new timestamps. The idea remains similar to the E step aforementioned, and we obtain the
following result.

Proposition 3.4. Let tp∗ be a vector of timestamps of size Ñ . The hyper-posterior distri-
bution of µ0 remains Gaussian:

p (µ0(tp∗) | {yi}i) = N
(
µ0(tp∗); m̂0(tp∗), K̂p

∗

)
,

with:

• K̂p
∗ =

(
K̃−1 +

M∑
i=1

Ψ̃
−1

i

)−1

,

• m̂0(tp∗) = K̂p
∗

(
K̃−1m0 (tp∗) +

M∑
i=1

Ψ̃
−1

i ỹi

)
,

where we used the shortening notation:

• K̃ = kθ̂0 (t
p
∗, tp∗) (Ñ × Ñ matrix),
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• ỹi =
(
1[t∈ti] × yi(t)

)
t∈tp∗

(Ñ -size vector),

• Ψ̃i =
[
1[t,t′∈ti] × ψθ̂i,σ̂2

i
(t, t′)

]
t,t′∈tp∗

(Ñ × Ñ matrix).

Proof. The sketch of the proof is similar to Proposition 3.1 in the E step. The only tech-
nicality consists in dealing carefully with the dimensions of vectors and matrices involved,
and whenever relevant, to define augmented versions of yi and Ψθ̂i,σ̂2

i
with 0 elements at

unobserved timestamps’ position for the i-th individual. Note that if we pick a vector tp∗
including only some of the timestamps from ti, information coming from yi at the remaining
timestamps is ignored. We defer details to Section 3.8.1.

3.4.2 Computing the multi-task prior distribution
According to our generative model, given the mean process, any new individual ∗ is modelled
as:

y∗(·) | µ0(·) ∼ GP
(
µ0(·),Ψθ∗,σ2

∗
(·, ·)

)
.

Therefore, for any finite-dimensional vector of timestamps, and in particular for tp∗,
p(y∗(tp∗) | µ0(tp∗)) is a multivariate Gaussian vector. Moreover, from this distribution and
µ0’s hyper-posterior, we can figure out the multi-task prior distribution over y∗(tp∗).

Proposition 3.5. For a set of timestamps tp∗, the multi-task prior distribution of y∗ is given
by

p(y∗(tp∗) | {yi}i) = N
(
y∗(tp∗); m̂0(tp∗), K̂p

∗ +Ψ
tp∗
θ∗,σ2

∗

)
. (3.3)

Proof. To compute this prior, we need to integrate p(y∗ | µ0, {yi}i) over the mean process
µ0, whereas the multi-task aspect remains through the conditioning over {yi}i. We omit
the writing of timestamps, by using the simplified notation µ0 and y∗ instead of µ0(tp∗) and
y∗(tp∗), respectively. We first use the assumption that {yi | µ0}i∈{1,...,M} ⊥⊥ y∗ | µ0, i.e.,
the individuals are independent conditionally to µ0. Then, one can notice that the two
distributions involved within the integral are Gaussian, which leads to the explicit Gaussian
target distribution after integration.

p(y∗ | {yi}i) =
∫
p (y∗, µ0 | {yi}i)dµ0

=

∫
p (y∗ | µ0, {yi}i)p(µ0 | {yi}i)dµ0

=

∫
p (y∗ | µ0))︸ ︷︷ ︸

N
(
y∗;µ0,Ψ

tp∗
θ∗,σ2

∗

) p(µ0 | {yi}i)︸ ︷︷ ︸
N

(
µ0;m̂0,K̂p

∗

) dµ0.

This convolution of two Gaussians remains Gaussian (Bishop, 2006, Chapter 2.3.3). For
any random variable X ∈ Ω, and AX depending on X, let EAX

[X ] =
∫
Ω
x p (AX)dx. The

mean parameter is then given by

71



Ey∗|{yi}i
[ y∗ ] =

∫
y∗ p (y∗ | {yi}i)dy∗

=

∫
y∗

∫
p (y∗ | µ0) p(µ0 | {yi}i)dµ0 dy∗

=

∫ (∫
y∗p (y∗ | µ0)dy∗

)
p(µ0 | {yi}i)dµ0

=

∫
Ey∗|µ0

[ y∗ ] p(µ0 | {yi}i)dµ0

= Eµ0|{yi}i

[
Ey∗|µ0

[ y∗ ]
]

= Eµ0|{yi}i
[µ0 ]

= m̂0.

Following the same idea, the second-order moment is given by

Ey∗|{yi}i

[
y2∗
]
= Eµ0|{yi}i

[
Ey∗|µ0

[
y2∗
] ]

= Eµ0|{yi}i

[
Vy∗|µ0

[ y∗ ] + Ey∗|µ0
[ y∗ ]

2
]

= Ψθ∗,σ2
∗
+ Eµ0|{yi}i

[
µ2
0

]
= Ψθ∗,σ2

∗
+ Vµ0|{yi}i

[µ0 ] + Eµ0|{yi}i
[µ0 ]

2

= Ψθ∗,σ2
∗
+ K̂ + m̂2

0,

hence

Vy∗|{yi}i
[ y∗ ] = Ey∗|{yi}i

[
y2∗
]
− Ey∗|{yi}i

[ y∗ ]
2

= Ψθ∗,σ2
∗
+ K̂ + m̂2

0 − m̂2
0

= Ψθ∗,σ2
∗
+ K̂.

Note that the process y∗(·) | {yi}i is not a GP, although its finite-dimensional evaluation
(3.3) remains Gaussian. The covariance structure cannot be expressed as a kernel that
could be directly evaluated on any vector: the process is known as a degenerated GP. In
practice however, this does not bear much consequence as an arbitrary vector of timestamps
τ can still be chosen, then we compute the hyper-posterior p(µ0(τ) | {yi}i), which yields the
Gaussian distribution p(y∗(τ) | {yi}i) as above. For the sake of simplicity, we now rename
the covariance matrix of the prior distribution:

K̂p
∗ +Ψ

tp∗
θ∗,σ2

∗
= Γp

∗ =

(
Γpp Γp∗
Γ∗p Γ∗∗

)
,

where the indices in the blocks of the matrix correspond to the associated timestamps tp
and t∗.
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3.4.3 Learning the new hyper-parameters
When we collect data points for a new individual, as in the single-task GP setting, we need
to learn the hyper-parameters of its covariance function before making predictions. A salient
fact in our multi-task approach is that we include this step in the prediction process, for the
two following reasons. First, the model is already trained for individuals i = 1, . . . ,M , and
this training is general and independent from future individual ∗ or the choice of prediction
timestamps. Since learning these new hyper-parameters requires knowledge of µ(tp∗) and
thus of the prediction timestamps, we cannot compute them beforehand. Secondly, learning
these hyper-parameters with the empirical Bayes approach only requires maximisation of
a Gaussian likelihood which is negligible in computing time compared to the previous EM
algorithm. As for single-task GP, we have the following estimates for hyper-parameters:

Θ̂∗ = argmax
Θ∗

p(y∗(t∗) | {yi}i ,Θ∗)

= argmax
Θ∗

N
(
y∗(t∗); m̂0(t∗),ΓΘ∗

∗∗

)
.

Note that this step is optional depending on model: in the common hyper-parameters
model (i.e. (θ, σ2) = (θi, σ

2
i )), any new individual will share the same hyper-parameters

and we already have Θ̂∗ = (θ̂∗, σ̂
2
∗) = (θ̂, σ̂2) from the EM algorithm.

3.4.4 Prediction
We can write the prior distribution, separating observed and prediction timestamps, as:

p(y∗(tp∗) | {yi}i) = p(y∗(tp), y∗(t∗) | {yi}i)
= N (y∗(tp∗); m̂0(tp∗),Γ

p
∗)

= N
([
y∗(tp)
y∗(t∗)

]
;

[
m̂0(tp)
m̂0(t∗)

]
,

(
Γpp Γp∗
Γ∗p Γ∗∗

))
.

The conditional distribution remains Gaussian (Bishop, 2006), and the predictive distribu-
tion is given by:

p(y∗(tp) | y∗(t∗), {yi}i) = N
(
y∗(tp); µ̂p

0, Γ̂
p
)
,

where:

• µ̂p
0 = m̂0(tp) + Γp∗Γ

−1
∗∗ (y∗(t∗)− m̂0(t∗)) ,

• Γ̂
p
= Γpp − Γp∗Γ

−1
∗∗ Γ∗p.

3.5 Complexity analysis for training and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Computational complexity is of paramount importance in GPs as it quickly scales with large
datasets. The classical cost to train a GP is O(N3), and O(N2) for prediction (Rasmussen
and Williams, 2006) where N is the number of data points (see aforementioned references in
Section 3.1 for sparse approximations). Since Magma uses information from M individuals,
each of them providing Ni observations, these quantities determine the overall complexities
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of the algorithm. If we recall that N is the number of distinct timestamps (i.e. N ≤
M∑
i=1

Ni),

the training complexity is O
(
M ×N3

i +N3
)

(i.e. the complexity of each EM iteration).
As usual with GPs, the cubic costs come from the inversion of the corresponding matrices,
and here, the constant is proportional to the number of iterations of the EM algorithm.
The dominating term in this expression depends on the values of M , relatively to N . For
a large number of individuals with many common timestamps (MNi & N), the first term
dominates. For diverse timestamps among individuals (MNi . N), the second term becomes
the primary burden, as in any GP problem. During the prediction step, the re-computation
of µ0’s hyper-posterior implies the inversion of a Ñ×Ñ (dimension of tp∗) which has a O(Ñ3)
complexity while the final prediction is O(N3

∗ ). In practice, the most computing-expensive
steps can be performed in advance to allow for quick on-the-fly prediction when collecting
new data. If we observe the training dataset once and pre-compute the hyper-posterior of
µ0 on a fine grid on which to predict later, the immediate computational cost for each new
individual is identical to the one of the single-task GP regression.

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We evaluate our Magma algorithm on synthetic data, and two real datasets. The classical
GP regression on single tasks separately is used as the baseline alternative for predictions.
While it is not expected to perform well on the dataset used, the comparison highlights the
interest of multi-task approaches. To our knowledge, the only alternative to Magma is the
GPFDA algorithm from Shi et al. (2007), Shi and Choi (2011), described in Section 3.3.4,
and the associated R package GPFDA, which is applied on the examples. Throughout the
section, the standard Exponentiated Quadratic kernel (see Equation (3.1)) is used both for
simulating the data and for the covariance structures in the three algorithms. Hence, each
kernel is associated with θ = {v, `}, v, ` ∈ R+, a set of, respectively, variance and length-
scale hyper-parameters. Each simulated dataset has been drawn from the sampling scheme
below:

1. Define a random working grid t ⊂ [ 0, 10 ] of N = 200 timestamps, and a number M
of individuals.

2. Define the prior mean for µ0 : m0(t) = at+b, ∀t ∈ t, where a ∈ [−2, 2 ] and b ∈ [ 0, 10 ].

3. Draw uniformly hyper-parameters for µ0’s kernel : θ0 = {v0, `0}, where v0 ∈
[
1, e5

]
and `0 ∈

[
1, e2

]
.

4. Draw µ0(t) ∼ N
(
m0(t),Kt

θ0

)
.

5. For all i = 1, . . . ,M , θi = {vi, `i}, where vi ∈
[
1, e5

]
, `i ∈

[
1, e2

]
, and σ2

i ∈ [ 0, 1 ].

6. For all i = 1, . . . ,M , draw a subset uniformly at random ti ⊂ t of Ni = 30 timestamps,
and draw yi ∼ N

(
µ0(ti),Ψti

θi,σ2
i

)
.

This procedure provides a synthetic data set {ti, yi}i, and its associated mean process
µ0(t). Those quantities are used to train the model, make predictions with each algo-
rithm, and then compute errors in µ0 estimation and forecasts. We recall that the Magma
algorithm enables two different settings depending on the model’s assumption over hyper-
parameters (HP), and we refer to them as Common HP and Different HP in the following.
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Figure 3.2 – Prediction curves (blue) for a new individual with associated 95% credible intervals (grey) for GP
regression (left) and Magma (right). The dashed line represents the mean function of the mean process’s
hyper-posterior p(µ0 | {yi}i). Observed data points are in black, and testing data points are in red. The
colourful backward points are the observations from the training dataset, each colour corresponding to a

different individual.

In order to test these two contexts, differentiated datasets have been generated, by draw-
ing Common HP data or Different HP data for each individual at step 5. We previously
presented the idea of the model used in GPFDA, and, although the algorithm has many
features (in particular about the type and number of input variables), it is not yet usable
when timestamps are different among individuals. Therefore, two frameworks are consid-
ered, Common grid and Uncommon grid, to take this specification into account. Thus, the
comparison between the different methods can only be performed on data generated un-
der the settings Common HP and Common grid, and the effect of the different settings on
Magma is analysed separately. Moreover, without additional knowledge, the initialisation
for the prior mean function, m0(·), is set to be equal to 0 for each algorithm. Except in some
experiments, where the influence of the number of individuals is analysed, the generic value
is M = 20. In the case of prediction on unobserved timestamps for a new individual, the
first 20 data points are used as observations, and the remaining 10 are taken as test values.

3.6.1 Illustration on a simple example
To illustrate the multi-task approach of Magma, Figure 3.2 displays a comparison between
single GP regression and Magma on a simple example, from a dataset simulated according
to the scheme above. Given the observed data (in black), values on a thin grid of unobserved
timestamps are predicted and compared, in particular, with the true test values (in red).
As expected, GP regression provides a good fitting close to the data points and then dives
rapidly to the prior 0 with increasing uncertainty. Conversely, although the initialisation for
the prior mean was also 0 in Magma, the hyper-posterior distribution of µ0 (dashed line) is
estimated thanks to all individuals in the training dataset. This process acts as an informed
prior helping GP prediction for the new individual, even far from its own observations. More
precisely, 3 phases can be distinguished according to the level of information coming from
the data: in the first one, close to the observed data (t ∈ [ 1, 7 ]), the two processes behave
similarly, except a slight increase in the variance for Magma, which is logical since the
prediction also takes uncertainty over µ0 into account (see Equation (3.3)); in the second one,
on intervals of unobserved timestamps containing data points from the training dataset (t ∈
[ 0, 1 ] ∪ [ 7, 10 ]), the prediction is guided by the information coming from other individuals

75



Prediction Estimation µ0

MSE CI95 MSE CI95
Magma 18.7 (31.4) 93.8 (13.5) 1.3 (2) 94.3 (11.3)
GPFDA 31.8 (49.4) 90.4 (18.1) 2.4 (3.6) ?

GP 87.5 (151.9) 74.0 (32.7)

Table 3.1 – Average MSE (sd) and average CI95 coverage (sd) on 100 runs for GP, GPFDA and Magma. (? :
99.6 (2.8), the measure of incertitude from the GPFDA package is not a genuine credible interval)

Figure 3.3 – MSE with respect to the number M of training individuals (100 runs in each case). Left:
prediction error on 10 testing points. Right: estimation error of the true mean process µ0.

through µ0. In this context, the mean trajectory remains coherent and the uncertainty
increases only slightly. In the third case, where no observations are available neither from
new individual nor from training dataset (t ∈ [ 10, 12 ]), the prediction behaves as expected,
with a slow drifting to the prior mean 0, with highly increasing variance. Overall, the multi-
task framework provides reliable probabilistic predictions on a wider range of timestamps,
potentially outside of the usual scope for GPs.

3.6.2 Performance comparison on simulated datasets
We confront the performance of Magma to alternatives in several situations and for different
datasets. In the first place, the classical GP regression (GP), GPFDA and Magma are
compared through their performance in prediction and estimation of the true mean process
µ0. In the prediction context, the performances are evaluated according to the following
indicators:

• the mean squared error (MSE) which compares the predicted values to the true test
values of the 10 last timestamps:

1

10

30∑
k=21

(
ypred∗ (tk∗)− ytrue∗ (tk∗)

)2
,

• the ratio of CI95 coverage, i.e. the percentage of unobserved data points effectively
lying within the 95% credible interval defined from the predictive posterior distribution
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Figure 3.4 – MSE prediction error on the 10 last testing points with respect to the increasing number N of
observed timestamps, among the first 20 points (100 runs in each case).

p(y∗(tp) | y∗(t∗), {yi}i):

100× 1

10

30∑
k=21

1{ytrue
∗ (tk∗)∈ CI95}.

The ratio of CI95 coverage gives an approximation of the predictive variance reliability
and should be as close to the value 95% as possible. Other values would indicate a tendency
to underestimate or overestimate the uncertainty. Let us recall that GPFDA uses B-splines
to estimate the mean process and does not account for uncertainty, contrarily to a prob-
abilistic framework as Magma. However, a measure of uncertainty based on an empirical
variance estimated from training curves is proposed (see Shi and Cheng, 2014, Section 3.2.1).
In practice, this measure constantly overestimates the true variance, and the CI95 coverage
is generally equal or close to 100%.

In the estimation context, the performances are evaluated thanks to another MSE, which
compares the estimations to the true values of µ0 at all timestamps:

1

M

M∑
i=1

1

Ni

Ni∑
k=1

(
µpred
0 (tki )− µtrue

0 (tki )
)2
.

Table 3.1 presents the results obtained over 100 datasets, where the model is trained on
M = 20 individuals, each of them observed on N = 30 common timestamps. As expected,
both multi-task methods lead to better results than GP. However, Magma outperforms
GPFDA, both in estimation of µ0 and in prediction performance. In terms of error as
well as in uncertainty quantification, Magma provides more accurate results, in particular
with a CI95 coverage close to the 95% expected value. Each method presents a quite high
standard deviation for MSE in prediction, which is due to some datasets with particularly
difficult values to predict, although most of the cases lead to small errors. This behaviour is
reasonably expected since the forecast of 10-ahead-timestamps might sometimes be tricky.
It can also be noticed on Figure 3.3 that Magma consistently provides lower errors as well
as less pathological behaviour, as it may sometimes occur with the B-splines modelling used
in GPFDA.
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To highlight the effect of the number of individuals M on the performance, Figure 3.3
provides the same 100 runs trial as previously, for different values of M . The boxplots ex-
hibit, for each method, the behaviour of the prediction and estimation MSE as information
is added in the training dataset. Let us mention the absence of discernible changes as soon
as M > 200. As expected, we notice on the right panel that adding information from new
individuals improves the estimation of µ0, leading to shallow errors for high values of M ,
in particular for Magma. Meanwhile, the left panel exhibits reasonably unchanged pre-
diction performance with respect to the values of M , excepted some random fluctuations.
This property is expected for GP regression, since no external information is used from the
training dataset in this context. For both multi-tasks algorithms though, the estimation of
µ0 improves the prediction by one order of magnitude below the typical errors, even with
only a few training individuals. Furthermore, since a new individual behaves independently
through f∗, it is natural for a 10-points-ahead forecast to present intrinsic variations, despite
an adequate estimation of the shared mean process.

To illustrate the advantage of multi-task methods, even for M = 20, we display on
Figure 3.4 the evolution of MSE according to the number of timestamps N that are assumed
to be observed for the new individual on which we make predictions. These predictions
remain computed on the last 10 timestamps, although in this experiment, we only observe
the first 5, 10, 15, or 20 timestamps, in order to change the volume of information and the
distance from training observations to targets. We observe on Figure 3.3 that, as expected in
a GP framework, the closer observations are to targets, the better the results. However, for
multi-tasks approaches and in particular for Magma, the prediction remains consistently
adequate even with few observations. Once more, sharing information across individuals
significantly helps the prediction, even for small values of M or few observed data.

3.6.3 MAGMA's specific settings
As we previously discussed, different settings are available for Magma according to the
nature of data and the model hypotheses. First, the Common grid setting corresponds to
cases where all individuals share the same timestamps, whereas Uncommon grid is used
otherwise. Moreover, Magma enables to consider identical hyper-parameters for all indi-
viduals or specific ones, as previously discussed in Section 3.2.2. To evaluate the effect of
the different settings, performances in prediction and µ0’s estimation are evaluated in the
following cases in Table 3.2:

• Common HP, when data are simulated with a common set of hyper-parameters for all
individuals, and Proposition 3.3 is used for inference in Magma,

• Different HP, when data are simulated with its own set of hyper-parameters for each
individual, and Proposition 3.2 is used for inference in Magma,

• Common HP on different HP data, when data are simulated with its own set of hyper-
parameters for each individual, and Proposition 3.3 is used for inference in Magma.

Note that the first line of the table (Common grid / Common HP) of Table 3.2 is identical
to the corresponding results in Table 3.1, providing reference values, significantly better than
for other methods. The results obtained in Table 3.2 indicates that the Magma performance
are not significantly altered by the settings used, or the nature of the simulated data. In
order to confirm the robustness of the method, the setting Common HP was applied to data
generated by drawing different values of hyper-parameters for each individual (Different HP
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Prediction Estimation of µ0

MSE CI95 MSE CI95

Common HP Common grid 18.7 (31.4) 93.8 (13.5) 1.3 (2) 94.3 (11.3)
Uncommon grid 19.2 (43) 94.6 (13.1) 2.9 (2.6) 93.6 (9.2)

Different HP Common grid 19.9 (54.7) 91.6 (17.8) 0.5 (0.4) 70.8 (24.3)
Uncommon grid 14.5 (22.4) 89.1 (17.9) 2.5 (4.5) 81.1 (15.9)

Common HP on
different HP data

Common grid 21.7 (36) 91 (19.8) 1.5 (1.2) 91.1 (13)
Uncommon grid 18.1 (33) 92.5 (15.9) 3.2 (4.5) 93.4 (9.8)

Table 3.2 – Average MSE (sd) and average CI95 coverage (sd) on 100 runs for the different settings of Magma.

data). In this case, performance in prediction and estimation of µ0 are slightly deteriorated,
although Magma still provides quite reliable forecasts. This experience also highlights a
particularity of the Different HP setting: looking at the estimation of µ0 performance, we
observe a significant decrease in the CI95 coverage, due to numerical instability in some
pathological cases. Numerical issues, in particular during matrix inversions, are classical
problems in the GP literature and, because of the potentially large number of different
hyper-parameters to train, the probability for at least one of them to lead to a nearly
singular matrix increases. In this case, one individual might overwhelm others in the calculus
of µ0’s hyper-posterior (see Proposition 3.4), and thus lead to an underestimated posterior
variance. This problem does not occur in the Common HP settings, since sharing the same
hyper-parameters prevents the associated covariance matrices from running over each other.
Thus, except if one specifically wants to smooth multiple curves presenting really different
behaviours, keeping Common HP as a default setting appear as a reasonable choice. Let
us notice that the estimation of µ0 is slightly better for common than for uncommon grid,
since the estimation problem on the union of different timestamps is generally more difficult.
However, this feature only depends on the nature of data.

3.6.4 Running times comparisons
The counterpart of the more accurate and general results provided by Magma is a natural
increase in running time. Table 3.3 exhibits the raw and relative training times for GPFDA
and Magma (prediction times are negligible and comparable in both cases), with varying
values of M on a Common grid of N = 30 timestamps. The algorithms were run under the
3.6.1 R version, on a laptop with a dual-core processor cadenced at 2.90GhZ and an 8Go
RAM. The reported computing times are in seconds, and for small to moderate datasets
(N ' 103, M ' 104 ) the procedures ran in few minutes to few hours. The difference between
the two algorithms is due to GPFDA modelling µ0 as a deterministic function through B-
splines smoothing, whereas Magma accounts for uncertainty. The ratio of computing times
between the two methods tends to decrease as M increases, and stabilises around 2 for higher
numbers of training individuals. This behaviour comes from the E step in Magma, which
is incompressible and quite insensitive to the value of M . Roughly speaking, one needs
to pay twice the computing price of GPFDA for Magma to provide (significantly) more
accurate predictions and uncertainty over µ0. Table 3.4 provides running times of Magma
according to its different settings, with M = 20. Because the complexity is linear in M
in each case, the ratio in running times would remain roughly similar no matter the value
of M . Prediction time appears negligible compared to training time, and generally takes
less than one second to run. Besides, the Different HP setting increases the running time,
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since in this context M maximisations (instead of one for Common HP) are required at each
EM iteration. In this case, the prediction also takes slightly longer because of the necessity
to optimise hyper-parameters for the new individual. Although the nature of the grid of
timestamps does not matter in itself, a key limitation lies in the dimension N of the pooled
set of timestamps, which tends to get bigger when individuals have different timestamps
from one another.

5 10 50 100
Magma 5.2 (2.7) 7.6 (3.2) 24.2 (11.1) 42.8 (10)
GPFDA 1 (0.3) 2.1 (0.6) 10.7 (2.4) 23.1 (5.3)

Ratio 5.2 3.6 2.3 1.9

Table 3.3 – Average (sd) training time (in seconds) for Magma and GPFDA for different numbers M of
individuals in the training dataset. The relative running time between Magma and GPFDA is provided on the

line Ratio.

Train Predict

Common HP Common grid 12.6 (3.5) 0.1 (0)
Uncommon grid 16.5 (11.4) 0.2 (0.1)

Different HP Common grid 42.6 (20.5) 0.6 (0.1)
Uncommon grid 40.2 (17) 0.6 (0.1)

Table 3.4 – Average (sd) training and prediction time (in seconds) for different settings of Magma.

3.6.5 Application of MAGMA on swimmers' progression curves
DATA AND PROBLEMATIC

We consider the problem of performance prediction in competition for french swimmers.
The French Swimming Federation (FFN) provided us with an anonymised dataset, compiling
the age and results of its members between 2000 and 2016. For each competitor, the race
times are registered for competitions of 100m freestyle (50m swimming-pool). The database
contains results from 1731 women and 7876 men, each of them compiling an average of 22.2
data points (min = 15, max = 61) and 12 data points (min = 5, max = 57) respectively.
In the following, age of the i-th swimmer is considered as the input variable (timestamp t)
and the performance (in seconds) on a 100m freestyle as the output (yi(t)). For reasons
of confidentiality and property, the raw dataset cannot be published. The analysis focuses
on the youth period, from 10 to 20 years, where the progression is the most noticeable. In
order to get relevant time series, we retained only individuals having a sufficient number of
data points on the considered time period. For a young swimmer, observed during its first
years of competition, we aim at modelling its progression curve and make predictions on its
future performance in the subsequent years. Since we consider a decision-making problem
involving irregular time series, the GP probabilistic framework is a natural choice to work
on. Thereby, assuming that each swimmer in the database is a realisation yi defined as
previously, we expect Magma to provide multi-task predictions for a new young swimmer,
that will benefit from information of other swimmers already observed at older ages. To
study such modelling, and validate its efficiency in practice, we split the individuals into a
training and testing datasets with respective sizes:
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• MF
train = 1039, for the female training set,

• MF
test = 692, for the female testing set,

• MM
train = 4726, for the male training set,

• MM
test = 3150, for the male testing set.

Inference on the hyper-parameters is performed thanks to the training dataset in both cases.
Considering the different timestamps and the relative monotony of the progression curves,
the settings Uncommon grid/Common HP has been used for Magma. The overall training
lasted around 2 hours with the same hardware configuration as for simulations. To compute
MSE and the CI95 coverage, the data points of each individual in the testing set has been
split into observed and testing timestamps. Since each individual has a different number of
data points, the first 80% of timestamps are taken as observed, while the remaining 20% are
considered as testing timestamps. Magma’s predictions are compared with the true values
of yi at testing timestamps. As previously, both GP and Magma have been initialised with
a constant 0 mean function. Initial values for hyper-parameters are also similar for all i,
θini0 = θinii = (e1, e1) and σini

i = 0.4. Those values are the default in Magma and remain
adequate in the context of these datasets.

RESULTS AND INTERPRETATION The overall performance and comparison are summarised in
Table 3.5.

MSE CI95

Women Magma 3.8 (10.3) 95.3 (15.9)
GP 25.3 (97.6) 72.7 (37.1)

Men Magma 3.7 (5.3) 93.9 (15.3)
GP 22.1 (94.3) 78.2 (30.4)

Table 3.5 – Average MSE (sd) and average CI95 coverage (sd) for prediction on french swimmer testing
datasets.

We observe that Magma still provides excellent results in this context, and naturally
outperform predictions provided by a single GP regression. The progression curves present-
ing relatively monotonic variations, and thus avoiding pathological behaviours that could
occur with synthetic data, the MSE in prediction remains very low. The CI95 coverage
sticks close to the 95% expected value for Magma, indicating an adequate quantification of
uncertainty. To illustrate these results, an example is displayed on Figure 3.5 for both men
and women. For a randomly chosen testing individual, we plot its predicted progression
curve (in blue), where its first 15 data points are used as observations (in black), while the
remaining true data points (in red) are displayed for comparison purpose. As previously
observed in the simulation study, the simple GP quickly drifts to the prior 0 mean, as soon as
data lack. However, for both men and women, the Magma predictions remain close to the
true data, which also lie within the 95% credible interval. Even for long term forecast, where
the mean prediction curve tends to overlap the mean process (dashed line), the true data
remain in our range of uncertainty, as the credible interval widens far from observations.
For clarity, we displayed only a few individuals from the training dataset (colourful points)
in the background. The mean process (dashed line) seems to represent the main trend of
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Figure 3.5 – Prediction curves (blue) for a testing individual with associated 95% credible intervals (grey) for
GP regression (left) and Magma (right), for both women (top) and men (bottom). The dashed lines represent

the mean functions of the hyper-posterior mean process µ0 | {yi}i. Observed data points are in black, and
testing data points are in red. The colourful backward points are observations from the training dataset, each

colour corresponding to a different individual.

progression among swimmers correctly, even though we cannot numerically compare µ0 to
any real-life analogous quantity. In a more sport-related perspective, we can note that both
genders present similar patterns of progression. However, while performances are roughly
similar in mean trend before the age of 14, they start to differentiate afterwards and then
converge to average times with approximatively a 5 seconds gap. Interestingly, the difference
between world records in 100 freestyle for men and women is currently 4.8 seconds (46.91
versus 51.71). These results, obtained under reasonable hypotheses on several hundreds of
swimmers, seem to indicate that Magma would give quite reliable predictions for a new
young swimmer. Furthermore, the uncertainty provided through the predictive posterior
distribution offers an adequate degree of caution in a decision-making process.

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have introduced a unified non-parametric multi-task framework integrating a mean Gaus-
sian process prior in the context of GP regression. While we believe that this process is an
interesting object in itself, it also allows individuals to borrow information from each other
and provide more accurate predictions, even far from data points. Furthermore, our method
accounts for uncertainty in the mean process and remains applicable no matter the observa-
tional grid of data. Both on simulated and real-life datasets, we exhibited the adequacy of
such an approach, and studied some of its properties and possible settings. Magma outper-
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forms the alternatives in estimation of the mean process as well as in prediction, and gives a
reliable quantification of uncertainty. We also displayed evidence of its predictive efficiency
for real-life problems and provided some insights on practical interpretation about the mean
process.

Interestingly, despite the extensive literature on these aspects of GPs, our model does
not yet include sparse approximations or on-line extensions. While these aspects are beyond
the scope of the present chapter, we aim to integrate such existing approaches in our model
to widen its applicability. The combination of the covariance structures used in classical
multi-task GP (Bonilla et al., 2008; Hensman et al., 2013) with the common mean process
we introduced would also open a promising path for future work. Another possible avenue
is an adaptation to the classification context, which is presented in Rasmussen and Williams
(2006, Chapter 3). Besides, this work leaves the door open to improvement as we only tackled
the problem of unidimensional regression: enabling either multidimensional or mixed type
of inputs as in Shi and Choi (2011) would be of interest. To conclude, the hypothesis of a
unique underlying mean process might be considered as too restrictive for some datasets,
and enabling cluster-specific mean processes would be a relevant extension.

3.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof below gives details for the calculus of µ0’s hyper-posterior distribution, involved
in the E step of the EM algorithm and during the prediction process. Although the main
idea is similar to the proof given for common timestamps, there are some cautions to take
when working in the general case. Note that the proof of Proposition 3.1 is a particular
case of the proof below, where τ = t exactly (where τ is the set of timestamps the hyper-
posterior is to be computed on). Moreover, in order to keep an analytical expression for
µ0’s hyper-posterior distribution, we discard the superfluous information contained in {yi}i
at timestamps on which the hyper-posterior is not to be computed. Hence, the proof below
states that the remaining data points are observed on subsets {τ i}i of τ .

3.8.1 Proof of Proposition 3.1 and Proposition 3.4
Let τ be a finite vector of timestamps, and {τ i}i such as ∀i = 1, . . . ,M, τ i ⊂ τ . We define
convenient notation:

• µτ
0 = µ0(τ ),

• mτ
0 = m0(τ ),

• µτ i
0 = µ0(τ i), ∀i = 1, . . . ,M ,

• yτ i
i = yi(τ i), ∀i = 1, . . . ,M ,

• Ψi = ψθi,σ2
i
(τ i, τ i),∀i = 1, . . . ,M ,

• K = kθ0(τ , τ ).

Moreover, for a covariance matrix C, and u, v ∈ τ , we note [C ]
−1
uv the element of the

inverse matrix at row associated with timestamp u, and column associated with timestamp
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v. We also ignore the conditionings over Θ̂, τ i and τ to maintain simple expressions. By
construction of the models, we have:

p(µτ
0 | {yτ i

i }i) ∝ p({yτ i
i }i | µ

τ
0 )p(µ

τ
0 )

∝

{
M∏
i=1

p(yτ i
i | µτ i

0 )

}
p(µτ

0 )

∝

{
M∏
i=1

N (yτ i
i ;µτ i

0 ,Ψi))

}
N (µτ

0 ;mτ
0 ,K) .

The term L1 = −(1/2) log p(µτ
0 | {yτ i

i }i) associated with the hyper-posterior remains
quadratic and we may find the corresponding Gaussian parameters by identification:

L1 =

M∑
i=1

{
(yτ i

i − µτ i
0 )

ᵀ
Ψ−1

i (yτ i
i − µτ i

0 ) + Ci

}
+ (µτ

0 − mτ
0 )

ᵀ K−1 (µτ
0 − mτ

0 ) + C0

= µτ
0
ᵀK−1µτ

0 +

M∑
i=1

µτ i
0

ᵀ
Ψ−1

i µτ i
0 − 2

(
µτ

0
ᵀK−1mτ

0 +

M∑
i=1

µτ i
0

ᵀ
Ψ−1

i yτ i
i

)
+ C

=
∑
u∈τ

∑
v∈τ

µ0(u) [K ]
−1
uv µ0(v) +

M∑
i=1

∑
u∈τ i

∑
v∈τ i

µ0(u) [Ψi ]
−1
uv µ0(v)

− 2
∑
u∈τ

∑
v∈τ

µ0(u) [K ]
−1
uv m0(v)− 2

M∑
i=1

∑
u∈τ i

∑
v∈τ i

µ0(u) [Ψi ]
−1
uv yi(v) + C,

where we entirely decomposed the vector-matrix products. We factorise the expression
according to the common timestamps between τi and τ . Since for all i, τ i ⊂ τ , let us
introduce a dummy indicator function 1τ i

= 1{u,v∈τ i} to write:

M∑
i=1

∑
u∈τ i

∑
v∈τ i

A(u, v) =
M∑
i=1

∑
u∈τ

∑
v∈τ

1τ i
A(u, v)

=
∑
u∈τ

∑
v∈τ

M∑
i=1

1τ iA(u, v),

subsequently, we can gather the sums such as:
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L1 =
∑
u∈τ

∑
v∈τ

(
µ0(u) [K ]

−1
uv µ0(v) +

M∑
i=1

1τ iµ0(u) [Ψi ]
−1
uv µ0(v)

− 2µ0(u) [K ]
−1
uv m0(v)− 2

M∑
i=1

1τ i
µ0(u) [Ψi ]

−1
uv yi(v)

)
+ C

=
∑
u∈τ

∑
v∈τ

(
µ0(u)

(
[K ]

−1
uv +

M∑
i=1

1τ i
[Ψi ]

−1
uv

)
µ0(v)

− 2µ0(u)
(
[K ]

−1
uv m0(v) +

M∑
i=1

1τ i
[Ψi ]

−1
uv yi(v)

))
+ C

= µτ
0
ᵀ
(

K−1 +

M∑
i=1

Ψ̃
−1

i

)
µτ

0 − 2µτ
0
ᵀ
(

K−1mτ
0 +

M∑
i=1

Ψ̃
−1

i ỹτ
i

)
+ C,

where the yi and Ψi are completed by zeros:

• ỹτ
i = 1τ i

yi(τ ),

•
[
Ψ̃i

]−1

uv
= 1τ i

[Ψi ]
−1
uv , ∀u, v ∈ τ .

By identification of the quadratic form, we reach:

p(µτ
0 | {yτ i

i }i) = N
(
µτ

0 ; m̂0(τ ), K̂
)
,

with,

• K̂ =

(
K−1 +

M∑
i=1

Ψ̃
−1

i

)−1

,

• m̂0(τ ) = K̂
(

K−1mτ
0 +

M∑
i=1

Ψ̃
−1

i ỹτ
i

)
.

3.8.2 Proof of Proposition 3.2 and Proposition 3.3
Since the central part of the proofs is similar for both propositions, we detail the calculus
denoting Θ = {θ0, {θi}i ,

{
σ2
i

}
i
} for generality and dissociate the two cases only when neces-

sary. Before considering the maximisation, we notice that the joint density can be developed
as:

L∈ = p({yi}i , µ0(t) | Θ)

= p({yi}i | µ0(t),Θ) p(µ0(t) | Θ)

=

M∏
i=1

{
p(yi | µ0(t), θi, σ2

i )
}
p(µ0(t) | θ0)

=

M∏
i=1

{
N (yi;µ0(t),Ψθi,σ2

i
)
}
N (µ0(t);m0(t),Kt

θ0).
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The expectation is taken over p(µ0(t) | {yi}i) though we write it E for simplicity. We
have:

f(Θ) = E [ logL∈ ]

= −1

2
E

[
(µ0(t)−m0(t))ᵀKt

θ0

−1
(µ0(t)−m0(t))− log

∣∣∣Kt
θ0

−1
∣∣∣

+

M∑
i=1

(yi − µ0(ti))ᵀΨti
θi,σ2

i

−1
(yi − µ0(ti))− log

∣∣∣Ψti
θi,σ2

i

−1
∣∣∣ ]+ C1.

Lemma 3.1. Let X ∈ RN be a random Gaussian vector X ∼ N (m,K), b ∈ RN , and S, a
N ×N covariance matrix. Then:

E = EX

[
(X − b)ᵀS−1(X − b)

]
= (m− b)ᵀS−1(m− b) + Tr(KS−1).

Lemma 3.1.

E = EX

[
Tr(S−1(X − b)(X − b)ᵀ)

]
= Tr(S−1VX(X − b)) + Tr(S−1(m− b)(m− b)ᵀ)

= (m− b)ᵀS−1(m− b) + Tr
(
KS−1

)
.

As we note that X and b play symmetrical roles in the calculus of the conditional ex-
pectation, we can apply the lemma regardless to the position of µ0 in the M + 1 equalities
involved. Applying Lemma 3.1 to our previous expression of f(Θ), we obtain:

f(Θ) = −1

2

[
(m̂0(t)−m0(t))ᵀKt

θ0

−1
(m̂0(t)−m0(t))

+

M∑
i=1

(yi − m̂0(ti))ᵀΨti
θi,σ2

i

−1
(yi − m̂0(ti))

+ Tr
(

K̂tKt
θ0

−1
)
+

M∑
i=1

Tr
(

K̂tiΨti
θi,σ2

i

−1
)

− log
∣∣∣Kt

θ0

−1
∣∣∣− M∑

i=1

log
∣∣∣Ψti

θi,σ2
i

−1
∣∣∣+ C1

]
.

We recall that, at the M step, m̂0(t) is a known constant, computed at the previous E
step. Thus, we identify here the characteristic expression of several Gaussian log-likelihoods
and associated correction trace terms. Moreover, each set of hyper-parameters is merely
involved in independent terms of the whole function to maximise. Hence, the global max-
imisation problem can be separated into several maximisations of sub-functions according to
the hyper-parameters getting optimised. Regardless to additional assumptions, the hyper-
parameters θ0, controlling the covariance matrix of the mean process, appears in a function
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which is exactly a Gaussian log-likelihood logN
(
m̂0(t),m0(t),Kt

θ0

)
, added to a correspond-

ing trace term −1

2
Tr
(

K̂tKt
θ0

−1
)

. This function can be maximised independently from the
other parameters, giving the first part of the results in Proposition 3.2 and Proposition 3.3.

Although the idea is analogous for the remaining hyper-parameters, we have to dis-
criminate here regarding the assumption on the model. If each individual is supposed to
have its own set {θi, σi}, which thus can be optimised independently from the observa-
tions and hyper-parameters of other individuals, we identify a sum of M Gaussian log-
likelihoods logN

(
yi, m̂0(ti),Ψti

θi,σ2
i

)
and the corresponding trace terms −1

2
Tr(K̂tΨti

θi,σ2
i

−1
).

This results on M independent maximisation problems on corresponding functions, proving
Proposition 3.2. Conversely, if we assume that all individuals in the model shares their
hyper-parameters and

{
θ, σ2

}
=
{
θi, σ

2
i

}
,∀i, we can no longer divide the problem into M

sub-maximisations, and the whole sum on all individual should be optimised thanks to ob-
servations from all individuals. This case corresponds to the second part of Proposition 3.3.

Availability of data
The synthetic data and table of results are available at https://github.com/ArthurLeroy/
MAGMA/tree/master/Simulations

Code availability
The R code associated with the present work is available at https://github.com/ArthurLeroy/
MAGMA
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This chapter is based on the article Leroy et al. (2020a), which is currently under review.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The present chapter proposes an extension to the model presented in Chapter 3 by intro-
ducing a clustering component into the procedure. This approach relies on the definition
of a GPs mixture model that we combine with our previously introduced multi-task aspect.
Such modelling offers both new results in terms of possible group structures in the data
and enhanced predictive abilities, by sharing information across the individuals through
multiple cluster-specific mean processes instead of a single. The chapter is organised as
follows. We introduce the multi-task Gaussian processes mixture model in Section 4.2,
along with notation. Section 4.3 is devoted to the inference procedure, with a Variational
Expectation-Maximisation (VEM) algorithm to estimate hyper-parameters and approxima-
tion of hyper-posterior distributions along with mixture parameters. We leverage this strat-
egy in Section 4.4 and derive both a mixture and cluster-specific GP prediction formulas,
for which we provide an analysis along with computational costs in Section 4.5. The perfor-
mances or our algorithm for clustering and prediction purposes are illustrated in Section 4.6
with a series of experiments on both synthetic and real-life datasets and a comparison to
competing state-of-the-art algorithms. Then, Section 4.7 depicts an overall point-of-view on
this work. Finally, we defer all proofs to original results to Section 4.8.

4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Notation
In order to remain consistent both with the vocabulary introduced in Chapter 3 and with
the illustrative example in Section 4.6, we refer to the input variables as timestamps and
use the term individual as a synonym of batch or task. However, although the temporal
formulation helps to wrap the mind around the concepts, the present framework still applies
to the wide range of data one can usually think of in GP models. As we suppose the dataset
to be composed of point-wise observations from multiple functions, the set of all indices
is denoted by I ⊂ N, which in particular contains {1, . . . ,M}, the indices of the observed
individuals (i.e. the training set). The input values being defined over a continuum, let us
name T this input space (we can assume T ⊂ R here for simplicity). Moreover, since the
following model is defined for clustering purposes, the set of indices K = {1, . . . ,K} refers
to the K different groups of individuals. For the sake of concision, let us also shorten the
notation as follows: for any object x, {xi}i = {x1, . . . , xM} and {xk}k = {x1, . . . , xK}.

We assume to collect data from M different sources, such as a set of Ni input-output
values

{(
t1i , yi(t

1
i )
)
, . . . ,

(
tNi
i , yi(t

Ni
i )
)}

constitutes the observations for the i-th individual.
Below follows additional convenient notation:

• ti = {t1i , . . . , t
Ni
i }, the set of timestamps for the i-th individual,

• yi = yi(ti), the vector of outputs for the i-th individual,
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• t =
M⋃
i=1

ti, the pooled set of all timestamps among individuals,

• N = card(t), the total number of observed timestamps.

Let us stress that the input values may vary both in number and location among indi-
viduals, and we refer as a common grid of timestamps to the case where ti = t, ∀i ∈ I.
Otherwise, we call it an uncommon grid. Besides, in order to define a GP mixture model,
a latent binary random vector Zi = (Zi1, . . . , ZiK)

ᵀ needs to be associated with each in-
dividual, indicating in which cluster it belongs. Namely, if the i-th individual comes from
the k-th cluster, then Zik = 1 and 0 otherwise. Moreover, we assume these latent variables
to come from the same multinomial distribution: Zi ∼ M(1,π), ∀i ∈ I, with a vector of

mixing proportions π = (π1, . . . , πK)
ᵀ and

K∑
k=1

πk = 1.

4.2.2 Model and assumptions
Assuming that the i-th individual belongs to the k-th group, we can define its functional
expression as the sum of a cluster-specific mean process and an individual-specific centred
process:

yi(t) = µk(t) + fi(t) + εi(t), ∀t ∈ T ,

where:

• µk(·) ∼ GP(mk(·), cθk(·, ·)) is the common mean process of the k-th cluster,

• fi(·) ∼ GP(0, ξθi(·, ·)) is the specific process of the i-th individual,

• εi(·) ∼ GP(0, σ2
i I) is the error term.

This general model depends upon several mean and covariance parameters, fixed as mod-
elling choices, and hyper-parameters to be estimated:

• ∀k ∈ K, mk(·) is the prior mean function of the k-th cluster,

• ∀k ∈ K, cγk
(·, ·) is the covariance kernel of hyper-parameters γk,

• ∀i ∈ I, ξθi(·, ·) is the covariance kernel of hyper-parameters θi,

• ∀i ∈ I, σ2
i ∈ R is the noise variance associated with the i-th individual,

• ∀i ∈ I, we define the shorthand ψθi,σ2
i
(·, ·) = ξθi(·, ·) + σ2

i I,

• Θ =
{
{γk}k , {θi}i ,

{
σ2
i

}
i
,π
}

, the set of all hyper-parameters of the model.

Let us note that we assume here the error term to be individual-specific, although we
could also assume it to be cluster-specific and thus indexed by k. Such a choice would
result in a valid model since the upcoming developments remain tractable if we substitute
εk to εi everywhere, and associate σ2

kI with cγk
(·, ·) instead of ξθi(·, ·). However, we work

throughout with εi to remain as general as possible, and a discussion about additionally
available assumptions on the covariance structures follows in Section 4.2.3. Regardless of
this remark, we only seek an estimation for Θ among the above quantities, whereas the other
objects are pre-specified in the model. For instance, the prior mean mk(·) is usually set to
zero but could also integrate experts knowledge if available. Furthermore, we assume that:
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∀i ∈ I

∀k ∈ K

Figure 4.1 – Graphical model of dependencies between variables in the multi-task Gaussian Processes mixture
model.

• {µk}k are independent,

• {fi}i are independent,

• {Zi}i are independent,

• {εi}i are independent,

• ∀i ∈ I,∀k ∈ K, µk, fi, Zi and εi are independent.

We display a graphical model on Figure 4.1 to enlighten the relationships between the
different components. From these hypotheses, we can naturally integrate out fi and derive
the conditional prior distribution of yi(·), providing a hierarchical formulation for the model:

yi(·) | {Zik = 1, µk(·)} ∼ GP
(
µk(·), ψθi,σ2

i
(·, ·)

)
, ∀i ∈ I,∀k ∈ K.

As a consequence, the output processes {yi(·) | {Zi}i , {µk(·)}k}i are also independent
(conditionally to the latent variables) from one another. Although this model is expressed
in terms of infinite-dimensional GPs, we proceed to the inference using finite-dimensional
sets of observations {ti, yi}i. Therefore, we can write the joint conditional likelihood of the
model (conditioning on the inputs is omitted throughout the paper for clarity):

p({yi}i | {Zi}i , {µk(t)}k, {θi}i ,
{
σ2
i

}
i
) =

M∏
i=1

p(yi | Zi, {µk(ti)}k, θi, σi)

=

M∏
i=1

K∏
k=1

p(yi | Zik = 1, µk(ti), θi, σi)Zik

=

M∏
i=1

K∏
k=1

N
(

yi;µk(ti),Ψti
θi,σ2

i

)Zik

,

where ∀i ∈ I, Ψti
θi,σ2

i
= ψθi,σ2

i
(ti, ti) =

[
ψθi,σ2

i
(k, l)

]
k,`∈ti

is a Ni × Ni covariance matrix.
The mean processes being common to all individuals in a cluster, we need to evaluate their
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prior distributions on the pooled grid of timestamps t:

p({µk(t)}k | {γk}k) =
K∏

k=1

p(µk(t) | γk)

=

K∏
k=1

N
(
µk(t);mk(t),Ct

γk

)
,

where Ct
γk

= cγk
(t, t) = [cγk

(k, `)]k,l∈t is a N × N covariance matrix. Finally, the joint
distribution of the clustering latent variables also factorises over the individuals:

p({Zi}i | π) =
M∏
i=1

p(Zi | π)

=

M∏
i=1

M(Zi; 1,π)

=
M∏
i=1

K∏
k=1

πZik

k .

From all these expressions, the complete-data likelihood of the model can be derived:

p({yi}i , {Zi}i , {µk(t)}k | Θ) = p({µk(t)}k | γk)
M∏
i=1

p(yi | Zi, {µk(ti)}k , θi, σ
2
i )p(Zi | π)

=

K∏
k=1

N
(
µk(t);mk(t),Ct

γk

) M∏
i=1

(
πkN

(
yi;µk(ti),Ψti

θi,σ2
i

))Zik

.

This expression would usually serve to estimate the hyper-parameters Θ, although it
depends here on latent variables that cannot be evaluated directly. Even if the prior dis-
tributions over {Zi}i and {µk(t)}k are independent, the expressions of their respective pos-
teriors would inevitably depend on each other. Nevertheless, it remains possible to derive
variational approximations for these distributions that still factorise nicely over the terms
Zi,∀i ∈ I, and µk(t),∀k ∈ K. Consequently, the following inference procedure involves
a variational EM algorithm that we shall detail after a quick discussion on the optional
hypotheses for the model.

4.2.3 Assumptions on the covariance structure
Throughout this chapter, we detail a common ground procedure that remains consistent
regardless of the covariance structure of the considered GPs. Let us remark that we chose a
parametric distinction of the covariance kernels through the definition of hyper-parameters,
different from one individual to another. However, there are no theoretical restrictions
on the underlying form of the considered kernels, and we indicate a differentiation on the
sole hyper-parameters merely for convenience in writing. As already presented and used in
Chapter 3, a common kernel in the GP literature is known as the exponentiated quadratic
kernel (also called sometimes squared exponential or radial basis function kernel). This
kernel only depends upon two hyper-parameters θ = {v, `} such as:
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θ0 = θi,∀i ∈ I θi 6= θj ,∀i 6= j
Notation Nb of HPs Notation Nb of HPs

γ0 = γk,∀k ∈ K H00 2 H0i M + 1
γk 6= γl,∀k 6= l Hk0 K + 1 Hki M + K

Table 4.1 – Summary of the 4 available assumptions on the hyper-parameters, with their respective shortening
notation and the associated number of sets of hyper-parameters (HPs) to optimise.

kEQ (x, x′) = v2 exp

(
− (x− x′)

2

2`2

)
. (4.1)

The exponentiated quadratic kernel is used for simplicity as covariance structure for both
cluster-specific and individual-specific GPs in the simulation section (see Section 4.6 for de-
tails).However, the hypotheses on the hyper-parameters are interesting to consider and offer
some control over the interaction between the individuals. Let us mention the existence of a
rich literature on kernel choices, properties and combinations: see Rasmussen and Williams
(2006, Chapter 4) or Duvenaud (2014) for comprehensive studies. More details can also be
found in Section 1.1.2.b of the present thesis.

In the initial version (see Chapter 3) and in the present chapter, the multi-task aspect is
mainly supported by the mean process, although the model also allows information sharing
among individual through the covariance structure. These two aspects being constructed
independently, we could think of the model as potentially double multi-task, both in mean
and covariance. More precisely, if we assume {{θi}i ,

{
σ2
i

}
i
} = {θ0, σ2

0}, ∀i ∈ I, then all fi
are assumed to be different realisations of the same GP, and thus all individuals contributes
to the estimation of the common hyper-parameters. Hence, such an assumption that may
appear restrictive at first glance actually offers a valuable way to share common patterns
between tasks. Furthermore, the same kind of hypothesis can be proposed at the cluster
level with {γk}k = γ0, ∀k ∈ K. In this case, we would assume that all the clusters’ mean
processes {µk}k share the same covariance structure. This property would indicate that the
patterns, or the variations of the curves, are expected to be roughly identical from one cluster
to another and that the differentiation would be mainly due to the mean values. Conversely,
different covariance structures across kernels offer additional flexibility for the groups to
differ both in position and in trend, smoothness, or any property that could be coded
in a kernel. Speaking rather loosely, we may think of these different settings as a trade-off
between flexibility and information sharing, or as a choice between an individual or collective
modelling of the covariance. Overall, our algorithm provides 4 different settings, offering
a rather wide range of assumptions for an adequate adaptation to different applicative
situations. Note that the computational considerations are also of paramount importance
when it comes to optimising a likelihood over a potentially high number of parameters.
Hence, we display on Table 4.1 a summary of the 4 different settings, providing a shortening
notation along with the associated number of hyper-parameters (or sets of hyper-parameters
in the case of θi and γk) that are required to be learnt in practice.
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4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although a fully Bayesian point-of-view could be taken on the learning procedure by defin-
ing prior distributions of the hyper-parameters and directly use an MCMC algorithm (Ras-
mussen and Williams, 2006; Yang et al., 2016) for approximate inference on the posteriors,
this approach remains computationally challenging in practice. Conversely, variational meth-
ods have proved to be highly efficient to conduct inference in tricky GP problems (Titsias,
2009; Hensman et al., 2013) and may apply in our context as well. By introducing an ade-
quate independence assumption, we are able to derive a variational formulation leading to
analytical approximations for the true hyper-posterior distributions of the latent variables.
Then, these hyper-posterior updates allow the computation of a lower bound of the true
log-likelihood, thereby specifying the E step of the VEM algorithm (Attias, 2000) that con-
ducts the overall inference. Alternatively, we can maximise this lower bound with respect
to the hyper-parameters in the M step for optimisation purpose, to provide estimates. By
iterating on these two steps until convergence (pseudo-code in Algorithm 3), the procedure
is proved to reach local optima of the lower bound (Boyd and Vandenberghe, 2004), usually
in a few iterations. For the sake of clarity, the shorthand Z = {Zi}i and µ = {µk(t)}k is
used in this section when referring to the corresponding set of latent variables.

4.3.1 Variational EM algorithm
We seek an appropriate and analytical approximation q(Z,µ) for the exact hyper-posterior
distribution p(Z,µ | {yi}i ,Θ). Let us first notice that for any distribution q(Z,µ), the
following decomposition holds for the observed-data log-likelihood:

log p({yi}i | Θ) = KL (q‖p) + L(q; Θ), (4.2)

with:

KL (q‖p) =
∫ ∫

q(Z,µ) log q(Z,µ)
p(Z,µ | {yi}i ,Θ)

dZ dµ,

L(q; Θ) = −
∫ ∫

q(Z,µ) log q(Z,µ)
p(Z,µ, {yi}i | Θ)

dZ dµ.

Therefore, we expressed the intractable log-likelihood of the model by introducing the
Kullback-Leibler (KL) divergence between the approximation q(Z,µ) and the corresponding
true distribution p(Z,µ | {yi}i ,Θ). The right-hand term L(q; Θ) in (4.2) defines a so-called
lower bound for log p({yi}i | Θ) since a KL divergence is nonnegative by definition. This
lower bound depends both upon the approximate distribution q(·) and the hyper-parameters
Θ, while remaining tractable under adequate assumptions. By maximising L(q; Θ) alterna-
tively with respect to both quantities, optima for the hyper-parameters shall be reached.
To achieve such a procedure, the following factorisation is assumed for the approximated
distribution:

q(Z, µ) = qZ(Z)qµ(µ).

Colloquially, we could say that the independence property that lacks to compute explicit
hyper-posterior distributions is imposed. Such a condition restricts the family of distributions
from which we choose q(·), and we now seek approximations within this family that are as
close as possible to the true hyper-posteriors.
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E STEP
In the expectation step (E step) of the VEM algorithm, the lower bound of the marginal

likelihood L(q; Θ) is maximised with respect to the distribution q(·), considering that ini-
tial or previously estimated values for Θ̂ are available. Making use of the factorised form
previously assumed, we can derive analytical expressions for the optimal distributions over
qZ(Z) and qµ(µ). As the computing of each distribution involves taking an expectation with
respect to the other one, this suggests an iterative procedure where whether the initialisa-
tion or a previous estimation serves in the current optimisation process. Therefore, let us
introduce two propositions below respectively detailing the exact derivation of the optimal
distributions q̂Z(Z) and q̂µ(µ) (all proofs are deferred to the corresponding Section 4.8).

Proposition 4.1. Assume that the hyper-parameters Θ̂ and the variational distribution

q̂µ(µ) =
K∏

k=1

N
(
µk(t); m̂k(t), Ĉt

k

)
are known. The optimal variational approximation q̂Z(Z)

of the true hyper-posterior p
(

Z | {yi}i , Θ̂
)
factorises as a product of multinomial distribu-

tions:

q̂Z(Z) =
M∏
i=1

M (Zi; 1,τi = (τi1, . . . , τiN )
ᵀ
) , (4.3)

where:

τik =
π̂k N

(
yi; m̂k(ti),Ψti

θ̂i,σ̂2
i

)
exp

(
− 1

2 tr
(
Ψti

θ̂i,σ̂2
i

−1Ĉti
k

))
K∑
l=1

π̂l N
(

yi; m̂l(ti),Ψti
θ̂i,σ̂2

i

)
exp

(
− 1

2 tr
(
Ψti

θ̂i,σ̂2
i

−1Ĉti
l

)) , ∀i ∈ I,∀k ∈ K. (4.4)

Proposition 4.2. Assume that the hyper-parameters Θ̂ and the variational distribution

q̂Z(Z) =
M∏
i=1

M (Zi; 1,τi) are known. The optimal variational approximation q̂µ(µ) of the

true hyper-posterior p
(
µ | {yi}i , Θ̂

)
factorises as a product of multivariate Gaussian dis-

tributions:

q̂µ(µ) =
K∏

k=1

N
(
µk(t); m̂k(t), Ĉt

k

)
, (4.5)

with:

• Ĉt
k =

(
Ct

γ̂k

−1
+

M∑
i=1

τikΨ̃
−1

i

)−1

, ∀k ∈ K,

• m̂k(t) = Ĉt
k

(
Ct

γ̂k

−1
mk(t) +

M∑
i=1

τikΨ̃
−1

i ỹi

)
, ∀k ∈ K,

where the following shorthand notation is used:

• ỹi =
(
1[t∈ti] × yi(t)

)
t∈t (N -dimensional vector),

• Ψ̃i =
[
1[t,t′∈ti] × ψθ̂i,σ̂2

i
(t, t′)

]
t,t′∈t

(N ×N matrix).

Notice that the forced factorisation we assumed between Z and µ for approximation
purpose additionally offers an induced independence between individuals as indicated by
the factorisation in (4.3), and between clusters (see (4.5)).

96



M STEP
At this point, we have fixed an estimation for q(·) in the lower bound that shall serve to

handle the maximisation of L(q̂,Θ) with respect to the hyper-parameters. This maximisation
step (M step) depends on the initial assumptions on the generative model (Table 4.1),
resulting in four different versions for the VEM algorithm (the E step is common to all of
them, the branching point is here).

Proposition 4.3. Assume the variational distributions q̂Z(Z) =
M∏
i=1

M (Zi; 1,τi) and q̂µ(µ) =
K∏

k=1

N
(
µk(t); m̂k(t), Ĉt

k

)
to be known. For a set of hyper-parameters Θ = {{γk}k , {θi}i ,

{
σ2
i

}
i
,π},

the optimal values are given by:

Θ̂ = argmax
Θ

E{Z,µ} [ log p({yi}i ,Z,µ | Θ) ] ,

where E{Z,µ} indicates an expectation taken with respect to q̂µ(µ) and q̂Z(Z). In particular,
optimal values for π can be computed explicitly with:

π̂k =
1

M

M∑
i=1

τik, ∀k ∈ K.

The remaining hyper-parameters are estimated by solving the following maximisation prob-
lems, according to the situation. Let us note:

Lk (x;m, S) = logN (x;m, S)− 1

2
tr
(

Ĉt
kS

−1
)
,

Li (x;m, S) =
K∑

k=1

τik

(
logN (x;m, S)− 1

2
tr
(

Ĉti
k S

−1
))

.

Then, for hypothesis Hki:

• γ̂k = argmax
γk

Lk

(
m̂k(t);mk(t),Ct

γk

)
, ∀k ∈ K,

• (θ̂i, σ̂
2
i ) = argmax

θi,σ2
i

Li

(
yi; m̂k(ti),Ψti

θi,σ2
i

)
, ∀i ∈ I.

For hypothesis Hk0:

• γ̂k = argmax
γk

Lk

(
m̂k(t);mk(t),Ct

γk

)
, ∀k ∈ K,

• (θ̂0, σ̂
2
0) = argmax

θ0,σ2
0

M∑
i=1

Li

(
yi; m̂k(ti),Ψti

θ0,σ2
0

)
.

For hypothesis H0i:

• γ̂0 = argmax
γ0

K∑
k=1

Lk

(
m̂k(t);mk(t),Ct

γ0

)
,

• (θ̂i, σ̂
2
i ) = argmax

θi,σ2
i

Li

(
yi; m̂k(ti),Ψti

θi,σ2
i

)
, ∀i ∈ I.
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For hypothesis H00:

• γ̂0 = argmax
γ0

K∑
k=1

Lk

(
m̂k(t);mk(t),Ct

γ0

)
,

• (θ̂0, σ̂
2
0) = argmax

θ0,σ2
0

M∑
i=1

Li

(
yi; m̂k(ti),Ψti

θ0,σ2
0

)
.

Let us stress that, for each sub-case, explicit gradients are available for the functions to
maximise, facilitating the optimisation process with gradient-based methods (Hestenes and
Stiefel, 1952; Bengio, 2000). The current version of our code implements those gradients and
makes use of them within the L-BFGS-B algorithm (Nocedal, 1980; Morales and Nocedal,
2011) devoted to the numerical maximisation. As previously discussed, the hypothesis Hki

necessitates to learn M+K sets of hyper-parameters. However, we notice in Proposition 4.3
that the factorised forms defined as the sum of a Gaussian log-likelihoods and trace terms
offer a way to operate the maximisations in parallel on simple functions. Conversely, for
the hypothesis H00, only 2 sets of hyper-parameters need to be optimised, namely γ0, and
{θ0, σ2

0}. The small number of functions to maximise is explained by the fact that they are
defined as larger sums over all individuals (respectively all clusters). Moreover, this context
highlights a multi-task pattern in covariance structures, since each individual (respectively
cluster) contributes to the learning of shared hyper-parameters. In practice, H00 is far easier
to manage, and we generally reach robust optima in a few iterations. On the contrary, the
settings with many hyper-parameters to learn, using mechanically less data for each, may
lead more often to computational burden or pathological results. The remaining hypotheses,
H0i and Hk0, are somehow middle ground situations between the two extremes and might
be used as a compromise according to the problem being dealt with.

4.3.2 Initialisation
Let us discuss here some modelling choices about the initialisation of some quantities involved
in the VEM algorithm:

• {mk(·)}k; the mean functions from the hyper-prior distributions of the associated
mean processes {µk(·)}k. As it may be difficult to pre-specify meaningful values in
the absence of external or expert knowledge, these values are often assumed to be
0. However, it remains possible to integrate information in the model by this mean.
However, as exhibited in Proposition 4.2, the influence of {mk(·)}k in hyper-posterior
computations decreases rapidly when M grows in a multi-task framework.

• {γk}k, {θi}i and
{
σ2
i

}
i
; the kernel hyper-parameters. We already discussed that the

form itself of kernels has to be chosen as well, but once set, we would advise initiating
{γk}k and {θi}i with close and reasonable values whenever possible. As previously
noticed in Chapter 3, nearly singular covariance matrices and numerical instability
may occur for pathological initialisations, in particular for the hypotheses, like Hki,
with many hyper-parameters to learn. This behaviour frequently occurs in the GP
framework, and one way to handle this issue is to add a so-called jitter term (Bernardo
et al., 1998) on the diagonal of the ill-defined covariance matrices.

• {τik}ik; the estimated individual membership probabilities (or π; the prior vector of
clusters’ proportions). Both quantities are valid initialisation depending on whether
we start the VEM iterations by an E step or an M step. If we only want to set
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the initial proportions of each cluster in the absence of additional information, we
may merely specify π and start with an E step. Otherwise, if we insert the results
from a previous clustering algorithm as an initialisation, the probabilities τik for each
individual and cluster can be fully specified before proceeding to an M step (or to the
q̂µ(µ)’s computing and then the M step).

Let us finally stress that the convergence (to local maxima) of VEM algorithms partly
depends on these initialisations. We previously discussed this topic in Section 1.1.3.a and
different strategies have been proposed in the literature to manage this issue, among which
simulated annealing (Ueda and Nakano, 1998) or repeated short runs (Biernacki et al., 2003).

4.3.3 Pseudocode
The overall algorithm is called MagmaClust (as an extension of the algorithm Magma to
cluster-specific mean GPs) and we provide below the pseudo-code summarising the inference
procedure. The corresponding R code is available at https://github.com/ArthurLeroy/
MAGMAclust.

Algorithm 3 MagmaClust: Variational EM algorithm
Initialise {mk(t)}k, Θ =

{
{γk}k , {θi}i ,

{
σ2
i

}
i

}
and {τini

i }i (or π).
while not converged do

E step: Optimise L(q; Θ) w.r.t. q(·):

q̂Z(Z) =
M∏
i=1

M(Zi; 1,τi).

q̂µ(µ) =
K∏

k=1

N (µk(t); m̂k(t), Ĉt
k).

M step: Optimise L(q; Θ) w.r.t. Θ:
Θ̂ = argmax

Θ
EZ,µ [ log p({yi}i ,Z,µ | Θ) ] .

end while
return Θ̂, {τi}i {m̂k(t)}k, {Ĉt

k}k.

4.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At this point, we would consider that the inference on the model is completed, since the train-
ing dataset of observed individuals {yi}i enabled to estimate the desired hyper-parameters
and latent variables’ distributions. For the sake of concision, we thus omit the writing of
conditionings over Θ̂ in the sequel. Then, let us now assume the partial observation of a
new individual, denoted by the index ∗, for whom we collected a few data points y∗(t∗)
at timestamps t∗. Defining a multi-task GPs mixture prediction consists in seeking an an-
alytical distribution p(y∗(·) | y∗(t∗), {yi}i), according to the information brought by: its
own observations; the training dataset; the cluster structure among individuals. As we aim
at studying the output values y∗(·) at arbitrarily chosen timestamps, say tp (the index p

stands for prediction), a new notation for the pooled vector of timestamps tp∗ =

[
tp
t∗

]
is

proposed. This vector serves as a working grid on which the different distributions involved
in the prediction procedure are evaluated. In the absence of external restrictions, we would
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tp∗ = t tp∗ 6= t
H00 2-3bis-4-5 1-2-3bis-4-5
Hk0 2-3bis-4-5 1-2-3bis-4-5
H0i 2-3-4-5 1-2-3-4-5
Hki 2-3-4-5 1-2-3-4-5

Table 4.2 – Summary of the different steps to perform in the prediction procedure, according to the model
assumptions and the target grid of timestamps.

strongly advise to include the observed timestamps of all training individuals, t, within tp∗,
since evaluating the processes at these locations allows for sharing information across tasks.
Otherwise, any data points defined on timestamps outside of the working grid would be
discarded from the multi-task aspect of the model. In particular, if tp∗ = t, we may even use
directly the variational distribution qµ(µ) computed in the VEM algorithm, and thus skip
one step of the prediction procedure that is described below. Throughout the section, we
aim at defining a probabilistic prediction for this new individual, accounting for the infor-
mation of all training data {yi}i. To this end, we manipulate several distributions of the
type p(· | {yi}i) and refer to them with the adjective multi-task. Additionally to highlighting
the information-sharing aspect, this term allows us to distinguish the role of {yi}i from the
one of the newly observed data y∗(t∗), which are now the reference data for establishing
if a distribution is called a prior or a posterior. Deriving a predictive distribution in our
multi-task GP framework requires to complete the following steps.

1. Compute the hyper-posterior approximation of {µk(·)}k at tp∗: q̂µ({µk(tp∗)}k),

2. Deduce the multi-task prior distribution: p(y∗(tp∗) | Z∗, {yi}i),

3. Compute the new hyper-parameters {θ∗, σ2
∗} and p(Z∗ | y∗(t∗), {yi}i) via an EM,

3bis. Assign θ∗ = θ0, σ2
∗ = σ2

0 and compute directly p(Z∗ | y∗(t∗), {yi}i),

4. Compute the multi-task posterior distribution: p(y∗(tp) | y∗(t∗),Z∗, {yi}i),

5. Deduce the multi-task GPs mixture prediction: p(y∗(tp) | y∗(t∗), {yi}i).

We already discussed the influence of the initial modelling hypotheses on the overall
procedure. Hence, let us display in Table 4.2 a quick reminder helping to keep track of
which steps need to be performed in each context.

4.4.1 Posterior inference on the mean processes
In order to integrate the information contained in the shared mean processes, we first need
to re-compute the variational approximation of {µk(·)}k’s hyper-posterior on the new Ñ -
dimensional working grid tp∗. By using once more Proposition 4.2, it appears straightforward
to derive this quantity that still factorises as a product of Gaussian distributions where we
merely substitute the values of timestamps:

q̂µ({µk(tp∗)}k) =
K∏

k=1

N
(
µk(tp∗); m̂k(tp∗), Ĉ

tp∗
k

)
,

with:
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• Ĉtp∗
k =

(
Ctp∗

γ̂k

−1
+

M∑
i=1

τikΨ̃
−1

i

)−1

, ∀k ∈ K,

• m̂k(tp∗) = Ĉtp∗
k

(
Ctp∗

γ̂k

−1
mk(tp∗) +

M∑
i=1

τikΨ̃
−1

i ỹi

)
, ∀k ∈ K,

where the following shorthand notation is used:

• ỹi =
(
1[t∈ti] × yi(t)

)
t∈tp∗

(Ñ -dimensional vector),

• Ψ̃i =
[
1[t,t′∈ti] × ψθ̂i,σ̂2

i
(t, t′)

]
t,t′∈tp∗

(Ñ × Ñ matrix).

Let us acknowledge that the subsequent analytical developments party rely on this vari-
ational approximate distribution q̂µ({µk(tp∗)}k), and may thus be considered, in a sense, as
approximated as well. However, this quantity provides a valuable closed-form expression
that we substitute to the true hyper-posterior in Proposition 4.4 below, while keeping the
signs = instead of ≈ for clarity.

4.4.2 Computation of the multi-task prior distributions
For a sake of completeness, let us recall the equivalence between two ways of writing condi-
tional distributions that are used in the subsequent results:

p(· | Z∗) =

K∏
k=1

p(· | Z∗k = 1)Z∗k .

We may regularly substitute one to the other in the sequel depending on the handier in the
context. Once the mean processes’ distributions are re-computed on the working grid, their
underlying influence shall be directly plugged into a marginalised multi-task prior over y∗(tp∗)
by integrating out the {µk(tp∗)}k. As the mean processes vanish, the new individual’s outputs
y∗(tp∗) directly depends upon the training dataset {yi}i, as highlighted in the proposition
below.

Proposition 4.4. For a set of timestamps tp∗, the multi-task prior distribution of y∗ knowing
its clustering latent variable is given by:

p(y∗(tp∗) | Z∗, {yi}i) =
K∏

k=1

N
(
y∗(tp∗); m̂k(tp∗), Ĉ

tp∗
k +Ψ

tp∗
θ∗,σ2

∗

)Z∗k
. (4.6)

Proof. Let us recall that, conditionally to their mean process, the individuals are indepen-
dent of one another. Then, for all k ∈ K, we have:

p(y∗(tp∗) | Z∗k = 1, {yi}i) =
∫
p(y∗(tp∗), µk(tp∗) | Z∗k = 1, {yi}i)dµk(tp∗)

=

∫
p(y∗(tp∗) | µk(tp∗), Z∗k = 1) p(µk(tp∗) | Z∗k = 1, {yi}i)︸ ︷︷ ︸

≈qµ(µk(tp∗))

dµk(tp∗)

=

∫
N
(
y∗(tp∗);µk(tp∗),Ψ

tp∗
θ∗,σ2

∗

)
N
(
µk(tp∗); m̂k(tp∗), Ĉ

tp∗
k

)
dµk(tp∗)

= N
(
y∗(tp∗); m̂k(tp∗), Ĉ

tp∗
k +Ψ

tp∗
θ∗,σ2

∗

)
.
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The final line is obtained by remarking that such a convolution of Gaussian distributions
remains Gaussian as well (Bishop, 2006, Chapter 2), and we refer to Section 3.8.1 for the
detailed calculus in this exact context. Therefore, we finally get:

p(y∗(tp∗) | Z∗, {yi}i) =
K∏

k=1

p(y∗(tp∗) | Z∗k = 1, {yi}i)
Z∗k

=

K∏
k=1

N
(
y∗(tp∗); m̂k(tp∗), Ĉ

tp∗
k +Ψ

tp∗
θ∗,σ2

∗

)Z∗k
.

4.4.3 Optimisation of the new hyper-parameters and computation of the clusters'
probabilities

Now that the mean processes have been removed at the previous step, this section strongly
resembles the classical learning procedure through an EM algorithm for a Gaussian mixture
model. In our case, it allows us both to estimate the hyper-parameters of the new individual
{θ∗, σ∗} and to compute the hyper-posterior distribution of its latent clustering variable Z∗,
which provides the associated clusters’ membership probabilities τ∗. As before, E steps and
M steps are alternatively processed until convergence, but this time by working with exact
formulations instead of variational ones.

E STEP
In the E step, hyper-parameters estimates are assumed to be known. Recalling that the

latent clustering variable Z∗ is independent from the training data {yi}i, the multi-task
hyper-posterior distribution maintains an explicit derivation:

p(Z∗ | y∗(t∗), {yi}i , θ̂∗, σ̂
2
∗, π̂) ∝ p(y∗(t∗) | Z∗, {yi}i , θ̂∗, σ̂

2
∗)p(Z∗ | π̂)

∝
K∏

k=1

{
N
(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ̂∗,σ̂2

∗

)Z∗k
} K∏

l=1

π̂Z∗l
l

∝
K∏

k=1

(
π̂kN

(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ̂∗,σ̂2

∗

))Z∗k
.

By inspection, we recognise the form of a multinomial distribution and thus retrieve the
corresponding normalisation constant to deduce:

p(Z∗ | y∗(t∗), {yi}i , θ̂∗, σ̂
2
∗, π̂) = M (Z∗; 1,τ∗ = (τ∗1, . . . , τ∗K)ᵀ) , (4.7)

with:

τ∗k =
π̂kN

(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ̂∗,σ̂2

∗

)
K∑
l=1

π̂lN
(
y∗(t∗); m̂l(t∗), Ĉt∗

l +Ψt∗
θ̂∗,σ̂2

∗

) , ∀k ∈ K. (4.8)
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M STEP
Assuming to know the value of τ∗, we may derive optimal values for the hyper-parameters

of the new individual through the following maximisation:

{θ̂∗, σ̂2
∗} = argmax

θ∗,σ∗

EZ∗ [ log p(y∗(t∗),Z∗ | {yi}i , θ∗, σ∗, π̂) ] .

Let us note L∗(θ∗, σ∗) = log p(y∗(t∗),Z∗ | {yi}i , θ∗, σ∗, π̂). By remarking that π̂ has
already been estimated previously, we may easily derive the expression to maximise with
respect to θ∗ and σ∗ in practice:

EZ∗ [L∗(θ∗, σ∗) ] = EZ∗ [ log p(y∗(t∗),Z∗ | {yi}i , θ∗, σ∗, π̂ ])

= EZ∗ [ log p(y∗(t∗) | Z∗, {yi}i , θ∗, σ∗) + log p(Z∗ | π̂) ]

= EZ∗

[
log

K∏
k=1

N
(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ∗,σ2

∗

)Z∗k

]
+ C1

=

K∑
k=1

EZ∗ [Z∗k ] logN
(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ∗,σ2

∗

)
+ C1

=

K∑
k=1

τ∗k logN
(
y∗(t∗); m̂k(t∗), Ĉt∗

k +Ψt∗
θ∗,σ2

∗

)
+ C1,

where C1 is a constant term. Thus, the optimisation in this case merely relies on the
maximisation of a weighted sum of Gaussian log-likelihoods, for which gradients are well-
known.

3BIS.
In the case where the hyper-parameters are supposed to be common across individuals

(H00 or Hk0), there is no need to additional optimisation since we already have θ̂∗ = θ̂0 and
σ̂2
∗ = σ̂0 by definition. However, the probabilities of lying in each cluster τ∗ for the new

individual still need to be computed, which shall be handled by directly using the expression
(4.8) from the E step.

3TER.
Conversely, let us note that even if hyper-parameters for each individual are supposed

to be different (H0i or Hki), it remains possible to avoid the implementation of an EM
algorithm by stating τ∗ = π̂. Such an assumption intuitively expresses that we would
guess the membership probabilities of each cluster from the previously estimated mixing
proportions, without taking new individual’s observations into account. Although we would
not recommend this choice for getting optimal results, it still seems to be worth a mention for
applications with a compelling need to avoid EM’s extra computations during the prediction
process.

4.4.4 Computation of the multi-task posterior distributions
Once the needed hyper-parameters have been estimated and the prior distribution estab-
lished, the classical formula for GP predictions can be applied to the new individual, for
each possible latent cluster. First, let us recall the prior distribution by separating observed
from target timestamps, and introducing a shorthand notation for the covariance:

103



p(y∗(tp∗) | Z∗k = 1, {yi}i) = N
([
y∗(tp)
y∗(t∗)

]
;

[
m̂k(tp)
m̂k(t∗)

]
,

(
Γtptp
k Γtpt∗

k

Γt∗tp
k Γt∗t∗

k

))
, ∀k ∈ K,

where Γtp,tp
k = Ĉtp

k + Ψtp
θ∗,σ2

∗
and likewise for the other blocks of the matrices. Therefore,

recalling that conditioning on the sub-vector of observed values y∗(t∗) maintains a Gaussian
distribution (Bishop, 2006; Rasmussen and Williams, 2006), we can derive the multi-task
posterior distribution for each latent cluster:

p(y∗(tp) | Z∗k = 1, y∗(t∗), {yi}i) = N
(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

)
, ∀k ∈ K, (4.9)

where:

• µ̂∗k(tp) = m̂k(tp) + Γtpt∗
k Γt∗t∗

k

−1
(y∗(t∗)− m̂k(t∗)) , ∀k ∈ K,

• Γ̂
tp

∗k = Γtptp
k − Γtpt∗

k Γt∗t∗
k

−1
Γt∗tp
k , ∀k ∈ K.

4.4.5 Computation of the multi-task GPs mixture prediction
To conclude, by summing over all possible combinations for the latent clustering variable
Z∗, we can derive the final predictive distribution.

Proposition 4.5. The multi-task GPs mixture posterior distribution for y∗(tp) takes the
form below:

p(y∗(tp) | y∗(t∗), {yi}i) =
K∑

k=1

τ∗k N
(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

)
.

Proof. Taking advantage of (4.9) and the multi-task hyper-posterior distribution of Z∗ as
computed in (4.7), it is straightforward to integrate out the latent clustering variable:

p(y∗(tp) | y∗(t∗), {yi}i) =
∑
Z∗

p(y∗(tp),Z∗ | y∗(t∗), {yi}i)

=
∑
Z∗

p(y∗(tp) | Z∗, y∗(t∗), {yi}i)p(Z∗ | y∗(t∗), {yi}i)

=
∑
Z∗

K∏
k=1

(
τ∗k p(y∗(tp) | Z∗k = 1, y∗(t∗), {yi}i)

)Z∗k

=
∑
Z∗

K∏
k=1

(
τ∗k N

(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

))Z∗k

=

K∑
k=1

τ∗k N
(
y∗(tp); µ̂∗k(tp), Γ̂

tp

∗k

)
,

where we recall for the transition to the last line that Z∗k = 1 if the ∗-th individual belongs
to the k-th cluster and Z∗k = 0 otherwise. Hence, summing a product with only one non-zero
exponent over all possible combination for Z∗ is equivalent to merely sum over the values of
k, and the variable Z∗k simply vanishes.
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ALTERNATIVE PREDICTIONS
Even though Proposition 4.5 provides an elegant probabilistic prediction in terms of GPs

mixture, it remains important to notice that this quantity is no longer a Gaussian distri-
bution. In particular, the distribution of an output value at any point-wise evaluation is
expected to differ significantly from a classical Gaussian variable, by being multi-modal
for instance. This property is especially true for individuals with high uncertainty about
the clusters they probably belong to, whereas the distribution would be close to the Gaus-
sian when τ∗k ≈ 1 for one cluster and almost zero for the others. While we believe that
such a GPs mixture distribution highlights the uncertainty resulting from a possible cluster
structure in data and offers a rather original view on the matter of GP predictions, some
applications may suffer from this non-Gaussian final distribution. Fortunately, it remains
pretty straightforward to proceed to a simplification of the clustering inference by assuming
that the ∗-individual only belongs to its more probable cluster, which is equivalent to postu-
late max{τ∗k}k = 1 and the others to be zero. In this case, the final Gaussian mixture turns
back into a Gaussian distribution, and we retrieve a uni-modal prediction, easily displayed
by its mean along with credible intervals.

4.5 Complexity analysis for training and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is customary to stress that computational complexity is of paramount importance in GP
models as a consequence of their usual cubic (resp. quadratic) cost in the number of data
points for learning (resp. prediction). In the case of MagmaClust, we use information from
M individuals scattered into K clusters, each of them providing Ni observations, and those
quantities mainly specify the overall complexity of the algorithm. Moreover, N refers to the

number of distinct timestamps (i.e. N ≤
M∑
i=1

Ni) in the training dataset and corresponds to

the dimension of the objects involved in the kernel-specific mean processes computations.
Typically, the learning complexity would be proportional to one iteration of the VEM algo-
rithm, which requires O

(
M ×N3

i +K ×N3
)

operations.

As previously discussed, the hypotheses formulated on the hyper-parameters would influ-
ence the constant of this complexity but generally not in more than an order of magnitude.
For instance, the models under the assumption H00 usually require less optimisation time
in practice, although it does not change the number or the dimensions of the covariance ma-
trices to inverse, which mainly control the overall computing time. The dominating terms
in this expression depend on the context, regarding the relative values of M , Ni, N and K.
In contexts where the number of individuals M dominates, like with small common grids of
timestamps for instance, the left-hand term would control the complexity, and clustering’s
additional cost would be negligible. Conversely, for a relatively low number of individuals
or a large size N for the pooled grid of timestamps, the right-hand term becomes the pri-
mary burden, and the computing time increases proportionally to the number of clusters
compared to the original Magma algorithm.

During the prediction step, the re-computation of {µk(·)}k’s variational distributions
implies K inversions of covariance matrices with dimensions depending on the size of the
prediction grid tp∗. In practice though, if we fix a fine grid of target timestamps in advance,
this operation can be assimilated to the learning step. In this case, the prediction complexity
remains at most in the same order as the usual learning for a single-task GP, that is O(K ×
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N3
∗ ) (this corresponds to the estimation of the new individual’s hyper-parameters, and would

decrease to O(K × N2
∗ ) for Hk0 or H00). In many contexts, most of the time-consuming

learning steps can be performed in advance, and the immediate prediction cost for each new
individual is negligible in comparison (generally comparable to a single-task GP prediction).

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The present section is dedicated to the evaluation of MagmaClust on both synthetic and
real datasets. The performance of the algorithm is assessed in regards to its clustering and
forecast abilities. To this purpose, let us introduce the simulation scheme generating the
synthetic data along with the measures used to compare our method to alternatives quan-
titatively. Throughout, the exponentiated quadratic (EQ) kernel (Equation (4.1)) serves as
covariance structure for both generating data and modelling. The manipulation of more
sophisticated kernels remains a topic beyond the scope of the present chapter, and the EQ
proposes a fair common ground for comparison between methods. Thereby, each kernel
introduced in the sequel is associated with two hyper-parameters. Namely, v ∈ R+ repre-
sents a variance term whereas ` ∈ R+ specifies the length-scale. The synthetic datasets are
generated following the general procedure below, with minor modifications according to the
model assumptions H00, Hk0, H0i or Hki:

1. Define a random working grid t ⊂ [ 0, 10 ] of N = 200 timestamps to study M = 50
individuals, scattered into K clusters,

2. Draw the prior mean functions for {µk(·)}k: mk(t) = at + b, ∀t ∈ t,∀k ∈ K, where
a ∈ [−2, 2 ] and b ∈ [ 20, 30 ],

3. Draw uniformly hyper-parameters for {µk(·)}k’s kernels : γk = {vγk
, `γk

}, ∀k ∈ K,
where vγk

∈
[
1, e3

]
and `γk

∈
[
1, e1

]
, (or γ0 = {vγ0

, `γ0
}),

4. Draw µk(t) ∼ N
(
mk(t),Ct

γk

)
,∀k ∈ K,

5. For all i ∈ I, draw uniformly the hyper-parameters for individual kernels θi =
{vθi , `θi}, where vθi ∈

[
1, e3

]
, `θi ∈

[
1, e1

]
, and σ2

i ∈ [ 0, 0.1 ], (or θ0 = {vθ0 , `θ0}
and σ2

0),

6. Define π = ( 1
K , . . . ,

1
K )ᵀ and draw Zi ∼ M(1,π), ∀i ∈ I,

7. For all i ∈ I and Zik = 1, draw uniformly a random subset ti ⊂ t of Ni = 30

timestamps, and draw yi ∼ N
(
µk(ti),Ψti

θi,σ2
i

)
.

This procedure offers datasets for both individuals {ti, yi}i and the underlying mean pro-
cesses {t, µk(t)}k. In the context of prediction, a new individual is generated according to
the same scheme, although its first 20 data points are assumed to be observed while the
remaining 10 serve as testing values. While it may be argued that this repartition 20/10
is somehow arbitrary, a more detailed analysis with changing numbers of observed points
in Section 3.6.2 revealed a low effect on the global evaluation. Unless otherwise stated, we
fix the number of clusters to be K = 3 and the model assumption to be H00 for generating
the data. The question of the adequate choice of K in clustering applications is a recurrent
concern for which we do not provide any specific proposition. Therefore, we assume to know
the true number of clusters in the synthetic framework and the real-life application, for
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which this number has already been determined in Chapter 2.

Besides, the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) is used as a measure
of adequacy for comparison between the groups obtained through the clustering procedure
and the true clusters that generated the data. More specifically, the ARI is defined by
counting the proportions of matching pairs between groups, and a value of 1 represents
a perfect correspondence. Let us note that ARI still applies when it comes to evaluating
clustering partitions with different numbers of clusters. On the matter of prediction, the
mean square error (MSE) between predicted means and the true values offers a measure
of the average forecast performance. Formally, we define the MSE in prediction on the 10
testing points for the new individual as:

1

10

30∑
u=21

(
ypred∗ (tu∗)− ytrue∗ (tu∗)

)2
.

Moreover, an additional measure accounting for the validity of uncertainty quantification is
defined in Chapter 3 as the percentage of true data effectively lying within the 95% credible
interval (CI95), which is constructed from the predictive distribution. We extend here this
measure to the context of GPs mixture, where CI95 is no longer available directly (as for
any multi-modal distribution). Namely, the weighted CI95 coverage (WCIC95) is defined
to be:

100× 1

10

30∑
u=21

K∑
k=1

τ∗k 1{ytrue
∗ (tu∗ )∈ CIk

95},

where CIk95 represents the CI95 computed for the k-th cluster-specific Gaussian predictive
distribution (4.9). In the case where K = 1, i.e. a simple Gaussian instead of a GPs mixture,
the WCIC95 reduces to the previously evoked CI95 coverage. By averaging the weighted
cluster-specific CIk95 coverage, we still obtain an adequate and comparable quantification
of the uncertainty relevance for our predictions. By definition, the value of this indicator
should be as close as possible to 95%. Finally, the mean functions {mk(·)}k are set to be 0
in MagmaClust, as usual for GPs, whereas the membership probabilities τik are initialised
thanks to a preliminary k-means algorithm.

4.6.1 Illustration on synthetic examples
Figure 4.2 provides a comparison on the same dataset between a classical GP regression
(top), the multi-task GP algorithm Magma (middle), and the multi-task GPs mixture ap-
proach MagmaClust (bottom). On each sub-graph, the plain blue line represents the
mean parameter from the predictive distribution, and the grey shaded area covers the CI95.
The dashed lines stand for the multi-task prior mean functions {m̂k(·)}k resulting from the
estimation of the mean processes. The points in black are the observations for the new
individual ∗, whereas the red points constitute the true target values to forecast. More-
over, the colourful background points depict the data of the training individuals, which we
colour according to their true cluster in MagmaClust displays (bottom). As expected, a
simple GP regression provides an adequate fit close to the data points before quickly diving
to the prior value 0 when lacking information. Conversely, Magma takes advantage of its
multi-task component to share knowledge across individuals by estimating a more relevant
mean process. However, this unique mean process appears unable to account for the clear
group structure, although adequately recovering the dispersion of the data. In the case of
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Figure 4.2 – Prediction curves (blue) with associated 95% credible intervals (grey) from GP regression (top),
Magma (middle) and MagmaClust (bottom). The dashed lines represent the mean parameters from the

mean processes estimates. Observed data points are in black, testing data points are in red. Backward points
are the observations from the training dataset, coloured relatively to individuals (middle) or clusters (bottom).
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Figure 4.3 – Cluster-specific prediction curves (blue) with associated 95% credible intervals (grey) from
MagmaClust, for two unlikely clusters. The dashed lines represent the mean parameters from the mean

processes estimates. Observed data points are in black, testing data points are in red. Backward points are the
observations from the training dataset, coloured by clusters.

MagmaClust, we display the cluster-specific prediction (4.9) for the most probable group
instead of the GPs mixture prediction, since max

k
(τ∗) ≈ 1 in this example. It can be noticed

that our method offers both a significant improvement in mean prediction and a narrowed
uncertainty around this value.

This example highlights the benefit we can get from considering group-structured simi-
larities between individuals in GP predictions. Additionally, we display on Figure 4.3 the
specific predictions according to the two remaining clusters (although associated with al-
most 0 probabilities). Let us remark that the predictions move towards the cluster specific
mean processes as soon as the observations become too distant. In this idealistic example,
we displayed Gaussian predictive distributions for convenience since, in general, a Gaussian
mixture might rarely be unimodal. Therefore, we propose in Figure 4.4 another example
with a higher variance and groups that are tougher to separate. While the ARI between
predicted and true clusters was equal to 1 (perfect match) in the previous example, it now
decreases to 0.78. Moreover, the vector of membership probabilities associated with the
Figure 4.4 for the predicted individual happens to be: τ∗ = (0.95, 0.05, 0). The left-hand
graph provides an illustration of the predictive mean, acquired from the multi-task GPs
mixture distribution described in Proposition 4.5. We may notice that this curve lies very
close to one cluster’s mean although not completely overlapping it, because of the τ∗k = 0.05
probability for another cluster, which slightly pulls the prediction onto its own mean. Be-
sides, the right-hand graph of Figure 4.4 proposes a representation of the multi-task GPs
mixture distribution as a heatmap of probabilities for the location of our predictions. This
way, we can display, even in this multi-modal context, a thorough visual quantification for
both the dispersion of the predicted values and the confidence we may grant to each of them.

Finally, let us propose on Figure 4.5 an illustration of the capacity of MagmaClust to
retrieve the shape of the underlying mean processes, by plotting their estimations {m̂k(·)}k
(dotted lines) along with the true curves (plain coloured lines) generated by the simulation
scheme. The ability to perform this task generally depends on the structure of the data
as well as on the initialisation, although we may observe satisfactory results both on the
previous fuzzy example (left) and on a well-separated case (right). Let us remark that the
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Figure 4.4 – Left: GPs mixture mean prediction curve (blue) from MagmaClust. Right: heatmap of
probabilities for the GPs mixture predictive distribution from MagmaClust. The dashed lines represent the

mean parameters from the mean processes estimates. Observed data points are in black, testing data points are
in red. Backward points are the observations from the training dataset, coloured by clusters.

Figure 4.5 – Left: fuzzy case. Right: well-separated case. Curves of the simulated underlying mean processes,
coloured by clusters. The dashed lines represent the mean parameters from the mean processes estimates.

Backward points are the observations from the training dataset, coloured by clusters.

mean processes’ estimations also come with uncertainty quantification, albeit not displayed
on Figure 4.5 for the sake of clarity.

4.6.2 Clustering performance
As previously detailed in Chapter 2, curve clustering methods often struggle to handle irreg-
ularly observed data. Therefore, for the sake of fairness and to avoid introducing too many
smoothing biases in alternative methods, the datasets used in the following are sampled on
regular grids, although MagmaClust remains reasonably insensitive to this matter. The
competing algorithms are the B-splines expansion associated with a kmeans algorithm pro-
posed in Abraham et al. (2003) and funHDDC (Bouveyron and Jacques, 2011; Schmutz et al.,
2018). A naive multivariate kmeans is used as initialisation for both funHDDC and Mag-
maClust. We propose on Figure 4.6 an evaluation of each algorithm in terms of ARI on 100
datasets, for each of the 4 different hypotheses of generating models (Hki,Hk0,H0i,H00).
It can be noticed that MagmaClust outperforms the alternatives in all situations. In par-
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Figure 4.6 – Adjusted Rand Index values between the true clusters and the partitions estimated by kmeans,
funHDDC, and MagmaClust. The value of K is set to the true number of clusters for all methods. The ARI is

computed on 100 datasets for each generating model’s assumption Hki,Hk0,H0i, and H00.

ticular, our approach provides consistent results and a lower variance. Furthermore, while
performances of the other methods are expected to deteriorate because of additional smooth-
ing procedures in the case of irregular grids, MagmaClust would run the same without
any change.

On another aspect, Figure 4.7 provides some insights into the robustness of MagmaClust
to a wrong setting of K, the number of clusters. For 100 datasets with a true value K∗ =
3, the ARI has been computed between the true partitions and the ones estimated by
MagmaClust initialised with different settings K = 2, . . . , 10. Except for K = 2 where
the low number of clusters prevents from getting enough matching pairs by definition, we
may notice relatively unaffected performances as K increases. Despite a non-negligible
variance in results, the partitions remain consistent overall, and the clustering performances
of MagmaClust seem pretty robust to misspecification of K.

4.6.3 Prediction performance
Another piece of evidence for this robustness is highlighted by Table 4.3 in the context
of forecasting. The predictive aspect of MagmaClust remains the main purpose of the
method and its performances of this task partly rely on the adequate clustering of the indi-
viduals. It may be noticed on Table 4.3 that both MSE and WCIC95 regularly but slowly
deteriorate as we move away from the true value of K. However, the performances remain
of the same order, and we may still be confident about the predictions obtained through
a misspecified running of MagmaClust. In particular, the values of MSE happen to be
even better when setting K = 4, . . . , 6 (we recall that the same 100 datasets are used in
all cases, which can thus be readily compared). Besides, the right-hand part of the table
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Figure 4.7 – Adjusted Rand Index values between the true clusters and the partitions estimated by
MagmaClust with respect to the values of K used as setting. The ARI is computed on the same 100 datasets

for each value of K. (3∗: the true number of clusters for all datasets)

provides indications on the relative time (in seconds) that is needed to train the model for
one dataset and to make predictions. As expected, both training and prediction times in-
crease roughly linearly with the values of K, which seems consistent with the complexities
exposed in Section 4.5. This property is a consequence of the extra mean processes and
hyper-parameters that need to be estimated as K grows. Nonetheless, the influence of K
is lesser on the prediction time, which yet remains negligible, even when computing many
group-specific predictions.

K MSE WCIC95 Training time Prediction time
2 7.7 (18.4) 92 (20.3) 70.4 (25) 0.4 (0.1)
3* 3.7 (8.1) 95 (13.2) 97.7 (33.2) 0.5 (0.1)
4 3.2 (5.3) 94.9 (13.6) 116.5 (47.3) 0.6 (0.2)
5 3.2 (5.6) 94.4 (14.3) 133 (40.8) 0.6 (0.2)
6 3.1 (5.4) 94.4 (13.6) 153.3 (42) 0.8 (0.3)
7 4 (9) 93.6 (15.4) 173.7 (45.1) 1 (0.4)
8 4.7 (13) 93.8 (16) 191.3 (44.7) 1 (0.3)
9 4.1 (9.5) 94 (14.6) 211.6 (52) 0.8 (0.4)
10 4.5 (14.8) 94.4 (14.4) 235 (52.7) 1.8 (1.4)

Table 4.3 – Average (sd) values of MSE, WCIC95, training and prediction times (in secs) on 100 runs for
different numbers of clusters as setting for MagmaClust. (3∗ : the true number of clusters for all datasets)

To pursue the matter of prediction, let us provide on Table 4.4 the comparative results
between GP regression, Magma, and MagmaClust. On the group-structured datasets
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generated by the simulation scheme, our approach outperforms these alternatives. In terms
of MSE, MagmaClust takes advantage of its multiple mean processes to provide enhanced
predictions. Moreover, the quantification of uncertainty appears highly satisfactory since
there are effectively 95% of the observations lying within the weighted CI95, as expected. It
is important to note that Magma is merely equivalent to MagmaClust with the setting
K = 1. Therefore, the latter can be seen as a generalisation of the former, although no
particular gain should be expected in the absence of group structure in the data. Once again,
the increase in training and prediction times displayed in Table 4.4 remains proportional to
the value of K (we recall that MagmaClust assumes K = 3 here).

MSE WCIC95 Training time Prediction time
GP 138 (174) 78.4 (31.1) 0 (0) 0.6 (0.1)

Magma 31.7 (45) 84.4 (27.9) 61.1 (25.7) 0.5 (0.2)
MagmaClust 3.7 (8.1) 95 (13.2) 132 (55.6) 0.6 (0.2)

Table 4.4 – Average (sd) values of MSE, WCIC95, training and prediction times (in secs) on 100 runs for GP,
Magma and MagmaClust.

4.6.4 Application of MAGMACLUST on swimmers' progression curves
In this paragraph, the datasets initially proposed in Section 3.6.5, gathering 100m race’s per-
formances for female and male swimmers, are analysed in the new light of MagmaClust.
Let us recall that we aim at modelling a curve of progression from competition results for
each individual in order to forecast their future performances. Assuming that a process
yi(·), defined as previously, has generated the data of the i-th swimmer, we expect Mag-
maClust to provide relevant predictions by taking advantage both of its multi-task feature
and the group structure highlighted in Chapter 1. For this datasets indeed, it has already
been exhibited that the swimmers can be grouped into 5 different clusters according to their
pattern of progression. In the absence of a dedicated method of model selection for the
current version of MagmaClust’s implementation, the number of clusters is then set to
K = 5 in this analysis. To evaluate the efficiency of our approach in this real-life appli-
cation, the individuals are split into training and testing sets (in proportions 60% − 40%).
The prior mean functions {mk(·)}k are set to be constant equal to 0. In this context of
relatively monotonic variations among progression curves, the hypothesis H00 is specified
for the hyper-parameters, which are initialised to be θ0 = γ0 = (e1, e1) and σ0 = 0.04. Those
values are the default in MagmaClust and remain adequate for this framework. For both
men and women, the hyper-parameters, the mean processes and the cluster’s membership
probabilities are learnt on the training data set. Then, the data points of each testing indi-
vidual are split for evaluation purpose between observed (the first 80%) and testing values
(the remaining 20%). Therefore, each new process y∗(·) associated with a test individual
is assumed to be partially observed, and its testing values are used to compute MSE and
WCIC95 for the predictions.

As exhibited by Table 4.5, MagmaClust offers excellent performances on both datasets
and slightly improves Magma’s predictions. Values of MSE and WCIC95 appear satisfac-
tory although one may fairly argue that the gain provided by the cluster-specific predictions
remains mild in this context. One of the explaining reasons is highlighted in the bottom
graph of Figure 4.8. Although clear distinctions between the different patterns of progression
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Figure 4.8 – Left: women dataset. Right: men dataset. Prediction and uncertainty obtained through GP (top),
Magma (middle), and MagmaClust (bottom) for a random illustrative swimmer. The dashed lines represent

the mean parameters from the mean processes estimates. Observed data points are in black, testing data points
are in red. Backward points are the observations from the training dataset.
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occur at young ages, the differences tend to narrow afterwards. Hence, the cluster’s mean
processes appear pretty close to each other at older ages, especially in regards to the overall
signal-on-noise ratio. Nevertheless, MagmaClust provides several additional insights into
this problem compared to Magma.

First, the clusters offer interesting results in themselves to assess the profile of young
swimmers and to determine the individuals to whom they most resemble. In particular, it is
also possible to differentiate future evolutions associated with each cluster, along with their
probabilities to occur (we do not display all the cluster-specific predictions here for the sake
of concision). On the other hand, our method leads to tighter predictive distributions in
terms of uncertainty. Compared to Magma that uses all training data identically, Mag-
maClust somehow discards the superfluous information, through the weights τ∗k, to only
retain the most relevant cluster-specific mean processes. Letting aside the GP regression
that is generally too limited, Magma exhibits on Figure 4.8 satisfactory results, for which
the uncertainty encompasses most the dispersion of training data. However, for both men
and women examples, MagmaClust offers narrower predictions than Magma, by ignoring
most of the data coming from the two upper clusters.

MSE WCIC95

Women
GP 22.8 (84.7) 77.5 (30.4)

Magma 3.7 (5.6) 93.5 (15.6)
MagmaClust 3.5 (5.3) 92.2 (15.8)

Men
GP 19.6 (86) 80.7 (29.5)

Magma 2.5 (3.8) 95.6 (12.7)
MagmaClust 2.4 (3.6) 94.5 (14.2)

Table 4.5 – Average (sd) values of MSE and WCIC95 for GP, Magma and MagmaClust on the french
swimmer testing datasets.

Let us point out that, whereas the predictions at older ages remain roughly similar, the
multi-modal aspect of MagmaClust distributions occurs more clearly between 10 and 12
years, where the highest probabilities smoothly follow the clusters’ mean. Overall, although
we shall expect even more noticeable improvements in applications with well-separated
groups of individuals, the swimmers’ progression curves example highlights MagmaClust’s
potential for tackling this kind of clustering and forecast problems.

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Throughout this chapter, we introduced a novel framework to handle clustering and re-
gression purposes with a multi-task GPs mixture model. This approach, called Mag-
maClust, extends the algorithm Magma presented in the previous chapter to deal with
group-structured data more efficiently. The method provides new insights on the matter
of GP regression by introducing cluster-specific modelling and predictions while remaining
efficiently tractable through the use of variational approximations for inference. Moreover,
this nonparametric probabilist framework accounts for uncertainty both in the clustering
aspect and in the final predictions, which appears to be notable in the learning litera-
ture. We demonstrated the practical efficiency of MagmaClust on both synthetic and real
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datasets where it over-performs the alternatives, particularly in group-structured context.
Even though the main concern of our method remains the predictive abilities, the clustering
performances also deserve to be noticed since results comparable to state-of-the-art func-
tional clustering algorithms are reached as well.

While we recall that computational cost is of paramount importance to ensure broad
applicability of GP models, the present version of MagmaClust yet lacks a sparse approx-
imation. As MagmaClust however, one of the state-of-the-art sparse method (Titsias,
2009; Bauer et al., 2016) makes use of variational inference, both to select pseudo-inputs
and learn hyper-parameters of GP models. Therefore, an interesting extension could come
from simultaneously computing {µk(·)}k’s hyper-posteriors and pseudo-inputs, allowing for
a sparse approximation of the highest dimensional object in our model. Besides, the tradi-
tional model selection’s problem of finding the number of groups in clustering applications
have been purposefully set aside in the present paper. Tackling this issue, which is required
in our GPs mixture model, is generally non-trivial and many criteria have been developed in
this sense from the earliest AIC (Akaike, 1974) and BIC (Schwarz, 1978) to most recent pro-
posals such as ICL (Biernacki et al., 2000) or the slope heuristic (Birgé and Massart, 2006;
Baudry et al., 2012). As we mainly work here with tractable likelihoods, the adaptation of
efficient heuristics to develop specific model selection tools seems achievable, although the
presence of multiple latent processes needs to be carefully dealt with. Overall, we believe
that MagmaClust provides a valuable methodological contribution, initially tailored to
handle the swimmers’ curves application in this thesis, standing as a significant extension
of the GP framework for dealing with a wider range of problems.

4.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.8.1 Proof of Proposition 4.1
Let us note Eµ the expectation with respect to the variational distribution q̂µ(µ). From
Bishop (2006, Chapter 10), the optimal solution q̂Z(Z) to the variational formulation verifies:

log q̂Z(Z) = Eµ

[
log p({yi}i ,Z,µ | Θ̂)

]
+ C1

= Eµ

[
log p({yi}i | Z,µ,

{
θ̂i

}
i
,
{
σ̂2
i

}
i
) + log p(Z | π̂) + log p(µ | {γ̂k}k)

]
+ C1

= Eµ

[
log p({yi}i | Z,µ,

{
θ̂i

}
i
,
{
σ̂2
i

}
i
)
]
+ log p(Z | π̂) + C2

= Eµ

[
M∑
i=1

K∑
k=1

Zik log p(yi | Zik = 1, µk(ti), θ̂i, σ̂2
i )

]
+

M∑
i=1

K∑
k=1

Zik log(π̂k) + C2

=

M∑
i=1

K∑
k=1

Zik

[
log(π̂k) + Eµk

[
log p(yi | Zik = 1, µk(ti), θ̂i, σ̂2

i )
] ]

+ C2

=

M∑
i=1

K∑
k=1

Zik

[
log(π̂k)−

1

2
log
∣∣∣Ψti

θ̂i,σ̂2
i

∣∣∣
− 1

2
Eµk

[
(yi − µk(ti))ᵀΨti

θ̂i,σ̂2
i

−1
(yi − µk(ti))

] ]
+ C3.
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Lemma 4.1. Let X ∈ RN be a random Gaussian vector X ∼ N (m,K), b ∈ RN , and S, a
N ×N covariance matrix. Then:

EX

[
(X − b)ᵀS−1(X − b)

]
= (m− b)ᵀS−1(m− b) + tr

(
KS−1

)
.

Proof.

EX

[
(X − b)ᵀS−1(X − b)

]
= EX

[
tr
(
S−1(X − b)(X − b)ᵀ

) ]
= tr

(
S−1(m− b)(m− b)ᵀ

)
+ tr

(
S−1VX [X ]

)
= (m− b)ᵀS−1(m− b) + tr

(
KS−1

)
.

Applying Lemma 4.1 to the expectation in the right hand term of the previous expression,
we obtain:

log q̂Z(Z) =
M∑
i=1

K∑
k=1

Zik

[
log(π̂k)−

1

2

(
log
∣∣∣Ψti

θ̂i,σ̂2
i

∣∣∣+ (yi − m̂k(ti))ᵀ Ψti
θ̂i,σ̂2

i

−1
(yi − m̂k(ti))

)
− 1

2
tr
(

Ĉti
k Ψ

ti
θ̂i,σ̂2

i

−1
)]

+ C3

=

M∑
i=1

K∑
k=1

Zik [ log τik ]

where (by inspection of both Gaussian and multinomial distributions):

τik =
π̂kN

(
yi; m̂k(ti),Ψti

θ̂i,σ̂2
i

)
exp

(
− 1

2 tr
(

Ĉti
k Ψ

ti
θ̂i,σ̂2

i

−1
))

K∑
l=1

π̂lN
(

yi; m̂l(ti),Ψti
θ̂i,σ̂2

i

)
exp

(
− 1

2 tr
(

Ĉti
l Ψ

ti
θ̂i,σ̂2

i

−1
)) , ∀i ∈ I,∀k ∈ K.

Therefore, the optimal solution may be written as a factorised form of multinomial dis-
tributions:

q̂Z(Z) =
M∏
i=1

M (Zi; 1,τi = (τi1, . . . , τiK)ᵀ) .

4.8.2 Proof of Proposition 4.2
Let us denote by EZ the expectation with respect to the variational distribution q̂Z(Z). From
Bishop (2006, Chapter 10), the optimal solution q̂µ(µ) to the variational formulation verifies:
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log q̂µ(µ) = EZ

[
log p({yi}i ,Z,µ | Θ̂)

]
+ C1

= EZ

[
log p({yi}i | Z,µ,

{
θ̂i

}
i
,
{
σ̂2
i

}
i
) + log p(Z | π̂) + log p(µ | {γ̂k}k)
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=
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+
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log p(µk(t) | γ̂k) + C2

=

M∑
i=1

K∑
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(yi − µk(ti))

]
+ C3.

If we regroup the scalar coefficient τik with the covariance matrix Ψti
θ̂i,σ̂2

i

−1, we simply
recognise two quadratic terms of Gaussian likelihoods on the variables µk(·), although eval-
uated onto different sets of timestamps t and ti. By taking some writing cautions and
expanding the vector-matrix products entirely, it has been proved in Leroy et al. (2020b)
that this expression factorises with respect to µk(t) simply by expanding vectors yi and
matrices Ψti

θ̂i,σ̂2
i

with zeros, ∀t ∈ t, t /∈ ti. Namely, let us note:

• ∀i ∈ I, ỹi =
(
1[t∈ti] × yi(t)

)
t∈t, a N -dimensional vector,

• ∀i ∈ I, Ψ̃i =
[
1[t,t′∈ti] × ψθ̂i,σ̂2

i
(t, t′)

]
t,t′∈t

, a N ×N matrix.

Therefore:

log q̂µ(µ) = −1

2

K∑
k=1
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(

Ct
γ̂k

−1
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M∑
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τikΨ̃
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τikΨ̃
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i ỹi

)
+ C4.

By inspection, we recognise a sum of a Gaussian log-likelihoods, which implies the un-
derlying values of the constants. Finally:

q̂µ(µ) =

K∏
k=1

N
(
µk(t); m̂k(t), Ĉt

k

)
, (4.10)

with:

• Ĉt
k =

(
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, ∀k ∈ K,
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(
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i=1

τikΨ̃
−1

i ỹi

)
, ∀k ∈ K.
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4.8.3 Proof of Proposition 4.3
Let us note EZ,µ the expectation with respect to the optimised variational distributions
q̂Z(Z) and q̂µ(µ). From Bishop (2006, Chapter 10), we can figure out the optimal values for
the hyper-parameters Θ by maximising the lower bound L(q̂; Θ) with respect to Θ:

Θ̂ = argmax
Θ

L(q̂; Θ).

Moreover, we can develop the formulation of the lower bound by expressing the integrals as
an expectation, namely EZ,µ. Recalling the complete-data likelihood analytical expression
and focusing on quantities depending upon Θ, we can write:

L(q̂; Θ) = −E{Z,µ}

 log q̂Z,µ(Z,µ)︸ ︷︷ ︸
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+
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τik logπk
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+ C2,

where we made use of Lemma 4.1 twice, at the first and second lines for the last equality. Let
us note that, by reorganising the terms on the second line, there exists another formulation
of this lower bound that allows for better managing of the computational resources. For
information, we give this expression below since it is the quantity implemented in the current
version of the MagmaClust code:
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L(q̂; Θ) = −1
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Regardless of the expression we choose for the following, we can notice that we expressed
the lower bound L(q; Θ) as a sum where the hyper-parameters {γk}k, {{θi}i ,

{
σ2
i

}
i
} and π

appear in separate terms. Hence, the resulting maximisation procedures are independent of
each other. First, let us focus on the simplest term that concerns π, for which we have an

analytical update equation. Since there is a constraint on the sum
K∑

k=1

πk = 1, we first need

to introduce a Lagrange multiplier in the expression to maximise:

λ

(
K∑

k=1

πk − 1

)
+ L(q; Θ). (4.11)

Setting to 0 the gradient with respect to πk in (4.11), we get:

λ+
1

πk

M∑
i=1

τik = 0, ∀k ∈ K.

Multiplying by πk and summing over k, we deduce the value of λ:

K∑
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πkλ = −
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τik
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M∑
i=1

1

λ = −M.

Therefore, the optimal values for πk are expressed as:

π̂k =
1

M

M∑
i=1

τik, ∀k ∈ K. (4.12)

Concerning the remaining hyper-parameters, in the absence of analytical optima, we have
no choice but to numerically maximise the corresponding terms in L(q̂; Θ), namely:
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, (4.13)
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and

− 1

2

M∑
i=1

K∑
k=1

τik

(
log
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.

(4.14)
It is straightforward to see that some manipulations of linear algebra also allows the

derivation of explicit gradients with respect to {γk}k, {θi}i and
{
σ2
i

}
i
. Hence, we may take

advantage of efficient gradient-based methods to handle the optimisation process. Let us
stress that the quantity (4.13) is a sum on the sole values of k, whereas (4.14) also implies a
sum on the values of i. Hence, each term of these sums involves only one hyper-parameter
at a time, which thus may be optimised apart from the others. Conversely, if we assume
all individuals (respectively all clusters) to share the same set of hyper-parameters, then
the full sum has to be maximised upon at once. Therefore, recalling that we introduced 4
different settings according to whether we consider common or specific hyper-parameters for
both clusters and individuals, we shall notice the desired maximisation problems that are
induced by (4.13) and (4.14).
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