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1. General introduction 

1.1. Human risk assessment of chemicals  

In the modern world, humans are exposed to a wide range of chemicals throughout their life. Such 

chemicals occur in daily life and include pharmaceuticals mostly as therapeutic drugs, consumer 

products (cosmetic ingredients) and chemicals that are intentionally added to food (food additives, 

flavourings, food contact materials), raw commodities (pesticides/bocides: herbicides, fungicides, 

insecticides, etc.) or in the feed of farm animals as veterinary drugs. In addition, contaminants in the 

food chain constitute another source of chemical exposure for humans and include man-made 

contaminants such as process contaminants (acrylamide, furans), environmental pollutants 

(brominated flame retardants, dioxins, PCBs, perfluoro-alkyls), metals (as a result of human activity) 

as well as natural toxins (mycotoxins, plant alkaloids, marine biotoxins) (Dorne et al., 2009). With such 

a wide range of chemicals, human risk assessment of chemicals is of considerable public health 

importance and provides means to derive safe levels of acute and chronic exposure for subgroups of 

the human population including neonates, children, elderly and populations of different geographical 

ancestry (inter-ethnic differences) and genetic polymorphisms. 

Indeed, risk assessment is a central component of risk analysis and provides a scientific basis for risk 

management on decisions and measures that may be needed to protect human health and for risk 

communication to allow an interactive exchange of information between risk assessors, managers, 

news media, stakeholders, and the general public (FAO/WHO, 2018) (Figure 1). The four steps of 

chemical risk assessment are hazard identification, hazard characterisation, exposure assessment and 

risk characterisation. 

1. Hazard identification has been defined as follows “the identification of the type and nature of 

adverse effects that an agent has an inherent capacity to cause in an organism, system, or 

(sub)population. Hazard identification is the first stage in hazard assessment and the first of 

four steps in risk assessment” (IPCS, 2004). Toxicological endpoints can be identified from 

animal-based toxicity studies or from in vitro toxicity assays (Barlow et al., 2002; Smith, 2002). 

In practice, a review of studies regarding the mode of action, the toxicokinetics (the processes 

of absorption, distribution, metabolism and excretion (ADME) of a toxicant) and the 

toxicodynamics (the actions and interactions of the toxicant within the organism and describes 

processes at organ, tissue, cellular, and molecular levels) is performed (Dorne et al., 2011; 

Faustman and Omenn, 2008). From now on, toxicokinetics (“TK” or pharmacokinetics “PK”) 
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and toxicodynamics (“TD” or pharmacodynamics “PD”) will be referred to as kinetics and 

dynamics in this thesis. 

2. Hazard characterisation is “the qualitative and, wherever possible, quantitative description of 

the inherent properties of an agent or situation having the potential to cause adverse effects. 

This should, where possible, include a dose–response assessment and its attendant 

uncertainties” (IPCS, 2004). Kinetic data can be implemented into hazard characterisation 

since they provide quantitative information about inter-species and interindividual differences 

and can be used in the extrapolation from high to low dose and from animal to human (Dybing 

et al., 2002; OECD, 2010).  

3. Exposure assessment is the “evaluation of the exposure of an organism, system, or 

(sub)population to an agent (and its derivatives)” (IPCS, 2004). The objectives of exposure 

assessment are to determine the sources, the exposure pathways, the amounts and the 

duration of exposure that are experienced or anticipated with the chemical of interest by the 

population (Faustman and Omenn, 2008). Moreover, exposure scenarios are used in order to 

take into account specific populations that may be at higher exposure (U.S. EPA, 2011). 

4. Risk characterisation is “the qualitative and, wherever possible, quantitative determination, 

including attendant uncertainties, of the probability of occurrence of known and potential 

adverse effects of an agent in a given organism, system, or (sub)-population, under defined 

exposure conditions” (IPCS, 2004). With regard to the definition of the risk (“the probability of 

an adverse effect in an organism, system or (sub)population caused under specified 

circumstances by exposure to an agent” (IPCS, 2004)), risk characterisation is thus the 

integration of both hazard identification and characterisation, leading to a health-based 

guidance value, with the estimated exposure assessment. It provides an estimation of the 

potential risk of adverse health effects in humans under different exposure scenarios (Dorne 

et al., 2011; IPCS, 2009). 

Beyond the four pillars of risk assessment, regulatory agencies have to rely on the mechanistic 

assumption of whether a chemical is genotoxic or non-genotoxic. Toxic responses such as development 

of cancer after exposure to genotoxic carcinogens are considered to be linear at low doses over a 

chronic exposure with no threshold and thus having no dose without risk (Dorne, 2010). 
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Figure 1. Risk analysis paradigm (adapted from (FAO/WHO, 1997)) 

 

Non-genotoxic chemicals are considered to show a threshold dose or concentration below which no 

toxic effect would be observed. Agencies worldwide have estimated health-based guidance values, 

such as the acceptable/tolerable daily intake (ADI, TDI), or the reference dose (RfD), derived from 

experimentally determined dose, the point of departure (POD), at which there was no statistically or 

biologically significant indication of the toxic effect of concern. Traditionally, this dose is referred as 

the "no-observed-adverse-effect level” (NOAEL) from animal toxicology studies. This method has 

limitations such as dependency on the dose selection, dose spacing, sample size and in the end ignore 

the shape of the dose-response curve (SCHER/SCCP/SCENIHR, 2009). The Benchmark Dose (BMD) 

approach has been proposed as a preferred alternative since it takes into account all of the dose-

response data to estimate the shape of the dose-response curve for the toxic effect (Crump, 1984; 

EFSA Scientific Committee et al., 2017; U.S. EPA, 2012). The lower confidence limit of the Benchmark 

Dose (BMDL) provides a quantitative estimation of the quality of the dataset, resulting in a more 

protective POD (Figure 2) and is therefore in accordance with the precautionary principle. 
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Figure 2. BMD approach in comparison with the NOAEL (fitted dose-response model on experimental data, 

from EFSA Scientific Committee et al. (2017)) 

 

Genotoxic and carcinogenic chemicals have the potential to directly and irreversibly interact with DNA 

and to cause cancer. Three major methods are used to perform risk assessment of genotoxic 

compounds, the linear extrapolation, the Threshold of Toxicological Concern (TTC) and the Margin of 

Exposure (MOE). The linear extrapolation approach involves modelling of dose-response data from 

laboratory animal bioassay tumour data to exposure levels consistent with human exposures. The 

recommended POD is the BMDL that is representative of the lower end of the observed range of 

tumour incidences (SCHER/SCCP/SCENIHR, 2009). The TTC approach is a screening and prioritization 

tool for the safety assessment of chemicals that can be used in the absence of chemical-specific toxicity 

data and if human exposure can be estimated. Toxicological data from other chemicals sharing 

structural similarities are used in order to establish levels of human exposure that would not represent 

safety concern for human health (EFSA/WHO, 2016). While the traditionally used principle ALARA (As 

Low As Reasonably Achievable) does not provide quantitative comparison between genotoxic 

chemicals and thus cannot be used to compare risks from different substances, the MOE allows to 

inform the risk managers about the magnitude of risks from genotoxic and carcinogenic substances. 

The MOE is defined as the ratio between a defined point of the dose-response curve and the human 

exposure. It has been recommended that the POD is determined with the BMD approach, using the 

BMDL calculated from the Benchmark response (BMR) of 10% (BMDL10) (EFSA, 2005). 
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The usual way to derive health-based guidance values is to divide the determined POD by uncertainty 

factors (UFs) which are meant to describe interspecies and interindividual differences. In cases where 

exposures exceed health-based guidance values, the risk characterisation does not provide risk 

managers with advice on the possible extent of the risk for people exposed to these higher levels. A 

first consideration should be that health-based guidance values themselves incorporate UFs (IPCS, 

2009). 

1.2. Uncertainty factors in chemical risk assessment 

A 100-fold UF has been introduced 60 years ago by Lehman and Fitzhugh (1954) to account for 

interspecies and interindividual differences to determine health based guidance in humans from 

animal studies. This value is the product of two factor 10 that allows interspecies differences and 

human variability (IPCS, 1987). However, these default 10-fold factors do not consider metabolic data 

or mechanistic background quantitatively in risk assessment. The interspecies and interindividual UFs 

were therefore subdivided into kinetics and dynamics aspects (Renwick, 1993). Then values of 100.6 

(4.0) and 100.4 (2.5) were proposed for interspecies differences in kinetic and dynamic. For human 

variability in both kinetics and dynamics the default factor of 10 is divided into 100.5 (3.16) (IPCS, 1994). 

It has been demonstrated that when assessing human variability using therapeutic drugs that 

underwent a range of metabolic pathways, kinetic and dynamic default UFs would not cover human 

variability specifically for polymorphic pathways or specific populations like neonates (Renwick and 

Lazarus, 1998). These default kinetic and dynamic UFs can be refined by using chemical specific 

adjustment factors (CSAFs) (IPCS, 2005) or metabolic pathway-related UFs (Dorne, 2010; Dorne et al., 

2005).  

Metabolic pathway-related UFs can be applied when the metabolic fate of a chemical is known in 

humans, which can be assessed from in vitro experiments using subcellular fractions (e.g. isolated 

recombinant human enzymes or human liver microsomes or cytosol). The development of metabolic 

pathway-related UFs requires the quantification of inter-individual differences in kinetics. Parameters 

reflecting acute exposure (Cmax) and chronic exposure (AUC, clearance) were used from human 

pharmacokinetic studies (Figure 3). Pathway-related UFs have been estimated since the end of the 90s, 

they are derived from analyses of pharmacokinetic data for probe substrates of phase I and phase II 

enzymes and renal excretion (Dorne et al., 2001a; Dorne et al., 2001b; Dorne et al., 2003a; Dorne et 

al., 2003b; Dorne et al., 2004a; Dorne et al., 2005; Dorne et al., 2002; Walton et al., 2001a; Walton et 

al., 2001b). They are considered as an intermediate option between the use of default UFs and CSAF 

(Figure 4). 
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Figure 3. Pharmacokinetic parameters (Cmax: maximum serum concentration; AUC: area under the 

curve; clearance = AUC/dose) 

 

When chemical-specific data are available, a CSAF can be derived to replace the relevant default 

subfactor, either in kinetics and/or dynamics. Relevant kinetic data could be derived from in vivo 

studies that defined the kinetics of the chemical under the experimental conditions in animals and in 

humans at the anticipated human exposure dose or concentration. In vitro measurements of critical 

processes (e.g., enzyme activity) can be used to estimate interspecies differences, especially when 

incorporated into a physiological based kinetic (PBK) model. CSAFs to allow for inter-individual 

differences in dynamics have been derived from in vitro studies, in vivo studies or from ex vivo 

experimentation in which the kinetics components have been excluded (IPCS, 2005; Renwick and 

Lazarus, 1998). 
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Figure 4. Uncertainty factors: default values, pathway-related uncertainty factors and chemical-specific 

adjustment factors (based on Renwick and Lazarus (1998)) 

 

1.3. Physiologically based kinetic models 

PBK models are mathematical descriptions simulating the kinetics of chemicals in the body in relation 

to key physiological parameters (e.g. tissue blood flows and volumes), biochemical and physiochemical 

parameters (e.g. excretions rates and tissue/blood partition coefficients) (IPCS, 2010). These models 

are based on compartmental approaches, describing the body as compartments corresponding to 

realistic organs or tissues that reflects the determinants of the kinetics of the chemical to simulate 

concentration time-curves in blood or specific tissue (Bois et al., 2010; Clewell et al., 2008; Paini et al., 

2019). They are traditionally used in order to perform extrapolations from route to route of exposure 

(e.g. intravenous to oral exposure), between different species or between sub-groups (e.g. healthy 

adults to patients or children). PBK models can also be used in a reverse way to estimate the exposure 

of a population to chemicals in comparison to biomonitoring data (Caldwell et al., 2012; Verner et al., 

2009). 

PBK models may present different degrees of complexity, considering the number of organs or tissues 

and whether they are described as homogenously well-mixed (perfusion-limited) compartments, the 

tissue barrier presents no barrier to distribution, or diffusion-limited compartments, a permeability 

coefficient is applied. However, it is generally recognised by risk assessors that the simplest model 

possible is preferred while complex models would be used when necessary and sufficient input data 

are available (Bois et al., 2010; Paini et al., 2019). 
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Human PBK models have been applied to address drug development, drug-drug interactions (or drug-

food, drug-herbal product) and safety assessment of food, cosmetics and environmental contaminants 

(Madden et al., 2019). These applications of PBK models in food safety have been reviewed by the 

European Food Safety Authority (EFSA, 2014). In its notes of guidance for the testing of cosmetic 

ingredients and their safety evaluation, the Scientific Committee on Consumer Safety recognise the 

use of PBK models for quantitative risk assessment (SCCS, 2018). Recently, PBK models have also been 

used to assess the safety of nanomaterials (Lamon et al., 2019). 

1.4. Hierarchical Bayesian models for the meta-analysis of kinetic data 

Previous meta-analyses on human variability in kinetics for different metabolic pathways were based 

on weighted geometric means assuming fixed effect models with inverse variance weights. This 

approach allows to derive human variability in kinetic parameters, but it did not address the relative 

contribution of the variability across subgroups to the overall variability in the datasets, leading to 

uncertainty in the parameter estimates (Dorne et al., 2005). 

Recently, meta-analysis methods have been developed using Bayesian approaches in the health-care 

and risk assessment areas and allow for the quantification of variability and uncertainty (Rigaux et al., 

2013; Sutton and Higgins, 2008). In a bayesian context, a prior distribution is set either based on expert 

knowledge or using evidence from the literature. These distributions are then updated taking into 

account available new data, leading to a posterior distribution (Figure 5) (Micallef et al., 2005). 

Bayesian estimation provides a distribution of credibility of the parameter values and a representation 

of parameter uncertainty that can be directly interpreted through the posterior distribution. Posterior 

distributions are estimated by generating a huge random sample of representative parameter values 

from the prior distribution using Markov chain Monte Carlo (MCMC) method. Consequently, it 

describes how uncertainty change when taking account new data (Kruschke and Vanpaemel, 2015). 

The Bayesian approach is ideally suited for multi-level models. Hierarchical models are used when the 

probability of a parameter is dependent on the value of another parameter leading a chain of 

dependencies among parameters (Kruschke and Vanpaemel, 2015). These models allow to account for 

different sample sizes of studies and their heterogeneity as well as inter-study variability so that 

strength can be borrowed from one study to another and are useful to quantify the variability among 

different populations (Shao et al., 2017). In the case of kinetic parameters, intra-substrate variability 

is dependant of the estimated inter-study variability, which supposed two levels, with prior 

information applied to the “substrate” level. 
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Figure 5. Principle of Bayesian statistics 

 

In that respect, human variability in kinetic parameters of acute and chronic exposure can be derived 

from meta-analysis of human pharmacokinetic studies using a hierarchical Bayesian approach. 

Therefore, including multiple compounds that are specific of the same pathway in a hierarchical 

Bayesian model would then allow to refine the pathway-related UF.  

1.5. Enzymes and transporters involved in ADME processes 

ADME processes describe the disposition of a chemical within the body and include inter-related 

processes namely absorption, distribution, metabolism and excretion (Figure 6). The toxicity of a 

chemical is dependent on its mode of action which includes kinetics ADME processes and dynamic 

processes (Meek et al., 2014). Chemicals can enter the human body via oral route, dermal contact or 

inhalation, etc. After absorption, the chemical enters the blood stream, where it may be distributed 

towards organs, including the target organ or tissue where it produces damage (Lehman-McKeeman, 

2008). 
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Figure 6. Absorption, Distribution, Metabolism and Elimination (Image Source: National Library of 

Medicine) 

 

Xenobiotic metabolism or biotransformation is a series of enzymatic processes that transforms parent 

compounds into metabolites that are more hydrophilic that are easier to excrete through urinary or 

bile elimination. In many cases, the toxicity of a xenobiotic can be either mediated by the parent 

compound so that metabolism result in detoxification or through its reactive metabolites and 

metabolism results in bioactivation (e.g bioacativation of acrylamide to glycidamide by CYP2E1). While 

the intestine and the liver contain the highest enzyme concentrations, they are also widely distributed 

in other tissues such as kidneys which express several enzymes that actively eliminate xenobiotics into 

urine. Xenobiotic metabolising enzymes are classified as phase I and phase II enzymes according to 

their function such as hydrolysis, reduction,  oxidation and conjugation respectively (Parkinson and 

Ogilive, 2008). Transporters of xenobiotics are involved either in uptake or efflux processes and are 

consequently classified as phase 0 or phase III respectively (Doring and Petzinger, 2014). 

Phase I metabolism 

Phase I enzymes metabolise xenobiotics to make them more water soluble, either by hydrolysis, 

reduction or oxidation. Cytochromes P450 (CYPs) represents the major enzyme family oxidising 70-

80% of pharmaceutical drugs in phase I drug metabolism. They are highly expressed in the liver, located 

into microsomes, but are also present in extra-hepatic tissues like small-intestine (Gundert-Remy et 
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al., 2014; Zanger and Schwab, 2013). In general, xenobiotic metabolism involves multiple CYPs but can 

also be isoform-specific in the case of specific probe substrates. 57 CYPs have been identified in 

humans but only the vast majority of xenobiotic metabolism is performed by a dozen isoforms 

including CYP3A4, CYP1A2, CYP2E1, CYP2D6, CYP2C9 and CYP2C19. CYP enzymes illustrate very well 

the importance to determine the balance between activation and detoxification. In humans, hydrolysis 

of coumarin by CYP2A6 into 7-hydroxycoumarin in the liver is the main detoxifying pathway (Lewis et 

al., 2006; Scientific Opinion of the Panel on Food Additives, 2008). On the other hand, CYPs in the liver 

and extrahepatic tissues play important roles in the activation of xenobiotics to toxic metabolites, such 

as organophosphate compounds which are metabolised by CYPs into their active form (Buratti et al., 

2011). It has been estimated that CYP3A4 and CYP2D6 metabolise around 50% of pharmaceuticals 

(Zanger and Schwab, 2013). While CYP3A4 is the major CYP in the liver and the intestine (CYP3A4/5: 

82% of small-intestine CYPs content), CYP2D6 represent only 2% and 1% of human CYPs in the liver 

and small-intestine respectively (Gundert-Remy et al., 2014) (Figure 7). The occurrence and frequency 

of polymorphic variation varies between populations from different ancestry origins and has been 

shown to affect drug response, genetic polymorphism is thus an important factor of variability. For 

example, the CYP2D6 poor metaboliser (PM) genotype is common in Caucasians but not in Asian 

populations, leading to differences in internal exposure of such polymorphic enzymes probe substrates 

(Dorne et al., 2002). This can also have an impact on the development of diseases when considering 

polymorphism of CYP2A6, which metabolise nicotine and cotinine, impacting internal dose of nicotine 

and therefore smoking habits (Lopez-Flores et al., 2017; Raunio et al., 2001). Environmental factors 

can also introduce variability in CYPs metabolism, as for instance CYP3A4 activity which can be 

inhibited by food products such as grape fruit juice or on contrary be activated by herbal agents like 

St. John’s wort (Quignot et al., 2019). 

 
Figure 7. A: Fraction of clinically used drugs metabolized by cytochrome P450 isoforms (adapted from 

Zanger and Schwab (2013)) and B: distribution of the major cytochrome P450 isoforms in the human liver 

(adapted from Gundert-Remy et al. (2014)) 
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One of the major hydrolytic enzyme family is the family of paraoxonases. Human paraoxonase 1 

(PON1) hydrolyses a range of organophosphate compounds (OPs) but also aromatic carboxylic acid 

esters or nerve gas agents such as sarin and soman (Furlong et al., 2016a). It is a high-density 

lipoprotein associated serum enzyme. PON1 activity is influenced by its genetic polymorphism with 

the most common polymorphisms being in the coding region and one in the promotor region, namely 

L55M, Q192R and C-108T. Polymorphism in PON1 represent a major source of variability in its activity 

leading to differences in internal doses of toxic metabolites from OPs exposure. Regarding this point, 

people considered as poor metabolisers would be more susceptible to OP damage (Dardiotis et al., 

2019). 

Phase II metabolism 

Phase II metabolism refers to conjugation reactions which include glucuronidation, sulfonation, 

acetylation, methylation, conjugation with glutathione and conjugation with amino acids. 

Glucuronidation is a major pathway of xenobiotic biotransformation in mammalian species and it is 

catalysed by uridine-diphosphate (UDP) glucuronosyltransferase (UGT) isoforms (Tukey and 

Strassburg, 2000). UGTs are a superfamily of membrane bound enzymes that catalyse the conjugation 

of glucuronic acid to a nucleophilic substrate, which are classified in three subfamilies: UGT1A, 2A and 

2B. As for CYPS, they are predominantly expressed in the liver but some UGTs are highly expressed in 

kidneys (UGT1A6, 1A9, 2B7) or in the small-intestine (UGT1A1, 1A5, 1A6, 1A10, 2B7, 2B17) suggesting 

extra-hepatic glucuronidation (Figure 8). Although glucuronidation is recognised as a detoxification 

mechanism, it can result in bioactivation, such as an increase analgesic activity of morphine after 

glucuronidation by its metabolite morphine-6-glucuronide (Court et al., 2012; Fisher et al., 2001; Lv et 

al., 2019). 
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Figure 8. Distribution of the major UDP-glucuronosyltransferase isoforms in human liver (A), intestine (B) 

and kidney (C) (Lv et al., 2019) 

 

Transporters 

Transporters mediate the influx (phase 0) or efflux (phase 3) of xenobiotics. Transport of xenobiotic 

involve two superfamily of transporters. ATP-binding cassette (ABC) transporters are mainly efflux 

transporters that plays an important role in excretion of a wide range of xenobiotic into the bile or 

urines (Ieiri, 2012). P-glycoprotein (P-gp) is the most studied ABC transporter, it is encoded by the 

ABCB1 gene, also called multidrug resistance protein (MDR1). It plays an important role in the 

excretion of xenobiotics and endogenous substrates via the canalicular membrane of hepatocytes into 

bile, the apical side of enterocytes and proximal tubules into the gut lumen and urines respectively 

(Kim, 2002a). Another ABC transporter is the bile salt export pump (BSEP) which is involved in efflux 

transport of endogenous substrates via the canalicular membrane of hepatocyte (Chedik et al., 2018). 

Breast cancer protein (BCRP), encode by the ABCG2 gene, is highly expressed in various tissues such 

as intestine, liver and kidney and share the same localisation as P-gp. BCRP and P-gp both plays a 

protective role in the blood brain barrier (Ieiri, 2012). Another subfamily of ABC transporter is the 

multiresistant drug protein (MRP) with MRP1 the first identified MRP from drug resistant-cancer cells 

(nine identified MRPs in human) (Chedik et al., 2018). These are also efflux pumps and MRP2 and MRP3 

are particularly important in the efflux of conjugated xenobiotic metabolites (Lehman-McKeeman, 
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2008). ABC transporters are therefore involved in reducing the intracellular accumulation of 

xenobiotics and thus in reducing their toxicity (Guéniche et al., 2019). 

The second superfamily of transporters is the solute carrier (SLC), they mediate either facilitated 

diffusion or active transport and may act as bidirectional transports. The main SLC transporters handles 

organic cations (OCT), with OCT1 being expressed in hepatocytes and OCT2 on the basal side of kidney 

proximal tubules and both involved in the uptake of xenobiotics. The organic anion transporters (OAT) 

are particularly important in the renal uptake. The organic anion transporting peptides (OATP) 

mediates the sodium-independent transport of xenobitics and are mostly involved in the hepatic 

uptake by OATP 1B1 and OATP1B3 while OATP2B1 is expressed in enterocytes (Clerbaux et al., 2019; 

Kim, 2002b). The sinusoidal sodium-taurocholate cotransporting polypeptide (NTCP) are also key in 

sodium-dependant uptake of bile acids in hepatocytes (Kim, 2002b). Contrary to most of SLCs 

transports, multidrug and toxin extrusion (MATE) proteins (MATE1 and MATE2-K) acts as efflux pumps 

at the apical site of hepatocytes and kidney proximal tubular cells where they will act similarly to P-gp 

and BCRP (Chedik et al., 2018; Guéniche et al., 2019). Figure 9 present the implication human 

transporters in absorption and eliminations processes. 

 
Figure 9. Membrane transporters in the human liver, kidney and intestine (green: SLC transporters, blue, 

ABC transporters) 
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1.6. Needs for research and implementation of kinetic models in risk assessment 

Human kinetic data provides a rich data source to integrate quantitative ADME data in hazard 

assessment  particularly with regards to interindividual differences in phase I and phase II enzymes as 

well as transporters (EFSA, 2014). The use of human kinetic data to simulate plasma and tissue 

concentrations of chemicals has progressed mostly in the field of pharmaceuticals and still relatively 

limited in the food safety area (Punt, 2018). However, kinetic data is of considerable relevance and 

importance in other regulatory fields with the ban of animal testing for the safety assessment of 

cosmetic products (Regulation (EC) No 1223/2009) and the Commission Regulation (EU) No 283/2013 

(2013) requires kinetic data for active substances of plant protection products and their metabolites. 

Improvement of risk assessment methods includes new approaches methodologies (NAMs) including 

the refinement of UFs to determine safe level of exposure as well as in silico models incorporating 

kinetics, such as physiologically based kinetic (PBK) models and represent a challenge to regulatory 

agencies since they are complex to implement and require specialised training (IPCS, 2010; Paini et al., 

2019). In order to move towards the integration of NAMs in chemical risk assessment for the food and 

feed safety area with regards to human health, animal health and environment, several projects have 

been launched by the European Food Safety Authority (EFSA). These projects involve the integration 

of kinetic data and the development of modelling tools, the modelling of population dynamics of 

aquatic and terrestrial organisms, and the modelling of human variability in kinetic and dynamic 

processes with physiologically based models. PBK models provide a quantitative approach to address 

ADME processes and are therefore very useful tools in hazard assessment (EFSA, 2014). Models are 

needed to enable in vitro data on toxicological effects to be transformed into in vivo data which is a 

necessary step to make them usable for risk assessment. Therefore, quantitative predictions of in vivo 

kinetics from in vitro assays (QIVIVE) using human cells offer great opportunities to reduce uncertainty 

in human risk assessments and will facilitate the future development and regulatory acceptance of 

alternatives to animal testing with respect to the 3Rs (Replacement, Reduction and Refinement of 

animal studies) (Bessems et al., 2015; OECD, 2010; Paini et al., 2017; Punt et al., 2017). However, in 

vitro assays usually provide mean values of kinetic parameters when extrapolated to in vivo 

parameters. Pathway-related UFs can be applied when human in vitro metabolism data are available 

for specific isoforms but no in vivo data, to implement variability on metabolism data to address the 

human population rather than a single individual. Previously published meta-analyses were based on 

weighted averages assuming fixed effect models with inverse variance weights and did not address the 

relative contribution of the variability across subgroups to the overall variability in the datasets.  
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Bayesian models allow to characterise variability and uncertainty in a robust way by partitioning 

observed variance between sampling variation, heterogeneity across studies, and other sources of 

variability, e.g. between subgroups of population. This approach leads to produce refined estimates 

across compounds and provides means to extend the inference to un-observed compounds and the 

integration of a range of human subgroups into simulated whole populations. Consequently, a generic 

model able to integrate such estimates across studies, substances and subgroups of human 

populations, while accounting for sample variation, is much needed in the area of chemical risk 

assessment. This data-driven approach is particularly relevant to investigate the impact of genetic 

polymorphisms on metabolism and kinetics which may illustrate large differences across subgroups of 

the population and consequently large UFs (Dorne et al., 2003b; Dorne et al., 2002; Gaedigk et al., 

2017). 

1.7. Scope and Aim of this thesis 

This thesis aims to: 

1. Quantify human variability by means of Bayesian meta-analysis for a range of phase I, phase II 

metabolic pathways and transporters (phase 0 and III) using pharmacokinetic markers of acute (Cmax) 

and chronic exposure (AUC, clearance) or enzyme activity data from available probe substrates. 

2. Derive pathway-related variability distributions and pathway-related UFs for their future integration 

in PBK models for human risk assessment of chemicals (Figure 10). 

The proposed methodology uses a multi-level hierarchical Bayesian model to integrate quantifiable 

sources of variability, including inter-study, inter- and intra-ethnic, inter-sensitive populations and/or 

inter-phenotypic variability. In this context, pathway-related variability and corresponding pathway-

related UFs are derived for subgroups of the human population and pharmacokinetic parameter. 

 
Figure 10. Graphical abstract of the aim of the thesis 
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Chapter 2 illustrates the implementation of PBK models in risk assessment and especially in exposure 

assessment by characterising aggregate exposure of the French adult population to permethrin from 

environmental and dietary sources.  

Chapter 3 describes the meta-analysis of human pharmacokinetic data for CYP3A4 metabolism using 

15 CYP3A4 probe substrates and the derivation of CYP3A4-related variability distributions and CYP3A4-

related UFs with regards to a range of populations of different geographical ancestry and other specific 

subpopulations (i.e. neonates, infants and the elderly).  

Chapter 4 focusses on another phase I enzyme, the polymorphic human serum paraoxonase 1 (PON1). 

In contrast to chapter 3, data collection and meta-analyses were performed on enzyme activity data 

resulting from human ex vivo measurements in blood instead of pharmacokinetic parameters. Three 

probe substrates have been included, each of which relate to a different binding site of the PON1 

enzyme. Inter-phenotypic differences and related UFs were estimated and the incorporation of 

genotypic frequencies for the derivation of population PON1-related UFs are presented. 

In Chapter 5, human pharmacokinetic data for the seven clinically most relevant UGT isoforms 

(UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) were collected from an 

extensive literature search. Inter-individual differences in kinetics for these specific UGTs probe 

substrates were assessed using Bayesian meta-analysis to derive UGT-related variability distributions 

and UGT-related UFs in healthy adults. 

Chapter 6 investigates human variability in the kinetics of transporter probe substrates to quantify 

human variability for P-gp, BCRP, MATEs, OAT1 and 3, OCTs and OATPs. 

Finally, Chapter 7 provides perspectives for the implementation of pathway-related UFs in generic 

quantitative in vitro-in vivo extrapolation models and generic PBK models in chemical risk assessment. 

Recommendations for future work to support their implementation in the human risk assessment of 

chemicals and move towards the reduction of animal testing conclude. 
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Abstract 

The French Nutrition and Health Survey (ENNS) reported higher biomarker levels of exposure to 

pyrethroids than those observed in North American and German biomonitoring studies. The authors 

therefore investigated aggregate exposure to permethrin as an initial case study because this 

compound is one of the most widely-used pyrethroid insecticides. We assessed several contamination 

sources—such as indoor and outdoor air, settled dust and diet—and several pathways, including oral, 

inhalation and dermal routes. We used permethrin exposure level estimations (computed from ENNS 

data) and a PBPK model calibrated with human kinetic data (from 6 individuals) to simulate an internal 

dose of cis- and trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis- or trans-

DCCA) in a population of 219 individuals. The urinary concentrations of cis- and trans-DCCA predicted 

by the PBPK model according to three permethrin exposure scenarios (“lower”, “intermediate”, and 

“upper”), were compared to the urinary levels measured in the ENNS study. The ENNS levels were 

between the levels simulated according to permethrin exposure scenarios “lower” and “intermediate”. 

The “upper” scenario led to an overestimation of the predicted urinary concentration levels of cis- and 

trans-DCCA compared to those measured in the ENNS study. The most realistic scenario was the 

“lower” one (permethrin concentration of left-censored data considered as 0). Using PBPK modelling, 

we estimated the contribution of each pathway and source to the internal dose. The main route of 

permethrin exposure was oral (98%), diet being the major source (87%) followed by dust (11%) then 

the dermal route (1.5%) and finally inhalation (0.5%).  

 

Keywords: aggregate exposure, permethrin, PBK model, pyrethroid, diet, air and dust, DCCA 

 

Highlights 

• Assessment of the adult French population’s aggregate exposure to permethrin  

• Adjustment of a PBK model of permethrin to predict urinary concentrations of DCCA 

• Estimation of the contributions of each source and pathway to permethrin exposure 
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2.1. Introduction 

Permethrin (3-phenoxybenzyl (1RS,3RS;1RS,3SR)-cis,trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclo-

propanecarboxylate) is a synthetic pyrethroid insecticide. It is one of the most commonly used in 

France. In 2000, permethrin was not approved as an active substance for agricultural use by European 

regulations, but it is still approved for residential use (Regulation (EC) No 1107/2009, 2009; Regulation 

(EU) No 528/2012, 2012). Permethrin is widely applied through sprays or smoke bombs in households 

against insects such as flies or mosquitoes. Permethrin can therefore be present in various 

environments, including air and dust, but is rarely detected in food. Environmental exposure to 

permethrin of the adult French population was already assessed in a previous study (Hermant et al., 

2018) using the data available from the French National Nutrition and Health Survey (ENNS) (Fréry et 

al., 2013). This chronic environmental exposure was evaluated considering various environmental 

sources (i.e. outdoor air, indoor air, and house dust) and exposure pathways (i.e. inhalation, indirect 

ingestion, and dermal contact). The results of this study suggested that house dust was the main 

environmental source of exposure, and dermal contact and indirect ingestion the major exposure 

pathways. 

The toxicity of permethrin and its metabolites involves interactions with sodium channels, receptor-

ionophore complexes and neurotransmitters. It has been suggested that oxidative stress might also be 

one of the toxicological mechanisms of permethrin (Wang et al., 2016). Like other Type I pyrethroids 

(which do not contain a cyano substituent on the α-methylene of the alcohol moiety), permethrin has 

elicited neurotoxic behaviour among laboratory animals referred to as T-syndrome: aggressiveness, 

hyperexcitability, fine tremor, prostration, increased body temperature, coma and death. This is 

considered to be an acute response to permethrin exposure and is dose-dependent. After dermal 

exposure, adverse effects include paraesthesia, a tingling to burning sensation of the skin (U.S. EPA, 

2007). 

In humans, permethrin is metabolized in the gastrointestinal (GI) tract and the liver. It mainly involves 

hydrolysis by carboxylesterases and oxidation by cytochrome P450 (CYP450), multiple CYP450 

isoforms being involved (Scollon et al., 2009). Permethrin is metabolized into 3-PBA (3-phenoxybenzoic 

acid) and cis- or trans-DCCA (cis- or trans-3-(2,2 dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) 

carboxylic acid), specific to each isomer (Willemin et al., 2015). 

Based on this knowledge, physiologically-based pharmacokinetic (PBPK) models have been developed 

to quantify the kinetic behavior of permethrin (Tornero-Velez et al., 2012; Wei et al., 2013). This kind 

of model can predict the time course of a chemical and its metabolite concentrations in biological 

tissues according to various exposure and pharmacokinetic scenarios. Several research groups have 
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demonstrated the utility of PBK models in conducting reverse dosimetry. The PBK model for 

permethrin consists of seven essential compartments representing the lungs, fat, skin, brain, liver, 

rapidly-perfused tissues, and slowly-perfused tissues. Model parameters were calibrated against 

experimental rat data, and scaled to human anatomical and physiological parameter values. 

The model predictions were compared to data from a study among rats of oral exposure to permethrin. 

The rats were dosed orally with 1 or 10 mg/kg permethrin in corn oil (1 ml/kg) and sacrificed at 1, 2, 3, 

4, 6, 8, 12, 24, 36 or 48 h (Tornero-Velez et al., 2012). The model was used to accurately predict 

metabolite cis- and trans- permethrin urine concentrations during exposure, and once the exposure 

was stopped. Because liver clearance parameterization in humans was based on data relating to 

human hepatic microsomes (Scollon et al., 2009) (QIVIVE extrapolation), we instead considered human 

data based on cryopreserved primary hepatocytes from three donors (Willemin et al., 2015) to better 

estimate the clearance of cis- and trans-permethrin.  

This work suggests a method for characterizing aggregate exposure beginning with contaminated 

environmental sources such as air, dust, and food, and leading up to individual internal doses i.e. 

urinary concentration levels available from the human biomonitoring section of the ENNS study (Fréry 

et al., 2013). This method began with the aggregate exposure assessment of the adult French 

population and then with the definition of a refined human PBPK model for permethrin allowing us to 

bridge the gap between external exposure and internal dose. 

2.2. Material and Methods 

Our method relating external exposure to internal dose is summarized in Figure 11. The exposure 

calculations required for each individual (1) to obtain levels of contamination in each environment of 

interest (outdoor air, indoor air, settled dust, and food), (2) human parameters such as body weight 

(bw) or food consumption and (3) space-time budgets. This approach focused on French data in order 

to obtain exposure estimates as close as possible to the real exposure of the French population and 

individual data, in order to best describe variability in individual exposure. The individual exposure 

estimates were then used as input for the PBPK model that simulated the internal dose of each 

individual. These models established the link between exposure (parent substance concentration) and 

internal dose (metabolite concentration). They described the kinetics of chemical compounds fairly 

realistically in each compartment—corresponding to predefined organs or tissues—irrigated by blood 

flow. The simulated internal doses were then compared with the internal doses measured during the 

ENNS study. 
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2.2.1. Study population and biomonitoring data 

The ENNS study was conducted from 2006-2007 by the French Institute for Public Health Surveillance 

(InVS) (Fréry et al., 2013; Fréry et al., 2011; Saoudi et al., 2014). This cross-sectional study was designed 

to be representative of the French general population and included three parts: a diet study, an 

interview (face-to-face and self-administered questionnaires), and a clinical and biological 

examination. French residents aged between 18 and 74 years old were interviewed. The data collected 

provided a description of anthropometric, demographic and socioeconomic characteristics, dietary 

intake, physical activities, pesticide uses, and biological samples. First morning urine samples were 

collected in order to determine the cis- and trans-DCCA concentration in a sub-sample of ENNS 

participants (396 adults). The limit of detection was 0.03 µg/L and the limit of quantification was 0.1 

µg/L (Fréry et al., 2013). Urine samples of 219 individuals were quantified and described in Table 1. 

 
Figure 11. Diagram of the method 
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Table 1. Distribution of cis- and trans-DCCA urinary concentration levels in a sub-sample of ENNS 

participants (n = 219 adults) 

 GM 95% CI Min P25 P50 P75 P95 Max 

cis-DCCA urinary concentration (µmol/g creatinine) 

Total (n=219) 0.28 [0.24-0.32] 0.05 0.14 0.23 0.49 1.87 17.9 

   Male (n=74) 0.23 [0.19-0.28] 0.05 0.13 0.18 0.46 1.05 2.18 

   Female (n=145) 0.31 [0.26-0.37] 0.05 0.16 0.24 0.50 2.34 17.9 

trans-DCCA urinary concentration (µmol/g creatinine) 

Total (n=219) 0.68 [0.59-0.79] 0.09 0.32 0.53 1.30 5.77 66.0 

   Male (n=74) 0.57 [0.46-0.72] 0.09 0.26 0.48 1.17 5.56 5.77 

   Female (n=145) 0.74 [0.61-0.90] 0.09 0.35 0.57 1.32 6.30 66.0 
GM: geometric mean; CI: confidence interval; P: percentile 

 

2.2.2. Permethrin exposure data  

In this work, exposure is defined as the amount of permethrin received by an organism up to its 

biological barriers (respiratory epithelium, digestive mucosa or dermis) without crossing them, related 

to the individual’s weight and duration of daily exposure (InVs, 2005). 

2.2.2.1. Environmental exposure data 

Environmental exposure of the adult French population to permethrin has already been assessed 

(Hermant et al., 2018). Inhalation, indirect dust ingestion and dermal exposure were calculated as 

chronic daily exposure. Table 2 presents the environmental exposure distribution according to the 

source of contamination and the gender of the sub-sample of 219 individuals for whom the 

concentration levels of urinary metabolites were quantified. 

Table 2. Environmental exposure distribution (µg/kg bw/day) in an adult subgroup of the ENNS 

participants (n = 219)  
Exposure 

(µg/kg bw/d) 
n Min P25 P50 P75 Max Mean 95% CI 

Daily exposure by inhalation 

Total  219 7.83e-09 1.76e-07 3.04e-07 1.22e-05 2.61e-04 1.63e-05 [1.09e-05-2.18e-05] 

   Men  74 8.40e-09 2.12e-07 6.19e-07 1.58e-05 1.5e-04 1.28e-05 [7.56e-06-1.81e-05] 

   Women  145 7.83e-09 1.71e-07 2.98e-07 1.13e-05 2.61e-04 1.81e-05 [1.03e-05-2.59e-05] 

Daily exposure by indirect dust ingestion 

Total 219 4.31e-07 1.49e-04 2.79e-04 6.82e-04 2.07e-02 1.31e-03 [8.93e-04-1.72e-03] 

   Men 74 1.94e-06 1.54e-04 2.83e-04 7.85e-04 2.07e-02 1.58e-03 [7.22e-04-2.44e-03] 

   Women 145 4.31e-07 1.49e-04 2.72e-04 6.81e-04 1.98e-02 1.16e-03 [7.15e-04-1.61e-03] 

Daily exposure by dermal uptake (dust and air) 

Dust 219 2.20e-06 8.13e-04 1.46e-03 3.63e-03 9.22e-02 6.83e-03 [4.77e-03-8.89e-03] 

   Men 74 1.27e-05 8.98e-04 1.49e-03 3.79e-03 8.24e-02 8.15e-03 [4.10e-03-1.22e-02] 

   Women 145 2.20e-06 8.00e-04 1.46e-03 3.45e-03 9.22e-02 6.15e-03 [3.79e-03-8.50e-03] 

Airborne particles 219 3.43e-08 8.71e-07 1.52e-06 6.20e-05 1.31e-03 7.98e-05 [5.33e-05-1.06e-04] 

   Men 74 3.97e-08 9.59e-07 3.03e-06 8.45e-05 6.52e-04 6.29e-05 [3.81e-05-8.77E-05] 

   Women 145 3.43e-08 8.66e-07 1.43e-06 5.82e-05 1.31e-03 8.84e-05 [5.03e-05-1.27e-04]- 

P: percentile; CI: confidence interval 

The main pathway of exposure to permethrin was by dermal uptake, with a mean dermal exposure by 

contact to dust of 6.83e-03 (95% CI, 4.77e-03-8.89e-03) µg/kg bw/d and a mean dermal exposure by 

contact to airborne particles of 7.98e-05 (95% CI, 5.33e-05-1.06e-04) µg/kg bw/d. The second main 

pathway of exposure to permethrin was by indirect ingestion of dust, with a mean exposure of 1.31e-
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03 (95% CI, 8.93e-04-1.72e-03) µg/kg bw/d. The last pathway was by inhalation, with a mean exposure 

of 1.63e-05 (95% CI, 1.09e-05-2.18e-05) µg/kg bw/d. 

2.2.2.2. Dietary exposure assessment 

The dietary exposure assessment combined three kinds of data: individual food consumption data, 

permethrin contamination levels in raw agricultural commodities (RACs) and recipes to disaggregate 

food into RACs.  

During the ENNS study, individual food consumption data were collected with three 24-hour recalls 

over one year to take account of seasonal effects. Survey respondents were asked about the amount 

of food consumed per occasion. Sometimes food could be a RAC such as a vegetable or a fruit, but 

sometimes it could be a composite dish like a pizza. In order to assess permethrin exposure, all food 

had to be disaggregated into RACs. For example, a pizza could be initially disaggregated into a cereal-

based product, vegetables, meat, and cheese. The cereal-based product could then be further 

disaggregated into flour (wheat), water, olive oil, salt etc. In this way, nearly 900 food items were 

disaggregated into RACs.  

The daily intake (𝐶𝑘,𝑖) of each RAC (g/d) was calculated for each individual 𝑖 from the three 24-hour 

recalls, with 
iksC ,,1
the daily intake of RAC 𝑘 from the first 24-hour recall of the week (g/d), 

iksC ,,2
 

the daily intake of RAC 𝑘 from the second 24-hour recall of the week (g/d) and 
ikwC ,,
 the daily 

intake of RAC 𝑘 from the 24-hour recall for the weekend (g/d). 
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The permethrin contamination data were obtained from the contamination control and food 

monitoring surveys carried out by the Ministry in charge of consumption (DGCCRF), the Ministry in 

charge of agriculture (DGAL) and the Ministry in charge of Health (DGS), from 2007 to 2013. We 

selected the contamination levels of RACs identified during the disaggregation of food into RACs in the 

previous step, described above. A total of 35,113 samples were used, grouped into 136 different RACs 

(Table 3). Only 0.11% of the samples were quantified and 0.34% of all the samples had a concentration 

level between the limit of detection (LOD) and the limit of quantification (LOQ). 

 

Table 3. RAC contamination data 

Source Type of data Number of RACs and food Number of samples 

DGCCRF 2010-2013 RAC of plant origin 126 17,252 

DGAL 2010, 2012 et 2013 RAC of animal origin 10 1,151 
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DGS 2007-2013 Public drinking water 1 16,710 

 

In order to assess dietary exposure, the left-censored data, i. e. contamination values below the 

analytical limit (LOD or LOQ), were replaced according to three scenarios, two of which complied with 

World Health Organization recommendations (WHO, 2013). According to these guidelines, in cases 

where less than 50% of the samples are quantified, a lower bound (scenario “lower”) and an upper 

bound (scenario “upper”) should be set. In the “lower” scenario, the lower bound is calculated by 

setting all non-detects and non-quantifiables to zero. In the “upper” scenario, the upper bound is 

calculated by setting all non-detects to the limit of detection and all non-quantifiables to the limit of 

quantification. A third, “intermediate”, scenario was also defined, in which the left-censored value was 

replaced by the median of 1,000 values sampled between 0 and the LOD or LOQ (depending on the 

limit available for the sample) according to a uniform distribution. This number of samples was 

sufficient to take into account the sampling error. For some samples, the permethrin concentration 

was between the LOD and LOQ, in which case the left-censored data were replaced by the median of 

1,000 values randomly selected between the LOD and LOQ according to a uniform distribution. All the 

scenarios considered differences between and any change in analytical methods i.e. the LOD or LOQ 

because the left-censored value was replaced for each sample separately to take into account the fact 

that the level of information is not always uniform. However, the contamination level was not 

measured in all RACs. Either the missing value was replaced by the mean contamination level for the 

food group to which the missing value belonged in accordance with Foodex 2 classification (EFSA, 2015) 

and the three scenarios or the missing value was replaced by 0 (scenario “lower”), by the maximum 

residue limit (MRL) divided by two (scenario “intermediate”) or by the MRL (scenario “upper”) when 

the RAC was a food group such as hops. 

The total daily dietary exposure (𝐸𝑑𝑖𝑒𝑡𝑎𝑟𝑦,𝑖) of individual 𝑖 (ng/kg bw/d) was calculated by combining 

the daily intake (𝐶𝑘,𝑖) of RAC 𝑘 (g/d) with the permethrin concentration (𝑄𝑘) of RAC 𝑘 (ng/g) and 

then dividing by the body weight (𝐵𝑊𝑖) of individual 𝑖 (kg). Dietary exposure was estimated according 

to the three contamination level scenarios using the SAS software package, version 9.3. 

 𝐸𝑑𝑖𝑒𝑡𝑎𝑟𝑦,𝑖 = ∑
𝐶𝑘,𝑖×𝑄𝑘

𝐵𝑊𝑖

𝑛
𝑘=1      (2) 

Dietary exposure varied highly according the three scenarios (Table 4). The distribution values ranged 

from 6.58e-04 to 0.06 and from 6.73e-02 to 1.57 µg/kg bw/d for the “lower” and “upper” scenarios 

respectively. However, the maximum exposure estimation according to the “upper” scenario was 

below the admissible daily intake (ADI =50 µg/kg bw/d). The mean values for the adult French 

population’s dietary exposure to permethrin were 8.68e-03 (95% CI, 7.47e-03-9.89e-03), 0.42 (95% CI, 
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0.39-0.44) and 0.83 (95% CI, 0.77-0.88) µg/kg bw/d respectively for the “lower” scenario, the 

“intermediate” scenario and the “upper” scenario. 

Table 4. Distribution of dietary intake according to gender (µg/kg bw/d) 

Exposure (µg/kg bw/d) n Min P25 P50 P75 Max Mean 95% CI 

Scenario “lower” 219 6.58e-04 3.42e-03 5.72e-03 9.59e-03 6.73e-02 8.68e-03 [7.47e-03-9.89e-03] 

   Men 74 1.02e-03 3.34e-03 5.68e-03 9.26e-03 6.73e-02 8.91e-03 [6.57e-03-1.13e-02] 

   Women 145 6.58e-04 3.48e-03 5.72e-03 9.82e-03 5.73e-02 8.57e-03 [7.16e-03-9.97e-03] 

Scenario “intermediate” 219 0.06 0.28 0.38 0.52 1.57 0.42 [0.39-0.44] 

   Men 74 0.13 0.28 0.39 0.51 1.57 0.42 [0.37-0.48] 

   Women 145 0.06 0.28 0.37 0.52 0.98 0.41 [0.38-0.44] 

Scenario “upper” 219 0.12 0.56 0.75 1.02 3.13 0.83 [0.77-0.88] 

   Men 74 0.25 0.55 0.77 1.01 3.13 0.84 [0.73-0.95] 

   Women 145 0.12 0.57 0.73 1.02 1.96 0.82 [0.76-0.88] 

 

2.2.3. Human aggregate PBPK model 

2.2.3.1. Model development and structure 

In order to confront the biomonitoring results of the ENNS study with the established exposure 

scenarios, we developed a human aggregate PBPK model which predicts the disposition of permethrin 

and urinary excretion of its metabolites after oral, dermal and inhalation exposure to the parent 

chemical. The structure of this model is based on that of pre-existing human permethrin PBPK models 

(Tornero-Velez et al., 2012; Wei et al., 2013). Tissue groups/compartments were included based on 

consideration of the route of exposure (lungs for inhalation, skin for dermal and gastrointestinal (GI) 

tract for oral route), metabolism (liver), storage (fat, due to permethrin’s lipophilic properties) and 

neurotoxicity (brain) (Sethi et al., 2014; Shafer et al., 2005), as well as body mass balance and future 

expansion of the model (excretion compartment such as kidney, or poorly- and richly-perfused tissue 

groups). The oral route, inhalation absorption and skin absorption are described as first-order 

processes. The individual compartments are connected by systemic circulation. The model has distinct 

arterial and venous blood compartments, while tissues are described as homogeneous well-mixed 

compartments and diffusion-limited compartments, as described in Mirfazaelian et al. (2006). 

Since we were using estimated daily exposure data for each individual, most of the formulas used by 

Tornero-Velez et al. (2012) and Wei et al. (2013) were adapted. We calculated the concentration of 

permethrin in arterial blood using an adapted formula of Ramsey and Andersen (1984). Daily inhalation 

exposure was used for each individual and, as permethrin has low volatility, all inhaled permethrin was 

assumed to be fully absorbed in lung blood, with no permethrin exhaled (Wei et al., 2013). 
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The skin compartment was simplified with respect to the model of Tornero-Velez et al. (2012). We 

chose to describe dermal absorption by the equation proposed by Wei et al. (2013). Daily dermal 

exposure by contact to dust and to airborne particles was used to estimate dermal absorption rate. 

As for inhalation and dermal exposure, we used the daily exposure value for oral exposure, which takes 

into account daily dietary exposure and daily indirect dust ingestion. 

The model describes metabolism by two concurrent metabolic pathways in the GI tract and in the liver, 

i.e. oxidative metabolism via microsomal CYP450 (Michaelis-Menten equation). To estimate hepatic 

metabolism, we used parameters from an in vitro study on human cryo-preserved primary hepatocytes 

of permethrin isomers (Willemin et al., 2015). We were then able to describe the formation rate of 

permethrin metabolites. 

Since 3-PBA is a metabolite common to most pyrethroids, whereas cis- and trans-DCCA are specific to 

permethrin, cypermethrin, and cyfluthrin (Fréry et al., 2013; Tornero-Velez et al., 2012), we studied 

only people whose cis- and trans-DCCA had been simultaneously quantified in urine samples.  

We had the urinary concentration levels of 219 individuals (74 men and 145 women), a population 

varying widely in terms of anthropometric parameters. In order to accurately describe the fate of 

permethrin in each one of them, the tissue volume of all the described compartments was estimated 

according to age, gender and body mass index (BMI). We thus simulated 219 individual urinary 

excretions of cis- and trans-DCCA. Cis- and trans-DCCA were described by a one-compartment PK 

model (Figure 12Erreur ! Source du renvoi introuvable.). 

Finally, the model was calibrated with human data. Healthy male and female volunteers were given 

permethrin, then their urinary excretion of permethrin metabolites was measured over time. The 

individual data used for calibration were provided by the author (Ratelle et al., 2015). 
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Figure 12. Human aggregate PBPK model of permethrin 

QX: blood flow to tissue X ; CX: concentration from tissue X ; Ks: stomach uptake ; Ksi: stomach-intestine 

transfer ; Ki: intestine uptake ; Kfec: fecal excretion ; Kel: urinary excretion. 

 

2.2.3.2. Model equations 

The arterial concentration in permethrin for an individual i (𝐶𝐴𝑖) is described in the model by the 
adapted formula of Ramsey and Andersen (1984). 

𝐶𝐴𝑖 =
𝐵𝑊𝑖×𝐷𝐸_𝑖𝑛ℎ𝑖/24+𝑄𝑐𝑖×𝐶𝑉𝑖×𝑀𝑊×103

𝑄𝐶𝑖
        (3) 

where 𝐷𝐸_𝑖𝑛ℎ𝑖 is the daily inhalation exposure of individual i (ng/kg bw/d) (Hermant et al., 2018), 𝐵𝑊𝑖 

is the body weight of individual i (kg), 𝑄𝑐𝑖 is the cardiac output (l/h), 𝐶𝑉𝑖 is the concentration in the 

venous blood (µmol/l) and MW. The inhalation rate does not appear in this equation because 𝐷𝐸_𝑖𝑛ℎ𝑖 

already takes it into account. It was estimated for each individual according to the equation proposed 

by and recommended by the U.S. EPA Exposure Factor Handbook (U.S. EPA, 2011). 

For ingested permethrin, we considered the daily food exposure and daily indirect dust ingestion of 

each individual (Hermant et al., 2018). The oral absorption of permethrin in the model takes into 
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account stomach absorption, the gastric emptying rate constant, intestinal absorption, fecal excretion 

and intestinal clearance. 

The amount of permethrin absorbed by the skin (𝑑𝐴𝐷𝐸𝑅𝑀𝑖) is calculated as follows: 

𝑑𝐴𝐷𝐸𝑅𝑀𝑖

𝑑𝑡
= 𝐵𝑊𝑖 × (

𝐷𝐸_𝑑𝑢𝑠𝑡𝑖+𝐷𝐸_𝑎𝑖𝑟𝑖

𝑀
) × 𝐷𝐴𝐵𝑆      (4) 

where 𝐷𝐸_𝑑𝑢𝑠𝑡𝑖  and 𝐷𝐸_𝑎𝑖𝑟𝑖 are, respectively, the daily dermal exposure of individual i by contact 

with dust and with airborne particles (Hermant et al., 2018) and 𝐷𝐴𝐵𝑆 is the dermal absorption. 

𝐷𝐸_𝑑𝑢𝑠𝑡𝑖  considers the fraction of permethrin in dust adhering to skin and available for absorption, 

the amount of dust adhering to skin, the permethrin concentration in house dust, the body’s surface 

area, the fraction of the skin’s surface area exposed to dust, and the daily duration of exposure to dust. 

𝐷𝐸_𝑎𝑖𝑟𝑖 considers the deposition velocity of airborne particles onto the skin’s surface, the permethrin 

concentration in indoor and outdoor air, the body’s surface area, the fraction of the skin’s surface area 

exposed to dust, and the time spent indoors and outdoors (Hermant et al., 2018). 

The single compartment model of cis- and trans-DCCA was designed to predict the urinary 

concentration of metabolites in order to compare the predicted results with those from the 

biomonitoring study. As we wished to consider daily exposure to permethrin, the model was thus 

designed to give us the concentration of metabolites in daily urine. This urinary concentration was 

normalized by the creatininuria which is quantified in the urinary samples of each participant of the 

ENNS study. We considered a daily urinary volume of 1.5 l and estimated daily excreted creatinine for 

each individual. 

Physiological parameters were taken from Browne et al. (2007), except for blood volume fraction 

(Tornero-Velez et al., 2012) (Table 5). We decided to describe tissue volume for each individual by 

taking into account their respective body weight. According to the equation proposed by Deurenberg 

et al. (1991), we estimated the body fat volume (𝐾𝑉𝐹𝑖) of individual i as follows: 

𝐾𝑉𝐹𝑖 = (1.20 × 𝐵𝑀𝐼𝑖 + 0.23 × 𝑎𝑔𝑒𝑖 − 10.8 × 𝑠𝑒𝑥𝑖 − 5.4)/(100 × 𝐹𝐷)   (5) 

Where 𝐾𝑉𝐹𝑖 is the percentage of total body weight, BMI is expressed in m²/kg bw, age in 

years, and 𝑠𝑒𝑥𝑖 is equal to 1 if it is a man and 0 if it is a woman. 𝐹𝐷 stands for fat density. 

As the sum of all tissue volume has to equal 100%, the corresponding volume of a tissue j of 

individual i (𝐾𝑉𝑗𝑖) was calculated with the following equation: 

𝐾𝑉𝑗𝑖 = (𝐾𝑉𝑗 (1 − 𝐾𝑉𝐹))⁄ × (𝐾𝑉𝐹 − 𝐾𝑉𝐹𝑖) + 𝐾𝑉𝑗     

 (6) 

With 𝐾𝑉𝑗 and 𝐾𝑉𝐹 the volume of tissue j and of fat respectively as given by Brown et al. 

(1997). Tissue volumes thereby remain consistent with individual anthropometric data and are 

not only influenced by body weight. 
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Table 5. Physiological parameters used in the permethrin PBPK model (Brown et al., 1997). 

Parameter Mean 

Man Woman 

Cardiac flow (l / h / kg0,75) 15.3 15.3 

Tissue volume (% of body weight) 

   Brain (𝐾𝑉𝐵) 2 2 

   Fat (𝐾𝑉𝐹) 21.4 21.4 

   Skin (𝐾𝑉𝑆𝐾) 3.7 3.7 

   Liver (𝐾𝑉𝐿) 2.6 2.6 

   GI tract (𝐾𝑉𝐺𝐼) 1.7 1.7 

   Rapidly-perfused (𝐾𝑉𝑅) 9.6 9.6 

   Slowly-perfused (𝐾𝑉𝐵S) 59 59 

Tissue blood flow (% of cardiac output) 

   Brain 12 12 

   Fat 5 8.5 

   Skin 5 5 

   Liver 
 

 

      Arterial 6 6 

      Portal 19 21 

   Rapidly-perfused 25.5 25 

   Slowly-perfused 27.5 22.5 

Blood volume fraction (% of tissue) 

   Brain 4 a 4 a 

   Fat 2 a 2 a 

   Slowly-perfused 1 a 1 a 

a: Tornero-Velez et al. (2012) 

The partition and permeability coefficients were mostly taken from Tornero-Velez et al. (2012). Since 

the authors did not provide the GI tract:blood partition coefficient, it was assumed by structural 

analogy that deltamethrin partition coefficients could be used by default (Mirfazaelian et al., 2006). 

The modifications to the skin compartment led us to use the skin:blood partition coefficient and 

dermal absorption from Wei et al. (2013). 

The data on the hepatic metabolism of permethrin are derived from an in vitro study in which the 

kinetic constants Vmax and Km of the depletion of cis- and trans-permethrin, and the formation of 3-

PBA, cis- and trans-DCCA in human primary hepatocytes were estimated (Willemin et al., 2015) (Table 

6). A ratio of 2.6 was observed between the clearance (Vmax / Km) of cis- and trans-permethrin, a 

result much lower than that observed in a previous study (ratio of 12) carried out on human 

microsomes (Scollon et al., 2009). Moreover, the estimated clearance in this study was lower than that 
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calculated for human microsomes (1.6 l/h/kg bw vs. 3.1 l/h/ kg bw for cis-permethrin and 4 l/ h/kg bw 

vs. 38.2 l/h/kg bw for trans-permethrin). The authors studied the interaction between the two isomers. 

A mixture of cis:trans-permethrin (40:60) was also used, but revealed no difference in the kinetics of 

the parent compounds or metabolites compared to incubating the isomers separately (Willemin et al., 

2015). 

Parameters specific to permethrin and DCCA are summarized in Table 6. Km and Vmax are specific to 

each isoform, cis- and trans-permethrin (depletion of parent compound) and cis- and trans-DCCA 

(formation of metabolites). They are all taken from the study Willemin et al. (2015) 

 

Table 6. Parameters of the PBPK model specific to permethrin (Tornero-Velez et al., 2012). 

Parameter cis-permethrin trans-permethrin 

Molar mass (g/mol) 391.3 391.3 

Partition coefficients (tissue:blood) 
  

   Brain 1.5 0.4 

   Fat 150 50 

   Skin 5.6a 5.6a 

   Liver 0.44 0.44 

   GI tract 0.44b 0.44b 

   Rapidly-perfused 0.44 0.44 

   Slowly-perfused 5.59 5.59 

Permeability coefficients (l/h) 
  

   Brain 0.003 0.003 

   Fat 0.1 0.1 

   Slowly-perfused 0.7 0.7 

Kinetic constants   

   Stomach uptake ( 𝐾𝑠, h-1) 0.01 0.01 

   Intestine uptake ( 𝐾𝑖, h-1) 0.9 0.9 

   Stomach-intestine transfer ( 𝐾𝑠𝑖, h-1) 0.7 0.7 

   Fecal excretion ( 𝐾𝑓𝑒𝑐, h-1) 0.59 0.59 

   Dermal absorption (%) 1.5a 1.5a 

   Intestinal clearance (l/h)) 0 0.78 

   Km (µmol/l) 42c 138c 

   Vmax (µmol/kg bw/h) 65c 552c 

 cis-DCCA trans-DCCA 

Molar mass (g/mol) 209.1 209.1 

Kinetic constants   

   Urinary excretion (Kel, h-1) 0.06 0.06 

   Km (µmol/l)* 36c 36c 

   Vmax (µmol/kg bw/h)* 43c 133c 

* parameter values before calibration 
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a: Wei et al. (2013); b: Mirfazaelian et al. (2006); c: Willemin et al. (2015) 

2.2.3.3. Sensitivity analysis 

In order to identify the influence of each of the model’s parameters on the variable of interest— in this 

case the urinary excretion rate of cis- and trans-DCCA—we performed a sensitivity analysis. The 

equation used to calculate the normalized sensitivity coefficient of output I with respect to parameter 

j (NSC) is as follows: 

𝑁𝑆𝐶𝑖𝑗 =
Δr𝑖𝑗

r𝑖𝑗
×

Δp𝑗

p𝑗
          (7) 

 

Where p𝑗 is the value of parameter j, Δp𝑗 is the change in parameter j (used at 10% of p𝑗), r𝑖𝑗  is the 

corresponding model estimate for output i and Δr𝑖𝑗 is the corresponding change in in output i. 

2.2.3.4. Calibration of the model with human data 

The objective of calibration was to improve the model’s prediction capability in order to describe the 

experimental data as well as possible. For this, one or more of the model’s parameters (those identified 

by the sensitivity analysis described previously as being the most sensitive) were adjusted by 

maximizing the "maximum likelihood" function through the algorithms provided by acslX (here the 

Nelder-Mead algorithm seems to be the most suitable). 

The study by Ratelle et al. (2015) is unique in that measurements specific to certain scenarios (time 

course measurements of venous blood concentration, and urine concentration levels) were available 

for individual subjects for controlled exposures. 

The experimental data used are derived from a kinetic study on healthy volunteers who were 

administered oral permethrin (0.1 mg/kg bw, ratio cis:trans 40:60). The study included three men (age: 

24-37 years, body weight: 78-95 kg) and three women (age: 31-36 years, body weight: 54-70 kg). Blood 

samples were taken at set periods over 72 h following ingestion and complete timed-urine voids were 

collected over 84 h post-dosing.  

The predictive capacity of the model was evaluated using a Monte Carlo simulation. This method brings 

to draw randomly the weight of individuals in a uniform distribution between the lowest and highest 

weights (500 iterations between 78 and 95 kg for men and between 54 and 70 kg for women). The 

average age and BMI value for each gender was used. 

2.2.4. Software 

All the analyses were performed using R software (version 3.1.0, copyright 2014, The R Foundation for 

Statistical Computing) and Stata 14 software (StataCorp. 2015. Stata Statistical Software: Release 14. 
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College Station, TX: StataCorp LP). The PBK model and calibration were achieved using acslX™ software 

(version 3.0.0 The AEgis Technologies Group, Huntsville, AL, USA). 

2.3. Results 

2.3.1. Model calibration 

The model was parameterized prior to testing its ability to predict the biomonitoring data which were 

described in detail in the ENNS study.  

The sensitivity analysis showed that the parameters describing the hepatic metabolism of permethrin 

(depletion of permethrin and formation of DCCA, i.e. CYP450 pathway) strongly influenced the 

estimation of urinary cis- and trans-DCCA excretion. It was therefore important to refine the estimation 

of parameters Km and Vmax in order to improve the model’s prediction using experimental human 

data from Ratelle et al. (2015). These data were converted into cumulative cis- and trans-DCCA to 

incorporate them in our model during the calibration step. Since the gender of the "simulated" 

individual was taken into account in the model, these parameters were calibrated for men and women 

separately. Table 7 shows the Km and Vmax (for DCCA formation) parameter values before and after 

the calibration phase. The new values were determined by optimization with the Nelder-Mead 

algorithm. 

Table 7. Calibrated kinetic parameters. 

Parameter Initial value Calibrated for men Calibrated for women 

cis-DCCA 

   Km (µmol/l) 36 49.2 40.0 

   Vmax (µmol/h/kg pc) 43 41.9 37.0 

trans-DCCA 

   Km (µmol/l) 36 28.8 34.1 

   Vmax (µmol/h/kg pc) 133 114.4 139.9 
 

After using Monte Carlo simulations during the calibration step, the simulated cis- and trans- DCCA 

excretion were compared to the experimental data obtained in the study by Ratelle et al. (2015) (Figure 

13). Graphs A and C versus B and D revealed that the model tended to over-predict the urinary DCCA 

concentrations before the calibration phase. It was observed at all time points for male volunteers that 

predicted urinary excretion was higher than urinary concentration levels measured by Ratelle et al. 

(2015). For women volunteers, simulations were equivalent to measured urinary concentration before 

and after the calibration phase during the first hours after exposure but after 24h, the model over-

predict the urinary DCCA concentrations before the calibration phase. 
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Figure 13. Modeling cumulative urinary excretion of cis- and trans-DCCA in three men (A - B) and three 

women (C - D) before (A - C) and after (B - D) calibration, and measured cumulative urinary concentration 

after 0.1 mg/kg bw of oral permethrin.  

 

2.3.2. Simulated cis- and trans-DCCA urinary excretion 

The urinary excretion of cis- and trans-DCCA was simulated with the calibrated model according to our 

three exposure scenarios and for the subgroup (n=219). These simulations were then compared 

through a paired t-test with the measurements of metabolite urinary concentrations performed on 

these same individuals in the ENNS study. The geometric mean of the predicted urinary concentrations 
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of cis-DCCA, according to the “lower”, “intermediate” and “upper” scenarios, were respectively 0.019 

[0.017- 0.021] µmol/g creatinine, 0.96 [0.88-1.05] µmol/g creatinine and 1.91 [1.75-2.08] µmol/g 

creatinine. The geometric mean of the urinary concentrations of cis-DCCA measured in the ENNS study 

(0.28 [0.25-0.32] µmol/g creatinine) appeared to be located between the predicted urinary 

concentrations of the “lower” and “intermediate” scenarios. The statistical comparison of the urinary 

concentrations of cis-DCCA simulated according to our three scenarios versus the ENNS urinary 

concentrations of cis-DCCA was significantly unequal (all p-values < 2.2e-16). The geometric mean 

concentrations of the predicted urinary concentrations of trans-DCCA, according to the “lower”, 

“intermediate” and “upper” scenarios, were respectively 0.049 [0.043-0.055] µmol/g creatinine, 2.51 

[2.30-2.73] µmol/g creatinine and 4.96 [4.56-5.41] µmol/g creatinine. The geometric mean of the 

urinary concentration of trans-DCCA measured in the ENNS study (0.68 [0.59-0.79] µmol/g creatinine) 

appeared to be located between the predicted urinary concentrations of the “lower” and 

“intermediate” scenarios, like for cis-DCCA urinary concentrations. The statistical comparison of the 

urinary concentrations of trans-DCCA simulated according to our three scenarios versus the ENNS 

urinary concentrations of trans-DCCA was significantly unequal (all p-values < 2.2e-16), just like for the 

cis-DCCA urinary concentration comparisons. The hypotheses of scenarios “intermediate” and “upper” 

appear to overestimate permethrin exposure in relation to DCCA urinary concentrations. 

Table 8 and Table 9 present the simulated urinary excretion of cis- and trans-DCCA in men and women. 

The simulations from the “upper” scenario were well above both the cis-DCCA urinary concentrations 

measured in the ENNS population and the trans-DCCA urinary concentrations measured. These results 

were observed in both men and women. The comparison of mean concentrations of cis- and trans-

DCCA with paired t-tests corroborated these higher concentration levels because the test results were 

significantly different (all p-values being less than 2.2e-16). For both cis-and trans-DCCA urinary 

excretions and for both men and women, the concentration measured in the ENNS study appeared to 

be located between the predicted urinary concentrations according to the “lower” and “intermediate” 

scenarios. All the comparisons between predicted concentration levels and concentration levels 

measured in the ENNS study were significantly unequal for both cis- and trans-DCCA concentrations 

and for both men and women (all p-values < 2.2e-16). 

Table 8. Distribution of measured and simulated cis- and trans-DCCA urinary concentration levels (µmol/g 

creatinine) after calibration for men. 

 Men (n=74) GM* 95% CI min P25 P50 P75 P95 max 

cis-DCCA urinary concentration (µmol/g creatinine) 

   Scenario “lower” 0.01 [0.01-0.02] 0.002 0.01 0.01 0.03 0.06 0.14 

   Scenario “intermediate” 0.74 [0.64-0.85] 0.20 0.49 0.67 1.10 2.20 5.48 

   Scenario “upper” 1.45 [1.26-1.68] 0.39 0.96 1.34 2.19 4.37 10.9 

   ENNS study 0.23 [0.19-0.28] 0.05 0.13 0.18 0.46 1.05 2.18 
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trans-DCCA urinary concentration (µmol/g creatinine) 

   Scenario “lower” 0.04 [0.03-0.05] 0.006 0.02 0.03 0.08 0.17 0.37 

   Scenario “intermediate” 1.97 [1.71-2.28] 0.55 1.31 1.81 2.95 5.91 14.7 

   Scenario “upper” 3.91 [3.38-4.51] 1.04 2.61 3.61 5.88 11.7 29.4 

   ENNS study 0.57 [0.46-0.72] 0.09 0.26 0.48 1.18 5.56 5.77 

*GM: geometric mean 

 
Table 9. Distribution of measured and simulated cis- and trans-DCCA urinary concentration levels (µmol/g 

creatinine) after calibration for women. 

Women (n=145) GM* 95% CI min P25 P50 P75 P95 max 

cis-DCCA urinary concentration (µmol/g creatinine) 

   Scenario “lower” 0.02 [0.02-0.02] 0.003 0.01 0.02 0.04 0.1 0.22 

   Scenario “intermediate” 1.11 [1.00-1.22] 0.17 0.73 1.07 1.82 2.9 6.65 

   Scenario “upper” 2.19 [1.98-2.43] 0.34 1.43 2.15 3.54 5.81 13.1 

   ENNS study 0.31 [0.26-0.37] 0.05 0.16 0.24 0.5 2.34 17.9 

trans-DCCA urinary concentration (µmol/g creatinine) 

   Scenario “lower” 0.06 [0.05-0.06] 0.006 0.03 0.06 0.1 0.25 0.57 

   Scenario “intermediate” 2.83 [2.56-3.13] 0.43 1.88 2.74 4.66 7.43 17 

   Scenario “upper” 5.61 [5.07-6.21] 0.86 3.67 5.5 9.05 14.9 33.6 

   ENNS study 0.74 [0.61-0.90] 0.09 0.35 0.57 1.32 6.3 66 

*GM: geometric mean 

 

2.3.3. Contribution of sources and routes of exposure to simulated urinary 
concentrations of DCCA 

Table 10: Contribution (percent) of sources and pathways of exposure to simulated cis- and trans-DCCA 

concentrations 

Contribution (percent) Scenario “lower” Scenario “intermediate” Scenario “upper” 

Oral pathway 98 [97.6-98.4] 99.9 [99.9-100] 99.97 [99.96-99.98] 

   Dietary source 86.7 [84.2-89.2] 99.6 [99.4-99.7] 99.8 [99.7-99.9] 

   Dust source 11.3 [9-13.5] 0.38 [0.25-0.52] 0.2 [0.13-0.27] 

Dermal pathway 1.51 [1.22-1.82] 0.05 [0.03-0.07] 0.03 [0.02-0.04] 

   Dust source 1.48 [1.18-1.78] 0.05 [0.032-0.068] 0.026 [0.016-0.035] 

   Airborne particles source 0.25 [0.08-0.43] 0.006 [0.002-0.01] 0.003 [0.001-0.005] 

Inhalation pathway 0.49 [0.27-0.72] 0.008 [0.005-0.011] 0.004 [0.003-0.006] 

 

Table 10 presents the contribution of the different sources and pathways of exposure. For all three 

scenarios, the most important route of permethrin exposure is the oral pathway, which contributes 

from 98% to nearly 100%. The second route is the dermal pathway, which contributes from 0.03% to 

1.51%. Finally, the last route is the inhalation pathway, which contributes from 0.004 to 0.49%. 

Considering the sources of permethrin exposure, the main one is diet, which contributes from 86.7% 

to 99.8%, followed by dust (oral and dermal pathways) which accounts for 0.23% to 12.8% of 

permethrin exposure. The last source is air, which contributes 0.004% to 0.74% according to the 

different scenarios of exposure and thus appears to be a negligible source of exposure.  
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2.4. Discussion 

This study is an initial attempt to estimate the aggregate exposure of the adult French population to 

pyrethroids via various sources and routes of exposure. The authors’ proposed method of exposure 

estimation used data about environmental contamination (indoor and outdoor air, settled dust), 

dietary contamination and urinary concentration levels, all taking into consideration the variability of 

the population.  

Urinary concentrations measured in the ENNS study for both cis- and trans-DCCA are between the 

levels of urinary excretion simulated according to the “lower” and “intermediate” exposure scenarios. 

The difference between these two scenarios arises from the treatment of the left-censored data for 

food contamination. In the “lower” scenario, left-censored data are considered as zero, whereas the 

“intermediate” scenario considered left-censored data as the median of values sampled between zero 

and the limit of detection or quantification. Aggregate exposure estimates based on the “lower” 

scenario appear to underestimate exposure, while the hypothesis of the “intermediate” scenario may, 

on the other hand, lead to an overestimation of exposure. In 2000, European regulations classified 

permethrin as an active substance not approved for agricultural use. Its contamination of food should 

thus be closer to the hypothesis formulated in the “lower” scenario, i.e. considered as zero, this 

scenario appearing to be more “realistic”. However, its underestimation of exposure may have several 

causes. Due to a lack of data, some environmental exposure situations were not taken into account in 

the development of scenarios. This is notably the case for certain determinants which were highlighted 

in the ENNS study results but for which no information was available or collected during the ENNS 

study and which would have allowed us to build robust scenarios about the use of pesticides in indoor 

environments (insecticides, indoor plants or pets, occupational exposure) or outdoor environments 

(treatment of flower or vegetable gardens, etc.). The number of treatments performed, their duration, 

frequency, type or the quantity of product used (active substance) were not specified, thus making it 

difficult to refine the exposure scenarios integrating these kinds of activities. Yet the ENNS study 

showed that people treating their pets with flea treatments have a significantly higher level of 

metabolite concentrations than those who do not treat their animals. These treatments usually contain 

pyrethroids. People who treat pets can be acutely exposed during the treatment by inhalation or 

dermal contact but they can also be chronically exposed after the treatment due to the treatment’s 

efficiency, prolonged over several months. This exposure is possible via the dermal route, by indirect 

ingestion or by inhalation during daily care and games with the animal (pyrethroids being released into 

the air and/or dust, hand-to-mouth contact, etc.). 
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This lack of data makes it difficult to evaluate the underestimation of exposure. Furthermore, DCCA 

compounds are not a specific metabolite of permethrin but are also common to cypermethrin and 

cyfluthrin, which are authorized in Europe, especially for agricultural use. The urinary concentrations 

measured in the ENNS study are therefore not entirely due to exposure to permethrin. Therefore, an 

aggregate PBPK model integrating permethrin, cypermethrin, and cyfluthrin should better describe the 

urinary excretion of DCCA. In addition, but to a lesser extent, the scenarios do not take into account 

the probable presence of DCCA in the environment or food. This molecule is more hydrophilic than 

permethrin (DCCA: LogP = 4, permethrin: LogP = 6.5) and once ingested will be minimally absorbed. To 

our knowledge, no information is available on levels of DCCA contamination in the environment, but 

this may not be ruled out. 

Dietary exposure contributes to 86.7% of DCCA concentrations according to the “lower” scenario. 

However, the quantification of permethrin concentration in raw agricultural commodities (RACs) was 

0.11%. Only commodities for which permethrin is quantified contribute to permethrin exposure even 

if they are not frequently consumed. Despite the low quantification percentage, diet is the main source 

of exposure. Dust is the second source of exposure, with a total contribution to urinary excretion of 

12.8%, 11.3% via the oral route and 1.48% via dermal contact. Dust exposure by dermal contact is 

higher than dust exposure via indirect ingestion, with exposure medians of 1.4 ng/kg bw/d and 0.24 

ng/kg bw/d, respectively. Nevertheless, the results of the PBPK model indicate that oral exposure 

contributes more to DCCA excretion. This could indicate that the skin is a substantial barrier to 

exposure. 

PBK models for permethrin in humans have already been published (Tornero-Velez et al., 2012; Wei et 

al., 2013). Enhancements to the current model include using new experimentally-determined 

chemical-specific human parameters for model evaluation that were unavailable at the time earlier 

models were published. In addition, sensitivity analyses were used to determine which model inputs 

(parameters) were most influential for specific model responses (e.g. toxicologically relevant dose 

metrics or experimental measurements, for which data are or may become available). In the previous 

model, the scaled in vitro Vmax and Km were experimentally derived from a human hepatic microsome 

study (Scollon et al., 2009) with in vitro in vivo extrapolation (QIVIVE). Nevertheless, the model failed 

to describe the time-related pharmacokinetic data from the study by Ratelle et al. (2015). We decided 

to optimize metabolic parameters using the oral data for individual subjects: the use of data on human 

metabolism in this model limits the uncertainties related to QIVIVE that affected previous models. 

Obtaining gender-specific metabolic parameters reduced uncertainty about these parameters for 

individual men and women studied by Ratelle et al. (2015).  
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During the calibration phase, a sufficient number of DCCA urinary concentration measurements over 

time allowed us to precisely observe the kinetics of urinary excretion of metabolites during the first 

hours after ingestion. Before this step, the cis:trans–DCCA ratio was 1:1.79. The calibration phase 

produced a ratio of 1:2.60 which is closer to that measured in the ENNS study (1:2.43). However, the 

low number of subjects did not allow inter- and intra-individual variability of the kinetics of permethrin 

to be taken into account. Data on the differences between men and women with respect to carboxyl 

esterase (CaE) activity, which is responsible for permethrin hydrolysis and DCCA formation, are 

divergent. Studies have shown that in adult rats, CaE activity is lower in females (Morgan et al., 1994; 

Moser et al., 1998). In the study by Zhu et al. (2009), the authors concluded that gender is unlikely to 

be a regulatory factor of CaE activity in mouse and human liver. Butte and Kemper (1999) did not 

demonstrate a correlation between CaE activity and the age and/or gender of 48 human subjects 

either.  

However, measured urinary concentrations in the ENNS study of cis- and trans-DCCA were both higher 

for women than for men, especially for maximal measured values which were higher than simulated 

ones according to the “upper” exposure scenario.  Measured urinary concentrations of 3-PBA were 

also higher for women than for men, and seemed to be highly correlated with cis- and trans-DCCA 

urinary concentration. The same difference between men and women was observed for 3-PBA or 5 

pyrethroids metabolites (including 3-PBA, cis- and trans-DCCA) among New York City adult population 

(McKelvey et al., 2013) and the Canadian general population (Canadian Health Measures Survey, Ye et 

al. (2016)). This difference could come from a greater exposure of women to a source that the ENNS 

study would not have taken into account, like indirect exposure in the workplace (Fréry et al., 2013). 

For instance, among the 7 individuals with the highest urinary levels of pyrethroids metabolites in the 

ENNS study, 3 worked in hospitals. 

In risk assessment, uncertainty may be due to a lack of or limited knowledge about the routes of 

exposure, target population, exposure scenario, models or data used (Anses, 2016). Uncertainties 

remain in the proposed method, particularly because of the sensitivity of exposure models to 

contamination data, the analytical limits used during the contamination control and food monitoring 

surveys being too high. This explains why, although permethrin has been banned for agricultural use 

in Europe since 2000, the results from the “intermediate” scenario are higher than those measured in 

the ENNS study. Another uncertainty lies in the choice of the cis:trans-permethrin ratio used (40/60). 

This is the most frequently found ratio in literature for household products, but other ratios can be 

found (e.g. 25/75). Moreover, the first morning urine samples taken in the ENNS study mostly reflect 

exposure from the day before. It would have been better to have several samples taken at different 

times in order to obtain a better correlation between measured DCCA urinary concentration levels and 
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data from the diet study and interviews. The implementation of PBK models in risk assessment—and 

especially in exposure assessment—can contribute to the development of more realistic or refined 

exposure scenarios, particularly when using contamination data from food control surveys. The 

potential endocrine-disrupting effect of permethrin and its effects at low doses should prompt further 

investigations to refine exposures for risk characterization (Jin et al., 2012; Meeker et al., 2009). 

This work is an initial step in estimating the aggregate exposure of French adults to pyrethroids, from 

contaminated media to individuals’ simulated urinary concentrations. While this study focused on 

French adults, the method could be adapted to more sensitive populations or those more at risk—

especially children due to the contribution of dust in exposure to pyrethroids and frequent hand-to-

mouth activity. In addition, exposure scenarios considered only one compound—permethrin—but the 

DCCA metabolite is common to two other pyrethroid substances: cypermethrin and cyfluthrin. With 

additional complementary information, particularly on parameters and compounds, exposure could 

be better characterized and closer to that observed in the ENNS study. Moreover, the proposed 

method could be a baseline for a generic model of aggregate exposure to pyrethroids using 3-PBA as 

a biomarker. The PBK model could later be used to carry out inverse dosimetry studies, allowing us to 

build pyrethroid exposure scenarios based on measured urinary metabolite concentrations. This model 

could also help interpret biomonitoring data: our next focus will be on evaluating the toxicological 

implications of multi-route exposure, with a particular emphasis on how various routes of exposure 

contribute to internal dose metrics that could be relevant to neurotoxicity associated with exposure 

to permethrin in epidemiologic studies. 
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Abstract 

CYP3A4 is the major human cytochrome P450 isoform responsible for the metabolism of more than 

50% of known xenobiotics. Here, inter-ethnic differences in CYP3A4 metabolism have been 

investigated through a systematic review of pharmacokinetic data for 15 CYP3A4 probe substrates and 

parameters reflecting acute (Cmax, oral route) and chronic exposure (clearance and area under the 

plasma concentration-time curve, oral and intravenous route). All data were extracted in a structured 

database and meta-analyses were performed using a hierarchical Bayesian model in the R freeware to 

derive parameter, route and population-specific variability distributions for CYP3A4 metabolism. Two 

different approaches were applied. 1) Inter-individual differences were quantified using North 

American healthy adults as a reference group to compare with European, Asian, Middle East, and 

South-American healthy adults and with elderly, children and neonates. 2) Intra-ethnic–specific 

variability distributions were derived without comparing to a reference group. Overall, subgroup-

specific distributions for CYP3A4-variability provided the basis to derive CYP3A4-related uncertainty 

factors (UF) to cover 95th or 97.5th centiles of the population and were compared with the human 

default toxicokinetic UF (3.16). The results indicate that CYP3A4-related UFs in healthy adults were 

higher for chronic oral exposures (2.5-3.0, UF95 and UF97.5, 10 compounds) than for intravenous 

exposures (1.7-1.8, 2 compounds). All UFs were within the default TK UF. These distributions allow for: 

1) the application of CYP3A4-related UFs in the risk assessment of compounds for which in vitro 

CYP3A4 metabolism evidence is available without the need for animal data; 2) the integration of 

CYP3A4-related variability distributions with in vitro metabolism data into physiologically based kinetic 

(PBK) models for quantitative in vitro to in vivo extrapolation (QIVIVE) and 3) the estimation of UFs in 

chemical risk assessment using variability distributions of metabolism. 

 

Keywords: human variability; toxicokinetics; uncertainty factor; CYP3A4 

 

Highlights: 

• Systematic review of human kinetic parameters for 15 CYP3A4 probe substrates 

• Hierarchical Bayesian meta-analysis to quantify interethnic and intra-ethnic differences 

• The use of CYP3A4-specific uncertainty factors in chemical risk assessment  
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3.1. Introduction 

Human variability in pharmacokinetic (PK), toxicokinetic (TK) or kinetic processes (namely absorption, 

distribution, metabolism and excretion (ADME)) and pharmacodynamics (PD) or toxicodynamic (TD) 

or dynamic processes are key considerations in human risk assessment of chemicals, particularly for 1) 

the refinement of uncertainty factors (UF) using human data, 2) the development of physiologically-

based models, 3) the reduction of animal testing using quantitative in vitro to in vivo extrapolation 

(QIVIVE) models. To account for the variability in kinetic and dynamic processes across and within 

species, a 100-fold default UF has been applied for over 60 years to sub-chronic to chronic toxicity data 

in test species (rat, mouse, dog, rabbit) to derive safe levels of threshold toxicants for non-cancer risk 

assessment. This default value has been justified to allow for interspecies differences (10-fold) and 

human variability (10-fold) (Truhaut, 1991). Further refinements have been proposed to subdivide 

both factors to allow for differences in TK and TD with two equal default UFs (100.5 = 3.16) for the 

human variability (Renwick, 1993). Such subdivisions were introduced to allow the replacement of 

default UFs with chemical-specific adjustment factors (CSAF) or pathway-related (TK) or process-

related (TD) UFs intermediate options (Bhat et al., 2017; Dorne et al., 2001a; Renwick and Lazarus, 

1998). 

CSAFs are derived using chemical-specific data for either or both the TK and TD dimension using 

physiologically-based kinetic (PBK) models describing ADME processes from external to internal 

exposure or PBTK-TD models integrating the toxicity dose-response (Loizou et al., 2008). In order to 

support the use of such models, a key recommendation regards the better integration of human 

variability in TK, metabolism and TD when available (Barton et al., 2007; IPCS, 2010). This can also 

provide the basis for developing integrated testing strategies without the need for animal testing to 

move towards the use of QIVIVE (Bell et al., 2018) 

Pathway-related UFs quantifying human variability in a range of metabolic pathways have also been 

proposed as intermediate options between default UFs and CASFs and these were first applied to 

CYP1A2 and glucuronidation (Dorne et al., 2001a; Renwick and Lazarus, 1998; Walton et al., 2001b). 

Following this approach, pathway-related UFs have been published for renal excretion, a number of 

phase I and phase II enzymes as well as UFs allowing for variability in pharmacodynamics (Dorne et al., 

2001a; Dorne et al., 2003a; Dorne et al., 2003b; Dorne et al., 2004a; Dorne et al., 2005; Dorne et al., 

2002; Ginsberg et al., 2002; Naumann et al., 2001; Walton et al., 2001a; Walton et al., 2001b). 

Amongst the key phase I enzymes, the CYP3A isoform constitutes the most abundant CYP in the liver 

(29%) and intestine (70%) and has a major role in the metabolism of a large number of drugs, 

endogenous hormones, bile acids, fungal and plant products, including 50% of all known drugs and 
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xenobiotics (Buratti et al., 2011; Cotreau et al., 2005; Dorne et al., 2003a). The CYP3A subfamily 

consists of four CYP genes: 3A4, 3A5, 3A7 and 3A43, sharing a high sequence similarity of at least 85%. 

The CYP3A4 isoform represents ~85% of hepatic and intestinal CYP3A. CYP3A5 is predominantly 

expressed in extrahepatic tissues while CYP3A7 is the main isoform in fetal liver (up to 50%) (De Wildt 

et al., 1999; Dorne et al., 2003a; Stevens et al., 2003; Zanger and Schwab, 2013). 

Analysis of human variability in CYP3A4 metabolism has been previously carried out by Dorne et al. 

(2003a) in order to compare healthy adults (mostly Caucasian) to various subpopulations, such as 

Asians, African and Mexican. In addition, CYP3A4 metabolism in various age groups, such as neonates, 

children and elderly was compared to adults. However, a distinction between European and North 

American population was not made and the paper did not include intra-ethnic variability in the 

subgroups. CYP3A4 related UFs were based on limited studies. Since then, considerable PK studies 

have been conducted with regards to CYP3A4 probe substrates and this provide a means to update 

knowledge on human variability for the CYP3A4 pathway. In this work, a full-Bayesian approach is 

proposed for the meta-analysis of pharmacokinetic data using a multi-level hierarchical model to 

integrate quantifiable sources of variability, including inter-study, inter-ethnic, intra-ethnic and inter-

individual variability for populations of different ages. In this context, inter-individual variability and 

related UFs are derived for each group and each pharmacokinetic parameter. Finally, a perspective on 

future integration of CYP3A4-variability distributions in PBPK and QIVIVE models is discussed. 

3.2. Material and methods 

3.2.1. Extensive Literature Search and Data collection 

An extensive literature search (ELS) was performed to identify human PK studies for CYP3A4 probe 

substrates in healthy adults from a range of ethnic backgrounds and in subgroups of the population: 

elderly, children and neonates. The ELS was performed by two independent reviewers for the period 

January 2002-January 2017 using PubMed and Scopus [25, 26]. Probe substrates of CYP3A4 were 

identified from the literature as compounds that are extensively metabolised by CYP3A4 (>60%) using 

in vitro evidence to identify relevant metabolites combined with urinary excretion profiles expressed 

on a dose metric basis. For each CYP3A4 probe substrate, measured PK parameters, reflecting chronic 

and acute exposure (AUC/clearance and Cmax, respectively), after an oral intake or intravenous 

injection (IV) were extracted. Table 11 provides a summary of the individual key words applied for the 

ELS. 

 

Table 11 List of queries used for the ELS (formatted for Scopus). 
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Search 

CYP3A4 probe 

substrate 

TITLE-ABS (“name of probe substrate”)   

Population ( TITLE-ABS ( human )  OR  TITLE-ABS ( adult )  OR  TITLE-

ABS ( adults )  OR  TITLE-ABS ( child )  OR  TITLE-

ABS ( children )  OR  TITLE-ABS ( infant )  OR  TITLE-

ABS ( neonate )  OR  TITLE-ABS ( newborn )  OR  TITLE-

ABS ( newborns )  OR  TITLE-ABS ( elderly )  OR  TITLE-

ABS ( "pregnant women" )  OR  TITLE-ABS ( men )  OR  TITLE-

ABS ( women )  OR  TITLE-ABS ( "ethnic group" )  OR  TITLE-

ABS ( caucasian )  OR  TITLE-ABS ( asian )  OR TITLE-

ABS ( african )  OR  TITLE-ABS ( "genetic 

polymorphism*" )  OR  TITLE-ABS ( "individual 

susceptibility" ) OR  TITLE-ABS ( "gene environment" )  OR  TITLE-

ABS ( "ethnic variability" )  OR  TITLE-ABS ( "Afro 

American" ) OR  TITLE-ABS ( hispanic )  OR  TITLE-ABS ( "race 

difference" )  OR  TITLE-ABS ( "age difference" )  OR  TITLE-

ABS ( "race differences" )  OR  TITLE-ABS ( "age 

differences" )  OR  TITLE-ABS ( "gender differences" )  OR  TITLE-

ABS ( "gender difference" )  OR  TITLE-ABS ( "sex 

difference" )  OR  TITLE-ABS ( "sex differences" ) ) 

Outcomes ( TITLE-ABS ( auc )  OR  TITLE-

ABS ( area  under  the  curve )  OR  TITLE-

ABS ( area  under  curve )  OR  TITLE-ABS ( half  life )  OR  TITLE-

ABS ( half-life )  OR  TITLE-ABS ( half-lives )  OR  TITLE-

ABS ( clearance )  OR  TITLE-ABS ( cmax )  OR  TITLE-

ABS ( vmax )  OR  TITLE-ABS ( km )  OR  TITLE-ABS ( "michaelis 

constant" )  OR  TITLE-ABS ( pharmacokinetic )  OR  TITLE-

ABS ( pharmacokinetics )  OR  TITLE-

ABS ( toxicokinetic )  OR  TITLE-ABS ( toxicokinetics ) ) 

Exclusion ( TITLE-ABS ( "cell line*" )  OR  TITLE-ABS ( "cell culture*" ) ) 

TITLE-ABS: term searched only in the title and the abstract of the paper. 

 
Primary screening of the literature was carried out on titles and abstracts, after removal of duplicates. 

The following exclusion criteria were applied to peer-reviewed publications in English reporting studies 

that were not relevant to CYP3A4 kinetics in healthy humans: 1. other species, 2. in vitro, 3. 

development of analytical methods, 4. modelling, 5. pharmacodynamics investigations only, 6. studies 

for unhealthy individuals, 7. substrates other than those identified as relevant. 

Articles meeting the exclusion criteria were excluded from further analysis and were not imported into 

the EndNote® reference software for further evaluation. Reviews and book chapters were not 

considered for data extraction as they do not report primary datasets. This prevents multiple inclusion 

of the same dataset from different references.  
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A second screening was performed on each full-text article to evaluate the methodological quality of 

the selected PK studies including design, analysis and reporting, which may lead to biased results. Here, 

the Klimish scoring system was not considered relevant and a specific scoring system is proposed as 

described in Table 12. 

Table 12 Scoring system applied for the secondary screening 

Population 0 No information 

1 at least number, age and health status  

2 ethnic group and other information 

Methodology 0 insufficient description 

1 inaccuracies in some points  

2 full description 

Results 0 no pharma/toxicokinetics data 

1 pharma/toxicokinetics data without descriptive statistics  

2 pharma/toxicokinetics data with variability information 

 
The scoring system was applied as follows: the required score for inclusion was 1-2 for the sections 

“Population” and “Methodoloy”, while a score of 2 for the “Results” section need to be fulfilled. 

3.2.2. Meta-analysis  

3.2.2.1. Standardisation of datasets 

Data standardisation for all PK parameters collected in the database was required to perform the meta-

analysis in a harmonised manner for each parameter. Body weight was expressed in kg. When 

available, mean body weight recorded from the study was used. Otherwise, a body weight was 

allocated according to the country of origin using data from Walpole et al. (2012). Dose, AUC, Cmax 

and Clearance were expressed in mg/kg bw, ng.h/ml/dose, ng/ml/dose and ml/min/kg bw 

respectively. 

Data from the PK studies were mostly reported either as arithmetic means (X) and standard deviations 

(SD) or by geometric mean (GM) and geometric standard deviation (GSD). Since PK data are generally 

recognised to be lognormally distributed (Dorne et al., 2001a; Naumann et al., 1997; Renwick and 

Lazarus, 1998), the geometric mean (GM) and geometric standard deviation (GSD) are appropriate to 

summarise a lognormal distribution, all data were harmonised to GM and GSD. When these measures 

were not reported, they were estimated for each individual study using the following equations: 

 𝐺𝑀 = 𝑋 √(1 + 𝐶𝑉𝑁
2)⁄  (1) 

 𝐺𝑆𝐷 = exp (√ln(1 + 𝐶𝑉𝑁
2))  (2) 

Where 𝐶𝑉𝑁 is the coefficient of variation for normally distributed data given by: 

 𝐶𝑉𝑁 = 𝑆𝐷 𝑋⁄   (3) 
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In the cases that the SD was not reported, it can be estimated from standard error SE (SEM), 𝐶𝑉𝑁 and 

95% confidence interval of the mean according to the equations (4), (5) and (6). 

 𝑆𝐷 = √𝑛 𝑆𝐸 (4) 

 𝑆𝐷 = 𝐶𝑉𝑁 𝑋 (5) 

 𝑆𝐷 = [(𝑈𝐶𝐼 − 𝐿𝐶𝐼) (2𝑡0.975,n−1)]⁄ √n (6) 

where UCI and LCI refer to upper and lower bounds of confidence interval and t0.975,n−1 is the 97.5 

percentile of the t distribution with n - 1 degrees of freedom (we assumed that for a symmetric 

confidence interval, the confidence interval is constructed in the common way: X ± t × SE)). 

For non-symmetric confidence intervals, it is assumed that the confidence interval is constructed 

around a geometric mean. According to Higgins et al. (2008), the geometric standard deviation is 

estimated as follows: 

 𝐺𝑆𝐷 = exp [(ln(𝑈𝐶𝐼) − ln (𝐿𝐶𝐼)) 2𝑡1−𝛼 2⁄ ,   𝑛−1] √𝑛⁄  (7) 

For some studies, standard deviation was reported but not specified to be arithmetic or geometric. 

These were considered as GSD when reported together with a Geometric mean. The same assumption 

was applied to CV.  

Here, it is important to highlight that estimation of variability from an interval using equation (6) or (7) 

results in overestimated variability values.  

3.2.2.2. Bayesian hierarchical model for meta-analysis 

The objective of the meta-analysis is to provide accurate information on the means (μj) and the inter-

individual variability (τj) of the PK parameters for a substrate ‘j’, based on the combination of results 

from multiple independent studies ‘k’. For each compound and parameter, it is thus necessary to 

properly separate and identify the variability related to differences between studies (τstudy), the 

variability related to differences between substrates (τsubstrate) and the variability related to differences 

between individuals (τj) by decomposing the variance of the PK parameter (clearance, AUC or Cmax). 

Consequently, a hierarchical model was developed based on the generic hierarchical Bayesian model 

for the meta-analysis of human population variability in kinetics described by Wiecek et al. (2019). The 

structure of the model showing the conditional dependencies among the population and the individual 

parameters are summarised graphically in Figure 14. 

On the logarithmic scale, each individual value for a chosen PK parameter Xijk with i=1,2,3…,n is 

assumed to be independently and identically distributed according to a normal distribution of mean μ 

and variance σ² for a given substrate j in a given study k. Therefore, according to the central limit 
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theorem, the means and the variances 𝑋𝑗𝑘
̅̅ ̅̅ =

1

𝑛
∑ 𝑋𝑖𝑗𝑘

𝑛
𝑖=1  and 𝑆𝑗𝑘 =  

1

𝑛𝑗𝑘−1
∑ (𝑋𝑖𝑗𝑘

𝑛
𝑖=1 − 𝑋𝑗𝑘

̅̅ ̅̅ )² are 

independent conditionally to the study and the substrate and distributed according to: 

 𝑋𝑗𝑘
̅̅ ̅̅  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇,

𝜎²

𝑛
)  (8) 

 𝑉𝑗𝑘  ~ 
𝜎²

𝑛
𝐶ℎ𝑖2(𝑛 − 1) (9) 

From the literature review, the individual PK parameters Xijk are not provided and only the geometric 

means (gmjk) and the variance (vjk) are available for a substrate j in a given study k. Consequently, the 

log of the geometric means (lgmjk) and the variance (lvjk) are used and modeled by:  

 𝑙𝑔𝑚𝑗𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑗𝑘 ,
1

𝑛𝑗𝑘𝜏𝑗
) (10) 

 𝑙𝑣𝑗𝑘  ~ 
1

𝑛𝑗𝑘𝜏𝑗
𝐶ℎ𝑖2(𝑛𝑗𝑘 − 1) (11) 

where 𝜏𝑗 is the precision (inverse of the variance) that describes the inter-individual variability 

regarding the substrate j. This model accounts for all the information recorded from the study under 

the assumption of lognormality of data, and allows for the inference on the inter-individual variability 

𝜏𝑗, that is the key parameter in this work.  

In order to properly describe inter-study and intra-substrate variability, a second layer in the model is 

required. It was built assuming that 𝜇𝑗𝑘  is normally distributed around the substrate-specific mean 

𝜇𝑗  with the inter-study variance 𝜏𝑠𝑡𝑢𝑑𝑦: 

 𝜇𝑗𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑗 ,
1

𝜏𝑠𝑡𝑢𝑑𝑦
) (12) 

Due to simplicity and to avoid identifiability issues, the inter-study variability 𝜏𝑠𝑡𝑢𝑑𝑦 was assumed to 

be identical for all substrates. 

Bayesian inferences are used to infer on parameters of the model as it was seen as the most convenient 

approach to handle such a multi-level model.  Since the purpose of this model is the meta-analysis of 

data from an extensive literature search (data published after 2002), informative priors were chosen 

from Dorne et al. (2003a) where the literature search stopped after April 2001. For the same reason, 

it was not consistent to look at expert knowledge to fix proper prior distributions because it may be 

related to data from the literature used to run the model. The JAGS software (Plummer, 2003) is used 

to implement the model, the chi-square distribution being described using a Gamma distribution of 

parameters: 

 𝑙𝑣𝑗𝑘  ~ 𝐺𝑎𝑚𝑚𝑎 (
njk−1  

2
,

τj njk 

2
). (13) 
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For each meta-analysis, 2 different Markov chains were run and convergence of the chains was 

assessed via Gelman-Rubin tests implemented in the Coda package of the R software (Plummer et al., 

2006). 

 
Figure 14 Graphical representation of the hierarchical model for meta-analysis. 

Squares represent the known quantities: the logarithm of the geometric mean (lgm) and variance (lv) of the 

study k for the substrate j, the number of individuals of this study (n) and a=(n-1)/2. Circles represent 

unknown quantities to be updated via Bayesian inferences: the mean (μjk) and the precision (τjk) of lgm, the 

mean (μj) and the precision (τj) of the PK parameter for the substrate j and b=n.τj/2, inter-study precision 

(τstudy). Solid arrows represent a stochastic link and dashed arrows represent a deterministic link. 

 

3.2.3. Derivation of probabilistic CYP3A4-related uncertainty factors 

The Bayesian hierarchical model for the meta-analyses was implemented for each PK parameter with 

the highest providing a distribution of inter-individual variability for each PK parameter. Uncertainty 

around each parameter was quantified using median values and 95% confidence intervals for each 

parameter estimation. The coefficient of variation was also estimated as follows: 

 𝐶𝑉 = √𝑒𝑥𝑝(ln(√exp (1 τ𝑗⁄ ))
2

− 1 (14) 

CYP3A4-related UFs were calculated as the ratio between the percentile of choice and the median of 

the distribution for each PK parameter and each sub-population with the equation (15). 

 𝑈𝐹95 = 𝑃95𝑠𝑢𝑏.𝑝𝑜𝑝/𝑃50𝑟𝑒𝑓.𝑝𝑜𝑝 (15) 

95th and 97.5th centiles were estimated. Higher centiles were expected to be driven by the very end of 

the distribution and therefore to be very sensible and uncertain, especially because lognormal 

distributions were used. 
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The Bayesian modelling provided a distribution of values for the parameter τ𝑗. This makes it possible 

to provide a distribution of values for the uncertainty factors. 

The differences in internal dose between each healthy subgroup and general healthy adults for kinetic 

parameters were calculated based on the µ𝑗 ratio. This ratio reflects the differences in internal dose 

so that a value >1 indicated a higher internal dose (Dorne, 2010). 

3.2.4. Software 

All statistical analyses and graphical display of the data were performed using R (version 3.5). The 

Bayesian modelling was implemented with Jags (4.2.0) (Plummer, 2003). References from ELS were 

saved in EndNote (X8) files. 

3.3. Results 

3.3.1. Overview of data collection 

A total of 2858 papers were assessed from Scopus and PubMed, dealing with 15 CYP3A4 probe 

substrate (alfentanil, alprazolam, budesonide, cisapride, diltiazem, felodipine, lidocaine, lovastatin, 

midazolam, nifedipine, nisoldipine, simvastatin, terfenadine, triazolam, zolpidem) (Dorne et al., 2003a; 

García et al., 2003). Figure 15 summarises the flow of information of the ELS. The complete list of 

relevant articles is provided in Supplementary material A. From two independent screenings, 200 

relevant papers were included in the database for extraction. 194 papers were reporting healthy adults 

PK data and only few reported PK data with respect to elderly, neonate and children, respectively 6, 2 

and 1. A summary of all kinetic data for healthy adults is presented in Figure 16. The full dataset of 

extracted information used in this review can be accessed on EFSA knowledge junction. 

Figure 16 shows the raw data for each substrate and parameter of acute (Cmax) and chronic exposure 

(clearance and AUC) for the intravenous and oral route. As illustrated in Figure 16, the amount of data 

available varied from one substrate and route to another as well as the reported geometric means 

(GM) for all kinetic parameters due to inter-substrate differences in kinetics. Midazolam was the most 

studied CYP3A4 probe substrate with 115 data points for clearance (ranging from 7.10e-4 to 11.1 

ml/min/kg bw) while budesonide was the least studied (1 data points for clearance 9.2 ml/min/kg bw). 

Alfentanil, lidocaine, midazolam, triazolam and zolpidem, represented 25% of the database for the IV 

route, whereas no relevant data (oral or IV) were available for nisoldipine and terfenadine. 
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Figure 15 Flow diagram illustrating the extensive literature search of human pharmacokinetic studies for 

15 probe substrates of CYP3A4 

 
Table 13 provides an overview of the number of substrates, number of studies with the corresponding 

extracted data, and individuals included in each meta-analysis. 

Table 13 Summary of the number of CYP3A4 substrates, pharmacokinetic studies and individuals in the 

meta-analyses  
Nsubstrate ns n 

Oral administration 

AUC 
(ng.h/ml/dose) 

11 199 2921 

Cl (ml/min/kg bw) 10 134 1603 
Cmax (ng/ml/dose) 12 221 3211     

Intravenous administration 

AUC 
(ng.h/ml/dose) 

4 40 577 

Cl (ml/min/kg bw) 6 50 734 
Nsubstrate: number of CYP3A4 substrates, ns: number of studies, n: number of individuals 
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Figure 16 Log geometric mean of extracted kinetic parameters from the included papers after 

standardization. A: clearance ; B: AUC ; C: Cmax. Squares: oral exposure ; red circles : IV exposure. 

 

3.3.2. Inter-ethnic differences in CYP3A4 and CYP3A4-related uncertainty 
factors 

 

The country of origin of the individuals in each study was indicated, while ethnic origin was not 

systematically spelt out. Moreover, the studies were more often carried out in a national laboratory 

or in a continent-wide context (US, Europe) so that results were grouped by continent. Kinetic data 

were available for European, East Asian, South Asian, Southeast Asian, North American, South 

American, Middle East and South African healthy adults. The majority of the data were from North 

America studies, East Asian and European studies. In order to estimate inter-ethnic differences, the 

North American healthy adult sub-group was used as the reference group with the highest number of 

CYP3A4 substrates and parameters for the oral and intravenous routes taken together. 
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Values from the meta-analysis of CV for inter-individual variability considering all substrates (Table 14 

to Table 17) highlight a lower inter-individual variability for the IV route compared to the oral route. 

The biological basis for this difference is well known and results from the fact that CYP3A4 is expressed 

in both the liver and the intestine (Cotreau et al., 2005; De Wildt et al., 1999). The estimated variability 

for the oral route thus reflects CYP3A4-metabolism in the intestine and the liver whereas the estimated 

variability after IV exposure reflects only CYP3A4-metabolism in the liver (Dorne et al., 2003a). Overall, 

inter-individual variability in kinetic parameters for healthy adults (North America) are consistent with 

the results of Dorne et al. (2003a) providing values, of 56% and 51% for the oral route (clearance/AUC 

and Cmax) and 43% and 31% (Clearance/AUC and Cmax) for the IV route. It is noted that the CVs for 

diltiazem, lovastatin and simvastatin clearance were much higher at 80%, 111% and 93% respectively, 

for the oral route but these were based on very limited data with only one study per substrate. CYP3A4-

related UFs were estimated for the 95th and 97.5th centiles (Table 14 to Table 17). For the oral route, 

the UF95 and UF97.5 were 2.5-3.0, 2.3-2.7 and 1.9-2.2 for AUC, clearance and Cmax respectively. 

Intra-ethnic and interethnic differences for healthy European, East Asian and Middle East adults 

showed similar CYP3A4-related UFs as those for healthy North American adults. However, inter-ethnic 

differences using the North American group as the reference group for specific substrates with limited 

studies, such as nifedipine, showed discrepancies with lower internal dose for AUCs (oral) and Cmax in 

healthy European adults (ratio of 0.7 and 0.2) and higher internal dose for healthy Middle East adults 

(ratio of 3.6 and 4.5).  

Dorne et al. (2003a) found a two-fold internal dose difference between healthy South Asian adults and 

healthy caucasian with a similar variability compared with other ethnic groups. In the present work, 

CYP3A4-related UFs allowing for intra-ethnic differences in healthy South Asian adults were the lowest 

estimated (1.4-1.5 for AUC and Cmax, UF95 and UF97.5 centile respectively) with overall CVs of 22% and 

20% (4 compounds). CYP3A4-related UFs for interethnic differences were slightly higher for AUC and 

Cmax (3 compounds), 2.4-2.6 and 2.0-2.2 respectively, mainly due to simvastatin studies for which 

internal dose was 3.3 times higher than in healthy North American adults. It is noted that in this case, 

the interval of confidence (95%) was very large, from 0.3 to 48 for simvastatin AUC after oral 

administration (1 study). 

Regarding healthy Southeast Asian, South African and South American adults, the number of studies 

and therefore the number of data was much lower than for other populations. The uncertainty in the 

results for those populations is thus high and have to be taken with caution. No new data were found 

for healthy Mexicans and sub-Saharan Africans since the previously published meta-analysis (Dorne et 

al., 2003a). However, in this previous analysis the estimated internal dose differences allowing for 
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inter-ethnic differences between Caucasian, Mexicans and sub-Saharan Africans for CYP3A4 probe 

substrates were estimated to be 3-fold (2 compounds, 2 study) and 1.5-fold (2 compounds, 3 study) 

respectively. 

Table 14 Inter-individual differences in the AUC (ng.h/ml/dose) of CYP3A4-probe substrates in healthy 

adults after oral administration: comparison with healthy North American adults 
 

     Ratio 
GM 

Intra-ethnic Interethnic 

Drug ns n CV GM UF95 (95% CI) UF97.5 (95% CI) UF95 (95% CI) UF97.5 (95% CI) 

North America 

alfentanil 10 144 55 1533  2.3 [2.0-3.0] 2.7 [2.2-3.6]      

alprazolam 6 54 35 18300  1.7 [1.5-2.3] 1.9 [1.6-2.7]      

diltiazem 1 14 76 527  3.1 [1.8-10] 3.9 [2.0-16]      

lovastatin 5 43 78 99  3.2 [2.1-6.5] 3.9 [2.4-9.4]      

midazolam 27 451 48 840  2.1 [1.9-2.4] 2.4 [2.1-2.9]      

nifedipine 1 25 45 1118  2.0 [1.5-3.9] 2.3 [1.6-5.0]      

simvastatin 2 51 87 55  3.5 [2.3-7.0] 4.4 [2.7-10]      

triazolam 6 84 46 3328  2.1 [1.7-2.8] 2.4 [1.9-3.4]      

zolpidem 6 73 57 3126  2.4 [1.9-3.5] 2.8 [2.1-4.5]      

overall   51    2.3 [1.6-5.9] 2.7 [1.7-8.2]      

Europe 

budesonide 2 24 52 105  2.2 [1.6-4.9] 2.6 [1.7-6.6]      

diltiazem 5 33 35 452 0.86 1.8 [1.4-2.7] 2.0 [1.5-3.2] 2.0 [1.5-2.8] 2.3 [1.7-3.2] 
midazolam 13 182 40 1018 1.21 1.9 [1.7-2.2] 2.1 [1.8-2.6] 2.3 [1.9-2.8] 2.6 [2.1-3.3] 
nifedipine 8 164 59 745 0.67 2.4 [2.0-3.1] 2.9 [2.3-3.9] 2.3 [1.9-2.8] 2.5 [2.1-3.0] 
simvastatin 6 63 56 39 0.71 2.4 [1.8-3.6] 2.8 [2.1-4.5] 2.1 [1.6-2.7] 2.2 [1.7-3.0] 
zolpidem 1 24 60 3839 1.23 2.5 [1.7-5.8] 3.0 [1.9-8.1] 3.1 [1.7-8.5] 3.7 [1.9-12] 
overall   52    2.2 [1.5-4.1] 2.5 [1.7-5.4] 2.3 [1.6-5.2] 2.5 [1.8-6.6] 

East Asia 

alprazolam 3 19 21 47995 2.62 1.4 [1.2-2.1] 1.5 [1.3-2.4] 3.8 [2.4-6.9] 4.1 [2.5-7.7] 
diltiazem 4 61 35 838 1.59 1.8 [1.5-2.4] 2.0 [1.6-2.8] 2.9 [1.9-4.4] 3.2 [2.1-5.1] 
felodipine 1 30 50 341  2.2 [1.6-4.0] 2.6 [1.8-5.3]      

lovastatin 7 59 58 34 0.34 2.4 [1.8-3.9] 2.9 [2.1-5.1] 4.1 [2.8-5.8] 4.3 [3.0-6.3] 
midazolam 35 342 59 977 1.16 2.5 [2.1-2.9] 2.9 [2.4-3.6] 2.9 [2.3-3.6] 3.4 [2.7-4.4] 
nifedipine 9 325 40 1375 1.23 1.9 [1.7-2.1] 2.1 [1.9-2.4] 2.3 [1.8-3] 2.6 [2.0-3.4] 
simvastatin 14 257 64 39 0.71 2.6 [2.2-3.2] 3.2 [2.6-4.1] 2.1 [1.7-2.6] 2.2 [1.8-2.8] 
triazolam 2 15 54 2296 0.69 2.4 [1.5-7.4] 2.8 [1.7-11] 1.8 [0.9-3.6] 1.9 [0.9-3.8] 
zolpidem 6 61 42 3190 1.02 2 [1.6-2.7] 2.2 [1.7-3.2] 2.0 [1.4-3.2] 2.3 [1.5-3.7] 
overall   50    2.1 [1.3-3.7] 2.4 [1.4-4.8] 2.6 [1.3-5.3] 2.9 [1.4-5.7] 

South Asia  
diltiazem 3 36 23 697 1.32 1.4 [1.3-1.9] 1.6 [1.3-2.1] 2.0 [0.2-15] 2.1 [0.3-16] 
felodipine 1 24 15 1597  1.3 [1.2-1.6] 1.3 [1.2-1.8]      

nifedipine 2 15 20 1644 1.47 1.4 [1.2-2.3] 1.5 [1.2-2.7] 1.9 [0.4-6.4] 2.0 [0.4-6.7] 
simvastatin 1 14 47 185 3.36 2.1 [1.5-6.4] 2.5 [1.6-9.2] 6.1 [0.3-39] 7.0 [0.3-48] 
overall   22    1.4 [1.2-3.8] 1.5 [1.2-5.0] 2.4 [0.3-30] 2.6 [0.3-36] 

Southeast Asia  
nifedipine 1 9 51 1031 0.92 2.2 [1.4-4.8] 2.5 [1.5-6.6] 1.4 [0.1-4.9] 1.5 [0.1-5.4] 
simvastatin 2 27 47 32 0.58 2.1 [1.5-3.9] 2.4 [1.7-5.2] 2.4 [0.3-6.2] 2.6 [0.3-6.9] 
overall   49    2.1 [1.5-4.6] 2.4 [1.6-6.2] 1.9 [0.2-5.6] 2.1 [0.2-6.2] 

South America  
budesonide 1 42 28    1.6 [1.4-2.1] 1.7 [1.4-2.4]      

simvastatin 1 44 118 58 1.05 4.7 [2.8-12] 6.4 [3.4-19] 6.3 [0.1-72] 8.2 [0.1-102] 
overall   44    2.4 [1.4-9.8] 2.9 [1.5-15]      

Middle East  
felodipine 1 10 49 126  2.1 [1.4-4.4] 2.5 [1.5-5.9]      

lovastatin 1 14 8 84 0.85 1.1 [1.1-1.4] 1.2 [1.1-1.5] 1.4 [0.1-5.7] 1.5 [0.1-6.1] 
nifedipine 1 6 27 4015 3.59 1.5 [1.2-2.8] 1.7 [1.2-3.4] 5.7 [0.3-30] 6.3 [0.3-35] 
simvastatin 3 70 53 63 1.15 2.4 [1.9-3.5] 2.8 [2.1-4.5] 2.7 [0.4-8.4] 3.1 [0.4-8.9] 
overall   38    1.8 [1.1-3.7] 2.0 [1.1-4.7] 2.6 [0.2-22] 2.9 [0.2-26] 

South Africa (caucasian)  
felodipine 1 12 41 164  2 [1.4-6.0] 2.2 [1.4-8.4]      
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ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between subgroup and healthy 

adults from north America (lognormal distribution) 

 

Table 15 Inter-individual differences in the clearance (ml/min/kg bw) of CYP3A4-probe substrates in 

healthy adults after oral administration: comparison with healthy North Americans adults 
 

     Ratio 

GM 

Intra-ethnic Interethnic 

Drug ns n CV GM UF95 (95% CI) UF97.5 (95% CI) UF95 (95% CI) UF97.5 (95% CI) 

North America  

alfentanil 9 134 59 11  2.5 [2.0-3.2] 2.9 [2.3-4]      

alprazolam 5 57 44 0.33  2.0 [1.6-2.9] 2.3 [1.8-3.5]      

diltiazem 1 14 80 32  3.3 [1.8-13] 4.2 [2-21]      

lovastatin 1 10 111 302  4.4 [2.0-16] 5.7 [2.2-25]      

midazolam 30 524 47 13  2.1 [1.9-2.3] 2.4 [2.1-2.8]      

nifedipine 1 18 64 12  2.7 [1.7-9.6] 3.3 [1.9-15]      

simvastatin 1 40 93 0.32  3.7 [2.4-8.1] 4.7 [2.8-12]      

triazolam 7 97 47 5.4  2.1 [1.7-2.7] 2.4 [1.9-3.3]      

zolpidem 6 73 69 4.6  2.8 [2.1-4.5] 3.4 [2.4-6.0]      

overall   56    2.5 [1.7-9.3] 3.0 [1.9-14]      

Europe  

budesonide 1 12 53 155  2.4 [1.5-9.7] 2.8 [1.6-15]      

midazolam 10 129 44 14 0.93 2.0 [1.7-2.5] 2.3 [1.9-3.0] 2.2 [1.4-3.4] 2.5 [1.6-3.9] 

overall   46    2.1 [1.6-6.6] 2.4 [1.7-9.6]      

East Asia  

alprazolam 3 19 26 0.71 0.46 1.5 [1.2-2.7] 1.7 [1.3-3.2] 3.4 [1-12] 3.7 [1.1-14] 

diltiazem 1 12 9 7.4 4.32 1.2 [1.1-1.5] 1.2 [1.1-1.6] 31 [4.1-128] 45 [5.9-185] 

lovastatin 5 23 40 336 0.90 1.9 [1.4-3.7] 2.1 [1.5-4.8] 2.2 [0.7-7.4] 2.5 [0.8-8.8] 
midazolam 33 324 45 14 0.93 2.0 [1.8-2.3] 2.3 [2.0-2.7] 2.2 [1.5-3.3] 2.5 [1.7-3.8] 

nifedipine 3 28 53 14 0.86 2.3 [1.6-4.5] 2.7 [1.8-6.1] 2.8 [0.8-11] 3.3 [0.9-14] 

simvastatin 9 10 64 1.02 0.31 2.6 [2.1-3.4] 3.1 [2.5-4.3] 8.3 [3.8-18] 10 [4.5-21] 
triazolam 1 12 60 6.6 0.82 2.5 [1.5-5.2] 2.9 [1.7-7.0] 3.0 [0.3-15] 3.6 [0.4-18] 

zolpidem 5 49 82 4.7 0.98 3.3 [2.2-6.5] 4.1 [2.6-9.2] 3.5 [1.2-11] 4.3 [1.4-16] 
overall   48    2.1 [1.1-4.7] 2.4 [1.1-6.3] 3.1 [0.8-13] 3.5 [0.9-16] 

Southeast Asia  

nifedipine 1 9 66 18 0.67 2.6 [1.5-6.9] 3.2 [1.7-9.7] 3.4 [0.1-64] 4.1 [0.1-87] 

simvastatin 1 9 53 18 0.02 2.4 [1.4-18] 2.8 [1.5-32] 81 [0.3-13e2] 95 [0.3-18e2] 
overall   59    2.5 [1.4-11] 3.0 [1.6-17] 16 [0.1-1e3] 20 [0.1-12e2] 

ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between healthy adults from north 

America and subgroup (lognormal distribution)  
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Table 16 Inter-individual differences in the Cmax (ng/ml/dose) of CYP3A4-probe substrates in healthy 

adults after oral administration: comparison with healthy North Americans adults 
      Ratio 

GM 
Intra-ethnic Interethnic 

Drug ns n CV GM UF95 (95% CI) UF97.5 (95% CI) UF95 (95% CI) UF97.5 (95% CI) 

North America  
alfentanil 10 144 42 692  1.9 [1.7-2.4] 2.2 [1.8-2.8]      

alprazolam 7 75 30 793  1.6 [1.4-2.0] 1.8 [1.5-2.3]      

cisapride 1 15 42 527  2.0 [1.4-4.7] 2.2 [1.5-6.3]      

diltiazem 1 14 37 43  1.8 [1.3-4.3] 2.1 [1.4-5.7]      

lovastatin 5 49 53 9.1  2.3 [1.7-3.6] 2.7 [1.9-4.6]      

midazolam 31 507 46 337  2.0 [1.9-2.3] 2.3 [2.1-2.7]      

nifedipine 1 25 40 227  1.9 [1.5-3.4] 2.2 [1.6-4.3]      

simvastatin 2 51 72 13  2.9 [2.1-5.2] 3.6 [2.4-7.1]      

triazolam 9 167 38 680  1.8 [1.6-2.2] 2.1 [1.8-2.5]      

zolpidem 6 73 36 831  1.8 [1.5-2.3] 2.0 [1.6-2.6]      

overall   43    1.9 [1.4-3.8] 2.2 [1.5-4.9]      

Europe  
budesonide 3 36 56 19  2.4 [1.7-4.3] 2.8 [1.9-5.6]      

diltiazem 5 33 40 50 1.16 1.9 [1.5-3.1] 2.2 [1.6-3.8] 2.3 [1.2-4.7] 2.5 [1.4-5.7] 
midazolam 17 237 43 327 0.97 1.9 [1.7-2.3] 2.2 [1.9-2.7] 1.1 [0.9-1.5] 1.2 [0.9-1.5] 
nifedipine 7 155 57 51 0.22 2.4 [2.0-3.1] 2.8 [2.3-3.8] 7.1 [4.7-11] 7.8 [5.1-12] 
simvastatin 6 63 57 11 0.85 2.4 [1.8-3.6] 2.8 [2.0-4.7] 1.8 [1.1-3.0] 1.9 [1.2-3.2] 
zolpidem 1 24 36 1213 1.56 1.9 [1.4-3.5] 2.2 [1.5-4.4] 3.1 [1.1-9.4] 3.5 [1.1-11] 
overall   50    2.1 [1.5-3.5] 2.5 [1.7-4.4] 2.2 [1.0-9.3] 2.4 [1.0-10] 

East Asia  
alprazolam 3 19 31 2151 2.71 1.7 [1.3-3.0] 1.8 [1.4-3.7] 4.7 [2.3-11] 5.1 [2.5-13] 
diltiazem 7 76 32 43 1.00 1.7 [1.4-2.1] 1.8 [1.6-2.4] 1.7 [1.1-2.7] 1.9 [1.2-3.1] 
felodipine 1 30 53 19  2.3 [1.7-4.3] 2.7 [1.8-5.7]      

lovastatin 7 59 61 5.8 0.64 2.5 [1.9-4.0] 3.0 [2.1-5.2] 2.1 [1.3-3.4] 2.2 [1.4-3.6] 
midazolam 39 372 48 379 1.12 2.1 [1.9-2.4] 2.4 [2.1-2.9] 2.4 [1.9-3.0] 2.7 [2.2-3.5] 
nifedipine 12 349 41 242 1.07 1.9 [1.7-2.2] 2.2 [1.9-2.5] 2.0 [1.5-2.8] 2.3 [1.6-3.2] 
simvastatin 14 257 63 8.9 0.68 2.6 [2.2-3.2] 3.1 [2.5-4.0] 2.2 [1.6-3.0] 2.3 [1.7-3.2] 
triazolam 2 15 48 516 0.76 2.1 [1.5-3.8] 2.4 [1.6-4.7] 1.6 [0.6-3.8] 1.6 [0.7-4.0] 
zolpidem 6 61 38 925 1.19 1.8 [1.5-2.5] 2.0 [1.6-2.9] 2.2 [1.3-3.7] 2.4 [1.4-4.3] 
overall   46    2.0 [1.4-3.5] 2.3 [1.6-4.3] 2.2 [1.0-6.4] 2.4 [1.1-7.3] 

South Asia  
diltiazem 2 18 19 39 0.91 1.4 [1.2-2.0] 1.5 [1.2-2.3] 1.6 [0.2-5.7] 1.8 [0.2-6.4] 
felodipine 1 24 11 74  1.2 [1.1-1.4] 1.3 [1.1-1.5]      

nifedipine 2 15 20 258 1.14 1.4 [1.2-2.6] 1.5 [1.2-3.1] 1.4 [0.3-5.0] 1.5 [0.3-5.3] 
simvastatin 1 14 48 42 3.23 2.2 [1.5-6.8] 2.5 [1.6-9.7] 6.2 [0.3-35] 7.2 [0.3-43] 
overall   20    1.4 [1.1-4.0] 1.5 [1.2-5.2] 2.0 [0.2-26] 2.2 [0.2-31] 

Southeast Asia  
nifedipine 1 9 73 274 1.21 2.9 [1.6-8.4] 3.5 [1.7-12] 3.8 [0.4-16] 4.7 [0.4-22] 
simvastatin 2 27 53 6.5 0.50 2.3 [1.6-4.8] 2.7 [1.8-6.4] 2.7 [0.4-6.3] 2.9 [0.4-6.8] 
overall   59    2.5 [1.6-7.5] 2.9 [1.5-11] 3.1 [0.4-14] 3.4 [0.4-19] 

South America  
budesonide 1 42 40 127  1.9 [1.5-2.8] 2.1 [1.6-3.4]      

simvastatin 1 44 53 7.9 0.61 2.3 [1.7-3.7] 2.7 [1.9-4.8] 2.1 [0.1-20] 2.3 [0.1-21] 
overall   46    2.1 [1.6-3.4] 2.4 [1.7-4.3]      

Middle East  
felodipine 1 10 60 12  2.5 [1.5-5.7] 2.9 [1.6-7.7]      

lovastatin 1 14 13 18 1.98 1.2 [1.1-1.7] 1.3 [1.1-1.9] 2.2 [0.1-10] 2.3 [0.1-10] 
nifedipine 1 6 38 1020 4.49 1.8 [1.2-4.3] 2 [1.3-5.3] 7.9 [0.3-52] 9 [0.3-65] 
simvastatin 3 70 71 14 1.08 2.9 [2.1-4.7] 3.5 [2.5-6.2] 2.9 [0.3-9.6] 3.4 [0.4-10] 
overall   49    2.1 [1.1-4.8] 2.4 [1.2-6.2] 3.3 [0.2-36] 3.7 [0.2-45] 

South Africa (caucasian)  
felodipine 1 12 22 21  1.5 [1.2-2.9] 1.6 [1.2-3.5]      

ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between subgroup and healthy 

adults from north America (lognormal distribution) 
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Table 17 Inter-individual differences in the AUC (ng.h/ml/dose) and clearance (ml/min/kg bw) of CYP3A4-

probe substrates in healthy adults after intravenous administration: comparison with healthy North 

Americans adults     
  Ratio 

GM 
Intra-ethnic Interethnic 

Drug ns n CV GM UF95 (95% CI) UF97.5 (95% CI) UF95 (95% CI) UF97.5 (95% CI) 

AUC (ng.h/ml / dose) 

North America 

alfentanil 9 134 40 3899  1.9 [1.6-2.3] 2.1 [1.8-2.7]      

midazolam 19 304 27 1923  1.6 [1.4-1.7] 1.7 [1.6-1.9]      

overall   32    1.7 [1.5-2.2] 1.8 [1.6-2.6]      

Europe 

lidocaine 2 14 40 1496  1.9 [1.4-5] 2.2 [1.5-7]      

midazolam 3 46 24 3407 1.77 1.5 [1.3-1.8] 1.6 [1.4-2.1] 2.6 [1.8-4.1] 2.8 [1.9-4.5] 
zolpidem 1 24 41 5938  1.9 [1.5-3.6] 2.2 [1.6-4.5]      

overall   29    1.6 [1.3-3.9] 1.7 [1.4-5.1]      

East Asia                 

midazolam 6 55 24 2472 1.29 1.5 [1.3-1.8] 1.6 [1.4-2.0] 1.9 [1.5-2.6] 2.0 [1.6-2.9] 
              
Cl (ml/min / kg bw) 

North America 

alfentanil 9 134 37 4.4  1.8 [1.6-2.1] 2.0 [1.7-2.5]   
   

midazolam 25 411 29 6.6  1.6 [1.5-1.7] 1.7 [1.6-1.9]   
   

triazolam 1 21 29 3.1  1.6 [1.3-2.7] 1.8 [1.4-3.2]   
   

overall   31    1.7 [1.4-2.3] 1.8 [1.4-2.7]   
   

Europe  

lidocaine 3 24 37 11 
 

1.8 [1.4-3.1] 2.0 [1.5-3.9]   
   

midazolam 4 53 25 4.4 1.50 1.5 [1.3-1.8] 1.6 [1.4-2.1] 1.7 [1.3-2.4] 1.8 [1.3-2.4] 
zolpidem 1 24 45 2.8 

 
2.0 [1.5-4.0] 2.3 [1.6-5.3]   

   

overall 
  

34   
 

1.7 [1.3-3.3] 1.9 [1.4-4.2]   
   

East Asia  

midazolam 7 67 39 6.3 1.05 1.9 [1.6-2.5] 2.1 [1.7-2.9] 1.2 [0.9-1.6] 1.2 [0.9-1.6] 

ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between healthy adults from north 

America and subgroup (lognormal distribution) (1/ratio for AUC) 

 

3.3.3. Kinetic data for the elderly, children and neonates 

The number of papers reporting kinetic data for the elderly, children and neonates was very limited in 

both our ELS and the one conducted previously (Dorne et al., 2003a). Therefore, we combined kinetic 

data from those two databases. Thus, non-informative priors were used in the Bayesian meta-analyse.  

In comparison with healthy North American adults, elderly showed a higher internal dose after oral 

administration (AUC and clearance). The estimated variability was similar to that of healthy North 

American adults with 52, 57 and 53% respectively for AUC, clearance and Cmax (Table 18). The 

difference in studied substrates, intravenously administered, between healthy North American adults 

and elderly did not allow to compare those populations accurately. The UF after oral administration 

(clearance) was above the default kinetic factor, 3.9 and 4.9 for the UF95 and UF97.5 respectively. 

Because of the low number of studies available, the uncertainty for UFs of children after oral 

administration are very high and have to be taken with caution (Table 18). However, UFs of 3.6 and of 

3.8 would be required in order to cover 95% and 97.5% of the children (AUC after intravenous 

administration, 2 compounds).  
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Only one new paper with neonates kinetic data was found. The studied compound was cisapride given 

orally to 3 groups of neonates. The variability was higher than for adults in most kinetic parameters 

and ranged from 45% to 68%, 58% to 82% and 44% to 58% for AUC, clearance and Cmax respectively. 

Neonates would require UFs of 6.9 and 7.6 for the 95th and 97.5th centiles after oral administration 

(Cmax). After an intravenous administration of midazolam, the estimated CV was of 86% and the 

corresponding UFs was also higher than the default TK factor. Due to a limited number of study and 

individuals, there is a high uncertainty around those UFs (Table 18). 

Table 18 Pharmacokinetics of compounds eliminated via CYP3A4 metabolism in elderly, children and 

neonates after oral and intravenous administration: comparison with healthy North Americans adults 

Drug ns n CV GM 
ratio 
GM UF95 (95% CI) UF97.5 (95% CI) 

Elderly 

Oral administration 
AUC (ng.h/ml / dose) 
diltiazem 1 16 12 430 0.82 1.7 [0.8-4.8] 1.9 [0.8-4.8] 
felodipine 1 10 47 266 

     

midazolam 7 52 50 866 1.03 2.3 [1.4-4] 2.6 [1.6-5] 
nifedipine 1 6 30 1921 1.72 2.8 [1-7.9] 3 [1-9.1] 
nisoldipine 3 25 69 74 

     

triazolam 2 21 76 3351 1.01 3.1 [1.3-7.5] 3.6 [1.5-7.6] 
zolpidem 3 24 74 4958 1.59 4.7 [2.1-10.6] 5.7 [2.4-14.2] 
overall 

  
52 

  
2.5 [0.6-8.2] 2.9 [0.6-10.4]           

Clearance (ml/min / kg bw) 
diltiazem 1 11 46 19.9 1.60 12.8 [4.6-36] 18.6 [6.6-52] 
midazolam 8 58 53 14.7 0.88 2.6 [1.5-4.6] 3 [1.8-5.8] 
triazolam 2 21 63 5 1.08 3.1 [1.5-6.5] 3.7 [1.8-7.9] 
zolpidem 2 16 73 2.8 1.64 4.9 [2.1-11.6] 6.2 [2.6-14.6] 
overall 

  
57 

  
3.9 [1.6-23.5] 4.9 [1.9-34]           

Cmax (ng/ml / dose) 
diltiazem 1 16 13 47.2 1.10 1.4 [0.7-2.7] 1.4 [0.8-2.9] 
felodipine 1 13 48 22.2 

     

midazolam 8 58 54 358 1.06 2.5 [1.6-4.2] 2.9 [1.9-5.3] 
nifedipine 1 6 42 246 1.08 2.1 [0.8-6.5] 2.3 [0.9-8.3] 
nisoldipine 3 25 87 20.5 

     

triazolam 2 21 53 725 1.07 2.4 [1.3-4.9] 2.8 [1.4-6.1] 
zolpidem 3 24 46 1347 1.73 3.6 [2-6.8] 4.1 [2.2-8.2]    

53 
  

2.3 [0.9-5.8] 2.7 [1-7.1] 
Intravenous administration 
AUC (ng.h/ml / dose) 
alprazolam 1 13 26 24507 

     

diltiazem 1 12 13 1283 
     

midazolam 2 24 42 2422 1.26 2 [0.4-5.8] 2.3 [0.4-7.2] 
nifedipine 1 5 30 3440 

     

nisoldipine 1 10 42 2048 
     

          

Clearance (ml/min / kg bw) 
alfentanil 2 25 46 3.9 1.13 1.4 [0.9-2.2] 1.5 [0.9-2.4] 
alprazolam 1 13 47 0.7 

     

diltiazem 2 20 19 12.7 
     

midazolam 6 70 56 5.1 1.29 1.5 [1.1-2] 1.5 [1.2-2.1] 
nifedipine 1 5 32 4.8 

     

nisoldipine 1 10 52 8.3 
     

overall 
  

44 
  

1.5 [0.9-2.1] 1.5 [1-2.2]           

Children 

Oral administration 
AUC (ng.h/ml / dose) 
alprazolam 1 11 26 6271 0.34 1.4 [0.1-23.8] 1.4 [0.1-25]           

Cmax (ng/ml / dose) 
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alprazolam 1 9 17 279 0.35 1.8 [0.1-17.2] 1.8 [0.1-17.8] 
triazolam 1 11 41 187 0.28 2.4 [0.1-27] 2.5 [0.1-28] 
overall 

  
26 

  
2.1 [0.1-22.6] 2.1 [0.1-23.4]           

Intravenous administration 
AUC (ng.h/ml / dose) 
alfentanil 3 17 11 2164 0.56 3.7 [2.4-6] 4.3 [2.8-7] 
midazolam 2 24 67 2299 1.20 3.3 [1.5-6.9] 3.8 [1.7-7.3] 
overall 

  
23 

  
3.6 [1.7-6.6] 3.8 [1.7-7.2]           

Clearance (ml/min / kg bw) 
alfentanil 1 8 16 4.4 1.00 1.4 [0.2-3.8] 1.4 [0.2-4.2] 
budesonide 1 6 34 23.3 

     

midazolam 2 24 86 7.6 0.87 3.8 [0.5-11.7] 4.7 [0.6-16] 
overall 

  
36 

  
2.2 [0.2-10.2] 2.5 [0.3-13.9]           

Neonates 

Oral administration 
Cmax (ng/ml / dose) 
cisapride 3 32 59 131 0.25 6.9 [3.1-14] 7.6 [3.4-16] 
 
Intravenous administration 
Clearance (ml/min / kg bw) 
midazolam 1 10 86 1.9 3.47 4.3 [0.1-59] 4.4 [0.1-61] 

ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between healthy adults from north 

America and subgroup (lognormal distribution) (1/ratio for AUC and Cmax) 

3.4. Discussion and Conclusions 

This meta-analysis provides a quantitative account of inter-ethnic and intra-ethnic differences in 

CYP3A4 metabolism using markers of acute and chronic exposure for oral or intravenous routes. 

Historically, meta-analysis of human kinetic data has been using the inverse variance method using 

weighted geometric means corrected for study sample sizes and weighted averages of the variability 

for normal and lognormal data assuming fixed effect models (Dorne et al., 2005). Such inverse variance 

method does not provide a full account of the variability structure particularly to quantify inter-study 

variability and allowing for attributing relative weights according to heterogeneity of the datasets using 

random effect models. This is particularly relevant to pharmacokinetic studies with small sample size 

(n<10) making inverse variance methods difficult to implement. Recently, refined approaches to meta-

analysis for health-care and risk assessment from a Bayesian perspective have been investigated 

(Rigaux et al., 2013; Shao et al., 2017; Sutton and Higgins, 2008). Indeed, Bayesian inference is 

particularly adequately associated with hierarchical models to account for inter-study variability, or to 

discount information from various types of studies. Here, such a hierarchical Bayesian model was 

proposed for the meta-analysis of the CYP3A4-related kinetic data and allowed to account for different 

sample sizes of studies and their heterogeneity as well as inter-study variability so that strength can 

be borrowed from one study to another.  

Inter-individual variability for the oral route for healthy adults averaged 51% (AUC), consistent with a 

previous study (Dorne et al., 2003a). In a more recent meta-analysis of  inhibition (grapefruit juice) and 
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induction (St John’s wort) of CYP3A4 metabolism in humans (Quignot et al., 2019), inter-individual 

variability and UF95 were determined for 57 and 64 compounds (Cmax and AUC or clearance) 

respectively, for full and partial probe substrates of CYP3A4. Inter-individual variability was 56 % for 

Cmax and 51 % for AUC and Clearance and the corresponding UF95 and UF99 were 2.2-3.0 for acute 

exposure and 2.3-3.4 for chronic exposure, which is fully consistent with our meta-analysis. 

Overall, the CYP3A4 related UFs for healthy adults were consistent with the study from Dorne et al. 

(2003a) and below the default kinetic factor (3.16) for at least 97.5% of healthy adults when 

considering the median value. However, our analysis by a Bayesian model taking into account the 

uncertainty around the estimation of the UF shows that, given the available data (number of studies 

and number of individuals per study), it may be that the default factor does not cover all possible cases. 

Indeed, the upper bound of the confidence interval is higher than 3.16. Data gaps were identified for 

specific ethnic groups (central and South American, Southeast Asian and African) with very few studies 

available and did not allow to make conclusions.  

It appears that a factor of 3.16 would not cover 95% of populations like elderly, children and neonates. 

The lowered clearance observed in elderly can be explained by a decrease in hepatic volume and blood 

flow with aging and morphological changes (decrease of the muscle mass and increase of adipose 

tissue mass) that will impact distribution (Cotreau et al., 2005). The estimated UFs were of the same 

range than in Dorne et al. (2003a) for the clearance after oral administration (4 compounds).  

CYP3A7 is the main isozyme in foetal liver and represent around 32% of total CYP content (De Wildt et 

al., 1999). An in vitro study of the efficiencies of CYP3A isoforms towards organophosphorothionate 

pesticides indicate that the 3A7 isoform is less efficient (measured as intrinsic clearance) than CYP3A4 

(Buratti et al., 2006). A transition between those two isoforms will occur a few months after birth (De 

Wildt et al., 1999). A greater variability was estimated for neonates than for adults as previously 

observed (Dorne et al., 2003a). Therefore, neonates would require a higher UF in comparison with 

healthy adults, more kinetic data regarding CYP3A4 probe-substrates metabolism would thus be 

needed to precisely estimate UFs. For children, except for midazolam, a low variability was observed. 

In the literature, the clearance for midazolam in children is higher compared to adults (De Wildt et al., 

1999) nevertheless our results showed the opposite. This might be due to discrepancies in the reported 

studies (Malinovsky et al., 1990; Rey et al., 1991). 

An important aspect of human variability in CYP3A is the impact of polymorphisms on polymorphic 

genotypes on inter and intra-ethnic differences in kinetics, however, few studies provide this type of 

data and currently, it is not possible to link allelic frequencies and estimated interethnic differences 

quantitatively. There are at least 40 allelic variants described for the CYP3A4 gene (Jarrar et al., 2016). 
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CYP3A4*1B is considered the most common genetic polymorphism in CYP3A4 and also the most 

extensively studied; being reported in 0.50-0.82 of Africans/African Americans, whereas it is absent in 

Japanese and Chinese populations and has a low frequency (0.03-0.05) in Caucasians (Keshava et al., 

2004; Werk and Cascorbi, 2014; Zanger and Schwab, 2013). However, its clinical significance is not yet 

clear due to contrasting results regarding its impact on enzymatic activity. Among all other known 

CYP3A4 variants, the vast majority fall in the category of rare polymorphisms, showing a frequency 

between 0.01 and 0.03 (Preissner et al., 2013; Werk and Cascorbi, 2014; Zanger and Schwab, 2013). In 

contrast, CYP3A5 is expressed in extrahepatic tissues with more than 25 allelic variants (Jarrar et al., 

2016) with CYP3A5*3 allele as the most common, which leads to the loss of CYP3A5 activity due to the 

disruption of the correct splicing of CYP3A5 transcripts. It has been reported in 0.77-0.96 of Caucasians, 

in 0.66-0.78 of Asians and in 0.12-0.50 of Africans/African Americans (Jarrar et al., 2016; Naidoo et al., 

2014; Preissner et al., 2013; Zanger and Schwab, 2013). The differences in the prevalence of CYP3A5*3 

alleles in different ethnic groups reflects a biological basis of the marked differences in drug 

metabolism of for CYP3A5 substrates (Lamba et al., 2002). This may explain the very high variability in 

the kinetics of lovastatin and simvastatin, two CYP3A substrates interacting with the P-glycoprotein 

transporter (Garcia et al., 2003). In a recent pharmacokinetic study investigating the PK of simvastatin 

after dosage in different East Asian population (Koreans, Chinese and Japanese) and in Caucasian 

healthy adults, the authors did not find differences in AUC values among east Asians but found a 

significant increase in AUC in Caucasians (Hasunuma et al., 2016). Moreover, Kim et al. (2007) studied 

the effect of CYP3A5 polymorphism on simvastatin PK and concluded that CYP3A5*3/*3 was 

significantly correlated to the internal dose of simvastatin (significant decrease in clearance). Further 

work on the impact of CYP3A5 polymorphism on xenobiotic metabolism is therefore needed. 

The aim of this work was to derive pathway related UFs, specifically for CYP3A4. This provides an 

intermediate option between a chemical-specific adjustment factor (CSAF) and the default UF (when 

no data are available) (Bhat et al., 2017; Clewell et al., 2008; Paini et al., 2017; Paini et al., 2019). The 

proposed methodology and modelling can be applied to other metabolic pathways of interest to assess 

human inter-individual variability in TK in a broader context.  

Non-invasive in vitro techniques are now available to provide metabolism data from human cell lines 

(Bell et al., 2018; Blaauboer et al., 2012). Combining accurate inter-individual information from human 

data, as shown here, with such in vitro data is very useful for quantitative in vitro to in vivo 

extrapolation (QIVIVE). Indeed, the estimated CV can be applied to an extrapolated clearance from 

QIVIVE, then a lognormal distribution for clearance would be integrated in a PBK model with Markov-

Chain Monte Carlo instead of a single deterministic mean value and allow for sound QIVIVE modelling.  
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The use of PBK modelling is increasingly recommended in chemical risk assessment (Bessems et al., 

2014; EFSA, 2014; IPCS, 2010; Paini et al., 2017; Paini et al., 2019) together with approaches to better 

account for inter-individual variability. Indeed, applying a PBK model with parameter specific 

distributions integrating variability in a Bayesian framework (Bois et al., 2010) would allow a better 

prediction of internal dose and decrease uncertainty in estimates. Such approaches would avoid the 

use of default factors and allow to apply, on a case by case basis, either CSAFs or pathway-related UFs 

that may be below or above these default values (Punt et al., 2017; Yoon et al., 2015). Modelling inter-

individual kinetic variability with PBK models would also require taking into account variation in 

physiological parameters (i.e. organ volume, cardiac output). For this purpose, the use of the PopGen 

free web application may be very useful since it is able to easily generate a virtual population with 

outputs readily applicable for QIVIVE (McNally et al., 2014). 

Inter-individual variability in internal dose may also differ for co-exposure scenarios and PBK modelling 

can provide a powerful tool when dealing with mixtures or multiple chemical exposure particularly in 

the case of TK interactions (Desalegn et al., 2018; Valcke and Haddad, 2015). Desalegn et al. (2018) 

recently reviewed the current state-of-the-art of PBK models for chemical mixtures and evaluated their 

applications with an emphasis on their role in chemical risk assessment. Focusing on CYP3A4 

metabolism, Quignot et al. (2019), proposed CYP3A4-related UFs taking into account either inhibition 

(grapefruit juice) or induction (St. John’s wort) and these can be integrated in PBK models for mixture 

risk assessment. 

Finally, the CYP3A4-substrates in this database have short half-lives (hours) and further analysis would 

need to be performed for environmental contaminants as CYP3A4 substrates that are more persistent 

using for example biomonitoring results. Overall, it is foreseen that in the future these CYP3A4-related 

variability distributions can be used along other pathway-related variability distributions in generic 

human PBK models and QIVIVE models integrating isoform-specific metabolism information for 

chemical risk assessment. Here, this approach has been explored as part of a multi-center collaborative 

project between EFSA, ANSES, ISS, the University of Utrecht and the University of Bretagne: “modelling 

human variability in toxicokinetic and toxicodynamic processes using Bayesian meta-analysis, 

physiologically-based modelling and in vitro systems”. 

Case studies for regulated compounds and contaminants exploring the integration of human variability 

for a wider range of phase I enzymes, phase II enzymes and transporters and isoform specific human 

in vitro data are underway to illustrate the practical use of these new tools in the food safety area. 
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Abstract  

Human variability in paraoxonase-1 (PON1) activities is driven by genetic polymorphisms that affect 

the internal dose of active oxons of organophosphorus (OP) insecticides. Here, an extensive literature 

search has been performed to collect human genotypic frequencies (i.e. L55M, Q192R, and C-108T) in 

subgroups from a range of geographical ancestry and PON1 activities in three probe substrates 

(paraoxon, diazoxon and phenyl acetate). Bayesian meta-analyses were performed to estimate 

variability distributions for PON1 activities and PON1-related uncertainty factors (UFs), while 

integrating quantifiable sources of inter-study, inter-phenotypic and inter-individual differences. Inter-

phenotypic differences were quantified using the population with high PON1 activity as the reference 

group. Results from the meta-analyses provided PON1 variability distributions and these can be 

implemented in generic PBK models to develop quantitative in vitro in vivo extrapolation models. 

PON1-related UFs in the Caucasian population were above the default toxicokinetic (TK) UF of 3.16 for 

two specific genotypes namely -108CC using diazoxon as probe substrate and, -108CT, -108TT, 55MM 

and 192QQ using paraoxon as probe substrate. However, integration of PON1 genotypic frequencies 

and activity distributions showed that all UFs were within the default TK UF. Quantitative inter-

individual differences in PON1 activity are important for chemical risk assessment particularly with 

regards to the potential sensitivity to organophosphates’ toxicity.  

 

Keywords: human variability; PON1 activity; polymorphism; uncertainty factor 

Highlights: 

• Extensive literature search of PON1 genotypic frequencies and activities in humans  

• Bayesian meta-analysis to quantify inter-phenotypic and inter-individual differences 

• Specific genotypes showed an exceedance of the 3.16 toxicokinetic uncertainty factors 

• UFs were below 3.16 when combining genotypic frequencies and activity distributions 

• Quantitative differences in PON1 polymorphisms are important for chemical risk assessment 
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4.1. Introduction 

Human paraoxonase 1 (PON1) is a well characterised family member of high-density lipoprotein 

associated serum enzymes called serum paraoxonases (PONs). PONs have been identified in mammals, 

vertebrates and invertebrates and are involved in the detoxification process of a range of chemicals, 

including prodrugs like prulifloxacin, active oxons of organophosphorus (OP) insecticides as well as 

nerve gas agents such as sarin and soman (Costa et al., 1999; Furlong et al., 2016b). PON1 enzymes are 

also important in protecting the human body against vascular disease through metabolising oxidised 

lipids (Costa et al., 2011). In the 1960s and 1970s, human studies demonstrated that PON1 activities 

were polymorphically distributed and the frequency of phenotypes with low activities were variable 

amongst populations of different geographical or ethnic ancestry (Diepgen and Geldmacher-von 

Mallinckrodt, 1986). 

Nearly 200 single nucleotide polymorphisms (SNPs) have been described in the literature for the PON1 

gene with the two most common polymorphisms reported in the coding regions at position 55 and 

192 (Gupta et al., 2011; Humbert et al., 1993; Richter et al., 2010; Shunmoogam et al., 2018). The SNP 

present at position 55, leucine/methionine (L55M) has been associated with altered PON1 serum 

concentrations, while the SNP at position 192, glutamine/arginine polymorphism (Q192R) has been 

associated with altered PON1 activity (Ceron et al., 2014; Shunmoogam et al., 2018). Within the 

promoter region of the PON1 gene, another important SNP is C-108T, affecting PON1 enzyme levels 

(Turgut Cosan et al., 2016). The SNPs described affect PON1 activity, but seems to be substrate 

dependent, since the 192R alloform hydrolyses chlorpyrifos oxon and paraoxon more rapidly than 

*192Q in vitro (Li et al., 2000). Variability in PON1 activity may not only be introduced by 

polymorphisms but also by age and lifestyle (Ginsberg et al., 2009; Nalcakan et al., 2016). PON1 activity 

is very low before birth as indicated by a 24% lower activity in premature babies (33-36 weeks of 

gestation) compared to babies at term (Ecobichon and Stephens, 1973). PON1 activity increases over 

time reaching a plateau between 6 months and a few years of age (Augustinsson and Barr, 1963; Cole 

et al., 2003; Ecobichon and Stephens, 1973; Holland et al., 2006; Huen et al., 2010; Smith et al., 2011). 

Polymorphisms in PON1 are well described and constitute an important source of variability driving 

potential changes in internal dose of oxon metabolites and have been hypothesised to be involved in 

OP oxon resistance after OP exposure. Distributions of PON1 activities have been simulated to quantify 

inter-phenotypic differences while integrating genotypic frequencies and variations across a range of 

human populations (Ginsberg et al., 2009a). This body of evidence shows that quantification of inter-

phenotypic differences across different PON1 genotypes provides a basis for the derivation of 
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variability distributions and PON1-related uncertainty factors (UFs) allowing for inter-individual 

differences in toxicokinetics (TK) (Bhat et al., 2017; Renwick, 1993; Truhaut, 1991). 

This manuscript aims to investigate human variability in PON1 activities by means of extensive 

literature searches and hierarchical Bayesian meta-analysis for paraoxon, diazoxon and phenyl acetate 

as probe substrates in healthy adult populations expressing different SNPs (i.e. L55M, Q192R, and C-

108T). Variability distributions for PON1 activities and PON1-related UFs have been derived while 

integrating quantifiable sources of inter-study, inter-individual and inter-phenotypic differences. 

4.2. Material and Methods 

4.2.1. Extensive literature search and data collection 

Extensive literature searches (ELS) were performed to identify PON1 activity in the serum of healthy 

human subjects from a range of geographical ancestry or ethnic groups. Inter-phenotypic differences 

in relation to PON1 polymorphisms (C-108T, L55M, Q192R) were investigated for healthy adults 

whereas data from populations exposed to pharmaceuticals, environmental contaminants or 

populations with specific lifestyle or diseases were excluded. The ELS were performed by two 

independent reviewers (June 2019) for well-characterised PON1 probe substrates namely paraoxon, 

diazoxon and phenyl acetate in PubMed and Scopus (EFSA, 2010a; Quignot et al., 2015). Data reporting 

genotypic frequencies of PON1 in human populations from different geographical ancestry (Europe, 

Africa, Middle East, Asia and Oceania) were collected for the homozygous CC, QQ, LL (wild-type) and 

for heterozygous (CT, QR, LM) and homozygous TT, RR and MM (mutant). Each polymorphism, whether 

known from coding or promotor region, was associated with variability in levels of PON1 activity 

towards each of the three probe substrates. In order to compare different PON1 activity phenotypes, 

the high activity group has been considered as the reference group which varied across substrates and 

genotypes (Furlong et al., 2016b). The two remaining groups will be considered as sub-groups. Table 

19 provides a summary of the individual keywords applied for the ELS. The complete database is 

available in Supplementary material. 

Table 19. Keyword queries for the Extensive Literature Searches (formatted for Scopus). 

General search terms TITLE-ABS-KEY ( "population distribution"  OR  "expression level*"  OR  "gene 
expression"  OR  "genetic polymorphism*"  OR  "individual susceptibility"  OR  
"gene environment"  OR  "ethnic variability"  OR  caucasian  OR  asian  OR  "Afro 
American"  OR  hispanic  OR  "race difference"  OR  "age difference"  OR  "gender 
difference"  OR  "sex difference"  OR  ontogenesis  OR  "foetal stage"  OR  
neonate*  OR  african  OR  children  OR  elderly  OR  "elderly people"  OR  adult*  
OR  genotype ) 

Search terms for probe 
substrates 

TITLE-ABS-KEY ( human*  W/50  ( paraoxonase*  OR  diazoxonase*  OR  
arylesterase*  OR  pon1  OR  "PON1 activity") ) 
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Exclusion TITLE-ABS ( "cell line*"  OR  "cell culture*" ) 

TITLE-ABS-KEY: term searched in the title, the abstract and the keywords of the paper. 

4.2.2. Meta-analysis 

4.2.2.1. Data standardisation  

Data for PON1 activity were standardised to perform the meta-analysis in a harmonised manner. 

Activity was expressed in nmol/min/ml (paraoxon and diazoxon studies) or µmol/min/ml (phenyl 

acetate studies). PON1 activities from individual studies were reported as arithmetic means (X ) and 

standard deviations (SD) and were harmonised to geometric mean (GM) and geometric standard 

deviation (GSD) using the following equations: 

 𝐺𝑀 = 𝑋 √(1 + 𝐶𝑉𝑁
2)⁄  (4) 

 𝐺𝑆𝐷 = exp (√ln(1 + 𝐶𝑉𝑁
2))  (5) 

where 𝐶𝑉𝑁 provides the coefficient of variation for normally distributed data as: 

 𝐶𝑉𝑁 = 𝑆𝐷 𝑋⁄   (6) 

4.2.2.2. Derivation of PON1-related variability and uncertainty factors 

A Bayesian hierarchical model for the meta-analyses was implemented for PON1 activity as previously 

described (Darney et al., 2019) using non-informative priors. Two types of uncertainty factors were 

calculated: 1) UFs were calculated for the different SNPs; 2) UFs were calculated for the human 

population integrating PON1 activity and genotypic frequencies. Uncertainties in PON1 activities were 

quantified using median values and 95% confidence intervals. Coefficient of variations (CV) were also 

estimated as follows: 

 𝐶𝑉 = √𝑒𝑥𝑝(ln(√exp (1 τ𝑗⁄ ))
2

− 1 (4) 

where τ𝑗 is the inter-individual differences of the activity for a substrate ‘j’. 

Inter-phenotypic differences in PON1 activity and related UFs 

PON1 activity related UFs for the reference group within a genotype were derived as ratios between 

given percentiles (either 95th or 97.5th centiles) and the median of the distribution. For inter-phenotypic 

differences, PON1-related UFs were calculated as the ratio between the percentiles of choice for the 

reference group and the median of the sub-group. A confidence interval around the UF is given by 

calculating 18000 UFs and providing the values for the median, 2.5th and 97.5th percentile. 

 

Inter-individual differences in PON1 activity and related UFs 
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Distributions for PON1 activity in the whole adult population were integrated for the reference group 

and the two remaining sub-groups applying Monte-Carlo simulations. Genotypic frequencies collected 

from the literature were combined with the estimated PON1 activity distributions. PON1-related UFs 

were derived as described elsewhere (Wiecek et al., 2019) and illustrated in Figure 17. 1) Sampling α x 

10000 values in the distribution for PON1 activity (α, the genotypic frequency in the population), the 

same pertains for the two other genotypes with the corresponding frequencies (100 iterations); 2) 

Calculate UFs based on the 50th and the 95th percentiles of 10^6 values; 3) Derive the distribution of 

UFs in the human population (18000 iterations). 

 

Figure 17. Population simulations for the derivation of PON1 related uncertainty factors integrating inter-

phenotypic differences (reference group and sub-groups) and genotypic frequencies (α, β and γ). 

 

4.2.3. Software 

All statistical analyses and graphs were performed in R (version 3.5) and the Bayesian modelling was 

implemented with Jags (4.2.0) (Plummer, 2003). R codes describing the hierarchical Bayesian model 

for the meta-analysis have been published elsewhere (Darney et al., 2019; Wiecek et al., 2019). 

References from the ELS have been saved in EndNote (X8) files. 
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4.3. Results 

4.3.1. Extensive literature searches and data collection 

Results from the ELS are presented in Figure 18 as a Prisma diagram. Human PON1 activities are 

available for a wide range of countries worldwide. Studies focused on healthy adults (range 18-75 

years) and data for both genders were equally available. Overall, 67 peer reviewed publications were 

selected from the ELS and these reported human PON1 enzyme activities for three SNPs (C-108T, L55M 

and Q192R) using paraoxon, diazoxon and phenyl acetate as probe substrates or genotypic 

frequencies. The L55M and Q192R SNPs were the most studied while the C-108T SNP was the least 

studied. Activity data were available for East Asian, European, Middle East, North Africa, North America 

and South America. In the collected data, PON1 activity was mostly measured in Caucasian population 

(5469 measurements from adults in regards to paraoxon, Q192R SNPs) while less than 1222 

measurements were available for all other populations (East Asian, Middle East, Tunisia, Chile). 

Moreover, data retrieved from Caucasian population were the only one that cover all genotypes for all 

studied probe-substrates. Data gaps were identified for Central and Southern Americans, Africans as 

well as children and neonates. 

 

Figure 18. Flow diagram illustrating the extensive literature search of human PON1 activity studies. 

 
PON1 genotypic frequencies were available from the literature for the three SNPs C-108T, L55M and 

Q192R (Figure 19). The -108CT variant was the most common in the human populations worldwide 

compared to the homozygous forms with the exception of the Southeast Asians and Middle Eastern 

populations. The 55LL genotype was dominant in Asian and Central American populations. For human 
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populations, the 55LL and 55LM genotypes were equally present. Overall, the frequency of the 55MM 

mutation was below 20% worldwide. The 192QQ genotype was predominant in most populations, 

except for South and Central Americans as well as East Asians for which the 192QR variant was the 

most common compared to the homozygous forms. In addition, the 192RR mutation was also the most 

common in these populations. 

 
Figure 19. Genotypic frequencies for PON1 Single Nucleotide Polymorphisms in human populations 

worldwide (L55M, Q192R, C-108T). 

 
PON1 activity for diazoxon and phenyl acetate substrates was the highest in the wild-type groups (CC, 

LL, QQ). PON1 activity towards paraoxon decreased across phenotypes in the following order 

CC>CT>TT for PON1 C-108T SNP, and between LL>LM>MM for PON1 L55M SNP with the exception of 

Q192R (Figure 20) for which the wild type QQ showed a lower activity compared to the mutant RR 

genotype. An important distinction needs to be highlighted for measurements of PON1 activity using 

paraoxon with and without salt activation of the enzyme since the latter is not recommended for 

measurements at the population level. Indeed, salt increases the high-activity allelic form more than 

other forms while amplifying the variability in the healthy population (Figure 20). All studies included 

in the database for diazoxon were conducted with salt activation in the assay and PON1 mean activity 

and its associated variability using diazoxon should be considered with caution. In contrast, salt 
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addition produces a decrease in PON1 activity while measuring PON1 activity using phenyl acetate and 

these measurements were performed without salt activation (Ceron et al., 2014). 

 

Figure 20. Inter-phenotypic PON1 activities for major human genotypes. 

PON1 activity characterised by paraoxon can be divided in salt activated (Paraoxon + s) and not salt 

activated (Paraoxon). Number of papers included: PON1 activity characterised by paraoxon C-108T (3), 

L55M (11), Q192R (22); PON1 activity characterised by diazoxon C-108T (2), L55M (4), Q192R (8); PON1 

activity characterised by phenyl acetate C-108T (5), L55M (7), Q192R (13). 

 

4.3.2. Inter-phenotypic differences in PON1 activity and related UFs 

Inter-phenotypic differences for PON1 activity in human populations were calculated without including 

studies with salt activation for paraoxon for the above-mentioned reasons. Here, the meta-analyses 

were performed to quantify for inter-phenotypic differences across all populations. Overall, CV values 

from the meta-analyses highlight a larger variability in PON1 activity with paraoxon for the L55M 

genotypes (57-62%) (Table 20). PON1-related UFs across the SNPs also showed inter-phenotypic 

differences. The wildtypes 55LL and 108CC were considered as the reference group with the high PON1 

activity, while the mutant 192RR was considered as the reference group for paraoxon. An exceedance 

of the default TK UF of 3.16 was observed for the wildtype 192QQ, and the mutants 55MM and 108TT, 

classified as a group with low PON1 activity, with respectively, 3, 2.4 and 1.2-fold differences compared 

with the reference groups. For the SNP C-108T, a single study was available for paraoxon and results 
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are associated with high uncertainty and have to be taken with caution. Since salt activated studies 

were used for diazoxon, the estimated ratio of GM and thus the corresponding UFs were most likely 

overestimated. All PON1 related UFs were within the default TK UF, except for the genotype -108TT (2 

studies, UF97.5 of 3.7- and 1.5- fold difference with -108CC). When considering PON1 activity towards 

phenyl acetate, estimated CVs were within 23-35% for all SNPs. The largest inter-phenotypic 

differences between SNPs were 1.5-fold between -108CC and -108TT and PON1-related factors were 

within the default TK UF. 

Table 20. Inter-phenotypic differences in PON1 activity in healthy adult for paraoxon, diazoxon or phenyl 
acetate probe substrates 

PON1 ns n CV GM ratio GM UF95 (95% CI) UF97.5 (95% CI) 

Paraoxon (nmol/min/ml) 
-108 CC 1 26 32 197.4  1.7 [1.4-2.6] 1.9 [1.4-3.2] 
-108 CT 1 25 45 176.6 1.12 4.1 [0.8-20.0] 5.3 [1.1-25.0] 
-108 TT 1 9 46 164.8 1.19 4.3 [0.8-23.0] 5.6 [1.1-30.0] 
55 LL 8 1530 58 166  2.4 [2.2-2.7] 2.9 [2.6-3.2] 
55 LM 8 1609 62 117.4 1.41 2.2 [1.3-3.8] 2.4 [1.4-4.1] 
55 MM 8 481 57 68.4 2.43 3.8 [2.1-6.6] 4.2 [2.3-7.2] 
192 QQ 10 1933 32 84.4 3.02 4.6 [2.8-7.5] 5 [3.1-8.2] 
192 QR 10 1506 31 167 1.53 2.3 [1.4-2.7] 2.5 [1.6-4.1] 
192 RR 10 365 26 254.7  1.5 [1.4-1.6] 1.6 [1.5-1.8] 
          
Diazoxon (nmol/min/ml) 
-108 CC 2 55 39 16.7  1.9 [1.5-2.6] 2.1 [1.7-3.1] 
-108 CT 2 81 44 13.3 1.26 2.7 [1.0-6.7] 3.1 [1.2-7.8] 
-108 TT 2 54 46 11.4 1.47 3.1 [1.0-8.3] 3.7 [1.5-9.7] 
55 LL 4 259 27 14.4  1.5 [1.4-1.7] 1.7 [1.5-1.9] 
55 LM 4 341 21 11.9 1.21 2.1 [1.1-3.9] 2.3 [1.2-4.4] 
55 MM 4 80 24 9.9 1.45 2.5 [1.3-4.8] 2.8 [1.4-5.4] 
192 QQ 8 801 27 9.6  1.6 [1.5-1.6] 1.7 [1.6-1.8] 
192 QR 8 699 24 8.6 1.12 1.6 [1.0-2.6] 1.7 [1.1-2.8] 
192 RR 8 230 27 4.8 2 2.9 [1.8-4.6] 3.1 [2.0-4.9] 
          
Phenyl acetate (µmol/min/ml) 
-108 CC 7 741 23 133.7  1.4 [1.4-1.5] 1.6 [1.5-1.7] 
-108 CT 7 1231 26 113.9 1.17 1.4 [1.1-1.6] 1.4 [1.2-1.6] 
-108 TT 7 570 35 86.7 1.54 1.8 [1.5-2.1] 1.8 [1.5-2.2] 
55 LL 9 1139 26 119  1.5 [1.5-1.6] 1.7 [1.6-1.8] 
55 LM 9 1289 28 101.4 1.17 1.3 [1.1-1.5] 1.4 [1.2-1.6] 
55 MM 9 386 32 87.3 1.36 1.5 [1.3-1.8] 1.6 [1.3-1.9] 
192 QQ 15 1523 30 118.4  1.6 [1.5-1.7] 1.8 [1.7-1.9] 
192 QR 15 1425 27 113 1.05 1.2 [1.0-1.3] 1.2 [1.1-1.3] 
192 RR 15 522 23 103.8 1.14 1.3 [1.1-1.4] 1.3 [1.1-1.5] 

ns: number of studies, n: number of individuals, CV: coefficient of distribution (lognormal distribution), GM: 

geometric mean (lognormal distribution), ratio GM: ratio of geometric mean between high activity and sub-

group. 

 
4.3.3. Inter-individual differences in PON1 activity and related UFs 

From the results of the ELS and meta-analysis, the reference population in the database is the 

Caucasian population since it is the most data rich. Genotypic frequencies were collected and 

integrated with inter-phenotypic differences in PON1 activity by means of simulations to derive PON1 
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variability distributions. The results indicate that the PON1-related UFs did not exceed the default TK 

UF for median values except for PON1 C-108T and L55M (paraoxon) for a UF97.5 (Table 21). Estimated 

inter-individual UFs were all lower than those estimated for inter-phenotypic UFs. PON1 variability 

distributions for Caucasian populations for each genotype are presented in Figure 21.  

Table 21. PON1-related uncertainty factors for Caucasian healthy adults integrating inter-phenotypic 
differences for 3 SNPs (-108 CC/CT/TT: 25/50/25%; 55 LL/LM/MM: 39/48/13%; 192 QQ/QR/RR: 53/39/8%) 

PON1 CV GM UF95 (95% CI) UF97.5 (95% CI) 

Paraoxon (nmol/min/ml) 
-108 44 179 3.0 [1.8-14] 3.6 [2-19] 
55 79 125 2.7 [2.5-3.9] 3.3 [3-4.8] 
192 53 120 2.5 [1.8-4.1] 2.8 [2-4.8] 
       

Diazoxon (nmol/min/ml) 
-108 44 14.9 2.4 [1.9-4.8] 2.8 [2.1-5.9] 
55 27 12.5 1.7 [1.4-3.1] 1.8 [1.6-3.4] 
192 32 8.73 1.6 [1.5-2.1] 1.8 [1.6-2.3] 
       
Phenyl acetate (µmol/min/ml) 
-108 32 111 1.6 [1.5-1.7] 1.7 [1.6-1.9] 
55 30 106 1.6 [1.5-1.7] 1.7 [1.7-1.9] 
192 28 115 1.6 [1.5-1.7] 1.7 [1.7-1.8] 

CV: coefficient of distribution (lognormal distribution), GM: geometric mean (lognormal distribution), 
ratio GM: ratio of geometric mean between high activity and sub-group. 

4.1. Discussion and Conclusion 

An extensive literature search has been conducted to collect data on PON1 genotypic frequencies and 

activities across healthy adult world populations for three SNPs. The choice of selecting healthy human 

populations was related to the fact that PON1 hydrolyses phospholipid peroxides in both high-density 

lipoprotein and low-density lipoprotein. Bayesian meta-analysis was performed to characterise inter-

phenotypic differences in PON1 activities using paraoxon, diazoxon and phenyl acetate as probe 

substrates and genotypic frequencies of the SNPs L55M, Q192R, and C-108T were collected and 

integrated to simulate PON1 variability distributions across human populations. 

Inter-ethnic differences in PON1 genotypic frequencies Q192R and L55M exist, while these were not 

observed in the regulatory region C-108T (Ginsberg et al., 2009a). This may be related to random 

events or selection pressure which may have acted on PON1 polymorphism to maintain specific allele 

frequencies across different ethnic groups (Brophy et al., 2001; Hernandez et al., 2003). It has been 

observed that the 55L allele has strong linkage disequilibrium with -108C and 192R alleles respectively, 

indicating that high PON1 activity individuals tend to have higher PON1 enzyme levels (Koda et al., 

2004; Mohamed Ali and Chia, 2008). The frequency of the PON1 192QQ genotype is predominantly 

present in African, European/North American, and Middle Eastern population, indicating that these 

subpopulations might be more sensitive to OP toxicity as previously suggested (You et al., 2013). In 

Asian, and Central/South American populations, the 192RR variant is more frequently detected, which 
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suggest potential decrease in sensitivity to OP toxicity. In addition, the highest PON1 activity toward 

paraoxon was measured in the PON1 192RR genotype in the Asian population (Kujiraoka et al., 2000; 

Li et al., 2009). 

 

 

Figure 21. An example of distribution of PON1 activity for Caucasian healthy adults (out of 18000). 

Simulations of PON1 activity according to different genotypic frequencies (-108 CC/CT/TT: 25/50/25%; 55 

LL/LM/MM: 39/48/13%; 192 QQ/QR/RR: 53/39/8%). A, B and C: PON1 activity toward paraoxon, D, E 

and F: PON1 activity toward diazoxon, G, H and I: PON1 activity toward phenyl acetate. 

 

The PON1 activity data showed a high level of variation, especially for the L55M and C-108T genotypes, 

which has substantial consequences on the results of the Monte Carlo simulations. It is worth noting 

that PON1 activities were measured ex vivo, so the variability presented in the simulations is not 

directly reflecting oxon internal dose. In addition to PON1 activities, pharmacokinetic parameters 

reflecting acute exposure (Cmax) and chronic exposure (AUC, clearance) would be needed to simulate 

the population variability in internal dose. Median values for PON1 related UFs were derived while 
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combining genotypic frequencies for a range of populations and PON1 variability indicated that the 

PON1-related UFs were generally below the default TK UF with the exception of PON1 C-108T and 

L55M (paraoxon UF97.5). 

PON1 has been described as a good predictor of individual susceptibility to OPs toxicity (Alejo-González 

et al., 2018; Dardiotis et al., 2019). The meta-analysis confirmed that inter-phenotypic differences in 

PON1 activity have an impact on the potential susceptibility to OP toxicity in the detoxification of oxon 

metabolites (Costa et al., 2013). A previous meta-analysis showed that the PON1 192Q and PON1 55L 

alleles may increase potential susceptibility to OP toxicity for paraoxon, particularly in Caucasian 

populations (You et al., 2013). While our results confirm that PON1-related UFs are above the 3.16 

default TK UF for the PON1 192QQ genotypes, this is not the case for the PON1 55LL genotypes. Since 

PON1 55MM shows a lower activity of the enzyme, susceptibility to paraoxon toxicity may increase 

and is indicated by an exceedance of the default TK UF. Overall, this body of evidence has been further 

demonstrated in previous analyses as a correlation between low PON1 activity and susceptibility to OP 

for a number of congeners (Costa et al., 2013). In contrast, PON1 activities for the R192Q SNP, using 

diazoxon as the probe substrate, did not conclude on an increase in susceptibility since the 192RR 

isoform displayed a lower activity toward diazoxon compared to that for the 192QQ SNP (Davies et al., 

1996; Ginsberg et al., 2009a). On the other hand, phenyl acetate hydrolysis was mostly influenced by 

C-108T polymorphism and to a lesser extent by L55M whereas Q192R polymorphism had almost no 

effect and confirms its relevance as a marker of PON1 activity in human serum (Dardiotis et al., 2019). 

It has been hypothesised that the observed differences in PON1 activity for various substrates may 

arise from differences in docking sites on the enzyme. Chlorpyrifos-oxon binds similar sites as 

paraoxon, where the 192R and 55M alleles are the most active (Albers et al., 2010; Costa et al., 2013; 

Ellison et al., 2012; Ginsberg et al., 2009a). On the other hand, diazoxon share the same docking sites 

as sarin and soman for which individuals expressing the 192Q allele are potentially more sensitive to 

their toxicity (Davies et al., 1996). Based on the available data, the genotype alone is not sufficient to 

determine individual susceptibility to OP toxicity for a range of congeners and inter-phenotypic 

differences together with substrate-specific information about the specific substrate would be most 

appropriate to characterise such susceptibility. It is foreseen that as compound specific docking 

information becomes readily available, PON1 variability distributions (or UF) can be integrated to 

characterise susceptibility to OP toxicity bearing in mind the limitation that PON1 crystal structure 

remains to be elucidated (Dardiotis et al., 2019). 

Although exclusion criteria have been defined to limit possible bias in the meta-analysis due to 

technical aspects of the PON1 assay itself or to the lifestyle of the enrolled individuals, PON1 activities 

have been measured ex vivo and can be influenced by sources of variability other than genotypes 
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(Ceron et al., 2014; del Carmen Xotlanihua-Gervacio et al., 2019; Ginsberg et al., 2009a). Nonetheless, 

65-92% of the variability in PON1 activities can be rationalised through inter-phenotypic differences, 

while lifestyle contributed only for 6% to such variability (Rainwater et al., 2009). In addition, in vivo 

studies suggest, that differences in serum PON1 phenotypes are relevant for predicting the sensitivity 

of high chlorpyrifos-oxon concentrations (Coombes et al., 2014; Li et al., 2000). However, at 

environmentally relevant concentrations, reported in the nanomolar range, no significant differences 

were found in the hydrolysis of chlorpyrifos-oxon between PON1 192 SNPs (Coombes et al., 2014). 

In addition to PON1 polymorphisms, it is suspected that variability in Acetylcholinesterase (AChE) 

activity, breaking down esters of choline molecules, may influence OP toxicity as they are specific 

inhibitors of AChE (Lionetto et al., 2013). The AChE gene is well conserved in humans and has almost 

no loss of function via mutations; the most frequent AChE variant being His353Asn, resulting in a 

phenoptype with normal activity (Lockridge et al., 2016).PON1 is closely located (5.5 Mb) to the AChE 

gene on chromosome 7 and it has been suggested that interactions between the AChE and PON1 occur 

and that the two genes are regulated on the same locus region. In addition, it has been shown that 

individuals with high PON1 activities had lower AChE activities whereas individuals with low PON1 

activities had higher AChE activities. This has been explained for scenarios of low OP exposure under 

which AchE is inhibited in individuals with low PON1 levels, resulting in an upregulation of AChE. In 

Individuals with high PON1 activity the degree of AChE inhibition will be minor with no consequence 

on upregulation of the enzyme, resulting in low plasma levels (Akgur 1999, Bryk 2005).  

 

For Butyl Cholinesterase (BChE), more variants lead to lower BChE activity compared to the wildtype. 

However, it has been shown that OP inhibition of BChE by up to 85% did not result in any clinical signs 

and therefore it is unlikely that BChE (and genetic variants herein) contributes to OP toxicity (Lockridge 

et al., 2016; Nolan et al., 1984). Overall, the observed variability in the susceptibility to OP toxicity has 

been shown to be based mainly on inter-individual differences in PON1, cytochrome P450, and 

glutathione-s transferase activities so that variability in TK processes seem to be the driving variable to 

the toxicodynamics (TD) of OPs (Lockridge et al., 2016). It is proposed that future research would aim 

at unravelling human variability in AChE inhibition of after exposure to OPs, besides the variability in 

baseline activity. However, it is rather difficult to measure the TD contribution alone in in vivo studies, 

since TK variability is most often accounted for. Nevertheless, variability in the reactivation of AChE 

after exposure to OPs has been shown and has been used to parameterise PBTK-TD models for 

chlorpyrifos and other OPs (Poet, 2017). Blood has been sampled and the inhibition and spontaneous 

reactivation of AChE has been measured in vitro together with variation in reactivation half-life 
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(Mason, 2000). Data on TD and differences in AChE binding affinity to OPs are scarce, and more data 

should be generated to estimate inter-individual differences in this parameter. 

The results of this meta-analysis provided inter-phenotypic and inter-individual differences 

distributions for PON1 activities and PON1-related UFs. Variability distributions can be implemented 

in generic PBK models to derive internal concentrations of chemicals. This would allow to model inter-

individual differences in potential sensitivity to OP toxicity for chemical risk assessment purposes. 

Furthermore, variability distributions can provide inputs for the calibration of human quantitative in 

vitro in vivo extrapolation (QIVIVE) models. This approach has the advantage to integrate isoform-

specific metabolism information and human variability distributions for chemical risk assessment. 

PON1-related UFs provides an intermediate option between CSAF and the default UF when chemical-

specific data are not available (Bhat et al., 2017; Clewell et al., 2008). Overall, inter-phenotypic 

differences in PON1 activity are important for chemical risk assessment. 
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Abstract 

UDP-glucuronosyltransferases (UGTs) are involved in phase II conjugation reactions of xenobiotics and 

differences in their isoform activities result in interindividual kinetic differences of UGT probe 

substrates. Here, extensive literature searches were performed to identify probe substrates (14) for 

various UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) and 

frequencies of human polymorphisms. Chemical-specific pharmacokinetic data were collected in a 

database to quantify interindividual differences in markers of acute (Cmax) and chronic (area under 

the curve, clearance) exposure. Using this database, UGT-related uncertainty factors were derived and 

compared to the default factor (i.e. 3.16) allowing for interindividual differences in kinetics. Overall, 

results show that pharmacokinetic data are predominantly available for Caucasian populations and 

scarce for other populations of different geographical ancestry. Furthermore, the relationships 

between UGT polymorphisms and pharmacokinetic parameters are rarely addressed in the included 

studies. The data show that UGT-related uncertainty factors were mostly below the default 

toxicokinetic uncertainty factor of 3.16, with the exception of five probe substrates (1-OH-midazolam, 

ezetimibe, raltegravir, SN38 and trifluoperazine), with three of these substrates being metabolised by 

the polymorphic isoform 1A1. Data gaps and future work to integrate UGT-related variability 

distributions with in vitro data to develop quantitative in vitro–in vivo extrapolations in chemical risk 

assessment are discussed. 

 

Keywords: human variability, pharmacokinetics, uncertainty factor, UGT, polymorphism 

Highlights: 

• Extensive literature search of human kinetic parameters for UGT probe substrates 

• Bayesian meta-analysis quantifying human variability in acute and chronic kinetic parameters 

• UGT isoform-related uncertainty factors were below the 3.16 kinetic default uncertainty 

factor for most probe substrates 

• Quantifying human variability in UGT polymorphisms   
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5.1. Introduction 

Glucuronidation is an enzymatic reaction catalysed by UDP-glucuronosyltransferase (UGT) isoforms 

which involves the conjugation of endogenous substrates (e.g. bilirubin) and xenobiotics [e.g. 

pharmaceuticals (morphine), dietary chemicals (flavonoids), and environmental contaminants 

(mycotoxins)] with glucuronic acid (Dong et al., 2012; Lv et al., 2019). In humans, glucuronide 

conjugates are water soluble and readily excreted in the urine or the faeces resulting in increased 

elimination and most often inactivation of the compound, thereby contributing to xenobiotic 

detoxification (Fisher et al., 2001). Multiple UGT isoforms are often involved in xenobiotic metabolism, 

which, from a toxicological viewpoint, is advantageous as dysfunctionality of an isoform does not 

necessarily result in the impaired elimination and thus detoxification of chemicals (Lv et al., 2019). 

Since UGTs are ubiquitous in pharmacokinetic and toxicokinetic processes (absorption, distribution, 

metabolism and excretion (ADME)), their involvement in human metabolic variability is important. 

The superfamily of UGT isoforms has a nomenclature which is based on similar features to that 

described for the cytochrome P450 (CYP) superfamily (Meech et al., 2019; Rowland et al., 2013). The 

subfamilies of UGT1A and UGT2B are predominantly expressed in the liver as well as in the intestine 

and kidney, where they mediate intestinal and hepatic first-pass glucuronidation of many phenolic 

compounds, including pharmaceuticals and natural phenols (Dong et al., 2012) (Figure 22). The most 

clinically relevant hepatic UGTs are UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15 (Rowland et al., 2013; 

Stingl et al., 2014). Other UGTs from the 2B subfamily are mainly responsible for the metabolism of 

endogenous compounds rather than xenobiotics, such as steroids (2B4, 2B15 and 2B17) and bile acids 

(2B4) (Fisher et al., 2001). 

UGT isoforms are known to be highly polymorphic with more than a hundred variants described (Stingl 

et al., 2014). In most cases, these polymorphic variants result in lower expression levels and/or lower 

activity, and in some instances even complete loss of activity (Sim et al., 2013). Because of such 

changes in expression and/or activity, polymorphic UGT variants may cause higher plasma 

concentrations of (toxic) metabolites or parent compounds, resulting in chemical-induced toxicity. For 

example, UGT1A1 polymorphism is associated with irinotecan toxicity, while UGT2B7 gene 

polymorphism can affect plasma concentrations of valproic acid (Tsunedomi et al., 2017; Wang et al., 

2018). For other isoforms, comparable impact of UGT polymorphisms on internal drug concentrations 

have been observed (Stingl et al., 2014). 
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Figure 22. Average distribution of the major UDP-glucuronosyltransferase isoforms in human liver (A), 

intestine (B) and kidney (C) (Lv et al., 2019). 

 
For the last 70 years, a 100-fold default uncertainty factor (UF) has been applied to derive chronic safe 

levels of exposure for non-cancer effects of chemicals. This default factor allows for interspecies 

differences (10-fold) and human variability (10-fold) to chemical exposure. In the 1990s, the 10-fold 

factor allowing for human variability has been refined to a composite value of two factors of 3.16 

(100.5), accounting respectively for interindividual differences in toxicokinetics and toxicodynamics 

(Renwick and Lazarus, 1998). However, interindividual differences between healthy adults and 

potentially sensitive subgroups including neonates, elderly and poor metabolisers expressing 

polymorphic UGT genes may not be covered by the default kinetic factor (Dorne et al. 2001b; Renwick 

and Lazarus 1998). Under such circumstances, pathway-specific UFs or chemical-specific adjustment 

factors (CSAFs) have been proposed and can provide an option to replace such default UFs. Pathway-

related UFs to account for variability have been described for CYP3A4 as well as efflux and influx 

transporters (Darney et al. 2019; Darney et al. 2020; Dorne et al. 2001b). Human variability in 

glucuronidation processes in relation to UFs has been described earlier by Dorne et al. (2001a), 

however, at the time, information on isoform specificity and genetic polymorphisms was very limited. 

The manuscript aims to investigate human variability in UGT activity through (1) identifying isoform-

specific UGT probe substrates and collecting pharmacokinetic data for intravenous and oral markers 

of acute (maximum concentration (Cmax)) and chronic exposure (clearance, area under the curve 

(AUC)) by means of extensive literature searches and meta-analyses, (2) quantifying interindividual 
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differences in pharmacokinetics by means of hierarchical Bayesian meta-analyses to derive UGT-

related variability distributions and UGT-related UFs. Such UGT-related UFs are relevant to refine 

toxicokinetic UFs for risk assessment of toxicants, nutrients and environmental xenobiotics that are 

metabolised by UGTs, and (3) unravelling the frequencies and pharmacokinetic consequences of UGT 

polymorphisms in human populations. A graphical abstract is depicted in Figure 23. 

 
Figure 23. Graphical abstract summarizing the aim of this study. 

5.2. Materials and Methods 

5.2.1. Extensive literature searches (ELS) and data collection 

UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15 were identified as the most clinically relevant UGT isoforms 

for xenobiotic metabolism (Rowland et al., 2013; Stingl et al., 2014). Probe substrates for these UGT 

isoforms were identified from the in vitro and in vivo literature as compounds metabolised by extensive 

glucuronidation (>60% of the dose excreted in the urine) (Lv et al., 2019; Rowland et al., 2013; Stingl 

et al., 2014; Yang et al., 2017).  

ELS were performed using two main databases (i.e. Scopus and PubMed) to identify human 

pharmacokinetic (PK) studies in non-phenotyped adults for isoform-specific UGT probe substrates in 

adults of different geographical ancestry or ethnic background. A PK database was then computed, 

including intravenous and oral markers of acute (Cmax) and chronic (clearance and AUC) exposure. 

Search queries for the probe substrate deferiprone are illustrated in Table 22 and queries for all other 

substrates are provided in Supplementary Material 1. Data reporting frequencies of UGT 

polymorphisms distribution and the associated PK parameters in phenotyped individuals were 

collected using a horizontal literature search in Google Scholar. 

Table 22. Keyword queries for the Extensive Literature Searches (formatted for Scopus). 

General search terms TITLE-ABS ( patient* ) OR TITLE-ABS ( human ) OR TITLE-ABS ( adult ) OR TITLE-

ABS ( adults ) OR TITLE-ABS ( child ) OR TITLE-ABS ( children ) OR TITLE-ABS ( 

infant ) OR TITLE-ABS ( neonate ) OR TITLE-ABS ( newborn ) OR TITLE-ABS ( 

newborns ) OR TITLE-ABS ( elderly ) OR TITLE-ABS ( "pregnant women" ) OR 

TITLE-ABS ( men ) OR TITLE-ABS ( women ) OR TITLE-ABS ( "ethnic group" ) OR 

TITLE-ABS ( caucasian ) OR TITLE-ABS ( asian ) OR TITLE-ABS ( african ) OR TITLE-
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ABS ( "genetic polymorphism*" ) OR TITLE-ABS ( "individual susceptibility" ) OR 

TITLE-ABS ( "gene environment" ) OR TITLE-ABS ( "ethnic variability" ) OR TITLE-

ABS ( "Afro American" ) OR TITLE-ABS ( hispanic ) OR TITLE-ABS ( "race 

difference" ) OR TITLE-ABS ( "age difference" ) OR TITLE-ABS ( "race differences" 

) OR TITLE-ABS ( "age differences" ) OR TITLE-ABS ( "gender differences" ) OR 

TITLE-ABS ( "gender difference" ) OR TITLE-ABS ( "sex difference" ) OR TITLE-ABS 

( "sex differences" ) 

Search terms for probe 

substrates 

(TITLE-ABS ( deferiprone ) OR TITLE-ABS ( ferriprox )) 

Search terms for 

pharmacokinetics 

TITLE-ABS-KEY ( auc ) OR TITLE-ABS-KEY ( area AND under AND the AND curve ) 

OR TITLE-ABS-KEY ( area AND under AND curve ) OR TITLE-ABS-KEY ( half AND life 

) OR TITLE-ABS-KEY ( half-life ) OR TITLE-ABS-KEY ( half-lives ) OR TITLE-ABS-KEY ( 

clearance ) OR TITLE-ABS-KEY ( cmax ) OR TITLE-ABS-KEY ( vmax ) OR TITLE-ABS-

KEY ( km ) OR TITLE-ABS-KEY ( "michaelis constant" ) OR TITLE-ABS-KEY ( 

pharmacokinetic ) OR TITLE-ABS-KEY ( pharmacokinetics ) OR TITLE-ABS-KEY ( 

toxicokinetic ) OR TITLE-ABS-KEY ( toxicokinetics ) 

Exclusion TITLE-ABS-KEY ( "cell line*" ) OR TITLE-ABS-KEY ( "cell culture*" ) OR TITLE-ABS-

KEY ( rat ) OR TITLE-ABS-KEY(rats) OR TITLE-ABS-KEY ( mouse ) OR TITLE-ABS-KEY 

( mice ) 

TITLE-ABS-KEY: term searched in the title, the abstract and the keywords of the paper. 

 

A two-step process was conducted to screen the retrieved studies from literature as described 

previously (Darney et al., 2019). This process was used to assess whether reported PK values were 

suitable for inclusion in the database. After removing duplicates, the following exclusion criteria were 

applied: 1. species other than humans, 2. in vitro studies, 3. development of analytical methods, 4. 

modelling studies, 5. pharmacodynamics investigations only, 6. substrates other than those identified 

as relevant and/or mixtures of substrates. Articles meeting the exclusion criteria were not considered 

for further evaluation. Furthermore, articles that were written in any other language than English or 

did not contain original research data (e.g. reviews) were excluded from analysis. Overall, data on non-

phenotyped healthy individuals were collected and included in the meta-analysis (see “Data 

standardisation and meta-analyses”). The specific selection of subgroups is described in 

Supplementary Material 1. In a second step, the full text of the included papers was checked for PK 

parameter values after single-dose exposure. Repeated dosing studies and studies for which multiple 

formulas were administered to the same group of volunteers were excluded. However, for 

ethinylestradiol, data were included for both single dose and repeated dosing for 21 days, the standard 

regimen for anticonception drugs. 

5.2.2. Data standardisation and meta-analyses 

Meta-analyses of PK parameter values were performed in non-phenotyped subjects for each probe 

substrate to derive UGT-related variability distributions and UGT-related UFs. For this purpose, each 

PK parameter was normalised in a harmonised manner (Cmax expressed in ng/mL; AUC ng*h/mL and 
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clearance in L/h/kg bw) while applying body weight correction to the applied doses (mg/kg bw). If 

available, the reported (mean) body weight was used, or continent specific body weights were used to 

normalise the dose if body weight data were not available (Walpole et al., 2012). For SN38, the dose 

was normalised to body surface area instead of body weight, as this is the standard measure for this 

compound. If body surface area data were not available, a default value of 1.79 m2 was used (Sacco et 

al., 2010). Data from these studies were extracted mostly as arithmetic mean (AM) and standard 

deviation (SD), but sometimes geometric means (GM) and geometric standard deviations (GSD) were 

reported. Generally, PK data are recognised to follow a lognormal distribution (Dorne et al., 2001b; 

Naumann et al., 1997; Renwick and Lazarus, 1998). Since GM and GSD are more appropriate to 

summarise a lognormal distribution, all pharmacokinetic data were described as GM and GSD using 

the following equations:  

 𝐺𝑀 =  
𝑋

√1+ 𝐶𝑉𝑁
2
     (1) 

 𝐺𝑆𝐷 = 𝑒𝑥𝑝 (√ln(1 +  𝐶𝑉𝑁
2))    (2) 

where X is the arithmetic mean and CVN is the coefficient of variation for normally distributed data:  

 𝐶𝑉𝑁 =  
𝑆𝐷

𝑋
     (3) 

In some studies, SD was not reported and was estimated from the standard error (SE, SEM) or CV using 

equations described previously (Darney et al., 2019). 

The objective of the meta-analyses is to provide accurate information regarding interindividual 

differences in non-phenotyped adults of the PK parameters for a substrate expressed as distributions. 

Variability related to interstudy, intersubstrate and interindividual differences was analysed for each 

substrate and parameter and for each UGT isoform, through a decomposition of the PK parameter 

variance (clearance, AUC or Cmax) using a previously described hierarchical Bayesian model (Darney 

et al., 2019; Wiecek et al., 2019). For the meta-analysis, non-informative prior data were selected for 

most compounds, except for zidovudine and oxazepam for which kinetic variability was previously 

meta-analysed (Dorne et al., 2001a).  

The meta-analyses provided distributions describing interindividual differences for each PK parameter 

with quantitative uncertainty using median values and 95% confidence intervals. The coefficient of 

variation (CV) was also estimated as follows: 

 𝐶𝑉 = √𝑒𝑥𝑝(ln(√exp (1 τ𝑗⁄ ))
2

− 1 (4) 

where τ𝑗 is the interindividual difference of the activity for a substrate ‘j’. 
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UGT isoform-related UFs were calculated as the ratio between the percentile of choice and the median 

of the distribution for each PK parameter for 95th and 97.5th centiles. 

5.2.3. 2.3 Software  

All statistical analyses were performed in R (version 3.5) and the Bayesian modelling was implemented 

in Jags (4.2.0) (Plummer, 2003). Data processing and graphical display were performed in R (dplyr and 

ggplot2 packages) (R Development Core Team, 2018; Wickham, 2016; Wickham et al., 2019). 

References of the studies used to compile the database were stored and sorted in EndNote X8.  

5.3. Results and Discussion 

5.3.1. Extensive literature searches and data collection 

UGT isoforms can conjugate a wide variety of substrates and show a broad overlapping substrate 

specificity. This is advantageous when detoxifying chemicals; however, because of such overlap, 

identifying selective probe substrates for each isoform remains a challenge. Moreover, UGTs are also 

present in the gastrointestinal tract and pre-systemic conjugation occurs readily for a range of 

compounds. Here, to quantify isoform-specific variability in UGTs, selective probe substrates with 

available PK data for each isoform were selected. Moreover, differences in variability between oral 

and intravenous data were compared to investigate the contribution of bioavailability and pre-

systemic conjugation after oral intake. A total of 14 isoform-specific UGT probe substrates covering 

both the UGT1A and UGT2B subfamilies were identified, namely 1-OH-midazolam (UGT1A4), codeine 

(UGT2B7), deferiprone (UGT1A6), entacapone (UGT1A9), ethinylestradiol (UGT1A1), ezetimibe 

(UGT1A1/UGT1A3), mycophenolic Acid (UGT1A9), oxazepam (UGT2B15/UGT1A9), propofol (UGT1A9), 

raltegravir (UGT1A1), SN38 (UGT1A1), telmisartan (UGT1A3), trifluoperazine (UGT1A4) and zidovudine 

(UGT2B7). 

 From the ELS, a total of 7173 papers were assessed from Scopus and PubMed (up to August 2019) and 

an extra 11 papers were retrieved from Google Scholar, for the 13 UGT isoform probe substrates and 

for zidovudine, 10 studies were included from a previous database (shared by Dr. N. Quinot, collated 

for EFSA/SCER/2014/06 project). PRISMA flow diagrams for the individual compounds are provided in 

Supplementary Material 2. Figure 24 provides a summary PRISMA diagram for all papers collected in 

the ELS (Moher et al., 2009). Overall, a total of 210 peer-reviewed publications were selected from the 

ELS and included in the database. Supplementary Material 1 provides the search queries for both 

Scopus and PubMed for the individual compounds. Table 23 illustrates the selected probe substrates, 

the structure of the compounds, bioavailability, percentage of glucuronidation and their site of 

glucuronidation. 
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Figure 24. PRISMA diagram illustrating the extensive literature searches performed for the 13 isoform-

specific UGT probe substrates (UGT1A and UGT2B subfamilies) and human pharmacokinetic studies. 

 
Table 23. Isoform-specific UGT probe substrates. Name of probe substrate, major UGT isoform involved in 

glucuronidation (in bold), % bioavailability, % of dose metabolised by UGT and chemical structure are reported. 

Arrows indicate the main site(s) of glucuronidation. 
Probe substrate UGT isoform Bioavailability 

(%) 

% UGT 

metabolisma 

Chemical structure 

1-OH-

midazolam 

N-

glucuronidation 

by 1A4, O-

glucuronidation 

by 2B71  

31-722  1-23 

  

Codeine 2B74  50-555  44-626  

 

Deferiprone 1A6, other UGTs 

are negligible7  

738 589  
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Entacapone Mainly 1A9, 

minor 

contribution of 

1A1, 2B7 and 

2B1510 

3511 7012 

 

Ethinylestradiol Mainly 1A1, rates 

by other UGTs 

are negligible13 

5514 ~6515 

 

Ezetimibe 1A1 and 1A3, 

small 

contribution of 

2B7 and 2B1516 

n.d.b 80-90c, 17 

 

Mycophenolic 
Acid 

1A9 is most 

efficient, small 

contribution of 

2B718 

95%19,d 7120 

 

Oxazepam S-oxazepam 

mostly by 2B15, 

R-oxazepam by 

1A921 

9322 >7022 

 

Propofol (iv) 1A9, other UGTs 

are negligible23 

e 6224 

 

Raltegravir Mainly 1A1, 

small 

contribution of 

1A3 and 1A925 

3026 7025 

 

SN38 Mainly 1A1, 

small 

contribution of 

~1028,f 329 
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1A9, 1A6 and 

1A327 

Telmisartan Mainly 1A3 

(>97%), also 1A1, 

1A7, 1A8 and 

1A930 

40-6031,32 16b, 32 

 

Trifluoperazine 1A433 10034 unknown 

 

Zidovudine 2B735 6336 8637 

 

Name of probe substrate, major UGT isoform involved in glucuronidation (in bold), % bioavailability, % of dose metabolised 

by UGT and chemical structure are reported. Arrows indicate the main site(s) of glucuronidation. 
1(Seo et al., 2010), 2(Heizmann et al., 1983), 3(Hyland et al., 2009), 4(Coffman et al., 1997), 5(Rogers et al., 1982), 6(Yue et al., 

1989), 7(Benoit-Biancamano et al., 2009b), 8(Medicine, 2014), 9(Rodrat et al., 2012), 10(Lautala et al., 2000), 11(Heikkinen et 

al., 2001), 12(Wikberg et al., 1993), 13(Ebner et al., 1993; Lv et al., 2019),14(Fotherby, 1996), 15(Williams and Goldzieher, 

1980), 16(Ghosal et al., 2004), 17(Kosoglou et al., 2005), 18(Picard et al., 2005),19(Armstrong et al., 2005), 20(Bullingham et al., 1996), 
21(Court et al., 2002), 22(Sonne et al., 1988), 23(Seo et al., 2014), 24(Favetta et al., 2002), 25(Kassahun et al., 2007) fraction of 

dose metabolized by UGT1A1, 26(Brainard et al., 2011), 27(Hanioka et al., 2001), 28(Furman et al., 2009), 29(Slatter et al., 2000), 
30(Yamada et al., 2011), 31(Wienen et al., 2000), 32(Stangier et al., 2000a), remainder is unchanged parent compound, 33(Seo et 

al., 2014), 34(Midha et al., 1984), 35(Barbier et al., 2000), 36(Klecker et al., 1987), 37(Gallicano et al., 1999); a Expressed as % 

of the dose recovered in urine as the glucuronide, b n.d. = not determined. The bioavailability of ezetimibe cannot be determined, 

because it is insoluble in aqueous media and cannot be used for iv injection (Kosoglou et al., 2005), c Expressed as % of dose 

as glucuronide in plasma, d mycophenolic acid is given as a prodrug, mycophenolate mofetil, e no bioavailability is given for 

propofol, as all studies in the database are iv studies, f Bioavailability of irinotecan, the parent drug of SN38. 

 

5.3.2. Interindividual differences for the kinetics of isoform-specific UGT 
probe substrates and related uncertainty factors in non-phenotyped adults 

Results of the meta-analyses are expressed as geometric means (normalised to dose and body weight) 

for the 14 isoform-specific UGT probe substrates and are illustrated for markers of acute (Cmax) and 

chronic (AUC/clearance) exposure after oral and intravenous administration in Figure 25. The full 

dataset of extracted information used can be accessed on EFSA knowledge junction. Data availability 

was variable for each UGT probe substrate and interstudy differences are reported for each compound. 

For SN38, only patient data were available and no data for healthy adult individuals were reported in 

the literature. For deferiprone, no clear distinction could be made between healthy adult data and 

patient data for all three parameters, suggesting that the condition of the individuals did not influence 
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the pharmacokinetics of this compound. In Fig. 5, isoform-specific interindividual differences in AUC 

are illustrated for world populations from different geographical ancestry or country of origin (one 

probe substrate per UGT isoform). These plots indicate that no clear differences in chronic exposure 

(AUC) can be demonstrated across world populations from different geographical ancestry and, 

therefore, there is indication of significant interethnic differences for these probe substrates. The same 

conclusion holds for other PK parameters and other probe substrates, which are illustrated in 

Supplementary Material 3.  

Interindividual differences were higher compared to an earlier study (Dorne et al., 2001a), which 

included 11 probe substrates compared to 14 here; with an overlap of only two probe substrates 

(zidovudine (AZT) and oxazepam). In addition, Dorne et al. (2001a) mostly considered UGT2B7 probe 

substrates while UGT1A1-specific probe substrates were not included since they were not available at 

that time. Polymorphisms have the highest impact on the PK of UGT1A1 probe substrates, which may 

explain the larger interindividual differences in this study. Finally, the 2001 study investigated PK data 

for potentially sensitive subgroups including neonates, infants, children, and the elderly, but little to 

no data for these subgroups were available for the included probe substrates here (Dorne et al., 

2001a). It is worth noting that UGT metabolism in neonates impaired and they show a low 

glucuronidation activity (Allegaert et al., 2009). Data for such PK differences in markers of acute and 

chronic exposure are still very limited for these subgroups, but can reach 2-3-fold in comparison with 

healthy adults, so that the default kinetic factor may be inadequate and an extra UF may be required 

to cover these subgroups (Dorne et al., 2001a; Dorne et al., 2005). 

UGT1A1 

For UGT1A1, ethinylestradiol, ezetimibe, raltegravir and SN38 were identified as probe substrates. 

Besides pharmaceuticals, UGT1A1 is involved in the glucuronidation of several compounds important 

in (food) toxicology, including the naturally occurring food components resveratrol and several 

hydroxyflavones, the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 

the phytochemical ferulic acid  (Brill et al., 2006; Li et al., 2011; Malfatti and Felton, 2004; Tang et al., 

2010). For ethinylestradiol, only single-dose studies were used to quantify the UGT1A1 variability. PK 

data were available for Europeans, East Asians, South Asians, Southeast Asians, North Americans, 

South Americans, North Africans and Middle Eastern adults with the majority of the datasets from 

North American and European studies. Data gaps were identified for specific groups like Central 

Americans and Africans. Chemical-specific CVs ranged from 35 to 72%, while isoform-related CVs 

ranged from 46 to 51% (Table 24). Overall, the UGT1A1 related UFs were most often below or close to 

the default TK UF of 3.16 for at least 97.5% of the healthy adults when considering the median value. 

However, our analysis by the Bayesian model takes into account the uncertainty around the estimation 
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of the UF and this shows that, given the available data (number of studies and number of individuals 

per study), the default factor may not cover all possible cases. Indeed, the upper bound of the 

confidence interval is higher than 3.16. The chemical-specific data show that SN38, ezetimibe and 

raltegravir all have an UF97.5 higher than 3.16, ranging from 3.2 to 3.6 (Table 24). Ethinylestradiol is 

the only UGT1A1 probe substrate studied here that did not exceed the default kinetic UF for any of the 

parameters. 
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Figure 25. Log Geometric Means (GM) of extracted kinetic parameters AUC (A), clearance (B) and Cmax 

(C) from the included papers after standardization. 

Squares: oral exposure; solid circles: IV exposure; red datapoints: healthy volunteers; blue datapoints: 

patients; 21d: repeated dose for 21 days.   
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Table 24. Pharmacokinetic parameters of UGT1A1 probe substrates in non-phenotyped adults after oral or 

intravenous administration. 
Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Oral AUC 

(ng*h/mL/dose) 

Ethinylestradiola 60 1236 41 2045 1.9 [1.8-2.1] 2.2 [2.0-2.4] 

Ethinylestradiolb 50 974 42 1355 1.9 [1.8-2.1] 2.2 [2.0-2.5] 

Ezetimbe 11 173 44 356 2.0 [1.7-2.4] 2.3 [1.9-2.9] 

Raltegravir 6 67 60 2110 2.5 [1.9-3.8] 3.0 [2.2-4.9] 

SN38 20 139 70 8039 2.8 [2.2-3.9] 3.5 [2.6-5.0] 

Overall (n = 4) 147 2589 50  2.2 [1.7-3.6] 2.5 [2.0-4.6] 

Oral Clearance 

(mL/min/kg) 

Ethinylestradiola 19 324 36 6.8 1.8 [1.6-2.0] 2.0 [1.8-2.3] 

Ethinylestradiolb 11 135 38 6.3 1.8 [1.6-2.3] 2.1 [1.7-2.8] 

Ezetimbe 4 55 66 13.9 2.7 [2.0-4.7] 3.3 [2.2-6.2] 

Overall (n = 2) 34 514 48  2.1 [1.6-4.2] 2.5 [1.7-5.5] 

Oral Cmax 

(ng/mL/dose) 

Ethinylestradiola 39 1295 35 250 1.7 [1.6-1.9] 1.9 [1.8-2.1] 

Ethinylestradiolb 11 841 38 175 1.8 [1.7-2.0] 2.1 [1.9-2.3] 

Ezetimbe 5 173 47 25.8 2.1 [1.8-2.5] 2.4 [2.0-3.0] 

Raltegravir 5 56 72 594 2.9 [2.1-5.1] 3.6 [2.4-7.0] 

SN38 20 146 64 5.0 2.6 [2.1-3.5] 3.2 [2.5-4.5] 

Overall (n = 4) 138 2511 53  2.3 [1.7-4.1] 2.7 [1.9-5.3] 

Intravenous AUC 

(ng*h/mL/dose) 

Ethinylestradiolb 2 24 39 3585 1.9 [1.4-3.4] 2.1 [1.5-4.3] 

Raltegravir 1 3 37 3752 1.8 [1.5-2.6] 2.0 [1.6-3.1] 

SN38 109 1407 62 67.4 2.5 [2.3-2.8] 3.0 [2.7-3.5] 

Overall (n= 3) 111 1434 46  2.1 [1.5-2.8] 2.4 [1.6-3.5] 

Intravenous Clearance 

(mL/min/kg) 

Ethinylestradiolb 3 33 39 4.8 1.9 [1.5-3.0] 2.1 [1.6-3.7] 

Raltegravir 1 3 38 4.5 1.9 [1.2-9.2] 2.1 [1.2-13] 

SN38 6 79 68 0.32 2.8 [2.1-4.4] 3.4 [2.4-5.8] 

Overall (n= 3) 10 115 51  2.6 [1.3-5.8] 2.6 [1.3-7.7] 

aRepeated dosing of 21 days, bSingle dose. nst = number of studies, n = number of subjects 

 

UGT1A3 

UGT1A3 is a UGT isoform involved in the glucuronidation of the flavonoid icaritin and several other 

flavonoids (Chen et al. 2008; Wang et al. 2018a). In this study, two probe substrates were included for 

UGT1A3, namely telmisartan and ezetimibe. Isoform-related CVs varied from 37–62%. Highest 

variability was observed for telmisartan and ezetimibe clearance with CV values of 59 and 66%, 

respectively. It has been demonstrated previously in the literature that telmisartan shows high 

variability in PK parameters (Chen et al., 2013; Deppe et al., 2010; Kang et al., 2018; Stangier et al., 

2000b). Overall, UGT1A3-related UFs were below the default TK UF of 3.16 (Table 25). 

Table 25. Pharmacokinetic parameters for UGT1A3 probe substrates in non-phenotyped adults after single-

dose oral or intravenous administration. 
Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Oral 

 

AUC 

(ng*h/mL/dose) 

Ezetimbe 11 173 44 356 2.0 [1.7-2.4] 2.3 [1.9-2.9] 

Telmisartan 13 225 53 2155 2.2  [1.9-2.7] 2.6 [2.2-3.3] 

Overall (n = 2) 24 398 49  2.1 [1.8-2.7] 2.4 [2.0-3.2] 

Clearance 

(mL/min/kg) 

Ezetimbe 4 55 66 13.9 2.7 [2.0-4.7] 3.3 [2.2-6.2] 

Telmisartan 6 103 59 10.1 2.5 [2.0-3.5] 2.9 [2.2-4.4] 
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Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Overall (n = 2) 9 158 62  2.6 [2.0-4.2] 3.1 [2.2-5.6] 

Cmax 

(ng/mL/dose) 

Ezetimbe 5 173 47 25.8 2.1 [1.8-2.5] 2.4 [2.0-3.0] 

Telmisartan 9 144 38 391 1.8 [1.6-2.2] 2.0 [1.7-2.6] 

Overall (n= 2) 20 317 43  2.0 [1.6-2.4] 2.2 [1.8-2.9] 

Intravenous 

 

AUC 

(ng*h/mL/dose) 

Telmisartan* 6 41 37 1469 1.8 [1.5-2.6] 2.0 [1.6-3.2] 

Clearance 

(mL/min/kg) 

Telmisartan* 5 36 39 12.2 1.9 [1.5-2.9] 2.1 [1.6-3.6] 

nc = number of compounds, nst = number of studies, n = number of subjects 

 

UGT1A4 

The ginsenoside 20(S)-protopanaxadiol is one of the naturally occurring probe substrates of the 

UGT1A4 isoform (Li et al., 2016). UGT1A4 probe substrates selected here included trifluoperazine and 

1-OH-midazolam. It is important to note that 1-OH-midazolam is a metabolite of midazolam which is 

formed by CYP3A4 and then conjugated by UGT1A4. Variability for trifluoperazine was quite extensive, 

although only a limited number of publications were available, and studies were all from Canada. Large 

interindividual differences in PK parameters has previously been demonstrated for trifluoperazine, 

independent of ethnicity (Midha et al., 1988). After oral administration, 1A4 shows the highest 

variability regarding acute exposure (Cmax) out of all isoforms with a CV of 62%. However, least 

variability was found for UGT1A4 in mRNA expression levels when compared with mRNA expression 

levels of UGT1A1, UGT1A3, UGT1A6 and UGT1A9 (Aueviriyavit et al., 2007). Despite this low variability 

in mRNA expression levels, an exceedance of the default TK UF is observed for the 97.5th percentile 

for 1-OH-midazolam (UF97.5: 3.3, Table 26). 

Table 26. Pharmacokinetic parameters of UGT1A4 probe substrates in non-phenotyped adults after single-

dose oral or intravenous administration. 
Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Oral 

AUC 

(ng*h/mL/dose) 

1-OH-

Midazolam 

5 67 35 308 1.7 [1.5-2.3] 1.9 [1.6-2.6] 

Trifluoperazine 7 75 64 207 2.6 [2.0-4.0] 3.2 [2.3-5.3] 

Overall (n = 2) 12 142 47  2.1 [1.5-3.7] 2.4 [1.6-4.8] 

Clearance 

(mL/min/kg) 

Trifluoperazine 2 48 57 112 2.4 [1.8-4.0] 2.8 [2.0-5.1] 

Cmax 

(ng/mL/dose) 

1-OH-

Midazolam 

17 67 67 76 2.7 [2.0-4.3] 3.3 [2.3-5.7] 

Trifluoperazine 6 79 58 18.3 2.4 [1.9-3.5] 2.9 [2.2-4.5] 

Overall (n = 2) 11 146 62  2.6 [2.0-4.0] 3.1 [2.2-5.3] 

nc = number of compounds, nst = number of studies, n = number of subjects 

 

UGT1A6 

Of the seven UGT isoforms investigated in this study, UGT1A6 has been recognised as one of the minor 

isoforms for glucuronidation and drug metabolism (Stingl et al., 2014). However, it is involved in the 
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glucuronidation of several pharmaceuticals, including acetaminophen and aspirin, and the remarkable 

sensitivity of cats to these analgesics is due to the lack of UGT1A6 expression in the feline liver 

(Shrestha et al., 2011). The natural occurring compound protocatechuic aldehyde is also metabolised 

by this UGT isoform (Liu et al., 2008). In this study, deferiprone was included as probe substrate for 

UGT1A6. Only data after oral administration were available and for all PK parameters, the CVs ranged 

from 36-48% Table 27) with UGT1A6-realted UFs all below the default TK UF. 

Table 27. Pharmacokinetic parameters of UGT1A6 probe substrates in non-phenotyped adults after single-

dose oral or intravenous administration. 

Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Oral 

AUC 

(ng*h/mL/dose) 

Deferiprone* 11 101 36 1654 1.8  [1.5-2.2] 2.0 [1.7-2.5] 

Clearance 

(mL/min/kg) 

Deferiprone* 9 89 40 1.9 1.9 [1.6-2.4] 2.1 [1.7-2.9] 

Cmax 

(ng/mL/dose) 

Deferiprone* 3 101 48 616 2.1 [1.7-2.8] 2.4 [1.9-3.4] 

nc = number of compounds, nst = number of studies, n = number of subjects 

 

UGT1A9 

For the UGT1A9 isoform, several relevant substrates include resveratrol, several flavonols and the 

natural flavouring agent estragole (Brill et al., 2006; Iyer et al., 2003; Wu et al., 2011). Probe substrates 

for this isoform included entacapone, mycophenolic acid, oxazepam, and propofol. Overall, isoform-

related CVs varied between 23 and 41%. For oxazepam, variability in PK parameters was described 

previously (Dorne et al., 2001a). Compared to our results, variability in Cmax and AUC was comparable, 

while the calculated variability was lower for clearance in our study (33% against 51%). UGT1A9-related 

UFs did not exceed the UF of 3.16 (Table 28). 

Table 28. Pharmacokinetic parameters of UGT1A9 probe substrates in non-phenotyped adults after single 

dose oral or intravenous administration. 
Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Oral AUC 

(ng*h/mL/dose) 

Entacapone 3 56 28 442 1.6 [1.4-2.0] 1.7 [1.5-2.3] 

Mycophenolic 

acid 

35 837 30 3241 1.6 [1.5-1.7] 1.8 [1.6-1.9] 

Oxazepam 5 44 44 8039 2.0  [1.6-3.0] 2.3 [1.7-3.7] 

Overall (n = 3) 43 937 31  1.6 [1.4-2.6] 1.8 [1.5-3.2] 

Oral 

Clearance 

(mL/min/kg) 

Mycophenolic 

acid 

10 140 41 3.7 1.9 [1.6-2.4] 2.2 [1.8-2.8] 

Oxazepam 10 86 33 1.4 1.7 [1.5-2.1] 1.9 [1.6-2.4] 

Overall (n = 2) 20 226 37  1.8 [1.5-2.3] 2.0 [1.6-2.7] 

Cmax 

(ng/mL/dose) 

Entacapone 63 56 48 447 2.1 [1.7-3.1] 2.4 [1.9-3.9] 

Mycophenolic 

acid 

17 583 43 1818 2.0 [1.8-2.2] 2.2 [2.0-2.5] 

Oxazepam 4 35 26 1243 1.5 [1.3-2.1] 1.6 [1.4-2.4] 

Overall (n = 3) 24 674 41  1.9 [1.3-2.8] 2.2 [1.4-3.3] 

Intravenous 
AUC 

(ng*h/mL/dose) 

Propofol* 5 43 31 635 1.7 [1.4-2.3] 1.8 [1.5-2.7] 
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Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95% CI) 

Clearance 

(mL/min/kg) 

Propofol 9 79 23 24.7 1.5 [1.3-1.7] 1.6 [1.4-1.9] 

nc = number of compounds, nst = number of studies, n = number of subjects 

 

UGT2B7 

UGT2B7 is a UGT isoform which conjugates natural compounds such as emodin, a Chinese traditional 

medicine, the natural sweetener stevioside and natural compounds from herbs such as 

andrographolide and estragole (Iyer et al., 2003; Tian et al., 2015; Wang et al., 2014; Wu et al., 2018). 

Selective pharmaceutical probe substrates included in this study were codeine and zidovudine and 

isoform-related CVs varied between 26 and 37% (Table 29). The PK database mainly consisted of 

Caucasians (North America and Europe) for both compounds. For codeine, five studies from the USA 

and four studies from Europe were available, and the remaining studies were from Asia or Australia. 

For zidovudine, six studies were available from North America, and three from South America and 

Europe. The variability as indicated by the CV was 26% for clearance, 28% for AUC, and 43% for the 

Cmax for zidovudine. While the calculated variability for clearance and Cmax is comparable to Dorne 

et al. (2001a), the AUC showed less variability (28%, 12 studies against 56%, 2 studies). UGT2B7-related 

UFs did not exceed the TK default UF. 

Table 29. Pharmacokinetic parameters of UGT2B7 probe substrates in non-phenotyped adults after single-

dose oral or intravenous administration. 
Route Parameter Compound nst n CV GM UF95  (95%CI) UF97.5  (95%CI) 

Oral 

AUC 

(ng*h/mL/dose) 

Codeine 18 209 29 510 1.6 [1.5-1.8] 1.7 [1.6-2.0] 

Zidovudine 12 107 28 477 1.6 [1.4-1.8] 1.7 [1.5-2.1] 

Overall (n = 

2) 

30 316 28  1.6 [1.4-1.8] 1.7 [1.5-2.0] 

Clearance 

(mL/min/kg) 

Zidovudine 8 72 26 33.3 1.5 [1.4-1.8] 1.7 [1.4-2.1] 

Cmax 

(ng/mL/dose) 

Codeine 11 192 33 134 1.7 [1.5-1.9] 1.9 [1.6-2.2] 

Zidovudine 9 94 43 344 2.0 [1.7-2.6] 2.3 [1.8-3.1] 

Overall (n= 2) 26 286 37  1.8 [1.5-2.5] 2.0 [1.7-2.9] 

nc = number of compounds, nst = number of studies, n = number of subjects 

UGT2B15 

UGT2B15 is mostly responsible for the metabolism of endogenous compounds such as steroids (e.g. 

dihydrotestosterone and 17β-diol) (Chen et al., 1993). Environmental contaminants that are 

metabolised by UGT2B15 include bisphenol A (Hanioka et al., 2008). Major xenobiotic substrates for 

UGT2B15 include the pharmaceuticals lorazepam and S-oxazepam, although lorazepam is not 

recommended as a probe substrate for the isoform because of the involvement of several other UGT 

isoforms in its glucuronidation (Lv et al., 2019; Rowland et al., 2013). Oxazepam is a benzodiazepine 

which is administered as a racemic mixture, with R-oxazepam being glucuronidated by UGT1A9 and S-

oxazepam being glucuronidated by UGT2B15. Variability in the ratio between the R-glucuronide and 
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the S-glucuronide has been characterized particularly for the formation of the S-glucuronide (Patel et 

al., 1995). Table 28 shows that variability in oxazepam is 33% and 44% for markers of chronic exposure 

and 26% for markers of acute exposure and all calculated UGT2B15-related UFs are below the default 

TK UF. As oxazepam is the only substrate included for UGT2B15, calculated CVs and UFs for oxazepam 

are considered the overall isoform-specific CVs and UFs for UGT2B15.  

5.3.3. Frequencies of UGT isoform polymorphisms in world populations and 
impact on the pharmacokinetics of probe substrates in non-phenotyped 
subjects 

Frequencies of single nucleotide polymorphisms (SNPs) of UGT isoforms namely UGT1A1*28, UGT1A3, 

UGT1A4*2 (C70A), UGT1A4*3 (T142G), UGT1A6*2, UGT1A9*22, UGT2B7 C802T and UGT2B15*2 are 

presented in Figure 26 for world populations of different geographical ancestry. Data investigating the 

impact of UGT polymorphisms on in vivo PK parameters are limited and summarised in Table 30 for 

the probe substrates included in this study. Overall, the limited data shows that such an impact still 

needs to be fully characterised for endogenous substrates and xenobiotics in world populations. 
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Figure 26. Frequencies of SNPs UGT1A1*28 (A), UGT1A3 (B), UGT1A4 (C70A) (C), UGT1A4 (T142G) 

(D), UGT1A6*2 (E), UGT1A9*22 (F), UGT2B7 (C802T) (G), UGT2B15*2 (H) 

Genotypes in various ethnic groups: C = Central; N = North; S = South; E = East; SE = Southeast 
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Table 30. Impact of UGT isoform polymorphisms on pharmacokinetic markers of chronic exposure. 
Polymorphism Ethnicity/ 

Geographical 
ancestry 

Substrate Dose Sample 
size 

AUC ratio to wild 
type (%) 

Reference 

wt/var var/var  

UGT1A1*28 Caucasian SN38 350 mg/m2 30/25/6 136 161 (Innocenti et al., 2004) 

UGT1A1*28 Japanese SN38 100 mg/m2 10/7/0 337 
 

(Fukuda et al., 2018) 

UGT1A1*28 USA SN38 125 mg/m2 5/8/2 176 147 (Jaeckle et al., 2010) 

UGT1A1*28 Japan SN38 150 mg/m2 41/7/3 120 261 (Satoh et al., 2011) 

UGT1A1*28 Caucasian SN38 300 mg/m2 9/7/4 141 259 (Iyer et al., 2002) 

UGT1A1*28 Korea SN38 80 mg/m2 69/12/0 88   (Han et al., 2006a) 

UGT1A1*28 Japan SN38 100 mg/m2 3/3/0 401   (Hazama et al., 2010) 

UGT1A1*28 Japan SN38 50 mg/m2 7/1/1 219 172 (Ando et al., 1998) 

UGT1A1*28 Caucasian SN38 600 mg 44/37/5 118 118 (Paoluzzi et al., 2004) 

UGT1A1*28 Italy SN38 180 mg/m2 31/32/8 124 140 (Toffoli et al., 2006) 

UGT1A1*28 USA SN38 180 mg/m2 9/15/5 105 209 (Denlinger et al., 
2009) 

UGT1A1*28 USA SN38 20 mg/m2 11/19/7 110 140 (Stewart et al., 2007) 

UGT1A1*28 Korean SN38 65 or 80 
mg/m2 

93/14/0 85   (Han et al., 2009) 

UGT1A1*28 USA SN38 50 mg/m2 14/7/0 91   (Bomgaars et al., 
2007) 

UGT1A1*28 Korean Ezetimibe 10 mg 12/0/6   177 (Bae et al., 2011) 

UGT1A1*28 Japan Telmisartan 80 mg 43/14/0 53   (Yamada et al., 2011) 

UGT1A1*28 Japan Telmisartan 80 mg 16/3/4 39 49 (Ieiri et al., 2011) 

UGT1A1*28 Caucasian Raltegravir 400 mg 27/0/30   141 (Wenning et al., 2009) 

UGT1A1*6 Japan SN38 150 mg/m2 41/9/9 95 214 (Satoh et al., 2011) 

UGT1A1*6 Japanese SN38 100 mg/m2 10/10/0 125 
 

(Fukuda et al., 2018) 

UGT1A1*6 Korea SN38 80 mg/m2 49/26/6 111 176 (Han et al., 2006a) 

UGT1A1*6 Korean Ezetimibe 10 mg 12/0/4   97 (Bae et al., 2011) 

UGT1A1*6 Japanese Telmisartan 40 mg 10/2/0 114   (Miura et al., 2009) 

UGT1A1*6 Japan Telmisartan 80 mg 31/13/2 118 153 (Yamada et al., 2011) 

UGT1A1*6 Japan Telmisartan 80 mg 16/7/1  109 193 (Ieiri et al., 2011) 

UGT1A3*2a Japan Telmisartan 80 mg 17/8/0 57   (Ieiri et al., 2011) 

UGT1A6*2 Thailand Deferiprone 25 mg/kg 10/8/4 72 90 (Limenta et al., 2008) 

UGT1A9*22 Korea SN38 80 mg/m2 11/45/23 83 70 (Han et al., 2006a) 

UGT1A9*22 China Mycophenolic 
acid 

1- 2 g 13/21/12 106 128 (Zhang et al., 2008) 

UGT2B7*2 Japanese Telmisartan 40 mg 6/6/0 103   (Miura et al., 2009) 

UGT2B7*2 Japan Telmisartan 80 mg 24/28/5 110 149 (Yamada et al., 2011) 

UGT2B15*2 USA Oxazepam 15 mg 6/20/4 147 243 (He et al., 2009) 

The associated polymorphism, the predominant ethnicity (or, if not given, the country of the study), the substrate, 
dose, sample size and ratios of the AUC is given, relative to wild type. For the sample size, numbers of wt/wt, 
wt/var and var/var are given. Ratios that are significantly different from wild type according to the cited study 
are shown in bold and italic 
Wt wild type, var variant, FOLFIRI folinic acid, fluorouracil, irinotecanSample size: wt/wt, wt/var and var/var; wt= 
wild-type, var = variant 

Understanding the functional role of UGT SNPs is a key aspect to quantify the relationship between 

their frequency distributions (Figure 26) and the pharmacokinetic consequences on UGT conjugation 

across world populations. Table 30 provides an account of such pharmacokinetic consequences; 

however, available studies from the literature are still limited. The consequences can be two-sided: an 

increased UGT activity would result in detoxification and a decreased UGT activity would result in an 
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increase in the concentration of the toxic form (parent compound). Well-known exceptions to this rule 

include carboxylic acid-containing drugs that are metabolised by UGTs and form acyl glucuronides, like 

mycophenolic acid and telmisartan. These acyl glucuronides can cause idiosyncratic drug toxicity by 

binding covalently to proteins (Iwamura et al., 2017). For mycophenolic acid, indeed protein adducts 

have been found in vivo and these can result in several adverse effects (Shipkova et al., 2002). 

UGT1A1 

UGT1A1 in humans is one of the most important UGT isoforms in terms of glucuronidation and is 

known to have multiple clinically relevant polymorphisms that can contribute to variability in PK 

parameters (Mehboob et al., 2017; Miners et al., 2002). Polymorphisms in UGT1A1 are extensively 

studied and alteration in its activity can result in Gilbert’s syndrome, one of the most common 

syndromes in humans (Burchell and Hume, 1999; Stingl et al., 2014). Gilbert’s syndrome results in 

hyperbilirubinaemia, as UGT1A1 is responsible for the metabolism of bilirubin. The frequency and type 

of polymorphisms differ between individuals from different geographical ancestry or ethnic 

backgrounds (Weber, 1999) and this is also apparent from the frequencies of mutations in UGT1A1 

that are responsible for Gilbert’s syndrome. A dinucleotide polymorphism in the TATA box promoter 

(UGT1A1*28) resulting in reduced UGT1A1 expression and Gilbert’s syndrome is detected in only 3% 

of Asians and ~ 15% in Europeans, while it can be up to 36% in Africans (Beutler et al., 1998). When 

looking at the frequency distribution of this SNP, clear interindividual differences are indeed detected 

across populations of different geographical ancestry (Figure 26a, for references see Supplementary 

Material 4). As expected, Asian populations (especially East and Southeast Asians), as well as 

Oceanians, more frequently express the wild-type genotype, whereas other ethnicities predominantly 

express the heterozygous genotype. In Europe and Middle East, mixed frequencies in wild-type and 

heterozygous genotypes are observed. Another SNP in this isoform, UGT1A1*6, results in an amino 

acid substitution at position 71 (G71R). This mutation also causes Gilbert’s syndrome and is more 

frequently detected in Asians (Burchell and Hume, 1999). 

As mentioned earlier, data gaps for pharmacokinetics of UGT1A1 probe substrates have been 

identified especially for Africans and Central Americans. Distribution of genotypes for UGT1A1*28 

differs for these populations compared to Europeans and this highlights that PK data in phenotyped 

individuals from different geographical ancestries are needed to characterise isoform-specific UGT 

variability and related UFs. Besides, the high variability observed for SN38 may also be rationalised by 

the fact that only patient data were available and included in the meta-analysis, which may bias the 

analysis. Moreover, internal concentrations of SN38 can be influenced by the UGT1A1*28 mutation 

and some PK studies included only patients with the wild-type genotype, which also results in a bias in 

the calculation of the variability and the UF (Ri et al., 2018). 
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It is striking that variability in PK for ethinylestradiol is low (35–42%; Table 24) when compared to 

variability in PK for raltegravir and SN38 (up to 72%, Table 24). One possible explanation is the inclusion 

of only females as it is used as a contraceptive, and this may reduce variability. Indeed, genetic sex 

differences are known to have an important effect on interindividual differences in UGT enzymes as 

well and this aspect is further elaborated further down in the discussion. Another possible rationale 

may be that the identified SNPs have a larger impact on raltegravir and SN38 metabolism than on 

ethinylestradiol metabolism, which could be due to differences in docking resulting in different 

affinities and kinetics. Unfortunately, no studies that investigated the effect of UGT1A1 polymorphisms 

directly on ethinylestradiol PK in vivo were available. However, both ethinylestradiol and SN38 show 

significantly lower in vitro rates of metabolism with UGT1A1*28 polymorphic human liver microsomes 

(Zhang et al., 2007). 

For the UGT1A1*28 polymorphism, significantly higher values for the AUCs were reported for SN38 

which corresponds with a decrease in glucuronidation capacity (Table 30). For the UGT1A1*6 

polymorphism, impact on PK parameters is less clear with only one study showing a significant increase 

in AUC for SN38. No in vivo PK data were available for the other UGT1A1 probe substrates and the 

effect of either UGT1A1 polymorphism on their PK parameters. 

UGT1A3 

For UGT1A3 polymorphisms, the frequency distribution is rather uniform across populations of 

different geographical ancestry. However, data were only available for three populations (North 

America, East-Asia and Europe) and the heterozygous genotype was the most represented one in all 

three populations (Figure 26b). A contrasting exception was the observation of slightly higher 

frequencies for the wild type in East Asians compared to the other two populations. 

UGT1A3 polymorphisms are associated with an increase in glucuronidation rates for a range of 

compounds. UGT1A3*2 (nucleotide changes T31C, G81A and T140C) polymorphism is correlated with 

an increase in glucuronidation of atorvastatin (Cho et al., 2012). Moreover, polymorphisms in UGT1A3 

have been associated with polymorphisms in UGT1A1, which is due to a linkage disequilibrium within 

the UGT1A locus (Cho et al., 2012; Riedmaier et al., 2010; Saeki et al., 2006). 

A study on telmisartan PK reported a significant influence of the *2a and *4a variants of the UGT1A3 

polymorphisms, associated with a decrease and an increase in AUC, respectively (Ieiri et al., 2011)  

(Table 30). Furthermore, a number of studies showed an impact of UGT1A1 and UGT2B7 

polymorphisms on PK parameters of telmisartan, indicating that multiple UGT isoforms may be 

responsible for its glucuronidation and that multiple polymorphisms can, therefore, influence its PK 

parameters (Ieiri et al., 2011; Miura et al., 2009; Yamada et al., 2011). 
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UGT1A4 

For UGT1A4, the *2 and *3 mutations are the two most common SNPs. UGT1A4*2 is a mutation at 

codon 24, resulting in an amino acid change from proline to threonine (P24T) because of a C70A SNP. 

UGT1A4*3 is a T142G SNP, resulting in an amino acid change at codon 48, from a leucine to a valine 

(L48V). In the frequency distribution data, no differences in C70A and T142G genotypes between 

populations from different geographical ancestries were observed (Figure 26c/d). Compared to the 

mutation and the heterozygous genotype, the wild-type genotype is predominantly detected 

(C70A: > 80%, T142G: > 55%). 

Studies on these SNPs show contradictory results. Neither polymorphism is significantly associated 

with trifluoperazine glucuronidation activity in vitro (Benoit-Biancamano et al., 2009a). However, 

decreased activities have been reported for benzidine, β-naphthylamine, steroids and tigogenin, but 

increased glucuronidation has been reported for clozapine and olanzapine with UGT1A4*3 (Ehmer et 

al., 2004; Ghotbi et al., 2010; Mori et al., 2005). This suggests that the impact of UGT1A4 mutations on 

PK parameters is substrate dependent, but the associated mechanism remains to be elucidated. The 

UGT1A4*3 has also been associated with decreased serum levels of lamotrigine which correspond to 

an increase in glucuronidation rates  (Gulcebi et al., 2011; Reimers et al., 2016). For UGT1A4, no 

studies were encountered that studied effects of polymorphisms in this UGT isoform on in vivo PK 

parameters of the probe substrates. 

UGT1A6 

For UGT1A6, the most prominent mutation is UGT1A6*2, which is the result of two substitutions: 

T181A and R184S (Ciotti et al., 1997). The linkage disequilibrium between these polymorphisms is very 

high, as they are only 11 nucleotides apart (nucleotides 541 and 552) (McGreavey et al., 2005). A 

linkage disequilibrium between UGT1A6*2 and UGT1A1*28 is also observed (Lampe et al., 1999). No 

differences are seen across world populations in the frequency distribution of this polymorphism 

(Figure 26e). 

No impact on deferiprone PK was found in vivo for UGT1A6*2 (Limenta et al., 2008). However, an in 

vitro study showed that the UGT1A6*2 variant could lead to either a decrease or an increase in 

glucuronidation capacity for various phenolic compounds (Ciotti et al., 1997; Nagar et al., 2004). Lampe 

et al. (1999) showed that genetic sex had more influence on the PK parameters of deferiprone whereas 

polymorphism had no impact. This may be due to both the variation in UGT1A6 content and activity 

between males and females. Indeed, glucuronidation capacity has been shown to be higher in males 

with a 50% higher UGT1A6 protein content in males compared to that in females (Bock et al., 1994; 

Court et al., 2001). 
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UGT1A9 

For UGT1A9, SNPs have been associated with a range of impacts on the PK of xenobiotics. T98C 

(UGT1A9*3) may result in a decrease in glucuronidation activity, although the reported results are 

contradictory (Girard et al., 2004; Jiao et al., 2008; Villeneuve et al., 2003). The T-275A SNP, which is 

located in the promotor region, is associated with an increase in glucuronidation rates, while in another 

study, the glucuronidation rate of mycophenolic acid remained unaffected (Girard et al., 2004; Jiao et 

al., 2008; Kuypers et al., 2005; Mazidi et al., 2013). Multiple linkage disequilibria are known for 

polymorphisms in UGT1A9 since SNPs in UGT1A9 are linked to SNPs in UGT1A7 and UGT1A6 (Saeki et 

al., 2006). The frequency distributions of these genotypes across several populations are described in 

Supplementary Material 5. 

The SNP with the most apparent differences in frequencies between populations is a ‘T’ deleted at 

position-118 in the promotor region of the gene, UGT1A9*22 (Cecchin et al., 2009). Japanese 

individuals show a different distribution compared to that in other populations including other Asian 

populations (Figure 26f). In other world populations, the heterozygous genotype is the most occurring, 

while in Japan most prominent frequencies are a mix between the heterozygous genotype and the 

homozygous mutation. It is shown that combinations of haplotypes differ between Caucasians and 

Asians and this might explain the large differences in frequencies observed here (Saeki et al., 2006). 

The effect of UGT1A9*22 on PK parameters remains unclear since an increased transcriptional activity 

has been reported, but it was not associated with an impact on mycophenolic acid PK parameters (Jiao 

et al., 2008; Yamanaka et al., 2004; Zhang et al., 2008). A significant decrease is demonstrated in AUC 

for SN38 with this mutation, although SN38 is mainly metabolised by UGT1A1 (Han et al., 2006b). 

UGT2B7 

For UGT2B7, the frequencies of the C802T mutation are quite comparable for the three world regions 

(Europe, North America, South America, Figure 26g) represented in the PK database and indeed, not 

much variability is observed in the PK parameters of zidovudine. The SNP C802T in UGT2B7 results in 

an amino acid substitution at residue 268, from histidine to tyrosine (H268Y, UGT2B7*2) at the N-

terminal substrate binding site of the enzyme (Yuan et al., 2015). It is demonstrated that this variant 

form has the same localisation as the wild type. Moreover, it is demonstrated that UGT2B7*2 can form 

both homodimers and heterodimers with wild-type and other polymorphic enzymes, albeit with a 

decrease in affinity (Yuan et al., 2015). Coffman et al. (1998) showed that the 268Y form of the UGT 

was ten times more efficient in the glucuronidation of buprenorphine than the 268H form. However, 

no differences were detected for some other opioids, like morphine and codeine. In another study of 
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Coffman et al. (2003), it was demonstrated that opioids bind to amino acids 84–118 of the UGT, which 

implies that mutations at other places are less likely to influence the binding of opioids to UGT. 

However, also polymorphisms outside the substrate-binding pocket can still influence the dynamics of 

substrate binding by, for example, altering the packing of the enzyme and thereby influencing the 

active site (Rutherford et al., 2008). 

It is demonstrated that UGT2B7*2 in a hetero-dimer with the wild-type enzyme has an impaired 

glucuronidation activity for zidovudine (Yuan et al., 2015). For other chemicals including valproic acid, 

tamoxifen, and lamotrigine, UGT2B7 polymorphism has been shown to affect plasma concentrations 

(Blevins-Primeau et al., 2009; Du et al., 2016; Petrenaite et al., 2018; Sun et al., 2015; Wang et al., 

2018). Molecular docking would provide an insight into the binding of substrates to UGT2B7 and other 

UGTs and the effect of polymorphisms hereon. However, a complete crystal structure is not available 

yet for human UGTs (Dong et al., 2012). The partial crystal structure of UGT2B7 that is available does 

not include the N-terminal substrate-binding domain and consequently does not provide insight into 

substrate binding (Miley et al., 2007). No in vivo data exploring the relationship between UGT2B7 

polymorphisms and PK parameters of zidovudine or codeine were available. Only two studies 

investigated the impact of UGT2B7*2 on telmisartan PK in Japanese adults. In both studies, no 

significant differences in AUC were found (Miura et al., 2009; Yamada et al., 2011). 

UGT2B15 

For UGT2B15, the most common polymorphism is known as UGT2B15*2 and this mutation results in 

the substitution of an aspartic acid with a tyrosine at position 85 (D85Y). The frequency distribution of 

this polymorphism is comparable for different populations (Figure 26h). In one study, different 

ethnicities (African-American, Hispanic-American, Chinese-American, Japanese-American and 

Caucasian-American) in North-America were compared and all different ethnicities showed 

approximately the same distribution, with the heterozygous genotype being the predominant 

genotype (Riedy et al., 2000). 

For this polymorphism, no differences were found in relation to the metabolic and PK profile of 

tamoxifen (Romero-Lorca et al., 2015; Sutiman et al., 2016). However, acetaminophen total clearance 

was significantly influenced by this polymorphism (Court et al., 2017). Moreover, in vitro data show 

lower median activities for S-oxazepam glucuronidation with microsomes containing the UGT2B15*2 

polymorphism and a lower intrinsic clearance of bisphenol A with this SNP (Court et al., 2004; Hanioka 

et al., 2011). Finally, lower systemic clearance of lorazepam is reported in Asian individuals 

homozygous for UGT2B15*2 and the authors suggested that this polymorphism is a major contributor 

to interindividual differences in lorazepam PK (Chung et al., 2005). A significant increase in AUC has 
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been observed for UGT2B15*2 for individuals with at least one polymorphic gene. According to the 

study of He et al. (2009), the polymorphism accounts for 34% of the interindividual differences in 

oxazepam oral clearance (Table 30). 

5.4. Conclusions and future perspectives 

This manuscript aimed to quantify interindividual differences in UGT isoform-specific metabolism for 

probe substrates. Hierarchical Bayesian meta-analyses for pharmacokinetic markers of acute (Cmax) 

and chronic exposure (AUC/clearance) were performed for a total of 14 probe substrates of the seven 

clinically most relevant UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and 

UGT2B15). The resulting variability distributions and the UGT-related UFs showed that the default 

factor of 3.16 would not be exceeded for at least 97.5% of non-phenotyped healthy adults when 

considering the median value, with a few exceptions (1-OH-midazolam, ezetimibe, raltegravir, SN38 

and trifluoperazine). 

Overall, interindividual differences in kinetics for intravenous- and oral route of administration were 

comparable. A possible explanation for such similarities lies in the fact that UGTs are more abundant 

in the liver comparted to the intestine, so that the impact of first-pass metabolism for the included 

probe substrates is low (Lv et al., 2019). In contrast, similar analysis performed for CYP3A4 probe 

substrates revealed larger interindividual differences for markers of oral chronic exposure compared 

to their IV counterparts (Darney et al., 2019). Several UGT isoforms are also expressed in the kidney, 

including UGT1A6, UGT1A9 and UGT2B7 (Ohno and Nakajin, 2009). This would have no influence on 

the first-pass metabolism, but variability estimates are likely to reflect hepatic and renal UGT 

metabolism for the probe substrates metabolised by these isoforms. 

Overall, data gaps have been identified from this human UGT PK database for a range of non-

phenotyped and phentoyped populations of different geographical ancestries as well as sensitive 

subgroups of the population, including neonates, children and the elderly. A typical example is the lack 

of PK data for the African population which shows broad genetic diversity in the frequency of UGT 

polymorphisms. Such PK data are needed to integrate genotype frequencies in different populations 

and to generate distributions to address interphenotypic differences which then allow the derivation 

of UGT-related UFs as well as chemical-specific adjustment factors (Campbell and Tishkoff, 2008; 

Gaibar et al., 2018; Novillo et al., 2018).  

Indeed, different UGT polymorphisms can have (substrate-dependent) impact on interphenotypic 

differences in PK parameters, particularly for the UGT1A1 isoform while new polymorphisms are still 

being characterised (Liu et al., 2019). In this light, it is recommended to investigate interphenotypic 
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differences in relation to UGT polymorphisms rather than geographical ancestry, since polymorphisms 

are better predictors of altered PK compared to ethnicity alone (Darney et al., 2020; Wu et al., 2017b).  

Although isoform-specific variability was investigated here using specific probe substrates, most often 

several UGT isoforms are involved in the glucuronidation of xenobiotics in a concentration-dependent 

manner. For example, acetaminophen glucuronidation by human liver microsomes can be mediated 

by multiple UGTs. Three isoforms are most active and UGT1A1 is the main contributor at toxic 

concentrations and UGT1A6 is the most active at low concentrations (Court et al., 2001). Besides the 

contribution of several isoforms to the glucuronidation of one compound, other factors could also 

contribute to interindividual differences in metabolism by UGTs. For example, correlations have been 

established between UGT abundances and their activity and variability in glucuronidation is 

comparable to variability in UGT protein abundance (Achour et al., 2017). In addition to 

interphenotypic differences, age differences have been described to impact UGT expression and 

activities, particularly in neonates, young infants and elderly leading to slower kinetics and elimination 

through a reduction of PK parameters by several folds compared to that in healthy adults (Bhatt et al., 

2019; Court, 2010; Dorne et al., 2001b). 

UGTs are also involved in the metabolism of large numbers of xenobiotics, other than pharmaceuticals, 

like environmental contaminants and naturally occurring compounds. However, for these compounds 

multiple UGT isoforms are often involved in their conjugation. For example, isoflavones are conjugated 

by multiple UGT isoforms in human liver microsomes (Tang et al., 2009). Besides the involvement of 

several UGT isoforms in conjugation, human kinetic data for most environmental contaminants and 

food-relevant chemicals are still scarce in the literature. 

Taken all together, investigation of isoform-specific UGT-related age and interphenotypic differences 

in world population will allow the characterisation and publication of full variability distributions for 

human populations in an open source format (as illustrated here with the relatively limited data 

available). It is foreseen that such distributions can then be combined with in vitro data characterising 

the kinetics of UGT isoform-specific metabolism for a whole host of relevant compounds including 

flavourings, food additives, pesticides, mycotoxins and other contaminants to develop quantitative in 

vitro in vivo extrapolation (QIVIVE) models. However, human in vivo PK data and mechanistically 

validated in vitro assays in human intestinal, liver, and kidney cells still remain mostly unavailable. 

Further research and validation efforts in these areas would allow to characterise either direct isoform-

specific UGT metabolism, cytochrome P450 and/or influx or efflux transport with subsequent UGT 

conjugation as well as differential renal or bile excretion to further develop such QIVIVE models and 

gain experience and confidence in their use in daily chemical risk assessment. 
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Abstract 

Transporters are divided into the ABC and SLC super-families, mediating the cellular efflux and influx 

of various xenobiotic and endogenous substrates. Here, an extensive literature search was performed 

to identify in vivo probe substrates for P-gp, BCRP and OAT1/3. For other transporters (e.g. OCT, OATP), 

no in vivo probe substrates could be identified from the available literature. Human kinetic data (Cmax, 

clearance, AUC) were extracted from 142 publications and Bayesian meta-analyses were performed 

using a hierarchical model to derive variability distributions and related uncertainty factors (UFs). For 

P-gp, human variability indicated that the kinetic default UF (3.16) would cover over 97.5% of healthy 

individuals, when considering the median value, while the upper confidence interval is exceeded. For 

BCRP and OAT1/3 human variability indicated that the default kinetic UF would not be exceeded while 

considering the upper confidence interval. Although limited kinetic data on transporter polymorphisms 

were available, inter-phenotypic variability for probe substrates was reported, which may indicate that 

the current default kinetic UF may be insufficient to cover such polymorphisms. Overall, it is 

recommended to investigate human genetic polymorphisms across geographical ancestry since they 

provide more robust surrogate measures of genetic differences compared to geographical ancestry 

alone. This analysis is based on pharmaceutical probe substrates which are often eliminated relatively 

fast from the human body. The transport of environmental contaminants and food-relevant chemicals 

should be investigated to broaden the chemical space of this analysis and assess the likelihood of 

potential interactions with transporters at environmental concentrations. 

Keywords: influx, efflux, transporters, human pharmacokinetics, uncertainty factors, variability, 

polymorphism 

Highlights: 

• Extensive literature review of human in vivo transporter probe substrate variability 

• Hierarchical Bayesian analysis to quantify interethnic and intra-ethnic differences 

• Data for variability in P-gp, BCRP and OATs are mostly limited to healthy adults and covered 

by the default kinetic UF. 

• Polymorphisms are more robust to study human variability in transporters’ kinetics compared 

to geographical ancestry alone. 

 

  



123 

 

6.1. Introduction 

Over the last two decades, efflux and influx transport proteins, expressed in a wide range of organs in 

the human body, have become increasingly important due to their critical role in the pharmacokinetics 

(PK) and toxicokinetics (TK) of xenobiotics, potentially affecting their absorption, distribution, and 

excretion (ADE) along with phase I and phase II metabolism (Clerbaux et al., 2019). Significant 

differences in substrate specificity, tissue distribution, and relative abundance of transporters have 

been described between experimental animal models and humans and such knowledge bring another 

level of complexity to ADME processes as well as the potential to improve inter-species extrapolations 

for hazard characterisation and risk assessment purposes. In addition, inter-phenotypic differences in 

transporter expression and activities have been demonstrated and can ultimately result in further 

modulation of the kinetics and toxicity of chemicals (Burt et al., 2016; Harwood et al., 2019; Zhang and 

Lauschke, 2019).  

In this context, the Adenosine Triphosphate Binding Cassette Proteins” (ABC) superfamily of efflux 

transporters mediate the removal of exogenous compounds, import of nutrients, transport of 

endogenous substances, and impact on signal transduction. ABC transporters include multidrug-

resistance protein 1 (ABCB1/MDR1) also named P-glycoprotein, the multidrug resistance-associated 

protein (MRP) family, the bile salt export pump (BSEP/ABCB11), the multidrug and toxin extrusions 

(MATE1/MATE2-K) and breast cancer resistant proteins (BCRP/ABCG2). P-glycoprotein (P-gp) is 

extensively expressed in key organs including the liver, kidney, central nervous system, small intestine 

and lymphoid tissues; and is involved in the transport of a range of substrates including fats, sugars, 

amino acids, drugs and other xenobiotics (Calcagno et al., 2017) (Figure 27). Likewise, BCRP is present 

in many organs and transports xenobiotics and endogenous substrates (Heyes et al., 2018; Hira and 

Terada, 2018; Urquhart et al., 2008). A second superfamily of membrane transporter are solute 

carriers, acting mostly but not exclusively as influx or chemical uptake transporters. These include 

organic cation transporters (OCTs), organic anion transporters (OATs) as well as organic-anion-

transporting polypeptides (OATPs). 

Information and data on the kinetics of probe substrates, inducers and inhibitors of such transporters 

are increasingly available particularly for pharmaceuticals for potential drug-drug interactions may 

occur as well as food and environmental chemicals such as pesticides, mycotoxins, perfluoroalkyl 

compounds, flavonoids and other natural bioactive compounds  (e.g. coumarins, resins, saponins, 

terpenoids) (Chedik et al., 2018; Chedik et al., 2019; Chedik et al., 2017; Clerbaux et al., 2019; Dewanjee 

et al., 2017; Fardel et al., 2012; Guéniche et al., 2019). Examples of relevance to food safety include 

flavonoids and curcumin as inhibitors of BCRP and capsaicin and piperine as P-gp inhibitors (Fan et al., 
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2019; Kusuhara et al., 2012). Several food-drug interactions have also been described for OATPs, 

particularly with grapefruit juice, which inhibits OATP1A2 (Fan et al., 2008; Kalliokoski and Niemi, 2009; 

Oswald, 2019).  

The role of phase I and phase II xenobiotic-metabolising enzymes is well documented in chemical risk 

assessment (Ginsberg et al., 2009), while transporters are less well characterised, although they can 

contribute significantly to human variability in kinetic and dynamic processes. Such quantitative 

understanding can contribute to the refinement of default uncertainty factors (UF) with pathway-

related UFs, chemical-specific adjustment factors (CSAFs) and the development of physiologically 

based kinetic models (Clerbaux et al., 2018; Clerbaux et al., 2019; Ginsberg et al., 2002; Ginsberg et al., 

2009b; Hattis et al., 1999; Valcke and Krishnan, 2013). Based on the WHO guidance of uncertainty in 

hazard assessment (IPCS, 2017), the geometric standard deviation for inter-individual variability in the 

human equipotent dose distribution (log(GSDH)) has been proposed to calculate UFs (P95/P50) (Hattis 

and Lynch, 2007). Next to this, meta-analysis has been conducted to derive pathway-related UFs for 

several phase I and phase II metabolic pathways and renal excretion (Dorne, 2010; Dorne et al., 2001a; 

Dorne et al., 2001b; Dorne et al., 2003a; Dorne et al., 2003b; Dorne et al., 2004a; Dorne et al., 2004c; 

Dorne et al., 2002) and recently, this methodology has been update using hierarchical Bayesian models 

(Darney et al., 2019; Quignot et al., 2019; Wiecek et al., 2019). 

 

Figure 27. Membrane transporters in the human liver, kidney and intestine. (green: SLC transporters, blue, 

ABC transporters) 
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Since human variability in the kinetics of probe substrates for efflux and influx transporters has not 

been investigated to date, this paper aims to fill this data gap particularly for the most clinically 

relevant representatives of efflux and influx transporters.  

This manuscript, as part of an EFSA funded project addressing human variability in metabolism and 

transporters aims specifically to i) quantify human variability associated with efflux and influx 

transporter proteins for well-characterised probe substrates of P-gp, BCRP, MATE1/MATE2-K, OAT1/3, 

OCTs, and OATPs using hierarchical Bayesian meta-analysis ii) derive UFs from the variability analysis 

and assess whether the default TK UF is sufficiently. In addition, inter-phenotypic differences for well 

characterised single nucleotide polymorphisms (SNPs) in the human population as well inter-- and 

intra-ethnic differences are investigated for transporters with available data. 

6.2. Material and Methods 

6.2.1. Extensive literature search 

In vivo probe substrates for P-gp, BCRP and OAT1/3 were identified from the FDA website and 

datasheets while for other transporters (OCT, OATPs, MATE1/MATE2-K), no in vivo specific probe 

substrates were available (FDA, 2017). For each probe substrate, extensive literature searches (ELS) 

were conducted in PubMed and Scopus (1966-June 2019) according to the EFSA guidance document 

using search terms related to human kinetic studies provided in Table 31 (EFSA, 2010b). Specifically, 

data from human kinetic studies reporting markers of oral (single) or intravenous (bolus) acute (Cmax) 

and chronic exposure (area under the curve (AUC), clearance) were collected for healthy adults from 

different geographical ancestry or ethnic backgrounds. In addition, data for inter-phenotypic 

differences were investigated from the literature for three different SNPs in P-gp (3435C>T, 1236C>T, 

2677G>A/T) and two SNPs for BCRP (34G>A, 421C>A). 

Table 31 provides a summary of the keywords applied to the ELS. Screening of the literature was 

performed as previously described starting with screening of titles and abstracts after removal of 

duplicates and application of exclusion criteria including: species other than humans, in vitro studies, 

development of analytical methods, modelling approaches, pharmacodynamic investigations, studies 

for unhealthy individuals, substrates other than those identified as relevant (Darney et al., 2019). Only 

publications written in English were considered. 

Table 31 List of queries used for the ELS (formatted for Scopus) 

Search  
probe substrate 

TITLE-ABS (“name of probe substrate”)   

Population ( TITLE-ABS ( human )  OR  TITLE-ABS ( adult )  OR  TITLE-ABS ( adults )  OR  TITLE-
ABS ( child )  OR  TITLE-ABS ( children )  OR  TITLE-ABS ( infant )  OR  TITLE-
ABS ( neonate )  OR  TITLE-ABS ( newborn )  OR  TITLE-ABS ( newborns )  OR  TITLE-
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ABS ( elderly )  OR  TITLE-ABS ( "pregnant women" )  OR  TITLE-ABS ( men )  OR  TITLE-
ABS ( women )  OR  TITLE-ABS ( "ethnic group" )  OR  TITLE-ABS ( caucasian )  OR  TITLE-
ABS ( asian )  OR TITLE-ABS ( african )  OR  TITLE-ABS ( "genetic 
polymorphism*" )  OR  TITLE-ABS ( "individual susceptibility" ) OR  TITLE-ABS ( "gene 
environment" )  OR  TITLE-ABS ( "ethnic variability" )  OR  TITLE-ABS ( "Afro 
American" ) OR  TITLE-ABS ( hispanic )  OR  TITLE-ABS ( "race difference*" )  OR  TITLE-
ABS ( "age difference*" )   OR  TITLE-ABS ( "gender difference" )  OR  TITLE-ABS ( "sex 
difference*" )   

Outcomes ( TITLE-ABS ( auc )  OR  TITLE-ABS ( area  under  the  curve )  OR  TITLE-
ABS ( area  under  curve )  OR  TITLE-ABS ( half  life )  OR  TITLE-ABS ( half-
life )  OR  TITLE-ABS ( half-lives )  OR  TITLE-ABS ( clearance )  OR  TITLE-
ABS ( cmax )  OR  TITLE-ABS ( vmax )  OR  TITLE-ABS ( km )  OR  TITLE-ABS ( "michaelis 
constant" )  OR  TITLE-ABS ( pharmacokinetic* )  OR  TITLE-ABS ( toxicokinetic *)  ) 

Exclusion ( TITLE-ABS ( "cell line*" )  OR  TITLE-ABS ( "cell culture*" ) ) 

Search genotypic 
data 

( TITLE-ABS (“polymorphism*”)  OR  TITLE-ABS ( genotype )  OR  TITLE-
ABS ( SNP )  OR  TITLE-ABS ( human )  OR  TITLE-ABS ( half-life )  OR  TITLE-ABS ( “name 
of transporter” ) 

TITLE-ABS: term searched only in the title and the abstract of the paper. 

 

6.2.2. Standardisation of datasets 

Kinetic parameters collected from literature were standardised to perform the analyses in a 

harmonised manner for each parameter while correcting to dose and body weight namely AUC, Cmax 

and clearance expressed in mg/kg BW, ng.h/ml/dose, ng/ml/dose and ml/min/kg BW. Body weight 

correction from the parameters were performed using mean body weight (kg) recorded from the study 

when available or allocating them to the country of origin using data from Walpole et al. (2012). Kinetic 

data were often either reported as arithmetic mean (X) and standard deviation (SD) or as geometric 

means (GM) and geometric standard deviation (GSD). Since PK data are well recognised to follow a 

lognormal distribution, all PK parameters were transformed, when needed, and expressed as GM and 

GSD using the following equations: 

 𝐺𝑀 =  
𝑋

√1+ 𝐶𝑉𝑁
2
     (1) 

 𝐺𝑆𝐷 = 𝑒𝑥𝑝 (√ln(1 +  𝐶𝑉𝑁
2))    (2) 

where CVN is the coefficient of variation for normally distributed data:  

 𝐶𝑉𝑁 =  
𝑆𝐷

𝑋
     (3) 

In some studies, SD was not reported and was derived from the standard error (SE, SEM), CV, or 95% 

confidence interval of the mean as described previously (Darney et al., 2019). 
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6.2.3. Meta-analyses 

A number of meta-analyses were performed while integrating results from multiple independent 

kinetic studies to provide quantitative information regarding inter-individual variability of the PK 

parameters per chemical and results were expressed as distributions. For each substrate and 

parameter, variability related to inter-study, inter-substrate and inter-individual differences were 

analysed through a decomposition of the kinetic parameter variance (clearance, AUC or Cmax) using a 

hierarchical Bayesian model described previously (Darney et al., 2019; Wiecek et al., 2019). Since this 

paper constitutes the first comprehensive meta-analyses of kinetic variability associated to the human 

transporters BCRP, P-gp, and OAT1/3 using in vivo probe substrates, non-informative prior 

distributions expressed as uniform distributions were selected. 

The meta-analyses provided probabilistic variability and uncertainty distributions describing inter-

individual differences for each PK parameter using median values and 95% confidence intervals. The 

coefficient of variation (CV) were also estimated as follows: 

 𝐶𝑉 = √𝑒𝑥𝑝(ln(√exp (1 τ𝑗⁄ ))
2

− 1 (4) 

where τ𝑗 is the inter-individual variability of the activity for a substrate ‘j’. 

UFs related to BCRP, P-gp, and OAT probe substrates were calculated as the ratio between the 

percentile of choice (95th and 97.5th centiles) and the median of the distribution for each kinetic 

parameter (Figure 28). 

 
Figure 28. Different ways of calculating the variability and the coverage of default uncertainty factors (UF) 

from PK data for reference and sub-populations of healthy adults. 

 

Kinetic differences in internal dose between each healthy adult subgroup and general healthy adults 

and other healthy adult sub-groups (inter-phenotypic and inter-ethnic differences) were derived as 

GM ratios so that a value >1 indicated a higher internal dose or slower elimination (Dorne, 2010). 
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6.2.4. Software 

All statistical analyses and graphical display of the data were performed using R (version 3.5). The 

Bayesian modelling was implemented with Jags (4.2.0) (Plummer, 2003). References from the ELS were 

computed in EndNote (X8) files. The R codes used for the analyses are published previously (Darney et 

al., 2019). 

6.3. Results  

6.3.1. Data collection for P-gp, BCRP, and OAT1/3 

2643 papers were retrieved from Scopus and PubMed for seven P-gp probe substrates (dabigatran, 

digoxin, fexofenadine, loperamide, quinidine, talinolol, and vinblastine) and for the OAT1 and OAT3 

probe substrate adefovir and sitagliptin. For BCRP, 1115 peer reviewed publications were retrieved for 

sulfasalazine and rosuvastatin with 20 papers reporting PK data. 496 papers were considered eligible 

after the first screening while 354 were then as review articles or publications with scarce information 

or of poor quality Overall, 142 papers were considered eligible and relevant for data extraction and 

were included in the database. A full account of the screening procedure, inclusion/ exclusion criteria 

and data collection is reported in Darney et al (2019b). Figure 29 summarises the flow of information 

for the available PK studies on P-gp, BCRP and OAT1/3 probe substrates while the full list of relevant 

peer reviewed publications is provided in supplementary information [A] and the full database can be 

accessed on EFSA knowledge junction under DOI: 10.5281/zenodo.3739015 with a Creative Common 

Attribute 4.0 license. 
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Figure 29. Flow diagram illustrating the extensive literature search of human 

pharmacokinetic studies for BCRP, P-gp and OAT1/3 probe substrates. 

 

Figure 30 illustrates the raw data for each substrate and parameter of acute oral (Cmax) and chronic 

exposure (clearance and AUC) after intravenous and oral dosing. The amount of data available varied 

from one substrate and route to another as well as the reported geometric means (GM) for all kinetic 

parameters due to inter-substrate differences in kinetics. 
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Figure 30. Log geometric mean of extracted kinetic parameters from the included papers after 

standardization (details in Material and Methods). A: clearance; B: AUC; C: Cmax. Squares: oral 

exposure; red circles: IV exposure. 

 

6.3.2. P-glycoprotein 

6.3.2.1. Data analysis 

Kinetic data were available for European, East Asian, South Asian, Southeast Asian, North American 

and Middle East healthy adults with the majority of the datasets from North America, East Asian and 

European studies. In order to estimate inter-ethnic differences, European healthy adults were used as 

the reference group with the highest number of P-gp substrates and parameters for the oral and 

intravenous routes. Data gaps were available for specific groups including Central and Southern 

Americans, as well as North and sub-Saharan Africans. 
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CV values from the meta-analyses provide an account of inter-individual variability considering all 

substrates and highlight lower inter-individual variability for the IV route compared to the oral route 

(Table 32). Overall, inter-individual variability in kinetic parameters for healthy adults is around 40% 

for the oral route (AUC/clearance and Cmax respectively) and 20% for the IV route (AUC/clearance). 

Intra-ethnic and inter-ethnic differences for healthy North American, East Asian and South Asian adults 

showed similar P-gp-related UFs compared to healthy European adults. However, discrepancies for 

specific substrates with limited data, such as talinolol were evidenced between European and North 

American healthy adults, with a 3.5-fold lower internal dose for AUC and clearance (oral 

administration) in the North American sub-group (data from a single study). P-gp-related variability 

taking into account inter-ethnic differences in healthy East Asian adults were highest for oral clearance 

(4.1-4.5 for UF95 and UF97.5 centile respectively) (2 compounds). Overall, the default kinetic UF (3.16) 

would be protective of at least 97.5% of the healthy adult population when considering the median 

value. However, the Bayesian analysis taking into account uncertainty around the estimation of the UF 

shows that, given the available data (number of studies and number of individuals per study), 

variability may be higher than that covered by the kinetic default UF, as demonstrated by the upper 

bound of the 95% confidence interval. 

Regarding healthy Middle Eastern, South Asian, and Southeast Asian adults, the number of studies was 

much lower compared to that for other populations. As a consequence, these results have to be taken 

with caution. Differences in AUC between healthy Middle Eastern, Southeast Asian and European 

adults for P-gp substrates were around 1.5-2.3 fold (3 substrates) and 2-fold (1 substrate) respectively 

and these inter-ethnic differences were associated with UFs of variability (95th and 97.5th centiles) of 

3.3-3.7 (Middle East) and 3-3.2 (Southeast Asian) healthy adults. Results of the meta-analyses of CVs 

and GMs for each substrate are given in supplementary information A. 

6.3.2.2. Impact of P-gp polymorphism on variability 

An additional important aspect of the contribution of P-gp to human variability is the impact of 

polymorphic genotypes on kinetics, although few studies provide these types of data and it is not 

currently feasible to quantitatively link allelic frequencies and inter-ethnic differences. The MDR1 gene 

is highly polymorphic and several SNPs have been identified, among which the 3435C>T (rs1045642), 

1236C>T (rs1128503), and 2677G>A/T (rs2032582) are commonly studied. The 3435Callele is 

associated with increased P-gp expression, while the 3435T allele is associated with decreased P-gp 

expression, which might lead to altered plasma levels of substrates (Hoffmeyer et al., 2000; Sipeky et 
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al., 2011), although results regarding the effects of SNPs in P-gp on pharmacokinetic parameters are 

conflicting (Wolking et al., 2015). For both 1236C>T and 2677G>A/T no conclusive findings on the 

functionality of P-gp could be determined (Sipeky et al., 2011). 

Table 32. Differences in pharmacokinetic parameters in healthy adults after oral administration of P-gp 

probe substrates: comparison with healthy European adults 

      intra-ethnic (UF95) inter-ethnic (UF95) 

  ns nc n CV UF95 [95% CI] UF97.5 [95% CI] UF95 [95% CI] UF97.5 [95% CI] 

oral 

AUC (ng.h/ml/dose)            

Europe 37 6 496 41.6 1.9 [1.5-6.1] 2.2 [1.6-8.4]     

East Asia 37 5 457 31.6 1.7 [1.2-3.2] 1.8 [1.3-4.0] 2 [0.4-9.0] 2.2 [0.5-9.8] 

North America 23 5 343 40.4 1.9 [1.4-3.9] 2.2 [1.5-5.1] 2.5 [0.7-9.4] 2.8 [0.7-10] 

Middle East 5 3 66 40.5 1.9 [1.4-4.2] 2.2 [1.5-5.5] 3.3 [0.5-11] 3.7 [0.5-13] 

South Asia 5 2 104 37.5 1.8 [1.4-4.9] 2 [1.5-6.5] 2.3 [0.8-4.5] 2.4 [0.8-5.0] 

Southeast Asia 4 1 136 21.9 1.4 [1.3-1.6] 1.5 [1.4-1.7] 3 [1.6-5.6] 3.2 [1.7-6.0] 

Cmax (ng/ml/dose)            

Europe 35 5 433 37.2 1.9 [1.5-3.2] 2.1 [1.6-4.0]     

East Asia* 29 5 361 37.5 1.8 [1.2-3.4] 2 [1.3-4.2] 1.7 [0.3-7.1] 1.8 [0.3-7.8] 

North America* 23 5 339 45.6 2.1 [1.5-4.6] 2.4 [1.7-6.2] 2.1 [0.9-11] 2.3 [0.9-13] 

Middle East* 5 3 66 31.5 1.7 [1.3-3.2] 1.8 [1.4-4.0] 1.4 [0.2-6.5] 1.4 [0.2-7.1] 

South Asia** 5 2 104 28.7 1.6 [1.5-2.5] 1.7 [1.4-3.0] 1.9 [1.1-4.1] 2.1 [1.2-4.9] 

Southeast Asia* 4 1 136 30.5 1.6 [1.5-1.9] 1.8 [1.6-2.1]     

Clearance (ml/min/kg)           

Europe 20 4 239 34.7 1.8 [1.4-3.6] 2.0 [1.5-4.6]     

East Asia* 23 3 280 33.6 1.7 [1.4-2.3] 1.9 [1.5-2.7] 4.1 [1.9-9.6] 4.5 [2.1-11] 

North America* 13 4 160 41.7 1.9 [1.4-4.6] 2.2 [1.6-6.1] 2.3 [1.2-6.2] 2.5 [1.3-8.1] 

Middle East** 3 3 42 52.5 2.3 [1.2-7.8] 2.7 [1.3-11] 1.9 [0.1-14] 2.0 [0.1-15] 

South Asia* 2 1 24 29.7 1.6 [1.3-2.6] 1.8 [1.4-3.1]     

Southeast Asia* 3 1 103 16.5 1.3 [1.2-1.4] 1.4 [1.3-1.5]     

              

iv 

AUC (ng.h/ml/dose)            

Europe 6 3 52 14.5 1.3 [1.1-2.4] 1.3 [1.1-2.9]     

East Asia** 6 2 78 20 1.3 [1.1-2.4] 1.4 [1.2-2.8] 2.5 [1.6-3.6] 2.9 [1.9-4.3] 

North America** 3 2 24 20 1.4 [1.1-3.0] 1.5 [1.2-3.6] 2.7 [0.5-5.1] 3.3 [0.5-6.2] 

Clearance (ml/min/kg)           

Europe 9 3 77 16 1.3 [1.1-1.8] 1.4 [1.1-2.1]     

East Asia** 6 2 78 19 1.4 [1.1-2.7] 1.4 [1.2-3.3] 1.4 [1.0-2.0] 1.4 [1.0-2.0] 

North America** 4 2 31 28.1 1.6 [1.3-3.1] 1.7 [1.3-3.9] 1.7 [0.9-3.4] 1.9 [0.9-3.6] 

*: fexofenadine was not studied in the reference group; **: digoxin was the only common substrate 
with the reference group; ns: number of studies, nc: number of compounds, n: number of individuals, 
CV: coefficient of variation (lognormal distribution), GM: geometric mean (lognormal distribution), 
ratio GM: ratio of geometric mean between healthy adults from Europe and subgroup (lognormal 
distribution, 1/ratio GM for AUC and Cmax). 
 

However, it has been demonstrated that 2677A bearing subjects show higher P-gp activity for some 

substrates (Yi et al., 2004). The three variants show a strong linkage disequilibrium with CGC and TTT 
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as the most common haplotypes (Kroetz et al., 2003; Leschziner et al., 2006; Sai et al., 2003; Tang et 

al., 2004). There is an indication that 3435T carriers have higher drug concentrations as well as those 

with a TTT haplotype, which results in a higher response rate or an increased frequency of adverse 

effects (Wolking et al., 2015). The distributions of the genotypes for the SNPs C1236T, G2677A/T and 

C3435T in P-gp are shown in Figure 31. Overall, in Central and Southern Africa, the wildtype of each 

SNP was dominantly present. For C1236T, the genotypes frequencies were similar between North 

African, South American, European and Middle Eastern populations. In the Asian population, the 

wildtype is less frequently observed (<20%) compared to the 1236CT and 1236TT variant. For 

G2677A/T, similar patterns between the different ethnicities can be observed, except for the Southern 

African population, where the wildtype is predominantly present. The 3435CC genotype is frequently 

observed in Southern and Central African population, while in the Northern African population the 

genotypes 3435CC and 3435CT were equally observed. Overall, the homozygous 3435TT genotype in 

the African population was below 11%. Variability in the P-gp SNP C3435T was similar in the American, 

Asian, European, Middle Eastern and Oceanian population. However, larger variability in the South 

American population was observed. 

 
Figure 31. Frequency of SNPs in P-gp (C1236T, G2677A/T, C3435T) in various ethnic groups. 

Reference C1236T: (Abuhaliema et al., 2016; Al-Mohizea et al., 2012; Bellusci et al., 2013; Bouzidi et al., 2016; 

Kassogue et al., 2013; Pechandova et al., 2006; Phuthong et al., 2017; Qiu et al., 2012; Sipeky et al., 2011; Swart 
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et al., 2012); Reference G2677A/T: (Abuhaliema et al., 2016; Al-Mohizea et al., 2012; Bouzidi et al., 2016; Brown 

et al., 2012; Kassogue et al., 2013; Pechandova et al., 2006; Phuthong et al., 2017; Qiu et al., 2012; Rosales et al., 

2012; Sipeky et al., 2011; Swart et al., 2012) ; References C3435T: (Abuhaliema et al., 2016; Al-Mohizea et al., 

2012; Ameyaw et al., 2001; Baldissera et al., 2012; Balram et al., 2003; Bellusci et al., 2013; Bernal et al., 2003; 

Bouzidi et al., 2016; Brown et al., 2012; Chelule et al., 2003; Cizmarikova et al., 2010; Isaza et al., 2013; Jaramillo-

Rangel et al., 2018; Kassogue et al., 2013; Komoto et al., 2006; Leal-Ugarte et al., 2008; Marsh et al., 2015; 

Masebe et al., 2012; Miladpour et al., 2009; Ngaimisi et al., 2013; Omar and Hughes, 2013; Ostrovsky et al., 2004; 

Pechandova et al., 2006; Phuthong et al., 2017; Rao et al., 2010; Roberts et al., 2002; Rosales et al., 2012; Sinues 

et al., 2008; Sipeky et al., 2011; Swart et al., 2012; Vicente et al., 2008) 
 

6.3.3. BCRP  

6.3.3.1. Data analysis 

Kinetic data were available for healthy adults after single oral exposure. PK data for rosuvastatin did 

not show differences between included subpopulations, so that variability and uncertainty were 

determined for the total human population. Values from the analysis for inter-individual variability 

(Table 33) highlight that the default TK UF of 3.16 would cover at least 97.5% of the healthy adult 

population. However, the results should be considered with caution, since only one chemical was 

included for the variability and UF calculation. Most PK data included in the analysis was measured in 

Asians, showing large variability in measured data, which may be due to polymorphisms. Less PK data 

was available for Caucasians and no differences between Asian and Caucasian population could be 

identified.  

Table 33 Inter-individual differences in the rosuvastatin PK in healthy adults after oral administration 

Parameter ns N CV GM UF95 [95% CI] UF97.5 [95% CI] 

AUC (ng.h/ml/dose) 33 445 47 411 2.1 [1.9-2.4] 2.4 [2.1-2.8] 

Clearance  
(ml/min/kg bw) 14 134 43 1.9 2 [1.7-2.4] 2.2 [1.9-2.9] 

Cmax (ng/ml/dose) 32 430 49 46.5 2.1 [1.9-2.5] 2.5 [2.2-2.9] 

ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), 
GM: geometric mean (lognormal distribution). 
 

6.3.3.2. Impact of BCRP polymorphism on variability 

Various SNPs of the ABCG2 gene have been identified, whereof 34G>A and 421C>A (p.Q141, 

rs2231142) are most commonly studied (Mao and Unadkat, 2015). 34G>A is associated with decreased 

BCRP activity, but studies investigating differences in drug response in relation to 34G>A are 

inconclusive (Niebudek et al., 2019). Variability in the frequency of G34A in BCRP between different 

populations is illustrated in Figure 32. While in most populations, the wildtype genotype is more 

frequently detected (>70%), in Asians and inhabitants of Oceania the wildtype 34GG and the 

homozygous mutation were less frequently observed compared to the heterozygous genotype. In East 

Asian populations, the wildtype genotype is more frequently observed (50-75%) compared to 

Southeast Asians, but is still more often observed compared to African, American, European and 
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Middle Eastern populations. 421C>A is associated with decreased expression of the BCRP protein 

(Kondo et al., 2004; Mizuarai et al., 2004), leading to altered PK parameters of several drugs (de Jong 

et al., 2004; Lee et al., 2015; Tanaka et al., 2015). Regarding the pattern of distributions, the 

homozygous mutation 421AA is detected only in <12% of the population. Nevertheless, in Southeast 

and East Asian populations, the genotype 421CC and 421CA are equally detected and the 421A allele 

is more frequently present in East and Southeast Asians compared to that in Caucasian populations. 

C421A SNP is considered an important BCRP variation in terms of cancer chemotherapy and drug 

resistance (Noguchi et al., 2009) (Table 34). Indeed, both the European Medicine Agency and the US 

Food and Drug Administration recommend to test for the effect of C421A SNP to take into account 

potentially sensitive populations (Lee et al., 2015). 

 

Figure 32. Frequency of SNPs in BCRP (G34A, C421A) in various ethnic groups. 

References G34A: (Bosch et al., 2005; de Lima et al., 2014; Fischer et al., 2007; Kim et al., 2010; Kobayashi et 

al., 2005; Niebudek et al., 2019; Wan et al., 2015; Wu et al., 2015; Zamber et al., 2003); References C241A: 

(Andersen et al., 2009; Birmingham et al., 2015; de Jong et al., 2004; de Lima et al., 2014; El Mesallamy et al., 

2014; Feher et al., 2013; Fischer et al., 2007; Genvigir et al., 2017; Hammann et al., 2012; Imai et al., 2002; 

Keskitalo et al., 2009; Kim et al., 2010; Kobayashi et al., 2005; Marsh et al., 2015; Niebudek et al., 2019; Oh et 

al., 2013; Phipps-Green et al., 2010; Soko et al., 2016; Wan et al., 2015; Wu et al., 2015; Yen-Revollo et al., 2009) 

 

Table 34. Effects of genetic polymorphisms on the pharmacokinetics of rosuvastatin. 

Population 
 

Parameter 
Ratio 
CC/CA 

Ratio 
CC/AA Reference 

Finnish  AUC 0.82 0.41 
Keskitalo et 

al. (2009) Finnish  Cmax 0.90 0.43 

Finnish  Clearance 0.95 1.07 

Chinese  AUC 0.93 0.63 Zhou et al. 
(2013) Chinese  Cmax 0.99 0.71 

Chinese  AUC 0.97 0.38 
Wan et al. 

(2015) Chinese  Cmax 0.92 0.31 

Chinese  Clearance 0.97 2.68 
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6.3.4. Other efflux transporters 

The MRP family consists of nine members, whereof MRP2 (ABCC2) and MRP4 (ABCC4) are in particular 

involved in the disposition of drugs and conjugates (Terada and Hira, 2015). MRP2 can transport both 

the parent chemical and its metabolites, unconjugated bile acids, organic anions, GSH conjugates, 

glucuronides, and sulphates (Kumar and Jaitak, 2019). MATE transporters are mainly expressed in the 

kidneys and are involved in the tubular elimination of cationic drugs and endogenous compounds. 

MATE1 is also expressed in the canalicular membrane of hepatocytes and shares various neutral and 

cationic substrates with P-gp, such as fexofenadine, levofloxacin and quinidine. Furthermore, MATE 

transporters are involved in the elimination of substrates which are taken up by OCTs. Examples for 

these substrates are metformin and cimetidine (Jetter and Kullak-Ublick, 2019; Trueck et al., 2019). 

However, for none of these transporters, in vivo probe substrates have been identified and therefore 

the analysis was not carried out. 

6.3.5. OAT1/3: Data analysis and polymorphisms 

An ELS was performed for OATs to identify human PK studies in healthy adults with different ethnic 

backgrounds. The literature data highlight a broad overlapping substrate specificity among different 

OATs that does not allow to draw conclusions clearly referred to a single transporter; the PK 

parameters measured are in most cases based on the net result of the actions of more than one carrier. 

Adefovir and sitagliptin have been identified as in vivo probe substrates for OAT1 and OAT3, 

respectively. The analysis showed that the overall variability of the OAT1/3 transporters is lower 

compared to P-gp and BCRP (Table 35). Variability is below the default TK UF of 3.16, but number of 

subjects available from kinetic studies is limited, especially regarding adefovir, and therefore results 

should be considered with caution. Coding regions of OAT1 and OAT3 have low genetic and functional 

diversity suggesting that coding region variants of these transporters may not contribute substantially 

to inter-individual differences observed in pharmacokinetics of chemicals (Yee et al., 2018). 

Table 35. Differences in pharmacokinetic parameters in healthy adults after oral administration of OAT1/3 

probe substrates 

Drug Parameter ns n CV GM UF95 (95% IC) UF95 (97.5% IC) 

Adefovir AUC (ng.h/ml/dose) 4 67 23 1323 1.5 [1.3-1.7] 1.6 [1.4-1.9] 

 Cmax (ng/ml/dose) 3 43 25 169 1.5 [1.3-1.9] 1.6 [1.4-2.2] 

          

Sitagliptin AUC (ng.h/ml/dose) 17 219 20 2300 1.4 [1.3-1.5] 1.5 [1.4-1.6] 

 Cmax (ng/ml/dose) 16 195 32 256 1.7 [1.5-1.9] 1.9 [1.6-2.2] 
ns: number of studies, n: number of individuals, CV: coefficient of variation (lognormal distribution), 
GM: geometric mean (lognormal distribution). 
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6.3.6. OATPs 

The OATP family consists of 11 members, whereof OATP1A2, OATP1B1, OATP1B3, and OATP2B1 are 

most extensively characterized and are involved in the disposition of drugs and xenobiotics (Konig et 

al., 2006; Zhang and Lauschke, 2019). For this class of carriers, the ELS evidenced that different OATP 

isoforms show a broad overlapping substrate specificity and in many cases transporters other than 

OATPs can act on the same substrate. A good example is provided by various studies on statins: as 

discussed above, rosuvastatin’s cellular influx and efflux are mediated by OATP1B1 and BCRP, 

respectively and the measured PK parameters are the net result of multiple transporters. In vivo 

studies on statins PK showed that OATP1B1 polymorphisms can influence the internal concentration 

of rosuvastatin and other statins (Giacomini et al., 2013; Pasanen et al., 2007; Wu et al., 2017a), but 

the impact of OATP1B1 genotypes on drug disposition is highly compound-specific (Giacomini et al., 

2013). Nevertheless, since no clear probe substrates have been established for OATP transporters in 

vivo, analysis of human variability for these transporters could not be carried out. 

6.3.7. OCTs 

OCTs and MATEs are transporters that transcellularly translocate cationic drugs: together they 

represent an essential system for renal elimination of therapeutic drugs and other xenobiotics (Ayrton 

and Morgan, 2008; Matsushima et al., 2009; Wang et al., 2008). These two families of carriers share 

several substrates and inhibitors (Motohashi and Inui, 2013; Nies et al., 2011). Metformin is 

recommended as a probe drug for the renal proximal tubular transporter OCT2, but it lacks specificity 

because excretion of metformin across the apical membrane is carried out by MATE1 and MATE2-K 

(Trueck et al., 2019). Furthermore, OCT1 is involved in apical transport and may mediate metformin 

reabsorption (Momper et al., 2016). There are indications that polymorphisms in OCT2 can influence 

the in vivo PK of metformin causing variability in drug response (Islam et al., 2018; Song et al., 2008; 

Wang et al., 2008; Yee et al., 2018). However, no probe substrates were available for in vivo OCT 

transporters so that analysis of pharmacokinetic variability in this transporter was not performed. 

6.4. Discussion 

Data for human variability in the pharmacokinetics of transporter substrates are scarce for non-

phenotyped individuals, let alone polymorphisms and until now such information has not been 

integrated in human health risk assessment for pharmaceuticals and environmental chemicals 

(Clerbaux et al., 2018; Clerbaux et al., 2019). Nevertheless, several studies have indicated that variable 

BCRP and P-gp expression/function may determine variation in PK parameters for specific substrates. 

Both transporters are highly expressed at the apical membrane of enterocytes and may limit the oral 

bioavailability of a range of chemicals (Clerbaux et al., 2019; Harwood et al., 2019; Maliepaard et al., 
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2001; Thiebaut et al., 1987). This observation is also relevant for other barrier systems such as the 

blood brain barrier and the placenta in which both BCRP and P-gp are highly expressed to protect the 

fetus. In addition, a number of variant alleles have been hypothesised as risk factors for fetal toxicity 

with no clear conclusions so far (Allikmets et al., 1998; Hitzl et al., 2004; Maliepaard et al., 2001; Tanabe 

et al., 2001). 

Here data obtained by means of an extensive literature search on well characterised in vivo probe 

substrates of P-gp, BCRP and OAT1/3 were analysed to identify the associated human variability. For 

other transporters (e.g. OCT, OATP), no in vivo probe substrates could be identified and therefore the 

analysis of pharmacokinetic variability was not performed. The impact of polymorphisms was also 

analysed and in most cases, the effects of the SNPs on transporters seem to be substance specific, due 

to changes of the substrate-binding domain which alters substrate affinity. 

Based on the available data for P-gp, limited to the adult life stage and certain ethnic groups (largely 

Caucasian), the calculated human variability indicated that the kinetic default UF of 3.16 would be 

protective of 97.5% of healthy individuals, when considering the median value, while it is exceeded 

when considering the upper confidence interval. The variability of kinetic parameters observed 

following IV injection is generally 50% lower when compared to the oral administration. This can be 

explained by the aforementioned expression of P-gp in the intestine, that will influence the 

bioavailability of orally administered chemicals (Li et al., 2017; Thiebaut et al., 1987). 

Our assessment reflects the total variability related to the probe substrates. Indeed, the contribution 

of P-gp to the overall pharmacokinetics of drugs is unknown in most cases and dual- or multiple-

transporter mediated transporting of chemicals may mask the net in vivo function of P-gp. Indeed, 

digoxin, the most frequently tested drug for P-gp, is also a substrate of a sodium-dependent 

transporter (Taub et al., 2011). Another P-gp probe substrate, fexofenadine, is suspected to be a 

multiple-substrate for the drug transporters MRP2 and OATP2B1/OATP1A2, which are all polymorphic 

(Ming et al., 2011). Compounds like quercetin can competitively inhibit the members of MDR family, 

P-gp, MRP1 and BCRP (Ofer et al., 2005) as well as CYP3A4 (Wink et al., 2012). The interplay between 

P-gp and CYP3A4 can be relevant in determining inter-individual differences since they share substrate 

affinity and are co-inducible in response to at least some xenobiotics. For this reason, P-gp potentiates 

CYP3A4-mediated drug disappearance during intestinal secretory detoxification for a range of 

compounds  (Chan et al., 2004). 

For BCRP and OAT1/3, human variability data were limited to healthy adults and indicated that the 

default kinetic UF of 3.16 was not exceeded and provides a sufficient level of protection considering 

the upper confidence interval (95%CI). For BCRP, some literature data indicate that rosuvastatin 
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plasma concentrations are significantly higher in an Asian population compared to Caucasian 

populations (Birmingham et al., 2015; Keskitalo et al., 2009; Lee et al., 2005). This could be attributed 

to the presence of the C421C > A SNP which has been reported to markedly affect the PK parameters 

of rosuvastatin (Table 34) (Birmingham et al., 2015; Keskitalo et al., 2009). The same polymorphism 

also significantly affects the PK of other drugs, such as topotecan and diflomotecan (Heyes et al., 2018; 

Hira and Terada, 2018; Sparreboom et al., 2004; Sparreboom et al., 2005). However, for these 

compounds, the contribution of metabolism to the inter-individual variability cannot be 

underestimated. Indeed, topotecan and diflomotecan undergo CYP3A4 metabolism, which can have 

an influence on the PK parameters (Graham et al., 2009; Rodriguez-Antona and Ingelman-Sundberg, 

2006). For rosuvastatin only approximately 10% of the parent compound is metabolised (primarily by 

CYP2C9). Due to the small contribution to rosuvastatin's internal dose, and to the lack of the most 

common CYP2C9 variant alleles in Asian populations, it is not expected that the higher systemic 

exposure in Asians is based on CYP2C9-mediated metabolism (Yasuda et al., 2008). In addition, while 

BCRP mediates rosuvastatin excretion from the cell, another carrier, namely OATP1B1, mediates 

rosuvastatin uptake into the cells. This suggests that also polymorphisms in OATP1B1 may influence 

the in vivo kinetics of this substrate (Giacomini et al., 2013; Pasanen et al., 2007; Wu et al., 2017a). 

We are aware, as stated above, that the contribution of transporter variability alone cannot be 

distinguished from other factors that can also contribute to variability of the PK parameters. However, 

the results suggest that based on the available data on healthy adults, inter-individual differences 

associated with the activity of transporters is mostly covered by the 3.16 default kinetic UF using data 

for pharmaceutical probe substrates. A rationale for such limited variability lies in the fact that very 

few probe substrates are transported by one specific carrier-mediated process, so it is reasonable to 

assume that the overlapping substrate specificity of transporters (from same or different classes) may 

reduce the variability due to possible compensation mechanisms (Chedik et al., 2018; Clerbaux et al., 

2019). The involvement of multiple transporters can also influence the occurrence of chemical 

interactions mediated by transport processes induction or inhibition; these have been observed in 

vitro but in vivo evidence is mostly lacking, likely due to low exposure to environmental chemicals or 

food components which are generally well below the concentrations of administered therapeutic 

drugs (Chedik et al., 2018). Accidental exposure to very high levels or intoxication events with high 

peak blood concentrations may represent an exception. 

The methodology and modelling presented here has been previously applied to the CYP3A4 isoform 

(Darney et al., 2019) and it is currently being explored for other phase I and phase II isoforms enzymes 

to generate variability distributions for human inter-individual differences in PK parameters (Darney 

et al., 2020). Here, it is foreseen that in vitro kinetic data and transporter variability can be integrated 
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in quantitative in vitro in vivo extrapolation (QIVIVE) to estimate intrinsic clearance for the human 

population. Non-invasive in vitro techniques are now available to investigate the involvement of 

transporters and generate chemical-specific data using human cell lines or human liver microsomes 

(Harwood et al., 2016; Kumar et al., 2015; Poulin, 2013; Prasad and Unadkat, 2014; Yoon et al., 2013; 

Zhang et al., 2019). The variability derived here for specific transporters can then be integrated in 

physiologically-based kinetic models with Markov-Chain Monte Carlo, allowing full probabilistic 

integration, instead of using a single deterministic mean value. In addition, data for protein abundance 

of transporters and their activity can also further support the modelling of transporter kinetics by 

physiologically-based kinetic-QIVIVE link models including the mechanistic modelling of chemical oral 

absorption as well as chemical-chemical and drug-drug interactions (Barton et al., 2013; Harwood et 

al., 2013; Harwood et al., 2014; Jamei et al., 2014; Neuhoff et al., 2013). 

Since only healthy adults were considered in this study, due to the lack of data for other subgroups the 

transporter-related variability described here may not be applicable to sensitive subpopulations, such 

as neonates, children and elderly as well as non-healthy individuals or specific ethnic groups for which 

data are not available. However, almost no studies have been performed investigating transporter-

dependent pharmacokinetics in children and studies in neonates are not available (Rodieux et al., 

2016). 

There is a current trend to replace traditional default UFs by using data-derived UFs based on a 

quantitative understanding of population characteristics, PK data and/or toxicodynamic data to reduce 

uncertainty in chemical risk assessment (Bhat et al., 2017). Although limited kinetic data on transporter 

polymorphisms were available, inter-phenotypic variability for probe substrates was reported, which 

may contribute to human variability in PK parameters, and can therefore result in exceedance of the 

default kinetic UF. Overall, to predict whether the kinetic portion of the intra-individual UF is protective 

of humans, it is recommended that genetic polymorphisms across all human groups are investigated 

since polymorphisms provide a better predictor in altered pharmacokinetics than ethnicity alone 

(Darney et al., 2020; Wu et al., 2017a). 

Kinetic data were mostly available for on pharmaceutical probe substrates which are eliminated 

relatively fast from the human body (i.e. short half-lives). However, data on the transport of 

environmental contaminants and food-relevant chemicals, particularly persistent ones, are very 

scarce and it is not certain that the UFs derived for pharmaceuticals are applicable to these chemicals 

as well. Therefore, assessment of such chemicals would need to be performed on a case by case 

basis either using the default factor, the transporter-related UFs or chemical specific adjustment 

factors. The chemical-specific adjustment factors will be necessary when 1. the compound is handled 
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by a combination of phase I, Phase II pathways and transporters. 2. the compound is persistent with 

long half-lives. 3. pharmacokinetic data shows inter-phenotypic differences in the substance's 

specific transporter(s) handling. This suggests a need to investigate their kinetic and transport profile 

to broaden the chemical groups of this analysis to such persistent compounds. Relevant examples for 

transporters as P-gp, BCRP2, OCTs are food additives (sweeteners), organochlorines, pyrethroids 

such as allethrin and tetramethrin, and organophosphorus pesticides (Chedik et al., 2018; Chedik 

et al., 2017; Guéniche et al., 2019; Sjöstedt et al., 2017). Overall, these investigations should 

include environmental concentrations to investigate the likelihood of such interactions with 

transporters to occur.   
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7. General discussion 

The overall objective of this thesis was to develop tools that can be used to predict human kinetic 

variability and pathway-related UFs for chemical risk assessment for their future integration in PBK 

models. An aggregated PBK model for permethrin, a synthetic pyrethroid insecticide, has been 

developed in order to assess exposure of the French population (Chapter 2). Sensitivity analyses have 

been conducted and confirm that kinetic parameters were the most influential on the output 

parameter of the model (urinary excretion of the metabolites) and that efforts should be conducted 

to refine such parameters. Therefore, a hierarchical Bayesian model for the meta-analysis of kinetic 

data has been developed and pathway-related variability and UFs have been calculated for two phase 

I enzymes, namely CYP3A4 and paraoxonase-1 (PON1) (Chapter 3 and 4). The same approach has been 

used for phase II enzymes, UDP-glucuronyltransferases (UGT) 1A1, 1A3, 1A4, 1A6, 1A9, 2B7 (chapter 

5) and finally for influx and efflux transporters involved in present in the intestine, liver and kidneys 

(Chapter 6). 

7.1. After almost 20 years, here we are 

7.1.1. Bayesian meta-analyse of kinetic data 

The quantification of human variability for a range of metabolic pathways have been proposed at the 

end of the 90s (Renwick and Lazarus, 1998). After which, pathway-related UFs have been published 

for a number of phase I, phase II enzymes and renal excretion as well as UFs allowing for variability in 

pharmacodynamics (Dorne et al., 2001a; Dorne et al., 2003a; Dorne et al., 2003b; Dorne et al., 2004a; 

Dorne et al., 2005; Dorne et al., 2002; Ginsberg et al., 2002; Naumann et al., 2001; Walton et al., 2001a; 

Walton et al., 2001b). 

However, kinetic data from pharmacokinetic studies were limited in terms of number of studies and 

sample size (typically below 10). Additionally, the previously published meta-analyses were based on 

weighted averages assuming fixed effect models with inverse variance weights (Dorne et al., 2001b). 

While this approach does allow to derive parameter specific variability for different populations, it did 

not address the relative contribution of the variability across subgroups to the overall variability in the 

datasets, leading to uncertainty in the parameter estimates which is not quantified since the end result 

is here a single value, either a CV or an UF. Over the last decade, significant new studies have been 

published on the kinetics of pharmaceuticals as probe substrates of a range of selected phase I, phase 

II pathways and transporters. Moreover, Bayesian methods allow to quantify the variability and 

uncertainty and are more suitable for datasets with large heterogeneity across studies and with 

hierarchical structure (Shao et al., 2017). It is also important to note that  Markov chain Monte Carlo 
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methods allow to simulate and derive posterior distributions to provide quantitative descriptors of the 

associated uncertainty (Kruschke and Vanpaemel, 2015), as the 95% confidence (or credibility) 

intervals. This may lead to large intervals with small sample size and indicating large uncertainty for 

the estimated parameter. Such a hierarchical Bayesian models have been described to investigate 

human variability and uncertainty in metabolism (chapter 3) for a range of phase I, phase II metabolism 

and transporters (chapter 3 to 6). 

7.1.2. Pathway-related variability and uncertainty factors for chemical risk 
assessment 

Chapter 3 provides a quantitative estimation of intra- and inter-ethnic differences in CYP3A4 

metabolism. This pathway was previously studied by Dorne et al. (2003a), overall, the CYP3A4 related 

UFs derived in this chapter for healthy adults were consistent with those in Dorne et al. (2003a). 

Different populations have been considered, healthy adults from different geographical ancestry as 

well as other groups including neonates, infants and elderly. However, there was insufficient data 

regarding the genotype or phenotype of the volunteers. It has been concluded that polymorphism can 

be an important factor with regards to CYP3A4-related variability. However, CYP3A4 polymorphism 

has been classified as “low” due to rare genetic variants that are not associated  with polymorphic 

phenotypes of demonstrated clinical relevance (Stingl et al., 2013). Other CYP enzymes present a 

higher degree of polymorphism and allelic variants can lead to enzyme deficiency which lead to a range 

of phenotypes within a population so that individuals can be classified as “poor metaboliser” (PM), 

“intermediate metaboliser” (IM), “extensive metaboliser” (EM) or “ultra-rapid metaboliser” (UM). The 

major polymorphic CYP enzymes are CYP2D6, CYP2C9 and CYP2C19 (Waring, 2019). 

Human serum PON1 is another example of polymorphic phase I enzyme (Furlong et al., 2016a). 

However, the activity of this esterase is substrate dependent (Li et al., 2000); the phenotype is not 

classified as described previously but as “PON1 status” (Costa et al., 2005) since the same genotype 

can exhibit different level of activity toward different probe substrates (Chapter 4). PON1 has been 

described as a good predictor of individual susceptibility to organophosphate insecticides (OPs) toxicity 

(Alejo-González et al., 2018; Dardiotis et al., 2019). The conducted meta-analysis confirmed that inter-

phenotypic differences in PON1 activity have an impact on the potential susceptibility to OP toxicity in 

the detoxification of oxon metabolites (Costa et al., 2013). 

UGT isoforms are known to be highly polymorphic with more than a hundred variants (Stingl et al., 

2014). In most cases, these polymorphic variants result in lower expression levels and/or lower activity, 

with sometimes even complete loss of activity (Sim et al., 2013). However, as for Chapter 3, there was 

insufficient information concerning genetic polymorphism of the volunteers (Chapter 5). Besides 
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different phenotypes, age is also an important factor impacting on human variability in xenobiotic 

metabolism, since it has been reported that neonates and young children show different expression 

levels of UGT compared to adults that can lead to a 5-fold difference in pharmacokinetic parameters 

(Bhatt et al., 2019; Court, 2010; Dorne et al., 2001b). 

Next to phase I and II metabolic enzymes, transporters can contribute significantly to human variability 

in kinetics (Dorne et al., 2004b). While this chapter describe the first meta-analysis of kinetic variability 

related to specific human transporters, probe substrates have been identified only for two ABC 

transporters, P-gp and BCRP and two SLC transporters, OAT1 and OAT3. The effects of the genetic 

polymorphism on transporters seem to be substance specific, due to changes of the substrate-binding 

domain which alters substrate affinity. This chapter mainly covers the absorption and elimination 

processes with regard to P-gp and BCRP that are both highly expressed at the apical membrane of 

enterocytes and may limit the oral bioavailability of a range of chemicals (Clerbaux et al., 2019). 

These chapters outline opportunities and challenges associated with the derivation of pathway-related 

variability to support chemical risk assessment with data-driven approaches to replace default UFs. 

Data gaps have been identified for both phase I and II enzymes and for transporters. Chapter 3 

highlights the importance to consider specific subpopulations such as neonates, infants and elderly for 

whom the human kinetic UF was exceeding the default value of 3.16. However, these populations are 

rarely included in pharmacokinetic studies, mainly due to ethical considerations restricting clinical 

studies in specific subpopulations such as neonates and infants. Moreover, when polymorphic 

expression of an enzyme constitutes the a key  factor impacting metabolic activity and its associated 

variability within and across sub-populations, phenotypic characterisation in the human volunteers 

would significantly support taking into account the most sensitive populations but is not systematically 

performed (either the PM or UM depending of the relative level of toxicity between the parent 

compound and its metabolites) (Waring, 2019). Furthermore, the analyses performed here conclude 

that it is recommended to investigate polymorphisms rather than geographical origins, since 

polymorphisms provide a better predictor in the alteration of  pharmacokinetics compared to that for 

genotypic frequencies alone (Wu et al., 2017a).  

Furthermore, the methodology and modelling proposed here can be applied to other metabolic 

pathways of interest to assess human inter-individual differences in kinetics in a broader context. In 

vitro techniques are now available to provide metabolism data from human cell lines (Bell et al., 2018; 

Blaauboer et al., 2012). Combining accurate inter-individual information from human data, as shown 

here, with such in vitro data can provide a very useful tool for the development of quantitative in vitro 

to in vivo extrapolation (QIVIVE) models (Bell et al., 2018; Bteich et al., 2019; Poulin, 2013; Poulin and 
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Haddad, 2013; Yoon et al., 2013). Indeed, the estimated CV can be applied to an extrapolated clearance 

from QIVIVE and can be combined in a PBK model with a lognormal distribution describing human 

variability in clearance using Markov-Chain Monte Carlo methods instead of single deterministic mean 

values. This will ultimately allow to increase the confidence in such modelling approaches while 

providing credibility intervals (95% CI) around the derived UFs in a transparent manner. 

A scientific report from EFSA (EFSA, 2014) has critically evaluated a range of  approaches such as in 

vitro and in silico methods, integrated testing strategies, OMICs, and PBK modelling as “modern 

methodologies and tools for human hazard assessment of chemicals”. A key aspect to move towards 

the applicability of these tools in chemical risk assessment was discussed and characterised as the 

integration of exposure data (external dose) together with kinetic processes (internal dose) and 

dynamic data providing quantitative metrics for the expression of chemical-specific toxicity. Moreover, 

given the trend to reduce animal testing in chemical risk assessment, the challenge for the PBK 

modelling community is to calibrate model parameterisation increasingly or entirely on ADME 

properties derived from in vitro or in silico, with limited or no availability of in vivo kinetic data(Leonard 

and Tan, 2019; Madden et al., 2019; Punt et al., 2017). Currently, application of PBK models in human 

risk assessment are possible for the hazard characterisation of compounds with well-known kinetics, 

as well as for exposure assessment using reverse dosimetry modelling using inputs from biomonitoring 

studies from national surveys (Tohon et al., 2018). Chapter 2 has described a reverse dosimetry 

approach for exposure assessment of the adult French population to permethrin. Physiological 

variability has been taken into account in order to model urinary excretion of metabolites in the 

studied population. However, fix values of Km and Vmax were used in the model to describe the 

metabolism of permethrin (Willemin et al., 2015). More recently, Mallick et al. (2019) developed a life-

stage PBK model to assess internal doses of pyrethroids in humans. This study displays the relative 

contribution of CYPs and carboxylesterases to the metabolism of cis-permethrin. Integration of the 

quantified human kinetic variability in such PBK model would allow to consider human variability in 

the estimation of internal dose of such insecticides and to refine their risk assessment. 

7.2. Towards next generation human risk assessment of chemicals 

The use of PBK modelling together with approaches to better account for inter-individual variability 

are  increasingly recommended in human  risk assessment of chemicals (Bessems et al., 2014; EFSA, 

2014; IPCS, 2010; Paini et al., 2017; Paini et al., 2019; Sachana, 2019). Indeed, applying a PBK model 

with parameter specific distributions integrating variability in a Bayesian framework  would allow a 

better prediction of internal dose and decrease uncertainty in estimates (Bois et al., 2010; Chetty et 

al., 2018; Krauss and Schuppert, 2016; McNally et al., 2018; Tsiros et al., 2019). Such approaches would 
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avoid the use of default factors and allow to apply, on a case by case basis, either CSAFs or pathway-

related UFs that may be below or above these default values (Punt et al., 2017; Yoon et al., 2015). 

Modelling inter-individual kinetic variability with PBK models would also require taking into account 

variation in physiological parameters (i.e. organ volume, cardiac output). For this purpose, the use of 

the PopGen free web application may be very useful since it is able to easily generate a virtual 

population with outputs readily applicable for QIVIVE (McNally et al., 2014; McNally et al., 2015). 

A tiered approach has been suggested for PBK modelling regarding the availability of chemical-specific 

information (Paini et al., 2019). Considering kinetic, in vivo data are limited to few extensively studied 

compounds and for limited species (data rich). Data poor chemicals should then be address either with 

one compartment model or simple PBK model. However, the derived human pathway-related 

variability can be used alongside in vivo clearance extrapolated from in vitro assays (Bteich et al., 2019; 

Louisse et al., 2019; Poulin and Haddad, 2013; Timoumi et al., 2019) to derive log-normal distributions 

of the parameter. This would allow to refine the input values of kinetic data for the PBK model and 

then to use a higher tiered model. Development and application of PBK models would furthermore 

benefit from the setup of ADME and chemical-specific parameters as well as data on enzyme 

expression and activities to support the development of QIVIVE models (Lautz et al., 2019). While there 

are available in vitro assays for liver and intestinal metabolism with relevant QIVIVE models (Clerbaux 

et al., 2018; Yoon et al., 2015), validated in vitro assays that allow to model renal excretion of chemicals 

still need to be developed. 

Another source of chemical-specific data for the development of PBK models is increasingly arising 

from in silico tools (Madden et al., 2019). For instance, quantitative structure–activity relationship 

(QSAR) models allows to predict compound-specific tissue:blood partition coefficients (Hendriks et al., 

2005; Huizer et al., 2012). OMICs technologies (i.e. transcriptomics, proteomics, metabolomics) also 

provide qualitative and quantitative information on expression and activity of enzymes and 

transporters in a range of animal species and can further support to gain insight for the 

characterisation of differences in ADME processes (EFSA, 2018). 

7.3. Conclusion and recommendations 

In order to move towards the next generation of chemical risk assessments particularly through the 

use of pathway-related variability, we recommend the following steps when considering data poor 

compounds (summarised in Figure 33): 
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1. Isoform-specific intrinsic clearance can be produced in vitro (Timoumi et al., 2019) and 

integrated into QIVIVE models to estimate isoform-specific in vivo intrinsic metabolic 

clearances (Bell et al., 2018; Bteich et al., 2019; Mallick et al., 2019; Poulin and Haddad, 2013). 

2. Pathway-related variability can be applied to derive log-normal distributions of intrinsic 

clearances based on extrapolated values. 

3.  Further development of generic human PBK models and integration of population 

parameters. A virtual population, either healthy adults or a specific population (infants, 

elderly, etc.) can be modelled using the web application PopGen (McNally et al., 2014; McNally 

et al., 2015). 

4. Other chemical-specific parameters can be obtained through QSAR models such as the 

tissue:blood partition coefficients (Hendriks et al., 2005). 

5. Blood or tissue concentration of the compound or its metabolites can be derived using Monte 

Carlo simulations. 

6. When dynamic data either from in vitro or ex vivo experiments are available (dose-response 

curve), a BMD can be derived (McNally et al., 2018) and risk assessment can be performed  

based on exposure scenarios or reverse dosimetry simulations to assess the actual population 

exposure and its associated risk. 

Further research are required to investigate kinetic variability for specific populations specifically for 

neonates and infants. Moreover, when considering pharmacokinetic studies of compounds that are 

metabolised by polymorphic pathways, volunteers should be classified according to their phenotype 

to refine UFs for ultra and/or poor metabolisers. In vitro or in silico (QSAR) models should be also 

developed for the prediction of human renal excretion. Moreover, isoform-specific information are 

already produced when addressing adverse outcome pathways such as drug-induced liver injury 

(Vinken, 2013; Vinken, 2015) (e.g. for food safety). Such kinetic data should be requisite form the 

industrials when submitting new active substances for risk assessment. 
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Figure 33. Integrating human variability in kinetics for the risk assessment of data poor chemicals. 
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Résumé français : 

Introduction 

Evaluation des risques chimiques pour l’Homme 

Dans le monde moderne, les humains sont exposés à une vaste gamme de produits chimiques tout au 

long de leur vie. Ces produits chimiques sont présents dans la vie quotidienne et comprennent les 

produits pharmaceutiques, les produits de consommation (ingrédients cosmétiques) et les produits 

chimiques qui sont intentionnellement ajoutés aux aliments (additifs alimentaires, arômes, matériaux 

en contact avec les aliments), aux matières premières (pesticides/biocides : herbicides, fongicides, 

insecticides, etc.) ou dans les aliments pour animaux d'élevage en tant que médicaments vétérinaires. 

De plus, les contaminants de la chaîne alimentaire constituent une autre source d'exposition chimique 

pour les humains et comprennent les contaminants d'origine humaine tels que les contaminants liés 

aux processus de transformation (acrylamide, furanes), les polluants environnementaux (ignifugeants 

bromés, dioxines, BPC, perfluoroalkyls), les métaux (résultant de l'activité humaine) ainsi que les 

toxines naturelles (mycotoxines, alcaloïdes végétaux, biotoxines marines) (Dorne et al., 2009). Avec un 

tel éventail de produits chimiques, l'évaluation des risques des produits chimiques pour les humains 

revêt une importance considérable pour la santé publique et permet de calculer des niveaux sûrs 

d'exposition aiguë et chronique pour des sous-groupes de la population humaine, notamment les 

nouveau-nés, les enfants, les personnes âgées et les populations d'ascendance géographique 

différente (différences interethniques) et de polymorphismes génétiques. 

En effet, l'évaluation des risques est un élément central de l'analyse des risques et fournit une base 

scientifique pour la gestion des risques sur les décisions et les mesures qui peuvent être nécessaires 

pour protéger la santé humaine et pour la communication des risques afin de permettre un échange 

interactif d'informations entre les évaluateurs des risques, les gestionnaires, les médias, les parties 

prenantes et le grand public (FAO/OMS, 2018). Les quatre étapes de l'évaluation des risques chimiques 

sont l'identification des dangers, la caractérisation des dangers, l'évaluation de l'exposition et la 

caractérisation des risques. 

Selon que la substance étudiée est génotoxique et cancérogène ou non-génotoxique, différentes 

méthodes sont utilisées pour effectuer l'évaluation des risques de ces composés. Traditionnellement, 

le point de départ ou dose critique est estimée à partir de la plus forte dose testée sans effet observé 

(NOAEL) dans le cas des composés non-génotoxique (SCHER/SCCP/SCENIHR, 2009). La méthode de la 

benchmark dose (BMD) est recommandée dans le cas des substances génotoxiques et cancérogène 

(Crump, 1984; EFSA Scientific Committee et al., 2017; U.S. EPA, 2012). 
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La façon habituelle de calculer les valeurs sanitaires de référence est de diviser la dose critique 

déterminée par des facteurs d'incertitude (UFs) qui visent à décrire les différences entre les espèces 

et les individus. Dans les cas où les expositions dépassent les valeurs sanitaires de référence, la 

caractérisation des risques ne fournit pas aux gestionnaires de risques des conseils sur l'étendue 

possible du risque pour les personnes exposées à ces niveaux supérieurs. Une première considération 

devrait être que les valeurs sanitaires de référence incorporent elles-mêmes les facteurs d'incertitude 

(IPCS, 2009). 

Facteurs d’incertitude dans l’évaluation des risques des produits chimiques 

Lehman et Fitzhugh (1954) ont introduit il y a 60 ans un facteur d'incertitude de 100 pour tenir compte 

des différences interespèces et interindividuels afin de déterminer, à partir d'études sur les animaux, 

des valeurs sanitaires de référence chez l’Homme. Ce facteur 100 est le produit de deux facteurs 10 

qui tiennent compte des différences entre les espèces et de la variabilité chez les humains (IPCS, 1987). 

Toutefois, ces facteurs 10 par défaut ne tiennent pas compte des données métaboliques ou du 

contexte mécanistique de façon quantitative dans l'évaluation des risques. Les facteurs d'incertitude 

interespèces et interindividuels ont donc été subdivisées en aspects cinétiques et dynamiques 

(Renwick, 1993). Les valeurs de 100,6 (4,0) et de 100,4 (2,5) ont ensuite été proposées pour les 

différences entre les espèces sur le plan cinétique et dynamique. En ce qui concerne la variabilité 

cinétique et dynamique chez l'Homme, le facteur par défaut de 10 est subdivisé en deux facteurs 100,5 

(3,16) (IPCS, 1994). Il a été démontré que lors de l'évaluation de la variabilité humaine à l'aide de 

médicaments, les facteurs cinétiques et dynamiques par défaut ne couvriraient pas la variabilité 

humaine spécifiquement pour les voies polymorphiques ou pour des populations spécifiques comme 

les nouveau-nés (Renwick et Lazarus, 1998). Ces facteurs d'incertitude par défaut cinétiques et 

dynamiques peuvent être affinés en utilisant des facteurs d'ajustement spécifiques aux produits 

chimiques (CSAF) (IPCS, 2005) ou des facteurs d'incertitude liés aux voies métaboliques (Dorne, 2010 ; 

Dorne et al., 2005). 

Modèles bayésiens hiérarchiques pour la méta-analyse des données 
cinétiques 

Les précédentes méta-analyses sur la variabilité cinétique chez l'homme pour différentes voies 

métaboliques étaient basées sur des moyennes géométriques pondérées en supposant des modèles à 

effet fixe avec des poids de variance inverses. Cette approche permet d’estimer la variabilité humaine 

des paramètres cinétiques, mais elle ne tient pas compte de la contribution relative de la variabilité 

entre les sous-groupes à la variabilité globale des ensembles de données, ce qui entraîne une 

incertitude dans les estimations des paramètres (Dorne et al., 2005). 
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Dans un contexte Bayésien, une distribution à priori est établie soit sur la base de connaissances 

d'experts, soit en utilisant des preuves tirées de la littérature. Ces distributions sont ensuite mises à 

jour en tenant compte des nouvelles données disponibles, ce qui conduit à une distribution à posteriori 

(Micallef et al., 2005). L'estimation Bayésienne fournit une distribution de la crédibilité des valeurs des 

paramètres et une représentation de l'incertitude des paramètres qui peut être directement 

interprétée par la distribution postérieure. Les distributions à posteriori sont estimées en générant un 

énorme échantillon aléatoire de valeurs de paramètres représentatives à partir de la distribution 

antérieure à l'aide de la méthode de Monte Carlo par chaîne de Markov (MCMC). Par conséquent, elle 

décrit comment l'incertitude change lorsqu'on tient compte de nouvelles données (Kruschke et 

Vanpaemel, 2015). 

La variabilité humaine des paramètres cinétiques de l'exposition aiguë et chronique peut être dérivée 

d'une méta-analyse d'études pharmacocinétiques humaines utilisant une approche bayésienne 

hiérarchique. Par conséquent, l'inclusion de plusieurs composés spécifiques d'une même voie dans un 

modèle bayésien hiérarchique permettrait alors de préciser le facteur d'incertitude liée à la voie. 

Objectifs de la thèse 

Cette thèse vise à : 

1. Quantifier la variabilité humaine au moyen d'une méta-analyse Bayésienne pour plusieurs voies 

métaboliques de phase I et phase II et des transporteurs (phase 0 et III) en utilisant les marqueurs 

pharmacocinétiques d'exposition aiguë (Cmax) et chronique (AUC, clairance) ou les données 

d'activité enzymatique des substrats spécifiques. 

2. Estimer les distributions de variabilité liées aux voies métaboliques et les facteurs d'incertitude 

liés à ces voies en vue de leur intégration future dans les modèles de PBK pour l'évaluation des 

risques des substances chimiques pour l'Homme. 

La méthodologie proposée utilise un modèle Bayésien hiérarchique à plusieurs niveaux pour intégrer 

les sources quantifiables de variabilité, y compris la variabilité inter-études, inter et intra-ethnique, 

inter-populations sensibles et/ou inter-phénotypique. Dans ce contexte, la variabilité liée à la voie 

métabolique et les facteurs d'incertitude correspondants sont estimés pour des sous-groupes de la 

population humaine et du paramètre pharmacocinétique. 

Modélisation physiologiques basés sur la cinétique 

Les modèles physiologiques basés sur la cinétique (PBK) fournissent une approche quantitative pour 

traiter les processus d’absorption, distribution, métabolisme et excrétion (ADME) et sont donc des 
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outils très utiles dans l'évaluation des dangers (EFSA, 2014), notamment dans la réalisation de 

dosimétrie inverse, permettant de combler les inconnus entre dose externe et dose interne. 

L’étude nationale nutrition santé (ENNS) a fait état de niveaux de biomarqueurs d'exposition aux 

pyréthrinoïdes plus élevés que ceux observés dans les études de biosurveillance nord-américaines et 

allemandes. L'exposition globale à la perméthrine a été étudiée comme première étude de cas, car ce 

composé est l'un des insecticides pyréthroïdes les plus utilisés. Nous avons évalué plusieurs sources 

de contamination - comme l'air intérieur et extérieur, la poussière déposée et le régime alimentaire - 

et plusieurs voies d'exposition, notamment par voie orale, par inhalation et par voie cutanée. Nous 

avons utilisé des estimations du niveau d'exposition à la perméthrine (calculées à partir des données 

de l'ENNS) et un modèle pharmacocinétique et pharmacocinétique étalonné avec des données 

cinétiques humaines (provenant de 6 individus) pour simuler une dose interne d'acide cis- et trans-3-

(2,2 dichlorovinyl)-2,2-diméthyl-(1-cyclopropane) carboxylique (cis- ou trans-DCCA) dans une 

population de 219 individus. Les concentrations urinaires de cis- et de trans-DCCA prédites par le 

modèle PBPK selon trois scénarios d'exposition à la perméthrine ("inférieure", "intermédiaire" et 

"supérieure") ont été comparées aux concentrations urinaires mesurées dans l'étude ENNS. Les 

niveaux de l'ENNS se situaient entre les niveaux simulés selon les scénarios d'exposition à la 

perméthrine "inférieur" et "intermédiaire". Le scénario "supérieur" a entraîné une surestimation des 

concentrations urinaires prévues de cis- et de trans-DCCA par rapport à celles mesurées dans l'étude 

de l'ENNS. Le scénario le plus réaliste était le scénario " inférieur " (concentration de perméthrine des 

données censurées à gauche considérée comme nulle). A l'aide d’un modèle PBK chez l’Homme, nous 

avons estimé la contribution de chaque voie et source à la dose interne. La principale voie d'exposition 

à la perméthrine était la voie orale (98 %), l'alimentation étant la principale source (87 %), suivie des 

poussières (11 %), puis de la voie cutanée (1,5 %) et enfin de l'inhalation (0,5 %). 

Des analyses de sensibilité des paramètres du modèle PBK ont été effectuées et confirment que les 

paramètres cinétiques sont ceux qui influent le plus sur le paramètre de sortie du modèle (excrétion 

urinaire des métabolites) et que des efforts devraient être déployés pour préciser ces paramètres. Par 

conséquent, un modèle Bayésien hiérarchique pour la méta-analyse des données cinétiques a été 

élaboré. 

Différences interethniques liées au métabolisme de CYP3A4 

CYP3A4 est la principale isoforme des cytochromes P450 humain et responsable du métabolisme de 

plus de 50 % des xénobiotiques connus. Les différences interethniques dans le métabolisme du CYP3A4 

ont été étudiées dans le cadre d'une revue systématique des données pharmacocinétiques de 15 
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substrats de sonde du CYP3A4 et des paramètres reflétant l'exposition aiguë (Cmax, voie orale) et 

chronique (clairance et AUC, voie orale et intraveineuse). Toutes les données ont été extraites dans 

une base de données structurée et des méta-analyses ont été effectuées à l'aide d'un modèle Bayésien 

hiérarchique afin de déterminer les distributions de la variabilité du métabolisme du CYP3A4 en 

fonction des paramètres, de la voie d'administration et de la population. Deux approches différentes 

ont été appliquées. 1) Les différences interindividuelles ont été quantifiées en utilisant les adultes 

nord-américains en bonne santé comme groupe de référence pour les comparer aux adultes 

européens, asiatiques, du Moyen-Orient et sud-américains en bonne santé, ainsi qu'aux personnes 

âgées, aux enfants et aux nouveau-nés. 2) Les distributions de la variabilité intra-ethnique ont été 

estimées sans comparaison avec un groupe de référence. Dans l'ensemble, les distributions de la 

variabilité du CYP3A4 propres aux sous-groupes ont servi de base pour calculer les facteurs 

d'incertitude liés au CYP3A4 pour couvrir le 95ème ou 97,5ème centile de la population et ont été 

comparées au facteur d'incertitude cinétique par défaut chez l’Homme (3,16). Les résultats indiquent 

que les facteurs d'incertitude liés au CYP3A4 chez les adultes en santé étaient plus élevés pour les 

expositions chroniques par voie orale (2,5-3,0, UF95 et UF97,5, 10 composés) que pour les expositions 

par voie intraveineuse (1,7-1,8, 2 composés). Tous les facteurs d'incertitude se situaient dans les 

limites du facteur d'incertitude par défaut de la cinétique. Ces distributions tiennent compte de : 1) 

l'application des facteurs d'incertitude liés au CYP3A4 dans l'évaluation des risques des composés pour 

lesquels on dispose de données in vitro sur le métabolisme du CYP3A4 sans qu'il soit nécessaire 

d'obtenir des données sur les animaux ; 2) l'intégration des distributions de variabilité liées au CYP3A4 

avec les données sur le métabolisme in vitro dans des modèles cinétiques physiologiques (PBK) pour 

l'extrapolation quantitative in vitro vers in vivo (QIVIVE) et 3) l'estimation des facteurs d’incertitude 

dans l'évaluation des risques chimiques à l'aide des distributions de variabilité du métabolisme. 

Variabilité humaine liée à la paraoxonase-1 

La variabilité des activités de la paraoxonase-1 (PON1) chez l'Homme est due à des polymorphismes 

génétiques qui influent sur la dose interne en métabolites actifs (oxon) des insecticides 

organophosphorés. Ici, une revue de la littérature approfondie a été effectuée pour recueillir les 

fréquences génotypiques humaines (c.-à-d. L55M, Q192R et C-108T) dans des sous-groupes ayant des 

origines géographiques différentes et pour trois substrats spécifiques de PON1 (paraoxon, diazoxon et 

acétate de phényle). Des méta-analyses bayésiennes ont été effectuées pour estimer les distributions 

de variabilité des activités du PON1 et des facteurs d'incertitude liés à PON1, tout en intégrant des 

sources quantifiables de différences inter-études, inter-phénotypiques et inter-individuelles. Les 

différences inter-phénotypiques ont été quantifiées en utilisant la population ayant une activité PON1 
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élevée comme groupe de référence. Les résultats des méta-analyses ont fourni des distributions de 

variabilité d’activité de PON1 et celles-ci peuvent être intégrées dans des modèles PBK génériques 

pour élaborer des modèles d'extrapolation quantitative in vitro et in vivo. Les facteurs d'incertitude 

liées à PON1 dans la population caucasienne étaient supérieurs au facteur d'incertitude cinétique par 

défaut de 3,16 pour deux génotypes, soit le -108CC en utilisant du diazoxon comme substrat et le -

108CT, le -108TT, le 55MM et le 192QQ en utilisant du paraoxon comme substrat. Cependant, 

l'intégration des fréquences génotypiques et des distributions d'activité des PON1 a montré que tous 

les facteurs d'incertitude étaient dans les limites du facteur d'incertitude par défaut cinétique. Les 

différences quantitatives interindividuelles de l'activité des PON1 sont importantes pour l'évaluation 

des risques chimiques, en particulier en ce qui concerne la sensibilité potentielle à la toxicité des 

insecticides organophosphorés.  

Variabilité humaine des UDP-glucuronosyltransférases 

Les UDP-glucuronosyltransférases (UGT) sont des enzymes qui sont couramment impliquées dans les 

réactions de conjugaison de phase II des xénobiotiques. Les différences dans les activités des isoformes 

d’UGT peuvent entraîner de grandes différences interindividuelles dans les profils cinétiques des 

composés glucuronidés. Dans cette étude, les différences interindividuelles des paramètres 

pharmacocinétiques des marqueurs de l'exposition aiguë et chronique ont été quantifiées pour 

quatorze composés métabolisés par sept isoformes d’UGT (UGT1A1, UGT1A3, UGT1A4, UGT1A6, 

UGT1A9, UGT2B7 et UGT2B15) et les fréquences des polymorphismes de ces UGT dans les populations 

humaines ont été étudiées. Les paramètres pharmacocinétiques sont résumés dans une base de 

données et les facteurs d'incertitude liés aux UGT, pour les composés individuels et pour chaque 

isoforme, ont été calculés et comparés au facteur d’incertitude par défaut (3,16). L'information sur les 

distributions de fréquence des polymorphismes a été comparée à la base de données des paramètres 

pharmacocinétiques. Les résultats montrent que les données pharmacocinétiques dans la littérature 

sont surtout disponibles pour les populations caucasiennes et rares pour les autres ethnies. De plus, 

les renseignements sur les polymorphismes en relation avec les paramètres pharmacocinétiques sont 

rarement abordés dans les études incluses, bien que des différences soient observées dans les 

distributions de fréquence et que ces polymorphismes aient une grande influence sur les paramètres 

cinétiques. Dans l'ensemble, le facteur d'incertitude par défaut de 3,16 couvre la population adulte 

pour toutes les isoformes UGT incluses et pour la plupart des composés, sauf pour le 1-OH-Midazolam, 

l'ézétimibe, le raltégravir, le SN38 et la trifluopérazine. Le facteur d'incertitude calculé le plus élevé 

était de 3,6 pour le raltégravir. Les facteurs d'incertitude calculés propres aux isoformes indiquent que 
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le facteur d'incertitude cinétique par défaut couvrirait plus de 97,5 % des personnes en bonne santé 

pour toutes les isoformes d’UGT. 

Variabilité humaine liée aux transporteurs : ATP Binding Cassette et 

transporteurs de solutés 

Les transporteurs sont divisés en deux super-familles, à savoir les transporteurs ABC 

(ATP Binding Cassette) et les transporteurs de solutés (SLC), qui servent d'intermédiaires pour l'afflux 

et le reflux cellulaire de divers substrats xénobiotiques et endogènes. Ici, une revue de la littérature 

approfondie a été effectuée pour les substrats spécifiques in vivo de la P-glycoprotéine (P-gp), de la 

protéine résistante au cancer du sein (BCRP) et des transporteurs anioniques organiques (OAT1/3). 

Pour les autres transporteurs (OCT, OATP), aucun substrat spécifique in vivo n'a pu être identifié. Les 

données cinétiques humaines, telles que la Cmax, la clairance et l’AUC, ont été extraites de 142 

publications. Les analyses de données ont été effectuées à l'aide d'un modèle bayésien hiérarchique 

et les distributions de variabilité ainsi que les facteurs d'incertitude liés aux transporteurs ont été 

estimés. D'après les données disponibles, limitées à la classe d’âge adulte, à certains groupes ethniques 

(surtout caucasiens), pour la P-gp, la variabilité humaine calculée a indiqué que le facteur d’incertitude 

par défaut de la cinétique (3,16) couvrirait plus de 97,5 % des individus en bonne santé, lorsqu'on 

considère la valeur médiane, alors qu'elle est dépassée lorsqu'on considère l'intervalle de confiance 

supérieur. Pour la BCRP et l'OAT1/3, la variabilité humaine, limitée aux adultes en bonne santé, indique 

que le facteur d’incertitude par défaut de 3,16 n'est pas dépassé, même si l'on tient compte de 

l'intervalle de confiance supérieur. Bien que les données cinétiques sur les polymorphismes des 

transporteurs soient limitées, on a signalé une variabilité inter-phénotypique pour les substrats 

spécifiques, ce qui pourrait indiquer que le facteur d’incertitude par défaut actuelle pourrait être 

insuffisant pour couvrir ces polymorphismes. Dans l'ensemble, pour prédire si la part de la cinétique 

dans le facteur d’incertitude intra-individuel protège les humains, il est recommandé d'étudier les 

polymorphismes génétiques dans tous les groupes humains plutôt que d'utiliser l'ethnicité comme 

mesures substitutives des différences génétiques. 

Conclusion 

Afin de passer à la prochaine génération d'évaluations des risques chimiques, en particulier par 

l'utilisation de la variabilité liée aux voies métaboliques, nous recommandons les étapes suivantes lors 

de l'examen des substances pour lesquels les données sont insuffisantes : 

1. La clairance intrinsèque spécifique de chaque isoforme peut être produite in vitro (Timoumi et 

al., 2019) et intégrée dans les modèles QIVIVE pour estimer les clairances métaboliques 
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intrinsèques in vivo spécifiques de ces isoformes (Bell et al., 2018b ; Bteich et al., 2019 ; Mallick 

et al., 2019 ; Poulin et Haddad, 2013). 

2. La variabilité liée à la voie métabolique peut être appliquée pour estimer des distributions log-

normales des clairances intrinsèques basées sur des valeurs extrapolées. 

3.  Poursuite de l'élaboration de modèles PBK humains génériques et intégration des paramètres 

de population. Une population virtuelle, soit des adultes en santé ou une population spécifique 

(nouveau-nés, personnes âgées, etc.) peut être modélisée à l'aide de l'application Web PopGen 

(McNally et al., 2014b ; McNally et al., 2015). 

4. D'autres paramètres spécifiques aux produits chimiques peuvent être obtenus par le biais de 

modèles QSAR, comme les coefficients de partage tissus-sang (Hendriks et al., 2005). 

5. La concentration du composé ou de ses métabolites dans le sang ou les tissus peut être calculée 

à l'aide de simulations de Monte Carlo. 

6. Lorsque des données de dynamiques provenant d'expériences in vitro ou ex vivo sont 

disponibles (courbe dose-réponse), on peut calculer une BMD (McNally et al., 2018) et évaluer 

les risques en fonction de scénarios d'exposition ou de simulations de dosimétrie inverse pour 

évaluer l'exposition réelle de la population et les risques qui y sont associés. 

D'autres recherches sont nécessaires pour étudier la variabilité cinétique pour des populations 

spécifiques, en particulier pour les nouveau-nés et les enfants. De plus, lorsqu'on envisage d'effectuer 

des études pharmacocinétiques de composés qui sont métabolisés par des voies polymorphiques, les 

volontaires doivent être classés selon leur phénotype afin d’améliorer la précision des facteurs 

d’incertitude pour les métaboliseurs très rapides et/ou lents. Des modèles in vitro ou in silico (QSAR) 

devraient également être élaborés pour la prédiction de l'excrétion rénale humaine. De plus, des 

renseignements propres aux isoformes sont déjà produits lorsqu'il s'agit d'étudier les voies d'effets 

indésirables, comme les lésions hépatiques d'origine médicamenteuse (Vinken, 2013 ; Vinken, 2015). 

Toutefois, peu d'efforts ont été déployés jusqu'à maintenant pour produire des données cinétiques 

propres aux isoformes, car elles ne sont pas requises par les évaluateurs de risques (ex. cadre 

règlementaire de la sécurité des aliments). De telles données cinétiques devraient être exigées des 

industriels lorsqu'ils soumettent de nouvelles substances actives pour l'évaluation des risques. 
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