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Introduction

Foreword

At first sight the subjects treated in this thesis do not seem to be physics problems. Among
them are a constraint satisfaction problem, a dynamical process on a graph and two inference
problems. However, a closer look reveals that all these problems are linked through the very
fact that they contain disorder in one way or another and that they can be formulated
in terms of a probabilistic graphical model. This connection reveals the strong tie to the
statistical physics of disordered systems which can be exploited to examine the problems
through a statistical physics approach. Such an approach is the appropriate way in which to
study systems that contain too many constituents, to complex interactions or are for some
other reason too complicated to be described in a meaningful microscopic fashion.

This link is easiest outlined for inference problems in which one is provided some data
and tries to infer something about the underlying data generating process. Typically such
data-sets are noisy and/or big; both are strong arguments for a statistical physics approach.
The data plays the role of the disorder and Bayes theorem provides us the formal link to
statistical physics. Denote the data D and let the generative process be described by some set
of variables G, then Bayes theorem provides the connection between the posterior probability

for G, given D, written P (G | D), and the partition function, Z(Y ):

P (G | D) =
P (D | G)P (G)

Z(D)
.

The inference problems considered will be set in the Bayes optimal framework, where one
knows the functional form of P (D | G) and P (G).

Throughout this thesis there are two recurring questions: (I) what is the optimal achievable
performance? And (II) what are the algorithmic strategies that lead to such an optimal
performance. The averaged logarithm of the partition function, E ln Z(D), the free energy,
is the generating function that provides the physical properties of the system. It is linked
to both the above questions. The replica method facilitates the computation of the free
energy in terms of some macroscopic order parameters that are linked to the best achievable
error in the inference of G and therefore answers the first question. The cavity method
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permits to formulate a microscopic free energy, the minimization of which (with respect
to the microscopic variables), leads to a message passing algorithm that can be exploited
to approach the second question. The inference problems considered are both related to
matrix factorization (or estimation). First, the dense Dawid-Skene model is studied, which
leads to a bipartite graphical model that can be mapped onto low-rank matrix factorization.
And secondly, a particular symmetric extensive-rank matrix estimation problem is studied
for which it is necessary to combine the replica method with tools borrowed from random

matrix theory.
The constraint satisfaction problems fall into a very similar mathematical framework.

However, the problem considered is not set in the Bayes optimal framework. The physical
implications are that glassy states may be present. The space of solutions can exhibit a
difficult structure that causes the simple replica symmetric solution of the replica free energy
to be no longer correct. Instead, the Parisi replica symmetry breaking scheme must be
applied for a complete treatment of these problems. This also has immediate consequences
for the algorithmic approach that needs to be extended as well.

The deep link to statistical physics carries beyond the analogy to inference and constraint
satisfaction problems. Threshold models are common approach to model collective dynam-
ical processes on networks and are another such example that is closely connected to the
bootstrap percolation process in statistical physics. A question of major importance concerns
the minimal contagious sets in such dynamical processes. This problem can be considered
an optimization problem over initial conditions of the dynamical process. Or, equally, a
spin-glass problem with particular interactions. Although quite different from the previous
two models, it can be shown to be accessible by the very same methods [GS15]. However,
the algorithmic aspects of this problem are still not well elaborated and leave open questions
(a) after good local algorithms and (b) their performance.

Contributions and Organization of the Manuscript

In part I the necessary background is introduced and the previously mentioned methods are
outlined. In chapter 1 an introduction to probabilistic graphical models is given. Thereafter,
in chapter 2, the concepts of disordered systems are introduced, necessary to develop the
connection between inference problems and statistical physics. Finally, in chapter 3, some
elements from random matrix theory are collected that are necessary to resolve the extensive-
rank matrix estimation problem. Part II of this thesis contains my contributions that are
outlined in order of appearance in the following.

Circular Coloring
The circular coloring problem is a constraint satisfaction problem that belongs to a
larger class of problems that generalizes the canonical graph coloring problem. Whereas
in the canonical coloring two nodes of a graph that are connected by an edge are
required to have different colors, in circular coloring the colors are ordered into a
circle, and two adjacent nodes are required to have two adjacent colors.
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My main contribution comprises in the analysis of the problem in the replica symmetric
and one-step replica symmetry breaking framework. It revealed that circular coloring
exhibits several interesting features, not common to other discrete constraint satis-
faction problems. Further more it establishes non-rigorously a conjecture by Neöetřil
about the 5-circular colorability of sub-cubic graphs, for random graphs from a statis-
tical physics point of view.

This work was published in the Journal of Statistical Mechanics: Theory and Experiment,

Volume 2016, August 2016 [SGZ16]:

• Christian Schmidt, Nils-Eric Guenther and Lenka Zdeborová, “Circular coloring of random
graphs: statistical physics investigation”

Dense Dawid-Skene Model (Crowdsourcing)
Consider the categorization of M data points through the contribution of N individuals
and assume that each individual can be characterized by a single reliability parameter
(the probability that a correct label is returned). This is the so-called Dawid-Skene
model. In the DS model two regimes can be distinguish. The sparse regime, in which
each individual is assigned only a sub-extensive number of questions. And the dense
regime, in which each individual is assigned an extensive number of questions. Most
of the previous theoretical studies of crowdsourcing have focused on the sparse limit
of the DS model.

In contrast, my contribution is the closed form analysis of the DS model in the dense
limit that reveals the phase diagram of the problem. This is done by showing that the
dense DS model belongs to a larger class of low-rank matrix estimation problems for
which it is possible to express the asymptotic, Bayes-optimal, performance in a simple
closed form. Additionally, numerical results are obtained on how these results translate
into the sparse regime and experiments on a real world dataset are performed.

The work was submitted to the IEEE Transactions on Information Theory

• Christian Schmidt, Lenka Zdeborová, “Dense limit of the Dawid-Skene model for crowd-
sourcing and regions of sub-optimality of message passing algorithms”

and can also be found on the arxiv [SZ18].

Contagious Sets in Random Graphs
Consider a model in which the nodes of the graph can be either in an active or
inactive state and in which a node v changes state from inactive to active if more than
tv = dv ≠ k of its neighbors are active. The number tv is called the threshold for
node v. Destroying the k-core is equivalent to the activation of the whole graph under
the above threshold dynamics. The smallest such set is the minimal contagious set.

My main contribution is show that the corehd algorithm (a local greedy strategy)
translates to a random process on the degree distribution of the graph that can be
tracked exactly by the derivation of the continuous limit of the random process. This
leads to new rigorous upper bounds on the size of the minimal contagious sets for
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random graphs with bounded degree, drawn from the configuration model. I also
proposed some new heuristics that attack the problem algorithmically and outperform
previously known local state-of-the-art algorithms.

The contributions have been submitted as

• Christian Schmidt, Henry D. Pfister and Lenka Zdeborová, “On Minimal Sets to Destroy
the k-Core in Random Networks”

to Physical Review E and an eprint can be found under [SPZ18].

Extensive-Rank Matrix Estimation
Consider the simplest possible problem that falls into the category of extensive-rank
matrix factorization problems. The symmetric version Y = XX|+W with a Gaußian
prior on X under symmetric Gaußian noise, W . If X œ R

N◊R and N/R = O(1), in
the limit where N æ Œ, the matrix is said to have extensive rank.

I compute the Bayes-optimal error on X. In the course of this computation I show that
it is not possible to reduce the replica free energy to a single scalar order parameter
in the form previously assumed in other works. Instead, it is necessary to keep the
spectral density of a whole overlap matrix and the free energy becomes a functional of
this density. In order to resolve the free energy it is necessary to solve a matrix saddle
point equation that leads to a singular integral equation in the large N limit. I solve
the equations and express the asymptotic error on X in terms of this solution.

This part of my work is currently in preparation to be submitted.
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Notation

Abbreviations

Fig. Figure

Chap. Chapter

Sec. Section or Subsection

Alg. Algorithm

Tab. Table

w.r.t. with respect to

l.h.s. / r.h.s. left/right hand side

s.t. such that

i.i.d. independent and identically distributed

w.h.p. with high probability

RV Random Variable

PD Probability Distribution

JPD Joint probability distribution

CLT Central Limit Theorem

MRF Markovian Random Field

RG Random Graph

CSP Constraint Satisfaction Problem

(M)MSE (Minimum) Mean Square Error

MAP Maximum A Posteriori

MBE Minimum Bitwise Error

(r)BP (relaxed) Belief Propagation

SP Survey Propagation

AMP Approximate Message Passing

SE State Evolution

RS Replica Symmetric

RSB Replica Symmetry Breaking/Broken

CCOL circular coloring

MC Monte Carlo

SA Simulated Annealing
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GB Gibbs-Boltzmann

TD Thermodynamic

Mathematical Operators and Functions

:= equal by definition

ƒ asymptotically equal
!

= equal by condition

x A scalar

x A vector (xi)

X A matrix (xij)

1 The identity matrix

[X]ij xij

êi unit vector

ÎxÎp p-norm of x.

|•| The 1-norm, if • is a vector and the cardinality,
if • is a set.

dx
r

i dxi

dX
r

i,j dxij

M
| Transpose of M

Dx Px(x)dx and similarly for a vector/matrix

G (V, E) A graph with nodes V and edges E
∂a The set of neighbors of node a in a graph

G (V, E)

Pr(arg) Probability that arg is true

N !
x; µ, σ2

"
1Ô

2fi‡2
e≠ 1

2‡2 (x≠µ)2

I(•) indicator function that evaluates to

Ex[•] and E[•] expectation w.r.t. x and expectation over all
randomness

È.Í average w.r.t. the GB measure

TrM Trace of the square matrix M :
q

i mii

Rez and Imz The real and imaginary part of z
ffl

Principal Value integral
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Part I

Concepts and Tools
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Probabilistic Graphical Models

The purpose of this chapter is to introduce the mathematical concepts, necessary and/or useful to

understand and work with probabilistic models. The focus will then be put on Markovian random

fields, which lead to a formulation of constraint satisfaction problems and dynamical processes on

random graphs. Belief propagation will appear naturally as a tool to derive the average case properties

of constraint satisfaction problems. These concepts can be extended to fully connected graphical

models, where they can be used to study (and solve) inference problems.

Probability is an approach to access and formalize uncertainty. A probabilistic model, in that
sense, is a model of an uncertain situation. To understand the concept of probabilities it
is useful to consider an experiment. The set of all possible outcomes of the experiment is
denoted the sample space. The elements of the sample space are referred to as outcomes,
states or realizations. A subset of the sample space is called an event. The set of all observed

outcomes is the data. If the experimental outcome is uncertain, then a probabilistic model

can be introduced as an appropriate mathematical formulation of the situation.
Different questions of interest may arrive, as illustrate in Fig. 1.1. In this thesis we will

be dealing with both questions depicted and this chapter aims to provide the mathematical
background to deal with them. Sections 1.1 and 1.2 introduce the theory of probabilistic
models and provide a background in the theory of random graphs that will be useful to
describe a large class of probabilistic models. Finally, Sec. 1.3 will introduce the concepts of
statistical inference.

Although probability is a very functional and successful approach to uncertainty, its inter-
pretation is, ironically, much less certain. The frequentists approach to capture the uncer-
tainty in our experiment is to interpret probability in terms of the frequencies of occurrences
of the outcomes. This does, however, implicate the necessity of (infinite) repeatability of
the experiment. On the other hand, the Bayesian approach adapts the point of view, that
probabilities are to be interpreted as subjective beliefs about the outcome of an experiment.
Subjectivity might, in that context, be understood as the lack of complete information. This
eliminates the necessity of repeatability of the experiment.

Both approaches carry advantages and disadvantages. Whether one or the other is favor-

11



Data Generation Data Observation

Probability

Inference

Figure 1.1: In this thesis we will investigate questions of two types. (1) Given a generative pro-
cess, what are the probabilities that specific events occur. In other words, what is the
likelihood that a specific dataset is observed. In the scheme we denote this direction
with “probability”. (2) The inverse problem deals with the “inference” of the generating
process from the observed data. Adapted from Fig. 1 in [Was13].

able mostly depends on the concrete problem at hand. The frequentists approach may be
applied independent of any underlying model. The Bayesian approach permits us to model
the uncertainty. Utilized wisely this can be a powerful advantage that we shall resort to in
this thesis.

1.1 Probabilistic Models

In order to introduce probabilistic models it is necessary to review some elementary statistics.
The sample space, together with a probability distribution define a probabilistic model. Both
these concepts are introduced in Sec. 1.1.1, together with some notations. Building on
this we introduce Markovian random fields in Sec. 1.1.2, that will be very useful tool to
represent a broad class of probability distributions. We will use them to formulate constraint
satisfaction problems in a probabilistic fashion. We will see that any Markovian random field
can be represented as a factor graph; This will lead to the definition of graph ensembles. Our
focus will lay on pairwise Markovian random fields. In this context the the circular coloring
problem is introduced, that will be studied in detail in Chap. 4 of the thesis. The pairwise
Markovian random fields will lead to the definition of some particular ensembles of random
graphs that will be studied. It will be shown how dynamical processes can be defined and
studied on these graph ensembles. This will be useful in Chap. 6, where a dynamical process
is studied that will lead to an upper bound of the size of the minimal contagious set on some
class of random graphs. Belief propagation, a message passing algorithm that leads to the
marginal probabilities over the nodes of a (tree-like) graph, is introduced as a tool to first
study constraint satisfaction, and later inference problems. In this context, crowdsourcing is
introduced as an inference problem. The problem will be analyzed in detail in Chap. 5. In
order to solve it, a simplification of belief propagation is introduced: approximate message
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passing, which will yield the Bayes optimal estimates and can be analyzed by the state
evolution equations that are derived in the end of this chapter.

1.1.1 Statistics in a Nutshell

In order to specify a probabilistic model it is necessary to fix the sample space, Ω, of the
problem. The sample space might be continuous or discrete, depending on the nature of
the elements that compose the sample space, i.e., the outcomes. It only remains to define
the probability density function, or simply probability distribution, P (A) that assigns a
non-negative real number to the event A ™ Ω. Naturally, P (Ω) = 1.

A convenient approach to work with probabilities is to introduce random variables. A
random variable, x, is a mapping from the sample space, Ω, to the real numbers, x : Ω æ R

for each s œ Ω, i.e. s ‘æ x(s). If x is distributed according to Px(x) we write

x ≥ Px(x) . (1.1)

To deal with more than one random variable we introduce the random vector x =

(x1, . . . , xN )|. We will often refer to the “random vector” simply as another “random
variable”. The joint probability distribution (JPD) captures the behavior of x

x ≥ Px (x1, . . . , xN ) . (1.2)

Indeed we will neglect the “joint” in the “joint distribution” and just refer to it as a “dis-
tribution”. The marginal distribution of xi can be recovered by integrating out x\i =

(x1, . . . , xi≠1, xi+1, . . . , xN )|

Pxi (xi) =

ˆ

Px (x1, . . . , xN ) dx\i . (1.3)

If the random variables x1, . . . , xN are independent, then their probability distribution fac-
torizes

Px (x1, . . . , xN ) =
NŸ

i=1

Pxi (xi) . (1.4)

If the Pxi are additionally identical for all i, we say that the xi are independent and identically
distributed.

Assume that the set of random variables x is partitioned as x = xA fi xB, with A =

ia
1, ia

2, . . . , ia
NA

and similarly for B. In the following we write xA, xB for xA fi xB. The
conditional probability distribution of xA given xB is

PxA|xB
(xA | xB) =

PxA,xB (xA, xB)

PxB (xB)
. (1.5)

The subset xB = (xib
1
, xib

2
, . . . )| of random variables can be understood as observed, or

fixed, random variables. Conditional probabilities behave exactly like regular probabilities
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and consequently one can extend the concepts of independence and marginal distributions
to conditional distributions. The conditional marginals of PxA|xB

(xA | xB) are

Pxia |xB
(xia | xB) =

ˆ

PxA|xB
(xA | xB) dxA\ia (1.6)

and we say that the two subsets xA and xB are conditionally independent of xS , if

PxA,xB |xS
(xA, xB | xS) = PxA|xS

(xA | xS) PxB |xS
(xB | xS) . (1.7)

From (1.5) the Bayes theorem follows

PxA|xB
(xA | xB) =

PxB |xA
(xB | xA)

PxB (xB)
PxA (xA) . (1.8)

It will be our fundamental tool tackle inference problems, as will be discussed later.
An alternative specification of the probability distribution is given by its moments. The

k-th moment of Px(x)is defined as

Ex[xk] :=

ˆ

dx xk Px(x) , (1.9)

It follows the moment generating function as the Laplace transform of x as Ex[etx], which
contains the same information as Px(x). In many situations it is not necessary to know
the entire distribution, i.e. all moments, instead it often suffices to only know the first few
moments of x. One particularly important example is the Normal distribution

N (x; µ, σ2) :=
1Ô

2πσ2
e≠ (x≠µ)2

2‡2 (1.10)

for which it suffices to know the first two moments. All higher moments either follow from
the mean and the (co)variance, or vanish. In the following we denote the mean by

µ = Ex[x] (1.11)

and the variance by
σ2 = Ex[(x ≠ µ)2] (1.12)

respectively.
The normal distribution is important because it appears as the asymptotic distribution of

the sample average. Let {X1, . . . , XN } denote N independent sample from Px(x). The
central limit theorem (CLT) states that the sample average

x̄N :=
1

N

Nÿ

i=1

Xi , (1.13)
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Figure 1.2: A graphical representation of a Markov chain of order one (left) and of order two (right).

is asymptotically normal distributed, with mean µ and variance σ2/N . It follows the law of
large numbers

lim
NæŒ

x̄N = µ . (1.14)

The CLT is typically more formally expressed in terms of convergence in probability of the
partial sum

SN :=
Nÿ

i=1

Xi , (1.15)

for which the CLT states that

lim
NæŒ

Pr

3
SN ≠ Nµ

σ
Ô

N
Æ t

4

=
1

2π

ˆ t

≠Œ
ds e≠s2/2 . (1.16)

A notational remark: often the subscript of the distribution is an unnecessary repetition.
However, sometimes it is useful to distinguish that two distributions are different. When the
latter is not clear from the context, we will include the subscript, otherwise, if there is no
ambiguity, we will drop it to lighten the notation.

1.1.2 Markovian Random Fields

We start by the introduction of Markov chains. These are suitable objects in many applica-
tions and Markovian random fields can be regarded as a generalizations of them.

Box 1.1: Markov Chains

Consider the random vector x = (x1, x2, x3, . . . )| and let the state space of xi be Ω =

{s1, s2, s3, . . . }. Then x is called a (discrete) Markov chain if

P
!
xt+1 = sjt+1

| xt = sjt
, xt≠1 = sjt≠1

, . . . , x1 = sj1

"
= P

!
xt+1 = sjt+1

| xt = sjt

"
.

(1.17)
That is: the transition probabilities only depend on the current state of xt, but not on
the remaining states of (xi)i<t. The index t here is chose consciously because Markov
chains are often utilized to model probabilistic temporal processes where the xt are random
variables that represent probabilistic changes of a state in time. We will come back to this
interpretation in chapter 6, but for now let us ignore this aspect.

What are the implication of x being a Markov chain? In other words, what are the
restrictions that a Markov chain implies for the joint distribution? To that end we consider
an example.
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Assume that x = (x1, x2, x3, x4)| is a Markov chain and consider its distribution. As a
consequence of (1.6) we may write

P (x1, x2, x3, x4) = P (x4 | x3, x2, x1) P (x3, x2, x1) (1.18)

and then use the Markov chain property (1.17) to further simplify the r.h.s.

P (x4 | x3, x2, x1) P (x3, x2, x1) = P (x4 | x3) P (x3, x2, x1) . (1.19)

Repeated application of this argument to the r.h.s. then yields

P (x1, x2, x3, x4) = P (x4 | x3) P (x3 | x2) P (x2 | x1) P (x1) . (1.20)

The joint probability distribution factorizes over the pairs (x1, x2), (x2, x3) and (x3, x4).
Since only variables within the pairs are interacting we may write

P (x1, x2, x3, x4) Ã ψ1(x1, x2)ψ2(x2, x3)ψ3(x3, x4) , (1.21)

with ψa some interaction function, not necessarily a PD.
We can represent (1.21) graphically. For each variable xi we draw a round note and
for each function ψa we draw a (black) square node. Then variable node i is connected
to function node a by an edge if xi appears in the argument of ψa. For (1.21) this is
done in the left of Fig. 1.2. It becomes apparent from the figure that x4 is conditionally
independent of x2 and x1, when we condition on x3. Graphically this is because all paths
that lead to x4 go thorough x3, i.e. x3 separates the two sets {x1, x2} and {x4}. This
may be deducted from (1.19) by virtue of the Markov property P (x4 | x3)P (x3, x2, x1) =

P (x4 | x3)P (x1, x2 | x3)P (x3).
These ideas extend to Markov chains of the order r, for which

P
!
xt+1 = sjt+1

| xt = sjt
, xt≠1 = sjt≠1

, . . . , x0 = sj0

"
=

P
!
xt+1 = sjt+1 | xt = sjt

, . . . , xt = sjt≠r+1

"
. (1.22)

How does such a Markov chain factorize? Let us consider P (x1, x2, x3, x4) to be a Markov
chain of order two. We can actually already draw the graphical representation because
each node xt+1 only interacts with the nodes xt and xt≠1; we do so in Fig. 1.2. At the
same time, we can write P (x1, x2, x3, x4) = P (x1, x4 | x2, x3)P (x2, x3). By virtue of the
Markov property it is then straight forward to see that the r.h.s. can be further simplified
to P (x1, x4 | x2, x3)P (x2, x3) = P (x1 | x2, x3)P (x4 | x2, x3)P (x2, x3). Thus we have
P (x1, x2, x3, x4) = ψ1(x1, x2, x3)ψ2(x2, x3, x4).

Motivated by the observations in Box 1.1 we draw our attention to JPD of the form

P (x) =
1

Z

MŸ

a=1

ψa (xˆa) . (1.23)

We introduced the normalization Z, such that the functions ψa need not be probabilities.
However, they must be positive everywhere. The random vector may be drawn from a
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Figure 1.3: The graphical presentation of (1.26).

discrete or continuous state space x œ ΩN . We have seen that such distributions can be
represented graphically. We draw a function node for each a and ∂a ™ {1, . . . , N} are all
the nodes that are connected it. Such a graphical representation is also known as (factor)
graph and the function nodes are also referred to as factor nodes.

Let us call a subset of variable nodes a region. Then, for the three disjoint subsets A, B, S,
we say that a region S separates the regions A and B if there is no path that leads from a
node in A to a node in B, without passing through S. It is now natural to observe that if S

separates A from B, then the two regions A and B are independent, once we condition on
S, and their JPD factorizes. The global Markov property holds

P (xA, xB | xS) = P (xA | xS) P (xB | xS) . (1.24)

In other words
P (xA | xS , xB) = P (xA | xS) . (1.25)

Distributions of the type (1.23) imply that the global Markov property holds. They are
known as Markovian random fields (MRF).

As an example consider the following MRF

P (x) = ψ1 (x1, x2, x3) ψ2 (x3, x4, x5, x6) ψ3 (x6, x7) ψ4 (x10, x8, x9) ψ5 (x8, x9) , (1.26)

How does the associated graphical model (factor graph) look like? Following the rules,
introduced in Box 1.1, the graphical representation is found by drawing M function nodes
and N variable nodes and connecting those variable nodes that appear in the argument of
ψa to the function node a. It is depicted in Fig. 1.3.

Given a factorized JPD it is easy drawing the associated factor graph. But how about
the converse: given a graphical model in form of a factor graph, is it possible to write the
JPD as a product of the contributions from each function node as in (1.23)? It turns out
that it is not possible and naïvely inversing the rules can lead to mistakes However, owing to
Hammersley and Clifford, there is a constructive way to obtain the factorization, once the
factor graph is specified. To that end we must introduce the concept of cliques. A clique is
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Figure 1.4: Attempting to factorize the JPD of this graphical model according to (1.23) yields an
errornous factorization.

a subgraph such that, for any pair of variable nodes in the subgraph, there is a function node
adjacent to both of them. The completion of a factor graph is then understood as adding
one factor node for each clique that connects to all variable nodes in that clique.

Following [MM09] we consider the graphical model in Fig. 1.4 as an example. Inverting
our rules would lead to a JPD of the form ψ1(x1, x4)ψ2(x2, x4)ψ3(x3, x4)ψ4(x2, x3). This
cannot be true because there is only one region that separates the graph into two disjoint
sets, that is {x4}. By virtue of the global Markov property the JPD thus factorizes as
P (x1, x2, x3, x4) = ψ1(x1, x4)ψ2(x2, x3, x4). Indeed, after completion of the graph, the
latter result is recovered from the factor graph. The Hammersley-Clifford theorem [HC71]
guarantees that if P (x) > 0 and P (x) satisfies the global Markov property w.r.t. a factor
graph, then P (x) can always be written in the form (1.23) w.r.t. the completed graph.

Of particular interest shall be pairwise MRFs in which the interactions are restricted to
be no higher than two-body

P (x) =
1

Z

Ÿ

(ij)œE
ψij(xi, xj)

NŸ

i=1

φi(xi) . (1.27)

Here we denoted with E the pairs of variable nodes (xi, xj) that are connected through a
single function node. The φi may be interpreted as local fields, acting on the variables xi.
Graphically such a model can take different forms; the previously considered Markov chains
of order one fall into this category (Fig. 1.2). Further examples will follow in the next section
that addresses pairwise MRFs.

The graphically representation of pairwise MRFs as factor graphs is found by drawing a
round variable node for each variable xi and a square function/factor node for each function
ψij and φi. For pairwise models it is not essential to draw all the factor nodes because
they are merely connecting two nodes. One might disregard them and draw directly a line
between any two variable nodes that interact. Consequently each edge (ij) between the
variable nodes xi, xj carries an interaction ψij(xi, xj). The contribution from φi(xi) can be
represented in different ways. One is to represented it by another edge that leads from xi to
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Figure 1.5: A pairwise MRF and its different representations, as explained in the text.

an auxiliary variable, represented by a gray node. Another way is to absorb its contribution
into the the variable node directly.

After all, these are just representations of JPDs of the form (1.27) and we may chose any
representation that suits our needs best. In this section on random graphs we will be working
with the latter representation that only contains the variable nodes and some lines that are
connecting them.

The attention will from now on lay on graphical models that are themselves subject to
randomness. In other words, the elements (ij) œ E in (1.27) will be random variables.

1.2 Random Graphs

The graphical models motivates the definition of a Graph as the pair G (V, E), with V the
set of nodes and E the set of edges. The nodes may also be referred to as vertices and the
edges as links. Random graphs (RG) are graphs that were drawn at random from some
ensemble of graphs. Here we limit ourselves to the ensemble of pairwise MRF that take the
form (1.27). In the whole thesis we will only consider undirected graphs (these are graphs
for which the edges do not point into a specific direction). Throughout this thesis we will be
interested in the properties of random graphs that hold with probability tending to 1 when
the number of nodes goes to infinity, N æ Œ. We say they hold with high probability.

1.2.1 Random Graph Ensembles

There are plenty of random graph models out there. Different models may result in graphs
with different structures. Some of them are analytically tractable, others are not. Most
importantly for us will be the locally tree-like structure of these graphs. We will work with
ensembles that “guarantee” (in the probabilistic sense) this desired property.

Erdős-Rény Graphs

There are two variants of Erdős-Rény graphs.
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• The G (N, M) model consists of all graphs that contain N nodes and M edges and
each graph is equally likely.

• The G (N, p) model consists of all graphs with N nodes and edges chosen independently
with probability p.

The difference between these two models disappear when N æ Œ and they become in-
terchangeable (in most aspects) if we set M = p

!N
2

"
. The major difference between the

two arises from the fact that the number of edges is a random variable in the G (N, p)

model. There are N(N ≠ 1)/2 possible pairings for the N nodes; each of them obtains an
edge with probability p. Thus we expect pN(N ≠ 1)/2 edges, as compared to M in the
G (N, M) model. As N æ Œ the fluctuations around the expected number of edges become
neglectable. For a formal treatment of this statement cf. Theorem 2.2 in [Bol01].

We will be interested in the limit where N æ Œ and therefore pick G (N, p) as our model
of choice for the analytical treatments in this section.

The degree of a node in an undirected graph is the number of links that it has to other
nodes. We denote di the degree of node i, i.e., the size of the set of its neighbors, di = |∂i|.
The degree distribution encapsulates important information about the graph. Before deriving
it we first note that

M =
1

2

ÿ

i

di (1.28)

and combine this observation with the expected number of edges, pN(N ≠ 1)/2 in the
G (N, p) model we obtain that p = c/(N ≠ 1) which, for large N , we replace by

p =
c

N
, (1.29)

where we introduced the average degree

c =
1

N

ÿ

i

di . (1.30)

For the G (N, p) model the probability that node i has degree di is a binomial process. We
fix one node and compute the probability that we draw d edges in N ≠ 1 trials

P (di = d) =

A

N ≠ 1

d

B

pd(1 ≠ p)N≠d . (1.31)

In the limit N æ Œ the binomial distribution can be approximated by the Poisson distribution

lim
NæŒ

P (di = d) =
cde≠c

d!
. (1.32)

Apparently the degree distribution only depends on a single parameter, the average degree c.
When c is varied typical graphs from the ensemble exhibit different structures [ER60]. For
c < 1 the graph G consists of small, disconnected, components that are w.h.p. trees. At
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c = 1 a phase transition takes place and the previously disconnected components suddenly
connect. When c > 1 they form a giant connected component, that contains Θ(N) nodes.
The local structure remains tree-like.

Clearly, when c grows beyond unity, the tree-like structure must break down at some scale.
Equation (1.28) implies that w.h.p. number of edges is

M =
c

2
N . (1.33)

Since there are only N nodes and Θ(N) edges, adding further edges will necessarily lead to
the closure of a loop, when c > 1. With high probability this happens on a scale of log(N).
Let us outline a hand-waving derivation. We pick a node i uniformly at random among all
nodes. First we reveal its direct neighbors, w.h.p. there are c of them. Similarly, the number
of neighbors at distance 2 is w.h.p. c2. At distance r we expect cr neighbors. A loop must
close when the revealed neighbors contain all nodes in the graph, i.e., when cr = N . Thus
we expect that loops typically appear at a distance r = log(N)/ log(c). Obviously short(er)
loops are present, but they are subleading. The crude estimate does indeed provide the
correct typical length of the shortest loop in an Erdős-Rény graph

l =
log (N)

log (c)
+ o(1) . (1.34)

The main difficulty is to control the errors that are accumulating in each of the r steps. A
rigorous treatment can be found in [Bol01] (Theorem 10.19).

Random Regular Graphs

A close relative of the Erdős-Rény graphs are the random regular graphs. We denoted by
G (N, d) the model of d-regular graphs that consists of all graphs that contain N nodes,
all of them of degree d. In some respects d-regular graphs are much simpler to work with.
For instance, their degree distribution is trivially

P (di = d) = δ (di ≠ d) . (1.35)

Consequently c = d and the number of edges is M = dN/2. In other respects they are
more difficult to treat. One major difficulty is to sample uniformly from G (N, d). Even
evaluating how many d-regular graphs there are, |G (N, d)|, turns out to be very difficult,
even when N æ Œ. It will be necessary to introduce another model that is asymptotically
equivalent to G (N, d).

The configuration model, also pairing model, has the required property and can be
defined as follows. Consider dN half-edges, partitioned into N cells, 1, . . . , N , with d half-
edges in each cell. The configuration model consists of all graphs that are perfect matchings

of the half-edges into dN/2 pairs (ij) that do not contain self-loops (pairs of the form (ii))
or multiple edges (repetition of the same pairing). Each pairing corresponds to an edge and
each cell to a node.

21



O(log N) O(log N)

Figure 1.6: An exemplary branching process in the neighborhood of a node (black) in an Erdős-Rény
graph. The dashed circle denotes the boarder from the second to the third generation.
Erdős-Rény graphs, as well as regular random graphs, are typically tree-like up to a
distance of the order of log N (the number of nodes that the dotted loops contain).

The configuration model can be generalized to arbitrary degree distributions by adapting
the elements in the cells to the desired degree sequence (the number of nodes of degree d).
Therefore it is also applicable to Erdős-Rény graphs. Similarly to the Erdős-Rény graphs,
also random regular graphs exhibit a local tree-like structure and the typical loop-size is

l =
log (N)

log (d ≠ 1)
+ O (log(N)) . (1.36)

A rigorous proof is given in [Bol01] (Theorem 10.15).
The vanilla implementation of the above procedure consists in producing pairings uniformly

at random and rejecting a sample if it contains self-loops or repeated edges. The expected

number of steps is of the order of Nde
d2≠1

4 , if d = O(n1/3). For d = O(log(N)) this
is polynomial, but can soon become impractical in applications. There is an alternative
method due to Steger and Wormald [SW99] that samples asymptotically uniformly from the
configuration model with expected running time of O(nd2).

1.2.2 Sparse and Dense Graphs

There are several parameters in the previously introduced models. The number of nodes, N ,
shall be our reference. Since we will be considering N æ Œ it is important to determine
how the other parameters scale with respect to N . For the random d-regular graphs this
reduces to determine how d scales with N . For Erdős-Rény graphs it breaks down to c in the
limit where the two models G (N, M) and G (N, p) are interchangeable. Since the average
degree is equal to d for d-regular graphs, we shall use c as our common reference point.
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We distinguish between sparse graphs, with c = Θ(1), and dense graphs that have c =

Θ(N). Genuinely, the number of edges in sparse graphs is of the same order as the number
of nodes, M = Θ(N). Another implication of the sparse regime is that the typical loop size
is Θ(log(N)), while they are Θ(1) in the dense regime.

The Θ(log(N)) loop size in the sparse regime will be crucial in Sec. 1.3.2 where we
introduce message passing as an algorithm to efficiently compute JPDs on trees. We might
hope that an algorithm, designed for trees, still provides a good approximation if deviations
from the tree structure are small over large local scale, i.e., when the typical loops size
is large. Concurrently, the large connectivity in the dense regime, c = Θ(N) often erodes
individual contributions from neighboring nodes which can significantly simplify the analytical
treatment by reducing the many individual contribution, to an effective Gaußian contribution,
by virtue of the CLT.

It is, however, important to note that these are just some tendencies that do not necessarily
apply in general and many characteristics not only depend on whether a graph is sparse or
not, but also the concrete graph model and application at hand, as we shall experience in
Chap. 4 and 5.

1.2.3 Dynamical Processes on Graphs

The previously encountered graph models can all be understood as prescriptions for the
construction of random graphs from that particular ensemble. There might be different
prescription that lead to the same result (in terms of the properties of the resulting graph,
not the specific sample). Consider the two encountered Erdős-Rény graph models as an
example. One prescription for the construction of graphs from the G (N, M) model consists
in throwing M edges uniformly at random at the

!N
2

"
available pairs of nodes. For graphs

from the G (N, p) model we could proceed very similarly. Now a possible prescription is to go
through the

!N
2

"
distinct pairings and for each pair add an edge with probability p. Another

example is the prescription to obtain uniform samples from the ensemble of random regular
graphs by means for the configuration model.

All these prescriptions can be considered examples of graph processes. A graph process
is a process that starts with some initial graph G0 and adds (or removes) edges according
to some stochastic rule. This process defines a sequence of random graphs G0, G1, G2, . . . .
Depending on the rules, this process typically ends at some iteration, is, at which some
desired criterion is reached. Throughout this subsection we employ the subscript i to denote
the iteration of the considered dynamical process. In practice it is often not necessary to
follow the evolution of the dynamical process Gi directly. Instead it usually suffices to follow
the evolution of some characteristic observables, Ai. This can be done, provided that the
evolution of these observables contains enough information for a closed form description of
the dynamical process of Ai. That is, if we can find Ai+1 ≥ P (A1, . . . , Ai).

Let us assume the process is Markovian, such that Ai+1 ≥ P (Ai). In many situations
this can be recast as

Ai+1 = Ai + T z , (1.37)
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with z some appropriate indicator variable and T a transition matrix. Then the idea (hope)
is that when N æ Œ the discrete random process can be approximated well by the expected
change

E [Ai+1 ≠ Ai] = T (
Ai

N
) (1.38)

and that the rescaled process

η(t) = lim
NæŒ

1

N
AÂtNÊ . (1.39)

is well described by a set of deterministic differential equations, such that

η̇ = T (η) (1.40)

A general purpose theorem due to Wormald [Wor99a] that we outline in Appendix A.1 often
allows to prove concentration of the random process around the deterministic approximation.
The ideas are best understood by the study of the simple example in the box below.

Box 1.2: The Standard Random Graph Process

We consider the G (N, M) model as a simple example and we follow the previously
introduced prescription. We denote by vd,i our observable: the total number of nodes of
degree d at iteration i. We start with G0 a graph with N vertices and zero edges, i.e. we
start with v0,0 = N and vd,0 = 0 ’ d > 0. Each time an edge is thrown it hits two distinct
nodes. When a node of degree d is hit at iteration i its degree changes from d æ d + 1,
thus vd,i æ vd,i+1 ≠ 1 and vd+1,i æ vd+1,i+1 + 1. If we collect vi = (v0,i, v1,i, v2,i, . . . )|

we may rewrite the stochastic process as

vi+1 = vi + T z , (1.41)

with the transition matrix
Tmn = ≠δm m + δm+1 m (1.42)

and z a random vector z = êd1
+ êd2

with êdk
the unit vector, pointing in direction dk.

Thus z indicates the degree of the two nodes at the end of a thrown edge. For example,
z = (1, 1, . . . )| indicates that the thrown edge landed between a node of degree zero and
another of degree one. So the pair d1, d2 should be drawn from the degree distribution of
possible pairings that do not contain multiple edges or self-loops.

When N is large this can be approximated by drawing d1 and d2 from the renormalized
degree sequence at iteration i

d1, d2 ≥ vi

ÎviÎ1
. (1.43)

Further the degree sequence only changes by a maximum of O(N≠1) in every iteration we
may replace z = 2êd and we obtain

vi+1 = vi + 2T êd + O

3
1

N

4

. (1.44)
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Next we compute the expected change of the stochastic process vi w.r.t. êd. This amounts
to replacing the RV êd by vi/ÎviÎ1 and since ÎviÎ1 = N we obtain

E [vi+1 ≠ vi] = 2 T
vi

N
. (1.45)

Utilizing (1.39) both sides can be replaced with their rescaled equivalents, which yields the
following set of differential equations

η̇ = 2T η . (1.46)

Looking at these equations component-wise

η̇0 = ≠2η0 (1.47)

η̇d = ≠2ηd + 2ηd ’ d > 0 (1.48)

reveals that the dynamical process is indeed a Poisson process. It’s solution is
ηd(t) = (2t)de≠2t/d! and if the process is run until all M edges are exhausted, i.e. at
ts = M/N = c/2, and (1.32) is recovered

ηd(ts) =
cde≠c

d!
. (1.49)

The degree distribution is relevant because many physical properties can be derived from it,
once it is determined. It is well known, that the standard graph process undergoes several
phase transitions during its evolution. They can all be derived, once the degree distribution
is known.
The percolation phenomenon in the standard graph process is a good introductory example.
As more and more edges are added to the empty graph, small, isolated components grow
(almost all of them are trees). At the percolation threshold these components come
together and form a “giant” connected component that percolates the graph “as a whole”.
Our notion of a “giant component that percolates the graph as a whole” is that it contains
an Θ(N) fraction of the nodes, not that it obtains all nodes. The point where the graph
contains w.h.p. all nodes will indicate another transition.
To derive the threshold value from the degree distribution, we consider the branching process
that reveals the neighborhood of a random node in the graph. We will be following the
k-th generation at the front of the branching process (cf. Fig. 1.6). The contributions from
the nodes in the front at each generation are added up to form the number of nodes in the
connected component. When the process moves from the k-th to the k + 1-th generation
the number of nodes in the front increases by d ≠ 2 because there are d ≠ 1 nodes in the
direction of the moving front and one node must be subtracted as it was already counted
in the front of the previous generation.
Since all the branches have the same properties it suffices to only consider the expected gain
when moving from the k-th to the k + 1-th generation. This can be expressed in terms of
the degree (let us use ηd from the box above, expressed in the natural time scale t = c/2).
The gain,

q

dÆ1(d≠2)d ηd(c/2) ƒ c2 ≠ c, must be positive for a giant component to exist,
which is only the case for c > 1. This argument was proven to hold in more generality
in [MR95].
As was already mentioned above, another point of interested is the threshold where the
graph contains w.h.p. no more isolated vertices. This can be obtained right away from the

degree distribution as the point where η0
NæŒ≠æ 0, i.e., when c > ln(N).
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Thus we have the following characteristic points in the evolution of graphs from G (N, M)

• When c < 1 a graph in G (N, M) contains w.h.p. no connected components.

• When c > 1 a giant component that contains Θ(N) nodes is w.h.p. present.

• If c < ln(N) isolated vertices are w.h.p. present.

• If c > ln(N) a graph in G (N, M) is w.h.p. connected, i.e. it contains no isolated
vertices.

Bootstrap Percolation and Contagious Sets

The concept of percolation is related to the sudden emergence of a global structure in the
random graph. Percolation problems are not limited to the appearance of a giant connected
component in a graph.

In bootstrap percolation [CLR79] we start with a graph G (V, E) and successively remove
nodes that have degree smaller than k. This procedure is iterated until a stable configuration
is reached. In other words, we are interested in the largest subgraph with minimal degree at
least k, also known as the k-core of G (V, E). For completeness, let us define a subgraph as
a subset of nodes and edges that contains only those edges that lead back into the selected
subset of nodes. If there exists no such subgraph of size Θ(N), the k-core is said to be
(asymptotically) empty.

In order to reveal the k-core, one can find a set of differential equations that approximate
the graph process of deletion of nodes that have degree smaller than k. It turns out that,
depending on k, the nature of the transition from a non-empty to an empty k-core can be
of different types. Unlike the giant component in the standard graph process, which appears
in a second order phase transition, it is possible to show that for bootstrap percolation the
transition is first order for k Æ 3. When k Æ 2 the transition is second order and the k-core
grows together with with the giant component [PSW96b].

k-cores are objects of interest in the study of collective dynamics in social and biological
networks. Examples include, and are not limited to, the spreading of epidemics, failure
propagation in networks and adaption and innovation diffusion. In the threshold model it
is assumed that each variable node, xv, in the graph can take one of two state, xv œ {0, 1}.
If xv = 0, node v is said to be inactive, while if xv = 1 it is said to be active. Given some
initial condition, the graph is subject to the following dynamical process. Node v switches
its state from inactive to active if τv or more of its neighbors are active. Once activated a
node remains in this state forever.

The result of running such a dynamical process crucially depends on the initial state. The
question of major importance concerns the identification of the smallest set, that leads to
an activation of the whole graph. The significance of the k-core of a graph can be laid
out by consideration of the complementary problem. Nodes that remain inactive, after the
dynamical process has converged, must have less than τv active neighbors. Or, equivalently,
they have κv = dv ≠ τv + 1 or more inactive neighbors. Since the dynamics are irreversible,
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activating a node with at least τv active neighbors may be seen as removing an inactive node
with fewer than dv ≠ τv nodes from the graph. Thus we are back to bootstrap percolation

as a particular version of the threshold model with the choice τv = dv ≠k +1. In that sense,
destroying the k-core is equivalent to the activation of the whole graph. In other words,
the set of nodes that leads to the destruction of the k-core is the same set of nodes, that
lead, once activated, to the activation of the whole graph (subject to the above threshold
dynamics). Following the literature [Rei12; CFKR15; GS15] the smallest such set is referred
to as the minimal contagious set.

The construction of minimal contagious sets has been subject to extensive studies in recent
years. In a general graph this decision problem is known to be NP-hard [DR09]. However,
even evaluating its size poses major difficulties. To review briefly the theoretical works most
related to our contribution we start with the special case of k = 2 that has been studied more
thoroughly than k Ø 3. The choice of k = 2 leads to the removal of the 2-core, i.e. removal
of all cycles, and is therefore referred to as the decycling problems. A series of rigorous works
analyzes algorithms that are leading to a the previously best known rigorous bounds on the
size of the decycling set in random regular graphs [BWZ02; HW08]. Another series of works
deals with the cavity method and estimated values for the decycling number that are expected
to be exact or extremely close to exact [Zho13; GS15; BDSZ16]. The case of contagious
sets with k Ø 3 is studied less broadly, but the state-of-the-art is similar to the decycling
problem. Rigorous upper bounds stem from analysis of greedy algorithms [CFKR15].

In Chap. 6 we will show that the questions can be attacked by definition of an appropriate
dynamical process.

1.3 Optimization and Statistical Inference

The previous two sections introduced probabilistic models and have shown that they are
most conveniently expressed in terms of graphical models, or graphs. When the structure of
these graphs is subject to randomness several essential properties emerge. Some concrete
applications in this section will provide a further justification for the indispensability of random
graphs. Referring to Fig. 1.1 we have, so far, mainly dealt with questions that fall into the
category of “probability”. This section is devoted to the other branch in that schema:
“inference”.

In this section we shall define a broad class of optimization problems on (random) graphs,
the so-called constraint satisfaction problems. Combining from the last sections the tree-like
structure of the sparse random graph ensembles, with the properties of pairwise Markovian
random fields we will derive a low complexity optimization algorithm for constraint satis-
faction problems on sparse random graphs, known as belief propagation, or simply message

passing. Following this we shall discover that inference problems can be treated in a very
similar manner.
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1.3.1 Constraint Satisfaction Problems

Formally, a constraint satisfaction problem (CSP) consists of a set of variables {x1, . . . , xN }
and a set of constraints {ψ1, . . . , ψM }. Each constraint a œ {1, . . . , M} concerns ka vari-
ables ∂a ™ {1, . . . , N}. We consider variables that take values in some finite, discrete sample
space xi œ X , with |X | = q. The constraints are functions of xˆa œ X ka , such that

ψa :

Y

]

[

X ka æ {0, 1}
xˆa ‘æ ψa(xˆa)

. (1.50)

If ψa evaluates to 1 the constraint is said to be satisfied, if it evaluates to 0 it is said to be
violated. A solution to a CSP is an assignment that satisfies all the constraints, i.e., when

MŸ

a=1

ψa (xˆa) =

Y

]

[

1 ∆ solution

0 ∆ no solution
(1.51)

Comparing this with (1.23) reveals that the normalization constant of the associated JPD
just counts the total number of solutions to a CSP

Z = #solutions . (1.52)

The principal question is that after the existence of solutions to the CSP of interest. (Q1)
does there exist any x, such that (1.51) evaluates to one? (Q2) If yes, how many such
configurations exist? However, even if the answer to this question is negative, one might be
interested in knowing what is the best achievable configuration, such that as many clauses
as possible are satisfied? To that end, we introduce a cost function that counts the total
number of violations in the CSP

H (x) =
ÿ

a

[1 ≠ ψa (xˆa)] . (1.53)

We rephrase the last question. (Q3) What is the smallest achievable H(x)? All these
questions can be rephrased in one question: how many solutions are there to the following
equation

H (x) = E . (1.54)

While this question is difficult to answer in general, methods from statistical physics give us
a handle on how to answer this question w.r.t. some ensemble of problems.

From the definition it is clear, that all such CSPs can be represented graphically as a factor
graph. A function node is drawn for each constraint and connected to the ka variable nodes
that enter in the argument of ψa. Thus the answer will depend on the characteristic of the
factor graph at hand. In the spirit of statistical physics, we will consider the situation in which
a random instance of a CSP is created by drawing this factor graph from some ensemble.
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Figure 1.9: Marginals can be evaluated efficiently on sparse factor graphs that are trees.

and would naïvely cost |X |N operations. If, however, the underlying factor graph is a tree,
the sum can be carried out more efficiently.

We consider the example of Fig. 1.9 for which

ψ (x) = ψa (x1, x4, x5) ψb (x1, x2, x3) ψc (x5, x6) ψd (x5) ψe (x4) ψf (x3) ψg (x2) ψh (x6)

and evaluate the normalization constant
ÿ

x1,...,x6

ψa (x1, x4, x5) ψb (x1, x2, x3) ψc (x5, x6) ψd (x5)
¸ ˚˙ ˝

m̂dæ5(x5)

ψe (x4)
¸ ˚˙ ˝

m̂eæ4(x4)

ψf (x3)
¸ ˚˙ ˝

m̂fæ3(x3)

ψg (x2)
¸ ˚˙ ˝

m̂gæ2(x2)

ψh (x6)
¸ ˚˙ ˝

m̂hæ6(x6)
¸ ˚˙ ˝

m̂hæ6(x6)

=
ÿ

x1,...,x5

ψa (x1, x4, x5) ψb (x1, x2, x3) m̂dæ5(x5)m̂eæ4(x4)m̂fæ3(x3)m̂gæ2(x2)
ÿ

x6

ψc (x5, x6) m6æc(x6)

¸ ˚˙ ˝

m̂cæ5(x5)

=
ÿ

x1,...,x3

ψb (x1, x2, x3) m̂fæ3(x3)
¸ ˚˙ ˝

m3æb(x3)

m̂gæ2(x2)
¸ ˚˙ ˝

m2æg(x2)

ÿ

x4,x5

m̂eæ4(x4)
¸ ˚˙ ˝

m4æa(x4)

ψa (x1, x4, x5) m̂dæ5(x5)m̂cæ5(x5)
¸ ˚˙ ˝

m5æa(x5)
¸ ˚˙ ˝

m̂aæ1(x1)

=
ÿ

x1

m̂aæ1(x1)
ÿ

x2,x3

[ψb (x1, x2, x3) m3æb(x3)m2æg(x2)]

¸ ˚˙ ˝

m̂bæ1(x1)

=
ÿ

x1

m̂aæ1(x1)m̂bæ1(x1) .

Note that each time we push a sum to the end, the cost of that sum is equal to the
cardinality of X to the power of the number of arguments that we are summing over plus
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Figure 1.10: The pushed sums can be interpreted as directed messages that are passed from variable
nodes to function nodes (left) and vice versa (right).

one for the variable that appears in the sum, but is not summed over, i.e., the degree of the
associated function node. The leading order contribution is thus typically |X |dmax , with dmax

the maximum degree of the function nodes. Further more it is not only possible to obtain Z

from pushing the sums forward, but also all the marginals. One can pick any variable node
xi and obtain its marginal

q

x\i ψ(x) by successive summation over the leafs of the tree that
is rooted in xi.

Apparently, the following pattern of belief propagation (BP) holds1

mjæa (xj) =
1

Zjæa

Ÿ

bœˆj\a

m̂bæj (xj)

m̃bæj (xj) =
1

Zbæj

ÿ

xˆb\j

ψb (xˆb)
Ÿ

kœˆb\j

mkæb (xk)
(1.60)

and the marginals are obtained from

mj (xj) =
1

Zj

Ÿ

bœˆj

m̂bæj (xj) . (1.61)

1 To find a solution to these equations, they must be iterated. In this case the equations are furnished with

iteration indices as follows (with F1 and F2 represent the r.h.s. of (1.60))

m
t+1
jæa (xj) = F1({m̂

t
bæj (xj)})

m̃
t
bæj (xj) = F2({m

t
kæb (xk)}) .
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Here we have additionally introduced normalizations, such that the above beliefs are prob-
ability distributions. The messages or beliefs, mjæa (xj) and m̃aæj (xj), can be obtained
by induction from consideration of the two elementary building blocks in Fig. 1.10. For a
tree the procedure is simple: one starts at the leaves and propagates the beliefs down to-
wards the root. Therefore different messages, incoming to the same node, are conditionally
independent. The equations (1.60) are exact and provide the correct marginals and can be
used to compute Z.

If the underlying factor graph is not a tree the equations in (1.60) do no longer hold.
If, however, it is locally tree-like we may expect that the BP equations still provide a good
approximative solution. If the equations (1.60) are applied on graphs that are no trees one
does sometimes speak of loopy belief propagation. In such a case, one typically initializes
the messages according to some distribution and iterates (1.60) until a fixed point is reached.
Different initializations and iterative schemes may be used. If the graph is not a tree different
schemes/initializations may lead to different results. This point will be addressed in detail
in Chap. 4 and 5.

Box 1.3: Belief Propagation Equations for Circular Coloring

Recalling that
H (x) =

ÿ

(ij)œE

#
1 ≠ δxi xj≠1 ≠ δxi xj+1

$
, (1.62)

and using that
Ψjk(xj , xk) = lim

βæŒ
e≠βH(xi,xj) , (1.63)

we can compute the message update rule from its definition (1.69). Since xi œ {1, . . . , q}
and to save the eyes, we write

miæj
xi

=
1

Zjæi

Ÿ

kœ∂j\i

ÿ

xk

ψjk (xj , xk) mkæj
xk

(1.64)

=
1

Ziæj

Ÿ

kœ∂i\j

ÿ

xk

e≠β(1≠δxi, xk≠1≠δxi, xk+1)mkæi
xk

(1.65)

=
1

Ziæj

Ÿ

kœ∂i\j

S

Umkæi
xi+1 + mkæi

xi≠1 + e≠β
ÿ

xk\{xk±1}

mkæi
xk

T

V (1.66)

=
1

Ziæj

Ÿ

kœ∂i\j

#
e≠β + (1 ≠ e≠β)(mkæi

xi+1 + mkæi
xi≠1)

$
. (1.67)

In the zero temperature limit one obtains

miæj
xi

=
1

Ziæj

Ÿ

kœ∂i\j

#
mkæi

xi+1 + mkæi
xi≠1

$
, (1.68)

as it should be.
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Density Evolution for Pairwise Models

For pairwise models the first equation in (1.60) is trivially just passing on the message. We
may fully eliminate the intermediate step and write

mjæi (xj) =
1

Zjæi

Ÿ

kœˆj\i

ÿ

xk

ψjk (xj , xk) mkæj (xk) =: F ({mkæj (xk)}) . (1.69)

These equations are to be iterated on a single graph until convergence. The resulting fixed
point (if it exists) depends on the graph instance and different graphs from the same ensemble
may lead to different fixed points; Together they form a distribution over the set of fixed
points P(mjæi). In order to to give an adequate description w.r.t. the graph ensemble it is
necessary to consider the full distribution over the fixed points.

Once we consider the full ensemble, each edge carries the same stochastic properties. In
other words, the distribution Pjæi(mjæi) does not depend on the particular edge j æ i,
but only its typical properties. In analogy to (1.69) one solves the following functional fixed
point equation, known as cavity equations in statistical physics,

P0 (m) =
Œÿ

l=1

Q(l)

ˆ

Ë lŸ

j

Pj(mj)dmj

È

δ
1

m ≠ F({mj})
2

. (1.70)

Here the subscript denotes some arbitrary edge in the ensemble and l indicates the number
of incoming messages, which is distributed according to the excess degree distribution

Q(l) =
(l + 1)P (l + 1)

qŒ
l=0 lP (l)

, (1.71)

with P (d) being the degree distribution. This is because the probability that an edge connects
to a node of degree d is equal to d · P (d).

Solving the equations (1.70) analytically is in general very difficult. However, they can
be solved by sampling: P(m) is approximated by an empirical distribution of N messages
(population). Then equation (1.70) is solved as follows. From the population one selects
an element mi uniformly at random. Subsequently an integer l ≥ Q(l) is drawn and one
samples l further messages {mj1 , . . . , mjl

} from the population. Next one replaces mi Ω
F({mj1 , . . . , mjl

}). This procedure is repeated until convergence.

1.3.3 Bayesian Inference

The inference settings that will be of interest to us consist of the following setting. Consider
a set of variables x = {x1, . . . , xN } that are observed through some imperfect procedure,
resulting in y = {y1, . . . , yM }. Given y the aim is to recover x.

In the Bayesian approach to inference it is assumed that the process that brings x to y

is best described by a probabilistic model P (y | x) and that our knowledge/beliefs about
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Prior:
P0 (x)

Channel:
P0

!
y | x0

"

Parameters:
ϑ
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x0 œ R
N

y œ R
M known

unknown

Figure 1.11: The teacher-student scenario.

x is encoded in some JPD P (x). It then follows from Bayes’ Theorem (1.8) that the
probability of x, given the data (observations) y, is

P (x | y) =
P (y | x) P (x)

P (y)
. (1.72)

Since this formula is at the heart of Bayesian inference each term carries its own name:

• P (x | y) — Posterior

• P (y | x) — Channel/Likelihood

• P (x) — Prior

• P (y) — Partition function/Likelihood

Throughout the thesis we will consider inference settings in the teacher-student scenario,
which consists of the following framework. The teacher generates a realization of the variables
by sampling x0 ≥ P0(x). The sample x0 forms the ground truth. From x0 the teacher
then constructs the data y according to some probabilistic prescription P0(y | x0). The
data, and some information about the two distributions P0(x) and P0(y | x) is then handed
to the student. The students goal is to recover x0 from y, together with the information
it was provided about P0(x) and P0(y | x). A neat representation of the procedure can be
given in terms of the a flowchart, as in Fig. 1.11.

Since perfect recovery of x0 may be impossible the aim will be to obtain an estimate that
is as close as possible to x0. To that end, we introduce an estimator of x0. An estimator is
a functional prescription of the form x̂ = f (y). Constructing the function, f(.), is part of
the students task. In order to give a definite meaning to “as close as possible” we introduce
the Bayesian analogue of a cost function, the Bayes risk (or average cost function)

R0 (x̂ | y) = Ex0|y
Ë

H
1

x0, x̂
2È

. (1.73)

Where Ex0|y denotes the average with respect to the teachers posterior distribution and H(x0, x̂)

is some cost function. The Bayes risk provides the right notion of “closeness”, if (only) the
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Estimator:
arg minx̂ R (x̂ | y)

y x̂

Model:
P (y | x), P (x)

Figure 1.12: In the teacher-student scenario the estimator can be computed, once a model is spec-
ified. The model contains the specification of a channel and a prior. These need not
match the teachers model.

distributions P0(x) and P0(y | x) and the data y are known. The Bayes optimal estimator
is the one that minimizes the Bayes risk

x̂H (y) = arg min
x̂

R0 (x̂ | y) . (1.74)

The student (inference) aims to reverse the process in Fig. 1.11 by computation of the
optimal estimator. However, it might not have full information of the teachers model, P0(x)

and P0(y | x), and therefore might have to resort to a suboptimal reconstruction scheme.
Let us assume that the students best guess of the teachers model is embodied in P (x) and
P (y | x); it then attempts to minimize the mismatched Bayes risk

R (x̂ | y) = Ex|y [H (x, x̂)] (1.75)

which will result in a mismatched estimator

x̂ (y) = arg min
x̂

R (x̂ | y) . (1.76)

Since each cost function H(x, x̂) determines a particular estimator, some common cost
functions that will be used within the context of this thesis are now presented.

Minimum mean square error (MMSE) The cost function H(x0, x̂) is the square error
between the ground truth and the estimate

H(x0, x̂) =
Nÿ

i=1

(x0
i ≠ x̂i)

2 (1.77)

and the associated Bayes risk (1.73) takes the form

R0(x̂ | y) =
Nÿ

i=1

ˆ

dx0 P (x0 | y) (x0
i ≠ x̂i)

2 (1.78)

=
Nÿ

i=1

ˆ

dx0
i P (x0

i | y) (x0
i ≠ x̂i)

2 . (1.79)
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With the conditional marginal P (x0
i | y) :=

´

dx0
\iP (x0 | y). Differentiation w.r.t. x0

i and
minimization yields

x̂i =

ˆ

dx0
i P (x0

i | y) x0
i … x̂MMSE =

ˆ

dx0P (x0 | y) x0 . (1.80)

The optimal estimator is the mean of the marginal posterior.

Maximum mean overlap (MMO) Consider as a cost function

H(x0, x̂) =
Nÿ

i=1

1

1 ≠ δ(x0
i ≠ x̂i)

2

, (1.81)

resulting in

R0(x̂ | y) = N ≠
Nÿ

i=1

P (x̂i | y) , (1.82)

which is minimized by the MMO estimator

x̂MMO
i = arg max

x̂i

P (x̂i | y) . (1.83)

The MMO estimator is closely related to the minimum bitwise error (MBE), which is a
special case of the MMO estimator, when x0

i and x̂i only attain binary values.

Maximum a-posteriori (MAP) This is another close relative to the MMO estimator. It
can be formally derived from H(x0, x̂) = 1 ≠ δ(x0 ≠ x̂); The MAP estimator thus simply
maximizes over the a-posteriori probability

x̂ = arg max
x̂

P (x̂ | y) . (1.84)

High Dimensional Inference

Typically each estimator brings its own pros and cons. The MMSE and MMO estimators
both depend upon the computation of the marginal a-posteriori probability distribution,
which requires the evaluation of the N -dimensional integral. The MAP estimator requires
the solution of an N -dimensional optimization problem.

The difficulty of optimization in high dimensions, i.e. when N is large, depends crucially
on the shape of the target function under consideration. For example, if P (x | y) is convex,
optimization is usually feasible, even in very high dimensional spaces, because every local
minimum is also a global minimum. If, however, the target function is non-convex optimiza-
tion becomes cumbersome. Many local minima might exist, that are not global minima,
which renders gradient based methods prone to failure.

For high-dimensional problems conventional integration methods require a number of dis-
cretization points that grows exponentially with N . Unless the integration can be carried out
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Figure 1.13: Factor graph representation of the dense Dawid-Skene model.

analytically, one must therefore resort to alternative approaches. We have already encoun-
tered a setting in which message passing provides an alternative approach if the underlying
graphical model is sparse. This evokes the question how the underlying graphical model
of an inference problem looks like? This question cannot be answered in general terms.
However, many interesting settings of inference problems turn out to have dense graphical
models associated to them. Although this might seem to present a difficulty (as we loose
the desired tree-like structure of the graph), it will prove helpful. In dense models the central
limit theorem will lead to an approximate message passing algorithm that will admit a low
complexity reconstruction of the marginals. Another approach to solve such high dimensional
integrals is through Monte Carlo sampling, which will be presented later in Chap. 2.

In the next section we present an inference problem that is interesting to study in both
regimes.

1.3.4 Crowdsourcing

Crowdsourcing is a common strategy to categorize data through the contribution of many
individuals (“workers”). Such a strategy is often necessary when it is difficult for computers
to label data, but of little effort for humans. The development of large-scale crowdsourcing
platforms, such as Amazon’s MTurk, has popularized crowdsourcing as a simple approach
to such problems. Consider N workers, each of them is assigned a subset of a total of M

questions/tasks (the data). The workers answer to each of the assigned questions according
to their abilities and will. Typically, the received answers are not unambiguous and post-
processing has to be performed in order to infer the true information. Now we introduce
a model in which each worker can be characterized by a single reliability parameter. It
denotes the probability that a worker gives the correct answer to a task. This is the so-called
Dawid-Skene (DS) model [DS79].

The true label of task j is denoted v0
j œ {±1}. Worker i provides answers to |∂i|

selected tasks, ∂i = {j1, . . . , j|ˆi|} ™ {1, . . . , M}. The answers/labels are denoted Lij ,
with Lij œ {±1} for j œ ∂i. The questions for which no answers are provided by worker i,
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i.e., the questions in the set {1, . . . , M}\∂i, are assigned a null label Lij = 0 for j /œ ∂i.
In the DS model each worker is characterized by a single parameter, p0

i , the probability that
the correct answer is provided. Thus the channel takes the following form

P0

1

Lij | p0
i , v0

j

2

= p0
i δ(Lij ≠ v0

j ) + (1 ≠ p0
i ) δ(Lij + v0

j ) , for j œ ∂i . (1.85)

Provided the label matrix Lij , the objective is to infer v0
j and p0

i in terms of MBE and MMSE
respectively. It follows from Sec. 1.3.3 that the optimal estimators require the computation
of the marginal distributions of the posterior. We consider the teacher-student scenario in
which p0

i is sampled from some distribution Pp0(pi), such that the p0
i are i.i.d. samples from

a common distribution. Similarly v0
j ≥ Pv0(vj). From Bayes’ Theorem we obtain

P (p, v | L) =
1

Z(L)

Ÿ

1ÆjÆM

Pv (vj)
Ÿ

1ÆiÆN

Pp (pi)
Ÿ

1ÆjÆM, 1ÆiÆN

P (Lij | pi, vj) . (1.86)

If we associate a variable node to each pi and vj , it is not difficult to see that the associated
graphical model can be drawn as in Fig. 1.13 (we draw the case in which ∂i = {1, . . . , M}).
The factor graph has a bipartite structure: each edge connects a node from the set {vj} to
a node in the set {pi} (and vice versa), but never directly connects two elements from the
same set. If we denote the total number of outgoing connections from the workers (tasks)
side as lN (rM) it is clear that lN = rM must hold. The parameter l (r) plays the role of
an average degree. If l Ã M (r Ã N) we are in the dense regime; if l, r Ã 1 we are in the
sparse regime.

We shall consider M, N æ Œ, but α = M
N = Θ(1). For each of the two regimes (dense

and sparse) there is a particularly interesting scaling region for pi. We can always write

pi =
1

2
+ θi (1.87)

and consider θi as our new parameter of interest. In the sparse regime, where |∂j| = Θ(1)

answers are obtained per task and |∂j| = Θ(1) answers are provided by each worker, it is
intuitive, that the whole region θi will be interesting to explore, as a function of the average
degrees. If r is small, little information is obtained per task, unless the θi ¥ 1/2. On the
contrary, in the dense regime, where one obtains Θ(N) answers to each task, inference
would be trivially easy in this region. Choosing θi = Θ(1/

Ô
N) will lead to interesting

results, that are neither trivially easy, nor trivially hard (as it would be the case for a 1/N

scaling).
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In analogy to (1.60) the BP equations for this model read

m̃ijæj(vj) =
1

Zijæj
v

ˆ

dθi niæij(θi)P (Lij | θi, vj)

niæij(θi) =
1

Ziæij
◊

P◊(θi)
Ÿ

kœˆi\j

ñikæi(θi)

ñikæi(θi) =
1

Zikæi
◊

ÿ

vk

mkæik(vk)P (Lik | θi, vk)

mkæik(vk) =
1

Zkæik
v

Pv(vk)
Ÿ

lœˆk\i

m̃lkæk(vk) .

(1.88)

However, they are quite unfeasible to work with: (a) the variables pi are in general continuous,
which requires the computation of an integral to obtain m̂ijæj(vj) and (b) one has to
deal with Θ(NM) messages in the dense case. One possible simplification is obtained by
absorbing all pˆj into a common function node. This is done by integration over the p in
(1.86) and is the strategy followed by [LPI12; OOSY16b; OOSY16a]. Owing to the binary
labels the resulting BP equations can be solved more efficiently. However, this approach
becomes unfeasible in the dense regime because too many messages need to be computed. In
the dense regime it is possible to derive a more general algorithm that does not depend upon
the integration over p and only requires the computation of Θ(N) beliefs. This approach is
known as approximate message passing and relies on the fact that the messages are effectively
Gaußian if the underlying factor graph is densely connected.

1.3.5 Approximate Message Passing (AMP)

The AMP algorithm is closely related to the Thouless-Anderson-Palmer (TAP) equations
[TAP77] from the theory of spin glasses, with correct time indices [Bol14; ZK16]. AMP can
be derived starting from the BP equations (1.88) for the graphical model in Fig. 1.13. The
following two simplifications of BP are then made. First, the BP messages are replaced
by their means and variances which eradicates the necessity of tracking a whole function
for each message. Secondly, each (mean and variance) message is replaces by its marginal

version, reducing the complexity from O(N2) messages to O(N) marginals.
First we show that the dense limit of the DS model belongs to a larger class of low-rank

matrix factorization problems that have recently been analyzed in [LKZ17]. To that end
we express the channel, P (Lij | pi, vj), in terms of θi, vj and the fraction of unanswered
questions, fl,

P (Lij = ±1 | ◊i, vj) = (1 ≠ fl) · 1

2
·
3

1 ±
Ú

‹

N
◊ivj

4

P (Lij = 0 | ◊i, vj) = fl

. (1.89)

Here we have extracted the 1/
Ô

N scaling of ◊i explicitly, such that ◊i = Θ(1), but pi =

1/2 + Θ(1/
Ô

N). We further introduced the parameter ‹ which allows to tune between
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different signal to noise ratios. The form of (1.89) assumed that the fraction of un-answered
questions, fl, is independent of (i, j). In the dense regime we are interested in the limit
where N æ Œ and all the other parameters ◊i, ‹, –, fl = Θ(1). The link to low-rank matrix
factorization becomes clear if one introduces the rank-1 matrix

w :=
θ v|

Ô
N

. (1.90)

The derivation of the AMP equations can be done in more general terms and it is not
necessary to restrict ourselves to the particular channel (1.89). Instead we will consider the
general case of

P (Lij | wij) = exp (g(Lij , wij)) (1.91)

with wij = O(1/
Ô

N). For crowdsourcing we have

g(Lij , wij) =

Y

]

[

log
1

(1≠fl)
2

2

+ log (1 ± Ô
‹wij) if Lij = ±1

log (fl) if Lij = 0
. (1.92)

The previous manipulations show that the posterior falls into the same class of problems,
considered in [LKZ17]. We will now briefly review the derivation of the AMP equations, first
given in [LKZ15], for convenience of the reader. The first step consists in relaxing the BP
equations (1.88) such that each message can be re-parametrized in terms of their mean and
variance

◊̂iæij =

ˆ

d◊iniæij(◊i) ◊i

‡◊, iæij =

ˆ

d◊iniæij(◊i) (◊i)
2 ≠ ◊̂2

iæij

v̂kæik =

ˆ

dvkmkæik(vk) vk

‡v, kæik =

ˆ

dvkmkæik(vk) v2
k ≠ v̂2

kæik .

(1.93)

As is shown in Appendix A.4, the messages (1.88) can then be written in a simplified
Gaußian form

niæij(◊i) =
1

Ziæij
◊

P◊(◊i) exp

3

B◊, iæij ◊i ≠ 1

2
A◊, iæij ◊2

i

4

mkæik(vk) =
1

Zkæik
v

Pv(vk) exp

3

Bv, kæik vk ≠ 1

2
Av, kæik v2

k

4

,

(1.94)

where A◊, v and B◊, v can be expressed in terms of the ◊̂iæij , ‡◊, iæij , v̂kæik, ‡v, kæik. The
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equations can thus be close on the means and variances of the messages (1.93).

θ̂t
iæij = f◊

1

At
◊, iæij , Bt

◊, iæij

2

σt
◊, iæij =

∂f◊

∂B

1

At
◊, iæij , Bt

◊, iæij

2

v̂t+1
kæik = fv

1

At
v, kæik, Bt

v, kæik

2

σt+1
v, kæik =

∂fv

∂B

1

At
v, kæik, Bt

v, kæik

2

,

(1.95)

where we have introduced the input functions

fx (A, B) =
1

Zx(A, B)

ˆ

dxPx(x)e≠ 1
2

Ax2+Bx x . (1.96)

With x indicating either θ or v. Equations (1.95) and (1.96) form the relaxed BP (rBP)
equations. Note that these equations are solved self-consistently. Such a solution is obtained
by iteration, hence we added the time indices.

The rBP equations are a direct consequence of the CLT. Each message is a random variable
and since the O(N) incoming messages are only weakly correlated they result in an effective
Gaußian field, acting on each variable node. This field is additionally weighted with the prior
on each of the sides. Since the outgoing messages only weakly depend on the target node,
i.e., Bt

x, i = Bt
x, iæij + O(1/

Ô
N) and At

x, i = At
x, iæij + O(1/N) (where, again, x stands

for θ or v). The marginals can thus be expressed in closed form by TAPyfication of the
equations in (1.95). The steps are performed in detail in Appendix A.4. We finally obtain
the set of AMP equations that is independent of the messages and only depends on the
marginals

Bt
◊, i =

1Ô
N

Mÿ

k=1

Sikv̂t
k ≠

A

1

N

Mÿ

k=1

S2
ikσt

v, k

B

θ̂t≠1
i

At
◊, i =

1

N

Mÿ

k=1

Ë

S2
ik(v̂t

k)2 ≠ Rik

1

(v̂t
k)2 + σt

v, k

2È

θ̂t
i = f◊

1

At
◊, i, Bt

◊, i

2

σt
◊, i =

∂f◊

∂B

1

At
◊, i, Bt

◊, i

2

Bt
v, k =

1Ô
N

Nÿ

l=1

Slkθ̂t
l ≠

A

1

N

Nÿ

l=1

S2
lkσt

◊, l

B

v̂t
k

At
◊, k =

1

N

Nÿ

l=1

Ë

S2
lk(θ̂t

l )
2 ≠ Rlk

1

(θ̂t
l )

2 + σt
◊, l

2È

v̂t+1
k = fv

1

At
v, k, Bt

v, k

2

σt+1
v, k =

∂fv

∂B

1

At
v, k, Bt

v, k

2

.

(1.97)

42



Here

Sij :=
∂ log P0(Lik | w)

∂w

-
-
-
-

w=0

(1.98)

Rij :=

A

∂ log P0(Lik | w)

∂w

-
-
-
-

w=0
B2

+
∂2 log P0(Lik | w)

∂w2

-
-
-
-
-

w=0

. (1.99)

The above AMP equations provide a constructive approach to the marginal posterior expec-
tations. Note that the MMO-estimator of the true labels v0

j can be extracted from the fixed
point of the above equations, v̂ú

j , by taking its sign, if the labels are in {±1}.
Some remarks are appropriate. The additional terms that appear in B◊ and Bv after

TAPyfication are Onsager reaction terms that correct the mean field contribution from
the first sum. The terms S2

ij and Rij can be replaced by their averages

∆≠1 = EP (Lij |wij=0)

Ë

S2
ij

È

(1.100)

R = EP (Lij |wij=0) [Rij ] = 0 . (1.101)

Where the last equality is a consequence of the normalization of the conditional probability:
´

dLP (L | w) = 1 ∆
´

dL∂w2P (L | w) = 0. For the particular case of crowdsourcing we
have

Sij = Lij

Ô
ν (1.102)

Rij = L2
ijν ≠ L2

ijν = 0 . (1.103)

In the Bayes optimal setting, where Px(x) = Px0(x) (for x œ {θ, v}) and P (Lij | wij) =

P0(Lij | wij), we have

∆≠1 = (1 ≠ fl) ‹ (1.104)

R = 0 . (1.105)

1.3.6 State Evolution

In this section we will see how to derive a set of dynamical equations, that tracks the
evolution of the AMP equations by means of characteristic order parameters. The AMP
equations depend explicitly on the realization of the disorder (for the crowdsourcing this
is Lij) through Sij and possibly Rij . Therefore the Bt

◊, i, Bt
v, j and At

◊, i, At
v, j are random

variables. Recalling that the different messages, incoming to one node are independent by BP
assumption we can apply the CLT to the sums on the r.h.s. of the equations for Bt

◊, i, Bt
v, j .

The independence holds only approximately because the underlying graph is not a tree, but
the O(1/

Ô
N) scaling guarantees sufficient independence in the N æ Œ limit. Thus we

have

Bt
◊, i ≥ N

1

EBt
◊, i, E(Bt

◊, i)
2 ≠ (EBt

◊, i)
2
2

(1.106)

Bt
v, j ≥ N

1

EBt
v, j , E(Bt

v, j)2 ≠ (EBt
v, j)2

2

. (1.107)
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Further more, by the law of large numbers, the r.h.s. of the equation for At
◊, i, At

v, j can be
replaced by its average. It remains to compute the first two moments of Bt

◊, i, Bt
v, j and the

first moment of At
◊, i, At

v, j .
It is shown in Appendix A.5 that the first two moments can be expressed in terms of the

macroscopic order parameters

M t
◊ =

1

N

Nÿ

i=1

θ̂t
iθ

0
i , M t

v =
1

M

Mÿ

j=1

v̂t
jv0

j , (1.108)

which leads to

E

Ë

Bt
◊, i

È

=
α

∆
M t

vθ0
i , E

Ë

Bt
v, j

È

=
1

∆
M t

uv0
j ,

E

Ë

(Bt
◊, i)

2
È

=
α

∆
M t

v , E

Ë

(Bt
v, j)2

È

=
1

∆
M t

◊v0
j , (1.109)

E

Ë

At
◊, i

È

=
α

∆
M t

v , E

Ë

At
v, j

È

=
1

∆
M t

◊ ,

where

∆≠1 = EP0(L|w0=0)

C3
∂ log P0(Lik | w)

∂w

42
D

. (1.110)

Since
θ̂t

i = f◊

1

At
◊, i, Bt

◊, i

2

and v̂t+1
k = fv

1

At
v, k, Bt

v, k

2

, (1.111)

i.e., the estimates are functions of the order parameters (1.108), the equations can be closed
on them

M t
◊ = E◊0,W

S

Uf◊

Q

a
α M t

v

∆
,

α M t
v

∆
θ0 +

Û

α M t
v

∆
W

R

b θ0

T

V (1.112)

M t
v = Ev0,W

S

Ufv

Q

a
M t

◊

∆
,

M t
◊

∆
v0 +

Û

M t
◊

∆
W

R

b v0

T

V . (1.113)

In the Bayes optimal setting, these equations track the evolution of the AMP equations
(1.97) in terms of simple scalar order parameters. This is, in the spirit, reminiscent of what
was done in Sec. 1.2.3. The above set of equations will further simplify in the Bayes optimal
setting, which will be treated in Chap. 5. We will see in the next chapter that the fixed points
of the above equations have a deep physical meaning: the free energy can be expressed in
terms of the same order parameters and the minimizers of the free energy correspond to the
fixed points of the above equations.
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— 2 —

Statistical Physics of Inference Problems

In this chapter some basic concepts from statistical physics are reviewed and disordered systems

are introduced. The disorder in the Hamiltonian creates frustration that may lead to non-ergodic

behavior of the physical system (below some temperature). It will be shown that inference and

constraint satisfaction problems can be considered as disordered systems. The average case behavior

of these problems can be extracted from the free energy of the corresponding “physical system”.

In classical mechanics the time evolution of a system is the curve that is traced out by
the canonical coordinates, (qi(t), pi(t)). The phase space is the set of accessible points
(qi(t), pi(t)). The phase space trajectory is determined by the Hamiltonian equations of
motion

q̇i =
∂H
∂pi

, ṗi = ≠∂H
∂qi

. (2.1)

If the Hamiltonian, H(qi(t), pi(t)), does not explicitly depend on time, the system is said
to be in equilibrium and the Hamiltonian corresponds to the total energy of the system.

A statistical approach to a physical system is useful, but not limited (cf. stochastic ther-
modynamics), when the number of microscopic degrees of freedom is very large. Typi-
cally the degrees of freedom grow with the number of constituents, N . In the thermody-
namic limit, where N æ Œ, it is either hopeless, or useless, to keep track of the physical
state x(t) := (q(t), p(t)). Instead it is usually simpler to transition from a microscopic de-
scription to a macroscopic one by introduction of a probability distribution over (q(t), p(t))

and consideration of averaged quantities with respect to this distribution.
In thermodynamics a physical system is described in terms of macroscopic state variables

(temperature, energy, volume, . . . ). The thermodynamic laws, that govern the interplay
between these state variables in term of macroscopic state equations, are mostly phenomeno-
logical. Statistical physics was born out of the desire to put the laws of thermodynamics on
a sound theoretical basis. The challenge of statistical physics is the derivation of the macro-
scopic laws of thermodynamics from a microscopic consideration of the physical system. In
the end of the last chapter, we have already performed such a transition from a microscopic
description, in terms of the AMP variables, to a macroscopic description, in terms of the
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order parameters. In this chapter we will further elaborate this statistical physics approach
to inference and constrained satisfaction problems.

2.1 Equilibrium Statistical Physics

From now on, let us consider the system in equilibrium, with an instantaneous microstate
denoted as x = (x1, . . . , xN ). The fundamental hypothesis in equilibrium statistical physics
amounts to the assumption that the system is ergodic, i.e., that it explores all parts of
the phase space and that the temporal behavior of the system can be well described by a
distribution over the instantaneous microstates, P (x).

2.1.1 Microcanonical and Canonical Ensembles

In a closed system the total energy

E = H (x) (2.2)

is conserved. All x must lay on the hypersurface determined by (2.2). The total number of
accessible microstates is

Ω(E) =

ˆ

E=H(x)
dx . (2.3)

This leads to the probability density of the microcanonical ensemble

P (x) =

Y

]

[

1
Ω(E) if H(x) = E

0 else .
(2.4)

Namely, all microstates of energy E are equally likely. The entropy is defined as the log-
number of microstates that are tolerated by a given macrostate (here E)

S(E) = ln Ω(E) . (2.5)

The above equation is in natural units, where the proportionality constant is set to unity
and the additive constant to zero. Note that this can be formally written as the ensemble
average

S(E) = ≠
ˆ

dxP (x) log P (x) . (2.6)

It can be shown that the functional S[P (x)] = ≠
´

dxP (x) log P (x) is the unique choice
that fulfills the following requirements that establish that the entropy can be interpreted as
a measure of uncertainty:

• It only depends on P (x).

• S[P (x) = const.] = max S[P (x)].
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• S[P (x)] = 0 if P (x) = δ(x ≠ x0).

• S[P (x)] = S[P (σ(x))], where σ(.) is some permutation of its argument.

• Additivity: S[PA(x) fi PB(x)] = S[PA(x)] + S[PB(x)] if the two systems A, B are
independent.

The microcanonical ensemble is conceptually nice, but in practice often not applicable
to physical systems, as it only applies to situation in which the total energy of the system
of interest is fixed. A more “realistic” alternative approach is provided in the canonical
ensemble in which another control parameter than the energy is constant. In the canonical
ensemble the system of interest is in exchange with a heat bath, B, an both systems are in
thermal equilibrium and share a common temperature, T . The total energy of the combined
(closed!) system is E0 = EB + H(x). The heat bath has, by definition, much larger energy
than our system of interest: EB ∫ H(x). The basic axiom that all microstates of a common

energy hypersurface are equiprobable also applies in the canonical ensemble and (2.6) still
applies.

The Gibbs-Boltzmann measure is the probability measure over microstates x in the canon-
ical ensemble. It can be derived as the measure that maximizes the entropy under the
constraint that the average energy of the system is fixed

max ≠
ˆ

dxP (x) ln P (x) (2.7)

s.t. Ex [H(x)] = E . (2.8)

Introducing the Lagrange multiplier — to enforce the average energy and dropping the con-
stant terms, we obtain the following equivalent Lagrange problem

min

5ˆ

dxP (x) log P (x) + —

ˆ

dxP (x)H(x)

6

. (2.9)

This can be solved by variation w.r.t. P (x), which (after enforcing normalization) yields the
Gibbs-Boltzmann (GB) measure on the microstates x

P (x) =
e≠—H(x)

Z(—)
. (2.10)

We see that in the canonical ensemble each microscopic state, x, is assigned a certain energy
cost in form of the Hamiltonian H(x). Note that — is a Lagrange multiplier that controls
the average energy, i.e., E(—). As a consequence, low energy states are selected preferably,
while high energy states are exponentially more rare. Note that if one imposes the maximum
entropy principle, with the average energy constraint, one obtains microstates that do not
minimize H directly, but instead the auxiliary potential S(E) + —(E)E.

We refer to average w.r.t. the GB measure as

È•Í =

ˆ

dx • e≠—H(x)

Z(—)
. (2.11)
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2.1.2 Thermodynamic Potentials

General observables A(x) can be expressed in macroscopic form by averaging w.r.t. P (x):

A(ϑ) = ÈA(x)Í =

ˆ

dxP (x)A(x) . (2.12)

Here we have explicitly expressed A as a function of ϑ to stress that it may in general depend
on some additional parameters (e.g. the parameters of the distribution P (x)). For exam-
ple, the average energy is obtained by averaging H(x). Similarly the entropy corresponds
to A(x) = ≠ log P (x). And the partition function formally corresponds to A(x) = 1.

Importantly the partition function, that was obtained as the normalization constant of
the GB measure,

Z(—) =

ˆ

dxe≠—H(x) , (2.13)

can now be given a physical meaning. First of all, let us recall that — = 1/T . In the high
temperature phase where — æ 0, it is evident that all states become equiprobable and the
partition function counts the number of all microstates. According to the above we are in
a phase of maximal entropy with no energy penalization. In the zero temperature limit,
where — æ Œ, only those states survive that have smallest accessible energy, Egs and

lim
—æŒ

ln Z(—)

—
= ≠ min

x
H (x) (2.14)

This is because the above integral is dominated by its saddle point and so is the average
energy

´

dxH(x)e≠—H(x). Therefore the average energy approaches the ground state energy
in this case. Note the link to the questions that we posed in section 1.3.1 about CSPs.

What is the meaning of Z(—) for generic temperature? The following chain of reasoning
reveals that log Z(—) links the average energy with the entropy. To carry out the calculation
we assume that we are in the thermodynamic limit, N æ Œ. Further we fix —, such that the
average energy and the entropy will equilibrate accordingly. And finally it is required that
the energy and entropy are extensive quantities, i.e. they are O(N).

Z (—) =

ˆ

dEΩ(E)e≠—E

=

ˆ

dEeS(E)≠—E

¥
ˆ

d‘eN(s(‘)≠—‘)

w e≠N min‘(—‘≠s(‘))

= e≠N(—‘ú≠s(‘ú))

=: e≠—F .

(2.15)

First we replaced the integration over microstates by an integration over all the different
Energy hypersurfaces. Then we exploited the definition of the entropy and thereafter the
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fact that E and S are extensive. The final integral was then carried out by the saddle point
method, which amounts to the fact that the integrand is dominated by its largest value in
the thermodynamic limit.

The free energy

F (—) = E ≠ 1

—
S(E) = ≠ ln Z(—)

—
, (2.16)

is completely analogue to (2.9) and a physical system at temperature T will take an energy
E and entropy S, such that the free energy E ≠ S(E)/— is minimized. In equilibrium
the physical system the thermodynamically optimal states are those that minimize the free
energy. Although F (—) is the right physical potential to look at, in the sense that it
has a nice interpretation in thermodynamic terms (it is the accessible energy that can be
extracted from the system in as work), it is often beneficial to work with the dimensionless
quantity ≠ ln Z(—) instead. With some abuse of notation we will also refer to ≠ ln Z(—) as
a free energy. Once ln Z(—) is known, many other observables can be derived from it. As
an example, the average energy, E, is obtained from the first derivative

E(—) =

´

dxH(x)e≠—H(x)

´

dxe≠—H(x)
= ≠ d

d—
ln Z(—) . (2.17)

More generally, ln Z(—) is the moment generating function of H(x).
In general, once ln Z(—) is known, it is possible to access any other thermodynamic

potentials from it. To that end, let us consider the free entropy, which just differs from the
free energy by a minus sign and is a unitless quantity:

Φ(—) := ln Z(—) = S(E) ≠ —E . (2.18)

The energy, as well as the entropy are extensive quantities, i.e., they scale with the number
of particles/constituents in the system, N . We have already used the fact in the derivation
of the free energy in (2.15). Let us therefore work with the per particle quantity,

„(—) = lim
NæŒ

ln Z(—)

N
. (2.19)

The physical value of „(—) for a given — corresponds to the maximum (we switched sign) of
the per particle quantities of the r.h.s. of (2.18)

„(—) = max
‘

[s(‘) ≠ —‘] (2.20)

and thus
d [s(‘) ≠ —‘]

d‘
= 0 , … ds

d‘

-
-
-
-
‘=‘ú

= — (2.21)

Apparently the above is equivalent to

„(—) = s(‘) ≠ —‘ such that
ds

d‘
= — (2.22)
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In the above equation, there are two dependent variables, ‘ and —. For a fixed temperature
one should select the energy ‘, such that the r.h.s. of the above equation is maximized.
However, such a procedure might be impractical in certain situations. In particular, we
will encounter this issue when investigating the problem of circular coloring in chapter 4.
Typically it is much simpler to control the temperature (or —). This presents us with the
problem of inverting the above equations. In practice this can be achieved by realizing that
the l.h.s. of (2.20) is the Legendre transformation of s(‘). It can be inverted, which leads
to an optimization problem over —:

s(‘) = min
—

[„(—) + —‘] . (2.23)

This is not surprising if one recalls (2.9). Again, we may write the above in the form

s(‘) = „(—) + —‘ such that ‘ =
d„

d—
. (2.24)

In turn this now allows us to access the energy by tuning the temperature such that the
above equations are minimized.

2.2 Disordered Systems

In disordered systems the Hamiltonian is subject to randomness. It becomes a random object.
In a system with quenched disorder the Hamiltonian explicitly depends on the realization
of a RV, say J . We write

H (x | J) . (2.25)

We have already encountered an example of such a system with explicit disorder in Sec. 1.3.4.
In the dense DS model for crowdsourcing, the explicit disorder are the labels L. In our model
of crowdsourcing there is another source of randomness due to the random assignment of
tasks to workers. In the dense DS model this randomness is, however, washed out by
the CLT (each node only sees an effective mean field when the assignment graph is densely
connected). A better example of self-generated disorder is circular coloring. The associated
Hamiltonian (1.57) contains no explicit disorder. However, the underlying interaction network
is disordered, if one studies the problem on random graphs. For problems on random graphs,
G plays the role of the disorder J .

An undesired consequence of the present disorder in the Hamiltonian is that the physical
quantities become functions of the disorder. Fortunately, in the thermodynamic limit, phys-
ical properties do not depend on the realization of the disorder. They are self-averaging. If
the macroscopic observable A(ϑ | J)

lim
NæŒ

A(ϑ | J) = A(ϑ) . (2.26)

Although we might expect that the above equality holds, it is in practice very difficult to
derive the r.h.s. of the above equation. Given an explicit form of A(ϑ | J) it is usually not
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easy to see the dependence of J dropping out, once the N æ Œ limit is taken. The usual
approach to circumvent these problems is to simply re-define the meaningful macroscopic
physical quantities as those that are obtained after averaging over the disorder. The average
in (2.12) is adapted as follows

A(ϑ) =

ˆ

dJP (J)A(ϑ | J) . (2.27)

We have established the free energy (or free entropy) as important thermodynamic poten-
tial that contains all macroscopic information about the system. And we have just introduced
a useful trick that facilitates its computation.

Statistical Physics, Inference and Constraint Satisfaction Problems

The link between statistical physics and inference comes through the interpretation of the
posterior probability as the GB measure of a disordered system. In inference problems the
observed data is the quenched disorder (cf. Box 2.3). In CSPs the graph G represents
the disorder, however, it does not appear explicitly in the Hamiltonian here. Neverthe-
less, one can set up a teacher-student scenario – known as planting. Let us consider the
problem of circular coloring as an example. One first produces a set of N nodes with col-
ors xi œ {1, . . . , q}, i œ N , and degree according to some prior distribution P (x). Next one
produces the graph G (V, E) according to P (G | x) = e≠—H(x), cf. (1.57). For the problem of
circular coloring this can be achieved by sorting the N nodes xi into one of q bins, according
to their color. Each node i carries di half-edges. Subsequently a random matching between
the nodes in half-edges in bin b and bins b ± 1 mod q is drawn (if it exists). However,
CSPs are typically not studied in the planted setting. Instead a graph ensemble is consid-
ered, from which the graph is drawn and subsequently one studies the zero temperature limit
lim—æŒ e≠—H(x). In that sense CSPs are somewhat similar to maximum likelihood problems.

Now that the link between inference problems, CSPs and disordered systems is established,
we can discuss the common difficulties: the necessity to evaluate high dimensional (infinite
dimensional) integral/sum. That is the partition function

Z(ϑ | J) =

ˆ

dxe≠—H(x|J) . (2.28)

The explicit computation of the partition function can be avoided by some clever methods.
One path to circumvent the problem is a Monte Carlo (MC) approach, presented in Box 2.1.
A major issue with MC is that it can be impractically inefficient. In particular for glassy
systems, that break the ergodicity. An alternative approach is the replica method that often
renders an analytic computation of the logarithm of the above integral (the free entropy )
possible. It is presented in the upcoming section. Anticipating the outcome of the replica
method, it will typically yield an expression of the free entropy that is of the form

φ(ϑ) = extr
Q

Aϑ[Q] . (2.29)
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The minimizers of this equation are deeply related to the Bayes risk in Sec. 1, cf. (1.73). We
have already outlined that the Bayes optimal setting is special. In particular it will lead to a
very simple re-parametrization of Q in terms of (effectively) a single free parameter, q, that
is directly related to the fixed points of the state evolution equations from Sec. 1.3.6. Note
also that, according to the above, a physical system minimized the free energy, as opposed
to the Energy (Hamiltonian). This is reminiscent and in analogy to the difference between
the minimum mean square error and the maximum a-posteriori estimator.

Box 2.1: Monte Carlo Methods

The aim is to compute physical observables, A(ϑ | J), such as the average energy

E(ϑ | J) =

ˆ

dx H(x | J)
e≠βH(x|J)

Z(ϑ | J)
. (2.30)

The problem that we are facing is that Z(ϑ | J) is unknown. Monte Carlo methods
circumvent this problem by direct simulation of N particles, that can take state variables
xi, i = 1, . . . , N , and that are subject to the interactions H(x | J).

The royal road to such problems in high dimensions is the Metropolis–Hastings algo-
rithm. It uses a Markov chain (cf. box 1.1), which asymptotically reaches the equilibrium
distribution e≠βH(x|J)/Z(ϑ | J). Denoting the state variables at simulation time t by x(t),
the probability that the system is found in state sj at time t reads

P (x(t) = sj) =
ÿ

k

P (x(t) = sj , x(t ≠ 1) = sk) (2.31)

=
ÿ

k

P (x(t) = sj | x(t ≠ 1) = sk)P (x(t ≠ 1) = sk) . (2.32)

Denoting the transition probabilities by T (sk æ sj) := P (x(t) = sj | x(t ≠ 1) = sk) and
Pt(s) := P (x(t) = s), this can be rewritten as

Pt(s) = Pt≠1(s) +
ÿ

sÕ

[T (sÕ æ s)Pt≠1(sÕ) ≠ T (s æ sÕ)Pt≠1(s)] . (2.33)

For the probabilities PŒ(s) to reach the equilibrium distribution after long simulation times,
t æ Œ, the following detailed balance condition must hold

T (s æ sÕ)

T (sÕ æ s)
=

PŒ(sÕ)

PŒ(s)
= e≠β(H(sÕ|J)≠H(s|J)) =: e≠β∆H(sÕ,s|J) . (2.34)

Therefore, the transition probabilities in the simulation should be set accordingly. The
way this is achieved in the Metropolis-Hastings algorithm is by choosing the following
acceptance rule

T (s æ sÕ) =

I

1 if ∆H(sÕ, s | J) Æ 0

e≠β∆H(sÕ,s|J) if ∆H(sÕ, s | J) > 0
. (2.35)
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The strategy is as follows: one creates a set of sampling points {s1, s2, . . . } by successively
proposing a new state sÕ, according to some symmetric transition rule (that would cancel
in the above equations for detailed balance) and then accepting/rejecting it according to
the above rule. One can then simply compute the physical quantities by sampling, e.g.

E(ϑ | J) =
1

P

Pÿ

i=1

H(ski
| J) (2.36)

where ski
is the state of the system during the kith step of the simulation. Note that

successive samples are typically correlated and one should thus choose the sample points
in the above sum with care.
There are several other caveats. The system must be ergodic, i.e., it must be possible to
reach any state from any state in finite time. Once the temperature is low, i.e. — large, and
the energy landscape rugged, Monte Carlo Methods will get stuck in metastable states. In
practice the computation of ∆H(sÕ, s | J) must be “feasible”: if we change the state of
one of the particles it is desired, that not all the other particles are affected by this change,
otherwise each simulation step would take Θ(N) steps.

Replica Symmetric Free Energies and Inference

Let us introduce an important tool that will permit the analytic computation of the disorder
average of the free energy

F (ϑ̃) =

ˆ

dJP (J) ln Z(ϑ | J) . (2.37)

Except from some rare cases, this integration is difficult to perform. The difficulty enters
through the logarithm. A smart way to circumvent this problem is the replica trick. It
amounts to combining the following useful identity that expresses the logarithm as a power
function

ln Z = lim
næ0

ˆ

ˆn
Zn (2.38)

We denote the limit n æ 0 the replica limit. We write

lim
NæŒ

EJ

5
ln Z(ϑ | J)

N

6

= lim
NæŒ

EJ

5
1

N
lim
næ0

ˆ

ˆn
Z(ϑ | J)n

6

(2.39)

Next the average of Z(ϑ | J)n w.r.t. J is computed as if n was an integer power to obtain an
explicit formula that does no longer contain the disorder J . Usually, it requires the exchange

of the two limits in the above calculation to continue the calculation as well as some further
black magic. After having done all, pretending that n is an integer, an analytic continuation
of n is carried out in order to take the replica limit, n æ 0. What exactly happens is easiest
understood by consideration of the concrete example in Box 2.3.

Although the replica trick seems just like a dirty trick to circumvent averaging the logarithm
of the partition function, lots of physics is emerging from it. We have first introduced n
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replicas of the system, at equal temperature T = 1.

Z(ϑ | J)n =
ÿ

x1,...,xn

e
qn

a=1
H(xa|J) . (2.40)

These replicas are not directly coupled (the Hamiltonian is additive w.r.t. the replicas),
however, they do all depend on the same disorder. An additional replica enters when the
average over the disorder is carried out. This replica is special, it is the one to bind them all

in disorder. Let’s call it the disorder replica

EJ [Z(ϑ | J)n] =
ÿ

J

ÿ

x0,x1,...,xn

e—H(x0|J)+
qn

a=1
H(xa|J) . (2.41)

In the crowdsourcing analysis we have introduced the disorder replica at the Nishimori line,
i.e., at the same temperature. In the above equations we have kept the setting slightly
more generic and introduced the disorder replica at a general temperature —. Otherwise
the disorder replica is no different from the other replicas (in particular it has the same
Hamiltonian). The temperature — = 1 is the physical equivalent to the Bayes optimal
setting, while for — ”= 1 we are in the mismatched setting.

Once the disorder average is carried out in the above equation, one typically finds that it
assumes the following (or a similar) shape for the replicated partition that couples the same
sites i from different replicas

Zn(ϑ) := EJ [Z(ϑ | J)n] =

ˆ

dQeNAϑ[Q] . (2.42)

The integration over the microstates is replaced by an integration over the macroscopic order
parameters

Q := (qab) =
1

N

ÿ

i

xa
i xb

i . (2.43)

The free entropy can be obtained from the above equation by a saddle point evaluation

„(ϑ) = extr
Q

Aϑ[Q] . (2.44)

Box 2.2: Nishimori’s Condition

Consider a teacher student inference problem and denote x(0) the ground truth. Denoting
the GB average with È.Íx|J and the average over the disorder with [.]J the following equality
is readily verified, if we are in the Bayes optimal setting with P (x | J) = P0(x | J),

[ÈA(x, x(0))Íx|J ]x(0),J = [ÈA(x(1), x(2))Íx(1),x(2)|J ]J . (2.45)
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If the quantity behaves self-averaging, i.e. the measure concentrates with respect to the
realizations of the disorder, [ÈA(x, x(0))Íx|J ]x(0),J = ÈA(x, x(0))Íx|J holds almost surely.
Under the assumption of self-averaging we therefore find Nishimori’s identity [Nis80]

ÈA(x, x(0))Íx|J = ÈA(x(1), x(2))Íx(1),x(2)|J . (2.46)

The last identity states that two samples from the posterior distribution will carry the
same average properties as one sample at fixed disorder. The immense importance of the
above equality becomes vivid, once one considers the overlap between two configurations
for A(x(1), x(2)). Then Nishimori tells us that comparing two different samples among each
other in terms of their overlap, results in the same as comparing them with the ground truth
(disorder). Identifying the two overlaps as

A(x, x(0)) :=
1

N

Nÿ

i=1

x
(0)
i xi (2.47)

A(x(1), x(2)) :=
1

N

Nÿ

i=1

x
(1)
i x

(2)
i (2.48)

then the Nishimori conditions state that

A(x, x(0)) = A(x(1), x(2)) . (2.49)

This is important because it states that the replica symmetric Ansatz in box 2.3 is correct
in the Bayes optimal setting. It also allows a reduction of the set of order parameters to
one instead of three. Another essential consequence of the Nishimori conditions is that the
Bayes optimal MMSE estimate is not ‘glassy’. In contrast, the MAP estimate may result in
a solution space in the condensed phase.

The replica symmetric (RS) solution of the above equations corresponds to the particular
parametrization of Q, such that all the n + 1 replicas are symmetric:

qab = Qδa b + (1 ≠ δa b)q . (2.50)

For — = 1 it is physically intuitive that the n+1 replicas are all equal and it seems natural to
assume that the order parameters adopt this symmetry. As is shown in Box 2.2, this is always
true in the teacher-student scenario. Therefore the RS solution is the thermodynamically
dominating one in the Bayes optimal case. However, there is a more general class of solutions
that break this replica symmetry and will be discussed in the next section.

Now that we can compute the free energy, let us turn to a quick discussion of the interesting
physics that can be extracted from it. We restrict the discussion to the simple Bayes optimal
case and sketch the rough phenomenology, rather than giving an exhaustive treatment.
Since we assume a Bayes optimal setting, Q is parametrized by the two parameters Q and q.
Furthermore, we can set the selfoverlap Q = 1, which just amounts to a rescaling of the
variables. The phase that the system lives in for a given (inverse) temperature, —, can
be classified by the behavior of the minimizer of A—(q), say qú. A second order phase
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qú

—c
—

qú

—K

Figure 2.1: Exemplary, schematic, plot of the minimizer of the replica free energy, qú, as a function
of the inverse temperature —. Recalling the definition of q, we can identify the region
with qú > 0 as the ferromagnetic and qú = 0 as the paramagnetic phase. Left: a second
order phase transition, right: a first order phase transition. The variety of scenari that
can appear in a first order transition are quite diverse and will not be discussed here in
full detail.

transition is characterized by the property that the minimizer of A—(q) varies continuously.
In contrast to this stands the first order transition, that is characterized by a discontinuous
jump in the minimizer (more precisely by a discontinuity in the first derivative of the free
energy, which manifests itself in this very jump). In Fig. 2.1 we are plotting the situation
exemplarily.

Box 2.3: The Free Energy of Crowdsourcing (Bayes Optimal)

The posterior probability of the dense DS model for crowdsourcing is of the form
(cf. sec. 1.3.4)

P (θ, v | L) =
1

Z(L)

Ÿ

1ÆjÆM

Pv (vj)
Ÿ

1ÆiÆN

Pθ (◊i)
Ÿ

1ÆjÆM, 1ÆiÆN

P (Lij | ◊i, vj) . (2.51)

Consequently the Hamiltonian reads

H (θ, v | L) =

Mÿ

j=1

ln Pv (vj) +

Nÿ

i=1

ln Pθ (◊i) +
ÿ

i,j

ln P (Lij | ◊i, vj) (2.52)

The associated free energy can now be computed with the replica trick. In the most general
setting this was first done in [LKZ17]. We have

Z(L) =

ˆ

dθdvP (θ)P (v)P (L | θ, v) . (2.53)
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The computation becomes easer once we remove a constant from the free energy and
compute Z̃(L) = Z(L)/P (L | 0) instead. The term P (L | 0) only contain parameters
that are related to the channel; it will not contain any contribute any “physics” in terms
of the physical parameters that we will introduce further below. We adapt the notation
from sec. 1.3.4 and write P (L | θ, v) = eg(L,w) with w = θv|/

Ô
N . We also introduce

the shorthand Dx = dxP (x). For positive integer n the replicated partition function then
reads

Z̃(L)n =

ˆ nŸ

a=1

DθaDvae
q

n

a=1
g(L,wa)≠

q
n

a=1
g(L,0) . (2.54)

Next, this equation is averaged over the disorder. Since

P (L) =

ˆ

dθdvP (L | θ, v)P (θ)P (v)

we simply obtain

EL

#
Z̃(L)n

$
=

ˆ

dL

nŸ

a=0

DθaDvae
q

n

a=0
g(L,wa)≠

q
n

a=1
g(L,0) . (2.55)

It is shown in appendix A.6 that an expansion around w = 0 and integration over L yields

EL

#
Z̃(L)n

$
=

ˆ nŸ

a=0

DθaDvae
1
2 (R+ 1

∆ )
q

n

a=0

q

i,j
(θa

i va
j )2+ 1

2∆

q
n

a ”=b
θa

i va
j θb

i vb
j (2.56)

The following order parameters are emerging

qab
θ =

1

N

Nÿ

i=1

θa
i θb

i and qab
v =

1

M

Mÿ

j=1

va
j vb

j . (2.57)

The r.h.s. of (2.56) can be expressed in terms of these order parameters, such that

EL

#
Z̃(L)n

$
=

ˆ

dqθdq̂θdqvdq̂v eNS(qθ,q̂θ,qv,q̂v) . (2.58)

The action, S, is now an intensive quantity, and does not scale with N . In the thermo-
dynamic limit this integral will be dominated by its saddle point, that is, the choice of
{qab

θ , qab
v , q̂ab

θ , q̂ab
v } that extremizes the action. The extremization allows us to eliminate

the auxiliary variables However, it is difficult to find a solution for generic n ◊ n matri-
ces qθ, q̂θ, qv, q̂v. Therefore, it is common to reduce the set of solutions to be replica
symmetric

qab
x =

I

Qx if a = b

qx else .
(2.59)
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It can be shown, that in the Bayes optimal setting such a solution is always correct (cf. Nishi-
mori condition, Box 2.2). As is shown in the appendix, the replica symmetric setting
simplifies the above equations to

Sn(qθ, qv) = ≠α

2

1

∆
n(n + 1)qθqv + ln

5
ˆ

DWdθPθ(θ)

5
ˆ

dθPθ(θ)e≠ α
∆ qvθ2+

Ô
α
∆ qvW θ

6n6

+

+ α ln

5
ˆ

DWdvPv(v)

5
ˆ

dvPv(v)e≠
qθ
∆ v2+

Ô
qθ
∆ W v

6n6

. (2.60)

Where DW = dW exp(≠w2/2)/
Ô

2π is the standard Gaußian measure. This action should
be evaluated in the replica limit, where n æ 0, utilizing the identity (2.38). Finally, the
replica symmetric free entropy reads

φ(qθ, qv) = ≠ α

2∆
qθqv +

ˆ

DWdθPθ(θ) ln

5
ˆ

dθPθ(θ)e≠ α
∆ qvθ2+

Ô
α
∆ qvW θ

6

+

+ α

ˆ

DWdvPv(v) ln

5
ˆ

dvPv(v)e≠ 1
∆ qθv2+

Ô
1
∆ qθW v

6

. (2.61)

2.2.1 Replica Symmetry Breaking

The first correction to the replica symmetric form of Q is the one step replica symmetry
breaking (1RSB). In the 1RSB framework, the matrix Q takes a different form: the off-
diagonal elements are grouped into different groups; the overlap of two replicas from within
one group is different from the overlap among two replicas from different groups. In the
Bayes optimal case we have

qab =

Y

__]

__[

Q if a = b

q0 if a, b in the same group

q1 if a, b in different groups

. (2.62)

This approach can be generalized and the groups can be divided into groups again etc.,
which leads to an ultrametric structure of Q [MPV87].

The breaking of the replica symmetry is deeply related to the concept of pure states
[MPV87]. If the system is not on the Nishimori line, at low temperatures, and when N æ Œ,
the ergodicity of the system may break. Instead of exploring the whole phase space, the
system only explores a “small” part that is separated by extensive barriers from other parts
of the phase space (cf. Fig. 2.2). The phase space breaks into clusters of solutions! Inside
one such cluster ergodicity is restored and the corresponding microstates are said to be in
a pure state. If one were to observe the system, one would not see the Gibbs state, i.e.,
states sampled from the GB measure, but instead one would observe a pure state, trapped
in one of the clusters. The GB measure decomposes into contributions from each cluster
(labeled by α), we write

P (x) =
ÿ

–

w–µ–(x) , (2.63)
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(a)

x

f

Absence of Disorder

(b)

x

f

Presence of Disorder

Figure 2.2: (a) Schematic sketch of a simple free energy landscape, e.g., the ferromagnetic Ising
model below Tc. (b) Schematic sketch of a roughed free energy landscape with many
local minima that are separated by extensive barriers.

with µ–(x) describing the measure within the pure state. Referring to Fig. 2.2 the α corre-
sponds to different minima in the free energy landscape.

For a moment we go back to the physical picture in terms of phase space trajectories from
the very beginning of this chapter. Let the system be prepared in some random initial state
and subsequently let it evolve and relax into “equilibrium”. If this experiment is repeated
many times, and the free energy landscape contains many minima, separated by extensive
barriers, the trajectories will each time get trapped into one of the different minima, α. A
natural order parameter of interest is then the overlap between the magnetizations obtained
in two different pure states, α and —,

q–— =
1

N

Nÿ

i=1

ÈxiÍ–ÈxiÍ— (2.64)

Let us briefly outline how this is related to the replica calculation from the previous section.
Let us assume a CSP on a graph G, the disorder and consider the square magnetization of
the Gibbs state

q
(1)
G =

1

N

Nÿ

i=1

ÈxiÍ2 , (2.65)

Carrying out the averages w.r.t. (2.63) yields

q
(1)
G =

ÿ

–,—

w–w—
1

N

Nÿ

i=1

ÈxiÍ–ÈxiÍ— (2.66)

=
ÿ

–,—

w–w—q–— . (2.67)
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Let us denote the distribution of q–— by

PG(q) =
ÿ

–,—

w–w—δ(q ≠ q–—) . (2.68)

Where the subscript denotes that the distribution of q–— does in principle depends on the

disorder. The equation for q
(1)
G then reduce to the first moment of PG(q). And after averaging

over the disorder

q(1) =

ˆ

dqP (q) q , (2.69)

with P (q) = EG [PG(q)]. At the same time, the analogue replica calculation yields

q(1) =

ˆ

dQeNA[Q] qab for a ”= b . (2.70)

This suggests, that the off-diagonal elements of the replica matrix Q are distributed according
to P (q). In the replica symmetric phase, the different pure states therefore all have the same
overlap among each other. When the replica symmetry is broken the overlap between different
pure states will be ordered into different groups. In the 1RSB framework the function P (q)

will have support on two different values. In the 2RSB framework it will have support on
three values and so on. The fullRSB framework then corresponds to a P (q) having finite
continuous support.

Each cluster/pure state is characterized by the property that long range correlations vanish

at large distance, i.e.,

ÈxixjÍ– ≠ ÈxiÍ–ÈxjÍ–
|i≠j|æŒ≠≠≠≠≠≠æ 0 . (2.71)

This property must not hold within the GB measure:

lim
|i≠j|æŒ

ÈxixjÍ =
ÿ

–

w– lim
|i≠j|æŒ

ÈxixjÍ– =
ÿ

–

w–ÈxiÍ–ÈxjÍ–

”= ÈxiÍÈxjÍ =
ÿ

–

w–ÈxiÍ–

ÿ

–

w–ÈxjÍ– .
(2.72)

A sufficient condition for the failure of a RS solution is that long range correlations decay,
lim|i≠j|æŒÈxixjÍ 9 ÈxiÍ–ÈxjÍ–.

In many diluted systems this condition does not hold and it is required to extend the replica
symmetric version of the cavity method to compute the correct thermodynamic properties
of the system. Formally, such an extension is necessary when the Gibbs measure loses its
extremality [MM09; ZK07]. In such a situation, the extremality can be “restored” by
decomposing the measure as in (2.63) with each cluster contributing with a weight that is
exponential in its free energy [MPV87]

w– =
e≠—Nf–

q

– e≠—Nf–
. (2.73)
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The partition function becomes

Z(—) =
ÿ

–

e≠—Nf– (2.74)

and in analogy to the procedure in Sec. 2.1.2 we replace the summation over the pure states,
by a summation over the characteristic free energy hypersurface

Z(—) ƒ
ˆ

dfΩ(f)e≠—Nf =

ˆ fth

fmin

eN [Σ(f)≠—f ] ƒ eN [Σ(fú)≠—fú] =: e≠—Nftot(—) (2.75)

The complexity, Σ(f) counts the log-number of pure states of free energy f . Depending on
the temperature of the system, the following situations are typically encountered [Zam10]

T > Td: The high temperature phase. It exists a single (typically paramagnetic) state with
free energy fpara that is smaller than f ≠ TΣ(f) for all f œ [fmin, fth]. The GB
measure is therefore dominated by this state. However, other states exist, but they are
not providing any thermodynamically relevant contribution to the measure.

TK Æ T Æ Td: The dynamic glass region. The temperature Td denotes the dynamic tem-
perature at which an ergodicity breaking transition takes place (also known as
dynamical transition or clustering transition). The phase space decomposes into ex-
ponentially many clusters. Σ(fmin) > 0. Yet, the total energy is given by the analytic
continuation of the paramagnetic free energy ftot = fú ≠ TΣ(fú) = fpara. Thus, the
dynamical transition is not a true thermodynamic transition. However, the dynamical
behavior of the system (2.1) changes and no equilibrium distribution will be reached.
This is the point were, e.g., Monte Carlo methods get trapped in one of the pure
states that is separated by extensive barriers from other pure states. The total entropy
is the sum of the internal entropy and the complexity, stot(T ) = sint + Σ(T ). Note
that, although the high temperature free energy is still correct, there is no more single
pure state dominating in this region. Instead, the fact that the free energy analytically
continues is an average property that results from the contribution of the exponentially
many pure states.

T < TK: The static glass region or condensed phase. For temperatures below the Kautz-
mann temperature, TK, the dominating contribution comes from clusters with zero
complexity and minimum free energy, ftot = fú ≠TΣ(fú) = fmin. The total entropy is
thus given by the internal contribution, stot(T ) = sint(T ). The GB measure condenses
over the states with smallest free energy.

We have anticipated these results without any explicit calculations. This is the picture,
established in the study of glassy systems [Zam10; CKP+17] (and it finds its analogies in
constrained satisfaction problems, as will be outlined in Chap. 4). The above transitions
can be extracted from the consideration of the complexity, Σ(f). Therefore let us now
address the question of how to compute Σ(f). To that end one can introduce a reweighting
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parameter m in the partition function that allows to control the average free energy within
clusters, in analogy to (2.8),

Z(m, —) =
ÿ

–

e≠—mNf– . (2.76)

Such that

Z(m, —) =

ˆ

dfeN(Σ(f)≠—mf) =: eΦ(m,—) . (2.77)

Although the original system corresponds to m = 1, it is instructive to study Φ(m, —) for
generic 0 Æ m Æ 1: variation of m allows one to reweight solutions with different free energy.
From this it is possible to extract Σ(f), as is outlined in the following. From the saddle
point evaluation of the above integral one obtains Φ(m, —) as the Legendre transformation
of Σ(f):

Φ(m, —) = max
f

[≠—mf + Σ(f)] = ≠—mfú + Σ(fú) . (2.78)

The free variable is either f or —m. The free energy is then related to Φ(m, —) through

fú(m, —) = ≠ 1

—

ˆΦ(m, —)

ˆm
. (2.79)

And the inversion of the Legendre transformation leads to

Σ(m, —) = —mfú(m, —) + Φ(m, —) . (2.80)

Therefore, if Φ(m, —) can be computed it provides access to fú(m, —) and Σ(m, —). From
the knowledge of these two Σ(f) can be constructed from a parametric plot of f(m, —)

and Σ(m, —). In the next section we turn to the question of how to actually compute
Φ(m, —) for pairwise MRFs.

2.2.2 Free Energies in Sparse Pairwise Markovian Random Fields

Let us give a quick note on the difference between inference and constraint satisfaction

problems. In the natural setting of CSPs the disorder is not generated in the teacher-
student scenario and P (J) ”= q

x exp (—H(x | G)). The exception are planted CSPs [KZ09;
ZK11], that can be understood as inference problems in the teacher-student scenario at zero

temperature. In the sparse graphical models that we are interested in when studying CSPs it
is usually not possible to derive an explicit form of the free energy from the replica method.
There are no apparent order parameters on which the equations can be closed. However, the
physical phenomenology still applies. The equations that one obtains from the evaluation of
the saddle point equations on sparse graphical models are the fixed point equations of the
density evolution equations (1.70) [FLM+13; Mon98].

In order to compute the replicated free energy, Φ(m, —), for a CSP that is defined by the
Hamiltonian H(x | G) it is first necessary to compute the free energy within a pure state.
This can be done in the Bethe approximation. For a pairwise MRF (for which H(x | G) =
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q

(ij)œE H(xi, xj | G)) the Bethe approximation decomposes the partition function into its
node and edge contributions, Zi and Zij respectively,

ΦBethe = ≠—FBethe =
ÿ

iœV
ln Zi ≠

ÿ

(ij)œE
ln Zij . (2.81)

Recalling the message passing equations for a pairwise MRF (1.69), the two contributions
are

Zi =
ÿ

xi

Ÿ

kœˆi

ÿ

xk

Âik (xi, xk) mkæi (xk) (2.82)

Zij =
ÿ

xi,xj

miæj(xi)Âij(xi, xj)mjæi(xj) . (2.83)

The first term adds up the contributions from each node and the second is a correction term
that is due to the fact that, when summing over Zi, one counts the contributions from each
edge twice. The Bethe approximation is exact on tree-like graphs [MM09].

The 1RSB cavity equations, were developed in [MP01; MP03] and deal with weighted
averages over pure states

Piæj(miæj) =
1

Ziæj

ˆ

S

U
Ÿ

kœˆi\j

dmkæiPkæi(mkæi)

T

V (Ziæj)m ” (miæj ≠ F ({mkæi})) ,

(2.84)
where mjæi (xj) = F ({mkæj (xk)}) are BP fixed point equations. In the 1RSB formalism,
the Pkæi(mkæi) are distributions over the distributions mkæi(xk). The “functional fixed
point”, say {Pú(m)}, provides the distribution (averaged over the disorder) of messages that
live on the edges of a graph for a given graph ensemble. Note, that the distributions over
the messages carry a subscript to stress that the depend on the nature of the particular edge.
On random regular graphs, all the edges are similar (in the sense that the neighborhoods of
each edge, up to a distance Θ(log N), are identical).

In practice they can hardly be solved analytically and instead resorts to solve them by
sampling (cf. Sec. 1.3.2). The 1RSB Bethe approximation of the replicated free energy
(2.77) decomposes as before into node and edge contributions, ΦBethe =

q

i ∆Φi≠q

ij ∆Φij ,
with

∆Φi, ij = ≠ 1

—m

ˆ

Ÿ

k

dmkPú
k(mk) (Zi, ij)m . (2.85)

Where Zi and Zij are computed according to (2.83).
We are now able to compute the log partition function for the circular coloring, as well

as the crowdsourcing problem. The other thermodynamical potentials, such as energy and
entropy that are of physical interest, can be accessed through a Legendre transformation.
We will demonstrate this in Chap. 4 for the problem of circular coloring.
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— 3 —

Elements from Random Matrix Theory

This chapter establishes some tools from random matrix theory that will be useful to analyze disordered

systems with spins of extensive size. We focus on the large N limit (the planar limit) and the Coulomb

gas approach. We show how the free energy of the rotationally invariant ensembles can be extracted

by a saddle point evaluation. The saddle point equations lead to a singular integral integration.

The solution to these equations can be obtained in two complementary ways that are outlined and

explained.

At first sight random matrices are nothing but random variables that carry two indices.
For such random matrices one is then interested in the statistics of the eigenvalues and
eigenvectors. The first prominent contribution is due to Wishart [Wis28], who computed
the joined distribution of eigenvalues (and vectors) for matrices of the form XX|, with
xµk ≥ N (0, 1). In physics, random matrices were introduced in nuclear physics to study the
properties of large nuclei that are otherwise too complex to handle. The idea was to treat
such systems not in terms of the properties of a single nucleus, but instead study the typical

properties of an ensemble of nuclei [Wig51], very much in the spirit of statistical physics.
Instead of investigating the energy levels and eigenfunctions of the Hamilton operator of one
specific nucleus,

ĤΨi = EiΨi

one studies the ensemble of all nucleus that belong to a specific ensemble that is determined
by the underlying symmetry class, such as time-reversal invariance. The Hamilton operator
Ĥ then becomes a random object that is drawn from this ensemble and so do the energy
levels (the eigenvalues of Ĥ). This idea was first introduced by Wigner and later elaborated
on by many others [Dys62]. It now finds applications in a vast amount of different fields.
We refer the reader to the great lecture notes [EKR15] for a summary.

A random matrix model for an N ◊ N matrix M œ Ω— is characterized through the
measure P—(M) that acts on the ensemble Ω— . Here we adapted the RMT notation and
indicated with — the ensemble of random matrices; — œ {1, 2, 4} respectively for the orthog-
onal, unitary and symplectic ensembles (we will see below why it makes sense to introduce

65



this notation). We are interested in the class of matrix ensembles that are induced by the
potential, V (M), such that

P—(M) = e≠—TrV (M) , (3.1)

with the partition function

Z— =

ˆ

dMe≠—TrV (M) . (3.2)

The three most prominent examples of this class are the Gaußian (or Wigner) ensembles
with V (M) = MM †/σ (where the † indicates the transpose, Hermitian conjugation and
the quaternion self-dual respectively for — = 1, 2, 4):

• The Gaußian Orthogonal Ensemble (GOE) (— = 1). The matrices M are real and
symmetric. This ensemble applies to systems with even spin, invariant under time
reversal and with a rotational symmetry.

• The Gaußian Unitary Ensemble (GUE) (— = 2), for which the matrices M are complex
and Hermitian. These systems are not time reversal invariant.

• The Gaußian Symplectic Ensemble (GSE) (— = 4), for which the matrices M are again
Hermitian, but they carry quaternions as entries. This ensemble applies to systems with
odd-spin, invariant under time reversal, but with no rotational symmetry.

All these ensembles share the property that there are no correlations among the unique
elements of M and that they can be decomposed as

M = ΩLΩ
† , (3.3)

where Ω is an orthogonal, unitary or symplectic matrix respectively and L is the matrix of
eigenvalues of M .

This decomposition imposes a measure on the eigenvalues and eigenvectors of M

P—(M) dM = P—(ΩLΩ
†) DΩ

Ÿ

i<j

|li ≠ lj |— (dL) . (3.4)

Here DΩ indicates the flat (Haar) measure that is invariant with respect to a translation
with a group element of G(N) œ {O(N), U(N), Sp(N)} [EKR15]. The term

r

i<j |li ≠ lj |
is known as Vandermonde determinant. We see that the only difference among the
ensembles enters through the power of the Vandermonde determinant. If the distribution P—

is invariant with respect to the group action, i.e., P—(ΩLΩ
†) = P—(L), then the partition

function reduced to an integration over the eigenvalues

Z— =

ˆ

dL
Ÿ

i<j

|li ≠ lj |— e≠—TrV (L) . (3.5)
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Figure 3.1: An exemplary realization of the eigenvalue gas for the GOE resulting from a diagonal-
ization of a 20 ◊ 20 Wigner matrix.

3.1 The Planar Limit

In what follows we will only be concerned with real symmetric matrices (i.e. we set — = 1)
and the limit where the size of the matrix is infinitely large: the thermodynamic (or planar)
limit N æ Œ. In random matrix theory this limit is known as planar limit, because the
leading order Feynman diagrams that provide the dominant contributions to the connected
Green’s functions are planar diagrams. In this limit, it is natural to expect that (3.5) may
be accessible by a saddle point evaluation.

First of all, we bring the above in a more amenable form for a physicist: we write

Z =

ˆ NŸ

i=1

dli e≠N2E[{li}], with E[{li}] =
1

N

Nÿ

i=1

V (li) ≠ 1

N2

1

2

ÿ

i”=j

ln |li ≠ lj | . (3.6)

Where we have rescaled the potential in such a way that the energy of the system is an
extensive quantity and the eigenvalues are O(1) and assumed that V (L) =

qN
i=1 V (li).

Consider for example the GOE, in which this rescaling corresponds to elements that have
variance O(1/N). Brought into this form it is possible to extract some physics from the above
equations. Our original system, in which the (unique) matrix elements were all independently
experiencing the potential V , is apparently equivalent to a system of N interacting particles,
each of them moving in the same potential, but this time they are all interacting through
a logarithmic repulsion (cf. Fig. 3.1). This is often referred to as Coulomb gas analogy
because the repulsive term is the same as for a two dimensional Coulomb gas of charged
particles. However, note that we actually have a one dimensional gas and the analogy is
slightly misleading.

For large N and E[{li}] = O(1) the Gas will settle in the most probable configuration
that minimizes the energy and the integral in (3.6) can be evaluated by the saddle point
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method
∂E

∂li

!
= 0 ∆ V Õ(li) =

1

N

Nÿ

j=1
j ”=i

1

li ≠ lj
’i = {1, . . . , N} . (3.7)

The saddle point condition leads to a equilibrium between the forces acting from the external
potential (l.h.s.) and the interactions (r.h.s.). In order to solve these equations it is useful
to transition to the continuous limit of the above equations. In the thermodynamic limit
the eigenvalues will eventually approach a continuous limit and it is natural to introduce the
eigenvalue (or spectral) density

flM (⁄) := lim
NæŒ

EM

C

1

N

Nÿ

i=1

” (⁄ ≠ li)

D

. (3.8)

Typically we drop the subscript of flM , if it is clear from the context.
Before it is possible to move on to solve the saddle point equations, it is necessary to

introduce some useful transforms from random matrix theory. For an arbitrary z œ C the
normalized trace of the resolvent is defined as

gN
M (z) :=

1

N
Tr(z1 ≠ M)≠1 =

1

N

Nÿ

i=1

1

z ≠ li
. (3.9)

We simply refer to it as resolvent and may drop the subscript that indicates the matrix
of interest, if there is no danger of confusion. We see that the resolvent is a nice function
everywhere in C, except at the points where z coincides with one of the eigenvalues of
M , where it has poles. Indeed, it contains all the information about the eigenvalues of M

in its poles. For physicists the resolvent is also known as two-point Green’s function and
the N æ Œ limit is commonly known as Stieltjes or Cauchy transform:

gM (z) := lim
NæŒ

gN
M (z) =

ˆ

d⁄
flM (⁄)

z ≠ ⁄
. (3.10)

The resolvent enjoys the following properties [BIPZ78]:

1) It is analytic in the whole complex plane except from the cuts along supp(flM ).

2) It behaves as z≠1 for |z| æ Œ.

3) It is real for z œ R\supp(flM ).

4) It has a jump when approaching the support of flM from above/below:

lim
÷æ0+

gM (x ± i ÷) = hM (x) û i fiflM (x) for x œ supp(flM ) , (3.11)

with hM (x) denoting the Hilbert transform of flM (x).
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The first point is a consequence of the definition. The second follows from the normalization
of the eigenvalue density and expanding the integral for large z. Point three is also obvious.
Finally, the last, and most important point is not immediately obvious: it tells us that we can
extract the eigenvalue density of M from the imaginary part of the gM (z) on approaching
the support of flM (⁄), which is known as Sokhotski formula:

g(x ≠ i 0) ≠ g(x + i 0) = 2fi i fl(x) . (3.12)

Having defined the resolvent and its analytic properties, we are ready to outline the approach
of [BIPZ78] to solve the saddle point equations.

3.2 Solving the Saddle Point Equations

Let us now outline how to solve the saddle point equations. In this section we outline two
different methods that lead to a solution of the continuous saddle point equations

V Õ(⁄) =

 

d⁄Õ fl(⁄Õ)
⁄ ≠ ⁄Õ . (3.13)

The integral is a principal value integral, because the O(1) contribution of the r.h.s. in (3.7)
is contributed by the few eigenvalues that are close by. We are aware of two different
approach to the inversion of the above singular integral equation. In an approach due to
Brézin, Itzykson, Parisi and Zuber [BIPZ78] (BIPZ) one solves the problem by passing into
the complex plane and exploiting general properties of analytic functions. Another approach
is to invert the equations directly (once one has taken the continuous limit) by means of
Tricomi’s theorem [Tri85; Gak90; MR08].

3.2.1 The BIPZ Approach

In the BIPZ approach one starts from (3.7) and introduces the resolvent by multiplication
of both sides of (3.7) with N≠1(z ≠ li)

≠1 and summing over all i:

1

N

Nÿ

i=1

V Õ(li)
z ≠ li

=
1

N2

ÿ

i”=j

1

(z ≠ li)(li ≠ lj)
. (3.14)

These equations can be rewritten, which leads to a quadratic equation for g(z):

g2(z) ≠ 2V Õ(z)g(z) +
2

N

Nÿ

i=1

V Õ(z) ≠ V Õ(li)
z ≠ li

= 0 . (3.15)

In principle one can now solve the above equations for g(z). Let us introduce the term

P (z) :=
1

N

Nÿ

i=1

V Õ(z) ≠ V Õ(li)
z ≠ li

(3.16)
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and solve the equations (3.15) for g(z), which leads to

g(z) = V Õ(z) ±
Ò

V Õ(z)2 ≠ 2P (z) . (3.17)

However, a difficulty remains: it appears necessary to evaluate the term P (z) in the
limit N æ Œ in order to get a useful explicit expression. However, one can circumvent
this issue by exploiting some generic properties of the functions involved: let us assume that
V Õ(z) can be expressed as a Laurent polynomial of degree d and order l, and that fl(x)

support on [a, b], then

g(z) = V Õ(z) ≠ Q(z)
Ò

(z ≠ a)(z ≠ b) . (3.18)

with Q(z) a Laurent polynomial of degree d ≠ 1 and order l:

Q(z) =
dÿ

k=≠l

ckzk . (3.19)

It seems like it is necessary to know the explicit form of the term (3.16) in order to extract
the eigenvalue density from the (3.18) via the Sokhotski formula. However, this is not the
case, because the coefficients of Q(z), as well as a and b, can be extracted from the the
requirements that g(z) must obey, namely that g(z) æ z≠1 for large z.1

3.2.2 The Boundary Value Approach

In the boundary value approach, one starts from the continuous version of the saddle point
equations (3.13). This singular integral equation (3.13) for fl(⁄) can be inverted directly
[MR08; Gak90; Tri85]. The solution basically depends on whether or not the solution is
bounded at its ends. The most general inversion formula reads [Tri85]

fl(⁄) =
1



(⁄ ≠ a)(b ≠ ⁄)

S

W
U

1

fi2

b
 

a

d⁄Õ
Ò

(⁄Õ ≠ a)(b ≠ ⁄Õ)
V Õ(⁄Õ)
⁄ ≠ ⁄Õ + a0

T

X
V . (3.20)

Depending on the result of the integral and the constant a0, the formula allows for a solution
(i) unbounded at both ends, (ii) bounded at one of the two ends and (iii) bounded at both
ends. The free constants must be obtained from the constraints that are imposed on fl(⁄)

(symmetries, normalization,. . . ). If it is known that the solution is bounded at the end a

and unbounded at the end b the solution reduces to [Gak90]

fl(⁄) =
1

fi2

Û

⁄ ≠ a

b ≠ ⁄

b
 

a

Û

b ≠ ⁄Õ

⁄Õ ≠ a

V Õ(⁄Õ)
⁄ ≠ ⁄Õ . (3.21)

1This condition is not always sufficient to obtain all free parameters. In that case one must employ additional

constraints that g(z) must obey.
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Similarly, a solution bounded at the two ends, a and b, reads

fl(⁄) =
1

fi2

Ò

(⁄ ≠ a)(b ≠ ⁄)

b
 

a

d⁄Õ V Õ(⁄Õ)


(⁄Õ ≠ a)(b ≠ ⁄Õ)(⁄ ≠ ⁄Õ)
(3.22)

and must obey the additional condition

ˆ b

a
d⁄Õ V Õ(⁄Õ)



(⁄Õ ≠ a)(b ≠ ⁄Õ)
!

= 0 . (3.23)

As an example of the methods and ideas introduced, we conclude the chapter with the
Gaußian orthogonal ensemble as an example in Box 3.1.

Box 3.1: The Macroscopic Limit of the Gaußian Ensemble The GOE is the ensemble

of real symmetric N ◊ N matrices M with Emij = 0 and Em2
ij = (1 + ”ij)‡2/N , such

that
P (M) Ã e≠ N

2σ2 TrMM|

.

This is evidently orthogonally invariant as TrMM| = TrOLO|OLO| = TrL2. In the
notion of (3.6), this leads to a potential of the form

V (x) =
x2

4‡2
.

The saddle point equations, in their continuous version, become

⁄

2‡2
=

 

d⁄Õ fl(⁄Õ)

⁄ ≠ ⁄Õ
.

From the shape of the potential (cf. 3.1) it is quite clear that we should expect the eigenvalue
density to have a single support.

We first solve the saddle point equations in the BIPZ approach. The derivative of the
potential is a regular polynom of degree one and thus we assume Q(z) = c0. It remains
to fix the free parameters, c0, a, b, by the asymptotic constraint that g(z) æ z≠1. An
asymptotic expansion of (3.18), with Q(z) = c0, leads to

g(z)
|z|æŒ

=

3
1

2‡2
≠ c0

4

z +
c0

2
(a + b) +

c0

8
(a ≠ b)2 1

z
+ O(

1

z2
) .

We require g(z) æ z≠1, which implies

c0 =
1

2‡2
,

c0

2
(a + b) = 0 ,

c0

8
(a ≠ b)2 = 1 .
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The first condition fixes c0, the second implies that a = ≠b (which we must expect from
the symmetry of the potential) and the last equation yields b = ≠a = 2σ. In summary, we
obtain

g(z) =
z ≠

Ô
z2 ≠ 4σ2

2σ2
.

From which we can extract the eigenvalue density by Sokhotski’s formula

fl(⁄) =

Ô
4‡2 ≠ ⁄2

2fi‡2
.

Next, we approach the same problem by direct inversion. From the shape of the potential
we clearly require the solution to be bounded at both ends and employ the equations (3.22)
and (3.23) and solve the integral

b
 

a

d⁄Õ V Õ(⁄Õ)


(⁄Õ ≠ a)(b ≠ ⁄Õ)(⁄ ≠ ⁄Õ)
=

1

2‡2

b
 

a

d⁄Õ ⁄Õ



(⁄Õ ≠ a)(b ≠ ⁄Õ)

1

(⁄ ≠ ⁄Õ)
.

This can be done by drawing the contour around the cut [a, b] and deforming the contour
such that it approaches the cut. This integral can be evaluated through its residuum at
infinity. This contour integral is equal to two times the above integral because the square
root switches sign when the contour goes from one side of the cut to the other. We obtain

b
 

a

d⁄Õ ⁄Õ



(⁄Õ ≠ a)(b ≠ ⁄Õ)

1

(⁄ ≠ ⁄Õ)
= fi

and thus

fl(⁄) =
1

2fi‡2



(⁄ ≠ a)(b ≠ ⁄) .

Next, it is necessary to invoke (3.23), which leads to what we already know from the
intrinsic symmetry:

fi

2
(a + b) = 0 ∆ a = ≠b .

Finally, we are left with one last free parameter, a, that we can fix by imposing the normal-
ization of the eigenvalue density:

ˆ ≠a

a

d⁄fl(⁄)
!
= 1 ∆ a2

4‡2
= 1 .

We are pleased to find back

fl(⁄) =

Ô
4‡2 ≠ ⁄2

2fi‡2
.
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Part II

Applications and Contributions





— 4 —

Circular Coloring

The CCOL problem was introduced in the course of chapter 1 as an example of a CSP. Our work on

this problem inscribes in a line of other works that apply the tools and ideas from spin glass theory

to study the typical (average case) properties of CSPs.

My main contribution comprises in the 1RSB analysis of the problem. It revealed that CCOL

exhibits several interesting features, not common to other discrete CSPs. Further more it establishes

a conjecture by Neöetřil about the 5-CCOLorability of sub-cubic graphs, from a statistical physics

point of view.

This chapter is organized as follows. After a short introduction of the problem, the RS and 1RSB

cavity method are outlined. The different zero temperature limits, necessary to study the satisfiability

of the problem, are subsequently introduced and results for random regular graphs are presented. In

the context of 5-CCOLorability of sub-cubic graphs, it will be necessary to consider the entropic zero

temperature limit in Sec. 4.5.4. Subsequently the 1RSB stability of this particular case is considered.

The results of the stability analysis will lead us to some algorithmic considerations of the problem,

that will be presented in the very end of the chapter.

Although the problem was already introduced, as an example in Sec. 1.3.1, we briefly recall
the definition and draw the line to the canonical coloring problem. Whereas in the canonical
coloring two nodes of a graph that are connected by an edge are required to have different
colors, in circular coloring the colors are ordered into a circle, and two adjacent nodes are
required to have two adjacent colors (compare Fig. 1.7 and Fig. 1.7).

To define circular coloring (CCOL) consider a graph G = (V, E) where each node i œ
V ={1, . . . , N} can attain the discrete values (colors) xi œ {1, 2, . . . , q} and two nodes (i, j)

are connected if (i, j) œ E . We denote j as a neighbor of i, j œ ∂i, if (i, j) œ E . Then the
graph is q-circular colorable if and only if there exists an assignment of q colors to the nodes
such that, if a node i œ V is of color xi, then all nodes j œ ∂i are of color xj œ {xi≠1, xi+1}
modulo q.

Note that for q = 2 and q = 3 there is no difference between the canonical and circular
coloring. Hence all the works on canonical coloring apply. For this reason only q > 3 (and
mostly odd q, see below) will be considered. Note further that CCOL with an even number of
colors is closely related to 2-coloring. The minimum number of edges that must be violated
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in 2z-circular coloring of a given graph is the same for every z = 1, 2, 3, . . . . On the one
hand, consider an assignment of 2 colors that minimizes the number of violated edges for
2-coloring, then the same number of violated edges is achievable also for 2z-circular coloring
for any integer z (we simply use only 2 of the 2z colors). On the other hand, if a graph
is 2z-circular colorable with a given number of violated edges for some integer z then it is
also 2-colorable with less or equal number of violated edges because every odd color can be
replaced by the first one and every even color by the second one. Therefore the ground state
of q-circular coloring is the same for every q even.

4.1 Context in Mathematics

CCOL belongs to a larger class of problems that generalizes the canonical graph coloring
problem and is often explained using graph homomorphisms, objects of more general interest
in mathematics. Given graphs G = (V, E) and GÕ = (V Õ, E Õ), a homomorphism is any
mapping f : V æ V Õ which satisfies (ij) œ E ∆ (f(i)f(j)) œ E Õ. The existence of a coloring
of a graph G = (V, E) with q colors is hence equivalent to an existence of a homomorphism
of that graph onto a complete graph on q nodes. CCOL is equivalent to a homomorphism
onto a cycle of q nodes. Clearly, all the other possibilities for the graph GÕ are of interest in
mathematics.

Conjecture 4.1 (Pentagon Problem [Neö13]). There exists an integer l with the following

property: If G is a subcubic graph (i.e. every vertex has degree Æ 3) with girth Ø l then

G æ C5.

Neöetřil’s Pentagon Conjecture states that all graphs of maximum degree three without
short cycles are 5-circular colorable. This conjecture is inspired by the aim to generalize
classical results known for coloring, for instance that every graph with maximum degree 3 is
3-colorable unless it contains a complete graph of 4 nodes [Bro41].

A series of mathematical works established that there are sub-cubic graphs with large
girth that are not q-circular colorable for q Ø 7 [KNS01; WW01; Hat05]. These proofs
show that a random 3-regular graph is not q-circular colorable for q Ø 7 using variants of
the first moment method. Therefore, q = 5 is the remaining open case for colorability of
sub-cubic graphs. The use of random graphs in the proofs [WW01; Hat05] is an important
motivation to study the behavior of 5-circular coloring on the same class of graphs. The
existing powerful, non-rigorous techniques, from statistical physics, can easily be adapted
to study CCOLs on random graphs. CCOL of particular graphs or deterministic classes of
graphs is well studied, for a recent review we refer to [Zhu06].1 Concerning CCOL on random
graphs not much is known, apart from [WW01; Hat05].

1 In the paper by Zhu, the following definition of CCOL is employed. For two integers 1 ≤ r ≤ q, a

(q, r)-coloring of a graph G is a coloring x of the vertices of G with colors {0, 1, 2, . . . , q − 1} such that

(ij) ∈ E(G) ⇒ r ≤ |xi − xj | ≤ q − r. The circular chromatic number is defined as χc(G) = inf{k =

d : there is a (r, q) − coloring of G}. This is related to our definition by setting q − 2d = 1, such that

d ≤ |xi − xj | ≤ d + 1. For odd q this coincides with our CCOL definition.
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Figure 4.1: Schematic phase diagram in the temperature, T , vs. average degree, c, plane. The dashed
and solid blue lines mark the dynamical and Kautzmann temperatures respectively, as
discussed in 2.2.1. Their intersection point at zero temperature with the c-axis marks
the respective zero transition points cd and cK. The SAT/UNSAT (or COL/UNCOL)
transition is denoted cs. It is the point where no more zero energy groundstate configu-
rations exist. The array of pictures depicts a figurative way of the three transition points
in terms of the clusters of solutions at zero temperature.

From the known mathematical results the most remarkable one is perhaps the one of
[Hat05] that established the non-colorability for 7-circular coloring of random 3-regular
graphs. A simple calculation of the expected number of proper circular colorings where every
color is present on the same number of nodes shows that the vanilla 1st moment method is
not sufficient to show that 3-regular graphs are with high probability not 7-circular colorable.
This suggest that something non-trivial is happening for 7-circular coloring of random 3-
regular graphs. And the upper bound established by [Hat05] is non-trivial along the lines of
the upper bound of [Coj13] for coloring.

4.2 Context in Physics

The contributions presented in this chapter inscribes in a line of work where statistical physics
methods, developed in the field of spin glasses [MPV87; MM09], are applied to study random
instances of constraint satisfaction problems. The most well known works in this direction are
those of random graph coloring and random K-satisfiability [MPZ02; MPWZ02; KMR+07;
ZK07]. The success of these previous investigations and the subsequent spark of rigorous
results [CZ12; BCH+16; CP16] motivated the extension of these investigations to CCOL.

In the course of chapter 2 we have outlined the typical phase space picture, found in spin
glass systems: when the temperature is decreased, the phase space decomposes into clusters
of pure states at the dynamical temperature Td. Cooling the system further down, the GB
measure condenses on the largest of these clusters with smallest free energy at the Kautzmann
temperature, TK. On the other hand, investigating the satisfiability of CSPs corresponds to
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the minimum of (1.53), which, in turn, is the zero temperature limit of the GB measure,
lim—æŒ e≠—H(x). Finding satisfiable CCOL assignments on a random instance becomes
harder when (a) the average degree increases and (b) the number of colors increases. At
zero temperature, the average degree of the underlying graph, c, plays the role of an inverse
temperature. Bringing this together with the above spin glass picture of the phase space,
one would expect a T ≠ c phase diagram as in Fig. 4.1, which is indeed the rough behavior
found in K-SAT and canonical coloring [MM09; ZK07].2 In light of the Pentagon Problem,
we will be mostly interested in the satisfiability threshold. The point where the ground state
energy becomes larger than zero.

4.3 Cavity Method for Circular Coloring

The cavity method, as developed in [MP01; MP03] and presented in Sec. 1.3.2 of this thesis,
can be applied to the CCOL Hamiltonian

H(x) =
ÿ

(i,j)œE
H(xi, xj) =

ÿ

(i,j)œE
(1 ≠ δxi,xj≠1 ≠ δxi,xj+1) , (4.1)

where the algebra in the indices is modulo q.

4.3.1 Replica symmetric solution

It was shown in Box 1.3 that for q > 2 the BP equations for CCOL, at generic (inverse)
temperature, — = 1/T , read (after a slight lightening of the notation)

miæj
xi

= F({mkæi}) :=
1

Ziæj

Ÿ

kœˆi\j

[e≠— + (1 ≠ e≠—)(mkæi
xi+1 + mkæi

xi≠1)] . (4.2)

The term multiplied by 1 ≠ e≠— assigns more probability when neighbors have consecutive
colors. Here and in the following, bold messages miæj indicate the whole distribution over
the discrete variables 1 Æ xi Æ q. The Bethe approximation, cf. (2.81), for the free entropy
for CCOL becomes

≠—F =
ÿ

i

log Zi ≠
ÿ

(ij)œE
log Zij

=
ÿ

i

log

S

U

q
ÿ

s=1

Ÿ

kœˆi

[e≠— + (1 ≠ e≠—)(mkæi
s+1 + mkæi

s≠1 )]

T

V

≠
ÿ

(ij)œE
log

C

e≠— + (1 ≠ e≠—)
ÿ

s

miæj
s (mjæi

s+1 + mjæi
s≠1)

D

. (4.3)

2The actual picture is a little more refined, but that has been extensively studied before and won’t be further

discussed here.
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In (4.3) the free entropy is an extensive variables, denoted by capital letters. Subsequently
we will be working with the corresponding densities and denote them by lower case letters,
e.g., ‘ = E/N .

To examine the validity of the RS solution one can investigate when it loses its stability
towards small perturbations in the messages. The high temperature phase is characterized
by the decay of long range correlation, i.e., the clustering property (2.71). The two-point
correlation functions can be related to the leading eigenvalue of the Jacobian,

J·‡ =
ˆm1æ0

·

ˆm2æ1
‡

-
-
-

RS

, (4.4)

by virtue of the fluctuation-dissipation theorem (cf. Appendix C of [Zde09] for a summary).
Here m1æ0

· represents an arbitrary outgoing messages that depends on the incoming mes-
sage m2æ1

‡ . When the leading eigenvalue of (4.4) becomes larger than one, the two point
correlation functions will diverge. This establishes a lower bound on the dynamic/clustering
temperature (respectively an upper bound on c, cf. Fig. 4.1). Note, however, that a 1RSB
solutions with positive complexity may appear before (at higher temperature) the two point
correlations diverge. The clustering property is only a sufficient condition for the existence
of a clustered solution space, not a necessary one. The temperature/(average) degree where
this transition sets in is referred to as linear, local or Kesten-Stigum instability. This is
equivalent to the non-convergence of BP on a single graph. For q Ø 3, the entries of the
Jacobian in terms of the BP messages read

J·‡ = (1 ≠ e≠—) m1æ0
·

I

(”‡,·≠1 + ”‡,·+1)

e≠— + (1 ≠ e≠—)(m2æ1
·≠1 + m2æ1

·+1 )
(4.5)

≠ m1æ0
‡+1

e≠— + (1 ≠ e≠—)(m2æ1
‡ + m2æ1

‡+2 )
≠ m1æ0

‡≠1

e≠— + (1 ≠ e≠—)(m2æ1
‡≠2 + m2æ1

‡ )

J

; (4.6)

The explicit eigenvalues will be given in the results section.

4.3.2 One Step Replica Symmetry Breaking

Anticipating results from the later sections of this chapter, the CCOL problem exhibits replica
symmetry breaking in a broad range of the phase space. In order to take the clustered struc-
ture of the phase space into account, the 1RSB cavity equations (2.84) must be considered.
In the 1RSB framework, each state corresponds to a different fixed point of the BP equa-
tions. The 1RSB equations then deal with weighted averages over all such fixed points and
repeated here for convenience

Piæj(miæj) =
1

Ziæj

ˆ

S

U
Ÿ

kœˆi\j

dmkæiPkæi(mkæi)

T

V ”
1

miæj≠F({mkæi})
2 1

Ziæj
2m

,

(4.7)
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Likewise the thermodynamic quantities must be re-evaluated. For that purpose the repli-

cated free energy Φ(—, m) was introduced in Sec. 2.2.2.

Φ(—, m) = ≠—mf + Σ(f) . (4.8)

The replicated free entropy Φ is the Legendre transformation of Σ. The Bethe approximation
is adopted to compute the 1RSB free energy as outlined in Sec. 2.2.2 and recalled here

ΦBethe =
1

N

Q

a
ÿ

iœV
∆Φi ≠

ÿ

(ij)œE
∆Φij

R

b ,

∆Φi, ij = ≠ 1

—m
ln

ˆ lŸ

a=1

dmaPa(ma) ”
1

m ≠ F({ma})
2 1

Zi, ij
2m

.

(4.9)

Where l is the number of neighbors on which Zi and Zij depend. The 1RSB equations
can be solved efficiently using population dynamics as introduced in [MP01] and detailed
in appendix A.3: Pa(ma) is approximated by a population of messages that is updated
according to (4.7). After convergence, the population {mú} is an approximation of the
true distribution over fixed points P(m). Each element in {mú} corresponds to a different
cluster.

Following the same line of arguments as for the replica symmetric solution, the stability
of the 1RSB solution towards further steps of replica symmetry breaking can be tested.
Small perturbations can occur in the 1RSB solution either in P(m) or in m. In this work
only the second case is investigated and will already suffice to exclude the exactness of the
1RSB framework. A description of this stability analysis was for instance given in [Zde09].
Numerically, one first waits · iterations until the 1RSB equations converged, for a given value
of the re-weighting parameter m, to {mú}. Then the population is duplicated and a small
noise is introduced {mú + ”mú}. Subsequently t further iterations are performed. If both
populations do not converge towards the same fixed point in the limit of many iterations,
the 1RSB solution is said to be unstable. For a given m the convergence can be tracked
by means of the evolution of the noise Qm(t) =

q

{mú}
-
-mú

·+t

-
-. If limtæŒ Qm(t) ”æ 0 the

solution is unstable towards further steps of RSB. The value of m at which the instability
sets in will be denoted by m∆.

4.4 Cavity Method at Zero Temperature

In CCOL the ground state quantities are particularly interesting, as they yield information
about the satisfiability. Therefore the zero temperature limit of the 1RSB equations should
be considered. There are complementary ways to take the zero temperature limit that we
shall now briefly recall.

If one is merely interested in proper assignments for which the total energy is zero one
considers the so-called entropic zero-temperature limit [MPR05; Zde09]. If the per-particle
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energy is zero, ‘ = 0, then the internal free entropy reads

≠—f = s (4.10)

and can be computed via (4.3). With this, and after defining Φs(m) := lim—æŒ Φ(—, m),
the replicated free entropy, (4.8), might be rewritten as

Φs(m) = ms + Σ(s) . (4.11)

The last equation states that the total entropy is composed of the internal entropy within
a cluster and the log number of clusters with this specific internal entropy. The replicated
entropy Φs(m) and hence the number of clusters of size s of proper assignments, Σ(s), can
be computed from (4.9). The remaining free parameter m can be varied in order to access
Σ(s) over the whole range of s.

On the other hand, in the energetic zero temperature limit we take — æ Œ while y := m—

remains finite. In this case the internal free energy equals the internal energy, i.e.,

f = ‘ (4.12)

and from (4.8) one obtains
Φ(y) = ≠y ‘ + Σ(‘) . (4.13)

It’s called energetic zero temperature limit because it allows to compute the actual ground
state energy of the physical system. In this limit the structure of the messages alter consid-
erably as developed in the work of [MP03] and explained below.

4.4.1 Warning Propagation

To realize the energetic zero temperature 1RSB analysis, one starts with the warning propaga-

tion, which is a zero temperature limit of the belief propagation (4.2). The cavity fields hiæj
xi

are introduced as miæj
xi

:= exp(≠—hiæj
xi

) and the sum in the BP equations (4.2) is re-
placed by taking the maximal marginal (the only survivor in this limit), i.e.,

q

xk
æ maxxk

.
Adapting the generic BP equations (1.69) accordingly yields

miæj
xi

= exp(≠—hiæj
xi

) ≥= exp(≠—
ÿ

kœˆi\j

min
xk

[H(xi, xk) + hkæi
xk

])

and therefore, after taking the logarithm, the equations for the fields read

hiæj
xi

=
ÿ

kœˆi\j

min
xk

Ë

H(xi, xk) + hkæi
xk

È

≠ min
xk

hkæi
xk

. (4.14)

The term on the right hand side can be interpreted as a warning (0 or 1) from node k,
incoming to node i; let’s denote it by ukæi

xk
. The sum over the warnings

q

kœˆi\j ukæi
xk

yields
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the cavity field acting on node i, assuming that node j is absent and the above equation
can be re-expressed as

hiæj
· =

ÿ

kœˆi\j

ukæi
· , (4.15)

where the τ th component of u(h1, . . . , h· ) reads

ũ· (h1, . . . , hq) = min (h1 + 1, . . . , h·≠2 + 1, h·≠1, h· + 1, h·+1, h·+2 + 1, . . . , hq + 1)

≠ ω(h1, . . . , hq) .

(4.16)

with
ω(h1, . . . , hq) = min (h1, h2, . . . , hq≠1, hq) , (4.17)

assuring that uiæj
xk

œ {0, 1}. Identifying a contradiction, or energy shift, along the directed
edge i æ j as an assignment of xi such that H(xi, xj) = 1. Then a contradiction is related
to uiæj

xi
= 1. Contrarily, if uiæj

xi
= 0 no contradiction is caused by the assignment. The τ th

component of the field hiæj is therefore related to the number of contradictions along all
incoming edges caused by assigning color τ to node i if the edge j is absent. Accordingly, an
energy shift can be assigned to a single node: this is the number of contradictions from all

incoming edges. Subsequently q-component vectors will be denoted by bold symbols h :=

(h1, h2, . . . , hq) to simplify the notation.

4.4.2 Survey Propagation (SP)

The reasoning of [BMP+03] was generic enough to be applied to CCOL as well (up to the
point where the list of relevant warnings is explicated). This is because all the information
on the Hamiltonian is absorbed in ω(h). Therefore the 1RSB equation (4.7) reads (up to a
normalization, recalling y = m—)

Piæj(h) ≥=
ˆ

Ÿ

kœˆi\j

dukQkæi(uk) ”

Q

ah ≠
ÿ

kœˆi\j

uk

R

b exp

S

U≠y Ê

Q

a
ÿ

kœˆi\j

uk

R

b

T

V , (4.18)

Qiæj(u) =

ˆ

dhPiæj(h) ” (u ≠ ũ(h)) . (4.19)

The above equations are referred to as the SP-y solution, or as the energetic zero temperature
limit of the cavity solution.

At this point another limit can be taken, namely y æ Œ, which prohibits any kind of
contradiction as only those local fields h =

q

k uk contribute in (4.18) that contain at least
one zero component, i.e., no contradiction. This is due to the reweighting term exp [≠yÊ(h)]

that, in this limit, only contributes when the energy is zero. The resulting equations are known
as survey propagation. In this limit we can characterize the distributions over the warnings
Q(u) by the set of parameters {÷} that are associated with the different possible warnings
{u}. For each distinct warning u(i) we have ÷(i) = Q(u(i)). In other words, solving the
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equations (4.18) and (4.19) amounts to finding the equivalence classes [h]i that map onto
the warning u(i), i.e., [h]i = {h œ {h} | ũ(h) = u(i)}. This can be written in a recursion for
the parameters η(i), where (i) indicates the ith equivalence class and i runs over all integers
from 0 to |{u}| ≠ 1 and π({i}) denotes the set of all possible permutations over the set of
the indicators of the equivalence classes.

η
(–)
iæj

≥=
ÿ

fi({–k})

I

Q

a
ÿ

kœˆi\j

u
(–k)
k œ [h]–

R

b
Ÿ

kœˆi\j

η
(–k)
kæi . (4.20)

In contrast to previously studied cases of the survey propagation equations, e.g. [BMZ05;
MPWZ02], the equations (4.20) have a rather complicated structure due to the diverse cases
that are to be distinguished. Unlike regular coloring, CCOL is much stronger constrained:
if one fixes the color of one node to s, all nearest neighbors must take either of the two
colors s ≠ 1 or s + 1, second-nearest neighbors are restricted to s, s ≠ 2 and s + 2 and
so forth. In fact up to k(q)-nearest neighbors are restricted. Exemplary: for q = 5 we
have k = 3. Consequently the closure of (4.20) is much more involved and we could obtain
no explicit formula for the generic case. This difference is further illustrated by studying the
structure of the warnings u and fields h for the 5-circular coloring on 3-regular graphs in
section 4.4.3. But even if the closed form is unknown, the equations can either be generated
numerically in an exhaustive approach, or they can simply be solved by computing (4.18)
and (4.19) in the limit y æ Œ with the population dynamics algorithm (cf. Appendix A.3).

When aiming to close the equations on u, it is necessary to find the mapping of incoming
fields to the outgoing warnings and identify all fields that cause the same response in (4.16).
Without loss of generality, we can identify min(h) with harg min(h) = 0 and all other com-
ponents i ”= arg min(h) with hi = 1 because they cause the same respond in (4.16). After
this identification we must, in general, still distinguish |{h}| = 2q fields.

Let’s assume that the rotational and reflectional symmetry of q-circular coloring is not
broken below a certain point qsym(d) – where d denotes the degree. For q < qsym(d) we
can take advantage of this symmetry and |{h}| < 2q cases must be distinguished for the
incoming fields. When we count the different fields and warnings it is understood that, e.g.,
(h1, 0, 0, 0, 0) and (0, 0, h3, 0, 0), with h1 not necessarily equal to h3, is counted only once.
The distinguished cases |{h}| are then obtained by counting in how many different ways q

beads can be circularly connected when each bead is of either of two colors and rotations
and reflections of this circular string are regarded as equivalent. These objects are known as
bracelets in combinatorics and they are counted by

|{h}| =
1

2q

ÿ

t|q
φ(t) 2

q
t +

Y

]

[

2
q≠1

2 q odd

3 · 2
q
2

≠2 q even
.

where the sum goes over all divisors of q and φ(t) is Euler’s Totient function that counts
how many integers are smaller or equal to t and share no common positive divisors with t,
except 1. Since (4.16) introduces a non-injective surjection on {h}, it is more involved to
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q |{h}| |{u}|
3 3 2

4 5 2

5 7 4

6 12 6

7 17 8

8 29 13

9 45 17

10 77 26

11 125 36

12 223 56

13 379 82

14 686 128

Table 4.1: The cardinality of the set of all possible fields and warnings in the paramagnetic phase
where vectors that are equivalent under the group actions of rotation and reflection are
only counted once.

count the cardinality of {u} under consideration of the symmetry. However, it is simple to
provide the first few values of the sequence from numerical evaluation, done in table 4.1.

Note that this is intrinsically different from e.g. regular coloring where, after taking into
account the permutation symmetry, only two generic cases must be distinguished: the case in
which h possesses a unique minimum, causing u = ê· , where ê· is a unit vector in direction τ ,
and the case in which the minimum is degenerate, causing u = 0. Such a simplification is
not possible for CCOL and, per se, |{u}| generic cases must be distinguished (following this
section we will give a concrete example to illustrate the difference). Within the framework
of CCOL it is therefore sensible to slightly modify the notation of what is known as frozen

variables in other constraint satisfaction problems (CSPs), such as generic coloring or K-SAT.
In previously considered CSPs the variables could either be trivial or point into one of the q

possible directions ê· . As we have just seen in this section, this is no longer the case in
CCOL. Instead of frozen variables the term confined variables is therefore introduced in order
to emphasis this different nature.

4.4.3 Example of Survey Propagation for Five-Circular Coloring

In this section we consider the survey propagation equations of the example of 5-circular
coloring of 3-regular graphs, in this case we can obtain explicit survey propagation equa-
tions. For this example we shall confirm in Sec. 4.5.3 that the symmetry under rotation and
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h u

(0, 0, 0, 0, 0)

(h1, 0, 0, 0, 0)

(h1, h2, 0, 0, 0)

æ u(0) = (0, 0, 0, 0, 0)

(h1, h2, h3, 0, 0)

(h1, 0, h3, 0, 0)
æ u(1) = (0, 1, 0, 0, 0)

(h1, h2, h3, h4, 0) æ u(2) = (0, 1, 1, 0, 1)

(h1, h2, 0, h4, 0) æ u(3) = (0, 0, 1, 0, 1)

Table 4.2: All possible non-contradictory incoming fields h, i.e. all those fields that contain at
least one zero component, and their corresponding outgoing warnings u (up to relevant
symmetry).

reflection is not broken.

First we derive the set of warnings. Assume that no neighbor imposes any constraint
on node i, i.e., h = (0, 0, 0, 0, 0), then the outgoing warning yields u(0) = (0, 0, 0, 0, 0).
Similarly, if the neighbors of i constrain one color only, say xi = 1 then h = (h1, 0, 0, 0, 0)

(with h1 > 0) yielding u(0) again. The last case that yields this “zero” warning would be
h = (h1, h2, 0, 0, 0). Proceeding in the same fashion, one might check all possible fields {h}.
The according mapping from h to u can, again up to the intrinsic symmetry, be found in
table 4.2.

Conversely the warnings map to the fields in a more tedious manner. Assuming
d = 3 and labeling the two incoming edges as “left” and “right”. One might obtain u(0)

by combining the two incoming warnings u(0) and u(0). Note that there is only one such
combination because of the symmetry under exchanging left ⌦ right. Another way to
obtain u(0) is by combining u(0) from the left with u(1) from the right and vice versa (no
symmetry w.r.t. left ⌦ right). The last possible combination would then be u(1), incoming
from one of the two edges and u(1) from the remaining edge, such that either (h1, 0, 0, 0, 0)

or (h1, h2, 0, 0, 0) is obtained, i.e., there are 3 such combinations. For the last three cases we
must also take into account the five possible rotations. We summarize this in the following
table.

85



left right left ⌦ right

u(0) = (0, 0, 0, 0, 0) u(0) = (0, 0, 0, 0, 0) yes η(0)η(0)

u(0) = (0, 0, 0, 0, 0) u(1) = (1, 0, 0, 0, 0) + rot no 5 · 2η(0)η(1)

u(1) = (1, 0, 0, 0, 0) u(1) = (1, 0, 0, 0, 0) + rot yes 5 · η(1)η(1)

u(1) = (1, 0, 0, 0, 0) u(1) = (0, 1, 0, 0, 0) + rot no 5 · 2η(1)η(1)

Providing another example, namely the one on u(2), one has the following possible combi-
nations

left right left ⌦ right

u(2) = (1, 1, 0, 1, 0) u(1) = (0, 0, 1, 0, 0) no 2η(1)η(2)

u(2) = (1, 0, 1, 1, 0) u(1) = (0, 1, 0, 0, 0) no 2η(1)η(2)

u(2) = (1, 0, 1, 1, 0) u(2) = (1, 1, 0, 1, 0) no 2η(2)η(2)

u(2) = (1, 0, 1, 1, 0) u(3) = (0, 1, 0, 1, 0) no 2η(2)η(3)

u(2) = (1, 1, 0, 1, 0) u(3) = (1, 0, 1, 0, 0) no 2η(2)η(3)

u(3) = (1, 0, 1, 0, 0) u(3) = (0, 1, 0, 1, 0) no 2η(3)η(3)

Proceeding in the same fashion for u(1) and u(3) we end up with an explicit form of the
survey propagation equations (4.20) for 5-circular coloring of random 3-regular graphs

η(0) ≥= η(0)η(0) + 5 · 2 · η(0)η(1) + 5 · 3 · η(1)η(1)

η(1) ≥= 2 · η(0)η(3) + 2 · η(1)η(1) + 6 · η(1)η(3) + 2 · η(3)η(3)

η(2) ≥= 4 · η(1)η(2) + 2 · η(2)η(2) + 4 · η(2)η(3) + 2 · η(3)η(3)

η(3) ≥= 2 · η(0)η(2) + 6 · η(1)η(2) + 4 · η(1)η(3) + η(2)η(2) + 4 · η(2)η(3) + 2 · η(3)η(3) ,

where the right- and left hand sides indicate iteration k and k + 1 respectively. Again,
assuming the symmetry, the normalization is given as η(0) + q · q

i η(i).

4.5 Results for Random Regular Graphs

We present the results for regular random graphs. Since every node has the same degree.
The neighborhood of almost every node in regular random graphs looks the same up to
a distance Θ(log N), we therefore assume that the cavity message is the same for every
node/edge. This simplifies considerably the numerical analysis of the corresponding fixed
point equations.

4.5.1 Replica Symmetric Phase Diagram

In this section we investigate the solution of the replica symmetric BP equations on random
d-regular graphs. In this case the message on every edge is equal and a physical solution
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positive eigenvalue of the matrix T is smaller than one. The negative eigenvalues of T
indicate an anti-ferromagnetic instability which appears on trees and other bipartite graphs,
but that is unphysical on random graphs, therefore the negative eigenvalues do not lead to
a physical instability.

For the paramagnetic fixed point, with m· = 1/q, the matrix T is a circulant matrix and
the non-zero eigenvalues νj read

νj = (d ≠ 1)
2

q

1 ≠ e≠—

e≠— + (1 ≠ e≠—)2
q

cos
2πj

q
, j = 1, . . . , q ≠ 1 . (4.24)

The largest positive eigenvalue is ν1, the paramagnetic phase is stable if and only if ν1 < 1.
At zero temperature — æ Œ the degree of the graph needs to be larger than d > dF where

dRS
F (q) = 1 + 1/ cos(2fi/q) (4.25)

for the ferromagnetic instability to appear. Analogously we will call qRS
F (d) the largest value of

q for which the replica symmetric calculations predicts existence of the ferromagnetic phase.
When this condition is satisfied the paramagnetic solution becomes unstable towards the
ferromagnet for temperatures lower than the so-called paramagnetic spinodal temperature

TSP = 1/ ln

S

U1 +
q

2
1

(d ≠ 1) cos 2fi
q ≠ 1

2

T

V . (4.26)

For random 3-regular graphs we computed the detailed replica symmetric phase diagram
as a function of the number of colors, q, and temperature, T , depicted in Fig. 4.3. In
terms of the number of colors, q, there are three different regimes in the replica symmetric
results. For q < 7 the only solution for all temperatures is the paramagnetic one. In the
intermediate regime for 7 Æ q Æ 18 a second order phase transition at Tc = TSP separates
the ferromagnetic phase (where the ferromagnetic solution is the only stable one) from the
paramagnetic phase (where the paramagnetic solution is the only stable one). Eventually
for q > 18 the transition becomes first order: the ferro- and paramagnetic phases coexist
for an interval of temperatures TSP < T < TSF. In this regime of phase coexistence
the thermodynamically correct solution is the one with smallest free energy. For T < Tc

the ferromagnetic free energy is smaller than the paramagnetic one and hence favorable.
At T = Tc the two free energies are crossing and for TSF > T > Tc both states still co-exist,
but now the free energy of the paramagnetic state is smaller and therefore favorable.

The existence of the ferromagnetic phase can be understood intuitively. For a large number
of colors it is very unlikely that two random colors will be adjacent, hence the problem is
much more constrained than with fewer colors. The energetic gain from using only few colors
that are close to each other on the cycle is overwhelming the entropic gain from using many
colors for low enough temperature. In Sec. 4 it was shown that CCOL with even q can be
reduced to q = 2. Interestingly, the replica symmetric investigation does not reproduce this
fact.
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4.5.2 Spin-Glass Instability

In order to investigate the spin-glass stability the Jacobian (4.6) must be considered and
its leading eigenvalues must be computed. For the paramagnetic fixed-point the matrix is
circulant and the computation can be done analytically. There are only two kind of entries:

J·‡ =

Y

_]

_[

(1
q ≠ 2

q2 ) 1≠e≠—

e≠—+(1≠e≠—) 2
q

if σ = τ ± 1 mod q

≠ 2
q2

1≠e≠—

e≠—+(1≠e≠—) 2
q

else
(4.27)

and we obtain the following eigenvalues

λj =

Y

_]

_[

0 j = 0
cos

!
2fi
q

j
"

1+ e≠—

(1≠e≠—)

q
2

j = 1, 2, . . . , q ≠ 1 ,
(4.28)

from which the leading eigenvalue is obtained by selecting

jmax = arg max |λj | =

Y

]

[

q/2 q even and q Ø 4

(q ± 1)/2 q odd and q Ø 4 .
(4.29)

With the stability condition [Tho86]

κλ2
max < 1 ,

where κ is the average excess degree, κ = d ≠ 1 for d-regular graphs, and κ = c for
Erdős-Rényi graphs, we obtain the spin glass temperature

TSG = 1/ ln

Q

a1 +
q

2
1Ô

d ≠ 1| cos 2fi
q jmax| ≠ 1

2

R

b . (4.30)

For the ferromagnetic solution we rely on solving (4.6) numerically and then extracting TSG

as the point where (d ≠ 1)λ2
max = 1, with λmax being the eigenvalue of the Jacobian that

has largest absolute value. Note that the spin-glass transition can happen before, after or
simultaneously with the ferromagnet transition.

For 2 Æ q Æ 3 CCOL is equivalent to regular coloring and the spin-glass temperature
can be computed [ZK07] from T col

SG = ≠1/ ln
1

1 ≠ q/(1 +
Ô

d ≠ 1)
2

. For 3-regular random
graphs we get TSG = 0.567 when q = 2 and an always RS stable solution for q = 3.
When 4 Ø q Ø 6 no ferromagnetic solution exists and the spin-glass transition temperature
is given by (4.30). We observe that for q = 7 the transition from RS to RSB happens
in the paramagnetic phase before the transition to the ferromagnetic state happens, i.e.,
TSG > Tc. At q = 8 the two transitions coincide (compare equations (4.30) and (4.26))
and we have a tri-critical point: the system becomes ferromagnetic at the same temperature
where it loses its RS stability. For q Ø 8 the ferromagnetic transition happens before the
RSB transition. Eventually, in the large q limit the two transitions coincide again and the
ferromagnetic solution is never RS stable and Tc = TSG. For a summary see Fig. 4.3, and
Fig. 4.4 for examples of the instabilities.
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4.5.3 1RSB in the Energetic Zero Temperature Limit

In section 4.4 we described the 1RSB energetic zero temperature limit. Using population
dynamics for equations (4.18) and (4.19) we obtain the replicated free entropy Φ(y) and the
energy ‘(y), both as a function of y, from (4.9) and (4.3) respectively. The complexity as a
function of the energy is then obtained from the Legendre transformation Φ(y) = ≠y‘+Σ(‘).
The value of ‘ for which the concave branch of Σ(‘) intersects the ‘-axis yields the 1RSB
estimate for the ground state energy.

The result of the energetic zero temperature cavity limit are very different depending on
whether the number of colors is even or odd. For even number of colors, the results are
exactly the same as for q = 2, as should be expected. For an odd number of colors, the
results can roughly be deduced from the replica symmetric solution with a delay of the onset
of the ferromagnetic transition.

Our results are obtained using the population dynamics, with an initialization such that
each initial field h in the population is pointing into the direction of one color only, i.e. h = ê· .
And · is drawn with probability equal to the replica symmetric estimate PRS(·).

Even Number of Colors

For even number of colors the ground state energy of the circular coloring is the same as
the ground state of the 2-coloring. Assume q = 2z with z Ø 2 being an integer. Iden-
tifying s = 2z + 1 æ 1 and s = 2z æ 2 for s œ {1, . . . , q}, the number of contradictory
edges in this 2-coloring must be equal or smaller than it was before. On the other hand, any
2-coloring configuration is a valid configuration of 2z-circular coloring.

The ground state of 2-coloring is in turn asymptotically equal (as argued e.g. in [ZB10])
to the ground state of the Viana-Bray model [VB85], for which the energetic 1RSB results
were studied in [MP03]. This equality of ground state energies, together with the above
mentioned work on the Viana-Bray model, makes it unnecessary to further investigate the
case q = 2z, z œ N

+ here. However, it is important to point out briefly that this indepen-
dence of z also comes up in the energetic zero temperature limit of the cavity equations, as
opposed to the RS approach.

The 1RSB cavity method predicts

Egs(q = 2z, d) = Egs(q = 2, c) , with Σ [E(q = 2z, d)] = Σ [E(q = 2, d)] .

The SP-y equations converge towards the same fixed point for all even q when initialized as
described above. In this fixed point the population consists of only two types of messages.
The alternating warnings u = (1, 0, 1, 0, . . . ) and u = (0, 1, 0, 1, . . . ) and the trivial warning
u = (0, 0, . . . ) with probabilities

P [u = (1, 0, 1, 0, . . . )] = P [u = (0, 1, 0, 1, . . . )] = ÷/2

and the zero warning
P [u = (0, 0, . . . )] = 1 ≠ ÷ .
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Figure 4.5: Some examples of the complexity curve as a function of the energy for q = 5. The
physical (concave) branches are depicted as full lines and the non-physical branches are
dashed. The ground state energy can be extracted from the intersection point of the
physical branch with the energy axis where Σ(‘) = 0.

The corresponding ground state energies and zero energy complexities were evaluated in
details in previous works on the Viana-Bray model [MP03]. For instance, for random d-
regular graphs, the 1RSB ground state energy is ‘gs(d = 3) = 0.1138, ‘gs(d = 4) = 0.2635,
‘gs(d = 5) = 0.4124 [ZB10]. It is known that in the Viana-Bray model the 1RSB solution
for the ground state is not stable towards further levels of RSB. Since the equality of ground
states for every q = 2z is a rigorous statement also in further levels of RSB this would have
to come up.

Odd Number Colors

Contrary to the case of even colors which could be reduced to q = 2 the population does
not reduce to the simple subset of messages. In fact, the alternating warning cannot exist
if q is an odd number. Figure 4.5 depicts some exemplary results, Tab. 4.3 summarizes the
ground state energies obtained for different values of degree d and number of colors q.

In particular we find that Egs > 0 for all considered instances, except for q = 5, d = 3

the particular case for which we only obtain the trivial solution P [u = (0, 0, . . . )] when
employing the energetic zero temperature limit. These results agree with what was found
in previous rigorous investigations, cf. [KNS01; WW01; Hat05]. It can be expected from
physical intuition that, as the number of colors, q, grows, the ground state energy for q odd
converges to the one for q even. Our numerical results are consistent with this.

The RS investigation indicated the presence of a purely paramagnetic phase for all temper-
atures when q < qRS

F and the presence of a phase transition towards a ferromagnetic phase
when q Ø qRS

F . In the framework of 1RSB we monitor the magnetization by tracking an
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d q RS phase RSB phase ‘gs

3 5 para para 0

3 7 ferro para 0.030

3 9 ferro para 0.064

3 11 ferro ferro 0.052

3 13 ferro ferro 0.071

3 15 ferro ferro 0.076

3 19 ferro ferro 0.084

3 29 ferro ferro 0.094

3 51 ferro ferro 0.100

4 5 para para 0.088

4 7 ferro para 0.189

4 9 ferro ferro 0.155

4 11 ferro ferro 0.171

5 5 ferro para 0.233

5 7 ferro ferro 0.325

5 9 ferro ferro 0.328

5 11 ferro ferro 0.337

Table 4.3: Results of the energetic 1RSB analysis for the circular coloring. The ground state energy
‘gs is obtained from the intersection point of the concave branch of Σ(‘) with the energy
axis (cf. figure 4.5). We also provide which phase the zero temperature solution is
found in the RS and 1RSB framework. The 1RSB zero temperature solution becomes
ferromagnetic at q = 7 for d Ø 5.

order parameter m =
´

dmP (m) m. As compared to the RS solution, we observe a shift of
the appearance of the ferromagnet to to lower temperature. In particular, according to the
1RSB solution, the ferromagnet appears only at q = 11 for d = 3, q = 9 for d = 4 and q = 7

for d Ø 5. Recalling the RS phase diagram for d = 3 (Fig. 4.3), one might wonder about
the finite temperature behavior. The 1RSB solution for q = 7 and q = 11 are respectively
of purely paramagnetic and ferromagnetic character in the whole range T < TSG. However,
anticipating the finite temperature investigation, for q = 9 we find a re-entrance of the
1RSB solution into a paramagnetic phase for T < 0.125. The zero temperature results are
summarized in Tab. 4.3.
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Figure 4.6: Zero energy complexity against the fraction r of degree d = 4 nodes in a graph with
only degrees 3 and 5 for 5-circular coloring. A noncontinuous jump happens around
c = 3.06 when the complexity suddenly becomes positive. Subsequently it is continuously
decreasing and becomes negative around c = 3.125.

The case of 5-circular coloring

The very fact that the predictions obtained in the energetic zero temperature limit agree
with previous rigorous results and the fact that even colors can always be reduced to q = 2

is not trivial and provides some solid ground for expanding our investigations further to the
particular case of q = 5, d = 3 for which the energetic zero temperature limit does not
provide a useful non-trivial estimate.

The absence of non-trivial solution suggests that no constrained fields are present, and
thus Σ(‘ = 0) = 0. Consequently an interesting follow up question is to ask what happens
when the degree is varied from d = 3 to d = 4. In the latter case constrained fields are
present and Σ(‘ = 0) Æ 0. In order to investigate the intermediate regime where the
average degree 3 < c < 4 we work on the ensemble of graphs with a fraction 1 ≠ r of
degree d = 3 nodes and fraction r of d = 4. Tuning r facilitate the investigation of the zero
energy complexity in the whole region 3 Æ c Æ 4, where c = r · 4 + (1 ≠ r) · 3. The survey
propagation can be carried out for each r and the resulting Σ(‘ = 0, r) is depicted in Fig. 4.6.
No non-trivial solution is found and the complexity remains zero until a discontinuous jump
happens around r = 0.06 where the complexity suddenly becomes positive and constrained
messages appear in the population. Subsequently the curve is continuously decreasing and
becomes negative around r = 0.125 where no more zero energy solution can be found. This
suggests that the local constraint density is sufficiently small for r < 0.125 and coloring is
possible. However, no confined variables are present for r < 0.06 and to enable a quantitative
statement for the case q = 5, d = 3 we must consult the entropic zero temperature limit.

We also considered Erdős-Rényi graphs. Somewhat strangely we found that the zero energy
complexity never becomes positive. Instead a solution with negative complexity appears at
about c ¥ 2.27. Recall that (4.28) yields an average degree of cd = 1.53 for the spin glass
stability transition point. We solved the corresponding survey propagation equations using
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population dynamics of populations with population sizes 10000. It cannot be excluded that
what we observed was a finite population size effect, but it may also be that the usual 1RSB
solution with confined variables, that leads to the satisfiability threshold in the widely studied
K-SAT and coloring problems, is not sufficient to get a sensible estimate of the threshold
for the 5-circular coloring of the Erdős-Rényi random graphs.

4.5.4 1RSB in the Entropic Zero Temperature Limit

We briefly summarize the procedure that enables access to the thermodynamic quantities
for the case q = 5, d = 3 before presenting the results. An advantage of working on regular
graphs is the reduction of the required computational effort necessary in the population
dynamics. This is because the probability distribution over the messages in (4.7) is identical
for every edge Piæj(m) = P(m). For a given reweighting parameter m the 1RSB equation
(4.7) can be solved with the population dynamics technique. Solving it for every m yields the
thermodynamic quantities as function of the reweighting parameter m. These are Φs(m),
which follows from (4.9), Σ(m), which is obtained from the Legendre identities and s(m)

which can be computed with (4.3). All in the limit — æ Œ where ≠—f = s. In order to
assign the right weights to each pure state in the equilibrium configuration (1RSB estimate),
the reweighting parameter m must be chosen accordingly.

• If Σ(m = 1) > 0 we are in the dynamic 1RSB phase and the 1RSB and RS solutions
agree.

• Else, if a non-trivial solution exists for m = 1 and Σ(m = 1) < 0 we must choose
the thermodynamic value of the reweighting parameter mú as the smallest positive
non-zero value for which the complexity vanishes, i.e. Σ(mú) = 0.

Figure 4.7 presents the results obtained within the entropic zero temperature limit. In this
limit the energy vanishes ‘ = 0 and Σ(s) counts the total number of clusters of size s. The
point where the physical (concave) part of the complexity curve intersects with the entropy
axis, i.e., where Σ(s) = 0, provides the 1RSB estimate for the entropy as the entropy of the
entropically dominating clusters. Following the positive part of the physical branch of the
complexity curve in Fig. 4.7b more and more (increasing complexity) subdominant clusters
of smaller entropy appear. Eventually, at the cusp (that is the point where the two branches
of Σ(s) meet in Fig. 4.7b where s(m) is minimal in Fig. 4.7a) the 1RSB solution loses its
validity (it becomes unstable towards more levels of RSB before the cusp is reached).

The thermodynamic value of the reweighting parameter was found to be mú = 0.299 with
an 1RSB estimate of the entropy s1RSB = 0.223 (to be compared with the replica symmetric
estimate of the entropy sRS = 0.235). Finding mú(T = 0) ”= 1 (or more precisely the
fact that Σ(m = 1) < 0) implicates that the solution space of the problem is beyond the
condensation transition [KMR+07]. This 1RSB result is a very strong indication towards
5-circular colorability of random 3-regular graphs. In the next section we will show that the
1RSB approach is actually not stable, and further steps of replica symmetry breaking are
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atures. Consequently, the 1RSB solution is not sufficient in this case and further steps of
replica symmetry breaking are necessary. In the cases where the 1RSB framework fails, it is
widely believed that the FRSB framework is necessary for a correct treatment. Interestingly,
the q = 5, d = 3 case thus appears to be the first case of a CSP with exactly known
degenerated zero ground state energy and FRSB structure of that we are aware. On the one
hand, the FRSB structure might cause serious difficulties for a rigorous treatment via the
cavity method. On the other hand, it renders q = 5, d = 3-CCOL a very interesting instance
to be studied in terms of algorithmic consequences. It has previously been argued that a
FRSB structure of the solution space is related to marginal stability and absence of basins
that would trap physical dynamics for exponential time [CK94]. As a consequence simple
search algorithms, such as simulated annealing, are expected to converge towards an optimal
solution which we shall confirm, for CCOL, in the next section.

4.5.6 Algorithmic Consequences

In order to investigate the performance of simulated annealing (SA) for 5-circular coloring
of random 3-regular graphs, we created random 3-regular graphs by randomly linking N

nodes such that no self-loops, double edges or triangles are present (we simply dismiss the
graphs containing triangles). We then assign colors to the N nodes uniformly at random
and SA is performed. For each instance different system sizes, N , were considered and SA
was run with different annealing rates δT for each of them. Different annealing schedules
were tested. Among them, an exponential variation, with T æ T

1+δT , was found to be very
efficient. The results of the implementation are depicted in Fig. 4.9: we plot the number
of sweeps, necessary to find a proper coloring, as a function of the systems size, N , for a
fixed annealing rate, δT . Each sweep takes N steps and the necessary number of sweeps
is in good agreement with a logarithmic fit (or upper bounded by it). The total number of
iterations thus appears to be O(N log N); which makes SA, equipped with the exponential
schedule, a very efficient choice to find proper colorings for 5-circular coloring of random
3-regular graphs.

It is worth noting, that we also investigated belief propagation initialized in the solutions
obtained from SA, and after sufficient number of iterations BP behaves exactly in the same
way it does when initialized randomly.

In the previous section we saw that the problem has zero ground state energy, that no
confined variables are present and that it likely features a FRSB structure. The very fact
that SA, as a simple search algorithm, is able to find optimal solutions, supports the picture
of a saddle point dominated landscape of solutions that may account for the algorithmic
easiness of 5-CCOL on random 3-regular graphs.

This being said, the simulated annealing solves the 5-circular coloring problem on random
3-regular graphs with such an ease that we found it surprising. The circumstance that the
dynamics on sparse graphs can be simulated in linear time, together with the fact that the
ground state energy is known, makes the 5-circular coloring problem on random 3-regular
graphs a unique playground to study numerically the nature of the FRSB phase in diluted
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Figure 4.9: We plot the number of sweeps necessary to find a proper 5-circular coloring or a random
3-regular graph as a function of the size of the system N for exponential annealing rate
δT = 10≠6.

systems.
The success of SA for q = 5 and d = 3 inspired us to approach the problem with an even

simpler greedy strategy, that did not work. We find it, however, useful reporting this result.
The greedy strategy successively assigns constraints to the nodes of the graph and hence
attempts to obtain a coloring. Given an unconstrained graph, we start by picking a random
node and constraining it to color s. Doing so, we constrain all direct neighbors to {s≠1, s+1},
all second neighbors to {s, s ≠ 2, s + 2} and all third neighbors to {s ≠ 1, s ≠ 2, s + 1, s + 2}
(all mod 5). After this step we pick one of the maximally constrained nodes at random, we
assign it one of the permitted colors at random and subsequently update the constraints of
its neighborhood. Thereafter, a maximally constrained node is chosen and the procedure
is repeated. We observe, that the probability of success is very small for small graphs and
decreases further with the size of the graphs.

4.6 Conclusion

Motivated by Neöetřil’s conjecture, we studied the circular colorability of random regular
graphs. The statistical physics analysis showed that, w.h.p., random 3-regular graphs are
5-circular colorable. Therefore providing evidence that Neöetřil’s conjecture holds. Our
analysis is based on the zero temperature limit of the Cavity method. In order to resolve the
satisfiability, it was necessary to employ the 1RSB energetic zero temperature limit to study
the space of zero energy configurations, which lead to the above conclusion.

By virtue of the particular constraints, the problem was found exhibits several interesting
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physical features. For a sufficiently large number of colors, a phase transition separates a
paramagnetic high temperature phase, in which the distribution over colors is uniform, from
a ferromagnetic low temperature phase, in which the distribution of colors concentrates.
The energetic gain from using only few colors that are close to each other on the cycle is
overwhelming the entropic gain from using many colors for low enough temperature. This
is an interesting feature, caused by the strong constraints in CCOL, that is not observed
in regular coloring. Within the 1RSB energetic zero temperature limit, the structure of the
warning propagation equations is significantly more involved due to the difficult constraints.
As compared to previously studied problems, this makes the analytical treatment rather
cumbersome.

For further analysis of the stability of the 1RSB solution for 5-circular colorable on random
3-regular graphs, the finite temperature phase space had to be studied. The 1RSB solution
was found to be unstable towards 2RSB, implying that the problem, likely, requires the FRSB
framework. 5-circular coloring of random 3-regular graphs is hence the first instance of a
satisfiable combinatorial problem with degenerated and precisely known ground state that
requires FRSB. Note that such a behavior is not unique to the CCOL problem: the authors
of [GDSZ17] recently found that a similar phenomenon also appears in the bicoloring of
hypergraphs that can also be located in a satisfiable FRSB phase. Thereby making it a very
interesting problem to be studied in the context of diluted models on its own. The fact
that the ground state energy is known does also give rise to the hope for simplifications in
rigorous investigations along the same lines.

Finally, the algorithmic consequences were examined. In the statistical physics community
it has long been conjectured that a FRSB structure of the solution space is related to
marginal stability and absence of basins that trap physical dynamics for exponential time.
We could confirm this for CCOL by applying SA to typical instances. We found that an
exponential annealing schedule is very efficiently finding proper coloring assignments. The
numerical investigations suggest that SA, equipped with the exponential schedule, requires
O(N log N) steps to succeed. Remarkably, although the statistical description of the space
of proper colorings seems challengingly hard for the case of 5-circular coloring of random
3-regular graphs, the problem is algorithmically easy.
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Crowdsourcing

Crowdsourcing is a strategy to categorize data through the contribution of many individuals. A wide

range of theoretical and algorithmic contributions are based on the, previously introduced, model of

Dawid and Skene.

My main contribution to this subject is the Bayes-optimal analysis of the model of Dawid and

Skene in the dense regime. Additionally, numerical results are obtained on how these results translate

into the sparse regime and experiments on a real world dataset are performed.

The first sections review and establish the link between the dDS model and the low-rank matrix

estimation problems of [LKZ15; LKZ17]. Subsequently, some phase diagrams are drawn and discussed.

Finally, the relevance of these results (obtained in the dense regime) in the sparse regime are analyzed

and real world experiments are carried out.

In Sec. 1.3.4 the dense Dawid-Skene (dDS) model for crowdsourcing was introduced and the
AMP equations were derived (Sec. 1.3.5) together with their corresponding state evolution
(Sec. 1.3.6). The replica symmetric free energy was computed in Box 2.3. It was further
shown, in section 1.3.5, that the dDS model belongs to a larger class of low-rank matrix
factorization problems, as studied in [DM14; MT13; LKZ15; LKZ17; Mio17]. We briefly
recall the main elements of the model, before analyzing the phase diagram.

Consider N workers and a total of M tasks. We denote with Lij the label assigned to
question j by worker i and assume Lij œ {0, ±1}. If Lij = 0, then question j was left out by
worker i. We consider a system in which each worker is posed (1 ≠ fl)M questions. Letting
the probability that worker i provides a correct answer be 1/2 +



‹/N◊i, the likelihood
reads

P (Lij = ±1 | ◊i, vj) = (1 ≠ fl) · 1

2
·
3

1 ±
Ú

‹

N
◊ivj

4

P (Lij = 0 | ◊i, vj) = fl ,

(5.1)

where the fraction of un-answered questions, fl, was assumed to be independent of (i, j).
The rest of the present section is set in the limit where N æ Œ and all the other parame-
ters ◊i, ‹, –, fl = Θ(1). Later, in Sec. 5.2, we will discuss how to extrapolate the results into
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the sparse regime where each worker is only assigned to O(1) tasks. The parameter ν allows
to tune the signal to noise ratio and the 1/

Ô
N scaling brings us into the interesting regime,

where the problem is neither trivially hard, nor trivially easy. Denoting by θ œ R
N the vector

of rescaled reliabilities for all N workers, and v œ R
M the vector of labels, the rank-1 matrix

w :=
θ vT

Ô
N

(5.2)

can be introduced and utilized to re-express (5.1) as P (Lij | wij) = exp (g(Lij , wij)) with

g(Lij , wij) =

Y

]

[

log
1

(1≠fl)
2

2

+ log (1 ± Ô
νwij) if Lij = ±1

log (fl) if Lij = 0
. (5.3)

The Bayes-optimal estimates, θ̂, that minimize the expected mean-squared-error (MSE)
on θ:

MSE◊ =
1

N

ÿ

i

(◊̂i ≠ ◊0
i )2 , (5.4)

and the expected bitwise error (BE) on v:

BEv =
1

M

ÿ

j

I[v̂j ”= v0
j ] =

1

M

ÿ

j

(
v̂j ≠ v0

j

2
)2 =

1

2

1

M

ÿ

j

(1 ≠ v̂jv0
j ) , (5.5)

were derived in Sec. 1.3.3 and read

◊̂MMSE
i (L) =

ˆ

d◊i◊iP◊ (◊i | L) and v̂MBE
j (L) = sign

ˆ

dvjvjPv (vj | L) . (5.6)

Here Px(x | L), with x œ {{◊i}i=1,...,N , {vj}j=1,...,M }, are the marginal posterior probabili-
ties. Inferring the reliabilities and labels in the crowdsourcing problem reduces to evaluating
the marginal expectations of the posterior probability distribution. In general this is a difficult
task.

In all but section 5.2.3, we assume that the distributions from which the ground truth
reliabilities, ◊0

i , and labels, v0
j , are drawn, P◊0 and Pv0 respectively, are known. Under these

assumptions we aim to achieve the following.

• Compute efficiently (if possible) the Bayes-optimal estimators of ◊0
i and v0

j , given the
answers Lij .

• Evaluate asymptotically the performance achieved by the Bayes-optimal estimators.

Our contribution, presented in this chapter, is to realize that the dDS model falls into a class
of low-rank matrix estimation problems. For this class, the posterior probability distribution
can be evaluated, as shown in [LKZ17], which resolves the first point. Using these results,
the phase diagram can be evaluated in great detail, which treats the second point.
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5.0.1 Approximate Message Passing

The approximate message passing (AMP) algorithm for low-rank matrix estimation is a
simplification of belief propagation in the limit of dense graphical models and was derived
in Sec. 1.3.5. For low-rank matrix factorization was first derived for special cases in [RF12;
MT13] and in its general form in [LKZ15; LKZ17].

The AMP equations, stated in (1.97), can be further simplified in the Bayes-optimal
setting. The coefficients of the Onsager reaction terms, can be replaced by their averages

1

N

Mÿ

k=1

S2
ikσt

v, k æ α/∆σv (5.7)

1

N

Nÿ

l=1

S2
lkσt

◊, l æ σ◊/∆ . (5.8)

Further more, the terms involving Rij can be set to zero by virtue of the Bayes-optimality,
cf. (1.101). The resulting AMP equations are outlined in Alg. 1.

The input/denoising functions, f◊(A◊, B◊) and fv(Av, Bv), were introduced in (1.96).
They depend on the priors, P◊ and Pv respectively and A and B are estimates for the
parameters of a Gaussian distribution that are computed self-consistently in the AMP equa-
tions. The estimate x̂ (with x œ {{θi}i=1,...,N , {vj}j=1,...,M }) are then computed as the
mean of the prior weighted with this effective Gaussian. The estimates for their variance are
obtained from the derivative w.r.t. B,

x̂ = fx(Ax, Bx) =
1

Zx(Ax, Bx)

ˆ

dx x Px(x) e≠ 1
2

Axx2+Bxx ,

σx = ∂Bx fx(Ax, Bx) .

(5.9)

We further recall the definition of the Fisher score matrix

Sij :=
∂g(Lij , wij)

∂wij

-
-
-
-
-
wij=0

= Lij · Ô
ν , (5.10)

where g(Lij , wij) is defined in (5.3) and lastly, the definition of the Fisher information (inverse
effective noise) of the noisy observation channel

∆≠1 = EP (Lij |wij=0)

S

W
U

Q

a
∂g(Lij , wij)

∂wij

-
-
-
-
-
wij=0

R

b

2
T

X
V = (1 ≠ fl)‹ . (5.11)
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Algorithm 1: Approximate message passing for crowd sourcing. The numerical imple-
mentation might profit from an adequate damping scheme in order to enhance conver-
gence even on small instances or when the model assumptions are not satisfied.

Data: S, ∆, δ ; // S and ∆ according to (5.10) and (5.11)

respectively.

Result: MMSE estimates v̂ and θ̂

Initialize: v̂ Ω v̂init ≥ Pv(v), θ̂ Ω θ̂init ≥ P◊(θ) ; σv Ω 1, σ◊ Ω 1; v̂old Ω 0,
θ̂old Ω 0 ;

while Îθ̂ ≠ θ̂oldÎ2
2 + Îv̂ ≠ v̂oldÎ2

2 > δ do
B◊ Ω 1Ô

N
Sv̂ ≠ 1

∆ θ̂oldσv ;

A◊ Ω 1
N∆ v̂T v̂ ;

Bv Ω 1Ô
N

ST θ̂ ≠ –
∆ v̂oldσ◊ ;

Av Ω 1
N∆ θ̂T θ̂ ;

θ̂old Ω θ̂, v̂old Ω v̂ ;

θ̂ Ω f◊(A◊, B◊), σ◊ Ω 1
N

q

1ÆiÆN ∂B◊i
f◊(A◊i

, B◊i
) ;

v̂ Ω fv(Av, Bv), σv Ω 1
M

q

1ÆjÆM ∂Bvj
fv(Avj , Bvj ) ;

end

5.0.2 State Evolution

The AMP algorithm depends on the realization of the disorder L and, consequently, so do
the AMP estimates θ̂, v̂ for the reliabilities and task labels. In the large size limit N æ Œ,
the performance of the algorithm can be tracked with high probability by the state evolution
(SE) equations, The SE for the dDS model was previously derived in Sec. 1.3.6. There it
was shown that, in the Bayes-optimal setting, the overlap of the AMP estimates with the
true solution can be quantified in terms of the two order parameters

M t
◊ =

1

N

ÿ

1ÆiÆN

θ̂t
i θ0

i ,

M t
v =

1

M

ÿ

1ÆjÆM

v̂t
j v0

j .
(5.12)

Where x0 indicates the true value of x, and t the iteration step of the AMP equations
(Alg. 1).

The SE equations imply that these order parameters evolve with high probability as

M t+1
v = Ev0,W

S

Ufv

Q

a
M t

◊

∆
,

M t
◊

∆
v0 +

Û

M t
◊

∆
W

R

b v0

T

V ,

M t
◊ = E◊0,W

S

Uf◊

Q

a
α M t

v

∆
,

α M t
v

∆
θ0 +

Û

α M t
v

∆
W

R

b θ0

T

V .

(5.13)
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Here W is an effective Gaussian random variable of zero mean and unit variance, v0 ≥ Pv,
θ0 ≥ P◊, the functions fv and f◊ are defined in (5.9), α = M/N and ∆ is the effective noise
(5.11).

Let us denote with MSE
◊ and MSE

v the fixed points of the SE equations (5.13). These
fixed points are then associated to the MSE and BE through

MSEAMP
◊ = E◊(θ2) ≠ MSE

◊ , (5.14)

BEAMP
v = (1 ≠ OSE

v )/2 , (5.15)

where we introduced the order parameter

Ot
v = 1/M

ÿ

i

sign(v̂t
i) v0

i ,

such that

OSE
v = Ev0,W

Y

]

[
sign

S

Ufv

Q

a
MSE

◊

∆
,

MSE
◊

∆
v0 +

Û

MSE
◊

∆
W

R

b

T

V v0

Z

^

\
. (5.16)

5.0.3 Bayes-Optimal Error and Sub-Optimality of Message Passing
Algorithms

As conjectured in [LKZ17] and proven rigorously in [Mio17] the performance of the Bayes-
optimal estimator (5.6) can be evaluated in the large size limit N æ Œ with α = Θ(1) from
the global minimizer of the replica symmetric Bethe free energy, which reads (cf. Box 2.3)

φBethe(M◊, Mv) = α
M◊Mv

2∆
≠ αEv0,W

S

Ulog Zv

Q

a
M◊

∆
,

M◊

∆
v0 +

Û

M◊

∆
W

R

b

T

V

≠ E◊0,W

S

Ulog Z◊

Q

a
α Mv

∆
,

α Mv

∆
θ0 +

Û

α Mv

∆
W

R

b

T

V . (5.17)

where the functions Z◊ and Zv are defined in (5.9) and the rest of the variables are defined
in the same way as in the SE. Assume Mú

◊ and Mú
v are the global minimizers of the above

Bethe free energy. Then the minimum mean square error (MMSE) and the minimum bitwise
error (MBE) are expressed as

MMSE◊ = E◊(θ2) ≠ Mú
◊ , (5.18)

MBEv =
1

2
(1 ≠ Oú

v) , (5.19)

where Oú
v is obtained from Mú

◊ via (5.16).
It is straightforward to observe that the SE equations are in fact stationarity conditions of

the Bethe free energy. Hence the fixed points of the SE are critical points of the Bethe free
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energy. Whether or not the SE reaches the global minimizer Mú
◊ , Mú

v depends on the shape
of the Bethe free energy and the initialization of the SE equations at t = 0. Canonically,
the SE is initialized in such a way that the initial estimators are simply taken from the prior
distributions.

We can now explain the key point of our contribution. The previous work of [OOSY16b;
OOSY16a] proved asymptotic optimality of BP under certain assumptions on the parameters
of the model. The present analysis of the dDS model is able to determine sharply in what
regions of parameters AMP matches the Bayes-optimal estimator and when it does not, thus
refining the previous picture in the limit, where AMP and BP are asymptotically equivalent.

Previously we reduced the high-dimensional model to the investigation of the two-variable
free energy function (5.17). In particular, the phases in which AMP does not match the
Bayes-optimal estimator can be characterized in terms of the critical points of the free
energy and whether or not the SE (5.13) converges to the global minimum of the free energy
(5.17). The way we check this in practice is that we initialize the SE in two different ways:

• Uninformative initialization, where M t=0
v = (Ev(v))2 and M t=0

◊ = (E◊(θ))2. This
corresponds to the uninformative initialization of the algorithm where the initial values
of the estimators are simply taken equal to the mean of the prior distributions P◊ and
Pv. The error achieved by the AMP algorithm is then given by iteration of (5.13) from
this uninformative initialization.

• Informative initialization, where M t=0
v = Ev(v2) and M t=0

◊ = E◊(θ2) so that the initial
mean-squared-errors are zero. This is not possible within the algorithm without the
knowledge of the ground truth and it is purely used for the purpose of the analysis. If
the iteration of the SE equations (5.13) from this informative initialization leads to a
different fixed point than from the uninformative initialization, then the free energies of
the two fixed points need to be compared and the larger one surely does not correspond
to the Bayes-optimal performance.

This procedure is sufficient, provided there are no other fixed points. If there are, the free
energy of all of them needs to be compared.

Zero-mean priors and uninformative fixed point If both prior distributions P◊ and Pv

have zero mean, the uninformative initialization M◊ = Mv = 0 is a fixed point of the SE
and equations (5.13) can be expanded around this fixed point. In first order we obtain

M t
◊ =

α

∆

1

E◊

Ë

θ2
È22

M t
v (5.20)

M t+1
v =

1

∆

1

Ev

Ë

v2
È22

M t
◊ , (5.21)

implying that the uninformative fixed point is numerically stable for

∆2 > α
1

Ev

Ë

v2
È22 1

E◊

Ë

θ2
È22
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and unstable otherwise. Therefore we define the critical effective noise, ∆c, as

∆c =
Ô

α · E◊

Ë

θ2
È

Ev

Ë

v2
È

. (5.22)

For ∆ < ∆c the uninformative initialization becomes numerically unstable. The threshold
∆c correspond to the 2nd order phase transition in the behavior of the AMP algorithm,
meaning that the overlap reached by the algorithm is non-analytic and continuous at ∆c.

In the case where both the priors, P◊ and Pv, have zero mean, we can divide the region
of parameters into the following three phases:

• Easy phase: The free energy (5.17) has a unique minimum and this minimum is
associated with a positive overlap with the ground-truth configuration. Consequently
iterating the state evolution (5.13) yields an informative fixed point from both, the
informative, as well as the (perturbed) uninformative initializations. AMP is Bayes-
optimal.

• Hard phase: In this phase at least two minima of the free energy (5.17) coexist; at
least one local minimum of small overlap and a global minimum of larger overlap. The
outcome of iterating the state evolution equations now depends on the initialization:
while the informative initialization yields a fixed point with large overlap, the uninfor-
mative initialization leads to a fixed point of low overlap. This is precisely the region
of parameters where the AMP algorithms do not reach the information-theoretically
optimal performance and AMP is not Bayes-optimal.

• Impossible phase: When the global minimum of (5.17) is associated to the trivial,
non-informative, fixed point corresponding to zero overlap, we talk about a phase of
impossible inference. Otherwise this region is indeed similar to the easy phase in the
sense that AMP is Bayes-optimal.

If at least one of the priors has non-zero mean, then the distinction of an impossible phase
is not meaningful and one would only have the easy and hard phases, the later is defined by
asymptotic sub-optimality of the AMP algorithm.

Let us further define the following three thresholds that are associated with the existence of
a hard phase. The hard phase is always linked to the presence of a first order phase transition,
i.e., a discontinuity in the asymptotic value of the overlap reached by the Bayes-optimal esti-
mator. The algorithmic threshold ∆alg is the largest value of effective noise, ∆, below which
the AMP algorithm asymptotically matches the Bayes-optimal performance. The spinodal

threshold, ∆sp, is the smallest values of effective noise above which the informative initial-
ization converges to a different fixed point than the (perturbed) uninformative initialization.
The information theoretic transition, ∆alg < ∆IT < ∆sp, is where the value of the Bethe
free energy of the fixed point reached from the uninformative initialization crosses with the
free energy of the fixed point reached from the informative initialization. The discontinuity
in overlap happens at ∆IT. Remark that while in some models, such as the stochastic block
model [LKZ15], we find ∆c = ∆alg, in general and in the present model ∆c ”= ∆alg.
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5.1 Phase Diagrams for the Dense Dawid-Skene Model

A key property of the results we described so far is that the asymptotic behavior of the
AMP algorithm and of the Bayes-optimal estimator depend only on the priors Pv, P◊ and
the effective noise ∆ = 1/[(1 ≠ fl)‹]. In what follows concrete priors will be considered. It
is assumed that the ground truth task labels are generated from

Pv(vj) = (1 ≠ —)” (vj ≠ 1) + —” (vj + 1) . (5.23)

With the parameter — œ [0, 1] accounting for a bias in the dataset.
We start our discussion with worker reliabilities, ◊i, drawn from a skewed Rademacher-

Bernoulli (RB) prior

P◊(◊) = (1 ≠ µ) ”(◊) + µ [(1 ≠ ⁄)”(◊ ≠ 1) + ⁄”(◊ + 1)] . (5.24)

Besides its simplicity the phase diagram for this case comprises the essential features. Tun-
ing µ from zero to one interpolates between an uninformative crowd of mere spammers and
an informative crowd. The fraction of adversaries is controlled by ⁄. In physics terms the
workers with ◊ = ≠1 are spins that are coupled to the questions by an anti-ferromagnetic
interaction, whereas the workers with ◊ = 1 are ferromagnetically coupled. Consequently
also the adversaries enhance our ability to recover the correct labels, if they can be identified,
as they align anti-parallel to the truth.

The RB prior is the dense version of what is sometimes referred to as the “spammer-
hammer” model in the literature [KOS11]: workers are either spammers that provide random
answers or hammers that align very strongly with (or opposed to) the truth. Here the
situation is slightly different as we assume a very weak alignment of Θ(1/

Ô
N), cf. (5.1).

Sending ‹ æ Œ, and thus ∆ æ 0, approximates the hammers in the dDS model. The
limit ‹ æ N will be considered in Sec. 5.2.

5.1.1 The case of symmetric priors

If ⁄ = 1/2 and — = 1/2 both the priors Pv and P◊ have zero mean and the SE equations in
(5.13) have a trivial fixed point at Mú

v = Mú
◊ = 0. Expansion around this fixed point yields

M t+1
v = –

µ2

∆2
· M t

v ≠ –2 µ2

∆2

C

µ

∆
+

µ2

∆2

D

·
1

M t
v

22
+ O((M t

v)3) . (5.25)

The linear term gives the stability criterion of the trivial fixed point that we already derived
in (5.22)

∆c =
Ô

– · µ . (5.26)

In Fig. 5.1 we present the phase diagram for several values of – = M/N . We plot the
stability threshold ∆c as well as the three phase transitions associated with the existence
of the hard phase. We mark the phases where inference is algorithmically easy, hard and
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impossible. In particular, we find that a hard phase appears for small enough µ as depicted
in the figure. Regions with small µ correspond to crowds that contain mostly spammers.
For α = 1 the hard phase appears only if the vast majority of the workers are spammers.
When α grows (shrinks) the hard region grows (shrinks) as well. In the region where the
hard phase is absent (5.26) provides the right criterion to locate the phase transition from
the easy to the impossible phase.

5.1.2 Biased labels and worker reliabilities

If λ ”= 1/2 or — ”= 1/2 the trivial fixed point Mv = M◊ = 0 does not exist anymore. We
illustrate in Fig. 5.2 how this changes the phase diagram and the achievable MSE. For the
case – = 1 and µ = 0.02 we plot the MSE reached by the SE from the informative and the
uninformative initialization.

First (left top panel), we consider the unbiased case with — = 1/2, but ⁄ ”= 1/2 as already
plotted in Fig. 5.1. In the bottom-left panel we consider the case where ⁄ changes. Due to
the present symmetry it suffices to restrict the attention to ⁄ > 1/2. When more hammers
than adversaries are present, i.e. for ⁄ > 1/2, the trivial fixed point at Mv = 0 disappears and
instead another fixed point with low but positive overlap (i.e. error smaller than 1) appears.
The hard phase shrinks as shown in the bottom-left panel of Fig. 5.2.

If the dataset is biased, i.e. — ”= 1/2, the change is quantitatively more dramatic, but
phenomenologically very similar, cf. top-right panel in Fig. 5.2. Upon slight change in —

the hard phase shrinks considerably. For a large range of values of — and ⁄ the hard phase
entirely disappears as in the bottom-right panel in Fig. 5.2.

5.1.3 The impact of α

Recall that – = M/N is the ratio of tasks to workers in our model. By virtue of the


‹/N

scaling of the signal, cf. (5.1), we have two competing mechanisms when N is increased:
on the one hand the signal becomes weaker, on the other hand we obtain more answers per
question. Equation (5.26) tells us that it should be expected that inference becomes easier
when – increases. If ∆ is fixed and the performance changes with – is considered, it follows
from the SE that it is necessary to increase the fraction of questions distributed to each
worker, i.e. by increasing –, in order to achieve higher overlap. This improves the estimation
of θ, which in turn improves the estimate of v. We depict this by plotting the error rate
against – for two different values in Fig. 5.3.

How does the hard phase vary with –? We answer this question in Fig. 5.1b where it is
shown that the hard phase grows further in the impossible phase when – is increased, while
it shrinks when – is decreased.
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5.1.4 Dealing with other priors

The dDS model applies to any prior as long as θ = O(1). Many features persist if (5.24) is
replaced by

P◊(θ) = (1 ≠ µ)δ(θ) + µφ(θ) .

with φ(θ) some appropriate distribution (we have considered φ(θ) being a beta distribution
or a Gaussian). For instance (5.25) still holds when φ(θ) is a standard Gaussian and as for
the RB prior a first order transition is triggered by very noisy θ, i.e., only very few hammers
and mostly spammers in the crowd.

One might also replace the delta distribution by some other sparsity inducing distribution.
A case for which the corresponding integrals are tractable analytically is that of a mixture of
two Gaußians, centered around θ̄L (θ̄R) with variance σ2

L (σ2
R).

P◊(θ) = (1 ≠ µ) N (θ; θ̄L, σ2
L) + µ N (θ; θ̄R, σ2

R) .

Under this choice and with — = 1/2 in (5.23) the SE equations (5.13) can be expressed as

M t+1
v = G

3
1

∆
T

3
–

∆
M t

v

44

(5.27)

with

G(x) = EW

)
tanh(x +

Ô
xW ) ≠ tanh(≠x +

Ô
xW )

*

T (q) = µ · EW

Y

__]

__[

Ë

F1 (W ) + 1≠µ
µ F2 (W ) · exp

1

≠1
2Q(W )

2È2

1 + 1≠µ
µ

Ú

1+q‡2
R

1+q‡2
L

exp
1

≠1
2Q(W )

2

Z

__̂

__\

where

Q(W ) =
1 + q‡2

R

1 + q‡2
L

A

W +

Û

q

1 + q‡2
R

(◊̄R ≠ ◊̄L)

B

≠ W 2

F1(W ) = ◊̄R +

Û

q

1 + q‡2
R

‡2
LW

F2(W ) =

A

1 + q‡2
R

1 + q‡2
L

B 3
2

A

◊̄L + q‡2
L◊̄R

1 + q‡2
R

+

Û

q

1 + q‡2
R

W

B

,

and EW indicates the average over the standard Gaussian measure on W . Varying the means
(◊̄L, ◊̄R) and variances (‡2

L, ‡2
R) then allows to interpolate between different scenarios.

5.2 Relevance of the results in the sparse regime

Our analysis of the dense DS model is based on the ground that the underlying graphical
model (the bipartite question-worker-graph) is densely connected. That is, each task-node
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is connected to Θ(N) worker-nodes (and reversely each worker-node is connected to Θ(M)

task-nodes). We introduced a sense of sparsity in the channel, by allowing that some of the
tasks remained unanswered, cf. (5.1). However, the analysis assumed that 1 ≠ fl = Θ(1).
Existing mathematical literature on low-rank matrix estimation shows that the formulas
that we derived for the Bayes-optimal performance, hold true even when the degrees in
the graph grow with N slower than linearly, i.e., when (1 ≠ fl)N diverges with N æ Œ
[DAM16; CLM17]. The regime where the above asymptotic results do not hold anymore is
when 1 ≠ fl = O(1/N), which we refer to as the sparse regime. In this section we investigate
numerically how the behavior of the sparse DS model deviates from the predictions drawn
from the dense DS model.

In the sparse regime considered here every worker is connected to d randomly chosen
tasks, where d = Θ(1). Unless the quality of each answer is very high, the effective
noise ∆ = [(1 ≠ fl)‹]≠1 is overwhelming and inference impossible, unless ‹ = Θ(N). There-
fore we will consider the following “mapping”

fl = 1 ≠ d

M
‹ = n · N , (5.28)

with n œ [0, 1] being a constant. Consequently in the sparse regime we are dealing with
high quality workers as compared to the dense regime. This brings us close to the setting of
previous literature on the DS model [KOS11; LPI12; OOSY16b; OOSY16a].

5.2.1 Approximate message passing on sparse graphs

We studied numerically how the AMP algorithm behaves when the average degree of the
nodes is small. In the following we will set M = N such that the average degree of the
task-nodes equals the average degree, d, of the worker-nodes.

Fig. 5.4a depicts results that were obtained by running AMP in the dense regime, where d =

Θ(N), for a system with 104 nodes. Except from finite size effects close to the phase
transition, the SE prediction agrees with the empirical results. For Fig. 5.4b we fixed different
values of ∆ (by adjusting n so that ∆ = –/(nd)) and plotted the relative deviation from the
SE when the degree d is varied. We also show the results obtained with the BP algorithm
of [LPI12] that are obtained by matching the prior and signal to noise ratio. In the limit
of large N the BP results are exact even for finite d. We find as expected that when d is
increased, the AMP performance approaches the prediction of the associated dense model
and so does BP. While for very small d BP slightly outperforms AMP, the difference is not
very significant (up to fluctuations).

We further quantified the difference in performance of BP and AMP in the sparse regime,
cf. Fig. 5.5, where ‹ is fixed and d (and hence ∆) varies. We compared AMP with its
BP equivalent and found that BP always outperforms AMP, but again only slightly. The
general trend is as expected: in the sparse regime BP is optimal and no other algorithm can
outperform it. However, it is remarkable how quickly AMP becomes comparable to BP. In
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We stress that analogous comparisons between existing algorithms and BP were already
performed in [LPI12], where BP was found to be superior. Our main point in this section
is that AMP, which is simpler than BP, gives a comparable performance to BP even on
real-world data. We therefore focus on the comparison between BP and AMP. Both, BP
and AMP perform badly when the original model with si = ti is used as can be seen from
Fig. 5.7 by comparing them to majority voting as a baseline algorithm. Running the same
experiments with the two-coin version improves the results significantly. Indeed BP and AMP
perform essentially as well as the much more involved algorithm of [WBPB10].

The experiments were run with identical beta-priors for BP and AMP (a = 2, b = 1)
for comparability with the results in [LPI12; OOSY16a]. For AMP different strategies were
implemented for the prior on v. Setting σ to the true value (estimated from the ground truth)
or to 1/2 led to comparable results as when it was learned. In our AMP implementation we
initialize v̂ in the estimates obtained by majority voting.

In the symmetric case BP and AMP are very close in performance. The difference for the
two-coin models tends to be slightly larger, while the general trend persists. We also observe
that it can be beneficial to implement AMP with an early stopping criterion as depicted in
Fig. 5.7. Early stopping can be reasonable because the assumptions made in the derivation
are likely to be imprecise, especially for small system sizes.

In summary, AMP performs quite well on real world datasets. The vanilla implementation
yields slightly worse results, as compared to BP. However, when AMP is stopped after few
iterations (we used 10) it reaches much better performance in the rank-1 case. A significant
improvement is also obtained in the rank-2 version of AMP: for small d BP outperforms
AMP, but they soon become quasi indistinguishable. Our experiments on the real-world
dataset also show that having a model that described data accurately is more important
than the precise algorithm that is used to do do inference on the model. Besides its good
performance it has the great advantage of algorithmic simplicity, better time complexity and
scalability.

5.3 Conclusion

In this chapter the dDS model for crowdsourcing was considered. The mapping onto a larger
class of low-rank matrix factorization problems leads to an approximate message passing
algorithm for crowdsourcing and a closed-form asymptotic analysis of its performance. Due
to the previous work of [BDM+16; Mio17] this analysis can be considered rigorous. While
the theory only holds rigorously for the dense Dawid-Skene model, numerical experiments
suggest that in the sparse regime AMP still performs well and also the asymptotic analysis
provides a good qualitative prediction.

When the crowd consists mainly of spammers with only few workers that provide useful
information, we found that a first order transition appears in the Bayes-optimal performance.
Algorithmically this first order transition translates into the presence of a hard phase in which
the AMP algorithm is sub-optimal. As a proof of concept we showed numerically that this
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feature persists even in the sparse regime where the rigor of our analysis breaks down.
In experiments we also found instances of first order transitions in the belief propagation
algorithm of [LPI12]. This shows that there are regimes in the Dawid-Skene model where
BP is not optimal. This complements recent results on [OOSY16b; OOSY16a] about regimes
of optimality of BP.

We also carried out experiments on real-world data and showed that AMP performs com-
parable to other state-of-the-art algorithms, while being of lower time complexity.
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— 6 —

Contagious Sets

Threshold models are a common approach to model collective dynamical processes on networks. A

question of major importance concerns the minimal contagious sets in such dynamical processes. The

work, presented in this chapter, is inspired by the generalization of the corehd algorithm, proposed

in [ZZZ16]. This algorithm can be analyzed exactly and its analysis leads to new rigorous upper

bounds on the size of the minimal contagious sets for random graphs with bounded degree, drawn

from the configuration model.

My main contribution is the derivation of the asymptotic analysis of the corehd algorithm. The

correctness of the analysis was made rigorous in collaboration with Henry Pfister. I also propose

some new heuristics that attack the problem algorithmically and outperform corehdas well as other

state-of-the-art algorithms.

The rest of the chapter is divided into two parts. First, the corehd algorithm is analyzed. Subse-

quently, some new algorithms are proposed and compared to corehd and other existing algorithms.

In this chapter we study the problem of finding the smallest set of nodes in a network whose
removal results in an empty k-core, the minimal contagious set. On random graphs the
minimal contagious set problem undergoes a threshold phenomenon: in the limit of large
graph size the fraction of nodes belonging to the minimal contagious set is w.h.p. concen-
trated around a critical threshold value. It is related to a widely studied model for dynamics
on a network: the threshold model [Gra78], also known as bootstrapping percolation in
physics [CLR79]. We refer to Sec. 1.2.3 for an introduction of the problem.

A very well performing algorithm for decycling and dismantling has been recently intro-
duced in [ZZZ16]. In Alg. 2 the corehd algorithm of [ZZZ16] is outlined (generalized
from k = 2 to generic k). One of the main contributions of the present work is to analyze
exactly the performance of this algorithm exactly, thus leading to upper bounds that are
improving those of [BWZ02] and partly closing the gap between the best know algorithmic
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upper bounds and the expected exact thresholds [GS15; BDSZ16].

Algorithm 2: Generalized corehd algorithm.
Data: G(V, E)

Result: A set of nodes D whose removal makes the k-core vanish
Function: core (k,G) returns the k-core of the graph G

1 Initialize: C Ω core(k, G) , D = { }
2 while |C| > 0 do
3 M Ω {i œ VC | i = arg max [di]} ; // VC is the set of nodes in C
4 r Ω uniform(M) ;
5 C Ω C\r ;
6 D Ω D fi {r} ;
7 C Ω core(k, C) ;
8 end

6.1 The Analysis of the corehd Algorithm

The algorithm produces a contagious set of nodes D, such that after their removal the
resulting graph has an empty k-core. Consequently, the size of D provides an upper bound
on the size of the minimal contagious set. The main aim is to show that the size of D.
normalized by the number of nodes, has a well defined limit, and to compute this limit.

With a proper book-keeping and dynamic updating of the k-core, the running time of
corehd on graphs with bounded degree is O(N). The algorithm can be implemented such
that in each iteration exactly one node is removed: if a node of degree smaller than k is
present, it is removed, else a node of highest degree is removed. Thus running the algorithm
reduces to keeping track of the degree of each node. If the largest degree is O(1) this
can be done in O(1) steps by binning all the nodes of equal degree. If a node is removed
only the degrees of all its O(1) neighbors must be moved to the new adequate bins. An
implementation of the corehd algorithm is available through the open repository [Sch18]
or the digital appendix of this thesis.

6.1.1 Reduction into a Random Process on the Degree Distribution

In the next several sections closed-form deterministic equations are derived for the macro-
scopic behavior of the corehd algorithm in the limit of large random graphs that are taken
from the configuration model. This is possible because, when the corehd algorithm is
applied to a random graph from the configuration model (parameterized by its degree distri-
bution), the result (conditioned on the new degree distribution) is also distributed according
to the configuration model. Thus, one can analyze the corehd algorithm by tracking the
evolution of the degree distribution.

In particular, the behavior of the corehd procedure, averaged over the graph G, can be
described explicitly in terms of the following process involving colored balls in an urn [Pfi14].
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At time step n there are Nn balls in the urn, each of which carries a color di, with di œ
{1, . . . , d} and d being the maximum degree in the graph at the corresponding time step.
The number of balls of color q at iteration time step n is vq(n). The colors of the balls are
initialized in such a way that, at time n = 0, the number of balls, N0, is the size of the
k-core of the original graph G. The initial values of their colors are chosen from the degree
distribution of the k-core.

The corehd algorithm then consists of repeatedly applying the following two steps.

• In a first process, called removal (line 3-6 in Alg. 2), one ball is drawn among the vd(n)

balls of maximum degree (color) d, uniformly at random. Next, d balls {i1, i2, . . . , id}
are drawn with colors following the probability that an outgoing edge from one node
is incoming to another node of degree q, i.e.,

K(q) := qP (q)/c ,

with P (q) the degree distribution and c the average degree. To conclude the first step,
each of the d balls is replaced by a ball of color dij ≠ 1 (we assume that there are no
double edges).

• In a second process, called trimming (line 7 in Alg. 2), we compute the k-core of the
current graph. In the urn-model this is equivalent to repeatedly applying the following
procedure until vi = 0 ’ i < k: draw a ball of color q œ {1, . . . , k ≠ 1} and relabel q

other balls chosen according to K(q).

Thus, we have a random process that depends purely on the degree distribution, P (q).
Note that in this process we used the fact that the graph was randomly drawn from the
configurations model with degree distribution P (q).

One difficulty, when analyzing the above process, is to choose the right observables. In the
previous paragraph the nodes were used as observables. However, equally, one might consider
the process in terms of the edges of the graph. As outlined in the previous paragraph, it is
important to keep track of the distribution K(q). Note that K(q) is related to the fraction
of edges that are connected to a node of degree q. Henceforth we will therefore be working
directly with the half-edges to simplify the analysis.

In order to continue, some notations needs to be introduced. Let each edge (ij) consist
of the two half edges that end in the nodes i and j respectively. Let hq be the total number
of half-edges that are connected to nodes of degree q at the current iteration. Furthermore,
distinguish nodes of degree smaller than k from all the others. To do so one can adapt the

index notation and identify
hk<

:=
ÿ

q<k

hq . (6.1)

The sum over the entries of a vector h(n) = (hk<(n), hk(n), . . . , hd(n))T is denoted by

|h(n)| :=
dÿ

q=k<

hq(n) . (6.2)
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In the new index notation, the unit vectors are defined as

êk< = (1, 0, . . . , 0)|, êk = (0, 1, 0, . . . , 0)|, . . . , êd = (0, . . . , 0, 1)|.

In the urn model, each ball now represents a half-edge and its color is according to the degree
of the node that this half-edge is connected to.

The two processes (trimming and removal) can be described in terms of half-edges as
follows. We start with the removal process. It can be recast in the following rule

(i) h Ω h ≠ d · êd

(ii) Repeat d times: h Ω h + Az
(6.3)

where the vector z œ R
d≠k+2 is a random vector that has zeros everywhere except in one

of the d ≠ k + 2 directions, in which it carries a one. The probability that z is pointing in
direction at iteration n is given by hq(n)/ |h(n)| for q = k<, k, k + 1, . . . , d. When a node
of degree d is removed from the graph, together with its half-edges, the remaining cavity
leaves behind some dangling half-edges that are pruned away in step (ii) using the following
relabelling matrix

A =

Q

c
c
c
c
c
c
c
c
c
a

≠1 k ≠ 1

≠k k
. . . . . .

≠(d ≠ 1) d ≠ 1

≠d

R

d
d
d
d
d
d
d
d
d
b

œ R
(d≠k+2)◊(d≠k+2) . (6.4)

Analogously, the trimming process can be cast in the following update rule:

while hk< > 0 iterate:

(i) h Ω h ≠ êk<

(ii) h Ω h + Az .

(6.5)

Step (i) removes a single half-edge of degree <k and subsequently step (ii) trims away the
dangling cavity half-edge. The position q, in which to place the one in the random variable
z, is again chosen from hq(n)/ |h(n)| for q = k<, k, k + 1, . . . , d. Let us refer to a single
iteration ((i) and (ii)), as a trimming step. The trimming process consists of as many
trimming steps as necessary to reach the stopping criterion hk< = 0.

The above equations should be compared with the procedure outlined in Sec. 1.2.3 to
anticipate where the journey is going to.

The advantage of working with a representation in terms of half-edges is that we do not
need to distinguish the different edges of color k<. Further |h(n)| is deterministic because
each column of (6.4) sums to the same constant. During the removal step, 2d half-edges
are removed and in one trimming step, 2 half-edges (resp. d edges and one edge). However,
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the number of necessary trimming steps is a random variable. We have effectively traded
the randomness in |h(n)| for randomness in the running time. For now we have simply
shifted the problem into controlling the randomness in the running time. In Sec. 6.1.3 it
will be shown that transitioning to continuous time resolves this issue, after averaging, by
determination of the running time δt as a function of Eh(t).

This alternating process is also related to low-complexity algorithms for solving K-SAT
problems [Ach00; Ach01; CM01; DM06]. These K-SAT solution methods alternate between
guessing variables, which may create new unit clauses, and trimming unit clauses via unit
clause propagation. Due to this connection, the differential equation analyses for these two
problems are somewhat similar.

6.1.2 Taking the Average over Randomness

As the equations stand in (6.3) and (6.5) they define a random process that behaves just as
the corehd algorithm on a random graph G. With z and the iteration time of the trimming
process implicitly containing all randomness. In terms of the urn model, the random variable
z indicates the color of the second half-edge that is left behind after the first was removed.
We denote the average over z as

• := Ez [•] .

Performing the average over the randomness, per se, only yields the average behavior of
the algorithm. However, in Sec. 6.1.4 it is shown that the stochastic process concentrates
around its average in the continuous limit.

Next, the combination of steps (i) and (ii) in eq. (6.3), for the removal, and eq. (6.5),
for the trimming is considered. In order to write the average of the removal step, we recall
that the probability that one half-edge is connected to a color q œ {k<, k, k + 1, . . . , d} is
given by hq(n)/ |h(n)|. In the large system limit the average drift of a full iteration of the
removal step can be written as

h(n + 1) =

A

1 +
1

|h(n)| ≠ d ≠ (d ≠ 1)
A

B

· · ·
A

1 +
1

|h(n)| ≠ d
A

B
1

h(n) ≠ d êd

2

=

Q

a1 +
d≠1ÿ

j=0

1

|h(n)| ≠ d ≠ j
A

R

b h(n) +

A
dÿ

k=2

ckA
k

B

h(n) ≠ d

A

1 +
dÿ

k=1

c̃kA
k

B

êd

=

Q

a1 +
d≠1ÿ

j=0

1

|h(n)| ≠ d ≠ j
A

R

b h(n) ≠ d êd + O(
1

|h(n)|)

=

A

1 +
d

|h(n)|A
B

h(n) ≠ d êd + O(
1

|h(n)|) ,

(6.6)

where 1 represents the identity matrix. In the above estimate, d intermediate steps are used
to transition from n æ n + 1; that is the removal of a whole degree d node. We assume
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that d is O(1). It then follows that the coefficients ck and c̃k are O(|h(n)|≠k). The last line
follows from a similar estimate for the leading term in the sum.

The average removal step can now be written as

h(n + 1) = h(n) + Ad
h(n)

|h(n)| . (6.7)

with the effective average drift matrix

Ad := d(A + Bd) , (6.8)

where the matrix Bd has all entries in the last row equal to ≠1 and zeros everywhere else,
such that Bdv = ≠êd for a non-negative, normalized vector v. Similarly, taking the average
in one trimming step (6.5) yields the following averaged version

h(n + 1) = h(n) + Ak<

h(n)

|h(n)| . (6.9)

For the trimming step the effective drift is simply

Ak<
:= A + Bk< . (6.10)

where now Bk< has all its entries in the first row equal to ≠1 and zeros everywhere else.
We emphasize that the two processes (6.7) and (6.9), while acting on the same vector,

are separate processes and the latter, (6.9), must be repeated until the stopping condition
hk< = 0 is hit. Note also, that in the trimming step, one iteration n æ n + 1 indicates
the deletion of a single edge, while it indicates the deletion of a whole node in the removal
process.

6.1.3 Operator and Continuous Limits

As discussed at the end of Sec. 6.1.1, a key observation, by virtue of which we can proceed,
is that |h(n)| is deterministic (and hence equal to its average) during both, the removal
and trimming, steps. This is due to the structure of Ak< and Ad that have columns sums
independent of the row index:

qk< ©
ÿ

i

[Ak< ]ij = ≠2 and qd ©
ÿ

i

[Ad]ij = ≠2d

The only randomness occurs in the stopping time of the trimming process.
In this section the transition to the continuous time-variable t is performed. To that end

we define the scaled process

η(t) = lim
N0æŒ

1

N0
h(tN0) (6.11)
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and presume that the derivative ηÕ(t) is equal to its expected change. Here N0 stands for
the initial number of vertices in the graph.

Before proceeding to the analysis of corehd, let us first describe the solution for the
two processes (removal and trimming) as if they were running separately. Let us indicate
the removal process (6.7) and trimming processes (6.9) with subscripts α = d and α = k<

respectively. It then follows from (6.7) and (6.9) that the expected change is equal to

ηÕ

–(t) = A–
η–(t)

|η–(t)| . (6.12)

Owing to the deterministic nature of the drift terms, A–, we have

|η–(t)| = 1 + q–t (6.13)

and the above differential equation can be solved explicitly as

η–(t) = exp

5
A–

q–
ln (1 + q–t)

6

η–(0) . (6.14)

We have thus obtained an analytic description of each of the two separate processes (6.7)
and (6.9).

Note that this implies that we can analytically predict the expected value of the random
process in which all nodes of degree d are removed from a graph successively until none
remains and then all nodes of degree smaller than k are trimmed. This already provides
improved upper bounds on the size of the minimal contagious sets, that we report in Table
6.2 (cf. “two stages”). This “two stages” upper bound has the advantage that no numerical
solution of differential equations is required. The goal, however, is to analyze the corehd

procedure that merges the two processes into one, as this should further improve the bounds.
Crucially, the running time of the trimming process depends on the final state of the

removal process, i.e., the differential equations become nonlinear in η(t). As a consequence,
they can no longer be brought into a simple, analytically solvable, form (at least as far as we
were able to tell). To derive the differential equations that combine the removal and trimming
processes and track corehd we will be working with the operators that are obtained from
the iterative steps, (6.7) and (6.9), in the continuous limit (6.12). The evolution within an
infinitesimally small removal step (α = d), respectively trimming step (α = k<), follows
from (6.12) to

η–(t + δt) = T̂–(δt, t)η–(t) , (6.15)

where we introduced the propagator

T̂–(δt, t) =

3

1 +
A–

|η–(t)| δt

4

.

In what follows, we will be considering the removal and trimming processes to belong to
one and the same process and therefore η(t) will no longer be carrying subscripts. Upon
combination, a full step in the combined process in terms of the operators then reads

η (t + δt) = T̂k<(δ̂t, t + δt) T̂d(δt, t) η (t) . (6.16)
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Note that one infinitesimal time step is the continuous equivalent of the removal of one degree
d node, together with the resulting cascade of degree < k nodes (the trimming process).
It is for that reason that the final (continuous) time, after which the k-core vanishes, will
be directly related to the size of the set D in Alg. 2. Note also that in T̂k<(δ̂t, t + δt) we
replaced the running time with the operator δ̂t. It acts on a state to its right and can be
computed from the condition that all the nodes of degree smaller k must be trimmed after
completing a full (infinitesimal) step of the combined process, so that

ηk< (t + δt)
!

= 0 . (6.17)

Requiring this trimming condition in eq. (6.16) we get, from an expansion to linear order
in δt, that

δ̂t = δt ·
A

≠
[Adη(t)]k<

[Ak<η(t)]k<

B

. (6.18)

We can now use this equation to eliminate the dependence on δ̂t in the combined opera-
tor T̂k<(δ̂t, t) T̂d(δt, t). Using (6.15) and keeping only first order terms in δt in (6.16) yields

η(t + δt) = η(t) +

C

≠
[Adη(t)]k<

[Ak<η(t)]k<

Ak< + Ad

D

η(t)

|η(t)| δt, (6.19)

which leads us to the following differential equation

ηÕ(t) = [ϕ (η(t)) Ak< + Ad]
η(t)

|η(t)| . (6.20)

The nonlinearity ϕ(·) is directly linked to the trimming time and defined as

ϕ (η(t)) © ≠
[Adη(t)]k<

[Ak<η(t)]k<

= ≠ d (≠ηk<(t) + (k ≠ 1)ηk(t))

≠ |η(t)| ≠ ηk<(t) + (k ≠ 1)ηk(t)
=

d (k ≠ 1)ηk(t)

|η(t)| ≠ (k ≠ 1)ηk(t)
.

(6.21)
To obtain the last equality in (6.21) we used the trimming condition to set ηk<(t) = 0.
The initial conditions are such that the process starts from the k-core of the original graph.
This is achieved by solving (6.14), with α = k<, for arbitrary initial degree distribution η(0)

until ηk<(t) = 0. Hence, the set of differential equations defined by (6.20), can be written
explicitly as

ηÕ
k<

(t) = 0 (6.22)

ηÕ
i(t) = d · i · ≠ηi(t) + ηi+1(t)

|η(t)| ≠ (k ≠ 1)ηk(t)
for k Æ i < d (6.23)

ηÕ
d(t) = ≠d + d2 · ≠ηd(t)

|η(t)| ≠ (k ≠ 1)ηk(t)
. (6.24)
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6.1.4 Rigorous Analysis

A rigorous analysis of the k-core peeling process for Erdős-Rényi graphs is presented in [PSW96a].
This analysis is based on the Wormald approach [Wor95] but the presentation in [PSW96a]
is more complicated because it derives an exact formula for the threshold and there are
technical challenges as the process terminates. For random graphs drawn from the con-
figuration model, however, the standard Wormald approach [Wor95] provides a simple and
rigorous numerical method for tracking the macroscopic dynamics of the peeling algorithm
when the maximum degree is bounded and the degree distribution remains positive. The
primary difficulty occurs near termination when the fraction of degree < k edges becomes
very small.

The peeling process in corehd alternates between deleting maximum-degree nodes (re-
moval) and degree < k edges (trimming) and this introduces a similar problem for the
Wormald method. In particular, the corehd peeling schedule typically reduces the frac-
tion of maximum-degree nodes to zero at some point and then the maximum degree jumps
downward. At this jump, the drift equation is not Lipschitz continuous and does not satisfy
the necessary conditions in [Wor95]. More generally, whenever there are hard preferences
between node/edge removal options (i.e., first delete largest degree, then 2nd largest degree,
etc.), the same problem can occur.

For corehd, one solution is to use weighted preferences where the removal of degree
< k edges is most preferred, then removal of degree-d nodes, then degree d ≠ 1 nodes,
and so on. In this case, the drift equation remains Lipschitz continuous if the weights are
finite but the model dynamics only approximate the corehd algorithm dynamics. In theory,
one can increase the weights to approximate hard preferences but, in practice, the resulting
differential equations become too numerically unstable to solve efficiently. A better approach
is to use the operator limit described in Sec. 6.1.3. Making this rigorous, however, requires
a slightly more complicated argument.

The key argument is that the k-core peeling step (after each maximum-degree node re-
moval) does not last too long or affect too many edges in the graph. A very similar argument
(dubbed the Lazy-Server Lemma) is used in the analysis of low-complexity algorithms for
solving K-SAT problems [Ach00; Ach01]. In both cases, a suitable stability (or drift) condi-
tion is required. For corehd, we use the following lemma.

Lemma 6.1. For some δ > 0, suppose h(n) satisfies hk(n) Æ 1≠3δ
k≠1 |h(n)| and M , |h(n)| Ø

M0(δ). Consider the corehd process where a maximum-degree node is removed and then

the trimming process continues until there are no edges with degree less than k (see (6.5)).
Let the random variable T denote the total number of trimming steps, which also equals the

total number edges removed by the trimming process. Then, we have

Pr
!
T > (k ≠ 1)2δ≠2 ln M

" Æ M≠2.

Proof. See Appendix A.2.1.
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Lemma 6.2. Let η(t) be the solution to the operator-limit differential equation (6.20) at

time t starting from η(0) = 1
N h(0). Assume, for some δ > 0, there is a t0 > 0 such that

ηk(t) Æ 1≠4δ
k≠1 |η(t)|, implying that the denominator of (6.21) is positive, and |η(t)| Ø δ for

all t œ [0, t0]. Then, there is C > 0 such that

Pr

A

sup
tœ[0,t0]

.

.

.

.η(t) ≠ 1

N
h(ÂNtÊ)

.

.

.

. >
C

N1/4

B

= O
1

N≠1
2

.

Proof. See Appendix A.2.2.

Theorem 6.1. The multistage corehd process converges, with high probability as N æ Œ,

to the piecewise solution of the operator-limit differential equation.

Sketch of Proof. The first step is recalling that the standard k-core peeling algorithm re-
sults in graph distributed according to the configuration model with a degree distribution
that, w.h.p. as N æ Œ, converges to the solution of the standard k-core differential equa-
tion [PSW96a]. If k-core is not empty, then the corehd process is started. To satisfy the
conditions of [Wor99a, Theorem 5.1] (The Theorem is outlined in Appendix A.1), the process
is stopped and restarted each time the supply of maximum-degree nodes is exhausted. Since
the maximum degree is finite, this process can be repeated to piece together the overall
solution. Using Lemma 6.2, we can apply [Wor99a, Theorem 5.1] at each stage to show the
corehd process follows the differential equation (6.20). It is important to note that the
cited theorem is more general than the typical fluid-limit approach and allows for unbounded
jumps in the process as long as they occur with low enough probability.

6.1.5 Evaluating the Results

Here we clarify how the upper bound is extracted from the equations previously derived.
Note that the nonlinearity (6.21) exhibits a singularity when

|η(t)| = (k ≠ 1)ηk(t) , (6.25)

that is, when the gain (r.h.s.) and loss (l.h.s.) terms in the trimming process are equal. This
can be either trivially true when no more nodes are left, |η(t)| = 0, or it corresponds to an
infinite trimming time. The latter is precisely the point where the size of the k-core jumps
downward discontinuously, whereas the first case is linked to a continuous disappearance of
the k-core. Either of these two cases define the stopping time ts of the differential process
(6.20). By construction the stopping time ts provides the size of the set D that contains all
the nodes the corehd algorithm removed to break up the k-core. It hence also provides

an upper bound on the size of the minimal contagious set, i.e. the smallest such set that
removes the k-core.

Note that η(ts ≠ ‘) (for an infinitesimally small ‘) gives the size of the k-core, right before
it disappears. For all the cases investigated in this paper we found that solving eqs. (6.22–
6.24) for k = 2 yields a continuous disappearance of the 2-core, and for k Ø 3 the stopping
criteria yield discontinuous disappearance of the k-core.
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In order to solve the above set of ODEs numerically, we first use equation (6.14) to trim
away nodes of color k<, i.e. reduce the graph to it’s k-core. Then we use equation (6.19)
recursively, until the last component ηd is zero. Subsequently we reduce η by removing its
last component, send d æ d ≠ 1, adapt the drift term (6.8) and repeat with the reduced η

and initial condition given by the result of the previous step. All this is performed until the
stopping condition (6.25) is reached. We summarize the procedure in a pseudo-code in Alg. 3.
For our code that solves the differential equations we refer to the open repository [Sch18] or
the digital appendix of this thesis.

Algorithm 3: Analysis of corehd. Recall that indices are k< are referring to the first
component of a vector, k to the second and so forth until the last component d.
Data: Initial degree distribution P (q); k

Result: The relative size of set of removed nodes, ts.
1 Initialize half-edges:

η(0) =
1

qk≠1
i=1 i · P (i), k · P (k), (k + 1) · P (k + 1), . . . , d · P (d)

2T
;

2 Compute distribution of half-edges in the k-core:

η0 = exp
Ë

≠Ak<

2 · ln (1 ≠ 2t0)
È

η(0) with t0 such that ηk<(t0) = 0 and Ak< defined in

(6.10);
3 Set: d Ω the degree associated to the last non-zero component of η0; ts Ω 0 ;
4 while stop ”= true do
5 Solve:

ηÕ(t) =

5
d(k ≠ 1)ηk(t)

|η(t)| ≠ (k ≠ 1)ηk(t)
Ak< + Ad

6
η(t)

|η(t)|
with initial condition η0. Until either ηd(tú) = 0 or |η(tú)| = (k ≠ 1)ηk(tú) ;
// Ak< and Ad defined by (6.10) and (6.8) with d set to the

current largest degree

6 Update: ts Ω ts + tú ;
7 if |η(tú)| = 0 or |η(tú)| = (k ≠ 1)ηk(tú) then
8 stop Ω true;
9 else

10 η0 Ω ηk<:d≠1(tú) ;
11 d Ω d ≠ 1 ;
12 end
13 end

Example: two-cores on three regular random graphs. For a simple example of how to
extract the upper bound consider the following case. We have k = 2 and d = 3 and we set
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k< = 1, then the differential equation in (6.20) becomes

ηÕ
1(t) = 0

ηÕ
2(t) = 6 ·

3

1 ≠ η2(t)

η3(t)

4

ηÕ
3(t) = ≠12 ,

(6.26)

with initial condition
η(0) = d · êd (6.27)

because there are dN half-edges, all connected to nodes of degree d initially. The equations
are readily solved

η1(t) = 0

η2(t) = 3 ·
Ô

1 ≠ 4t ·
1

1 ≠
Ô

1 ≠ 4t
2

η3(t) = 3 · (1 ≠ 4t) .

(6.28)

According to (6.25) the stopping time is ts = 1/4, i.e. |D| = N/4, which suggests that the
decycling number (2-core) for cubic random graphs is bounded by N/4+o(N). In accordance
with Theorem 1.1 in [BWZ02] this bound coincides with the actual decycling number. For
d > 3 the lower and upper bounds do not coincide an the stopping time resulting from our
approach only provides an upper bound.

Finding a closed form expression for the generic case is more involved and we did not
manage to do it. However, very reliable numerical resolution is possible. The simplest
approach to the differential equations is to work directly with (6.19) as indicated in Alg. 3.

6.1.6 corehd Analyzed and Compared with Existing Results

In this section we evaluate the upper bound on the minimal contagious set, obtained by our
analysis of corehd. In Fig. 6.1 we compare the fraction of nodes of a given degree that
are in the graph during the corehdprocedure. We overlay the results obtained from solving
the differential equations with the averaged timelines obtained from direct simulations of the
algorithm.

Table 6.1 collects the comparisons between direct numerical simulations of the corehd

algorithm with the prediction obtained from the differential equations. The two are in
excellent agreement. Higher precision can be obtained without much effort. When analyzing
Erdős-Rényi graphs, it is necessary to restrict the largest degree to avoid an infinite set of
differential equations. The resulting error is exponentially small in the maximum degree, and
hence in practice insignificant.

Confident with this cross-check of our theory, we proceed to compare with other theoretical
results. As previously stated, Guggiola and Semerjian [GS15] have derived the size of the
minimal contagious sets for random regular graphs using the cavity method. At the same
time, several rigorous upper bounds on size of the minimal contagious set exist [ABW10;
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d k RRG corehd RRG theory final core ERG corehd ERG theory final core

3 2 .2500(0) .25000 0 .1480(7) .14809 0

4 2 .3462(3) .34624 0 .2263(0) .22634 0

3 .0962(5) .09623 .67349 .0388(5) .03887 .32718

5 2 .4110(7) .41105 0 .2924(8) .29240 0

3 .2083(6) .20832 .48428 .1068(2) .10679 .33105

4 .0476(9) .04764 .85960 ≠ ≠ ≠
6 2 .4606(2) .46063 0 .3480(8) .34816 0

3 .2811(2) .28107 .40916 .1700(1) .16994 .34032

4 .1401(1) .14007 .68672 .0466(0) .04662 .46582

5 .0280(7) .02809 .92410 ≠ ≠ ≠
7 2 .5006(0) .50060 0 .3954(7) .39554 0

3 .3376(1) .33757 .36179 .2260(0) .22597 .32878

4 .2115(0) .21150 .58779 .1043(2) .10429 .46788

5 .1010(2) .10100 .78903 .0088(5) .00882 .54284

6 .0184(6) .01842 .95038 ≠ ≠ ≠

Table 6.1: Comparison between direct simulations of the corehd Algorithm 2 and the theoretical
results for random graphs of different degree d and core-index k. The left hand side of
the table reports results for random regular graphs, the right hand side for Erdős-Rényi
random graphs of the corresponding average degree. The simulation results are averaged
over 50 runs on graphs of size N = 219. The fractions of removed nodes agree up to the
last stable digit (digits in brackets are fluctuating due to finite size effects). We also list
the size of the k-core just before it disappears (in the column “final core”).
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d (degree) Bau, Wormald, Zhou two stages corehd cavity method

3 .25 .3750 .25 .25

4 .3955 .3913 .3462 .3333

5 .4731 .4465 .4110 .3785

6 .5289 .4911 .4606 .4227

7 .5717 .5278 .5006 .4602

Table 6.2: Best known upper bounds on the minimal decycling sets by [BWZ02], compared to the
upper bounds obtained from our analysis when all nodes of maximum degree are removed
before the graph is trimmed back to its 2-core (two stages), and to our analysis of
corehd. The last column gives the non-algorithmic cavity method results of Guggiola
and Semerjian [GS15] that provide (non-rigorously) the actual optimal sizes.

Rei12; CFKR15]. In particular the authors of [BWZ02] provide upper bounds for the decycling
number (2-core) that are based on an analysis similar to ours, but of a different algorithm.1

In table 6.2 we compare the results from [BWZ02] with the ones obtained from our analysis
and the presumably exact results from [GS15]. We clearly see that while corehd is not
quite reaching the optimal performance, yet the improvement over the existing upped bound
is considerable.

In Tab. 6.3 we quantify the gap between our upper bound and the results of [GS15] for
larger values of k. Besides its simplicity, the corehd algorithm provides significantly better
upper bounds than those known before. Clearly, we only consider a limited class of random
graphs here and the bounds remain away from the conjectured optimum. However, it is worth
emphasizing that previous analyses were often based on much more involved algorithms. The
analysis in [CFKR15] or the procedure in [BWZ02] are both based on algorithms that are
more difficult to analyze.

6.2 Improving corehd

The main focus of our work lays on the analysis of corehd on random networks. However,
rather naturally the question of how to improve over it raises. In this section the possibility
of a simple local strategy that systematically improves over the corehd performance is eval-
uated. We show that introducing additional local information about the direct neighbors of
a node into the decision process can significantly improve the performance, while conserving
the essential time complexity.

The corehd algorithm (Alg. 2) does not take into account any information of the neigh-
borhood of a node. The theoretical analysis in the previous section owes its simplicity to this

1The numerical values, provided for the bounds in [BWZ02] are actually not correct, as the authors realized

and corrected in a later paper [HW08].
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fact. However, the idea behind corehd can be extended to the next order by considering
the structure of the nearest neighbors of a node. Once we include the nearest neighbors
the number of options is large. Our aim is not to make an extensive study of all possible
strategies, but rather to point out some heuristic arguments that lead to improvement.

According to the previous section, selecting high degree nodes is a good strategy. Another
natural approach is a greedy strategy that, in each step, selects a node such that the caused
cascade of nodes dropping out of the core is maximized [GS15; CFKR15; SXS+17]. The
vanilla-greedy approach removes nodes according to the size of cascade that is caused by
their removal. Nodes that cause the largest cascade in the subsequent trimming process are
removed first. The high degree version of this approach additionally focuses on the nodes of
maximum degree, e.g., by picking nodes according to arg maxi [di + si] with si now being
the size of the corona (not limited to the direct neighborhood, but the total graph). Note
that these algorithms have O(N2) running time.

In the following we list some strategies that aim to improve over corehd. On graphs
with O(1) maximum degree they can all be implemented in O(N) running time.2

weak-neighbor
The weak-neighbor strategy aims to remove first those nodes that have high degree
and low average degree of the neighbors, thus causing a larger trimming step on
average. There are different ways to achieve this. We tried two strategies that both
yield very similar results on all the cases considered. These two strategies are

• The order in which the nodes are removed is according to arg maxi di ≠si with di

being the degree of node i and si the average degree of the neighbors of i.

• We separate the two steps. First select the set M Ω {i œ VC | i = arg maxi [di]}
and then update it according to M Ω {i œ M | i = arg mini

Ë
q

jœˆi dj

È

}.

Our implementation of the weak-neighbor algorithm is available through our repos-
itory [Sch18] or the digital appendix of this thesis.

corehdld
This approach selects high degree nodes, but then discriminates those that have many
neighbors of high degree. The idea is that nodes that have neighbors of large degree
might get removed in the trimming procedure preferentially and hence the degree of the
node in question will likely decrease. More specifically we implemented the following:

• First select the set M Ω {i œ VC | i = arg maxi [di]} and then update it

according to M Ω {i œ M | i = arg maxi

Ë
q

jœˆi I [dj < di]
È

}.

2 Following up on [BDSZ16], we mention that, in applications of practical interest, it is possible to improve

each of the mentioned algorithm by adding an additional random process that attempts to re-insert nodes.

Consider the set S ⊂ G of nodes that, when removed, yield an empty k-core. Then find back the nodes

in S that can be re-inserted into the graph without causing the k-core to re-appear.
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corehd-critical
The idea is slightly different in that the discriminating step aims to maximize the local
cascade caused by the removal of a node. This approach is motivated by the typical
greedy strategies, brought down to the level of the direct neighbors. Nodes are first
selected according to their degree and subsequently among them we remove nodes first
that have the largest number of direct neighbors that will drop out in the trimming
process.

• First select the set M Ω {i œ VC | i = arg maxi [di]} and then update it

according to M Ω {i œ M | i = arg maxi

Ë
q

jœˆi I [dj Æ k]
È

}.

Finally, it is interesting to contrast this algorithm with a version in which the high degree
selection step is left out, i.e., select M Ω {i œ VC | i = arg maxi

Ë
q

jœˆi I [dj Æ k]
È

}
and then remove at random from this set.

We find that all of them improve over the corehd algorithm (at least in some regimes).
Second, we find that among the different strategies the weak-neighbor algorithm performs
best. While we have systematic numerical evidence that the weak-neighbor strategy
performs best, it is not clear which are the effects responsible. We also report that the
greedy procedures tend to perform worse than weak-neighbor when k π d ≠ 1 and
become comparable when k ¥ d ≠ 1.

Next we contrast the corehd performance and the weak-neighbor performance with
the performance of the recently introduced [SXS+17] algorithm, citm-L, that uses infor-
mation from a neighborhood up to distance L and was shown in [SXS+17] to outperform
a range of more basic algorithm. In Fig. 6.3 we compare the performances of the weak-

neighbor, corehd, and citm-10 (beyond L = 10 resulted in negligible improvements)
on Erdős-Rény graphs. For small k the corehd algorithm outperforms the citm algorithm
but, when k is increased, the performance gap between them shrinks. For large k (e.g. in
Fig. 6.2) citm may outperform corehd. Both corehd and citm are outperformed by the
weak-neighbor algorithm in all the cases we tested. In addition to the results on Erdős-
Rény graphs we summarize and compare all three algorithms on random regular graphs and
put them in perspective to the cavity method results in Tab. 6.3. It can be concluded that
the optimal use of information about the neighborhood is not given by the citm algorithm.
What the optimal strategy is, that only uses local information up to a given distance, remains
an intriguing open problem for future work.

6.3 Conclusion

We have derived a provably exact analysis of the corehd algorithm for random graphs
from the configuration model with bounded maximum degree. To that end a deterministic
description of the associated random process on sparse random graphs was derived that
lead to a set of non-linear ordinary differential equations. From the stopping time of these
differential equations (the time at which the k-core disappears) we extracted an upper bound
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d k citm-10 corehd weak-neighbor cavity method

3 2 .254 .2500 .2500 .25000

4 2 .365 .3462 .3376 .33333

3 .077 .0963 .0744 .04633

5 2 .437 .4111 .3965 .37847

3 .205 .2084 .1876 .16667

4 .032 .0477 .0277 .01326

6 2 .493 .4606 .4438 .42270

3 .296 .2811 .2644 .25000

4 .121 .1401 .1081 .07625

5 .019 .0281 .0134 .00582

7 2 .540 .5006 .4831 .46023

3 .362 .3376 .3206 .30009

4 .207 .2115 .1813 .15006

5 .081 .1010 .0686 .04289

6 .013 .0185 .0077 .00317

Table 6.3: Performance results of the three algorithms (citm (with L = 10), corehd, weak-

neighbor (with arg maxi di ≠si)) on random regular graphs. As well as the conjectured
optimal results obtained non-constructively via the cavity method in [GS15].
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on the minimal size of the contagious set of the underlying graph ensemble. The derived
upper bounds are considerably better than previously known ones.

Next to the theoretical analysis of corehd we proposed a novel algorithm, weak-

neighbor. It is based on selecting large degree nodes from the k-core that have neighbors
of low average degree. In numerical experiments on random regular and Erdős-Rény graphs
it was shown that the weak-neighbor algorithm outperforms corehd, as well as other
scalable state-of-the-art algorithms [SXS+17]. It further exhibits a satisfying O(N) running
time on graphs with maximum degree of O(1).
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— 7 —

Matrix Estimation: A Random Matrix Problem in

the Replica Space

“My work consists of two parts: of the one which is here, and of everything which I have not written.

And precisely this second part is the important one.” — Ludwig Wittgenstein

7.1 Prologue

In this chapter we present some work that is related to the problem of matrix factorization,
when the matrices that form the product are of extensive rank. Due to finite time effects,
this chapter must be considered an unfinished journey.

In matrix factorization the aim is as follows: from a noisy measurement of the product of
two matrices the aim is to estimate the original matrices, that is, the components that formed
the product. More formally, given an N ◊ M matrix, Y , that was obtained from a noisy,
elementwise, measurement of the matrix S := F X, with F œ R

N◊R and X œ R
R◊M , the

aim is to recover F and X. This problem has several important applications [KKM+16b] of
practical interest; among them are dictionary learning, sparse principal component analysis,
blind source separation, matrix completion and principal component analysis. Each of these
problems can be mapped onto matrix factorization by either the channel P (Y | F , X)

and/or the priors P (F ), P (X). To give one example, if one has an i.i.d. Gaußian prior on
F , an i.i.d. sparse Gaußian prior on X and i.i.d. Gaußian noise, R, we are in a setting that
can be used to model dictionary learning [KMZ13]: F then represents the dictionary and X

the sparse features.
Thus, we are given a matrix Y that is a noisy version of a matrix S, that is itself a

deterministic function of the matrices F and X; we write

Y = F X + R , (7.1)

with R some noise matrix, not necessarily Gaußian. There is a great technical difference
between the case where R = Θ(1) and R = Θ(N) = Θ(M). The former case is the low-
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rank matrix factorization that was already encountered in the chapter on crowdsourcing. The
latter is much more difficult to solve, because in an expansions w.r.t. S higher order terms
survive. Indeed, the statistical physics investigation of the latter problem with extensive
rank was claimed to have been exactly solved in [KKM+16b]. But as we shall see in the
following this analysis relies on the assumption that the overlap concentrates, while our
investigation suggests that this is not the case.

A warning, before we move on to the analysis. The results, presented in this chapter
are not final. There remain many open questions that we will summarize in the end of
this chapter. Nevertheless, a significant fraction of my research time was invested into the
analysis of this problem and many failed algorithmic and analytic attempts. I decided to
present the following preliminary results because I think that they are a promising route
towards the resolution of this problem and in the hope to gain feedback on the current
status of the analysis.

7.2 A Simpler Problem

In this chapter we focus on a simplified form of the generic problem (7.1) that will allow us
to grasp the important physics behind the problem, without getting lost in the formalities
of different channels and priors. We study the simplest possible problem that falls into the
above category: The symmetric version with a Gaußian prior on X under symmetric Gaußian
noise, W .

Y = XX| +
Ô

∆W , X œ R
N◊R , α :=

N

R
NæŒ≠≠≠≠æ Θ(1) . (7.2)

It is not too difficult to repeat the computation of [KKM+16b] for this case. Carrying out
the same steps as in [KKM+16b] one realizes that the key assumption in that paper is that

R≠1 q

k xa
µkxb

‹k æ E

Ë

xa
µkxb

‹k

È

=: Qab, with a, b indicating two different replicas. However,
this assumption does not hold by reason of higher order correlations. To be more precise,
assume that the elements of X are standard Gaußians with zero mean and variance equal
to one, then S = XX| is Wishart distributed and

P (S) Ã det(S)(R≠N≠1)/2e≠TrS/2 .

In this example the higher order correlations are stemming from the determinantal interac-
tions among the elements of S, as a consequence of which (as we shall see)

1

R

ÿ

k

xa
µkxb

‹k ”æ Qab . (7.3)

The simplified model, introduced above, will prove to be very valuable for academic pur-
poses and in order to understand the underlying mathematical difficulties with extensive rank
matrix factorization. Furthermore, the Gaußian prior can be considered rather difficult for
inference as it possesses a large amount of symmetry. More practically realistic priors are
typically more restrictive and make inference easier.
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7.3 Replica Approach

We are interested in solving the problem (7.2). In this part of the thesis we consider the
problem solved, if we can compute the free energy and recover the asymptotic MMSE for
the recovery of X, i.e., the x-MMSE. We will not consider any algorithmic aspects.

We assume that the elements of X are i.i.d. Gaußian and the noise matrix is a Wigner
matrix with variance ∆. In other words, we observe a Wishart matrix, distorted by a Wigner
matrix (white Gaußian noise)

Y =
1

N
XX| +

Û

∆

N
W . (7.4)

We have chosen the scaling such that the eigenvalues of Y are O(1), if xµk and wµ‹ are
both O(1). In the following we assume, without loss of generality, that the elements of X

have zero mean and unity variance. The associated posterior for X, given Y , reads

P (X | Y ) =
1

Z(Y )

Ÿ

µÆN

Ÿ

kÆR

N
A

xµk; 0,
1Ô
N

B
Ÿ

1ÆµÆ‹ÆN

N
A

yµ‹ ;
1

N

ÿ

k

xµkx‹k,

Û

∆ú

N

B

.

(7.5)
Here ∆ú denotes that the diagonal elements carry twice the noise of the off-diagonal elements.

We aim to compute EY ln Z(Y ), with Z(Y ) explicitly given as

Z(Y ) = c ·
ˆ

dX exp

3

≠N

2
TrXX|

4

exp

C

≠ N

4∆
Tr

3

Y ≠ 1

N
XX|

42
D

. (7.6)

The constant is given by

c =

3
N

2π

4 NR
2

3
N

2π∆

4 N(N+1)
4 1

2
N
2

.

It should be noted that X can only be recovered up to a rotation, since any rotation of
the X, i.e., X æ XO with O œ O(R) results in the same observations Y . The solution is
therefore hugely degenerated. Later this degeneracy will allow us to reduce the problem to
the eigenvalues of an auxiliary order-parameter-matrix.

7.3.1 Replica Free Energy

In this section we compute EY ln Z(Y ) with the replica method. The analysis will turn out
to simplify if one removes the term

EY [≠ N

2∆ú
ÿ

µÆ‹

y2
µ‹ ] ≠ ln c

from the free energy. This term depends only on the eigenvalue spectrum of Y , that can be
computed independent of the ground truth X. It can thus be added back at the end of the
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computation. Removing this part amounts to a rescaling of the partition function with an
X independent term

Z̃(Y ) =

ˆ

dXe≠ N
2

TrXX|

e≠ N
4∆

Tr(Y ≠ 1
N

XX|)2+ N
4∆

TrY 2
. (7.7)

We will now compute EY ln Z̃(Y ) with the replica method. The average over the loga-
rithm of the partition function is replaced by an average of the n-fold replicated partition
function. The average with respect to Y can be carried out by realizing that

´

dY P (Y ) =
´

dY dX0P (Y | X0)P (X0). Note that, due to the symmetry in Y , the integration over
Y is only over the elements yµÆ‹ . We obtain

EY

Ë

Z̃(Y )n
È

Ã
ˆ

dY

ˆ nŸ

a=0

dXae≠ N
2

qn

a=0
TrXa(Xa)|e≠ N

4∆

qn

a=0
Tr(Y ≠ 1

N
Xa(Xa)|)2+ N

4∆

qn

a=1
TrY 2

.

(7.8)

Expanding the square and introducing the shorthand

DX :=

ˆ nŸ

a=0

dXa exp (≠N

2

nÿ

a=0

TrXa(Xa)|)

leads to

EY

Ë

Z̃(Y )n
È

Ã
ˆ

DX

ˆ

dY e≠ N
4∆

TrY 2+ 1
2∆

TrY (
qn

a=0
Xa(Xa)|)e≠ 1

N
1

4∆

qn

a=0
Tr(Xa(Xa)|)2

.

(7.9)

The integration over Y is Gaußian and can be performed:

EY

Ë

Z̃(Y )n
È

Ã
ˆ

DXe
≠ 1

2∆ú
1
N

qn

a=0

q

µÆ‹
(
q

k
xa

µkxa
‹k)2

Ÿ

µÆ‹

;ˆ

dyµ‹e≠ N
2∆ú y2

µ‹+ 1
∆ú yµ‹

!qn

a=0

q

k
xa

µkxa
‹k

"<

Ã
ˆ

DX exp

Q

a≠ 1

2∆ú
1

N

nÿ

a=0

ÿ

µÆ‹
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(7.10)

Here we see why it is convenient to remove the X independent term in the beginning: it
results in a cancellation of the terms that contain contributions from only one replica, as we
see in the step from the second to the third line.
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The last integral contains a quartic term, that we eliminate by Hubbard-Stratonovich
transform:

e
1

4∆
1
N

1
q

µ
xa

µkxb
µkÕ

22

=

Û

4π∆
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ˆ

dQab
k,kÕe

≠N ∆
4

(Qab
k,kÕ )

2+ 1
2

Qab
k,kÕ

q

µ
xa

µkxb
µkÕ . (7.11)

Note that Qab is a symmetric R ◊ R-matrix. The symmetry follows from the assumption of
an ultrametric structure, i.e., that Qab only depends on the distance between a and b. Now
that the quartic term is traded for an additional Gaußian field, it is possible to carry out the
integration w.r.t. X
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(7.12)

We see that the integration factorizes over the greek indices, µ. This is a manifestation
of the fact that the statistics between any two rows is identical. Note however, that the
integration does not factorize w.r.t. both indices, unlike it was assumed in the analysis of
[KKM+16a]. In the following we further denote

Q =

Q
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(7.13)
i.e. the (double) underline refers to a stacked-up vector (matrix) in the replica space. We
rewrite the last integral over xµ ::
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Ÿ

a

Ÿ

k

dxa
µk exp

Q

a≠1

2

ÿ

a

ÿ

k

(xa
µk)2 +

ÿ

a ”=b

ÿ

k,kÕ

Qab
k,kÕxa

µkxb
µkÕ

R

b

=

ˆ

dxµ exp

3

≠1

2
x|

µ

1

1 ≠ Q
2

xµ

4

.

(7.14)

Carrying out the Gaußian integral in (7.12), we are left with

EY

Ë
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. (7.15)
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Eventually we would like to perform this integral by a saddle point approximation. How-
ever, we expect the saddle point to be hugely degenerated, at this point, due to the rotational

symmetry in the problem. It is hence reasonable to ‘eliminate’ this degeneracy by decom-
position of the integration over Qab by an integration over the degenerate part (orthogonal
invariance) and the non-degenerate part (the eigenvalues of Qab). This is done by the
following orthogonal transformation [Mui09] (recall that Qab is symmetric)

Qab = OabLab(Oab)| , ∆ dQab =
2RπR2/2

ΓR(R
2 )

(dOab)

¸ ˚˙ ˝

DOab

Ÿ

i<j

-
-
-lab

i ≠ lab
j

-
-
- (dLab) . (7.16)

Here Lab denotes the diagonal matrix of eigenvalues, lab
i , of Qab and Oab is an orthogonal

matrix. The product
r

i<j(lab
i ≠lab

j ) is the Vandermonde determinant that induces a repulsive
interaction among the R eigenvalues. Note well that we are assuming that the overlap matrix
has full rank. Performing the change of variables, we obtain
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where Q in the last integral should be understood as a function of O and L. We write the
above in the following form
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with the action

S[L] =
∆

4

1

N

ÿ

a ”=b

Tr(Lab)2 ≠ 1

N2

ÿ

a ”=b

ÿ

i<j

ln |lab
i ≠ lab

j | ≠ G[L] (7.19)

and G[L] is defined as follows:

G[L] =
1
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2
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where the matrix Q is a function of {Lab} and {Oab}:

Q =

Q

c
c
c
c
c
c
a

0 O01L01(O01)| · · · O0nL0n(O0n)|

O10L10(O10)| 0
. . .

...
...

. . . . . .

On0Ln0(On0)| · · · 0

R

d
d
d
d
d
d
b

(7.21)

148



Next, we evaluate the integral in (7.18) by a saddle point approximation. Extremization

w.r.t. the eigenvalues, ˆS
ˆlab

k

!
= 0, leads to the following set of equations
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We have ignored the symmetry under exchange of a and b that would lead to a factor of two
in front of each of the terms and

δab
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where δkk denotes the matrix that carries zeros everywhere, except from position kk where
it is equal to unity. It would be difficult, if possible at all, to solve the above equations for
a generic Q. Instead we shall be looking for a solution of the saddle point equations that is
replica symmetric.

Replica Symmetric Solution

Once the variational equations (7.22) are restricted to a RS solution, life becomes much
easier. As we shall show next, the RS Ansatz
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will eliminate the difficulties with the integration over the orthogonal group. In order to
evaluate the RS saddle point equations (7.22), the first step is to compute (1≠Q)≠1. Using
the following Ansatz
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we obtain
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Ë
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is orthogonally invariant, we can pull it out of the integral. Next we investigate the de-
terminant in the exponent. It is not too difficult to guess the eigenvalues of a 1 ≠ Q:
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and thus we can decompose the determinant:
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We can finally write
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and
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So that the RS action takes of the following form
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(7.32)
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which should be evaluated together with the the RS saddle point equations

∆
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Before solving the saddle point equations, we recall that we will eventually be interested
in evaluating the action (7.19) in the replica limit, n æ 0. It therefore suffice to keep the
leading order contribution in the above equations
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such that

∆

2
lk ≠ 1

2

lk
lk + 1

=
1

N

ÿ

1ÆiÆR
i”=k

1

lk ≠ li
’k . (7.35)

Finally, it can be advantageous to solve the above equations in the continuous limit. A
nice summary of the procedure can be found in the appendix of [FW07]. We obtain
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with the free energy (up to O( 1
N ) corrections and constants)
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and the associated saddle point equations
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The x-MMSE can then be obtained as follows. Looking back at equation (7.12), we can
extract the covariance between two replicas, a ”= b,
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Figure 7.2: Left: the x-MMSE is reported as a function of ∆, for α = 1. A phase transition takes
place at ∆ ¥ 0.097, where an unbounded two-cut solution becomes a feasible solution
of the saddle point equations. This two-cut solution ceases to exists at ∆ ¥ 0.1055,
where it transitions into an unbounded one-cut solution. Right: a zoom around the
region in which the transition takes place. Note the small region of coexistence for
∆ œ [0.097, 0.1009], where we found that the bounded one-cut solution continues to
exist.

α≠1 thus yields the physical part of the potential and does not impact the location of the
extrema.

One can now imagine filling up the minima of the potential in Fig. 7.1 with the repulsive
eigenvalue gas. It becomes clear that for small values of ∆, the eigenvalues can equilibrate
around the (non-singular) minimum on the right, for some fixed α. The induced force
equilibrium (7.38), suggests that the effective repulsion is Θ(1/α) and therefore becomes
weaker for increasing α, i.e. the eigenvalue gas can settle more easily in the minima/saddles
of the potential. In other words: the barriers, as seen by the eigenvalues, are effectively
increased by a factor of α.

Assume some fixed α. When ∆ is increased, this minimum wanders to the left and
eventually disappears. What happens to the eigenvalues? The figure suggests that they
might fall into the singular part of the potential. This, however, would suggest a singular
measure and should be rejected as an unphysical solution. Instead, the solution must be
restricted to the non-negative part of the real axis. This is further justified by (7.40), that
should be non-negative as it corresponds to the overlap/covariance between xa and xb.
Therefore, it is necessary to seek a solution of the saddle point equations that fulfills this
condition, i.e., that has non-negativ support.

Before getting into the details of solving the saddle point equations, we briefly anticipate
the results, as summarized in Fig. 7.2. We find that the spectrum can be in three phases
that can be distinguished by the nature of the solution, fl(⁄) as follows.

• Single-cut solution, with fl(⁄) being supported on the compact interval [a, b]. In such
a case we find that fl(⁄) might fall into one of the following two phases.
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a) The bounded phase, in which the solution is bounded on both ends, a and b. In
this case 0 < a < b and no zero-overlap eigenvalues are present.

b) The unbounded phase, in which a = 0 and the solution has an integrable singu-
larity at this end of the support that is associated to zero-overlap eigenvalues.

• Two-cut solution, with support on the two intervals [0, b] and [c, d] and with fl(⁄)

unbounded at zero, where it exhibits an integrable singularity.

The unbounded two-cut phase separates the bounded one-cut phase (small ∆) from the
unbounded one-cut phase (large ∆).

Riemann-Hilbert Ansatz to Solve Singular Integral Equation

In this section we solve the saddle-point equations (7.38) by the method due to Brézin,
Itzykson, Parisi and Zuber [BIPZ78], outlined in chapter 3. We recall that, for fl(⁄) compactly
supported, the resolvent has the following properties:

1) It is analytic in the whole complex plane except from the cuts along the support of fl

(consistency constraint).

2) It behaves as 1
z for |z| æ Œ (asymptotic constraint).

3) It is real for z œ R\supp(fl).

4) It has a jump when approaching the support of fl from above/below:

g(x ≠ i 0) ≠ g(x + i 0) = 2fi i fl(x) for x œ supp(fl) .

We have also approached the problem by direct inversion of the singular integral equation
via Tricomi’s relations. We found that both approaches gave the same result and merely
present the former, more intuitive approach. Next to the analytic solutions, we also report
the results direct Monte-Carlo simulations of (7.36).

Looking at Fig. 7.1 one might be tempted to assume a single support solution for all values
of – and ∆. However, as already anticipated above, this is not the case. Instead, there exists
a small region in which a two-cut solution exists. We refer to the phases a follows

I The solution is supported along a single cut and is bounded on both ends of it. This
is the phase in which there is enough space around the minimum at ⁄ = ∆≠1 ≠ 1 to
stably contain all the eigenvalues.

II The solution has support on two separate cuts; the first cut has its left end at zero
and the solution is bounded everywhere, except at zero. In this phase, a fraction of
the eigenvalues separates from the bulk that is supported around ⁄ = ∆≠1 ≠ 1 and
settles around the maximum, close to the wall at ⁄ = 0.
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III The solution has again a single compact support. This time between zero, where it
is unbounded, and some finite value to the right of zero. For large ∆ (or small α),
the potential pushes the right-hand bulk of the two-cut solution (regime II) into the
left-hand bulk. The mutual repulsion does not suffice to split the eigenvalue spectrum
among the two extrema.

Phase I The following Ansatz for the resolvent is natural

g(z) = V Õ(z) ≠ Q(z)
Ò

(z ≠ a)(z ≠ b) , (7.44)

with

Q(z) =
c≠1

z + L
+ c0 and V Õ(z) =

α

2

3

∆z +
1

1 + z
≠ 1

4

. (7.45)

The resolvent is defined for z in the whole complex plane, except along the cut between [a, b]
on the real line. The free parameters, L, c≠1, c0, a, b can now be obtained from the constraints
listed above. The consistency constraint suggests that L = 1 in order to eliminate the pole of
V Õ(z) at z = ≠1. First we employ the asymptotic constraint: expanding (7.45) at 1/z = 0
up to O

!
1/z2

"
leads to

3
α∆

2
≠ c0

4

z +
1

2
(ac0 ≠ α + bc0 ≠ 2c≠1) +

a2c0 ≠ 2abc0 + 4ac≠1 + 4α + b2c0 + 4bc≠1 + 8c≠1

8z
.

The first two terms yield

c0 =
α∆

2
(7.46)

c≠1 =
α

4
((a + b)∆ ≠ 2) (7.47)

and from the O(1/z) term we have

α

4

3
∆

4
(3a2 + 2ab + 4a + 4b + 3b2) ≠ (a + b)

4

= 1 . (7.48)

Finally, applying the consistency constraint by an expansion around z = ≠1, we obtain a
further equation

Ò

(1 + a)(1 + b)((a + b)∆ ≠ 2) + 2 = 0 . (7.49)

Note the positive sign in front of the square root. This is because z = ≠1 is to the left of
the cut [a, b] and therefore the square root picks up a minus sign. The latter two equations
can now be used to solve for a and b.

In Fig. 7.3 we compare the solution with Monte Carlo simulations of (7.34) under the
measure exp(≠N2S[L]). The two are in excellent agreement.
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• The transition from the two-cut to the unbounded one-cut solution appears continuous.
However, as for now, it is not clear of what order the transition is. It might be of third
order, as encountered in other matrix models [Eyn06; GW80].

• When α and ∆ approach the point (0, 0) we find that the region of co-existence
vanishes and that the region of existence of the two-cut solution vanishes. This can
be explained by the strong repulsions among eigenvalues that render the unbounded
part of the two-cut solution (which is located around a maximum) unstable.

• When α is increased, the area of positive overlap increases and inference becomes
easier, as one should expect, as the redundancy in the data increases with α. Phase II
(as well as the region of co-existence) first grow with α and then shrink again for very
large α.

• For large α the area of co-existence shrinks again. And so does the whole phase II. This
can be explained by the weaker interaction between the eigenvalues. They continually
decouple and fl(⁄) concentrates more sharply. The transition happens later (for larger
∆) because the eigenvalues can settle in a smaller region around the extrema.

• In the low-rank limit, i.e. when – æ Œ, the interaction between the eigenvalues
effectively disappears and the problem fully decouples. The saddle-point can be reduced
to a single scalar equation

∆

2
⁄2 + ln (1 + ⁄) ≠ ⁄ = 0 , (7.65)

from which we recover the second order phase transition of low-rank matrix factoriza-
tion [LKZ17]. Combining the last equation and (7.40), we obtain

lim
RæŒ

x≠MMSE

2
=

Y

]

[

∆ for ∆ Æ 1

1 for ∆ > 1
. (7.66)

• Finally, we remark that the MMSE only reaches its maximum for ∆ æ Œ (cf. Fig. 7.2),
except for – = Œ.

The difficulties in providing an answer to the question after the meaning of the different
solutions arise mostly from the impossibility to reduce the problem to a single scalar. Unlike
in all other inference problems that we have encountered and for which the replica approach is
well established, this problem (and therefore a whole other class of problems as well) cannot
be reduced to a single scalar. The main questions that we don’t consider fully answered are:
(a) what is the meaning of the two-cut solution? And (b) what does the unboundedness of
the spectrum correspond to?

In order to shine some light on the meaning of the different solutions we start by stating the
simplest one. The bounded one-cut solution (Phase I) has a straight forward interpretation.
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Figure 7.7: A comparison of the x-MMSE prediction for α = 2 that results from a computation
analogue to that of [KKM+16b] and the approach presented in this chapter. Our analysis
predicts a significantly lower achievable x-MMSE. This may result from the correlations
in Y .

All associated eigenvalues and therefore overlaps are positive. They all contain information,
one could talk about an easy phase, as encountered in 5. The only difference being that the
overlap does not concentrate, even in the thermodynamic limit.

Next, let us discuss the two-cut solution (Phase II). While the bounded one-cut solution
is related to purely positive overlap, the two-cut solution is not related to zero-overlap.
However, one of its l.h.s. is peaked around zero. We refer to this part of the spectrum as the
less informative bulk, as it contains eigenvalues that are less informative than those in the
r.h.s. bulk (informative bulk). However, they are not uninformative as they accommodate
non-zero eigenvalues. In this phase the data might contain some parts that are easier to
infer than others.

The region of co-existence might be related to a similar phenomenon as the hard phase
that we encountered in Chap. 5. The idea is simple: the bounded one cut solution is
metastable, but can be stabilized with some additional information, just as in the hard
phase of crowdsourcing. However, we have not yet investigated this analogy formally. An
algorithmic approach would be necessary in order to explore this direction.

Finally, in Phase III, we are facing a similar problem: the bulk is split over a whole compact
(non-negative) region and peaked at zero. It appears that still almost all eigenvalues contain
some information. It is not possible to talk about in uninformative solution.

7.4 Conclusion

We finish this chapter by concluding that extensive rank is different. To the best of our
knowledge, all inference problem that were successfully analyzed, did either decouple in some
fashion or could be a priori reduced to a single scalar macroscopic order parameter. Take for
example the low-rank matrix factorization: for any finite rank the problem fully decouples
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(not only for the Gaußian prior). For extensive spin models, such as the above, this is no
longer the case. The problem cannot be reduced to a macroscopic order parameter. Instead,
it is necessary to work with the microscopic order parameters. Typically, as we have seen,
the only way to treat such a problem is to go into the eigenvalue basis of the microscopic
order parameters and thereby eliminate the degeneracy in the partition function. As is well
established in random matrix theory, one must keep the whole spectrum of eigenvalues to
express the free energy.

7.4.1 Open Problems

Many open questions remain:

• How can we verify the results? The free energy of the problem should be accessible
through the results of Matytsin [Mat94]. The idea is straight forward: after performing
the substitution S = XX| in (7.6) one has that dX Ã (det S)(R≠N≠1)/2(O|dO)

and obtains the Wishart distribution1 under the integral (after integration over the
orthogonal group)

Z(Y ) Ã
ˆ

dS (det S)(R≠N≠1)/2 exp

3

≠1

2
TrS

4

exp

5

≠ 1

4∆
Tr (Y ≠ S)2

6

The integration over S can then be carried out by substitution of S æ OLO|, which
leads to

Z(Y ) Ã exp

3

≠ 1

4∆
TrY 2

4ˆ

dL

NŸ

i<j

|li ≠ lj | (det L)
R≠N≠1

2 exp

3

≠1

2
TrL ≠ 1

4∆
TrL2

4

ˆ

DO exp

3
1

2∆
TrY OLO|

4

The last Y OLO-integral is better known as the ’Harish-Chandra-Itzykson-Zuber’-
(HCIZ) or ‘spherical’-integral. In [Mat94] Matytsin has derived an asymptotic expres-
sion for the HCIZ integral in terms of the spectral densities of Y and S. His result
was used to resolve multi-matrix models in QCD. We outline some of our ideas on how
this approach can be applied to Bayes-optimal inference problems in Appendix A.7.
However this approach seems much more limited in applicability as compared to the
replica approach if one has generalizations in mind. In particular one also loses the
information about the x-MMSE and can only recover the y-MMSE in this approach.
We are wondering in how far such an approach to the denoising problem is universal.
The macroscopic (microscopic) eigenvalue statistics of XX| are universal [TV12], as
long as the first two (four) moments are matching. Thus we expect that the best
achievable y-MMSE is independent of the prior on the elements of X as long as the
first few moments are matching. However, we would not expect the x-MMSE to carry
this property. Along the lines of [Ree17; RPD18] it may be possible to extend this
approach to resolve the x-MMSE.

1For α ≤ 1, but the results can be extended to α > 1.
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• How do the results compare to the previous investigation of [KKM+16b]? In Fig. 7.7 we
plot exemplarily a comparison of the predicted x-MMSE that results from an analysis
based on same steps as in [KKM+16b] and the above approach.

• Related to the last question is also the following problem. From the results of the
approach of [KKM+16b] we may expect that some non-trivial transition appears for
α = 1 that we do not recover in the above approach. Another issue, that may be
related to the above, is that there are regions in which the unbounded one-cut solution

behaves unphysical. If one plots the x-MMSE as a function of α for fixed ∆ it grows
with α for α around zero. It is possible that the full-rank assumption and/or the non-
negativity constraint of the overlap are not valid and cause this unphysical behavior.

As the previous points suggest, the investigation is still rather preliminary and incomplete
at this point and it has more academic than practical applicable character at the current
point. Nevertheless, we consider it important to make our approach public to show that
extensive spin models require quite different tools from what has been established for scalar
(or sub-extensive) spins. In that sense, we hope that this analysis may be a first step towards
the fusion of the replica method with random matrix theory for inference problems.

Should the above assumptions made in our analysis turn out to be all correct, there still
remain several open questions that will hopefully be resolved in the future. First of all, the
nature of the transition has to be studied in full detail: including the order of the transition
and an investigation of the algorithmic behavior in the mixed phase. In order to resolve these
questions it will be necessary to carry out some algorithmic experiments and to extend the
analysis to other problems.
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Appendix

A.1 Wormald’s General Purpose Theorem

The method of Wormald is outlined in quite some extent in [Wor99b]. The general-purpose
theorem is repeated below.

Theorem A.1 (Theorem 5.1 of [Wor99a]). For 1 Æ l Æ a, where a is fixed, let yl : S(N)+ æ
R and fl : R

a+1 æ R, such that for some constant C0 and all l, |yl(ht)| < C0n for

all ht œ S(N)+ for all N . Let Yl denote the random counterpart of yl(ht). Assume the

following three conditions hold, where in (ii) and (iii) D is some bounded connected open

set containing the closure of

{(0, z1, . . . , za) : P (Yl(0) = zlN, 1 Æ l Æ a) ”= 0 for some N}

(i) (Boundedness hypothesis.) For some functions — = —(N) Ø 1 and “ = “(N), the

probability that

max
1ÆlÆa

|Yl(t + 1) ≠ Yl(t)| Æ — ,

conditional uppon Ht, is at least 1 ≠ “ for t < TD.

(ii) (Trend hypothesis.) For some function ⁄1 = ⁄1(N) = o(1), for all l Æ a

|E[Yl(t + 1) ≠ Yl(t) | Ht] ≠ fl(t/N, Y1(t)/N, . . . , Ya(t)/N)| Æ ⁄1

for t < TD.

(iii) (Lipschitz hypothesis.) Each function fl is continuous, and satisfies a Lipschitz condi-

tion, on

D fl {(t, z1, . . . , za) : t Ø 0} ,

with the same Lipschitz constant for each l.

Then the following are true
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(a) For (0, ẑ1, . . . , ẑa) œ D the system of differential equations

dzl

dx
= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in D for zl : R æ R passing through

zl(0) = ẑl ,

1 Æ l Æ a and which extends to points arbitrarily close to the boundary of D;

(b) Let λ > λ1 +C0Nγ with λ = o(1). For a sufficiently large constant C, with probability

1 ≠ O(Nγ + —
λ

exp(≠N λ3

β3 )),

Yl(t) = Nzl(t/N) + O(λN)

uniformly for 0 Æ t Æ σN and for each l, where zl(x) is the solution in (a) with

ẑl = Yl(0)/N , and σ = σ(N) is the supremum of those x to which the solution can

be extended before reaching within lŒ-distance Cλ of the boundary of D.

Here t indicates the discrete time steps in the random process and Y1, . . . , Ya are the
variables of the discrete random process and ht denotes the history of them, up to time t

and S(N)+ denotes the set of all ht. The stopping time TD = TD(Y1, . . . , Ya) to be the
minimum t such that (t/N, Y1(t)/N, . . . , Ya(t)/N) ”œ D for D ™ R

a+1.

A.2 Proofs for chapter 6

A.2.1 Proof of Lemma 6.1

Based on some worst-case assumptions, we can analyze the evolution of the number of
degree-k< edges. In particular, in the worst case, the initial removal of a degree-d node can
generate d(k ≠ 1) degree-k< edges (i.e., all of its edges were attached to degree-k nodes).
During removal, the number of degree-k edges can also increase by at most dk. Though
both of these events cannot happen simultaneously, our worst-case analysis includes both of
these effects.

During the m-th trimming step, a random edge is chosen uniformly from the set of edges
adjacent to nodes of degree k< (i.e., degree less than k). Let the random variable Zm œ
{k<, k, k +1, . . . , d} equal the degree of the node adjacent to the other end and the random
variable Xm equal the overall change in the number of degree-k< edges.

For m = 1, this edge is distributed according to

Pr(Z1 = z) =

Y

]

[

hÕ
z

M≠1 if z Ø k
hÕ

k<
≠1

M≠1 if z = k<,

where hÕ
z denotes the number of edges of degree z before trimming. If Z1 = k<, then

the edge connects two degree-k< nodes and removal reduces the number of k< edges by
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X1 = ≠2. If Z1 = k, then the edge connects a degree-k node with a degree-k< node and
removal reduces the number of degree-k edges by k and increases the number of degree-k<

edges by X1 = k ≠ 2. If Z1 > k, then removal decreases the number of degree-Z1 edges by
Z1 and increases the number of degree-(Z1 ≠ 1) edges by Z1 ≠ 1. In this case, the number
of degree-k< edges is changed by X1 = ≠1.

The crux of the analysis below is to make additional worst-case assumptions. One can
upper bound the probability of picking degree-k edges because, after m steps of trimming,
the number of degree-k edges can be at most hk + dk + mk (i.e., if initial node removal
generates dk edges of degree-k and Zm = k + 1 during each step of trimming). Also, one
can upper bound the number of degree-k< edges because at least one is removed during each
step. To upper bound the random variable T , we use the following worst-case distribution
for Xm,

Pr(Xm = x) =

Y

]

[

hk+dk+mk
M≠2d≠2m if x = k ≠ 2
M≠2d≠hk≠dk≠mk

M≠2d≠2m if x = ≠1.
(A.1)

In this formula, the 2d term represents initial removal of a degree-d node and the 2m term
represents the edge removal associated with m steps of trimming. We note that, since edges
attach two nodes of different degrees, all edges are counted twice in h. Similarly, the dk

term represents the worst-case increase in the number of degree-k edges during the initial
removal.

Now, we can upper bound the number of degree-k< edges after m steps of trimming by
the random sum

Sm = d(k ≠ 1) + X1 + X2 + · · · + Xm,

where each Xi is drawn independently according to the worst-case distribution (A.1). The
term d(k≠1) represents the worst-case event that the initial node removal generates d(k≠1)

edges of degree-k<. By choosing M0(δ) appropriately, our initial assumption about h implies
that E[Xi] Æ ≠2δ for all M > M0(δ). Thus, the random variable Sm will eventually become
zero with probability 1. Since Sm upper bounds the number of degree-k< edges after m

steps of trimming, when it becomes zero (say at time mÕ), it follows that the stopping time
satisfies T Æ mÕ.

To complete the proof, we focus on the case of mÕ = (k ≠ 1)2δ≠2 ln M . Since the
distribution of Xm gradually places more weight on the event Xm = k ≠ 2 as m increases,
we can also upper bound SmÕ by replacing X1, . . . , XmÕ≠1 by i.i.d. copies of XmÕ . From
now on, let Y denote a random variable with the same distribution as XmÕ and define
SÕ = Y1 + Y2 + · · · + YmÕ to be a sum of mÕ i.i.d. copies of Y . Then, we can write

Pr(T Æ mÕ) Ø Pr(SÕ Æ ≠d(k ≠ 1)) = 1 ≠ Pr(SÕ > ≠d(k ≠ 1)).

Next, we observe that (A.1) converges in distribution (as M æ Œ) to a two-valued random
variable Y ú that places probability at most 1≠3δ

k≠1 on the point k ≠ 2 and the remaining
probability on ≠1. Since E[Y ú] = ≠3δ, there is an M0(δ) such that E[Y ] = ≠2δ for all
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M > M(δ) Finally, Hoeffding’s inequality implies that

Pr(SÕ > ≠δmÕ) Æ e≠2δ2mÕ/(k≠1)2
= M≠2.

Putting these together, we see that

Pr(T > mÕ) Æ Pr(SÕ > ≠d(k ≠ 1)) Æ M≠2

for mÕ > d(k ≠ 1)/δ. As mÕ = (k ≠ 1)2δ≠2 ln M , the last condition can be satisfied
by choosing M(δ) > eδ2d/(k≠1). Since this condition is trivial as δ æ 0, the previous
convergence condition will determine the minimum value for M0(δ) when δ is sufficiently
small.

A.2.2 Proof Sketch for Lemma 6.2

We note that graph processes like corehd often satisfy the conditions necessary for fluid
limits of this type. The only challenge for the corehd process is that the h(n) process may
have unbounded jumps due to the trimming operation. To handle this, we use Lemma 6.1 to
show that, with high probability, the trimming process terminates quickly when h(n) satisfies
the stated conditions. Then, the fluid limit of the corehd process follows from [Wor99a,
Theorem 5.1].

To apply [Wor99a, Theorem 5.1], we first fix some δ > 0 and choose the valid set D to
contain normalized degree distributions satisfying ηk(t) Æ 1≠4δ

k≠1 |η(t)| and |η(t)| Ø δ. This
choice ensures that Lemma 6.1 can be applied uniformly for all η(t) œ D. Now, we describe
how the constants are chosen to satisfy the necessary conditions of the theorem and achieve
the stated result. For condition (i) of [Wor99a, Theorem 5.1], we will apply Lemma 6.1 but
first recall that the initial number of nodes in the graph is denoted by N and hence |η(t)| Ø δ

implies M = |h(n)| Ø BN with high probability for some B > 0. Thus, condition (i) can
be satisfied by choosing1 —(N) = (k ≠ 1)2”≠2d ln N applying Lemma 6.1 with M = BN

to see that “(N) = O(N≠2). To verify condition (ii) of the theorem, we note that (6.20)
is derived from the large-system limit of the drift and the error ⁄(n) can be shown to be
O(N≠1). To verify condition (iii) of the theorem, we note that that (6.20) is Lipschitz on
D. Finally, we choose ⁄(N) = N≠1/4 Ø ⁄1(N) + C0N“(N) for large enough N . Since

—(N)/⁄(N)e≠Nλ(N)3/β(N)3
= O

3
ln N

N≠1/4
e≠AN1/4/(ln N)3

4

= O
1

N≠1
2

,

these choices imply that the corehd process concentrates around η(t) as stated. We
only sketch this proof because very similar arguments have used previously for other graph
processes [Ach00; Ach01; CM01].

1The additional factor of d is required because each trimming step can change the number of degree-j edges

by at most d.
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A.3 Population Dynamics

Algorithm 4: Population dynamics algorithm for the 1RSB cavity equations for pairwise
Markovian random fields.
input : m, Q(d), M , N , T

output: An approximation of P(m) in terms of the messages {mi,j}j=1,...,N ; i=1,...,M

// M is the number of populations and N is the size of each one of

them. Q(d) is the excess distribution and m the

Parisi-reweighting paramter.

Initialize: {{m}} ;
// A single message m is a q component vector.

for t Ω 1 to T do
for i Ω 1 to M do

Draw d from Q(d) ;
Draw j1, . . . , jd uniformly from {1, . . . , M} ;
for j Ω 1 to N do

Draw s1, . . . , sd uniformly in {1, . . . , N} ;
mi,j Ω F(mj1,s1 , . . . , mjd,sd

) ;
wi,j Ω Normalizatin of (1.69) ;
wi,j Ω (wi,j)m ;

mi,1,...,N Ω Reweight( mi,1,...,N , wi,1,...,N ) ;
// The function Reweight() reweights the messages mi,1,...,N

according to the weights wi,1,...,N .

A.4 AMP for Crowdsourcing

Owing to the 1/
Ô

N scaling we may expand P (Lij | θi, vj) in (1.88) up to second order.
Denoting

Sij :=
∂g(Lij , w)

∂w

-
-
-
-

w=0

, (A.2)

Rij :=

A

∂g(Lij , w)

∂w

-
-
-
-

w=0
B2

+
∂2g(Lij , w)

∂w2

-
-
-
-
-

w=0

, (A.3)

we obtain

eg(Lij ,wij) = eg(Lij ,0)

C

1 + Sijwij +
Rijw2

ij

2
+ O(N≠ 3

2 )

D

= eg(Lij ,0)+Sijwij+ 1
2

(Rij≠S2
ij)w2

ij + O(N≠ 3
2 ) .

(A.4)

For crowdsourcing (1.89) we have
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The messages (1.88) can then be written in a simplified Gaußian form

niæij(θi) =
1

Ziæij
◊

P◊(θi) exp

3

B◊, iæij θi ≠ 1

2
A◊, iæij θ2

i

4

mkæik(vk) =
1

Zkæik
v

Pv(vk) exp

3

Bv, kæik vk ≠ 1

2
Av, kæik v2

k

4

,

(A.5)

where the new variables A◊, v and B◊, v follow the equations

Bt
◊, iæij =

1Ô
N

Mÿ

k=1, k ”=j

Sikv̂t
kæik

At
◊, iæij =

1

N

Mÿ

k=1, k ”=j

Ë

S2
ik(v̂t

kæik)2 ≠ Rik

1

(v̂t
kæik)2 + σt

v, kæik

2È

Bt
v, kæik =

1Ô
N

Nÿ

l=1, l ”=i

Slkθ̂t
lælk

At
◊, kæik =

1

N

Nÿ

l=1, l ”=k

Ë

S2
lk(θ̂t

lælk)2 ≠ Rlk

1

(θ̂t
lælk)2 + σt

◊, lælk

2È

.

(A.6)

The equations now close on the means and variances of the messages (1.93).

θ̂t
iæij = f◊

1

At
◊, iæij , Bt

◊, iæij

2

σt
◊, iæij =

∂f◊

∂B

1

At
◊, iæij , Bt

◊, iæij

2

v̂t+1
kæik = fv

1

At
v, kæik, Bt

v, kæik

2

σt+1
v, kæik =

∂fv

∂B

1

At
v, kæik, Bt

v, kæik

2

,

(A.7)

where we have introduced the input functions

fx (A, B) =
1

Zx(A, B)

ˆ

dxPx(x)e≠ 1
2

Ax2+Bx x . (A.8)

With x indicating either θ or v. These are the relaxed BP (rBP) equations.
The rBP equations are a direct consequence of the CLT. Each message is a random variable

and since the O(N) incoming messages are only weakly correlated they result in an effective
Gaußian field, acting on each variable node. This field is additionally weighted with the prior
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on each of the sides. The outgoing messages also only weakly depend on the target node:

Bt
◊, i :=

1Ô
N

Mÿ

k=1

Sikv̂t
kæik =Bt

◊, iæij +
1Ô
N

Sij v̂t
jæij

At
◊, i :=

1

N

Mÿ

k=1

Ë

S2
ik(v̂t

kæik)2 ≠ Rik

1

(v̂t
kæik)2 + σt

v, kæik

2È

=At
◊, iæij + O(

1

N
)

Bt
v, k :=

1Ô
N

Nÿ

l=1

Slkθ̂t
lælk =Bt

v, kæik +
1Ô
N

Sikθ̂t
iæik

At
◊, k :=

1

N

Nÿ

l=1

Ë

S2
lk(θ̂t

lælk)2 ≠ Rlk

1

(θ̂t
lælk)2 + σt

◊, lælk

2È

=At
◊, kæik + O(

1

N
) . (A.9)

We can now express the marginals in terms of the messages

θ̂t
i = f◊

1

At
◊, i, Bt

◊, i

2

= θ̂t
iæij + σt

v, iæij

1Ô
N

Sij v̂t
jæij + O(

1

N
)

= θ̂t
iæij + σt

v, i

1Ô
N

Sij v̂t
j + O(

1

N
)

v̂t
k = fv

1

At≠1
v, k , Bt≠1

v, k

2

= v̂t
kæik + σt

◊, kæik

1Ô
N

Sikθ̂t≠1
iæik + O(

1

N
)

= v̂t
kæik + σt

◊, k

1Ô
N

Sikθ̂t≠1
i + O(

1

N
) .

(A.10)

Similarly σt
◊, i = σt

◊, iæij +O(1/N) and σt
v, k = σt

v, kæik +O(1/N). This process is sometimes
referred to as TAPyfication. We finally obtain a set of equations that is independent of the
messages and only depends on the marginals by plugging (A.10) back into (A.9)

Bt
◊, i =

1Ô
N

Mÿ

k=1

Sikv̂t
k ≠

A

1

N

Mÿ

k=1

S2
ikσt

v, k

B

θ̂t≠1
i

At
◊, i =

1

N

Mÿ

k=1

Ë

S2
ik(v̂t

k)2 ≠ Rik

1

(v̂t
k)2 + σt

v, k

2È

θ̂t
i = f◊

1

At
◊, i, Bt

◊, i

2

σt
◊, i =

∂f◊

∂B

1

At
◊, i, Bt

◊, i

2

Bt
v, k =

1Ô
N

Nÿ

l=1

Slkθ̂t
l ≠

A

1

N

Nÿ

l=1

S2
lkσt

◊, l

B

v̂t
k

At
◊, k =

1

N

Nÿ

l=1

Ë

S2
lk(θ̂t

l )
2 ≠ Rlk

1

(θ̂t
l )

2 + σt
◊, l

2È

v̂t+1
k = fv

1

At
v, k, Bt

v, k

2

σt+1
v, k =

∂fv

∂B

1

At
v, k, Bt

v, k

2

.

(A.11)
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These are the AMP equations.

A.5 State Evolution for Crowdsourcing

The AMP equations depend explicitly on the realization of the disorder (for the crowdsourcing
this is Lij) through Sij and possibly Rij . Therefore the Bt

◊, i, Bt
v, j and At

◊, i, At
v, j are random

variables. Let us consider equations (A.9) in order to derive their distributions. Recalling
that the different messages, incoming to one node are independent by BP assumption we
can apply the CLT to the sums on the r.h.s of the equations for Bt

◊, i, Bt
v, j in (A.9). The

mentioned independence holds only approximately because the underlying graph is not a
tree, but on account of the O(1/

Ô
N) scaling this suffices in the N æ Œ limit. Thus we

have

Bt
◊, i ≥ N

1

EBt
◊, i, E(Bt

◊, i)
2 ≠ (EBt

◊, i)
2
2

(A.12)

Bt
v, j ≥ N

1

EBt
v, j , E(Bt

v, j)2 ≠ (EBt
v, j)2

2

. (A.13)

Further more, by the law of large numbers, the r.h.s. of the equation for At
◊, i, At

v, j can be
replaced by its average; we obtain

At
◊, i

NæŒæ EAt
◊, i (A.14)

At
v, j

NæŒæ EAt
v, j . (A.15)

It remains to compute the first two moments of Bt
◊, i, Bt

v, j and the first moment of At
◊, i,

At
v, j . We introduce the following order parameters that will turn up naturally during the

computation

M t
◊ =

1

N

Nÿ

i=1

θ̂t
iθ

0
i , M t

v =
1

M

Mÿ

j=1

v̂t
jv0

j ,

Qt
◊ =

1

N

Nÿ

i=1

(θ̂t
i)

2 , Qt
v =

1

M

Mÿ

j=1

(v̂t
j)2 , (A.16)

Σt
◊ =

1

N

Nÿ

i=1

σt
◊, i , Σt

v =
1

M

Mÿ

j=1

σt
v, j .

We start by consideration of the first moment of Bt
◊, i

E

Ë

Bt
◊, i

È

=
1Ô
N

Mÿ

k=1

ˆ

dLikP0

1

Lik | w0
ik

2

Sikv̂t
kæik . (A.17)

Expansion w.r.t. w0
ik leads to

E

Ë

Bt
◊, i

È

=
1Ô
N

Mÿ

k=1

ˆ

dLikP0 (Lik | 0)

C

1 +
θ0

i v0
jÔ

N

∂ log P0(Lik | w)

∂w

-
-
-
-
0

+ O(
1

N
)

D

Sikv̂t
kæik ,

(A.18)
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which can be further simplified because the first order term vanishes
ˆ

dLikP0 (Lik | 0) Sik = 0 . (A.19)

In the Bayes optimal setting this follows from
ˆ

dLikP (Lik | w) = 1 ∆
ˆ

dLik
∂

∂w
P (Lik | w) = 0 , (A.20)

because
∂

∂w
P (Lik | w)|w=0 = P (Lik | 0)

∂

∂w
log P (Lik | w)|w=0 (A.21)

and thus
ˆ

dLikP (Lik | 0)Sik =

ˆ

dLikP (Lik | 0) log P (Lik | 0) . (A.22)

If we are not in the Bayes optimal setting, then this still holds, as long as Sik has mean
o(1/

Ô
N), which will be the case in the example of crowdsourcing. Finally, replacing

v̂t
kæik = v̂t

k + O(1/
Ô

N)

yields
E

Ë

Bt
◊, i

È

=
α

∆̂
M t

vθ0
i , (A.23)

where

∆̂≠1 = EP0(L|w0=0)

C3
∂ log P0(Lik | w)

∂w

42
D

, (A.24)

which will be equal to ∆≠1 from (1.101) in the Bayes optimal case. The second moment
can be computed straight forwardly. To leading order one finds

E

Ë

(Bt
◊, i)

2
È

=
α

∆̂
Qt

v . (A.25)

An analogue computation can be carried out to obtain

E

Ë

Bt
v, j

È

=
1

∆̂
M t

uv0
j , (A.26)

and

E

Ë

(Bt
v, j)2

È

=
1

∆̂
Qt

◊v0
j . (A.27)

After the introduction of

R̂ = EP0(L|w0=0)

C3
∂ log P0(Lik | w)

∂w

42

+
∂2 log P0(Lik | w)

∂w2

D

(A.28)
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similar arguments lead to an expression for the averages of At
◊, At

v in terms of order param-
eters:

E

Ë

At
◊, i

È

=
α

∆̂
Qt

v ≠ αR̂(Qt
v + Σt

v)

E

Ë

At
v, j

È

=
1

∆̂
Qt

◊ ≠ R̂(Qt
◊ + Σt

◊) .
(A.29)

The estimators θ̂t
i and v̂t

j are functions of the random variables Bt
◊, i and Bt

v, j respectively,
which distribution is now known in terms of the order parameters. Therefore we do now also
know the distributions of θ̂t

i and v̂t
j

θ̂t
i = f◊

Q

a
α Qt

v

∆̂
≠ αR̂(Qt

v + Σt
v),

α M t
v

∆̂
θ0 +

Û

α Qt
v

∆̂
W

R

b

v̂t+1
j = fv

Q

a
Qt

◊

∆̂
≠ R̂(Qt

◊ + Σt
◊),

M t
◊

∆̂
v0 +

Û

Qt
◊

∆̂
W

R

b ,

(A.30)

where W is a standard normal distributed random variable. The equations can now be closed
on the order parameters (A.16) as summarized in the following equations

M t
◊ = E◊0,W

S

Uf◊

Q

a
α Qt

v

∆̂
≠ αR̂(Qt

v + Σt
v),

α M t
v

∆̂
θ0 +

Û

α Qt
v

∆̂
W

R

b θ0

T

V

Qt
◊ = E◊0,W

S

W
U

Q

af◊

Q

a
α Qt

v

∆̂
≠ αR̂(Qt

v + Σt
v),

α M t
v

∆̂
θ0 +

Û

α Qt
v

∆̂
W

R

b

R

b

2
T

X
V

Σt
◊ = E◊0,W

S

U
∂f◊

∂B

Q

a
α Qt

v

∆̂
≠ αR̂(Qt

v + Σt
v),

α M t
v

∆̂
θ0 +

Û

α Qt
v

∆̂
W

R

b

T

V

M t+1
v = Ev0,W

S

Ufv

Q

a
Qt

◊

∆̂
≠ R̂(Qt

◊ + Σt
◊),

M t
◊

∆̂
v0 +

Û

Qt
◊

∆̂
W

R

b v0

T

V

Qt+1
v = Ev0,W

S

W
U

Q

afv

Q

a
Qt

◊

∆̂
≠ R̂(Qt

◊ + Σt
◊),

M t
◊

∆̂
v0 +

Û

Qt
◊

∆̂
W

R

b

R

b

2
T

X
V

Σt+1
v = Ev0,W

S

U
∂f◊

∂B

Q

a
Qt

◊

∆̂
≠ R̂(Qt

◊ + Σt
◊),

M t
◊

∆̂
v0 +

Û

Qt
◊

∆̂
W

R

b

T

V .

(A.31)

These equations track the evolution of the AMP equations (1.97).
In the Bayes optimal setting ∆̂ = ∆ and R̂ = R, given in (1.101). Further more, the set

of order parameters can be reduced because M t
x = Qt

x and Σt
x = Ex0 [(x0)2] ≠ Qt

x, where x
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stands for either θ or v. The above equations simplify to

M t
◊ = E◊0,W

S

Uf◊

Q

a
α M t

v

∆
,

α M t
v

∆
θ0 +

Û

α M t
v

∆
W

R

b θ0

T

V (A.32)

M t
v = Ev0,W

S

Ufv

Q

a
M t

◊

∆
,

M t
◊

∆
v0 +

Û

M t
◊

∆
W

R

b v0

T

V . (A.33)

A.6 The Free Energy of Crowdsourcing

In this appendix we derive the Bayes optimal replica free energy. As a consequence of the
Bayes optimal setting, the replica symmetry will hold.

A.6.1 Channel Universality

The g(L, wa) can be expanded elementwise w.r.t. wa
ij = O(1/

Ô
N). This is known as the

channel universality [LKZ15] because the resulting equations are always Gaußian with the
effective noise, ∆, given by (1.101). The expansion yields

EL

Ë

Z̃(L)n
È

ƒ
ˆ nŸ

a=0

DθaDva

ˆ

dL
Ÿ

i,j

eg(Lij ,0)+
qn

a=0[ˆwg(Lij ,0)·wa
ij+ 1

2
ˆ2

wg(Lij ,0)·(wa
ij)2]

=

ˆ nŸ

a=0

DθaDva

ˆ

dL
Ÿ

i,j

P (Lij | 0) e
qn

a=0[ˆwg(Lij ,0)·wa
ij+ 1

2
ˆ2

wg(Lij ,0)·(wa
ij)2]

(A.34)

Expanding the exponential we can carry out the integration over L. Using the definitions,
presented in (1.101) and recalled here for convenience:

Sij :=
∂g(Lij , w)

∂w

-
-
-
-

w=0

, (A.35)

Rij :=

A

∂g(Lij , w)

∂w

-
-
-
-

w=0
B2

+
∂2g(Lij , w)

∂w2

-
-
-
-
-

w=0

(A.36)

and

∆≠1 = EP (Lij |wij=0)

Ë

S2
ij

È

R = EP (Lij |wij=0) [Rij ] .
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Since R = 0 in the Bayes optimal setting, we obtain

EL

Ë

Z̃(L)n
È

=

ˆ nŸ

a=0

DθaDva

ˆ

dL
Ÿ

i,j

P (Lij | 0)

C

1 + ∂wg(Lij , 0)
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a=0
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+
1

2
∂2
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nÿ

a=0

(wa
ij)2 +

1

2
(∂wg(Lij , 0))2

nÿ

a,b=0
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ijwb

ij + O(N≠3/2)

T

V
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ˆ nŸ
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DθaDva
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S
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1

2∆

nÿ

a ”=b=0
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ijwb

ij + O(N≠3/2)

T

V
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a=0

DθaDvae
1

2∆
1
N
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a”=b

q

i,j
◊a

i va
j ◊b

i vb
j + O(N≠1/2) .

(A.37)

A.6.2 Replica Action

The two order parameters are emerging

qab
◊ =

1

N

Nÿ

i=1

θa
i θb

i and qab
v =

1

M

Mÿ

j=1

va
j vb

j . (A.38)

They can be introduced in the integral by a delta function to obtain

EL

Ë

Z̃(L)n
È

=

ˆ

Ÿ

0ÆaÆbÆn

dqab
◊ dqab

v e
1

2∆
MN

N

q

0ÆaÆn, b”=a
qab

◊ qab
v I◊({qab

◊ })Iv({qab
v }) . (A.39)

Here we absorbed all the contribution from the priors in the two functions I◊({qab
◊ }), Iv({qab

v }).
We have

I◊({qab
◊ }) = N

(n+1)(n+2)
2

ˆ nŸ

a=0

NŸ

i=1

Dθa
i

Ÿ

0Æa<bÆn

δ

A

Nqab
◊ ≠

Nÿ

i=1

θa
i θb

i

B

(A.40)

= (
N

2π
)

(n+1)(n+2)
2

ˆ

Ÿ

0Æa<bÆn

dq̂ab
◊

ˆ nŸ

a=0

NŸ

i=1

Dθa
i ei

q

a<b
q̂ab

◊

!
Nqab

◊ ≠
qN

i=1
◊a

i ◊b
i

"

(A.41)

= (
N

2π
)

(n+1)(n+2)
2

ˆ

Ÿ

0Æa<bÆn

dq̂ab
◊ ei N

q

a<b
q̂ab

◊ qab
◊

C
ˆ nŸ

a=0

Dθa e≠ i
q

a<b
q̂ab

◊ ◊a◊b

DN

,

(A.42)
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where the Fourier representation of the delta function was used. Similarly:

Iv({qab
v }) = (

M

2π
)

(n+1)(n+2)
2

ˆ

Ÿ

0ÆaÆbÆn

dq̂ab
v ei M

q

a<b
q̂ab

v qab
v

C
ˆ nŸ

a=0

Dva e≠ i
q

a<b
q̂ab

v vavb

DM

(A.43)

We can now write

EL

Ë

Z̃(L)n
È

=

ˆ

Ÿ

0Æa<bÆn

dqab
◊ dqab

v dq̂ab
◊ dq̂ab

v eNS({qab
◊ ,qab

v ,q̂ab
◊ ,q̂ab

v }) . (A.44)

In the thermodynamic limit this integral will be solved by the saddle point method. It is
convenient to rotate the integration over the auxiliary variables q̂ab

x onto the imaginary axis
and write

q̃ab
x = ≠ i q̂ab

x . (A.45)

The “action” reads

S({qab
◊ , qab

v , q̃ab
◊ , q̃ab

v }) =
α

∆

ÿ

a<b

qab
◊ qab

v ≠
ÿ
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(q̃ab
◊ qab

◊ + αq̃ab
v qab

v )+

ln

C
ˆ nŸ
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Dθae
q
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◊ ◊a◊b

D

+ α ln

C
ˆ nŸ

a=0

Dvae
q

a<b
q̃ab

v vavb

D

.

(A.46)

It simplifies in the replica symmetric setting, where (x œ {θ, v})

qab
x = qx (A.47)

We obtain

S(q◊, qv, q̃◊, q̃v) =
α

∆

n(n + 1)

2
q◊qv+

≠ n(n + 1)

2
(q̃◊q◊ + αq̃vqv)
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ˆ nŸ
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Dθae≠q̃◊

qn

a>0
(◊a)2+q̃◊(

qn

a>0
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2
D

+ α ln

C
ˆ nŸ
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Dvae≠q̃v

qn

a>0
(va)2+q̃v(

qn

a>0
va)

2
D

.

(A.48)

The terms that contain (
q

a xa)2 can be eliminated by a Hubbard-Stratonovich transforma-
tion,

e(
qn

a=1

Ô
q̃xxa)

2

=
1Ô
2π

ˆ

dW e≠ W 2

2
+

Ô
q̃xW

qn

a=1
xa

, (A.49)
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such that

S(q◊, qv, q̃◊, q̃v) =
α

∆

n(n + 1)

2
q◊qv ≠ n(n + 1)

2
(q̃◊q◊ + αq̃vqv)

+ ln

5ˆ

DWDθ

5ˆ

Dθe≠q̃◊◊2+
Ô

q̃◊W ◊
6n6

+ α ln

5ˆ

DWDv

5ˆ

Dve≠q̃vv2+
Ô

q̃vW v
6n6

.

(A.50)

Where DW = dW exp(≠w2/2)/
Ô

2π is the standard Gaußian measure.
Extremizing w.r.t. qx (x œ {θ, v}) leads to

q̃◊ =
α

∆
qv (A.51)

q̃v =
1

∆
q◊ (A.52)

and the replicated partition function becomes

EL

Ë

Z̃(L)n
È

=

ˆ

dq◊dqveNSn(q◊,qv) , (A.53)

with

Sn(q◊, qv) = ≠α

2

1

∆
n(n + 1)q◊qv + ln
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5ˆ

Dθe≠ –
∆
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Ô

–
∆

qvW ◊
6n6

+ α ln
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DWDv

5ˆ

Dve≠ q◊
∆
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q◊
∆

W v
6n6

.

(A.54)

In the limit N æ Œ the equation (A.53) can be approximated by steepest descent

EL

Ë

Z̃(L)n
È

w eNSn(q◊,qv) . (A.55)

According to the replica trick (2.38), i.e., ln Z = limnæ0 ∂nZn, it is necessary to compute
the derivative of the above equations. Since we will be taking the limit n æ 0, we can replace
α/(2∆)n(n + 1)q◊qv æ α/(2∆)nq◊qv. Carrying out the derivative w.r.t. n and taking the
n æ 0 now leads to

φ(q◊, qv) = EL

Ë

ln Z̃(L)
È

= lim
næ0

∂

∂n
eNSn(q◊,qv)

= ≠ α

2∆
q◊qv +

ˆ

DWDθ ln

5ˆ

Dθe≠ –
∆

qv◊2+
Ô

–
∆

qvW ◊
6

+ α

ˆ

DWDv ln

5ˆ

Dve≠ 1
∆

q◊v2+


1
∆

q◊W v
6

(A.56)
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A.7 Spherical Integrals and Matytsin’s Approach

Here we sketch some of our ideas of how to approach the problem from a different angle
that is mostly due to the work of Matytsin [Mat94] in combinations with some ideas from
free probability. The idea is to study the denoising problem of (7.2). More generally, let us
assume that

Y = S +

Û

∆

N
W

with Y , S, W œ R
N◊N and W a Wigner matrix.

The partition function of this model reads

Z(Y ) Ã
ˆ

dSP (S)e≠ N
4∆

Tr(Y ≠S)2
. (A.57)

For rotationally invariant P (S), the transformation

S = OLO| ∆ (dS) =
2N πN2/2

ΓN (N
2 )

(dO)

¸ ˚˙ ˝

DO

Ÿ

i<j

(li ≠ lj)(dL) (A.58)

induces a measure on the space of eigenvalues, L, and orthogonal matrices, O,

Z(Y ) Ã e≠ N
4∆

TrY 2

ˆ

dL

NŸ

i<j

(li ≠ lj) P (L)e≠ N
4∆

TrL2

ˆ

DOe
N
2∆

TrY OLO|

. (A.59)

The HCIZ integral over the orthogonal group

I1[Y , L] :=

ˆ

DO e
N
2∆

TrY OLO|

(A.60)

can be resolved, in the limit where N æ Œ, by combination of Matytsin’s equations [Mat94;
BBMP14] and Zuber’s 1/2-rule [Zub08]

I1[Y , L]
NæŒ≠≠≠≠æ exp

A

N2

2
F2[flS , flY ; ∆] + O(1)

B

. (A.61)

With

F2[flS , flY ; ∆] = c∆ +
1

2∆

3ˆ

dyflY (y)y2 +

ˆ

dsflS(s)s2
4

≠ 1

2

3ˆ

dydyÕflY (y)flY (yÕ) ln
-
-y ≠ yÕ--

ˆ

dsdsÕflS(s)flS(sÕ) ln
-
-s ≠ sÕ--

4

≠ S[flS , flY ; ∆] ,

(A.62)
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where

S[flS , flY ; ∆] =
1

2

ˆ ∆

0
dt

ˆ

dxfl(x, t)

A

v(x, t)2 +
fi2

3
fl(x, t)2

B

(A.63)

and fl(x, t) obeys the Euler-Matytsin equations:

ˆtfl(x, t) + ˆx[fl(x, t)v(x, t)] = 0 (A.64)

ˆtv(x, t) + v(x, t)ˆxv(x, t) = fi2fl(x, t)ˆxfl(x, t) (A.65)

such that the following boundary conditions hold

fl(x, t = 0) = flS(x) (A.66)

fl(x, t = ∆) = flY (x) . (A.67)

Substituting f(x, t) := v(x, t) + i fifl(x, t) leads to

ˆf

ˆt
+ f

ˆf

ˆx
= 0 , (A.68)

which can be solved by the method of characteristics which yields

f(x, t) = f0

1

x ≠ tf(x, t)
2

. (A.69)

Where f0(x) = f(x, t = 0).
At the same time, free probability leads to a functional fixed point equation for the resolvent

of

Y (t) := S +

Ú

t

N
W . (A.70)

For generic S and W (t) :=


t/NW , with W a standard Wigner matrix, one obtains
[BBP17]

gY (t)(z) = gS

1

z ≠ RW (t)

1

gY (t)(z)
22

.

Here gM (z) and RM (z) are the resolvent and R-transforms of M . Since the R-transform
of a Wigner matrix is simply RW (t)(z) = tz, these equations simplify and lead to

gY (t)(z) = gS

1

z ≠ tgY (t)(z)
2

. (A.71)

Therefore, solving the Euler-Matytsin equation reduced to solving the above fixed point
equation for the resolvent. In the Bayes-optimal setting the Euler-Matytsin equations are
thus solved by the resolvent (assuming that the analytical continuation to the complex plane
is valid)

v(x, t) = Re lim
÷æ0+

gY (t)(x ≠ i ÷) (A.72)

fl(x, t) =
1

fi
Im lim

÷æ0+
gY (t)(x ≠ i ÷) (A.73)

of the matrix Y (t).
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A.7.1 Shooting Birds with Cannons

Before we move to the analysis of (7.2), we take a step back and start with an even simpler
model, in order to introduce the methods.

We assume that

S œ R
N◊N , sµ‹ = s‹µ ≥

Y

]

[

N (0, ‡2

N ) ifµ < ν

N (0, 2‡2

N ) ifµ = ν
. (A.74)

That is, we observe a Wigner matrix Y , that is itself a sum of a Wigner matrix S of variance
σ2, perturbed by another Wigner matrix W of variance ∆; we have

Y = S +

Û

∆

N
W . (A.75)

The associated rescaled partition function of this model reads

Z̃(Y ) =

ˆ

dSe≠ N
4‡2 TrS2

e≠ N
4∆

Tr(Y ≠S)2
(A.76)

Note that we are considering the special partition function, that does not contain the nor-
malizations of the likelihood and prior, as is necessary on order to extract the y-MMSE.

We can evaluate the y-MMSE (which coincides with the x-MMSE in this case) from the
I-MMSE relations [GSV05] by simple Gaussian integration.

y≠MMSE =
∆

1 + ∆/σ2
. (A.77)

In this setting, denoising and reconstruction become one and the same problem. It is not
difficult to see that the N(N + 1)/2 independent elements (due to the symmetry in the
matrices) fully decouple and we could have written down the result straight away. However,
it is instructive to forget about this fact for a moment and to consider it, instead, as a
playground to introduce the Matytsin approach to the free energy of this problem. Although
this seems like shooting a bird with a cannon, the advantage is that the same cannon may
be used in order to attack the more difficult problem (7.2).

Matytsin’s Method

The starting point is (A.76). After expanding the square, we have (for the rescaled partition
function)

Z̃(Y ) = e≠ N
4∆

TrY 2

ˆ

dSe≠ N
4

( 1
‡2 + 1

∆
)TrS2

e≠ N
2∆

TrY S . (A.78)

In order to demonstrate Matytsin’s method, we ignore that this integral factorizes over the

elements of the matrices S and Y . Instead, we decompose the integration over S into
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an integration over its eigenvalues and eigenvectors. Since S is symmetric we may use the
substitution (A.58), which leads to

Z̃(Y ) = e≠ N
4∆

TrY 2

ˆ

dL
Ÿ

i<j

(li ≠ lj)e≠ N
4

( 1
‡2 + 1

∆
)TrL2

ˆ

DOe≠ N
2∆

TrY OLO|

. (A.79)

We know from the addition of two (free) Wigner matrices with variances σ2
1 and σ2

2

respectively, results in another Wigner matrix of variance σ2
1 + σ2

2 and thus

lim
÷æ0+

gY (t)(x ≠ i η) =
1

2(σ2 + t)

3

x ≠ i
Ò

|x2 ≠ 4(σ2 + t)|
4

. (A.80)

From which we can extract the density and velocity fields:

v(x, t) =
x

2(σ2 + t)
(A.81)

fl(x, t) =



|x2 ≠ 4(‡2 + t)|
2fi(‡2 + t)

. (A.82)

It is now possible to evaluate all terms in the free energy

F [flS , flY ; ∆] =
1

4∆

ˆ

dyflY (y)y2 +
1

4

3
1

‡2
+

1

∆

4ˆ

dsflS(s)s2

≠ 1

2

ˆ

dsdsÕflS(s)flS(sÕ) ln
-
-s ≠ sÕ--

≠ 1

2
F2[flS , flY ; ∆]

. (A.83)

Plugging in the asymptotic expression for the HCIZ-Integral, (A.62), we obtain

F [flS , flY ; ∆] =
1

4

1

‡2

ˆ

dsflS(s)s2 ≠ 1

4

ˆ

dsdsÕflS(s)flS(sÕ) ln
-
-s ≠ sÕ--

+
1

2
S[flS , flY ; ∆] +

1

4

ˆ

dydyÕflY (y)flY (yÕ) ln
-
-y ≠ yÕ-- ≠ 1

2
c∆ .

(A.84)

However, our final goal is to evaluate its derivative w.r.t. ∆≠1, from which we obtain the
MMSE by the I-MMSE relation [GSV05]. Therefore, it is not necessary to evaluate the first
parts (first line in the previous equation) of the free energy, but instead only the three last
parts. We start with the term independent of the spectrum of Y

d

d∆≠1
c∆ = ≠∆

2
. (A.85)

The derivative of (A.63) is also straight forward

d

d∆≠1
S[flS , flY ; ∆] = ≠∆2

ˆ

dyflY (y)

A

vY (y)2 +
fi2

3
flY (y)2

B

. (A.86)
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In the following we denote
Σ :=



σ2 + ∆

to lighten the notation. We plug in (A.82) to evaluate the two terms in the above integral
explicitly.

•
fi2

3

´

dyflY (y, ∆)3 = fi2

3

1
1

2fiΣ2

23 ´ 2Σ
≠2Σ dy

!
4Σ2 ≠ y2

" 3
2 = 1

4(‡2+∆)

•

´

dyflY (y)vY (y)2 = 1
2fiΣ2

1
1

2Σ

22 ´ 2Σ
≠2Σ dyy2



4Σ2 ≠ y2 = 1
4(‡2+∆)

And thus
d

d∆≠1
S[flS , flY ; ∆] = ≠1

4

∆2

‡2 + ∆
. (A.87)

It remains to evaluate the integral that results from the logarithmic repulsion between
eigenvalues

´

dydyÕflY (y)flY (yÕ) ln |y ≠ yÕ|. This integral can be carried out by the following
trick. Instead of direct integration, we use the saddle point equations for the eigenvalues
of Y :

ˆ

dyÕ flY (yÕ)
y ≠ yÕ =

y

2Σ2
(A.88)

and integrate both sites w.r.t. y from 0 to y, which leads to
ˆ

dyÕfl(yÕ)
)
ln |y ≠ yÕ| ≠ ln |yÕ|* =

y2

4Σ2
. (A.89)

Multiplying both sides with flY (y) and integrating over y yields the result:
ˆ

dydyÕflY (y)flY (yÕ) ln
-
-y ≠ yÕ-- =

1

4
+

ˆ

dyflY (y) ln |y| (A.90)

=
1

4
+

1

2
(ln(‡2 + ∆) ≠ 1) . (A.91)

The derivative w.r.t. ∆≠1 can now be easily evaluated:

d

d∆≠1

ˆ

dydyÕflY (y)flY (yÕ) ln
-
-y ≠ yÕ-- = ≠1

2

∆2

‡2 + ∆
. (A.92)

Collecting terms leads to

dF [flS , flY ; ∆]

d∆≠1
= ≠1

4

∆2

‡2 + ∆
+

∆

4
=

1

4

∆

1 + ∆/‡2
(A.93)

and from the I-MMSE relation, i.e., y≠MMSE/4 = dF [flS , flY ; ∆]/d∆≠1, we obtain

y≠MMSE =
∆

1 + ∆/‡2
(A.94)

as it should be, according to (A.77).
No sane person should carry out the calculation this way, as the integral factorizes in the

first place. However, it is satisfying to see that the two approaches lead to the same result.
Next, we will use it to approach the more difficult problem (7.2).
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A.7.2 Shooting Beasts with Cannons

If S is not a Wigner matrix, the computation is not much different. One must merely adopt
the distribution on S to a Wishart distribution. There is the slight catch that the Wishart
distribution is singular for α > 1. However, this issue can be resolved as shown in [Uhl94;
Sri+03]. For α Æ 1 one has

P (S) =
N

NR
2

2
NR

2 ΓN (R
2 )

(det S)
R≠N≠1

2 e≠ N
2

TrS (A.95)

and for α > 1 one must merely swap N for R and vice versa. As a consequence, the fixed
point equations (A.71) are more involved. They lead to the following algebraic equation for
gY (t) (that is valid for arbitrary α)

g3
Y (t)(z) ≠

1

1 +
z

t

2

g2
Y (t)(z) +

1

t

1

z + (1 ≠ 1

α
)
2

gY (t)(z) ≠ 1

t
= 0 . (A.96)

Following the same steps as before, we find that

y-MMSE

4
=

d

d∆≠1

dF [flS , flY ; ∆]

d∆≠1
(A.97)

=
∆

4
≠ ∆

4
r(∆) +

d

d∆≠1

ˆ

dydyÕflY (y)flY (yÕ) ln
-
-y ≠ yÕ-- . (A.98)

Here

r(∆) =

ˆ

dyflY (y)

A

v2
Y (y) +

fi2

3
fl2

Y (y)

B

(A.99)

and flY (y) and vY (y) follow respectively from the imaginary and real parts of the solution
of (A.96) at t = ∆ when approaching the real axis. This formula is valid for arbitrary, but
rotationally invariant, P (S).
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Synthèse de la thèse

À première vue, les sujets traités dans cette thèse ne semblent pas des problèmes de physique.
Parmi eux se trouvent un problème de satisfaction de contrainte, un processus dynamique
sur un graphe et deux problèmes d’inférence. Cependant, un examen plus attentif révèle que
tous ces problèmes sont liés par le fait même qu’ils contiennent du désordre d’une manière ou
d’une autre et qu’ils peuvent être formulés sous la forme d’un modèle graphique probabiliste.
Cette connexion révèle le lien étroit qui existe entre la physique statistique et les systèmes
désordonnés, qui peut être exploité pour examiner les problèmes par une approche de la
physique statistique. Une telle approche est la manière appropriée d’étudier des systèmes
contenant trop de constituants, d’interactions complexes ou, pour une autre raison, sont
trop compliqués pour être décrits de manière microscopique.

Ce lien est plus facile à décrire pour les problèmes d’inférence, dans lesquels on fournit
des données et tente de déduire quelque chose sur le processus de génération de données
sous-jacent. Ces ensembles de données sont généralement bruyants et / ou volumineux; les
deux sont de arguments solides en faveur d’une approche de la physique statistique. Les
données jouent le rôle du désordre et le théorème de Bayes nous fournit le lien formel avec
la physique statistique. Dénotez les données D et laissez le processus génératif être décrit
par les variables G. Puis le théorème de Bayes fournit le lien entre la probabilité postérieure

pour G, à partir de D, écrit P (G | D), et la fonction de partition, Z(Y ):

P (G | D) =
P (D | G)P (G)

Z(D)
.

Les problèmes d’inférence considérés seront définis dans le cadre Bayes optimal, dans lequel
on connaît la forme fonctionnelle de P (D | G) et P (G).

Tout au long de cette thèse, il y a deux questions récurrentes: (I) quelle est la perfor-
mance optimale pouvant être atteinte? Et (II) quelles sont les stratégies algorithmiques qui
conduisent à une performance optimale. Le logarithme moyenné de la fonction de partition,
E ln Z(D), l’énergie libre, est la fonction génératrice qui permet de déduire les propriétés
physiques du système. Il est lié aux deux questions ci-dessus. La méthode de réplique facilite
le calcul de l’énergie libre en fonction de certains paramètres d’ordre macroscopiques liés à
la meilleure erreur possible dans l’inférence de G et répond donc à la première question. La
méthode cavité permet de formuler une énergie libre microscopique dont la minimisation (par
rapport aux variables microscopiques) conduit à un algorithme de transmission de messages
exploitable pour aborder la deuxième question. Les problèmes d’inférence considérés sont
tous deux liés à factorisation matricielle (ou estimation).

Tout d’abord, le modèle de Dawid-Skene est étudiée dans la limite où le modèle graphique
bipartite sous-jacent est densément connecté. Ce qui est montré de réduire à un problème de
factorisation matricielle bas rang. Et deuxièmement, nous étudions un problème particulier
pour estimation matricielle symétrique à rangs élevé pour lequel il est nécessaire de combiner
la méthode de réplique avec des outils empruntés de la théorie des matrices aléatoires.
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Les problèmes de satisfaction de contraintes entrent dans un cadre mathématique très
similaire. Cependant, le problème considéré n’est pas défini dans le cadre optimal de Bayes.
Les implications physiques sont que des états vitreux peuvent être présents. L’espace des
solutions peut présenter une structure difficile qui empêche la solution symétrique de réplique
simple de l’énergie libre de réplique d’être correcte. Au lieu de cela, le schéma de brisure de
symétrie de réplique de Parisi doit être appliqué pour un traitement complet de ces problèmes.
Cela a également des conséquences immédiates pour l’approche algorithmique qui doivent
également être étendue.

Le lien profond avec la physique statistique depasse l’analogie aux problèmes de satisfac-
tion d’inférence et de contrainte. Les modèles de seuil sont une approche courante pour
modéliser des processus dynamiques collectifs sur des réseaux et constituent un autre exem-
ple étroitement lié au processus de percolation par bootstrap en physique statistique. Une
question d’importance majeure concerne les ensembles minimaux contagieux dans de tels
processus dynamiques. Ce problème peut être considéré comme un problème d’optimisation
par rapport aux conditions initiales du processus dynamique. Ou, également, un problème
de verre de spin avec des interactions particulières. Bien que très différent des deux modèles
précédents, il peut être démontré qu’il est accessible par les mêmes méthodes [GS15]. Cepen-
dant, les aspects algorithmiques de ce problème ne sont pas encore bien élaborés et laissent
des questions ouvertes (a) après de bons algorithmes locaux et (b) leurs performances.

Contributions et organisation du manuscrit

Dans la première partie, le contexte nécessaire est présenté et les méthodes susmention-
nées sont décrites. Au chapitre 1, une introduction aux modèles graphiques probabilistes
est donnée. Ensuite, au chapitre 2, les concepts de systèmes désordonnés sont introduits,
nécessaires pour développer le lien entre les problèmes d’inférence et la physique statistique.
Enfin, au chapitre 3, certains éléments de la théorie des matrices aléatoires sont collectés
qui sont nécessaires pour résoudre le problème de l’estimation matricielle par rangs élevé.
La deuxième partie de cette thèse contient mes contributions qui sont décrites par ordre
d’apparition dans ce qui suit.

Coloration Circulaire
Le problème de coloration circulaire est un problème de satisfaction de contraintes
qui appartient à une ensemble des problèmes plus large qui généralise le problème
de coloration de graphes canoniques. Alors que dans la coloration canonique, deux
nœuds d’un graphe reliés par une arête doivent avoir des couleurs différentes, dans
une coloration circulaire, les couleurs sont ordonnées dans un cercle et deux nœuds
adjacents doivent avoir deux couleurs adjacentes.

Ma contribution principale consiste à analyser le problème dans le cadre de briser la
symétrie des réplique en une étape. Cela a révélé plusieurs caractéristiques intéres-
santes, qui ne sont pas communes à d’autres problèmes de satisfaction de contraintes
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discrètes. De plus, l’investigation établit du point de vue de la physique statistique
une conjecture de Neöetřil sur la colorabilité circulaire des graphes sous-cubiques, pour
les graphes aléatoires.

Ce travail a été publié dans le Journal de mécanique statistique: théorie et expériences, volume

2016, août 2016 [SGZ16]:

• Christian Schmidt, Nils-Eric Guenther and Lenka Zdeborová, “Circular coloring of random
graphs: statistical physics investigation”

Modèle Dawid-Skene dans la limite dense (Crowdsourcing)
Considérons la catégorisation des M points de données par la contribution de N indi-
vidus et supposons que chaque individu puisse être caractérisé par un seul paramètre
de fiabilité (la probabilité qu’un réponse correct est donner). C’est ce qu’on appelle le
modèle de Dawid et Skene (DS). Dans le modèle DS, deux régimes peuvent être distin-
gués. Le régime épars, dans lequel chaque individu n’est assigné qu’un nombre infime,
Θ(1), de questions. Et le régime dense, dans lequel chaque individu se voit attribuer
un grand nombre, Θ(N) de questions. La plupart des études théoriques précédentes
sur le crowdsourcing se sont concentrées sur la limite éparse du modèle DS.

Au contraire, ma contribution est l’analyse de forme fermée du modèle DS dans la lim-
ite dense qui révèle le diagramme de phase du problème. Ceci est fait en montrant que
le modèle DS dense appartient à une classe plus large de problèmes d’estimation de ma-
trice de bas rang pour lesquels il est possible d’exprimer la performance asymptotique,
optimale de Bayes, dans une forme fermée simple. De plus, des résultats numériques
pour l’extrapolation dans le régime clairsemé sont obtenus et sur des données du monde
réel.

Le travail a été soumis aux IEEE Transactions on Information Theory

• Christian Schmidt, Lenka Zdeborová, “Dense limit of the Dawid-Skene model for crowd-
sourcing and regions of sub-optimality of message passing algorithms”

et peut également être trouvé sur le arxiv [SZ18].

Ensembles contagieux dans des graphes aléatoires
Considérons un modèle dans lequel les nœuds du graphe peuvent être dans un état
actif ou inactif et dans lequel un nœud v passe de l’état inactif à l’état actif si plus
de tv = dv ≠ k de ses voisins sont actifs. Le nombre tv est appelé le seuil pour le
nœud v. Détruire le k-noyau équivaut à l’activation de l’intégralité du graphique sous
la dynamique de seuil ci-dessus. Le plus petit de ces ensembles est l’ensemble minimal
contagieux.

Ma contribution principale est de montrer que l’algorithme corehd (une stratégie
gloutonne locale) se traduit par un processus aléatoire sur la distribution des degrés
du graphe qui peut être suivi exactement par la dérivation de la limite continue du
processus aléatoire. Cela conduit à de nouvelles limites supérieures rigoureuses sur la
taille des ensembles contagieux minimaux pour les graphes aléatoires à degré lié, tirés
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du modèle de configuration. J’ai également proposé de nouvelles méthodes heuristiques
qui attaquent le problème de manière algorithmique et surperforment les meilleures
algorithmes locaux connus.

Les contributions ont été soumises

• Christian Schmidt, Henry D. Pfister and Lenka Zdeborová, “On Minimal Sets to Destroy
the k-Core in Random Networks”

en Physical Review E et un eprint peut être trouvé sous [SPZ18].

L’Estimation Matricielle par Rangs Élevé
Considérons le problème le plus simple possible qui entre dans la catégorie des prob-
lèmes de factorisation matricielle à rangs élevé. La version symétrique Y = XX|+W

avec un probabilité a priori Gaußian sur X sous un bruit symétrique Gaußian, W . Si
X œ R

N◊R et N/R = O(1), dans la limite où N æ Œ, on dit que la matrice a rang
élevé.

Je calcule l’erreur optimale de Bayes sur X. Au cours de ce calcul, je montre qu’il
n’est pas possible de réduire l’énergie libre de la réplique à un seul paramètre d’ordre
scalaire sous la forme précédemment assumée dans d’autres travaux. Au lieu de cela, il
est nécessaire de conserver la densité spectrale de toute une matrice de chevauchement
et l’énergie libre devient fonctionnelle de cette densité. Pour résoudre l’énergie libre, il
est nécessaire de résoudre une équation de point-selle de matrice aléatoire qui mène à
une équation d’intégrale singulière dans la limite N æ Œ. Je résous les équations et
exprime l’erreur asymptotique sur X en termes de cette solution.

Cette partie de mon travail est actuellement en préparation pour être soumise.
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