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All models are wrong, but some
are useful.

George E.P. Box

Statisticians, like artists, have
the bad habit of falling in love
with their models.

George E.P. Box
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ABSTRACT

This last decade, there has been a resurgence of concern over Convolutional Neural
Networks (CNNs) because these models reach high performances in numerous tasks
from the fields of computer vision, machine learning or image processing. Neverthe-
less, theses performances have been obtained at the price of large supervised learning
processes. Several works have shown that pretrained CNNs provide generic and use-
ful representations for images manipulation or analysis and that their internal feature
maps can be transferred to other tasks and domains.

In this thesis, we study the transfer of CNNs trained on natural images to related
tasks. We focus on two topics: texture synthesis and visual recognition in artworks.

The first one consists in synthesizing a new image given a reference sample. The
new synthesis must be perceptually similar to the reference image while being different.
Most of the recent methods are based on enforcing the Gram matrices of ImageNet-
trained CNN features. We develop a simple multi-resolution strategy to take into
account large scale structures. This strategy can be coupled with long-range constraints
either through a Fourier frequency constraint, or through the use of feature maps
autocorrelation. This multi-resolution scheme allows excellent high-resolution synthesis
and combining it with additional constraints largely improves the synthesis of regular
textures. We compare our methods to alternative ones on various texture samples and
corroborate our visual observations with quantitative and perceptual evaluations.

In the second part, we focus on transfer learning for artistic image classification,
which consists in predicting if a visual category is present in the image. First, we com-
pare several approaches for the transfer of already learned CNNs. Indeed, pretained
CNNs can be used straightforwardly without any training when the classes are similar
between domains. Otherwise, they can be used as off-the-shelf feature extractors or
initialization points for a new training. We illustrate the advantage of the last solution
for learning efficient classifiers on painting datasets. Second, we use feature visual-
ization techniques, CNNs similarity indexes and quantitative metrics on the maximal
activation images to highlight some characteristics of the fine-tuning process.

Another possibility is to transfer a CNN trained for object detection. This task
consists in detecting instances of semantic objects of a certain visual category and pro-
viding a bounding box around each instance. We propose a simple multiple instance
method using off-the-shelf deep features and box proposals, for weakly supervised ob-
ject detection. At training time, only image-level annotations are needed. Variants of
the proposed approach including multi-layer networks and polyhedral classifiers are also
considered. We experimentally show the interest of our models with respect to state-
of-the-art methods, on six non-photorealistic datasets, with extreme domain shifts.
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Synthèse en français

Les réseaux de neurones à convolution (en anglais CNN pour Convolutional Neural
Networks) ont connu un fort regain d’intérêt, ces dernières années. En effet, ces mod-
èles ont permis d’obtenir des performances inédites dans de nombreux domaines de
la vision par ordinateur, de l’apprentissage automatique ou du traitement d’images.
Cependant, ces performances ont été obtenues au prix d’apprentissages supervisés
massifs. Plusieurs travaux ont montré que les CNNs pré-entrainés, fournissent des
représentations génériques et utiles pour la modification ou l’analyse d’images. Ces
représentations internes aux CNNs peuvent être transférées à d’autres tâches ou do-
maines.

Dans cette thèse, nous avons étudié le transfert de CNNs pré-entrainés sur des
images naturelles vers des tâches proches. Nous avons principalement travaillé sur
deux axes de recherche : la synthèse de texture et la reconnaissance visuelle dans les
images d’œuvres d’art.

Le premier axe consiste à synthétiser une nouvelle image à partir d’une image de
référence. L’image synthétisée doit être perceptiblement similaire à l’image de référence
tout en étant différente. La plupart des méthodes récentes sont basées sur l’utilisation
des matrices Gram des cartes de caractéristiques issues de CNNs entrainés sur Ima-
geNet. Nous avons développé une stratégie multirésolution simple pour prendre en
compte les structures à grande échelle. Cette stratégie peut être couplée à des con-
traintes à grande distance, telle qu’une contrainte basée sur le spectre de Fourier,
ou bien avec l’utilisation de l’autocorrélation des cartes de caractéristiques. Cette
stratégie multirésolution permet d’obtenir d’excellentes synthèses en haute résolution
et la combiner avec des contraintes supplémentaires améliore les résultats dans le cas
des textures régulières. Nous avons comparé nos méthodes aux méthodes alternatives
sur divers exemples de texture et avons corroboré nos observations visuelles par des
évaluations quantitatives et perceptuelles.

Pour le second axe, nous nous sommes concentrés sur le transfert d’apprentissage
pour la classification des images d’art. La classification consiste à prédire si une caté-
gorie visuelle est présente dans une image à partir de ses pixels. Dans un premier
temps, nous avons comparé plusieurs approches de transfert de CNNs pré-entrainés.
En effet, les CNNs pré-entrainés peuvent être utilisés directement sans aucune modi-
fication lorsque les classes sont similaires entre les domaines. Autrement, ils peuvent
être utilisés comme des extracteurs de caractéristiques ou alors comme initialisation
pour un nouvel entrainement. Nous avons mis en avant la supériorité de cette dernière
solution pour la classification d’images artistiques. De plus, nous avons employé des
techniques de visualisation de caractéristiques, des indices de similarité ainsi que des

11



Synthèse en français

métriques quantitatives sur les images d’activation maximale pour mettre en évidence
certaines caractéristiques du processus de paramétrage fin (fine-tuning en anglais).

Une autre possibilité que nous avons étudié est le transfert de CNN entrainé pour
faire de la détection d’objets. Cette tâche consiste à détecter des instances sémantiques
d’une certaine catégorie visuelle et à fournir une boîte englobante autour de chaque
instance. Nous avons proposé une méthode simple pour répondre à la tâche de dé-
tection faiblement supervisée, c’est à dire avec uniquement des annotations au niveau
de l’image lors de l’entrainement. Cette méthode est basée sur un apprentissage à
instances multiples, l’utilisation de caractéristiques figées et de propositions de boîtes
issues d’un CNN pré-entrainés. Des variantes de cette approche, notamment un réseau
multicouche et un classificateur polyédrale, ont également été étudiées. Nous avons
expérimentalement démontré l’intérêt de nos modèles par rapport aux méthodes état
de l’art, sur six jeux de données non photoréalistes, avec des changements de domaines
extrêmes.
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Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . 17

1.1 Context
The field of image analysis has experienced an extraordinary growth in recent years,
thanks to the revival of relatively old tools of artificial intelligence, notably artificial
neural networks [Goodfellow et al. 2016]. In particular, Convolutional Neural Networks
(CNNs) have allowed unprecedented performances in terms of visual recognition, in
the setting of large scale supervised learning [Krizhevsky et al. 2012; Russakovsky
et al. 2015]. They have been applied in numerous domains such as medical imaging,
autonomous cars, astronomy, social network monitoring or art analysis. The main goal
of such a model is to predict if a visual category is present in the image according to
its raw content. To train machines that are able to recognize the visual content of an
image, the research community has developed models with complex and useful internal
representations.

The success of modern CNN models can be explained by the availability of a large
amount of labeled data and computational resources (with the use of Graphics Pro-
cessing Units (GPUs)) but certainly also by many research works since Fukushima
[1980] and LeCun et al. [1989]. A CNN is composed of several layers (or stages) of
transformations to an input image, where each layer transforms its input representation
for the next one. Most layers are composed of convolutions and non-linear activation
functions. The parameters of these layers are learned from labeled data by minimizing
a task-specific objective function. Thus, a trained CNN provides a mapping between
the raw image pixels and visual categories (such as objects, scenes, digits or diseases).
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1. Introduction

CNNs seem to learn a hierarchy of representations of the visual input with an increas-
ing level of abstraction [Zeiler et al. 2014; Olah et al. 2017]. Then, for most computer
vision tasks, CNNs replaced methods based on Bag of Features [Csurka et al. 2004] or
part-based models [Felzenszwalb et al. 2010] and handcrafted features such as SIFT
[Lowe 2004] and HOG [Dalal et al. 2005].

To face the lack of available training data, the research community pay particular
attention to the transfer learning of neural networks. This machine learning paradigm
consists of training a machine learning model on a new task while exploiting knowl-
edge that the model has already learned on a previously related task. Yet, the internal
representations from CNNs are somehow generic and can be reused for a different task
the one on which the network has been originally trained [Donahue et al. 2014]. The
transfer learning of trained CNNs became the default choice for most visual recognition
tasks. This idea of transferring CNNs has also been successfully applied to heteroge-
neous domains, ranging from medical imaging [Tajbakhsh et al. 2016], galaxy detection
[Ackermann et al. 2018] to art analysis [Crowley et al. 2014] replacing other methods.
The main research questions are how to effectively transfer a CNN, how the CNN is
modified during the transfer and why does transfer learning work so well.

Moreover, these internal representations also contain a localization information that
can be used to point out the object of interest [Oquab et al. 2015]. This opens the path
to precise object localization without localization information during training. Most
works that tackled this problem are also built on pretrained CNNs and focus on natural
images. Nothing excludes the possibility of looking for the same kind of algorithms for
art images.

In a different direction, pretrained CNNs provide more efficient image represen-
tations than traditional filtering methods (e.g. wavelets) for image synthesis and es-
pecially texture synthesis by example [Gatys et al. 2015b]. Nevertheless, this image
representation is costly and maybe over-parametrized with almost 200k parameters for
the method based on Gram matrices. The task of texture synthesis by example consists
in synthesizing a new image that is perceptually similar to a reference example. The
statistics-based methods propose to do this by enforcing a set of statistics computed
on a given image representation through an optimization process. CNN based methods
renew this research field which investigates the question of statistical characterization
of perceptually identical images, initiated by Julesz [1962].

A particular field in which the visual recognition performances of CNNs can be
exploited is the Digital Humanities1 and especially for the sub-field of Digital Art His-
tory. Indeed, art and culture history has greatly benefited in recent years from the
results of fine art digitization campaigns. These campaigns include acquiring digi-
tal scans and photographs of artworks (mainly done by museums [Gorgels 2013; The
Metropolitan Museum of Art 2017] and other cultural institutions2), scanning archive

1This field can be traced back to 1946 with the Roberto Busa’s project of creating a computer-
generated concordance to Thomas Aquinas’s writing. A reader interested in the subject of history of
the Digital Humanities is referred to [Schreibman et al. 2004].

2All these cultural institutions in charge of collecting and maintaining cultural heritage for the
public can be regroup under the term of GLAM for "galleries, libraries, archives, and museums".
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1.2. Motivations

photographs [Seguin et al. 2018] and sale or exhibition catalogues [Joyeux-Prunel et al.
2015]. Digital collections allow the preservation and remote access to cultural heritage
in particular with the recent rise of the IIIF community. Such collections, even when
available online, can only be fruitfully browsed through the metadata associated with
images. However, browsing them using the visual content of images may provide a
wider user experience [Gordea et al. 2017]. For instance, image search algorithms may
rely on perceptual features (as color or texture), local features (as SIFT [Resig 2014]),
geometric ones [Hurtut et al. 2011] or spatial organization [Hurtut et al. 2008].

In recent years, several research teams developed search engines based on CNNs
and dedicated to fine arts for different recognition tasks: Replica [Seguin 2018] for
visual similarity search, ArtPI [Artrendex 2018] for style, artist and genre recognition,
Oxford Painting Search [Crowley et al. 2018] for semantic recognition of arbitrary
objects. Their models offer the opportunity to make large art collections searchable
with complex queries about the semantic or stylistic content or even pattern similarity.
They make it possible to analyze the digital images of patrimonial artifacts with data
mining. Moreover, these new tools may lead to a paradigm shift across social sciences
and humanities or will at least facilitate access to large amount of data, enable a
wider scope and open new questions [Kitchin 2014]. Indeed, text analysis has long
been privileged by the Digital Humanities, for instance, with the "distance reading"
paradigm of Moretti [2000]. Moreover, the computational methodologies from Digital
Humanities have been most recently integrated to the field of art history. It might
now be possible to process large collections of art images in a "distant viewing" manner
[Bender 2015]. Computational methods may allow to come back with a new sight
to traditional questions of art history (creative process, circulation of visual patterns,
iconography, etc.) and flourishing new research questions.

1.2 Motivations
In this manuscript, we are interested in the transfer of CNNs for various tasks: high
resolution texture synthesis by example, classification and Weakly Supervised Object
Detection (WSOD) in artwork images. These tasks require a generic image represen-
tation. At present, CNNs trained on large scale natural image datasets provide useful
representations for image analysis and synthesis. However, there are many challenges
to the raw application of these networks.

Lack of annotated art images Large number of annotated natural images are
available in curated datasets [Deng et al. 2009; Kuznetsova et al. 2020]. These annota-
tions even contain localization information of the object of interest [Everingham et al.
2010; Lin et al. 2014; Kuznetsova et al. 2020]. This allows for learning powerful models
that recognize a wide range of visual categories and localize objects within the image.
Such various, accurate and numerous annotations do not exist for artwork images, es-
pecially paintings. Most of the time, annotations are scarce and without localization
information. This presents two challenges: the first is how to cope with limited anno-
tations to learn efficient classifiers and the second is how to learn to localize objects
with only image-level annotations during training.
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Challenging visual content Objects depicted in paintings or other artworks can
vary considerably. Such variations may have occurred for technical or stylistic reasons.
Artists from Impressionism or Cubism movements depicted objects in some specific and
highly abstract way compared to what can be found in photography. Such depiction
diversity can be seen for a horse in Figure 1.1. These variations may also be very far
from the real aspect of an object. Moreover some visual categories simply cannot be
found in natural images because they emerged out of the mind of the artist or myths
or religions.

Paintings dataset PeopleArt RASTA IconArt
[Crowley et al. 2014] [Westlake et al. 2016] [Lecoutre et al. 2017] Section 4.2.1

CASPA paintings Comic2k Clipart1k Watercolor2k
[Thomas et al. 2018] [Inoue et al. 2018]

Figure 1.1: Example images from different art datasets. Various interpretations of a
horse. The origin of each image is mentioned below.

Understanding CNNs Although widely used and extremely effective for visual
recognition, CNNs are still poorly understood. They are powerful approximation func-
tions defined by millions of parameters. Once trained, their internal representations
are pretty generic. Thus the transfer of CNN parameters from one task or domain to
another became the de facto solution, from natural images to artworks for instance. In
this context, particular attention is drawn to the transfer learning of CNNs.

Texture Synthesis Texture modeling and texture synthesis are excellent ways to
study mathematical representation of images and highlight some of their limitations.
The image representations used for texture synthesis go from Markov Random Fields
[Cross et al. 1983] to wavelet decompositions [Portilla et al. 2000] or non-parametric
Markovian modeling [Efros et al. 1999]. Since Gatys et al. [2015b], CNNs are the
main image representation provider. This work proposes to use second order statis-
tics of features from a pretrained CNN instead of a wavelet decomposition. Though
these methods yield state-of-the-art results, one limitation is the difficulty to efficiently
capture large scale structures for high resolution synthesis.
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1.3 Contributions and Outline
In brief, we propose methods to transfer CNNs more efficiently and make a better use of
their internal representations. We improve the current texture synthesis method based
on Gram matrices of CNN features to tackle high resolution synthesis and long-range
dependency. We study different schemes of transfer learning from natural images to
art ones. Then, we use features visualization and diverse distances between CNNs for
getting a better understanding on fine tuning process. Finally, we propose a simple
but efficient multiple instance perceptron model, learned on top of deep features from
a CNN pretrained on a detection task. We believe that such a method could be used
for automatic recognition and localization of iconographic elements in large artwork
collections.

Texture Synthesis Chapter 3: In this chapter, we present several texture synthesis
methods based on CNNs that significantly improve the ability to preserve the large
scale organization of textures. We explore the benefits of a multi-resolution framework
to account for long range structures and allow the synthesis of high resolution images.
In this multi-resolution framework, we show that additional constraints are useful in
the case of regular textures. These constraints rely on the Fourier spectrum of the input
image or on the full autocorrelation of the CNN features. The proposed methods are
experimentally tested and compared to alternative approaches, both in a quantitative
way and through a user study.

Analysis of Transfer Learning Chapter 4: Here, we examine the different trans-
fer learning schemes applied to art classification tasks. We introduce a new dataset
with iconographic labels from which to learn classifiers, and evaluate the different
transfer learning techniques. We show that there is a clear advantage of fine-tuning a
pretrained model compared to using off-the-shelf features extraction or training from
scratch. Moreover, a double fine-tuning involving a medium-size artistic dataset can
improve the classification on smaller datasets, even when the task changes. We also
use feature visualization techniques to qualitatively demonstrate some properties of
the transfer learning processes. We corroborate these properties with a quantitative
evaluation based on characterizations of the set of maximal activation images and CNN
comparisons.

MIL Model for WSOD in Artworks Chapter 5: This chapter presents a weakly
supervised learning method for detecting objects in artworks. This method utilizes
a simple multiple instance approach applied on pre-trained deep features and yields
excellent performances on non-photographic datasets, possibly including new classes
(e.g. angel or the character Mary that are intrinsically absent from photographic
datasets). We investigate several flavors of the proposed approach, some including a
multi-layer network and a polyhedral classifier.

Before presenting our contributions, we provide in Chapter 2 relevant background
for the various but related themes that are considered in this thesis, including image
representation with CNN, transfer learning, CNN understanding, texture synthesis
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with CNN and deep learning for art analysis. In Chapter 6, we finally summarize our
contributions and suggest directions for future work.
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2.1. Convolutional Neural Network and Transfer Learning

The goal of this chapter is to provide a literature review of all the key topics
covered by our work. In this thesis, we are interested in the use of Convolutional
Neural Networks (CNNs) for several image processing tasks such as artistic image
classification, weakly supervised object detection in art images and texture synthesis.
We first present CNNs and the paradigm of transfer learning (Section 2.1). We then
introduce standard tools for CNN analysis methods such as feature visualization and
feature similarity (Section 2.2). Next, we present the main works about CNN models
in the context of art analysis (Section 2.3). In Section 2.4, we give an overview of
Weakly Supervised Object Detection (WSOD) and Multiple Instance Learning (MIL)
strategies to automatically learn the locations of the objects with image-level labels
only. It is a specific application of CNN model. Finally, we present the texture synthesis
problem which consists in creating new images perceptually similar to a reference one
(Section 2.5). We first give a broad overview of the field and previous works, before
giving a more detailed account of CNN-based methods, that are closely related to the
contributions of this manuscript.

2.1 Convolutional Neural Network and Transfer
Learning

In this section, we present the CNN model. This kind of model became the state-of-
the-art model for image classification this last decade and the de facto solution to most
of the computer vision problem. Then we will define the transfer learning paradigm
with a focus of the transfer of CNN for image-related tasks.

2.1.1 Learning Visual Representations With Convolutional
Neural Networks

In 2012, AlexNet, a deep CNN architecture proposed by Krizhevsky et al. [2012], has
emerged as an efficient method for classifying large scale image datasets, by winning
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al.
2015]. In this section, we first describe the main building blocks of CNNs and then
some of the classical CNN architectures.

2.1.1.1 Convolutional Neural Network

A supervised learning problem can be defined by a triplet:
• an input space X
• an output space Y
• a probability distribution p(x, y).

The goal is to find the "best" prediction function fω : X → Y , parametrized by ω based
on example input-output pairs. In other words, we are looking for the optimal function
fω that minimizes the expectation over p(x, y) of a given loss1 ` between its prediction

1It expresses the discrepancy between the predictions of the model being trained and the actual
ground truth labels.
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and the correct output. This expectation is called risk:

E(x,y)∼p(x,y){`(y, fω(x))}. (2.1)

This function fω is built from a finite number of labeled training data consisting of a set
of training examples. We note D = {(xi, yi) | i = 1, . . . , N} ∈ (X × Y)N the training
dataset containing N samples. Thus, one can only estimate an empirical risk:

Remp(f) = 1
N

∑
i

L (yi, fω (xi)) . (2.2)

We will denote fω(x) = ŷ the prediction for the input x.

CNN is a machine learning solution among others to tackle this problem. A CNN
is a type of feed-forward artificial neural network that uses at least one convolutional
layer. A feedforward neural network is a non-linear function approximator that can be
decomposed in a succession of mathematical operations (or functions), called layers.
Each layer takes as input the data from the previous layer2. There are mainly three
types of operation:

• Combination function
• Activation function
• Pooling layer

First, the combination function combines in different ways the output of the previous
layer to calculate the values of the next layer. The two main combination layers are
the fully connected one and the convolutional one. The fully connected layer is a linear
combination (used for multiple layers perceptron type networks). The convolutional
layer is a convolution product between data from the previous layer and a certain num-
ber of convolution kernels. Often the result of this convolution product is rectified by
adding a bias. The convolution exploits spatially local correlation by enforcing a local
connectivity pattern between adjacent pixels. Let us actually mention that mathemat-
ically a cross-correlation is computed in the mostly used deep learning frameworks such
as Tensorflow or Pytorch. The convolutional layer can be seen as a regularized version
of the fully connected one.

The second operation is an activation function; a non-linear, thresholding function
(for instance it can be the positive part of the input3 or a sigmoid function4). The
activation function can be seen as a contractive non-linear pointwise operator [Mallat
2016]. It permits to learn more complex decision boundaries than a sole linear layer.

Finally, the last operation corresponds to a pooling of the outputs of the previous
layer using a subsampling. In the case of CNN, the pooling layer is most of the time a
spatial subsampling. The spatial pooling layer permit to reduce the dimension of the
current layer, to control the computational complexity of the architecture and grants
a degree of translational invariance. The most used pooling layer computes a max or
an average.

Then, a feedforward network with n layers can be written as:

fω(x) = fωn

(
fωn−1 (. . . fω2 (fω1(x)))

)
, (2.3)

2Or from several of the previous layers.
3Also called a Rectified Linear Unit (ReLU) and equal to f(x) = max(0, x).
4Equal to f(x) = 1

1+e−x
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Figure 2.1: Diagram illustrating the passage from the l-th layer to the l + 1-th layer
through convolution.
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Figure 2.2: Vectorized version of the features map from layer l.

where x is the input, ω = [ω1, . . . , ωn] is the vector of CNN parameters, fωl
is the l-th

layer and ωl is the vector of parameters of the l-th layer. We note f l = fωl
(f l−1) ∈

Rhl×wl×ml the output of the l-th layer for a given input image I ∈ Rh×w×m0 . In the
following work, we note hl and wl the spatial dimensions andml the number of channels
of the l-th layer (or the feature maps) as in Figure 2.1. In the case of a convolutional
layer, the number of channelsml is equal to the number of convolutional kernels/filters.
We use the term of channel denoted f lp to refer to the p-th 2D output according to
the "filters dimension" of the layer f l whereas the term neuron refers to an individual
position/pixel i and is denoted: f lp(i). For the input image, h and w are the spatial
dimensions and m0 the number of channels (m0 = 3 for the RGB image). The spatially
vectorized version of f l is noted ~f l and can be seen in Figure 2.2.

The term "feedforward" model is used because information flows strictly in the
forward direction, from the input layers, through hidden layers, to output layers on the
contrary to the Recurrent Neural Network (RNN) that include feedback connections
[Rumelhart et al. 1986].

Historically, the perceptron of Rosenblatt [1958] may be considered as the ancestor of
the neural network5. Fukushima [1980] proposes a neural network architecture named
Neocognitron for pattern recognition explicitly motivated by Hubel and Wiesel’s hi-
erarchical model of the cat or monkey visual cortex [Hubel et al. 1962; Hubel et al.

5The reader may refer to the recent overview of deep neural network history by Schmidhuber
[2015].
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1968]. His model alternates shift invariant non-linear transformation and down sam-
pling thus incorporating the core of CNN without naming it. The parameters of this
model are obtained by a layer-wise unsupervised clustering algorithm. Deep Learning
is a paradigm that consists in simply stacking many layers one after the other.

Figure 2.3: LeNet-5 architecture - Figure from [LeCun et al. 1998].

In Figure 2.3, one can see the standard architecture of a CNN. It has been designed
for handwritten digit recognition in the seminal work of LeCun et al. [1998]. In this
schematic, the convolution and activation layers are grouped under a single label.
This network consists of two convolution layers (the first one made up of 4 different
convolutions and the second one of 6) and two sub-samplings. The last layers of this
network are fully connected layers. They allow to obtain an output of the network in
the form of the different classes of the classification task. The model has around 60000
parameters.

On the contrary to Fukushima [1980], the CNN parameters can be learned by a
minimization of the empirical risk (mentioned in equation (2.2)), most of the time com-
bined with a regularization term. In 1989, LeCun et al. [1989] used back-propagation
[Rumelhart et al. 1986] to learn the convolution kernel coefficients directly from images
of hand-written numbers. Thanks to this gradient based method, learning was thus
fully automatic, and can be used in a broad range of image recognition problems and
image types. Stochastic Gradient Descent (SGD) and its variants (such as ADAM
[Kingma et al. 2017]) are nowadays the main optimization algorithms for machine
learning in general and for deep learning in particular. The gradient descent method
is a common way to minimize an objective function of parameters ω by updating the
parameters in the opposite direction of the gradient of the objective function with re-
spect to the parameters. Computing the exact gradient is expensive because it requires
evaluating the model on every example in the entire dataset. To ease this problem, the
SGD method estimates the gradient by randomly sampling a small amount of training
examples (called a minibatch). More information about deep learning and CNN can
be found in the excellent book of Goodfellow et al. [2016].

We have to mention that two active research fields propose methods to learn model
parameters without the pairs of training examples and associated labels. These are
unsupervised learning [Fukushima 1980; Ranzato et al. 2006; Erhan et al. 2010] and
self-supervised learning [Zhang et al. 2018a; Zoph et al. 2020]. These fields are out-of-
the-scope of this manuscript.
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2.1.1.2 Classical Convolutional Neural Network Architectures for Image
Classification

We now present a brief history of classical CNN models. Since 2012, CNNs have become
popular with the large win of AlexNet (in the competition ILSVRC) over handcrafted
features model such as HOG [Dalal et al. 2005] or SIFT6 [Lowe 2004]. Since then all
the SOTA models for large scale visual recognition tasks are based on CNNs. New
architectures, layers or building blocks have been proposed to reach better, quicker
and more stable learning.

AlexNet consists of 8 layers (5 convolutional and 3 fully connected) as it can be seen
in Figure 2.4a. The number of parameters is 60 millions, its training has been made
within a reasonable time thanks to the use of GPU [Krizhevsky et al. 2012]. Simonyan
et al. [2014] show that the depth of the network is an important component for good
performance. They introduced several variants of a "very deep" convolutional network
including VGG19, a 19 layers CNN architecture (see Figure 2.4b). This model was
widely reused, thanks to the sharing of its learned weights to the community. A draw-
back of this model is its number of parameters (144M) and inference cost. Szegedy et
al. [2015] introduce a deeper model named InceptionV1 (originally named GoogleNet)
who won the ILSVRC 2014 classification challenge. The number of parameters is re-
duced to 7 millions thanks to the introduction of Inception modules and the use of
only one last fully-connected layer for the classification (compared to the three used
by VGG-like models). This architecture of 22 layers can be seen Figure 2.4c. He et
al. [2015] introduce Residual Network (ResNet) incorporating residual blocks to learn
deeper CNN, in addition to the use of batch normalization [Ioffe et al. 2015]. Indeed,
the residual blocks permit to overcome the vanishing/exploding gradient problem [Glo-
rot et al. 2010] that appears when adding too many layers. Then models could have
more than hundreds of layers (see Figure 2.4d). The ResNet model got the first places
at the ILSVRC 2015 detection, localization, MS COCO 2015 [Lin et al. 2014] detec-
tion and segmentation competitions, and has had an extraordinary impact in computer
science this last five years.

The extremely detailed version of these three architectures can be found in Annex,
Chapter D.

Next, research works about CNN for large scale image classification have been con-
ducted in several directions. While there are too many to list here, following are a few
examples:

• Combining Inception modules with residual ones [Szegedy et al. 2017]
• Providing lighter CNN [Howard et al. 2017]
• Providing new efficient building blocks such as the "Squeeze-and-Excitation"

block, a channel-wise recalibaration feature responses [Hu et al. 2018]
• Working with bigger input images [Tan et al. 2019]
• Fixing the train-test resolution discrepancy [Touvron et al. 2020]
Nevertheless, computer vision has moved from feature engineering to architecture

design such as AlexNet, VGG19, InceptionV1 and ResNet. Meta-learning may be the
next paradigm shift. This may take the form of meta-architecture design. For instance,

6Both based on local histograms of orientations.
7Courtesy [He et al. 2016].
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(a) AlexNet architecture, 8 layers [Krizhevsky et al. 2012]

(b) VGG19 Architecture7, 19 layers [Simonyan et al. 2015]
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(c) InceptionV1 (or GoogLeNet) Architecture, 22 layers [Szegedy et al. 2015]

(d) ResNet 152 Architecture, 152 layers [He et al. 2015]

Figure 2.4: Several different CNN architectures for image classification.
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Neural Architecture Search takes a novel approach to meta-learning architectures by
using a RNN trained with Reinforcement Learning to design architectures that result
in the best accuracy [Zoph et al. 2017a; Zoph et al. 2017b; Tan et al. 2019]. This can
also consist in learning the data augmentation strategy [Cubuk et al. 2019] or both
at the same time [Wei et al. 2020]. However, these methods are costly because they
require an optimization process in a space with an exponentially increasing number of
dimensions.

As the SOTA changes very regularly, we invite the reader interested in these subjects
to refer to the "Papers with codes" website, mostly up to date.

2.1.2 Transfer Learning
We start by giving a brief formal definition of transfer learning, then present three
specific techniques for CNN transferring, and finally give examples of applications to
visual recognition.

2.1.2.1 Deep Transfer Learning

Transfer Learning is a general paradigm broadly used in Machine Learning. Transfer
learning is defined as the situation where two supervised learning problems are avail-
able: a source problem: (XS ,YS , pS(x, y)) and a target one (XT ,YT , pT (x, y)) which
are related but not identical (i.e. at least XS 6= XT , YS 6= YT , or pS 6= pT ). For
instance, if we transfer a model learned on RGB images to multispectral ones, we are
in the case of XS 6= XT . Transferring a model from a flower species classification task
to a flower colors one, means YS 6= YT . Transferring a model from an offline academic
setting to a production online one may cause pS 6= pT . Transfer learning consists in
exploiting the source data DS together with the target one DT to potentially find a
better model in terms of empirical loss on the target test set than the one obtained
when using only the target data. Among other things, transfer learning is useful when
source data is abundant while target one is not.

Depending on the difference between the source and target domain and tasks, Pan
et al. [2010] define several transfer learning settings. In the inductive transfer learning
setting, the target task is different from the source task, no matter the source and
target domains are the same or not. In the transductive transfer learning setting,
the source and target tasks are the same, while the source and target domains are
different. In addition, Weiss et al. [2016] define more details settings such as the
homogeneous and heterogeneous transfer learning settings. In the first case, only one
kind of data is used whereas in the second one several are considered (images and
texts for instance). Moreover, they draw a distinction, among other things, between
symmetric and asymmetric feature-based setup. This latter consists in mapping the
features of the source domain into the target feature space whereas in the first setup, the
features from both domains are treated in a similar way. Readers are referred to these
two surveys [Pan et al. 2010; Weiss et al. 2016] for the general framework on transfer
learning. The common framework of transfer learning of artificial neural network has
been introduced in [Pratt et al. 1991], whereas the first work on transfer learning of
perceptron have been conducted during the 1970s, by Bozinovski and published in
Croatian according to [Bozinovski 2020].
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Designing and training an entire CNN from scratch (with random initialization) on
a large dataset is difficult, because this task requires an accurate knowledge of training
and engineering tricks, huge sets of labeled training images and computational resources
(GPU). For instance, it takes about one week to train a standard CNN on ImageNet
with one consumer GPU. Nevertheless, CNNs seem to learn representations on a large
scale dataset that are both discriminative and generic (more information about it can
be found later in Section 2.2). Thus, CNNs have been successfully recycled for other
computer vision tasks. They can be efficiently transferred to other (small) datasets.
As already mentioned, the models from the ILSVRC competitions [Russakovsky et al.
2015] and trained on ImageNet became the de facto solution for most of the computer
vision problems. As we assume in the following work that the input space are identical
(RGB images) but the output space and probability differ, ImageNet classification
against art classification for instance. Hence, we focus on the inductive, homogeneous
and asymmetric feature-based transfer learning setup in Chapters 4 and 5. There are
three settings in Transfer Learning of CNNs mainly used:

1. Off-the-shelf feature extraction
2. Fine-Tuning a pretrained model
3. Training the same CNN architecture from scratch (with random initialization)

on the new task

Off-the-shelf feature extraction This strategy is to use the fixed feature repre-
sentations of a CNN pre-trained on a large dataset to train a classifier (Support Vector
Machine (SVM), Multi-Layer Perceptron (MLP), etc.) for the new dataset. It can be
the feature representations from the penultimate layer but also mid-level ones. These
features are often called deep features. Donahue et al. [2014] have shown that the
AlexNet architecture of Krizhevsky et al. [2012] can be used (without fine-tuning) as a
blackbox feature extractor, yielding excellent performance on several recognition tasks
including scene classification, fine-grained sub-categorization, and domain adaptation.
Other contemporaneous works propose transferring image representations from this
architecture trained on ImageNet dataset. They investigate transfer to other visual
recognition tasks such as Caltech256 image classification [Zeiler et al. 2014], object and
action classification [Oquab et al. 2014] or object localization [Sermanet et al. 2013a].

Fine-Tuning Before 2014, one conventional solution to tackle the difficulty of train-
ing deep neural networks was to use unsupervised pre-training, followed by supervised
fine-tuning. We can find an example for MLP in [Hinton 2007], for Deep Belief Net-
work and autoencorder in [Erhan et al. 2010] and one for pedestrian detection with
CNNs in [Sermanet et al. 2013b]. In [Erhan et al. 2010], they mentioned the fact that
unsupervised pre-training can be seen as a regularizer and that it works better than
random initialization.

In the seminal work about the Region Convolutional Neural Network (R-CNN)
model, Girshick et al. [2014] run a supervised pre-training on the ImageNet image-level
annotation classification task before fine-tuning their model on Pascal VOC dataset
for the object detection task. They show that this two-step method with an auxiliary
dataset is an effective paradigm for learning high-capacity CNNs when data is scarce.
Since then, ImageNet-pretrained networks are used as backbone models for object
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detection and semantic segmentation tasks. Using a pretrained CNN as initialization
point can also be seen as a regularization method.

Training from scratch The last solution is to train a proven architecture designed
for a related visual task but with a random initialization of the learnable parameters.
This method is named training from scratch. We can also argue that the bare architec-
ture of a successful network is in itself a form of transfer learning, as this architecture
has proven its relevance to the task of image classification. Whether the architectures
are hand-crafted or learned by hyper-optimization, they contain some priors about the
input space or the task from the source domain. These priors can be useful for the
target task if it is related to the source one.

Note that it is also possible to transfer only some part of the pre-trained weights of
the network while keeping the same architecture, as in [Yosinski et al. 2014].

Another hybrid approach of transfer learning is proposed by reusing only the scaling
of the pretrained weights but not the weights themselves, see [Raghu et al. 2019].

Pertinence of deep transfer learning A large number of studies have compared
the performance of the off-the shelf and the fine-tuning approaches [Chatfield et al.
2014; Girshick et al. 2014; Kornblith et al. 2018]. Fine-tuning typically achieves higher
accuracy, especially for larger datasets or datasets with a larger domain mismatch from
the training set [Yosinski et al. 2014; Chu et al. 2016a; Huh et al. 2016; Cheplygina
2019; Romero et al. 2020]. Yosinski et al. [2014] show that the first layer of AlexNet
can be frozen when transferring between subsets of ImageNet without performance
drops, but freezing later layers produces a substantial drop in performance. Huh et al.
[2016] also study the AlexNet model. They report that at a fixed budget, training
with fewer classes but more images per class performs slightly better at target tasks
than training with more classes but fewer images per class. Moreover the number
of images per class and the number of classes have a positive (but small) influence
on the performance of the transferred model. Chu et al. [2016a] provide a complete
illustration that the standard practice of fine-tuning a pretrained AlexNet model is
almost always beneficial for seven different datasets (from birds to plankton images).
They show that depending on the size of the target set and the distance to the source
dataset, it can be a necessity to freeze the transferred layers. Some works highlight
that it exists an optimal number of layers to freeze depending on the source and target
set (see [Lecoutre et al. 2017; Cetinic et al. 2018] for deep transfer for art analysis).
Other works even tried to automatically find this optimum depending on the target
set thanks to Bayesian optimization [Basha et al. 2020a; Basha et al. 2020b].

Nevertheless, some works have recently shown that ImageNet pretrained models are
maybe not as generic as previously thought. The Kornblith et al.’s work [2018] try to
evaluate the implicit hypothesis in computer vision research that models performing
the best on ImageNet necessarily perform the best on other vision tasks. In order to
prove this, they compare the performance of 13 CNN on 12 image classification tasks in
the three previously mentioned settings. In the case of off-the-shelf feature extraction,
ResNet models outperform the other ones and the performance on ImageNet is a poor
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proxy for the performance on the target set. Networks yield better performance when
they are fine-tuned. In this case, they observe a stronger correlation between accuracy
on ImageNet and accuracy on target tasks. Moreover, ImageNet pretraining accelerates
convergence. For some fine-grained classification datasets with small amounts of data8,
training from scratch perform competitively with fine-tuning but in the other cases,
the fine-tuning approach achieves higher performance.

Depending on the discrepancy between the source and target tasks or the specificity
of the target domain, developing a specific architecture may lead to better performance.
Indeed, it has been shown on two large scale medical imaging tasks that transfer learn-
ing of pretrained models offers little benefit to performance compared to a lightweight
CNN [Raghu et al. 2019]. ImageNet accuracy is not correlated to accuracy on medi-
cal datasets. Transfer learning using X-rays images from the same anatomical region
outperforms every other methods whereas using images from other anatomical regions
provides similar performance to using ImageNet as source set [Romero et al. 2020].
In the recent survey by Cheplygina [2019], twelve papers with various sources and/or
target datasets from different medical domains are compared. The author urges the
medical imaging community to conduct larger systematic comparisons into this impor-
tant topic because there is not a clear answer about the superiority of using a source
set from medical domains or not. The same kind of meta-analysis should be conducted
for other image domains such as radar or artistic one. In Section 4.3.2, we will compare
the different setups of transfer learning for art classification, in addition to the use of
natural or artistic images as source set.

The guest of universal feature representation On the one hand, some recent
works push this pre-training paradigm further by pre-training on datasets that are 300
times (in-house JFT-300M dataset [Sun et al. 2017]) and even 3000 times (in-house
Instagram dataset [Mahajan et al. 2018]) larger than ImageNet. These works tend to
learn a universal feature representation. This last work demonstrates significant im-
provements on image classification transfer learning tasks, the improvements on object
detection being relatively small (on the scale of plus 1.5 AP on MS COCO). Recently,
the Open Images V4 dataset, of 9.2M images have been made public [Kuznetsova et al.
2020] and could replace ImageNet in the future. The marginal benefit from this kind of
very large scale pre-training data maybe be questionable, or for ethical reasons, since
the non-openly available datasets come from micro-workers or uninformed platform
users [Tubaro et al. 2019], either for ecological reasons [Strubell et al. 2019]. Hence
the emergence of the weakly supervised learning paradigm to extract more information
from the training sets (see Section 2.4).

Besides, He et al. [2019] show a surprising result: ImageNet pre-training has limited
impact on MS COCO object detection and segmentation tasks. The model9 trained
from scratch with enough iterations reaches the same performance as the fine-tuning
method even with a small portion of the training set, down to 10k images10. ImageNet
pre-training speeds up convergence early in the training, but it does not necessarily

8A few thousand labeled examples.
9A Mask R-CNN model [He et al. 2017] with a ResNext backbone is studied.

10However, one must keep in mind that, within a fixed number of images, more bits of information
are provided to the model when we train it for object detection or segmentation task compared to
classification task. Bounding boxes or pixel labels are more informative that image-level labels.
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provide regularization or improve the final target task accuracy as mentioned before.
As also mentioned before the use of a given architecture can be seen as a kind of
transfer learning.

Domain adaptation In the following work and more precisely in Chapter 4, we
apply the most classic technique: we transfer a model pre-trained on the source domain
and extract fixed deep features or fine-tune it on the target data.

More effective techniques from the domain adaptation field consisted in fine-tuning
on both domains at the same time [Sun et al. 2016a; Sun et al. 2016b; Inoue et al.
2018]. Moreover these techniques belong to the transductive setup [Pan et al. 2010]
and the symmetric feature-based transfer learning setup [Weiss et al. 2016]. Indeed
source and target are transformed into a common features space, sometimes called
domain-invariant features space. In the framework of domain adaptation, the task
(output space) is the same whereas the input space is not. For instance, it consists
in recognizing the same objects in DSLR and webcam images [Sun et al. 2016a; Sun
et al. 2016b], in natural images and artworks [Li et al. 2017a] or in sunny and foggy
conditions [He et al. 2020]. Readers are referred to the domain adaptation for visual
applications survey by Csurka [2017] for a broader description of this field.

Nevertheless the off-the-shelf or fine-tuning methods are computationally more ef-
ficient especially when training sets are different in size.

2.1.2.2 Applications of Convolutional Neural Networks

As previously recalled, CNN based models yield state-of-the-art performances in many
areas of computer vision such as object detection [Girshick et al. 2014; Girshick 2015;
Ren et al. 2015; Redmon et al. 2016; Lin et al. 2017; Liu et al. 2020], semantic seg-
mentation [He et al. 2017], visual question answering [Wu et al. 2017], pose estimation
[Güler et al. 2018], image manipulation [Viazovetskyi et al. 2020], etc. CNNs also
provide state-of-the-art in numerous other domains such as medical images (for tumor
segmentation for instance [Vakanski et al. 2020]), astronomy images (for galaxy detec-
tion [Ackermann et al. 2018]) or artistic ones (e.g. for object recognition in paintings
[Crowley et al. 2014]). New kinds of artificial neural networks are emerging those years
and may soon dethrone the CNNs, including the Capsule Networks [Sabour et al. 2017]
and Vision Transformers [Dosovitskiy et al. 2020].

Object Detection Among these possible applications, object detection is maybe one
of the most studied. Object detection consists in recognizing a given visual category
within an image but localizing it (i.e. be able to output a bounding box around this
object). This task is important for several reasons. First, it can be the first step needed
before a fine-grain classification of the object of interest11. Second, it permits providing
relative spatial information between objects12. Finally, object detection may be a way
to reduce shortcut learning [Geirhos et al. 2020]. The object detection task is difficult
due to viewpoint and scale variations, deformation, occlusion, illumination conditions,

11For instance, it is common to first run a face detection algorithm before running an identification
model.

12This information may be needed for action recognition or relation inference.
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background clutter and intra-class variation as other visual recognition tasks. However,
the need of bounding the object increases the difficulty as it requires to learn exactly
what belongs to the object of interest within the image. Nevertheless, this task is easier
than semantic segmentation13.

2.2 Understanding Convolutional Neural
Networks

The deep learning community has provided a plethora of experimental tools for trying
to better understand deep neural networks. These tools include feature visualization
[Erhan et al. 2009; Zeiler et al. 2014; Olah et al. 2017], pixel attribution [Simonyan
et al. 2014; Selvaraju et al. 2017; Smilkov et al. 2017; Sundararajan et al. 2017] and
network comparison [Raghu et al. 2017; Kornblith et al. 2019], besides theoretical
intends [Paul et al. 2015; Mallat 2016]. In Section 2.2.1, we present first one branch of
feature visualization based on optimization. Then we introduce some of the tools used
for network comparison (Section 2.2.2).

2.2.1 Visualizing Convolutional Neural Networks
The main idea of the visualization of CNNs is to represent them in the image domain
to have a better interpretation or explanation of their behavior.

On the one hand, there is a "dataset centric" approach14. The most basic technique
is to select images from either the training or test sets which maximize certain channel
activations. Attribution or saliency15 methods consist in identifying pixels of the input
image that contribute the model decision [Simonyan et al. 2014; Selvaraju et al.
2017; Smilkov et al. 2017; Sundararajan et al. 2017]. This method is mainly based on
inspecting the magnitude of the derivative of the score for a given class with respect to
the input image. Another solution is to look at the reconstruction of the input image
from the deep features of a given layer [Mahendran et al. 2015].

On the other hand, feature visualization by optimization (or activation maximiza-
tion) is said "network centric". It consists in synthesizing an image that maximizes the
activation of some part of the network [Erhan et al. 2009; Simonyan et al. 2014; Olah
et al. 2017]. Thus, this part of the network may be selective for the synthesized visual
patterns.

2.2.1.1 Feature Visualization via Activation Maximization

We here focus on the popular interpretability method of feature visualizations via
activation maximization.

Definition Feature visualization answers questions about what a deep network is
responding to by generating examples that yield maximum activations for a given

13Semantic segmentation consists in classifying each pixel of the object of interest.
14"Image centric" is maybe a more relevant name.
15Also called sensitivity.
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neuron, channel or layer. First introduced by Erhan et al. [2009], optimization based
methods of feature visualization maximize the mean16 activation of a particular channel
by doing a gradient ascent on this mean activation with respect to the input image.
The goal is to obtain an image that will maximize the activation of a given channel:

Î = arg max
I

mean f lk. (2.4)

Starting from a random initialization, the gradient ascent will create iteratively an
image Î that maximizes the activation of the channel k. The synthesized image will
be named Optimized Image17 in this manuscript. The seminal work of [Erhan et al.
2009], apply this method to Deep Belief Network [Hinton et al. 2006]. They have
shown that the first layer channel obtained by training on natural images are "Gabor-
like features". The second layer corresponds to corners detectors. Higher-level layers
are quite complex but interpretable in some sense. When the network is trained on
MNIST (a hand-written digits dataset), some optimized images look like pseudo-digits.
Higher-level layers learn meaningful combinations of lower level features. Moreover
most random initializations yield the same prominent visual pattern.

This method is applied for the first time to CNN by Simonyan et al. [2014], to visu-
alize the optimized images corresponding to the class neurons. They show which kind
of stimulus, those neurons respond to. For each class, the visual pattern within the
images seems to belong to the class considered. Nevertheless, to achieve results that are
visually acceptable and understandable by human, it is a necessity to add some con-
straints to the optimization, thus avoiding getting adversarial structured noise [Szegedy
et al. 2014] or the fooling images investigating in Nguyen et al. [2015]. Constraints can
be L2-regularization [Simonyan et al. 2014], blurring [Nguyen et al. 2015], jitter and
multi-resolution [Mordvintsev et al. 2015], GAN generator parametrization [Nguyen
et al. 2016], stochastic geometric transformation or color-decorrelated based on Fourier
transformation [Olah et al. 2017]. Nevertheless, a recent paper from Engstrom et al.
[2019] show that adversarially robust models provide good feature visualizations with-
out enforcing any priors or regularization. Thanks to these regularizations, Olah et
al.’s work [2017] became a milestone because its illustrates the hierarchical aspect of
the internal representations of a CNN trained on ImageNet with stunning feature vi-
sualizations, as it can be seen in Figure 2.5. It is important to say that gradient-based
feature visualization only represents one instance of the set of the possible images that
can fire a given channel. This has been illustrated by the diversity loss term used in
[Olah et al. 2017], based on the Gram matrix of the feature maps18.

Many researchers considered that feature visualizations are interpretable and that
"features can be rigorously studied and understood" [Olah et al. 2020b]. As defined in
[Olah et al. 2018], some channels of the deep models can be considered as a detector of
a specific visual pattern more or less complex (curve, floppy ears, etc.). Visualization

16Other statistics that the mean can be used, for instance Mordvintsev et al. [2015] use the Frobe-
nius norm of the whole layer.

17Also known as "Numerically computed image" [Simonyan et al. 2014] or "optimized example"
[Olah et al. 2017].

18This diversity term is inspired by the texture synthesis with CNN method of Gatys et al. [2015b].
We will introduce it later, in Section 2.5.2.1.
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Figure 2.5: Optimized images for different layers of InceptionV1 CNN trained on Ima-
geNet. Courtesy of [Olah et al. 2017].

of the optimized images also permits regrouping the filters of the first layers of an
InceptionV1 model in some comprehensible groups [Olah et al. 2020a]. The same team
proposed reverse engineering of one of the most common patterns in visual content:
curve [Cammarata et al. 2020]. They propose a rigorous protocol to illustrate both
the role and characteristics of a certain number of channels detecting curve and the
hierarchical relations between them. This research team also claims in [Olah et al.
2020b] that universal detectors can be found in different models trained on ImageNet .
Moreover, a recent perceptual study shows that feature visualizations provide helpful
information to better understand the information processed by CNN, even if looking
at the maximal activation images is more helpful [Borowski et al. 2020]. Despite this,
optimization-based methods can isolate the causes of some behaviors from mere cor-
relations. A neuron may not be detecting what one initially thought it would. For
instance, the DeepDream [Mordvintsev et al. 2015] algorithm can generate a visual-
ization of dumbbells with an attached arm. Thus it can reveal a bias in the training
dataset which contains numerous images of weightlifters holding dumbbells. The CNN
might consider the arm as part of the dumbbell object or this element as essential to
classify the image. Moreover, optimized images are more flexible, they can be used for
looking at the interaction between channels [Olah et al. 2017] or for looking at some
particular directions in the feature space [Carter et al. 2019]. Szabó et al. [2020] visual-
ize the impact of the fine-tuning of a network on fine-grained, natural images datasets.
They demonstrate various properties of the transfer learning process such as the speed
and characteristics of adaptation, neuron reuse and characteristic spatial scale of the
optimized images. In another direction, several papers have proposed methodology to
determine the way the different features contribute to a classification by combined fea-
ture visualization techniques with attribution methods [Olah et al. 2018; Carter et al.
2019; Shi et al. 2020a].

Do CNNs learn meaningful features? Works such as [Erhan et al. 2009; Si-
monyan et al. 2014; Olah et al. 2017; Olah et al. 2020a] tend to show that a deep
neural network learns meaningful and high-level features (for instance eye detector or
dog head detector) whereas others show that those networks are primarily detecting
textures [Geirhos et al. 2019] or even statistical regularities on the dataset [Jo et al.
2017]. Indeed, visually imperceptible modifications of the image may lead to a com-
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pletely wrong prediction, as it has been shown by Szegedy et al. [2014], as mentioned
before. These adversarial examples may be considered as an illustration of the lack
of robustness of those models. Moreover, [Geirhos et al. 2019] show that ImageNet-
trained CNNs are strongly biased towards recognizing textures rather than shapes.
They illustrate their claim by observing a huge performance drop when changing the
texture of the image while keeping the shape intact19. A related conclusion is made
by Brendel et al. [2019] because they observe that an image only containing the tex-
ture information20 can most of the time still be correctly classified by CNN. Jo et al.
[2017] find that CNNs trained on an unfiltered natural image dataset exhibit a ten-
dency to focus on the image statistics of the training set, yielding significant drop on
high frequency filtered images that are still identifiable by humans. More examples of
differences between what is used by CNNs for recognition and the human visual system
can be found in [Geirhos et al. 2020]. In this work, the authors introduce a taxonomy
of shortcut learning phenomenons for deep learning model and propose strategies to
diagnose and understand them.

Nevertheless, several works tend to show that CNNs learn high levels of abstraction.
Nguyen et al. [2015] present several ways to create images that completely fool deep
networks (with evolutionary algorithms or gradient ascent) but that are unrecognizable
to humans. It can be white noise-like images or psychedelic ones composed of simple
and repetitive geometric patterns. But they were also able to generate highly abstract
images that are both recognizable by networks and humans. CNNs may be able to learn
a high level of abstraction but fails to deal with out-of-the-distribution samples. Most
strikingly, White [2019] used a drawing system (only able to vary strokes placement,
thickness and color) to generate abstract drawings with strong responses across different
ImageNet classes for one given CNN. These abstract images may also be recognized
by humans and by other pretrained CNN architectures indicating that these images
generalize well. Thus, understanding CNN internal representations is still a much
discussed and much studied topic. We only mentioned few of the attempt to this open
problem.

2.2.1.2 Feature Inversion

Feature Visualization via activation maximization is different from the Mahendran et
al.’s work [2015] about inverting deep representations. The feature inversion method
reconstructs an input from its deep representation at a given layer. This algorithm
achieves an approximate CNN inversion by minimizing the Frobenius distance between
the feature representation of the input image and the synthesized one by gradient
descent. For the input image I and the layer l the loss minimized with respect to Ĩ is:

LGeom,I,l(Ĩ) = 1
2

ml∑
p=1
‖f l − f̃ l‖2

F , (2.5)

with f l the feature maps of the input image I and f̃ l the one of the synthesized one
Ĩ. Some constraints such as the Total Variation can be added to this optimization to

19Thanks to neural style transfer techniques that we will describe later, in Section 2.5.2.2.
20They generate texturized images by applying the texture synthesis method from Gatys et al.

[2015b], that we will describe later, in Section 2.5.2. This technique is related to the neural style
transfer algorithm.
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get better perceptual results. Mahendran et al. [2015] illustrate that the feature maps
encode some geometric content of the image. The problem of inverting a network
is tackled in a different way by Zeiler et al. [2014] with the use of an unsupervised
deconvolutional network attached to each layer.

2.2.2 Networks Comparison
Comparing different CNN architectures trained on different datasets is not an easy
task but it may help to understand them.

2.2.2.1 Parameter Similarity

This comparison can be made in the parameter space, for instance by computing
the `2 distance between learned weights of two differently-initialized networks, as in
[Neyshabur et al. 2020]. In [Bernstein et al. 2020], they derive a distance on neural
networks based on a perturbation analysis of the neural network function and Jaco-
bian. This distance has been used to provide a learning process which does not need
a learning rate tuning, but it cannot be used for comparing what has been learned by
different architectures.

2.2.2.2 Feature Similarity

The comparison can also be made in the feature space. We will now quickly describe
some of the methods developed for computing a feature similarity between different
layers or different models. The goal is to compare how similar are the representations
learned by two layers or two networks. Li et al. [2015] apply linear correlation and mu-
tual information analysis to study one-to-one mappings between channels21, and found
that some representations are shared by differently-initialized networks, but others are
not. They applied a spectral clustering algorithm to find many-to-many mappings that
permits clustering groups of neurons among two different networks. Their approach
finds matching Gabor filters and also matching color blobs. The idea of neuron ac-
tivation subspace matching is also developed by Wang et al. [2018a]. They conclude
that differently-initialized networks are not as similar as expected in terms of subspace
match.

Another solution is to use the statistical tool named Canonical Correlation Anal-
ysis (CCA). CCA seeks two linear combinations of two tensors which have maximum
correlation with each other. It can be used to compute a similarity between these two
tensors22. In the case of CNNs these two tensors are the feature maps of different
models or layers.

Two adaptations of CCA have been proposed to deal with the huge computational
cost due to the deep neural networks and the size of training sets:

• Singular Vector Canonical Correlation Analysis ((SV)CCA) preprocesses neuron
activation vectors with a Singular Value Decomposition to remove low variance
directions [Raghu et al. 2017]

21Named neurons in this paper.
22For instance, the mean squared of the p CCA correlations is one of the possible similarity index.

This index is equal to the double sum of the dot product of the normalized principal components of
the two considered tensors divided by p the number of features (in the smaller representation).
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• Projection Weighted Canonical Correlation Analysis (PWCCA) is a projection
weighted mean of the CCA correlation coefficients [Morcos et al. 2018].

Morcos et al. [2018] present a simple mathematical overview of CCA, which is
completed by Kornblith et al. [2019]. In this last article, another variant introduced by
Cortes et al. [2012] and named Centred Kernel Alignement (CKA) is used to compare
CNNs.

CKA is a normalized version of the Hilbert-Schmidt Independence Criterion, i.e.
the squared Hilbert-Schmidt norm of the cross-covariance operator to take into account
nonlinear kernels on the two tensors to compare. The normalization permits to have
an invariance to isotropic scaling measures. In the linear case, CKA is equal to the
squared Frobenius norm of the dot products (similarity) between the feature maps X
and Y . It is equivalent to the normalized version of the dot product between reshaped
inter-example similarity matrices (also called Gram matrices) :

linear CKA(X, Y ) =

∥∥∥XTY
∥∥∥2

F
‖XTX‖F ‖Y TY ‖F

=

〈
vec

(
XXT

)
, vec

(
Y Y T

)〉
‖XXT‖F ‖Y Y T‖F

(2.6)

This similarity score is invariant to isotropic scaling and orthogonal transformation
but not to invertible linear transformation. Indeed, scale information of the feature
maps are meaningful as it has been illustrated by the texture synthesis with CNN
[Gatys et al. 2015b] based on the Gram Matrix of the feature maps.

The difference between the mean squared CCA correlation and the CKA index is
the dot products are weighted by the amount of variance explained by the principal
components. CKA is placing greater emphasis on similarities between theses compo-
nents that are responsible for more variance than in the original representation.

These similarity indexes can be used for determining the correspondence between
the hidden layers of CNN trained from different random initializations and different
architecture. In [Raghu et al. 2017; Morcos et al. 2018], the authors discover that lower
layers in neural networks converge first, before higher layers. Better, lager or wider
networks converge to more similar solutions in the feature space. Raghu et al. [2019] use
(SV)CCA to analyze the hidden representation of different models trained on medical
images. They show that larger models change less through training, especially at the
lowest layers, even if they are randomly initialized. Moreover, Kornblith et al. [2019]
show that models trained on CIFAR-10 and CIFAR-100 develop similar representations
in their early layers but not in the later ones. Neyshabur et al. [2020] use CKA to
compare hidden representations of the different models, fine-tuned or trained from
scratch on different image datasets (clipart, X-ray). They observe that the ImageNet
pretrained model and the fine-tuned one are highly similar across layers. This similarity
is even high between two instances of a fine-tuned model, as they learn to classify the
same dataset, from the same starting point. On the contrary, the similarity is very low
between a fine-tuned model and a model trained from scratch or between two instances
trained from scratch. Note that the feature similarity is stronger in the penultimate
layer than the other ones, for the previously mentioned cases. Thus, two fine-tuned
instances are similar, especially compared to the randomly-initialized case. The fine-
tuning does not change much the hidden representations of the model. The same kind
of conclusions can be drawn from the distance of the models in the parameters space,
the study of the loss landscape and the kind of mistakes made.
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Feature visualization techniques, metrics in both the feature and parameter spaces
will be used to provide quantitative analysis of the changes introduced by the learning
process on artistic dataset, in Section 4.4.

2.3 Deep Learning for Art Analysis
Applied mathematics and computer vision algorithms have been used for art analysis
applications long before the rise of modern deep learning. Although, art analysis also
benefits of visual recognition performances of CNNs , there is some continuity in the
research works. Nonetheless, artistic images are still a challenging subject due to the
high variability of artistic techniques, genre or level of abstraction. In this section, we
will present the deep learning methods applied to art analysis. First, in Section 2.3.1,
we will give a brief insight of algorithms for art analysis before deep learning methods.
Then, we will present different ways to use CNNs for art analysis, from supervised
to unsupervised setups, in Section 2.3.2. Section 2.3.3 will be devoted to the main
improvement directions. Section 2.3.4 will be about off-the-shelf applications of CNNs
to art analysis without any training. In the last Section 2.3.5 we will discuss about the
philosophy of using deep learning model for large scale art analysis.

2.3.1 Algorithms for Art Analysis Before Modern Deep
Learning

Image Processing has been applied to artistic images analysis in several ways. It has
been used for estimating information about the tangible material of the artworks,
for instance with crack network detection in the painting layer [Mueller et al. 1993]
or removal the texture artifacts of X-ray artwork acquisition [Heitz et al. 1987], but
also for more visual recognition tasks as authentication, date estimation or semantic
recognition. We will focus on this late category of works. In parallel to advances in
computer vision and image analysis, studies have shifted from local image features to
more global image features.

2.3.1.1 Statistical Image Properties

First, a number of statistical image properties have been studied in artworks as it has
been done for natural images. These properties have been investigated in images of
artworks that represented different artistic styles, techniques or cultural provenances.
For the local features, we can mention for instance the moments of the pixels [Graham
et al. 2007] or their intensity [Graham et al. 2008]. A number of global statistical image
properties have been studied in artworks, the fractal dimension [Taylor et al. 1999;
Braun et al. 2013], the slope of the log-log Fourier spectral plots [Graham et al. 2007;
Graham et al. 2008; Braun et al. 2013], self-similarity [Braun et al. 2013], entropy of
edge orientations [Redies et al. 2017b] or all at the same time [Redies et al. 2017a]. The
number of images used to compute these statistics also increase over time. These works
are numerous and conclusions diverse. For instance, [Taylor et al. 1999; Taylor 2002]
focused on the drip paintings of Jackson Pollock and found that he painted fractals
similar to those found in nature. Graham et al. [2007] and Graham et al. [2008] detect

42



2.3. Deep Learning for Art Analysis

approximately scale-invariant statistical properties of western and eastern paintings.
Graham et al. [2007] and Graham et al. [2010] show similarity between the statistical
properties of artistic and natural images. Redies et al. [2017b] exhibit that Western
artwork may be characterized by a lack of correlations between edge orientations. It is
still unclear how universal these properties are across artistic styles and times. Most
of the time, the works try to make a link between computer vision methods and their
neural underpinnings in the human visual system, as in [Graham et al. 2007; Redies
et al. 2017b].

2.3.1.2 Art Classification

A complete description of the features and classifiers used for style classification of
paintings before 2005 can be found in the Lombardi PhD manuscript [2005]. These
features are mainly related to pixels’ intensity and color histograms, gradients of the
image, responses to common filters as Sobel or Gabor, norms of wavelets coefficients
or Fourier transforms and marginal of color histograms. The classifiers come from
the whole spectrum of machine learning from MLP to naive Bayes classifier. Next,
researchers expanded the range of features, classifiers or tasks. Zujovic et al. [2009]
propose using wavelets decomposition and color information with SVM or MLP for
painting genre classification. Johnson et al. [2008] perform a detailed analysis of
brushstrokes in the work of Van Gogh using Gabor, Complex and D4 wavelets in
combination with SVM. They conclude that brushstroke analysis is helpful in artist
attribution but that it also depends on external factors like canvas degradation and
pigment loss. [Jafarpour et al. 2009] propose to use wavelets decomposition of patches
of Van Gogh’s paintings with random forest or SVM for date classification. In a re-
lated paper, Polatkan et al. [2009] use similar technique for authentication purposes
instead of stylistic analysis. These techniques based on wavelets decomposition are
characterizing the brushstrokes scale for precise classification task with a small num-
ber of high resolution artworks (hundreds at the maximum) for training. Several of the
previously mentioned features such as moments of the pixels intensity distributions or
color distributions, gray-level co-occurrence matrices, energy of discrete wavelet coef-
ficients and others have also been used for painters classification with lower-resolution
images [Cetinic et al. 2013]. Several works propose to use features from the computer
vision field. Bressan et al. [2008] use SIFT features and local color statistics for finding
similarity between paintings and infer connections between artists with graph analysis.
SIFT have also been used for artistic style classification [Saleh et al. 2014] but also
for artist, period, material or type classification [Mensink et al. 2014]. Crowley et al.
[2013] propose a weakly supervised pipeline to recognize images of gods and animals
in decorations on classical Greek vases. Their method first combines a text mining
method for finding visually consistent clusters among the noisy and image-level labels.
After a cleaning of the irrelevant regions of the images, they use a MIL formulation
to identify the regions of the images containing the gods or animals. Finally, a sliding
windows classifier based on Deformable Part Model (DPM) is fully supervised with
these pseudo-labels.
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2.3.1.3 Image Retrieval and Cross-depiction

Image retrieval Another classical computer vision task also relevant for art images
is content-based image retrieval. It consists in retrieving images based on similarities
in their contents (textures, colors, shapes, etc.) to a user-supplied query image. Hurtut
et al. [2008] propose to model the difference between the spatial organization of color of
two images as an optimal transportation problem between coarsely sampled thumbnail
of the images. They address the decision stage with an adaptive matching criterion
based on a statistical approach, itself founded on an a contrario approach. Sun et al.
[2009] propose a method to detect full or part of illegal copies of line-drawing images
with HOG features, stable extremal region detection and quantization by hash table
for speedup. A method for the extraction of stroke contours based on a selection of
the level lines of the topographic map is proposed in [Hurtut et al. 2011]. This method
can be used for image retrieval in line artworks datasets.

Cross-domain image retrieval Early works on cross-domain image comparisons
were mostly concerned with sketch retrieval, see e.g. [Del et al. 1997]. Given a user-
sketched template, the algorithm returns images which contain an object that matches
this template (with some elastic deformation). Based on HOG features pyramid for
image representation, Shrivastava et al. [2011] propose to use an exemplar-SVM [Mal-
isiewicz et al. 2011] with an iterative hard-negative mining procedure to cross-domain
image retrieval (finding the same building in different depictions). This exemplar-SVM
is trained with one unique positive example (the query) and a lot of negative ones. One
interesting application of this work is the estimation of the point of view used in a real
monument depiction. In contrast to [Shrivastava et al. 2011] who work on 2D images,
Aubry et al. [2014] propose to learn mid-level 3D scenes that are reliable for detecting
2D depictions of the scene despite changes in the domain. This approach allows to
recover the approximate camera viewpoint of the artwork. This representation of 3D
scenes for alignment to 2D depictions is based on densely sampled patches represented
by HOG at multiple scales. Then an exemplar-SVM is learned as previously. To make
the model more robust, the authors add an extra step to discard unstable patches
across changes in viewpoint

Cross-depiction Wu et al. [2014] propose a concept of cross-depiction going one
step further in the conceptualization: recognizing generic objects regardless of whether
they are from photographs, paintings or comics. The shift is that we go from the image
retrieval by content task (find images with the same shape or color composition) to a
semantic recognition one (recognize a horse in print or watercolor). They use HOG
features [Dalal et al. 2005] and model objects through graphs of labels in a similar way
to [Felzenszwalb et al. 2010]. It is advanced in [Hall et al. 2015] that structured model
(DPM or fully connected multi-labeled graph with HOG features) are more prone to
succeed in cross-domain recognition than appearance-based models (such as Fisher
vectors of SIFT or Bag-of-Words (BoW) of HOG or SIFT).
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2.3.2 Use Cases of Convolutional Neural Networks for Art
Analysis

Applications of computer vision tasks dealing with hand-drawn or computer gener-
ated non-photographic images benefited from the resurgence of CNNs. One point in
common between almost all works in the field is the reuse of architectures that were
originally designed for photographs tasks. Some works use the pre-final features of
a network as the only features retained to represent an image and do not fine-tune
the network for the task at hand. Other methods allow for a certain amount of fine-
tuning and add a specific network after the original architecture. In this paragraph,
we will mention various applications of CNN to art analysis from supervised to unsu-
pervised computer vision tasks with a focus on image classification, object detection
and instance recognition.

2.3.2.1 Art Classification

Several works have tried to transfer the tremendous classification capacity of CNNs
for photographic data to perform alternatives classification tasks, possibly on different
modality of images.

Off-the-shelf feature extraction In the seminal work of Crowley et al. [2014], it
is shown that recycling CNNs directly for the task of recognizing objects in paintings,
without fine-tuning, yields surprisingly good results compared to Fisher Vector Rep-
resentation. Moreover, the authors estimate that there is a drop between training the
final classifier on natural images instead of artistic images from the same domain. As
this drop is not too strong, they propose an on-the-fly system for arbitrary images
recognition. The user can ask for any query. The training images are crawled from
Google Images. They are used to learn a classifier on the CNN features of those pho-
tographs. Then, the classifier is applied on CNN features of the art images to output
images related to the user’s query. The same fall in performance in the training on
photo, testing on art images protocol have been exhibited for CNN and handcrafted
features based methods by Hall et al. [2015]. These two works assert that CNN fea-
tures are better than handcrafted ones. Similar conclusions were also made for artistic
style classification in [Karayev et al. 2014], for object recognition in artistic drawings
by Yin et al. [2016], in paintings by Lang et al. [2019], visual link retrieval by Seguin
et al. [2016] and for different art classifications tasks23 by Strezoski et al. [2017a]. On
the contrary, off-the-shelf features from AlexNet are often beaten by other images rep-
resentation for style, scene or genre classification [Saleh et al. 2016]. Regarding the
used features, their best result is achieved with the feature fusion method which also
included CNN-based features.

The on-the-fly recognition system mentioned before has been extended later with
the use of a detection model [Crowley et al. 2016]. They propose a relatively basic
methodology in which for each image the region with the highest (class agnostic) "ob-
jectness" score is used instead of the whole image. They illustrate once again that the

23They compare the use a CNN as an off-the-shelf feature extractor to a SIFT based method
[Mensink et al. 2014]. The CNN model leads to better performance when using with a multi-tasks
training setup.
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deep features from CNN trained on natural images are good enough for art images
classification but training the final classifier on art images provide better results than
using natural ones.

Fine-Tuning However, when the training set is big enough, fine-tuning the pre-
trained model in a supervised way may be the best solution. This methodology has been
applied in several setups such as artistic style classification [Hentschel et al. 2016; Tan
et al. 2016; Bianco et al. 2017; Huang et al. 2017a; Lecoutre et al. 2017; Mao et al. 2017;
Elgammal et al. 2018], object recognition in drawings [Yin et al. 2016], iconographic
characters recognition [Madhu et al. 2019], face classification [Tian et al. 2020], genre
classification [Florea et al. 2017; Cetinic et al. 2018], scene classification [Florea et al.
2017], author classification [Bianco et al. 2017; van Noord et al. 2017; Sabatelli et
al. 2018], material classification [Sabatelli et al. 2018], artist nationality classification
[Cetinic et al. 2018] or several of those tasks at the same time [Bianco et al. 2019;
Garcia et al. 2019].

Many works demonstrate that fine-tuning models pre-trained for object recognition
on ImageNet perform better than a model fully trained from scratch on art images
or a pretrained model used as an off-the-shelf feature extractor [Hentschel et al. 2016;
Seguin et al. 2016; Tan et al. 2016; Huang et al. 2017a; Lecoutre et al. 2017; Mao
et al. 2017; Elgammal et al. 2018; Garcia et al. 2019]. In [Cetinic et al. 2018], the
authors evaluate the impact of domain-specific weight initialization and the kind of
fine-tuning used (number of frozen layers for instance). They compare different pre-
training on different natural images datasets and they highlight that the bigger (in
terms of training images and number of labels), the better will be the results. They
show that fine-tuning networks pre-trained for scenes and objects recognition yields
better results than fine-tuning networks pre-trained for object recognition for artist,
genre, style and time period classification. Tian et al. [2020] also fine-tune ImageNet
pretrained CNN for gender or status classification. They reveal that newer and larger
architectures often achieve better performance. Other works fine-tune CNN pretrained
on specific dataset. For instance, Madhu et al. [2019] use a VGG model pretrained on
a face dataset for recognizing Mary or Gabriel characters. Using models pretrained on
artistic datasets may also help to get better results. Bianco et al. [2017] pretrain their
CNN on the Kaggle dataset Painterbynumbers. Sabatelli et al. [2018] demonstrate
that the same architecture fine-tuned on the Rijksmuseum dataset yields better results
compared to the sole ImageNet one, for an artistic task (both if used as off-the-shelf
feature extractors and if fine-tuned). Several works highlight that it exists an optimal
number of layers to freeze depending on the target dataset and the transferred model
as mentioned before, [Lecoutre et al. 2017; Cetinic et al. 2018]. Works using models
trained from scratch are rare [Florea et al. 2017; Badea et al. 2018] and the one using
an ad hoc CNN architecture even rarer [Strezoski et al. 2017b].

Art classification datasets On the one hand, some research teams created huge
training datasets, such as BAM!, OmniArt and Art500k. In [Wilber et al. 2017], an
annotated database named BAM! of 2.2M contemporary artworks from Behance (a
website of portfolios from professional artists) is introduced, on which it is shown that
fine-tuning improves recognition performances. The OmniArt dataset introduced in
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[Strezoski et al. 2018] contains 1M historical artworks of 4 different types (from craft
to paintings). They illustrate that according to the task (style and type classification
against school and genre classification), training from scratch on the OmniArt dataset
may lead to better performance than fine-tuning a model pretrained on ImageNet.
Moreover the kernels of the first layer are similar between the two schemes. Art500k
is a large scale visual arts dataset introduced by Mao et al. [2017] containing 500k
artworks annotated with artists, style, medium and genre labels. These three large
scale datasets are not openly accessible yet. There are no models pretrained on them
shared to the community by the research teams. These datasets are important for the
computer vision communities to reach comparable performance to the natural images
applications. Indeed several works state that the performance of the CNN is positively
correlated with the number of samples per class - more samples per class equals better
classification capabilities [van Noord et al. 2015; Strezoski et al. 2018].

Besides, most of the artworks datasets contain many different art forms (paintings,
prints, sculpture, crafts, etc.) [Mensink et al. 2014; Zhang et al. 2019a] and the ones
that contain mostly paintings are smaller [Crowley et al. 2014; Westlake et al. 2016].
Most of the time those datasets only contain style or author metadata [Khan et al.
2014; Tan et al. 2016; Lecoutre et al. 2017] instead of depicted objects or iconographic
elements description. Sometimes, some datasets are really specific to a given class of
objects such as the eye in paintings [Strezoski et al. 2020], face in pre-modern Japanese
Art [Tian et al. 2020], Mary and Gabriel characters [Madhu et al. 2019] or concepts
specific to art history [Cetinic et al. 2019b]. In Section 4.2.1, we will introduce a new
paintings dataset, on which we perform classification and weakly supervised detection
experiments on iconographic classes that could not be learned on photographs, such as
Jesus Child or Saint Sebastian.

2.3.2.2 Object Detection

The object detection problem (recognize and locate an object) in artworks has been
less studied. Ginosar et al. [2014] show that DPM outperforms other approaches,
including some CNNs, for the detection of people in cubist artworks maybe due to
the level of abstraction, the fact the model used is not up to date and the relatively
small size of the dataset. The YOLO network [Redmon et al. 2016] trained on natural
images can also be used for people detection in cubism artworks. [Westlake et al.
2016] propose to perform people detection in a wide variety of artworks (through a
newly introduced database) by fine-tuning a network in a supervised way. People
can be detected with high accuracy even though the database has very large stylistic
variations and includes paintings that strongly differ from photographs in the way
they represent people. Wilber et al. [2017] evaluate the performance of CNNs to detect
common objects in different types of artworks (such as bicycles, dog or car). They
show that fine-tuning a detector on training images from the same domain as the target
one leads to better performance than using images from another domain (artistic or
not). Strezoski et al. [2018] also propose to fine-tune a detection network trained in
a fully supervised manner on classical Pascal VOC classes. Gu et al. [2019] study the
performance of common objects detection (person, horse, etc.) in Chinese paintings.
They assert that adding a small object proposal network based on a low-level layer
improves detection performances. According to them, detecting objects in artworks is
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a more difficult task than in natural images because they obtain lower score on the
first task. Thus, there is still a performance gap to fill.

2.3.2.3 Visual Link and Instance Recognition

The instance recognition task (i.e. recognize the exact same object in different artworks
or modalities) also has benefited from the CNN powerful prediction performance. This
task is related to the image retrieval one mentioned before.

Seguin et al. [2016] propose to tackle the visual link retrieval by fine-tuning CNN
with triplets of images (two positives and one negative) and a triplet loss. One can
consider two images to share a visual link if the visual correlation between them is
considered too high to be solely due to randomness, if there is a visual similarity
between them. In fact, this depends on the kind of positive pairs provided for the
training process. Once the CNN is trained, it can be used to provide a similarity metric
between images. As it has been trained with artworks using different techniques, this
metric is able to deal with cross-modalities links. Next, it is even possible to provide
several images containing the positive pattern wanted by the user and negative images
to avoid some parasitic outputs of the model [di Lenardo et al. 2016].

Collomosse et al. [2017] propose a triplet loss based CNN for image retrieval with a
sketched shape, and a set of "style" images24. Their model learns a feature embedding
that be used for measuring style similarity independent of geometric structure.

Shen et al. [2019] propose an efficient but costly method to find near duplicate
patterns in different art techniques (oil, pastel, drawing, etc.). The training alternates
between two steps: a mining for hard-positive training samples thanks to CNN features
extraction and spatial consistency, and one step of CNN fine-tuning with a triplet
loss. Then a refinement step is needed to detect instances replica, based on geometric
correspondences (Hough voting plus RANdom SAmple Consensus (RANSAC)) and
deep features one.

Zero-shot learning for instance recognition using web supervision has also been
considered for artwork analysis [Del Chiaro et al. 2019b]. They use webly abundant
but noisy annotations to learn efficient alignment of semantic and visual information
based on CNN off-the-shelf feature extractor. Once again, more data (image and
metadata) provides better performance. Image retrieval from a textual description or
the opposite may also be solved by cross-modal CNN models. This approach has been
improved by using a context-aware embedding [Garcia et al. 2019].

2.3.2.4 Others Supervised Tasks

The same kinds of methodologies have been applied to other supervised tasks such
as visual question answering [Bongini et al. 2020; Garcia et al. 2020] or jigsaw puzzles
solving with cultural heritage images [Paumard et al. 2018]. Some works try to solve the
cross-depiction problem mentioned before with CNN, for instance in [Li et al. 2017a],
where a robust low rank parametrized CNN model is proposed to recognize common
categories in an unseen domain (photo, painting, cartoon or sketch) or [Thomas et al.
2018] with data augmentation and adversarial training.

24It can be just a set of visual reference images.
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2.3.2.5 Unsupervised Learning

Unsupervised learning aims to find the structure and the regularity of an unlabeled
dataset for the purpose of clustering or for extracting useful representations. This
paradigm has been broadly used with CNNs for visual tasks with natural images but
also with art ones. Some works propose to do clustering of art images thanks to deep
features. In a remarked work, Elgammal et al. [2018] perform a correlation analysis25
of learned features extracted from several different style-trained CNN models in order
to understand how learned representations are related to art history methodologies for
identifying styles.

Wynen et al. [2018] propose to learn without supervision a sparse dictionary on
top of means and variances of VGG features at different layers. This method enables
approximating any image with a convex combination of the dictionary atoms (named
archetypes). Each of these archetypes can be visualized by a synthesis texture to
understand its characteristic stroke, style or colors. This method can also be used for
style transfer. This method has been compared by Huckle et al. [2020] to the use of
raw VGG features or Gram matrices of the VGG features as an unsupervised style
representation for art images. Surprisingly, the raw features provide the best results
to capture style in their dataset of contemporary art.

Castellano et al. [2020a] propose to obtain visual similarity score by computing
the average over the nearest neighbor of the `2 distance between a reduced version
of the pretrained CNN features of the artworks. On the contrary to [Seguin et al.
2016], this approach is unsupervised. Moreover they use it to estimate a graph of the
"influence" between artists. Castellano et al. [2020b] propose to perform a clustering on
the embedded features of a fine-tuned convolutional autoencoder to cluster artworks.
This method provides better clustering than using a frozen pre-trained autoencoder.
Their method is able to recover the three main artistic periods of Pablo Picasso’s
production.

2.3.3 Improvement on Convolutional Neural Networks for
Art Analysis

The use of CNNs for art analysis by the computer vision community has yielded to
several improvements in diverse directions. We will briefly present some of them now.
First, we will mention multi-resolution strategies, then the use of neural style transfer
and next the adaptation of CNN architectures. The last section will be dedicated to
the understanding of CNN trained on artistic images.

2.3.3.1 Multi-resolution Strategies

As artworks are often composed of objects or characters at different scales, several works
proposed multi-resolution strategy to consider both fine details and coarse structures
within images. Bianco et al. [2017] propose to use a three branches model. Two of
them are fed with random crop of size 227×227 from the 512×512 image whereas the
last one is fed with a random crop from the down-sampled version of the training image

25With classical data analysis techniques such as Principal Component Analysis (PCA) or Inde-
pendent Component Analysis.
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(down to 256 × 256). This work is extended by Bianco et al. [2019]. They propose
to add a multi-tasks learning and a training on Region Of Interest (ROI) proposal to
replace a random crop selection. Only this last element improves the performance.
van Noord et al. [2017] propose to use a multi-resolution CNN method to deal with
variation in image resolutions and scales. They propose to train an ensemble of CNNs
working at four different scales26. This ensemble of CNNs outperforms any single scale
model because artist attribution may require very fine grain information. Nevertheless,
those methods are not specific to art analysis.

2.3.3.2 Neural Style Transfer for Art Analysis

To face the lack of data, several teams tried to propose effective data augmentation
scheme for art analysis.

Some teams [Florea et al. 2017; Badea et al. 2018; Madhu et al. 2019; Sarı et al.
2019] tried to use a sophisticated method for data augmentation or domain adaptation
of artistic datasets using the neural style transfer algorithm [Gatys et al. 2015a] pre-
sented later in Section 2.5.2.2, or its variants [Johnson et al. 2016; Huang et al. 2017b].
First, Florea et al. [2017] and Badea et al. [2018] show that a domain adaptation by
transferring style on natural images with the neural style transfer method from [Gatys
et al. 2015a] do not bring a big performance advantage comparing to using the raw
natural image and cause a huge overhead. Then, several works show that neural style
transfer may be an effective solution to the domain adaptation task. Datasets with
images that have been transformed by neural style transfer allow to have better per-
formance than using the raw natural image datasets. Smirnov et al. [2019] apply this
method for object recognition in paintings, Gupta et al. [2018] for identity recognition
in painted portraits and Sarı et al. [2019]27 for sex recognition with an off-the-shelf
CNN features extractor. Madhu et al. [2019] show that first fine-tuning the CNN on a
gender classification tasks with images that have been transformed by a style transfer
algorithm28 leads to a better character recognition at the end.

Thomas et al. [2018] train a model for cross-domain objects classification on both
natural and style transformed29 images with an additional style invariant loss. This
loss predicts the image modality / style. During backpropagation, the opposite of its
gradient is used to enforce the lower layers to learn style-invariant features. This use
of synthetic artistic images outperforms all other domain adaptation techniques on
average. In [Inoue et al. 2018], an efficient pipeline is proposed to train a detector on
new artistic modalities in a semi-supervised manner. This approach requires natural
images with bounding box annotation of those classes and involves a relatively costly
style transfer procedure27. In particular, this method only allows the detection of object
classes that are present and have been annotated in natural images. In contrast with
such methods from the domain adaptation fields, we will propose a weakly supervised
approach that allows the detection of new classes, in Chapter 5.

Using neural style transfer for data augmentation may even be beneficial for not
art related tasks [Perez et al. 2017; Geirhos et al. 2019; Jackson et al. 2019; Cicalese

26From 256 to 2048 pixels.
27They use the CycleGAN model [Zhu et al. 2017a].
28They use the Huang et al.’s method [2017b] .
29With [Johnson et al. 2016] or [Huang et al. 2017b] methods.
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et al. 2020; Karatzoglidi et al. 2020].
Simpler solutions than neural style transfer can be considered depending on the

target set. For instance, Yin et al. [2016] propose to use synthetic "drawing-like"
versions of natural images by taking the difference of the grayscale images and their
Gaussian blur, followed by a contrast normalization. This "drawing-like" training set is
used to train the CNN and leads to better performance than using raw natural images.

2.3.3.3 Architecture Adaptation

Some works tried to propose methods that are specific to art analysis to improve the
performance.

On the one hand, some works try to adapt the architecture of the CNN for artistic
style classification [Chu et al. 2016b; Mao et al. 2017; Chu et al. 2018b; Chen et al.
2019]. Huang et al. [2017a] improve the accuracy by adding a gray-level co-occurrence
matrices as input to the network in order to describe the brush stroke information.
Most works have been inspired by the use of Gram matrices for neural style transfer
[Gatys et al. 2015a] to represent the artistic style or at least the texture of images. Mao
et al. [2017] propose to add to their model a branch that considers the Gram matrices
of one of the network layers. Their two branches version of the VGG16 provides better
performance. Chu et al. [2016b] evaluate the efficiency of different correlations of
the off-the-shelf deep features for the style or artist classification tasks. They show
that Gram matrices of the features are better than the raw features and that the dot
product of the Gram matrices with the cosine similarity of the features is even better.
In addition, the correlations across multiple layers do not provide better performances.
Wei et al. [2017] made the same conclusion for Japanese Ukiyo-e instead of Western
paintings. In a following work, [Chu et al. 2018b] propose to learn the correlation
by replacing the SVM classifier with a CNN on top of the off-the-shelf deep features.
This solution leads to higher performances. Moreover, using the Gram matrices of the
features instead of the raw features provides a gain of performance. Chen et al. [2019]
go a step further by using Gram matrices of several layers and by fine-tuning the whole
network. They even improve the performance by learning an adaptive version of the
Gram matrices by learning how to weight the Gram matrices terms.

On the other hand, some works try to add external information for improving
the classification performances. Garcia et al. [2019] show that multi-tasks learning or
context-aware embedding may improve art classification. The last solution consists, in
addition to training the main CNN for the art task, to train a CNN encoder to output
an embedding vector containing information about non-visual artistic knowledge. This
knowledge is represented by a graph of information whereas the encoder input is the
deep features of the image.

2.3.3.4 Understanding CNNs Trained on Art Images

With the success of CNNs, there is a corresponding need to be able to explain their
decisions and understand their internal representations. Some studies looked at what
CNNs learned on artistic dataset or how they had been modified to be more adapted
to the new art domain.
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Yin et al. [2016] show that the low-level filters discard color information during fine-
tuning for adapting to an almost black and white drawings training dataset. Elgammal
et al. [2018] show that AlexNet fine-tuned on a style classification task will discard
oriented-edge-like filters except for a horizontal one. Usually, the first convolutional
layers are easy to interpret as they contain primitive features like edges, lines and color
transitions, but the higher-level filters are much harder to interpret. Two tools are
used to interpret these layers: feature visualization and attribution, as mentioned in
Section 2.2.

van Noord et al. [2015] use an attribution method based on occlusion [Zeiler et al.
2014] to determine artist-characteristic patches. Surprisingly, the texture of the ma-
terial on which an artwork is created is used to determine Rembrandt’s authorship
instead of the print lines. By looking at the channel responses, Tan et al. [2016] con-
clude that lower layers learn simple patterns and higher ones, complex objects parts
such as the circular shape for portrait class. Strezoski et al. [2017b] look at the feature
visualizations and attributions of a small CNN trained on artistic dataset. Some of the
characteristic patterns of the classes can be found in the visualizations (as a circle for
the portrait class too). The attributions show that high-level layers learn more seman-
tically relevant features than lower-level layers (e.g. facial features as mustache against
contour). In a similar way, Wilber et al. [2017] use a Generative Adversarial Network
(GAN) based visualization technique for synthesizing images maximizing a score for
emotion or media classification tasks. Once again parts of objects are recognizable and
can be associated with the emotion labels (for instance teeth for scary or landscape
for peaceful). Sabatelli et al. [2018] also observe the attributions for two models (one
pretrained on ImageNet and the other on the Rijkmuseum art dataset) to investigate
which pixels of each input image contribute the most to the final classification predic-
tions. The model fine-tuned on the Rijkmuseum dataset focuses more on small details
(with the lower layers of the network) to perform artist attribution compared to the
ImageNet dataset. Then, van Noord et al. [2017] observe in the attribution images
a shift to finer details when moving to higher resolutions in their ensemble of CNNs
fine-tuned at four scales for author classification. Finally, Offert [2018] look at the fea-
ture visualizations of the classes portrait and landscape from a fine-tuned InceptionV3.
Faces and drapery seem to be the defining features of a portrait according to this CNN.

2.3.4 Off-the-shelf Applications
Recently, CNN models became so efficient and easily usable that several research teams
used them off-the-shelf without any training for large scale data analysis. Brachmann
et al. [2017] use different type of variant of CNN features to understand the specific
visual properties of artworks in comparison to natural images, in the continuation of
the Graham et al.’s work [2007]. They conclude that on their given datasets, artworks
tend to be filled with structure over the entire image on the contrary to natural images.
Second, art images show more variability of the features across the image than the
natural patterns (plants or vegetation) but less than human-made scene (objects or
urban scene). Moreover the statistics of art images seem different from the ImageNet
ones. [Cetinic et al. 2019a] use CNN models trained on natural images for predicting
subjective assessments of fine art images as aesthetics, memorability and sentiment
scores. They also try to study how these scores are correlated to different artistic
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styles and genres, as well as how they correlate with high-level visuals attributed from
other CNN models. The study suggests some conclusions such as the fact that abstract
styles tend to be more memorable, but have a lower aesthetic and positive sentiment
score. Paintings that include motifs related to nature (landscape, sea, animals) tend to
have a higher aesthetic score, etc. Jenicek et al. [2019] show that an off-the-shelf pose
estimation network with a robust spatial verification30 outperforms methods based
on VGG features for content-based image retrieval for figurative western artworks.
Madhu et al. [2020] use a pretrained pose estimation network with image processing
techniques without any training to estimate characters poses and gazes, foreground and
background separation. This allows to have a simple representation of the underlying
structure and composition within an image.

2.3.5 Discussion about Deep Learning for Art Analysis
As mentioned before these CNN models have been used for analysis artworks images
in relation to art history.

Now, we mention some of the attempts about art history (and more precisely paint-
ings history) discoveries thanks to these modern data science methods. Elgammal et al.
[2018] try to find the main components in the deep features of painting images. They
also try to correlate these dimensions with time or with Wölfflin’s visual principles
[1915]. These principles are old and basic descriptions of paintings. For instance, two
of these principles are "linear vs painterly" and "multiplicity vs unity". The results
may indicate that the CNN learn a smooth transition between styles without explicit
time information during training. By looking at the activation manifold with diverse
data analysis tools, the authors claim to have discovered quantitative connections in
art history, such as the Cézanne role as a bridge between Impressionism and Cubism-
Abstract art, but these are relatively coarse observations. Next, Cetinic et al. [2019b]
train a CNN to rate artworks according to the previously mentioned five Wölfflin’s
principles. Sarı et al.’ pipeline [2019] recognizes the color of the clothing depending
on the sex of the characters but it does not enable testing hypotheses such as the
Laqueur’s transition from one to two sex model. Castellano et al. [2020a] only recover
the main temporal periods from art history, using an unsupervised clustering model.
Huckle et al. [2020] use unsupervised style embedding to study a set of contemporary
young artists. They find no connections between visual styles and the artists social
proximity, gender or nationality. Other works have unclear purposes. For instance,
prediction of aesthetic, sentiment and memorability scores by Cetinic et al. [2019a] is
particularly questionable due to subjectivity but also to the biases of the pretrained
model and the art dataset used.

For the moment, CNN applications to art analysis mainly manipulate color, shape,
texture, or patterns to analysis influences or uniqueness of an artwork. This is somehow
an old fashion way to make art history, a "connoisseurial art history"31, from 19th-
century art historians. The elements described within the images or the labels used such
as a coarse grain artistic style [Tan et al. 2016; Lecoutre et al. 2017] or the Wölfflin’s
principles [Cetinic et al. 2019b] are limited. As mentioned by [Spratt 2017], even the

30Based on RANSAC.
31As mentioned by Pollock [2014] about computer vision models applied to art analysis by Saleh

et al. [2014].
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most advanced computer vision model is mostly operating on what Panofsky termed
the "pre-iconographical" level: a factual description of the objects or scene within the
image [1939]. The second step of Panofsky is "iconographical" or conventional level, i.e.
an understanding of the actions or facts presented. For instance, understanding the
religious scene or characters. This is why it is necessary not to learn visual categories
that can not be found in photography. In this regard, we propose a weakly supervised
approach to learn new categories in various domain in Chapter 5. The last level of
Panofsky’s system is the "iconology" or intrinsic one, which consists in explaining the
historical, religious or philosophical influences that the artists condensed into his work.
The difficulty of such level of interpretation for a machine is pointed out by Lang et al.
[2018].

The current models are purely visually based and neglect artwork position in a
broader historical and social context. Indeed, they are connecting traditional formal
analysis of art with computer vision and machine learning methods, more than claiming
new art history conclusions. Nevertheless, these models allow to only focus on the visual
content and thus helps to build a decontextualization of images. Thus, the visual link
retrieval models [di Lenardo et al. 2016; Seguin et al. 2016] are an excellent illustration
of the possibility of only using images in the same spirit as the concept of pattern
migration, developed by Warburg, back to the 1920s, in his Mnemosyne Atlas project
[2012].

Moreover, they are the first and needed step to more complex models that could
be able to take into account social and historical context [Garcia et al. 2019]. At the
same time, criticism of the manipulated concepts, used corpora or research hypothesis
is critical for art history [Bishop 2018]. It starts to be addressed by digital art his-
torians and computer vision researchers. Finally, several of the previously mentioned
research teams developed online search engines [Artrendex 2018; Crowley et al. 2018;
Seguin 2018] dedicated to fine arts for different visual recognition tasks for helping art
historians to browse online art databases or realizing large scale analysis, such as the
distance viewing methodology [Bender 2015]. The reader may also refer to the recent
survey about machine learning for cultural heritage by Fiorucci et al. [2020].

2.4 Multiple Instance Learning and Weakly
Supervised Object Detection

Machine learning has achieved great success in various tasks, particularly in supervised
learning tasks such as classification and regression. Most successful techniques require
ground-truth labels (for instance the class to which the training example belongs) to
be given for a big training dataset. However in many tasks, it can be impossible or
difficult to obtain strong supervision information due to the high cost of the data-
labeling process. For instance, it requires around one minute to draw a bounding box
around a common object [Su et al. 2016] or 1 hour and half to segment an urban scene
image [Cordts et al. 2016]. Moreover the micro-task platforms as Amazon Mechanical
Turk create social exploitation and excessive precariousness [Tubaro et al. 2019]. Thus,
it is desirable for machine-learning techniques to be able to work with weak supervision
that meaning to be able to extract information that are not explicitly provided in the
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training set. Weakly supervised learning is a generic term that refers a variety of
studies that attempt to construct predictive models based on weak supervision. We
define weakly supervision as the setup where only coarse-grained labels are provided
to the algorithm or when a label is provided to a group of elements/instances. For
instance, only image-level labels are provided whereas the task consists in producing
object-level labels or pixel segmentation of the image. In Figure 2.6, one can see some
different examples of weakly supervised tasks from computer vision field.
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Figure 2.6: Boundaries between strong and weak supervision for some tasks in com-
puter vision. Inspired by Bilen [2018].

We will not take into account the semi-supervision (or incomplete supervision) de-
fined as the setup in which only a subset of training data is labeled while the rest
remains unlabeled, as in [Zhu 2005]. Neither will we consider the inaccurate or noisy
supervision, i.e. the given labels are not always exact. This last paradigm mainly used
in the webly supervised setup [Chen et al. 2015; Del Chiaro et al. 2019a]. The weakly
supervised task we want to solve is the Weakly Supervised Object Detection (WSOD)
task. It refers to the task of learning an object detector using limited annotations,
usually image-level ones. Often, a set of detection (e.g. bounding boxes) is considered
at image level, of which we only know if it contains the category of interest. The
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most popular statistical paradigm corresponding to this problem is referred to as Mul-
tiple Instance Learning (MIL) [Dietterich et al. 1997] that is why we will first develop
this framework in Section 2.4.1 before describing state-of-the-art WSOD methods in
Section 2.4.2.

2.4.1 Multiple Instance Learning Paradigm
We first give some basic notations related to MIL. Let B = {B1, B2, . . . BN} a set
composed of N bags. Each bag Bi corresponds to a positive or negative label Yi =
{−1, 1} and contains Ki feature vectors: {Xi,1, Xi,2, . . . Xi,Ki

} where Xi,k ∈ Rd. A set
of elements is usually called a bag of instances. On the contrary to the supervised
setup, we only have a label at the bag level as in Figure 2.7. Each of these feature

Supervised Learning

Positive Example
Negative Example

Multiple Instance Learning

Positive Bag
Negative Bag

Instance

Figure 2.7: Supervised learning vs MIL : in supervised learning all the examples are
labeled whereas in MIL only the bags are labeled, i.e. the instance labels are unknown.
The blue dotted line shows the separator learned by the classifier.

vectors (instances) corresponds to a positive or negative label. Instance labels are
unknown in positive bags, but are assumed all negative in negative bags. Indeed, a
common hypothesis (called the MIL assumption) is that a bag is labeled positive if at
least one instance contained in the bag is labeled positive:

Yi =
{

+1 if ∃ k ∈ {1, . . . , Ki} : yi,k = +1
−1 if ∀k ∈ {1, . . . , Ki} : yi,k = −1 , (2.7)

where yi,k denotes the instance label. Thus the problem is asymmetric between the
two classes. One important information about the bags composition is the proportion
of positive instances in positive bags called Witness Rate (WR). When the WR is very
high, positive bags contain only a few negative instances.
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As mentioned before in Section 2.1.1.1, in a typical supervised problem, the goal is to
learn the best prediction function fω minimizing the empirical risk over the training set
(equation (2.2)). However, in the MIL setup, we only have bag-level information during
training, whereas we are looking for an efficient instance-level prediction. Observe
that, in the case of WSOD, we are interested in the instance-level classification task
(in order to be able to classify each vector and hence each region of the image) and not
in the bag-level one, which is also classical in MIL applications (for drug detection for
instance). As noted in [Vanwinckelen et al. 2016], the accuracy of algorithms can be
very different between these two different tasks. There are two main ways to tackle the
fact that we only have bag level ground truth information. First, one can aggregate all
the predictions of one bag to a single prediction (at bag level) during training. Hence,
we can write:

ŷi = g
(
{ŷi,k}k∈{1...Ki}

)
, (2.8)

with g an aggregation function over the elements of a bag i. Then, the bag level loss
function can be written as:

L(Yi, ŷi) = l
(
Yi, g

(
{ŷi,k}k∈{1...Ki}

))
, (2.9)

with l a classical binary loss function.
The best way to aggregate instance-level predictions in order to find a classifier

separating each of the individual vectors Xi,k of each bag at test time is still an open
problem. Some research works use for g the max operator [Zhou et al. 2002], the average
or the Log-Sum-Exponential (LSE) [Ramon et al. 2000]. Indeed, since the training is
done with only bag-level information, at test time the learned classifier must be able
to handle each instance almost independently from the others.

Second, one can consider each instance of a bag individually (as in the mi-SVM
case, see Figure 2.8) and the loss function can be written as

L(Yi, {ŷi,k}k∈{1...Ki}) = g
(
l
(
hi,k(yi), {ŷi,k}k∈{1...Ki}

))
, (2.10)

where g is an aggregation function (usually an average), l a loss function and hi,k an
assignation function of the label associated to the instance (i, k). hi,k is usually named
a latent label [Felzenszwalb et al. 2010] or pseudo-label. Indeed, the true label of the
instance (i, k) is unknown in positive bags. If we consider that the label of a bag is
equal to the label of its instances hi,k is the identity, otherwise it is a function from
{−1, 1} to {−1, 1} depending on the bag and the instance.

We will now present some methods proposed to deal with this generic MIL problem.

2.4.1.1 SVM based Solution

A well-known solution to this problem through a generalization of SVM [Cortes et
al. 1995] has been proposed in [Andrews et al. 2003]. The idea behind the SVM-
based approach is to learn a hyperplan to separate positive and negative instances and
perform bag label prediction through an aggregation function.

Actually, two flavors are considered in [Andrews et al. 2003]: the Maximum Pattern
Margin SVM (mi-SVM) and the Maximum Bag Margin SVM (MI-SVM). In the case
of mi-SVM, each element of positive bags is assigned a label and the SVM margin is
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Figure 2.8: Comparison of standard SVM based MIL models. The blue dotted lines
show hypothetical hyperplanes learned by the models, and the green circles show the
instances used during the SVM training.

imposed at the instance level. In the case of MI-SVM, the SVM margin is imposed the
most positive element of each positive bag and to the least negative element of each
negative bag.

Several heuristics to solve the non-convex problem posed by the MIL have been
proposed. For example, Gehler et al. [2007] introduce a new objective function that
tries to estimate the quantity of positive examples in a positive bag, before using deter-
ministic annealing to optimize it. In contrast to the MI-SVM method, the algorithm
can consider several elements as positive in the positive bag. In [Joulin et al. 2012],
the authors propose a convex relaxation of the softmax loss. A comprehensive review
of SVM based MIL methods can be found in [Doran et al. 2014]. From this review it
appears that mi-SVM and MI-SVM are still competitive on the tasks studied there.
The mi-SVM algorithm is not vulnerable to multimodal distributions thanks to the use
of a kernel. It also seems to be robust to low WR, thanks to of the individual instances
labels, according to [Carbonneau et al. 2016b].

In [Felzenszwalb et al. 2008] a reformulation of MI-SVM is presented and called
Latent SVM (LSVM). The LSVM model is defined in [Felzenszwalb et al. 2008] be-
fore realizing the relationship to MI-SVM in [Felzenszwalb et al. 2010]. In the LSVM
only the instance with the maximum output latent variable is used to represent its
bag, whereas all negative instances are used for MI-SVM. Figure 2.8 summarizes the
instances on which the SVM margins are imposed in the most popular SVM based
MIL methods. It should be noted that in these works [Felzenszwalb et al. 2008; Felzen-
szwalb et al. 2010], a bag of instances represents the set of parts of an object and the
MIL formulation is used to train an object detector with a fully supervised training.
The aggregation is made over the part of an object and can be directly compared
to the ground truth label on the contrary to the WSOD method we develop later
(Section 2.4.2). The LSVM method has been the subject of much improvements, for
instance by tracking negative evidence [Durand et al. 2019], adding a symmetric prior
to the problem [Durand et al. 2018] or adaptation for particular cases, for example for
structured output [Yu et al. 2009].

2.4.1.2 Other Ways to Tackle the MIL Problem

Neural Network based Methods Another approach to the MIL problem is to
use neural networks whose architecture treats each instance symmetrically, before an
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explicit aggregation (max, average) is performed. From this point a classical neural
network performs a classification task [Ramon et al. 2000; Zhou et al. 2002].

In [Wang et al. 2018b], a new multiple instance neural network to learn bag repre-
sentations is presented. They incorporate recent improvements in deep learning (such
as DropOut, ReLU, deep supervision and residual connections) to get better results.
These works focus on the bag classification task but they all, by design, provide an
instance classification network: it is sufficient to feed the network with a bag consisting
of one item.

Work on the features space Some of the methods consist in focusing on select-
ing the most pertinent features rather on the optimization problem. The MIL-Boost
algorithm by Viola et al. [2005] is the same as gradient boosting except the loss func-
tion is based on bag classification error. They adapt the feature selection criterion to
optimize the performance of the model. This method is applied to object detection in
images. Zhang et al. [2002] use the Expectation Maximization algorithm to search for
the maximum of the Diverse Density (DD) measure. The DD measure is high in neigh-
borhoods containing many instances of different positive bags and few from negative
ones. The DD-based methods work under the assumption that the positive data form
compact clusters in the features space. From a recent survey on MIL by Carbonneau
et al. [2016a], it appears that the most efficient algorithm for an instance-level classi-
fication seems to be a clever variation of bagging and multiple classifiers to deal with
multimodal distributions. This method named RSIS [Carbonneau et al. 2016b], prob-
abilistically identifies the positive instance in positive bags using a procedure based on
random subspacing (random selection of the dimension of the features and the training
samples) and clustering (k-means). This score indicates the likelihood that an instance
is positive. The score is high if there is a majority of instances from positive bags in
the cluster and few negative instances. This score is computed over all the different
random subspaces. Given those scores an instance selection probability distribution is
obtained for each bag. This leads to get different training subsets and a classifier (an
SVM) is trained on each of the subsets. MI-SVM and RSIS are similar in the sense
they rely on the identification of the most positive instances in each bag. This strategy
seems successful to some degree, but is prone to ignore more ambiguous positive in-
stances that are dominated by others in the same bag, according to the instance-level
classification benchmarks from [Carbonneau et al. 2016a].

2.4.2 Weakly Supervised Object Detection
The goal of this section is to provide a literature review of the Weakly Supervised
Object Detection (WSOD) task. WSOD consists in training object detectors with only
image-level label supervision [Nguyen et al. 2009]. We first present the characteristics
of the WSOD problem defined as a MIL one (Section 2.4.2.1). We then introduce the
main directions for improving WSOD models (Section 2.4.2.2). Next, we present two
main families of approaches based on CNN for tackling this problem. The first one
is based on extracting localization information directly from the deep feature maps
(Section 2.4.2.3) whereas the other one is based on region proposals (Section 2.4.2.4).
In Section 2.4.2.5, we give an overview of the solution of the WSOD based on transfer
learning WSOD before concluding in Section 2.4.2.6.
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The standard MIL pipeline for WSOD is the following one:
1 Determine a windows space: extract a certain number of regions of interest from
the image

2 Feature extraction: compute a feature vector per region (handcrafted or CNN
based)

3 Classification: classify each feature vector of each region with a MIL formulation
of the problem
3.1 Re-localization: updating the labels of the instances/regions in the bags
3.2 Re-training: training the model with the updated labels

Most of the time, once the windows space is determined, the methods focus on the
classification step by alternating between re-localization and re-training of the model.
The recent methods tend to do these three main steps at the same time, in an end-
to-end manner. For instance, some CNN-based methods regroup feature extraction
and classification [Bilen et al. 2016; Kantorov et al. 2016; Diba et al. 2017; Tang et al.
2017a] whereas others regroup the three [Zhu et al. 2017b]. A lot of work has been
done to propose efficient models learned with weak supervision on a task of detection
but this is still an open problem. We will do a brief summary of the research in this
field in the following.

2.4.2.1 Characteristics of WSOD seen as a MIL Problem

First, we note specific characteristics of the object localization or detection tasks in
computer vision seen as a MIL problem. These characteristics have been defined by
Carbonneau et al. [2016a] in the previously mentioned survey. One of the parameters
that can most influence the performance of the MIL algorithms is the bag composition.
In the WSOD problem the Witness Rate is usually low because, it is standard to extract
an important number of box candidates from a given image (between 1k and 100k).

Relations between Instances Most MIL methods assume that positive and nega-
tive instances are sampled independently from a positive and a negative distribution.
However, in the WSOD case, the independent and identically distributed assumption
is violated because structure and correlation exist between the instances and bags.
According to Carbonneau et al. [2016a], there are three types of relations: intra-bag
similarities, instance co-occurrences and structure.

Intra-bag similarities The instances belonging to the same bag may share sim-
ilarities that instances from other bags do not share. For example, some methods use
densely extracted patches which overlap (Figure 2.9) since they share a certain number
of pixels, they are likely to be correlated. Also, the background of a picture could be
split in different segments which can be very similar (blue patches in Figure 2.10). To
face this difficulty, Kantorov et al. proposed to take into account some context around
the ROI [Kantorov et al. 2016].

Instance Co-occurrence Instances co-occur in bags when they share a semantic
relation. This type of correlation happens when the subject of a picture is more likely
to be seen in some environment than in another, or when some objects are often found
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Bag of patches
Face concept

Figure 2.9: Illustration of intra-bag similarity between instances: The patches are
overlapping, and thus, share similarities with each other. Figure based on Carbonneau
et al. [2016a].

Figure 2.10: Example of co-occurrence and similarity between instances: three patches
contain sea and sky and are therefore very similar. Moreover, since this is an image of
boats, the background is more likely to be the ocean than a crop field. Figure based
on Carbonneau et al. [2016a].

together. For example, the boats of Figure 2.10 are more likely to be found on the sea
than in crop filed. Thus, the observation of water patches might help to decide if the
image contains rather a boat than a farm tractor. This kind of negative evidence has
been exploited by Durand et al. [2016] in their WELDON model and variants. The
co-occurrence of instances can be useful for instance classification problems but they
may confuse MIL models. If a given positive instance often co-occurs with a given
negative instance, the algorithm may consider the negative instance as positive, which
in this context would lead to a higher false positive rate.

They may also explain why sometimes, the model detects bigger objects than ex-
pected (or a part of the background as belonging to the object). This phenomenon
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have been mentioned before, in Section 2.2.1.1.

Instance and Bag Structure In the case of extracted regions from an image,
there is a spatial relationship between the region. For instance, the sky is always above
the characters within the image. Graph models were proposed to better capture the
relations between the different instances of an image [Zhu et al. 2017b].

Data Distributions Many methods make implicit assumptions on the shape of the
distributions, or on how well the negative distribution is represented by the training
set.

Multimodal Distributions of Positive Instances Some MIL algorithms work
under the assumption that the positive instances are located in a single cluster or region
of the feature space. In object detection, the target concept may correspond to many
clusters. Their appearance also changes depending on the point of view for example. It
is unlikely that a compact location in feature space encompasses all of these variations.
Instance-level SVM-based methods like mi-SVM [Andrews et al. 2003] can deal with
disjoint regions of positive instances using a kernel. In [Carbonneau et al. 2016b]
instances are grouped in clusters and the composition of the clusters are analyzed to
compute the probability that instances are positive. The multimodal distributions can
also be dealt with the use of the k nearest neighbors for ranking instances [Siva et al.
2011], the multimaps learning [Durand et al. 2017] or the multiple clusters learning
(from Proposal Cluster Learning (PCL) [Tang et al. 2018a]).

Non-Representative Negative Distribution In some applications as person
detection, the training data cannot entirely represent the negative instance distribu-
tion. For instance, provided sufficient training data, it is reasonable to expect that
an algorithm learns a meaningful representation that captures the visual concept of a
human person. However, it is almost impossible to entirely model the negative class
distribution (all that’s not a human). In contrast, in some applications like cancer
detection in histology, the negative (healthy) cells compose the negative class may be
modeled using a finite number of samples as those tissues possess a limited appearance.
Most of the methods are based on one-class SVM whereas some methods model only
the positive class as in [Dietterich et al. 1997].

Label Ambiguity Label ambiguity is inherent to weak supervision. One the one
hand, an object can be composed of really discriminating parts (for instance the face
for a person) and this part of object can be sufficient to classify this instance as a
positive one. On the other hand, instance labels might not have clear semantic. Which
part of an image depicting an abandoned place is ruins? This may lead to noisy or not
well-defined labels.

2.4.2.2 Main Research Directions to Improve WSOD Methods

There are several ways to improve a WSOD model by working on the different parts
of the decomposition of the problem mentioned at the beginning of Section 2.4.2.
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Windows space The box proposals can be naively produced by sliding windows
which provide dense and numerous proposals (> 100k per image), based on different
translations, scale and aspect ratio. This leads to a very low WR which leads to a
higher false negative rate and limits the algorithm performance. That is why most
works try to limit the number of region proposals or even select the most pertinent
ones as soon as possible in the whole pipeline. The possible size of the windows can
be constrained thanks to some apriori on the object size [Nguyen et al. 2009].

The regions can be proposed by an unsupervised object proposal algorithm as Se-
lective Search [Uijlings et al. 2013] or EdgeBoxes [Zitnick et al. 2014] mainly used in
WSOD. These methods provide typically 2k box proposals per image, selecting regions
with strong textures or containing most of the energy of the gradient of the image.
A supervised classification network can also be used as a proxy to determine which
regions of the images are the most pertinent. In [Li et al. 2016], regions are collected
by a mask-out classification strategy to select the best positive regions in each image
with a classification proxy score and then fine-tune a detector with those propositions
as "ground truth" bounding boxes.

The bounding boxes can also be extracted a posteriori after the full training of
the model. They are obtained with a thresholding of the internal activation (feature
maps) of the fine-tuned network in the Soft Proposal Network (SPN) model [Zhu et al.
2017b].

Finally, in our case (see Section 5.3.2.1), we use the boxes generated by the Region
Proposal Network (RPN) from a pretrained Faster R-CNN [Ren et al. 2015], it is a
sparse space of around 300 regions per image.

Initialization of the classification step Some works focus on the initialization of
the classification phase (step 3 in the standard pipeline defined at the beginning of
Section 2.4.2). This initialization is crucial due to the non-convexity of the problem.
This concerns the labels associated to the instances from positive bags. The boxes
labeled as positives, at the initialization, can be the whole image or the whole image
minus a margin [Bilen et al. 2014] or a selection of "good" regions as in [Song et al.
2014]. In this latter work, the author construct a graph of initial positive boxes built
on three criteria. The positive boxes must be relevant (occur in many positive images),
discriminative (dissimilar to boxes from negative images) and complementary (captures
multiple mode). Then they proposed to learn a smooth version of an SVM [Joulin et al.
2012] on the features from R-CNN [Girshick et al. 2014].

Re-localisation and Re-training Most of the time, the WSOD models use a max
margin formulation (as in MI-SVM mentioned before) for the Re-localisation thus the
model only keep one positive instance per positive image.

We can highlight two main differences with the supervised learning of an object
detector. First, we consider only one positive instance in each positive image whereas
in the supervised case we can consider several instances. Indeed, several instances of the
same visual category may be present in the image. Second, the true negative instances
from the positive images are completely ignored in the weakly supervised setup. In
most works about fully supervised object detectors [Girshick 2015; Ren et al. 2015], a
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mining of hard negative examples is used to train the detector on tricky regions of the
positive images (for instance the part of the objects).

In the seminal work [Nguyen et al. 2009], they propose to alternate between opti-
mizing the SVM objective and finding the instances within the images that maximize
the SVM scores. This second step is done with a non exhaustive search thanks to a
branch-and-bound algorithm to handle the very large number of regions. Other works
try to prevent the model drift with the iterative re-localisation step by stopping the
learning when the detector starts to drift away from the initial localization of the
objects of interest [Siva et al. 2011].

Furthermore, some works propose more robust optimization by using a different
aggregation function g, for instance by relaxing the max operator by a softmax [Bilen
et al. 2014]. In [Jie et al. 2017] it is proposed to replace the max with a more sophis-
ticated technique that considers spatial neighbors with a dense sub-graph discovery:
the regions of the graph are considered as connected if they have an Intersection over
Union (IoU) > 0.5. In [Ilse et al. 2018], they propose a two-layers neural network (or
MLP) to learn the MIL pooling operator. It includes a gated attention mechanism (i.e.
an element-wise multiplication) between two branches of the neural network. Yan et
al. [2018] propose a dynamic pooling scheme to learn the instance-to-bag relationship
based on the routing model from Capsule Network [Sabour et al. 2017]. The idea is to
iteratively update the instance contributions to its bag embedding during each feed-
forward step. More variants of the max operator are also mentioned in Section 2.4.2.3.
On the other hand, some works try to incorporate the fact that an image can contain
multiple instances of the same class as in [Ren et al. 2020].

Adding priors yields a better proposal selection Another direction is to add
prior to the model in order to get better proposals selection or refinements. Simple
priors can be added as a mutual exclusion between classes in the case of multiple class
detection but it is usually not possible because WSOD is often a multiple labels setting
(some regions may belong to several labels). Some papers are interested in quantifying
how likely a window contains an object of any class by defining an objectness score for
each window. It can be defined with edge straddling for instance [Zitnick et al. 2014].
In [Bilen et al. 2016], a feature map extracted from the spatial pyramid pooling is
multiplied to its objectness score via a scaling layer as in equation 2.11. This objectness
score can also be used in an additive way as in equation 2.12 as it is done in [Siva et al.
2011; Tang et al. 2017c]. These methods tend to push towards the whole object instead
of small regions.

argmax
k

fw(Xk) ∗Obj(k), (2.11)

argmax
k

λfw(Xk) + (1− λ)Obj(k), (2.12)

with λ ∈ [0, 1].

Change the way the optimization/learning process is done In [Cinbis et al.
2014], it is proposed to train on all folds but k for the positive examples and all the
negative examples to reduce the overfitting. The relocalisation are done on the left
apart positive images. Some papers are inspired from curriculum learning [Bengio et
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al. 2009]. In [Kumar et al. 2010], they select positive samples via an inter category
competition and reduction of the size of the windows over time.

Improve the feature representation The most effective improvement in WSOD
has been made by using better feature representation of the images. We can see 3
different kinds of feature representations:

1 Classical feature representation as BoW obtained by SIFT descriptors [Nguyen
et al. 2009] or Fisher vectors [Cinbis et al. 2014].

2 Off-the-shelf features from pretrained CNN [Bilen et al. 2014; Song et al. 2014;
Teh et al. 2016]32.

1-2 Both classical representations and CNN extracted ones [Wang et al. 2014; Cinbis
et al. 2016]

3 End-to-end CNN trained [Bilen et al. 2016]
As mentioned before, fine-tuned CNNs provide state-of-the-art results in object detec-
tion [Girshick 2015] and CNNs are able to learn objects or object parts localization
during a classification training [Oquab et al. 2015]. That is why, CNNs become the
best solution for feature learning for WSOD.

We will now detail the CNN-based methods for WSOD in the two following Sec-
tions 2.4.2.3 and 2.4.2.4. These methods can be split into two groups: the ones using
the feature maps for inferring object localization and the other ones using region pro-
posal algorithms. The first set of methods provides good pointwise localization whereas,
the second set provides the best performances for the WSOD. The superiority of the
second set of methods can be due to the relatively small size of feature maps inside the
CNN compared to the size of the input image.

2.4.2.3 Methods based on Deep Feature Maps

First, Simonyan et al. [2014] show that is possible to extract relatively good bounding
boxes from the class Saliency maps of CNN trained on ImageNet classification task.
As mentioned before in Section 2.2.1, a saliency map is obtained by computing the
derivative of the class output with respect to the input image.

The seminal work of Oquab et al. [2015] pointed out that a CNN trained on a
classification task is able to predict approximate localization of the object, directly from
the features maps of the CNN, without explicit saliency map computing. CNNs seem
to automatically focus on the most discriminative part of objects. To deal with this
problem, two main research directions have been studied: improving the aggregation of
instances used in the bag-level classification loss with more complex pooling function
and improving the re-localization and re-training steps with cascade models.

Spatial Pooling One of the key issues is to find how to pool the spatial dimension of
a deep feature map (or the regions) to obtain a score per class. This is the aggregation
function mentioned before in Section 2.4.1. The most popular approach is the max

32In the first case, a regularize version [Joulin et al. 2012] of LSVM [Felzenszwalb et al. 2010] is
used on R-CNN features whereas in the second case, it is a Structural LSVM [Yu et al. 2009] trained
on DeCAF features [Donahue et al. 2014].
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pooling [Oquab et al. 2015], which selects the best region to perform prediction. In the
case of binary classification, this pooling is an instantiation of the MIL paradigm. A
limitation of the max pooling is related to its sensitivity to noise in the region scores,
because it only uses the most discriminative region. To increase robustness, a possible
approach is to use several regions.

Zhou et al. [2016] use a Global Average Pooling (GAP) to pool the feature maps
to a vector prediction. They map back the predicted class score to the previous con-
volutional layer to obtain a Class Activation Mapping (CAM) capable of highlighting
the disciminative regions of a category. The models trained with max pooling tend
to underestimate object sizes, while those trained with GAP overestimate them. In
[Sun et al. 2016c], a LSE pooling is proposed as a trade-off between max and average
pooling. In [Teh et al. 2016], an attention net is trained to compute an attention score
from deep features33 for each pre-computed box proposal.

Durand et al. propose in a string of three papers a new pooling (the models are
called MANTRA, WELDON and WILDCAT [2015; 2016; 2017]). The main idea is
to take into account positive and negative regions to "not focus only on discriminative
part". The score is equal to the mean of the k+ top scoring instances plus α times the
mean of the k− instances with the lowest score. This formula generalizes the different
poolings mentioned previously. The next step is to generalize pooling function by
replacing the max and min operators by their LSE approximation [Durand et al. 2019].

The WILDCAT model has the particularity to learn a set of M features maps per
class during the training34 before the WILDCAT pooling in order to train the whole
model end-to-end through a classification loss. In [Courtiol et al. 2018], the authors
proposed to add a MLP at the end of the WELDON pooling to get better classification
results. None of these methods [Durand et al. 2015; Durand et al. 2016; Durand et al.
2017; Courtiol et al. 2018] are tested on a bounding boxes evaluation although these
models output good weakly supervised pointwise localization of object35. Nevertheless,
in the case of high-resolution images it can allow to efficiently localize important tiles,
for instance for histology [Pirovano et al. 2020].

In [Zhu et al. 2017b], they tried to tackle the WSOD task specifically with the idea
of using the feature maps to generate bounding boxes. A region proposal generator
is trained using weak supervision. The feature maps are transformed into a graph
then into an objectness score map. This objectness score weights the feature maps
that are subsequently fed to a classification layer. The bounding boxes are obtained
by thresholding the objectness score map and extracting the tightest box covering the
foreground pixels. This model is named SPN.

Cascade architecture Some methods use cascade architecture to refine the pre-
dicted regions [Sun et al. 2016c; Diba et al. 2017]. The first stage (localization net-
work) proposes a set of promising boxes that are likely to contain objects. The second
stage (classification network) classifies the proposed regions. ProNet [Sun et al. 2016c]

33The model is used as a feature extractor.
34Those features maps are averaging which comes down to only having one feature map learned

per class.
35Weakly supervised pointwise localization is a specific machine learning task less studied than

WSOD but addressed by some works as [Grzeszick et al. 2018].
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uses a cascade architecture to zoom into those promising boxes, as in Overfeat [Ser-
manet et al. 2013a], and then train new classifiers to verify them. The localization and
classification networks are independent and trained iteratively. This two-stage archi-
tecture can be repeated several times to progressively zoom into objects. [Zhang et al.
2018b] propose to improve the localization proposed by CAM [Zhou et al. 2016] with a
network architecture including two parallel-classifiers. The first branch localizes some
discriminative object regions learned by classification and obtained with CAM. Then,
the maximal value pixels of the feature maps are erased from them. These modified
feature maps are used to train the second classifier. This classifier learns a new and
complementary object region.

2.4.2.4 Methods based on Region Proposals

Firstly, in [Bilen et al. 2016], the Weakly Supervised Deep Detection Network (WS-
DDN) model is proposed? It is a two streams network: one stream for classification
(which assigns each region to a class) and one for detection (which picks the most
promising region in a image given a class). This second stream assumes the object is
present in the region with the most salient structure. It is not a standard MIL problem,
it can be seen as a mini-batch MIL [Bilen 2018] because only small batches of images
are provided to the model. This model is based on unsupervised object proposals such
as EdgeBoxes or Selective Search and uses a pre-trained network on ImageNet in a
pure transfer learning manner. It is an adaptation of the Fast R-CNN [Girshick 2015]
model to the weakly supervised setup. This seminal work has been improved by several
teams. Some works focus on the loss function used to train the network whereas others
propose cascaded networks to refine the proposals.

Improving the loss function Kantorov et al. [2016] propose two types of context-
aware guidance models: an additive one and a contrastive one. One the one hand, the
additive model uses contextual information to encourage the network to select ROI
semantically compatible with the context (if the surrounding is a horse, the ROI can
be a person). On the other hand, the contrastive model focuses on the absence of
target-specific features (of the class of interest) in its surrounding context. It helps to
separate the object and the background. The additive model consists in adding the
class activation of the ROI and the one from the context (larger crops with the ROI
cropped) whereas the contrastive model is based on subtraction. The additive model
experimentally prevents expansion of detection beyond object boundaries whereas the
contrastive model prevents contraction of detection to small object parts.

An entropy minimization is added to the two branches model in [Wan et al. 2018].
The goal is to control the variance of positive instances in order to remove some am-
biguity on the detections. The proposals are spatially separated into cliques where
spatial distributions and objects probabilities are jointly modeled. The first branch
minimizes a global entropy over the whole image in addition to the classification loss.
The second branch focuses on the object localization and minimizes the local entropy
on cliques of proposals with pseudo-labels. Ge et al. [2018] propose to split the boxes
proposals in m groups to get m sub-images. Then they fine-tune a CNN for multi-label
classification by taking the maximum over the sub-images. Finally, this CNN is used
as a feature extractor to fine-tune a final part for detection. They incorporate the
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idea of Durand et al. [2015] to take positive and negative regions to not focus only on
discriminative parts in the loss function.

In another direction, Zhang et al. [2018c] develop a criterion named mean Energy
Accumulation Scores (mEAS) to rank localization difficulty of a positive image. This
criterion is used to learn the WSDDN [Bilen et al. 2016] progressively by feeding ex-
amples with increasing difficulty. They also introduce a novel masking regularization
strategy over the high-level convolutional feature maps to avoid overfitting initial sam-
ples.

Cascaded Networks To improve ProNet, [Diba et al. 2017] propose a two stages
end-to-end architecture. The first stage is a CNN with a GAP as in [Zhou et al. 2016].
The class activation maps of this first stage are used to select the best candidate boxes
among EdgeBoxes’ box proposals. Then, they use a ROI pooling to feed a smaller
net with the corresponding deep features of those boxes. This second stage is trained
with a MIL loss (max over the proposals boxes and a softmax over the classes). To
train end-to-end the cascaded network they use an aggregated loss function of the
two networks. The authors also propose a three stages architecture where they add a
segmentation network in the middle of the former model. The middle segmentation
network takes as input the middle level feature maps and use the class activation map
as a pseudo-ground truth to learn a binary segmentation per class. This model provides
better feature maps to select the candidate bounding boxes.

A dual network is trained with a self-paced curriculum learning process for solving
the WSOD in [Dong et al. 2017]. Each network not only selects more training data to
update its weights but also accepts reliable training data from the other network. The
model consists of the following two networks:

1 The first one named "Positive Instance Selective Network", is a ContextLocNet
[Kantorov et al. 2016] based on Fast RCNN [Girshick 2015] without box regres-
sion, it will minimize the classification error given a bounding box

2 The "Region Proposal Refinement network" is based on a region fully-convolutional
network [Dai et al. 2016] and maximizes the IoU between the pseudo bounding
box and a pseudo-ground truth

The algorithm iteratively generates training subset with pseudo bounding boxes, and
re-trains the two networks. To generate the new training pool of the images with
pseudo labels, each image is labeled by the networks and the wrong prediction are
pruned (image with the wrong label compared to the image-level label, image with
too many bounding boxes, image with bounding boxes containing bounding box with
higher confidence score).

The WSDDN [Bilen et al. 2016] have also been improved by Tang et al. [2017a]
under the name of Online Instance Classifier Refinement (OICR). The idea is to use
multiple streams. Each stream is supervised by the latter to create a multi-stage
classifier refinement. The method is inspired by mi-SVM since they assign a pseudo-
label to each of the regions, but instead of using an alternative strategy to relabel
the instances and retrain the full model, they use an online refinement algorithm.
Moreover, they selected instances according to the spatial relation (spatial overlapping
regions) and not only the score predicted by the classifier. The top-scoring proposal is
set to 1 for the positive image and then the overlapping regions get the same label. On

68



2.4. Multiple Instance Learning and Weakly Supervised Object Detection

the contrary to the mi-SVM algorithm where the label is given by the former classifier.
This allows to learn to detect larger parts of objects gradually (refinement step by step)
and not only the discriminative part. By doing that they add a prior to their model
to force the next classifier to provide larger boxes than the previous ones. The authors
note that finding a correct initialization can be difficult and a correct weighting of the
losses is necessary to avoid unstable solutions.

The same team improves their OICR model [Tang et al. 2017a] with the PCL one
[Tang et al. 2018a]. Instead of choosing the proposal with the maximum scoring for the
relabeling, they determine what they call "proposal cluster centers". For each image,
they use k-means clustering to divide top-ranking proposals into clusters. They choose
proposals within each cluster which has the highest score to select the top-ranking
proposals. Then, they group the remaining proposals into different groups using the
overlapping graph, where each group is associated with a cluster center or corresponds
to the background. These pseudo labels are used to supervise the next network. One
of the most important contributions is that each cluster is treated as a small new bag
to train refined instance classifiers without giving a strong label at each instance of the
bag (like a sub MIL bag classification problem). The initialization of this algorithm
and the number of clusters seem to be important.

The same team also try in [Tang et al. 2018b] to train the RPN of Faster R-CNN
with only image-level annotations. It is an excellent idea because the RPN seems to
be the most powerful element of the network. The method is based on several steps to
refine the boxes proposal. The first set of proposals consists in an exhaustive search
of sliding windows on the input image. Then, they compute an edge-like response on
the features maps at different layers in the network (like the low-level statistics used
in EdgeBox [Zitnick et al. 2014]). This objectness scores are used to filter the set of
proposals. It is refined by a WSOD model from Tang et al. [2017a] trained to classify
background or objects. This network is named "Proposal Refinement" network. They
alternate between training the "Proposal Refinement" network and a WSOD network
that uses these proposals. This is a promising method but it doesn’t work for the
moment.

In [Zhang et al. 2018d], it is proposed to refine the proposal from OICR [Tang
et al. 2017a]. First, they select the bounding boxes that cover most of the high score
discriminative regions returned by OICR. Then, they fine-tune a Faster R-CNN on
those region proposals (considered as pseudo-ground truth). Finally, they use the
RPN predictions to refine again the pseudo-ground truth proposals. In [Wan et al.
2018], the model can also be improved by training multiple detectors stacked one after
another in a "Accumulated recurrent learning" manner to have a more robust pipeline.
Finally, the authors of [Ren et al. 2020] also add some strong priors about the WSOD
task to improve WSDDN. Indeed, they add a "Multiple instance self training" block
to the model. It is designed to pick a set of high-scoring non-overlapping regions36
as pseudo-labels. These pseudo-labels are used to train a cascade of bounding box
regressors. Additionally the model is trained in an adversarial manner. An auxiliary
model is trained to sparsely dropout some pixels of the deep feature maps. It drops
out the discriminative parts and helps the training. They also propose a sequential
batch forward and backward computation to handle one of the major bottlenecks in

36In some sense, it is a prior about the WR of the problem.
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WSOD the memory limitations due to the big number of boxes. It is one of the most
promising works for the WSOD task.

Other works not based on WSDDN In [Li et al. 2016], a two steps strategy is
proposed, first collecting good regions by a mask out classification, then selecting the
best positive region in each image by a MIL formulation and then fully fine-tune a
detector with those propositions as ground truth. This work is built on [Song et al.
2014].

In [Arun et al. 2019], the authors propose to train two collaborative networks one
of them being a Conditional Network with noisy extra-channel. The goal is to jointly
minimize the dissimilarity between the prediction distribution and the conditional dis-
tribution.

2.4.2.5 WSOD with Knowledge Transfer

Another way to improve the accuracy of a machine learning model is to utilize a
source dataset and transfer knowledge to the target domain through semi-supervision,
homogeneous or heterogeneous transfer learning. Some research articles talk of the
WSOD-with-transfer task.

On the one hand, some works transform classifier to an object detector. Hoffman
et al. [2014] transform a classifier to a detector by adding to the classifier weights the
mean of the weights of the nearest neighbor source target classes (in terms of distance
between deep features). Tang et al. [2017b] incorporate external knowledge about
object similarities from visual and semantic domains with a word embedding model.
Then, they use this knowledge to adapt an image classifier to an object detector for a
weakly labeled category.

On the other hand, other works try to obtain a general object detector from the
source dataset. This knowledge can be the objectness predictor [Deselaers et al. 2012],
the object proposals [Uijlings et al. 2018; Zhong et al. 2020] or a universal bounding
box regressor [Lee et al. 2019].

In [Zhong et al. 2020], they use an iterative transfer process. They alternate between
instancing the pseudo labels to the box proposals on the target and source sets and
training of their deep model (an hybrid the WSDDN and the Faster R-CNN models).
The class-generic objetness score from the deep detector, trained on the source domain,
is used in several ways to help the learning process. It is also used during training,
by adding a MSE loss between the objectness score of each box and the maximum
of the classification score over classes. They pick the most confident predictions for
pseudo-labeling with a score obtained as a linear interpolation between the objectness
score and the classification score.

In [Uijlings et al. 2018] they train a universal detector37 on the source dataset
and uses the detection results from this detector as proposals for the MIL problem
on the target dataset. They compare the impact of different objectness score used
during the re-localization step. The class-generic objectness score is trained on the set

37Based on SSD [Liu et al. 2016b].
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union over the 63k training samples of all 100 source classes in the dataset they use (a
subset of ILSVRC 2013 validation set). They also study the use of the closest semantic
source class or the closest ancestors in the ImageNet hierarchy information during the
knowledge transfer. The class-generic objectness provides the best performance.

In Chapter 5, we propose a method for learning an object detector with weak su-
pervision on non-photographic datasets, possibly including new classes. Our approach
belongs to the WSOD-with-transfer paradigm as we transfer a CNN that have been
trained on a natural image dataset with bounding box information.

2.4.2.6 Conclusion on WSOD

The domain is very active and the state-of-the-art changes regularly. The frontiers of
this field are fuzzy and changing but the main goal is still to learn models able to infer
object localization without such information during the training time. In brief, weakly
supervised object detection is challenging due to:

• Ambiguity with parts and context
• Ambiguity with discriminative part and object of interest
• Sensitive to initialization
• Prone to overfitting

Some of the solutions are:
• Improving the aggregation function
• Robust re-localisation and re-training method
• Incorporating prior knowledge or knowledge from a different modality

2.5 Texture Synthesis With Convolutional Neural
Networks

In this section, we will present the main principles and milestones about texture syn-
thesis by example (Section 2.5.1). Then in Section 2.5.2, we will focus on the method
based on CNNs , the most related to the contributions of this thesis.

2.5.1 Texture Synthesis by Example
2.5.1.1 Texture Definition

There is no formal and universal mathematical definition of texture in the field of
image processing, due to the diversity of cases covered by this term. At a given scale,
a texture has the same aspect whatever the observed area. It is a visually coherent
and "homogeneous" area, possessing a kind of spatial repetition of the same pattern
in different directions in space. Thus, a photograph of a material (bricks, marbles ...),
skins, textiles, turbulence, sponges, furs, pebbles or turbulence constitutes an image
of texture as can be seen in Figure 2.11. Of course, this is a non-exhaustive list of
examples.

Two types of textures can be coarsely distinguished:
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Figure 2.11: Examples of some texture images (from https://www.textures.com/).

• the regular textures whose periodicity of the pattern is obvious: walls, fabrics,
grids, etc.

• the stochastic textures whose pixel values seem randomly scattered over the im-
age: noise, sand, grass, crowds, etc.

The first family of textures can be described by frequency approaches or regular tiling,
while the second is modeled by random process. Each type of texture has its own visual
characteristics. It is therefore difficult to describe them all with a unique model. Obvi-
ously, the majority of textures belong to the continuum between regular and stochastic
textures.

2.5.1.2 Principle of Texture Synthesis by Example

Exemplar-based texture synthesis aims to generate new but perceptually similar images
from a given exemplar. These samples are required to be visually faithful to the example
and as diverse as possible.

An example of a possible reference image accompanied by images that one would
ideally like to synthesize can be seen in Figure 2.12. There are several possible solutions
to the texture synthesis problem which makes it inherently ill-posedness. Nevertheless,
this problem has been a fruitful way to test visually the validity of various mathematical
models for more than forty years, ranging from time series [McCormick et al. 1974],
Markov Random Fields [Cross et al. 1983] to wavelet decomposition [Heeger et al. 1995;
Portilla et al. 2000] or non-parametric Markovian modeling [Efros et al. 1999]. More
recently, CNNs have permitted impressive progress in the field, initiated by the work
of [Gatys et al. 2015b], itself followed by numerous contributions, e.g. [Liu et al. 2016a;
Ulyanov et al. 2016; Snelgrove 2017; De Bortoli et al. 2019; Heitz et al. 2020]. However,
the best evaluation of the results is still a perceptual evaluation based on some implicit
quality metric such as the absence of copies of large parts of the reference image or the
pleasantness of the synthesis.

Most texture synthesis methods can be classified into two categories, patch-based
methods and statistics-based methods. The patch-based methods usually generate
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Reference Image

Ideal Synthesis Ideal Synthesis

Ideal Synthesis

Figure 2.12: Example of a reference texture accompanied by ideal synthesized ones.

new textures by iteratively sampling patches from a given texture sample [Efros et al.
1999; Wei et al. 2000; Lefebvre et al. 2005]. They are able to generate very realistic
texture examples with a high speed, even on highly structured textures. However, the
generated texture examples have limited varieties and capacities of innovation. On
the contrary, the statistics-based methods impose a set of statistics computed on the
image or a transformed version of it, such as wavelets [Heeger et al. 1995; Portilla et al.
2000]. The statistics-based methods can generate perceptually good samples but are
highly dependent on the chosen set of statistics. The statistics-based methods reach
their limits on highly structured textures for which the method based on deep learning
statistics are proposed in [Gatys et al. 2015b]. This approach uses the Gram matrices
of feature maps obtained with a pre-trained VGG19 [Simonyan et al. 2015].

2.5.1.3 Main Milestones

We will now present some of the main works on texture synthesis.

Texture description The statistical description of textures was introduced by Béla
Julesz for the analysis of the visual perception of textures. He conjectured that it
was possible to discriminate textures according to their N -th order statistics so that
textures within a group would be indistinguishable by human perception [Julesz 1962].
He proposed to represent textures by a Markov process. By statistics of order N , he
means statistics related to the values of N pixels of the image38. In [Julesz et al. 1973],
it is illustrated that some pairs of grayscale textures sharing the same second-order
statistics are indistinguishable. However, there are textures with identical second (and
even third) order statistics which are visually distinct [Julesz et al. 1978]. Numerous
works have sought to determine the minimum N that allows classifying textures. Then,
the considered statistics are no longer being computed only on the image but also on
transformed versions of it (filtering, etc.). The underlying idea is to determine the
minimum set of statistics that allow describing textures.

First models McCormick et al. [1974] propose an autoregression model for texture
synthesis. This model exploits the linear dependence between pixels. Given a random

38In the mentioned paper, the considered statistics are estimators of the marginal distributions of
N pixels.
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initialization the next pixel is synthesized by taking a linear combination of the previ-
ously synthesized pixels plus a linear combination of the previous random values. The
coefficients of these linear combinations are the parameters of the model. They are
estimated on the reference image thanks to the time series seasonal analysis method.

For a long time, the methods considered as the state-of-the-art were methods based
on Markov Random Fields [Cross et al. 1983]. The texture image is considered as a
two-dimensional random Markov field. The core of these methods is to estimate the
probability law of a pixel intensity knowing the texture to which it belongs. These
methods consider that this law only depends on the values of a small number of the
pixel’s neighbors. Thus, the law followed by a pixel knowing its neighbors is chosen a
priori and its parameters are determined from a sampling of the reference image using
e.g. the maximum likelihood estimator. Having a formal model allows a theoretical
analysis of the method’s convergence. This method allows describing and synthesizing
near-stochastic textures but fails to generate regular ones.

Filters Random Fields and Maximum Entropy (FRAME) is a Markov Random
Field model constructed from the empirical marginal distributions of filter responses
based on the maximum entropy principle [Zhu et al. 1998]. To sample a new texture
synthesis from this probability distribution the Gibbs sampler is used. Zhu et al. [2000]
develop the Julesz ensembles texture model based on a common set of statistics. They
prove that this model is equivalent to FRAME in the limit of an infinite image [Wu
et al. 2000].

Statistics-based methods Between 1995 and 2000, the Markov Random Field
methods are supplanted by the multi-scale wavelet ones that extend the Julesz ap-
proach based on multi-scale statistics. Heeger et al. [1995] propose to characterize
a texture by the first-order statistics of its colors and by its responses to different
multi-scale and multi-orientation filters realized using a steerable pyramid wavelet de-
composition. In a nutshell, this approach consists in computing a set of statistics from
the reference image I and then performing an optimization starting from a noise im-
age39 by forcing the statistics of the synthesis to be almost equal to the reference image
statistics. One alternate between computing the statistics on the synthesis Ĩ and en-
forcing the reference statistics to it (by histogram matching in this work). There are
no theoretical results of convergence. This method can be extended to the color image
case by using decorrelated decompositions, for instance. This method works well in the
case of quite stochastic textures. However, it fails to synthesize quasi-periodic textures,
mosaics or images with several main directions. This is maybe due to the only use of
the marginal responses to the filters and not the correlations between pixels, scales or
orientations. For example, contours are not reproduced because they correspond to
inter-scale relationships.

Portilla et al. [2000] greatly improve the previous method by enforcing higher order
statistics of the filter responses from the wavelet decomposition. In the same way as
before, the algorithm performs a wavelet decomposition of the reference image and
the synthesized image.Then, statistical constraints are iteratively imposed on these

39This construction can be made from a white noise but it is not an obligation, it is only an
implementation tip to maximize image entropy (without warranty).
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wavelet projections. The statistics used are the first 4 moments40, the autocorrelation
of the projections and the inter-correlation between projections of the same scale and
of different scales41. The synthesis is performed using a gradient descent, there is still
no evidence of convergence. The use of these statistics allows the synthesis of much
more complex textures.

Patch-based methods Then, a new type of methods which produce satisfactory
visual results, is appearing on the scene but these methods based on patches have
some drawbacks, we will describe later. Efros et al. [1999] propose to synthesize a
new texture image from a reference one by sequentially adding pixels to the synthesis.
For each new pixel, the algorithm picks up the pixel in the reference image whose
neighborhood is close enough to it. To do this, the authors use a Gaussian-weighted
Euclidean distance weighted by the distance between the pixels. A tolerance on the
allowed proximity and the number of neighbors considered are the main parameters of
the algorithm, and can have a strong influence on the output result. To compensate
for the slowness of this algorithm, a faster version has been proposed by Efros et al.
[2001]. This method works patch by patch instead of pixel by pixel, allowing a certain
overlap between the synthesis and the new patch added to it .

The patch-based methods are numerous. For instance, Wei et al. [2000] propose to
use a coarse-to-fine generation process, where the coarser level of the multiresolution
pyramid, which has been already synthesized, is considered to guide the nearest neigh-
bor finding. To accelerate it even more, they also propose a tree-structured vector
quantization. To improve the quality of the synthesis, Kwatra et al. [2005] propose
another kind of multiresolution strategy. At a given scale, the algorithm uses as ini-
tialization, an up-sampled version of the synthesis obtained at a lower scale, with the
exception of the coarse scale. This method is combined with using multiple neigh-
borhood sizes to capture patterns of different sizes. In the same spirit, Lefebvre et
al.’s method [2005] is based on a multiple resolution strategy, but it manipulates pixel
coordinates rather than colors. At each scale, it introduces randomness by jittering
the coordinates and then correct the synthesis with a few iterations of neighborhood
matching.

All these methods can be considered as non-parametric Markovian models and pro-
vide a procedure for introducing randomness into a reference texture without changing
its perceptual properties. They make it possible to synthesize textures of excellent
quality even in the case of a periodic image. Nevertheless, two majors drawbacks of
these methods must be pointed out. First of all, the synthesized texture can include
whole areas of copy-paste from the reference image as illustrated in [Aguerrebere et al.
2013; Raad et al. 2017a]. Second, the algorithm can reproduce many times a singular
pattern of the reference image and neglecting the rest of it.

Micro-texture model An interesting method based on Julesz et al.’s idea to com-
pletely impose second-order statistics of a texture [1973] has been developed by Galerne
et al. [2011]. The method consists in synthesizing new textures by enforcing a random
phase on the Fourier transform of the reference image. To respect the colors, the same

40Mean, variance, skewness and kurtosis.
41In the latter case, an oversampling is carried out in order to calculate the inter-correlation.
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random phase must be imposed to each channel of a given pixel. This phase ran-
domization algorithm allows to properly synthesize stochastic textures, textures with
tiny structures. However, it does not correctly synthesize structured elements and
geometrical textures with large period patterns.

Alternatives to wavelets Following the milestone works relying on statistical con-
straints based on wavelet decompositions [Heeger et al. 1995; Portilla et al. 2000], three
alternatives to wavelets were proposed to impose statistics to the synthesis:

• Sparse dictionary
• Convolutional Neural Network
• Scattering transforms

First, Tartavel et al. [2015] propose to add some constraints to the use of an adaptive
sparse dictionary for texture synthesis [Peyré 2009]. The first constraint is related to
the color histogram of the image, the second one to the spectrum of the image and the
last one to the distribution of the dictionary’s atoms use. The term on the spectrum
allows to control the global structure of the synthesis whereas the constraint on the
dictionary decomposition allows keep important geometrical elements of the reference
image such as corners. The optimization is made in an alternate descent. This method
avoids the copy-paste phenomenon that can be encountered with patch methods. This
method proposes a multi-resolution strategy too. The synthesis at a lower scale is used
as initialization for the next one. We point that the use of an adaptive dictionary
allows to only impose statistics of order 1.

On the other hand, Gatys et al. [2015b] propose to do texture synthesis with a CNN
trained for image classification task. This approach consists in minimizing the distance
between the covariance matrices of the channel activation between the reference image
and the synthesis (as detailed in Section 2.5.2.1). This distance can be computed for
several layers in a similar way to the multiple scale of a wavelet decomposition. The
optimization is made for all the layers at the same time.

Finally, Mallat [2016] propose to use second order coefficients of a scattering trans-
form of the reference image as statistics. The scattering transforms of an image are
the modules of the cascading wavelet transforms of the image. It is a model halfway
between wavelet transforms (used by Portilla et al. [2000]) and CNNs. Contrary to the
use of CNNs, there is no recombination of the different responses of the previous layer
to obtain the next layer.

2.5.2 Texture Synthesis With Convolutional Neural
Networks

The synthesis method based on CNN representation of the images [Gatys et al. 2015b]
became since 2015, the state-of-the-art for texture synthesis. We will present in this
section, this method and some of the improvements made to it.

2.5.2.1 Gatys et al.’s Method [2015b]

Directly inspired from the seminal work of Portilla et al. [2000], Gatys et al. [2015b]
propose to constrain the statistics of a pretrained CNN feature maps. The statistics are
provided by correlations between the feature maps corresponding to different filters.
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The synthesis is done by minimizing the Frobenius norm between the Gram matrices
of the feature maps42 of the reference images and the synthesis at different layers. This
minimization is done by gradient descent via backpropagation in the network, in a way
similar to the feature inversion [Mahendran et al. 2015] mentioned in Section 2.2.1.2.
One can observe in Figure 2.13, the different steps of the synthesis of an image during
the gradient descent. The starting point is a very low amplitude white Gaussian noise
(other kind of noise can be used). The first iterations are the most important as they
structure the image. Thousand of iterations are needed to reach visual convergence
but there is no guarantee of true convergence. The value of the cost function (equa-
tion (3.1)) is specified below each image. This algorithm leads to a local minimum
which depends on the initialization point. More details of this method will be provided
in Section 3.2.1.

Initial Image,
LGram = 1, 04× 1010

Iteration no 1,
LGram = 5, 91× 108

Iteration no 10,
LGram = 1, 54× 108

Iteration no 20,
LGram = 8, 23× 107

Iteration no 30,
LGram = 4, 48× 107

Iteration no 50,
LGram = 2, 10× 107

Iteration no 100,
LGram = 1, 18× 107

Iteration no 250,
LGram = 4, 26× 106

Iteration no 500,
LGram = 1, 18× 106

Iteration no 1000,
LGram = 8, 66× 105

Iteration no 2000,
LGram = 5, 01× 105

Reference
Image

Figure 2.13: Evolution of the synthesis during the optimization. Layers used:
{conv1_1,pool1,pool2,pool3,pool4}.

Increasing the numbers of layers of the CNN on which the texture representation
are matched increase the complexity of the synthesis. By considering only the first
layer of the network (second line on the Figure 2.14) we obtain a texture of very
low granularity, with very local structures. By considering deeper layers of the net-
work, we can see that structures of larger scales appear. The set of layers: {conv1_-
1,pool1,pool2,pool3,pool4} is the default case in the following work (see Figure 2.4b or
Table D.3 in the Annex for the names of the layers).

42Their covariances.
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Reference

Set of layers

{conv1_1}

{conv1_1,
pool1}

{conv1_1, pool1,
pool2}

{conv1_1,
pool1,pool2,
pool3}

{conv1_1,
pool1,pool2,
pool3,pool4}

Figure 2.14: Texture Synthesis obtained after 2000 iterations with [Gatys et al. 2015b]
method for different sets of layers. See the Figure 2.4b for the names of the layers.

The main difference with the Portilla et al.’s method [2000] is the use of CNN
responses instead of wavelets ones, the use of only one kind of statistics (the Gram ma-
trices), the absence of explicit inter-layers43 statistics and the fact that the optimization
is not alternated.

Nevertheless, the most important contribution is the transfer of a VGG1944 pre-
trained on the ImageNet object classification task [Simonyan et al. 2014] to compute
high level image representations. More precisely, as specified in [Gatys et al. 2015b],
the weights of this network are normalized on a certain set of images to be able to make
the responses to the filters comparable, perhaps to be able to aggregate the terms of
the loss function coming from different layers in a more consistent way. However, even

43They can be considered as scales.
44Gatys et al. [2015b] replace the max pooling layers by average pooling ones [2015b].
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using the original VGG19 trained weights [Simonyan et al. 2014], one can obtain equiv-
alent results as shown in Figure 2.15. Using the same architecture with random weights
leads to experimentally poor results, as it can be seen in the last column of Figure 2.15.
The trained weights are able to capture high-level visual structure as mentioned in Sec-
tion 2.2. Ustyuzhaninov et al. [2016] propose to synthesize textures by imposing the
Gram matrices of the responses of the image to random filters of different size45. This
can be seen as a single layer CNN with a random initialization. The synthesis is clearly
below these obtained with a pretrained VGG. This is certainly due to the absence of
hierarchical representation of the image. He et al. [2016] propose a midway solution
by selecting layer by layer, random weights that provides a good reconstruction of the
input image. The results are perceptually degraded with this pseudo-random network
compared to the trained one.

Reference VGG19 pretained Normalized VGG19 VGG19 with
on ImageNet pretained on ImageNet random weights

Figure 2.15: Texture synthesis [Gatys et al. 2015b] using the VGG19 architecture with
weights trained on ImageNet (second column), with normalized trained weights (third
column) or with random weights (last column).

Note that other pre-trained networks with different architectures can be used for
texture synthesis but the VGG19 network seems to be the most efficient one, maybe
thanks to its small convolution kernels [gwern 2018]. Nakano [2019] show that an
adversarially robust ResNet may provide better results than non-robust one for the
neural style transfer task, closely related to texture synthesis, as we will see in the
next section. This also seems to be true for the other image synthesis optimization
processes mentioned before: the feature visualization via activation maximization, in
Section 2.2.1.1.

45The kernel sizes go from 3× 3 to 128× 128.
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(a) Neural Style Transfer

(b) Content Image

(c) Style Image

Figure 2.16: Trade-off between the geometric and Gram terms of the Neural Style
Transfer [Gatys et al. 2015a] cost function for several values of the ratio between the
two terms. In the top right the content image: Photograph of the Louvre Museum in
Paris, (source Google Images), in the bottom right The Starry Night by Vincent Van
Gogh dating from 1889 used as style image.

2.5.2.2 Neural Style Transfer

The most impressive application of the [Gatys et al. 2015a] algorithm was one of its
variants called neural style transfer. It consists in applying the style of one image
to the geometric content of another as one can see in the Figure 2.16. This idea of
synthesizing a texture (or stylistic image) to match a content image was formerly named
"texture transfer" and previously tackled with non-parametric techniques [Eilhauer et
al. 2000; Efros et al. 2001; Hertzmann et al. 2001]. Nevertheless, the CNN based image
representation permits to capture bigger and more complex patterns.

The stylized image is created by minimizing the weighted sum of two loss functions
thanks to gradient descent. The first term is obtained with the texture model previously
described. It is used to compute a loss term between the style image and the synthesis.
It is applied to a certain set of low level layers. The second term is the distance between
the raw feature maps of the content image and the synthesized image, at a higher
level layer. This term corresponds to the loss from the feature inversion algorithm
[Mahendran et al. 2015] mentioned in Section 2.2.1.2.

The total cost function to be optimized is an additively agglomerated cost function
once again. The two terms of the cost function do not evolve in the same direction so
that it is sometimes necessary to degrade the geometric attachment to change the style.
There is a Pareto front of the bi-objective function as we can see in the Figure 2.16a.
One can see in this figure the style term as a function of the content term for several
values of the weighting between the two terms. The synthesis are obtained with 2000
iterations.

Many works followed the seminal contribution of Gatys et al. [2015a], creating a
certain emulation around this algorithm. The curious reader may refer to a recent
review of the improvements made to this algorithm by Jing et al. [2019]. Let us note,
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however, that texture synthesis and style transfer, both by CNN, are very close and
that many paper studies deal with both subjects at the same time. Indeed, some issues
are common to both subjects such as the ability to produce high resolution images,
artifact reduction, algorithm acceleration, etc. Nevertheless, other issues are specific to
the neural style transfer such as taking into account the semantic of the images [Park
et al. 2019] or having a controllable synthesis [Gatys et al. 2016; Risser et al. 2017].

Neural style transfer style has several limitations. First, results illustrate that neural
style transfer works better with heavy visual styles (as impressionism images or crop
of highly textured images46 for style reference) compared to realistic styles. Second,
when the naturalistic images display structure on planar regions the network produces
more artifacts. Lang et al. [2018] highlighted that the style in most of the approach
mainly refers to color, shape, local pattern or brush stroke rather than composition,
modeling of figures or choice of the topic. The style, one refers in neural style transfer
is a sort of "formal" quality of artworks. Moreover, an artistic style can be defined by
more than one image [Sanakoyeu et al. 2018; Wynen et al. 2018].

Nevertheless, neural style transfer and texture synthesis with CNN are an important
research direction to better understand the CNN based recognition system we are using
but also to better understand the relation between artistic style and semantic content in
artworks. On one hand, images generated by neural style transfer or texture synthesis
methods permit to show the limit of the CNN model [Brendel et al. 2019; Geirhos
et al. 2019] (see in Section 2.2.1.1). Neural style transfer has been used for data
augmentation or domain adaptation in numerous cases such as histology [Cicalese et
al. 2020] or art recognition (as mentioned before in Section 2.3.3.2). On the other hand,
several research teams try to disentangle artistic style and content, such as [Kotovenko
et al. 2019] for style transfer or [Collomosse et al. 2017] for sketched based retrieval.
This task is more complicated as it requires to separate style information from semantic
one while they are mixed together in artworks. Thus, a better understanding of this
"stylistic" part of the image though the study of the texture loss term may helps for
art analysis.

2.5.2.3 Improvements on Texture Synthesis Methods with CNNs

In this section, we present an overview of the improvements proposed for the texture
synthesis with CNN. In view of the method that we propose in this work, we mainly
focus in this section on the works involving CNNs that have followed the seminal
contribution of Gatys et al. [2015b] and particularly on works proposing new statistical
constraints and focusing on long-range structure, two points that will be considered in
the contributions of this manuscript (Chapter 3).

Accelerations and alternative sampling strategy In a first direction, several
works have proposed ways to speed-up the synthesis process, notably through feed
forward networks [Johnson et al. 2016; Ulyanov et al. 2016; Ulyanov et al. 2017; Shi
et al. 2020b]. [Ulyanov et al. 2016] propose to learn a feed-forward CNN that syn-
thesis an image from a set of multiple scales noise inputs. This generator network
is trained thanks to a loss function based on the Gram matrices of the pretrained

46As the wave of "The Great Wave off Kanagawa" by Hokusai in 1831.
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VGG19. One generator network per reference image must be learned. Johnson et al.
[2016] propose a similar method but with a fully-convolutional autoencoder instead
of a multi-scale architecture based on upsampling and channel-wise concatenation for
scale fusions. A related work by Ulyanov et al. [2017] improve the perceptual results of
Ulyanov et al. [2016] by using Instance Normalization layers but principally by learning
a generator uniformly sampling the Juslez ensemble [Zhu et al. 2000]. This is done by
minimizing the Kullback-Leibler divergence between the generated distribution and a
quasi-uniform distribution on the Julesz ensemble. Shi et al. [2020b] aim to learn the
texture synthesis optimization process from Gatys et al. [2015b] using a feed-forward
network. This network takes the per-layer gradients calculated from the VGG19 as
input and predicts the change to refine the input image. Such methods have enabled
fast synthesis once the network has been trained for specific textures, but the quality
of results is still inferior to the original approach [Gatys et al. 2015b], especially for
structured textures.

Lu et al. [2015] propose an evolution of the FRAME model [Zhu et al. 1998] in the
context of CNNs under the name DeepFrame. Textures are synthesized from an expo-
nential model using features from VGG. In [De Bortoli et al. 2019], this macrocanonical
approach is pushed further and fully analyzed theoretically.

Statistical constraints and losses In a different direction, a large body of works
has been dedicated to add additional constraints to the synthesis, often relying on
new or modified loss functions. In [Gatys et al. 2016], the color of the synthesis is
constrained to specified values by color histogram matching. In [Johnson et al. 2016],
a total variation term is added in the loss function for perceptual reasons. Risser et
al. [2017] and Heitz et al. [2020] propose to constrain the histograms of some feature
maps, in order to reduce halo artifacts. Risser et al. [2017] consider the Frobenius
norm of the difference between the synthesis features map and an histogram adjusted
version to match the histogram of the reference image. This target features map
changes at each iteration to guide the evolution of the image being synthesized. If
one considers only the term on the histograms, the results are worse than using both
histogram and Gram constraints. This may be due to the iterative approximation of
the histogram constraint. Heitz et al. [2020] also propose to impose the histograms of
the feature maps. They consider the multi-dimensional histogram instead of the set of
one dimension histograms. Their method consists in projecting the feature maps onto
random directions, sorting the 1D projections and then computing the L2 difference
between the sorted vectors. This permits to capture more information from the feature
maps and provides competitive synthesis without explicit constraints on the Gram
matrices.

Other works such as [Liu et al. 2016a; Berger et al. 2017; Sendik et al. 2017] also
propose alternative losses to add further statistical constraints. Since they explicitly
deal with long -range dependency and structure, they will be reviewed in the next para-
graph. It should be noted that these approaches propose to combine several statistical
constraints by adding them to get the Gram matrices loss function whereas other works
as [Heitz et al. 2020] have studied the use of different kinds of statistics on the feature
maps. For instance, it is possible to synthesize texture by using the mean of the feature
maps instead of their Gram matrices as shown in [Gatys et al. 2015b] but the result
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provides clearly worse results. It is worth noting that both approaches [Lu et al. 2015;
De Bortoli et al. 2019] also rely on first order constraints on features and therefore drop
the use of the Gram matrices. Alternative constraints have also been investigated for
the closely related task of style transfer. In [Li et al. 2017b], it is shown that matching
Gram matrices reduces to kernel-based comparison of features, and various kernels are
investigated in this setting. Other works investigate alternatives to the original Gram
matrices, such as cross-layers (rather than within-layers) Gram matrices as in [Yeh
et al. 2018] or [Novak et al. 2016], both inspired by Portilla et al. [2000]. Nevertheless,
the Gram Matrices loss function is still the workhorse of the synthesis by CNN.

Incorporating long-distance dependency First, Berger et al. [2017] propose to
incorporate long-distance pattern constraints by adding a cross-correlation term to the
loss function. This new term is the correlation between the features maps and a shifted
version of it. Different values of the shifts are used from 2 to 64 pixels for a 384 ×
384 pixels images. The set of shift that it is used depends on the layers considered. In
this case, the authors still use the Gram Matrices loss function. One can notice that
the deeper the layer is, the smaller the shift used. This constraint seems to improve
regular texture synthesis. Novak et al. [2016] propose to shift the feature maps by ±
one pixel in both directions and then to compute the 9 possible Gram matrices of the
feature maps. This approach is a particular case of the work mentioned above. This
modification has a significant impact on the style transfer result, but in a negative way
more often than not.

Then, Sendik et al. [2017] propose to add several terms (a smoothness one, a di-
versity one, a correlation one) to the loss function to improve the synthesis. The most
interesting one is the "Deep Correlation" term. It is an complete autocorrelation47
of the feature maps for some specific layers. This term permits imposing long-range
structure in regular textures, nevertheless at the price of relatively strong artefacts.
Let us mention that this approach do not consider cross correlations between different
feature maps.

Apart from these works dealing with cross-correlation of features, Liu et al. [2016a]
propose to incorporate the power spectrum of images in the loss function, thereby en-
abling the respect of highly structured textures. This work will be developed later in
Section 3.2.3. In a related work, Schreiber et al. [2016] propose to impose the spectrum
constraint by using a windowed Fourier Transform instead of a Fourier Transform. This
enables non-stationary behaviors to be accounted for, at the cost of the inherent sta-
tionary nature of textures. Moreover, these authors propose to combine their method
with the cross-correlation term from Berger et al. [2017] for a better result.

Multi-scale / multi-resolution neural synthesis Although CNNs contain in
some sense a multi-scale representation of the input image, due to their hierarchi-
cal characteristic, such models are not powerful enough to deal with high resolution
images. First, the approach from Ulyanov et al. [2016] and Ulyanov et al. [2017] pre-
viously mentioned can deal with high resolution images by design, at least regarding
the feed-forward networks and its gradient fit on the GPU. Shi et al. [2020b] propose
a multistage refinement method, by taking progressively into account the higher layers

47Scalar product of all the possible shifts in a feature map.
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of VGG as features description. According to the authors, this improves the stability
of the learning process but does not permit to create higher resolution images. An
effective solution is the Snelgrove [2017]’s method [2017] which consists in creating a
Gaussian pyramid of the input image before extracting Gram matrices thanks to a
VGG19 network at each scale and summing up losses at each scale. The optimization
is done on all scales at the same time.

On the other side, Liu [2017] and Risser et al. [2017] proposed the same year, an
iterative strategy based on the idea of using the output of the synthesis process at
a lower scale to initialize the next scale synthesis. This approach will be detailed in
Section 3.2.2.

2.5.2.4 Other Texture Synthesis Methods

Finally, we will quickly mention some of the other texture synthesis methods that have
been developed this last five years in parallel to the Gatys et al.’s one [2015b].

Generative Adversarial Network Generative Adversarial Networks (GANs) Good-
fellow et al. [2014] are first used to synthesize textures by [Jetchev et al. 2016]. The
training is based on the adversarial model: a discriminator tries to distinguish the
fake generated samples from true ones, while a generator creates new samples. Spatial
invariance assumptions are encoded in the networks as they are fully-convolutionals.
An extension is introduced by Bergmann et al. [2017] to improve the textures with pe-
riodic patterns. This is made by enforcing a part of the input noise used for synthesis
to be spatially periodic. Darzi et al. [2020] propose to add co-occurrences information
to this method to capture local texture patterns. This is done in two ways. First,
a term based on collections of co-occurrences matrices is added to the loss function
and a collection of co-occurrences matrices from the reference is added to the input
of both the generator and discriminator networks. Shaham et al. [2019] propose to
use a pyramid of GANs. At each scale, the generator is fed with a white noise vec-
tors and learns to output the residual image between the upsampled version of the
previous scale synthesis and the current scale one. The discriminators are trained to
discriminate patches and not the whole image to respect fine-grain details. Zhou et al.
[2018] propose to train a fully convolutional generator designed to extend a texture of
size k × k to a synthesis of size 2k × 2k. Their GAN model is trained with a L1 loss
and Gram matrices-based perceptual losses in addition to the adversarial loss. These
three different losses are needed to produce perceptually acceptable synthesis. With
these methods, once the generator has been learned, it is possible to generate multiple
synthesis at high speed and low memory footprint. Moreover, this method scales easily
to high resolution outputs.

Frühstück et al. [2019] have an alternative use of the GAN model. They propose
to use a variant of the Markov Random Field model applied on the latent fields of the
generator from a pretrained GAN. Nevertheless, this implies to sample a large set of
textures to cover the latent space.

Recurrent Neural Network Theis et al. [2015] use a Recurrent Neural Network
(RNN) to learn the pixel probabilities and statistical dependencies of natural images.
Their model is a spatial Long Short-Term Memory (LSTM) network working on a
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two-dimensional grid. It permits to generate images by taking into account neighbors
values. Cai et al. [2019] propose an ensemble of three LSTMs for texture synthesis.
The first one is trained to synthesize the first row of the image, a second to synthesize
the first column and the last one the rest of the image. This last network output is
conditioned by the upper triangular ensemble of pixels.

Multi-scale patch based methods Recently, new patch-based methods have re-
emerged. Galerne et al. [2018] apply semi-discrete optimal transport in a multi-scale48
patch space. A multi-scale strategy is added to synthesize high resolution structured
textures. Houdard et al. [2020] also use optimal transport and a multi-scale strategy.
They explicitly optimize the discrete formulation of the Wasserstein distance between
patch distributions, at different resolutions. In another direction, Houdard et al. [2020]
propose to train the Ulyanov et al.’s model [2016] with a semi-discrete Wasserstein for-
mulation of the patches distribution instead of using a distance on the Gram matrices
of the VGG19.

2.5.2.5 Evaluation of Texture Synthesis Methods

The evaluation of texture synthesis results is a challenging task. The visual quality is
strongly subjective and there is not universal perceptual metric. On the one hand, some
metrics have been proposed to evaluate generated images such as the "Single Image
Fréchet Inception Distance" proposed by the previously mentioned work of Shaham et
al. [2019] about GAN. Other works propose to used metric given by the Gram matrices
of VGG features as used in [Gatys et al. 2015b] or optimal transport distance between
patches distribution [Houdard et al. 2020]. Nevertheless, most of the time, the existing
metrics are already used for the optimization process and are not capable of capturing
the complexity of texture images. On the other hand, a perceptual study can help to
distinguish two methods or to compare the synthesis to the real images. Indeed, it is
shown in [Clarke et al. 2011; Dong et al. 2013; Dong et al. 2020] through extensive
experiments that feature-based evaluations do not approach well human-based visual
evaluation of texture similarity, especially in the case of long-range correlations. To
address this need, Shaham et al. [2019] run an Amazon Mechanical Turk "Real/Fake"
user study to evaluate their SINGAN model.

In Chapter 3, we propose two metrics for comparing texture synthesis methods, the
first one is based on displacement map and the second one on wavelet decompositions.
Moreover, we run a user study to rank five competing methods including two proposed
by us.

48This is a multi-resolution strategy according to the definition, we will use later in Section 3.2.2.

85





3

Texture Synthesis With Convolutional
Neural Networks

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2 Multi-resolution Strategy with Spectral or Autocorrelation-

based Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.1 Reminder on the Work from Gatys et al. [2015b] . . . . . . 89
3.2.2 Multi-resolution Synthesis . . . . . . . . . . . . . . . . . . . 90
3.2.3 Spectrum Constraint . . . . . . . . . . . . . . . . . . . . . . 91
3.2.4 Autocorrelation of the Feature Maps . . . . . . . . . . . . . 92

3.3 High Resolution Experiments . . . . . . . . . . . . . . . . . 93
3.3.1 Architecture and Parameters . . . . . . . . . . . . . . . . . . 94
3.3.2 Other Texture Synthesis Methods . . . . . . . . . . . . . . . 94
3.3.3 Visual Comparisons . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.3.1 Verbatim Copy . . . . . . . . . . . . . . . . . . . . 102
3.3.3.2 Feature-based Evaluation . . . . . . . . . . . . . . 102
3.3.3.3 Perceptual Evaluation of Texture Synthesis Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.4 Influence of Parameters . . . . . . . . . . . . . . . . . . . . . 111

3.3.4.1 Multi-resolution Strategy . . . . . . . . . . . . . . 111
3.3.4.2 Weighting of the Spectrum Constraint . . . . . . . 111

3.3.5 Higher Resolution Synthesis . . . . . . . . . . . . . . . . . . 113
3.4 Unsuccessful Attempts . . . . . . . . . . . . . . . . . . . . . 115

3.4.1 Using Other Statistics for Texture Synthesis . . . . . . . . . 115
3.4.1.1 Moments and Norms of the Feature Maps . . . . 115
3.4.1.2 Random Phase Feature Maps . . . . . . . . . . . . 116

87



3. Texture Synthesis

3.4.2 Preliminary Experimental Results . . . . . . . . . . . . . . . 116
3.4.3 Number of parameters of the different texture synthesis

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Abstract

In this chapter, we present several neural synthesis methods that significantly
improve the ability to preserve the large scale organization of textures. We first
propose a simple multi-resolution framework that accounts for large scale struc-
tures and allows the synthesis of high-resolution images. We then show that, in
this multi-resolution framework, additional constraints are useful in the case of
regular textures. A first approach combines the classical statistical constraints of
neural approaches [Gatys et al. 2015b] (Gram matrices) with Fourier frequency
constraints. Alternatively, the multi-resolution framework can be combined with a
statistical constraint relying on the full autocorrelation of the features of the net-
work. In an experimental part, the proposed methods are then extensively tested
and compared to alternative approaches, both in an unsupervised way and through
a user study. Experiments show the interest of the multi-resolution scheme for
high resolution textures and the interest of combining it with additional con-
straints for regular textures. The last section is dedicated to unsuccessful attempts
of using different statistics than Gram matrices of the feature maps.

Some of the work in this chapter is under review :
• Gonthier N., Gousseau Y., Ladjal S. High resolution neural texture synthesis with

long range constraints; submitted at Journal of Mathematical Imaging and Vision
in 2020.
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3.1. Introduction

3.1 Introduction

One challenge that has been faced by all methods since the early days of texture syn-
thesis is the multi-scale nature of texture samples, implying that models should be able
to reproduce both small and large scales, possibly over several orders of magnitude. For
instance, parametric models for Markov Random Fields are known to be intrinsically
badly suited to a multi-scale modeling. Zooming such a model by a given factor implies
extremely heavy computations to derive the corresponding parameters [Gidas 1989],
impairing the design of multi-scale such models. Wavelet models are more adapted
by nature to multi-scale modeling, but the faithful reproduction of structured textures
requires complex interactions between scales to be accounted for. The best such mod-
eling up to date is the second order statistical model proposed in [Portilla et al. 2000],
but highly structured textures still represent a challenge to such approaches. Nonpara-
metric Markov modeling methods such as those presented in [Efros et al. 1999; Efros
et al. 2001] indeed have the ability to deal simultaneously with several scales albeit at a
high computational cost. However, they are also well known to produce textures with
very little variety, often producing verbatim copies, see [Aguerrebere et al. 2013] and
the experiments in the present chapter. The methods relying on CNNs, following the
seminal work by Gatys et al. [2015b], are currently the most efficient to capture multi-
scale structures. Nevertheless, they still lack efficiency when large scale regularity is
needed.

In this chapter, we present several neural synthesis methods that significantly im-
prove the ability to preserve the large scale organization of textures. We first recall the
classical approach from Gatys et al. [2015b] in Section 3.2.1. Then, we propose a simple
multi-resolution framework that account for large scale structures and allows the syn-
thesis of high-resolution images (Section 3.2.2). We show that, in this multi-resolution
framework, additional constraints are useful in the case of regular textures. A first ap-
proach combines the classical statistical constraints of neural approaches [Gatys et al.
2015b] (Gram matrices) with Fourier frequency constraints (Section 3.2.3), similar to
those introduced by Galerne et al. [2011]. Alternatively, the multi-resolution frame-
work can be combined with a statistical constraint relying on the full autocorrelation of
the features of the network (Section 3.2.4). This approach is closely related to the one
introduced in [Sendik et al. 2017], which combines correlations with Gram matrices and
various additional constraints. We show that correlation terms alone yield excellent
results and therefore that Gram matrices are not necessary in this case.

We then evaluate the proposed methods in an extensive experimental in Section 3.3.
The evaluation of texture synthesis results is a challenging task. Some approaches
draw on well-chosen statistics to estimate the quality of the results (the closest to
the exemplar, the better), as for instance discussed in [Clarke et al. 2011]. In this
paper, we first evaluate results in this manner, relying on Kullback-Leibler divergence
between wavelet marginals, following the texture indexing scheme from Do et al. [2002].
We therefore rely on a user study to compare the framework we propose to both the
original method from Gatys et al. [2015a] and some of its improvement that focus on
the respect of large scale structures.
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The last Section 3.4 is dedicated to unsuccessful attempts of using different statistics
(such as moments, norms or spectrum) than Gram matrices of the feature maps.

3.2 Multi-resolution Strategy with Spectral or
Autocorrelation-based Control

3.2.1 Reminder on the Work from Gatys et al. [2015b]
The Gatys et al.’s method [2015b] based on CNN feature maps as texture representation
works as follows. Given a texture exemplar I ∈ Rh×w×3, where n = h×w is the number
of pixels in the image, we first input I to the CNN to calculate the feature maps at
each layer. Following the notations introduced in Section 2.1.1.1, f l ∈ Rhl×wl×ml is the
extracted feature maps of the layer l with nl = hl ∗ wl the number of "pixels" of this
layer. To synthesize a new texture, we choose a subset1 S of layers of the CNN on
which we impose some statistics. We denote Φl the statistics computed on the feature
maps of the layer l. Then we obtain a set of statistics {Φ1(f 1),Φ2(f 2), · · · ,ΦL(fL)}
which is used for the definition of the loss function. This loss function is defined as the
sum of the Frobenius norm between the reference image statistics and the new image
ones for all the layers considered. It is defined as:

L =
L∑
l=1

αl‖Φl(f l)− Φl(f̃ l)‖2
F , (3.1)

with αl ∈ R the weight of layer l. We impose constraints on each layer independently
with this loss function and no inter-layer statistics. To generate a new texture image Ĩ
on the basis of a reference one I, we use a gradient descent from a white noise image to
find an image that matches the reference statistics. Usually the L-BFGS-B [Zhu et al.
1997] second-order optimization method provides the best results.

Depending on the choice of the Φl(•) function applied to the features maps of the
layer l, we have different texture models. If Φl(•) is the identity, we are in the case of
the feature inversion method [Mahendran et al. 2015] mentioned in Section 2.2.1.2. The
Gatys et al.’s original method [2015b] used the covariances (also called Gram Matrix)
of the feature maps as statistics Φl(f l) = Gl ∈ Rml×ml . The Gram matrix Gl ∈ Rml×ml

is given by the scalar product between these different channel responses:

Gl
p,q = 1

n2
l

nl∑
i=1

~f lp(i) · ~f lq(i) = 1
n2
l

〈~f lq, ~f lp〉, (3.2)

with p, q the index corresponding to the channels p, q ∈ {1, · · · ,ml}, ~f lp ∈ Rnl the
pointwise vector version of f lp. We will denote the version of the loss function from
equation (3.1) with the Gram matrices LGram,I,S .

If L > 1, the loss function equation (3.1) can be seen as one of a multi-objective
cost function agglomerated into a single-objective cost function. We may wonder if the
different objectives ‖Φl(f l)−Φl(f̃ l)‖2

F have comparable ranges. However, by choosing
identical weights, i.e. αl = 1 ∀ l ∈ [1, L], we obtain perceptually acceptable results.

1For simplicity’s sake, we will note the selected layers from 1 to L in the rest of this document
but the user can choose non-consecutive layers in the network.
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Synthesis examples and the influence of some parameters of this method can be seen
in Section 2.5.2.1.

3.2.2 Multi-resolution Synthesis
The first modification we introduce to the method from Gatys et al. [2015b] is a straight-
forward multi-resolution framework that will help preserve the large scale organization
of images. This strategy is relatively classical for texture synthesis methods and has
been used in the past in different settings [Kwatra et al. 2005; Tartavel et al. 2015;
Liu 2017; Risser et al. 2017]. This approach is much simpler than the related method
introduced in [Snelgrove 2017] and, as we will see in the experimental section, yields
better results.

The idea is simply to first synthesize a coarse resolution image, which is then up-
sampled and given as initialization for a synthesis at the next scale. This process is
repeated K times until the desired resolution is reached. As illustrated in Figure 3.1,
we first build an image pyramid from the exemplar image I, iteratively down-sampling
it by factors 21, 22, · · · , 2K , resulting in images I(1), I(2), · · · , I(K). A first synthesis
result is obtained by using the smallest image as the exemplar and white noise as ini-
tialization. Then, for step k ∈ K,K − 1, · · · , 1, we generate a new result using I(k) as
the exemplar and the obtained synthesis result Ĩ(k−1) as the initialization instead of
white noise. The upsampling of Ĩ(k−1) is performed using bilinear interpolation. The
only parameter of this generic multi-resolution framework is the number of scales K.

This kind of multi-resolution strategy was first explored for texture synthesis with
CNNs by Liu [2017], for style transfer with CNNs by [Gatys et al. 2016]. Both tasks
were also studied by Risser et al. [2017]. In this last paper, it is mentioned that the
multi-resolution strategy improves the quality of the synthesis but there is no full review
of the advantage of this pipeline.

As can be seen in Figure 3.15, this strategy can yield strong improvements in some
cases but is not enough to allow the reproduction of highly structured textures. In
the following, we investigate in details the ability of our approach to synthesize high
resolution textures. We show how the result can be improved by adding a careful
control of the Fourier spectrum or by using the autocorrelation instead of the Gram
matrices into the multi-resolution scheme. Nevertheless, even for low resolution images,
the results using only the multi-resolution strategy have a better ability to preserve
large structures than those without it.

This method can be considered to be analogous to the earlier work by Portilla et al.
[2000]. Indeed, in this work, the authors use a coarse-to-fine procedure through the
steerable pyramid decomposition of the image.

3.2.3 Spectrum Constraint
We propose to include in the synthesis a new constraint based on the Fourier spectrum
of the image. It is known that such a constraint alone is an efficient way to repro-
duce the so-called micro-textures [Galerne et al. 2011] made of uniformly distributed
small details. This constraint has also been used in combination with more structured
synthesis methods as in [Tartavel et al. 2015].
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Scale 0

Scale 1

Scale K

CNN Synthesis

CNN Synthesis

CNN Synthesis

Synthesis 0

Synthesis 1

Synthesis K

White Noise

Final resultReference image

Down-sampling

Down-sampling

Up-sampling

Reference Output

Input - Initialization
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Figure 3.1: Multi-resolution strategy. The exemplar is down-sampled by factors
2−1, 2−2, · · · , 2−k to build a pyramid I(1), I(2), · · · , I(k). At resolution K, a new texture
is synthesized by using I(k) as the exemplar and the upsampled result of the synthesis
at scale K − 1 as initialization (instead of white noise). We repeat this step until we
reach the top of the image pyramid. Figure based on Liu [2017].

Let us write F(I) for the Discrete Fourier Transform (DFT) of an image I, F−1

for the inverse DFT and | • | for the complex modulus. The idea is to constrain
the synthesized image Ĩ to have a Fourier spectrum |F(Ĩ)| as similar as possible to
|F(I)|, the spectrum of I. A simple way to do this is to first perform the multi-
resolution neural synthesis described above, and then to replace the phases of the
Fourier transform of the synthesized image with random phases, before applying the
inverse Fourier transform to the result [Galerne et al. 2011]. Now, this sequential
strategy is not satisfactory, since the randomization of phases would destroy the effect
of both the statistical constraints on the VGG features and the effect of the multi-
resolution strategy. Therefore, we propose to incorporate the Fourier constraint into
the multi-resolution synthesis process. A preliminary, mono-scale version of this idea
was presented in [Liu et al. 2016a].

In order to include the Fourier constraint into the loss function used for synthesizing
images, we first introduce EI , the set of images having the same spectrum as I the
exemplar image. In the case of color images, this is defined as

EI =
{
J ∈ Rh×w×3 | ∃ φ ∈ Rh×w : F(J) = eiφF(I)

}
.

Next, we define the Fourier loss associated with the image Ĩ as the normalized Euclidean
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distance between Ĩ and EI ,

Lspe = 1
2nd(Ĩ , EI)2 = 1

2N ‖Ĩ − PI(Ĩ)‖2 (3.3)

and the total loss as:

L = LGram + βLspe, (3.4)

where β is a weighting parameter and PI is the projection operator on EI . This pro-
jection is given by (see [Tartavel et al. 2015, Appendix A]):

PI(Ĩc) = F−1
(
F(Ĩ) · F(I)
|F(Ĩ) · F(I)| · F(Ic)

)
, c ∈ {r, g, b}, (3.5)

where · is the scalar product in C3, that is

F(Ĩ) · F(I) =
∑

c=r,g,b
F(Ĩc)F(Ic)∗,

with Ic, for c = r, g, b, being the color channels of I and a∗ the conjugate of complex
number a. This constraint can be seen as a specific statistic Φ0 on the layer "0" of
the network, i.e. its input2, with Φ0(X) = X − PI(X) and a weighting term α0 = β

2n .
This spectrum constraint can be seen as a regularization to the Ill-posed example based
synthesis problem. We can see the β term as a parameter to synthesis texture to create
image in the spectrum of texture from random one to almost periodic ones.

3.2.4 Autocorrelation of the Feature Maps
In this section, we consider an alternative way to impose long-range consistency, based
on the autocorrelation of the features maps. This is motivated by the fact that the au-
tocorrelation is a proxy of repeating patterns, such as the presence of periodic elements
in the signal. We can track the used of autocorrelation back to the 50’s. Kaizer [1955]
showed that autocorrelation can be used for characterizing textural features of aerial
photographs of Arctic regions3. As explained in the third paragraph of Section 2.5.2.3,
this idea has been explored for texture synthesis with CNNs with different modalities
in [Novak et al. 2016; Berger et al. 2017; Sendik et al. 2017].

The autocorrelation function of an image is defined as the convolution of the im-
age with itself. Let I ∈ Rh×w, the autocorrelation C(I) =∈ Rh×w is defined, for
∀k ∈ {1, · · · , h} and ∀l ∈ {1, · · · , w}, as

C(I)(k, l) = 1
n2

h∑
i=1

w∑
j=1

I(i, j)I(| i+ k |h, | j + l |w) (3.6)

= 1
n2 I ∗ I, (3.7)

2The same formulation can be used for the TV term of Johnson et al. [2016] for instance.
3According to Haralick [1979].
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with | • |h being the modulo operation with divisor h. An efficient way to compute
the autocorrelation is to use the DFT. According to the Wiener-Khintchin theorem,
we have:

C(I) = F−1(| F(I) |2). (3.8)

Then, we define the autocorrelation constraint at the layer l as

Φl(f l) = Al, (3.9)

with Al ∈ Rhl×wl×ml the tensor of the squared modulus of the Fourier transform of the
features maps, i.e.:

Alp = 1
n2
l

| F(f lp) |2, (3.10)

with p ∈ {1, · · · ,ml} the corresponding indexes of the feature map p. Using this toric
representation allows one to consider all possible shifts between pixels.

This constraint is similar to the one in [Sendik et al. 2017], except that, in our case,
the autocorrelation is computed in the Fourier domain and there is no weighting of the
elements of the autocorrelation matrix by the inverse of the total amount of overlapping
regions. Moreover, at a fixed layer, we consider each feature maps independently
whereas in [Berger et al. 2017] they compute correlation between the different features
maps of a layer. Even if we don’t explicitly impose the correlations between channels
at a given layer, they are implicitly controlled at the previous level. Indeed, the current
layer recombines all the channels of the previous one, on the contrary to wavelet or
scattering transforms.

3.3 High Resolution Experiments

In this section, we perform experiments to illustrate both the multi-resolution frame-
work and the additional constraints we propose for neural texture synthesis. After
briefly introducing the methods we compare ourselves to, we first show some visual
results. Then, we propose a method to evaluate the innovation capacity of algorithms,
and more precisely their tendency to produce verbatim copy of the input. Further,
we evaluate the methods quantitatively using the Kullback-Leibler divergence between
wavelet statistics. Despite the interest of such quantitative evaluations, it is known
that they have severe limitations, in particular to evaluate results at large scales [Dong
et al. 2020]. Therefore, we have also conducted a medium scale perceptual evaluation
from human observers, the results of which we analyze in Section 3.3.3.3. These dif-
ferent evaluations have been conducted on the 20 texture images visible in Figure 3.7.
These high resolution (1024× 1024) textures have been chosen to include both regular
and irregular textures. Some of them display strong long-range dependency. Eventu-
ally, we study the effects of various parameters and briefly illustrate the ability of our
method to produce higher resolution textures.

94



3.3. High Resolution Experiments

3.3.1 Architecture and Parameters
We use a VGG-19 network pre-trained on ImageNet with rescaled weights4 as in [Gatys
et al. 2015b] and we also use the same layers5 i.e.: ’conv1_1’, ’pool1’, ’pool2’, ’pool3’,
’pool4’. The corresponding weights6 are set to be α1 = α2 = α3 = α4 = α5 = 109.
When the spectrum constraint is considered, we use a weighting parameter β = 105

unless otherwise specified. Synthesis are performed using 2000 iterations. We use
Tensorflow as a deep learning framework and Scipy as an optimization package. We
do not perform a histogram matching of the output image, on the contrary to several
research works as [Gatys et al. 2016]. Synthesizing one texture of size 1024 × 1024
takes 85 minutes with a GeForce 1080 Ti for the method multi-resolution "Gram +
MRInit". The overhead compared to Gatys et al. [2015b] at the same scale is limited
to 25 minutes because the synthesis at lower resolutions are faster.

3.3.2 Other Texture Synthesis Methods
The first method we compare ourselves to is the original synthesis method from Gatys
et al. [2015b], that from now we refer to as "Gatys". We also consider the method
"Deep Corr", introduced in [Sendik et al. 2017], using the code from the authors7, with
a maximum of 2000 iterations. We also consider the multi-scale8 texture algorithm from
Snelgrove [2017], using the code from the author9, with layers 3 and 8 and 5 octaves in
the Gaussian pyramid as in the original paper. We use a maximum of 2000 iterations.
From now on, we refer to this method as "Snelgrove". These last two methods have
been chosen because they explicitly address the problem of reproducing large scale
structures. We also consider the Feed Forward approach proposed in [Ulyanov et al.
2016] using a PyTorch implementation by Jorge Gutierrez10. We refer to this method
as "Ulyanov". Finally, we consider two patch-based methods, from the works [Efros
et al. 1999] and [Efros et al. 2001], using implementations from the online journal IPOL
[Aguerrebere et al. 2013; Raad et al. 2017b], with default parameters settings. We refer
to these two methods respectively as "Efros Leung" and "Efros Freeman".

3.3.3 Visual Comparisons
In Figures 3.2 to 3.5 we display synthesis results using our methods and those presented
in the previous paragraph. For space reason, we only consider 4 textures, all exhibiting

4The rescaled VGG-19 network can be found at http://github.com/leongatys/DeepTextures
5See Figure 2.4b or Table D.3 in the Annex for the names of the layers
6Due to the numerical sensitivity of the LBFGS-B optimization algorithm.
7The code of Sendik et al. [2017] can be found on Github: https://github.com/omrysendik/DCor
8Although Snelgrove [2017] uses the term "multi-scale" of his method, we could maybe point that

it is more a "multi-resolution" approach. Indeed, Kwatra et al. [2005] use the term "multi-resolution"
about the use of several image resolutions and the term "multi-scale" about the use of different patch
size. The "multi-scale" term refers in a similar way to the cascade of filters used to compute image
representations as in [Heeger et al. 1995]. Nevertheless, these two terms appear very close to each
other.

9The code of Snelgrove [2017] can be found on Github: https://github.com/wxs/
subjective-functions

10https://github.com/JorgeGtz/TextureNets_implementation

95

https://www.tensorflow.org/
https://www.scipy.org/
https://pytorch.org/
http://github.com/leongatys/DeepTextures
https://github.com/omrysendik/DCor
https://github.com/omrysendik/DCor
https://github.com/wxs/subjective-functions
https://github.com/wxs/subjective-functions
https://github.com/wxs/subjective-functions
https://github.com/JorgeGtz/TextureNets_implementation


3. Texture Synthesis

some kind of long-range dependency. Their resolution is 1024×1024. Some details can
be seen in Figure 3.6. All results can be seen in Annex (Section A.1).

We first notice that patch-based methods are very faithful to the reference image.
However, they have the tendency to produce regions that are exact copy of the input,
a verbatim effect already noticed in [Aguerrebere et al. 2013] and investigated in the
next section. They also at times yield images with constant or repetitive patterns.

Among neural methods, the original "Gatys" method is still competitive, but strug-
gles to reproduce large scales on these high resolution textures. This is due to the size
of the receptive fields, which is clearly not sufficient in this case. The method from
"Ulyanov" is worse in this respect. The method "Deep Corr" improves the preservation
of large scale structures, but results are not satisfying, some structures are lacking
and artifacts are visible. The default weighting of the four terms of the loss function
used by Sendik et al. [2017] is maybe not suitable for high resolution synthesis. In
contrast, the plain use of the autocorrelation term as an additional constraint, as we
propose in "Autocorr", yields better results, even though no use of the Gram matrices
is made. The regularization and innovation terms present in the method from Sendik
et al. [2017] may also be harmful in these cases. Next, we observe that adding the
Fourier spectrum constraint alone (at a single scale) yields interesting results, but is
not enough to get fully satisfying results.

The multi-resolution methods, be it "Snelgrove" or the one we propose, "Gram+
MRInit", "Gram+Spectrum+MRInit", "Autocorr+MRInit", all improve the original
synthesis method "Gatys". In the case of very regular textures, as in Figures 3.3 to 3.5,
our multi-resolution methods "XXX+MRInit" yields better results, as will be confirmed
by the user study in Section 3.3.3.3. The method "Autocorr+MRInit" sometimes yields
results that are clearly better than others, especially for very structured textures,
as can be seen in Figure 3.4 or on the last line of Figure 3.6. Nevertheless, it also
sometimes fails as in Figure 3.2 and may produce artifacts on some examples. For this
reason and for human resource constraints, we choose, among our methods, to only
include "Gram+MRInit" and "Gram+Spectrum+MRInit" in the user study presented
in Section 3.3.3.3.
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Reference [Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure 3.2: Synthesis results using different methods for a given reference of size 1048×
1048.

97



3. Texture Synthesis

Reference [Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure 3.3: Synthesis results using different methods for a given reference of size 1048×
1048.
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Reference [Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure 3.4: Synthesis results using different methods for a given reference of size 1048×
1048.
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3. Texture Synthesis

Reference [Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure 3.5: Synthesis results using different methods for a given reference of size 1048×
1048.
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[Snelgrove 2017] Gram + MRInit Gram + Spectrum
+ MRInit Autocorr + MRInit

Figure 3.6: Zoom in some of the texture synthesis results. For the MSInit cases, we
use K = 2. The region of each image framed by a red square is shown the row below.
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3. Texture Synthesis

Regular images

Irregular images

Figure 3.7: Reference images used in the different evaluation methods.
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3.3. High Resolution Experiments

3.3.3.1 Verbatim Copy

Texture synthesis methods should have the capacity to produce new images that are as
diverse as possible. In the pioneering work FRAME [Zhu et al. 1997], this is achieved by
maximizing the entropy. Similar ideas have recently been explored in [Lu et al. 2015; De
Bortoli et al. 2019]. Following these ideas, texture synthesis methods could be evaluated
based on their capacity to maximize the entropy under some given constraints. Such a
quantitative evaluation, however, is far from being trivial and probably not tractable.

In this section, we take a pragmatic and much more modest way. We propose a
simple way to evaluate the tendency of methods to locally produce verbatim copy of
the input. This is a known default of patch-based methods, see e.g. [Aguerrebere et al.
2013; Raad et al. 2017b]. For each pixel of a given synthesis result, we look for its
nearest neighbor in the input image. The notion of proximity is defined by comparing
small square neighborhoods (patches) around each pixel. In Figure 3.8, we display the
corresponding displacement map. The used color scale is obtained by assigning the x
coordinate of the displacement map to red, and the y coordinate to blue. Verbatim
copies of the input appear as constant regions in these displacement maps. As expected,
the only two methods displaying large such regions are patch-based methods. All others
seem to produce a reasonable amount of innovation, even though the multi-resolution
method from Snelgrove [2017] can very occasionally produce small verbatim copies,
probably due to the strong constraints it puts on the Gaussian pyramid.

In order to quantify the visual effect of the displacement maps, we propose to
measure the flat regions corresponding to locally constant displacements. For each pixel
of the displacement map, we count how many of its neighbors (in 4-connexity) share
its color value. Denoting ns this number, a score is defined as DS = 1− ns/Nn, where
Nn is the total number of investigated neighbors. The more verbatim copy there are in
the synthesis, the closest the score is to 0. The boxplots of this score for the different
methods and the twenty reference images can be seen in Figure 3.9. They confirm
the impression given by the displacement map that the patch-based methods yield
significantly more verbatim copy than neural methods. It should be noted, however,
that the proposed methodology is relatively rough and does not account either for small
perturbations on the pixel positions nor for noisy pixel values.

3.3.3.2 Feature-based Evaluation

Feature-based evaluation of textures is not straightforward, because no existing feature
is considered as the reference one. Moreover, such evaluations are inherently biased. In
the most extreme case, one could even try to optimize the chosen features to synthesize
new textures. In this work, we choose to rely on wavelet filters that both are classical
texture features and are not used in any of the considered methods. More precisely, we
rely on the texture features proposed in [Do et al. 2002]. In this paper, two textures
are compared by computing the Kullback–Leibler (KL) divergence between parametric
estimation (using generalized Gaussians) of the marginal distributions of wavelet co-
efficients. In order to quantify the proximity of a synthesized texture to the reference
image, we propose to:

1. Compute the wavelets coefficients of the reference image and the synthesized one
(in our case we choose a Daubechies 4 wavelets as in [Do et al. 2002] with 8 scales
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3. Texture Synthesis

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure 3.8: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure 3.2.

instead of 3, in order to account for large scale structures).
2. For each scale and orientations estimate the parameters of a generalized Gaussian

from the empirical distribution of wavelets coefficients
3. For each scale and orientations compute the KL divergence between the estimated

generalized Gaussians (using a closed-form formula)
We display in Figure 3.10 the boxplots of the log KL scores over the 20 consid-

ered images, for the different methods. For each box, the horizontal orange line cor-
responds to the average result and the star to the median. On the average, the best
method for this evaluation scheme appears to be "Gram+MRInit". Then follow the two
patch-based methods. This is in agreement with results from the previous paragraph,
since indeed a verbatim copy will have a perfect score. The next method is "Gram+
Spectrum+MRInit", followed by "Snelgrove" and "Autocorr+MRInit". This evaluation
confirms the good quality of results produced by the proposed "XXX+MRInit" meth-
ods, as well as "Snelgrove", at least on this image dataset containing a relatively high
proportion of structured textures.
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Figure 3.9: Boxplots of the displacement score for the different methods on the twenty
reference images of size 1024 × 1024. For each box, the horizontal orange line corre-
sponds to the average result and the star to the median. The crosses are outliers, i.e.
points outside 1.5 times the interquartile range.
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Figure 3.10: Boxplots of the log KL scores for the different methods on the twenty ref-
erence images of size 1024×1024. For each box, the horizontal orange line corresponds
to the average result and the star to the median. The crosses are outliers (i.e. points
outside 1.5 times the interquartile range).
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3. Texture Synthesis

3.3.3.3 Perceptual Evaluation of Texture Synthesis Methods

Then, we also evaluate the proposed methodology through a perceptual user study.
Indeed, it is shown in [Clarke et al. 2011; Dong et al. 2013; Dong et al. 2020] through
extensive experiments that feature-based evaluations such as the one of the previous
section do not approach well human-based visual evaluation of texture similarity, espe-
cially in the case of long-range correlations, which is precisely one of the cases tackled
in this paper. We therefore rely on a user study to compare the framework we propose
to both the original method from Gatys et al. [2015a] and some of its improvement that
focus on the respect of large scale structures [Sendik et al. 2017; Snelgrove 2017]. For
ethical reasons, we decided not to rely on micro-work platforms. Most users involved
are volunteer PhD students or researchers, which certainly induces some bias. The
total number of persons involved was 93, each having the possibility to answer up to
40 questions.

Methodology Each question aims at comparing two methods on a given texture. In
order to evaluate results at different scales, both the complete synthesis and a detail
are presented to the user, see Figure 3.11. The evaluation is performed on the twenty
1024 × 1024 images considered in this paper. In order to get further insight on the
methods, we have split the textures in two groups: regular and irregular, see Figure 3.7.
Following the results of the previous sections, we chose to include in the study the five
following methods: "Gatys" [Gatys et al. 2015b], "Gram+MRInit", "Gram+Spectrum+
MRInit", "Snelgrove" [Snelgrove 2017] and "Deep Coor" [Sendik et al. 2017]. The first
four correspond to the best feature-based score and visual impression. The last one
appears to us as the most directly related to the present work in the literature, since
it explicitly aims at preserving large scale structures through additional statistical
constraints. For each couple of methods (out of five) and each image, we build up two
setups corresponding to the two possible respective positions of methods (right and
left) to avoid a possible lateral bias. This results in 400 different questions, for which
we got 3170 answers. For each question, four images are presented corresponding to
the two methods at two different scales (global and local). There are 4 possible answers
(method 1 is the best for the global and the local scale, method 1 is the best for the
local scale and method 2 the best for the global scale, etc.). Even though this is
presented as a single question to the user, we treat its answer as two answers, one for
the local scale and one for the global scale. This survey has been made with PsyToolkit
servers [Stoet 2010; Stoet 2017]. Some screenshots of the online website used for the
perceptual survey can be found in Annex, Section A.3. It should be noted that asking
a question such as "which result is most similar to the reference" is not trivial. Users
were indicated that by "the most similar", it should be understood "which gives the
most similar visual impression". Images are not expected to correspond pixel by pixel.
Ideally, a synthesized image should give the impression to correspond to a different
region of the same material as the reference.

Bradley-Terry model In order to quantify the results of this study, we rely on the
Bradley-Terry model [Bradley et al. 1952], as used in other perceptual study, see [Um et
al. 2019]. Let βi ∈ R represent the strength of method i (also called performance score),
and let the outcome of a duel between methods i and j be determined by βi− βj. The
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3.3. High Resolution Experiments

Figure 3.11: Example of the layout for one question.

Bradley-Terry model treats these outcomes as independent Bernoulli random variables
with parameter pij, where the log-odds corresponding to the probability pij that method
i beats method j is modeled as:

log pij
1− pij

= βi − βj. (3.11)

Equivalently, solving for pij yields

pij = eβi−βj

1 + eβi−βj
= eβi

eβi + eβj
. (3.12)

This model is over-parameterized in the sense that it is exactly the same if we add
a fixed constant to all values. The Bradley-Terry model assigns scores to a fixed set
of items based on pairwise comparisons of these items, where the log-odds of item
"beating" item is given by the difference of their scores. The strength is estimated by
second order optimization of the maximum likelihood and the standard deviation of
the difference is approximated with the Hessian of this likelihood (more details about
it can be found in Annex, Section A.4.1).

Duel results First, we can consider all the duels between all pairs of methods and
all reference images, either from the complete set (20 images) or from the subsets of
regular and irregular images separately. Results can be averaged for the global and
local scale or treated separately. The results can be found in Tables 3.1 to 3.3. Overall,
the two best methods for this evaluation appear to be "Gram+MRInit" and "Gram+
Spectrum+MRInit". For the global scale, there is a draw for the complete dataset
and for the irregular images, while "Gram+Spectrum+MRInit" wins on the regular
images. For the local scale, "Gram+MInit" always win. From this, we may deduce that
the spectrum constraint may be useful for preserving large scale structure of regular
textures, possibly at the price of a slight degradation at a more local scale. For more
irregular textures, method "Gram+MRInit" should be preferred. When we consider all
images and both scales (Table 3.1) we can extract a full ranking: "Gram+MRInit" >
"Gram+Spectrum+MRInit" > Snelgrov > Gatys > Deep Cor.

Winning probability An alternative evaluation consists in calculating the probabil-
ity that a method i is chosen among all candidates. This "winning probability" is given
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3. Texture Synthesis

Global case
All images

[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.78e+00
(2.24e-01)

-2.68e+00
(2.21e-01)

-2.17e+00
(2.11e-01)

4.00e-02
(1.86e-01)

Gram +
MRInit

2.78e+00
(2.24e-01)

1.07e-01
(1.66e-01)

6.12e-01
(1.70e-01)

2.82e+00
(2.26e-01)

Gram +
Spectrum +
MRInit

2.68e+00
(2.21e-01)

-1.07e-01
(1.66e-01)

5.05e-01
(1.67e-01)

2.72e+00
(2.23e-01)

[Snelgrove
2017]

2.17e+00
(2.11e-01)

-6.12e-01
(1.70e-01)

-5.05e-01
(1.67e-01)

2.21e+00
(2.14e-01)

Deep Corr
[Sendik et al.
2017]

-4.00e-02
(1.86e-01)

-2.82e+00
(2.26e-01)

-2.72e+00
(2.23e-01)

-2.21e+00
(2.14e-01)

Regular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.67e+00
(3.19e-01)

-3.54e+00
(3.50e-01)

-1.93e+00
(2.95e-01)

-2.17e-01
(2.62e-01)

Gram +
MRInit

2.67e+00
(3.19e-01)

-8.73e-01
(2.61e-01)

7.35e-01
(2.49e-01)

2.45e+00
(3.09e-01)

Gram +
Spectrum +
MRInit

3.54e+00
(3.50e-01)

8.73e-01
(2.61e-01)

1.61e+00
(2.81e-01)

3.33e+00
(3.40e-01)

[Snelgrove
2017]

1.93e+00
(2.95e-01)

-7.35e-01
(2.49e-01)

-1.61e+00
(2.81e-01)

1.72e+00
(2.85e-01)

Deep Corr
[Sendik et al.
2017]

2.17e-01
(2.62e-01)

-2.45e+00
(3.09e-01)

-3.33e+00
(3.40e-01)

-1.72e+00
(2.85e-01)

Irregular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.78e+00
(2.24e-01)

-2.68e+00
(2.21e-01)

-2.17e+00
(2.11e-01)

4.00e-02
(1.86e-01)

Gram +
MRInit

2.78e+00
(2.24e-01)

1.07e-01
(1.66e-01)

6.12e-01
(1.70e-01)

2.82e+00
(2.26e-01)

Gram +
Spectrum +
MRInit

2.68e+00
(2.21e-01)

-1.07e-01
(1.66e-01)

5.05e-01
(1.67e-01)

2.72e+00
(2.23e-01)

[Snelgrove
2017]

2.17e+00
(2.11e-01)

-6.12e-01
(1.70e-01)

-5.05e-01
(1.67e-01)

2.21e+00
(2.14e-01)

Deep Corr
[Sendik et al.
2017]

-4.00e-02
(1.86e-01)

-2.82e+00
(2.26e-01)

-2.72e+00
(2.23e-01)

-2.21e+00
(2.14e-01)

Table 3.1: Difference between the methods strengths (βi−βj) (equation (3.11)) Index i
corresponds to rows and index j to columns. When |βi−βj| > 1,96ŝeij the method i is
considered as beating the method j and the text is displayed in green. In the opposite
case, the text is red. When the text is black, the difference is not significant.
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Local case
All images

[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-1.62e+00
(1.77e-01)

-9.65e-01
(1.65e-01)

-1.02e+00
(1.64e-01)

1.45e+00
(2.04e-01)

Gram +
MRInit

1.62e+00
(1.77e-01)

6.59e-01
(1.61e-01)

6.04e-01
(1.63e-01)

3.07e+00
(2.27e-01)

Gram +
Spectrum +
MRInit

9.65e-01
(1.65e-01)

-6.59e-01
(1.61e-01)

-5.59e-02
(1.54e-01)

2.41e+00
(2.15e-01)

[Snelgrove
2017]

1.02e+00
(1.64e-01)

-6.04e-01
(1.63e-01)

5.59e-02
(1.54e-01)

2.47e+00
(2.16e-01)

Deep Corr
[Sendik et al.
2017]

-1.45e+00
(2.04e-01)

-3.07e+00
(2.27e-01)

-2.41e+00
(2.15e-01)

-2.47e+00
(2.16e-01)

Regular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.31e+00
(2.89e-01)

-1.74e+00
(2.74e-01)

-1.80e+00
(2.74e-01)

8.95e-01
(2.78e-01)

Gram +
MRInit

2.31e+00
(2.89e-01)

5.74e-01
(2.33e-01)

5.15e-01
(2.38e-01)

3.21e+00
(3.32e-01)

Gram +
Spectrum +
MRInit

1.74e+00
(2.74e-01)

-5.74e-01
(2.33e-01)

-5.90e-02
(2.29e-01)

2.64e+00
(3.16e-01)

[Snelgrove
2017]

1.80e+00
(2.74e-01)

-5.15e-01
(2.38e-01)

5.90e-02
(2.29e-01)

2.69e+00
(3.18e-01)

Deep Corr
[Sendik et al.
2017]

-8.95e-01
(2.78e-01)

-3.21e+00
(3.32e-01)

-2.64e+00
(3.16e-01)

-2.69e+00
(3.18e-01)

Irregular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-1.62e+00
(1.77e-01)

-9.65e-01
(1.65e-01)

-1.02e+00
(1.64e-01)

1.45e+00
(2.04e-01)

Gram +
MRInit

1.62e+00
(1.77e-01)

6.59e-01
(1.61e-01)

6.04e-01
(1.63e-01)

3.07e+00
(2.27e-01)

Gram +
Spectrum +
MRInit

9.65e-01
(1.65e-01)

-6.59e-01
(1.61e-01)

-5.59e-02
(1.54e-01)

2.41e+00
(2.15e-01)

[Snelgrove
2017]

1.02e+00
(1.64e-01)

-6.04e-01
(1.63e-01)

5.59e-02
(1.54e-01)

2.47e+00
(2.16e-01)

Deep Corr
[Sendik et al.
2017]

-1.45e+00
(2.04e-01)

-3.07e+00
(2.27e-01)

-2.41e+00
(2.15e-01)

-2.47e+00
(2.16e-01)

Table 3.2: Difference between the methods strengths (βi−βj) (equation (3.11)) Index i
corresponds to rows and index j to columns. When |βi−βj| > 1,96ŝeij the method i is
considered as beating the method j and the text is displayed in green. In the opposite
case, the text is red. When the text is black, the difference is not significant.
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Global and local case
All images

[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.10e+00
(1.36e-01)

-1.70e+00
(1.30e-01)

-1.50e+00
(1.26e-01)

7.48e-01
(1.31e-01)

Gram +
MRInit

2.10e+00
(1.36e-01)

3.93e-01
(1.14e-01)

5.98e-01
(1.17e-01)

2.85e+00
(1.53e-01)

Gram +
Spectrum +
MRInit

1.70e+00
(1.30e-01)

-3.93e-01
(1.14e-01)

2.05e-01
(1.12e-01)

2.45e+00
(1.47e-01)

[Snelgrove
2017]

1.50e+00
(1.26e-01)

-5.98e-01
(1.17e-01)

-2.05e-01
(1.12e-01)

2.25e+00
(1.45e-01)

Deep Corr
[Sendik et al.
2017]

-7.48e-01
(1.31e-01)

-2.85e+00
(1.53e-01)

-2.45e+00
(1.47e-01)

-2.25e+00
(1.45e-01)

Regular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.42e+00
(2.10e-01)

-2.50e+00
(2.12e-01)

-1.82e+00
(1.98e-01)

3.27e-01
(1.84e-01)

Gram +
MRInit

2.42e+00
(2.10e-01)

-8.77e-02
(1.64e-01)

5.94e-01
(1.68e-01)

2.74e+00
(2.19e-01)

Gram +
Spectrum +
MRInit

2.50e+00
(2.12e-01)

8.77e-02
(1.64e-01)

6.82e-01
(1.68e-01)

2.83e+00
(2.20e-01)

[Snelgrove
2017]

1.82e+00
(1.98e-01)

-5.94e-01
(1.68e-01)

-6.82e-01
(1.68e-01)

2.15e+00
(2.08e-01)

Deep Corr
[Sendik et al.
2017]

-3.27e-01
(1.84e-01)

-2.74e+00
(2.19e-01)

-2.83e+00
(2.20e-01)

-2.15e+00
(2.08e-01)

Irregular images
[Gatys et al.
2015b]

Gram +
MRInit

Gram +
Spectrum +
MRInit

[Snelgrove
2017]

Deep Corr
[Sendik et al.
2017]

[Gatys et al.
2015b]

-2.10e+00
(1.36e-01)

-1.70e+00
(1.30e-01)

-1.50e+00
(1.26e-01)

7.48e-01
(1.31e-01)

Gram +
MRInit

2.10e+00
(1.36e-01)

3.93e-01
(1.14e-01)

5.98e-01
(1.17e-01)

2.85e+00
(1.53e-01)

Gram +
Spectrum +
MRInit

1.70e+00
(1.30e-01)

-3.93e-01
(1.14e-01)

2.05e-01
(1.12e-01)

2.45e+00
(1.47e-01)

[Snelgrove
2017]

1.50e+00
(1.26e-01)

-5.98e-01
(1.17e-01)

-2.05e-01
(1.12e-01)

2.25e+00
(1.45e-01)

Deep Corr
[Sendik et al.
2017]

-7.48e-01
(1.31e-01)

-2.85e+00
(1.53e-01)

-2.45e+00
(1.47e-01)

-2.25e+00
(1.45e-01)

Table 3.3: Difference between the methods strengths (βi−βj) (equation (3.11)) Index i
corresponds to rows and index j to columns. When |βi−βj| > 1,96ŝeij the method i is
considered as beating the method j and the text is displayed in green. In the opposite
case, the text is red. When the text is black, the difference is not significant.
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3.3. High Resolution Experiments

by the average over j of the probability pij that a participant chooses the candidate i
over j:

Wi = 1
N − 1

N∑
j 6=i

pij = 1
N − 1

N∑
j 6=i

eβi−βj

1 + eβi−βj
(3.13)

In contrast to the pairwise probability pij,Wi represents the probability that a candi-
date i was preferred over all other candidates. We can estimate the standard error of
Wi as:

Σi = 1
N − 1

√√√√√ N∑
j 6=i

σ̂2
ij. (3.14)

under the hypothesis that the pij are independent. These winning probabilities are
displayed in Figures 3.12 to 3.14 and confirm the duel results.
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Figure 3.12: Winning probabilitiesWi with standard error Σi for the different methods
for the global case.

Local case
All images
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Figure 3.13: Winning probabilitiesWi with standard error Σi for the different methods
for the local case.

Another possibility is to consider each reference image as an individual study and
to compute a winning probability over the whole set of reference images along with a
near-convergence consistency metric as in [Um et al. 2019]. This exercise is available
in Annex, Section A.4.2.
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3. Texture Synthesis

Global and local case
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Figure 3.14: Winning probabilitiesWi with standard error Σi for the different methods
for both global and local cases.

3.3.4 Influence of Parameters
In this section, we display experiments illustrating the effects of two parameters of the
proposed method: K, the number of considered scales, and β, the weighting of the
spectrum term when using the method "Gram+Spectrum+MRInit".

3.3.4.1 Multi-resolution Strategy

In Figure 3.15, we display synthesis results with K ranging from 0 (original method
from Gatys et al. [2015b]) to 4. The quality of results increases up to K = 2. This
confirms the fact that the size of the filters in the VGG19 network is too small to
describe large scales. Its also illustrates the fact than the VGG filters are versatile
and provide good features at different scales, since the network has been trained on
224 × 224 input images. From K = 3, the method starts to produce results that are
very similar to the reference, the case K = 4 being almost a copy of the reference. This
may be due to the fact that in these cases, the number of parameters of the synthesis
model is up to two orders of magnitude larger than the number of pixels of the coarse
image. In other words, the multi-resolution strategy reduces too much the solution
space for this optimization problem. In practice, K = 2 appears a good choice for
synthesizing 1024× 1024 images.

3.3.4.2 Weighting of the Spectrum Constraint

In Figure 3.16, we display the result of the synthesis for different values of β, the
parameter weighting the spectrum constraint, using the method "Gram+Spectrum+
MRInit". For the structured textures for which the spectrum term is useful, the best
results are obtained for a relatively large β, of the order of 105 for the brick image
(second column). For more irregular textures, such high values may deteriorate results.
This is in agreement with the results from the previous evaluations, where a value
β = 105 was used. The problem of automatically setting this parameter is open. For
instance, in [Risser et al. 2017], it is proposed to clip the gradient of a given term of
the loss if the amplitude of this gradient is bigger than a threshold. Nevertheless, the
optimization would be even better if one can dynamically tune the weighting of the
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3.3. High Resolution Experiments

Reference

K = 0

K = 1

K = 2

K = 3

K = 4

Figure 3.15: Synthesis results using a different number of scaleK in the multi-resolution
strategy. K = 0 correspond to the original method from Gatys et al. [2015b].

different loss’s terms based on non-gradient information such as the magnitude of the
losses or statistics from the reference image.

In Section A.5 of the annex, synthesis with different values for β without the multi-
resolution strategies can be found. The weighting value still influences a lot the result.

113



3. Texture Synthesis

β = 0

β = 0,1

β = 102

β = 105

β = 108

Figure 3.16: Synthesis results using different β in equation (3.4) (original can be seen
in Figure 3.15), β = 0, 10−1, 102, 105, 108 with the multi-resolution strategy and K = 2.

3.3.5 Higher Resolution Synthesis
We conclude this experimental section by showing synthesis results of higher resolution
(2048 × 2048). We consider methods "Gatys", "Gram+MRInit", "Gram+Spectrum+
MRInit" (both using K = 3) and "Snelgrove" [Snelgrove 2017] (with one more octave
than previously). The results can be seen in Figure 3.17. More results can be seen
in Annex (Section A.6). Unsurprisingly the interest of the multi-resolution schemes is
even stronger in this case and the mono-scale method fails. Figure 3.17b shows the
ability of the spectrum constraint to enforce large scale regularity at this resolution.
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(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure 3.17: Synthesis results using different methods for two given references of size
2048× 2048.



3.4 Unsuccessful Attempts
This section brings together unsuccessful experiences about using other kinds of statis-
tics for texture synthesis with CNNs and therefore may serve as a basis for future
research. We tried to impose simpler statistics than the Gram matrices such as mo-
ments or norms but also more complex ones such as the spectrum of the whole feature
maps.

3.4.1 Using Other Statistics for Texture Synthesis
3.4.1.1 Moments and Norms of the Feature Maps

As mentioned previously, numerous works tend to find the minimal set of statistics
needed to correctly describe texture images. Some works have shown that second-order
statistics between features are not necessary to get satisfying results. De Bortoli et al.
[2019] successfully use the mean of the feature maps. Observe that the same statistics
do not provide good results for the original method [Gatys et al. 2015b, Figure 3]. This,
combined with the highly redundant nature of networks such as VGG19, trained for
recognition, suggests that much room is available to reduce the number of parameters
in these models. One solution is to consider the J first standardized moments of the
feature maps. Thus for the feature map p of the layer l we can define the first J
standardized moments in the following way:

µj(f lp) =



1
nl

∑nl
i=1 f

l
p(i) if j = 1

1
nl

∑nl
i=1

(
f lp(i)− µ1(f lp)

)2
if j = 2

1
nl

∑nl
i=1

(
f l

p(i)−µ1(f l
p)√

µ2(f l
p)

)k
otherwise

. (3.15)

The considered statistics is then:

Φl(f l) =


µ1(f l1) · · · µ1(f lml

)
... . . . ...

µJ(f l1) · · · µJ(f lml
)

 . (3.16)

Nevertheless, some channels may be completely equal to zero after ReLU activation.
This leads to a variance equals to zero and then the calculus of the standardized
moment of order J > 2 leads to a division by zero. To face this problem, we have also
considered another type of first-order statistics of the feature map: the first Q p-norms.
This is defined as follows:

Φl(f l) =


‖f l1‖1 · · · ‖f lml

‖1
... . . . ...

‖f l1‖Q · · · ‖f lml
‖Q

 , (3.17)

with ‖f lq‖p =
(

1
nl

∑nl
i=1 | f lq |p

)1/p
, the classical p-norm. In both cases, we consider that

all the terms of the Φl operator have the same dynamic even if it not the case.
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3.4. Unsuccessful Attempts

3.4.1.2 Random Phase Feature Maps

As the use of the autocorrelation do not impose the covariances between feature maps,
we also propose a more constrained statistic. We take inspiration from the Random
Phase Noise algorithm [Galerne et al. 2011], where a new texture image is synthesized
by adding a random phase θ to the Fourier phase of the image. In our case, we
considered the feature map as a multi-channel image and we add the same random
phase to the Fourier transform of each channel of features map f l. This is done only
for the last layer L of the CNN considered for the synthesis because otherwise it is too
constrained. The random phase version of fL is equal to:

f̂Lp = F−1(F(fLp )ΘL), (3.18)

for each channel p. It is a term product. With ΘL(x, y) = eiθ(x,y) for x ∈ 1, · · · , hL and
y ∈ 1, · · · , wL with θ(x, y) ∼ U ]−π, π] such that ΘL has an hermitian symmetry11.
The corresponding loss function is:

LRandom Phase,L = 1
2‖f̂

L − f̃L‖2
F . (3.19)

In the experimental part, we propose to use this operator for the deepest layer and
the autocorrelation for the other ones to also respect low-level patterns of the reference
image. Then the complete loss function becomes:

LRandom Phase+Autocorr,S =
L−1∑
l=1

αl‖Φl(f l)− Φl(f̃ l)‖2
F + αLLRandom Phase,I,L(Ĩ), (3.20)

with the autocorrelation Φl defined in equation (3.9).

3.4.2 Preliminary Experimental Results
In this section, we perform experiments to illustrate the different statistics that can
be used instead of Gram matrices for texture synthesis with CNN with low resolution
images (around 256× 256). We can see the results for three different reference images
in Figures 3.18 to 3.20 and for more reference images in the Annex Section A.7.

First, we can confirm that using only the mean of the feature maps with the orig-
inal Gatys et al.’s optimization process [2015b] yields to worst results than using the
Gram matrices, as it has already been shown. Including the variance (case "Moments
J=2") provides better results whereas using the variance alone leads to halo artifacts
(Figure 3.19). This halo effect can also be found in the case of the Gram matrices as
mentioned by Risser et al. [2017]. When we consider the first 4 moments (J=4), the
algorithm completely fails. It may be due to a different in the range of the skewness
or kurtosis compared to the mean or variance. On the other hand, the method based
on the first 4 p-norms enables to have better synthesis, especially for the stochastic
case, in Figure 3.18. Then, the random phase feature maps method fails to provide
adequate synthesis. Indeed, this method only considers the last layer without any con-
trol on small patches. Combining random phase feature maps on the last layer with

11Experimentally, ΘL is obtained by taking the phase of a Gaussian noise image.
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3. Texture Synthesis

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure 3.18: Synthesis results using different methods for a given reference of size
209× 314.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure 3.19: Synthesis results using different methods for a given reference of size
256× 256.

autocorrelation on the others yields to excellent regular synthesis (see Figure 3.20).
Nevertheless, this method is not consistent. It may provide excellent output as bad
ones. It may exist an optimal value for αL (equation (3.20)) that enables to have a
more reliable method.

The last thing we can point out is that the autocorrelation method synthesizes
images with more artifacts than the Gram based one. These kind of artifacts are
frequent in image synthesis with CNNs. There is no convincing indication of their
origin although a potential explanation is given by Odena et al. [2016]. Total variation
[Johnson et al. 2016] or spectrum constraints [Liu et al. 2016a] may be a solution to
control them. Indeed, the spectrum analysis is an efficient way to find them [Zhang
et al. 2019b]. This may be due to the fact that CNNs are focusing on high frequency
during training as mention before in the last paragraph of Section 2.2.1.1 about the Jo
et al.’s work [2017].
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Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure 3.20: Synthesis results using different methods for a given reference of size
256× 256.

High resolution synthesis can be found in Annex (Section A.8) for the promising
"Random Phase + Autocorr" method, with or without the multi-resolution strategy.

3.4.3 Number of parameters of the different texture
synthesis methods

One important metric in texture synthesis is the number of parameters used to repre-
sent the image. It provides an idea of the balance between fidelity and the amount of
information needed. The approximate formula12 of the number of parameters (and a
numerical evaluation of it) for the different methods proposed in this manuscript are
grouped into Table 3.4. The number of parameters for the approaches based on Gram
matrices, moments or norms of the feature maps only depend on the set of layers con-
sidered whereas the methods based on the spectrum and/or the autocorrelation also
depend on the size of the image. The number of parameters increases linearly with the
number of scales for our multi-resolution strategy but quadratically with the size of the
image with the use of a spectral or an autocorrelation constraint. The use of moments
or norms instead of the Gram matrices reduces 100 times the number of parameters
whereas using the autocorrelation increases it 20 times. In the multi-resolution scheme,
the autocorrelation approach has 120 times more parameters than the Gram matrices
one. The solution using the autocorrelation is the most costly in terms of the number
of parameters.

The use of the spectrum or the autocorrelation does not seem to experimentally
causes an important computational overheat compared to the feed-forward inference
and the back-propagated gradient computation required by the method. Nevertheless

12Indeed, in the formulas of the autocorrelation, spectrum or random phase, the terms (hl ∗wl)/2
and N = h∗w/2 can be refined because few terms of the discrete Fourier transform are real. If wl and
hl are even, we can subtract 4 to the formula at the layer l. If we consider 256× 256 or 1024× 1024
images then wl and hl are even.

119



3. Texture Synthesis

Method Approx Formula / Remark Number of
parameters

Quadratic in the
size of the image

Monoscale 256 ∗ 256
[Gatys et al. 2015b] - Gram ∑5

l=1 m
2
l /2 177k No

Mean ∑5
l=1 ml 1024 No

Variance ∑5
l=1 ml 1024 No

Moments (J = 2) ∑5
l=1 J ∗ml 2048 No

Moments (J = 4) ∑5
l=1 J ∗ml 4096 No

p-norm (Q = 4) ∑5
l=1 Q ∗ml 4096 No

Autocorrelation ∑5
l=1 ml ∗ (hl ∗ wl)/2 3080k Yes

Gram + Spectrum ∑5
l=1 m

2
l /2 +N/2 209k Yes

Random Phase mL ∗ (wL ∗ hL)/2 33k Yes
Autocorrelation + Random
Phase

∑5
l=1 ml ∗ (hl ∗ wl)/2 3080k Yes

Multi-scale 1024 ∗ 1024
Gram + MRInit (K = 2) K ∗∑5

l=1 m
2
l /2 531k No

Gram + Spectrum + MRInit
(K = 2) K ∗∑5

l=1 m
2
l /2 +N/2 1219k Yes

Autocorr + MRInit (K = 2) ∑K
k=0

∑5
l=1 ml ∗ (hl ∗ wl)/2k+1 64684k Yes

Autocorr + Random Phase +
MRInit (K = 2)

∑K
k=0

∑5
l=1 ml ∗ (hl ∗ wl)/2k+1 64684k Yes

Other methods
[Portilla et al. 2000] See [Raad et al. 2018] 710 No

[Snelgrove 2017] (K = 3) They consider (pool1,
block3_2) 278k No

[De Bortoli et al. 2019] Mean
of fl

They consider 10 layers of
VGG19 2688 No

Table 3.4: Numbers of parameters for different textures synthesis methods. We consider
the default set of layers from [Gatys et al. 2015b]: (conv1_1 , pool1-4), then we havea

m1 = m2 = 64,m3 = 128,m4 = 256,m5 = 512 and L = 5 the last layer considered. ml

is the number of channel at the layer l whereas hl and wl are the spatial dimensions.
We consider an image of size 256 ∗ 256 in monoscale and an image of size 1024 ∗ 1024
in multiscale. K is the number of scale.

aThe number of channel per layer can be found in annex (Table D.3).

the "Gram + Spectrum" and "Autocorr" methods are based on a huge number of
parameters which can cause synthesis identical to the reference.

3.5 Conclusion
In this chapter, we have shown how a multi-resolution framework and additional statis-
tical constraints related to long-range dependency enable one to significantly improve
texture synthesis results in comparison to the seminal Gatys et al.’s work [2015b], es-
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3.5. Conclusion

pecially for high resolution and possibly regular textures. Gatys et al.’s method can
be seen as a special-case of this work for a single scale (K = 0). We also propose two
metrics to quantitatively evaluate the quality of synthesis, one based on displacement
maps and the second one on wavelets coefficients. Nevertheless, these metrics are not
enough to determine who will come off best. Thus, we conduct a perceptual study
to arrive at a decision between methods. The methodology we can be useful to rank
future methods too. Finally, we provide some hints about using statistical alternatives
to the Gram matrices.
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4. Analysis of Transfer Learning

Transfer learning from huge natural image datasets, and the use of the corre-
sponding pre-trained networks have become de facto the core of art analysis appli-
cations. These convolutional neural networks can be used as off-the-shelf features
extractors or fine-tuned on the new dataset. Nevertheless, the effects of transfer
learning are still poorly understood. In this chapter, we first compare different
transfer learning approaches. We will show that a double fine-tuning involving a
medium-size artistic dataset can improve the classification on smaller datasets,
even when the task changes. Then we use techniques for visualizing the network
internal representations for one particular architecture in order to provide clues
about what the network has learned on artistic images. Finally, we provide a
quantitative analysis of the changes introduced by the learning process thanks to
metrics in both the feature and parameter spaces, as well as metrics computed on
the set of maximal activation images. These analyses are performed on several
variations of the transfer learning procedure. In particular, we observed that the
network could specialize some pre-trained filters to the new image modality and
also that higher layers tend to concentrate classes.

Parts of the work in this chapter have led to two publications, one in a French conference
and one in an international conference:

• Gonthier N., Gousseau Y., Ladjal S. Transfert d’apprentissage et visualisation
de réseaux de neurones pour les images artistiques; The Measurement of Images.
Computational Approaches in the History and Theory of the Arts, DHNord 2020.

• Gonthier N., Gousseau Y., Ladjal S. An analysis of the transfer learning of con-
volutional neural networks for artistic images; Workshop on Fine Art Pattern
Extraction and Recognition, ICPR, 2020.
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4.1 Introduction

Transfer learning from large-scale natural image datasets [Russakovsky et al. 2015;
Kuznetsova et al. 2020], mostly by fine-tuning large pre-trained networks, has become
the de facto approach for art analysis applications. These datasets allow the learning
of powerful deep models that recognize a wide range of visual categories. For instance,
the VGG19 network [Simonyan et al. 2015] was trained on the trainval (Training +
Validation) set of ILSVRC-2012 - a subset of ImageNet [Russakovsky et al. 2015] - which
consists of 1.2 million natural images each annotated with one thousand categories. In
the following text, we will mainly use the term ImageNet to designate this trainval set
of ILSVRC-2012. Nevertheless, there are large differences in dataset sizes, image style
and task specifications between natural images and the target artistic images, and there
is little understanding of the effects of transfer learning in this context. First, we study
classifiers trained on natural images or artistic ones (Section 4.3.1). Then, we compare
different ways to obtain an image classifier: usual classifier trained on off-the-shelf
features extracted from a pre-trained CNN, fine-tuned CNNs and CNNs trained from
scratch (Section 4.3.2). Finally, we use techniques for visualizing the network internal
representations in order to provide clues to the understanding of what the network
has learned on artistic images (Section 4.4). We provide a quantitative analysis of
the changes introduced by the learning process thanks to metrics in both the feature
and parameter spaces, as well as metrics (overlapping ratio and entropy) computed
on the set of maximal activation images for a given channel . In particular, we will
see that CNNs can specify some pre-trained filters in order to adapt them to the new
modality of images and they can also learn new, highly structured filters specific to
artistic images from scratch. We also look at the set of the maximal activation images
for a given channel to complete our observation.

Moreover we experimentally show that fine-tuning first a pretrained ImageNet
model on an intermediate artistic dataset can lead to better performances than a direct
fine tuning on the target small artistic dataset (for a different task).

Let us emphasize that the goal of this work is not to provide state-of-the-art classi-
fication performances, but rather to investigate the way CNNs are modified by classical
fine-tuning operations in the context of artwork images.

4.2 Art Datasets
For our transfer learning experiments, we use two datasets which come from different
research works. The first one contains the largest number of samples and comes from
the WikiArt website. It contains 80,000 images tagged with one among 25 artistic
styles [Lecoutre et al. 2017] and is named RASTA. Many other works referred to this
dataset as the "WikiArt paintings" [Tan et al. 2016] but this variant contains only 25
classes instead of 27. Due to its size and large diversity, we will mainly use this dataset
in the feature visualization part, Section 4.4. The second one is the Paintings Dataset
introduced in [Crowley et al. 2014], made of 8629 British painting images with 10
different labels corresponding to common objects (ex: horse or airplane). These visual
categories associated to the images can also be found in natural images especially in the
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VOC dataset [Everingham et al. 2010]. It is a subset of the Art UK dataset formally
named "Your Paintings".

4.2.1 The IconArt dataset
Although there has been a recent effort to increase open-access databases of artworks
by academia and/or museums [Crowley et al. 2014; Mensink et al. 2014; Lecoutre et al.
2017; Mao et al. 2017; Europeana 2018; Rijksmuseum 2018; Strezoski et al. 2018; Zhang
et al. 2019a], they usually do not include systematic and reliable keywords related to
art history. There are two exceptions of publicly available datasets. The first one is
the database from the Rijkmuseum, with labels based on the IconClass classification
system, but this database of 112k elements is mostly composed of prints, photographs
and drawings [Mensink et al. 2014]. The second one is the recent "Iconclass AI Test
Set" [Posthumus 2020] sampled from the Arkyves database. It is a curated dataset of
80k images with IconClass labels too. Nevertheless, these databases don’t include the
localization of objects or characters that are useful for the detection task.

Therefore, we decided to create our own dataset called IconArt. In order to study the
ability of deep learning model to detect iconographic elements that are interesting for
art historians, we gathered 5955 painting images from Wikicommons1, dating from the
11th to the 20th century, which are partially annotated by the Wikidata2 contributors.
We manually checked and completed image-level annotations for 7 classes. The dataset
is split in training and test sets, as shown in Table 4.1. For a subset of the test set,
and only for the purpose of performance evaluation, instance-level annotations have
been added. This subset with bounding boxes annotations will be used for evaluating
weakly supervised object detection in Chapter 5. In particular, being able to detect
and localize iconographic elements is of great importance for the study of spatial con-
figurations, which are central to the reading of images and particularly useful given the
increasing importance of Semiology. The resulting database is available online3. Ex-
ample images are shown in Figure 4.1. Some of the visual categories cannot be learned
on photographs. Typical examples include iconic characters in certain situations, such
as Child Jesus, the crucifixion of Jesus, Saint Sebastian (the martyr), etc.

This dataset is way more challenging compared to other datasets, such as RASTA.
Indeed, the IconArt and the Paintings datasets are designed for multilabel classifica-
tion4 task with small objects whereas RASTA is designed for a multiclass classification5.

1https://commons.wikimedia.org/wiki/Main_Page
2https://www.wikidata.org/wiki/Wikidata:Main_Page
3At https://wsoda.telecom-paristech.fr/downloads/dataset/.
4Several labels can be associated to one image. Each label represents a different classification task,

but the tasks are somehow related.
5Each sample can only be labeled as one class.

126

https://artuk.org/
https://www.rijksmuseum.nl/en/research/conduct-research/data/overview
http://www.iconclass.nl/home
https://www.arkyves.org/
https://wsoda.telecom-paristech.fr/downloads/dataset/
https://commons.wikimedia.org/wiki/Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://wsoda.telecom-paristech.fr/downloads/dataset/


4.3. Transfer of Convolutional Neural Networks for Art Classification

Class Angel Child Jesus Crucifixion Mary nudity ruins Saint Sebastian None Total
Train 600 755 86 1065 956 234 75 947 2978

Test for classification 627 750 107 1086 1007 264 82 924 2977
Test for detection 261 313 107 446 403 114 82 623 1480

Number of instances 1043 320 109 502 759 194 82 3009

Table 4.1: Statistics of the IconArt database

Figure 4.1: Example images from the IconArt database. Angel on the first line, Saint
Sebastian on the second. We can see some of the challenges posed by this database:
tiny objects, occlusions and large pose variability.

4.3 Transfer of Convolutional Neural Networks for
Art Classification

This section is divided in two subsections. The first one consists in comparing classifiers
trained on deep features computed on natural or artistic images. The second one is
about comparing different transfer learning solutions.

4.3.1 Do We Need Artistic Images for Training?
Crowley et al. [2014] and Crowley et al. [2016] show that CNN features learned on
photographs can be used for painting classification. The goal of this section is to
reproduce and extend their experimental results. In a nutshell, the off-the-shelf features
extraction method provides better performance when the final classifier is trained on
artistic images rather than natural ones. Nevertheless, using natural images for training
the classifier is an effective solution to build an online semantic recognition of arbitrary
objects existing both in natural images and artistic ones (as the Oxford Painting Search
[Crowley et al. 2018]).

4.3.1.1 Classification

First, we compare image-level classifiers (SVM) trained on CNN features from natural
images (PASCAL VOC12) to classifiers trained on CNN features from paintings (the
training set of the Paintings dataset). The two training sets have comparable sizes. In
both cases these classifiers are evaluated on the test set of the Paintings dataset. All
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the networks used as off-the-shelf features extractor have been pre-trained on ImageNet
and then fine-tuned on VOC12 for a classification task. The features are extracted
from the penultimate layer of the network. We trained one linear one-vs-rest SVM
per class with optimization of the hyper-parameter using a k-fold validation. We also
use a particular augmentation scheme named Stretch6 which consists of taking the
average feature vectors of 50 random crops from the input image7. It can be seen as a
simple bagging of the classification network. To evaluate the different algorithms, we
use the common Average Precision (AP) metric that summarizes the precision-recall
curve. Results are shown in Table 4.2. First, we are able to reproduce the results from
Crowley et al. [2016] except for 3.3% discrepancy in the VGG16 performances. This
can be due to the fact that we may not have exactly the same pre-trained weights or
to the fact that a few images from the original Paintings Dataset are missing. Second,
the better the network is on ILSVRC test set the better it performs on the target
domain. For instance, the InceptionResNet v2 CNN [Szegedy et al. 2017] is better
than the ResNet [He et al. 2015] which is better than the VGG-based nets. The
classification performance on the source domain can be seen as a good proxy to the
performance on this particular dataset. A broader study as done by Kornblith et al.
[2018] would be needed to confirm this conclusion. The augmentation scheme brings
a constant improvement of around 3% of AP without an expensive computational
cost as networks are used for inference only. Nevertheless, the classifiers learned on
features from artistic images always lead to better results. Therefore it seems best to
learn classifiers on artwork images than on natural images. This drop of performance
training on photos has also been shown by Hall et al. [2015].

Additional results with Paintings and IconArt datasets can be found in Annex
Section B.1.

4.3.1.2 Classification performance of the object detection CNNs

As an object may be relatively small and not centered, an alternative to transfer a
classification CNNs is to transfer an object detection one8. Most of the time, detection
networks process bigger resolution images and consider hundreds of regions of various
sizes. This method of using an object detection CNN for doing only classification
is named "Classification per detection" by Crowley et al. [2016]. As the classes we
want to find in the Paintings dataset are present in object detection datasets such as
VOC [Everingham et al. 2010] or MS COCO [Lin et al. 2014], we will consider using
them for off-the-shelf classification without any additional training. We evaluate the
performance of different detection networks pre-trained on ImageNet and fine-tuned on
different natural images datasets for an object detection task. We compare the Faster
R-CNN [Ren et al. 2015] with different backbones and two versions of the YOLO net
[Redmon et al. 2016; Redmon et al. 2017]. We also try to use Faster R-CNN as feature
extractor by considering only the region with the highest objectness score to train one
linear SVM per class with the Paintings train set. In this experiment, we always use
the penultimate layer of the CNNs (for instance fc7 for ResNet architecture). The

6This augmentation scheme is available in the MatConvNet toolbox and compared to other aug-
mentation scheme in [Crowley et al. 2016].

7Note that the same augmentation scheme is applied to both training and test images.
8The definition of the object detection is given at the end of Section 2.1.2.2.
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CNN Training Set Augmentation mAP mAP results from
[Crowley et al. 2016]

VGG-M Paintings Dataset none • 50.8
[Simonyan et al. 2015] Stretch • 52.9

VGG-16, relu7
(VD-16, 4096-D)

[Simonyan et al. 2015]

VOC12 none 58.1 54.8
Stretch 59.2 56.8

Paintings Dataset none 69.8 68.7
Stretch 72.0 70.8

VOC12 none 58.5 •
VGG19 relu7 Stretch 60.3 •

[Simonyan et al. 2015] Paintings Dataset none 69.6 •
Stretch 72.4 •

VOC12 none 61.0 60.5
ResNet-152 fc7-2048-D Stretch 63.7 62.3

[He et al. 2015] Paintings Dataset none 73.3 72.5
Stretch 76.0 75.0

InceptionResNet v2
1536D

[Szegedy et al. 2017]

VOC12 none 63.8 •
Stretch 67.5 •

Paintings Dataset none 74.9 •
Stretch 77.6 •

Table 4.2: Classification on Paintings Dataset (test set) [Crowley et al. 2014]: mean
AP (%) on the 10 classes. Comparison of classifiers trained on deep features from
natural images or paintings ones.

performances of these object detection CNNs transferred to a classification task in a
new modality can be seen in Table 4.3.

First, we can see the influence of the quality of the network and of the quality of the
training set. Newer CNN architectures perform better than older ones. Faster R-CNN
ResNet achieves better performance than Faster R-CNN VGG16, and YOLO version
2 performs better than the version 1. It is the case both for natural image detection
and our cross domain classification task. Then, the model generalizes better if it has
been trained with a bigger dataset. A detector achieves higher performance on the
Paintings test set if it has been trained on MS COCO rather than on VOC12. For the
Faster R-CNN (VGG16) architecture, we have almost 4% of difference.

Second, the simplest way to transfer a detection network to a target domain is
to consider that the region with the highest "objectness" score contains the object of
interest (i.e. the label associated to the image). An SVM is trained on the deep features
extracted from the highest "objectness" score region of each image. This method is
referred as MAX in Chapter 5. This simple transfer of the detector achieves worse
score than the off-the-shelf equivalent model trained on a different modality. This is
due to the fact that the object of interest is not always the main object, nor is it well
centered as it is implied in the Crowley et al.’s paper [2016]. This can be seen in
Figure 4.2. It is therefore necessary to provide a better way to transfer those detection
networks. We propose such a scheme in Chapter 5. Finally, the good performance of
these detection models compared to the classification ones (Table 4.2) may also be due
to the larger size of the input image, as CNNs trained with larger resolution images
tend to achieve higher accuracy [Tan et al. 2019]. Smaller objects can be detected and
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more details are provided to the model.

CNN Training Set mAP mAP results from
[Crowley et al. 2016]

Faster R-CNN (VGG16) VOC07 56.4 •
Faster R-CNN (VGG16) VOC12 62.2 62.7
Faster R-CNN (VGG16) MS COCO 66.7 •

Faster R-CNN (VGG16-COCO) Paintings Dataset 64.8 •SVM on best objectness score region
Faster R-CNN (ResNet-101) VOC12 65.5 •
Faster R-CNN (ResNet-101) MS COCO 71.6 •

Faster R-CNN (ResNet-101-COCO) Paintings Dataset 69.5 •SVM on best objectness score region
Faster R-CNN (ResNet-152) MS COCO 71.6 •

Faster R-CNN (ResNet-152-COCO) Paintings Dataset 70.0 •
SVM on best objectness score region

YOLO v1 VOC12 49.4 •
YOLO v2 VOC12 62.8 •
YOLO v2 MS COCO 65.0 •

Table 4.3: "Classification per detection" on Paintings Dataset (test set) [Crowley
et al. 2014]: mean AP (%) on the 10 classes. Comparison of deep detection models on
a classification task, without any augmentation scheme.

Label: bird Label: dog

Figure 4.2: Highest objectness score box with Faster R-CNN ResNet-152 fine-tuned
on MS COCO on two images from the training set of the Paintings Dataset [Crowley
et al. 2014].

This section confirms that a deep model pre-trained on photographs can be effi-
ciently transferred to automatic visual recognition in artwork, provided that the classes
we are looking for are the same. This transfer can be done without fine-tuning a whole
deep CNN but we will study other transfer learning methods in the following sections.
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4.3.2 Comparison of the Different Transfer Learning
Approaches

In this section, we will compare the three main different modalities for transfer learning
mentioned before Section 2.1.2.1. The first consists in taking the penultimate output of
the pre-trained network to make it the input of a simple classifier [Donahue et al. 2014].
In the following, we refer to this approach as the off-the-shelf method. The second
option consists in fine-tuning FT the pre-trained network for the new task [Girshick
et al. 2014]. The last one consists in training a successful architecture with a random
initialization, referred to as training from scratch. We will present the performances
on multiclass style classification and multilabel object classification, both in paintings.

Experimental Setup: We will compare three different architectures: InceptionV1
[Szegedy et al. 2015], VGG19 [Simonyan et al. 2015] and ResNet50 [He et al. 2015].
The last layer of the network is replaced by a fully connected layer with the number of
outputs corresponding to the dataset at hand and the activation function is a softmax
for RASTA or a sigmoid for Paintings and IconArt datasets. The loss function is the
usual cross-entropy in the first case, and the sum over the classes of binary cross-entropy
in the two others. We ran experiments with a varying number of hyperparameters.
The hyperparameters of the different training schemes can be found in Table 4.4. The
hyperparameters we have varied are the learning rate for the dense classification layer,
the learning rate for the convolutional layers, the use of a deep supervision (adding
auxiliary supervision branches after certain intermediate layers during training), the
number of unfrozen layers (i.e. trainable layers), the maximum number of epochs and
the optimizer. We also consider two different data augmentation schemes. The first one
named "Small transformation" consists in small geometric transformation (horizontal
flip and/or translation of 28 pixels maximum). The second one named "Random crops"
consists in taking random crop of size 224×224 within an image resized to 256 for its
smallest dimension. For all models, the input size is 224 × 224. Finally, the "from
scratch" trainings have the same learning rate schedule as in [Szegedy et al. 2015],
originally designed for the InceptionV1 model.

Learning rate Learning rate Deep
Supervision

Maximum Number of Data
Augmentation

Learning rate
scheduleMode on the last on the other number of unfrozen Optimizer

dense layer layers epochs layers
A 0.01 0.001 No 20 All No SGD No
B 0.001 0.0001 No 20 All No SGD No
C 0.001 0.001 No 20 All No SGD No
D 0.001 0.0001 Yes 20 All No SGD No
E 0.001 0.001 Yes 20 All No SGD No
F 0.01 0.01 No 20 All No SGD No

Higher layers
from scratch 0.0001 0.0001 No 200

InceptionV1: 50
VGG19: 8
ResNet50: 20

Small
transformation Adam No

From scratch 0.001 0.001 Yes if 200 All Random SGD As in
InceptionV1 crops [Szegedy et al. 2015]

Table 4.4: Hyperparameters of the different training schemes.

For all experiments, at a fix set of hyperparameters, we selected the model with
the best loss value on the corresponding validation set. The relatively small size of our
dataset limits intensive search of the best hyperparameters. Maybe an intensive search
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of the best hyperparameters could lead to better performances but it will certainly
need a huge computational cost.

4.3.2.1 Artistic Style Recognition in Paintings

Even though the goal of this work is not to reach the best possible classification per-
formance, we display the corresponding results in Table 4.5 to further characterize the
considered fine-tuning. From this Table, one sees that a simple and short fine-tuning
of a pre-trained model yields a better performance than the off-the-shelf strategy. The
former method is based on extracting features from the ImageNet pretrained model
and training the last layer. The features extracted may be too specific to the Im-
ageNet classification task and the classification head too small. With training from
scratch, we failed to obtain a model as efficient as with the ImageNet pretraining, on
the contrary to the results in [He et al. 2019] about object detection. This can be due
to the relatively small size of the RASTA dataset. Some data augmentation and a
longer training was required to reach 45.29% Top1 accuracy for the InceptionV1 ar-
chitecture. The conclusions are identical for the three architectures considered. This
experiment confirms Lecoutre et al. [2017] conclusions for two other deep architectures.
We conclude this section by observing that a simple way to improve results is to simply
average the prediction of three models trained with different strategies for VGG19 and
InceptionV1. In the case of ResNet50 it is not the case, but the models trained from
scratch have really low performance (about 37% Top-1 accuracy) which may account
for the lack of improvement.

CNN Method Top-1 Top-3 Top-5

InceptionV1

Off-the-shelf with pretraining on ImageNet 30.95 58.71 74.10
FT from a pretraining on ImageNet (Mode A) 55.18 82.25 91.06

Training from scratch the end of the model with pretrained frozen low-level layers 50.35 78.04 88.42
Trained from scratch 45.29 73.44 84.67

Ensemble of the 3 previous models 58.76 83.99 92.23

VGG19

Off-the-shelf with pretraining on ImageNet 37.09 64.70 77.33
FT from a pretraining on ImageNet (Mode A) 53.04 81.66 90.44

Trained from scratch the end of the model with pretrained frozen low-level layers 46.36 74.87 86.38
Trained from scratch 46.19 73.94 85.47

Ensemble of the 3 previous models 54.24 81.03 90.61

ResNet50

Off-the-shelf with pretraining on ImageNet 44.67 73.56 85.55
FT from a pretraining on ImageNet (Mode A) 55.99 82.71 91.70

Trained from scratch the end of the model with pretrained frozen low-level layers 37.08 65.53 78.54
Trained from scratch 37.89 65.31 79.11

Ensemble of the 3 previous models 54.02 79.71 89.14

Table 4.5: Top-k accuracies (%) on RASTA dataset [Lecoutre et al. 2017] for different
methods and CNN architectures.

4.3.2.2 Object Classification in Paintings

As the notion of style is too broad, we find object classification to be more precise and
challenging. Tables 4.6 and 4.7 compare the classification results obtained for the object
classification task on the Paintings dataset [Crowley et al. 2014] and on the IconArt
dataset when using a model pretrained on ImageNet or fine-tuned on RASTA dataset
(from an ImageNet initialization or from scratch). On the contrary to [Sabatelli et al.
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2018] where the authors compared the pretraining on the Rijkmuseum dataset and
ImageNet for the Antwerp dataset, the task is not the same between the two artistic
datasets: classification of the artistic style versus object classification. We run these
comparisons for three different architectures. For the double fine-tuning, we consider
the hyperparameters of the Mode F (Table 4.4).

Once again, the fine-tuning of a CNN pretrained on ImageNet outperforms off-the-
shelf and training from scratch strategies. The same conclusion has been made by
Tan et al. [2016] for the AlexNet architecture on style, genre and artist classification
tasks. The most important observation is that the double fine-tuning (first using
RASTA, then using the target dataset) outperforms the direct fine-tuning using only
the target dataset for the VGG19 and InceptionV1 architectures on both datasets and
for ResNet50 on the IconArt dataset. There is a gain of performance while both the
small dataset and ImageNet share the same task (object classification) but do not share
it with RASTA (designed for artistic style classification). The visual proximity of the
images seems more important than the learning task. The filters learned on RASTA
seem to be more adapted to other artistic datasets and ease the transfer in these two
cases (IconArt and Paintings) where the datasets are relatively small. Finally, a model
partly or entirely trained from scratch on RASTA will not provide a good initialization
point for fine-tuning compared to the double pretraining, neither for IconArt, nor for
Paintings. This is most probably due to the size of the RASTA dataset. But it is a
better initialization point than a random initialization for these small art datasets. We
have a gain of 4% for Inception and 8% for VGG19, when considering the training of
the whole net from scratch.
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CNN Method mAP

InceptionV1

Off-the-shelf with pretraining on ImageNet 56.0
Off-the-shelf with pretraining on ImageNet and RASTA 52.4

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 45.6
Off-the-shelf with training from scratch on RASTA 37.5

FT with pretraining on ImageNet (Mode A) 64.8
FT with pretraining on ImageNet (Mode F) 56.2

Trained from scratch for the end of the model with pretrained frozen low-level 44.6
Trained from scratch 46.9

FT (Mode F) with pretraining on ImageNet and RASTA (Mode A) 65.6
FT (Mode F) with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 59.6

FT (Mode F) with training from scratch on RASTA 49.1

VGG19

Off-the-shelf with pretraining on ImageNet 63.6
Off-the-shelf with pretraining on ImageNet and RASTA 47.1

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 33.2
Off-the-shelf with training from scratch on RASTA 33.0

FT with pretraining on ImageNet (Mode A) 55.9
FT with pretraining on ImageNet (Mode F) Div

Trained from scratch for the end of the model with pretrained frozen low-level 54.4
Trained from scratch 36.3

FT (Mode F) with pretraining on ImageNet and RASTA (Mode A) 65.3
FT (Mode F) with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 51.8

FT(Mode F) with pretraining from scratch on RASTA 46.8

ResNet50

Off-the-shelf with pretraining on ImageNet 67.1
Off-the-shelf with pretraining on ImageNet and RASTA 62.7

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 39.4
Off-the-shelf with training from scratch on RASTA 34.3

FT with pretraining on ImageNet (Mode A) 70.5
FT with pretraining on ImageNet (Mode F) 69.4

Trained from scratch for the end of the model with pretrained frozen low-level 36.0
Trained from scratch 33.7

FT (Mode F) with pretraining on ImageNet and RASTA (Mode A) 68.6
FT (Mode F) with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 50.2

FT (Mode F) with training from scratch on RASTA 40.8

Table 4.6: Mean Average Precision (%) on Paintings test set [Crowley et al. 2014] for
three architectures and transfer learning schemes. "Div" means the model diverges for
this setup.
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CNN Method mAP

InceptionV1

Off-the-shelf with pretraining on ImageNet 53.2
Off-the-shelf with pretraining on ImageNet and RASTA 54.4

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 47.5
Off-the-shelf with training from scratch on RASTA 44.6

FT with pretraining on ImageNet (Mode A) 59.2
FT with pretraining on ImageNet (Mode F) 41.7

Trained from scratch for the end of the model with pretrained frozen low-level 54.8
Trained from scratch 46.2

FT with pretraining on ImageNet and RASTA 67.4
FT with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 59.4

FT with training from scratch on RASTA 50.1

VGG19

Off-the-shelf with pretraining on ImageNet 54.5
Off-the-shelf with pretraining on ImageNet and RASTA 49.3

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 43.6
Off-the-shelf with training from scratch on RASTA 43.5

FT with pretraining on ImageNet (Mode A) 56.9
FT with pretraining on ImageNet (Mode F) Div

Trained from scratch for the end of the model with pretrained frozen low-level 49.4
Trained from scratch 40.6

FT with pretraining on ImageNet and RASTA 64.5
FT with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 51.7

FT with pretraining from scratch on RASTA 48.4

ResNet50

Off-the-shelf with pretraining on ImageNet 46.9
Off-the-shelf with pretraining on ImageNet and RASTA 48.3

Off-the-shelf with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 43.1
Off-the-shelf with training from scratch on RASTA 37.6

FT with pretraining on ImageNet (Mode A) 64.7
FT with pretraining on ImageNet (Mode F) 66.2

Trained from scratch for the end of the model with pretrained frozen low-level 46.2
Trained from scratch 35.4

FT with pretraining on ImageNet and RASTA 66.3
FT with the low level pretrained on ImageNet and the high level trained from scratch on RASTA 49.5

FT with training from scratch on RASTA 40.6

Table 4.7: Mean Average Precision (%) IconArt test set for three architectures and
transfer learning schemes. "Div" means the model diverges for this setup.
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4.4 Analyzing Convolutional Neural Networks
trained for Art Classification

In this section, we investigate the effect of fine-tuning in the case of artistic images.
In order to do so, we rely both on visualization techniques and on quantification of
the change the network undergoes. Our experimental results are organized in four
sections. First, we consider an Inception V1 network pre-trained on ImageNet and
fine-tuned on RASTA for artistic style classification (Section 4.4.1). Then we consider
the same architecture with a random initialization (from scratch) trained on RASTA
(Section 4.4.2). The Section 4.4.3 is dedicated to the evaluation of the changes implied
by the training on RASTA. Finally, we study the same architecture pre-trained on
ImageNet and then fine-tuned first on RASTA and then on a smaller art dataset for
object classification (Section 4.4.4) to see how using an intermediate art dataset can
help.

Feature visualization The first visualization technique we use consists in generat-
ing optimized images, as introduced in [Olah et al. 2017] and defined in Section 2.2.1.1.
These images are obtained by maximizing the response to a given channel. The entire
feature map at a given layer has two spatial dimensions and a third depending on the
convolutional kernel. A channel denotes one element according to this last dimension.
We use the Lucid framework for visualizing convolutional channels via activation max-
imization. We use Lucid’s 2D FFT image representation with decorrelation and 2048
iterations of the gradient ascent.

Maximal Activation Images We devise another indicator that might be useful for
the analysis of the transformation that a network undergoes during its transfer to a
different domain. This indicator is the set of the maximal activation images. For a
given channel, we compute the top 100 images in the target dataset that most trigger
it. Indeed, these images are also useful to understand a CNN as shown by Borowski
et al. [2020]. On this set, we compute the information entropy over classes for each
top 100 images, in order to evaluate the clustering power of the corresponding channel.
The entropy is defined as:

1
maxE

∑
classes

−pclog2(pc), (4.1)

with pc the fraction of images in the top 100 belonging to the class c and maxE the
maximal entropy with this number of classes.

Moreover, the top 100 can be computed twice, once at the beginning and once at
the end of the fine-tuning. The percentage of the images that lie in both sets is an
indicator of how much the channel has drifted during its adaptation. These percentages
are named overlapping ratio in the following. They are, in many cases, much higher
than what we would expect from a random reshuffling of the dataset. Besides, the
combination of this indicator with the visualization technique from [Olah et al. 2017]
leads to several findings that we will present thereafter.
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4.4. Analyzing Convolutional Neural Networks trained for Art Classification

Experimental Setup: All our visualization experiments use the InceptionV1 [Szegedy
et al. 2015] CNN. This network is the classical and most expressive choice for feature
visualization by optimization [Olah et al. 2017] although it no longer produces the best
classification performances.

In the following sections, we analyze how the networks have been modified by the
fine-tuning process. We present qualitative observations using optimized images and
the maximal activation images, as well as quantitative evaluations relying on the `2
norm of the difference between convolution kernels and the linear CKA measure [Ko-
rnblith et al. 2019].

4.4.1 From Natural to Art Images
The first feature visualizations we report have been obtained by fine-tuning on the
RASTA classification dataset, an InceptionV1 architecture pretrained on ImageNet
with different sets of hyperparameters. The detailed architecture with all the layer
names can be found in Table D.1.

Low-level layers are only slightly modified by the fine-tuning. The first ob-
servation is that low-level layers from the original network trained on ImageNet are
hardly modified by the fine-tuning on RASTA (see Figure 4.3). This fact will be con-
firmed by the CKA measure (see Figure 4.9) and the overlapping ratio of the top 100
maximal activation images (see Figure 4.10a) in Section 4.4.3.

Note that in [Yin et al. 2016], it has been shown that the low-level layer filters have
been modified by a fine-tuning on an almost monochrome drawing training dataset.
This suggests that the statistics of painting images are closer to those of natural images
than those of drawing ones are.

Mid-level layers adapt to the new dataset. Some of the filters have been mod-
ified to the specificity of the new dataset by the fine-tuning process, as illustrated
in Figures 4.4g to 4.4i. In these figures are displayed for some channels, the optimized
images defined in Section 2.2.1.1. The model learned a red and blue drapery detector,
a blue mountain one and a house pediment one. It is worth mentioning that other
channels are hardly modified by the fine-tuning process. When looking on maximal
activation images, we can make three observations. First, among the 70k training sam-
ples, some maximal activation images are present in the top 100 both before and after
fine-tuning. These images are surrounded by a green line in the last row of Figures 4.4
and 4.5. Second, in those maximal activation images, we can recognize the pattern
that emerged in the optimized image (when we compare the third and last rows). For
instance, in the third column of Figure 4.4, a flower-like structure is transformed into
a house pediment one. Finally, we observe that the detector fine-tuned on RASTA
concentrates images with this specific pattern (last row of Figures 4.4 and 4.5). The
first group of images of the last row contains characters with a blue dress (as the Mary
character), the second one blue mountains and the last one buildings depicted with
some perspective.

On the other hand, for other channels, the pattern is already present in the op-
timized image and the detector is slightly adapted to the new dataset. This appears
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Channel Name: conv2d1
_pre_relu:30

mixed3a_3x3 _pre
_relu:12

mixed3a_5x5
_bottleneck _pre

_relu:8

Imagenet Pretrained
Optimized Image

(a) (b) (c)

RASTA Fine Tuned
Optimized Image

(d) (e) (f)

Figure 4.3: Optimized Images for one individual channel from different low-level layers.
First row InceptionV1 pretrained on ImagneNet, second row fine-tuned on RASTA.

in the form of a minor modification of the optimized image. An arch detector within
the pretrained ImageNet model has been modified to detect bigger arches as it can be
seen in Figure 4.5g. The maximal activation images before the fine-tuning already was
composed of many buildings images. In this case, the overlapping ratio between the
two sets of maximal activation images is equal to 46%. Two other channels are shown
in Figure 4.5. Besides the visualizations we highlighted, the reader must keep in mind
that most channels are not modified by the fine-tuning and few are not interpretable
at all9.

Learned filters have a high variability. We ran 2 distinct fine-tunings for each
of the 5 considered optimization schemes named Mode A to E, see Table 4.4. The
initial last layer is different as well as the order of the images in the mini-batches
during the training process. From a same starting point (the ImageNet weights) but
for different hyper-parameters, the training process may sometimes converge to similar
optimized images. On the contrary, two optimizations with the same hyper-parameters
(same mode) may lead to very different detectors. These phenomena are illustrated in
Figure 4.6. For this given channel, according to the mode and occurrence of the fine-
tuning, one can recognize houses (Figure 4.6a), flowers (Figure 4.6e), a mix of houses
or more abstract patterns (Figure 4.6i). As a temporary conclusion, we can say that
ImageNet pre-trained filters seem to be a good initialization for learning useful new
filters adapted to the artistic style classification and they also allow to learn a variety

9The reader can find more feature visualizations at https://artfinetune.telecom-paris.fr/
data/
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Channel Name:
mixed4c_3x3
_bottleneck
_pre_relu:78

mixed4d_pool
_reduce

_pre_relu:63

mixed4d_3x3
_pre_relu:52

Imagenet Pretrained
Optimized Image

(a) (b) (c)

Imagenet Pretrained
Maximal Activation

Examples

(d) (e) (f)

RASTA Fine Tuned
Optimized Image

(g) (h) (i)

RASTA Fine Tuned
Maximal Activation

Examples

(j) (k) (l)
Overlapping 2% 2% 18%

Figure 4.4: Optimized Image and Maximal Activation Examples for one Individual
channel. First and second rows InceptionV1 pre-trained on ImagneNet, third and
fourth rows fine-tuned on RASTA. The images surrounded by a green line are already
present in the top 100 of the pre-trained model. The percentage of images in common
between the two sets of maximal activation images is displayed at the bottom of each
column.

of new filters. The percentage of overlap between the set of maximal activation images
before and after fine-tuning seems to be correlated to the amount of visual change.
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Channel Name:
mixed4b_3x3

_bottleneck _pre
_relu:35

mixed4b:361 mixed4d:106

Imagenet Pretrained
Optimized Image

(a) (b) (c)

Imagenet Pretrained
Maximal Activation

Examples

(d) (e) (f)

RASTA Fine Tuned
Optimized Image

(g) (h) (i)

RASTA Fine Tuned
Maximal Activation

Examples

(j) (k) (l)
Overlapping 46 % 31% 9%

Figure 4.5: Optimized Image and Maximal Activation Examples for one Individual
channel. First and second rows InceptionV1 pre-trained on ImagneNet, third and
fourth rows fine-tuned on RASTA. The images surrounded by a green line are already
present in the top 100 of the pre-trained model. The percentage of images in common
between the two sets of maximal activation images is displayed at the bottom of each
column.
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Imagenet Pretrained

(a) Mode A training 1, Overlapping: 18% (b) Mode A training 2, Overlapping: 24%

(c) Mode B training 1, Overlapping: 34% (d) Mode B training 2, Overlapping: 42%

(e) Mode C training 1, Overlapping: 22% (f) Mode C training 2, Overlapping: 8%

(g) Mode D training 1, Overlapping: 10% (h) Mode D training 2, Overlapping: 13%

(i) Mode E training 1, Overlapping: 2% (j) Mode E training 2, Overlapping: 3%

Figure 4.6: Optimized Image and Maximal Activation Examples for a given channel
(mixed4d_3x3_pre_relu:52) with different training. The overlapping between the two
sets of maximal activation images is displayed on top of each pair of images. The
images surrounded by a green line are already present in the top 100 of the pre-trained
model.



High-level filters concentrate images from the same classes. The visualiza-
tions of high-level layers (near the classification output) are more difficult to interpret,
as illustrated in Figure 4.7. The network seems to mix different visual information
from the previous layers. Nevertheless, the group of images with maximal activation
for those 2 given channels gather images from the same artistic style after fine-tuning10.
The first channel is mostly fired by Ukiyo-e images (82% in Figure 4.7b), the second one
gathers western renaissance artworks (87% by summing up the three prevailing classes
in Figure 4.7d). There is no visual clue to such clustering in the optimized images. In
the last image, one may see some green tree in front of a blue sky and some drapery.
The fact that Early_Renaissance, High_Renaissance and Mannerism_(Late_Renais-
sance) classes are clustered together maybe due to their strong visual similarity. Deep
model commonly mislabel one of these as another, as mentioned in [Lecoutre et al.
2017].

mixed5b_pool_reduce_pre_relu:92 mixed5b_5x5_pre_relu:82

(a) Optimized Image (b) Maximal activation
examples: 1%

(c) Optimized Image (d) Maximal activation
examples: 0%

Top 100 composition:
Ukiyo-e 82 % Early_Renaissance 48%

Northern_Renaissance 14 % High_Renaissance 27%
Early_Renaissance 3 % Mannerism_(Late_Renaissance) 12%

Figure 4.7: Optimized Images and Maximal Activation Examples for two high level
layers for the model fine-tuned on RASTA. The overlapping ratio between the set of
maximal activation images before and after fine-tuning is displayed under the images.
The images surrounded by a green line are already present in the top 100 of the pre-
trained model. The percentage of the 3 most common class is displayed below.

4.4.2 Training from Scratch
Mid-level detectors can be learned from scratch when low-level layers are
transferred from ImageNet. The next experiment consists in fine-tuning a net-
work whose low-level layers are initialized using the training on ImageNet and frozen
whereas the mid and high-level layers are initialized randomly. In this case, the net-
work is able to learn useful and comprehensible mid-level detectors such as drapery or
checkerboard as illustrated in Figures 4.8a and 4.8b11. The stability of these mid-level
detectors that are rebuilt despite the random initialization is somehow surprising. This

10The pretrained filters can be found in Annex, Section B.2.1.
11The corresponding feature visualizations for the initial model can be found in Annex Sec-

tion B.2.2.
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4.4. Analyzing Convolutional Neural Networks trained for Art Classification

phenomenon is most likely made possible through the low-level layers inherited from
the ImagNet training.

The optimized images are more difficult to interpret with a full training
from scratch. A network trained fully from scratch seemingly yields the same kind
of low-level filters that the ones pretrained on ImageNet whereas the mid and high-
level layers provide optimized images that are much more difficult to interpret (see
Figures 4.8c and 4.8d). A possible explanation is that the network may not need to
learn very specific filters given its high capacity.

The training of the network provides filters that are able to fire for a given class such
as Ukiyo-e (Figure 4.8g) or Magic_Realism (Figure 4.8h) without being interpretable
for humans. Moreover, they are mid-level layer as in Figure 4.4 and not high-level one
as in Figure 4.7. The class concentration appears quantitatively sooner in the network
trained from scratch (see Figure B.6c) than in the fine-tuned model (see Figure 4.10b).

The end from scratch All from scratch
mixed4d_5x5_pre_-

relu:50
mixed5a_3x3 _-

bottleneck_pre_relu:1 mixed4d:16 mixed4d:66

(a) (b) (c) (d)

(e) Overlapping: 0% (f) 0% (g) 0% (h) 0%
Top 100 composition: Top 100 composition:

Abstract_Expressionism 24% Northern_Renaissance 39% Ukiyo-e 85% Magic_Realism 78%
Minimalism 13% Romanticism 20% Art_Nouveau_(Modern) 11% Ukiyo-e 22%
Art_Informel 9% Early_Renaissance 18% Northern_Renaissance 2%

Figure 4.8: Optimized Image and Maximal activation examples from different mid-level
layers. On the left: fine-tuning is performed starting from low-level layers initialized
from ImagNet and upper layers initialized at random. On the right, the fine-tuning
is fully performed from scratch (randomly initialized layers). The overlapping ratio
between the set of maximal activation images before and after fine-tuning is displayed
under the images. The percentage of the 3 most common class is displayed below.
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4.4.3 Quantitative Evaluation of the CNNs Modification
In order to quantify some of the previous observations, we make use of the linear CKA
[Cortes et al. 2012; Kornblith et al. 2019] as a measure of similarity between the feature
maps of two different networks. This similarity index is defined in equation (2.6). For
computational reasons, we summarize a channel by its global average, thus drastically
reducing the dimensionality of the problem. Otherwise, the computations would have
been intractable. The results are shown in Figure 4.9. The CKA values for nine
pairs of models are printed in function of twelve different layers from the InceptionV1
architecture. A value of CKA near to 1 means the feature maps at this layer are similar
between the two models, whereas a value near to 0 means the features are dissimilar.

First, we compare the ImageNet-pretrained model with its fine-tuned version, by
looking at the dark blue line. We can observe a decrease of the CKA when the depth
of the layers increases. This is a confirmation of what we observed previously with
the optimized images (Section 4.4.1), the low level layers are barely modified (with a
CKA ' 1 for the conv2d0 layer) whereas the high level are strongly changed (with a
CKA = 0,37 for the mixed5b layer).

No matter which layer is considered, the pairs of fine-tuned models have the highest
CKA values, according to the green and light blue lines. Thus, the fine-tuned models
are the closest one to each other. The high level layers of these models are very
similar because these models have been trained on the same dataset from the same
initialization point.

The CKA also decreases with layers when we compare a model trained from scratch
to its random initialization (purple and orange curves). High level layers have been
more modified by the training process than the low level ones. For the model trained
from scratch, the lower layer (conv2d0) has a CKA of 0,89 whereas the deepest one
(mixed5b) has a CKA of 0,35. Moreover, the models trained from scratch on RASTA
are closer to the model fine-tuned on RASTA than the ImageNet-pretrained model.
We can observe it by comparing the brown curve to the red one and the yellow to the
pink. This is clearly due to the training on the same dataset, namely RASTA.

The values of CKA presented here are higher than the ones obtained in [Neyshabur
et al. 2020] for X-ray images. In the case of the model trained from scratch, we even
observe several orders of magnitude of difference. This confirms and quantifies the fact
that the structure of artistic images is closer to the one of natural images than the
X-ray images are.

In addition to feature similarity, we also look at the distance between two models
in the parameter space in Table 4.8 (as in the recent work of Neyshabur et al. [2020]).
We can see that the fine-tuned models are still close one to another and also close to
the ImageNet pretrained initialization. In contrast, the models trained from scratch
are much farther away from their initialization.

We also observe the evolution of the overlapping ratio between the ImageNet-
pretrained model and the fine-tuned one for the top 100 maximal activation images
in Figure 4.10a. We can see a monotonic decrease of this ratio with the depth of the
layer. This is another illustration of the fact that the high level layers are more modi-
fied by the fine-tuning. The behavior is the same if we consider the top 1000 maximal
activation images. One also observes that channels with low overlapping ratio seem
to correspond to optimized images that are more modified by the fine-tuning. This
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Figure 4.9: CKA computed on RASTA test set for different models trained or fine-
tuned on RASTA train set.
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(a) Boxplots of Overlapping ratio.
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(b) Boxplots of Entropy over classes.
Figure 4.10: Boxplots of some metrics on the top 100 maximal activation images for
the model fine-tuned on RASTA (Mode A1). For each box, the horizontal orange line
corresponds to the average result and the star to the median. The crosses are outliers
(i.e. points outside 1.5 times the interquartile range).

fact should be investigated further and could yield a simple way to browse through
optimized images. In the case of a model trained from scratch the overlapping is equal
to zero for almost all the layers (see Figure B.5b in Annex). As excepted from a ran-
dom initialization, the initial clustering may not be relevant for the classification task.
Finally, and in order to quantify the class concentration described in Section 4.4.1, we
display the entropy over classes, Figure 4.10b), showing a decrease of the average en-
tropy with the layer depth, starting roughly in the middle of the network architecture.
This decrease is due to the fine-tuning process as we observe a slighty increasing of it
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NetA NetB mean `2 norm
Pretrained on ImageNet FT on RASTA (Mode A training 1) 1.26

FT on RASTA (Mode A training 1) FT on RASTA (Mode B training 1) 1.24
FT on RASTA (Mode A training 1) FT on RASTA (Mode A training 2) 1.23

The end from scratch Its Random initialization 6.52
From scratch Its Random initialization 8.13

Table 4.8: Mean over all layers of the `2 norm of the difference between convolutional
kernels between two models.

in the case of the model pretrained on ImageNet (see Figure B.6a in Annex). Moreover
the decreasing of the entropy is also observable for model trained from scratch (see
Figures B.6b and B.6c in Annex).

4.4.4 From One Art Dataset to Another
In this last section, we look at the different models trained on small datasets of object
classification. We compare the ImageNet model fine-tuned and the double fine-tuning
strategy (first using RASTA, then using the target dataset). The performances of
the different methods may be found in Section 4.3.2.2. In Table 4.9, we use the two
previously mentioned metrics to compare the different models fine-tuned on the IconArt
and Paintings datasets. The model fine-tuned on a small art dataset will stay similar to
its ImageNet pretrained initialization (with a CKA of 0.89 or 0.91 for the IconArt and
Paintings datasets). After a first fine-tuning on the large RASTA dataset, the network
changes more (CKA = 0,77 and `2 norm = 1.26). A double fine-tuning enables to go
even further from the original pretrained weights (CKA = 0,73 and 0,76). As already
mentioned, this method provides the best classification performance.

In the case of the model trained from scratch (two last lines of Table 4.9), the
change between initialization and the final model is also large due to the randomness
of the initialization but those models are worst in terms of classification. It should be
noted, however, that the CKA is only a criterion of similarity and not a proxy for the
performance of classification. For instance it can be dependent on the learning rate
used during training as it can be seen with the Mode F case which modifies a lot the
network without providing good performance.

Nets
Small art dataset used: IconArt Paintings

NetA NetB mean CKA mean `2 norm mean CKA mean `2 norm
Pretrained on ImageNet FT on small art dataset (Mode A) 0.90 0.14 0.91 0.15
Pretrained on ImageNet FT on small art dataset (Mode F) 0.61 1.72 0.65 1.18
Pretrained on ImageNet FT on RASTA (Mode A) + FT on small dataset (Mode F) 0.73 1.61 0.76 1.67
FT on RASTA (Mode A) FT on RASTA (Mode A) + FT on small dataset (Mode F) 0.79 0.78 0.77 0.86

The end from scratch on RASTA The end from scratch on RASTA + FT on small dataset 0.70 0.91 0.72 1.01
From scratch on RASTA From scratch on RASTA + FT on small dataset 0.83 0.27 0.79 0.52

Table 4.9: Mean linear CKA (on IconArt or Paintings test set) and mean `2 norm
between models based on InceptionV1.

The optimized images of the model pretrained on ImageNet, fine-tuned first on
RASTA [Lecoutre et al. 2017] and then on IconArt, show that some of the filters learned
on RASTA can be directly reused for the IconArt dataset such as a nudity detector
(Figure 4.11j). Although this class does not exist in the RASTA dataset, images with
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such visual pattern belong to this dataset. Some filters are adapted to focus more
on a given visual pattern, for instance the blue drapery detector (Figure 4.11k). This
detector is not learned by the model with only fine-tuned on IconArt (see Figure 4.11e).
Other filters are completely changed such as the tree in front of a blue sky detector
(Figure 4.11l). The datasets used are not representative of all the artistic production
by far and are certainly biased. However, these illustrations allow us to highlight what
kind of filters can be relevant for artwork classification.
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Channel Name:
mixed4c_pool

_reduce
_pre_relu:2

mixed4c_3x3
_bottleneck
_pre_relu:78

mixed4d_5x5
_pre_relu:49

Imagenet Pretrained
Optimized Image

(a) (b) (c)

IconArt Fine Tuned
Optimized Image

(d) (e) (f)

RASTA Fine Tuned
Optimized Image

(g) (h) (i)

RASTA and
IconArt Fine Tuned
Optimized Image

(j) (k) (l)

Figure 4.11: Optimized Image for one Individual channel from different mid-level layers.
First row InceptionV1 pretrained on ImagneNet, second row fine-tuned on IconArt,
third row on RASTA, last row fine-tuned first on RASTA [Lecoutre et al. 2017] then
on IconArt.
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Channel Name:
mixed4c_pool

_reduce
_pre_relu:2

mixed4c_3x3
_bottleneck
_pre_relu:78

mixed4d_5x5
_pre_relu:49

Imagenet Pretrained
Maximal Activation

Examples

(a) (b) (c)

IconArt Fine Tuned
Maximal Activation

Examples

(d) (e)

No positive images
on this channel.

RASTA Fine Tuned
Maximal Activation

Examples

(f) (g) (h)

RASTA and
IconArt Fine Tuned
Maximal Activation

Examples

(i) (j) (k)

Figure 4.12: Maximal Activation Examples (from IconArt train set) the channel cor-
responding to Figure 4.11 channels for an InceptionV1 learned on ImagneNet then
fine-tuned on RASTA [Lecoutre et al. 2017] and finally on IconArt.
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4.5 Conclusion
In this chapter, we studied the different setups of transfer learning for art classification
and shown that the fine-tuning of a pretrained model is the best solution. Then, we
have investigated the effect of fine-tuning a network pre-trained on ImageNet using
artistic dataset. We made use of visualization techniques and quantitative assessments
of the changes of the networks. Among other things, we have shown that some of the
mid-level layers of the networks exhibit easily recognizable patterns that appear to be
more related to art images than the patterns learned on natural images, while lower
layers of the network are hardly changed. We have also shown that higher layers tend
to concentrate classes after fine-tuning. Eventually, we have also shown that a double
fine-tuning involving a medium size artistic dataset can help the classification of small-
size artistic datasets and produces visual patterns more related to the domain. The
classification tasks between the two artistic datasets do not need to be identical for the
double fine-tuning to be helpful. In our case, the intermediate task is style classification
whereas the final one is object classification. This study provides good insights on the
way networks are modified by fine-tuning in the case of artistic databases.
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Abstract

This chapter introduces a Multiple Instance Learning method applied on
deep features for Weakly Supervised Object Detection in artworks. The Weakly
Supervised Object Detection task is typically addressed with a domain-specific
solution focused on natural images. We show that a simple multiple instance
approach applied on pre-trained deep features yields excellent performances on
non-photographic datasets, possibly including new classes. This approach does
not include any fine-tuning or cross-domain learning, which makes it efficient
and possibly applicable to arbitrary datasets and classes. We investigate sev-
eral flavors of the proposed approach, some including multi-layers networks and
polyhedral classifiers.

The work in this chapter has led to the publication of a conference paper:
• Gonthier N., Gousseau Y., Ladjal S., Bonfait O. Weakly Supervised Object De-

tection in Artworks; Workshop on Computer Vision for Art Analysis, ECCV,
2018.

An extended version of it is under review:
• Gonthier N., Ladjal S., Gousseau Y. Multiple instance learning on deep features

for weakly supervised object detection with extreme domain shifts; submitted at
Computer Vision and Image Understanding in 2020.
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5.1. Introduction

5.1 Introduction
Given the lack (or prohibitive cost) of bounding box annotations and the proven trans-
ferability of CNN features we proposed, in this chapter, to use the Multiple Instance
Learning (MIL) paradigm to tackle the Weakly Supervised Object Detection (WSOD)
task on artistic images. Our simple MIL model is applied directly to the deep features
of a pre-trained network. We choose not to use any fine-tuning of a big network in
order to both save time and avoid overfitting. We introduce a Multiple Instance per-
ceptron that is much lighter than the classical SVM approaches [Andrews et al. 2003].
In Section 5.2, we fully develop this approach, exploring several extensions of the model
such as a multi-layer version and a polyhedral version (obtained by aggregating sev-
eral linear classifiers to get a more complex classifier at a reasonable computational
cost). We take interest in WSOD in the case of extreme domain shifts, namely non-
photographic images especially artistic one, possibly addressing the detection of new,
never seen classes. We evaluate the performances of our approach by comparing it to
several state-of-the-art approaches on databases with challenging domain shifts, includ-
ing paintings, drawings and cliparts, in the experimental Section 5.3.2. Our approach
does not involve any cross-domain learning step and can therefore be applied to ar-
bitrary datasets and classes. The approach outperforms methods specially developed
for the considered databases, as well as classical MIL approaches and some state-of-
the-art WSOD approaches, as we will see in the experimental section, such a strategy
also enables one to have relatively small training times (Section 5.3.2.4). At last, our
method is evaluated on classical MIL benchmarks in Section 5.3.5.

5.2 Proposed Multiple Instance Model: MI-max
and its Variants

Reminder of the notations The feature vector associated to the instance k of the
bag i is denoted Xi,k ∈ Rd and the label of the bag i is denoted Yi ∈ {−1, 1}.

5.2.1 The Main Model (MI-max): a Multiple Instance
Perceptron

Instead of the classical SVM generalization for MIL proposed in [Andrews et al. 2003]
and based on costly iterations of SVM, we propose a simple model which is a multiple
instance extension of the perceptron [Rosenblatt 1958] with a maximum taken over the
instances of a bag. Our model can be seen as a Latent perceptron [Felzenszwalb et al.
2010]. It is also similar in spirit to the MI-network proposed by Zhou et al. [2002].

We denote our model MI-max As we consider each class individually, we focus on
the case of binary classification. We build on a linear model:

fw(Xi,k) = W TXi,k + b, (5.1)

with W ∈ RM , b ∈ R, which we combine with a maximum aggregation function
g = maxk∈{1...Ki} and a per example loss function equal to

l(y, ŷ) = 1− y Tanh(ŷ) = 1− Tanh(yŷ). (5.2)
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We also use a regularization term on the norm of W and the weighting of the two
classes, so that the complete loss function is:

L(W, b) = 2−
N∑
i=1

Yi
nYi

Tanh

 max
k∈{1...Ki}

(
W TXi,k + b

)
︸ ︷︷ ︸

= fw(Xi,k)

+ C||W ||2, (5.3)

with nYi
the number of positive examples in the training set when Yi = 1 and the

number of negative examples when Yi = −1. The intuition behind this formulation is
that minimizing L(W, b) amounts to seek a hyperplane separating the most positive
element of each positive image from the least negative element of the negative image
(i.e. from all examples in the negative bags). Also this loss seeks to maximize the
margin.

The regularization term apart, this loss function equals 0 if and only if the clas-
sification is perfect. In the worst-case scenario, its value is 4 (plus the regularization
term). Furthermore, if the hyperplane W TX + b = 0 exactly separates the most pos-
itive examples of each positive bag from the set of all examples of all negative bags,
then replacing C,W and b by λC, 1

λ
W and 1

λ
b respectively and taking λ to 0 will lead

to a loss as close to 0 as desired. This implies that if the MIL problem admits an exact
linear solution, then our loss accepts it provided C is small enough. One advantage
of this formulation is that it can be tackled by a simple gradient descent, therefore
avoiding the very costly iterative procedures of other MIL solutions such as [Andrews
et al. 2003]. Taking the max over all instances of a bag is akin to what is done in
MI-SVM (mentioned in Section 2.4.1.1) when after each full training of an SVM, a
new representative element of each bag is selected for the next SVM training. After
each step of the gradient descent, we do a re-labeling of the instance through the max
operator instead of doing so after a full optimization of a SVM.

We can switch to a Stochastic Gradient Descent (as in [Felzenszwalb et al. 2010]
for the LSVM) by iterating on random batches when the dataset is too big. Of course,
since our loss is not convex, the proposed method does not guaranteed to find the
global minimizers of the function. To tackle this problem, we train r times the model
with a random initialization and pick the best one on the training set evaluation of the
loss function. When the best couple (W ?, b?) has been found, we compute the following
score, that reflects the meaningfulness of category association:

S(x) = Tanh{W ?Tx+ b?}. (5.4)

The approach is then straightforwardly extended to an arbitrary number of categories,
by computing W ?, b? and the score separately for each category. Observe, however,
that this leads to non-comparable scores between categories.

Some previous works [Alain et al. 2017] shown that CNNs learn to find a low-
dimensional representation in which the data are linearly separable, so the linear model
is adapted to our approach.

Our method shares the idea of using a maximum function as aggregation function
with numerous works [Zhou et al. 2002; Nguyen et al. 2009; Oquab et al. 2015] in-
cluding the Nguyen et al.’s model [2009] which alternates between updating the SVM
parameters and the regions label by taking the maximum over regions only for positive
images.
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5.2.2 One Hidden Layer Multiple Instance Network
In this extension, called MI-max-HL, the bare features Xi,k are transformed by a
hidden layer before the MI-max approach is applied. This can be summarized by
modifying the function fw as follows:

fw(Xi,k) = ΩT
(
Tanh

(
W TXi,k + b

))
+ β, (5.5)

with W ∈ RL×M , b ∈ RL, Ω ∈ RL, β ∈ R and L the dimension of the hidden layer.
When compared with MI-max the parameters to be learned are Ω, β,W, b for a total

dimension of L + 1 + L×M + L = L× (M + 2) + 1 compared to the original M + 1
scalars. Here again we run r times the model and pick the best one on the training
set evaluation of the loss function. For the moment, we do not provide an effective
implementation of this method. This method is hundred times longer than the MI-max
model because we are not able to train at the same time all the classes and all the
initialization. Moreover this version has a bigger memory footprint.

5.2.3 Multiple Linear Classifier: a Polyhedral Model
5.2.3.1 Our model

Another possible improvement of the linear model is to learn several hyperplanes in
parallel, so that the binary classification is performed in a collaborative manner instead
of selecting the best hyperplane. The contributions of r hyperplanes are gathered with
a maximum function, so that the model can be defined as:

fw(Xi,k) = max
j∈{1...r}

(
W T
j Xi,k + bj

)
. (5.6)

At each iteration of the gradient descent, only one of the couples (Wj, bj) is updated.
For the inference the r hyperplanes are also used. The maximum function on the r
classification scores is one of the simplest ways to aggregate the contributions of the
different hyperplanes but there are no guarantees that hyperplanes will be distinct.
Nevertheless on some datasets the performances are better with this variant compared
to the plain model (Section 5.3.2.3). This model allows use to have more complex
boundaries with a small extra cost compared to an SVM. This model defines a concave
polyhedral boundary between the two classes, a particular case of a piece-wise linear
boundary. Thus, this model is named Polyhedral MI-max.

5.2.3.2 Related Work about Polyhedral and Piecewise Linear Classifiers

In this section, we will present a short review of the polyhedral and piecewise linear
classifiers proposed by the machine learning community.

Linear or piecewise linear boundaries between classes are ubiquitous in machine
learning. In fact, many algorithms yield such a separation between the classes either
directly (SVM, random trees. . . ) or indirectly by aggregating linear classifiers to build
a more complex one (Adaboost [Freund et al. 1995], Bootstrap aggregation [Breiman
1996]). Even a complex CNN only separates space by linear frontiers, as long as the
only nonlinearities are ReLUs and classical poolings. Chu et al. [2018a] even propose
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to transform a Piecewise Linear Neural Network1 to its mathematically equivalent set
of linear classifiers in order to study it.

The simplest algorithm that provides a piecewise linear frontier is the k-nearest-
neighbor algorithm [Cover et al. 1967]. The axis-parallel rectangle classifier also pro-
vides a piecewise linear boundary [Dietterich et al. 1997].

In [Astorino et al. 2002], the concept of convex polyhedral separability is studied,
i.e. a class is approximated by a convex polytope and the rest of the space is used to
approximate the second class. An algorithm is proposed to learn the englobing poly-
tope based on the iterative solution of a linear programming descent direction finding
problem. In [Orsenigo et al. 2007], the optimization of the polyhedral separability is
achieved by solving a mixed integer programming model that extends the notion of
discrete SVM.

The related concept of max-min separability was introduced in [Bagirov 2005]. In
this approach two sets are separated using a continuous piece-wise linear function,
generalizing polyhedral separability since the convexity requirement is dropped. These
two kinds of separability are illustrated in Figure 5.1. In [Bagirov et al. 2005] an
efficient algorithm for solving the max-min separability problem is proposed. This
algorithm is based on the use of a discrete gradient of the objective function to make
the computation tractable.

Breiman [1993] proposes the hinging hyperplanes, which is a linear combination of
basis functions of the form max{0, `m(x)} with `m an affine function. This also leads to
a piecewise linear boundary. This model has been improved by Wang et al. [2005] in a
generalized hinging hyperplanes model of the following form max {0, `1(x), . . . , `kn(x)}.
Huang et al. [2013] combine a piecewise linear feature mapping and an SVM to create
an efficient classifier.

Polyhedral separability
Max-min separability - Piecewise linear

Figure 5.1: Illustration of the different kind of separability.

These three different models (linear, multi-layers and polyhedral) will be experimen-
tally compared in Section 5.3.

1Only piecewise or linear activation are used.
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5.2.4 From MIL to WSOD
In the context of WSOD, each bag i corresponds to an image and each instance k
corresponds to a candidate region to be labeled. In a sense, we assume that the Region
Proposal Network (RPN) is robust enough to transfer detection from photography to
the target domain. One can see good bounding boxes for the category angel in Fig-
ure 5.2. The goal is then to decide which boxes correspond to the category. Following
this "MIL assumption", our problem boils down to the classic multiple-instance clas-
sification problem [Dietterich et al. 1997]. Our work is focused on the instance-level
classification and not bag level one.

Figure 5.2: Illustration of positive and negative sets of instances (bounding boxes) for
the angel category.

We use a CNN trained for a object detection task on natural images to provide
candidate regions with an off-the-shelf feature vector per region. Training a WSOD
model from scratch, especially when the database is rather small face overfitting and
convergence problem. Thus, reusing as much as possible models that have been trained
on large datasets is advisable. Referring to the WSOD standard pipeline mentioned in
Section 2.4.2, we only focus on the multiple instance classification task and not on the
box proposals algorithms, feature extraction or refinement methods. Our previously
described approach enable to learn a linear separation between boxes. The classification
score of a given box is defined in equation (5.4). A Non Maximum Suppression (NMS)
algorithm is applied to avoid redundant detections. This algorithm takes into account
the spatial information between boxes and the classification score.

Moreover, we here assume that candidate regions are returned by the detection CNN,
together with a feature vector and a class-agnostic objectness score, but without any
label. We ignore the classification predictions of the detection network. The idea is to
give more importance to the classification of boxes with the highest objectness score.
We observe that using the class-agnostic objectness score attached to each proposed
box consistently give better results (see Section 5.3.3.1). Before taking the maximum,
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each W TXi,k + b is multiplied by the objectness score of the region k:

fw(Xi,k) = (si,k + ε)
(
W TXi,k + b

)
, (5.7)

with ε ≥ 0 and where si,k is a class-agnostic objectness score of the region k, as returned
by the detection network. Hence, the loss function defined in equation (5.3) can be
written as:

L(W, b) = 2−
N∑
i=1

Yi
nYi

Tanh

 max
k∈{1...Ki}

(si,k + ε)
(
W TXi,k + b

)
︸ ︷︷ ︸

= fw(Xi,k)

+ C||W ||2. (5.8)

The motivation behind this formulation is that the score si,k, roughly a clue that
there is an object in box k, provides a prioritization between boxes. The same idea is
used in the WSDDN model [Bilen et al. 2016] or in MELM [Wan et al. 2018]. At test
time, the instance-level decision is made as before according to the sign of

(
W ?Tx+ b?

)
,

since multiplication by a positive score does not change the sign. Indeed, the hyper-
plane W ?, b? is chosen to separate two classes and the loss L aims at maximizing the
margin with respect to this hyperplane. It stands to reason that the instance-level clas-
sification must be related to the relative position of the instance and the hyperplane.
Nevertheless, we will propose in Section 5.3.2 a non-maximal suppression strategy that
will once again use the objectness score to filter the boxes proposed for each class.
More precisely the non-maximal suppression algorithm will use the following score:

S(x) = Tanh
{

(s(x) + ε)
(
W ?Tx+ b?

)}
(5.9)

which mixes the objectness score s(x) and the signed distance from the learned hyper-
plane W ?Tx+ b?. This resulting multiple instance learning model is our default model,
previously called MI-max. Please note that otherwise mentioned, the model is used
with the objectness score when it is available for WSOD case. For classical MIL tasks,
there is no objectness score available.

The objectness score could be used in different manners. For example, we could
multiply this score with the Tanh operator instead of doing the multiplication inside
of it:

fw(Xi,k) = (si,k + ε)Tanh
(
W TXi,k + b

)
. (5.10)

In this case, a region will need to have a strong objectness score and a strong classifica-
tion score to be considered as a positive or negative instance for the learning process.
It will discard the low objectness score region even if they have a high classification
score.

Another way is to compute a linear combination between the objectness score and
the classification one to force the model to select regions with both a high objectness
score and a high classification one as in the following equation:

fw(Xi,k) = λTanh
(
W TXi,k + b

)
+ (1− λ) si,k sign

(
W TXi,k + b

)
, (5.11)

with λ ∈ [0, 1]. This linear interpolation between the objectness score and the classifi-
cation one have already been used in other WSOD models ([Tang et al. 2017c; Uijlings
et al. 2018] during training and [Zhong et al. 2020] during inference).
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The different use of the objectness score will be compared in Section 5.3.3.1.

5.2.5 Concerning the Tanh Based Loss Function

The goal of our Tanh based loss function defined in equation (5.2) is to mimic the
margin of the SVM because the function saturates at -1 and 1. Thus the elements
far from the border will not contribute to the gradient. Rosasco et al. [2004] show
that assuming the loss function can be written as L(y, f) = L(yf), is convex and is
decreasing in a neighborhood of 0 then the minimizer of the expected risk equals the
Bayes optimal solution (in case of infinite data). The hinge loss is the one for which
they obtained the tighter bounds (in case of finite data). As our loss function can
be rewritten as 1 − Tanh(yf(x)) and respects the condition of the Theorem 2.1 of
Rosset et al. [2004] then our loss function is margin-maximizing. Moreover as Tanh is
1-Lipschitz continuous as the hinge loss, it has the same theoretical convergence rate
according to Rosasco et al. The usual loss functions and our Tanh based one can be
seen in Figure 5.3. Our Tanh based loss function is a convex upper bound of the
classification Misclassification (0− 1) loss : L(f(x), y) = I(yf(x) ≤ 0) such as hinge
loss and squared error. It will asymptotically be as the hinge loss for the well classifier
point (above 1) where it will treat all the wrong classifier equally (under -1) whereas
the hinge loss function will treat them linearly.

−3 −2 −1 0 1 2 3
0

1

2

3

yf

Lo
ss

Hinge Loss
Squared Error
0-1
Tanh based Loss

Figure 5.3: Common loss functions used in machine learning.

We experimentally show that the Tanh based loss function is as good as the hinge
loss (Section 5.3.3.4).

5.3 Evaluation

Reminder of the notations The names of our three models are:
• MI-max: the multiple instance perceptron
• MI-max-HL: the multiple instance neural network with one hidden layer
• Polyhedral MI-max: the multiple instance polyhedral perceptron
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5. MIL Model for WSOD in Artworks

5.3.1 Toy Problem
First, we try our models on a simple Gaussian toy problem in two dimensions without
or with overlapping. Two point clouds are generated and the bags of elements are
created with one positive element out of one hundred for positive bags and none for
the negative bags. The train and test sets are the same size: 25 positive bags and 125
negative ones. Figure 5.4 shows that our model MI-max is able to linearly separate
two classes even when there is a little bit of overlapping. As expected, a linear model
is not able to deal with not linearly separable data. It can be noticed in Figure 5.5 the
MI-max-HL model provides a non-linear border as expected. The model Polyhedral
MI-max can provide multiple distinct hyperplanes to split the space (see Figure 5.6)
but fails when the two classes are too close. Moreover the same kind of result can be
obtained even if the training set only contains one positive bag during the training.

(a) Without overlapping (b) With overlapping

(c) Without overlapping and non-linearly
separable points

(d) With overlapping and non-linearly sep-
arable points

Figure 5.4: Toy problem with MI-max. Only the test set is shown. The background
color is the class provided by the model whereas the circle color is the true label (red
for positive and blue for negative).
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(a) Without overlapping (b) With overlapping and non-linearly sep-
arable points

Figure 5.5: Toy problem with MI-max-HL. Only the test set is shown. The background
color is the class provided by the model whereas the circle color is the true label (red
for positive and blue for negative). The non-linear boundaries can be observed.

(a) Without overlapping and non-linearly
separable points

(b) With overlapping and non-linearly sep-
arable points

Figure 5.6: Toy problem with Polyhedral MI-max. Only the test set is shown. The
background color is the class provided by the model whereas the circle color is the
true label (red for positive and blue for negative). On the left, we can see the two
hyperplanes which provide a good separation.

5.3.2 Benchmark on the Weakly Supervised Object
Detection Task

5.3.2.1 Implementation Details

Faster R-CNN We use the detection network Faster R-CNN [Ren et al. 2015]. For
our method we only use its RPN and the features corresponding to each proposed
region. Recall that in order to yield an efficient and flexible learning of new classes, we
decide to avoid retraining or even fine-tune the network. We explore the transferability
of these learned representations in the scenario where the user gives simple hints about
the presence of an object in a small number of artworks. The images are resized to a
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maximal size of 600 by 1000 pixels before applying the Faster R-CNN model. After
the NMS phase, the 300 boxes with the best "objectness" scores are kept among the
boxes returned by Faster R-CNN along with their high-level features2. An example of
extracted boxes is shown in the Figure 5.7. Observe, however, that since we are relying
on Faster R-CNN, our system uses a subpart trained on databases including bounding
boxes, but without using any class information. To be in the "common" WSOD setup
evaluated on natural images benchmark (as in [Bilen et al. 2016; Zhu et al. 2017b;
Tang et al. 2018a]) the model should have never seen any bounding boxes even on
a different modality. In some sense, we are halfway between the "common" WSOD
setup, the cross domain (as in [Inoue et al. 2018]) one and the knowledge transfer one.
Indeed, our method allows considering new visual categories that are not present in the
source domain (here MS COCO which has been used for training the detection CNN
before its transfer), in contrast to Inoue et al. [2018]. Thus, our approach belongs to
the weakly supervised paradigm as we tried to infer information that is not explicitly
provided in the training set (i.e. the bounding box around our object of interest in the
artworks), but we build on the knowledge from a previous and related task thus our
method belongs to the WSOD-with-transfer paradigm mentioned in Section 2.4.2.5.
Nevertheless, we do not explicitly exploit the relation between the two tasks which is
specific to the knowledge transfer paradigm.

According to Kornblith et al. [2018], ResNets appears to be the best architecture for
transfer learning by feature extractions among the different ImageNet models, and we
therefore choose these networks as backbone for the Faster R-CNN algorithm. One of
them (denoted RES-101-VOC07) is obtained with a ResNet 101 layers, trained for the
detection task on PASCAL VOC2007 trainval set. The other one (denoted RES-152-
COCO) is a ResNet 152 layers trained on MS COCO training set [Lin et al. 2014]. This
last backbone seems to provide better features for the classification task as one can see
in Section 4.3.1.2. We will also compare our approach to the plain application of these
networks trained on detection tasks in a fully supervised manner when applicable. Thus
they were trained on classes we want to detect and on images from the same domain
than the test set. We refer to these approaches as Fully Supervised Detection (FSD)
in our experiments. For implementation, we build on the Tensorflow implementation
of Faster R-CNN of Chen et al. [2017]3.

MI-max and variants When a new class is to be learned, the user provides a set of
weakly annotated images. The MI-max framework described before is then run to find
a linear separator specific to the class. Note that both the database and the library of
classifiers can be enriched very easily. Indeed, adding an image to the database only
requires running it through the Faster R-CNN network and adding a new class only
requires a MIL training.

Parameters of the models For training our MIL models, we use a batch size of
1000 examples (for smaller sets, all features are loaded into the GPU), 300 iterations of
gradient descent for the linear model, performed with a constant learning rate of 0.01

2The layer fc7 of size M = 2048 in the ResNet case, often called 2048-D.
3This implementation code can be found on GitHub: https://github.com/endernewton/

tf-faster-rcnn.
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Figure 5.7: Some of the regions of interest generated by the RPN of Faster R-CNN.

and ε = 0,01 and C = 1 (equations (5.7) and (5.3)). The complete training takes about
6 minutes for 7 classes on the IconArt dataset (Section 4.2.1) with 12 random starting
points per class using a consumer GPU (GTX 1080Ti). In the case of Polyhedral
MI-max we used 3000 iterations which increase the training time to 1 hour. For MI-
max-HL, we use a maximum batch size of 500 elements. Actually, for the MI-max and
Polyhedral MI-max models, the random restarts and classes are performed in parallel
to take advantage of the presence of the features in the GPU memory, thus reducing
the GPU-Central Processing Unit (CPU) transfer times. Typically, the different classes
can be learned in parallel on a standard GPU, due to the light weight of the model.
One of the others advantages of not fine-tuning the network is that there is no need to
store the weights of the newly trained model. It is sufficient to store the features that
are computed once for all the images.

Comparison to the multiple instance neural network Our model MI-max-
HL is the one of our models that is closest to the multiple instance neural networks
proposed by Ramon et al. [2000] and Zhou et al. [2002], but these models involve a
sigmoid activation and they are trained with a quadratic loss l(y, ŷ) = (y− ŷ)2 and no
re-initialization (r = 0).

5.3.2.2 Sanity Check on PASCAL VOC 2007

Before testing our method on paintings, we start with a sanity check experiment on
PASCAL VOC2007 [Everingham et al. 2010]. We compare our weakly supervised
approach, MI-max and its variants, to the plain application of the fully supervised
Faster R-CNN [Ren et al. 2015] and two simple weakly supervised procedures (MAX
and MAXA). The method MAX keeps one feature vector per image and learns a linear
SVM classifier that separates the positive vectors from the negative ones [Crowley et
al. 2016]. The variant MAXA also keeps one vector per positive image but uses all
vectors from the negative ones. In both cases a 3-fold cross validation is performed.
We perform the comparison using two different pre-trainings, RES-101-VOC07 and
RES-512-COCO, as explained in the previous section. We also compared our approach
to the Fully Supervised4 Faster R-CNN Detector fine-tuned on VOC07 or MS COCO,

4Fine-tuned with bounding boxes.
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this approach is denoted FSD. In a variant of this approach, denoted "FSD w/o B", we
remove the final layer of the Faster R-CNN in charge of the box regression and take
the localization of the bounding box from the RPN.

Net Method mean

RES-
101-

VOC07

FSD [He et al. 2015] 75.0
FSD w/o B 67.4

MAX [Crowley et al. 2016] 36.2
MAXA 58.9

MI-max w/o score 61.8 ± 0.7
MI-max 68.3 ± 0.2

Polyhedral MI-max w/o score 62.5 ± 0.9
Polyhedral MI-max 69.0 ± 0.2

MI-max-HL w/o score 60.7 ± 0.9
MI-max-HL 69.2 ± 0.4

RES-
152-

COCO

FSD [He et al. 2015] 82.7
FSD w/o B 78.7

MAX [Crowley et al. 2016] 44.1
MAXA 65.5

MI-max w/o score 73.9 ± 0.3
MI-max 81.6 ± 0.3

Polyhedral MI-max w/o score 76.7 ± 1.7
Polyhedral MI-max 82.3 ± 1.9

MI-max-HL w/o score 71.0 ± 2.0
MI-max-HL 78.8 ± 1.8

Table 5.1: VOC 2007 test Average precision (%). Comparison of the Faster R-
CNN detector (trained in a fully supervised manner: FSD) and our MI-max algo-
rithm (trained in a weakly supervised manner) for two networks RES-101-VOC07 and
RES-152-COCO. In blue the best fully supervised method and in red the best weakly
supervised one. When it was computationally acceptable we calculated the standard
deviation on 10 runs.

In Table 5.1, one can see that our MI-max, Polyhedral MI-max and MI-max-HL
proposed models are better than the two baselines MAX and MAXA, with or without
the objectness score use. Especially the baseline MAX procedure (used for transfer
learning on paintings in [Crowley et al. 2014]) yields notably inferior performances.
MAXA is better than MAX because it is trained on a lot more negative examples.
That’s why it is more able to discriminate background. Moreover this shows that our
MI-max model is better than the MI-max w/o score thanks to the weighting by the
objectness score in the loss function. Similarly, the model with the objectness score
is better than the one without it for the Polyhedral MI-max and MI-max-HL models.
On the average, the loss is only 1.1% of mAP when using RES-152-COCO between
the FSD and MI-max whereas it is 7% in the case of RES-101-VOC07. The gap is
even lower between the Polyhedral MI-max approach and the FSD one, with 0.4% in
the first case and 6% in the second. The MI-max-HL and Polyhedral MI-max models
give the best weakly supervised performance with the RES-101-VOC07 features. The
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features and the boxes extracted in the first case seem to be of better quality. This
may be due to the fact that there are more examples in the MS COCO dataset. The
MI-max, Polyhedral MI-max and MI-max-HL models are able to learn a classifier
equivalent to the last layer that has been removed to the Faster R-CNN. We have to
mention that our models are not completely weakly supervised and cannot be fairly
compared to state-of-the-art WSOD methods (described in Section 2.4.2) because we
are relying on Faster R-CNN. However, our system only uses a subpart trained using
class agnostic bounding boxes. Our approach can be seen an unsupervised Knowledge
Transfer because we don’t take into account the knowledge about the transferred model
as in [Uijlings et al. 2018]. This experiment is promising for the power of our method.

5.3.2.3 Results and Comparison to Other Methods on Artistic Datasets

In this section, we perform weakly supervised object detection experiments on different
non-photorealistic databases, in order to illustrate different assets of our approach. We
compare our different models MI-max, Polyhedral MI-max, MI-max-HL to three types
of methods.

The first group of methods are those specifically targeted at WSOD using fine-
tuned networks. We have included state-of-the-art methods for which a source code
is available: Soft Proposal Network (SPN) [Zhu et al. 2017b] and Proposal Cluster
Learning (PCL)5 [Tang et al. 2018a]. For some of the datasets, we also include results
from the WSDDN [Bilen et al. 2016] from [Inoue et al. 2018]. For three datasets we
also show the performance obtained by the mixed supervised method with domain
adaptation proposed by Inoue et al. [2018]. This method needs the bounding boxes for
objects of the same classes in another modality. Moreover the domain adaptation for
unknown classes is out of the scope of this work.

The second family of methods are generic MIL-methods directly applied to the set of
deep features vectors generated by Faster R-CNN. Observe that these methods ignore
the objectness scores returned by the detection network. The first ones are MI-SVM
and mi-SVM from Andrews et al. [2003]. These two methods require to train several
SVMs and are therefore costly. In some cases (for PeopleArt and IconArt) we were
forced to perform a PCA on the training set to reduce the number of components from
2048 to around 650 dimensions by keeping 90% of the variance (to fit the SVM in CPU
memory). We experimentally observe on the other datasets that this dimensionality
reduction does not reduce the performances. Eventually, the computationally lighter
MI_Net, MI_Net with Deep Supervision (DS) or Residual Connection (RC) and mi_-
Net from Wang et al. [2018b] are also considered. Although these models are designed
for a bag-level classification, we used them for instance-level prediction. This can
be seen as variants on our proposed method (the weakly detection of objects is not
addressed in [Wang et al. 2018b]).

The last type of methods are these which before any training use the objectness
score of the proposed regions to keep only one feature vector for each positive image.
They are the MAX and MAXA approaches defined before, in Section 5.3.2.2.

Observe that our method lies in between the generic MIL methods and the ones
that take advantage of objectness information from deep models. At test time, the

5Trained with the following hyperparameters: batch size = 2, learning rate = 0.001, epochs = 13
and number of clusters by default.
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labels and the bounding boxes are used to evaluate the performance of the methods
in terms of AP per class. The generated boxes are filtered by a NMS with an IoU
threshold of 0.3 and a confidence threshold of 0.05 for all methods.

Reference Dataset # Images # Images # Instances # Classes Min # Images Classes from Classes from
in train set in test set in test set per class natural images Pascal VOC

[Westlake et al. 2016] PeopleArt 3007 1616 1137 1 968 Yes All
[Inoue et al. 2018] Watercolor2k 1000 1000 3315 6 27 Yes All
[Inoue et al. 2018] Clipart1k 500 500 3615 20 21 Yes All
[Inoue et al. 2018] Comic2k 1000 1000 6389 6 87 Yes All

[Thomas et al. 2018] CASPA paintings 1045 1033 1486 36 8 Yes 6 out of 8
Section 4.2.1 IconArt 2978 1480 3009 7 75 No No

Table 5.2: Overall information of the evaluated artistic datasets used for WSOD task.

As explained above, we concentrate on non-photographic databases for which a
ground truth is available for object detection on the test set. We report in Table 5.3
the performances for the Weakly Supervised Object Detection task for 6 different
non-photographic datasets: PeopleArt [Westlake et al. 2016], Watercolor2k, Clipart1k,
Comic2k [Inoue et al. 2018], IconArt (Section 4.2.1) and "CASPA paintings" [Thomas
et al. 2018]. "CASPA paintings" is the painting subset of the CASPA dataset6 pro-
posed in [Thomas et al. 2018] with bounding boxes associated to 8 visual categories
(only animals) for most of the images. When the method is not too slow, we provide
standard deviation and mean score computed on 10 runs of it. The detailed results
can be found in Annex, Section C.2.

First, for all databases, the end-to-end weakly supervised methods (WSDDN, SPN
and PCL) yield relatively poor results. Possible explanations are that the model overfits
on the training set or that the model is stuck in bad local minima, so that the weakly
supervised setting is not adequate with a relatively small training dataset. Maybe it
should be necessary to add more regularization during the training of those models
and to freeze some part of the deep network due to the small size of the training sets
but this is out of the scope of this work. Moreover in the case of PCL, the boxes are
proposed by the Selective Search algorithm [Uijlings et al. 2013] which, as shown in
Table 5.8, completely fails on the considered non-photographic datasets. That alone
can explain the poor results of PCL on those datasets. Moreover, these methods do
not have the important advantage of using features from Faster R-CNN pretrained on
MS COCO (thus with bounding box annotations).

When comparing the performances of the different multiple instance neural net-
works, we can see that MI_Net (Maximum Bag Margin Formulation) outperforms the
other MIL networks on four datasets. Moreover this multiple instance neural network
outperforms the multiple instance SVM (mi-SVM and MI-SVM), which can be due to
the fact that linear SVM are not complex enough.

We can notice that the Maximum Pattern margin methods (mi-SVM and mi_Net)
never perform better than the bag margin ones. This is rather unexpected since those
models are designed to better take into account the whole positive bag by assigning
an individual label per instance. These models appear to be badly suited for the
task of weakly supervised detection in non-photographic databases. When comparing
our MI-max and Polyhedral MI-max models to the baseline MAX and MAXA, we
observe that our models consistently perform better. Nevertheless the MAXA model

6This dataset can be found here: http://people.cs.pitt.edu/~chris/artistic_objects/
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5. MIL Model for WSOD in Artworks

performs well especially on the IconArt or CASPA paintings databases, probably for
the previously mentioned reason. The MAX baseline sometimes provides equivalent
performances to more complex methods (such as MI-SVM or MI_Net), this illustrates
the fact that the objectness score (used for selecting candidates in MAX) contains
useful information. Also observe that it is faster to train a multiple instance perceptron
than several linear SVMs, as is needed for MI-SVM or mi-SVM. This is quantified in
Section 5.3.2.4. Finally, we observe that both our models MI-max and Polyhedral MI-
max provide better results than the other methods on PeopleArt, CASPA paintings,
Comic2k, Clipart1k and Watercolor2k datasets. The dataset IconArt appears to be
much more challenging. In this case, our multiple instance methods provide equivalent
performances compared to the multiple instance networks. The best performance is
obtained by the MI_Net, the MI-max-HL performance being very similar.

We propose a Multiple Instance Learning approach to transfer off-the-shelf deep
features to datasets with extrem domain shift (on the contrary to the experiment from
the previous Section 5.3.2.2).

5.3.2.4 Execution Time

One advantage of our method is the relative short time needed for training, as can be
seen in Table 5.4. As can be expected, the SPN and PCL methods are the longest to
train due to the fine-tuning of the whole network. Observe also that the training time
for our method MI-max is almost independent of the number of classes and restarts,
which is a strong advantage compared to the MI-SVM, mi-SVM, MI_Net and mi_Net
models. These models all need one full training per class and per re-initialization.
The SVM based methods are more costly because they don’t take advantage of GPU
computational power. Nevertheless, due to the aggregation of several hyperplanes with
a maximum operator in the Polyhedral MI-max model, we need to do 10 times more
epochs that when using MI-max, which explain the strong overload.

Method Training Duration Linear to the Linear to the
Duration number of classes number of restarts

No Boxes proposals
SPN [Zhu et al. 2017b] 3000s (20 epochs) No •

Selective Search Bounding Boxes proposal 6600s
PCL [Tang et al. 2018a] 12000s (13 epochs) No •

Faster R-CNN Features and boxes proposals 200s
MAX with hyperoptimization 52s Yes •
MAXA with hyperoptimization 2000s Yes •
MI-SVM [Andrews et al. 2003] 3000s Yes Yes
mi-SVM [Andrews et al. 2003] 30000s Yes Yes
MI_Net [Wang et al. 2018b] 1200s (20 epochs) Yes Yes

MI_Net_DS [Wang et al. 2018b] 1800s (20 epochs) Yes Yes
MI_Net_RC [Wang et al. 2018b] 1600s (20 epochs) Yes Yes

mi_Net [Wang et al. 2018b] 1800s (20 epochs) Yes Yes
MI-max 130s (300 epochs) No No

Polyhedral MI-max 1100s (3000 epochs) No No
MI-max-HL 3000s (300 epochs) No Yes

Table 5.4: Execution time of the different models for datasets Watercolor2k and
Comic2k, with 1000 images in the training set and 6 visual categories.
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5.3.3 Fine Models Analysis
In this section we discuss the details of our model and some variations. In particular,
an ablation study is provided where we analyze how the choices of a different losses,
different set of features and use of the objectness score impact the performances of
our models. In Sections 5.3.3.1, 5.3.3.2 and 5.3.3.4 a thorough investigation of the
main parameters’ influence is conducted. From this study we are able to recommend
a set of parameters that are suited for our models, thus providing the user with a safe
baseline for reusing them. Then, some limitations of our Polyhedral MI-max model
are highlighted in Section 5.3.3.5. In Section 5.3.3.6, the generalization ability of our
models are also evaluated across different modalities of images (using classes shared
by the different datasets). We experimentally show that our method also enables to
easily transfer the knowledge between datasets and artistic modalities. Finally, in
Section 5.3.3.7 some visual results are commented to give an insight on the strengths
and shortcomings of our model.

5.3.3.1 Concerning the Faster R-CNN Objectness Score Use

Dataset
MI-max Polyhedral MI-max

Main model Without With score mul With score Main model Without With score mul With score
score outside Tanh (5.10) addition (5.11) score outside Tanh (5.10) addition (5.11)

PeopleArt 55.5 ± 1.0 0.9 ± 0.4 57.5 ± 0.5 53.7 ± 3.3 58.3 ± 1.2 10.1 ± 3.3 53.4 ± 2.3 55.0 ± 4.8
Watercolor2k 49.5 ± 0.9 32.8 ± 2.2 50.7 ± 0.8 50.1 ± 0.8 46.6 ± 1.3 18.3 ± 4.7 37.9 ± 3.4 42.8 ± 2.3
Clipart1k 38.4 ± 0.8 24.2 ± 1.6 38.3 ± 0.9 35.4 ± 2.0 30.5 ± 2.3 11.9 ± 2.6 24.6 ± 1.1 24.2 ± 1.9
Comic2k 27.0 ± 0.8 17.4 ± 1.5 27.2 ± 0.8 24.0 ± 1.9 23.3 ± 1.6 11.6 ± 2.8 18.6 ± 1.1 20.3 ± 1.8

CASPA paintings 16.2 ± 0.4 18.7 ± 0.8 16.4 ± 0.1 16.0 ± 0.6 14.4 ± 0.7 8.6 ± 1.4 12.1 ± 0.8 13.6 ± 1.0
IconArt 12.0 ± 0.9 6.7 ± 2.5 12.0 ± 1.1 11.7 ± 1.5 13.0 ± 2.2 6.4 ± 2.3 8.6 ± 1.3 10.8 ± 1.9

Table 5.5: Mean average precision over the classes of the different datasets (%). Com-
parison of the proposed MI-max and Polyhedral MI-max methods with different ways
to use the objectness score: this score can be used in a multiplicative way inside the
Tanh operator referred as "Main model" (equation (5.9)), outside the Tanh operator
(equation (5.10)) or in an additive way (equation (5.11)) with λ = 0,5. We also con-
sider the baseline without objectness score. Standard deviation is computed on 10 runs
of the method.

The first conclusion that can be drawn is that the use of objectness score almost
always significantly increases the performances of our models. This is especially true
for the PeopleArt dataset where the performances decrease drastically without using
the objectness score. For the other datasets, the performances are always significantly
lower without the objectness score. Note that for some classes the detection score drops
due to the fact that the model detects parts of the object instead of the whole object
when the objectness score is ignored. Among the three ways to use the objectness score
(defined in Section 5.2.4), the main model is better or comparable to the two other
methods especially for the Polyhedral MI-max model. The additive solution seems
under the two other solutions. The landscape of the aggregated score provided by those
three possibilities can be seen in Figure 5.8. The multiplication with the objectness
score inside the Tanh is less restrictive than the multiplication outside. The second
solution gives more importance to the objectness score. Whereas the additive solution
can be seen as an intermediate solution (for λ = 0,5).
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Figure 5.8: Different ways to use the objectness score: value of the global score. From
left to right, we consider the multiplication with the objectness score outside the Tanh
(equation (5.9)), inside it (equation (5.10)) and the additive approach (equation (5.11))
with λ = 0,5.

We study this gain on performance especially on the PeopleArt dataset because the
drop of performance is really significant. When we look at the best detected region
per image on the train set of PeopleArt, MI-max w/o score model seems to detect
upper body whereas the MI-max model gets the full body (see Figure 5.9). The same
observation can be made on the test set Figure 5.10. Moreover we can see that the
MI-max model will provide higher score for the same region sometimes (last row of
Figure 5.10). It also outputs higher number of bounding boxes around the object of
interest.

MI-max w/o score provides a classification score equivalent to the MI-max’s one
whereas it leads to bad detection score (see in Annex, Table C.7). As shown by
Vanwinckelen et al. [2016], the bag-level classification score (here the image level clas-
sification score) is a bad proxy for the instance-level classification score (the detection
score). However the objectness score is not a cure-all. In Figure 5.11, both models fail
on the same image maybe due to the Faster R-CNN features.

The way the RPN works is not yet well understood as illustrated in [Rosenfeld et
al. 2018]. Double an object within the image may completely change the predictions.
However the RPN provides a good measure of the importance of a given box in the case
of artistic images. It would be interesting to quantify the objectness score before using
it as a ranking weight in order to avoid providing arbitrary too much weight to a given
box. Moreover, developing an object proposal that generalizes well for artistic images
as it’s done for natural ones in [Wang et al. 2020] is a promising research direction.

5.3.3.2 Choice of the Loss Function

In Table 5.6, we gather different versions of the two models MI-max and Polyhedral
MI-max with two possible modifications. We replace the Tanh based loss in equation
(5.2) by the hinge loss, and we suppress the objectness score in the loss function
(see section 5.2.4) as in the previous paragraph. The conclusion is that replacing the
Tanh based loss function in equation (5.2) by a hinge loss l(y, ŷ) = 1−max(0, 1− yŷ)
generally hinders the performances, except for two cases among the 12 cases studied. In
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MI-max w/o score MI-max

Figure 5.9: Boxes of the best element of the class on training examples with the
knowledge of the ground truth class on PeopleArt dataset. In the case of the MI-max
w/o score model, the upper body is detected whereas it is the full body with MI-max.

particular the Polyhedral MI-max method rarely benefits from a different loss function.
Given the difficulty of the task, errors are likely to happen. The Tanh based loss may
be more robust and forgiving than the hinge loss. Indeed, the hinge loss tries hard to
correct any errors, especially those with a high negative margin.

Dataset
MI-max Polyhedral MI-max

Main Model Without score Hinge loss Without score Main Model Without score Hinge loss Without score
and hinge loss and hinge loss

PeopleArt 55.5 ± 1.0 0.9 ± 0.4 57.6 ± 1.0 1.7 ± 0.9 58.3 ± 1.2 10.1 ± 3.3 56.6 ± 4.4 18.1 ± 8.6
Watercolor2k 49.5 ± 0.9 32.8 ± 2.2 46.7 ± 1.5 33.8 ± 1.6 46.6 ± 1.3 18.3 ± 4.7 37.5 ± 2.1 24.8 ± 3.3
Clipart1k 38.4 ± 0.8 24.2 ± 1.6 34.8 ± 1.2 22.2 ± 1.8 30.5 ± 2.3 11.9 ± 2.6 16.5 ± 1.2 5.1 ± 1.1
Comic2k 27.0 ± 0.8 17.4 ± 1.5 25.5 ± 1.1 17.3 ± 1.1 23.3 ± 1.6 11.6 ± 2.8 15.0 ± 1.8 9.5 ± 1.8

CASPA paintings 16.2 ± 0.4 18.7 ± 0.8 16.1 ± 0.5 12.6 ± 0.9 14.4 ± 0.7 8.6 ± 1.4 9.0 ± 0.9 3.2 ± 0.6
IconArt 12.0 ± 0.9 6.7 ± 2.5 14.3 ± 2.1 8.2 ± 2.3 13.0 ± 2.2 6.4 ± 2.3 13.3 ± 2.8 8.3 ± 2.0

Table 5.6: Mean average precision over the classes of the different datasets (%). Com-
parison of the proposed MI-max and Polyhedral MI-max methods with different set-
tings. Standard deviation is computed on 10 runs of the method.
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MI-max w/o score MI-max

Figure 5.10: Comparison of MI-max w/o score and MI-max on PeopleArt test set. The
first model only detects upper body.

5.3.3.3 Features Extraction and Region Proposals Choices

In this section, we investigate an alternative choice for the features and box proposals.
The unsupervised algorithm EdgeBoxes [Zitnick et al. 2014] is used for box proposals
and a ResNet-152 trained on ImageNet applied to each box for extracting features.
By doing so we must drop the objectness score that is not included in the output of
EdgeBoxes. Ideally, we would like to have an unsupervised feature and boxes proposals
to get rid of the pretraining process. We can see in Table 5.7 the performances of the
model MI-max (without the objectness score) using these features/boxes compared
to the Faster R-CNN’s features/boxes (without objectness score for fair comparison).
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MI-max w/o score MI-max

Figure 5.11: Boxes on test set: wrong detection for MI-max and MI-max w/o score
models.

Regarding the detection task, the performances clearly drop when using EdgeBoxes. To
further investigate this drop of performance we present in Table 5.8 the recall score of
three box proposals methods (the percentage of ground-truth boxes that are present in
the set of all proposed boxes with respect to an IoU > 0.5). We can see that EdgeBoxes
performs very poorly on a dataset like PeopleArt and never matches the boxes proposed
by Faster R-CNN. For the classification task, the MI-max method without objectness
score performs honorably in this setting when compared to the use of Faster R-CNN’s
boxes/features (even slightly better on the IconArt database). This is another proof
that bag-level classification (the aim of the training of a MIL algorithm) is not a good
proxy for instance-level classification (which is the aim of a detection algorithm). The
objectness score can be seen as a very helpful cue to guide the training of a WSOD
method. Similar to the conclusions of Donahue et al. [2014] about the classification
task, transfer learning of deep models trained for the detection task is the best way to
obtain a detector on new domains even when we do not have the bounding box.

Dataset Metric Faster R-CNN EdgeBoxes

PeopleArt AP IuO >0.5 0.9 ± 0.4 0.0 ± 0.0
Classif AP 92.5 ± 0.3 92.1 ± 0.2

Clipart1k AP IuO >0.5 24.2 ± 1.6 3.1 ± 0.3
Classif AP 59.4 ± 1.7 42.8 ± 1.3

Comic2k AP IuO >0.5 17.4 ± 1.5 1.8 ± 0.3
Classif AP 54.9 ± 2.0 47.9 ± 1.5

Watercolor2k AP IuO >0.5 32.8 ± 2.2 2.7 ± 0.5
Classif AP 78.0 ± 1.2 71.8 ± 1.3

CASPA AP IuO >0.5 12.6 ± 0.5 0.3 ± 0.1
Classif AP 48.6 ± 0.6 45.0 ± 1.2

IconArt AP IuO >0.5 6.7 ± 2.5 5.3 ± 0.3
Classif AP 60.4 ± 1.1 69.2 ± 0.3

Table 5.7: Average precision for detection and classification (%). Two different feature
extraction methods are considered in this table (both without objectness score).

EdgeBoxes computes the edge of the images and then try to fit boxes that cover the
highest regions without cutting too much edges with the bounding box boundaries. In
some sense, this unsupervised method try to get regions with the maximum of energy
from the gradient of the image. One can see images from the IconArt dataset with 30
or 300 boxes generated with EdgeBoxes. It seems that on most of the images the box
proposals are not good enough for a detection task (Figure 5.12), the characters are
not selected, the animals neither.

173



5. MIL Model for WSOD in Artworks

Dataset
Box proposal RPN of Pre-trained Faster R-CNN EdgeBoxes Selective Search

[Ren et al. 2015] [Zitnick et al. 2014] [Uijlings et al. 2013]
PeopleArt 94.0 15.4 55.7
Clipart1k 91.4 14.4 49.4
Comic2k 82.7 54.1 46.2

Watercolor2k 93.6 61.4 56.8
CASPA 76.6 34.3 51.6
IconArt 75.9 60.0 56.9

Number of boxes 300 300 3000-5000

Table 5.8: Recall (%) at IuO >0.5 of the boxes proposals for the different methods and
databases. Mean over the classes.

30 boxes 300 boxes 30 boxes 300 boxes

Figure 5.12: Boxes extracted by the EdgeBoxes method: selection of the 30 or 300
"best" boxes on images from IconArt.

If we compared to boxes proposed by the RPN of a pre-trained Faster R-CNN, one
can clearly see the pertinence of the boxes (Figure 5.13).

5.3.3.4 Influence of the Parameters of the Model

In this section, we analyze the influence of the different hyperparameters of our MI-
max model. We show in Figure 5.14 the performances with respect to each of the three
following parameters: the number of restarts, the batch size and the regularization
term C. We vary one parameter at a time while keeping the others fixed to the already
mentioned values (for instance 11 for the number of restarts, 1000 for the batch size
and 1.0 for C). Although the study by Doran et al. [2014] shows that restarts from
random points is not always useful for nonconvex models, we find that having about
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Faster RCNN EdgeBoxes

Figure 5.13: Illustration of the boxes extracted by the RPN of Faster R-CNN (red) or
by the EdgeBoxes model (green) on images from IconArt.
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10 restarts slightly improves the performances and can be taken as a rule of thumb
for our models. Notice that the variance of the outcomes is also reduced for such a
parameter choice. We also found experimentally that restarts for mi-SVM or MI-SVM
reduce the performance in accordance with the experiments in [Doran et al. 2014].
Then, we remark that increasing the batch size provides better results and often yields
a reduction of the variance. For the regularization term, we observe relatively constant
performances between 1.0 and 2.0. The value 0.5 seems to be the best for 2 of the
datasets (PeopleArt and IconArt, but with a bigger variance). These experiments also
show the necessity of using a regularization term in the loss function.
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Figure 5.14: Impact of the different hyperparameters on the MI-max model.

Although the best C hyperparameter value seems to be consistent, we also tried
to do the minimization of the loss function with different values of the parameter C
(equation (5.3)) and to pick up the couple (W ,b) that reaches the best values of the
loss function on a validation set. This is a naive but cost-free way to a selection of
the hyperparameter of the model. The results are shown in Table 5.9, the performance
increases for 2 datasets over 6 (including IconArt) but it decreases for the four others.
With a score of 16,3, this approach beats the previously best method on IconArt
(namely MI_Net ). The increase is due to one single class (JCchild with a mean AP
of 35,4 this class due to a better C value). This implies that it is still possible to
improve the performance score but this approach is too naive. This approach could be
more robust if we replace the parameter C selection by a cross-selection with a k-fold
procedure and a retraining on the full training plus validation sets.

Dataset mean AP
PeopleArt 56.5 ± 2.2

Watercolor2k 46.8 ± 2.2
Clipart1k 34.6 ± 1.9
Comic2k 22.6 ± 1.2

CASPA paintings 16.3 ± 0.7
IconArt 16.3 ± 1.6

Table 5.9: Mean average precision over the classes of the different datasets (%). Perfor-
mance of the MI-max with an optimization of the C. Standard deviation is computed
on 10 runs of the method.
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5.3.3.5 Polyhedral MI-max Limits

In Figure 5.15, one can see the correlation between the vectors W for two different
classes of the IconArt dataset and two models MI-max and Polyhedral MI-max. The
twelve independently trained vectors are highly correlated in the case of the angel class
(Figure 5.15a) but not in the case of the ruins one (Figure 5.15b). Even with a random
initialization, the optimization process may lead to the same local minimum, without a
surprise. Indeed, we are using exactly the same training set and the same optimization
parameters while only the vector initialization changes. When the vectors are trained
by taking the maximum over the twelve scalar products, some resulting vectors are
still highly correlated for the class angel (Figure 5.15c). It could be interesting to
look at the contribution of each individual vector to the final classification decision.
The same phenomenon of highly correlated vectors can be observed without the use
of the objectness score. It could be possible to impose the fact that the vectors have
to be de-correlated with geometric constraints on the set of hyperplanes. Boosting or
bagging methods to obtain more diverse hyperplanes should be investigated.

(a) MI-max - Class Angel (b) MI-max - Class Ruins
(c) Polyhedral MI-max -
Class Angel

(d) Polyhedral MI-max -
Class Ruins

Figure 5.15: Two first figures: correlation matrix for 12 independently trained vectors
(for hyperplane) on IconArt with the MI-max model.
The two others: correlation matrix for 12 commonly trained vectors on IconArt with
Polyhedral MI-max model.

5.3.3.6 Cross Modalities Knowledge Transfer

Tables 5.10 and 5.11 present cross-domain performance for two of our models Polyhe-
dral MI-max and MI-max. We compute the performances of detection for the classes
that are shared between the different datasets. These performances (run once) are com-
pared to the mean performance on the same modality (several runs as before). This
experiment illustrates the fact that our method can be transferred to other modalities
of images. This is sometimes called the "Cross-Depiction Problem" [Hall et al. 2015]:
recognizing visual objects regardless of whether they are painted or depicted in dif-
ferent artistic styles. First, we can see that the Polyhedral MI-max model trained on
PeopleArt outperforms the one learned on the target modality for 2 of the 3 datasets
(first line). This can be due to the fact the PeopleArt dataset contains many different
artistic style. The fact that the class person is well detected can also be due to the
Faster R-CNN features that have been trained on a dataset (MS COCO) containing
this class for natural images. Nevertheless, we observe that the MI-max trained on
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Source set
Target set PeopleArt Watercolor2k Comic2k Clipart1k CASPA paintings

PeopleArt - 60.0 (59.2) 42.1 (39.5) 54.3 (55.4) /
Watercolor2k 56.0 (57.3) - 23.1 (24.1) 11.2 (24.6) 13.8 (18.3)
Comic2k 48.9 (57.3) 42.4 (46.6) - 7.2 (24.6) 12.5 (18.3)
Clipart1k 52.0 (57.3) 36.7 (46.6) 19.6 (24.1) - 7.7 (13.6)
CASPA paintings / 27.5 (39.0) 9.9 (18.1) 4.2 (12.5) -

Table 5.10: Mean AP (%) at IuO >0.5 for the common classes between the source and
target sets with the Polyhedral MI-max model. The results in parentheses, is the mean
performance obtained by learning the detection on the same set (modality).

source set
target set PeopleArt Watercolor2k Comic2k Clipart1k CASPA paintings

PeopleArt - 0.0 (58.2) 0.0 (37.0) 0.0 (55.5) /
Watercolor2k 47.4 (55.5) - 25.8 (27.0) 12.2 (33.4) 15.6 (18.3)
Comic2k 50.4 (55.5) 47.3 (49.5) - 10.0 (33.4) 15.0 (18.3)
Clipart1k 36.2 (55.5) 44.3 (49.5) 25.2 (27.0) - 10.8 (14.0)
CASPA paintings / 33.4 (35.4) 12.2 (15.2) 4.7 (22.5) -

Table 5.11: Mean AP (%) at IuO >0.5 for the common classes between the source
and target sets with the MI-max model. The results in parentheses, is the mean
performance obtained by learning the detection on the same set (modality).

PeopleArt model fails badly on those three datasets. Finally, we can notice that some
datasets such as CASPA paintings and Clipart1k are more challenging than the others.
It may be due to the difference in the modality in the second case. This experiment
illustrates the fact that our model Polyhedral MI-max generalizes well but also that
providing a diverse and numerous training set can help to get a better detector trained
in a weakly supervised manner.

Thus, the best solution to have a good detector for a given visual category may be
to train a MI-max model on the most stylistically various dataset among the datasets
with the required annotation. Then, it is possible to gather MIL detector trained on
different datasets for different classes, to build a search engine capable of recognizing
multiple visual categories. The quest of generic features is a necessity to build a detector
which is efficient at the same time on different modalities.

5.3.3.7 Visual Results

In order to give some intuitive insights on the ability of the proposed method, we show
more visual illustrations of the performance of the proposed models (in particular from
MI-max and Polyhedral MI-max), both in successful and failure cases.

Successful detections We show successful results on various datasets for the Poly-
hedral MI-max detection scheme. In Figures 5.16 and 5.17 we show various examples
of the visual categories our models are able to detect, respectively on Watercolor2k and
CASPA painting datasets. In Figure 5.18, we can see the large stylistic diversity that
the model is able to detect for a same class, namely person, on the PeopleArt dataset.
In Figure 5.19, one can see some detections on the challenging IconArt dataset.

178



5.3. Evaluation

Figure 5.16: One successful example per class using our Polyhedral MI-max detection
scheme on Watercolor2k test set. We only show boxes whose scores are over 0.75.

Figure 5.17: One successful example per class using our Polyhedral MI-max detection
scheme on CASPA paintings test set. We only show boxes whose scores are over 0.75,
except for the elephant image.
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Figure 5.18: Successful examples using our Polyhedral MI-max detection scheme on
PeopleArt test set. One can observe the strong stylistic differences between the images.
We only show boxes whose scores are over 0.75.

Figure 5.19: Successful examples of detection of iconographic characters using our
Polyhedral MI-max detection scheme on IconArt test set. We only show boxes whose
scores are over 0.75.
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Failures examples We can categorize the failures cases into five main categories
that occurred on the different datasets and for the different models, these failure cases
may be related to the characteristic of the MIL problem mentioned in Section 2.4.2.1.
We also show some images from the training sets to investigate some of the failures.
In that case, only the boxes with the highest score for the labels associated with the
image are shown.

The discriminative elements are detected instead of the whole object
To detect the most discriminative parts of an object seems to be the most common
problem in the WSOD setup. It occurs for all our models. For instance, the MI-max
w/o score model only detects the legs in Figure 5.20 for the visual category nudity or
the arrows instead of Saint Sebastian in Figure 5.21. The Polyhedral MI-max without
score model detects the hand in Figure 5.22. This failure already occurs on the training
examples and will only be reproduced on the test set. It is clearly due to the use of a
bag-level classification loss as proxy for training an instance-level classifier. The use of
the objectness score may reduce this phenomenon as mentioned before in Section 5.3.3.1
(see the training images of PeopleArt in Figure 5.9) and illustrated in Figure 5.21 but
it will not completely solve the problem.

Figure 5.20: Boxes of the best element of the class on train examples with the knowledge
of the ground truth class: discriminative part for nudity with MI-max w/o score.

MI-max w/o score MI-max with score

Figure 5.21: An example of wrongly detected object at test time, when using MI-max
without or with the objectness score. In the first case, arrows or spike are detected
instead of Saint Sebastian.

Detection of a whole group instead of individual instances Another com-
mon failure case is the detection of a whole group of instances instead of the individual
instances. Such failures cases can be seen in Figure 5.23 for the Polyhedral MI-max
without score model. This can lead to a high error rate as the metric demands to
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Figure 5.22: Failure examples using our Polyhedral MI-max detection scheme on differ-
ent datasets. We only show boxes whose scores are over 0.75. The most discriminative
boxes correspond to parts of the whole objects. On the first image, the gloves are
detected instead of a person. On the second one, the legs are detected as nudity.

have one box per instance. A related failure case can be observed in Figure 5.24, the
MI-max w/o score model provides too big boxes for the Mary visual category.

This kind of failure can be due to the use of a loss function defined at an image
level. Thus, it may be more effective for the model to use the whole image or group
of objects to correctly classify the input image. This can be related to the "Instance
Co-occurence" characteristic of the WSOD problem, mentioned in Section 2.4.2.1.

Figure 5.23: Failure examples using our Polyhedral MI-max detection scheme on dif-
ferent datasets. We only show boxes whose scores are over 0.75. Whole groups are
detected instead of the instances.

Figure 5.24: Boxes of the best element of the class on train examples with the knowledge
of the ground truth class: Boxes too big for Mary with MI-max w/o score.

Misclassification of correct bounding box In Figure 5.25, one can observe
bounding boxes that correctly wrap the object of interest but for the wrong class.

Missing mode Sometimes, at the end of the training, for a given class, none of
the regions are classified as positive although the image label is positive. However the
box with the highest (but negative) score is the box containing the object of interest.
One can see it for the nudity visual category in Figure 5.26. This can be a hint that
our model is not complex enough to capture several modes in the visual category. The
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Figure 5.25: Failure examples using our Polyhedral MI-max detection scheme on differ-
ent datasets. We only show boxes whose scores are over 0.75. Mis-classified boxes: on
the first image the bird is classified as a dog and on the second one the dog is detected
as a cat.

model is not able to capture the multiple modes in the positive instance distribution.
The same conclusion can be made with the fact that the head-and-shoulders portraits
of angels are completely ignored by the hyperplane separator as in the two last images
of Figure 5.26, whereas full-length portrait of angel or head surrounded by wings are
well detected as in Figure 5.27. According to the example in Figure 5.28, it could be
the wings that are detected for the class angel and not the whole character, once again
the most discriminative element is detected.

Figure 5.26: Boxes of the best element of the class on train examples with the knowledge
of the ground truth class, for the MI-max w/o score model. The best region is correct
but associated to a negative score: for the nudity class in the two first images and for
the angel class in the two others.

Figure 5.27: Boxes of the best element of the class on train examples with the knowledge
of the ground truth class: Angel correct detection with MI-max w/o score.

Confusing images Relatively advanced knowledge in art history is needed to
know that the child on the left of Figure 5.29 is Saint John the Baptist whereas the
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Figure 5.28: Boxes of the best element of the class on train examples with the knowledge
of the ground truth class: Angel wings detection with MI-max w/o score.

one on the right is Jesus Child (the element of interest within the image).

Figure 5.29: Failure examples using our Polyhedral MI-max detection scheme on dif-
ferent datasets. We only show boxes whose scores are over 0.75. Those are confusing
images. In the first one, a bear in an human posture is detected as a person. In the
middle, the horse, the man and other animals are deformed. The last one is a confusing
case between Saint John the Baptist and Jesus children who are visually similar.

In Figure 5.30, the previously shown training images are displayed with the MI-max
model predictions for the curious reader. We are facing we face a similar problem for
the class Mary (i.e. prediction of box too big), but the boxes selected for the nudity
category are bigger.

5.3.4 Concerning Classification
As mentioned before (Section 5.3.3.3), a good classification score is not correlated to
a good detection score. The classification scores are available in Annex (Section C.3).
Hence, we can observe that we only have 56.7 % with the MI-max model and 60.4
% with the MI-max w/o score for the IconArt dataset (Table C.12) whereas the MI-
max model provides better detection performance. The Polyhedral MI-max leads to
a classification performance of 61.9% better than our other approaches. These scores
are comparable to the "Feature extraction + SVM" based methods for this dataset
(Table B.1). The use of the objectness score increases the classification performances
for the six datasets in the case of the Polyhedral MI-max model and it does not decrease
the performances for the MI-max model on the five other datasets. Moreover, on the six
datasets, the MI_Net model trained on the deep features provides the best classification
performance. This model has been designed for a bag-level classification task which
could explain the high scoring.
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Figure 5.30: Boxes on train set with MI-max model for comparison with the detection
obtained with the MI-max w/o score model in Figures 5.20, 5.24 and 5.26 to 5.28.

5.3.5 Classical MIL Benchmarks
As our proposed method is generic, we tried to evaluate our models on three classi-
cal MIL benchmarks: Birds [Briggs et al. 2012], SIVAL [Rahmani et al. 2005] and
Newsgroups [Craven et al. 2008] for an instance classification task. We follow the
benchmark protocol detailed in [Carbonneau et al. 2016a], i.e. 10 repetitions of a
10-fold cross validation of each class (one-vs-the rest). The dataset that is the most
relevant to our case is the Newsgroups one because the positive bags contain an aver-
age of 3.7% of positive instances. In the case of the 300 regions proposed by a Faster
R-CNN, we can consider that 1% of the regions contain the object of interest. Nev-
ertheless the feature vectors from Newsgroups are sparse and discretized because they
represent the frequency of some words in text. The CNN features are not discretized
and maybe not sparse. The performance of our models can be found in Annex, in
Tables C.13 to C.15 with three different metrics: Unweighted Average Recall (UAR),
F1-score and Area Under receiver operating characteristic Curve (AUC). We compared
3 different variants of our model: MI-max, MI-max-HL and Polyhedral MI-max.

Our models are not able to beat the state-of-the-art ones even if sometimes on one
of the metrics they do better. Moreover our methods have an important standard
deviation on their mean performance, which means they are less stable than the clas-
sical ones. On the Newsgroups dataset, the Polyhedral MI-max model is competitive
compared to the other methods (according to the AUC and the UAR metrics).

But the F1-score is more pertinent compared to the AUC and the UAR metrics
because the data are heavily unbalanced. However, our models are way faster and
much simpler to design. Surprisingly, our models achieve better results than Single
Instance SVM, mi-SVM and MI-SVM methods on the WSOD task on several datasets
but not those classical MIL datasets. We have to mention that the state-of-the-art
methods are not linear and that their optimal hyperparameters have been found by
cross validation.
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5.4 Conclusion
In this chapter, we confirm that transfer learning of pretrained CNN can provide a good
model to automatically analyze artistic image databases. This was previously shown
for classification and fully supervised detection tasks, and was here investigated in the
case of weakly supervised object detection. We proposed a simple and quick model to
solve the multiple instance problem we are facing. Our solution is based on features
and boxes proposals from a pretrained CNN detector coupled with a multiple instance
perceptron. We intensively compared different variants of this model. This framework
is particularly suited to develop tools helping art historians, because it avoids tedious
annotations and opens the way to learning on large datasets. We also show, in this
context,experiments dealing with iconographic elements that are specific to art history
and cannot be learned on natural images.
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6

Conclusion and Perspectives

6.1 Summary of Contributions
In this thesis, we have proposed a methodology for a better understanding of CNNs in-
ternal representations and have explored some of their potentialities for image analysis
and image synthesis. We tackled various ways in which these internal representations
can be used to solve computer vision problems, as summarized here after.

One of the key challenges of computer vision is how to transfer the features learned
on natural images to other tasks. We illustrated the versatility of deep features from
pretrained CNNs in three different problems: texture synthesis, art classification and
weakly supervised object detection. In all three cases, we relied on transferring models
pretrained on large scale databases of natural images.

We have shown that the internal representations of CNNs can be used to synthe-
size high resolution images even through they were trained on low resolution images.
For this problem, we proposed a multi-resolution framework to address high resolution
texture synthesis with CNNs (Chapter 3). Our multi-resolution strategy can be effec-
tively coupled with a Fourier frequency constraint or the auto-correlation of the CNN
features as statistics for the synthesis of structured textures.

We confirmed that features extracted from CNNs can be effective for off-the-shelf
art classification (Chapter 4). Nevertheless, fine-tuning a pretrained CNN is more
effective than using the off-the-shelf approach or training from scratch. It provides an
excellent initialization point to the learning process even for a different modality. We
also illustrated that a double fine-tuning involving an intermediate artistic dataset can
improve the classification on smaller datasets.

Finally, we proposed a simple but efficient multiple instance model on deep features
for the WSOD task in artworks (Chapter 5). Our method does not require any fine-
tuning or cross-domain learning and is therefore efficient and possibly applicable to
arbitrary datasets and classes. It is an effective way to learn to locate objects of
interest with only image-level supervision.

Before proceeding to the perspectives our work opens, let us focus particularly on
two contributions.
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Analysis of Fine-tuned CNN We studied the effect of transfer learning of a CNN
from ImageNet to art dataset. In this respect, we used feature visualization by maxi-
mization to see the internal representations changes for one particular architecture. We
also provides a quantitative analysis of the changes introduced by the learning process
thanks to metrics in both feature and parameter spaces, as well as metrics computed
on the set of maximal activation images. This allowed us to point that mid-level layers
learned recognizable patterns from the new modality whereas higher layers tend to
concentrate classes.

Texture synthesis evaluation Another challenging problem in texture synthesis is
how to evaluate the output of the different methods. We proposed two unsupervised
ways to rank them. The first metric is based on displacement maps and allows discard-
ing methods prone to excessive copy-paste. The second one relies on Kullback-Leibler
divergence between the marginal distributions of wavelet coefficients. It provides a
ranking that is coherent with visual assessment. To confirm our subjective observa-
tions, we ran a relatively large user study. We asked almost one hundred participants
to vote between pairs of synthesized textures with respect to the reference image. We
asked them to focus on local scale aspects and on the global structure of the image.
This perceptual study has shown the benefit of the multi-resolution scheme for high
resolution textures and the interest of combining it with correlation constraints for
regular textures.

6.2 Future Work
Several limitations or open questions remain in our work, that deserve attention and
are partly listed here as our prospects.

6.2.1 Texture Synthesis
Using CNN trained with a multi-resolution strategy Texture synthesis with
a CNN as feature extractor illustrates the fact than the VGG filters are versatile and
provide good features at different resolutions, although the network has been trained
on 224× 224 images. An interesting experiment in this respect would be to synthesize
textures using the ensemble of networks trained at different scales from van Noord
et al. [2017]. Our multi-resolution strategy could be used straightforwardly with these
CNNs. Another solution could be to use networks that are able to focus on higher
resolution crops within the images as in [Bianco et al. 2019]. These networks may have
a more complete and multi-scale representation of images.

Reducing the number of parameters used A strong limitation of the neural
methods investigated in this work is the unreasonably large number of parameters of
the models, about 200k parameters for the method based on Gram matrices. In this
respect, the next question is not "What set of statistical constraints is sufficient?",
but "What is the minimal set of statistical constraints needed to produce realistic
synthesis?" Using moments or p-norms with the multi-resolution strategy may be the
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first step in this direction. Besides, reducing the number of parameters is a step towards
a more understandable inner-working of the algorithms used.

Automatic estimation of the weighting of the spectrum constraint The
wavelets based metric that we considered in Section 3.3.3.2 could be used as a metric
to automatically determine the best weighting when defining a loss function accounting
for several constraints, e.g. the β parameter between the Gram based term and the
spectrum constraint (equation (3.4)) for a given reference image. A complete study is
needed to estimate the pertinence of this claim.

Neural style transfer A natural extension would be to investigate the use of such
multi-resolution strategies for neural style transfer of high-resolution images, following
Gatys et al. [2015a]. Another experiment is to replace the Gram Matrices by the
autocorrelation for the style transfer process to better understand what is captured by
this kind of statistics.

Using another architecture than VGG19 Although VGG is still the best model
for texture synthesis with CNNs, the robust deep models seem to be a promising al-
ternative. First, it could allow to use deeper networks with bigger receptive field to
generate high resolution images without using "semantic" layers. Second, investigating
why VGG architecture still provides the best results for texture synthesis and Incep-
tionV1 for feature visualization by optimization seems to be a path to gain a better
understanding of CNNs internal representations.

6.2.2 Transfer Learning and Analysis of Convolutional
Neural Networks for Art Classification

Working with higher resolution images Using higher resolution images may help
to provide better classifiers [Tan et al. 2019]. First, it can be simply done by using
fully convolutionnal networks such as the WILDCAT model [Durand et al. 2017]. It
is also possible to use an ensemble of CNNs trained at different scale as in [van Noord
et al. 2017]. Nevertheless, it may be interesting to have a model or an ensemble of
models that is both scale-invariant and scale-variant. This is necessary to be able
to detect both a central object in the foreground and the same object smaller in the
background. Moreover, the depiction of the object may be different according to the
scale. These higher resolution or multi-resolution models could be analyzed with a
similar methodology to the one developed in this thesis.

Extension to other art datasets The study of Section 4.4 provides some insights
on the way networks are modified by fine-tuning in the case of artistic databases.
Several of the findings in this work necessitate further confirmation, possible on larger
databases [Wilber et al. 2017; Strezoski et al. 2018] annotated with concepts from art
history such as the IconClass labels [Strezoski et al. 2018; Posthumus 2020] or with
visual pattern specific to art as faces of pre-modern Japanese characters [Tian et al.
2020].
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Further Feature Visualizations Another perspective would be to go further in
the use of feature visualization, as it is done in [Olah et al. 2018; Olah et al. 2020a].
For instance, it could be more informative to look at the patches that fire a given
channel rather than the whole input image. In [Olah et al. 2020a], the authors claim
for universality within the hidden representations among different deep convolutional
architectures and it is of interest to check if the same is true for artistic datasets with
the different architecture we studied. For instance, we found a "drapery" channel in
InceptionV1 architecture similarly to [Offert 2018] who considered the InceptionV3 ar-
chitecture. Additional optimized images may be seen in Annex (Section B.2.4). It
would be necessary to develop automatic tools for analyzing a large number of opti-
mized images and see the redundancy between differently-initialized networks. Using
texture similarity models may be an effective solution [Ding et al. 2020] in this aspect.

Finally, we could also look at the principal directions (thanks to the covariance
matrices as in PCA) within the feature maps blocks instead of looking at each channel
individually. These principal directions could be used to extract groups of channels
kernels correlated with a particular output class. This could enable to have a more
generic understanding of the hidden representations learned by a layer.

Developing new tool for art historians CNNs can be used to classify images of
artistic dataset. These classification predictions allow analyzing large scale corpora.
Offert [2018] propose to include the optimized images obtained with the classification
CNN in addition to the classification predictions to boost reflection. Offert et al. [2020]
named these optimized images: technical metapictures. These images can be seen as
"representations of representation", they are informative on the machine perception
and on the regularity within the training set. They can be considered as archetypes of
the training corpora and could be useful for digital art historians.

6.2.3 Weakly Supervised Object Detection in Artworks

WSOD supervised by a classification network A perspective is to supervise the
training of a weakly supervised detector with a fully-trained classifier in order to remove
some obvious misclassified box candidates as it can be done in classical WSOD methods
[Wan et al. 2018]. Feature maps contain a coarse localization information as mentioned
previously in Section 2.4.2.3. This could provide better detection performances.

Improving the multiple instance polyhedral perceptron by forcing hyper-
planes to be distinct We showed our Polyhedral MI-max model is still prone to
learn several times the same separator hyperplane. This problem may be solved in two
possible ways. One way is to add some geometric constraint in the polyhedral case to
force the hyperplanes to be as distinct as possible and to get better boundaries. The
other one is to add some data mining of hard examples as in classical object detection
algorithm [Felzenszwalb et al. 2010; Girshick et al. 2014].

Moreover, it might be beneficial to take more than one instance per bag to learn
better detectors and uncover multi-modal visual category.
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Using deep features learned on art dataset A more extensive investigation of
the different possible feature extractors and boxes proposal algorithms could show
the flexibility of our model. As it has been shown before (Section 4.3.2.2), natural
images pretraining may be less effective for transfer learning than a pretraining on
natural plus artistic datasets, but there is no artistic dataset equivalent to MS COCO
[Lin et al. 2014] for pretraining a detector as Faster R-CNN. For that reason, several
works promote domain adaptation mixed with weakly supervised learning [Inoue et al.
2018] for visual categories present both in photographic and artistic images. Another
solution should be to use an unsupervised fine-tuning of the classification part of the
Faster R-CNN without breaking the region proposal part.

Another exciting direction is to investigate the potential of weakly supervised learn-
ing on large databases with only image-level annotations [Wilber et al. 2017; Strezoski
et al. 2018] or even to let the user provide dozens of positive training examples to learn
a new visual category on the fly as done by Crowley et al. [2018]. This framework could
be used to develop a versatile search engine for diverse modalities of images, avoiding
the time-consuming annotation task. This kind of pre-iconographical objects detector
could support the study of the evolution of iconography, enabling advanced queries over
artistic images, for instance "Find all images where the angel appears to the right of
Mary", "Find all the images where Mary appears with Jesus Child on her lap". Mixing
those visual recognition models with metadata associated to the images is a necessity
to ask questions related to space and time, such as "Find the earliest crucifixion in the
Italian collection". Nevertheless, the field of data science has been especially good at
identifying visual patterns and correlations in large datasets but taking a step further
would require social and contextual knowledge [Kitchin 2014] in addition to sources
and tools criticism [Bishop 2018; Offert et al. 2020].
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A.1 Additional Comparisons with Alternative
Methods

In Figures A.1 to A.14, one can see the results of the different texture synthesize
methods mentioned in Section 3.3.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

Reference [Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.1: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.2: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.3: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.4: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.5: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.6: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.7: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.8: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.9: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.10: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.11: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.12: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.13: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.14: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.15: Synthesis results using different methods for a given reference of size
1048× 1048.
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Figure A.16: Synthesis results using different methods for a given reference of size
1048× 1048.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

A.2 Additional Displacement Maps
In Figures A.17 to A.35, one can see the displacement for 19 of the reference images
mentioned before, the latter can be seen in Figure 3.7.

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.17: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.1.
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A.2. Additional Displacement Maps

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.18: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.2.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.19: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.3.
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A.2. Additional Displacement Maps

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
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MRInit Autocorr + MRInit

Figure A.20: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.4.
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Neural Networks

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.21: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.5.
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A.2. Additional Displacement Maps

[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
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MRInit Autocorr + MRInit

Figure A.22: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure 3.3.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.23: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.6.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.24: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.7.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.25: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.8.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.26: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.9.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.27: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure 3.4.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.28: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.10.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.29: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.11.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.30: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure 3.5.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.31: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.12.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.32: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.13.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.33: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.14.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.34: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.15.
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[Gatys et al. 2015b] [Efros et al. 1999] [Efros et al. 2001]

[Ulyanov et al. 2016] Gram + Spectrum
Deep Corr [Sendik et al.

2017] Autocorr

[Snelgrove 2017] Gram + MRInit
Gram + Spectrum +

MRInit Autocorr + MRInit

Figure A.35: Displacement map for synthesis results using different methods for a given
reference image a constant color area means that the region is a certainly a copy of the
reference image. The synthesis can be found figure A.16.
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A.3 Screen-shots of the Perceptual Survey
In this section, one can find some screen shots about the online perceptual survey we
conducted (Figures A.36 to A.38).
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Figure A.36: Front page of the online perceptual survey we conducted.



Figure A.37: Front page of the online perceptual survey we conducted.

The text shown to the user on the front page (Figure A.36) is the following one:

"The survey contains 40 (randomly generated) questions and its completion
should take between 10 and 20 minutes.
As there are only 20 different reference images, you may encounter the same
texture several times (but different methods will be compared).
The survey
For each question you will be presented 6 images as in the example below
with:
- Top row:
The original input texture. For this texture, two images are displayed: a
downsampled global view (left) and a zoom on the central part (right),
enabling you to visualize details.
- Bottom row
Two synthesized textures corresponding to two different methods named 1
and 2. The two leftmost images are the global views for the two methods
whereas the two rightmost images are the local (details) views.
You have to choose, both for the global and for the local views, which result
from the bottom line is the most similar compared to the reference one on
the top line. The four possible answers are:
Global 1 - Local 1 (The method 1 is the best a the global scale and local
scale)
Global 2 - Local 2 (The method 2 is the best a the global scale and local
scale)
Global 1 - Local 2 (The method 1 is the best a the global scale but the
method 2 is better at local scale)
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Global 2 - Local 1 (The method 2 is the best a the global scale but the
method 1 is better at local scale)
By "the most similar", it should be understood "which give the most similar
visual impression". Images are not expected to correspond pixel by pixel.
Ideally, a synthesized image should give the impression to correspond to a
different region of the same material as the examplar.
You can have access to the HD versions of the images by left-click + open
in a new tab on the hyperlinks present within the questions.
More context is provided below."

The text in the drop-down menu (Figure A.37) is the following one:

"Context The goal of this study is to evaluate several methods for the au-
tomatic synthesis of texture images. From an example image, such methods
aim at producing a synthetic image that should be different from the input
image but should be visually as close to it as possible. Recently, methods
based on deep learning have achieved remarquable results for this task. All
methods compared in this study are based on such approaches. The au-
tomatic evaluation of results is still an open problem, which is known to
be especially difficult for complex and structured textures. Therefore, the
present study focus on perceptual evaluations by human observers."

We have to mention that participants were alone, remote1 and without any time
limit for answering the survey. We answered by email at several requests for clarifi-
cation, but the majority of the participants do not ask us anything. Thus, the only
explanation provided to them was the previously mentioned text. The user may access
the high-definition version of the images by clicking on the hyperlinks provided within
each question.

1Due to the COVID-19 pandemic.
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(a) A question of the survey.

(b) The same question with an answer selected.

Figure A.38: A question of the online survey about texture synthesis.
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A.4 Details about Winning Probabilities for the
Perceptual Survey

Notations
• N: number of methods (N=5)
• M: number of duels (M=3170)
• K: number of reference images (K=20)

A.4.1 Strength and Winning Probability Estimation
A model-based approach to address this problem is the following one. Let βi ∈ R repre-
sent the "strength" of method i (also called performance score), and let the outcome of
a duel between methods i and j be determined by βi−βj. The Bradley-Terry model
[Bradley et al. 1952] treats this outcome as an independent Bernoulli random variable
with distribution Bernoulli(pij), where the log-odds corresponding to the probability
pij that method i beats method j is modeled as:

log pij
1− pij

= βi − βj, (A.1)

equivalently, solving for pij yields

pij = eβi−βj

1 + eβi−βj
= eβi

eβi + eβj
. (A.2)

The Bradley-Terry model assigns scores to a fixed set of items based on pairwise
comparisons of these items, where the log-odds of item i "beating" item j is given by
the difference of their scores. Suppose we observe M total duels (i1, j1) , . . . , (iM , jM)
between these N methods, where each (i, j) is a pair of distinct methods in {1, . . . , N}.
Let Y1, . . . , YM ∈ {0, 1} be such that Ym = 1 if im beat jm in the m-th duel and Ym = 0
otherwise. The likelihood for the parameters θ = (β1, . . . , βN) is then given by

lik (β1, . . . , βN) =
M∏
m=1

pYm
imjm (1− pimjm)1−Ym =

M∏
m=1

(1− pimjm)
(

pimjm
1− pimjm

)Ym

, (A.3)

where pij is given as a function of βi, and βj by equation (A.1). The log-likelihood is

l (β1, . . . , βN) =
M∑
m=1

Ym log
(

pimjm
1− pimjm

)
+ log (1− pimjm)

=
M∑
m=1

Ym (βim − βjm)− log
(
1 + eβim−βjm

)
.

(A.4)

We then compute the scores (parameters) θ = (β1, . . . , βN) of all images by maximizing
the likelihood l of equation A.4 with respect to all votes collected from the user study.
Since β̂i− β̂j is a linear combination of the coordinates of θ̂, it is approximately normal
when θ̂ is approximately multivariate normal. Its mean is E

[
β̂i − β̂j

]
≈ βi − βj, and
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its variance is:

Var
[
β̂i − β̂j

]
= Cov

[
β̂i − β̂j, β̂i − β̂j

]
= Var

[
β̂i
]

+ Var
[
β̂j
]
− 2 Cov

[
β̂i, β̂j

]
≈
(
I−1
Y (θ)

)
ii

+
(
I−1
Y (θ)

)
jj
− 2

(
I−1
Y (θ)

)
ij
.

(A.5)

We may estimate the standard error of β̂i − β̂j by the plug-in estimate:

ŝeij =
√(

I−1
Y (θ̂)

)
ii

+
(
I−1

Y (θ̂)
)
jj
− 2

(
I−1

Y (θ̂)
)
ij
, (A.6)

with IY(θ) equal to minus the Hessian matrix of the log-likelihood:

IY(θ) = −∇2l(θ). (A.7)

A 100(1−α)% confidence interval for βi−βj, assuming correctness of the Bradley-
Terry model, is then given by β̂i− β̂j ± z(α/2)ŝeij. With z(α) the z-score (or standard
score) in the two tails case, we use this confidence interval in Tables 3.1 to 3.3.

Then, the confidence interval for pij is approximated at the first order as:

σ̂ij = eβi−βj

(1 + eβi−βj )2 ŝeij. (A.8)

This approximation is used in Figures 3.12 to 3.14.

Winning probability We can also calculate the probability that a method i is
chosen among all candidates as in [Um et al. 2019]. This winning probability is given
by the average over j of the probability pij that a participant chooses the candidate i
over j:

Wi = 1
N − 1

N∑
j 6=i

pij = 1
N − 1

N∑
j 6=i

eβi−βj

1 + eβi−βj
. (A.9)

In contrast to the pairwise probability pij, Wi represents the probability that a candi-
date i was preferred over all other candidates.

We can estimate the standard error of Wi as:

Σi = 1
N − 1

√√√√√ N∑
j 6=i

σ̂2
ij, (A.10)

with the hypothesis that the pij are independent.

A.4.2 Considering each Reference Image as an Individual
Study

Previously, we gather all the votes per pair of methods without taking into account the
reference image considering although we have a different number of duels per reference
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image. Another way to do is to consider each reference image k as an independent
study and compute the winning probability for each reference image. Then, as in
[Um et al. 2019] we can estimate the Winning probability over K studies and the
near-convergence consistency metric. The winning probability for one method across
different studies (reference images) is defined as the mean over the reference image k
of the winning probability Wi,k for this image:

µi = 1
K

K∑
k=1

Wi,k. (A.11)

The near-convergence consistency metric εi is defined as the standard deviation of
its winning probabilities:

εi =

√√√√ 1
K − 1

K∑
k=1

(Wi,k − µi)2, (A.12)

whereK denotes the number of different studies. This metric indicates how consistently
a candidate performs over the others across different evaluation studies.

Another way to approximate the confidence interval is to use the previous method:

εi = 1
K

K∑
k=1

Σi,k, (A.13)

with Σi,k the standard error for method i given the reference image k.

A.4.2.1 Practical Details

Several solutions are possible for Maximum Likelihood Estimation:
• Minorization-maximization algorithm
• The iterative Luce Spectral Ranking algorithm
• Second order gradient ascent

We used the last one. We used the Python package Choix. In order to compute the
standard error of the difference βi − βj, we used the pseudo-inverse of the Hessian
matrix.

A.4.2.2 Results

These winning probabilities µi obtained by considering each reference images are dis-
played with the near-convergence consistency εi in Figures A.39 to A.41 and with
the standard deviation εi in Figures A.42 to A.44. These results confirm the other
winning probability results (from Figures 3.12 to 3.14), "Gram+Spectrum+MRInit"
prevails at global scale for the regular textures whereas "Gram+MRInit" wins in most
of the situation. Nevertheless the near-convergence consistency metric is always one
order of magnitude bigger than the standard deviation. Further investigation should
be necessary to determine which one is the most pertinent metric for uncertainty.
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Figure A.39: Winning probabilities µi with near-convergence consistency εi for the
different methods for the global case, with each reference image as an individual study.
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Figure A.40: Winning probabilities µi with near-convergence consistency εi for the
different methods for the local case, with each reference image as an individual study.
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Figure A.41: Winning probabilities µi with near-convergence consistency εi for the
different methods for both global and local case, with each reference image as an
individual study.
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Global case
All images
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Figure A.42: Winning probabilities µi with standard error εi for the different methods
for the global case, with each reference image as an individual study.
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Figure A.43: Winning probabilities µi with standard error εi for the different methods
for the local case, with each reference image as an individual study.
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Figure A.44: Winning probabilities µi with standard error εi for the different methods
for both global and local case, with each reference image as an individual study.
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A.5 Weighting of the Spectrum Constraint
In Figure A.45, we display the result of the synthesis for different values of β, the
parameter weighting the Spectrum constraint, using the method "Gram+Spectrum".

β = 0

β = 0,1

β = 102

β = 105

β = 108

Figure A.45: Synthesis results using different β in equation (3.4) (original can be seen
in Figure 3.15), from top to bottom : β = 0 (i.e. the original method from Gatys et al.
[2015b]), β = 10−1, 102, 105, 108. Only using both the Gram and spectrum constraints
simultaneously yields a correct synthesis.
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A.6 Additional Higher Resolution Synthesis
In this section, one can see in Figures A.46, A.47, A.48a, A.48b and A.49 to A.51 more
synthesis of 2048 × 2048 images for diverse reference texture2. We consider methods
"Gatys", "Gram+MRInit", "Gram+Spectrum+MRInit" (both using K = 3) and "Snel-
grove" [Snelgrove 2017] (with 6 octaves/scales). "Gram+MRInit" provides stunning
synthesis for complex texture (see Figures A.46b and A.47a) whereas "Gram+Spectrum+MRInit"
yields to excellent synthesis in the regular case once again (see Figure A.48b) even if
an adjustment of the β term could help to avoid transparency overlappings that we
may observe at this resolution too (see Figure A.50a). At this high resolution, "Gatys
+ MRInit" or "Snelgrove" may be stuck in bad local minima (see Figure A.48b).

2Thanks to my Avenue d’Italie share-house for the pictures of Figures A.48b and A.49 to A.51.
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(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.46: Synthesis results using different methods for two given references of size
2048× 2048.



(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.47: Synthesis results using different methods for two given references of size
2048× 2048.



(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.48: Synthesis results using different methods for two given references of size
2048× 2048.



(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.49: Synthesis results using different methods for two given references of size
2048× 2048.



(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.50: Synthesis results using different methods for two given references of size
2048× 2048.



(a)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

(b)
Reference [Gatys et al. 2015b] Gram + MRInit

Gram + Spectrum + MRInit [Snelgrove 2017]

Figure A.51: Synthesis results using different methods for two given references of size
2048× 2048.



A.7 Additional Texture Synthesis with Different
Statistics

In this section, one can see in more synthesis of low resolution textures with diverse
statistics of the feature maps used in the texture model.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.52: Synthesis results using different methods for a given reference of size
248× 265.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.53: Synthesis results using different methods for a given reference of size
182× 363.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.54: Synthesis results using different methods for a given reference of size
193× 342.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.55: Synthesis results using different methods for a given reference of size
256× 256.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.56: Synthesis results using different methods for a given reference of size
224× 293.
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A.7. Additional Texture Synthesis with Different Statistics

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.57: Synthesis results using different methods for a given reference of size
209× 314.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.58: Synthesis results using different methods for a given reference of size
209× 314.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.59: Synthesis results using different methods for a given reference of size
227× 290.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.60: Synthesis results using different methods for a given reference of size
217× 304.

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.61: Synthesis results using different methods for a given reference of size
256× 256.
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A.7. Additional Texture Synthesis with Different Statistics

Reference Mean Variance Moments J=2 Moments J=4

p-norm Q=4 Autocorr Random Phase
Random Phase +

Autocorr
[Gatys et al.

2015b]

Figure A.62: Synthesis results using different methods for a given reference of size
256× 256.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

A.8 High Resolution Synthesis for the "Random
Phase + Autocorrelation" Method

In this section, one can see in Figures A.63 and A.64, high-resolution images with
"Random Phase + Autocorr" and "Random Phase + Autocorr + MRInit" methods
defined in Section 3.4.1.2. The method using Random Phase feature maps combined
to the autocorrelation fails to provide correct high resolution synthesis. It only captures
the coarse grain regularities from the reference image. The multi-resolution version of
this method may lead to really good synthesis for some of the reference images but
only for a quarter of them. As mentioned before, it maybe exists an optimal value for
αL (Equation (3.20)) that permits to have a more reliable method.

286



A.8. High Resolution Synthesis for the "Random Phase + Autocorrelation" Method

Figure A.63: Synthesis results with Random Phase + Autocorr method for reference
of size 1048× 1048. Reference images may be found in Figure 3.7.
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A. Additional Results for Texture Synthesis with Convolutional
Neural Networks

Figure A.64: Synthesis results with Random Phase + Autocorr + MRInit method for
a reference image of size 1048× 1048. Reference images may be found in Figure 3.7.
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B.1 Off-the-shelf Feature Extraction for Paintings
and IconArt datasets

In this section, we provide addition classification performances for the off-the-shelf fea-
tures extraction approach on the Paintings and IconArt datasets (Tables B.1 and B.2).
First, we compare the use of different layers of VGG19 for extracting the deep fea-
tures in the first four rows of the Tables B.1 and B.2. In this case, we train on the
fixed deep features one linear one-vs-rest SVM per class with an optimization of the
hyper-parameters with a k-fold validation (as in Section 4.3.1.1). We can observe that
it is not the penultimate layer of VGG19 that provides the best performance but the
one before (named "fc1"). The "relu7" layer is the ReLU output of the "fc2" layer.
According to the results, the penultimate layer of a CNN is not always the best one
for feature extraction because it may be too specified to the source set.
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B. Additional Results for Transfer Learning and Analysis of
Convolutional Neural Networks for Art Classification

Then, we compare the different pretrained architecture (VGG19, ResNet50, Incep-
tionV1 etc.). For the IconArt dataset, we can see that the features extracted from
a ResNet provide better results than InceptionResNet v2 compared to the Paintings
dataset (see Tables B.2 and 4.2). On the Paintings dataset, InceptionResNet v2 pro-
vides the best result. In [Uijlings et al. 2018], it is experimentally shown that the
ResNet are some of the best CNN for features extraction. Moreover, we compare
different classifier on the extracted features:

• SVM with the previously mentioned setup
• MLP 1 layer with learning rate equal 0.01, 20 epochs and a selection of the best

model on validation set
• MLP 2 layers with a hidden layer of 256 units and the same parameters as above
• MLP 3 layers with a hidden layer of 256 units and then one with 128 units, a

learning rate equal to 0.01 with a decay of 0.0005, a momentum equal to 0.99
and 20 epochs

The MLPs are trained by SGD with a momentum only in the last case. The SVM
based approach always provides the best performance due to the optimization of the
hyperparameters but training one SVM per class is more costly than training one
MLP for all the classes together. A fairer comparison implies to do an optimization
of hyperparameters of the MLPs (especially the learning rate, number of epochs and
the regularization scheme). Nevertheless, the optimal number of layers for the MLP
depends on the deep features used. This explains the performance gap between Sec-
tion 4.3.1.1 and Section 4.3.2.2.

Finally, the use of a Faster R-CNN detection network on IconArt does not provide
good performances. A better solution is proposed in Chapter 5.

Net Layer Method angel JCchild crucifixion Mary nudity ruins StSeb mean

VGG19

relu7

SVM

40.1 72.8 54.3 79.2 72.0 72.7 31.5 60.3
fc2 58.5 75.1 53.8 83.3 73.5 73.5 24.5 63.2
fc1 60.2 77.7 64.1 82.8 74.0 74.0 24.9 65.4

block5_pool

55.2 75.6 52.9 82.8 72.3 71.7 20.9 61.6
MLP 1 layer 44.1 70.5 35.0 79.0 68.1 66.7 9.4 53.3
MLP 2 layers 46.6 71.1 38.7 78.5 66.5 69.0 9.4 54.2
MLP 3 layers 57.3 76.4 45.6 83.2 72.6 68.6 6.7 58.6

ResNet50 activation_48

SVM 57.6 80.7 68.9 84.7 77.1 75.3 33.7 68.3
MLP 1 layer 55.6 76.9 49.5 81.0 73.7 71.1 10.7 59.8
MLP 2 layers 55.5 78.4 48.7 81.9 74.8 71.6 15.8 61.0
MLP 3 layers 54.8 80.4 26.4 84.4 74.8 68.9 5.9 56.5

InceptionV1 avgpool

SVM 49.2 73.3 61.0 80.0 70.9 72.0 19.1 60.8
MLP 1 layer 39.4 65.5 43.3 73.4 66.1 67.3 10.0 52.1
MLP 2 layers 38.2 64.7 23.1 72.1 65.2 64.6 6.6 47.8
MLP 3 layers 46.4 73.7 61.4 79.7 70.1 71.3 11.4 59.1

ResNet-152 fc7-2048-D SVM 41.8 77.9 63.3 82.2 73.7 74.8 28.7 63.2
InceptionResNet v2 1536D 44.1 77.2 57.8 81.1 77.4 74.6 26.8 62.7
RES-152-COCO fc7-2048-D SVM on max objectnessa 49.3 74.7 30.3 67.5 57.4 43.2 7.0 47.1

Table B.1: IconArt classification test set average precision (%) in the case of off-
the-shelf features extraction with different networks, different layers and final classifier.

aThis method is referred as MAX in the Chapter 5.
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B.2. Analyzing Convolutional Neural Networks trained for Art Classification

Net Layer Method aeroplane bird boat chair cow diningtable dog horse sheep train mean

VGG19

fc2
SVM

67.1 50.6 93.0 74.6 61.3 70.2 56.1 78.8 67.1 85.5 70.5
fc1 69.6 48.7 93.5 74.9 62.0 70.7 55.4 78.6 67.0 84.9 70.5

block5_pool

66.9 47.0 92.2 74.7 57.7 69.5 51.4 76.7 67.2 83.4 68.7
MLP 1 layer 46.6 36.5 89.0 65.2 46.7 58.9 41.3 72.3 54.2 76.4 58.7
MLP 2 layers 47.6 37.7 90.0 71.0 45.7 62.7 45.8 73.8 60.5 75.9 61.1
MLP 3 layers 21.5 44.3 91.2 71.3 37.0 62.4 50.5 76.6 58.6 78.7 59.2

ResNet50 activation_48

SVM 70.0 52.4 93.5 76.3 63.4 73.0 58.4 80.8 70.9 88.3 72.7
MLP 1 layer 55.2 45.0 91.8 70.7 52.1 66.7 51.4 77.7 62.9 83.1 65.7
MLP 2 layers 57.4 45.3 92.1 71.6 51.2 68.0 52.7 78.1 64.6 84.6 66.5
MLP 3 layers 10.5 22.8 91.2 69.7 29.3 54.0 36.4 73.9 55.7 70.4 51.4

InceptionV1 avgpool

SVM 63.4 45.6 90.7 69.6 52.6 66.2 47.4 76.3 65.2 82.4 65.9
MLP 1 layer 44.8 28.0 85.5 61.7 39.3 56.5 34.1 68.2 49.9 74.1 54.2
MLP 2 layers 36.5 27.4 86.9 59.8 45.2 54.1 36.8 67.3 52.3 64.9 53.1
MLP 3 layers 53.9 45.3 90.5 68.5 51.3 63.4 47.9 76.6 62.3 79.6 63.9

Table B.2: Paintings test set average precision (%) in the case of off-the-shelf features
extraction with different networks, different layers and final classifier.

B.2 Analyzing Convolutional Neural Networks
trained for Art Classification

In this section, the reader may find additional results about feature visualization of
CNNs, for InceptionV1, VGG19 and ResNet50 models fine-tuned or trained on RASTA
[Lecoutre et al. 2017].

B.2.1 High-level Layers of a Fine-tuned InceptionV1
Optimized Images and Maximal activation images for high-level layers of an Incep-
tionV1 fine-tuned on RASTA can be found in Figures B.1 and B.2.
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B. Additional Results for Transfer Learning and Analysis of
Convolutional Neural Networks for Art Classification

Channel Name:
mixed5b_pool

_reduce
_pre_relu:92

mixed5b_3x3
_pre_relu:33

mixed5b_5x5
_pre_relu:82

Imagenet Pretrained
Optimized Image

(a) (b) (c)

RASTA Fine Tuned
Optimized Image

(d) (e) (f)

Figure B.1: Optimized Image from different high-level layers. First row InceptionV1
pretrained on ImagneNet, second row fine-tuned on RASTA [Lecoutre et al. 2017].
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B.2. Analyzing Convolutional Neural Networks trained for Art Classification

Channel Name:
mixed5b _pool

_reduce
_pre_relu:92

mixed5b_3x3
_pre_relu:33

mixed5b_5x5
_pre_relu:82

Imagenet Pretrained
Maximal Activation

Examples

(a) (b) (c)
Top 100

composition:
Realism 17%
Post-Impressionism 10%
Neoclassicism 10%

Art_Nouveau_(Modern) 14
%
Expressionism 10 %
Realism 9 %

Surrealism 13%
Cubism 11%
Abstract_Art 10%

RASTA Fine Tuned
Maximal Activation

Examples

(d) (e) (f)
Top 100

composition:
Ukiyo-e 82 %
Northern_Renaissance 14 %
Early_Renaissance 3 %

Minimalism 65%
Romanticism 15%
Color_Field_Painting 11%

Early_Renaissance 48%
High_Renaissance 27%
Mannerism_ (Late_Renais-
sance) 12%

Overlapping: 1% 0% 0%

Figure B.2: Maximal Activation Examples for a given channel corresponding to Fig-
ure B.1. First row InceptionV1 pretrained on ImagneNet, second row fine-tuned on
RASTA [Lecoutre et al. 2017]. The percentage of the 3 most common class is displayed
under the images. The percentage of overlapping between the two sets of maximal ac-
tivation images is displayed at the bottom of each column. The images surrounded by
a green line are already present in the top 100 of the pre-trained model.
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B.2.2 InceptionV1 Trained From Scratch
More complete example of optimized images and maximal activation examples are
displayed in Figures B.3 and B.4.
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Channel Name: mixed4d_5x5 _pre_relu:50 mixed5a_3x3 _bottleneck
_pre_relu:1

Initial Partially
Random Network
Optimized Image

(a) (b)

Initial Partially
Random Network

Maximal Activation
Examples

(c) (d)

Top 100
composition:

Color_Field_Painting 41%
Minimalism 12%
Realism 6%

Cubism 21.0%
Abstract_Expressionism 10%
Abstract_Art 8%

RASTA Fine Tuned
Optimized Image

(e) (f)

RASTA Fine Tuned
Maximal Activation

Examples

(g) (h)
Top 100

composition:
Abstract_Expressionism 24%
Minimalism 13%
Art_Informel 9%

Northern_Renaissance 39%
Romanticism 20%
Early_Renaissance 18%

Overlapping: 0% 0%

Figure B.3: Optimized Image and Maximal activation examples for the model fine-
tuned with low-level layers initialized from ImagNet and upper layers initialized at
random. First row: optimized images for the initial partially random model. Second
row: top 100 maximal activation examples for the same model. Third and fourth
rows: optimized images and maximal activation examples for the same channel of the
model trained from scratch. The percentage of the 3 most common class is displayed
under the images. The overlapping ratio between Top 100 maximal activation images
is printed on the last line.



Channel Name: mixed4d:8 mixed4d:16 mixed4d:66

Initial Random
Network Optimized

Image

(a) (b) (c)

Initial Random
Network Maximal

Activation
Examples

(d) (e) (f)

Top 100
composition:

Minimalism 19%
Realism 11%
Baroque 10%

Expressionism 15%
Minimalism 12%
Art_Nouveau_(Modern)
11%

Pop_Art 17%
Naïve_Art_(Primitivism)
15%
Abstract_Art 9%

RASTA Fine Tuned
Optimized Image

(g) (h) (i)

RASTA Fine Tuned
Maximal Activation

Examples

(j) (k) (l)

Top 100
composition:

Romanticism 23%
Rococo 13%
Realism 13%

Ukiyo-e 85%
Art_Nouveau_(Modern)
11%
Northern_Renaissance 2%

Magic_Realism 78%
Ukiyo-e 22%

Overlapping: 0% 0% 0%

Figure B.4: First row: optimized images for the initial random model. Second row:
top 100 maximal activation examples for the same model. Third and fourth rows:
optimized images and maximal activation examples for the same channel of the model
trained from scratch. The percentage of the 3 most common class is displayed under the
images. The overlapping ratio between Top 100 maximal activation images is printed
on the last line.



mixe
d4

a

mixe
d4

b

mixe
d4

c

mixe
d4

d

mixe
d4

e

mixe
d5

a

mixe
d5

b

0

20

40

60

80

Layer

O
ve

rla
pp

in
g

(%
)

(a) Model fine-tuned on RASTA with low-
level layers initialized from ImagNet and up-
per layers initialized at random.
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(b) Model trained from scratch on RASTA.

Figure B.5: Boxplots of the overlapping ratio on the top 100 maximal activation images
for the two different models trained from scratch (between the random initialization
and the trained model). For each box, the horizontal orange line corresponds to the
average result and the star to the median. The crosses are outliers (i.e. points outside
1.5 times the interquartile range).

B.2.3 Quantitative Evaluations of InceptionV1
Boxplots of some metrics on the top 100 maximal activation images for other models
can be found in Figures B.5 and B.6. We can observe a decreasing of the entropy for
two models trained from scratch in Figures B.6b and B.6c.

B.2.4 Optimized Images for ResNet50 or VGG19 Fine-tuned
on RASTA

We also look at the optimized images from a VGG19 or a ResNet50 pretrained on
ImageNet and fine-tuned on RASTA [Lecoutre et al. 2017] (see Figures B.7 and B.8).
The models are trained with the Mode A (Table 4.4). The detailed architecture can
be found in Tables D.2 and D.3. The low-level layers of these CNNs seems to stay
identical. For ResNet50, we may see a face detector in some of the channels (see
Figures B.7n and B.7p) or a "tree in front of a blue sky" (see Figure B.7g). A drapery
detector might be recognized in high level filters from VGG19 (see Figure B.8p).
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(a) ImageNet pretaining.
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(b) Model fine-tuned on RASTA with low-
level layers initialized from ImagNet and up-
per layers initialized at random.
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(c) Model trained from scratch on RASTA.

Figure B.6: Boxplots of the entropy over classes on the top 100 maximal activation
images for the pretrained model and two different models trained from scratch. For
each box, the horizontal orange line corresponds to the average result and the star to
the median. The crosses are outliers (i.e. points outside 1.5 times the interquartile
range).
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Imagenet
Pretrained

(a) conv5 block1
1:147

(b) conv5 block1
2:366

(c) conv5 block1
3:262

(d) conv5 block2
1:336

RASTA
fine-tuning

(e) (f) (g) (h)

Imagenet
Pretrained

(i) conv5 block2
1:391 (j) conv5 block2 2:51 (k) conv5 block2

2:132 (l) conv5 block3 2:47

RASTA
fine-tuning

(m) (n) (o) (p)

Figure B.7: Optimized Images for a ResNet50 fine-tuned for high level layers. First
and third rows: optimized images from the model pretrained on ImageNet. Second
and fourth ones: optimized images from the model fine-tuned on RASTA.
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Imagenet
Pretrained

(a) block3 conv3:210 (b) block4 conv1:203 (c) block4 conv3:286 (d) block4 conv3:442

RASTA
fine-tuning

(e) (f) (g) (h)

Imagenet
Pretrained

(i) block4 conv4:240 (j) block5 conv1:72 (k) block5 conv2:69 (l) block5 conv4:315

RASTA
fine-tuning

(m) (n) (o) (p)

Figure B.8: Optimized Images for a VGG19 fine-tuned for mid and high level layers.
First and third rows: optimized images from the model pretrained on ImageNet. Sec-
ond and fourth ones: optimized images from the model fine-tuned on RASTA.
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C.2. Detailed Detection Performances for Art Datasets

C.2 Detailed Detection Performances for Art
Datasets

We report in Tables C.2 to C.6 the performances for the Weakly Supervised Object
Detection task for 5 different non-photographic datasets: Watercolor2k, Clipart1k,
Comic2k [Inoue et al. 2018], IconArt (Section 4.2.1) and "CASPA paintings" [Thomas
et al. 2018]. "CASPA paintings" is the painting subset of the CASPA dataset1 proposed
in [Thomas et al. 2018] with bounding boxes associated to 8 visual categories (only
animals) for most of the images.

We denote MI-max-S-C, the multiple instance perceptron with a naive selection of
the hyperparameter C of the model, as defined in Section 5.3.3.4. The AP value for
the detection task on the PeopleArt dataset with this method is 56.5 ± 2.2.

Net Method Model bike bird car cat dog person mean

SSD Mixed supervised with DT+PL 76.5 54.9 46.0 37.4 38.5 72.3 54.3?domain adaptation [Inoue et al. 2018]

VGG16-IM Weakly supervised
fine-tuning

WSDDN [Bilen et al. 2016] 1.5 26.0 14.6 0.4 0.5 33.3 12.7
SPN [Zhu et al. 2017b] 0.0 18.9 0.0 0.0 0.0 23.6 7.1
PCL [Tang et al. 2018a] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX [Crowley et al. 2016] 76.0 33.8 33.0 20.8 22.7 19.8 34.3
MAXA 60.6 39.2 39.6 30.9 32.0 61.2 43.9

MI-SVM [Andrews et al. 2003] 66.8 20.9 7.6 14.1 8.5 13.2 21.8
mi-SVM [Andrews et al. 2003] 10.6 10.9 1.4 2.0 0.8 5.9 5.3
MI_Net [Wang et al. 2018b] 77.6 32.4 35.5 24.7 16.2 18.0 34.1 ± 1.0

MI_Net_DS [Wang et al. 2018b] 73.4 22.4 25.8 17.6 11.2 10.3 26.8 ± 2.4
MI_Net_RC [Wang et al. 2018b] 32.3 19.2 20.1 6.7 6.8 15.4 16.7 ± 6.3

mi_Net [Wang et al. 2018b] 66.4 30.3 14.9 14.4 8.6 20.5 25.8 ± 3.5
MI-max 84.1 47.4 48.2 30.9 27.9 58.2 49.5 ± 0.9

MI-max-S-C 78.2 46.1 45.6 27.5 30.0 53.7 46.8 ± 2.2
Polyhedral MI-max 77.8 44.7 45.5 25.6 26.7 59.2 46.6 ± 1.3

MI-max-HL 79.3 46.1 43.6 26.9 28.8 57.0 47.0 ± 1.6

Table C.2: Watercolor2k (test set) Detection Average Precision (%). Comparison
of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to alternative
approaches. The best mixed supervised method is highlighted in green and the best
weakly supervised one in red. We use a grid search for MAX and MAXA. When it was
computationally acceptable we calculated the standard deviation on 10 runs. DT+PL
and WSDDN performances come from the original paper [Inoue et al. 2018].

1This dataset can be found here: http://people.cs.pitt.edu/~chris/artistic_objects/
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C. Additional Results for the Proposed Multiple Instance Model and
its Variants
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C.2. Detailed Detection Performances for Art Datasets

Net Method Model bike bird car cat dog person mean

SSD Mixed supervised with DT+PL 76.5 54.9 46.0 37.4 38.5 72.3 54.3?
domain adaptation [Inoue et al. 2018]

VGG16-IM Weakly supervised
fine-tuning

WSDDN [Bilen et al. 2016] 1.5 26.0 14.6 0.4 0.5 33.3 12.7
SPN [Zhu et al. 2017b] 0.0 0.0 0.0 3.1 0.0 4.1 1.2
PCL [Tang et al. 2018a] 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX[Crowley et al. 2016] 15.2 2.7 29.4 2.3 16.8 4.9 11.9
MAXA 36.8 5.6 27.1 8.2 6.1 34.8 19.8

MI-SVM [Andrews et al. 2003] 34.2 3.0 20.0 5.2 2.5 12.9 13.0
mi-SVM [Andrews et al. 2003] 10.8 2.3 5.5 3.2 2.1 3.6 4.6
MI_Net [Wang et al. 2018b] 42.9 15.5 33.1 11.8 13.4 20.4 22.8 ± 1.1

MI_Net_DS [Wang et al. 2018b] 40.8 13.3 32.5 5.7 9.1 16.1 19.6 ± 1.6
MI_Net_RC [Wang et al. 2018b] 19.8 5.4 16.4 2.8 9.8 13.9 11.4 ± 4.4

mi_Net [Wang et al. 2018b] 42.1 10.9 24.5 8.8 8.8 22.1 19.5 ± 2.1
MI-max 45.3 9.7 33.7 14.4 21.6 37.0 27.0 ± 0.8

MI-max-S-C 47.4 4.3 30.6 13.6 11.9 28.0 22.6 ± 1.2
Polyhedral MI-max 44.9 5.2 26.2 14.1 11.0 38.4 23.3 ± 1.6

MI-max-HL 43.0 5.1 31.5 11.8 13.8 36.4 23.6 ± 0.5

Table C.4: Comic2k (test set) Detection Average Precision (%). Comparison of
the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to alternative
approaches. The best mixed supervised method is highlighted in green and the best
weakly supervised one in red. When it was computationally acceptable we calculated
the standard deviation on 10 runs. DT+PL and WSDDN performances come from the
original paper [Inoue et al. 2018].

Net Method Model bear bird cat cow dog elephant horse sheep mean

VGG16-IM Weakly supervised SPN [Zhu et al. 2017b] 0.5 0.1 1.6 0.9 0.5 1.4 0.6 0.0 0.7
fine-tuning PCL [Tang et al. 2018a] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX[Crowley et al. 2016] 22.0 2.1 14.5 3.5 14.2 8.8 12.8 0.5 9.8
MAXA 26.3 13.1 26.9 5.4 8.3 18.1 14.9 3.9 14.6

MI-SVM [Andrews et al. 2003] 9.3 0.2 6.7 1.5 0.1 0.6 0.9 0.4 2.5
mi-SVM [Andrews et al. 2003] 1.3 1.6 3.0 0.8 1.0 0.3 1.5 0.3 1.2
MI_Net [Wang et al. 2018b] 32.8 5.4 14.1 5.2 6.2 15.0 11.1 4.2 11.7 ± 1.6

MI_Net_DS [Wang et al. 2018b] 29.0 1.6 8.3 3.0 3.2 5.9 7.1 2.6 7.6 ± 1.2
MI_Net_RC [Wang et al. 2018b] 16.9 0.9 6.6 2.6 2.9 8.2 4.7 2.1 5.6 ± 2.1

mi_Net [Wang et al. 2018b] 26.7 8.9 12.5 1.5 3.4 7.1 5.1 2.4 8.4 ± 1.7
MI-max 28.3 15.7 25.6 5.3 13.7 17.2 18.8 5.1 16.2 ± 0.4

MI-max-S-C 26.9 15.5 25.4 5.1 15.2 18.6 18.5 4.9 16.3 ± 0.7
Polyhedral MI-max 26.2 16.9 23.9 5.4 10.1 9.7 18.8 4.5 14.4 ± 0.7

MI-max-HL 26.5 15.7 26.3 4.8 14.2 10.1 11.5 6.2 14.4 ± 0.9

Table C.5: CASPA paintings (test set) Detection Average Precision (%). Com-
parison of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to
alternative approaches. We use a grid search for MAX and MAXA. When it was com-
putationally acceptable we calculated the standard deviation on 10 runs.
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C. Additional Results for the Proposed Multiple Instance Model and
its Variants

Net Method Model angel JCchild crucifixion Mary nudity ruins StSeb mean

VGG16-IM Weakly supervised SPN [Zhu et al. 2017b] 0.0 0.8 22.3 12.0 6.8 10.4 1.2 7.7
fine-tuning PCL [Tang et al. 2018a] 2.9 0.3 1.0 26.3 2.3 7.2 1.4 5.9

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX[Crowley et al. 2016] 1.4 1.3 11.5 2.8 3.8 0.3 4.5 3.7
MAXA 1.3 4.4 18.2 28.0 15.3 0.2 16.4 12.0

MI-SVM [Andrews et al. 2003] 0.7 4.4 21.6 0.6 1.0 0.0 0.0 4.0
mi-SVM [Andrews et al. 2003] 1.3 5.1 3.9 3.6 2.9 0.3 2.2 2.8
MI_Net [Wang et al. 2018b] 9.7 42.6 21.1 6.9 17.6 5.1 2.5 15.1 ± 1.5

MI_Net_DS [Wang et al. 2018b] 8.6 35.6 19.6 5.3 15.9 3.2 3.1 13.0 ± 1.7
MI_Net_RC [Wang et al. 2018b] 8.2 36.9 20.5 4.8 16.2 1.6 0.9 12.7 ± 1.6

mi_Net [Wang et al. 2018b] 8.2 28.4 15.1 11.2 15.8 6.8 4.5 12.9 ± 1.2
MI-max 0.3 0.1 42.7 4.4 21.9 0.6 13.7 12.0 ± 0.9

MI-max-S-C 3.6 35.4 34.2 5.0 23.8 1.1 10.7 16.3 ± 1.6
Polyhedral MI-max 3.1 9.8 33.0 7.4 29.2 0.1 8.5 13.0 ± 2.2

MI-max-HL 4.3 6.7 35.7 15.6 24.0 0.1 15.2 14.5 ± 1.8

Table C.6: IconArt detection test set Detection Average Precision (%). Comparison
of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to alternative
approaches. We use a grid search for MAX and MAXA. In red, the best weakly su-
pervised method. When it was computationally acceptable we calculated the standard
deviation on 10 runs.
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C.3. Classification Score for Artistic Datasets

C.3 Classification Score for Artistic Datasets
We report in Tables C.7 to C.12 the classification performances obtained with weakly
supervised detectors for 6 different non-photographic datasets : PeopleArt [Westlake et
al. 2016], Watercolor2k, Clipart1k, Comic2k [Inoue et al. 2018], IconArt (Section 4.2.1)
and CASPApaintings [Thomas et al. 2018]. Theses tables have been shortly commented
in Section 5.3.4. We compare the five variants of our models (defined in Section 5.2):
namely MI-max, Polyhedral MI-max, MI-max w/o score, Polyhedral MI-max w/o score
and MI-max-HL with alternative solutions. They are MI_Net, MI_Net_DS, MI_-
Net_RC and mi_Net from Wang et al. [2018b], mi-SVM and MI-SVM from Andrews
et al. [2003], MAX [Crowley et al. 2016] and MAXA a variant of the latter. These
methods have been described in Section 5.3.2.3. The MI_Net model provides the best
classification performances on the six datasets. Generally, the MI_Net and mi_Net
models outperforms the MI_Net_DS, MI_Net_RC ones. Surprisingly, the MAXA
approach provides scores comparable to the MAX one, whereas it outperforms it on
the detection task. Then, the use of score is beneficial for the Polyhedral MI-max but
not the MI-max one. Finally, the MI-max-HL under performs on the classification task.

The results on the IconArt dataset in Table C.12 should be compared to the off-
the-shelf classification CNN (Table B.1) and the other transfer learning methods (Ta-
ble 4.7).

Network Method Model person

RES-152-COCO Features extraction

MAX [Crowley et al. 2016] 93.3
MAXA 92.1

MI-SVM [Andrews et al. 2003] 91.1
mi-SVM [Andrews et al. 2003] 91.8
MI_Net [Wang et al. 2018b] 94.4 ± 0.1

MI_Net_DS [Wang et al. 2018b] 90.9 ± 3.5
MI_Net_RC [Wang et al. 2018b] 74.9 ± 23.4

mi_Net [Wang et al. 2018b] 93.8 ± 0.2
MI-max 92.6 ± 0.5

MI-max w/o score 92.5 ± 0.3
MI-max-S-C 92.8 ± 0.5

Polyhedral MI-max 93.9 ± 0.2
Polyhedral MI-max w/o score 89.7 ± 3.4

MI-max-HL 93.0 ± 0.1

Table C.7: People-Art (test set) Classification Average precision (%). Comparison
of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to alternative
approaches. We use a grid search on the hyperparameter of MAX and MAXA. Standard
deviation computed on 10 runs of the algorithm.
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C. Additional Results for the Proposed Multiple Instance Model and
its Variants

Net Method Model bike bird car cat dog person mean

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX[Crowley et al. 2016] 83.9 79.8 93.6 44.1 52.6 97.8 75.3
MAXA 84.1 82.3 84.4 49.4 49.6 98.0 74.6

MI-SVM [Andrews et al. 2003] 91.3 83.0 79.8 54.8 36.7 98.6 74.0
mi-SVM [Andrews et al. 2003] 51.2 74.5 71.0 32.1 23.6 96.2 58.1
MI_Net [Wang et al. 2018b] 90.9 84.6 93.5 56.7 42.7 98.8 77.9 ± 0.5

MI_Net_DS [Wang et al. 2018b] 91.0 81.6 83.2 48.7 41.1 95.0 73.4 ± 4.8
MI_Net_RC [Wang et al. 2018b] 37.5 68.9 63.9 26.6 31.1 94.4 53.7 ± 11.8

mi_Net [Wang et al. 2018b] 82.7 85.4 89.8 52.9 41.0 98.8 75.1 ± 4.1
MI-max 90.2 85.1 92.4 52.3 47.2 98.6 77.7 ± 0.4

MI-max w/o score 80.9 52.4 62.4 37.6 29.2 53.0 5 52.6 ± 1.7
MI-max-S-C 85.6 82.8 92.1 49.3 48.5 98.2 76.1 ± 1.5

Polyhedral MI-max 88.0 85.1 94.1 46.0 43.3 98.5 75.8 ± 1.7
Polyhedral MI-max w/o score 25.9 70.3 88.0 21.4 23.8 96.8 54.3 ± 5.5

MI-max-HL 90.9 84.4 93.1 48.8 43.2 98.0 76.4 ± 1.1

Table C.8: Watercolor2k (test set) Classification Average precision . Comparison
of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods to alternative
approaches. We use a grid search on the hyperparameter of MAX and MAXA. Standard
deviation computed on 10 runs of the algorithm.
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C.3. Classification Score for Artistic Datasets
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C. Additional Results for the Proposed Multiple Instance Model and
its Variants

Net Method Model bike bird car cat dog person mean

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX [Crowley et al. 2016] 53.5 25.0 53.3 16.6 34.1 97.4 46.6
MAXA 54.8 27.0 53.8 23.1 20.0 97.4 46.0

MI-SVM [Andrews et al. 2003] 54.9 28.1 48.8 40.4 26.4 97.2 49.3
mi-SVM [Andrews et al. 2003] 44.2 24.2 25.4 23.1 20.1 95.8 38.8
MI_Net [Wang et al. 2018b] 61.6 37.9 56.6 46.9 38.0 98.2 56.5 ± 0.9

MI_Net_DS [Wang et al. 2018b] 61.1 34.0 55.8 44.1 32.1 98.0 54.2 ± 1.7
MI_Net_RC [Wang et al. 2018b] 38.2 21.3 32.0 22.2 31.6 96.5 40.3 ± 8.1

mi_Net [Wang et al. 2018b] 62.5 32.6 52.5 47.9 33.4 98.3 54.5 ± 2.3
MI-max 58.7 34.2 53.6 41.6 40.0 97.8 54.3 ± 0.7

MI-max w/o score 63.4 36.2 52.8 43.1 36.3 97.8 54.9 ± 2.0
MI-max-S-C 61.1 25.9 46.4 38.3 25.6 97.5 49.1 ± 1.3

Polyhedral MI-max 59.4 25.1 42.8 41.0 27.9 97.7 49.0 ± 2.3
Polyhedral MI-max w/o score 47.8 9.0 22.4 17.2 11.9 96.1 34.1 ± 2.7

MI-max-HL 56.9 24.0 51.9 30.5 29.8 97.4 48.4 ± 1.1

Table C.10: Comic2k (test set) Classification Average precision. Comparison of
the proposed MI-max method to alternative approaches. We use a grid search on the
hyperparameter of MAX and MAXA. Standard deviation computed on 10 runs of the
algorithm.

Net Method Model bear bird cat cow dog elephant horse sheep mean

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX [Crowley et al. 2016] 51.9 51.5 65.9 48.0 36.8 38.7 68.2 26.7 48.5
MAXA 50.0 49.5 70.4 50.1 28.2 38.2 55.9 32.4 46.8

MI-SVM [Andrews et al. 2003] 52.7 48.5 69.5 52.3 23.5 28.0 49.1 48.8 46.6
mi-SVM [Andrews et al. 2003] 18.9 51.4 54.4 42.3 28.6 10.3 45.1 40.0 36.4
MI_Net [Wang et al. 2018b] 63.3 38.8 75.8 58.5 32.9 40.6 66.9 54.8 54.0 ± 1.6

MI_Net_DS [Wang et al. 2018b] 61.2 29.3 60.7 49.2 29.7 27.8 47.5 42.3 43.5 ± 4.6
MI_Net_RC [Wang et al. 2018b] 37.3 24.5 55.5 44.4 26.3 27.9 44.1 37.2 37.1 ± 3.7

mi_Net [Wang et al. 2018b] 66.0 58.0 77.5 60.6 34.8 35.6 64.8 52.3 56.2 ± 1.0
MI-max 51.8 53.1 64.5 51.6 37.0 33.0 52.5 45.9 48.7 ± 0.5

MI-max w/o score 54.0 53.0 64.7 52.0 33.7 31.5 53.3 46.3 48.6 ± 0.6
MI-max-S-C 52.8 53.9 63.4 52.1 36.8 33.1 52.2 46.6 48.9 ± 0.7

Polyhedral MI-max 51.9 55.4 61.5 52.2 33.2 25.5 52.7 47.1 47.5 ± 0.9
Polyhedral MI-max w/o score 37.1 48.4 52.3 45.7 25.9 9.1 46.4 36.9 37.7 ± 2.7

MI-max-HL 53.9 53.4 60.9 48.4 37.2 26.5 39.9 43.3 45.4 ± 1.7

Table C.11: CASPA paintings (test set) Classification Average precision (%). Com-
parison of the proposed MI-max method to alternative approaches. We use a grid search
on the hyperparameter of MAX and MAXA. Standard deviation computed on 10 runs
of the algorithm.

Net Method Model angel JCchild crucifixion Mary nudity ruins StSeb mean

RES-
152-

COCO

Off-the-shelf
Features extraction

MAX [Crowley et al. 2016] 49.3 74.7 30.3 67.5 57.4 43.2 7.0 47.1
MAXA 47.2 73.2 48.5 78.5 62.3 44.8 14.3 52.7

MI-SVM [Andrews et al. 2003] 49.1 63.5 72.6 76.3 62.5 52.5 6.9 54.8
mi-SVM [Andrews et al. 2003] 63.5 76.9 78.6 81.0 72.0 62.2 29.0 66.2
MI_Net [Wang et al. 2018b] 70.4 83.9 86.2 83.9 78.9 54.4 26.1 69.1 ± 0.3

MI_Net_DS [Wang et al. 2018b] 68.0 82.0 86.2 81.8 78.2 51.6 26.6 67.8 ± 0.2
MI_Net_RC [Wang et al. 2018b] 67.7 80.3 85.1 77.2 76.8 47.8 23.2 65.4 ± 2.0

mi_Net [Wang et al. 2018b] 70.6 83.6 87.1 85.6 78.1 72.0 28.9 72.3 ± 0.6
MI-max 57.2 59.3 79.6 70.3 65.7 47.2 17.4 56.7 ± 1.0

MI-max w/o score 61.0 64.2 83.4 70.5 67.4 57.8 18.7 60.4 ± 1.1
MI-max-S-C 62.4 75.1 82.0 71.6 67.0 51.4 15.1 60.7 ± 1.3

Polyhedral MI-max 65.6 75.1 84.0 75.0 71.4 42.9 19.0 61.9 ± 0.8
Polyhedral MI-max w/o score 51.0 54.9 82.2 65.0 63.5 44.7 11.6 53.3 ± 3.5

MI-max-HL 52.8 65.1 74.7 69.2 63.9 17.7 14.3 51.1 ± 2.4

Table C.12: IconArt classification test set Classification Average precision (%).
Comparison of the proposed MI-max, Polyhedral MI-max and MI-max-HL methods
to alternative approaches. We use a grid search on the hyperparameter of MAX and
MAXA. Standard deviation computed on 10 runs of the algorithm.
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C.4. Instance-level Classification on Birds, Newsgroups and SIVAL

C.4 Instance-level Classification on Birds,
Newsgroups and SIVAL

This section contains the Tables C.13 to C.15 reporting all results on individual sets
from Birds [Briggs et al. 2012], Newsgroups [Craven et al. 2008] and SIVAL [Rah-
mani et al. 2005]. Results in bold are best results and results with no statistically
significant difference from the best (α = 0.05). The results in bold may differ from
[Carbonneau et al. 2016a] before we used a two-sided T-test only based on the mean
and standard deviation of the performances. We show AUC, UAR and F1-score met-
rics. The performances of mi-SVM, MI-SVM, EM-DD, SI-SVM, MIL-Boost and RSIS-
EoSVM methods come from the supplementary materials of Carbonneau et al. [2016a].

Method mi-SVM MI-SVM EM-DD SI-SVM MIL-Boost RSIS-EoSVM Polyhedral MI-max MI-max-HL MI-max[Andrews et al. 2003] [Andrews et al. 2003] [Zhang et al. 2002] [Viola et al. 2005] [Carbonneau et al. 2016b]
Birds: UAR 4 2 1 12 1 2 1 7 4

Brown Creeper 72.00 (0.90) 58.40 (1.90) 65.30 (1.10) 72.00 (1.10) 54.30 (1.40) 50.10 (0.50) 57.72 (11.10) 72.46 (7.24) 66.53 (5.31)
Winter Wren 65.60 (1.00) 56.90 (0.70) 58.70 (0.50) 70.10 (1.30) 56.50 (0.40) 58.90 (0.80) 53.92 (4.15) 58.64 (3.75) 57.37 (1.48)

Pacific-slope Flycatcher 78.80 (0.60) 57.10 (2.70) 71.20 (1.50) 81.40 (0.90) 50.00 (0.00) 66.90 (2.70) 52.00 (6.53) 74.97 (8.40) 50.36 (5.53)
Red-breasted Nuthatch 83.60 (1.70) 60.50 (2.00) 71.80 (1.70) 85.10 (1.30) 62.30 (1.10) 76.30 (1.00) 57.09 (13.52) 77.74 (8.02) 75.67 (4.30)

Dark-eyed Junco 50.00 (0.00) 55.40 (1.70) 50.00 (0.00) 50.80 (0.80) 50.00 (0.00) 50.00 (0.00) 49.92 (1.89) 51.80 (8.77) 49.11 (2.21)
Olive-sided Flycatcher 63.80 (2.30) 61.00 (1.70) 66.90 (0.80) 75.10 (2.00) 50.00 (0.00) 54.00 (1.00) 51.74 (6.17) 66.26 (12.32) 48.83 (2.56)

Hermit Thrush 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 51.72 (6.94) 52.16 (8.72) 57.01 (12.07)
Chestnut-backed Chickadee 67.10 (5.00) 66.20 (0.80) 66.70 (2.20) 78.30 (1.20) 50.90 (0.30) 79.10 (2.30) 52.35 (8.67) 79.01 (9.11) 73.79 (6.22)

Varied Thrush 92.00 (1.20) 58.20 (5.80) 80.90 (1.90) 92.20 (1.60) 60.00 (1.90) 49.10 (0.10) 73.15 (23.37) 91.96 (9.34) 92.23 (4.71)
Hermit Warbler 64.30 (3.30) 52.90 (1.30) 58.10 (3.10) 76.80 (2.20) 49.80 (0.00) 50.00 (0.00) 49.61 (1.33) 49.65 (5.70) 49.58 (1.32)
Swainson Thrush 79.70 (1.90) 76.80 (2.10) 71.60 (1.60) 82.00 (1.50) 49.90 (0.00) 49.90 (0.00) 59.46 (15.80) 82.25 (7.21) 79.95 (5.90)

Hammonds Flycatcher 92.20 (0.40) 55.10 (2.40) 70.60 (0.70) 92.80 (0.20) 71.90 (0.70) 84.80 (1.00) 72.07 (16.05) 75.74 (8.26) 84.92 (2.05)
Western Tanager 81.70 (2.00) 73.60 (3.80) 71.50 (2.40) 87.10 (2.50) 50.70 (0.80) 50.20 (0.50) 49.16 (5.58) 78.38 (11.13) 48.74 (1.28)

Birds: F1 4 4 7 4 1 3 1 5 4
Brown Creeper 27.90 (1.50) 25.10 (4.60) 45.90 (2.50) 20.80 (1.00) 14.80 (4.40) 6.00 (1.00) 19.27 (12.29) 46.07 (13.74) 40.05 (11.50)
Winter Wren 38.20 (1.80) 23.70 (2.30) 29.60 (1.50) 41.00 (2.10) 22.90 (1.40) 29.70 (2.20) 19.96 (6.41) 27.96 (7.68) 25.07 (4.13)

Pacific-slope Flycatcher 38.40 (1.10) 19.60 (5.90) 55.40 (2.90) 31.10 (1.50) 0.00 (0.00) 37.10 (4.70) 10.11 (6.31) 40.82 (20.12) 3.61 (11.45)
Red-breasted Nuthatch 62.40 (2.10) 31.70 (5.10) 59.20 (3.70) 52.10 (1.30) 38.80 (2.70) 66.60 (1.80) 18.23 (18.08) 51.74 (18.44) 50.56 (6.54)

Dark-eyed Junco 0.00 (0.00) 17.60 (5.40) 0.00 (0.00) 1.80 (1.80) 0.00 (0.00) 0.00 (0.00) 1.54 (1.08) 4.15 (8.69) 0.72 (1.65)
Olive-sided Flycatcher 22.70 (3.60) 29.80 (3.60) 46.20 (2.00) 22.90 (2.30) 0.00 (0.00) 13.20 (3.20) 5.93 (3.62) 20.64 (17.50) 1.03 (2.84)

Hermit Thrush 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.40 (3.12) 2.58 (6.00) 4.08 (5.96)
Chestnut-backed Chickadee 37.10 (10.50) 45.10 (1.60) 45.00 (4.90) 56.60 (2.40) 3.50 (1.20) 63.70 (3.40) 9.16 (10.14) 41.86 (20.59) 43.71 (9.43)

Varied Thrush 31.70 (1.60) 18.50 (12.30) 74.80 (3.10) 24.10 (1.30) 25.80 (4.20) 0.00 (0.00) 36.91 (35.28) 67.81 (26.72) 79.77 (10.70)
Hermit Warbler 19.30 (4.10) 7.70 (2.80) 20.50 (7.10) 18.90 (1.30) 0.00 (0.00) 0.00 (0.00) 1.47 (1.54) 1.78 (6.27) 0.67 (2.06)
Swainson Thrush 41.50 (3.00) 65.10 (3.70) 57.50 (3.10) 38.20 (1.80) 0.00 (0.00) 0.00 (0.00) 16.63 (22.33) 61.46 (16.84) 62.19 (9.43)

Hammonds Flycatcher 88.40 (0.50) 16.10 (6.00) 58.20 (1.50) 88.30 (0.50) 60.70 (1.40) 81.80 (1.30) 59.16 (26.63) 65.78 (14.77) 81.11 (2.95)
Western Tanager 57.80 (3.30) 59.10 (7.30) 56.70 (4.60) 46.90 (3.40) 2.10 (2.10) 1.40 (1.40) 1.57 (3.22) 47.29 (26.49) 0.10 (0.67)

Birds: AUC 0 0 7 9 0 3 4 6 4
Brown Creeper 79.50 (0.90) 76.80 (3.10) 93.70 (0.60) 80.00 (0.90) 83.10 (2.00) 66.90 (1.40) 84.71 (6.51) 88.94 (2.76) 89.54 (4.92)
Winter Wren 69.40 (0.80) 66.80 (1.50) 62.00 (0.90) 82.20 (0.90) 66.90 (1.50) 62.20 (0.50) 61.10 (5.95) 57.78 (3.73) 62.62 (3.14)

Pacific-slope Flycatcher 85.90 (1.20) 71.90 (3.20) 86.50 (1.20) 88.10 (1.10) 52.90 (1.90) 87.20 (1.40) 60.70 (17.82) 87.30 (5.26) 49.15 (13.05)
Red-breasted Nuthatch 90.10 (1.50) 81.40 (2.80) 98.30 (0.30) 91.60 (1.10) 96.10 (0.50) 84.70 (0.90) 79.76 (15.20) 92.32 (2.70) 94.57 (1.38)

Dark-eyed Junco 72.00 (3.10) 71.00 (3.40) 62.20 (5.10) 77.70 (3.20) 48.30 (1.10) 59.30 (2.80) 53.80 (10.85) 52.52 (16.97) 60.68 (11.73)
Olive-sided Flycatcher 81.10 (1.80) 82.80 (4.10) 94.50 (0.40) 86.50 (1.10) 46.60 (0.10) 81.60 (1.80) 67.75 (11.33) 75.17 (19.76) 49.97 (13.67)

Hermit Thrush 50.60 (6.80) 58.70 (5.00) 44.70 (2.20) 71.90 (5.40) 55.10 (5.10) 68.40 (3.20) 62.71 (23.11) 62.77 (20.19) 68.62 (24.56)
Chestnut-backed Chickadee 86.20 (2.10) 82.70 (2.00) 89.40 (2.30) 89.50 (1.20) 83.90 (2.60) 88.30 (2.00) 77.12 (25.08) 88.09 (4.35) 88.69 (3.56)

Varied Thrush 96.70 (0.60) 47.30 (10.70) 99.10 (0.50) 95.60 (1.50) 85.30 (2.40) 92.10 (1.10) 93.46 (14.45) 99.17 (1.63) 99.11 (1.50)
Hermit Warbler 76.30 (3.90) 76.40 (2.00) 74.60 (2.40) 89.20 (1.70) 55.60 (3.40) 75.80 (2.80) 51.40 (12.53) 34.85 (11.91) 63.72 (6.78)
Swainson Thrush 86.60 (2.10) 88.60 (1.80) 90.30 (1.90) 90.70 (1.10) 44.70 (1.80) 81.10 (1.80) 82.25 (20.42) 88.97 (5.95) 89.11 (5.77)

Hammonds Flycatcher 96.00 (0.50) 94.80 (0.40) 90.90 (1.00) 98.40 (0.20) 92.40 (0.70) 90.50 (0.40) 91.07 (2.16) 90.96 (1.83) 91.96 (1.75)
Western Tanager 91.30 (1.50) 92.10 (2.20) 96.10 (1.30) 95.00 (1.70) 62.90 (5.10) 51.80 (1.50) 40.88 (15.40) 90.13 (12.47) 43.55 (7.77)

Table C.13: Detailed AUC, UAR and F1-score metrics results from the experiments
on instance-level classification on Birds dataset [Briggs et al. 2012]. Each reported
result is the average of 10-folds along with the standard error. Results in bold are best
results and results with no statistically significant difference from the best (α = 0.05).
They come with the number of wins over the different classes for each metrics.
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C. Additional Results for the Proposed Multiple Instance Model and
its Variants

Method mi-SVM MI-SVM EM-DD SI-SVM MIL-Boost RSIS-EoSVM Polyhedral MI-max MI-max-HL MI-max[Andrews et al. 2003] [Andrews et al. 2003] [Zhang et al. 2002] [Viola et al. 2005] [Carbonneau et al. 2016b]
Newsgroups UAR 12 11 1 3 0 9 16 8 10

alt.atheism 84.10 (3.30) 67.00 (4.60) 51.60 (1.30) 86.60 (2.10) 54.10 (1.50) 70.90 (4.10) 65.36 (19.00) 66.60 (3.52) 74.26 (9.73)
comp.graphics 86.00 (2.70) 86.80 (2.90) 49.40 (0.10) 79.30 (5.60) 52.10 (1.10) 81.40 (3.80) 70.72 (19.90) 58.21 (7.64) 71.02 (10.36)

comp.os.ms-windows.misc 68.20 (2.50) 69.80 (2.00) 52.70 (1.30) 58.00 (3.70) 50.00 (0.00) 66.80 (4.90) 63.07 (15.31) 58.08 (7.08) 63.90 (7.17)
comp.sys.ibm.pc.hardware 76.40 (2.90) 74.30 (4.70) 50.30 (0.70) 64.90 (4.30) 51.30 (0.90) 73.20 (2.50) 62.81 (16.97) 58.05 (6.99) 67.03 (9.93)
comp.sys.mac.hardware 75.40 (4.00) 79.60 (3.10) 51.00 (1.10) 72.40 (6.10) 51.90 (1.00) 73.20 (3.40) 68.76 (18.90) 59.28 (8.51) 69.29 (9.56)

comp.windows.x 69.70 (4.70) 73.30 (5.30) 51.60 (1.00) 66.90 (5.50) 60.80 (3.10) 70.00 (3.00) 72.05 (18.73) 69.11 (12.32) 68.55 (9.69)
misc.forsale 71.40 (3.80) 66.60 (4.00) 52.50 (1.50) 67.50 (4.50) 55.30 (2.00) 65.10 (2.10) 63.42 (15.95) 57.80 (8.25) 64.19 (8.78)
rec.autos 61.60 (5.20) 56.20 (2.90) 51.80 (1.10) 61.50 (5.60) 52.20 (1.20) 76.70 (3.90) 67.59 (18.61) 61.78 (9.19) 69.53 (7.96)

rec.motorcycles 84.20 (5.90) 69.20 (6.10) 58.70 (3.00) 65.90 (7.30) 51.40 (1.40) 76.20 (2.90) 70.05 (20.29) 75.39 (11.76) 74.93 (9.22)
rec.sport.baseball 73.40 (4.70) 67.40 (3.70) 55.60 (1.90) 52.50 (3.70) 52.80 (1.20) 73.30 (2.10) 67.47 (18.75) 70.14 (12.71) 71.15 (10.77)
rec.sport.hockey 63.20 (6.70) 78.90 (4.60) 52.80 (1.80) 58.20 (5.60) 75.40 (3.30) 79.90 (3.20) 79.45 (20.79) 77.76 (12.31) 78.10 (10.24)

sci.crypt 68.80 (6.30) 52.80 (1.50) 73.60 (2.30) 68.30 (6.30) 62.30 (2.60) 75.90 (3.60) 70.56 (19.72) 77.93 (12.21) 73.91 (9.36)
sci.electronics 84.10 (5.00) 78.00 (4.90) 49.60 (0.10) 77.90 (4.10) 52.20 (1.20) 89.90 (0.90) 78.10 (21.33) 53.29 (5.76) 71.02 (9.58)

sci.med 69.20 (6.50) 80.20 (3.40) 52.50 (1.70) 71.00 (6.10) 53.00 (1.20) 73.40 (2.60) 66.81 (18.39) 70.08 (10.42) 74.19 (8.77)
sci.space 54.30 (4.30) 82.30 (2.60) 57.90 (2.60) 57.80 (4.70) 53.50 (1.60) 75.60 (2.20) 68.98 (19.28) 70.66 (12.22) 73.43 (9.68)

soc.religion.christian 66.70 (5.40) 77.10 (4.70) 57.20 (2.50) 48.50 (2.40) 59.60 (1.70) 72.10 (2.90) 65.52 (19.44) 73.00 (12.55) 71.38 (10.92)
talk.politics.guns 78.30 (3.60) 64.90 (6.40) 58.80 (4.40) 70.60 (7.00) 53.80 (1.30) 75.90 (4.50) 65.22 (19.78) 69.85 (11.14) 73.62 (9.79)

talk.politics.mideast 84.30 (1.60) 74.80 (4.40) 62.60 (2.70) 85.30 (4.50) 78.70 (2.80) 78.80 (2.80) 74.56 (20.54) 75.88 (13.41) 78.43 (10.05)
talk.politics.misc 72.80 (3.30) 73.90 (5.00) 52.00 (1.20) 58.30 (4.30) 58.50 (2.20) 74.50 (2.70) 65.06 (18.34) 68.63 (12.03) 69.96 (9.33)
talk.religion.misc 54.80 (3.30) 71.30 (4.60) 51.20 (1.00) 56.80 (3.90) 52.40 (1.30) 67.20 (3.30) 63.01 (16.21) 60.95 (8.93) 65.22 (8.24)
Newsgroups F1 10 10 1 0 0 16 2 9 8
alt.atheism 64.70 (5.50) 40.70 (8.60) 4.00 (2.70) 43.50 (8.10) 14.10 (4.90) 50.40 (8.90) 25.74 (28.30) 43.76 (4.90) 52.13 (16.98)

comp.graphics 70.10 (5.10) 74.00 (2.90) 0.00 (0.00) 56.60 (8.80) 6.90 (3.60) 72.30 (6.50) 37.70 (31.99) 23.71 (20.16) 47.38 (17.69)
comp.os.ms-windows.misc 44.10 (5.60) 44.80 (3.70) 7.20 (3.00) 20.00 (8.90) 0.00 (0.00) 41.40 (9.40) 21.73 (22.05) 22.15 (17.53) 33.37 (14.16)
comp.sys.ibm.pc.hardware 59.90 (4.20) 55.50 (9.30) 2.00 (2.00) 28.30 (7.20) 4.20 (2.80) 60.20 (5.20) 20.34 (23.64) 23.16 (17.33) 37.15 (19.71)
comp.sys.mac.hardware 59.00 (8.10) 64.40 (4.00) 4.70 (3.20) 28.10 (7.80) 6.90 (3.50) 59.70 (6.00) 33.15 (30.28) 26.15 (21.64) 44.70 (18.87)

comp.windows.x 48.20 (9.40) 50.10 (9.80) 5.10 (2.70) 35.20 (9.50) 29.90 (7.70) 52.10 (5.80) 40.61 (31.00) 45.70 (26.14) 46.20 (20.71)
misc.forsale 48.20 (7.10) 39.70 (8.60) 7.50 (3.90) 35.40 (8.70) 17.10 (6.30) 44.20 (5.40) 18.49 (19.26) 20.29 (19.16) 31.27 (17.20)
rec.autos 23.30 (8.20) 17.70 (7.80) 5.70 (2.90) 22.50 (8.00) 7.10 (3.70) 62.20 (8.10) 30.90 (28.51) 32.21 (22.66) 44.56 (15.19)

rec.motorcycles 49.20 (8.50) 39.10 (10.80) 19.80 (5.50) 17.70 (7.20) 4.00 (4.00) 60.20 (5.30) 32.67 (30.23) 58.97 (20.55) 55.12 (17.25)
rec.sport.baseball 52.90 (9.50) 43.60 (8.70) 16.00 (4.80) 5.70 (1.90) 9.90 (4.10) 58.80 (3.70) 29.38 (27.47) 49.17 (25.59) 48.66 (19.83)
rec.sport.hockey 29.80 (11.80) 66.70 (8.50) 9.20 (3.90) 16.50 (6.80) 59.80 (5.70) 72.70 (5.90) 55.72 (35.48) 66.44 (21.44) 66.59 (18.00)

sci.crypt 35.50 (11.20) 8.70 (4.50) 53.70 (3.70) 23.30 (6.80) 37.00 (6.60) 60.50 (7.70) 31.31 (27.55) 62.06 (21.40) 51.00 (18.18)
sci.electronics 69.00 (9.20) 63.60 (9.00) 0.00 (0.00) 63.20 (8.10) 7.60 (3.90) 87.10 (1.40) 54.15 (37.77) 10.19 (16.28) 52.03 (18.92)

sci.med 32.70 (9.70) 66.70 (6.50) 6.40 (3.70) 31.90 (7.50) 8.70 (3.60) 60.70 (4.80) 28.38 (26.17) 50.12 (21.12) 53.37 (15.74)
sci.space 11.20 (7.40) 70.60 (3.50) 19.80 (6.00) 8.60 (3.20) 11.30 (4.90) 64.30 (3.70) 29.96 (26.74) 49.94 (22.55) 51.25 (17.24)

soc.religion.christian 39.00 (10.70) 60.40 (9.20) 17.30 (5.80) 2.90 (0.20) 30.90 (4.90) 56.20 (5.10) 25.80 (29.15) 52.87 (24.55) 46.79 (21.19)
talk.politics.guns 61.60 (5.70) 28.50 (10.00) 21.90 (9.20) 33.10 (12.00) 12.90 (4.30) 57.10 (8.30) 24.65 (27.30) 48.22 (22.48) 49.08 (17.20)

talk.politics.mideast 74.40 (2.40) 59.40 (7.10) 35.00 (7.20) 66.10 (5.30) 70.40 (4.80) 69.10 (4.40) 42.30 (32.09) 61.13 (25.88) 63.29 (17.64)
talk.politics.misc 53.10 (5.30) 46.80 (9.30) 5.70 (3.20) 18.30 (9.50) 26.10 (6.50) 60.50 (3.70) 21.35 (22.79) 43.97 (24.60) 43.67 (16.80)
talk.religion.misc 11.10 (5.60) 42.60 (7.00) 3.30 (2.30) 6.50 (2.50) 8.40 (4.40) 45.00 (6.00) 19.33 (19.85) 28.62 (20.66) 32.90 (15.68)
Newsgroups AUC 8 16 0 12 0 1 14 5 2

alt.atheism 96.50 (1.80) 94.50 (3.10) 17.30 (3.60) 93.00 (2.90) 54.10 (1.50) 92.40 (2.30) 85.84 (12.50) 80.91 (3.94) 81.53 (13.44)
comp.graphics 89.30 (1.60) 87.40 (3.60) 9.50 (2.70) 88.90 (3.80) 52.10 (1.10) 87.40 (2.40) 85.40 (12.61) 69.77 (16.69) 62.27 (18.16)

comp.os.ms-windows.misc 81.80 (4.20) 85.50 (2.60) 32.90 (5.50) 91.40 (2.60) 50.00 (0.00) 77.70 (4.10) 72.61 (17.80) 68.71 (12.67) 65.25 (14.62)
comp.sys.ibm.pc.hardware 91.50 (2.70) 88.90 (4.00) 15.70 (3.40) 92.90 (2.90) 51.30 (0.90) 87.50 (2.20) 82.22 (13.14) 75.36 (13.70) 58.73 (18.00)
comp.sys.mac.hardware 84.70 (3.20) 90.20 (4.00) 21.40 (5.00) 91.50 (3.40) 51.90 (1.00) 85.30 (2.90) 85.63 (12.59) 78.64 (12.09) 64.91 (16.69)

comp.windows.x 93.50 (2.10) 94.00 (2.90) 22.70 (3.20) 97.10 (1.10) 60.80 (3.10) 92.10 (2.10) 89.97 (10.27) 85.27 (9.31) 78.73 (14.75)
misc.forsale 89.80 (3.90) 90.50 (2.50) 34.80 (8.70) 92.10 (3.30) 55.30 (2.00) 76.00 (2.80) 81.47 (15.04) 72.75 (11.94) 74.70 (14.46)
rec.autos 76.10 (7.40) 97.30 (1.10) 19.00 (6.40) 73.70 (9.50) 52.20 (1.20) 84.30 (3.50) 82.28 (15.47) 82.49 (12.37) 70.64 (16.41)

rec.motorcycles 92.00 (3.80) 97.80 (1.20) 27.20 (5.20) 88.40 (3.60) 51.40 (1.40) 90.00 (3.00) 92.19 (11.24) 89.03 (10.05) 88.43 (12.39)
rec.sport.baseball 91.40 (3.50) 97.60 (1.30) 19.30 (4.60) 78.10 (5.20) 52.80 (1.20) 88.80 (2.10) 89.69 (11.50) 89.09 (10.04) 85.46 (14.27)
rec.sport.hockey 71.60 (9.50) 99.00 (0.40) 25.60 (6.60) 67.20 (8.20) 83.20 (4.30) 93.80 (1.80) 97.88 (4.78) 94.90 (6.38) 92.16 (11.38)

sci.crypt 96.30 (2.00) 98.10 (1.30) 63.40 (6.40) 98.70 (0.50) 62.30 (2.60) 91.90 (3.80) 92.69 (11.92) 93.33 (7.32) 89.24 (11.07)
sci.electronics 94.70 (2.30) 96.50 (2.00) 7.60 (3.00) 96.20 (2.10) 52.20 (1.20) 93.80 (1.40) 90.33 (10.52) 91.48 (11.14) 50.07 (20.08)

sci.med 90.90 (4.00) 92.70 (2.30) 24.90 (5.40) 89.50 (4.20) 53.00 (1.20) 89.30 (2.80) 88.10 (11.63) 85.85 (9.67) 82.18 (11.83)
sci.space 77.10 (5.70) 97.20 (0.80) 29.40 (6.70) 72.60 (3.90) 53.50 (1.60) 90.80 (2.30) 89.13 (11.49) 89.87 (7.91) 87.35 (11.63)

soc.religion.christian 88.70 (6.90) 95.10 (2.80) 39.10 (8.20) 83.90 (4.50) 59.60 (1.70) 87.20 (3.70) 89.26 (12.36) 90.49 (8.45) 78.94 (17.86)
talk.politics.guns 97.60 (0.80) 97.10 (1.20) 34.60 (7.50) 96.20 (2.10) 53.80 (1.30) 92.50 (2.60) 89.11 (14.66) 80.92 (11.76) 82.33 (14.31)

talk.politics.mideast 96.70 (2.00) 95.40 (3.00) 44.50 (5.20) 97.30 (1.80) 78.70 (2.80) 92.90 (1.80) 93.12 (8.41) 93.96 (7.60) 90.36 (11.65)
talk.politics.misc 93.40 (2.20) 93.90 (2.10) 12.30 (5.40) 95.90 (1.90) 58.50 (2.20) 91.30 (2.50) 82.77 (13.68) 82.93 (12.19) 73.91 (16.65)
talk.religion.misc 72.10 (6.60) 93.70 (1.90) 23.30 (4.00) 68.70 (5.90) 52.40 (1.30) 87.20 (4.00) 79.95 (14.45) 77.60 (11.51) 78.64 (13.75)

Table C.14: Detailed AUC, UAR and F1-score metrics results from the experiments
on instance-level classification on Newsgroups dataset [Craven et al. 2008]. Each
reported result is the average of 10-folds along with the standard error. Results in bold
are best results and results with no statistically significant difference from the best (α
= 0.05). They come with the number of wins over the different classes for each metrics.
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C.4. Instance-level Classification on Birds, Newsgroups and SIVAL

Method mi-SVM MI-SVM EM-DD SI-SVM MIL-Boost RSIS-EoSVM Polyhedral MI-max MI-max-HL MI-max[Andrews et al. 2003] [Andrews et al. 2003] [Zhang et al. 2002] [Viola et al. 2005] [Carbonneau et al. 2016b]
SIVAL: UAR 7 0 0 20 0 0 0 2 0
ajaxorange 82.50 (1.10) 53.50 (0.60) 56.90 (0.80) 86.50 (0.70) 58.30 (0.60) 67.50 (1.50) 54.39 (6.37) 60.35 (4.01) 58.16 (1.97)

apple 77.10 (3.00) 59.10 (2.10) 58.10 (1.50) 76.10 (1.80) 58.50 (1.10) 50.00 (0.00) 52.02 (7.80) 75.40 (8.64) 67.20 (8.93)
banana 77.00 (2.50) 55.40 (1.20) 56.00 (1.30) 86.80 (0.90) 53.60 (0.80) 50.00 (0.00) 53.33 (8.95) 72.43 (8.89) 57.10 (7.92)

bluescrunge 75.60 (1.70) 59.40 (2.30) 56.90 (2.50) 71.40 (2.10) 60.50 (0.70) 50.00 (0.00) 56.36 (11.66) 73.64 (8.86) 63.65 (3.62)
candlewithholder 74.80 (1.80) 55.90 (1.50) 56.90 (0.60) 78.80 (1.80) 56.10 (1.10) 62.60 (1.30) 53.51 (6.48) 65.14 (4.96) 61.36 (3.88)
cardboardbox 75.10 (1.40) 52.70 (1.00) 54.80 (0.60) 76.80 (1.70) 52.80 (0.60) 54.20 (1.20) 51.44 (4.38) 58.01 (4.44) 55.69 (3.42)
checkeredscarf 86.40 (0.90) 55.50 (0.50) 53.70 (0.30) 89.70 (1.00) 54.30 (0.40) 59.60 (0.90) 56.37 (10.15) 69.70 (8.33) 58.81 (3.52)

cokecan 86.00 (1.30) 57.70 (1.70) 57.20 (0.80) 88.30 (0.90) 58.90 (0.70) 62.00 (0.90) 55.98 (8.27) 64.18 (3.06) 60.65 (2.99)
dataminingbook 83.10 (1.80) 56.20 (1.00) 56.70 (1.80) 85.40 (1.40) 61.30 (0.50) 50.00 (0.00) 53.90 (9.02) 73.07 (9.36) 56.73 (4.97)
dirtyrunningshoe 79.90 (1.70) 53.10 (0.60) 52.50 (0.40) 83.20 (1.40) 52.60 (0.50) 59.20 (0.80) 51.37 (3.73) 60.96 (4.46) 54.44 (2.33)
dirtyworkgloves 70.40 (1.70) 54.50 (0.90) 53.90 (0.80) 71.90 (2.40) 54.20 (0.90) 51.30 (0.30) 50.50 (1.87) 57.33 (3.66) 55.31 (2.79)
fabricsoftenerbox 88.20 (0.90) 57.90 (1.90) 61.00 (1.10) 92.80 (0.50) 62.90 (0.80) 64.80 (0.70) 56.17 (8.16) 68.08 (4.05) 64.20 (2.84)

feltflowerrug 86.30 (1.40) 64.60 (1.50) 57.80 (0.80) 89.90 (0.90) 61.10 (1.00) 68.10 (0.80) 58.24 (11.67) 75.79 (7.12) 67.65 (4.98)
glazedwoodpot 73.50 (2.50) 54.10 (1.10) 59.00 (1.40) 77.10 (2.00) 52.50 (0.40) 50.00 (0.00) 50.26 (2.06) 57.94 (3.20) 52.50 (4.59)

goldmedal 76.50 (1.20) 55.50 (1.30) 58.40 (0.80) 82.40 (1.40) 57.50 (1.00) 50.00 (0.00) 54.29 (7.54) 63.68 (4.10) 62.93 (4.03)
greenteabox 88.10 (1.30) 58.70 (0.80) 53.60 (0.40) 90.90 (0.50) 55.40 (0.60) 70.30 (0.80) 55.58 (7.89) 60.77 (2.76) 56.61 (2.46)
juliespot 81.00 (1.50) 59.80 (1.10) 55.60 (1.10) 78.90 (1.60) 54.40 (0.80) 51.30 (0.60) 51.90 (6.19) 66.53 (6.10) 60.34 (5.17)
largespoon 66.10 (2.50) 50.90 (0.70) 49.90 (0.50) 61.60 (1.30) 51.50 (0.40) 50.00 (0.00) 50.47 (2.52) 53.22 (3.06) 54.37 (3.64)
rapbook 74.50 (1.10) 53.70 (1.00) 54.80 (1.00) 71.90 (1.70) 52.40 (0.40) 50.00 (0.00) 50.20 (1.27) 55.72 (2.28) 52.34 (2.64)

smileyfacedoll 82.20 (1.70) 57.00 (1.10) 58.70 (0.70) 85.20 (1.70) 56.30 (0.70) 50.00 (0.00) 54.87 (8.75) 66.71 (6.48) 60.87 (4.40)
spritecan 79.20 (1.30) 52.20 (1.10) 54.40 (0.90) 84.90 (1.60) 55.00 (0.80) 60.10 (0.50) 53.30 (6.47) 63.43 (5.16) 57.97 (3.55)

stripednotebook 85.90 (1.00) 63.20 (2.20) 57.30 (1.30) 91.50 (0.90) 58.80 (1.20) 76.40 (2.30) 56.42 (13.13) 78.16 (9.05) 60.91 (6.81)
translucentbowl 81.60 (1.70) 59.80 (1.50) 58.80 (1.30) 90.40 (0.70) 55.00 (0.60) 50.00 (0.00) 56.24 (13.54) 75.08 (10.11) 60.21 (7.20)

wd40can 89.00 (0.90) 58.60 (1.10) 55.40 (0.80) 90.40 (0.90) 56.70 (1.00) 68.10 (2.50) 54.81 (6.47) 60.99 (6.52) 55.65 (1.87)
woodrollingpin 70.00 (1.10) 50.20 (0.30) 55.20 (1.30) 68.00 (2.00) 53.80 (0.80) 50.00 (0.00) 50.55 (2.66) 62.75 (8.49) 54.57 (3.97)
SIVAL: F1 22 1 0 13 1 1 0 7 3
ajaxorange 68.10 (1.90) 13.10 (2.00) 23.90 (2.40) 65.90 (1.90) 28.10 (1.80) 50.60 (3.70) 24.48 (10.50) 31.81 (8.70) 27.57 (5.62)

apple 22.20 (2.00) 26.70 (5.50) 25.70 (4.10) 17.50 (1.30) 27.70 (3.10) 0.00 (0.00) 8.71 (8.30) 35.07 (15.03) 35.10 (12.58)
banana 43.60 (2.70) 17.60 (3.60) 19.50 (4.00) 41.70 (2.40) 12.80 (2.60) 0.00 (0.00) 12.58 (11.92) 37.14 (14.83) 19.00 (16.48)

bluescrunge 23.10 (2.10) 27.40 (6.00) 20.90 (7.10) 17.20 (1.90) 33.40 (1.80) 0.00 (0.00) 16.55 (17.85) 48.77 (17.99) 38.86 (8.11)
candlewithholder 52.80 (2.20) 19.50 (4.70) 24.00 (1.80) 52.60 (2.40) 21.10 (3.30) 38.00 (2.70) 19.80 (10.72) 37.99 (10.25) 34.16 (9.47)
cardboardbox 42.30 (2.00) 10.80 (3.00) 17.00 (1.80) 41.50 (3.90) 10.40 (2.20) 14.50 (3.70) 16.77 (6.58) 20.95 (6.13) 19.01 (8.74)
checkeredscarf 75.20 (1.70) 19.90 (1.70) 13.70 (1.10) 78.20 (1.70) 16.00 (1.30) 31.90 (2.60) 37.33 (12.51) 49.00 (13.28) 29.64 (9.58)

cokecan 72.30 (1.90) 25.20 (5.10) 24.90 (2.50) 70.80 (1.80) 30.00 (2.00) 37.80 (2.30) 27.89 (13.78) 43.42 (7.39) 34.09 (7.86)
dataminingbook 56.20 (4.10) 21.30 (3.10) 22.10 (5.20) 49.80 (1.40) 36.60 (1.30) 0.00 (0.00) 19.27 (13.76) 45.99 (15.31) 21.48 (11.83)
dirtyrunningshoe 63.10 (2.50) 12.00 (2.00) 9.80 (1.40) 63.70 (2.40) 9.90 (1.70) 30.80 (2.30) 25.81 (4.99) 31.91 (8.13) 17.40 (6.73)
dirtyworkgloves 36.50 (3.50) 16.00 (2.70) 13.90 (2.60) 33.20 (2.80) 15.20 (2.80) 4.90 (1.30) 15.44 (3.49) 20.80 (5.73) 17.87 (6.38)
fabricsoftenerbox 79.90 (1.60) 25.50 (6.00) 35.50 (3.10) 79.00 (0.60) 40.80 (2.20) 45.50 (1.60) 31.61 (12.72) 47.73 (8.12) 42.97 (6.99)

feltflowerrug 73.70 (2.70) 44.10 (3.60) 26.70 (2.40) 75.00 (1.50) 35.90 (2.70) 52.60 (1.80) 35.51 (19.26) 57.23 (14.40) 50.54 (11.00)
glazedwoodpot 35.00 (3.10) 14.00 (3.20) 29.20 (4.10) 32.40 (3.20) 9.30 (1.60) 0.00 (0.00) 10.07 (2.46) 25.04 (8.49) 6.43 (7.48)

goldmedal 53.10 (1.40) 18.90 (4.00) 28.20 (2.20) 53.50 (3.30) 25.40 (3.10) 0.00 (0.00) 21.33 (13.31) 41.38 (9.93) 38.50 (9.22)
greenteabox 77.30 (1.50) 29.30 (2.40) 13.40 (1.40) 77.90 (1.20) 19.30 (2.00) 56.90 (1.70) 32.00 (11.53) 35.07 (7.33) 23.19 (7.36)
juliespot 49.00 (3.40) 31.90 (3.00) 19.50 (3.40) 42.50 (2.50) 15.90 (2.30) 4.60 (2.20) 19.53 (9.56) 40.37 (10.71) 31.07 (11.17)
largespoon 19.60 (1.30) 3.70 (2.20) 1.50 (1.50) 15.00 (0.80) 5.90 (1.50) 0.00 (0.00) 9.73 (3.84) 11.31 (8.68) 13.87 (8.98)
rapbook 31.80 (2.40) 13.40 (3.20) 16.90 (3.10) 26.60 (1.40) 9.30 (1.40) 0.00 (0.00) 12.42 (2.57) 19.68 (6.64) 9.01 (7.52)

smileyfacedoll 61.80 (2.30) 23.30 (3.30) 28.90 (2.00) 54.20 (3.20) 21.80 (2.20) 0.00 (0.00) 19.41 (15.04) 40.32 (12.73) 33.23 (11.02)
spritecan 60.00 (3.10) 8.80 (3.60) 15.60 (2.90) 61.00 (3.10) 17.80 (2.70) 33.30 (1.40) 22.38 (9.50) 35.83 (10.36) 25.93 (9.51)

stripednotebook 69.90 (2.40) 39.60 (5.50) 24.60 (3.40) 67.10 (1.80) 29.10 (3.60) 67.10 (4.50) 26.52 (21.18) 58.44 (16.28) 32.70 (16.16)
translucentbowl 61.60 (4.10) 31.10 (3.80) 28.10 (3.30) 56.50 (2.80) 18.00 (2.00) 0.00 (0.00) 20.43 (19.19) 50.57 (16.94) 29.83 (16.49)

wd40can 77.20 (1.60) 28.90 (3.10) 19.20 (2.30) 74.50 (2.30) 23.20 (3.00) 50.40 (5.30) 25.16 (10.72) 31.83 (13.26) 20.07 (5.63)
woodrollingpin 24.90 (2.70) 2.10 (1.10) 17.30 (3.80) 22.20 (3.10) 13.60 (2.70) 0.00 (0.00) 8.54 (2.79) 17.86 (9.84) 13.91 (9.50)
SIVAL: AUC 20 0 0 16 0 0 4 7 1
ajaxorange 93.70 (0.90) 77.20 (5.20) 56.30 (1.10) 93.10 (0.90) 74.30 (1.30) 87.20 (1.10) 63.19 (9.27) 65.04 (6.85) 48.46 (8.50)

apple 87.20 (1.40) 70.20 (4.50) 73.00 (2.60) 82.30 (2.50) 81.40 (4.40) 63.40 (2.70) 86.15 (12.23) 91.40 (3.30) 89.12 (4.52)
banana 91.20 (1.10) 73.90 (4.50) 69.10 (3.60) 91.60 (0.70) 77.50 (4.30) 76.70 (2.60) 81.52 (12.35) 87.99 (6.05) 71.89 (12.79)

bluescrunge 85.00 (1.30) 76.70 (4.90) 74.90 (6.90) 81.10 (2.60) 80.80 (2.40) 48.40 (3.20) 89.47 (7.41) 89.61 (6.06) 78.49 (7.66)
candlewithholder 90.40 (0.90) 74.20 (4.90) 55.30 (1.10) 87.60 (1.20) 69.20 (1.60) 76.00 (2.00) 60.08 (12.53) 64.43 (4.66) 54.19 (6.44)
cardboardbox 85.00 (1.20) 54.80 (2.40) 43.20 (1.60) 84.70 (1.80) 71.80 (1.80) 67.80 (1.80) 66.58 (9.18) 65.81 (5.99) 61.31 (7.75)
checkeredscarf 95.20 (0.40) 85.00 (1.40) 75.50 (2.60) 94.90 (0.60) 88.30 (1.30) 79.50 (1.30) 88.12 (6.13) 88.26 (3.98) 72.22 (7.33)

cokecan 95.60 (0.50) 84.20 (2.60) 60.70 (0.90) 94.10 (0.70) 86.30 (0.70) 77.40 (1.50) 78.62 (11.92) 76.63 (5.41) 53.87 (10.05)
dataminingbook 92.70 (1.10) 64.60 (4.80) 67.00 (4.30) 92.40 (1.10) 82.90 (1.10) 60.40 (3.00) 84.00 (10.47) 90.68 (3.42) 77.91 (7.98)
dirtyrunningshoe 91.60 (1.10) 64.70 (4.00) 54.90 (1.20) 91.10 (1.00) 73.40 (1.10) 77.20 (1.50) 68.83 (11.16) 68.29 (5.15) 51.86 (4.26)
dirtyworkgloves 78.00 (2.60) 58.70 (2.00) 54.40 (1.80) 78.60 (2.80) 67.20 (1.70) 63.60 (1.40) 55.64 (8.12) 60.35 (5.43) 54.46 (5.04)
fabricsoftenerbox 96.80 (0.60) 81.90 (1.20) 61.00 (1.20) 97.50 (0.40) 74.50 (1.00) 76.90 (2.80) 74.76 (9.04) 82.23 (3.67) 68.24 (4.17)

feltflowerrug 96.20 (0.50) 83.90 (2.90) 70.90 (2.20) 96.40 (0.60) 86.70 (1.40) 76.10 (1.30) 82.67 (12.61) 89.61 (3.45) 79.28 (4.16)
glazedwoodpot 84.60 (2.30) 71.80 (2.00) 79.80 (2.00) 86.80 (1.50) 73.20 (2.30) 73.90 (1.90) 70.49 (10.20) 78.54 (5.87) 70.22 (7.81)

goldmedal 92.20 (1.10) 79.40 (3.10) 69.70 (3.50) 89.60 (1.10) 77.20 (1.90) 80.00 (2.40) 67.75 (10.54) 74.82 (5.00) 63.27 (6.87)
greenteabox 95.70 (0.50) 69.90 (0.90) 65.40 (6.70) 96.30 (0.50) 77.30 (0.80) 87.00 (0.60) 79.44 (7.37) 78.29 (4.70) 65.96 (4.71)
juliespot 88.60 (1.30) 78.00 (2.10) 66.50 (3.70) 87.20 (2.10) 80.80 (2.40) 84.70 (1.70) 76.31 (12.87) 81.84 (3.72) 76.19 (5.42)
largespoon 76.00 (2.50) 42.90 (3.00) 27.70 (3.20) 66.60 (2.20) 45.80 (2.50) 33.50 (2.40) 62.83 (11.59) 58.60 (9.27) 56.52 (10.79)
rapbook 82.50 (1.00) 58.40 (2.30) 56.50 (2.40) 80.90 (1.50) 75.70 (1.10) 68.20 (1.80) 58.09 (8.64) 58.52 (5.99) 61.09 (8.89)

smileyfacedoll 92.90 (0.90) 76.20 (4.10) 63.60 (3.30) 92.00 (1.40) 80.80 (2.90) 66.00 (2.90) 81.24 (9.80) 81.74 (4.67) 66.85 (6.10)
spritecan 92.70 (1.10) 64.70 (6.20) 57.80 (1.40) 90.30 (1.30) 81.30 (1.60) 72.30 (1.50) 74.83 (10.39) 71.88 (5.08) 58.46 (7.76)

stripednotebook 96.00 (0.60) 86.70 (2.20) 63.10 (4.10) 95.50 (0.70) 91.50 (0.60) 94.40 (1.40) 89.80 (11.22) 94.69 (2.72) 85.83 (6.21)
translucentbowl 94.80 (1.10) 84.90 (2.40) 74.50 (1.70) 94.90 (0.40) 85.50 (1.50) 73.00 (2.70) 91.84 (8.36) 94.05 (2.65) 84.99 (7.58)

wd40can 96.70 (0.30) 76.30 (3.00) 62.60 (2.50) 95.00 (0.90) 75.60 (1.80) 90.40 (1.40) 68.37 (13.12) 72.26 (6.35) 51.65 (6.45)
woodrollingpin 78.00 (1.60) 45.50 (2.90) 70.90 (2.20) 77.30 (2.40) 70.70 (4.40) 55.60 (2.50) 62.83 (13.46) 73.57 (10.76) 64.79 (10.91)

Table C.15: Detailed AUC, UAR and F1-score metrics results from the experiments on
instance-level classification on SIVAL dataset [Rahmani et al. 2005]. Each reported
result is the average of 10-folds along with the standard error. Results in bold are best
results and results with no statistically significant difference from the best (α = 0.05).
They come with the number of wins over the different classes for each metrics.
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D

Detailed Convolutional Neural
Network Architectures

In this annex, we print the extremely detailed architecture of the three CNN used for
feature viusalization (Chapter 4): InceptionV1, ResNet50 and VGG19 in Tables D.1
to D.3. The latter is also used for texture synthesis (Chapter 3).

The layer used are the following one:
• Conv2D: 2D convolution layer
• ReLU: Rectified Linear Unit
• Dense: fully connected layer
• MaxPooling2D: Max pooling operation for 2D spatial data
• Flatten: Collapse the spatial and kernel dimensions to one unique dimension
• BN: Batch Normalization [Ioffe 2017]
• ZeroPadding2D: 2D zero padding
• PoolHelper: remove the first row and column in image dimensions
• LRN: Local response normalization from [Szegedy et al. 2015]
• GlobalAveragePooling2D : Spatial average
• Dropout: this layer randomly sets input neurons to 0 with a given frequency of

rate at each step during training time
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D. Detailed Convolutional Neural Network Architectures

Table D.1: InceptionV1 detailed Architecture [Szegedy et al. 2015]. The model contains 13461996
trainable parameters with the deep supervision and thus the two extra classification branches.
The model contains 7125020 trainable parameters without the deep supervision branches.
Layer Name Type Output Shape Param # Connected to
input Input Layer (224, 224, 3)
zero_padding2d_0 ZeroPadding2D (230, 230, 3) 0 input_1
conv2d0_pre_relu Conv2D (112, 112, 64) 9472 zero_padding2d_0
conv2d0 ReLU (112, 112, 64) 0 conv2d0_pre_relu
zero_padding2d_1 ZeroPadding2D (114, 114, 64) 0 conv2d0
pool_helper_8 PoolHelper (113, 113, 64) 0 zero_padding2d_1
maxpool0 MaxPooling2D (56, 56, 64) 0 pool_helper_8
localresponsenorm0 LRN (56, 56, 64) 0 maxpool0
conv2d1_pre_relu Conv2D (56, 56, 64) 4160 localresponsenorm0
conv2d1 ReLU (56, 56, 64) 0 conv2d1_pre_relu
conv2d2_pre_relu Conv2D (56, 56, 192) 110784 conv2d1
conv2d2 ReLU (56, 56, 192) 0 conv2d2_pre_relu
localresponsenorm1 LRN (56, 56, 192) 0 conv2d2
zero_padding2d_2 ZeroPadding2D (58, 58, 192) 0 localresponsenorm1
pool_helper_9 PoolHelper (57, 57, 192) 0 zero_padding2d_2
maxpool1 MaxPooling2D (28, 28, 192) 0 pool_helper_9
mixed3a_3x3_bottleneck_pre_relu Conv2D (28, 28, 96) 18528 maxpool1
mixed3a_5x5_bottleneck_pre_relu Conv2D (28, 28, 16) 3088 maxpool1
mixed3a_3x3_bottleneck ReLU (28, 28, 96) 0 mixed3a_3x3_bottleneck_pre_relu
mixed3a_5x5_bottleneck ReLU (28, 28, 16) 0 mixed3a_5x5_bottleneck_pre_relu
zero_padding2d_3 ZeroPadding2D (30, 30, 96) 0 mixed3a_3x3_bottleneck
zero_padding2d_4 ZeroPadding2D (32, 32, 16) 0 mixed3a_5x5_bottleneck
mixed3a_pool_pre_relu MaxPooling2D (28, 28, 192) 0 maxpool1
mixed3a_1x1_pre_relu Conv2D (28, 28, 64) 12352 maxpool1
mixed3a_3x3_pre_relu Conv2D (28, 28, 128) 110720 zero_padding2d_3
mixed3a_5x5_pre_relu Conv2D (28, 28, 32) 12832 zero_padding2d_4
mixed3a_pool_reduce_pre_relu Conv2D (28, 28, 32) 6176 mixed3a_pool_pre_relu
mixed3a_pre_relu Concatenate (28, 28, 256) 0 mixed3a_1x1_pre_relu

mixed3a_3x3_pre_relu
mixed3a_5x5_pre_relu
mixed3a_pool_reduce_pre_relu

mixed3a ReLU (28, 28, 256) 0 mixed3a_pre_relu
mixed3b_3x3_bottleneck_pre_relu Conv2D (28, 28, 128) 32896 mixed3a
mixed3b_5x5_bottleneck_pre_relu Conv2D (28, 28, 32) 8224 mixed3a
mixed3b_3x3_bottleneck ReLU (28, 28, 128) 0 mixed3b_3x3_bottleneck_pre_relu
mixed3b_5x5_bottleneck ReLU (28, 28, 32) 0 mixed3b_5x5_bottleneck_pre_relu
zero_padding2d_5 ZeroPadding2D (30, 30, 128) 0 mixed3b_3x3_bottleneck
zero_padding2d_6 ZeroPadding2D (32, 32, 32) 0 mixed3b_5x5_bottleneck
mixed3b_pool MaxPooling2D (28, 28, 256) 0 mixed3a
mixed3b_1x1_pre_relu Conv2D (28, 28, 128) 32896 mixed3a
mixed3b_3x3_pre_relu Conv2D (28, 28, 192) 221376 zero_padding2d_5
mixed3b_5x5_pre_relu Conv2D (28, 28, 96) 76896 zero_padding2d_6
mixed3b_pool_reduce_pre_relu Conv2D (28, 28, 64) 16448 mixed3b_pool
mixed3b_pre_relu Concatenate (28, 28, 480) 0 mixed3b_1x1_pre_relu

mixed3b_3x3_pre_relu
mixed3b_5x5_pre_relu
mixed3b_pool_reduce_pre_relu

mixed3b ReLU (28, 28, 480) 0 mixed3b_pre_relu
zero_padding2d_7 ZeroPadding2D (30, 30, 480) 0 mixed3b
pool_helper_10 PoolHelper (29, 29, 480) 0 zero_padding2d_7
maxpool2 MaxPooling2D (14, 14, 480) 0 pool_helper_10
mixed4a_3x3_bottleneck_pre_relu Conv2D (14, 14, 96) 46176 maxpool2
mixed4a_5x5_bottleneck_pre_relu Conv2D (14, 14, 16) 7696 maxpool2
mixed4a_3x3_bottleneck ReLU (14, 14, 96) 0 mixed4a_3x3_bottleneck_pre_relu
mixed4a_5x5_bottleneck ReLU (14, 14, 16) 0 mixed4a_5x5_bottleneck_pre_relu
zero_padding2d_8 ZeroPadding2D (16, 16, 96) 0 mixed4a_3x3_bottleneck
zero_padding2d_9 ZeroPadding2D (18, 18, 16) 0 mixed4a_5x5_bottleneck
mixed4a_pool MaxPooling2D (14, 14, 480) 0 maxpool2
mixed4a_1x1_pre_relu Conv2D (14, 14, 192) 92352 maxpool2
mixed4a_3x3_pre_relu Conv2D (14, 14, 204) 176460 zero_padding2d_8
mixed4a_5x5_pre_relu Conv2D (14, 14, 48) 19248 zero_padding2d_9
mixed4a_pool_reduce_pre_relu Conv2D (14, 14, 64) 30784 mixed4a_pool
mixed4a_pre_relu Concatenate (14, 14, 508) 0 mixed4a_1x1_pre_relu

mixed4a_3x3_pre_relu
mixed4a_5x5_pre_relu
mixed4a_pool_reduce_pre_relu

mixed4a ReLU (14, 14, 508) 0 mixed4a_pre_relu
mixed4b_3x3_bottleneck_pre_relu Conv2D (14, 14, 112) 57008 mixed4a
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mixed4b_5x5_bottleneck_pre_relu Conv2D (14, 14, 24) 12216 mixed4a
mixed4b_3x3_bottleneck ReLU (14, 14, 112) 0 mixed4b_3x3_bottleneck_pre_relu
mixed4b_5x5_bottleneck ReLU (14, 14, 24) 0 mixed4b_5x5_bottleneck_pre_relu
zero_padding2d_10 ZeroPadding2D (16, 16, 112) 0 mixed4b_3x3_bottleneck
zero_padding2d_11 ZeroPadding2D (18, 18, 24) 0 mixed4b_5x5_bottleneck
mixed4b_pool MaxPooling2D (14, 14, 508) 0 mixed4a
mixed4b_1x1_pre_relu Conv2D (14, 14, 160) 81440 mixed4a
mixed4b_3x3_pre_relu Conv2D (14, 14, 224) 226016 zero_padding2d_10
mixed4b_5x5_pre_relu Conv2D (14, 14, 64) 38464 zero_padding2d_11
mixed4b_pool_reduce_pre_relu Conv2D (14, 14, 64) 32576 mixed4b_pool
mixed4b_pre_relu Concatenate (14, 14, 512) 0 mixed4b_1x1_pre_relu

mixed4b_3x3_pre_relu
mixed4b_5x5_pre_relu
mixed4b_pool_reduce_pre_relu

mixed4b ReLU (14, 14, 512) 0 mixed4b_pre_relu
mixed4c_3x3_bottleneck_pre_relu Conv2D (14, 14, 128) 65664 mixed4b
mixed4c_5x5_bottleneck_pre_relu Conv2D (14, 14, 24) 12312 mixed4b
mixed4c_3x3_bottleneck ReLU (14, 14, 128) 0 mixed4c_3x3_bottleneck_pre_relu
mixed4c_5x5_bottleneck ReLU (14, 14, 24) 0 mixed4c_5x5_bottleneck_pre_relu
zero_padding2d_12 ZeroPadding2D (16, 16, 128) 0 mixed4c_3x3_bottleneck
zero_padding2d_13 ZeroPadding2D (18, 18, 24) 0 mixed4c_5x5_bottleneck
mixed4c_pool MaxPooling2D (14, 14, 512) 0 mixed4b
mixed4c_1x1_pre_relu Conv2D (14, 14, 128) 65664 mixed4b
mixed4c_3x3_pre_relu Conv2D (14, 14, 256) 295168 zero_padding2d_12
mixed4c_5x5_pre_relu Conv2D (14, 14, 64) 38464 zero_padding2d_13
mixed4c_pool_reduce_pre_relu Conv2D (14, 14, 64) 32832 mixed4c_pool
mixed4c_pre_relu Concatenate (14, 14, 512) 0 mixed4c_1x1_pre_relu

mixed4c_3x3_pre_relu
mixed4c_5x5_pre_relu
mixed4c_pool_reduce_pre_relu

mixed4c ReLU (14, 14, 512) 0 mixed4c_pre_relu
mixed4d_3x3_bottleneck_pre_relu Conv2D (14, 14, 144) 73872 mixed4c
mixed4d_5x5_bottleneck_pre_relu Conv2D (14, 14, 32) 16416 mixed4c
mixed4d_3x3_bottleneck ReLU (14, 14, 144) 0 mixed4d_3x3_bottleneck_pre_relu
mixed4d_5x5_bottleneck ReLU (14, 14, 32) 0 mixed4d_5x5_bottleneck_pre_relu
zero_padding2d_14 ZeroPadding2D (16, 16, 144) 0 mixed4d_3x3_bottleneck
zero_padding2d_15 ZeroPadding2D (18, 18, 32) 0 mixed4d_5x5_bottleneck
mixed4d_pool MaxPooling2D (14, 14, 512) 0 mixed4c
mixed4d_1x1_pre_relu Conv2D (14, 14, 112) 57456 mixed4c
mixed4d_3x3_pre_relu Conv2D (14, 14, 288) 373536 zero_padding2d_14
mixed4d_5x5_pre_relu Conv2D (14, 14, 64) 51264 zero_padding2d_15
mixed4d_pool_reduce_pre_relu Conv2D (14, 14, 64) 32832 mixed4d_pool
mixed4d_pre_relu Concatenate (14, 14, 528) 0 mixed4d_1x1_pre_relu

mixed4d_3x3_pre_relu
mixed4d_5x5_pre_relu
mixed4d_pool_reduce_pre_relu

mixed4d ReLU (14, 14, 528) 0 mixed4d_pre_relu
mixed4e_3x3_bottleneck_pre_relu Conv2D (14, 14, 160) 84640 mixed4d
mixed4e_5x5_bottleneck_pre_relu Conv2D (14, 14, 32) 16928 mixed4d
mixed4e_3x3_bottleneck ReLU (14, 14, 160) 0 mixed4e_3x3_bottleneck_pre_relu
mixed4e_5x5_bottleneck ReLU (14, 14, 32) 0 mixed4e_5x5_bottleneck_pre_relu
zero_padding2d_16 ZeroPadding2D (16, 16, 160) 0 mixed4e_3x3_bottleneck
zero_padding2d_17 ZeroPadding2D (18, 18, 32) 0 mixed4e_5x5_bottleneck
mixed4e_pool MaxPooling2D (14, 14, 528) 0 mixed4d
mixed4e_1x1_pre_relu Conv2D (14, 14, 256) 135424 mixed4d
mixed4e_3x3_pre_relu Conv2D (14, 14, 320) 461120 zero_padding2d_16
mixed4e_5x5_pre_relu Conv2D (14, 14, 128) 102528 zero_padding2d_17
mixed4e_pool_reduce_pre_relu Conv2D (14, 14, 128) 67712 mixed4e_pool
mixed4e_pre_relu Concatenate (14, 14, 832) 0 mixed4e_1x1_pre_relu

mixed4e_3x3_pre_relu
mixed4e_5x5_pre_relu
mixed4e_pool_reduce_pre_relu

mixed4e ReLU (14, 14, 832) 0 mixed4e_pre_relu
zero_padding2d_18 ZeroPadding2D (16, 16, 832) 0 mixed4e
pool_helper_11 PoolHelper (15, 15, 832) 0 zero_padding2d_18
maxpool3 MaxPooling2D (7, 7, 832) 0 pool_helper_11
mixed5a_3x3_bottleneck_pre_relu Conv2D (7, 7, 160) 133280 maxpool3
mixed5a_5x5_bottleneck_pre_relu Conv2D (7, 7, 48) 39984 maxpool3
mixed5a_3x3_bottleneck ReLU (7, 7, 160) 0 mixed5a_3x3_bottleneck_pre_relu
mixed5a_5x5_bottleneck ReLU (7, 7, 48) 0 mixed5a_5x5_bottleneck_pre_relu
zero_padding2d_19 ZeroPadding2D (9, 9, 160) 0 mixed5a_3x3_bottleneck
zero_padding2d_20 ZeroPadding2D (11, 11, 48) 0 mixed5a_5x5_bottleneck
mixed5a_pool MaxPooling2D (7, 7, 832) 0 maxpool3
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mixed5a_1x1_pre_relu Conv2D (7, 7, 256) 213248 maxpool3
mixed5a_3x3_pre_relu Conv2D (7, 7, 320) 461120 zero_padding2d_19
mixed5a_5x5_pre_relu Conv2D (7, 7, 128) 153728 zero_padding2d_20
mixed5a_pool_reduce_pre_relu Conv2D (7, 7, 128) 106624 mixed5a_pool
mixed5a_pre_relu Concatenate (7, 7, 832) 0 mixed5a_1x1_pre_relu

mixed5a_3x3_pre_relu
mixed5a_5x5_pre_relu
mixed5a_pool_reduce_pre_relu

mixed5a ReLU (7, 7, 832) 0 mixed5a_pre_relu
mixed5b_3x3_bottleneck_pre_relu Conv2D (7, 7, 192) 159936 mixed5a
mixed5b_5x5_bottleneck_pre_relu Conv2D (7, 7, 48) 39984 mixed5a
mixed5b_3x3_bottleneck ReLU (7, 7, 192) 0 mixed5b_3x3_bottleneck_pre_relu
mixed5b_5x5_bottleneck ReLU (7, 7, 48) 0 mixed5b_5x5_bottleneck_pre_relu
head0_pool AveragePooling2D (4, 4, 508) 0 mixed4a
head1_pool AveragePooling2D (4, 4, 528) 0 mixed4d
zero_padding2d_21 ZeroPadding2D (9, 9, 192) 0 mixed5b_3x3_bottleneck
zero_padding2d_22 ZeroPadding2D (11, 11, 48) 0 mixed5b_5x5_bottleneck
mixed5b_pool MaxPooling2D (7, 7, 832) 0 mixed5a
head0_bottleneck_pre_relu Conv2D (4, 4, 128) 65152 head0_pool
head1_bottleneck_pre_relu Conv2D (4, 4, 128) 67712 head1_pool
mixed5b_1x1_pre_relu Conv2D (7, 7, 384) 319872 mixed5a
mixed5b_3x3_pre_relu Conv2D (7, 7, 384) 663936 zero_padding2d_21
mixed5b_5x5_pre_relu Conv2D (7, 7, 128) 153728 zero_padding2d_22
mixed5b_pool_reduce_pre_relu Conv2D (7, 7, 128) 106624 mixed5b_pool
head0_bottleneck ReLU (4, 4, 128) 0 head0_bottleneck_pre_relu
head1_bottleneck ReLU (4, 4, 128) 0 head1_bottleneck_pre_relu
mixed5b_pre_relu Concatenate (7, 7, 1024) 0 mixed5b_1x1_pre_relu

mixed5b_3x3_pre_relu
mixed5b_5x5_pre_relu
mixed5b_pool_reduce_pre_relu

flatten Flatten (2048) 0 head0_bottleneck
flatten_1 Flatten (2048) 0 head1_bottleneck
mixed5b ReLU (7, 7, 1024) 0 mixed5b_pre_relu
nn0_pre_relu Dense (1024) 2098176 flatten
nn1_pre_relu Dense (1024) 2098176 flatten_1
avgpool AveragePooling2D (1, 1, 1024) 0 mixed5b
nn0 ReLU (1024) 0 nn0_pre_relu
nn1 ReLU (1024) 0 nn1_pre_relu
flatten_2 Flatten (1024) 0 avgpool
dropout Dropout (1024) 0 nn0
dropout_1 Dropout (1024) 0 nn1
dropout_2 Dropout (1024) 0 flatten_2
softmax0_pre_activation Dense (1000) 1033200 dropout
softmax1_pre_activation Dense (1000) 1033200 dropout_1
softmax2_pre_activation Dense (1000) 1033200 dropout_2
softname0 Softmax (1000) 0 softmax0_pre_activation
softname1 Softmax (1000) 0 softmax1_pre_activation
softmax2 Softmax (1000) 0 softmax2_pre_activation

Table D.2: ResNet50 (50 layers) detailed Architecture [He et al. 2015]. The model contains
25583592 trainable parameters.
Layer Name Type Output Shape Param # Connected to
input InputLayer (224, 224, 3)
conv1_pad ZeroPadding2D (230, 230, 3) 0 input
conv1_conv Conv2D (112, 112, 64) 9472 conv1_pad
conv1_bn BN zation) (112, 112, 64) 256 conv1_conv
conv1_relu ReLU (112, 112, 64) 0 conv1_bn
pool1_pad ZeroPadding2D (114, 114, 64) 0 conv1_relu
pool1_pool MaxPooling2D (56, 56, 64) 0 pool1_pad
conv2_block1_1_conv Conv2D (56, 56, 64) 4160 pool1_pool
conv2_block1_1_bn BN (56, 56, 64) 256 conv2_block1_1_conv
conv2_block1_1_relu ReLU (56, 56, 64) 0 conv2_block1_1_bn
conv2_block1_2_conv Conv2D (56, 56, 64) 36928 conv2_block1_1_relu
conv2_block1_2_bn BN (56, 56, 64) 256 conv2_block1_2_conv
conv2_block1_2_relu ReLU (56, 56, 64) 0 conv2_block1_2_bn
conv2_block1_0_conv Conv2D (56, 56, 256) 16640 pool1_pool
conv2_block1_3_conv Conv2D (56, 56, 256) 16640 conv2_block1_2_relu
conv2_block1_0_bn BN (56, 56, 256) 1024 conv2_block1_0_conv
conv2_block1_3_bn BN (56, 56, 256) 1024 conv2_block1_3_conv
conv2_block1_add Add (56, 56, 256) 0 conv2_block1_0_bn

conv2_block1_3_bn
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conv2_block1_out ReLU (56, 56, 256) 0 conv2_block1_add
conv2_block2_1_conv Conv2D (56, 56, 64) 16448 conv2_block1_out
conv2_block2_1_bn BN (56, 56, 64) 256 conv2_block2_1_conv
conv2_block2_1_relu ReLU (56, 56, 64) 0 conv2_block2_1_bn
conv2_block2_2_conv Conv2D (56, 56, 64) 36928 conv2_block2_1_relu
conv2_block2_2_bn BN (56, 56, 64) 256 conv2_block2_2_conv
conv2_block2_2_relu ReLU (56, 56, 64) 0 conv2_block2_2_bn
conv2_block2_3_conv Conv2D (56, 56, 256) 16640 conv2_block2_2_relu
conv2_block2_3_bn BN (56, 56, 256) 1024 conv2_block2_3_conv
conv2_block2_add Add (56, 56, 256) 0 conv2_block1_out

conv2_block2_3_bn
conv2_block2_out ReLU (56, 56, 256) 0 conv2_block2_add
conv2_block3_1_conv Conv2D (56, 56, 64) 16448 conv2_block2_out
conv2_block3_1_bn BN (56, 56, 64) 256 conv2_block3_1_conv
conv2_block3_1_relu ReLU (56, 56, 64) 0 conv2_block3_1_bn
conv2_block3_2_conv Conv2D (56, 56, 64) 36928 conv2_block3_1_relu
conv2_block3_2_bn BN (56, 56, 64) 256 conv2_block3_2_conv
conv2_block3_2_relu ReLU (56, 56, 64) 0 conv2_block3_2_bn
conv2_block3_3_conv Conv2D (56, 56, 256) 16640 conv2_block3_2_relu
conv2_block3_3_bn BN (56, 56, 256) 1024 conv2_block3_3_conv
conv2_block3_add Add (56, 56, 256) 0 conv2_block2_out

conv2_block3_3_bn
conv2_block3_out ReLU (56, 56, 256) 0 conv2_block3_add
conv3_block1_1_conv Conv2D (28, 28, 128) 32896 conv2_block3_out
conv3_block1_1_bn BN (28, 28, 128) 512 conv3_block1_1_conv
conv3_block1_1_relu ReLU (28, 28, 128) 0 conv3_block1_1_bn
conv3_block1_2_conv Conv2D (28, 28, 128) 147584 conv3_block1_1_relu
conv3_block1_2_bn BN (28, 28, 128) 512 conv3_block1_2_conv
conv3_block1_2_relu ReLU (28, 28, 128) 0 conv3_block1_2_bn
conv3_block1_0_conv Conv2D (28, 28, 512) 131584 conv2_block3_out
conv3_block1_3_conv Conv2D (28, 28, 512) 66048 conv3_block1_2_relu
conv3_block1_0_bn BN (28, 28, 512) 2048 conv3_block1_0_conv
conv3_block1_3_bn BN (28, 28, 512) 2048 conv3_block1_3_conv
conv3_block1_add Add (28, 28, 512) 0 conv3_block1_0_bn

conv3_block1_3_bn
conv3_block1_out ReLU (28, 28, 512) 0 conv3_block1_add
conv3_block2_1_conv Conv2D (28, 28, 128) 65664 conv3_block1_out
conv3_block2_1_bn BN (28, 28, 128) 512 conv3_block2_1_conv
conv3_block2_1_relu ReLU (28, 28, 128) 0 conv3_block2_1_bn
conv3_block2_2_conv Conv2D (28, 28, 128) 147584 conv3_block2_1_relu
conv3_block2_2_bn BN (28, 28, 128) 512 conv3_block2_2_conv
conv3_block2_2_relu ReLU (28, 28, 128) 0 conv3_block2_2_bn
conv3_block2_3_conv Conv2D (28, 28, 512) 66048 conv3_block2_2_relu
conv3_block2_3_bn BN (28, 28, 512) 2048 conv3_block2_3_conv
conv3_block2_add Add (28, 28, 512) 0 conv3_block1_out

conv3_block2_3_bn
conv3_block2_out ReLU (28, 28, 512) 0 conv3_block2_add
conv3_block3_1_conv Conv2D (28, 28, 128) 65664 conv3_block2_out
conv3_block3_1_bn BN (28, 28, 128) 512 conv3_block3_1_conv
conv3_block3_1_relu ReLU (28, 28, 128) 0 conv3_block3_1_bn
conv3_block3_2_conv Conv2D (28, 28, 128) 147584 conv3_block3_1_relu
conv3_block3_2_bn BN (28, 28, 128) 512 conv3_block3_2_conv
conv3_block3_2_relu ReLU (28, 28, 128) 0 conv3_block3_2_bn
conv3_block3_3_conv Conv2D (28, 28, 512) 66048 conv3_block3_2_relu
conv3_block3_3_bn BN (28, 28, 512) 2048 conv3_block3_3_conv
conv3_block3_add Add (28, 28, 512) 0 conv3_block2_out

conv3_block3_3_bn
conv3_block3_out ReLU (28, 28, 512) 0 conv3_block3_add
conv3_block4_1_conv Conv2D (28, 28, 128) 65664 conv3_block3_out
conv3_block4_1_bn BN (28, 28, 128) 512 conv3_block4_1_conv
conv3_block4_1_relu ReLU (28, 28, 128) 0 conv3_block4_1_bn
conv3_block4_2_conv Conv2D (28, 28, 128) 147584 conv3_block4_1_relu
conv3_block4_2_bn BN (28, 28, 128) 512 conv3_block4_2_conv
conv3_block4_2_relu ReLU (28, 28, 128) 0 conv3_block4_2_bn
conv3_block4_3_conv Conv2D (28, 28, 512) 66048 conv3_block4_2_relu
conv3_block4_3_bn BN (28, 28, 512) 2048 conv3_block4_3_conv
conv3_block4_add Add (28, 28, 512) 0 conv3_block3_out

conv3_block4_3_bn
conv3_block4_out ReLU (28, 28, 512) 0 conv3_block4_add
conv4_block1_1_conv Conv2D (14, 14, 256) 131328 conv3_block4_out
conv4_block1_1_bn BN (14, 14, 256) 1024 conv4_block1_1_conv
conv4_block1_1_relu ReLU (14, 14, 256) 0 conv4_block1_1_bn
conv4_block1_2_conv Conv2D (14, 14, 256) 590080 conv4_block1_1_relu
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conv4_block1_2_bn BN (14, 14, 256) 1024 conv4_block1_2_conv
conv4_block1_2_relu ReLU (14, 14, 256) 0 conv4_block1_2_bn
conv4_block1_0_conv Conv2D (14, 14, 1024) 525312 conv3_block4_out
conv4_block1_3_conv Conv2D (14, 14, 1024) 263168 conv4_block1_2_relu
conv4_block1_0_bn BN (14, 14, 1024) 4096 conv4_block1_0_conv
conv4_block1_3_bn BN (14, 14, 1024) 4096 conv4_block1_3_conv
conv4_block1_add Add (14, 14, 1024) 0 conv4_block1_0_bn

conv4_block1_3_bn
conv4_block1_out ReLU (14, 14, 1024) 0 conv4_block1_add
conv4_block2_1_conv Conv2D (14, 14, 256) 262400 conv4_block1_out
conv4_block2_1_bn BN (14, 14, 256) 1024 conv4_block2_1_conv
conv4_block2_1_relu ReLU (14, 14, 256) 0 conv4_block2_1_bn
conv4_block2_2_conv Conv2D (14, 14, 256) 590080 conv4_block2_1_relu
conv4_block2_2_bn BN (14, 14, 256) 1024 conv4_block2_2_conv
conv4_block2_2_relu ReLU (14, 14, 256) 0 conv4_block2_2_bn
conv4_block2_3_conv Conv2D (14, 14, 1024) 263168 conv4_block2_2_relu
conv4_block2_3_bn BN (14, 14, 1024) 4096 conv4_block2_3_conv
conv4_block2_add Add (14, 14, 1024) 0 conv4_block1_out

conv4_block2_3_bn
conv4_block2_out ReLU (14, 14, 1024) 0 conv4_block2_add
conv4_block3_1_conv Conv2D (14, 14, 256) 262400 conv4_block2_out
conv4_block3_1_bn BN (14, 14, 256) 1024 conv4_block3_1_conv
conv4_block3_1_relu ReLU (14, 14, 256) 0 conv4_block3_1_bn
conv4_block3_2_conv Conv2D (14, 14, 256) 590080 conv4_block3_1_relu
conv4_block3_2_bn BN (14, 14, 256) 1024 conv4_block3_2_conv
conv4_block3_2_relu ReLU (14, 14, 256) 0 conv4_block3_2_bn
conv4_block3_3_conv Conv2D (14, 14, 1024) 263168 conv4_block3_2_relu
conv4_block3_3_bn BN (14, 14, 1024) 4096 conv4_block3_3_conv
conv4_block3_add Add (14, 14, 1024) 0 conv4_block2_out

conv4_block3_3_bn
conv4_block3_out ReLU (14, 14, 1024) 0 conv4_block3_add
conv4_block4_1_conv Conv2D (14, 14, 256) 262400 conv4_block3_out
conv4_block4_1_bn BN (14, 14, 256) 1024 conv4_block4_1_conv
conv4_block4_1_relu ReLU (14, 14, 256) 0 conv4_block4_1_bn
conv4_block4_2_conv Conv2D (14, 14, 256) 590080 conv4_block4_1_relu
conv4_block4_2_bn BN (14, 14, 256) 1024 conv4_block4_2_conv
conv4_block4_2_relu ReLU (14, 14, 256) 0 conv4_block4_2_bn
conv4_block4_3_conv Conv2D (14, 14, 1024) 263168 conv4_block4_2_relu
conv4_block4_3_bn BN (14, 14, 1024) 4096 conv4_block4_3_conv
conv4_block4_add Add (14, 14, 1024) 0 conv4_block3_out

conv4_block4_3_bn
conv4_block4_out ReLU (14, 14, 1024) 0 conv4_block4_add
conv4_block5_1_conv Conv2D (14, 14, 256) 262400 conv4_block4_out
conv4_block5_1_bn BN (14, 14, 256) 1024 conv4_block5_1_conv
conv4_block5_1_relu ReLU (14, 14, 256) 0 conv4_block5_1_bn
conv4_block5_2_conv Conv2D (14, 14, 256) 590080 conv4_block5_1_relu
conv4_block5_2_bn BN (14, 14, 256) 1024 conv4_block5_2_conv
conv4_block5_2_relu ReLU (14, 14, 256) 0 conv4_block5_2_bn
conv4_block5_3_conv Conv2D (14, 14, 1024) 263168 conv4_block5_2_relu
conv4_block5_3_bn BN (14, 14, 1024) 4096 conv4_block5_3_conv
conv4_block5_add Add (14, 14, 1024) 0 conv4_block4_out

conv4_block5_3_bn
conv4_block5_out ReLU (14, 14, 1024) 0 conv4_block5_add
conv4_block6_1_conv Conv2D (14, 14, 256) 262400 conv4_block5_out
conv4_block6_1_bn BN (14, 14, 256) 1024 conv4_block6_1_conv
conv4_block6_1_relu ReLU (14, 14, 256) 0 conv4_block6_1_bn
conv4_block6_2_conv Conv2D (14, 14, 256) 590080 conv4_block6_1_relu
conv4_block6_2_bn BN (14, 14, 256) 1024 conv4_block6_2_conv
conv4_block6_2_relu ReLU (14, 14, 256) 0 conv4_block6_2_bn
conv4_block6_3_conv Conv2D (14, 14, 1024) 263168 conv4_block6_2_relu
conv4_block6_3_bn BN (14, 14, 1024) 4096 conv4_block6_3_conv
conv4_block6_add Add (14, 14, 1024) 0 conv4_block5_out

conv4_block6_3_bn
conv4_block6_out ReLU (14, 14, 1024) 0 conv4_block6_add
conv5_block1_1_conv Conv2D (7, 7, 512) 524800 conv4_block6_out
conv5_block1_1_bn BN (7, 7, 512) 2048 conv5_block1_1_conv
conv5_block1_1_relu ReLU (7, 7, 512) 0 conv5_block1_1_bn
conv5_block1_2_conv Conv2D (7, 7, 512) 2359808 conv5_block1_1_relu
conv5_block1_2_bn BN (7, 7, 512) 2048 conv5_block1_2_conv
conv5_block1_2_relu ReLU (7, 7, 512) 0 conv5_block1_2_bn
conv5_block1_0_conv Conv2D (7, 7, 2048) 2099200 conv4_block6_out
conv5_block1_3_conv Conv2D (7, 7, 2048) 1050624 conv5_block1_2_relu
conv5_block1_0_bn BN (7, 7, 2048) 8192 conv5_block1_0_conv
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conv5_block1_3_bn BN (7, 7, 2048) 8192 conv5_block1_3_conv
conv5_block1_add Add (7, 7, 2048) 0 conv5_block1_0_bn

conv5_block1_3_bn
conv5_block1_out ReLU (7, 7, 2048) 0 conv5_block1_add
conv5_block2_1_conv Conv2D (7, 7, 512) 1049088 conv5_block1_out
conv5_block2_1_bn BN (7, 7, 512) 2048 conv5_block2_1_conv
conv5_block2_1_relu ReLU (7, 7, 512) 0 conv5_block2_1_bn
conv5_block2_2_conv Conv2D (7, 7, 512) 2359808 conv5_block2_1_relu
conv5_block2_2_bn BN (7, 7, 512) 2048 conv5_block2_2_conv
conv5_block2_2_relu ReLU (7, 7, 512) 0 conv5_block2_2_bn
conv5_block2_3_conv Conv2D (7, 7, 2048) 1050624 conv5_block2_2_relu
conv5_block2_3_bn BN (7, 7, 2048) 8192 conv5_block2_3_conv
conv5_block2_add Add (7, 7, 2048) 0 conv5_block1_out

conv5_block2_3_bn
conv5_block2_out ReLU (7, 7, 2048) 0 conv5_block2_add
conv5_block3_1_conv Conv2D (7, 7, 512) 1049088 conv5_block2_out
conv5_block3_1_bn BN (7, 7, 512) 2048 conv5_block3_1_conv
conv5_block3_1_relu ReLU (7, 7, 512) 0 conv5_block3_1_bn
conv5_block3_2_conv Conv2D (7, 7, 512) 2359808 conv5_block3_1_relu
conv5_block3_2_bn BN (7, 7, 512) 2048 conv5_block3_2_conv
conv5_block3_2_relu ReLU (7, 7, 512) 0 conv5_block3_2_bn
conv5_block3_3_conv Conv2D (7, 7, 2048) 1050624 conv5_block3_2_relu
conv5_block3_3_bn BN (7, 7, 2048) 8192 conv5_block3_3_conv
conv5_block3_add Add (7, 7, 2048) 0 conv5_block2_out

conv5_block3_3_bn
conv5_block3_out ReLU (7, 7, 2048) 0 conv5_block3_add
avg_pool GlobalAveragePooling2D (2048) 0 conv5_block3_out
probs Dense and Softmax (1000) 2049000 avg_pool

Table D.3: VGG19 detailed Architecture [Simonyan et al. 2015]. The model contains 143667240
trainable parameters.
Layer Name Layer Name Type Output Shape Param #
for feature for texture
visualization synthesis
input input Input Layer (224, 224, 3)
block1_conv1 conv1_1 Conv2D (224, 224, 64) 1792
block1_conv2 conv1_2 Conv2D (224, 224, 64) 36928
block1_pool pool1 MaxPooling2D (112, 112, 64) 0
block2_conv1 conv2_1 Conv2D (112, 112, 128) 73856
block2_conv2 conv2_2 Conv2D (112, 112, 128) 147584
block2_pool pool2 MaxPooling2D (56, 56, 128) 0
block3_conv1 conv3_1 Conv2D (56, 56, 256) 295168
block3_conv2 conv3_2 Conv2D (56, 56, 256) 590080
block3_conv3 conv3_3 Conv2D (56, 56, 256) 590080
block3_conv4 conv3_4 Conv2D (56, 56, 256) 590080
block3_pool pool3 MaxPooling2D (28, 28, 256) 0
block4_conv1 conv4_1 Conv2D (28, 28, 512) 1180160
block4_conv2 conv4_2 Conv2D (28, 28, 512) 2359808
block4_conv3 conv4_3 Conv2D (28, 28, 512) 2359808
block4_conv4 conv4_4 Conv2D (28, 28, 512) 2359808
block4_pool pool4 MaxPooling2D (14, 14, 512) 0
block5_conv1 conv5_1 Conv2D (14, 14, 512) 2359808
block5_conv2 conv5_2 Conv2D (14, 14, 512) 2359808
block5_conv3 conv5_3 Conv2D (14, 14, 512) 2359808
block5_conv4 conv5_4 Conv2D (14, 14, 512) 2359808
block5_pool pool5 MaxPooling2D (7, 7, 512) 0
flatten flatten Flatten (25088) 0
fc1 fc1 Dense (4096) 102764544
fc2 fc2 Dense (4096) 16781312
predictions predictions Dense and softmax (1000) 4097000
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Titre: Transfert d'Apprentissage de Réseaux de Neurones à Convolution pour la Synthèse de

Texture et la Reconnaissance Visuelle d'Images Artistiques
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Résumé: Dans cette thèse, nous étudions le
transfert de réseaux de neurones à convolution
(abrégés CNN en anglais) pré-entrainés sur des im-
ages naturelles, vers des tâches di�érentes de celles
pour lesquelles ils ont été entraînés. Nous avons tra-
vaillé sur deux axes de recherche : la synthèse de
texture et la reconnaissance visuelle dans les images
d'÷uvres d'art. Le premier axe consiste à synthé-
tiser une nouvelle image à partir d'une image de
référence. La plupart des méthodes récentes sont
basées sur l'utilisation des matrices Gram des cartes
de caractéristiques issues de CNNs entrainés sur Im-
ageNet. Nous avons développé une stratégie mul-
tirésolution pour prendre en compte les structures
à grande échelle. Cette stratégie peut être couplée
à des contraintes à grande distance, soit par une
contrainte basée sur le spectre de Fourier, soit par
l'utilisation de l'autocorrélation des cartes de car-
actéristiques. Elle permet d'obtenir d'excellentes
synthèses en haute résolution, tout particulièrement
pour les textures régulières. Ces méthodes ont été

évaluées de manière quantitatives et perceptuelles.
Dans un second temps, nous nous sommes intéressés
au transfert d'apprentissage pour la classi�cation
des images d'art. Les CNNs peuvent être utilisés
comme des extracteurs de caractéristiques ou comme
initialisation pour un nouvel entrainement. Nous
avons mis en avant la supériorité de cette seconde
solution. De plus, nous avons étudié le proces-
sus d'apprentissage à l'aide de visualisation de car-
actéristiques, d'indices de similarité ainsi que des
métriques quantitatives. Nous avons aussi étudié
le transfert de CNN entrainé pour de la détection
d'objets. Nous avons proposé une méthode simple de
détection faiblement supervisée (cad uniquement des
annotations au niveau de l'image). Elle est basée sur
un apprentissage à instances multiples, l'utilisation
de caractéristiques �gées et de propositions de boîtes
issues d'un CNN pré-entrainés. Nous avons expéri-
mentalement montré l'intérêt de nos modèles sur six
jeux de données non photoréalistes.

Title: Transfer Learning of Convolutional Neural Networks for Texture Synthesis and Visual

Recognition in Artistic Images

Keywords: Convolutional Neural Networks; Transfer Learning; Texture Synthesis; Art Images; Weakly-
Supervised Learning; Multi-resolution

Abstract: In this thesis, we study the transfer of
Convolutional Neural Networks (CNN) trained on
natural images to related tasks. We follow two axes:
texture synthesis and visual recognition in artworks.
The �rst one consists in synthesizing a new image
given a reference sample. Most methods are based
on enforcing the Gram matrices of ImageNet-trained
CNN features. We develop a multi-resolution strat-
egy to take into account large scale structures. This
strategy can be coupled with long-range constraints
either through a Fourier frequency constraint, or the
use of feature maps autocorrelation. This scheme
allows excellent high-resolution synthesis especially
for regular textures. We compare our methods to
alternatives ones with quantitative and perceptual

evaluations. In a second axis, we focus on trans-
fer learning of CNN for artistic image classi�cation.
CNNs can be used as o�-the-shelf feature extractors
or �ne-tuned. We illustrate the advantage of the
last solution. Second, we use feature visualization
techniques, CNNs similarity indexes and quantita-
tive metrics to highlight some characteristics of the
�ne-tuning process. Another possibility is to trans-
fer a CNN trained for object detection. We pro-
pose a simple multiple instance method using o�-
the-shelf deep features and box proposals, for weakly
supervised object detection. At training time, only
image-level annotations are needed. We experimen-
tally show the interest of our models on six non-
photorealistic.
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