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There are, it seems, two muses: the Muse of Inspiration, who gives us inarticulate
visions and desires, and the Muse of Realization, who returns again and again to
say ”It is yet more difficult than you thought.” This is the muse of form.

It may be then that form serves us best when it works as an obstruction, to baffle
us and deflect our intended course. It may be that when we no longer know what
to do, we have come to our real work and when we no longer know which way to
go, we have begun our real journey.

The mind that is not baffled is not employed. The impeded stream is the one that
sings.

— Wendell Berry, Our Real Work
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Résumé :

Les herbicides sont une importante technologie de protection des cultures de
l’agriculture moderne. Cependant, leur application sur de vastes étendues de terre
génère des sources de pollution diffuses qui sont non seulement difficiles à surveiller
et à contrôler, mais qui menacent également la qualité des ressources humaines en
eau et des écosystèmes fluviaux dans le monde entier. Bien que des évaluations sur le
terrain et des essais en laboratoire soient nécessaires avant l’introduction de matières
actives sur le marché, le devenir et l’étendue de la dégradation des pesticides et de
leurs métabolites dans l’environnement sont sujets à de grandes incertitudes. Ce
travail de thèse établit une preuve de concept pour l’application de l’analyse
isotopique des composés spécifiques (AICS) pour surveiller la dégradation et le
transfert des pesticides à l’échelle du bassin versant. La thèse comprend à la fois la
caractérisation sur le terrain et la modélisation numérique pour étudier la valeur de
l’AICS comme outil de surveillance et comme technique de réduction de l’incertitude
du modèle. Des expériences en laboratoire sont également utilisées pour appuyer
l’interprétation des données sur le terrain et valider l’élaboration de structures de
modèles numériques.

Mot clés :

AICS, pesticides, bassin versant, pollution diffuse, modèlisation

Summary :

Herbicides are an important crop protection technology of modern agriculture.
However, their application over large extensions of land generates diffuse pollution
sources that are not only difficult to monitor and control, but also that threaten the
quality of human water resources and river ecosystems world-wide. Although field
assessments and laboratory tests are required before active ingredients are
introduced to market, the fate and degradation extent of pesticides and their
metabolites in the environment is subject to significant uncertainty. This thesis work
establishes a proof of concept for the application of compound specific isotope
analysis (CSIA) to monitor pesticide degradation and transfer at catchment scale.
The thesis includes both field characterization and numerical modelling to
investigate the value of CSIA as a monitoring tool and as a model uncertainty
reduction technique. Laboratory experiments are further employed to support
interpretation of field data and validate numerical model structure development.

Key words :
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I would like to thank Benôıt Guyot, Fatima Meite, Charline Wiegert, Jeremy Masbou, Eric
Pernin, Sarah Wisselmann and Marceau Levasseur for all your support in making the first
article possible though sampling, analysis and development. Sarah and Marceau, special
thanks to you both for your organization and transparency in your lab work and positive
attitude in the field, even on cold rainy days, helping to make our weekly field visits a true
field-trip! Also special and extended thanks to Fatima and Benôıt, for always being there to
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Summary

Herbicides are an important crop protection technology of modern agriculture. However,
their application over large extensions of land generates diffuse pollution sources that are
not only difficult to monitor and control, but also that threaten the quality of human water
resources and river ecosystems world-wide [1, 2]. Although field assessments and laboratory
tests are required before active ingredients are introduced to market, the fate and degrada-
tion extent of pesticides and their metabolites in the environment is subject to significant
uncertainty [3]. Not only are most transformation products (TPs) not known, preventing
any mass balance accounts of pesticide fate across space and time, but also their inherent
toxicity on non-target organisms is disregarded in registration and approval dossiers [4]. Lim-
itations in the ability to bridge information obtained under laboratory to field conditions and
the uncertainty associated to pesticide characterization in realistic environmental contexts
warrants the development of novel management strategies (e.g., [2]) that enable monitored
natural or engineered attenuation.

Numerous environmental sinks can contribute to pesticide attenuation, including sorption,
volatilization, degradation, leaching, plant uptake and offsite export through runoff and ero-
sion. Relative to dilution processes, degradation is the only sink contributing to sustainable
removal. Therefore the ability to quantify and distinguish its relative importance is of pri-
mary interest to the environmental manager. In this respect, compound specific isotope
analysis (CSIA) represents an advantage over concentration based assessments, which can-
not determine the extent of degradation that a contaminant undergoes between sources and
receptors. In contrast, isotope fractionation can evidence degradation extent and pathways,
even if no TPs are detected, as transformation leaves a biochemical imprint in the form of
characteristic changes in isotope ratios of the reacting contaminant [5].

Although the use of CSIA to evidence degradation is well established for legacy compounds
in contaminated sites [6, 7], the occurrence of very low (ng L−1 to µg L−1) concentrations
of pesticides and their polarity lead to analytical challenges precluding CSIA applications
at environmental scales [8]. Despite these analytical challenges, pesticide CSIA applications
have begun to emerge from small scale lab scales to larger quasi(stationary) aquifer contexts
[9–13]. However, its application to highly dynamic hydrological contexts at catchment scale
are still lacking.

To address this gap, a proof of concept is presented in Chapter 2, establishing the ap-
plicability of carbon-based CSIA to monitor pesticide degradation and fate at catchment
scale. Due to its environmental relevance (e.g., persistence and detection frequency [2]) and
wide-spread use, S-metolachlor (SM) is used as a model compound. Comparison of three
information sources (i.e., CSIA, mass balances (MB) and reported half-life (t1/2) ranges)
of SM demonstrated the validity of CSIA as a complementary line of evidence for quan-
tifying degradation under dynamic hydrological and rainfall-runoff conditions. The CSIA
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approach improved our understanding of pesticides fate by delineating the primary catch-
ment areas regulating degradation (88%) and export losses (8%). Comparison of MB and
CSIA approaches showed that degradation extent evolution was consistent between outlet
and catchment-wide top soils, demonstrating the monitoring applicability of CSIA methods
despite shifting hydrological regimes. Based on its ability to quantify degradation indepen-
dently of TPs, CSIA may thus be considered as a valuable complementary tool to identify
and monitor chemical risk at catchment scale.

Although Chapter 2 demonstrated the value of CSIA as a complementary tool to evidence
degradation and to estimate catchment losses, interpretation of field data provides only
punctual estimates of observed catchment processes that, due to changes in environmental
conditions, are inherently dynamic. For example, while total export losses where identified,
characterization data was not able to provide information on how specific rainfall-runoff
events (or their frequency) regulate pesticide export. Similarly, although interpretations
of degradation extent can be used to derive mean pesticide degradation half-life, reaction
rates are likely dependent on hydro-climatic conditions regulating bacterial activity. These
conditions may not only change throughout the growing season but may vary throughout the
catchment at any one time, generating spatial and temporal changes in degradation intensity
and/or soil physical properties regulating pesticide transfer pathways (i.e., hot/cold moments
and periods).

Predicting mobilization and export of pollutants from top soils (hot/cold moments) is essen-
tial to evaluate transfer risk and toxicological exposure [14, 15]. To do so, understanding of
the relative importance of extrinsic (e.g., rainfall characteristics) and intrinsic factors (e.g.,
soil and pesticide properties), regulating pesticide mobilization and export is important.
Evaluation of both extrinsic and intrinsic factors controlling pesticide transfer in agricultural
soils was addressed in Chapter 3 by combining a parsimonious model with a small scale soil
column experiment designed to reproduce leaching and ponding processes typically observed
in the field. This study revealed the primary influence that extrinsic factors, including rain-
fall frequency, duration and volume, have on the export by ponding and leaching of organic
and inorganic pollutants from topsoils. Rainfall volumes were the primary determinant of
pollutant export during the first rainfall after product application. Rainfall volumes and
frequency also controlled pesticide transfer pathways (i.e., relative distribution of leaching
and ponding) through their impact on soil compaction. Further, irrespective of aging time,
all rainfall patterns significantly impacted the leaching of metalaxyl and SM during the first
rainfall. However, only extreme rainfall patterns may generate significant metal leaching, as
shown by observed concentrations below quantification levels for the long-lasting events with
low and intermediate rainfall intensities. Therefore, one significant implication is that the
first rainfall following field application of pre-emergence pesticides is of critical importance
for pesticide export. In contrast, soil composition and aging had only a secondary influence
on pollutant export from soils.

Hydrological functioning of the experimental design was confirmed by the parsimonious
model, reproducing observed ponding and percolated waters across all rainfall patterns. The
model could also generally reproduce the mass balance for both metalaxyl and SM leaching in
soil. Although preferential flow in macropores may additionally increase pesticide transport,
this model showed that chromatographic transfer may also be a significant export process,
particularly with soils of good permeability (Ksat > 13 cm h−1). As a result, leaching from
topsoil of pre-emergence pesticides applied shortly after tillage on bare soils may represent a
specific transfer risk. By refining the expected exports of pesticides and metals in different
conditions, we anticipate this study to be a preliminary step to more systematically evaluate
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the impact of rainfall patterns and frequency on pollutant export in benchmark soil tests.

Application of insights from small-scale experiments to large-scale environmental contexts
is subject to uncertainty, as spatial heterogeneity and temporal hydro-climatic variability
imply a departure from idealized laboratory controlled conditions. Transition to evaluate
pesticide fate at catchment scale requires therefore numerical approaches that are able to
account for non-linear processes and interaction between state variables across space and
time. A review of current numerical approaches [16–20] used to represent pesticide fate
at catchment scale indicates two primary challenges. On the one hand, to provide detail
accounts of pesticide transport during periods of hydrological forcing at the event scale,
models need to explicitly account for the spatial heterogeneity of agricultural landscapes [19],
hydrological connectivity [21] and farm management practices [22]. However, the values of
state variables (e.g., soil physical properties, moisture conditions and pesticide pools), which
evolve across space and time, are key in representing the hydrological and chemical response
during major hydrological events [22]. Therefore, models that are also able to seamlessly
couple processes that are relevant at different time-scales (i.e., event-based vs. continuous)
and yet remain computationally efficient are needed. On the other hand, there is a lack
of available pesticide fate and transfer data, that is required to validate such models at
catchment scale. In particular, current efforts to represent pesticide fate at catchment scale
rely on concentration-based approaches, which as outlined above, are limited in their ability
to distinguish between degradation and competing sinks.

Based on insights from the parsimonious model developed during Chapter 3 and the unique
soil concentration and CSIA data set collected for SM during catchment characterization of
Chapter 2, a spatially distributed hydrological model capable of simulating moisture evo-
lution [23] was further developed in Chapter 4 to account for pesticide reactive and trans-
port processes. This chapter evaluated the ability of PiBEACH, the developed model, to
improve pesticide fate representation at catchment scale by incorporating hydro-climatic fac-
tors (moisture and temperature optimums for bacterial activity) regulating SM degradation.
We show that, relative to constant degradation reference values (DT50) retained in many
physically based models, the use of hydro-climatic factors can significantly improve degra-
dation rate representation in 2D spatially distributed models. By incorporating pesticide
CSIA data, in addition to concentrations, we were not only able to reduced the equifinality
of degradation parameters of the evaluated models, but also allowed to objectively determine
the improvement associated to the inclusion of hydro-climatic processes in describing degra-
dation within the catchment. Finally, uncertainty estimations for key management metrics
including degradation, persistence and leaching extent via matrix flow were compared be-
tween models with (WC) and without (NC) CSIA constrains. Results showed that although
both models provide approximately equivalent mean degradation extents towards the end of
the study period for SM, the larger degradation uncertainty of NC models propagates across
non-destructive pesticides sinks, leading to overestimations of leaching extents by a factor of
2.

While the continuous model in Chapter 4 was able to reduce the uncertainty of degradation
parameters in catchment top soils, significant limitations were observed in its ability to
reproduce concentrations and isotope signatures at the outlet during periods of high transfer
risk. Indeed, assessment of cumulative simulated export by runoff and drainage combined saw
an overestimation of about a factor of 4, relative to dissolved outlet measurements (≈ 0.5%).
To address this limitation, coupling of PiBEACH with the open source Limburg Soil Erosion
Model (LISEM), an event-scale model, specialized in the detailed representation of fast
transport through run-off and erosion during intense rainfall periods is presented inChapter
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5. Preliminary results of the coupled model, PiBEACH-oL, have shown improvements in
the representation of hydrological components contributing to outlet discharge, allowing
to identify likely false-positive runoff events predicted by the uncoupled model. Ongoing
developments include the coupling of mass transfer to outlet through runoff and integration
of depth dependence factors regulating degradation rates to improve predictions of rapid
runoff and drainage components.

In conclusion, Chapter 6 provides a general discussion of the overarching approaches (i.e.,
characterization and modelling) and physical scales (i.e., laboratory and catchment) investi-
gated during this Ph.D work. This section discusses main findings, as well as some limitations
of the work presented in each of the above mentioned chapters by addressing aspects of field
characterization, lab scale experimentation and numerical modelling. Based on this discus-
sion, Chapter 7 reflects on the implications of CSIA-based approaches for pesticide fate
assessments at catchment scales and provides a number of recommendations for the use of
CSIA in future studies at both lab and larger scales. These include (i) combination of water
sampling strategies, potentially also including water dating techniques, to characterize dif-
ferent sources in flow components, (ii) the design of benchmark soil degradation experiments
and their modelling under aerobic and anaerobic conditions, (iii) CSIA sampling strate-
gies for larger river catchment scales, and (iv) ESIA characterization of in stream biofilm
biodegradation by making use of, for example, streamside flumes under different modalities.



Résumé

Les herbicides sont largement utilisés pour éviter le développement d’adventices dans les
cultures. Cependant, leur application sur des surfaces importantes génère une pollution
diffuse par volatilisation, infiltration et ruissellement qui est non seulement difficile à quan-
tifier, contrôler et prédire, mais qui menace également la qualité des ressources en eau et
des écosystèmes aquatiques dans le monde entier [1, 2]. Bien que des évaluations in situ et
des tests en laboratoire soient nécessaires pour l’homologation et la mise sur le marché de
nouvelles molécules actives, la prédiction de leur persistance et des risques de transport vers
les milieux aquatiques reste entachée d’une très large incertitude [3]. De plus les produits
de dégradation de ces molécules actives sont très largement méconnues et donc ne peuvent
pas être quantifiés, limitant toute tentative de bilan de masse du devenir des pesticides
au sein des paysages agricoles. Il est également à noter que la toxicité de ces produits de
dégradation pour les organismes non ciblés dans les sols et les milieux aquatiques n’est pas
prise en compte dans les dossiers d’homologation de mise sur le marché des molécules actives
[4]. Enfin la transposabilité des cinétiques de dégradation ou de paramètres de transport
obtenues en laboratoire aux conditions environnementales a montré ses limites et justifie le
développement de nouvelles stratégies de quantification in situ (e.g., [2]) de la persistance
réelle de ces molécules.

De nombreux processus peuvent contribuer à la dissipation des pesticides dans les sols ou les
cultures sur lesquels ils ont été appliqués. Certains sont non destructifs comme la dilution
la sorption, la volatilisation, la lixiviation, l’absorption par les plantes et l’exportation hors
site par ruissellement et érosion. Par rapport à ces processus non-destructifs, les processus
de dégradation qu’ils soient biotiques ou abiotiques sont les seuls à contribuer à l’élimination
des pesticides. Par conséquent, la possibilité de quantifier et prédire l’importance de la
dégradation présente un intérêt primordial pour le gestionnaire de l’environnement. À cet
égard, l’analyse isotopique des composés spécifiques (AICS) représente un avantage majeur
par rapport aux évaluations basées sur la concentration, qui ne peuvent pas discriminer la
part respective des processus non-destructifs et destructifs. Ainsi en induisant un fraction-
nement isotopique des éléments composants la molécule active (e.g. 13C/12C, 15N/14N),
les processus de dégradation peuvent être mise en évidence en accédant potentiellement aux
voies de dégradation même si aucun produit de dégradation n’est détecté [5].

L’utilisation de l’AICS pour quantifier la dégradation de polluants historiques existants dans
les sols et aquifères contaminés est bien établie [7]. La présence des pesticides en très faibles
concentrations (ng L−1 au µg L−1) et leur polarité constituent un défis analytique pour
développer l’AICS des pesticides in situ dans les agrosystèmes. En dépit de ces défis an-
alytiques, les applications de l’AICS aux pesticides ont commencé à émerger à l’échelle de
mésocosmes ou dans les aquifères [9–13]. Cependant, son application aux eaux de surface
très dynamiques à l’échelle du bassin versant fait encore défaut.

7



8 Résumé

Pour combler cette lacune, une preuve de concept est présentée au chapitre 2, établissant
l’applicabilité de l’AICS basée sur le carbone (13C/12C) pour quantifier la dégradation du
S-métachlore et son devenir à l’échelle du bassin versant. Le S-métolachlore a été retenu
comme composé modèle en raison de sa persistance,de safréquence de détection [2]) et de son
utilisation répandue. Cette preuve par concept s’appuie sur une comparaison de 3 méthodes
: l’AICS, un bilan de masse (MB) et l’utilisation des durée de demi-vie (DT50) fournies dans
les bases de données physico-chimiques des pesticides.

La comparaison de trois méthodes (AICS, MB et DT50) sur le S-métolachlore a démontré
la validité de l’AICS comme outil de quantification de sa dégradation à l’échelle du petit
bassin versant (47 ha) dans des conditions hydrologiques dynamiques. L’approche AICS a
permis d’améliorer notre compréhension du devenir des pesticides en délimitant les princi-
pales zones au sein du bassin versant contribuant à la dégradation qui atteint 88%, et aux
pertes par ruissellement à l’exutoire qui représente 8%. La comparaison des approches MB
et AICS a démontré que la quantification de la dégradation était cohérente à la fois avec
les concentrations et les signatures isotopiques dans la couche supérieure de sols et les eaux
à l’exutoire. Ceci démontre ainsi l’applicabilité de la méthode AICS malgré la forte dy-
namique hydrologique qui caractérise les têtes de bassins versants. En offrant la capacité de
quantifier la dégradation indépendamment de la quantification des produits de dégradation,
l’AICS peut donc être considérée comme un outil complémentaire précieux pour quantifier
et prédire la persistance des pesticides à l’échelle du bassin versant.

Bien que le chapitre 2 ait démontré la valeur ajoutée de l’AICS comme outil complém-
entaire pour mettre en évidence la dégradation et estimer le transport via le ruissellement
au niveau du bassin versant, l’interprétation des données de terrain ne fournit que des es-
timations ponctuelles des processus observés qui, en raison de changements des conditions
environnementales, sont intrinsèquement dynamiques. Par exemple, alors que les pertes to-
tales à l’exportation ont été identifiées, les données de caractérisation n’ont pas été en mesure
de fournir des informations sur la manière dont les événements de pluie-débit spécifiques (ou
leur fréquence) régulent l’exportation de pesticides. De même, bien que les interprétations
de l’étendue de la dégradation puissent être utilisées pour obtenir des durées de demi-vies
de dégradation biochimique moyenne des pesticides, les taux de réaction dépendent proba-
blement des conditions hydro-climatiques qui régissent l’activité bactérienne. Ces conditions
peuvent non seulement changer tout au long de la saison de croissance, mais peuvent varier
à tout moment dans le bassin versant, générant des changements spatiaux et temporels de
l’intensité de la dégradation et / ou des propriétés physiques du sol régulant les voies de
transfert des pesticides (i.e., hot/cold moments and periods).

La couche de surface des sols agricoles joue un rôle majeur dans la mobilisation et l’export
des polluants et conditionne donc fortement ‘leur impact écotoxicologique sur les milieux
aquatiques [14, 15]. Afin de hiérarchiser les facteurs qui modulent ce risque de mobilisation
et de transport, il est important de distinguer les facteurs extrinsèques (caractéristiques
des précipitations, par exemple) et intrinsèques (propriétés du sol et des pesticides, par
exemple). L’évaluation des facteurs intrinsèques et extrinsèques contrôlant le transfert de
pesticides dans les sols agricoles a été traitée au chapitre 3 en combinant un modèle simple
avec une expérience à petite échelle (21 cm3 de sol) conçue pour reproduire les processus
de lixiviation et de formation de flaque observée à la genèse de ruissellement. Cette étude
a révélé que les facteurs extrinsèques, notamment la fréquence, la durée et le volume des
précipitations, avaient une influence majeure sur l’exportation des polluants organiques et
inorganiques (cuivre et zinc également étudiés). Les volumes de pluie ont été le principal
déterminant de l’exportation de polluants lors de la première pluie après l’application du
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produit. Les volumes de pluie et l’intensité ont contrôlé le poids relatif du transport vertical
par la lixiviation ou horizontal vers les flaques en formation en raison de leur impact sur
la compaction du sol. De plus, indépendamment du temps de contact entre le sol et les
polluants précédant l’épisode de pluie, tous les régimes de précipitations ont eu un impact
significatif sur le lessivage du métalaxyl et le S-Métolachlore lors de la première pluie. Pour
les métaux, seuls les régimes de précipitations extrêmes ont généré un lessivage important en
raison de la forte sorption de ceux-ci aux constituants du sol. Par conséquent, les propriétés
des premières pluies après l’application de pesticides in situ ont un rôle majeur sur les voies
de transport soit vers la nappe soit vers les eaux de surface.

Le fonctionnement hydrologique du dispositif expérimental a été confirmé par le modèle sim-
ple, en reproduisant l’eau surnageante à la surface du sol et l’eau percolées dans tous les
régimes de précipitations. Le modèle a également permis de reproduire le bilan massique du
lessivage du métalaxyl et du SM dans le sol. Bien que les flux préférentiels dans les macrop-
ores puissent augmenter le transport des pesticides, ce modèle a montré que le transfert par
flux matriciels peut également constituer un processus d’exportation important, en partic-
ulier avec des sols de bonne perméabilité (Ksat > 13 cm h−1). Par conséquent, le lessivage
des pesticides, peu de temps après le labour, sur des sols nus peut représenter un risque
spécifique. En affinant les exportations prévues de pesticides et de métaux dans différentes
conditions, nous prévoyons que cette étude constituera une étape préliminaire permettant
d’évaluer plus systématiquement l’impact des régimes pluviométriques et la fréquence des
exportations de polluants dans des sols de référence.

L’application de connaissances issues d’expériences à petite échelle à des contextes envi-
ronnementaux à grande échelle est sujette à des incertitudes, car l’hétérogénéité spatiale et
la variabilité hydro-climatique temporelle limitent la transposition directe des résultats en
conditions contrôlées au laboratoire. La transition pour évaluer le devenir des pesticides
à l’échelle du bassin versant nécessite donc des approches numériques capables de prendre
en compte les processus non linéaires et l’interaction entre les variables d’état dans l’espace
et dans le temps. Une analyse des approches numériques actuelles [16–20] utilisées pour
représenter le devenir des pesticides à l’échelle du bassin versant indique deux principaux
défis. D’une part, pour fournir des informations détaillées sur le transport des pesticides
pendant les périodes de forçage hydrologique à l’échelle de l’événement, les modèles doivent
explicitement tenir compte de l’hétérogénéité spatiale des paysages agricoles, de la con-
nectivité hydrologique et des pratiques culturales et itinéraires techniques. Cependant, les
valeurs des variables d’état (propriétés physiques du sol, teneur en eau et concentrations
en pesticides dans le sol, par exemple), qui évoluent dans l’espace et le temps, sont essen-
tielles pour représenter la réponse hydrologique et chimique lors d’événements hydrologiques
majeurs [22]. Par conséquent, des modèles capables de coupler des processus pertinents à
différentes échelles de temps tout en restant opérationnels en termes de temps de calcul sont
nécessaires. En revanche, les données disponibles sur le devenir et le transfert des pesticides
sont insuffisantes pour valider ces modèles à l’échelle du bassin versant. En particulier, les
efforts actuels pour représenter le devenir des pesticides à l’échelle du bassin versant reposent
sur des approches basées sur la concentration, qui, comme indiqué ci-dessus, a une capacité
limitée à faire la distinction entre les processus destructifs et non-destructifs.

Sur la base des données du modèle ”mixing model” élaboré au chapitre 3 et du set de
données collectés sur le bassin versant d’Alteckendorf (chapitre 2), un modèle hydrologique
spatialisé capable de simuler l’évolution de l’humidité et de la température des différentes
couches du sol [23] a été développé (PiBEACH) pour améliorer la prédiction de la dégradation
et du transport des pesticides. Nous montrons dans ce chapitre que, par rapport à l’utilisation
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d’une valeurs fixe de dégradation (DT50) retenue dans de nombreux modèles physiques,
la modulation de la DT50 en utilisant des facteurs hydro-climatiques (teneur en eau et
température du sol) améliore de manière significative la prédiction du taux de dégradation
du S-métolachlore. En incorporant les données AICS sur les pesticides, en plus des concen-
trations lors du processus de calage des paramètres, nous avons (i) significativement réduit
l’équifinalité entre paramètres de dégradation et de transport, (ii) démontré l’amélioration de
la prédiction de la dégradation en conditionnant son intensité à l’humidité et à la température
du sol - et (iii) réduit d’un facteur 2 l’incertitude des prédictions associées aux pertes par
lessivage contribuant à la contamination des nappes.

Bien que le modèle continu présenté au chapitre 4 ait permis de réduire l’incertitude des
paramètres de dégradation dans les sols, des limitations importantes ont été observées quant
à sa capacité à reproduire les concentrations et les signatures isotopiques à la sortie du
bassin versant pendant les périodes de risque de transfert élevé. En effet, l’évaluation des
exportations cumulées simulées par le ruissellement et le drainage combinés a abouti à une
surestimation d’un facteur 4 environ, par rapport aux mesures à l’exutoire en phase dis-
soute (≈ 0.5%). Pour répondre à cette limite, le couplage du modèle continu, PiBEACH,
avec le modèle événementiel hydrologique LISEM, spécialisé dans la représentation détaillée
du transport rapide par ruissellement et érosion pendant les périodes de pluie intense, est
présenté au chapitre 5.

Les résultats préliminaires du modèle couplé, PiBEACH-oL, ont montré des améliora- tions
dans la représentation des composants hydrologiques contribuant à l’écoulement en sortie.
Ainsi, ce couplage a mis en évidence une surreprésentation des épisodes de ruissellement
lorsque PiBEACH est utilisé seul. Les développements en cours visent à intégrer dans
PiBEACH un taux de dégradation décroissant en fonction de la profondeur et de finaliser le
codage du transport des pesticides via le ruissellement et l’érosion dans OPENLisem.

En conclusion, Chapitre 6 propose une discussion générale sur les approches globales
(i.e., caractérisation et modélisation numérique) et les échelles physiques (i.e., laboratoire et
bassin) étudiées durant cette thèse. Cette section présente les principales conclusions, ainsi
que certaines limites du travail présenté dans chacun des chapitres mentionnés ci-dessus, en
abordant les aspects de la caractérisation de terrain, des expériences en laboratoire et de la
modélisation numérique. Sur la base de cette discussion, le Chapitre 7 pose les implications
des approches fondées sur l’AICS pour l’évaluation du devenir des pesticides à l’échelle des
bassins et fournit des recommandations sur l’utilisation de l’AICS dans des études futures,
à la fois en laboratoire et à grande échelle.
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18. Quilbé, R., Rousseau, A. N., Lafrance, P., Leclerc, J. & Amrani, M. Selecting a pesti-
cide fate model at the watershed scale using a multi-criteria analysis. Water Quality
Research Journal of Canada 41, 283–295. issn: 12013080 (2006).

19. Payraudeau, S. & Gregoire, C. Modelling pesticides transfer to surface water at the
catchment scale: A multi-criteria analysis. Agronomy for Sustainable Development 32,
479–500. issn: 17740746 (2012).

20. Pandey, A., Himanshu, S. K., Mishra, S. K. & Singh, V. P. Physically based soil erosion
and sediment yield models revisited. Catena 147, 595–620. issn: 03418162 (2016).

21. Frey, M. P., Schneider, M. K., Dietzel, A., Reichert, P. & Stamm, C. Predicting critical
source areas for diffuse herbicide losses to surface waters: Role of connectivity and
boundary conditions. Journal of Hydrology 365, 23–36. issn: 00221694 (2009).

22. Lefrancq, M., Dijk, P. V., Jetten, V., Schwob, M. & Payraudeau, S. Improving runoff
prediction using agronomical information in a cropped, loess covered catchment. Hy-
drological Processes 31, 1408–1423 (2017).

23. Sheikh, V., Visser, S. & Stroosnijder, L. A simple model to predict soil moisture:
Bridging Event and Continuous Hydrological (BEACH) modelling. Environmental
Modelling and Software 24, 542–556. issn: 13648152 (2009).



Chapter 1

General introduction

1.1 State of the art

1.1.1 Pesticide use and regulation

Agricultural pesticide use. Pesticide use represents a significant farm expenditure world-
wide, ranging from 4 to 11% of total production costs [1] with herbicides making up to 65%
of total pesticide expenditures [2]. Choloroacetanilides are an important family of pre-
emergent herbicide used extensively for the control of annual grasses and broad leave weeds
on a variety of crops including corn, sugar beet and sunflower. Of the acetanilide herbicides,
S-metolachlor (SM) is one of the most persistent [3] with high sorptive properties [4] despite
its relatively high water solubility (530 mg L−1 at 20 ◦C) and low organic carbon-water
partition coefficient Koc (62-372 ml g−1). Although herbicides have diverse modes of action
and target organisms, like most pesticides, they have in common that they are applied over
large extensions of land. This represents an important source of diffuse pollution that is not
only difficult to monitor and control but also leads to their frequent detection in ground and
surface waters worldwide [5]. Their almost ubiquitous presence has led to important recent
policy changes in the developed world [6]. However, despite both environmental policy plans
and market promises of genetic engineering to reduce herbicide inputs [7], use extent has not
seen significant improvements in the EU [8], and has worsen in the US for some of the most
common crops over the last 25 yrs. [2, 7].

Development, approval and regulation. Pesticide legislation varies widely worldwide,
with more stringent regulations typically found in developed countries [6]. Significant changes
in legislation in recent years have been observed, allowing for example, implementation of
new standards in the US and cross-country harmonization in the EU (Fig. 11). Developed
countries in general require active substance manufacturers to submit an extensive applica-
tion and environmental, health and safety dossier. In the EU for example, each member state
then produces an initial draft assessment, which includes the active substance, its biological
efficacy, toxicology and metabolism in mammals, its main metabolic pathway(s), residues,
environmental fate and behavior in soil, water and air and ecotoxicological impact [9].

Although extensive registration and approval assessments are conducted for each new active
ingredient, significant environmental behavior uncertainty remains for each new product for
decades after its approval [9]. For example, environmental risk assessments only consider
transformation products (TPs) that represent at least 10% of the initial active ingredient
applied [10], irrespective of other TPs potential mobility characteristics or their inherent
toxicity on non-target organisms [9]. Once in the environment active ingredients may be
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reacted by a wide range of abiotic and biotic processes leading to a large number of unknown
TPs whose ecotoxicological relevance may become apparent only 20-30 yrs. after market
introduction [5]. Furthermore, many pesticides are chiral compounds (i.e., mirror images or
non-superimposable structures) whose effect and environmental fate needs to be investigated
separately as their impact and biodegradation may also be enantio-selective [11].
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Figure 11: EU and US legislation changes since 2000, adapted from ref. [6].

1.1.2 Pesticide transformation and transport

Pesticide transformation in agricultural soils. Pesticides are degraded by chemical
(abiotic) processes (i.e., photolysis, hydrolysis, oxidation and reduction reactions), and by
microbial (biotic) activity following multiple pathways that may be dependent on climatic
factors, microorganisms, soil constituents and individual pesticide properties [12]. SM degra-
dation is primarily driven by biodegradation [13], with at least 25 TPs derived through oxida-
tion, hydroxylation, O-demythlation, and N-dealkylation [14]. For SM, the major breakdown
pathways in soils are mediated by aerobic and anaerobic microorganisms [3]. The transfor-
mation of SM into its two primary degradates (Fig. 12), metolachlor ethane sulfonic acid
(MESA) and metolachlor oxanilic acid (MOXA), have been proposed to occur through the
displacement of the chlorine atom of the parent compound via glutathione conjugation (i.e.,
antioxidant reaction) followed by enzymatic transformations [15]. Others also report the
ability of soil indigenous fungi (Aspergillus flavus and A. terricola) to use SM as a carbon
and nitrogen source with 6-methyl 2-ethyl acetanilide and 6-methyl 2-ethyl aniline as TPs
[16].

While soil texture, pH and cation exchange capacity (CEC) have shown little influence on
the degradation rate for SM [17], significant increases in degradation rates were observed
in soils with higher organic matter (OM) content [13], higher ambient temperatures and
moisture conditions [17]. Chemical (abiotic) transformation of SM has been shown to occur
at rates 2.7 to 3.3 times lower than biological transformation [13]. SM hydrolysis’ half-
life at 20 ◦C under a wide range of pH values is expected at > 200 days [18, 19]. More
recently hydrolysis degradation rates (k = 0.006 ± 0.001 days−1, DT50 ≈ 115 days) were
obtained for SM under alkaline conditions (pH=12) at 30 ◦C and were insignificant at 20
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Figure 12: Principal S-metolachlor (SM) transformation products (TPs), MESA and MOXA.

◦C [20]. Although photochemical breakdown in soils is expected to be low [21], in aquatic
environments photolysis may yield several stable transformation products [22–24], some of
which may in turn be further biodegraded into potentially more toxic stable compounds [25].

Degradation pathway studies can be expensive and time intensive with minor degradates be-
ing difficult to identify [26]. The use of quantitative structure activity relationship (QSAR)
modelling software, constrained on biodegradability data from standardized OECD test
guidelines [27], may thus be used as an alternative to experimental testing to predict degra-
dation pathways and environmental persistence (e.g., BESS [28], CATABOL [29], PPS [30],
PathPred [31], CATALOGIC [32], BNICE [33], and most recently, Eawag-PPS (former UM-
PPS [34]). Statistical models include traditional regression as well as machine learning
approaches and range from chemical class-specific to more broad approaches [27]. Although
such approaches have experienced significant improvements in model sensitivity (i.e., accu-
rate persistence classification and transformation products observed), model selectivity in
contrast (i.e., prediction of irrelevant products) may need further development before they
can be used as reliable tools for chemical risk assessments [26, 27]. In particular, the in-
clusion of biotransformation data (i.e. half-lives and pathway information) obtained from
realistic scenarios (e.g. mixed soil microbial communities) and with well-defined environ-
mental conditions is needed to improve validation across a wider range of environmental
contexts [27].

The use of high-resolution mass spectrometry (HRMS) is also a novel analytical approach,
with substantial harmonization across the scientific community [35], that is used to screen
for target, suspect and non-target compounds in environmental samples. This approach now
allows for the screening of a large number of pesticide metabolites (e.g., >150, [36–38]).
Screening efforts however, are subject to greater uncertainty when analytical standards are
not available, which is common place for pesticide transformation products. In this respect,
the combination of HRMS and QSAR approaches (e.g., ref. [39]) supported by improvements
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in software analytical features and the development of publicly available databases (e.g.,
ref. [27]) demonstrates the recent potential to improve screening through these efforts.

Although the combined use of HRMS and QSAR approaches provide an opportunity to
improve mechanistic understanding of pesticide fate and evidence degradation in the en-
vironment, their use is limited in terms of providing quantitative accounts of degradation
extent. Indeed, for management purposes, pesticide exposure predictive approaches at re-
gional scales are needed [40], requiring the use of models to perform mass balance accounts
that integrate landscape information [41] and that are able to reduce input and spatial un-
certainty required to assess risk exposure [42]. Although HRMS and QSAR may be used for
selecting priority substances to monitor [38], closing of mass balances by focusing on parent
and TP concentrations alone is challenging to nearly impossible within large environmental
contexts. Therefore, following organic contaminant research experience for legacy contami-
nants, a multiple lines of evidence approach that includes both detected TP concentrations
and compound isotope signatures should be regarded as complementary and essential ap-
proaches for pesticide fate understanding and prediction in environmental systems.

Pesticide sinks and dynamics in agro-systems. The main pesticide sinks in agricul-
tural soils include degradation, sorption, volatilization, leaching, plant uptake and offsite
export via runoff and erosion. Although pesticide pools available for transport are primarily
regulated by degradation, literature reported pesticide half-lives may typically range several
orders of magnitude. This reflects the importance of both soil intrinsic conditions such as
application histories, soil texture and soil biomass [43] and extrinsic factors such as me-
teorological conditions [17]. Similarly, although offsite transport is generally associated to
the specific pesticide physico-chemical properties (e.g., pesticide-specific henry coefficient,
solubility constant and the organic carbon-water partition coefficient (Koc [44, 45]), phase
transfer however, may be highly regulated also by both soil intrinsic factors (e.g., struc-
ture, organic matter content, clay content, iron oxides, etc.) and extrinsic factors such as
hydrological conditions and agro-system context [46, 47].

Sorption may be an important process having impact on multiple scales. For example,
although bioavailability to degrading microorganisms may decrease with ageing [48], pesti-
cides may nevertheless accumulate in agricultural soils [49] and become available to larger
organisms by soil ingestion (e.g., earthworms, cattle) and/or be transported to aquatic envi-
ronments via erosion [50] with the potential to bioaccumulate on larger spatial scales [13, 51,
52]. Volatilization extent may not only be associated to the pesticide’s henry constant, but
may also be influenced by the application method (e.g. generating drift) [53] as well as cli-
matic conditions (e.g., rainfall, temperature, wind and soil moisture) [54]. Pesticide uptake
and persistence in plants can also be a significant process from a consumer perspective [55].
However, although metolachlor uptake has been observed to be negligible relative to other
removal processes in some cases (e.g. [56]) in-plant metabolism and exudation back into soil
have been found to be relevant, depending on plant type, amount applied and method of
application [57, 58].

Principal hydrologically driven transport pathways may include artificial drainage and perco-
lation to groundwaters through soil matrix- and preferential flows [59–61] as well as overland
flows and erosion to surface waters [62]. Leaching risk has been positively correlated to the
timing before rainfall after application, increasing also with pesticide persistence and clay
content (i.e. due to earlier and more frequent generation of macropore flow) [47]. First
rainfall events after application and major events in terms of total rainfall volumes may
be however, the primary extrinsic factors regulating organic pesticide loss through leaching
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[63]. The risk associated to pesticides being mobilized onto surface waters can be further
associated to the landscape itself, where catchment connectivity [64, 65] and agricultural
management practices (e.g., application periods, cropping systems, etc.) may be significant
features in regulating transfer [66]. Rainfall-runoff mass export at the event-scale is regu-
lated by multiple simultaneous processes [67] and includes diffusion through concentration
gradients in top soils [68], ejection from the soil surface by rainfall impact and erosion [69–
71], contact time of overland flow with top soil [72] and overland flow depth [73].

Understanding the relevance of the various simultaneous processes regulating pesticide atten-
uation is necessary to determine the sustainability of agricultural practices so as to minimize
environmental risk and externalities incurred as costs by society at large. Quantification
of the relative importance of each of these competing processes however, is a challenging
task for the environmental manager. Although all processes contribute to reduce pesticide
concentrations in the environment, degradation is the only process, beyond dilution, that
contributes to sustainable pesticide removal, preventing long-term accumulation in environ-
mental compartments with potential detrimental effects on ecosystems and water resources
[49, 74]. In this respect, compound specific isotope analysis (CSIA) represents an advantage
over concentration based assessments, which cannot determine the extent of degradation that
a contaminant has undergone between sources and receptors in the field. In contrast, isotope
fractionation can evidence degradation extent and pathways, even if no TPs are detected, as
transformation leaves a biochemical imprint in the form of characteristic changes in isotope
ratios of the reacting contaminant [75].

1.1.3 Pesticide compound specific isotope analysis (CSIA)

Definitions and basic concepts. Measuring isotope fractionation of stable elements (e.g.,
carbon, nitrogen) in organic compounds is a relatively new approach in contaminant hy-
drology to measure pollutant degradation [76]. Taking carbon as an example, with 13C and
12C referring to the heavy and light isotope respectively, the relative average abundance
(R =13C/12C) in a compound such as SM is obtained by gas chromatography-isotope ratio
mass spectrometry (GC-IRMS). The isotope ratio is reported in delta notation (δ13Co/oo)
with respect to an international standard [77],

δ13Csample[
o/oo] =

Rsample −Rstandard

Rstandard
· 1000 (1.1)

where Rsample and Rstandard are the ratios 13C/12C of the sample and standard, respectively.

During chemical transformation, lighter isotopes (e.g., 12C) exhibit lower activation energy,
generally resulting in faster reaction times, relative to their heavier counterparts (e.g., 13C).
This difference in activation energies (Fig. 13) leads to a kinetic isotope effect (KIE) given by
the ratio of the reaction constants (k) associated to each isotopologue (molecules containing
light or heavy isotopes). For carbon, the KIE can be expressed as,

KIEC =
13k
12k

(1.2)

Normal isotope effects (KIE > 1) result in an enrichment of the heavier isotopologues in the
non-degraded pesticide fraction remaining in environmental samples [75]. A fundamental
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Figure 13: Energy differences between isotopologues during contaminant fractionation.
Adapted from ref. [75].

assumption is that the bulk fractionation observed during degradation follows the Rayleigh
distillation equation [78], allowing to relate changes in isotope ratios to changes in concen-
tration [76],

Rt

R0
=

( ct
c0

)α−1
(1.3)

where ct and c0 are concentrations measured at any given time (subscript t) and at the
start of the biochemical reaction (subscript 0). Changes in concentration due to degradation
(fdeg = ct/c0) are then related to changes in isotope ratios through the fractionation factor
α (-), typically expressed as characteristic enrichment ǫ (o/oo) = α − 1 and obtained via the
logarithmic form of eq. 1.3.

Isotope enrichment factors are obtained from laboratory experiments (microcosms or pure
cultures) under closed system conditions and where changes in concentrations and isotope
ratios are only affected by microbial biodegradation [79]. The obtained ǫ is usually only valid
for a specific compound and specific degradation conditions [76]. Extrapolating these values
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to field situations, where closed mass balances are not possible, can then be used to assess
the extent of in situ biodegradation.

Bulk ǫ values typically reported may however, not be interpretable in terms of bond-specific
rate constants, as the isotope of interest may be present on several positions, not all of which
may be reactive [76]. To be able to compare the observed enrichment with values reported
in the literature for well-defined reactions (i.e., reactions where KIE’s are not ”diluted” by
multiple non-reactive positions), a correction is required to reflect the underlying apparent
kinetic isotope effect (AKIE) such that [76],

AKIE =
1

1 + z · n
x · ǫbulk/1000

(1.4)

where n is the number of atoms of the given element, x is the number of indistinguishable
reactive positions, and z is the number of positions in intramolecular competition. Using
SM as an example, assuming a C-Cl reaction position, n = 15, x = 1 and z = 1.

Once an appropriate enrichment (ǫlab) has been obtained, its use during field application
assessments as mentioned above, may be possible. Equation 1.3 can be rewritten based on
the isotope signatures, once again for carbon, to obtain the degradation extent (DE%) as,

fdeg =
( δ13Ct + 1

δ13C0 + 1

)1/ǫlab
(1.5)

DE[%] = (1− fdeg) · 100 (1.6)

Application of the Rayleigh equation in the field however, requires an account of dilution
processes as the measured remaining fraction in environmental samples is affected not only
by degradation [80]. If a dilution factor F , reflecting the number of times the environmental
sample has become diluted, could be determined, the total fraction observed in the field
(fobs) would equal [80],

fobs = fdeg · fdil =
fdeg
F

(1.7)

Incorporating F into the Rayleigh equation (i.e., eq. 1.5) in logarithmic form and simplifying

the term on the right as δ13Ct+1
δ13C0+1

= ∆,

1

ǫlab
· ln

(

∆
)

= ln
(

F · fobs

)

(1.8)

ln ∆/ǫlab = ln F + ln fobs (1.9)

F = e((ln ∆/ǫlab)−ln fobs) (1.10)
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To obtain the relative contribution of degradation and dilution (e.g., off-site export, sorp-
tion), the open-system Rayleigh equation [80] can be applied to tops soils. The relative
contribution of dilution and degradation to concentration decrease is represented by the
factor ratio D*/B*, where dilution (D*) and breakdown (B*) factors are given by:

D∗ =
ln fdil
ln fobs

(1.11)

B∗ =
ln fdeg
ln fobs

= 1−D∗ (1.12)

where D* ≥ 0 and 0 ≤ B* ≤ 1. For example, if D*/B* = 0 (D* = 0; B* = 1), the
concentration decline is solely due to degradation, while if D*/B* = 1 (D* = B* = 0.5), the
contribution of each processes to the logarithmic concentration decrease is equal [80].

Opportunity and challenges for pesticide CSIA. Research on legacy contaminants
[81, 82] and nitrate pollution [83, 84], have shown CSIA to be a valuable complementary
line of evidence to demonstrate degradation, persistence and source identification at various
temporal and spatial scales. In contrast to degradation, non-destructive sinks (e.g., sorption,
volatilization, dispersion) generally do not induce significant [85–87] or only minor isotope
fractionation effects [88, 89]. Significant non-degrading fractionation has been observed to
be relevant only under certain environmental conditions, such as plume fringes [90] under
non-stationary states [91, 92], or when advective-diffusive processes do not control transport
(i.e., dissolution of non-aqueous phase liquids) [93]. Therefore, provided that significant frac-
tionation is not correlated with non-destructive sinks, CSIA generally allows to distinguish
and quantify degradation extent [75, 94].

Although the use of CSIA to evidence degradation is well established for legacy compounds in
contaminated sites [95], the occurrence of very low (ng L−1 to µg L−1) concentrations of pes-
ticides and their polarity are two challenges precluding CSIA applications at environmental
scales [96]. Even though environmental quantification limits for concentration based analy-
sis are feasible within this range [36, 39], pre-concentration of sufficient amount of analyte
(10-100 ng per injection) for CSIA requires sampling of large soil masses and/or water vol-
umes. Extraction of target compounds from environmental samples however, is associated to
concomitant enrichment of matrix components requiring purification or clean-up procedures
[97, 98]. Extraction procedures may nevertheless lead to poor chromatographic resolution
with insufficient baseline separation as well as method-specific isotope fractionation that can
hardly be controlled or corrected [96].

Despite these analytical challenges, environmental applications in (quasi)stationary condi-
tions are starting to emerge, as demonstrated from CSIA studies conducted in lab-scale
wetlands [99], mesoscale aquifers [100], contaminated sites [101] and aquifers [97, 102]. A
further level of complexity however, is the application of pesticide CSIA under nonstation-
ary conditions, such as during event-based studies or over large spatial scales where multiple
sources and events may lead to sudden pesticide pulses over an agricultural growing season.
First efforts to track SM and acetochlor degradation via carbon isotope fractionation in
water samples have been conducted for the Alteckendorf catchment (France) by combining
conceptual modelling with plot runoff, drain and outlet observations during an agricultural
season [103]. The study identified the value of using CSIA data to identify likely differences
in degradation rates across catchment compartments. However, the limitations of this study
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indicated one of the principal challenges of pesticide export monitoring at this scale, which
is the requirement that sampling periods coincide with sudden pesticide load increases to be
able to achieve minimum CSIA quantification limits. Indeed, this illustrates an important
tradeoff for catchment studies seeking to either obtain detailed characterization of rainfall-
runoff events or focus on long-term pesticide export from slow transport processes associated
to flow components with typically low environmental concentrations. These challenges are
thus further compounded when (i) continuous monitoring is required over a full growing
season; (ii) where application dates may be unknown [104]; and/or (iii) where catchment
response times evolve due to changes in soil hydraulic properties and agricultural practices
[105].

1.1.4 Pesticide fate modelling: potential and existing limitations

Interest of modelling. To assess the sustainability of agricultural practices, interest in
the development of modelling tools, whether indicators, conceptual, or physically based
approaches, has grown significantly since the early 90’s [65]. Physically based models, al-
though often criticized as over-parameterized, have proven however to be the best approaches
whenever process understanding, evolution of distributed state variables, or preservation of
physical constraints is important [106]. In contrast to pesticide fate models (conceptual or
process-based), environmental indicators (EIs) are intended to quickly and easily identify
the risks associated to the use of pesticides at the farm or landscape level within a crop
protection context [107]. They typically rely on empirical relationships to estimate risk
transfer such as the GUS index [45] and the attenuation-retardation factor approach [108]
and may include more complex information such as environmental conditions (e.g. distance
to groundwater, soil properties) and pesticide use practices (e.g., quantities, application
methods) [109]. Although EI’s are generally more user-friendly and require only data that
is readily available (e.g., [110]), their integration with process based approaches is necessary
to account for (bio)chemical processes as well as spatial variability of physical properties
(e.g. soil permeability) and agricultural landscape characteristics (e.g., connectivity) [65,
111]. Given the lack of validation approaches available for environmental indicators in the
scientific literature, caution should be taken when these are employed as predictor tools
[107]. The strong emphasis on pesticide properties in EIs (i.e., relative to process-based
environmental interactions) may lead to a lack of applicability in contexts outside of their
development scope [112]. In worst cases, policy programs, when considering EIs determined
based on pesticide use quantity alone, may result in environmental perverse effects, such as
for example by encouraging the use of higher risk products when such programs generate
price dis-incentives of less risky products with higher standard dosages [113].

Parsimonious or conceptual models, in contrast to EI’s, account for an increased level of
environmental complexity. These types of models may divide the catchment into a series
of interconnected reservoirs based on their hydrological functioning [65]. For example, ap-
proaches based on travel time distributions (TTDs), have provided insight into how reservoir
mixing processes and flow component velocities can regulate stream solute concentrations
for inorganic fertilizers [114] and herbicides [115]. More recently, this approach integrated
CSIA to track herbicide fate, indicating distinct reactive reservoirs contributing to stream
discharge concentrations and isotope signatures [103]. Although these types of models are
valuable to characterize transport properties and conceptualize potentially distinct reactive
reservoirs, they are limited in their ability to describe detailed interactions between spatially
heterogeneous state variables and contaminant fate [106].

Physically-based distributed models integrate spatial variability of interdependent state vari-
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ables (e.g., moisture, permeability, concentrations) and processes (e.g., rainfall, evapotranspi-
ration) linked through mass conservation relationships (e.g., water and solute balances). The
large number of detailed processes often requires also a large number of parameters, many of
which can be constrained with a given uncertainty from measurements or expert knowledge
[106]. Although the transferability of small scale physics (e.g., soil capillary potential, field
capacity), validated in controlled environments, to the large-scale spatial grid (lumping-up)
of distributed models has been questioned [116], all numerical models suffer from the need
to simplify reality to greater or lesser degree. Therefore, choosing an appropriate model is
dependent on the level of homogeneity to which a system (e.g., catchment) may be subject
to while being able to provide the information sought [117]. As more detailed knowledge is
required by environmental resource managers, physically based distributed models provide
a specialized opportunity to improve pesticide fate understanding. In particular, to support
risk assessments, numerical models can facilitate the evaluation of pesticide persistence and
identify the primary transfer pathways for new or existing pesticides [65, 107, 117]. Models
may also be used to evaluate agricultural practices, for example, by delineating areas of high
transfer risk (and where application should be mitigated) [118] or to identify the potential
impacts of climate change on pesticide fate [119].

Current gaps in pesticide fate modelling include the need to integrate detailed, spatially vari-
able (bio)chemical and physical hydrological processes regulating degradation and transport
at catchment scales. As discussed above, physically-based distributed models are ideal candi-
dates for this task. However, significant improvements in numerical constraints are necessary
given the large number of calibration parameters of such models. Parameters that control
degradation rates are of particular importance given their relevance in controlling pesticide
pools available for transfer [43] and the potential off-setting effect that persistence and mo-
bility parameters may have with each other (i.e., due to parameter correlation) [104, 118].
In addition, accounting for temporal variability is of importance, as different pesticide pro-
cesses may be of relevance at given temporal scales. Indeed, time-scale in distributed models
may be used to define the level of detail to which hydrological processes (e.g., rainfall, ETP,
etc.) interact with landscape features and land management practices. For example, while
moisture and temperature may be of relevance for pesticide degradation over longer time
scales (e.g., daily or seasonal) [117, 120], rapid transfer during hydrological forcing may be
of most relevance at the event scale (e.g., minutes or hours). Therefore a further challenge is
the integration of the relevant time scales in numerical approaches. On the one hand, these
should provide an improved account of how daily fluctuations of hydro-climatic processes
regulate pesticide degradation, and on the other hand, be capable of detailed representation
of offsite export though runoff and erosion processes during significant hydrological events
[60].

Existing models. A literature survey of 98 near-surface hydrological models developed
over the last 20 yrs. [65, 117, 120–122] was conducted to identify existing model capabilities
and limitations to simulate pesticide transport and degradation at catchment scale. From
the identified models, 49% were spatially distributed, from which 25% included flexible time-
step adjustment, allowing them to simulate both continuous and event-based scales. From
the flexible and distributed models, 5 accounted for pesticide fate processes (AGNS, HSPF,
MIKE SHE, NELUP and SHETRAN), including degradation, sorption, leaching, and mass
export via runoff and erosion (Fig. 14), each of which is described below.

The Agricultural Non-Point Source model (AGNPS) was developed and is in current use by
the US Department of Agriculture, Agricultural Research Service (USDA-ARS), the Min-
nesota Pollution Control Agency and the US Soil Conservation Service (SCS) [117, 123].
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Figure 14: Survey of model types, including number of hydrological and pesticide processes
considered. Models are categorized as lumped (Lump.), spatially distributed (Dist.) and
those specialized for vertical transport (1D) across continuous (Cont.) and event-based
(Event) time-scales. Orange dots depict models that account for only hydrological pro-
cesses, while blue dots depict models that account for pesticides, in addition to hydrological
processes.

AGNPS has a minimum spatial resolution of 0.4 ha, allowing it to simulate large watersheds
up to 200 km2 (max cell size: 16 ha) [117]. Although detailed hydrology and transport
are considered, the minimum grid cell size requires a large degree of processes aggregation,
resulting in a loss of spatial variability information that may be relevant for degradation
processes [124] and catchment connectivity [64].

The Hydrological Simulation Program - Fortran (HSPF) was developed through contract
with the U.S. Environmental Protection Agency (USEPA) to simulate watershed contami-
nant runoff processes including in-stream hydraulic and sediment-chemical interactions [121,
125, 126]. HSPF conceptualizes sub-basins as leveled detention storage areas and uses mass
conservation-based continuity equations (simple storage-based non-linear reservoir) for flow
routing. Due to its conceptualization of sub basins and spatially uniform continuity equa-
tions, HSPF is not adequate for simulating intense single-event storms [121]. Although HSPF
has been incorporated as a non-point-source model into the USEPA’s Better Assessment Sci-
ence Integrating Point and Nonpoint Sources (BASINS) software [126], HSPF source code
is a proprietary product and not available for public use or development.

The European Hydrological System model (MIKE SHE), developed by the Danish Hydraulic
Institute [127] is perhaps one of the most complete simulation tools available in the mar-
ket and accounting for the highest number of hydrological and pesticide-relevant fate pro-
cesses from the reviewed tools. Multi-dimensional diffusive wave equations however, make
SHE computationally intensive and subject to numerical instabilities when solving solution
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schemes [121]. Although MIKE SHE would be suitable for small study catchments under ei-
ther single rainfall events or continuous scales, computationally intensive numerical schemes
may make it prohibitive for larger watersheds. Due to its proprietary nature, opportunity
for open source code development remains limited.

The NERC-ESRC Land-Use Programme (NELUP) is a decision support system for predict-
ing agricultural land use change impacts at river-basin scale [128]. The system is coupled
with SHETRAN, a detailed physically based distributed model based on SHE [129] and
therefore suffers from the same computational demands and limitations as MIKE SHE for
large scale basins [130].

A class of 1D models accounting for the most number of both hydrological and pesticide-
relevant processes are CRACK-NP, HYDRUS, MACRO and RZWQM (Fig 14). These mod-
els where initially developed to protect groundwater resources and therefore their focus has
been on the detailed representation of macro pore flows along the soil column [59–61]. Differ-
ent approaches have been taken to apply this type of models to the catchment scale where,
for example, lateral flow processes where considered to be of marginal importance [131],
or requiring coupling with GIS or 3D groundwater models [132–134]. Although models at
this scale face a significant lack of data for validation, most applications consider simplified
approaches to modelling runoff. Namely, only RZWQM accounts for pesticide solutes in
runoff and none consider pesticide export via erosion [60]. Furthermore, although some of
these models implement degradation dependence on temperature and moisture conditions,
degradation rates are treated as calibration parameters with concentrations as sole data
constraint.

Based on models reviewed, two principal challenges for modelling pesticide fate and trans-
fer at catchment scale were identified. On the one hand, there is a need for models that
account for both hydrological and chemical process with explicit integration of spatial het-
erogeneity and that are capable of integrating event-based and continuous temporal scales.
Namely, integration of the spatial heterogeneity of agricultural landscapes [65], hydrological
connectivity [64] and farm management practices [105] is required for the detail account
of pesticide transport during periods of hydrological forcing at the event scale. However,
the values of state variables (e.g., soil physical properties, moisture conditions and pesticide
pools) at the onset of an event are not only key in representing the event response [105] but
also evolve across space and time-scales beyond the event itself, requiring models that couple
both time-scales seamlessly but that remain computationally efficient. On the other hand,
there is a lack of available pesticide fate and transfer data, particularly with respect to bet-
ter pesticide degradation constraints, that is required to validate such models at catchment
scale. Therefore, models are needed that are capable of accounting for both the long-term
evolution of state variables including how degradation regulates pesticide pools, while also
being able to provide detailed account of pesticide transport processes, in particular during
periods of high transfer risk.

Distributed, physically based models may be the most suitable candidates for this task, as
they can simulate the impact of agricultural changes while integrating feedbacks between
hydrological and chemical processes at various time-scales [65]. Although two physically-
based distributed models capable of integrating this information were identified (MIKE SHE
and HSPF), their application to large catchments is limited due to the long computation
times required to solve their numerical schemes. Therefore, an appropriate alternative for the
representation of processes beyond the event-scale would be the development of physically-
based approaches capable of distributed water and chemical balance modelling that do not
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make use of complex numerical schemes required to solve mass continuity equations. GIS
and cartographic modelling systems such as PCRaster [135] allow for representation of state
variables across space by discretization of the landscape into individual cells, each with its
own set of attributes or properties, and with the ability to receive and transmit information
to and from neighboring cells [135]. By using CSIA as data constraint, these models may thus
be appropriate for representing the spatial evolution of state variables, such as degradation
rates regulating pesticide pools available at the onset of major hydrological events. The
output of these models may then be used as initial condition states, produced as input
maps, for specialized event-based distributed models capable of representing rainfall-runoff
and erosion driven pesticide export at catchment scale.

1.2 Summary of gaps of knowledge and implications

Herbicides are an important crop protection technology for conventional agriculture, taking
a significant share of farmer’s cost investments [2]. While herbicides have diverse modes of
action and target organisms, they are generally applied over large extensions of land, be-
ing important sources of diffuse pollution that is not only difficult to monitor and control,
but also results in their frequent detection in ground and surface waters worldwide [5]. S-
metolachlor (SM), one of the most persistent members of the chloroacetanilide family [3], is
a pre-emergent herbicide used world-wide for the control of annual grasses and broad leave
weeds on major crops. Although field assessments and laboratory tests are required before
active ingredients are introduced to market, the fate and degradation extent of pesticides
and their metabolites in the environment is subject to significant uncertainty [9]. Not only
are most transformation products (TPs) not known, preventing any detailed mass balance
accounts of pesticide fate, but also their inherent toxicity on non-target organisms is disre-
garded in registration and approval dossiers [10]. Although the use of high-resolution mass
spectrometry has increased the ability to screen for many analytes [39], the large number of
TPs and the uncertainty of their degradation pathways [26] still prevents a reliable account
of the extent of degradation that a given pesticide undergoes across space and time.

Disentangling pesticide degradation from dilution during field studies. Pesticide
may be attenuated through various sinks in the environment, including sorption, volatiliza-
tion, degradation, leaching, plant uptake and offsite export through runoff and erosion. The
relative importance of each of these processes is dependent on the interaction of the pesti-
cide physico-chemical properties with the local environment (e.g., soil properties) and the
meteorological, hydrological and agro-system context [12, 44, 45, 64]. The numerous and
simultaneous processes regulating pesticide attenuation present a challenging task for the
environmental manager. Although all processes contribute to the reduction of pesticide
concentrations in the environment, degradation is the only sink contributing to sustainable
removal, preventing long-term accumulation in environmental compartments with potential
detrimental effects on ecosystems and water resources [49, 74]. In this respect, compound
specific isotope analysis (CSIA) represents an advantage over concentration based assess-
ments, which cannot determine the extent of degradation that a contaminant undergoes
between sources and receptors. In contrast, isotope fractionation can evidence degradation
extent and pathways, even if no TPs are detected, as transformation leaves a biochemical
imprint in the form of characteristic changes in isotope ratios of the reacting contaminant
[75]. However, the potential of pesticide CSIA to identify pesticide sources, transport extent
and reactive processes in soil and at agricultural catchment scale has yet to be evaluated.

Although the use of CSIA to evidence degradation is well established for legacy compounds
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in contaminated sites [95, 136], the occurrence of very low (ng L−1 to µg L−1) concentrations
of pesticides and their polarity lead to analytical challenges (i.e., detection sensitivity and
matrix effects) precluding CSIA applications at environmental scales [96]. Despite these
analytical challenges however, quasi(stationary) applications of pesticide CSIA ranging from
small scale lab-based systems to contaminated site evaluations have begun to emerge [97, 99–
102]. First efforts to track SM and acetochlor degradation in non-stationary environments
[103] have demonstrated both the principal challenges of CSIA pesticide export monitoring
and the potential value of CSIA to identify likely differences in degradation rates across
catchment compartments. Indeed, characterization of pesticide degradation in source soils
and representation of their fate and transport through physically-based distributed models
for predicting export is still lacking.

Improving pesticide degradation constraints in field modelling. Interest in the de-
velopment of modelling tools to evaluate pesticide fate has grown significantly since the early
90’s [65]. From the various tools available to date, physically based models have proven to be
the best approaches in cases where process understanding, evolution of distributed state vari-
ables (e.g., moisture, permeability, concentrations), or preservation of physical constraints
are important [106]. A key drawback of these model types however is that, due to the large
number of processes accounted for, also a large number of parameters is often required.
Although many of these parameters may be constrained from measurements and expert
knowledge [106], the interaction of physical and chemical processes with environmental con-
ditions at different scales can lead to an important source of uncertainty when parameters
controlling pesticide dissipation (e.g., phase transfer, transport and degradation) compensate
one another [104, 137]. Therefore, as more detailed knowledge required by environmental
resource managers has encouraged the development of more complex physically based mod-
els [65, 107, 117], a concomitant effort should be required to integrate improvements in data
constraints. In this respect, having mechanistic information associated to degradation pro-
cesses at different times and at different spatial locations would prove crucial in eliminating
compensating effects from correlated parameters, which to date are associated to significant
model equifinality and uncertainty.

Integrating CSIA into distributed models with variable time-scales. Despite the
large number of models developed over the last two decades, only a few can integrate spatially
distributed processes relevant for pesticide degradation and transport at multiple time-scales.
Although highly detailed models exist (e.g., HSPF and MIKE SHE), their propriety rights
often limit their open source development necessary to integrate novel approaches such as
CSIA, which is critical for the constraint of models within realistic environmental contexts.
Furthermore, the computationally intensive numerical schemes required to solve continuity
equations of such models limits their application with large catchments over continuous
time-scales. Therefore, to bridge this gap a combination of a computationally efficient,
but physically realistic, distributed model capable of simulating continuous processes, and
integrating CSIA, over a full growing season is required. The seamless coupling of such
a model with a distributed event-based model capable of detailed representation of rapid
pesticide export via runoff and erosion would then be required to account for relevant time-
scales for predicting pesticide fate at catchment scale. Precluding the effective development
and implementation of catchment scale models however, is the lack of available data sets able
to improve pesticide degradation constraints. To do so, both concentration and CSIA data
at various spatial and temporal scales is first required to characterize pesticide degradation
in catchment source soils and their transport during hydrological pulses.
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1.3 Thesis goal and objectives

The main goal of this thesis is to advance the use of pesticide CSIA to evaluate and predict
pesticide degradation and fate in real environmental contexts. Although recent analytical
advances have demonstrated the feasibility of CSIA to evaluate pesticides in lab-scale ap-
plications and groundwater contexts, their application under highly dynamic near-surface
hydrological environments is yet to be validated. Based on the identified knowledge gaps,
the specific objectives of this thesis are to:

i Design and implement a near-surface hydrological headwater catchment scale charac-
terisation data collection campaign for monitoring S-metolachlor (SM) degradation and
fate in source soils and discharged waters. The data set should be based on a multiple
lines of evidence approach that includes SM and major metabolite concentrations, as
well as carbon-based CSIA.

ii Based on the collected data set, establish a proof of concept for the use of CSIA to mon-
itor pesticide fate and degradation in unsteady near-surface hydrological environments,
outlining challenges, trade-offs and opportunities for larger scale applications. Inter-
pretation of laboratory-based soil degradation mesocosm experiments should under
specific moistures and temperatures should be used to support field data interpreta-
tion.

iii Investigate hydrological and transport formalisms at the laboratory and event scales
to support their implementation in larger scale models.

iv Develop a continuous, physically-based distributed model capable of simulating evo-
lution of soil hydraulic properties and pesticide pools by integrating CSIA data as
degradation constraint. The model should be able to address the added value of incor-
porating pesticide CSIA towards the reduction of degradation parameter uncertainty
during field scale applications

v Couple the continuous model developed during this work with an event-based model
capable of detailed simulation of pesticide export, including CSIA, during intense hy-
drological events that generate runoff and erosion to aquatic ecosystems.

1.4 Thesis outline

The thesis is structured into an introductory section (Chapter 1) highlighting the main gaps
of knowledge in the field and justifying the thesis objectives; a results section (Chapters 2
- 5) presenting published and working scientific contributions; and a general discussion and
implications section (Chapters 6 - 7) that provides concluding remarks from the three ap-
proaches (lab experiments, field characterization and modelling at both scales) that guided
this Ph.D. thesis work (Fig. 15). Namely, work approaches included two dimensions includ-
ing system characterization (x-axis) and system modelling (y-axis) moving from controlled
and well-defined lab experiments to larger scales with increasing complexity (z-axis).

Chapter 2 establishes a proof of concept for the use of carbon-based CSIA, in addition to
SM and major transformation product (TP) concentrations, to monitor pesticide degradation
and transport at the catchment scale. The study collected weekly soil samples along three
transects representative of different locations of the Alteckendorf (France) catchment (47 ha).
Continuous flow proportional water sampling at the outlet allowed for detailed hydrograph
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Figure 15: Ph.D. thesis work approaches, including system characterization (x-axis) and
system modelling (y-axis), with increasing complexity (z-axis) from well-defined lab experi-
ments to catchment scales. Intersection points indicate synergies between research conducted
at different scales and/or levels of complexity.

characterization of SM δ13C and concentration export in dissolved and particulate phases
throughout one growing season. Comparisons of source soil isotope signatures across the
catchment showed similar trends in outlet water samples (∆δ13C ≈ 3o/oo, Deg. ≈ 87%),
demonstrating the ability to continuously monitor catchment-wide degradation extent via
through discharge sampling at the outlet.

Chapter 3 evaluates the impact of rainfall intensity and frequency on the export of heavy-
metal and organic pesticides, including SM, from agricultural top soils. Twelve experimental
modalities combining soil types (crop and vineyard), pollutant ageing (0 and 10 days) and
rainfall patterns (intensity, duration and volume) were evaluated. A parsimonious numerical
model was developed to simulate leaching and transfer to ponding waters, validate the ex-
perimental set-up and explore mobility parameter values regulating export across modalities.
The study demonstrated the primary role that extrinsic factors (i.e., rainfall frequency and
patterns) have on pesticide export relative to intrinsic factors (i.e., soil types). In particular,
the first rainfall event and total rainfall volumes (rather than intensity) were the dominant
factors controlling export.

Chapter 4 develops an existing distributed hydrological model (BEACH) by including trans-
port and reactive processes and capable of accounting for pesticide CSIA, denoting the new
model as Pesticide-isotopes BEACH (PiBEACH). In addition to the model’s ability to sim-
ulate moisture evolution, capabilities to simulate temperature, soil hydraulic and crop prop-
erty evolution over continuous (i.e., seasonal) scales are further integrated. In contrast to
constant degradation reference values (DT50) retained in many physically based models, the
model capabilities are used to evaluate the impact of hydro-climatic factors (moisture and
temperature optimums for bacterial activity) regulating degradation in top soils leading to
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an improved representation of degradation rates and fluctuations across time. The inclusion
of CSIA data however, was key as a numerical constraint, reducing both model equifinality
and reference DT50 standard deviations by at least a factor of 2. The ability to constrain
models considering hydro-climatic dependence on degradation rates also reduced 95% con-
fidence interval ranges for offsite export through top soil leaching by a factor of 2. Results
show that integrating CSIA data to constrain degradation in catchment source soils can sig-
nificantly reduce uncertainty in pesticide field assessments where the pesticide half-life is a
sensitive parameter to calibrate models describing and predicting pesticide fate. The use of
long-term continuous models constrained by CSIA may thus be a significant contribution to
the determination of pesticide pools available for transfer at the onset of major hydrological
events.

Chapter 5 couples PiBEACH with the existing open source Limburg Soil Erosion Model
(LISEM), denoting the coupled model as PiBEACH-oL. In addition to introducing the cou-
pling logic, the chapter provides results from the coupling exercise, indicating improvement
in the representation of hydrological components contributing to outlet discharge. Prelimi-
nary Monte Carlo simulation results of outlet SM concentrations and δ13C from the coupled
vs. the uncoupled model are provided and a discussion of model limitations and recommen-
dations for its further development are provided.

Chapter 6 presents concluding remarks with respect to the approaches used to evaluate
pesticide degradation and transport during this thesis including transversal discussion of
(i) pesticide CSIA at the catchment scale in unsteady hydrological conditions; (ii) lab-scale
experiments to support catchment-scale pesticide CSIA and modelling; and (iii) modelling
pesticide fate at the catchment scale using CSIA data.

Chapter 7 summarizes implications of the Ph.D. thesis with respect to the use of CSIA
for monitoring pesticide fate at catchment scale, improving numerical model constraints
and reducing fate uncertainty. Finally, the chapter opens perspectives for larger-scale (e.g.,
river-catchment scale) pesticide fate studies.
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1.5 Publication summary and author contribution

1.5.1 Published articles

Alvarez-Zald́ıvar, P., Payraudeau, S., Meite, F., Masbou, J., and Imfeld, G. (2018). Pesti-
cide degradation and export losses at the catchment scale: Insights from compound-specific
isotope analysis (CSIA). Water Research, 139:198-207.

Meite, F., Alvarez-Zald́ıvar, P., Crochet, A., Wiegert, C., Payraudeau, S., and Imfeld,
G. (2018). Impact of rainfall patterns and frequency on the export of pesticides and heavy
metals from agricultural soils. Science of the Total Environment, 616-617 (Dec.): 500-509.

Lange, J., Olsson, O., Sweeney, B., Herbstritt, B., Reich, M., Alvarez-Zald́ıvar, P.,
Payraudeau, S. & Imfeld, G. (2017) Fluorescent tracers to evaluate pesticide dissipation
and transformation in agricultural soils. Science of The Total Environment, 619-620 (Oct.).

Alvarez-Zald́ıvar, P., Centler, F., Maier, U., Thullner, M. & Imfled, G. (2016) Biogeo-
chemical modelling of in situ biodegradation and stable isotope fractionation of intermediate
chloroethenes in a horizontal subsurface flow wetland. Ecological Engineering, Vol. 90 (May)

1.5.2 Articles in preparation

Alvarez-Zald́ıvar, P., Imfeld, G., Van Dijk, P. and Payraudeau, S. (Expected 2019). Con-
straining pesticide degradation in distributed catchment models with compound-specific iso-
tope analysis (CSIA). Submitted to ES&T, under review.

Alvarez-Zald́ıvar, P., Imfeld, G., Lefrancq, M., Ackerer, P., Jetten, V., and Payraudeau,
S. (Expected 2019). Coupling spatially distributed event-based and continuous models to
improve long-term simulation of pesticide degradation and rapid export at catchment scales.
In preparation.
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118. Lindahl, A. M. L., Söderström, M. & Jarvis, N. Influence of input uncertainty on
prediction of within-field pesticide leaching risks. Journal of Contaminant Hydrology
98, 106–114. issn: 01697722 (2008).

119. Steffens, K. et al. Direct and indirect effects of climate change on herbicide leaching -
A regional scale assessment in Sweden. Science of the Total Environment 514, 239–
249. issn: 18791026 (2015).
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Preface to Chapter 2

Addressing the first and second goals of this thesis, the following chapter establishes a proof
of concept for the use of carbon-based CSIA, to monitor pesticide degradation and transport
at the catchment scale. The chapter describes in detail the characterization of catchment top
soils and outlet waters, which in addition to CSIA, targeted SM and major transformation
product (TP) concentrations following a multiple line of evidence approach.

Interpretation of field samples is supported by data obtained from previously validated soil
and water extraction methods as well as closed system soil microcosm degradation exper-
iments. The latter were used to determine reference isotope enrichment values, via the
Rayleigh equation, allowing to derive field estimations of degradation and dilution extents.
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Chapter 2

Pesticide degradation and export
losses at catchment scale: insights
from compound-specific isotope
analysis (CSIA)*

Abstract. Although pesticides undergo degradation tests prior to use, determining their ex-
port, degradation and persistence under field conditions remains a challenge for water resource
management. Compound specific isotope analysis (CSIA) can provide evidence of contaminant
degradation extent, as it is generally independent of non-destructive dissipation (e.g., dilution,
sorption, volatilization) regulating environmental concentrations. While this approach has been
successfully implemented in subsurface environments, its application to pesticides in near-surface
hydrological contexts at catchment scale is lacking. This study demonstrates the applicability of
CSIA to track pesticide degradation and export at catchment scale and identify pesticide source
areas contributing to changes in stable isotope signature in stream discharge under dynamic
hydrological contexts. Based on maximum shifts in carbon stable isotope signatures (∆δ13C =
4.6 ± 0.5o/oo) of S-metolachlor (SM), a widely used herbicide, we estimate maximum degradation
to have reached 96 ± 3% two months after first application. Maximum shifts in nitrogen iso-
tope signatures were small and inverse (∆δ15N = −1.3± 0.6o/oo) indicating potential secondary
isotope effects during degradation. In combination with a mass balance approach including SM
main degradation products, total catchment non-destructive dissipation was estimated to have
reached 8 ± 7% of the applied product. Our results show that CSIA can be applied to evalu-
ate natural attenuation of pesticides at catchment scale. By providing a more detailed account
of pesticide dissipation and persistence under field conditions we anticipate the contribution of
pesticide CSIA to the improvement of regulatory and monitoring strategies.

2.1 Introduction

The widespread occurrence of micro-pollutants in surface and groundwater poses a threat
to human water security and river biodiversity on a global scale [1]. Among organic micro-
pollutants, pesticides are one of the principal contributors to chemical risk [2] with the
potential to accumulate over decades in various environmental compartments [3, 4]. De-
spite comprehensive exposure assessments and research evaluating toxicity, degradability

* This chapter is the edited version of: Alvarez-Zald́ıvar, P., Payraudeau, S., Meite, F., Masbou, J., and
Imfeld, G. (2018). Pesticide degradation and export losses at the catchment scale: Insights from compound-
specific isotope analysis (CSIA). Water Research, 139:198-207
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42 Chapter 2. Monitoring pesticides at catchment scale via CSIA.

and transformation products, current approaches often fail to determine where, when and
how pesticide degradation occurs. This highlights the difficulties to bridge information ob-
tained under laboratory and field conditions. Beyond regulatory testing, complementary
novel management strategies (e.g., [5]) that enable monitored natural or engineered attenu-
ation are thus warranted.

In contrast with current monitoring approaches, which are unable to distinguish among
competing environmental sinks, compound specific isotope analysis (CSIA) allows for the
direct quantification of pesticide degradation extent [6]. During chemical transformation,
lighter isotopes (e.g., 12C) exhibit lower activation energy, generally resulting in faster reac-
tion times relative to their heavier counterparts (e.g., 13C). This leads to an enrichment of
the heavier isotopologues in the non-degraded pesticide fraction remaining in environmental
samples [6]. The resulting average isotope value (e.g., δ13C) of the non-degraded fraction
can then be used to quantify degradation by following the Rayleigh distillation equation
[7]. Research on legacy contaminants [8, 9] and nitrate pollution [10, 11], have shown CSIA
to be a valuable complementary line of evidence to demonstrate degradation, persistence
and source identification at various temporal and spatial scales. Akin to these approaches,
application of CSIA to pesticides relies on the ability to monitor changes in stable isotope
composition between source(s) and outlet to quantify the extent of (bio)chemical conversion
at the catchment scale.

This study evaluated the feasibility of carbon-based CSIA as a first characterization ap-
proach for monitoring pesticide fate at catchment scale under dynamic hydrological and
rainfall-runoff conditions. The use of carbon-based CSIA to evidence natural attenuation
is well established for legacy compounds in contaminated sites [12] and thus may be con-
sidered as a relevant approach to monitor pesticide degradation and export across distinct
hydrological events. However, principal limitations to the applicability of pesticide CSIA at
catchment scale are the occurrence of low (sub-µg L−1) environmental concentrations, which
lead to challenges in analyte extraction and quantification under field contexts [13, 14]. While
changes in δ13C tend to be smaller in larger molecules [6], the higher contribution of car-
bon atoms to the total molecular mass may allow for the collection of more environmental
samples at or above quantification limits. This is of particular interest when seeking de-
tailed characterization of rainfall-runoff events requiring high-resolution data made possible
by flow-proportional sampling strategies. An important trade-off however, is the limitations
in sample volumes that may be achieved due to automatic sampler unit capacities, there-
fore challenging catchment-scale CSIA studies during discharge periods where environmental
concentrations are low. In this respect, although multi-element CSIA may also be desirable
to further improve characterization [14], its feasibility will be challenged by the sampling
window where quantification limits can be achieved.

Based on a carbon-based CSIA high resolution monitoring strategy, the objectives of this
study were then to (i) demonstrate the validity of pesticide CSIA as a complementary line
of evidence for quantifying degradation extent under field conditions; (ii) infer off-site losses
due to non-destructive dissipation (e.g., dilution, volatilization, sorption) and; (iii) demon-
strate applicability of pesticide CSIA under shifting hydrological regimes. To address these
objectives, the study tracked S-metolachlor (SM) in an agricultural headwater catchment (47
ha) during one growing season, a period where degradation and off-site transfer risk is most
relevant. As a well characterized and widely used herbicide (i.e., 4.2% of global pesticide
use) that is frequently detected in groundwaters [5], SM is a relevant model compound for
establishing a first effort of catchment-wide pesticide CSIA characterization.
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Each component guiding the development of this chapter is illustrated in Fig. 21. Colored
boxes in the schema outline information obtained from the catchment, farmer survey, labo-
ratory and consulted databases. Numbered items represent subsections described in detail
in appendix A.
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Figure 21: Study schema illustrating key steps of the study design (roman numerals) and
informing the comparison of three approaches: predictive (A), mass balance (B) and CSIA
(C).

2.2 Materials and methods

2.2.1 Catchment description

The 47 ha catchment is located 30 km north-east of Strasbourg (Bas-Rhin, France; 48 47
19,56 N; 7 35 2,27 E) and has been previously described by Lefrancq et al. 2018. The mean
catchment slope is 6.7 ± 4.7% with altitude ranging between 190 and 230 m. Catchment
water flows in ditches to a 50 cm diameter pipe at a single outlet. Roads represent 3.5% of
the catchment surface and in 2016, 88% was arable land, from which sugar beet (70%) and
corn (18%) were the principal crops sown between mid-March and late April (Fig. 5.2.1.A).

Overall, the soil characteristics indicate little variability. Surface soil samples (0 - 20 cm, n
= 30) and soil profiles (2 m, n = 6) have a grain size distribution of clay 30.8 ± 3.9%, silt
61.0 ± 4.5%, and sand 8.5 ± 4.2%. The main soil type is Haplic Cambisol Calcaric Siltic and
Cambisol Eutric Siltic on hillsides (north and south) and Cambisol Colluvic Eutric Siltic in
the central valley. Soil characteristics were CaCO3 = 1.1 ± 1.6%; organic matter = 2.2 ±
0.3%; pH = 6.7 ± 0.8; total soluble phosphorus = 0.11 ± 0.04 g Kg−1, and CEC = 15.5 ±
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Figure 22: Catchment land-use (A) and topographical wetness index (B) [16]. The wetness
index is computed with SAGA in QGIS 2.18 using the Topographical Wetness Index (TWI)
tool with option ”local upstream area” and the slope map in radian according to equation
(eq.) 2.1.

1.3 cmol Kg−1. A compacted layer (plough pan) was observed at a depth between 20 and
30 cm.

2.2.2 Hydrological conditions

A summary of the catchment hydrological conditions during the study period, between April
1st and June 28th 2016, is presented in Table 21. The summary data provided includes mean
daily rainfall (P ), mean rainfall intensity (Pint), total rainfall (Ptot), mean daily reference
evapotranspiration (ETP ), mean daily temperature (T ), mean daily discharge normalized
by the total catchment area (Q), the time of concentration (TC) and the percent of days in a
month were rainfall occurred (% Wet Days). The time of concentration (TC) is defined as the
time between the start of rainfall minus evapotranspiration and the resulting peak discharge
[17]. Although subsurface travel times for this catchment range from 6 to 12 months [18], TC
values decreased from 2.2 to 0.5 h (Table 21). Soil crust development was generally observed
across the catchment after around 100 mm of cumulative rainfall. A reduction in the soil
infiltration capacity due to observed crusting and the progressive increase in mean daily and
total monthly rainfall likely contributed to the observed decrease in the catchment’s TC .

Table 21: Catchment Hydrological Conditions (mean ± 1σ, total or %) between April 1st

and June 28th, 2016

P (mm d−1) Pint (mm h−1) Ptot (mm) ETP (mm d−1) T (◦C) Q (mm d−1) TC (h) Wet Days

April 2.7±4.6 1.1±0.9 82.2 2.2±0.8 9.1±2.9 0.6±0.6 2.2±1.8, n=9 67%
May 4.6±7.1 1.7±2.8 136.8 3.1±1.2 14±3.2 0.9±1.3 0.9±0.6, n=13 63%
June 4.8±7.0 1.8±3.1 145.6 3.7±1.2 17.6±2.9 1.2±1.2 0.5±0.2, n=14 80%

Note: Abbreviations pertain to mean daily rainfall (P ), mean rainfall intensity (Pint), total rainfall
(Ptot), mean daily reference evapotranspiration (ETP ), mean daily temperature (T ), mean daily
discharge normalized by the total catchment area (Q), the time of concentration (TC) and the percent
of days in a month were rainfall occurred (% Wet Days).

2.2.3 Top soil and water collection

Top soil (1 cm) concentrations and δ13C were determined by weekly sampling on three tran-
sects across the catchment. Transects where selected to account for variability of moisture
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conditions, drainage characteristics and to maximize the number of plots where SM was ap-
plied (Fig. 5.2.1). A digital Elevation Model (DEM), at 2 m resolution, was used to obtain
local slopes and to estimate the topographical wetness index (TWI) [-] (Fig. 5.2.1.B), which
quantifies the influence of topography on soil moisture such that [16]:

TWI = ln
( a

tan(b)

)

(2.1)

where a is the upslope area draining through a certain point per unit contour length and
tan(b), the local slope in radians.

Discharge at the catchment outlet was continuously measured by a Doppler flow-meter (2150
Isco, Lincoln, Nebraska, USA) with discharge precision of 3%. Water was collected by flow
proportional sampling using a refrigerated automatic sampler with a total capacity of 3.96
L divided into 12 glass vials each of 330 mL (Isco Avalanche, Lincoln, Nebraska, USA). A
predefined discharged volume based on the seasonal rainfall intensity expected for April (50
m3), May (100m3) and June (150m3) was chosen allowing for 36 aliquots of 110 mL each per
week. Water samples were then combined into composite samples according to hydrograph
characteristics (base-flow, rising and/or falling limb), yielding one to four samples weekly of
volumes ≥ 990 mL.

2.2.4 Farmer surveys

S-metolachlor was applied on three different dates, on March 25 (plots: 5, area: 14.9 ha),
April 14 (plots: 8, area: 8.2 ha) and on May 25 (plots: 5, area: 5.9 ha) (Table 22 and
Fig. 26.C). Farmers used one of two Syngenta product formulations, Mercantor Gold (area
applied: 97%) or Dual Gold (area applied: 3%). Technical dosage specifications were 0.6 and
1.2 L ha−1, with pure product SM concentrations of 960 g L−1 and 915 g L−1, respectively.
Signatures were obtained via dilution in Milli-Q water and followed the same solid-phase
extraction (SPE) procedure described below for environmental waters. Initial δ13C (-32.2 ±
0.5o/oo, n = 17) and δ15N (1.9 ± 0.5o/oo, n = 17) were obtained from pure product and tractor
tank dilutions. Pure product and tractor tank dilutions were not significantly different (Table
23).

Table 22: Applied mass (Kg) of active SM per transect by date

Date North Valley South

March 20 - 25th, 2016 5.1 1.6 11.1
April 13 - 14th, 2016 8.0 1.8 2.9
May 25 - 31st, 2016 7.2 2.4 0.0

Total 20.2 5.9 14.0

Table 23: Pure & tractor tank dilutions for Syngenta’s S-metolachlor (Mercantor Gold)

Source Carbon δ13C (o/oo) Nitrogen δ15N (o/oo)

Pure -32.6±0.5, n=12 1.9 ±0.3, n=7
Tractor Dilution -32.1±0.4, n=5 1.9 ±0.6, n=10

2.2.5 Pesticide extraction and quantification

SM and its degradation products metolachlor ethane sulfonic acid (MESA) and metolachlor
oxanilic acid (MOXA) were extracted from soil and outlet water samples (Appendix section
A.4, IV. Pesticide extraction). Water samples were extracted by solid-phase extraction
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(SPE) using SolEx C18 cartridges (Dionex R©, Sunnyvale, CA, USA) and an AutoTrace 280
SPE system (Dionex R©) and quantified by GC-MS/MS (SM) and by LC-MS/MS (MESA
and MOXA), as described previously [19]. Pesticide extraction and purification for soils were
adapted from Ivdra et al. 2014 and Anastassiades et al. 2003. Environmental quantification
limits for the soil samples were 0.001, 0.1, 0.1 µg g−1 dry weight (d.wt.) for SM, MOXA,
and MESA with an analytical uncertainty of 16%, 40%, 8% respectively.

2.2.6 Isotope analysis

The carbon and nitrogen isotope composition of SM was analysed by adapting a previously
described protocol [19] and further detailed in the SI. The GC-C-IRMS system consisted
of a TRACETM Ultra Gas Chromatograph (ThermoFisher Scientific) coupled via a GC
IsoLink/Conflow IV interface to an isotope ratio mass spectrometer (DeltaV Plus, Ther-
moFisher Scientific). The reproducibility of triplicate measurements was ≤ 0.2o/oo(1σ) for
δ13C and ≤ 0.5o/oo(1σ) for δ15N . The carbon and nitrogen isotope ratios are reported in
δ notation in parts per thousand [o/oo] relative to the V-PDB standard for carbon and Air
standard for nitrogen, according to:

δ13Csample or δ
15Nsample =

Rsample −Rstandard

Rstandard
(2.2)

where Rsample and Rstandard are the ratios 13C/12C or 15N/14N of sample and standard,
respectively. Based on GC-IRMS linearity tests, the minimum peak amplitudes needed for
accurate δ13C and δ15N measurements were established as about 300 mV and 200 mV,
respectively (Fig. A4). These signals correspond to 10 ng of carbon and 20 ng of nitrogen
injected on column.

2.2.7 Soil degradation experiments

To derive a carbon isotope enrichment factor (εlab) for SM, signatures and remaining concen-
trations were obtained from soil microcosm experiments and conducted over a period of 200
days over a set of temperatures (20 and 30 ◦C) and moisture conditions (20 and 40% volumet-
ric water content). Derivation of εlab with eq. A.4 was then used to infer field degradation
extent based on isotope signatures measured in field samples and eq. 2.15. Microcosms
consisted of 20 g air-dried soil obtained from the catchment and were spiked to environmen-
tal concentrations (5.0 µg g−1 soil) in 20 mL crimp glass vials, with silicone/natural PTFE
caps (Interchim R©, France). To maintain aerobic conditions while limiting water loss and
avoiding contamination, a 0.2 µm syringe filter (Rotilabo R©, Carl Roth R©, France) was
mounted on a syringe tip and installed through a vial cap (Fig. A5). To distinguish sorption
from microbial degradation, and to determine whether isotope fractionation could arise due
to non-destructive dissipation (i.e., sorption) or abiotic degradation (i.e., hydrolysis), half of
the soil samples were three-times autoclaved in glass bottles and stored in the dark at room
temperature for 12 hours between each autoclave run. Sacrificial sampling was conducted in
triplicate at days 1, 10, 50, 100 and 200. Fractionation extent and dissipation kinetics are
provided in Table A4.

Abiotic controls showed no significant isotope fractionation, confirming insignificant fraction-
ation associated to sorption and hydrolysis (Fig. A6, appendix section A.7 VII Degradation
experiments). A carbon SM enrichment (εlab) was derived from living microcosm experi-
ments by following the classical Rayleigh equation [7]:
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δ13Ct + 1

δ13C0 + 1
= f (ε) (2.3)

where f = [SM]t/[SM]0, is the remaining fraction of SM at time t.

2.2.8 Databases and predictive calculations

Predictive approaches required computing remaining masses based on farmer surveys and
estimating degradation extent according to median (21 d), minimum (7.6 d) and maximum
(37.6 d) half-lives (t1/2) reported for SM [22]. Calculation in soils where computed according
to:

Mtot,t =Mtot,t0(
1

2
)

t
t1/2 (2.4)

where Mtot is the total catchment mass at time t.

2.2.9 Mass balance calculations

Soils. Pesticide mass along a catchment’s transect area MTr,t [µg] is given by:

MTr,t = CTr,t · ρb0 ·ATr ·D (2.5)

were CTr is the dry weight SM soil concentration [µg g−1 soil d. wt.] on transect Tr at
time t and ATr is the associated transect area [m2] and D is sampling depth (1 cm). A
homogeneous bulk density (ρb0 = 0.99 g/cm3) was assumed based on sample measurements
obtained across the catchment.

Transect signature and pesticide mass was then used to compute bulk signatures across the
catchment (δ13Cbulk) and given by:

δ13Cbulk,t =
TR=3
∑

Tr=1

MTr,t

Mtot,t
δ13CTr,t (2.6)

were δ13CTr is the SM isotope signature in transect Tr and Mtot [µg] the total catchment
mass at time t.

Outlet. Outlet loadings (OL) [µg] where calculated based on flow proportional samples given
by:

OLws = Cws

∫ ∆t

t
V (t)dt (2.7)

where C the concentration [µg L−1] of water sample ws and V [L] is discharge over the
sample time interval ∆t [h]. Transformation product (TP) loadings were expressed in SM
mass equivalence (MEQSM ) [µg] such that:

MEQSM =MOXA · (
mwSM

mwMOXA
) +MESA · (

mwSM

mwMESA
) (2.8)

where mw is the molar mass of each species measured at the outlet. MB errors associated to
missed sampling intervals were corrected by linear interpolation between measured sample
concentrations.
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2.2.10 CSIA and open-system Rayleigh calculations

The Rayleigh equation assumes that f = Ct/C0 reflects solely reduction in concentrations
due to degradation and should thus be expressed as fdegradation. Accounting for dilution
processes, the remaining fraction that is measured in the field sample becomes then ftotal
[23]:

ftotal = fdegradation · fdilution (2.9)

fdilution =
1

F
(2.10)

where F is the number of times the sampled volume has become diluted. F can be calculated
if ǫlab is known such that:

F = e(∆∗/ǫlab−lnftotal) (2.11)

∆∗ = 1000 · ln
( 10−3δ13Ct + 1

10−3δ13C0 + 1

)

(2.12)

where ∆∗ is the isotopic shift of the measured sample at time t.

The total fraction remaining (ftotal) was estimated based on the concentration measured
along a transect (Tr) at any given time (Ct) relative to the cumulative initial concentration
(CTr0) [µg g−1 soil] after a timely application (at) and given by:

CTr,t0 =

∑A
a=1MTr,at

ATr ·D · ρb0
(2.13)

where, MTr,at [µg SM] is the total mass applied on transect Tr due to application a at time
t (Table 22), the total plot area [m2] associated to the transect (ATr), which is proportional
to sampling points along a transect, the sampling depth [m] and the initial soil bulk density
(ρb0) [g/m

3]. Measured concentrations (CTr,t) and remaining fractions (ftotal = CTr,t/CTr,t0)
across time per transect are detailed in appendix tables A5, A6 and A7.

The carbon isotope enrichment factor (εlab), derived from closed microcosm degradation ex-
periments under mixed aerobic and anaerobic conditions (section 2.2.7), was used to quantify
field degradation (B%). Degradation was then determined from the remaining fraction as-
sociated to degradation (fdegradation) such that [9]:

fdegradation =

(

δ13Ct + 1

δ13C0 + 1

)1/εlab

(2.14)

B% = (1− fdegradation) · 100 (2.15)

To obtain the relative contribution of degradation and dilution (e.g., off-site export, sorp-
tion), the open-system Rayleigh equation [23] was adapted for tops soils. The relative con-
tribution of dilution and degradation to concentration decrease is represented by the factor
ratio D*/B*, where dilution (D*) and breakdown (B*) factors are given by:
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D∗ =
lnfdilution
lnftotal

(2.16)

B∗ =
lnfdegradation
lnftotal

= 1−D∗ (2.17)

and where D* ≥ 0 and 0 ≤ B* ≤ 1. For example, if D*/B* = 0 (D* = 0; B* = 1), the
concentration decline is solely due to degradation, while if D*/B* = 1 (D* = B* = 0.5), the
contribution of each processes to the logarithmic concentration decrease is equal [23].

2.3 Results and discussion

2.3.1 SM degradation and carbon isotope fractionation in top soils

SM δ13C signatures and concentrations were obtained on a weekly basis on catchment top
soils (1 cm) from April to June, 2016. Soil concentrations negatively correlated with changes
in isotope shift (∆δ13C) across time (r = −0.7, P < 0.001) (Fig. 23.A). To allow quan-
tification of field degradation extent, microcosm degradation experiments were conducted
(section 2.2.7) to derive a carbon isotope enrichment factor (εlab = −1.5 ± 0.5o/oo, R

2 =
0.87, P < 0.001). Assuming a reactive position at the C-Cl bond, this corresponds to an
apparent kinetic isotope effect (AKIEC) ranging from 1.02 to 1.03 (eq. A.5) compatible
with SN2 (AKIEC = 1.03-1.07) type substitution reactions and reductive cleavage of C-Cl
bonds (AKIEC=1.02-1.03) [24]. Although δ15N values were also measured, derivation of a
nitrogen isotope enrichment was not possible due to high matrix interference effects in soils
leading to significant uncertainty in measured signals (≥ 1o/oo).

To estimate the error extent that could arise from derivation of enrichment values in the
field, a carbon isotope field enrichment (εfield) was also derived based on top soil samples
and compared against εlab (Fig. 23.B). Due to open system conditions, the field derived
enrichment is expected to underestimate εlab (i.e., be less negative) and consequently lead
to an overestimation of degradation extent. As expected, a catchment-wide εfield underesti-
mated εlab (Fig. 23.B). However, this underestimation was small, likely reflecting SM high
sorptive properties and indicating good transferability of ε values between laboratory and
field conditions for this compound.

Abiotic controls for SM degradation experiments showed no significant isotope shift, which
indicated no fractionation associated to sorption and agreement with previous results [25,
26] (section 2.2.7, appendix section A.7, Fig. A6 and Table A4). Field measurements of
top soil and outlet signatures also support this observation, as fractionation extent in water
samples taken both near application periods and towards the end of the season generally re-
mains equivalent or slightly lower relative to top soil samples (Fig. 25). Based on a multiple
lines of evidence approach derived from the combined CSIA, mass balance (MB) and predic-
tive calculations in the following section, attribution of degradation extent to photochemical
degradation is likely to be small (< 5%), if not negligible. Indeed, carbon isotope effects
associated to photochemical degradation in aqueous solutions of aniline substructures have
been reported to be negligible under indirect photolysis [27] and nearly insensitive to inverse
fractionation at environmental pH [28]. If inverse fractionation where to be of relevance
for this case, CSIA biodegradation estimations would therefore be regarded as conservative.
Nevertheless, photochemical degradation is not expected [22] or may be low when incorpo-
rated into the top soil [29–32], which is supported by similar lab and field enrichment values
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Figure 23: SM carbon isotope shift (∆δ13C = δ13Ct − δ13C0) vs. concentration in transect
soils, where δ13C0 = −32.2± 0.5o/oo. Error bars account for error propagation (e.p.) across
±1σ (standard deviation) of initial product and ±1σ from sample signatures (eq. A.3).
Analytical uncertainty (1σ ≤ ±0.5o/oo) incorporates both accuracy and reproducibility of n ≥
3 measurements. The shaded area represents the minimum shift below which degradation
should not be concluded (i.e., uncertainty limit) due to maximum analytical uncertainties,
sample error uncertainties, and minor shifts in the soil extraction method (eq. A.1)

as well as by comparisons of non-degraded fractions vs. remaining mass measured in top
soils (see following section, Fig. 24. B vs. C).

2.3.2 Validation of the CSIA approach

The value of CSIA as a complementary monitoring tool was assessed by comparing informa-
tion derived from both MB accounts and reported half-life ranges for SM (7.6 - 49.5 days)
[22, 33, 34]. Results indicate good agreement between CSIA, MB and predictive calculations,
which emphasizes the validity of the CSIA approach (Fig. 24). Based on CSIA estimations
in soils (Fig. 24.B), SM was degraded by 50% and 88% by the end of April (32 days after
1st application) and June (82 days after 1st application), respectively. Propagation errors
in catchment degradation extent associated to statistical variation of CSIA input parame-
ters was estimated to be |∆B| = 19% in April and 9% in June [35]. Relative to the CSIA
approach, single first-order degradation predictions (Fig. 24.A, eq. 2.4) based on a field
half-life of 21 days [22], slightly overestimated degradation in April (|∆B| = 10%) and were
nearly equivalent in June (|∆B| = 4%). Overestimation in April was likely due to low spring
temperatures and largest degradation rates inherent to the single first-order rate model with
higher concentrations. Comparison of a half-life of 34 days obtained during the degradation
experiment (i.e., based on catchment soils) further indicates that field degradation rates
may also be attributed to soil characteristics. Nevertheless, although both methods provide
approximately equivalent estimations, CSIA was able to reduce the uncertainty margins rel-
ative to the reported half-life ranges (i.e., see error bars across methods in Fig. 24.A vs. Fig.
24.B).

Soil MB accounts during April and June (Fig. 24.C) indicated remaining fractions of 46%
and 4%, with only 0.1% and 0.2% of SM reaching the outlet, respectively. Comparing
information from CSIA (Fig. 24.B) and MB approaches (Fig. 24.C), inferred top soil non-
destructive losses (e.g., sorption, infiltration, run-off and volatilization) were estimated to
have reached 8% of the applied product. Plant uptake was considered to be negligible, as no
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of discharged mass in SM molar equivalents for MESA and MOXA (outlet loadings), with
error bars representing the cumulative standard deviation (E).

correlation was found between remaining mass and crop growth (from 0 to 40 cm) or surface
cover (from 0 to 100%) [15]. Although SM is considered to be a non-volatile compound (VP
= 1.73 mPa) [36], based on environmental conditions [e.g., 37] and model based calculations
[15] we estimate volatilization to have accounted for ≤ 5% of the applied product.

Comparison of the type of information that can be derived from CSIA and MB approaches at
the outlet illustrates a further advantage of tracking pesticide fate using CSIA. By tracking
parent and major TPs, direct information regarding source zone degradation extent cannot
be appreciated, as mass balances cannot be closed due to long subsurface travel times within
the catchment, the potential for further TP degradation and difficulties in determining sorp-
tion extent without numerical modelling. On the other hand, the use of CSIA generally
provided a good approximation of the degradation extent observed in source top soils (Fig.
24.B vs. 24.D), as tracking SM, carries information of its degradation extent independently of
the total loads exported. In this respect, CSIA presents an opportunity as a complementary
line of evidence to the rapidly developing capabilities of high-resolution mass spectrometry
for target and non-target analyses of pesticide TPs [e.g., 38]. By providing information on
the maximum degradation achieved by parent compounds, CSIA may thus contribute to
monitoring programs seeking to develop chemical risk assessments requiring more accurate
MB accounts.

2.3.3 CSIA-based monitoring under dynamic hydrological regimes

To determine whether CSIA could be implemented at reduced effort and be of relevance, for
example, in larger catchments contexts, we evaluated whether a catchment-wide assessment
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could be conducted by monitoring discharge water at the catchment outlet. To do so, we
compared linear trends of isotope fractionation in bulk top soils against stream discharge
at the catchment outlet across time (Fig. 25). Bulk top soils are computed by eq. 2.6
and provide a more accurate representation of the catchment wide signature evolution by
taking mass balances into account. An approximately equivalent and general increase in
∆δ13C above uncertainty ranges (i.e., shaded area) was observed across time for bulk soils
and waters. However, linear trends indicate that without top soil information, outlet trends
would have underestimated catchment-wide degradation by ∆B ≈ 8% towards the end of
the season (mid-June). This underestimation was however, likely related to an increase
in variability of isotope signatures in source soils following a late season application on
May 25th (Fig. 25) and observed at the outlet due to significant changes in hydrological
conditions taking place in late May and June (see appendix section A.3 for detailed analysis
of hydrological variability).
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Figure 25: SM carbon isotope shift (∆δ13C) across time in bulk soils and outlet waters with
vertical arrows indicating application dates (δ13C0 = −32.2 ± 0.5o/oo). Fitted linear models
(∆δ(t) = mt) for outlet signatures (R2

out = 0.5) and bulk soils (R2
soil = 0.9) vs. days (t) after

first application illustrate similar trends in time, despite an increase in variability for outlet
signatures during May and June. Error bars account for error propagation (e.p.) across ±1σ
(standard deviation) of initial product and ±1σ from sample signatures (eq. A.3). Analytical
uncertainty (1σ ≤ ±0.5o/oo) incorporates both accuracy and reproducibility of n ≥ 3 mea-
surements. The shaded area represents the minimum shift below which degradation should
not be concluded (i.e. uncertainty limit) due to maximum analytical uncertainties, sample
error uncertainties, and minor shifts in the soil extraction method (eq. A.1). Degradation
extent (%) shown on secondary y-axis is obtained from ∆δ13C transformations based on εlab
(eq. 2.14 & 2.15).

To identify potential source contribution leading to isotope variability, the relative contribu-
tion of degradation and dilution to concentration decrease, given by the factor ratio D*/B*,
in transect soils was estimated across time [23, section 2.2.10]. Although mass flux contri-
butions from each area would be necessary for a quantitative source apportionment (i.e., via
end-member analysis), D*/B* ratios in top soils may be used as qualitative source indicators
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for outlet δ13C and SM concentration variability. Weekly D*/B* calculations (Tables A5,
A6 and A7) considered two enrichment scenarios based on the derived εlab = −1.5o/oo and
on εmax = −1.9o/oo. The latter considers a conservative maximum kinetic isotope effect of
KIE = 1.03 (C-Cl bond) expected for SN2 reactions [24], and approximates degradation
conditions observed during the microcosm experiment for saturated moisture levels (Table
A4, θ = 40%).

A comparison between rainfall, discharge, SM concentrations in outlet and soils, and D*/B*
ratios across time in Fig. 26 shows how D*/B* ratios were highest (Fig. 26.D) shortly after
rainfall events, when outlet concentrations exceeded the seasonal trends (Fig. 26.B). Median
D*/B* ratios for the north, valley and south transects (Table 24) indicate that dilution
was more significant shortly after applications, with each transect showing dilution to be
as important as degradation (D*/B* ≥ 1) at least once early in the season (April to mid-
May). Further inference of D*/B* ratios indicates that dilution along the steeper slopes and
better drained soils of the north transect continued to be of more importance during the late
season relative to other transects, where drainage was poor. Low D*/B* ratios along the
south during the late season indicate potential contributions to outlet concentrations of lesser
importance. This is supported by significant differences (P < 0.05, Kruskal-Wallis) in δ13C
observed between outlet and the south transect during the late season (Fig. 27), indicating
that the south transect was unlikely responsible for outlet isotope variability within this
period. Finally, two major rainfall-runoff events, with outlet SM concentrations exceeding
late-season trends, can be appreciated on May 29th and June 25th. With respect to the
former event, no appreciable influence can be observed on the north and south transects.
However, D*/B* ratios along the valley, which received a late season application on May
25th, were significantly higher (D*/B* = 0.8-1.2) relative to its overall median values (D*/B*
= 0.1-0.5), likely indicating this transect as the main source leading to drops in outlet δ13C
(and SM concentration increase) during this event. A comparable observation can also be
made for the latter (June 25th) event. However, this time the source of outlet variability
shortly after the rainfall event may be most likely attributed to the north transect, where
increases in outlet concentrations (Fig. 26.B) and a drop in outlet δ13C (Fig. 25) coincide
with an increase in D*/B* ratios (D*/B* = 1.1-1.7) measured on June 28th (Fig. 26.D) for
this transect relative to median values (D*/B* = 0.6-1.0).

Table 24: Degradation (B%), breakdown factors (B*) & D*/B* ratios for εlab = −1.5o/oo and
εmax = −1.9o/oo along the North, Valley and South transects

Blab Bmax B∗
lab B∗

max D*/B*lab D*/B*max

Transect (%) (%) (-) (-) (-) (-)

North

Early Season 53.1 45.0 0.6 0.5 0.7 1.1
Late Season 85.4 78.1 0.7 0.6 0.4 0.8

Overall 74.4 66.2 0.6 0.5 0.6 1.0

Valley

Early Season 56.2 59.6 0.9 0.8 0.1 0.3
Late Season 82.1 75.6 0.9 0.7 0.2 0.5

Overall 80.8 73.3 0.9 0.7 0.1 0.5

South

Early Season 61.0 52.4 0.6 0.4 0.8 1.3
Late Season 93.1 87.9 0.9 0.7 0.1 0.3

Overall 64.4 60.3 0.6 0.6 0.6 0.6
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Although these results alone cannot provide quantitative insights of the contribution of
pesticide from each area to outlet, comparison of degradation extents to remaining masses
can be used to estimate export losses from top soils. However, values of B* > 1 along the
valley and in the late season along the south, indicate an overestimation of degradation
extent based on the overall εlab. During these periods (e.g., where moisture levels were
likely high in these areas), estimation based on the more conservative εmax may thus be
more appropriate, as observed during the microcosm experiment (Table A4, θ = 40%). A
comparison of end of season (June 21st - 28th) remaining mass (RMnorth = 2%; RMvalley

= 13%; RMsouth= 4%) against degradation extents (Bnorth = 85%; Bvalley = 84%; Bsouth=
94%), yielded non-destructive losses of ≈ 16% along the north and valley transects vs. only
2% in the south. While the low relative losses observed in the south also support a minor
role for volatilization [39] and photodegradation, the valley and north transect accounted
for 91% of total export losses (2.8 kg of SM or 7% of the total applied product), despite
representing only 50% of the catchment area. This highlights the potential value of CSIA
approaches to identify critical areas of degradation and off-site export, even where complete
MB accounts may not be available.

2.3.4 Perspectives for pesticide CSIA applications at catchment scale

Detailed soil and sub-event CSIA data allowed us to determine the evolution of pesticide
degradation extent and export losses across the catchment. Additional insights on mech-
anisms of bond cleavage however, could have been obtained using multi-element CSIA of
nitrogen, hydrogen or chlorine [40]. Unfortunately, the ability to implement multi-element
isotope analysis was reduced by current limitations in CSIA quantification from environmen-
tal samples. Indeed, seeking sub-event information to better understand the catchment’s
primary pesticide transport processes limited our ability to collect sufficient volumes during
each forcing event and also derive a nitrogen based high-resolution data set. Namely, given
the small contribution of nitrogen (≈ 5%), hydrogen (≈ 8%), and chlorine (≈ 12%) to the
molar mass of a SM molecule and the amount required of each element for analysis (about
20 ng on column for nitrogen and hydrogen and 10 ng for chlorine) significantly larger en-
vironmental concentrations would have been required to achieve the study objectives (i.e.,
a combined mass balance and carbon-based CSIA account under a high-resolution monitor-
ing strategy). For example, at minimum environmental concentrations of ≈ 1 µg L−1 the
extraction from about 56, 40 and 8 L, respectively for either nitrogen, hydrogen or chlorine,
would have been required (Fig. 62).
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Despite these challenges, additional concentration steps allowed quantification of nitrogen
isotope fractionation (δ15N) for sub-event samples with highest concentrations (n = 7).
These samples are associated to periods near application dates and during one major event.
Maximum nitrogen isotope shifts were inverse but small (∆δ15N = −1.3± 0.6o/oo, Fig. A3),
indicating potential secondary isotope effects during biodegradation [14]. Attempts to con-
struct laboratory and field nitrogen enrichment values from soils however, were not possible
due to high matrix interference effects leading to significant uncertainty in measured δ15N
values (>1 o/oo). In this respect, enrichment cultures isolated from relevant soils should prove
crucial in the interpretation of field studies implementing multi-element pesticide CSIA.

Based on the observed limitations associated to the high-resolution approach followed in
this study, catchment scale characterization campaigns implementing micropollutant CSIA
should therefore account for a trade-off in information objectives inherent to pesticide CSIA
analytical limitations and near-surface hydrological contexts. Namely, (i) improving under-
standing of pesticide fate during periods of high transfer risk, and (ii) seeking an evaluation
of competing degradation processes across catchment compartments. Under the former ob-
jective (i), a high-resolution sampling scheme involving carbon-based CSIA should enable
quantification of pesticide degradation across multiple events and catchment areas, as it was
achieved in this study. However, when attempting to achieve the latter objective (ii), low-
flow conditions may preclude obtaining information associated to base-flow components and
therefore an understanding of long travel time degradation characteristics within the catch-
ment. Evidently, similar challenges are to be expected under multi-element CSIA approaches.
Therefore, monitoring strategies seeking subsurface compartment characterization, may be
advised to target narrower sampling time-frames, particularly if MB accounts are of lesser
priority relative to multi-element CSIA information.

2.4 Conclusion

This study evaluated the feasibility of carbon-based CSIA approaches as a tool to moni-
tor pesticide fate at catchment scale. Comparison of three information sources (i.e., CSIA,
MB and reported half-life (t1/2) ranges) demonstrated the validity of pesticide CSIA as a
complementary line of evidence for quantifying degradation under dynamic hydrological and
rainfall-runoff conditions. The CSIA approach improved our understanding of pesticides fate
by delineating the primary catchment areas regulating degradation (88%) and export losses
(8%). Comparison of MB and CSIA approaches showed that degradation extent evolution
was consistent between outlet and catchment-wide top soils, demonstrating the monitoring
applicability of CSIA methods despite shifting hydrological regimes. It should be noted how-
ever, that due to potential artifacts in soil extraction methods, a minimum shift of ∆δ13C >
2o/oo (≈ 75% degradation) was considered before any conservative conclusion on degradation
extent could be established. Based on its ability to quantify degradation independently of
TPs and to delineate critical source areas, CSIA may thus be considered as a valuable com-
plementary tool to identify and monitor chemical risk at catchment scale. Further efforts
seeking to implement high-resolution CSIA approaches at greater scales should be supported
by adequate characterization of dominant transport pathways regulating critical source ar-
eas. During periods of relatively low flow however, and where MB information is of lower
priority, non-proportional (e.g., manual) sampling efforts may nevertheless be of interest to
successfully characterize long-term discharge. In this respect, modelling of slow catchment
response behavior may facilitate the selection of minimum sampling volumes and the design
of extraction protocols required to achieve higher resolution of multi-dimensional CSIA.
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Preface to Chapter 3

Chapter 3 addresses the third goal of this Ph.D. work, which is to investigate hydrological
and transport formalisms as a preliminary step for conceptual development of the larger scale
numerical model. The chapter is set within the framework of a soil column experiment led
by F. Meite to explore the impact of rainfall patterns on heavy-metal and organic pesticide
export from agricultural top-soils. Based on data obtained from experimental modalities
combining soil types, pollutant ageing (10 days) and rainfall patterns (intensity, duration &
volume), my contribution included the development of a parsimonious model to reproduce
pesticide export via leaching and ponding. The model allowed to validate the experimental
setup and determined mobility parameter values informing Monte Carlo sets during catch-
ment scale modelling in chapter 4.
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Chapter 3

Impact of rainfall patterns and
frequency on the export of
pesticides and heavy-metals from
agricultural soils*

Abstract. The combined influence of soil characteristics, pollutant aging and rainfall patterns
(i.e. intensity-duration-volume) on the export of pollutants from soils remains poorly understood.
We used laboratory experiments and parsimonious modelling to examine the impact of rainfall
patterns and successive rainfalls on the ponding and leaching of a pollutant mixture in crop
and vineyard soils and with two pollutant aging stages (0 and 10 days). The pollutant mixture
included the fungicide metalaxyl, the herbicide S-metolachlor (SM), and inorganic copper (Cu)
and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were
applied twice successively with a 7 days interval on each soil type. The global export of pollutants
was significantly controlled by the rainfall duration and frequency (P < 0.01). During the first
rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl
(44.5 ± 21.5% of the initial mass spiked in the soils), SM (8.1 ± 3.1%) and Cu (3.1 ± 0.3%).
Soil compaction observed after the first rainfall reduced in the second rainfall the leaching of
remaining metalaxyl, SM, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast,
soil characteristics and aging did not predominantly influence pollutant export (i.e., pollutant
mass exported via leaching or in ponding water out of initial pollutant mass in soils). However,
the leaching of Zn and Cu was significantly influenced by the soil type and aging, respectively.
This underscores that extrinsic factors, such as rainfall characteristics, may prevail over soil-
pollutants interactions to control pollutant export patterns when aging period is short. Overall,
we anticipate our study to be a starting point for more systematic evaluation of the dissolved
pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil
types in relation to rainfall patterns.

3.1 Introduction

Pesticides are widely used to control pests while sludge from wastewater treatment plants
(WWTP) containing heavy metals is often spread as fertilizers [1]. Pesticides and heavy-
metals in sludge may thus accumulate in agricultural soils and, following rainfall-runoff

* This chapter is the edited version of: Meite, F., Alvarez-Zald́ıvar, P., Crochet, A., Wiegert, C.,
Payraudeau, S., and Imfeld, G. (2018). Impact of rainfall patterns and frequency on the export of pesticides
and heavy metals from agricultural soils. Science of the Total Environment, 616-617(December):500-509.
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events, eventually reach surface water and groundwater. Predicting the export of pollutants
from soils into aquatic ecosystems is thus essential to limit transport risks and evaluate tox-
icological exposure [2, 3]. Pesticides and metals are exported from the soil to surface water
by runoff, i.e., ponding and overland flow [4–6]. Ponding occurs when the rainfall intensity
overcomes the top soil infiltration capacity. Depending of slope and upstream-downstream
hydrological connectivity, ponded water will flow downstream generating runoff. Pollutants
are also exported into sub-surface water by leaching when rainwater carries dissolved pollu-
tants through the soil profile. However, the impact of rainfall characteristics on the export
pathways of organic and inorganic pollutant mixtures from the soil remains largely unex-
plored.

Export of pollutants by ponding and runoff or leaching is controlled by intrinsic factors,
such as the physico-chemical properties of the pollutant [7] as well as the soil hydrodynamics
and characteristics [8, 9]. In particular, the availability and mobility of pollutants in soils
tend to decrease over time due to pollutant diffusion and sorption into mineral and organic
fractions, a process termed ”aging” [10, 11]. Aging can control the fraction of pollutant
mobilized and transported from the soil either in the freely-dissolved phase or associated
with soil particles and colloids [7, 12–15]. Together with aging, pollutant transformation,
including speciation of metals and degradation of organic pollutants, can influence the extent
of pollutant export from soils. Pollutant aging and transformation are themselves controlled
by soil-extrinsic factors, such as the time between an application and a rainfall event [12,
16]. Whereas pollutant aging in soils may decrease pollutant export, rainfall frequency may
increase it [12, 17]. In addition, rainfall intensity and duration may primarily affect pollutant
mobilization and export from the soil. Larger rainfall intensity have been shown to increase
leaching of isoproturon from soil columns [18], while successive rainfall events doubled leach-
ing of metolachlor from the soil at the second event [17]. In agricultural catchments prone to
Hortonian runoff, ponding/leaching water partitioning is mainly controlled by top-soil (0-5
cm) hydraulic properties, i.e. bulk density and saturated hydraulic conductivity [19, 20].
This latter can decrease from 2 orders of magnitudes between crop sowing and harvest due
to rainfall event frequencies modifying the ponding/leaching threshold [19, 21]. Landscape
patchwork of top soil hydraulic properties also controls runoff connectivity [22] with associ-
ated pollutants both in dissolved and eroded phases. For pre-emergent herbicides such as
SM, this top-soil layer (0-5 cm) plays a critical role to reduce or enhance water and pesticides
fluxes the first weeks before development of a significant root compartment. Understanding
and predicting the temporal evolution of top-soil hydraulic compartment along rainfalls fre-
quency is then of utmost importance to better estimate water and pollutants fluxes reaching
the deeper rhizosphere compartment and below, the groundwater table. If impacts of the
deeper rhizosphere on pollutants leaching were identified [23, 24], lab-scale evidences on the
boundary condition played by top-soil compartment on deeper water and solute leaching
are still lacking. Besides, the contribution of intrinsic and extrinsic factors to the export of
both organic and inorganic pollutants from soils has been, to date, rarely quantified [14, 16,
18]. In this context, laboratory experiments can help to constrain and hierarchize factors
controlling pollutant export to drive modelling approaches potentially used in the field [25].

The purpose of this study was to evaluate how rainfall patterns (i.e., intensity-duration-
volume) influence the export of synthetic pesticides and heavy metals from soils in relation
to i) soil characteristics, ii) rainfall frequency, and iii) short-term pollutant aging (ten days).
We used laboratory experiments with soils from experimental vineyard [26] or crop catch-
ments [27], which cover relevant agricultural land uses receiving pesticides and heavy metals.
Widely used anilide pesticides, i.e., the fungicide metalaxyl and the herbicide S-metolachlor
(SM), as well as Cu and Zn were used as model pollutants in a mixture. To evaluate sensi-
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tive parameters controlling pollutant ponding and leaching, a parsimonious physically-based
model was developed to derive key parameters (i.e, the saturated hydraulic conductivity
Ksat and the organic carbon partition coefficient Koc) that regulate pollutant export.

3.2 Material and methods

3.2.1 Chemicals and artificial rainwater

Metalaxyl (C15H21NO4), methyl N-(methoxyacetyl)-N-(2, 6-xylyl)-DL-alaninate and SM
(C15H22ClNO2), S-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl) aceta-
mide were purchased from Sigma-Aldrich (St. Louis, MO, USA), with purity of 99.8 and
98.2% respectively. Copper chloride (CuCl2), zinc chloride (ZnCl2) and salts used for the
preparation of the artificial rainwater were purchased from Sigma-Aldrich (St. Louis, MO,
USA) with purity ≥ 97%. Respectively, SM and Metalaxyl are moderately (480 mg L−1) and
highly (7100 mg L−1) soluble, with high (3.05) and low (1.75) log octanol-water partition
coefficients (log Kow) and moderate (200 mL g−1) to low (163 mL g−1) organic carbon-water
partition coefficients [28–30]. The logarithmic soil/water partition coefficient (log Kd) of Cu
and Zn considered in this study were 2.7 and 3.1 L mg−1, respectively [31].

The artificial rainwater was prepared according to the ERM-CA408 reference material (ERM
certification report, 2010) with ultra-pure water (10 L) and NH4Cl (19.6 mg), Ca2NO3 ·
4H2O (32 mg), Mg2NO3 · 6H2O (28 mg), K2HPO4 (9 mg), NaNO3 (4 mg), NaF (4.5 mg),
Na2SO4 (22.2 mg) and NH4 ·H2PO4 (11.2 mg). The targeted pH was 6.3 ± 0.6.

3.2.2 Soil collection

A calcareous clay-loamy surface soil (0 to 5 cm) (Rouffach, Haut-Rhin, Alsace, France) [26]
and a silty-clay soil (0 to 5 cm) from a crop catchment (Alteckendorf, [4] were collected
on August 6 and 7, 2015. About 50 kg of soil were collected in a conventional vineyard
plot of 12.5x70 m with weeded rows every two rows (along seven naked rows). About
50 kg of soil from a 47 ha crop catchment (corn and wheat) were sampled systematically
along three transects. Soils were thoroughly homogenized and sieved to 2 mm to increase
reproducibility between experiments. As a result, this study focuses on soil matrix flow
and excludes preferential flow through macropores [25]. Particle size distribution, saturated
hydraulic conductivity and bulk density as well as pressure-soil water content were measured
by laser granulometry using a Beckmann Coulter (LS230), head constant permeameter and
direct measurement of soil cylinder, respectively (Table B2). The detailed physico-chemical
characteristics of the soils are provided in Table B1. The vineyard soil contains more clays
(68.5%) and carbonates (27.1%), while the crop soil contained more organic matter (5.52%),
sand (10.3%) and silt (61.5%). The crop soil is neutral (pH 7.0) while the vineyard soil is
more alkaline (pH 8.1).

3.2.3 Rainfall patterns

To retrieve the four rainfall patterns, the Alsatian foothills (France) has a temperate climate,
where orographic effect (i.e., moist air cooling down as it moves from low to high elevation
over rising terrain) intensifies extreme rainfalls (i.e., highest 1% of the daily rainfall amounts -
99th percentile) [32]. The selected rainfall station (47◦ 57’ 9” N, 07◦ 17’ 3” E, Rouffach, Haut-
Rhin, France) is located in the experimental vineyard catchment from which the vineyard soil
was collected. The catchment is characterized by intense events generating both pesticide and
Cu runoff [33, 34]. A Gumbel law [35, 36] was applied on the 6 min. MeteoFrance database
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Table 31: Calibrated Ksat used to fit all rainfall modalities simultaneously with the model
during the second pulse.

Parameter Unit Value Rainfall No.

Crop soil Vineyard soil

Ksat,pattern [cm h−1] 13.45 17.62 1 (measured)

t = 0 day t = 10 days t = 0 day t = 10 days

Ksat,p1 [cm h−1] 0.054 0.013 0.352 0.025 2 (calibrated)
Ksat,p2 [cm h−1] 0.538 0.179 0.035 0.235
Ksat,p3 [cm h−1] 0.013 0.179 0.176 0.352
Ksat,p4 [cm h−1] 0.179 0.077 0.018 0.117

Table 32: Rainfall patter characteristics

Return pds. Duration Intensity Rate Volume Description
[years]a [min]a [mm h−1]b [mL min−1]c [mL]c (pattern, intensity)

Pattern 1 2 30 30 1.1 31.5 Long-lasting, low
Pattern 2 2 12 55 1.9 23.1 Mid-lasting, intermediate
Pattern 3 20 30 55 1.9 57.8 Long-lasting, intermediate
Pattern 4 50 6 135 4.7 28.4 Short, high

aSelected return periods and rainfall durations; bCalculated intensities with Gumel law associated
to return periods and durations; cPump rate and associated rainfall volume using a soil column area
of 7.07 cm2.

(https://donneespubliques.meteofrance.fr/) from 1998 to 2016 to derive mean intensities for
rainfall duration of 6, 12, and 30 minutes and return period of 2, 20 and 50 years. The four
selected rainfall patterns differ in their intensities (from 30 to 135 mm h−1), durations (from
6 to 30 min), volume (from 23 to 58 mL) and return period (from 2 to 50 years) (Table 32).
The rationale behind this selection is to (i) cover the range of rainfall patterns observed on
the regional scale, (ii) represent a wide panel of possible patterns in temperate climate, and
(iii) generate a sufficient water volume for further pollutant quantification.

3.2.4 Experimental set-up and operations

Soil columns consisted of filtration units (Steriflip, MerckMillipore, Billerica, MA, USA) and
50 mL polyethylene centrifugation tubes (Fig. 31). The conical part of the centrifugation
tubes were cut and tubes were screwed above the filtration units. Centrifugation tube caps (4
mm ⊘ digs) were drilled to insert a pipe connected to a multi-channel peristaltic pump (ICP-
8, Ismatec, Wertheim, Germany). The pump delivered artificial rainwater on soil samples
areas (7.07 cm2) at rates corresponding to the four selected rainfall patterns, from 1.1 to 4.7
mL min−1 32.

Soil samples were homogeneously spiked at 50 µg g−1 with an aqueous mixture of metalaxyl,
SM, CuCl2 and ZnCl2 to reach a soil water content of 20% (weight/weight). Control soils
consisted of non-spiked soil with water content of 20% (w/w). The upper part of each column
was filled with 18 g of control or spiked soils to reach 3 cm height. The soil was retained in
the column with a 20 µm mesh nylon membrane (Fig. 31). Half of the soil columns were
exposed to rainfall immediately after spiking. To evaluate the effect of pollutants aging in
the soils on the extent of pollutant export, the other half of the columns was incubated in
the dark at 20 ◦C for 10 days before exposition to rainfall.
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Figure 31: Experimental set-up for pesticide and heavy-metal hydrological forcing.

The four rainfall patterns were applied separately, yielding a total of 16 experiments, i.e., 4
rainfall patterns, applied on 2 soils (spiked vineyard and crop soils), with 2 aging times (0 and
10 days), each run in triplicate, requiring a total of 48 columns. In parallel, rainfall patterns
generating the less and the most water volumes (i.e., patterns 1 and 4, respectively; Table
32) were applied on vineyard and crop control soils without pollutant spiking to evaluate the
background export of pollutants. To evaluate the influence of rainfall frequency on pollutant
export, each experiment received two successive and identical rainfalls separated by a seven
days interval.

At the end of each rainfall, leached and ponded waters (the latter collected by a syringe
immediately after the rainfall event) obtained from each triplicate experiments were collected
and pooled to obtain a homogeneous sample for each conditions and sufficient amount of
pesticides and metals for further quantification. The soil from each triplicate systems were
collected and pooled at the end of the second rainfall. The water and soil samples were
immediately frozen at -20 ◦C until further analyses. Soil samples were analyzed to quantify
the remaining mass of pollutants after the second rainfall.

3.2.5 Elemental analysis

Dissolved organic carbon (DOC) in water samples was quantified using a carbon analyzer
(Shimadzu TOC - VCPH). Acetate, major anions and cations (chloride, nitrate, sulfate,
ammonium, sodium, potassium, magnesium and calcium ions) were quantified using ion
chromatography (ICS 3000 Dionex, San Diego, CA, USA, ± 2%). For chemical composition
analysis (including Cu and Zn), oven-dried (60 ◦C) soils were powdered using an agate disk
mill (<100 µm) prior to alkaline fusion and total dissolution by acids. Measurements were
carried out using ICP-AES (ICAP6500, Thermo Fisher Scientific) with the geological stan-
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dards BCR-2 (US Geological Survey, Reston, VA, USA) and SCL-7003 (Analytika, Prague,
Czech Republic) for quality control [34], with a total analytical uncertainty of ± 5%, that
incorporates both accuracy and reproducibility, and a detection limit < 3 µg L−1.

3.2.6 Metalaxyl and SM analysis

The volumes of leaching and ponding water were adjusted up to 25 mL with ultra-pure water
prior to solid phase extraction (SPE). Metalaxyl and SM were extracted from leaching and
ponding water samples using SolEx C18 cartridges (Dionex R©, CA, USA) packed with 1 g
bonded silica on an AutroTrace 280 SPE system (Dionex R©, CA, USA), following a protocol
adapted from US EPA method 525.2 and previously described [37].

Pesticides were extracted from the soil matrix using a solvent extraction procedure adapted
from previous studies [38, 39] and detailed in the SI. Metalaxyl was extracted with recoveries
of 68 ± 27% from the crop soil and 66 ± 29% from the vineyard soil. SM was extracted from
24 ± 8% and 23 ± 10% from the crop and vineyard soils, respectively. Metalaxyl and SM
quantification was performed by gas chromatography (Trace 1300, Thermo Fisher Scientific)
coupled to a mass spectrometer (ISQ, Thermo Fisher Scientific) (GC-MS) as previously
described [37].

3.2.7 Data analysis

During the first rainfall, the relative loads (RL1) of pollutants were estimated according to

RL1x,j,p,s,a =
mx,j,p,s,a,r1

minit(x,s,a)
· 100 (3.1)

where mx,j,p,s,a,r1 (µg) is the mass of pollutant x - metalaxyl, SM, Cu or Zn - exported via
process j ponding or leaching, with a rainfall pattern p -1, 2, 3 or 4, Table 32 - for the soil s
- crop or vineyard - with aging process a - no aging or 10 days aging - after the first rainfall
r1 and minit(x,s,a) (µg) the initial pollutant mass in soil for corresponding pollutant (x), soil
(s) and aging process (a). For the experiments with 10 days of pollutant aging, minit(x,s)

was measured for metalaxyl and SM before the first rainfall.

The relative loads during the second rainfall (RL2) expressed as a fraction (-) were calculated
by mass balance adjustments and a first-order rate model (SFO) to account for pesticide
degradation that occurred between the two successive rainfalls. Hence eq. 3.1 is updated
to account for export losses during the first pulse and sinks associated to degradation in
between the two pulses as

RL2x,j,p,s,a =
mx,j,p,s,a,r2

(minit(x,s,a) −
∑J

j=1mx,j,p,s,a,r1) · exp(−kx · t)
· 100 (3.2)

where, similar to eq. 3.1 mx,j,p,s,a,r2 is the mass (µg) exported during the second rainfall
(r2) due to process j (leaching and ponding). The dissipation rate constant kx (d−1) for
pesticide x - metalaxyl or SM - was calculated by kx = ln(2)/DT50x (kx = 0 for metals),
where DT50 (d) is the pesticide half-life obtained from ref. [30].
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Table 33: Green-Ampt input parameters

Parameter Unit Crop soil Vineyard soil Source

ω, suction at the wetting front [mm] 1100 1100 Ref. [46]
θt0 , initial moisture [-] 0.2 0.2 Exp. measurement
θsat, saturation moisture [-] 0.62 0.61 Exp. measurement

To evaluate differences in exported pollutants across rainfall patterns (i.e., intensity-duration-
volume), rainfall frequency, soils or aging time, nonparametric Kruskal-Wallis and Wilcoxon
tests were applied at a significance level of 0.05 using the R statistical software [40].

To visualize dissimilarities in patterns of pollutant export, two-dimensional non-metric multi-
dimensional scaling (NMDS) [41] based on Bray-Curtis dissimilarities of Hellinger-transformed
data (square-root transformation of relative masses of exported pollutants) was used. The
relationship between the pollutant export patterns and the experimental variables (i.e. soil
type, aging, rainfall frequency, intensity, volume and duration) was investigated by fitting
vectors a posteriori onto the NMDS. The significance of the vector fitting was assessed using
a Monte-Carlo permutation test (1000 permutation steps).

3.2.8 Modelling of pesticide ponding and leaching

Partitioning between infiltration and ponding was determined using the Green & Ampt
formalism [9, 42], which simulates overland flow when rainfall intensity overcomes the soil
infiltration capacity and given by

f = Ksat

(ω∆θ

F
+ 1

)

(3.3)

where f is infiltration (mm), Ksat is saturated hydraulic conductivity (mm h−1), ω is suction
at the wetting front (mm), ∆θ is the moisture difference between initial and saturation
conditions (-) and F is the cumulative infiltration (mm). Parameter values are presented in
Table 31 and 33. The retention and release of pesticides in the top-soil was conceptualized
with a mixing layer model [43, 44] (eq. 3.6) and a diffusion model across soil-ponded water
interface [45] (eq. 3.7). The approach assumes linear equilibrium sorption where the initial
pore water concentration (Caq) is given by

Caq =
Cs

Kd
(3.4)

Kd = Kocfoc (3.5)

Where Cs is the total concentration at the beginning of the experiment (t0), Kd is the
partition coefficient (ml g−1). To fit pollutant export across rainfall patterns, Koc values for
metalaxyl, SM, Cu and Zn were calibrated within the range of values of ref. [30]. Organic
carbon fractions (foc) (-) and soil bulk densities (ρb, g cm−3) soils were measured (Table
B1).
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The total losses (µg) considered for a rainfall event include mass loss due to leaching (Mlch)
and mass loss due to ponding (Mpnd). Masses due to leaching are computed by subtracting
initial pore water mass from the remaining mass in pore water at the end of an event of time
∆t,

Mlch = Caq,t0

(

1− e
−Lz∆t

RDzθsat

)

·Dzθsat (3.6)

where Caq,t0 is initial concentration (µg L−1) in pore water, Lz is leached depth (mm), Dz

is the soil depth (mm), θsat the saturated moisture and R the retardation factor (-), which
is given by

R = 1 +
ρb +Kd

θsat
(3.7)

Masses in ponding water were retrieved by calculating the mass flux across the top soil bound-
ary based on the concentration gradient between soil pore and ponded water concentrations,
such that

Mpnd =

∫ ∆t

tp

KL

(

Caq,t − Cp,t

)

∂t ·A (3.8)

where tp is the time of ponding (min), KL (mm min−1) is the mass transfer coefficient that
relates solute flux from the soil surface to the ponding water, Cp is the concentration in
ponded water depth (µg L−1) and A the soil-water boundary area (mm2). The ability of the
model to reproduce pollutant export by ponding or leaching was evaluated by comparing
the observed and simulated ponded or leached volumes while maximizing the coefficient of
determination (r2).

3.3 Results and discussion

3.3.1 Partitioning of water ponding and leaching

Contrasted water flow paths were observed for the two successive rainfalls. The first rain-
fall generated only leaching without ponding, independently of the rainfall patterns, which
indicates that the rainfall intensities never overcame the soil infiltration capacity. This is
in agreement with relative high values of saturated hydraulic conductivity (Ksat), e.g., 135
and 176 mm h−1 measured for the crop and vineyard soils, respectively. High values of Ksat

were a consequence of the soil sieving step and can be observed in the field just after tillage
[47].

The observed volumes of ponded and leached water were compared to those simulated with
the model to evaluate the ability of the experimental set-up to mimic water ponding and
leaching. The Green-Ampt model predictions parametrized with the measured (before the
first rainfall) and calibrated Ksat values (before the second rainfall) (Table 31 and 33) fitted
well the observed leaching and ponded volumes (mean r2 = 0.98) (Table 34). Ksat values
before the second event were calibrated as they could not be measured without disturbing
the soil in the columns. The calibrated Ksat values to fit the observed volumes for the second
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Table 34: Observed and simulated ponding and leaching water volumes

Crop Vineyard

Modality Pattern Observed Modelled Observed Modelled
Vlch Vpnd Vlch Vpnd Vlch Vpnd Vlch Vpnd

[mL] [mL] [mL] [mL] [mL] [mL] [mL] [mL]

Fresh, (1st) 1 17.51 - 17.86 - 19.08 - 18.91 -
2 5.9 - 9.66 - 11.11 - 11.6 -
3 40.4 - 44.45 - 46.4 - 46.39 -
4 12.96 - 14.18 - 13.61 - 14.18 -

Aged , (1st) 1 20.09 - 17.86 - 20.87 - 18.91 -
2 10.6 - 9.66 - 11.29 - 11.6 -
3 47.2 - 44.45 - 47.03 - 46.39 -
4 14.29 - 14.18 - 17.71 - 14.18 -

Fresh, (2nd) 1 9.38 22.62 9.28 21.19 26.74 3.72 24.14 6.32
2 19 3.91 19.24 3.95 3.67 17.73 3.8 18.03
3 2.47 28.91 3.54 23.85 18.6 39.35 19.03 38.96
4 8.25 20.94 8.4 19.96 0 26.63 1.1 25.79

Aged, (2nd) 1 3.39 27.31 3.57 26.39 6.2 22.83 5.94 24.56
2 11.41 7.31 11.74 11.45 12.99 8.03 13.22 9.97
3 20.29 33.48 19.42 38.56 29.23 23.69 27.24 30.74
4 5.47 19.04 5.47 22.89 6.55 19.35 6.7 21.66

event were one to two orders of magnitude lower than those measured before the first rainfall
event (Table 31). Such decrease of Ksat values was also observed in the field as a result of
aggregate breakdown by rainfall and clogging of larger pores [19, 20]. Soil depth (i.e., 30
mm) also decreased by 4 to 11 mm after the first rainfall event, which further indicated
changes of soil porosity, bulk density and hydraulic conductivity.

Overall, different ponding/leaching water partitioning between the first and the second rain-
fall events underlined that the threshold behaviour of ponding was controlled by top soil
Ksat values, as observed in field conditions [46, 48]. The good fitting of simulated pond-
ing and leaching water volumes by the Green-Ampt method underscored that soil matrix
properties (i.e. , Ksat, ρb, θ) controlled the hydraulic properties of the columns without
significant preferential flows along the boundary between the column surface and the soil.
This validation step on column hydraulic functioning allowed inferring the impact of rainfall
patterns on pollutant export from soil matrix by leaching and ponding.

3.3.2 Impact of rainfall patterns on pollutant export

No significant concentrations of metalaxyl, SM, Cu and Zn could be detected in leachates
from the control soils (non-spiked soils). This confirmed that the experimental set-up enabled
to evaluate the mass export of freshly spiked and short-term aged pollutants. While rainfall
patterns did not significantly impact the ponding/leaching ratios (i.e., RL2pond/RL2leach) of
pesticides (P>0.1), concentrations of heavy metals in ponding waters were too low to evaluate
their ponding/leaching partitioning (<1 and <3 µg L−1 for Zn and Cu, respectively). Only
up to 1.2 ± 1.2% and 0.2 ± 0.1% of metalaxyl and SM, respectively, was exported in ponding
water (i.e., RL2pond, crop, vineyard and aged systems taken together).

Several processes may control the transfer of dissolved pesticides into ponding water, in-
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cluding i) diffusion (induced by concentration gradients), ii) ejection of solution from the
soil surface by raindrops, iii) desorption of pesticides sorbed onto soil, and iv) desorption
of pesticides bound to soil particles eroded by raindrops (and surface flow) [6]. Ejection of
dissolved pesticides solution from the soil surface and bound pesticides desorption of soil
particles eroded cannot explain dissolved pesticide loads in ponding waters because the im-
pact of simulated raindrops on the transfer of dissolved pesticides to ponding water was
likely limited in our case. Indeed, our experimental set-up, unlike in field conditions, did not
allow for rain drops to approximate terminal velocities lowering the kinetic energy expected
to drive solute entrainment [49, 50]. Desorption of pesticides sorbed onto soils and, to a
minor extent, diffusion thus likely controlled pollutant transfer into ponding water in our
experiment. The extent of pollutant transfer corresponded to pollutant physico-chemical
properties. For example, ponding/leaching ratios (i.e. RL2pond/RL2leach) for SM, for exam-
ple, were twice higher than those for metalaxyl (Fig. 32), which can be related to the higher
solubility of metalaxyl (7100 mg L−1) compared to SM (480 mg L−1). In contrast, rainfall
patterns significantly impacted leaching of metalaxyl (P < 0.01), SM (P < 0.05) and Cu (P
< 0.05) during the first rainfall cycle.

Figure 32: Ratios of ponding to leached metalaxyl and SM exports (second rainfall cycle
only, RL2pond/RL2leach). Error bars denote 95% confidence intervals. ”n.a.” denotes the
absence of value when no leaching or ponding water was produced.

Changes in pollutant leaching profiles were visualized by the NMDS ordination of metalaxyl,
SM, Cu and Zn leached loads from the vineyard and the crop soils exposed to the four rainfall
patterns in two successive events (Fig. 33). The ordination showed that leaching profiles
produced by the third rainfall pattern (long-lasting pattern with intermediate intensity;
Table 32) during the first rainfall significantly differed from the other profiles (P < 0.001)
(Fig. 33). The third rainfall pattern induced the largest leached loads for both pesticides
and metals. Amounts of metalaxyl, SM, Cu and Zn leached (i.e., RL1leach and RL2leach)
during the third rainfall pattern reached 44.5 ± 21.5%, 8.1 ± 3.1%, 3.1 ± 0.3% and 2.2 ±
0.2% of the spiked dose, respectively (all systems compounded) (Fig. 34 and 35).

To evaluate the relationship between the leaching profiles (i.e., RL1leach and RL2leach), the
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Figure 33: 2D-NMDS ordination of metalaxyl, SM, Cu and Zn export (RL1leach and
RL2leach) profiles from the vineyard and the crop soils exposed to the four rainfall patterns,
following pollutant aging (A) or not, and after the first and the second rainfall. Vectors that
correspond to experimental variables (rainfall frequency, aging, rainfall intensity, volume and
duration) and significantly correlated with pollutant export profiles are shown (i.e., volume
and cycles). The significance of fitted vectors was calculated by a posteriori permutation
of variables at P < 0.001. Vector arrows were fitted to the NMDS ordination depicting the
direction and magnitude of change of the variable.

rainfall patterns and the soil characteristics, the experimental variables (i.e., soil type, aging,
rainfall frequency, intensity, volume and duration) were fitted onto the NMDS ordination of
pollutant leaching profiles (Fig. 33). The analysis revealed that pollutant leaching profiles
mainly correlated with changes in rainfall volumes and rainfall frequency (P < 0.001). This
emphasizes the impact of rainfall volume on pollutant leaching from the soils. With the
addition of water, the instantaneous sorption equilibria is shifted enabling higher leaching
of pollutants to occur [2]. Overall, the leaching of metals and pesticides from the studied
soils (Fig. 34 and 35) were in agreement with previous observations. For example, while
cumulative leaching of metals from soils three years after their application were lower than 1%
[1], up to 50% was exported from soil columns initially spiked with atrazine and metolachlor
under various conditions to manage leaching losses [51].

On the field, the impact of rainfall patterns on pollutant export from soil matrix also depends
on the rainfall event frequency impacting soil compaction and crusting. Assessing the impact
of rainfall frequency on pollutant export is thus needed to quantify the temporal evolution



72 Chapter 3. Hydrological forcing impact on pesticide export

of export risk.

3.3.3 Impact of rainfall frequency on pollutant export

The same rainfall patterns were applied twice successively on the soil columns at seven
days of interval to investigate the effect of successive rainfalls on pollutant leaching (i.e.,
RL1leach and RL2leach for all soils, freshly spiked and aged systems). The rainfall patterns
had no significant impact during the second rainfall (p>0.1) when comparing the normalized
leaching profiles (%) on the NMDS ordination (Fig. 33). Leaching profiles generated by the
second rainfall (i.e., RL2leach) event differed from those generated by the first rainfall event
(i.e., RL1leach). In particular, rainfall frequency had the highest impact on metalaxyl and
SM leaching (P < 0.0005) compared to Cu and Zn (P < 0.01). Overall, the second rainfall
leached 2.4-, 2.9-, 30- and 50-fold less metalaxyl, SM, Cu and Zn, respectively, compared
to the first rainfall (Fig. 34 and 35). This supports the hypothesis that distinct pools of
pollutants within soil aggregates were mobilized from the soils after a seven days interval
following the first rainfall event.

Figure 34: Experimental (bars) and modelled (points) percentages of metalaxyl and SM
leached (RL1leach and RL2leach) from the freshly spiked and aged (10 days) crop and vineyard
soils after 1 rainfall (cycle 1) and 2 rainfalls (cycle 2) with 7 days of interval. Error bars
denote 95% confidence intervals. ”#” indicates the cluster ”First rainfall - Rainfall pattern
3” of the NMDS ordination. ”n.a.” denotes the absence of value when no leaching water was
produced.

Indeed, the sieved soils used for the experiment had initially no crust, lower bulk density
and higher Ksat values, which likely facilitated water percolation within the soils during the
first rainfall [52], and thus enhanced pollutant mobilization. Soil aggregation is expected to
decrease with successive rainfalls, which can release pesticides trapped on aggregates [17]. In
addition, wet-dry cycles have been observed to increased desorption of metolachlor from soils
by up to a 2-fold factor [17]. However, an opposite trend was observed in our experiment.
Soil compaction occurred after the first rainfall, which likely caused dissociation of soil
aggregates during the first rainfall event by slaking and wetting processes [52]. Dissociation
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Figure 35: Experimental (bars) and modelled (points) logarithms of Cu and Zn leached
(RL1leach and RL2leach) from the freshly spiked and aged (10 days) crop and vineyard soils
after 1 rainfall (cycle 1) and 2 rainfalls (cycle 2) with 7 days of interval. Error bars denote
95% confidence intervals. ”#” indicates the cluster ”First rainfall - Rainfall pattern 3” of
the NMDS ordination. ”n.a.” denotes the absence of value when no leaching water was
produced.

of soil aggregates likely then mobilized pollutants and enhanced pollutant leaching in a single
rainfall. As a result, the occurrence of a pollutant pool available for leaching in a second
rainfall, as previously reported [17], could not be observed in our case. In addition, soil
compaction caused by the first rainfall clearly increased the ponding/leaching ratio in the
second rainfall. This limited pollutants leaching during the second rainfalls and hid the
impact of rainfall patterns on pollutant leaching during the second rainfall events. To some
extent, our setup allowed exploring two extreme situations commonly observed in the field
after 80 - 100 mm of rainfall over three weeks of an agricultural season. While the initial
sieved soil mimicked the beginning of a crop season just after tillage (topsoil with low bulk
density and high Ksat), soil compaction and crusting (especially for loamy soils) following
the first rainfall was similar to that eventually observed in the field after a rainfall depth of
80 - 100 mm [19].

The model fitted well the observations of pollutant leaching without aging (average r2 =
0.80 for the four pollutants, RL1leach), although, for some experiments, it was necessary to
use lower Koc values than those retrieved from the literature (Table 35). This suggests that
the time between pollutant spiking and the beginning of rainfall patterns (about 3 hours)
was insufficient to reach complete sorption equilibrium, which is in agreement with previous
observations [53]. The model could not accurately predict Cu and Zn loads in leaching waters
for the first rainfall event and in ponding water for the second rainfall. This limitation may be
due to the lack of representation in particle transport via erosion but also colloid-facilitated
transport of metals. In addition, the low number of experiments generating Cu and Zn loads
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Table 35: Calibrated Koc used to fit model pesticide and metal exports

Koc, rainfall Crop soil Vineyard soil
[mL g−1] t = 0 day t = 10 days t = 0 day t = 10 days

Metalaxyl 1st 15 14 25 30
2nd 25 25 20 53

SM 1st 63 75 125 200
2nd 125 125 98 196

Cu 1st 248 249 466 933
2nd 784 39 7841 1568

Zn 1st 495 197 93041 933
2nd 49 98951 49 99

limited the ability to evaluate the adequacy of alternative models. While extrinsic factors
(i.e., rainfall patterns and frequencies) clearly controlled the risk of pollutant export from
the soil matrix, intrinsic factors such as soil characteristic and aging process can also enhance
or reduce pollutant mobilization.

3.3.4 Impact of soil characteristics and aging on pollutant export

Although soil type and aging were not predominant factors for pollutant leaching compared
to rainfall patterns and frequency (Tables B1 and 31), Zn and Cu leaching were influenced
by the soil type (P < 0.005) and aging (P < 0.05), respectively. Zn leaching (RL1leach and
RL2leach) from the vineyard soils was 9.4-fold smaller than that from crop soils (Fig. 34 and
35). In contrast, Cu, metalaxyl and SM leaching (RL1leach and RL2leach) from the vineyard
and crop soils were similar.

Larger Zn leaching from the crop soil may reflect both crop soil characteristics and different
Zn speciation in the crop and the vineyard soils. Previous studies on the same vineyard soil
showed that Zn was predominantly associated with the residual fraction (silicate matrix),
secondly to carbonates, followed by organic matter and at last the oxide fraction, regardless
of the soil type, depth or organic matter content [26]. Zn is known to diffuse into interlayers of
silicates [54–56] and also to remain fixed in the soil matrix after its diffusion into carbonates
[8, 57]. Clay and carbonate content of the crop soil were, respectively, 2 and 33 times lower
compared to the vineyard soil (Table B1). Hence, Cu leaching was likely less impacted than
Zn by differences in clays or calcite content among the studied soils.

Based on metalaxyl and SM physico-chemical characteristics and organic matter content of
the crop and the vineyard soils, pesticides can also interact with soil minerals [58]. While
uncharged pesticides, such as atrazine and isoproturon, can sorb onto pure kaolinite [58],
pesticides generally have high affinity with organic matter. When TOC is larger than 0.1%,
organic matter becomes the main sorbent of pesticides in soils [5, 58]. Because organic
matter content was similar in both soils, the soil type likely was not the main factor that
controlled leaching of metalaxyl and SM.

Over time, aging strengthens the association of a chemical with the soil components, thereby
lowering pollutant export with increasing contact time [7]. In our case, the aging phase of
ten days prior to rainfall applications only impacted Cu leaching. Indeed, Cu speciation may
change for the 10-days of aging because the distribution of a freshly applied heavy metal
in soils is expected to follow a multi-steps sorption. First, Cu, and to a lesser extent Zn,
rapidly sorb onto mineral and organic surfaces, which is followed by a slower aging phase,
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characterized by the diffusive penetration or chemisorption of surface-sorbed heavy metals
into soil constituents, such as Fe-oxides, hydrous oxides of Al and Mn, clay minerals, as well
as diffusion or precipitation into carbonates [13, 15]. During aging, Cu most probably under-
went a diffusive penetration and interacted with oxides, clays and carbonates, which slightly
decreased Cu export in the aged experiments compared to the freshly spiked experiments.
The decrease of labile forms in soils over 10 days has been shown to be larger for Cu than for
Zn, while the increase of the Cu reducible fraction mainly corresponded to the Cu associated
with soil oxides [12]. As Zn was mainly associated to clays and carbonates [26], its mobility
did not significantly change during the 10 days aging period. In comparison, a 65% decrease
in Zn leaching was observed after a 63-days aging phase, as it might be remobilized from
exchangeable sites to stronger ones [59].

Aging of metalaxyl and SM occurred differently. In addition to the degradation that pes-
ticides undergo with time, increasing contact time with soils may create stronger bonds to
soil particles [7, 10]. However, metalaxyl and SM had relatively weak affinity for the soils, as
emphasized by Kd values lower than 2 L kg−1 in our soils (estimated based on the foc of the
soils and the respective Koc for each compound. Indeed, Kd values ≥ 100 L kg−1 indicate
strongly sorbed pesticides [60]. The lower apparent Kd values calibrated in the model for the
aged soils compared to those calculated from the Koc values retrieved from databases [29]
emphasizes the low impact of a ten day aging period on pesticides and Zn leaching in the
soil experiments. To determine when rainfall characteristics predominate on soil type and
aging to control pollutant export from topsoil, a longer aging period and a more systematic
investigation of soil types to cover the diversity of agricultural lands may be needed.

3.4 Conclusion

This study revealed the primary influence of extrinsic factors, such as rainfall frequency, rain-
fall duration and volume, on the export by ponding and leaching of organic and inorganic
pollutants from topsoil. The rainfall volumes particularly affected the export of pollutants
during the first rainfall event after their application. The rainfall volumes and rainfall fre-
quency, through their impact on soil compaction, were the main factors controlling pesticide
leaching. Most importantly, the rainfall patterns significantly impacted the leaching of met-
alaxyl, S-metolachlor (SM) and Cu during the first rainfall, in both freshly spiked and aged
soils. One significant implication is that the first rainfall following the field application of
pre-emergence pesticides may be critical for pesticide export. In contrast, soil composition
and aging had a secondary influence on pollutant export from soils. For instance, Cu and
Zn leaching was also controlled by the aging period and the soil type, respectively.

The adequate hydrological functioning of the experimental design was confirmed by simula-
tion of ponding and percolated waters using a parsimonious numerical model. The model
could generally reproduce the mass balance for both metalaxyl and SM leaching in soil. In
field conditions, preferential flow in macropores may additionally increase pesticide trans-
port. As a result, leaching from topsoil of pre-emergence pesticides applied shortly after
tillage on bare soils may represent a specific risk. In contrast, provided that pH and redox
conditions do not dramatically vary, only extreme rainfall patterns may generate significant
metal leaching, as showed here for the long-lasting events with low and intermediate rainfall
intensities. Such rainfall patterns may particularly result in metal leaching at the beginning
of the agricultural season, before soil compaction over the season reduces metal leaching. By
refining the expected exports of pesticides and metals in different conditions, we anticipate
this study to be a preliminary step to more systematically evaluate the impact of rainfall
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patterns and frequency on pollutant export in benchmark soil tests.

References

1. McLaren, R. G., Clucas, L. M., Taylor, M. D. & Hendry, T. Leaching of macronutri-
ents and metals from undisturbed soils treated with metal-spiked sewage sludge. 2.
Leaching of metals. Soil Research 42, 459–471 (June 2004).
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Preface to Chapter 4

In chapter 4 an existing distributed hydrological model (BEACH) was adapted to account for
temperature and water content control of pesticide degradation (hydro-climatic optimums
for bacterial activity) and non-reactive transport of pesticide isotopologues, denoting the
new model Pesticide-isotopes BEACH (PiBEACH). Based on soil data obtained during field
characterization (chapter 2), PiBEACH evaluates the added value of both inclusion of hydro-
climatic controls on degradation and the ability of CSIA to reduce model parameter and
pesticide fate uncertainty. The chapter is a preliminary step towards coupling with an
event-based model to improve pesticide transport predictions during hydrological forcing.
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Chapter 4

Constraining pesticide degradation
in distributed catchment models
with compound-specific isotope
analysis (CSIA)*

Abstract. Predicting pesticide dissipation in distributed physically based models at hydrologi-
cal catchment scale remains challenging, as pesticide degradation kinetics are usually fixed across
space and time. In addition, field data distinguishing degradative from non-degradative pesti-
cide dissipation processes for model calibration are scarce. Here control of degradation half-life
(DT50) by topsoil water content and temperature was introduced in the pesticide degradation
and transport component of a distributed model, and further tested in a 47-ha agricultural catch-
ment. Controlled DT50 values improved predictions of S-metolachlor (SM) degradation across
the catchment and the agricultural season, and decreased prediction uncertainties (i.e., 95% con-
fidence intervals) of top soil pesticide leaching by a factor of 2. In contrast, constant DT50 values,
independent of hydro-climatic conditions, increased prediction uncertainties. Compound-specific
isotope analysis (CSIA) data constrained DT50 values and allowed to validate model predictions
of SM degradation in soil and off-site export from the catchment. SM stable isotope data and
concentrations reduced model equifinality by teasing apart degradative and non-degradative SM
dissipation processes. The range of DT50 values was reduced by a factor 2 when including SM
stable isotope data into the calibration process. Pesticide CSIA data from topsoil collected
weekly across the catchment helped to constrain SM degradation in the PiBEACH model. We
anticipate our results as a preliminary step to develop daily long-term continuous models that
include hydro-climatic control of pesticide degradation. More reliable predictions of pesticide
degradation dynamics at catchment scale may eventually guide pesticide risk assessment and
management practices.

4.1 Introduction

The widespread occurrence of pesticides in surface and groundwater threatens aquatic ecosys-
tems and drinking water supply [1–3]. This situation requires accurate predictions of pes-
ticide dissipation and off-site transport at the agricultural catchment scale. Prediction of

* This chapter is the edited version of: Alvarez-Zald́ıvar, Imfeld, G., Van Dijk, P. and Payraudeau, S.
(Expected 2019). Constraining pesticide degradation in distributed catchment models with compound-specific
isotope analysis (CSIA) Submitted to Env. Sci. & Tech.
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pesticide fate at the catchment scale has improved over the last decades, moving from ap-
proaches relying on pesticide-properties (e.g., refs. 4, 5) to more complex models integrating
hydrological functioning or (bio)chemical dissipation [6–11]. However, discrepancy between
complexity of reactive transport models and field datasets available to calibrate and validate
such models has dramatically increased [12, 13].

Detailed conceptual and physically-based models account for many processes, including pes-
ticide dissipation, each of which is typically described by several parameters [14]. However,
linking pesticide fate parameters obtained under laboratory conditions with field processes
is difficult as the relevance of a given parameter may differ under environmental conditions,
thereby requiring parameter calibration to fit observed data [15, 16]. For instance, the range
of DT50 values (i.e., the time required for 50% dissipation of the parent compound), which
control pesticide concentration in soil and water, are typically derived under laboratory con-
ditions. As a result, DT50 is generally considered as a lumped calibration parameter [17]
grouping degradation across different phases and redox conditions [18], and thus typically
spanning several orders of magnitude [19]. When extrapolated to field conditions other
process-controlling parameters can also influence pesticide concentrations (e.g., KOC , or-
ganic carbon and porosity distributions, etc.). Because of this, model prediction of pesticide
dissipation and off-site transport towards, for e.g., aquatic ecosystems, suffers from field data
limitations to constrain model parameters.

Pesticide concentration at catchment outlet is currently the most accessible information for
modelling pesticide reactive transport at catchment scale. Model prediction has been im-
proved by monitoring pesticide concentration and related transformation products in soils,
runoff or aquifers [20, 21]. However, pesticide concentration data rarely help to disentan-
gle degradative from non-degradative pesticide dissipation processes [2] in open and dy-
namic catchments [22]. This distinction is nevertheless important, as degradation is the
only process, beyond dilution, that contributes to sustainable removal, preventing long-term
pesticide accumulation in environmental compartments. Unlike calibration approaches in re-
active transport models that rely solely on pesticide concentration data, pesticide compound
specific isotope analysis (CSIA) can evidence degradation independently of transformation
products or non-degradative processes [23]. During chemical and biological degradation of
pesticides, molecules with lighter isotopes (e.g., 12C) are degraded at slightly higher rates
relative to their heavier counterparts (e.g., 13C), which results in a kinetic isotope effect
leaving a biochemical imprint in the form of characteristic changes in isotope ratios of re-
acting molecules [23]. In contrast, non-degradative dissipation processes generally do not
result in significant isotope fractionation [24, 25]. Incorporation of pesticide CSIA data in
catchment models bears the potential to reduce uncertainty of pesticide sinks, which result
from compensating effects across competing dissipation processes, as previously shown for
legacy contaminants in aquifers [26].

Pesticide CSIA may thus provide an independent evaluation of in situ degradation to ex-
amine the benefit of hydro-climatic control of pesticide degradation in catchment models.
Incorporation of pesticide CSIA data in a parsimonious lumped model [27] based on trans-
port formulation by travel-time distributions (e.g., refs. 28, 29) has showed recently that
CSIA data can constrain pesticide reactive transport. However, lumped models only provide
an overall hydrological behavior without spatial information, such as soil water content or
temperature, across the catchment [14]. Physically-based distributed models, in contrast,
explicitly represent spatial hydro-climatic dynamics regulating hydrological processes (e.g.,
runoff, infiltration). However, control of hydro-climatic dynamics on pesticide degradation
[30–32] in catchment physically-based models and associated formalisms is currently missing.
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In this context, the purpose of this study was to improve prediction and reduce uncertainty
of parameter ranges controlling pesticide degradation and off-site transport in hydrological
catchment models. Dependence of pesticide degradation on soil hydro-climatic conditions
was integrated in a distributed catchment model using pesticide CSIA data collected in soil
and water. The first objective was to compare a modelling approach including dynamic
control of pesticide degradation by hydro-climatic conditions with a classical approach us-
ing constant DT50 values across the catchment and the growing season. The Bridge Event
Continuous Hydrological (BEACH) model [33, 34], a spatially distributed model simulating
variation of soil water content conditions, was modified to integrate (i) spatio-temporal evo-
lution of soil temperature [35], (ii) temporal variation of soil hydraulic properties based on
a land-use-specific agronomical model [36], (iii) reactive transport of pesticides, (iv) pesti-
cide carbon isotopic fractionation and isotopologue (e.g. 13C and 12C) transport. To address
limitations of degradation parameter constraints in catchment models [16, 37], we then exam-
ined the benefit of incorporating in the calibration phase both soil pesticide concentration
and CSIA data collected at different spatial resolutions (i.e., weekly catchment transects,
weekly composite soil samples and individual plot samples). A unique data set [25] of catch-
ment soil characterization including concentrations and carbon isotope signatures (δ13C) of
S-metolachlor (SM), a widely used and well characterized pre-emergent herbicide [38, 39],
was used to interpret stable isotope fractionation and constrain pesticide degradation. The
generalized likelihood uncertainty estimation (GLUE) technique using Monte-Carlo sampling
was adopted to compare formalism benefits on prediction and parameter identification [40,
41].

4.2 Materials and methods

4.2.1 Field site characterisation

Field data was collected from the Alteckendorf (France) headwater catchment (47-ha) pre-
viously described [20, 25]. Climate and hydrological characteristics are provided in Table
21. Arable land dominates, with corn (18%), beet (70%) and wheat (3%) as the principal
crops (2016). The catchment has a tile drainage system of unknown spatial extent at 0.8
m depth and water flows in ditches to a 50 cm diameter pipe at a single outlet (Fig. S1).
Soil characteristics indicate low spatial variability [36] with a grain size distribution of clay
30.8±3.9%, silt 61.0±4.5%, and sand 8.5±4.2%. Soil composition was CaCO3=1.1±1.6%;
organic matter=2.2±0.3%; pH=6.7±0.8; total soluble phosphorus=0.11±0.04 g kg−1, and
CEC=15.5±1.3 cmol Kg−1. A compacted plough layer was observed between 20 and 30 cm
depth. Farmer surveys, including application date, dose and formulation (Table 41) indi-
cated pre-emergent herbicide applications during mid-April and early-May 2016 containing
S-metolachlor (SM) (active ingredient).

Table 41: Applied mass (Kg) of active ingredient (SM) per transect by date and days since
1st application. Ranges indicates uncertainty of exact application date.

App. No. Date Days North Valley South

A1 March 20 - 25th 0 - 5 5.1 1.6 11.1
A2 April 13 - 14th 25 - 26 8.0 1.8 2.9
A3 May 25 - 31st 67 - 73 7.2 2.4 0.0

Total (Kg) 20.2 5.9 14.0
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4.2.2 Plot and transect soil sampling design

Top-soils (0-1 cm) were sampled at different spatial resolutions (Fig. 4.2.2) and described
previously in chapter 2. Briefly, north, valley and south transects (weekly) and 13 marked
plots (before and at 1, 50 and 100 days after application) targeted SM δC13 in addition to
SM concentrations to evaluate the benefit of SM isotope data to constrain model parame-
terization.
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Figure 41: Transects (weekly) and plot (1, 50 and 100 days) catchment sampling.

4.2.3 Outlet Discharge

Outlet discharge was measured using a Doppler flowmeter (2150 Isco). Automatic, refrig-
erated continuous flow proportional sampling (Isco Avalanche) was conducted at fixed dis-
charge volumes ranging from 50 to 150 m3 in 2016 to capture increasing minimum baseflow
discharges from April to June. To obtain water SM concentrations and carbon isotope sig-
natures (δ13C), composite samples were combined according to hydrograph base-flow, rising
and/or falling limb, yielding volumes ≥ 990 mL.

4.2.4 SM concentration and δ13C analysis

Soil and water SM extraction was detailed in ref. 25. To separate dissolved and particulate
phases, water samples were filtered through 0.7-µm glass fibre filters, then extracted by solid-
phase extraction (SPE) using SolEx C18 cartridges (Dionex R©, Sunnyvale, CA, USA) and an
AutoTrace 280 SPE system (Dionex R©), and quantified by GC-MS/MS (SM) (ThermoFisher
Scientific) [42]. Pesticide extraction and purification for soils were adapted from ref. 43 and
44. Environmental quantification limits for SM were 0.01 µg L−1 water and 0.001 µg g−1

dry weight soils (d. wt.), with an analytical uncertainty of 16%. Carbon isotope composition
of SM was analysed using GC-C-IRMS system by adapting ref. 42 and detailed in ref. 25.
The reproducibility of triplicate measurements was ≤ 0.2o/oo(1σ) for δ13C. Minimum peak
amplitudes needed for accurate δ13C measurements was 300 mV [25] corresponding to about
10 ng of carbon injected on column.
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4.2.5 Model description

The BEACH model generates spatially distributed soil water content conditions based on
daily meteorological records, soil physical properties (e.g., permeability, bulk density, poros-
ity) and crop-specific agronomical information. The Alteckendorf catchment was represented
with a 2 × 2 m resolution and 5-layers (Fig. 42), including a pesticide mixing top-soil layer
(z0=1 cm) [45], a plow layer (z1=30 cm) and a layer controlled by artificial drainage pipes
(z2=50 cm). The water table layer is divided into upper (z3) and lower (z4) water table lay-
ers. Percolation through the vadose zone is routed to outlet as a global linear reservoir [46]
via the bottom-most layer (z4). Depth distribution (zf ) between the two water table layers
is considered as a calibration parameter (z3+z4 = 23.2 m; z3 = 23.2 ·zf ; z4 = 23.2 ·(1−zf )).

z4

z3

z2

z1

z0

IE

P LCH

LF

LMF

RO

ROM

V

SM 

C
13

SM 

C
12

TP

ADR

AMDR

Figure 42: Conceptual 5-layer spatially distributed hydrological and reactive-transport
model.

BEACH was adapted to account for temperature and water content control of pesticide
degradation and nonreactive transport of pesticide isotopologues, denoting the new model as
Pesticide-isotopes BEACH (PiBEACH). To constrain pesticide degradation, stable isotope
fractionation was incorporated by treating compound isotopologues as individual species.
The hydrological balance was previously described in ref. 33 and detailed implementation is
provided in SI-4. Overall, change in soil water content (θ, m3 m−3) at each cell i is given
by:

Z
dθi
dt

= Ri −ROi +∆LFi − Eai − Tai − Pi (4.1)

where, for each component (mm H2O d−1) including the soil column (Z) water content,
rainfall (R), runoff (RO), net cell lateral inflow-outflow (∆LF ), actual evaporation (Ea),
actual transpiration (Ta) and percolation (P).

The pesticide mass balance is given by,

dMi

dt
= Ai −ROMi +∆LMFi − Vi − LCHi −DEGi (4.2)

where, for each mass component (g SM d−1) including the mass applied (A), loss to runoff
(ROM), change due to lateral flux (∆LMF ), volatilization (V), leaching (LCH) and degra-
dation (DEG).
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Mass distribution into the dissolved, adsorbed and gaseous phases follows ref. 47 and detailed
in appendix C.4.1. Partition into the dissolved and adsorbed phases is determined by linear
sorption, considering the organic carbon-water partition coefficient Koc (mL g−1) normalized
by the fraction of organic carbon foc (kg kg−1) in soil, where the pesticide dissociation
coefficient is given by Kd = Koc · foc. Partition into the gas phase is obtained from the
dimensionless Henry constant, Kcc

H = 9.55 ·10−5 for SM [48]. Generalized pesticide mass flux
J (µg d−1) for each model layer is given by:

J = q
x,z

· caq (4.3)

where q is the water flux vector (mm d−1) along the lateral (x) and vertical (z) direction.
For the topsoil layer (z0), runoff and volatilization are also considered such that:

Jz0 = J + caq(ROe
−βRODz0 +

1

ra + rs
) (4.4)

where RO is run-off (mm) and βRO is a calibration constant (1 ≥ βRO¿0) and Dz0 (mm) is
topsoil depth [49]. Volatilization is considered only during the first 5 days after application
[50, 51], and follows ref. 47, where flux across topsoil is regulated by air transport resistance,
ra, (d m−1) and diffusion resistance, rs (d m−1) [47] (derivation details are included in
appendix C.4.2).

Biodegradation is assumed to occur only in bioavailable fractions of adsorbed (ads) and
aqueous (aq) phases [52]. The bioavailable fraction is controlled kinetically by an ageing
rate kage on the adsorbed fraction [53, 54]. Representing SM mass (M) as separate light (l)
and heavy (h) isotopologues, the change in aqueous and adsorbed phases is given by:

∂Mads

∂t
= −kage(M

l
ads +Mh

ads)− kdeg(M
l
ads + αMh

ads) (4.5)

∂Maq

∂t
= −kdeg(M

l
aq + αMh

aq) (4.6)

where kdeg = ln(2)/DT50 and DT50 (days) is the observed degradation half-life. Isotope frac-
tionation is considered through the fractionation factor (α), also expressed as α = ǫ/1000+1,
where ǫ (o/oo) is the characteristic SM enrichment. Although a decrease in degradation rates
may be correlated to depth (e.g., due to microbial activity [27, 55]) or sorption [56], the lack
of SM concentration and isotope data at deeper soil profiles did not allow to consider depth
dependence, and was thus not included. Moreover, SM degradation rates did not decrease
with increased sorption [57, 58], and thus it was considered to be equivalent to the dissolved
phase.

In contrast, to consider the effect of a reduction in pesticide extraction efficiency on the aged
fraction (e.g., due to increasing irreversible sorption over time [56, 59]), a rate kirs (d−1) on
the aged SM mass was given by:
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∂Mage

∂t
= −kirs(M

l
age +Mh

age) (4.7)

Decrease in Mage due to abiotic degradation [60] was not included because SM did not show
significant fractionation after 200 days of incubation under abiotic conditions [25].

To evaluate the benefit of introducing hydro-climatic control on SM degradation, a degra-
dation half-life dynamically adjusted with soil temperature (FT ) and water content (Fθ),
denoted as dynamic DT50, was implemented as follows [31]:

kDynamic = kref · FT · Fθ (4.8)

where kref is the degradation rate constant from biochemical degradation half-life (days)
at reference conditions (kref = ln(2)/DT50,ref ). For the formalism considering constant
dissipation rates, FT and Fθ were equal to 1. For temperature dependence, this formalism
is based on the modified Arrhenius equation for low temperatures [9, 31] such that:

FT =
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(
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)
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exp
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− 1

TK,obs
)
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(4.9)

where TK and TC are soil temperatures in Kelvin and Celsius, respectively and TK,ref is the
reference temperature at 293.15 K. Ea is the SM activation energy (23.91 KJ mol−1)[61] and
R is the gas constant 8.314 (J mol−1 K−1). Influence of water content follows [9, 30]:

Fθ =
( θt
θref

)βθ

(4.10)

where βθ is a calibration constant and θref the water content at 0.2 (m3 m−3).

4.2.6 Model limitations

Plant SM uptake was not considered as no correlation was observed between remaining
mass and crop growth (0 to 40 cm) or surface cover extent [20]. By using a daily time
step, PiBEACH was not designed for accurate simulation of fast flow dynamics, i.e. runoff
genesis and preferential flow [33]. In contrast, PiBEACH targets soil water content dynamics
controlling vertical and horizontal water and pesticides fluxes with daily transit times.

4.2.7 Parameter sampling space

Formalism with DT50 dynamically controlled by hydro-climatic conditions vs. those with
constant DT50 were compared with the generalized likelihood uncertainty estimation (GLUE)
technique [40, 41]. Rather than seeking an optimal model solution, the GLUE approach rec-
ognizes that more than one model structure or parameter set may lead to acceptable model
results, i.e. equifinality [40]). Equifinality is used here to explore the parameter space asso-
ciated to acceptable model representations. Sampling and interpretation was conducted in 3
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steps. First, parameter sets were identified (Table 42), assumed to be uniformly distributed,
and likely boundaries defined based either on literature or field data collected in 2012 and
2016. Second, a posteriori parameter distributions were derived from acceptable simulations,
i.e. providing SM concentration and δ13C predictions closed to field observations. Third,
acceptable model results, e.g. SM export, leaching or remaining mass in topsoil were re-
ported as an ensemble, drawn from the 95% confidence interval obtained from acceptable
simulations.

Due to large computation time (i.e., 2505 CPU sec./ hydrological year on an Intel(R)
Core(TM) machine i7-8650U CPU@ 1.90GHz, 2.11 HGz), via Latin-Hypercube sampling
[62] was used to reduce sample numbers. To reduce the number of parameters during GLUE
analysis, a pre-sensitivity analysis based on the Morris method[62, 63] was conducted (data
not shown). Although the Morris method yields a qualitative indication of relative parameter
importance, it is efficient compared to other sensitivity approaches [64] screening for sensi-
tive parameters [65]. Key parameter ranges retained are presented in Table 42. To further
reduce computation times, the GLUE assessment was focused on the growing period (March
14th to July 12th, 2016), where pesticide degradation and export are of most significance.
Initial hydrological state was estimated from a spin-up period of one full hydrological year
(Oct. 1st, 2015 - Sept. 30th, 2016) and hydrological parameters calibrated against observed
discharge (March 25th and July 12th, 2016) using particle swarm optimization [66].

4.2.8 Model predictability evaluation

To determine model predictability, the Kling-Gupta efficiency (KGE) [67] metric was adopted.
Goodness of fit between simulations and observations are given relative to a maximum effi-
ciency of 1 and given by:

KGE = 1−
√

(r − 1)2 + (αKGE − 1)2 + (βKGE − 1)2 (4.11)

where r is a linear correlation coefficient, αKGE = σi
σo
, and βKGE = µi

µo
, where σ and

µ represent the standard deviation and mean of simulated (i) and observed (o) values,
respectively.

The KGE metric was selected to provide equal weight across correlation, bias and variabil-
ity measures. KGE metric is also an improved measure of model performance relative to
other metrics, such as the mean squared error or the Nash-Sutcliffe efficiency, which fa-
vor parameter values underestimating variance of model results [67]. KGE values where
computed separately for SM concentration and δ13C. To quantify uncertainty reduction be-
tween formalisms, the PUCI (Percentage of observations bracketed by the Unit Confidence
Interval)[68] index was used, which incorporates resolution and reliability measures given by
the ARIL (Average Relative Interval Length)[69] and the PCI (Percentage of observations
bracketed by the Confidence Interval)[70] indices, respectively, such that:

PUCI = (1.0−Abs(PCI − 0.95))/ARIL (4.12)

ARIL =
1

n

∑ CIupper − CIlower

yo
(4.13)
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PCI =
Yo
n

(4.14)

where n is the number of time steps, CI are the simulated upper and lower 95% confidence
intervals, yo is the observed measure, Yo is the number of observations contained within the
95% CI.

4.3 Results and discussion

4.3.1 Benefit of DT50 hydro-climatic dependency

DDT50 dependence on hydro-climatic conditions (i.e. dynamic DT50) yielded lower degra-
dation rates early in the season, compared to the formalism with constant DT50 values.
Based on dynamic DT50 values (Fig. 43 C), lower degradation rates during the first 10 days
corresponded to an early cold and dry period (Fig. 43 D), followed by fluctuating dry and
cold periods until ≈ 50 days after the first application. Comparison of formalisms with a
constant and a dynamic DT50 showed that both formalisms could reproduce SM soil con-
centrations (Fig. 43 A) with equivalent reliability and resolution (PUCI = 0.1), although
constant and dynamic DT50 values significantly differed (Fig. 43 C).A sampling strategy re-
lying only on SM soil concentrations may thus not help to evaluate the benefit of a dynamic
DT50. Equivalent reliability of constant and dynamic formalisms of DT50 values to predict
SM concentrations in soil therefore indicated that degradative and non-degradative processes
compensated each other. In contrast, prediction of stable isotope fractionation of SM with
a constant DT50 was less reliable (PCICon = 0.05) than with a dynamic DT50 (PCIDyn =
0.06), as shown also visually by mean isotope fractionation trends and higher PUCI index
values for the dynamic formalism (∆PUCI = 0.1, Fig. 43 C). Consequently, inclusion of
CSIA data to tease apart degradative and non-degradative SM dissipation processes indi-
cate that prediction of SM degradation with a constant DT50 formalism was overestimated,
whereas prediction of SM off-site transport was underestimated (data not shown).

Altogether, risk assessments relying solely on a concentration-based calibration approach
may yield key parameter ranges that do not reflect actual degradation conditions. In the
presented case for 2016, this would have led to an underestimation of SM off-site transport
immediately following the first SM application on the catchment. Integrating hydro-climatic
control, and possibly other factors (e.g., microbial populations, redox conditions), can thus
help improving prediction of degradation rates under field conditions in spatially distributed
models. Therefore, numerical and conceptual efforts aimed to improve pesticide degrada-
tion representation should include physical and/or biological proxies in their formalisms, as
was considered here for DT50 hydro-climatic dependence. However, such efforts should be
paralleled by inclusion of data constraints that directly reflect in situ degradation extent,
allowing to constrain parameters during calibration [15, 16], thereby reducing uncertainty of
model predictions.

4.3.2 Uncertainty reduction through incorporation of CSIA data

The formalism of hydro-climatic DT50 dependence was considered with a calibration based
on topsoil SM concentration data only (NIC: no isotope constraint), or with both topsoil SM
concentration and SM CSIA data (WIC: with isotope constraint). The DT50,ref (Fig. 44)
was calibrated to obtain a daily dynamic DT50 from hydro-climatic conditions (Eq. 4.8).
For the composite soil (Fig. 44), mean DT50,ref (µ) values were equivalent for calibration
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Figure 43: S-metolachlor (SM) concentrations (A) and δ13C values (B) for observed compos-
ite topsoil soils (i.e., z0) and simulated model ensemble mean and CI’s with dynamic DT50

(n=2,500) and constant DT50 (n=2,500) formalisms between March 14th (day -5, before 1st
application) and July 12th (day 115). Error bars indicate standard deviations. Three appli-
cation periods are indicated as App. 1 (days 0 & 6), App. 2 (day 25), and App. 3 (Days 67 &
74) in panel B. Mean degradation half-life (DT50) for the dynamic and constant formalisms
are shown for the top soil layer (z0) (C). Shaded area in panel C represents 95% confidence
intervals (CI) for effective DT50 from the dynamic formalism. Catchment soil water content
(m3 m−3) and temperatures controlling DT50 (D). Soil temperature is shown as a fraction
relative to maximum seasonal air temperature (Tz/Tair,max), where Tair,max = 27◦C. Ob-
served topsoil layer water content (θobs) represents punctual measurements during weekly
soil sample collection. Error bars represent 95% CI for soil bulk density estimations required
for gravimetric to volumetric conversions.
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with (WIC) and without CSIA data (NIC). However, DT50,ref standard deviations for NIC
calibration were 2 times larger than for WIC calibration (Fig. 44), indicating that CSIA
data significantly reduced pesticide degradation uncertainty.

Constraining degradation uncertainty is necessary because degradation half-lives typically
range several orders of magnitude in the field [19], which may severely bias degradation
estimates when predicting pesticide dissipation. In this respect, low standard deviations
(SD < 5 days) of DT50,ref for WIC calibration suggest that aerobic (14.5 - 21 days [39])
conditions dominated SM degradation in the topsoil layer, whereas anaerobic (23.4 - 62 days
[58, 71]) degradation was less important.

Comparison of calibrated mean DT50,ref values between the composite soil, transects and
plot resolutions showed small differences (< 4 days) (Fig. 44). Similar uncertainty reduction
(i.e., SD) was observed with WIC compared to NIC for the 3 spatial resolutions, indicating
that more detailed spatial soil sampling (i.e., plots > transects > composite sample) did not
contribute to constrain model parameterization for this catchment (47-ha). Hence, pool-
ing transect samples into one composite soil sample for CSIA may constrain degradation
parameters while reducing sampling and analytical efforts.

In addition, incorporation of CSIA allowed identifying isotopic enrichment and potential
degradation mechanism of SM in top-soils. Modelling results yielded ǫ = −2.7 ± 0.6o/oo,
suggesting SN2-reactions (AKIEC = 1.04±0.01) [72]. Although reaction mechanisms agree
with previous inferences for this catchment (see ref. 25), ǫ values used in that study (ǫ =
−1.5±0.5o/oo) may have slightly overestimated degradation extent, albeit within uncertainty
ranges obtained here from the model ensemble. Differences between lab-derived isotopic
fractionation values and modelled values may be due to static water content and temperature
conditions in the lab experiments, providing more stable and possibly better conditions for
microbial development. In addition, oxygen gradients in soil may have resulted in a mix of
aerobic and anaerobic conditions under laboratory conditions. In contrast, oxygen gradients
were unlikely in the top 1 cm of soils, and maximum soil saturation, lower than 0.5 (Fig.
43D), suggesting that aerobic conditions in the field prevailed over time.

In contrast, CSIA data in soil did not reduce uncertainty of KOC values across all soil
sample resolutions. This may be due to pesticide extraction protocols from soil samples,
that account for both the dissolved phase and the extractable sorbed phase [25], and because
sorption generally does not result in significant isotope fractionation [24]. CSIA does not help
evaluate sorption and thus constrain KOC values because isotope signatures for pesticides in
the dissolved and particulate phase of soil samples are generally similar.

4.3.3 Risk assessment metrics

Six metrics to evaluate SM persistence and transport risk from topsoil across the catchment
were simulated with the PiBEACH model. The metrics (Fig. 45) included SM degrada-
tion, remaining bioavailable mass (BAM) in topsoil (i.e. dissolved and reversibly-sorbed
SM), remaining mass of irreversibly sorbed SM (aged), SM off-site transport by leaching,
volatilization, and export to outlet by runoff and drainage since the 1st application day on
March 19th (day 0) to July 12th, 2016 (day 115). For 3 metrics, i.e. degradation, export
to outlet and remaining mass in topsoil, PiBEACH provided estimates close to available ex-
trapolated observations. SM export to catchment outlet (2±6%) estimated with CSIA data
constraints was within an order of magnitude of that observed from March 25th to July 12th,
2016 (0.5±0.1%). Model degradation extent (72±13%) in the last observed bulk isotope
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Figure 44: Distribution (n=2,500) of DT50 calibrated with no isotope constraint (NIC) and
with isotope constraint (WIC) at three sampling resolutions (i.e., composite, transect and
plot soils) for the dynamic formalism. NIC models considered KGESM > 0.5, while WIC
considered in addition KGEδ > 0.8. Statistics for DT50,ref distributions are provided as
mean and standard deviations (µ± SD).

Table 42: Model parameter values retained

Parameter Units Bounds 95% CI Description Source

Layers - 5 - Number of model layers Conceptual
z0 mm 10 - Layer depth Conceptual
z1 mm 300 - ibid. Conceptual
z2 mm 500 - ibid. Conceptual
z3 mm zDat · (zf) - Depth to datum (zDat), upper water table Conceptual
z4 mm zDat · (1-zf) - Depth to datum (zDat), lower water table Conceptual
zf - 0.75, 0.99 0.87, 0.99 z3 and z4 distribution fraction Calibration
cz0z1 d−1 0, 1 0, 1 Lateral flow coefficient [46], z0, z1 Calibration
cz2z3z4 d−1 0, 1 0.2, 0.6 ibid. Calibration
cadr d−1 0, 1 0.03, 0.92 Drainage lateral flow coefficient Calibration
KG d 1100, 3650 1522, 3650 Linear reservoir constant regulating baseflow discharge Calibration
γz0z1 - 0, 1 0.32, 1 log(Ksat) adjustment factor for layer (z) Calibration
γz2z3 - 0, 1 0, 0.81 ibid. Calibration
Ksat,z0z1 mm d−1 112.9, 781.8 - Saturated hydraulic conductivity (adjusted by γ) Agro. model
Ksat,z1z2z3 643.2 - ibid. Agro. model
θWP - 0.19 - Wilting point, all layers; 0.16 ± 0.03 Agro. model
θFC,z0z1 - 0.37, 0.40 - Field capacity, plow layer (0 - 300 mm); 0.37 ± 0.01 Agro. model
θSAT,z0z1 - 0.49, 0.63 - Saturation capacity, plow layer; 0.57 ± 0.04 Agro. model
θFC,z2z3z4 - 0.37 - Field capacity, z ¡ 310 mm depth; 0.37 ± 0.03 Field charac.
θSAT,z2z3z4 - 0.57 - Saturation capacity, z ¡ 310 mm depth; 0.57 ± 0.04 Field charac.
ftransp - 0, 1 0.38, 1 Adjustment factor, transpiration Calibration
fevap - 0, 1 0.1, 0.88 Adjustment factor, evaporation Calibration
pbAgr,z0z1 g cm−3 0.98, 1.36 - Soil bulk density ; 1.17 ± 0.11 Agro. model
pb,z2,z3,z4 g cm−3 1.5 - Soil bulk density, below plough layer; 1.5 ± 0.09 Field charac.
foc kg kg−1 0.01, 0.05 0.01, 0.05 Fraction of organic carbon [20] Calibration
Koc mlg−1 0.3, 16180 0.3, 2000 Adsorption coefficient[20, 73–76] Calibration
Kd mlg−1 0.003, 809 0.003, 76.9 Calibration
βrunoff mm 0, 1 0, 0.4 Calibration constant for runoff mass transfer [49] Calibration
Kage d 0.0002, 0.07 0.0002, 0.005 Ageing rate; mass transfer to non-bioav. frac. Calibration
Kirs d 0.002, 0.01 0.002, 0.009 Rate of irreversible sorption / loss of recoverable fraction Calibration
DT50ref d 1, 50 9.2, 24.9 Ref. degradation half-life Calibration

ǫiso - -4.0, -1.0 -3.47, -1.72 Enrichment factor Calibration
βθ - 0, 1 0.03, 1.0 Constant exponent, degradation factor[30] Calibration
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measure (day 87) was approximately equivalent when compared to the Rayleigh equation
and the model derived ǫ value (day 87, 68±1%). The remaining dissolved and reversibility
sorbed or bioavailable SM mass (BAM), extrapolated from measured soil concentrations and
delimited transect areas (Fig. C2) also fell within the uncertainty range of the model and
was approximately equivalent on the last measurement day (day 115, at 18±3%). Finally,
SM volatilization during the first 120 h (< 1%) was consistent with SM low vapor pressure
(< 1.8 mPa) [77]. However, SM volatilization measured in the field has ranged from 5 to
63% of the applied mass, depending on meteorological conditions [50, 51].

Comparison of 95% confidence intervals for the 6 metrics of SM transport risk indicates
that calibration with both topsoil SM concentration and isotope data reduced uncertainty
at least two-fold at the end of the season (day 115) compared to calibration with topsoil SM
concentration data only. Although mean degradation extent between both dynamic DT50

models was similar at the end of the season (i.e., ∆µ = 1%), uncertainty of degradation
extent calibrated without isotope data was 1.6 times larger. Larger uncertainty of degrada-
tion extent for model calibration without isotope data propagated across other dissipation
processes. Namely, in the NIC model ensemble, this led to overestimations of both mean
and uncertainty ranges of pesticide leaching by approximately a factor of 2. Altogether, the
6 metrics used for pesticide transport risk confirmed that CSIA data reduced uncertainty
of pesticide degradation estimates and other pesticide dissipation processes in distributed
catchment models.

4.3.4 Implications for prediction of pesticide dissipation at catchment
scale

Our study highlighted that hydro-climatic control of DT50 values under an uncertainty frame-
work bears potential for guiding pesticide management practices by providing more reliable
assessment of pesticide degradation and transport at the headwater catchment scale. Firstly,
potential users, including farmer advisors and water agencies, expect tools to accurately pre-
dict pesticide off-site transport to design preventive and curative actions, in a context of
increasing pressure of agricultural activities on ecosystems. Secondly, considering hydro-
climatic factors on pesticide degradation is particularly relevant in a context of climate
change, subject to changing daily rainfall and temperature patterns [11]. Thirdly, determi-
nation of risk assessment metrics often requires the use of probability and confidence intervals
(CI) [78, 79]. As such, to support management decision, modelling approaches should sys-
tematically integrate an uncertainty framework to analyze range of likely parameter value
ranges that can be expected to describe pesticide transfer risk.

This study also addressed an important discrepancy between the potential complexity that
reactive transport models can accommodate on the one hand and the available field datasets
for their calibration and validation on the other. Namely, although representation of the re-
lationship between hydro-climatic factors, biogeochemical conditions and degradation extent
and pathways have progressed significantly over the last decades, they are nevertheless in
some cases over-simplified in 2D catchment models [15], or not made explicit in others [80].
When more complex, physically- or biologically-based representations of degradation across
the catchment are included, additional data to identify valid parameter value ranges while
reducing model uncertainty is required. Our results suggest that pesticide concentration
data alone may not be sufficient to support future developments to improve model represen-
tation of pesticide degradation, for example, by including dynamics of microbial diversity
and biomass on biodegradation extent [81].
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Figure 45: Pesticide dissipation processes and associated ensemble mean from 5,000 sim-
ulations. 95% confidence intervals (CI) with isotope constraints (WCI) without isotope
constraints (NIC) are depicted in blue and purple, respectively. All metrics are reported as
percent of applied cumulative masses for the entire catchment after the first day of applica-
tion on March 19, 2016. Final values of dissipation processes (µWCI and µNIC ± 95% CI)
are provided on day 115.
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Consequently, complementary datasets, including pesticide CSIA data [2, 82], may help
disentangling degradative vs. from non-degradative processes. By providing evidence of in
situ degradation independent of transformation products, pesticides CSIA may open the
door to novel field-based investigations and applications to close pesticide mass balances and
validate models. Even a moderate sampling effort including CSIA data, i.e. weekly sampling
of mixed topsoil samples across the catchment, may be sufficient to identify hot spots and
hot moments of pesticide degradation at the catchment scale. As the field of pesticide CSIA
continuous to develop, for example, though the development of multi-element CSIA, more
reliable evaluation of pesticide degradation and constraining competing pathways [82] will
allow for more detailed degradation accounts.
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Preface to Chapter 5

Addressing the last objective of this thesis, the following chapter introduces the first steps
required in coupling of PiBEACH with the existing open source Limburg Soil Erosion Model
(LISEM). Based on insights from chapter 2 (i.e., leaching soil column experiments), selection
of longer duration events but with lower intensity are also included resulting in observed
improvements in the representation of hydrological components. Preliminary results of the
coupled model’s ability to represent outlet SM concentrations and δ13C are presented and a
discussion of model limitations and potential improvements is provided.
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Chapter 5

Pesticide persistence and transport
at the headwater catchment scale:
coupling continuous and
event-based models

5.1 Introduction

Headwater catchments are upland landscapes estimated to contribute to as much as 90%
of a river’s flow [1, 2], making them vital sources of water supply, biodiversity hotspots [3]
and key regulators of downstream water quality [4]. Despite their value in providing ecosys-
tem services [5], the remoteness of headwater catchments may explain that they are often
overlooked in management and policy [3]. However, diffuse pesticide pollution originating
from agricultural headwater catchments can affect larger river-basin scales [6]. Therefore,
improvement of reactive transport models at this under-studied scale is a prerequisite to
address and predict pesticide concentration dynamics and associated toxicity downstream in
relation to hydrological conditions.

Headwaters are typically small (0 - 1 km2) and ubiquitous [4], making them ideal open system
laboratories for validation and application of new reactive transport models. Indeed, at this
scale system inputs and outputs can be readily identified with low uncertainty, for example,
through direct measurements and surveying. Relative to plot-level study scales, headwaters
introduce an increased level of complexity, allowing to infer and integrate impacts of spatial
heterogeneity, such as land-use and hydrological connectivity, on catchment hydrological
functioning [7]. From a societal view point, headwater scales also provide an opportunity
to evaluate predictive tools intended, for example, to aid farmer advisors in the design of
preventive pesticide export management strategies [8]. Such tools may thus facilitate the
design of preventive (e.g., reduce pesticide applications) [9] and curative (e.g., artificial buffer
zones) strategies [10] to mitigate pesticide transfer from sources to vulnerable receptors.

A principal challenge for modelling pesticide fate and transfer at the headwater catchment
scale is the need for models capable of accounting for hydrological and pesticide fate processes
that are relevant at distinct temporal and spatial scales. On the one hand, there is a need
to account for dynamic spatial state variables (e.g., soil hydraulic properties and pesticide
pool availability) that depend on the long-term impacts of hydro-climatic or soil biological
processes (e.g., rainfall patterns, temperature, microbial biomass and functions). On the
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other hand, models that account for spatial heterogeneity of agricultural landscapes [7],
hydrological connectivity [11] and farm management practices [12] are needed for a detail
account of rapid flow and associated transport processes, in particular during periods of high
transfer risk. Therefore, models capable of integrating both long-term, continuous and event-
base hydrological scales should contribute to both the improvement of pesticide transfer risk
science and the design of preventive and curative environmental land management strategies.

Distributed, physically based models can be suitable candidates for this task [13], as they can
account for a large number of physical processes such as impacts of agricultural changes and
feedbacks between hydrological and chemical processes at various time-scales [7]. However,
such models are often criticized as over-parameterized and compensation effects between
multiple parameters may lead to uncertain model solutions due to limited constraints of
adopted formalisms with available data [14, 15]. Indeed, model validation at the catchment
scale is still limited by the lack of available measurements in general [16], including data
linking processes-based sinks. Indeed, although there has been a large number of models
developed over the last two decades (e.g., refs. [7, 17–20], only a few can integrate spatially
distributed processes relevant for pesticide degradation and transport at both continuous
(e.g. seasonal) and event (e.g., minutes to hours) scales (e.g., HSPF and MIKE SHE)
[17, 21–23]. Existing available models however, are limited in their potential for upscaling
from headwater to larger watershed catchments over continuous time-scales due to the long
computation times required to solve their numerical schemes. Furthermore, development
of these codes to incorporate alternative formalisms is generally challenged due to their
proprietary nature.

Recent developments in the ability to evaluate pesticide fate by compound specific isotope
analysis (CSIA) [24, 25] provides an opportunity to reduce model uncertainty of remaining
source pesticide pools and transport by linking isotope fractionation to degradation extent.
During chemical transformation, lighter isotopes (e.g., 12C) exhibit lower activation energy,
generally resulting in faster reaction times relative to their heavier counterparts (e.g., 13C).
This leads to an enrichment of the heavier isotope in the non-degraded pesticide fraction
remaining in environmental samples [26]. In contrast, concentration based assessments can-
not determine the extent of degradation that a contaminant has undergone between sources
and receptors in the field. This is the case because mass balance accounts can often not
be closed, as pesticide transformation products can be numerous, are often not known/not
quantifiable or can be further degraded.

In this context, this study addresses the need to integrate and link at different time-scales
relevant pesticide fate processes in headwater catchments in a modelling framework. The
specific objectives were to: (i) couple a computationally efficient distributed model capable
of simulating continuous processes (PiBEACH) with a distributed event-based model, the
Limburg Soil Erosion Model (LISEM) capable of detailed representation of rapid pesticide
export via runoff and erosion [27] to evaluate improvements of pesticide transport prediction
in headwater catchments by combining temporal scales (event and growing season), and;
(ii) to evaluate the use of CSIA to constrain and validate dominant water pathways useful
in identifying prevailing zones of pesticide mobilization affecting stream water quality. To
bridge the need for improved degradation constraints in pesticide fate models at multiple
time-scales, this study makes use of a unique data set of catchment soil and outlet samples
including concentrations and carbon isotope signatures (δ13C) [25] of S-metolachlor (SM),
a widely used and well characterized pre-emergent herbicide [28, 29]. Finally, to ensure
propagation of model parameter uncertainty, and thereby allowing the use of such a tool
to associate risk assessment metrics to confidence intervals (CI) for management decision-



104 Chapter 5. Coupling continuous and event-based models

making (Beven1993, Song2015), the generalized likelihood uncertainty estimation (GLUE)
technique using Monte-Carlo sampling was adopted [30, 31].

5.2 Material and methods

5.2.1 Field site characterization

Field data was collected from the Alteckendorf (France) headwater catchment (47-ha) pre-
viously described in refs. 32 and 25. The catchment has a tile drainage system of unknown
spatial extent at 0.8 m depth and water flows in ditches to a 50 cm diameter pipe at a single
outlet (Fig. ). A compacted plough layer was observed between 20 and 30 cm depth. Arable
land dominates, with corn (18%), beet (70%) and wheat (3%) as the principal crops in 2016.
Soil characteristics indicate low spatial variability [12] with a grain size distribution of clay
30.8±3.9%, silt 61.0±4.5%, and sand 8.5±4.2%. Soil composition was CaCO3=1.1±1.6%;
organic matter=2.2±0.3%; pH=6.7±0.8; total soluble phosphorus=0.11±0.04 g kg−1, and
CEC=15.5±1.3 cmol Kg−1. Farmer surveys, including application date, dose and formula-
tion (Table 22) indicated pre-emergent herbicide applications during mid-April and early-
May 2016 containing S-metolachlor (SM) (active ingredient).

5.2.2 Plot and transect soil sampling design

Top-soils (0 - 1 cm) were sampled at different spatial resolutions, including transects and
individual farm plots, and described previously in ref. 25. Briefly, north, valley and south
transects (weekly) and 13 marked plots (before and at 1, 50 and 100 days after application)
targeted SM δ13C in addition to SM concentrations to evaluate the benefit of SM isotope
data to constrain model parameterization.

5.2.3 Outlet Discharge

Outlet discharge was measured using a Doppler flowmeter (2150 Isco). Automatic, refrig-
erated continuous flow proportional sampling (Isco Avalanche) was conducted at fixed dis-
charge volumes ranging from 50 to 150 m3 in 2016 to capture increasing monthly baseflow
discharges from April to June. Summary climate and hydrological conditions are provided in
Table 21. Although subsurface travel times for this catchment have been estimated to range
from 6 to 12 months [24], the time of concentration (TC), defined as the time between the
start of rainfall minus evapotranspiration and the resulting peak discharge [33], decreased
from 2.2 to 0.5 h (Table 21). Soil crust development was generally observed across the catch-
ment after around 100 mm of cumulative rainfall. A reduction in the soil infiltration capacity
due to observed sealing and the progressive increase in mean daily and total monthly rainfall
likely contributed to the observed decrease in the catchment’s TC .

5.2.4 SM concentration and δ13C analysis

Soil and water SM extraction was detailed in ref. 25. To separate dissolved and particulate
phases, water samples were filtered through 0.7-µm glass fibre filters, then extracted by solid-
phase extraction (SPE) using SolEx C18 cartridges (Dionex R©, Sunnyvale, CA, USA) and an
AutoTrace 280 SPE system (Dionex R©), and quantified by GC-MS/MS (SM) (ThermoFisher
Scientific) [34]. Pesticide extraction and purification for soils were adapted from ref. 35 and
36. Environmental quantification limits for SM were 0.01 µg L−1 water and 0.001 µg g−1

dry weight soils (d. wt.), with an analytical uncertainty of 16%. Carbon isotope composition
of SM was analysed using GC-C-IRMS system by adapting ref. 34 and detailed in ref. 25.
The reproducibility of triplicate measurements was ≤ 0.2o/oo(1σ) for δ13C. Minimum peak
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amplitudes needed for accurate δ13C measurements was 300 mV [25] corresponding to about
10 ng of carbon injected on column.

5.2.5 Sub-daily sample treatment

To obtain water SM concentrations and carbon isotope signatures (δ13C), composite sam-
ples were combined according to hydrograph base-flow, rising and/or falling limb, yielding
volumes ≥ 990 mL. Samples extending across multiple days were assumed to carry equal con-
centrations. Sub-daily samples were extrapolated based on proportional volume contribution
to daily sample, such that:

C̄s =

∑S
s=1 V ols · Cs
∑S

s=1 V ols
(5.1)

Sub-daily cumulative samples with duration lower than 90% of the day were omitted from
the daily observations.

5.2.6 Coupling event choice

Selection of events to couple with LISEM were made based on three criteria, including
qualitative observations for daily discharge simulated by the uncoupled model PiBEACH,
days with cumulative rainfall >10 mm and the ability to constrain the event-based model
with concentration and/or isotope data. Event model duration was determined as <5 hrs to
reduce simulation run times, resulting in simulation of 11 coupled events.

5.2.7 Continuous model description

Use of the Bridge Event Continuous Hydrological (BEACH) model [37] and its adaptation
for pesticides persistence and transport prediction (PiBEACH) were described previously
(See chapter 4.2.5 and Appendix C.2). Briefly, the continuous PiBEACH model generates
spatially distributed soil water content conditions based on daily meteorological records, soil
physical properties (e.g., permeability, bulk density, porosity) and crop-specific agronomical
information. The Alteckendorf catchment was represented in PiBEACH with a 2 × 2 m
resolution with 5-layers (Fig. 42), including a pesticide mixing top-soil layer (z0=1 cm)
[38], a plow layer (z1=30 cm) and a layer controlled by artificial drainage pipes (z2=50
cm). The deeper layer with variable saturation depth was divided into upper (z3) and lower
(z4) sublayers. Percolation through z3 is routed to outlet as a global linear reservoir [39]
via the bottom-most sublayer (z4). In terms of hydrological processes, only information
from the mixing layer (z0), plow layer (z1) and drainage layers (z2) were transferred to
the LISEM event-based model as a two-layer hydrological model, where z0=31 cm and z1=
50cm. Therefore, only the upper layers (z0 to z2) where considered in the LISEM event-based
model as its scope was the representation of runoff processes.

The PiBEACH model accounts for temperature and water content control on pesticide degra-
dation and nonreactive transport, as previously described (See chapter 4). Biodegradation
is assumed to occur only in bioavailable fractions of adsorbed (ads) and aqueous (aq) phases
[40]. The bioavailable fraction is controlled kinetically by an ageing rate kage on the ad-
sorbed fraction [41, 42]. Representing SM mass (M) as separate light (l) and heavy (h)
isotopologues, the change in aqueous and adsorbed phases is given by:
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∂Mads

∂t
= −kage(M

l
ads +Mh

ads)− kdeg(M
l
ads + αMh

ads) (5.2)

∂Maq

∂t
= −kdeg(M

l
aq + αMh

aq) (5.3)

where kdeg = ln(2)/DT50 and DT50 (days) is the observed degradation half-life. Isotope frac-
tionation is considered through the fractionation factor (α), also expressed as α = ǫ/1000+1,
where ǫ (o/oo) is the characteristic SM enrichment. Although a decrease in degradation rates
may be correlated to depth (e.g., due to microbial activity [24, 43]) or sorption [44], the
lack of SM concentration and isotope data at deeper soil profiles did not allow to consider
depth dependence, and was thus not included. SM degradation extent did not decrease
for reversibility sorbed fraction [45, 46], and thus it was considered to be equivalent to the
dissolved phase.

Degradation half-life was dynamically adjusted with soil temperature (FT ) and water content
(Fθ), and give as [47]:

kDynamic = kref · FT · Fθ (5.4)

Where the temperature dependence factor (FT ) is based on the modified Arrhenius equation
for low temperatures [47, 48] such that:

FT =















0, if, TC ≤ 0
TK,obs−273.15

5 exp
(

Ea
R ( 1

TK,ref
− 1

TK,obs
)
)

, if, 0 < TC ≤ 5

exp
(

Ea
R ( 1

TK,ref
− 1

TK,obs
)
)

, if, TC > 5

(5.5)

where TK and TC are soil temperatures in Kelvin and Celsius, respectively and TK,ref is the
reference temperature at 293.15 K. Ea is the SM activation energy (23.91 KJ mol−1)[49] and
R is the gas constant 8.314 (J mol−1 K−1). Influence of water content (Fθ) follows [48, 50]:

Fθ =
( θt
θref

)βθ

(5.6)

where βθ is a calibration constant and θref the water content at 0.2 (m3 m−3).

5.2.8 Event-based model description

Hydrological model. The open source code version (4.96) of the Limburg Soil Erosion Model
(openLISEM) [51], a physically based runoff and soil erosion model for event-based pre-
dictions in small agricultural catchments (<10,000 ha), was initially modified to include
pesticide transfer in the dissolved phase [52]. In this Ph.D. thesis work, pesticide isotopo-
logues were considered as individual species. Water partitioning between infiltration and
surface runoff was calculated with the Green and Ampt equation solved explicitly [53] such
that:
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qinf = −Ksat

(

1 +
(ψ + h)(θsat − θi)

F

)

(5.7)

where qinf is the infiltration rate (m s−1), Ksat is the saturated hydraulic conductivity (m
s−1), F is the cumulative infiltration from the beginning of the event (m), ψ is the average
matrix suction at the wetting front (m), h is the overpressure depth of the water layer
at the soil surface (m), θsat is the saturated water content (-), and θi is the initial water
content (-). The maximum depression storage in the micro-relief was estimated based on
an empirical equation from ref. 54. Once the maximum depression storage was exceeded,
runoff was generated. Erosion detachment was generated by rainfall splash based on rainfall
kinetic energy [55] and/or overland flow. Flow detachment was calculated with a stream-
power based transport capacity based on the EUROSEM formalism [56]. Sediment traps
were considered to represent vegetal barriers as, observed within the catchment. The flow
velocity was calculated with the Manning equation, and surface runoff was routed over the
landscape with the 1D kinetic wave equation [57]:

∂A

∂t
+
∂Q

∂x
= qsur (5.8)

where Q is the discharge (m3 s−1), and A is the wetted cross-section (m2), x and t are the
spatial (m) and temporal (s) localizations and qsur is the infiltration surplus (m2 s−1). The
relationship between A and Q is given by:







A = αQβ

α
[

n√
S
P 2/3

]β (5.9)

where n is the Manning coefficient (-), S is the sine of the slope gradient (-), P is the
wetted perimeter (m) and β is a constant (0.6). Equations 5.7 and 5.8 indicate that the
compensation in rainfall-runoff model parameters may occur in one cell during the water
partitioning between runoff and infiltration (eq. 5.7) or spatially between the cells during
the transport step (eq. 5.8).

Differentiation and combination of eq. 5.8 and 5.9 gives the implicit numerical scheme (eq.
5.10) solved using a Newton backward-difference method [57]:
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∂t + ∂Q
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−Qn+1

i

∆x = qsur, with Q̄ = 1
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(

Qn+1
i +Qn

i+1

) (5.10)

where n is the current time-step, n + 1 the end of the time step, i the upstream side of
the grid cell, i + 1 the downstream side of the gird cell, Qn+1

i+1 the new discharge (m3 s−1),

Qn+1
i the new discharge at the upstream end of the grid cell, equivalent to the sum of all

incoming upstream water generated by the kinematic wave (m3 s−1), Qn
i+1 the discharge of

the previous time-step outflowing the grid cell (m3 s−1) Q̄ the diagonal average discharge
in a space time diagram (m3 s−1), q the average infiltration surplus over the length of the
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grid cell (m2 s−1). At each time step, the grid cells were re-arranged in order to start the
flow calculation at the top of the branches of the drainage network and progress towards the
outlet, using as input for the downstream grid cell the sum of the discharges of the upstream
grid cells at the end of the time-step.

Transport equations (water and sediment) are solved in one dimension and routed from up-
to down-stream over a predefined flow network that connects cells in 8 directions (quasi
2D). For each predicted runoff event, the initial surface soil characteristics, hydrodynamic
parameters and initial water content (Table 51) were required for the hydrological predictions
with LISEM and were provided by the continuous PiBEACH model.

Pesticide transfer model. As a future objective is to predict solid-bound pesticide transport,
consistency with the numerical scheme used to solve the sediment and pesticide transport
equations was targeted. Before computing the kinematic wave, splash, flow detachment and
sediment deposition were solved separately based on rainfall intensity and updated velocity
calculated with effective rainfall depth. Erosion procedures give an intermediate sediment
concentration noted C* (calculations not detailed here) [52]. Suspended sediment in runoff
is then routed using a similar equation as equation 5.11. The equations are analogous for
each isotopologue. Taking the light carbon isotope (12C) as example:

∂Q12C,S

∂x
+
∂C12CA

∂t
= 0 (5.11)

where Q12C,S is the sediment flux (kg s−1) associated to the light isotope and C12C the
sorbed concentration (kg m−3) of the light isotope.

Pesticide mobilization at the soil/surface runoff interface was predicted by assuming that a
very thin layer (i.e., mixing layer) at the soil surface exists where water from infiltration,
runoff and soil pore mix instantaneously [58]. Pesticide loss below the mixing zone was con-
sidered as a sink term and distributed further by the daily model. The governing equations
describing heavy and light isotope transport in runoff are given as an example for 12C by:



























1
∆x

(

∂AC12C
∂t +

∂Q12C,p

∂x

)

= Kfilm(C12C,M − C12C,ro)− qinfC12C,ro

θsatDz0,ML
∂C12C,M

∂t =

Kfilm(C12C,ro − C12C,M ) + qinf (C12C,ro − C12C,M )−Dz0,ML · ρbkr(KdC12C,M − C12C,ad)

∂C12C,ad

∂t = kr(KdC12C,M − C12C,ad)

(5.12)

where Q12C is 12C-specific flux (kg s−1), A the wet cross section (m2), qinf the infiltration
rate (m s−1), Kfilm the film transport coefficient (m s−1), kr the rate of desorption (s−1), Kd

the soil water partition coefficient (m3 kg−1), C12C,ro the pesticide concentration in runoff
(kg m3), Caq,12C,M the pesticide concentration in the soil water of the mixing zone (kg m3),
C12C,ad the adsorbed pesticide mass per dry unit weight of soil in the mixing zone (kg kg−1),
θsat the soil porosity (m3 m−3), Dz0,ML the mixing layer depth (m) and ρb the soil bulk
density (kg m−3).
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5.2.9 Coupling continuous and event-based models

Selection of coupled events resulted in three types of coupling routines (Fig. 51) required
to account for events that fall within the boundaries of one simulated PiBEACH day (Type
1), events that fall between the boundaries of two simulated PiBEACH days (Type 2) and
events that take place within two consecutive simulated PiBEACH days (Type 3). Two or
more events taking place within the boundaries of one simulated PiBEACH day were not
observed and thus not included within the coupling routines. Information exchange between
PiBEACH and LISEM is depicted by input and output states depicted with circles denoted
as 1, 2 and 3 (Fig. 51) across routines.

To prepare rainfall input files, rainfall allocated to event-based simulations with LISEM
were subtracted from daily rainfall input files for the continuous model. At the end of
each continuous PiBEACH model simulation period, initial conditions for the event-based
simulation were produced Table 51.

Suction pressure (ψ) was determined from moisture and suction pressure from Alteckendorf
data soil core samples (n = 6, 2 m depth) obtained during 2012 [12] and the re-arranged
Van Genuchten 1980 equation, such that [60]:

ψ =
1

a

[

(θsat
θi

)1/m
− 1

]

(5.13)

Parameters to solve eq. 5.13 were fitted using the Microsoft excel GRG Nonlinear solver.

Output files of the LISEM event-based model incorporated into the PiBEACH continuous
model included cumulative infiltration and total discharge to outlet, pesticide mass losses
from the mixing layer (z0) due to leaching and export via runoff and mass inputs to the
mixing layer due to runoff re-infiltration (Table 51). The results provided in the next sections
focus on improvement of PiBEACH prediction on discharge, SM concentration and δ13C by
integration of infiltration and discharge generated by LISEM. The full coupling with LISEM,
i.e. dissolved heavy and light isotopologues leached and transported under dissolved and
sorbed phases with runoff is under current progress.

Table 51: PiBEACH output maps required for LISEM initial conditions

Output map Units Description Notes

Ksat, z0,z1 mm hr−1 Saturated hydraulic conductivity Adjusted by calibrated by γz0,z1
Ksat, z2 mm hr−1 ibid Adjusted by calibrated by γz2
thetaz0,z1 mm3 mm−3 Volumetric soil moisture
thetaz2 mm3 mm−3 ibid
thetasat, z0,z1 mm3 mm−3 Soil moisture at saturation capacity
thetasat, z2 mm3 mm−3 ibid
rr cm Random roughness Only for the mixing layer (z0)
n - Manning’s coefficient ibid.
LAI m2 m−2 Leaf area index
ψz0,z1 cm Suction pressure at the wetting front. a = 6.458, m = 0.007, n = 5.563
ψz2 cm ibid a = 3.452, m = 0.007, n = 5.890
M l

z0,z1 g SM Mass of light isotope Only for the mixing layer (z0)

Mh
z0,z1 g SM Mass of heavy isotope ibid.
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Figure 51: Coupling routines for events taking place within PiBEACH day boundaries (Type
1), at a BEACH boundary (Type 2) and over consecutive PiBEACH days within boundaries
(Type 3). Output and input states exchanged between PiBEACH and LISEM are depicted
as circles. These include PiBEACH output state files required to re-initialize PiBEACH
after LISEM run (state 1), PiBEACH output state files required to initialize LISEM (state
2), and LISEM output states required as additional inputs to correct PiBEACH day on
re-initialization (state 3).
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5.2.10 Parameter sampling space

Hydrological and transport parameters were evaluated with the generalized likelihood un-
certainty estimation (GLUE) technique [30, 31]. Rather than seeking an optimal model
solution, the GLUE approach recognizes that more than one model structure or parameter
set may lead to acceptable model results, i.e. equifinality [30]). Equifinality is used here to
explore the parameter space associated to acceptable model representations. Sampling and
interpretation was conducted in 3 steps. First, parameter sets were identified (Table 42),
assumed to be uniformly distributed, and likely boundaries defined based either on literature
or field data collected in 2012 [32] and 2016 [25]. Boundaries for DT50ref (15 to 23 d) and
ǫ (-1.7 to -3.2o/oo) where set based on retained model distributions from previous GLUE
simulation experiments in chapter 4. Second, a posteriori parameter distributions were de-
rived from acceptable simulations, i.e. providing SM concentration and δ13C predictions
closed to outlet observations. Third, acceptable model results, e.g. outlet discharge and SM
concentrations δ13C were reported as an ensemble, drawn from the 95% confidence interval
obtained from 2500 and 171 simulations for the uncoupled and coupled models, respectively.

Due to large computation time (i.e., 7515 CPU sec./ hydrological year on an Intel(R)
Core(TM) machine i7-8650U CPU@ 1.90GHz, 2.11 HGz), via Latin-Hypercube sampling
[61] was used to reduce sample numbers. To reduce the number of parameters during GLUE
analysis, a pre-sensitivity analysis based on the Morris method[61, 62] was conducted in
chapter 4 (data not shown). To further reduce computation times, the GLUE assessment
was focused on the growing period (March 14th to July 12th, 2016), where pesticide degra-
dation and export are of most significance. Initial hydrological state was estimated from a
spin-up period of one full hydrological year (Oct. 1st, 2015 - Sept. 30th, 2016) and hydro-
logical parameters calibrated against observed discharge (March 25th and July 12th, 2016)
using particle swarm optimization [63].

5.2.11 Model predictability evaluation

To determine model predictability, the Kling-Gupta efficiency (KGE) [64] metric was adopted.
Goodness of fit between simulations and observations are given relative to a maximum effi-
ciency of 1 and given by:

KGE = 1−
√

(r − 1)2 + (αKGE − 1)2 + (βKGE − 1)2 (5.14)

where r is a linear correlation coefficient, αKGE = σi
σo
, and βKGE = µi

µo
, where σ and

µ represent the standard deviation and mean of simulated (i) and observed (o) values,
respectively.

The KGE metric was selected to provide equal weight across correlation, bias and variabil-
ity measures. KGE metric is also an improved measure of model performance relative to
other metrics, such as the mean squared error or the Nash-Sutcliffe efficiency, which fa-
vor parameter values underestimating variance of model results [64]. KGE values where
computed separately for SM concentration and δ13C. To quantify uncertainty reduction be-
tween formalisms, the PUCI (Percentage of observations bracketed by the Unit Confidence
Interval)[65] index was used, which incorporates resolution and reliability measures given by
the ARIL (Average Relative Interval Length)[66] and the PCI (Percentage of observations
bracketed by the Confidence Interval)[67] indices, respectively, such that:
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PUCI = (1.0−Abs(PCI − 0.95))/ARIL (5.15)

ARIL =
1

n

∑ CIupper − CIlower

yo
(5.16)

PCI =
Yo
n

(5.17)

where n is the number of time steps, CI are the simulated upper and lower 95% confidence
intervals, yo is the observed measure, Yo is the number of observations contained within the
95% CI.

5.3 Results and discussion

5.3.1 Outlet discharge and hydrological components

Simulated outlet discharge (Fig. 52) showed generally good agreement with observed data
for both models, with maximum KGE values for the uncoupled (PiBEACH) and coupled
(PiBEACH-oL) models of 0.75 and 0.74, respectively. In terms of predictive resolution (i.e.,
with of CI) measured by the ARI index, approximately equivalent performance is obtained
between the uncoupled (1.51) and coupled (1.52) models. The reliability of interval estimates
(i.e., number of observations within the CI) measured by the PCI index on the other hand
is greater for the coupled (0.89) relative to the uncoupled (0.83) model. Combination of
both performance indices into the PUCI index, higher combined accuracy and reliability is
obtained for the coupled (0.62) vs. the uncoupled (0.58) model.

Although both models generally do well in predicting daily discharges, the coupled model
is better account for individual hydrological components. In particular, the PiBEACH-oL
coupled model allocated a larger percentage of total discharge to artificial drainage (75%)
relative to the uncoupled model (65%). The opposite was also true for runoff, where the
uncoupled model allocated a higher percentage (15%) relative to the coupled model (5%). A
tendency to overestimate runoff generation in the uncoupled model was due to simplifying
assumptions of the SCS-CN approach. Namely, based on the SCS-CN approach, when total
daily rainfall is able to saturate the first 31 cm of the soil profile, the remaining rainfall is
routed to outlet through runoff (without re-infiltration). In this respect, the daily time-step
misses important information about the distribution of rainfall intensity throughout the day,
leading to overestimation of runoff due to an inability to account for actual soil infiltration
rates. This is in agreement with field observations. Indeed, the development of shallow soil
trenches associated to sediment transport during runoff was only observed after the 1st week
of May (≈ 55-60 days after 1st application). High infiltration rates may occur both during
the early season, where recently tilled soils increase soil permeability, as well as during the
late season, where drier initial conditions may increase infiltration rates. Accounting only for
saturation capacities within the daily model, therefore leads to wrong predictions of runoff
events (false-positive) both during the early (Fig. 53A) and late (Fig. 53B) season for these
reasons. More accurate representation of runoff genesis by the PiBEACH-oL coupled model
also leads to higher infiltration amounts, generating smoother catchment drainage rates that
more closely approximate observed discharge (Fig. 52).
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Figure 52: Simulated mean vs. observed daily outlet discharge for the uncoupled PiBEACH
(top) and coupled PiBEACH-oL (bottom) model. Shaded area depicts 95% confidence in-
tervals (CIs) for the model ensemble. 95% confidence intervals (CI) where computed based
on 312 (out of 2500) and 5 (out of 171) retained number of simulations with KGEQ >0.5 for
the uncoupled and coupled models, respectively.
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Figure 53: Runoff and drainage components contributing to total daily discharge (observed)
during the early (A & C) and late (B & D) season periods. Shaded area depicts 95%
confidence intervals (CIs) for the model ensemble and computed based on 312 (out of 2500)
and 5 (out of 171) retained number of simulations with KGEQ >0.5 for the uncoupled and
coupled models, respectively.
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Figure 54: Simulated and observed outlet SM concentrations and carbon isotope signatures
(δ13C) for early and late season periods. Shaded area depicts 95% confidence intervals (CIs)
for the model ensemble and where computed based on 312 (out of 2500) and 5 (out of 171)
retained number of simulations with KGEQ >0.5 for the uncoupled and coupled models,
respectively.
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5.3.2 SM outlet concentrations and δ13C

Both models can generally reproduce outlet SM concentrations and isotope signatures during
the early season (Fig. 54). However, predictability of both models markedly falls after
50 days following the first application. This is primarily associated to tail-end periods of
catchment drainage, which are unable to reproduce the export of pesticide pools reflecting
little degradation extent (i.e., see days: 50, 80 and 95). Note that this is not the case for the
main run-off event around day 85 for the uncoupled model, which correctly accounted for
likely fresh pesticide pools at high concentrations from top soils from a late season application
on corn plots (late May to early June). Note that the current version of the coupled model,
does account for run-off mass transfer to outlet.

The above observations indicate on the one hand, the need to account for mass transfer to
outlet via run-off within LISEM. On the other hand, there is a potential need for conceptual
improvement in the representation of degradation rates with increasing depth. Namely,
reducing the effective degradation depths at lower depths could reflect lower bacterial activity
or less degradation potential due to varying redox conditions. Such a representation may lead
to an accumulation of non-degraded pesticides in lower soil profiles, which is mobilized only
during extended periods of catchment drainage. Degradation rates may decrease with depth
(e.g., due to microbial activity [43]) or sorption [44], due to the lack of SM concentration
and isotope data at deeper soil profiles. However, depth dependence was not considered
in current degradation formalisms, and was thus initially not accounted. Indeed, to better
constrain additional model complexity, characterization of outlet samples during low-flow
should be of significant interest, allowing to constrain background conditions of the studied
catchment.

5.3.3 Implications for prediction of pesticide transport at catchment
scale

Pesticide fate in the environment is affected by multiple processes, each with a relative
importance depending on the intrinsic and extrinsic factors considered. Extrinsic factors,
such as rainfall patterns and application periods [68, 69], may dominate export from soils
within relatively short periods at the event-scale. In contrast, intrinsic factors, such as soil
and pesticide properties regulating sorption or degradability, may be more relevant over
extended periods at the continuous-scale. Accounting for the relative contribution of each
factor towards total dissipation typically then requires the use of numerical methods to
compute competing impacts and non-linear interactions between relevant variables [13].

Although pesticide fate models typically specialize on one of the above mentioned time scales,
simultaneous scale representation is necessary to address the need to reduce initial model
boundary uncertainty evolving daily (e.g., soil hydraulic properties, available pesticide pools)
[12, 15], while maintaining detailed physical process representations relevant over seconds or
minutes [17, 70]. Coupling approaches such as those developed here under PiBEACH-oL and
applied at the headwater scale can thus become useful tools to investigate different scenarios
of pesticide fate process with greater detail.

Firstly, by improving infiltration-runoff partition at the event-scale, leading to better ac-
count of hydrological components at the outlet, the coupled model showed that drainage is
much more frequent than runoff especially early in the growing season. Therefore, drainage
plays an essential role in connecting source soils with stream concentrations and isotope sig-
natures. Secondly, based on isotope signatures observed at the outlet, the improved ability
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of the coupled model to reproduce higher rates of delayed drainage highlight the need to
identify additional formalisms to explain the sustained potential of headwaters to release
non-degraded pesticide fractions. Both of these observations have implications for sampling
design. Namely, flow-proportional sampling strategies may not be sufficient to characterize
pesticide exports at these scales. As such, water sampler units could thus be programmed
to automatically switch-on/off at pre-defined discharge thresholds, with continuous propor-
tional flow only accounted for above such thresholds. Alternatively, with similar sampler
capacities used in the study, a weekly servicing protocol may not be ideal, as capacities
where often reached shortly after major events, thereby reducing the number of observations
obtained during periods of delayed drainage.

The use of coupling approaches presents an opportunity to more quickly assess the effec-
tiveness of pesticide management strategies, such as mitigation of transfer through artificial
drainage [71]. Indeed, models such as MACRO have been previously employed for this spe-
cific task (e.g., [9, 72]). To address the uncertainty associated to transferring parameter
values from laboratory to field conditions, such approaches typically employ a well justi-
fied stochastic analysis. While statistical descriptions of spatially distributed parameters
allow to determine correlations between, for example, soil organic matter content and mo-
bility or degradation constants [73, 74], they are limited in terms of describing causality and
mechanistic linkage. In contrast, the added value here was the ability to relate degradation
parameter values (i.e., during continuous modelling) to observed fractionation extent of the
pesticide under study. The constraint of in situ degradation conditions can thus lead to a
reduction of parameter uncertainty, as shown in chapter 4, and simultaneously be used to
assess the validity of degradation formalisms or the relevance of distinct water pathways.

Combination of temporal scales (event and growing season) through the coupled model
allowed for a stream-line assessment of pesticide degradation and export at the catchment
scale, removing the need to calibrate initial conditions for each individual hydrological event.
This has important implications for pesticide field assessments, as PiBEACH-oL provides
a trade-off between parsimony and complexity that can be employed to improve prediction
of pesticide degradation and transfer at various scales. Namely, stream-lining was achieved
through the integration of agronomical knowledge linking temporal evolution of key topsoil
hydraulic properties with climatic conditions, soil properties, vegetation, and crop manage-
ment techniques [12]. This did not only improve initial event-based model constraints, but
also allowed to constrain top soil degradation formalisms by making use of CSIA informa-
tion. This implies that whenever pesticide degradation is assumed to be a primary sink over
seasonal scales, PiBEACH (i.e., without -oL) can be used as a stand-alone model to con-
strain top soil degradation parameters based on hydro-climatic conditions and CSIA data.
This allowed to reduce simulation run-times by a factor of 3, which is valuable for predic-
tive assessments employing an uncertainty framework. As coupling nevertheless, increases
simulation run-times, larger catchment scale studies could therefore benefit from a simi-
lar step-wise assessment, consisting first of a top-soil degradation assessment (PiBEACH),
followed by a water pathway and subsurface degradation assessment (PiBEACH-oL).

5.3.4 Model limitations and perspectives

Preliminary results from coupling efforts demonstrated the ability of PiBEACH-oL to im-
prove the description of water pathways and their evolution throughout the growing season,
progressing from drainage- to runoff-driven export within the studied catchment. Although
run-off contribution to total outlet pesticide loadings was small, current LISEM development
does not account for pesticide mobilization through run-off or solid particulate transport,
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which is currently ongoing development, and may be expected to not only contribute to out-
let signatures but also affect re-distribution of pesticide mass across the catchment through
runoff generation and re-infiltration, thereby also affecting drainage response.

Limitations of the coupled model were also noticeable during mid-season (i.e., after day 50),
where discharge dominated by the tail-end components of catchment drainage is not able
to reproduce isotope signatures that reflect fresh product fractions. Indeed, rapid trans-
port connecting macropores to artificial drains is not accounted for in the model, although
this phenomenon may be of particular importance in clayey soils [75]. Conceptualization of
the late drainage component could also be improved, for example, by limiting the drainage
network extent, helping to achieve a less pronounced discharge curve associated to lower
drainage rates (i.e., both lower maximums and higher minimums). This could in turn in-
crease soil water content, resulting in additional leaching fractions from top-soils and poten-
tially improving outlet signatures associated to delayed transfer from top-soils via drainage
components.

Alternatively, degradation conditions below top soils currently do not account for possibly
lower degradation rates (e.g., [24, 47, 76]), which could be associated to a significant re-
duction in pesticide concentrations with depth and reducing redox conditions, both of which
could potentially contribute to a shift in dominant degradation pathways (e.g., co-metabolic,
anaerobic). Indeed, SM degradation rates have been observed to be positively correlated with
organic matter content [46], the latter of which slightly decreased with depth. Therefore, fur-
ther evaluation of degradation formalisms or process hypothesis could include further testing
for different transformation rates on sorbed fractions [77], rate dependencies associated to
increasing depths [24, 47, 76] or bioavailability limitations associated to the heterogenous
distribution of degrading bacteria in subsurface transport paths [78]. Unfortunately, without
additional mechanistic information evidencing a change in dominant degradation pathways,
which may be obtained in the future using multi-element CSIA, such approaches may nev-
ertheless suffer from similar drawbacks of existing models, therby limiting the ability to
constrain additional parameters based on available data.
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Chapter 6

General discussion

The overarching goal of this work was to investigate pesticide degradation and transport at
different temporal and spatial scales, with the specific objective of improving representation
and prediction of pesticide persistence and reactive transport at the catchment scale. Figure
61 provides a visual summary of the work conducted during this Ph.D. thesis based on two
principal investigation axes: characterization and modelling. Each axis moves from small
laboratory-based work towards larger catchment scales. Increasing scales correlate with
increasing complexity and heterogeneity level, represented on a third, vertical axis.

Moving away from the origin of Fig. 61, laboratory experiments where conducted to in-
vestigate the impact of intrinsic and extrinsic factors on pesticide export (characterization
axis). This was supported by a parsimonious model, helpful to validate the soil column
experimental setup and the leaching formalism that can be adopted at the catchment scale
(modelling axis). A second small-scale pesticide soil degradation experiment (characteriza-
tion axis) provided supporting information to make interpretation of degradation extent at
the more complex catchment scale possible. The data set obtained from this laboratory char-
acterization study was then employed to develop the catchment models. The combination of
both scales and investigation methods (i.e., experimental and numerical) finally allowed to
demonstrate not only the value of pesticide CSIA as a monitoring technique at catchment
scale, but also its ability to reduce uncertainty of degradation parameter range controlling
pesticide pools available before the onset of major hydrological events. Altogether, this Ph.D.
work has therefore contributed to advance current understanding of the potential value of
and limitations from the application of pesticide CSIA as both a monitoring technique for
headwater catchments and data constrain for predictive modelling.
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Figure 61: Approaches (characterization and modelling) employed and physical scales (lab
and catchment) investigated during this Ph.D. work.

6.1 Characterizing pesticide fate under unsteady
hydrological conditions

Determination of the relative contribution of pesticide export, degradation and persistence
to total pesticide dissipation under field conditions remains a significant challenge for water
resource management as in situ evidence of the extent of each of these processes is difficult
to obtain under dynamic environmental and hydrological conditions. Typically, characteri-
zation approaches (i.e., methods used to describe likely processes controlling pesticide fate)
involve the use of pesticide physico-chemical properties and persistence constants obtained
from defined laboratory conditions under closed-systems. Extrapolation of this information
to field conditions, thus requires adjustments that indirectly account for potential measure-
ment errors [1, 2] and the relative importance that extrinsic factors, such as temperature
and hydrological regime fluctuations, can have on each dissipation process. Quantification of
parallel processes contributing to pesticide dissipation at a specific site (or even under well-
defined systems [3]) will then typically require numerical modelling followed by parameter
calibration or inverse techniques, which may nevertheless be subject to significant uncer-
tainty [4, 5]. However, without the use of complementary techniques providing a multiple
lines of evidence approach (e.g., [6]), current uncertainties associated with pesticide fate de-
termination in hydrological systems will likely continue to challenge efforts to achieve the
sustainable management of our water resources [7].
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To improve on this limitation, chapter 2 demonstrated the applicability of high resolution
carbon-based CSIA to evidence degradation extent as a primary dissipation process in top
soils, thereby improving descriptions of pesticide transfer within a realistic environmental
monitoring context. While CSIA has been successfully implemented to evidence degradation
in subsurface environments for legacy contaminants [8, 9] and nitrate source apportionment
in surface waters [10, 11], its application to evidence pesticide degradation has been limited.
Application of pesticide CSIA information to describe degradation in unsteady hydrological
systems was first implemented by Lutz et al. [12], making use of plot runoff and catchment
outlet water signatures to constrain a model based on travel time distributions. Despite lim-
ited CISA observations (i.e., due to observed low environmental sample concentrations), the
study found that models considering constant degradation half-lives could lead to catchment-
wide overestimations of degradation extent, and thus overly optimistic expectations of envi-
ronmental protection. Missing information from different catchment areas however, limited
the ability of this first study to corroborate whether observed outlet signatures could be used
to determine catchment-wide degradation extent.

Validation of this hypothesis, and demonstrating the value of pesticide CSIA as a monitoring
approach, was conducted in chapter 2 by comparing CSIA soil and outlet data with infor-
mation derived from mass balance accounts and typically reported reference half-life ranges
for SM. First, bulk soil and outlet δ13C showed comparable trends across time, indicating
that outlet signatures can be used as a proxy for catchment-wide degradation extent as-
sessments [13], thereby reducing the need for more extensive sampling efforts. Reduction of
sampling effort may be of value, for example, where monitoring resources are limited and
where complementary lines to evidence degradation are sought to support pesticide persis-
tence assessments. Second, estimation of degradation extent in top soils, based on a typical
field half-life for SM, was found to over-estimate degradation (relative to CSIA-based in-
terpretation) early in the season. This indicated that degradation extent errors from fixed
degradation half-lives may be associated to depth-dependencies [12] as well as to variations
in degradation rates across space and time. Third, the use of CSIA measurements in top soils
allowed to not only reduce degradation uncertainty margins relative to literature-reported
half-life ranges but also to derive estimations of top soil losses from remaining mass con-
centrations. This is of particular relevance for field studies involving numerical approaches,
as it provides an opportunity to directly constrain not only parameters controlling pesticide
persistence, but also parameters controlling export through leaching and runoff processes
[14–16].

Some limitations for the use of pesticide CSIA at catchment scale however, are worth not-
ing. Although outlet CSIA may be used as a proxy to monitor catchment-wide pesticide
degradation, the variability of outlet signatures, and the fact that signal detection is more
likely shortly after fresh applications (i.e., due to higher concentrations), may lead to under-
estimations of degradation extent. This tendency may be especially pronounced under lower
hydrological sampling resolutions and/or where tardive applications are made in areas with
high hydrological connectivity. Therefore, tracking catchment wide degradation via outlet
monitoring may, to a certain extent, be restricted to headwater scales, where: (i) variabil-
ity in degradation conditions across space, as regulated by soil characteristics, temperature
fluctuations and local hydrological conditions, is low, and (ii) likely critical source areas (i.e.,
with high hydrological connectivity) can be identified. In most cases, estimations of degrada-
tion extent are expected to be conservative as an overestimation of pesticide degradation at
the catchment scale is unlikely. This has important implications for applications of pesticide
CSIA at river and larger catchment scales and is discussed further in the following chapter.
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A second limitation of the current monitoring capabilities of pesticide CSIA under unsteady
hydrological conditions is the focus on single element isotopes, as it was done for carbon
during this work. Indeed, additional insights on mechanisms of bond cleavage, can be ob-
tained by secondary elements such as nitrogen, hydrogen or chlorine [17]. Such insights
may be used to identify main degradation pathways, which may have implications on the
appropriate choice of enrichment values during field interpretation if different mechanisms
are involved during contaminant transformation [18] and/or if bioavailability limitations are
expected to reduce apparent enrichments [19].

However, the opportunity to obtain a multi-element data set was challenged by quantification
limits from environmental samples. In fact, although analytical development for nitrogen
isotopes was conducted [20] and environmental signatures targeted during the field charac-
terization campaign, only 7 water samples at environmental concentrations ≥ 7 µ g L−1 with
sample volumes of 0.8 - 2.5 L could be obtained. In terms of the chosen volumes for extrac-
tion, the objective during this work was to seek information relevant to the sub-event scale,
so as to characterize the catchment’s dominant pesticide transport routes. This required a
continuous water sampling strategy involving aliquot breakdown according to hydrograph
characteristics (base-flow, rising and/or falling limb). This strategy thus limited collection
of sufficiently large water volumes during each forcing event to derive a high-resolution data
set also including a secondary element (Fig. 62). While sensitivity at low concentrations
was the primary limitation in waters, matrix effects precluded clear signal determination of
nitrogen signatures in all soil samples, even in soils with highest concentrations (≈ 8 µg g−1

soil dry wt. for sampled masses of 5 g of soil). This illustrates the need for improved extrac-
tion methods in complicated matrices like soils. In contrast to pure or laboratory enriched
microbial cultures, such improvements may then be useful to understand the influence of
environmental factors on degradation pathways and respective enrichments.

Figure 62: Sampled volumes with refrigerated automatic sampler unit. Isolines depict vol-
umes and environemntal concentration requirements for combined mass balance (MB) and
multi-/single-element CSIA.
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The field of isotope fractionation investigations is however, continuously expanding and im-
provements in strategies for enrichment and clean-up from matrix-interfaces or instrument
sensitivity can be expected from future achievements [21]. Such improvements allowing for
multi-element CSIA, should lead to identification of dominant degradation pathways and
better understanding of transformation bottlenecks. This is of relevance as, in some cases,
bacterial strains with identical enzymatic reactions, may exhibit different rate-limiting steps
during contaminant transformation. This may then lead to differences in isotope fraction-
ation extents and potential estimation errors of degradation extent despite identical enzy-
matic reactions [22]. In this respect, combined understanding of both dominant pathways
and strain-specific rate-limiting steps, may facilitate information transfer from laboratory to
field conditions, thereby reducing uncertainty for interpretation of field CSIA data.

Better understanding of degradation processes may also assist during environmental mon-
itoring design of chiral molecules, although effective enantiomer separation could not be
achieved in this work for metolachlor. At least 25% of current pesticides worldwide are chi-
ral molecules [23], whose degradation in soils may be enantioselective [24, 25], resulting in
changes in enantiomer concentrations displaying different levels of toxicity [26]. The combi-
nation of CSIA and enantioselective analysis techniques, i.e., enantioselective stable isotope
analysis (ESIA), may also provide evidence of pesticide transformations [27]. For example,
in cases where only one enantiomer may be associated to isotope fractionation, enrichment
may be masked if enantiomer isotopologues are not evaluated independently [28]. On the
other hand, targeting enantiomer fractionation instead of or in addition to isotope frac-
tionation may prove advantageous. For example, active transport through cell membranes
during degradation of phenolic acid herbicides (i.e., the rate-limiting step in this case) has
been observed to lead to significant enantiomer fractionation while masking instead isotope
fractionation [29]. Understanding of rate limiting steps in this context is thus of impor-
tance to derive accurate interpretations of degradation extent under field contexts. Finally,
understanding of dominant degradation pathways and its associated fractionation extent,
whether enantiomeric or isotopic, may not only facilitate interpretation of observed field
dissipation, but also help develop and validate quantitative structure activity relationship
(QSAR) models useful for the prediction of previously unstudied compounds [30].

6.2 Lab-scale experiments to support pesticide CSIA
characterization & modelling

Lab-scale experiments conducted during this Ph.D. work provided supporting information
that enabled both field interpretation (chapter 2) and conceptual development of the catch-
ment scale model (chapter 4). On the one hand, data from soil microcosm degradation ex-
periments at various temperature and moisture conditions over a period of 200 days, allowed
derivation of characteristic enrichments by relating carbon fractionation extent to concentra-
tion decrease via the Rayleigh equation. In contrast, analogous experiments conducted under
abiotic conditions over the same period showed no significant isotope fractionation, indicat-
ing that observed SM dissipation was primarily driven by biodegradation. The derivation
of enrichment factors therefore allowed to obtain first estimations of field SM degradation
extents based on observed carbon isotope signatures and independently of transformation
products.

Indeed, low pesticide concentrations typically observed under field conditions may challenge
interpretations based on ǫ values derived under laboratory conditions under high concentra-
tions, as bioavailability transfer limitations may lead to changes in observed ǫ values [19].
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In addition, at low-concentrations pollutants in general, may degrade co-metabolically [31],
involving different enzymes, and therefore reflecting distinct ǫ values. However, when mul-
tiple bacterial strains are involved in degradation, similar effects can be expected even at
high concentrations for the same enzymatic reaction [22]. As one of the primary objectives
of these microcosm experiments was the transferability to field conditions, spiked concen-
trations (2.5 µg SM g−1 soil dr. wt.) were designed to be comparable with those typically
observed in the field (≈ 5 µg SM g−1 soil dr. wt.) shortly after application. Although this
does not exclude bioavailability restrictions or co-metabolic processes (e.g., towards the end
of the observation period), the equivalent concentration ranges in both field and laboratory
experiments, as a rule of thumb, were expected to lead to similar enrichment values. As
noted previously, soil matrix effects precluded determination of isotope fractionation of a
secondary element (nitrogen in this case), limiting our ability to confirm that the primary
degradation pathway in soil microcosms was also responsible for degradation in field top-
soils. Microcosm experiments where however, prepared from the same catchment tops soils.
Assuming that the experimental set-up allowing for aerated conditions was sufficient to repli-
cate field-conditions, it is then likely that similar bacterial communities where responsible
for the observed enrichment. This latter aspect could be evaluated in future studies using
laboratory-derived variables for interpretation of field data. Nevertheless, it remains plausi-
ble that, for example, due to fluctuations in temperatures, changes in organic carbon, and/or
better oxygen diffusion in field top-soils through rainfall and microbial community evolution
may have differed. Therefore, to further corroborate the validity of enrichment values from
microcosm experiments, additional information such as that which could be obtained from
microbial gene sequencing, may serve as supplementary line of evidence for such studies in
the future [32, 33].

To assist conceptual development of the catchment scale model presented in chapter 4,
chapter 3 investigated the impact of extrinsic (i.e., rainfall frequency and intensity) and
intrinsic (i.e., soil characteristics, pesticide properties) factors in controlling pesticide export
during rainfall events. It was observed that pesticide mass transfer to ponding water dur-
ing the experiment was low, representing, for example, 0.2 ± 0.1% of the initial mass for
SM, while leaching dominated export across all modalities. The model generally fitted well
observations of pollutant leaching, although, for some experiments, it was necessary to use
lower Koc values than those found in the literature, suggesting insufficient contact time (3
h) to reach sorption equilibrium [34]. Altogether, these results indicated on the one hand,
that simulation of leaching by linear sorption, and considering only chromatographic flow
could be sufficient to approximate pesticide losses from top soils in the continuous catchment
scale model. On the other hand, the low Kd values found during the leaching experiment
(e.g., SM: 63-200 L kg−1) however, did not permit constraining likely upper bounds for Koc,
thereby encouraging exploration of a wide range of values through Monte Carlo sampling
when implementing the catchment scale model.

Single flow domain (chromatographic flow) models have been previously regarded as a lim-
itation when considered as a sole transport mechanism during field studies [35]. Indeed,
although top soil observations were well represented by the continuous model, simulated
concentrations and isotope signatures at the outlet were generally poorly fitted. Further-
more, although relative improvements were made by coupling PiBEACH with LISEM, the
most evident weaknesses of the coupled model was still its ability to represent slow flow and
mass export by drainage. Failure to observe such limitations during the soil column exper-
iment were likely associated to the dimensions considered (i.e., 21 cm3 of top soil), which
could not accurately account for field scale heterogeneity [36, 37]. Therefore, potential im-
provements to the conceptual catchment model may be envisioned and are further discussed
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in Chapter 7.

Despite the limitations of the soil column experiment, the need to calibrateKsat values during
the second rainfall demonstrated the importance of rainfall impacts on changes in top soil
hydraulic properties (Ksat, ρb, θ). While the initial sieved soil mimicked soil characteristics
at the beginning of a crop season just after tillage (topsoil with low bulk density and high
Ksat), soil compaction and sealing (especially for loamy soils) following the first rainfall was
similar to that which may eventually be observed in the field after an accumulated rainfall
depth of 80 - 100 mm [38]. The change in hydraulic properties may be likely due to soil
aggregate breakdown and clogging of larger pores [38, 39], but also to soil compaction by
slaking and wetting [40]. Temporal change of these properties may be important factors
to account for during modelling at catchment scale. These observations therefore motivated
consideration of changes in characteristics CN numbers [41] within the PiBEACH continuous
catchment model, from soils with general good permeability (type A) shortly after tillage,
to poorly drained soils (type C) based on observed cumulative rainfall depths >80 mm.
Although infiltration-runoff representation through the CN number would be replaced by
the Green & Ampt method during coupling [42], considering of a dynamic CN significantly
improved outlet discharge for the continuous model.

Finally, a key finding from the soil column experiments was the importance of extrinsic
factors (i.e., rainfall frequency and intensity) controlling pesticide export. Rainfall patterns
showed not only that the first rainfall is important, as generally observed in the field [43, 44],
but also that long-lasting rainfalls, even if not of highest intensity, largely control pesticide
leaching. In contrast, relative differences in pesticide export between vineyard and crop soils
for synthetic pesticides were small, highlighting that soil composition and aging had only
a secondary influence on pollutant export from soils compared to extrinsic factors. These
observations contributed to the selection of candidate events to be coupled with LISEM.
Although LISEM is specialized in reproducing runoff and erosion processes associated to
intense rainfalls, the decision to couple also events with long-lasting rainfalls led to improve-
ments in representation of leaching extent, which were otherwise under-estimated by the
uncoupled model. Altogether, and despite its noted limitations, the lab-scale soil columns
demonstrated an added value towards the design of larger scale conceptual approaches by
evidencing changes in soil hydraulic properties and by highlighting the impact of rainfall
volumes and frequencies on pesticide leaching.

6.3 Modelling pesticide fate at catchment scale using CSIA
data

A review of current numerical models [45–49] indicated the need for explicit account of
the evolution of distributed state variables (e.g., soil physical properties, moisture condi-
tions and pesticide pools) to improve pesticide fate predictions at catchment scale. Defining
parameter values that control the evolution of such state variables however, is subject to
uncertainty. In the case of pesticide pools available across space and time, for example,
observed hydro-climatic variability may imply a departure from idealized laboratory condi-
tions under which reference parameter values, such as degradation and mobility constants,
are obtained. Accounting for uncertainty in numerical representations of pesticide fate can
capture potential sources of variability affecting the reliability of pesticide degradation and
transfer predictions. Therefore, efforts to minimize it is of importance.

Predicting pesticide dissipation in distributed models at catchment scale however, remains
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challenged, as degradation kinetics are usually artificially considered to be fixed across space
and time. This challenge is further compounded by the scarcity of field data that is able
to distinguish between degradative from non-degradative dissipation, limiting validation
of more complex numerical formalisms. By making use of concentration and CSIA data
for catchment top soils presented in chapter 2, chapter 4 introduced the development of
PiBEACH, a continuous distributed catchment scale model capable of accounting for hydro-
climatic controls (i.e., soil water content and temperature) on pesticide degradation. By
making use of top soil carbon CSIA data, improvements in the constraint of hydro-climatic
conditions regulating degradation rates was possible. This led to a reduction of uncertainty
(i.e., reduction of confidence intervals) not only in terms of reference DT50 values, which in-
dicated dominance of aerobic degradation conditions, but also in terms of dilution processes
such as topsoil leaching.

The value of CSIA as a complementary line of evidence is not only useful as a model valida-
tion and uncertainty reduction tool, but is also valuable for its ability to account for envi-
ronmental in situ conditions. This should be of particular interest, as the ability to integrate
in situ conditions into model predictions may facilitate evaluation of plausible fast and/or
profound environmental disturbances associated to, for example, climate change scenarios
(e.g., droughts and rainfall patterns) or changes in natural ecosystem services (e.g., altered
soil microbial diversity) [50]. Within the context of this Ph.D. work, additional information
regarding the validity of ǫ values derived from laboratory microcosm experiments could be
obtained from field CSIA. Namely, although microcosm degradation allowed to make field
degradation extent inferences during field characterization (chapter 2), ǫ values derived from
such experiments (-1.4 to -1.8 o/oo) were obtained under a specific set of environmental con-
ditions. In contrast, evaluation of isotope fractionation through PiBEACH, indicated larger
absolute ǫ values (-1.7 to -3.5) pointing to potential degradation over-estimations from field
characterization assessment (chapter 2) based on data from microcosm experiments. In ad-
dition, the mean reference half-life obtained from PiBEACH results was almost half (16 -
20 d) of those observed in the microcosm experiments (28 - 41 d), the latter suggesting
a range of aerobic-anaerobic to anaerobic conditions [51] and indicating potential aeration
limitations during microcosm tests. In situ degradation modelled in field top soils on the
other hand, was likely not affected by poor aeration due to enhanced oxygen input into the
soil matrix from dissolved oxygen in rain-water. A second indication of the limitation of
the microcosm experiment to characterize aerobic degradation rates was further observed
during PiBEACH calibration. Indeed, when treating both top-soil and outlet isotope data
simultaneously, mean reference half-lives increased to values comparable to those observed
during the microcosm experiments (≈ 30 d, simulations not shown), indicating a compen-
sating effect between two distinct reactivity areas. These observations suggests, on the one
hand, an important limitation in the continuous model to account for different reactivity
zones simultaneously, as observed by Lutz et al. [12]. On the other hand, they also suggest
an opportunity to improve field characterization interpretations by modelling microcosm ex-
periments to better characterize and validate experimental set-up. For example, simulation
of microcosm experiments accounting for oxygen diffusivity across the soil profile, could be
used to more clearly delineate conditions under which derived enrichment factors remain
valid. Potential design for such modelling and experimental set-up as well as inclusion of ad-
ditional microcosm modalities to improve field interpretation are presented in the following
chapter.

The improvement of degradation constraints controlling available pesticide pools in contin-
uous catchment scale models is also a preliminary step in the development of more accurate
event-based models. From a societal view point, the development of predictive event-based
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tools, may aid farmer advisors and state agencies in the design of good agricultural manage-
ment practices [52]. Through identification of field hot-spots, for example, such tools may
facilitate the design of both preventive (e.g., reduced pesticides applications) [53] and cura-
tive (e.g., artificial buffer zones) strategies [54] to mitigate pesticide transfer from sources to
vulnerable receptors. Within this context, tracking isotope signatures of available pools in
top soils may then be of further use to improve representation of transport pathways con-
tributing to stream pollution. As noted above however, limitations observed in the ability of
the developed continuous model, PiBEACH, in chapter 4 to simulate outlet concentrations
and isotope signatures, indicates a need to improve accounts of transport processes during
hydrological forcing. To address this need, chapter 5 coupled PiBEACH with an existing
distributed open source model, the Limburg Soil Erosion model (LISEM) [55], capable of
detailed representation of rapid pesticide export via runoff and erosion. Insights from the im-
pact of rainfall patterns investigated in chapter 3, allowed to identify candidate rainfall events
to include during evaluation of the coupled model, PiBEACH-oL. That is, although LISEM
is specialized in reproducing runoff and erosion processes associated to intense rainfalls, soil
column experiments showed that long-lasting rainfalls, even if not of highest intensity could
be of primary importance for pesticide export through leaching. An appropriate trade-off
however, needed to be found between improvement in transport representation and simula-
tion run times, as each candidate event to be simulated by LISEM, required a reduction in
model time-step size down to seconds (i.e., max 10 s) significantly increasing simulation run
times.

Preliminary results of combining temporal scales (event and growing season) through the
coupled model demonstrated the ability of PiBEACH-oL to improve the description of water
pathways and their evolution throughout the growing season, progressing from drainage-
to runoff-driven export within the studied catchment. Significant limitations of the coupled
model are most notable during mid-season (i.e., after day 50), where discharge dominated by
the tail-end components of catchment drainage is not able to reproduce isotope signatures
that reflect fresh product applications. This limitation may be associated to the model’s
lack of account of rapid transport through macropores, which may be of particular impor-
tance in clayey soils [56]. Alternatively, degradation conditions below top soils currently do
not account for possible reduction in degradation rates (e.g., [12, 57, 58]), which could be
associated to a significant reduction in pesticide concentrations with depth and a shift in
redox conditions, both of which could potentially contribute to a shift in dominant degra-
dation pathways (e.g., co-metabolic, anaerobic). Furthermore, although run-off contribution
to total outlet loadings is small, current LISEM development does not account for pesticide
mobilization through run-off, which may be expected to not only contribute to outlet signa-
tures but also to the re-distribution of pesticide mass across the catchment through runoff
re-infiltration, thereby also affecting drainage response. Specific improvements to current
model conceptualization are discussed further in Chapter 7.
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Chapter 7

Implications and perspectives

7.1 Pesticide-CSIA at catchment scale: potential, limits and
implications

This Ph.D. thesis work presented a pesticide CSIA proof of concept for unsteady hydrological
contexts based on carbon isotope data, opening the door to develop more complex field-
scale studies. Pesticide CSIA however, provides not only an opportunity to evidence in
situ degradation, but also to determine under which conditions, by which mechanism and to
what extent specific degradation pathways occur. A better account of degradation pathways,
and the environments under which these are most likely to occur, should contribute to
identify potential environmental compartments where persistence parameters derived from
laboratory test guidelines may no longer be valid. For example, although test guidelines
require identification of pesticide half-lives (first order) or 50% disappearance time (if not
first-order) under aerobic and anaerobic conditions in soils [1], these parameters may vary
depending on specific site conditions and affiliated biodegrading microorganisms [2].

Information of the degradation conditions (e.g. metabolic vs. co-metabolic, biotic vs. abi-
otic) may allow for better information transfer between laboratory and field environments.
Such information may in turn help to characterize potential degradation bottlenecks asso-
ciated to specific environmental compartments by, for example, combination of CSIA data
with hydrological tracer experiments allowing to track degradation while chasing hydrologi-
cal pulses [3, 4]. Reference CSIA information for SM degradation under anaerobic conditions,
for example, could be useful in this case to support interpretation of isotope fractionation
associated to the environmental background status of the studied catchment. Indeed, a key
limitation of this study, was the ability to characterize the low-flow components of catch-
ment discharge in terms of isotope signatures, precluding estimation of long-term degradation
potential of the catchment that would be useful for evaluation of continuous in-stream pes-
ticide exposure and chronic toxicity studies [5, 6]. Future studies may thus benefit from
a combination of water sampling strategies. Namely, while this study placed emphasis on
flow-proportional water sampling, characterization of low flow components may require the
development of extraction protocols to conduct grab samples with significantly larger vol-
umes (e.g. >10 L, [7]). Such data may then be useful to characterise the potential delayed
leaching of older yet undegraded pesticide bound residues sorbed onto the soil matrix [8].
Furthermore, due to the minimal resources typically required for passive samplers [9], their
integration into the stream monitoring tool mix may prove beneficial for the characteri-
zation of mean concentrations over extended periods and beyond the agricultural growing
season. However, pesticide CSIA implementation at typical concentrations capable for these
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instruments (e.g., 20-70 ng L−1, [10]) will require the development of extraction methods
demonstrating the lack of fractionation effects associated to the sampler’s sorbing phase unit
(e.g., [11]).

Principal limitations for field applications of pesticide CSIA, are still however the need for
developing more efficient pesticide extraction, enrichment and clean-up protocols, which
should allow for feasible environmental sampling at concentrations found below the ppb
range. For this study in particular, the small contribution of nitrogen, hydrogen, and chlorine
to the molar mass of a chloroacetanilide molecule and the amount required of each element
for analysis (about 30 ng on column for nitrogen and hydrogen and 10 ng for chlorine)
concentrations with a respective order of magnitude of 38, 25 and 5 times the minimum
environmental concentration observed for soils (2.4 µg g−1 dry. wt.) and waters (1 µg L−1)
would have been required for multi-element CSIA of SM. Aside from background matrix co-
enrichment problems, seeking to obtain this information at the chosen sampling resolution
would have required the extraction from about 56, 40 and 8 L of water (per sub-event
sample) and 192, 122 and 25 g of soil (per weekly transect composite sample) for nitrogen,
hydrogen, and chlorine analysis, respectively. While continuous automatic sampler units of
these capacities are not generally available in the market, extraction methods associated with
these soil masses at the chosen frequency seem beyond current laboratory scale facilities.
In combination with improvements in instrument sensitivity, reduction of environmental
sample masses required for extraction should be expected to generate more common place
applications of multi-element CSIA for pesticides, and micro-pollutants in general, providing
more detailed insight into the conditions that drive bottlenecks of pesticide degradation.
With advances in multi-element CSIA, the further inclusion of main transformation product
CSIA should further improve characterization of rapidly degraded metabolites [12], but also
advance understanding of environmental conditions associated to chronic contamination for
more persistent molecules [13].

From a regulatory or environmental protection framework, an initial and basic requirement
is the need for information on transformation product isotope signature to be made available
to the scientific community. Present developments for multi-element CSIA, for example, are
already under way for a number of pesticides [14, 15], paving the way towards a richer knowl-
edge base to support interpretation during field studies using LC-IRMS methods. However,
from a precautionary principle and an environmental responsibility perspective, the burden
associated to improved understanding of the conditions controlling pesticide persistence in
the environment should be bared by the pesticide producer. Increased costs associated to, for
example, the preparation of safety dossiers, would then be a first step towards better integra-
tion of environmental externalities currently accounted for by civil society in general. Indeed,
OECD guidelines for aerobic and anaerobic degradation tests already require mass-balance
accounts based on heavy-isotope marking [1]. However, due to cost and technical constraints,
this information may only be of relevance to the specific experimental conditions, limiting
its applicability to realistic environmental contexts. Furthermore, as pesticide producers are
already required to report primary degradation products, a desirable next step in respon-
sible regulation would be the requirement of isotope fractionation data associated to both
parent compounds and principal metabolites, especially if the latter can be characterized as
”relevant for groundwater resources” or ”ecotoxicologically relevant” [16].

The development of more accurate environmental risks assessments requires additional con-
sideration of the enantiomeric distribution of chiral compounds, as different enantiomers may
have also different fate and toxicological impacts [17]. In this respect, benchmark degrada-
tion tests able to characterize enzymes of microbial communities as well as rate limiting steps
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during degradation (e.g., cell-uptake, enzyme activity), should facilitate the development of
monitoring strategies. For example, in a survey of phenoxy acid herbicide degradation under
aerobic environments Qiu et al. [18], found that carbon isotope fractionation was masked by
active transport through cell membranes, while enantiomer fractionation was pronounced,
indicating that monitoring of enantiomer ratios of phenoxy acid herbicides can be a stronger
indicator than CSIA to evidence field degradation in top soils. Therefore, without appropri-
ate information at the time of pesticide registration regarding the mechanistic processes that
regulate compound transformation in the environment, efforts to characterize pesticide fate
and their toxicological impact will continue to challenge monitoring effort and regulation.

7.2 Improving modelling constraints and uncertainty using
CSIA data

As an effort to explain how pesticides are being transported to field-drains, streams and
groundwater (and despite their sorbing properties) [19], recent years have observed significant
development of catchment-scale hydrological models including their account for preferential
flow [20–22]. Although one of the objectives of this Ph.D work was to improve the constrain
of degradation parameters regulating mobilization potential of pesticide pools during forcing
events, a limitation in the ability to represent drainage (and associated mass transfer) com-
ponents was observed in the adopted conceptual approximations of the continuous model
[23, 24]. In terms of rainfall inputs to the subsurface, this may be of no surprise, as the daily
time-steps considered by BEACH [24] are hardly appropriate to represent vertical flow and
transport through preferential flow processes (e.g., macropores, fingering, etc.) [20]. How-
ever, the use of water dating techniques, for example by tracking stable isotopes 18O and
2H in both rainfall and outlet discharge at periods of both high and low-flow may improve
accounts of vertical flow components to drainage [25]. Together with delineation of the arti-
ficial drainage system through geophysical detection tools [26] improved parametrization of
drainage components therefore could have been achieved.

First improvements of drainage contribution were obtained by coupling PiBEACH with
LISEM (chapter 5). By a reduction in time-step size, the coupled model allowed to account
for high resolution rainfall patterns and increased infiltration and drainage outflow. This
resulted in successfully restricting run-off genesis to the late season, where sealing devel-
opment and time-of-concentration had been observed to increase [27, 28]. However, based
on the poor ability of the coupled model to reproduce observed outlet carbon signatures
at tail-ends of daily catchment discharge, additional inferences can be made as regards to
potential improvements. As mentioned above, conceptualization of the drainage compo-
nent could be improved by limiting the drainage network extent, helping to achieve a less
pronounced discharge curve associated to lower drainage rates (i.e., both lower maximums
and higher minimums). Including water isotope signatures in PiBEACH-oL could then be
used to confirm distribution between drainage and baseflow rates from older groundwater
components.

Better constraint of the artificial drainage network distribution, for example, could then be
used to further evaluate degradation formalisms or process hypothesis including the potential
for different transformation rates on sorbed fractions [29], rate dependencies associated to
increase depths [27, 30, 31] or bioavailability limitations associated to the heterogeneous dis-
tribution and activities of degrading bacteria in subsurface transport paths [32]. The develop-
ment of more complex models however, is often criticized for leading to over-parametrization
[33]. This is exacerbated by the fact that the spatial and temporal heterogeneity of system
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forcing (e.g., precipitation, temperature), and boundary conditions (e.g., distribution of pref-
erential flow features, soil hydraulic properties, degrading bacterial distribution), cannot be
sufficiently characterized with available observations [34–36]. Therefore, transferability from
small-scale experiments will require upscaling efforts to obtain effective rate expression at a
larger scales [32, 37, 38].

Irrespective of scale, information associated to the relevant microbial strains responsible
for degradation of target contaminants under specific conditions and associated to specific
enrichments (e.g., [18]) seems nevertheless to be a preliminary step to better constrain degra-
dation formalisms. Specific improvements in numerical constraints could be made through
characterization of half-velocity or half-saturation constants typical for chemical or micro-
bial rate laws [39], allowing for departures from the use of conceptual approximations such
as DT50 values, which are typically considered as independent of changes in environmental
conditions.

Within the context of this work, potential improvements in PiBEACH-oL could be the eval-
uation of the hypothesis of delayed desorption generating discharge pulses of non-degraded
signatures associated to aged fractions [7]. To support model conceptual development in
this case, a combination of the experimental setup used during the microcosm degradation
experiment (chapter 2) and the principles studied during the soil column leaching exper-
iment (chapter 3) could be used to investigate differences in observable degradation rates
within phases (i.e., dissolved and reversible-sorbed phases) and under distinct aerobic (non-
saturated) and anaerobic (saturated) conditions. The principle would be to mimic wet-drying
cycles during rainfall, followed by slow drainage in top soils and slow drainage in sub-surface
saturated soils (anaerobic). All soils would be placed in glass tubes (e.g. 25 g dry wt.) at
constant temperature and moisture conditions, spiking to reach observable field concentra-
tions (5 to 10 µg g−1 dry wt.), and leaving sufficient air space to encourage oxygen diffusion
(i.e., only aerobic modalities). To distinguish degradation between phases, aerobic modali-
ties would require two ”flush events” (short and long). Added water to saturation levels for
all soils in all steps is extracted through centrifuge after vigorous mixing. The first flush for
aerobic soils is extracted immediately after flooding. Water would be collected and combined
with replicas to reach necessary volumes for CSIA analysis. Measured isotope signatures may
be then associated to bacterial degradation of readily mobile and bioavailable fractions un-
der aerobic conditions. The same procedure is applied to anaerobic soils and water content
returned to saturation under anoxic conditions. For aerobic soils, a second saturation step
would follow with aerated water and left for a period >24 hrs. (possibly under refrigerated
conditions to minimize degradation during this period), allowing pesticide concentrations
across phases to re-equilibrate before removing extractable water (i.e., late / second flush).
After the second drainage in aerobic soils, modalities are returned to stable conditions (ini-
tial water content and temperature). This experiment, along with pesticide extractions from
the residual soil fraction with methanol, should support conceptual model development at
catchment scale by deriving effective degradation rates across phases for different catchment
compartments (top soils and saturated sub-surface). Inclusion of modelling should allow to
determine pesticide isotopic enrichment associated to each phase (pore water and reversibly-
sorbed phase), modality (aerobic and anaerobic) as well as transfer rates to non-reversible
soil fractions, allowing then for improved descriptions of transformation under bioavailability
limitations [40]. Furthermore, by focusing on interstitial water, matrix background effects
associated to soil extractions could be avoided and solid phase extraction (SPE) methods
already developed could be further employed.
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7.3 Towards comprehensive and larger-scale pesticide fate
studies

Comprehensive studies that incorporate CSIA also present an opportunity to identify how
different pesticide sources across multiple hydrological forcing events contribute to river
discharge and sediment deposition at regional or river-catchment scale. Although character-
ization of degradation in source soils at headwater catchment scale is of relevance to support
identification of source signatures, chapter 2 and chapter 4 showed that increasing sampling
effort may not always provide proportional information gains to characterize catchment sub-
units or constrain model representations. Namely, chapter 2 showed that headwater stream
signature trends, despite their large variability due to changes in flow regimes, followed
closely seasonal trends of isotope fractionation in catchment bulk soils. Chapter 4 on the
other hand, showed that the use of top-soil detailed plot or transect data did not provide
additional information to constrain model parameters beyond that which had been already
achieved from bulk soils alone.

These findings provide valuable insights for the design of larger catchment scale studies and
with potentially different sampling scopes. If information is required regarding source top-
soil pesticide contribution to streams and rivers during periods of relatively fast mobilization
(i.e., runoff/erosion), larger catchment scales could make use of simple methodologies to
identify areas with high propensity to generate overland-flow, restricting bulk soil sampling
to such areas. For example, provided topographic information data is available, the wetness
index such as that described in chapter 2 [41] may be useful in identifying areas with high
propensity to accumulate water and generate overland-flow. If in addition, agricultural land-
use distribution is available, the agronomical model used in PiBEACH (chapter 2) may be
used to modify such an index by incorporating dynamic saturated soil permeabilities (e.g.,
see ref. 42). If the latter approach is followed, PiBEACH may be useful for integration of
the above information to generate dynamic spatial maps of high propensity for overland-flow
over large catchments.

On the other hand, if top-soil bulk samples are beyond feasible sampling, characterization
efforts and model constraints could make use of stream discharge trends to approximate
source bulk catchment soil signature evolution. A limited continuous sampling strategy
of a catchment with multiple headwaters could employ two refrigerated automatic flow-
proportional samplers. The first of these samplers would be dedicated to overall catchment
monitoring, setting sampling intervals appropriate to observed in-river discharge. The second
of these samplers may be considered as a sentinel observation point, located at the outlet of
any given and representative headwater within the catchment, and whose isotope trends may
be used as a proxy to interpret (and calibrate, in case of modelling) degradation in source
soils throughout other headwaters. If additional resources are available, passive sampler
units may be of benefit for calibration of time-weighted-average concentrations at additional
points of interest within the catchment [10] as well as to select optimal locations for the
primary sampler due to potentially high temporal and spatial variations in micropollutants
across the catchment [43].

Although characterization of headwater inputs during fast flow periods, as discussed above,
will be of importance, isotope signature information during periods of low flow should also
be considered at this scale so as to be able to constraint potential model development with
respect to different boundary sources with distinct isotope signatures. As low flow should
reflect signatures associated to long-term base-flow contribution from groundwater sources
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in the region, such information is of importance to constrain seasonal boundary conditions
of the system, before new inputs are introduced. Such efforts could be focused to a short and
discrete sampling window well before seasonal pesticide applications within the catchment
begin. Sample volumes during periods of low flow however, should be significant (e.g., >10
L). Doing so at different sections of the river catchment may also facilitate corroboration
of background system signatures in groundwaters. This may also facilitate the design of
a multi-element CSIA sampling strategy to characterize long-term degradation/persistence
of pesticide, while focusing on a carbon-based high resolution strategy during the growing
season and associated to periods of high flow.

Additional challenges may be expected for characterization at catchment scales larger than
headwaters. Although degradation may be of little importance during transport time-scales
relevant for headwaters, degradation during transport at river scale may be of relevance
[44]. Dominant degradation pathways during river transport may differ from source soils as
distinct abiotic and biotic (e.g., degradation, bioaccumulation) attenuation processes may
be involved. In some cases, microbial degradation may be an important contributor to
pesticide attenuation, where stream biofilms are of relevance [45, 46]. The effects of microp-
ollutants on biofilms structure and function may in turn cause important alterations in river
ecosystem functioning [47]. Understanding the relative contribution of multiple processes
contributing to pesticide attenuation, may thus be of importance to achieve the aforemen-
tioned assessment. Abiotic processes may be evaluated in static batch experiments (e.g.,
[15, 48]), while stream biofilm degradation may require more complex experimental set-ups.
One example may be to mimic environmental conditions such as with streamside flumes and
evaluated under different modalities, as community functions, growth and displacement may
be affected by hydrodynamic forces [49], light conditions [50] and nutrient fluctuations [51].
The body of knowledge based on mesocosm experiments evaluating biofilm biodegradation
capacity of emerging contaminants in natural streams however, is currently limited [6, 52].
Indeed, although enantioselective fractionation has been associated to microbial degradation
in streams for several wastewater-derived contaminants [44], little information is available
associated to ESIA assessments of pesticides directly linked to biofilm communities. Ad-
dressing this gap may therefore, help understanding the spatial and temporal variability of
river attenuation potential of pesticides and micropollutants.
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Appendix A

Supporting information to chapter
2

A.1 I. Soil collection

Top soil (1 cm) samples were collected weekly along three transects between March 28th and
June 28th. Distance between sampling points (3 - 5 m) was determined based on transect
length, with the number of samples for each plot being proportional to the transects’ plot
length. Sampling protocol followed USDA guideline MN-NUTR3. Soil samples were kept in
an ice-box during transport to the laboratory and kept frozen at -20◦C until analysis. Soils
were homogenized and sieved at 2 mm. Samples heavier than 500 g were quartered before
sieving, according to NF X 31100 standard. Water content was determined according to
NF ISO 11465 standard. A 30 g soil sample was dried at 105◦C until a constant mass was
achieved (±10 mg between two successive weightings). Soil Organic Matter determination
was based on loss on ignition by placing the dried sample for 16 hours at 375◦C. The pH
was determined according to the NF ISO 10390 standard by placing 5 mL soil sample with
five volumes of chloride calcium solution (0.01 M) in a Falcon tube and shaken for 60 min.

Transects where selected to account for variability of moisture conditions, drainage charac-
teristics and to maximise the number of plots where S-met was applied. Digital Elevation
Models (DEM), at 0.5 and 2 m resolution, were extracted with ArcGIS 10.1 (ESRI, Red-
lands,United States) from airborne Light Detection And Ranging (LIDAR) measurements
(8 points / m2 with a vertical accuracy of 15 cm). Local slopes obtained from the DEM
where then used to estimate the soil wetness index (WI) [-] (See main manuscript, Section
2.3).

A.2 II. Water collection

The water collection method has been previously described [1]. Discharge was continuously
measured by a Doppler flowmeter (2150 Isco, Lincoln, Nebraska, USA) with volume precision
of 3%. Water samples were stored in the dark at 4◦C during collection and placed on ice
during transportation to the laboratory for filtering (0.7 µm glass fibre). Sample volume
mixing choice for pesticide and isotope analysis is illustrated in Fig. 62. Sample aliquots
were pooled to obtain volumes ≥ 990 mL.
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A.3 III. Hydrological variability and cluster analysis

A divergence in isotope trends between bulk soils and outlet can be observed after mid-
May (see manuscript, Fig. 4). This divergence was associated to a late season application
(May 25th), lowering isotope signatures along the valley transect, increasing the variability of
fractionation extent in source soils. To explore this variability we hypothesized a significant
change in the catchment’s hydrological connectivity [1], leading to a shift from drainage- to
runoff-driven pesticide export resulting in shorter catchment response times and an increases
in outlet ∆δ variability.

Discharge samples were selected based on their associated event hydrological characteristics.
Using principal component analysis (PCA) and a K-means clustering approach we identified
three distinct clusters (P < 0.1) of hydrological samples (Fig. A1) associated to April events
(≈ 70%) of low flow and long duration (C1) and May-June events of high rainfall and high
discharge intensity (C2 & C3). Sampled events where clustered using the stats R package [2].
Standardization based on the Hellinger approach [3] was conducted with the vegan package
[4]. Hydrological and response variables used for PCA are given by Table A1.
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Figure A1: K-means clustering of flow proportional samples based on principal compo-
nent analysis of hydrological characteristics (n = 51) including sample duration (T.Hrs),
discharged volume (Vol), discharge at the start of the sample (Q.Ini), average discharge
(Q.Ave), max discharge (Q.Max), suspended solid matter (SSM), average rainfall intensity
(P.Int) and cumulative rainfall (P.Cum). Letter labels refer to events, while index numbers
refer to the sample order within each event. C1 samples correspond mainly to April events
(≈ 70%), while C2 & C3 correspond respectively to the leading and trailing limbs of late
season events (May and June). The inner product of vector variables approximates their
covariance and the distance between points approximates the Mahalanobis distance. Shaded
clouds show the 90% normal probability distribution for each cluster discarding sample A-1
as outlier to C2.

Based on clustering results, a shift towards runoff driven transport may have occurred during
May and June. This observation is supported by a reduction in the mean catchment time of
concentration (TC), from April (2.2±1.8 h) to June (0.5±0.2 h). Although subsurface travel
times for this catchment may range from 6 to 12 months [5], the computed TC values are small
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Table A1: PCA Clustering Variables

Variable Definition Units

P.Cum Cummulative rainfall after tillage [mm]
P.Int Cummulative rainfall per sampled hours [mm/h]
Q.Ave Discharged volume per sampled hours [m3/h]
Q.Ini Discharge at the start of the sample [m3/h]
Q.Max Maximum discharge during the sample [m3/h]
Vol Cummulative volume discharged during the sample [m3]
SSM Soils suspended matter exported during the sample [Kg]
T.Hrs Duration of the sample [h]

relative to dry periods. Based on S-met reaction rates (k = 0.021 [1/d], Table A3), pesticide
travel times during peak discharge would thus yield small Damköhler numbers (Da <¡0.1,
Da = kTC [6]) indicating that isotope signatures at the outlet likely reflect reaction times
in top soils.

Contrasting field data to a hillslope model conducted by [7] allowed us to investigate the
increase in outlet ∆δ variability observed between April and June. The hillslope model
considered a set of well-defined hydrological scenarios allowing a comparison of simulation
results to multiple sub-event δ13C observed during this study. The model scenario chosen
for comparison was an extreme rainfall simulation event (60 mm/h × 30 min), considering
a fresh pesticide source upstream from the outlet [7]. In agreement with the hillslope model
[7], discharge peaks arriving at the outlet after major rainfall events during May and June
coincided with a rapid drop in ∆δ to values characteristic of bulk soils (Fig. A2). However, as
the source zone ages, the difference between subsequent signatures of an event also appears
to decrease (i.e., Fig. A2, events B vs. E and A). The model attributed an early drop
in outlet signatures to runoff conditions leading to a rapid increase in outlet discharge [7],
conditions that were also likely to occur in the field at the time given a cumulative rainfall
(>100 mm since sowing), advanced crust development and TC measured during this period.

Model and field data comparison therefore suggests that although high-flow conditions may
lead to an underestimation of catchment degradation extents, this may be of relevance only
during first flushes [8] or shortly after product applications, where runoff is the dominant
transport pathway. This underscores the importance of how changes in catchment hydro-
logical response along one growing season may increase the variability of pesticide travel
times and fractions exported within an event, thereby influencing scope and choice of mon-
itoring objectives during field studies. Based on these observations, we conclude that the
isotope variability increase during May and June was associated to a change in the dominant
transport processes and not to an uncertainty increase related to CSIA-based monitoring.

A.4 IV. Pesticide extraction

Water. Solid phase extraction of S-met, MESA and MOXA from water was performed using
SolEx C18 cartridges (Dionex R©, Sunnyvale, CA, USA) and an AutoTrace 280 SPE system
(Dionex R©). The water sample recovery rate from spiked samples was 98±11%, with a pre-
concentration factor of 1000 and determined based on a range of concentrations (0.05, 1, 5,
50 and 150 ug/L), stirred until solvent evaporation (20 min to 1 hr) and evaluated from 1
L Milli-Q water solution in duplicate (n=10). The extraction procedure was described by
Elsayed et al. 2014. Briefly, extraction cartridges were washed successively with ethanol (5
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Figure A2: Water ∆δ13C normalized to bulk soils (field) and source zone (model by [7])
for run-off generating events (i.e., C2 and C3 samples, Fig A.3) observed at the outlet after
max rainfall. Comparison of sub-event samples to model results indicated that runoff was
the likely dominant transport pathway during May and June. Error bars for each sample
correspond to the normalized SD (n ≥ 3).*A mid-season application reported on May 25th

was associated to a major drop in early signatures of event B.

mL), rinsed with acetonitrile (ACN) (5 mL), and conditioned with dionized water (10 mL).
Samples were loaded on the cartridges and dried under nitrogen flux for 10 min. Cartridge
elution was performed with 5.0 mL ethyl acetate followed by 5.0 mL ACN. Samples were
then concentrated under nitrogen flux to one droplet and 1.0 mL of acetonitrile was added
for quantification and isotopic composition analyses.

Soils. Pesticide extraction and purification for soils were adapted from Ivdra et al. 2014
and Anastassiades et al. 2003. The soil sample recovery rate was 22±2% from spiked soils.
Before spiking each soil (about 10 g), pesticide stock solutions in dichloromethane (DCM)
were prepared in water to reach soil concentrations of about 0.5, 5, 10, 20, 35 and 50 µg/g of
S-metolachlor. The pesticide solution was stirred about 1 h until evaporation of the solvent
to achieve a homogeneous pesticides contaminated water solution. After spiking, the samples
were stirred vigorously for 1 hr for homogenization and incubated one week (7 days) in the
dark at 4 ◦C prior to extraction. Each condition was performed in duplicate (n=10).

Ethyl acetate (2.5 mL) and soil (5 g) were mixed in a Falcon tube, vortex 15 s, sonicating
for 5 minutes at 20 ◦C, adding deionized water to reach 80% water content, vortex 1 min
and centrifuge for 5 min at 5000 rpm. The organic layer was separated and the solvent
extraction procedure was repeated twice without further addition of water. Samples were
then concentrated under nitrogen flux to one droplet pesticides re-suspended with acetonitrile
(1 mL). Samples were then dried over anhydrous MgSO4 and purified via PSA (25 mg) and
anhydrous MgSO4 (150 mg), vortex 30 s and centrifuge 1 min at 5000 rpm. Water content
was determined according to standard procedure [12].
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Table A2: Comparison between EA-IRMS, GC-C-IRMS δ13C and δ15N (o/oo) (mean ± SD)
values vs. VPDB and Air standards.

Compound

δ13C (o/oo) vs. VPDB δ15N (o/oo) vs. Air

EA-IRMS (n=2) GC-C-IRMS (n=18) EA-IRMS (n=2) GC-C-IRMS (n=19)

Rac-metolachlor -30.6 ± 0.0 -30.7 ± 0.3
S-metolachlor -30.9 ± 0.0 -31.3 ± 0.6 0.4 ± 0.1 0.5 ± 0.5

The analytical methods were evaluated for possible isotope artifacts since S-met extraction
and pre-concentration procedures may alter the measured δ13C values. The mean δ13C shifts
(∆δ13C) associated with the extraction method from crop soils (20% and 40% soil moisture)
and water samples (0.5 to 8 L) confirmed the absence of significant fractionation effects
(Tables A2 and A3). However, to include the potential uncertainty limit (UL) associated with
the soil extraction method, a minimum isotopic shift (∆δ13C ≈ 2o/oo) was considered before
degradation (and fractionation) could be concluded. To determine this shift, a propagated
error has been calculated by:

ULgrey area =
√

σ2a + σ2b + σ2au +∆δext (A.1)

where standard deviations (σ) accounted for during the soil extraction experiment include
1σ obtained for the initial product signature (σa = 0.5o/oo), 1σ obtained from samples (σb =
0.4o/oo), 1σ associated to the maximum analytical uncertainty (σau = 0.5o/oo) and the mean
isotope shift (∆δext).

A.5 V. Quantification

S-met. Quantification of S-met was performed by gas chromatography (Trace 1300, Thermo
Fisher Scientific) coupled to a mass spectrometer (ISQ, Thermo Fisher Scientific). Metolachlor-
d11 was automatically added in each sample as an internal standard at a constant concentra-
tion by the autosampler (TriPlus RSHTM , Thermo Fisher Scientific). The samples (1.5 µL
vol.) and internal standard (1 µL at 300 µg/L) were injected into a split/splitless injector
operated in split mode with a split flow at 6.0 mL/min and held at 280 ◦C. Separation was
performed on a TG-5MS column (30 m x 0.25 mm ID, 0.25 µm film thickness) with helium
as carrier gas at a 1.5 mL/min flow rate. The GC oven program was held at 50 ◦C for 1
min, ramped to 160 ◦C at 30 ◦C/min, then to 220 ◦C at 4 ◦C/min, and finally to 300 ◦C
at 30 ◦C/min held for 1 min. The MS transfer line and source were heated at 320 ◦C. Each
sample was measured in triplicate. Equipment detection and quantification limits were 0.01
and 0.001 µg/L, respectively.

MOXA & MESA. The concentrations of main S-met transformation products (TPs) were
measured by liquid chromatrography (LC-MS/MS) (TSQ Quantum Access Max, Thermo
Scientific, Waltham, Massachusetts, USA). The mobile phase (0.3 mL/min) consisted of
a gradient of acetonitrile (30 to 95%) and water (70 to 5%) in a negative mode which was
returned to initial conditions during 6 min. Each time, 20 µL of each sample was injected into
an EC 150/3 Nucleodur C18 Pyramid 3 µm column. Equipment detection and quantification
limits were 0.05 and 0.5 µg/L, respectively.
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Table A3: Comparison between EA-IRMS, GC-C-IRMS ∆δ13C and δ15N (o/oo) (mean ±
SD) values for soil and water (SPE) extracted standards of racemic (R-) and S-metolachlor
(S-met)

Compound

∆δ13C (o/oo) vs. VPDB a

EA-IRMS vs. GC-C-IRMS extracted vs.
GC-C-IRMS non-extracted vs.

From water (1 L)b From soil (5 g)c

Milli-Q Run-off water Crop (20%) Crop (40%) Soil Overall

R-met 0.1 ± 0.3 0.0 ± 0.8 0.3 ± 0.4 n.d n.d n.d
S-met 0.4 ± 0.6 0.0 ± 0.5 0.6 ± 0.6 0.7 ± 0.4 0.8 ± 0.4 0.8 ± 0.4

Compound

∆δ15N (o/oo) vs. Air a

EA-IRMS vs. GC-C-IRMS extracted vs.
GC-C-IRMS non-extracted vs.

From water (1 L)b From soil (5 g)
Milli-Q Run-off water Crop (20%) Crop (40%) Soil Overall

S-met 0.1 ± 0.6 0.2 ± 0.7 - - - -

a. The error given for the ∆δ13C and ∆δ15N values was calculated via error propagation based
on ± 1 SD of the mean δ values from n ≥ 3 measurements for each sample. ∆δ values were
determined as the difference between the measured δ value of a given compound in the extract
and the mean δ value of the corresponding standard obtained by replicate injections in the
GC-C-IRMS systems at optimal conditions.

b. Means of measurements (n ≥ 3) of 4 water extraction experiments with different concentrations
of S-met (and R-met for carbon measurements). Field run-off water (1L) was spiked with S-met
/ R-met to reach concentrations of about 1, 5, 50 and 150 µg/L (concentrations ranging from
200 µg/L to 20 mg/L after SPE extraction).

c. Means of measurements (n ≥ 3) of 5 soil extraction experiments with different concentrations
of S-metolachlor and water contents of 20% and 40% for crop soils. Soil racemic extractions
were not determined (n.d.). Soils (5 g) were spiked to reach concentrations of 5, 10, 20, 35 and
50 µg/g. The samples were stirred vigorously for 1 h for homogenization and incubated 7 days
in the dark at 4◦C prior to extraction. Each experiment was performed in duplicate.

A.6 VI. Isotope analysis

The carbon and nitrogen isotope composition of S-met was analyzed using a GC-C-IRMS
system consisting of a TRACETM Ultra Gas Chromatograph (ThermoFisher Scientific) cou-
pled via a GC IsoLink/Conflow IV interface to an isotope ratio mass spectrometer (DeltaV
Plus, ThermoFisher Scientific). The carbon and nitrogen isotope ratios are reported in δ
notation in parts per thousand [o/oo] relative to the V-PDB standard for carbon and Air
standard for nitrogen, according to:

δ13Csample or δ
15Nsample =

Rsample −Rstandard

Rstandard
(A.2)

where Rsample and Rstandard are the ratios 13C/12C or 15N/14N of sample and standard,
respectively.

Given that isotope shifts are provided in ∆δ notation, error bars for sample points presented
in the manuscript account for error propagation (e.p.) across ±1σ (standard deviation) of
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initial product and ±1σ from sample signatures such that:

e.p. =
√

σ2ini + σ2smp (A.3)

where σini is the standard deviation of the initial product and σsmp the standard deviation
of the soil or water sample signature.

The oxidation furnace of the GC/C IV interface was set to a temperature of 1000 ◦C. A
TG-5MS column (60m × 0.25mm ID, 0.25 µm film thickness) was used for chromatographic
separation, with helium as the carrier gas at a flow rate of 1.5 mL/min. For carbon, the
column was held at 50 ◦C for 1 min, heated at a rate of 15 ◦ C/min to 150 ◦C, then up to
250 ◦C at 2 ◦C/min, then heated at 20 ◦ C/min to 300 ◦C and held for 3 min. For nitrogen,
the column was held at 50 ◦C for 1 min, heated at a rate of 20 ◦/min to 150 ◦C, then up to
270 ◦C at 10 ◦C/min, then heated at 30 ◦C/min to 300 ◦C and held for 3 min. Samples (3
µL) were injected into a split/splitless injector operated in splitless mode and held at 280◦C.

The δ13C and δ15N values were calibrated using a three-point calibration against the Vienna
Pee Dee Belemnite (V-PDB) and Air standard respectively using international reference
materials AIEA600, USGS40, and USGS41 (σ<0.05 o/oo). The reproducibility of triplicate
measurements was ≤ 0.2 o/oo(1σ) for δ13C and ≤ 0.5 o/oo(1σ) for δ15N . A set of in-house
S-met standards with known isotopic composition (determined by EA-IRMS) was measured
at least every nine injections to control the measurement quality. Reference δ13C and δ15N
signatures of standards were obtained at our isotope facility using an elemental analyzer-
isotopic ratio mass spectrometer (Flash EA IsoLinkTM CN IRMS, Thermo Fisher Scientific,
Bremen, Germany). Based on GC-IRMS linearity tests, the minimum peak amplitudes
needed for accurate δ13C and δ15N measurements were established as about 300 mV and
200 mV, respectively (Fig A4). These signals correspond to 10 ng of carbon and 20 ng of
nitrogen injected on column.

Pure product and tractor tank dilutions are shown in Table 23 for Mercantor Gold. Samples
from one farmer using Dual Gold, accounting for 1 plot and 3% (0.9 ha) of the applied surface
could not be obtained. However, due to the fact that both products originated from the same
manufacturer (Syngenta AG), S-metolachlor signatures were assumed to be equivalent for
both formulations.
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Figure A3: Dual isotope plot for catchment outlet water

A.7 VII. Soil degradation experiments

Soil samples were collected from the referenced catchment on August 6 and 7, 2015. 50 kg of
top-soil were sampled systematically along three transects representative of the catchment
(See main manuscript, Fig. 1). Soils were thoroughly homogenized and sieved to 2 mm.
The physical and chemical properties of the experimental soils are provided in the main
manuscript (see Section 2.1.). Soil microcosms consisted of 20 g of air-dried soil spiked to
environmental concentrations (5.0 µg/g soil) in 20 mL crimp glass vials, with silicone/natural
PTFE caps (Interchim R©, France). All systems’ volumetric water content was adjusted to
either 20 or 40%, thoroughly mixed by vortex to homogenize systems. To maintain aerobic
conditions in the microcosm atmosphere while limiting water loss and avoiding contamina-
tion, a 0.2 µm syringe filter (Rotilabo R©, Carl Roth R©, France) was mounted on a syringe
tip, which was stuck through the vial cap (Fig. A5).

The pesticide standard solutions in dichloromethane (DCM) were spiked in distilled water
and stirred for 6 h, until solvent evaporation. The pesticide aqueous solutions were filter-
sterilized with 0.2 µm syringe filters for soil spiking. Soil microcosms spiked with S-met were
prepared in triplicate under non-sterilized (biotic) and sterile (abiotic) conditions to evaluate
abiotic dissipation. Biotic experiments were set-up by spiking each soil with S-met aqueous
solutions at 5 µg/g (i.e., within range of environmental S-met concentrations in soils) to
reach soil water content of 20% and 40% (soil water content ranges in Alteckendorf). For
the abiotic experiments, the soils were autoclaved three times at 24-hour intervals for 15
min. at 125◦C. The sterilized soil was spiked with S-met following the same procedure as
for the biotic experiments. All microcosms were incubated in dark at 20◦C for 200 days.
Sampling was carried out based on a sacrificial approach on days 1, 10, 50, 100 and 200.
Quantification and CSIA analysis of S-met were carried out using the same extraction and
measurement procedures as those used for field soil samples.
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A

B

Figure A4: Linearity of δ13C (A) and δ15N (B) values obtained for S-met by GC-IRMS as
a function of peak amplitude m/z 44 and 28, respectively. Solid and dashed lines indicate
the EA-IRMS measurements and typical ± 0.5o/oo associated uncertainties, respectively.

Carbon isotopic fractionation and dissipation kinetics for S-met in laboratory experiments
are provided in Table A4 and isotopic fractionation with respect to time is shown on Fig.
A6. Derivation of lab and field ε values was performed following the Rayleigh equation [13]:

δ13Ct + 1

δ13C0 + 1
= f ε (A.4)

where f = [S −met]t/[S −met]0, is the remaining fraction of S-met at time t.

The apparent kinetic isotope effect (AKIE) was computed as [14]:

AKIE ≈
1

1 + z · n
x · ǫbulk

1000

(A.5)
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Figure A5: Soil microcosm experimental design

where for carbon in S-met, the number of atoms n = 15, of which x = 1 are located at a
reactive position and of which z = 1 are in intramolecular competition.

A.8 VIII. Open system Rayleigh calculations

The Rayleigh equation assumes that field sample remaining fraction (f) reflects solely re-
duction in concentrations due to degradation and should thus be expressed as fdegradation.
Accounting for dilution processes, the remaining fraction that is measured in the field sample
becomes then ftotal, where [15]:

ftotal = fdegradation · fdilution (A.6)

fdegradation = ftotal · F (A.7)

where the dilution factor F (i.e. the number of times the source volume has become diluted
at the observation location) can be calculated if ǫlab is known by:

F = e(∆∗/ǫlab−lnftotal) (A.8)

∆∗ = 1000 · ln
(10−3δ13t C + 1

10−3δ130 C + 1

)

(A.9)
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Figure A6: Isotope Fractionation in Soil Degradation Experiments - Biotic vs. Abiotic
(control) conditions

The relative contribution of dilution (e.g., off-site export, sorption) and degradation to con-
centration decrease is given by the factor ratio D*/B*. Dilution (D*) and breakdown (B*)
factors are given by:

D∗ =
lnfdilution
lnftotal

(A.10)

B∗ = 1−D∗ (A.11)

where D* ≥ 0 and B* ≤ 1. Note that to meet the relationships D>1 and 0<B<1 initial
concentrations need to be accurate. Namely,

• if B*>1, the predicted concentration decrease is larger than observed, and thus ε must
be larger.

• if B*<0, initial concentrations must be higher than the surveyed concentration.

Adapted to top soils, in the above cases, application of the open system Rayleigh equation
indicates the boundary conditions [e.g. initial concentrations] must be different. Evolution
of D*/B* ratios throughout the season for each transect are presented in Tables A5, A6 and
A7, with negative values indicated in brackets.



A.8. VIII. Open system Rayleigh calculations 159

Table A4: Carbon isotopic fractionation and dissipation kinetics for S-met over a 200 day
laboratory experiment with Alteckendorf soils

Non-sterile (biotic) soila

θ ∆δ13C εbulk R2 P AKIE DT50 DT90 k R2 P
[%] [o/oo] [o/oo] [-] [-] [-] [days] [days] [1/day] [-] [-]

(SD)b (CI)c (CI)c (SE)d (SE)d (SE)d

20
6.8 -1.4 0.85 <0.05 1.021 30 99 0.023 0.90 <0.01
(0.4) (1.1) (0.016) (4) (14) (0.004)

40
5.6 -1.8 0.93 <0.01 1.027 41 135 0.017 0.97 <0.01
(0.6) (0.9) (0.01) (4) (11) (0.002)

Overall
-1.5 0.87 <0.001 1.023 34 114 0.02 0.88 <0.001
(0.5) (0.007) (4) (13) (0.002)

a. Biotic and abiotic soil degradation experiments conducted at 20◦C at two moisture (θ) condi-
tions of 20 and 40% [wt./wt] for a period of 200 days with dosage of 5.0 µg S−met /g soil dry wt.
Sacrificial sampling was conducted on days 1, 10, 50, 100 and 200. No significant isotope frac-
tion was observed for autoclaved/abiotic soils (∆δ13C<1o/oo).

b. The error given for the ∆δ13C values was calculated via error propagation based on ± 1 SD
of the mean δ13C values from n ≥ 3 measurements for each sample.

c. Enrichment 95% confidence intervals (CI) were calculated via linear regression analysis.

d. Standard errors were calculated from the regression analysis of the Single First-Order Rate
(SFO) model (DT50 = ln(2)/k; DT90 = ln(10)/k).

e. Abbreviations: k: dissipation rates [1/day]; NA: epsilon values and dissipation kinetics not
retrieved due to poor and non-significant (P>0.1) Rayleigh fitting and SFO regressions, respec-
tively, or having less than five sampling dates; CI: confidence intervals (95%); SE: standard
error, SD: standard deviation.

Table A5: North degradation (B%), breakdown factors & D*/B* ratios for εlab : −1.5o/oo &
εmax : −1.9o/oo

Date Ct δ13Ct Ct/C0 Blab Bmax B∗
lab B∗

max D*/B*lab D*/B*max

/ Median (µg/L) (o/oo) (-) (%) (%) (-) (-) (-) (-)

4/5/16 1.9 -31.4 0.4 46.2 38.7 0.6 0.5 0.7 1.1
4/14/16 5.6 -31.2 0.4 53.1 45.0 0.9 0.7 0.2 0.5
4/18/16 7.2 -31.8 0.5 27.5 22.4 0.5 0.4 1.0 1.5
4/26/16 4.2 -31.8 0.3 30.7 25.2 0.3 0.2 2.2 3.0
5/3/16 1.2 -30.7 0.1 66.8 58.1 0.5 0.4 1.2 1.8
5/10/16 1.3 -29.4 0.1 86.1 78.9 0.8 0.7 0.2 0.5
5/24/16 1.2 -29.6 0.1 84.4 76.9 0.8 0.6 0.3 0.7
6/7/16 1.9 -29.8 0.1 82.1 74.3 0.7 0.6 0.4 0.8
6/14/16 1.3 -29.5 0.1 85.9 78.7 0.7 0.6 0.4 0.8
6/28/16 0.4 -29.5 0.0 85.4 78.1 0.5 0.4 1.1 1.7

Early Season 53.1 45.0 0.6 0.5 0.7 1.1
Late Season 85.4 78.1 0.7 0.6 0.4 0.8

Overall 74.4 66.2 0.6 0.5 0.6 1.0
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Table A6: Valley degradation (B%), breakdown factors & D*/B* ratios for εlab : −1.5o/oo &
εmax : −1.9o/oo

Date Ct δ13Ct Ct/C0 Blab Bmax B∗
lab B∗

max D*/B*lab D*/B*max

/ Median (µg/L) (o/oo) (-) (%) (%) (-) (-) (-) (-)
4/5/16 1.7 -30.0 0.3 79.9 71.8 1.4 1.1 (0.26) (0.06)
4/14/16 3.5 -31.8 0.3 30.7 25.2 0.3 0.2 2.29 3.16
4/18/16 5.1 -31.1 0.4 56.2 47.9 1.0 0.8 0.01 0.28
4/26/16 4.7 -30.6 0.4 68.2 59.6 1.2 1.0 (0.20) 0.01
5/3/16 1.9 -29.8 0.2 81.7 73.8 0.9 0.7 0.06 0.34
5/10/16 2.1 -29.4 0.2 86.9 79.9 1.2 0.9 (0.16) 0.07
5/31/16 2.2 -30.5 0.1 71.0 62.4 0.6 0.4 0.78 1.25
6/7/16 2.6 -29.7 0.1 83.3 75.6 0.9 0.7 0.15 0.45
6/14/16 2.9 -29.9 0.1 80.8 72.8 0.9 0.7 0.17 0.48
6/21/16 3.2 -29.5 0.2 85.1 77.7 1.0 0.8 (0.03) 0.23
6/28/16 2.6 -29.6 0.1 84.0 76.5 0.9 0.7 0.13 0.43

Median Early 56.2 59.6 0.9 0.8 0.06 0.28
Median Late 82.1 75.6 0.9 0.7 0.16 0.45

Median 80.8 73.3 0.9 0.7 0.15 0.45

Table A7: South degradation (B%), breakdown factors & D*/B* ratios for εlab : −1.5o/oo &
εmax : −1.9o/oo

Date Ct δ13Ct Ct/C0 Blab Bmax B∗
lab B∗

max D*/B*lab D*/B*max

/ Median (µg/L) (o/oo) (-) (%) (%) (-) (-) (-) (-)

4/5/16 7.6 -31.2 0.4 52.0 44.0 0.9 0.7 0.1 0.4
4/14/16 3.7 -31.1 0.2 57.2 48.8 0.5 0.4 1.1 1.6
4/18/16 4.9 -30.9 0.2 61.0 52.4 0.6 0.5 0.6 1.0
4/26/16 2.6 -30.6 0.1 69.0 60.3 0.6 0.4 0.8 1.3
5/3/16 3.2 -30.8 0.1 64.4 55.7 0.5 0.4 0.8 1.3
5/10/16 2.5 -31.1 0.1 57.2 48.8 0.4 0.3 1.6 2.2
5/17/16 1.8 -29.5 0.1 85.8 78.5 0.8 0.6 0.3 0.6
5/31/16 1.2 -28.6 0.1 92.0 86.3 0.9 0.7 0.1 0.4
6/7/16 2.4 -28.9 0.1 90.1 83.9 1.0 0.8 (0.0) 0.2
6/14/16 0.9 -27.6 0.0 96.0 92.2 1.0 0.8 (0.0) 0.3
6/21/16 0.9 -28.2 0.0 94.2 89.4 0.9 0.7 0.1 0.4

Median Early 61.0 52.4 0.6 0.4 0.8 1.3
Median Late 93.1 87.9 0.9 0.7 0.1 0.3

Median 64.4 60.3 0.6 0.6 0.6 0.6
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B.1 Soil characteristics

Table B1: Physico-chemical properties of the crop and vineyard soils and concentrations of
metalaxyl and S-metolachlor. Analytical uncertainty is 5% for the major elements.

Parameter Unit Crop soil Vineyard soil

Bulk density (ρb) [g cm−3] 0.99 1.05
Clay [%] 28.3 68.5
Silt [%] 61.5 23.1
Sand [%] 10.3 8.4
OM Loss on ignition [g kg−1] 55.2 16.7
OC Black & Walkley [g kg−1] 11.8 8.4
CaCO3 [g kg−1] 8.1 271
Fe2O3 [g kg−1] 66.6 38.6
MnO [g kg−1] 1.4 1
Cu [mg kg−1] 48 171
Zn [mg kg−1] 77 81
Metalaxyl [mg kg−1] 0.21 0
S-metolachlor (SM) [mg kg−1] 0.4 0.41
CEC [cmol+ kg−1] 9.1 15.4
pH [-] 6.97 8.1
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B.2 Methods and standards for analyses

Table B2: Methods and standards for soil analyses

Variables Methods in brief Norms and/or procedure

Soil water content Drying sample in an oven set at
105 ◦C

NF ISO 11465

pH Electrometry in a soil-solvent
suspension (1:2.5)

NF EN 12176

Organic matter Mass loss by ignition at 375 ◦C
during 16 h

NF EN 12875

CaCO3 CO2 gas with hydrochloric acid NF ISO 10693
CEC Cobalt hexamine method NF X 31-130
Granulometry Laser granulometer See Ertlen et al. (2010)
Saturated hydraulic
conductivity

Head constant permeameter See Amoozegar (1989)

Bulk density Direct measurement of soil
cylinder

See Madsen et al. (1986)

Pressure soil-water con-
tent curve

Direct measurement of soil
cylinder

See Madsen et al. (1986)

Elementary composition ICP-AES* after lithium tetrab-
orate fusion

See Chabaux et al. (2013)

* Inductively Coupled Plasma Atomic Emission Spectroscopy



Appendix C

Supporting information to chapter
4

C.1 Farmer applications and transect area extents

Three main applications (A1, A2, A3) were confirmed from farmer surveys and observations
from weekly transect concentrations [SM] and δ13C (Fig. C1). However, these concentration
increases do not correspond with a significant decrease in δ13C that would be expected from
a fresh application with a characteristic signature (δ13C0 = −32.2± 0.5o/oo).

C.2 Hydrological model

C.2.1 Infiltration and runoff

To calculate infiltration, I (mm) and surface runoff, RO (mm), soil moisture conditions are
determined by following the SCS curve number defined by the U.S. Soil Conservation Service
[17]. Infiltration is given by,

I = R−RO (C.1)

where R (mm) is rainfall. The run-off equation is given by [18]:

RO =







0, R ≤ Ia

(R− Ia)
2

R− Ia + S
, R > Ia

(C.2)

where Ia (mm) is the initial abstraction capacity of the surface layer, which includes surface
storage, interception and infiltration prior to runoff, and typically ranges from 0.05S to 0.2S.
The model adopts the latter of these values as it has provided reliable results for previous
rainfall-runoff events[19]. S (mm) is the retention parameter after run-off given as a function
of the soil profile water content:

S = Smax ·
(

1−
SW

(SW + exp[w1 − w2 · SW ])

)

(C.3)

where w1 (mm) and w2 (-) are shape coefficients, SW (mm) is the soil profile water content
of the first two layers, z0, z1, excluding the amount of water held in the soil profile at wilting
point such that:

SW = max
[{

(
Dz0θz0 +Dz1θz1
Dz0 +Dz1

− θwp) · (Dz0 +Dz1)
}

,
{

0
}]

(C.4)
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Figure C1: (Top) Measured SM concentrations and (Bottom) δ13C for weekly transects.
Confirmed applications A1, A2, and A3 (Table 22). (B) Shaded area indicates uncertainty
range of the soil extraction method for SM δ13C and within which no significant change from
the application product’s signature (δ13C0) may be concluded, *Ref. 16.

and Smax (mm) is the maximum value that the retention parameter can take such that:

Smax = 254 ·
( 100

CN1
− 1

)

(C.5)

Calculation of w1 and w2 is given by,

w1 = ln
[ FC

(1− S3

Smax

)− FC
]

+ w2 · FC (C.6)

w2 =

ln
[

FC

(1−
S3

Smax

)− FC
]

− ln
[

SAT
(1− 2.54

Smax

− SAT
]

SAT − FC
(C.7)

where FC (mm) is the soil profile water content at field capacity, S3 (mm) is the retention
parameter corresponding to field capacity (i.e. CN3) and SAT (mm) is the soil profile water
content at saturation. S3 is given by:

S3 = 254 ·
( 100

CN3
− 1

)

(C.8)
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Figure C2: Delimited transect areas used to extrapolate remaining mass from soil concen-
trations measured for each transect sample weekly.

CN numbers depend on permeability, land use, slope and antecedent moisture conditions.
Curve numbers are classified according to three moisture conditions: dry (wilting point -
CN1), average moisture (CN2) and wet (field capacity - CN3). Typical CN2 numbers for
various land covers, hydrologic conditions and soil types at a 5% slope are given in Ref. 18.
CN2 values are used to derive CN3 before slope adjustment,

CN3 = CN2 · exp[0.00673 · (100− CN2)] (C.9)

Before plugging eq. C.9 into eq. C.8, adjustment to local slope of CN2 is required,

CN2s =
CN3 − CN2

3
· [1− 2 · exp(−13.86 · slope)] + CN2 (C.10)

where CN2s is the curve number for average moisture conditions adjusted to the local slope.
CN1 values accounting for slope are then calculated as:

CN1 = CN2s −
20 · (100− CN2s

(

100− CN2s + exp[2.533− 0.0636 · (100− CN2s)]
) (C.11)

Finally, recalculation of eq. C.9, replacing CN2 with CN2s to adjust for local slope, is done
before plugging CN3 back into eq. C.8.

C.2.2 Percolation

Percolation (P) is assumed to be negligible at moisture levels below field capacity. Above
field capacity, percolation is given by [20]:

Pz = Dzτz(θsat,z − θfc,z)
eθz−θfc,z − 1

eθsat,z−θfc,z − 1
, if θz > θfc,z (C.12)

where Dz (mm) is the soil profile depth of layer z and τ is a dimensionless drainage charac-
teristic given by:

τ = 0.0866 · eγz ·log10(Ksat), 0 < τ ≤ 1 (C.13)
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where γz (-) is a calibration coefficient and Ksat (mm d−1) is the saturated hydraulic con-
ductivity.

C.2.3 Lateral subsurface flow

Lateral flow (LFzi) (mm) occurs when the soil moisture content exceeds the field capacity
(fpoti) at each upstream cell (i) and the receiving downstream cell has available pore space
capacity (fcapj ¿ 0). The total flux at each cell is given by,

LFzi = min
(

fpoti , fcapj

)

·Dz (C.14)

fpoti = cz · (θt − θfc) (C.15)

fcapj =
θsatz − θtz
∑I

i=1(i)
(C.16)

where cz (d−1) is a subsurface flow coefficient analogous to Ref. 21, fcapj (-) the soil water

capacity of the downstream cell,
∑I

i=1(i) is the sum of upstream contributors and

C.2.4 Evapotranspiration

To account for evapotranspiration processes the FAO56 reference evaporation rate, ET0
(mm), has been considered and adjusted dynamically according to crop and climate-specific
factors. The approach assumes a dual crop coefficient approach appropriate for daily time-
step calculations [22] and made up of a basal crop coefficient (Kcb) and a soil water evapo-
ration coefficient (Ke). Potential evapotranspiration (ETp) is then given by

ETp = Kc · ET0 (C.17)

Kc = Kcb +Ke (C.18)

where Kcb varies according to crop-specific development stage. In cases where the mean
value for daily relative humidity during the mid- or late-season growth stage (RHmin%)
differs from 45% or where wind speed varies by more than 2 m/s the Kcb values for mid-
and late-season must be adjusted according to:

Kcb = Kcbmid/end
+
[

0.04(U2 − 2)− 0.004(RHmin − 45)
](hcrop

3

)0.3
(C.19)

Ke = Kcmax −Kcb (C.20)

where Kcbmid/end
represent the reference values for sub-humid climate and moderate wind

speeds [22]. U2 is the wind speed at a height of 2 meters (m/s), RHmin is the minimum
relative humidity (%) and hcrop is crop height. The soil evaporation coefficient, Ke, and
Kcmax (-) represents an upper limit to evapotranspiration from cropped surfaces (1.05 to
1.30) and given by [22]:

Kcmax = max
[{

Kcb + 0.05
}

,
{

1.2 + [0.04(U2 − 2)− 0.004(RHmin − 45)] · (
h

3
)0.3

}]

(C.21)
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C.2.5 Transpiration

To account for potential transpiration processes, water uptake by roots is considered and
regulated by atmospheric demand and soil water content. When there is sufficient water in
the soil, potential transpiration (Tp) equals atmospheric demand [22]:

Tp = Kcb · ET0 · ftr (C.22)

ET0 is corrected here by including a calibration coefficient ftr (-). Potential transpiration is
further subject to root water uptake capacity where the maximum daily uptake Tp(z) (mm)
at each layer z is given by [23]:

Tp(z) = 2
(

1−
RDz/2

RD

)(RDz

RD

)

Tp (C.23)

where RD (mm) and RDz (mm) are the total and the soil layer’s rooting depth, respectively
and RDz/2 is the soil depth at the middle of the root extension for layer z.

When soil water is insufficient to meet atmospheric demand, actual transpiration is lower
than potential transpiration and given by [22]:

Ta(z) = Ks · Tp (C.24)

Ks = max
[

0,min(1,
θt − θwp

θc − θwp
)
]

· ftransp (C.25)

θc = θwp + (1− p)(θfc − θwp) (C.26)

p = ptab + 0.04(5− ETp) (C.27)

where Ks is a transpiration reduction parameter (0-1), which depends on soil water content,
θt (m3/m3) and the critical soil moisture content θc (m3/m3) that defines the transition
between unstressed and stressed transpiration rate. The the fraction of total depletable soil
water is given by p (-) and the depletion factor (-) ptab, for ETp ≈ 5 mm/d [22][Table no.
22].

C.2.6 Evaporation

Evaporation is considered only on bare surfaces and assumed to be negligible under plant
cover and regulated by atmospheric deman along the first ≈ 0.15 m of soil [24]. Considering
the difference between actual (Ea, mm/d) and potential evaporation (Ep, mm/d) [22]:

Ep = Ke · ET0 (C.28)

Ea = Kr · Ep (C.29)

where Kr is an evaporation reduction coefficient (-) given by:

Kr =
θt − θdr
θfc − θdr

(C.30)

where θt is soil moisture (m3/m3) and θdr is the moisture (m3/m3) of air-dry soil.
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C.2.7 Root growth

Development of the root’s depth followed that of [22], which adjusts the crop’s maximum
root depth relative to the plant’s development stage, where the total root depth Droot is
given by,

RD =



















0 , Jt < Jstart

RDmin +
(

RDmax −RDmin

)

·
Jt − Jsow

Jmid − Jstart
, Jsow ≤ Jt < Jmax

Droot,max , Jt > Jmax

(C.31)

where RDmin (mm) is the seed depth at sowing time in Julian days Jsow (d) and Jmid (d) the
day at which the plant attains maximum rooting depth, typically at the mid-development
stage. Crop development stage duration (Lstage) (d) are also provided by [22] for different
crops. The Julian days corresponding to each stage are then given by,

Jstage =



















Jsow + Lini = Jdev

Jdev + Ldev = Jmid

Jmid + Lmid = Jlate

Jlate + Lend = Jend

(C.32)

C.3 Agronomic model

C.3.1 Crop cover and height

Crop cover is calculated according to an asymptotic sigmoid function similar to the biomass
production function of [25], and which uses the degree-day (DD) approach defined as the
difference between daily mean temperature and a crop-dependent base temperature for crop
development,

COV (t) =
COVmax

1 + COVmax−COVini
COVini

· exp(−COVmax · f ·
∑

DD∑
DDCOVmax

)
(C.33)

DDbase =

{

T − Tbase, (T ≥ Tbase)

0, (T < Tbase)
(C.34)

where,
COV (t): crop cover on day t (%);
COVmax: crop dependent maximum crop cover (%);
COVini: initial crop cover (0 ¡ COVini ¡ 1%, here 0.5%);
f : shape parameter (≈ 0.07);
DD: degree-day (◦C);
∑

DD: sum of DD on day t (since sowing);
∑

DDCOVmax : crop dependent sum of DD since sowing necessary to reach the maximum
crop cover (COVmax);
T : daily mean temperature (◦C);
Tbase: crop dependent minimum daily mean temperature necessary for its development (◦C).
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We only consider temperature as a limiting factor for crop development; water and nu-
triments deficits are not accounted for. Crop height, Hv(t), is calculated using the same
equation with COVmax and Cini replaced by analogous crop height parameters (Hmax and
Hini).

C.3.2 Topsoil bulk density

Topsoil bulk density has a strong dynamic character on arable land due to tillage, wheel
traffic, root development, biological activity, rainfall impacts, shrinking and swelling, freezing
and thawing. In this study we address the effects of tillage and rainfall on dry bulk density
using methods inspired by those of the WEPP model [26]. First, a consolidated soil matrix
density (BDm) is calculated using the pedotransfer functions (PTF) of Saxton and Rawls
2006 as a function of soil texture and soil organic matter content. Then tillage and rainfall
effects are taken into account as detailed below.

Bulk density on days with tillage

On days with tillage, the topsoil soil bulk density (BDt) is calculated as,

BDt = BDt−1 − FdBDt−1 +
2

1 + Stx
Fd

3

4
BDm (C.35)

where:
BDm: soil matrix density (g cm−3) obtained from the FTP of Saxton and Rawls 2006;
BDt−1 and BDt: bulk density at resp. day t− 1 and day t (g cm−3);
Fd: surface fraction disturbed by tillage (-), determined from lookup tables of the WEPP
model [26];
Stx: soil texture related parameter accounting for particle cohesion effects (-), with Stx ¡ 1
for sandy soils and ¿ 1 for clayey soils [28]. Its value is determined from soil texture classes
using lookup tables of the RUSLE model [28].

Thus according to equation C.35, tillage reduces the bulk density to 75% of the consolidated
soil matrix density for silty soils and tillage affecting the entire surface. This factor is based
on bulk density measurements directly after tillage compared to values obtained by the end
of the growing season before crop harvest.

Bulk density on days without tillage

On rainy days without tillage, rainfall impact on topsoil bulk density is calculated as a
function of the bulk density of the day before, the rainfall on day t, a soil stability factor
(Sstab), wheel track compaction (wt) and soil cover by either vegetation or crop residues
according to,

BDbs,t = BDbs,t−1 + (BDm −BDbs,t−1)(1− exp(
−Rt

Sstab
)) (C.36)

BDresi,t = BDresi,t−1 + (BDm −BDresi,t−1)(1−
2 + exp( Rt

Sstab
)

3
) (C.37)
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BDcrop,t =
BDresi,t +BDbs,t

2
(C.38)

BDwt,t = 1.15 ·BDm (C.39)

where, BDbs, BDresi, BDcrop, BDm (g cm−3) are respectively, topsoil bulk density of bare
soil surface parts (bs), parts covered with crop residues (resi), parts covered with living crop
(crop), and wheel tracks (wt);
Rt: rainfall on day t (mm);
The soil stability factor Sstab (-) is derived from the crusting index of Rémy and Marin-
Laflèche (ref. 29) and is defined as:

Sstab = 1000/IC (C.40)

IC = 5(IS − 0.2) (C.41)

IS =
1.5FS + 0.75CS

Clay + 10SOM
− Y (C.42)

Y =

{

0.2(pH − 7), (pH > 7)

0, (pH ≤ 7)
(C.43)

where:
IS: soil stability index (-);
IC: crusting index (-);
FS: fine silt content (%);
CS: coarse silt content (%);
Clay: clay content (%);
SOM : top soil organic matter content (%).

C.3.3 Characteristic water contents and topsoil saturated hydraulic
conductivity

The regression PTFs of Saxton and Rawls (ref. 27) were used to calculate the topsoil water
contents at saturation (θsat at 0 kPa moisture tension), wilting point (θwp at 1500 kPa) and
field capacity (θfc at 33 kPa) by injecting the above modeled bulk densities per surface type
(wheel track, bare soil, residue-covered and crop-covered surfaces). Then for each surface
type, the saturated hydraulic conductivity is derived from ref. 27,

Ksat = 1930(θsat − θwp)
3−λ (C.44)

with λ being the slope of the logarithmic tension-moisture curve (-), determined using θfc
and θwp. The final Ksat at the field scale is calculated as the weighted average of Ksat, the
weight depending on the within-field surface fraction occupied by each of the four surface
types.
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C.4 Mass transfer model

C.4.1 Mass phase distribution

Mass distribution at time t is given by,

Mtot(t) = Vgascgas + VH2O(t)caq(t) +Msoil(t)cads(t) (C.45)

where caq (µg L−1 H2O), cads (g Kg−1 soil), cgas (µg L−1 air) are the dissolved, adsorbed
and gaseous SM concentrations, respectively and where cads = caqKd and cgas = caq/K

cc
H .

Vgas and VH2O are the unsaturated and saturated pore space volume (L), respectively and
Msoil is the soil mass (Kg).

C.4.2 Volatilisation

Pesticide volatilisation is only considered on the day of application and follows Ref. 30, where
a boundary air layer is conceptualised through which pesticide diffuses before escaping into
the atmosphere. The thickness (da, m) of this layer, was assumed to be equivalent to the
topmost soil layer’s thickness (10 mm) and regulates the transport resistance (ra, d/m) such
that:

ra(t) =
da

Da(t)
(C.46)

where Da (m2/d) is the diffusion coefficient in air for Metolachlor at the observed environ-
mental temperature and adjusted relative to the reference diffusion coefficient (Da,r, m

2/d)
as:

Da(t) =
(T (t)

Tr

)1.75
Da,r (C.47)

where T and Tr are the environmental temperature at time t and at the reference temperature
at 293.15◦K, respectively.

The total volatilization is given by the flux across the air layer boundary (Jv,air) and the
flux across the topmost soil layer (Jv,soil) such that:

Jv,air(t) = −
Cgas,top(t)− Cair(t)

ra
(C.48)

Jv,soil(t) = −
Cgas,z0(t)− Cgas,top(t)

rs
(C.49)

where Cgas,top (mg/m3) is the concentration in gas phase at the soil surface, Cair (mg/m3)
the concentration in air, Cgas,z0 (mg/m3) the concentration in gas phase at the center of the
uppermost soil layer and rs (d/m) the diffusion resistance across the topmost soil layer and
given by:

rs(t) =
0.5Dz

Drdiff,g(t)
(C.50)

To calculate the relative diffusion (Drdiff,gas, m
2/d) the model provides two options. Under

option 1 [31],

Drdiff,gas =
Da(t)

(

θgasz(t)
)a

(

θz(t)
)b

(C.51)
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where Ref. 32 recommend that a = 2 and b = 2/3. Under option 2 [33],

Drdiff,gas = Da(t)
(

a
)(

θgasz(t)
)b

(C.52)

where Ref. 34 recommend a = 2.5 and b = 3 for moderately aggregated plough layers of
loamy soils and humic sandy soils [30].

Finally, it is assumed that flux across both layer boundaries is equivalent (Jv,soil = Jv,air)
[30]. Considering pesticide concentration in air to be negligble (Cair = 0), the concentration
at the soil surface is:

Cgas,top(t) =
ra

(ra + rs)
Cgas,z0(t) (C.53)

The gas concentration in the soil layer is related to the dimensionless Henry constant (KH),
where:

Cgas,z0(t) = Caq,z0(t)KH (C.54)

Substituting eq. C.53 into eq. C.48 yields the mass flux lost to the atmosphere (g/m2d):

Jv,air = −
Cgas,z0

(ra + rs)
(C.55)

C.4.3 Runoff mass

The non-uniform mixing-layer model is adapted from Ahuja and Lehman, 1983 (see Ref. 36,
eq. 1 and p. 1217) and given by:

∂(EDI · θ · Caq)

∂t
= −ROe(−βRO·Dz0)Caq (C.56)

where the Effective Depth of Interaction (EDI) refers to the mixing layer depth (mm), θ is
soil moisture (m3 m−3), RO is run-off (mm) and Caq is concentration in the mixing layer
(g L−1). The parameter βRO is a calibration constant (assuming, 1 ≥ β > 0) and where Dz0

is the depth (mm) of the top-soil layer.

C.4.4 Leachate mass

Vertical flux can be computed differently across soil layers. Under the first approach, and
only for the uppermost layer, the model follows [37]:

Cz0,aq(t+ 1) = Cz0,aq(t)exp
( −P (t)

θz0(t) ·RETz0(t) ·Dz0

)

(C.57)

where the retardation factor, RETz (-), is given by:

RETz(t) = 1 +
ρbz(t) ·Kd

θz(t)
(C.58)

The mass leached (g) is thus given by:
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Mz0,lch(t) = Dz0 ·Ai

(

θz0(t)Cz0,aq(t)− θz0(t+ 1)Cz0,aq(t+ 1)
)

(C.59)

where A is the area (m2) for each cell i. For subsurface layers (i.e., z ¿ 0), mass leached is
proportional to the aqueous concentration in percolated water such that,

Mz,lch(t) = Pz(t) · Cz,aq(t) ·Ai (C.60)

C.4.5 Lateral mass flux

Similarly to vertical mass flux, later mass flux is proportional to lateral water flow and the
aqueous concentration at each cell i,

Mz,lf (t) = LFzi(t) · Czi,aq(t) ·Ai (C.61)

C.5 Degradation model

To account for changes in DT50 (days) due to changes in soil moisture, models from Walker
1974 and Schroll et al., 2006 where compared and evaluated against DT50 values derived from
microcosm degradation experiments conducted at different temperatures (◦C) and moistures
(m3 m−3). Observed DT50 values were: DT50ref = 30 at θ = 0.2, T = 20 (used as reference
for validation); DT50=41 at θ = 0.4, T = 20; DT50=30 at θ = 0.4, T = 30). Although both
methods mostly underestimated measured DT50 (Fig. C3), Walker’s approach resulted in
smaller error differences and was selected for model implementation.

Figure C3: Calculated DT50 from Walker 1974 and Schroll et al. 2006 and differences to
observed (∆obs) DT50 values from SM microcosm degradation experiments. Both approaches
follow ref. 40 for adaptation to the Arrhenius equation.

C.6 Koc sensitivity

CSIA information in soils did not permit to reduce uncertainty for Koc values across all
sample resolutions. In a virtual experiment evaluating leaching extent based on DT50 and
Koc correlation scenarios, Lindahl et al., 41 find that when DT50 and Koc were negatively
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correlated, larger variance in leaching extent was observed in the field, as lower degradation
rates complement with higher mobility. In our study, DT50 and Koc values were negatively
correlated (-0.47, P<0.001), suggesting that spatial variations in organic carbon significantly
altered mobility and degradation [42] as previously observed for SM [43, 44]. Namely, al-
though catchment Koc values below 500 L/Kg could be discarded on average (i.e., as shown
by WIC models in bulk soils, Fig. C4), improvements in degradation parameter constraints
based on temperature and moisture alone were not useful to constrain spatial variability of
Koc values (i.e., as shown by transect and plot Koc distributions, Fig. C4). More detailed
and explicit representation of organic carbon content evolution in both space and time using
available information such as soil type, land-use and agricultural management [45], as it
was done in this study for soil hydraulic properties, could further help constraining spatial
variability of degradation rates and mobility parameters regulating pesticide leaching.

Figure C4: Distribution of Koc for models with no isotope constrains (NIC) vs. models
with isotope constraints (WIC) at three analytical resolutions (i.e., bulk, transect and plot
soils). NIC models considered KGESM >0.5, while WIC considered in addition KGEδ >0.5.
Statistics for Koc distributions are provided as mean and standard deviations (µ ± SD) for
models considering dynamic (Dyn) and Constant (Con) DT50 values.
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fusiecoëfficiënten in Nederlandse akkerbouwgronden (Diffusion of gases in soil and
oxygen diffusion coefficients in Dutch arable soils). Rapport 20 tech. rep. (ICW, Wa-
geningen, The Netherlands, 1987).

35. Ahuja, L. R. & Lehman, O. R. The Extent and Nature of Rainfall-soil Interaction in
the Release of Soluble Chemicals to Runoff. English. Journal of Environmental Quality
12, 34–40 (1983).

36. Shi, X. N., Wu, L. S., Chen, W. P. & Wang, Q. J. Solute Transfer from the Soil Surface
to Overland Flow: A Review. Soil Science Society of America Journal 75, 1214–1225.
issn: 0361-5995 (2011).

37. McGrath, G. S., Hinz, C. & Sivapalan, M. Modeling the effect of rainfall intermittency
on the variability of solute persistence at the soil surface. Water Resources Research
44, 1–10 (2008).

38. Walker, A. A Simulation Model for Prediction of Herbicide Persistence1. English. Jour-
nal of Environmental Quality 3. doi:10.2134/jeq1974.00472425000300040021x.
http://dx.doi.org/10.2134/jeq1974.00472425000300040021x (1974).

39. Schroll, R. et al. Quantifying the effect of soil moisture on the aerobic microbial miner-
alization of selected pesticides in different soils. Environmental Science and Technology
40, 3305–3312. issn: 0013936X (2006).

40. Boesten, J. J. T. I. & van der Linden, A. M. A. Modeling the Influence of Sorption
and Transformation on Pesticide Leaching and Persistence. Journal of Environment
Quality 20, 425. issn: 0047-2425 (1991).
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