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Abstract

Modern computer architectures are highly complex, requiring great programming
effort to obtain all the performance the hardware is capable of delivering. Indeed,
while developers know potential optimizations, the only feasible way to tell which
of them is faster for some platform is to test it. Furthermore, the many differences
between two computer platforms, in the number of cores, cache sizes, interconnect,
processor and memory frequencies, etc, makes it very challenging to have the same
code perform well over several systems. To extract the most performance, it is
often necessary to fine-tune the code for each system. Consequently, developers
adopt autotuning to achieve some degree of portable performance. This way, the
potential optimizations can be specified once, and, after testing each possibility on a
platform, obtain a high-performance version of the code for that particular platform.
However, this technique requires tuning each application for each platform it
targets. This is not only time consuming but the autotuning and the real execution
of the application differ. Differences in the data may trigger different behaviour, or
there may be different interactions between the threads in the autotuning and the
actual execution. This can lead to suboptimal decisions if the autotuner chooses
a version that is optimal for the training but not for the real execution of the
application. We propose the use of autotuning for selecting versions of the code
relevant for a range of platforms and, during the execution of the application,
the runtime system identifies the best version to use using one of three policies
we propose: Mean, Upper Confidence Bound, and Gradient Bandit. This way,
training effort is decreased and it enables the use of the same set of versions with
different platforms without sacrificing performance. We conclude that the proposed
policies can identify the version to use without incurring substantial performance
losses. Furthermore, when the user does not know enough details of the application
to configure optimally the explore-then-commit policy usedy by other runtime
systems, the more adaptable UCB policy can be used in its place.
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Resumé

Les architectures informatiques modernes sont très complexes, nécessitant un
grand effort de programmation pour obtenir toute la performance que le matériel
est capable de fournir. En effet, alors que les développeurs connaissent les opti-
misations potentielles, la seule façon possible de dire laquelle est le plus rapide
pour une plate-forme est de le tester. En outre, les nombreuses différences entre
deux plates-formes informatiques, dans le nombre de cœurs, les tailles de cache,
l’interconnexion, les fréquences de processeur et de mémoire, etc, rendent très
difficile la bonne exécution du même code sur plusieurs systèmes. Pour extraire
le plus de performances, il est souvent nécessaire d’affiner le code pour chaque
système. Par conséquent, les développeurs adoptent l’autotuning pour atteindre un
certain degré de performance portable. De cette façon, les optimisations potentielles
peuvent être spécifiées une seule fois et, après avoir testé chaque possibilité sur
une plate-forme, obtenir une version haute performance du code pour cette plate-
forme particulière. Toutefois, cette technique nécessite de régler chaque application
pour chaque plate-forme quelle cible. Non seulement cela prend du temps, mais
l’autotuning et l’exécution réelle de l’application diffèrent. Des différences dans
les données peuvent déclencher un comportement différent, ou il peut y avoir
différentes interactions entre les fils dans l’autotuning et l’exécution réelle. Cela
peut conduire à des décisions sous-optimales si l’autotuner choisit une version qui
est optimale pour la formation, mais pas pour l’exécution réelle de l’application.
Nous proposons l’utilisation d’autotuning pour sélectionner les versions du code
pertinentes pour une gamme de plates-formes et, lors de l’exécution de l’application,
le système de temps d’exécution identifie la meilleure version à utiliser à l’aide de
l’une des trois politiques que nous proposons: Mean, Upper Confidence Bound
et Gradient Bandit. De cette façon, l’effort de formation est diminué et il permet
l’utilisation du même ensemble de versions avec différentes plates-formes sans
sacrifier les performances. Nous concluons que les politiques proposées peuvent
identifier la version à utiliser sans subir de pertes de performance substantielles. De
plus, lorsque l’utilisateur ne connaît pas suffisamment de détails de l’application
pour configurer de manière optimale la politique d’exploration puis de valida-
tion utilisée par d’autres systèmes de temps d’exécution, la politique UCB plus
adaptable peut être utilisée à sa place.
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1Introduction

Parallelism is pervasive in performance-critical applications. It is essential for a di-
verse array of scientific and industrial applications, such as geophysics, engineering,
medicine, weather prediction, etc. Even everyday applications like a browser make
use of parallelism to deliver the responsiveness users come to expect and that se-
quential programming often cannot. While initially restricted to High-Performance
Computing (HPC), today parallelism permeates virtually all of computing – from
supercomputers with millions of cores, with up to 10 million cores in the June
2019 Top500 [Don19] list of supercomputers, to personal computers and mobile
phones.

Parallelism became almost omnipresent in modern computing due to the limits of
what can be achieved sequentially in today’s computer architectures. In the early
days of computing, advances in manufacturing allowed, for instance, the trade
of a small adder for a larger but faster adder. An increase in frequency allowed
a CPU to perform faster without any major changes in its logic. However, there
are limits to the performance gains these venues can provide [TW17], and the
closer we get to these limits the lower are the benefits. Nowadays, large leaps in
sequential performance are unlikely [Rah+16] without radical architectural changes,
and further increases in frequency are difficult due to resulting in higher power
requirements [SQP08], aggravating issues like heat dissipation [Ven+10]. As a
consequence, the extra area in a die tends to be used to fit an increasing number
of computer cores, improving performance despite the limited gains in sequential
speed.

Yet, as computational power increases so do the computational requirements, with
the use of more accurate models and the possibility to solve larger problems which
were previously unfeasible. While parallel architectures help to provide much-
needed increased computational power, they by no means make efficiency less of a
concern.

With more CPU cores available, the pressure increases on resources which previ-
ously were not bottlenecks. For example, a large number of processing units can
saturate the available memory bandwidth [LLS08; Hag+16]. One solution to this
is to make use of Non-Uniform Memory Access (NUMA), effectively splitting the
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memory into multiple regions, increasing total memory bandwidth and reducing
latency. However, although necessary, these changes are not without consequences.
To better exploit the characteristics of the platform, applications must take into
account the characteristics of the computation, for instance by grouping accesses to
nearby memory locations into cores which share a cache level, or storing data in the
memory node closest to the cores who access it the most. All this further adds to
the complexity of often already fairly complicated applications. Furthermore, the
use of several computing units makes it effectively impossible for the developer of
an application to manually manage all threads effectively. Several runtime systems
exist for aiding the developer in managing the threads, such as OpenMP [Boa18],
StarPU [Aug+11], OmpSs [Dur+11], Cilk [Blu+96], Intel TBB [Rei07], etc. The
runtime abstracts many details of parallel computing, in much the same way a
compiler abstracts the architectural details of the target CPU, enabling the developer
to make use of the computational resources without having to specify exactly how.
The ability of a runtime system to dynamically adapt the use of the resources during
the computation is considered imperative to overcome the challenges of parallel
computation [Bro+10; Luc+14; Acu+14].

1.1 Scientific Context

Modern computer architectures are highly complex. Although these architectures
can provide high performance, an application must take advantage of architectural
details before it can fully benefit from the architecture’s capabilities.

Tuning an application for a specific hardware platform is a difficult undertaking.
Code changes that improve one metric are often detrimental to another. For instance,
improving Instruction Level Parallelism (ILP) through loop unrolling increases the
size of the code, a tradeoff that can be advantageous or disadvantageous depending
on both the application and the platform.

Autotuning can aid in deciding which of the several possible optimizations are
appropriate for a specific platform. However, an application still must be tuned
for each of the platforms before it can take advantage of the optimizations. Ap-
plications that depend heavily on libraries for their computation can benefit from
autotuning with libraries like ATLAS [WPD01], SPIRAL [Xio+01], FFTW [FJ98],
and PhiPAC [Bil97], which then requires tuning not the application but every
relevant library for each platform. While not as fine-grained as the approach from
the libraries, runtimes like OmpSs [Dur+11] and StarPU [Aug+11] can dynamically
tune a computation by offloading more, or less, work to an accelerator based on
performance and system load.
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1.2 Objectives

The main objective of this work is to facilitate the use of highly tuned implementa-
tions of the performance-critical parts of task-parallel OpenMP applications. Tuning
an application is challenging not only due to the vast complexities of modern com-
puting platforms, with varying sizes of cache, different memory access speeds
depending on data locality, threads influencing one another, etc, but also because
all these complex interactions vary between platforms. Consequently, the perfor-
mance tuning for one system does not guarantee performance on a different system.
Usually, to obtain performance on a new system one must tune the application
specifically for that system. We aim to allow an OpenMP application to identify,
while it executes, which particular tunings are beneficial, while at the same time
avoiding those unsuitable for that specific platform.

1.3 Contributions

The first contribution of this thesis is the introduction of multi-versioned tasks to
OpenMP. We propose three task selection policies, one based on averages, like some
of the policies of other runtime systems, and the two others based on statistically-
sound methods for multi-armed bandit problems, which as far as we are aware are
not employed by any task-parallel runtime. Lastly, we integrate our proposal in
LLVM, more specifically in the LLVM OpenMP runtime and the Clang compiler.
These additions to LLVM can, in turn, be used to improve the performance of
OpenMP applications either with manually-tuned kernel versions or with kernel
versions obtained through autotuning.

1.4 Outline

Chapter 2 presents the scientific context of this thesis. That chapter describes
multicore architectures, with their main advantages and caveats. It also shows
the parallel programming paradigm, with some details on runtime systems that
aid the application in making full use of the resources available. The chapter also
details performance analysis and some statistical methods that can be employed.
The chapter also explains machine learning, and some of the difficulties therein.
Another topic approached by that chapter is that of autotuning, which consists
of programmatically tuning some software for some hardware platform. Lastly,
this chapter expounds on the multi-armed bandit problem and its relevance to this
work.

1.2 Objectives 3



In sequence, Chapter 3 presents our contributions. The chapter details the scientific
problem and its relevance. It also presents our extensions to the LLVM compiler
and changes made to the scheduler of the OpenMP runtime.

Chapter 4 presents the experimental evaluation of our proposal. It describes the
experimental methodology employed, with details of the platforms used. It also
presents the benchmarks we use, with their relevant parameters, and the different
scenarios used with these benchmarks. The chapter also shows our experimental
results for a single thread, multi-thread, and multi-thread with multiple sockets.

Chapter 5 presents related work. It details the policies employed by runtime
systems that handle multi-versioned tasks.

Lastly, Chapter 6 presents our conclusions.
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2Background

In this chapter, we review basic concepts required for understanding this thesis. Sec-
tion 2.1 briefly describes multicore architectures. Section 2.2 presents an overview
of the parallel programming paradigm and a few parallel runtimes. Section 2.3
presents statistics concepts which are employed in subsequent chapters. Section 2.4
presents an overview of machine learning. Section 2.5 briefly explains the basic con-
cepts of autotuning. Section 2.6 explains the multi-armed bandit problem. Finally,
Section 2.7 concludes this chapter with our remarks.

2.1 Multicore Architectures

Performance gains in microprocessors due to higher clock speed have essentially
stagnated for several years now due to the diminishing returns provided by further
increases in clock frequencies. This breaks a historical trend where new microproces-
sor models almost always featured a higher clock frequency than their predecessors.
The main reason for this change is the impact of the frequency on power consump-
tion. A microprocessor’s power consumption can be split into three components:
dynamic, static and short-circuit power [Zhu+13]. Dynamic power dominates the
power dissipation, being followed by static power and then short-circuit power.
The clock frequency is given by

f = k · (Vdd − Vth)2

Vdd

for some constant k, a supply voltage Vdd and a threshold voltage Vth, but while
the frequency is only linearly related to the supply voltage the dynamic power also
depends on frequency. The dynamic power dissipation is given by

Pd = Cl ·Nsw · V 2
dd · f

where Cl is the load capacitance and Nsw the average number of circuit switches
per cycle. Due to the dependency of the clock frequency on the supply voltage,
power consumption is cubically related to the clock frequency.

As higher frequencies come with the price of higher power consumption [MM17],
increased running costs and requiring improved power dissipation, power is a
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major obstacle in the way of ever-increasing clock speeds. As Figure 2.1 shows with
the green squares, clock speeds have stagnated and single-thread performance has
seen more modest improvements in the last few years. In the same figure, the red
dots show the number of transistors continues increasing. While many years ago
the extra space was filled with larger but faster logic, besides bigger caches, now
much of it goes to increasing the number of cores. However we are approaching
physical limits and Moore’s Law [Moo+65] is beginning to fault, as evidenced by
Intel turning away from their tick-tock strategy and rising transistor costs [KHF18],
which could make further improvements difficult. Despite this, performance gains
have not stopped and the number of cores continues to steadily increase, a trend
that should continue at least while Moore’s Law holds.
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Figure 2.1.: Number of transistors, single-thread performance, clock frequency, power
consumption and number of cores for microprocessors through the years.

Data sources: [Hor+13; Rup18].

This increase in the number of cores allows for still large performance gains with
parallel computing despite the deceleration of single-thread performance improve-
ments. Although multicore has made parallelism more popular relatively recently,
parallelism is an approach that has been employed several times before. Instruction-
level parallelism (ILP) runs instructions whose operands are independent of each
other in parallel; vectorial instructions allow applying the same operand to mul-
tiple data (Single Instruction Multiple Data, SIMD [Fly66]); and even in the early
days of computing tabulators and multipliers were used in parallel, in a kind of
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manually-operated pipeline, to speed up the computation and make better use of
the very expensive resources.

ILP improves performance transparently to the programmer as the hardware does
all the required work of verifying dependencies and availability of computational
resources. While not as transparent, vectorial instructions can improve performance
semi-transparently to the programmer as these are often used by libraries and, in
some cases, automatically by the compiler. Multicore, however, is anything but
transparent. In order to make use of more than a single core, the programmer has
to modify the software to that end. Cores must compete for shared resources like
the shared L3 cache between cores and memory, especially in machines with a
Non-Uniform Memory Architecture (NUMA). As the cores can affect one another
this makes the effective use of the available computational power an even harder to
reach goal.

Much of the area in a modern microprocessor is occupied by cache. A level 1 (L1)
cache attempts to minimize latency, which means it must be located near the units
which access the cache. That, in turn, imposes constraints on the chip’s design,
severely limiting how large a L1 cache can be while providing a low latency. Due
to the low latency provided by the L1 cache, it tends to be private to the core. On
the other end, a last level cache (LLC), L3 in Intel or AMD processors, has far more
relaxed constraints, allowing the L3 cache to be much larger than the first level.
Unlike L1, L3 tends to be shared among the cores. A private cache is better suited
for workloads which present very little data sharing [Zha+08] as it prevents the
cores from invalidating data that is still in use by other cores. A shared cache is
preferable when cores access the same data, as it spares the cores from having to
make a much slower memory access and reduces data replication.

While the growing number of cores in a single package undoubtedly helps increase
computational power it imposes further pressure on memory bandwidth. Which in
turn worsens the memory wall problem [WM95], which is caused by the different
rates at which microprocessor and DRAM speeds increase. As microprocessors
improve faster than memory does, the relative time the processor spends waiting
for memory keeps increasing. One way to reduce the pressure on memory band-
width is to have the memory distributed over the system instead of centralized.
This way, each memory bank can be close to one socket, granting that processor
faster memory access. This design is named Non-Uniform Memory Architecture
(NUMA) and is illustrated in Figure 2.2. While it is shared memory, as any socket
can access any other socket’s memory, accessing another socket’s memory has a
higher latency than local accesses. This happens because remote accesses must
pass through an interconnection network to reach their destination, such as FSB,
HyperTransport [CH07], and QuickPath Interconnect (QPI) [Zia+10]. In the figure,
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the interconnect linking two sockets is represented by an edge. Furthermore, access
costs to different nodes may differ, that is, it may be faster for a node A to access
node B’s memory than for it to access C’s.
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Figure 2.2.: Non-Uniform Memory Architecture. While any sockets can access the
memory of a remote node the latency to do so is not the same for all remote

nodes.

Using more than a single core adds several complexities to an application that do
not exist in a sequential environment. For example, let’s say some memory location
contains a counter, which has its value read, incremented by one, and written back
every time some event happens. If two threads attempt to update this counter
at the same time, the two threads may read the value n concurrently and write
back n+1 instead of the expected n+2. In order to prevent this type of problem it is
necessary to have some form of synchronization. Parallel applications also must
divide the work among the threads, and, in order to remain efficient, account for
memory location when splitting the work such that threads are assigned data that is
close to them, and, thus, quicker to access. Since the use of multithreading requires
several changes in the way an application is developed, different solutions have
been proposed to deal with these difficulties, some of which are described next.
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2.2 Parallel Programming

This section describes the parallel programming paradigm, giving an overview of
some parallel programming models and implementations. Over the years several
techniques have been developed to handle parallel programming.

Implicit parallelism allows the application to make use of several cores or nodes
without requiring the programmers to explicitly control their use. It can be present
in many functional programming languages since the lack of side-effects allows
functions which do not depend on each other to run in parallel. Implicit parallelism
reduces the effort required by the programmer to make an application run in
parallel. However, it often results in either too few or too many [Hon] tasks being
created, resulting, respectively, in idle resources or a high overhead when compared
to more explicit methods.

The message passing model allows different nodes to communicate by sending
and receiving messages to one another. It is used for instance to communicate
between nodes in a cluster. One of the most well-known standards that use message
passing is the Message Passing Interface (MPI), and it can be used with several
programming languages, like C, C++, Fortran, R, Java and Python.

In shared memory environments, where every computing unit has access to all
memory, such as between cores within a single machine, the fork-join model is
often preferred. With this model, a thread forks execution of some subproblem and
continues executing. As it is a model that targets shared memory environments data
does not need to be directly transferred between threads. However in environments
with Non-Uniform Memory Access (NUMA) for instance this direct access to
memory can lead to inefficient memory use, since if care is not taken threads may
spend a considerable amount of time accessing non-local data.

There are many implementations of the fork-join model. Some examples are:

2.2.1 POSIX Threads

The Portable Operating System Interface (POSIX) is a family of standards created by
IEEE, ANSI and ISO [Gal95]. POSIX was created with the aim of providing certain
compatibility between different operating systems through the use of the same set
of APIs. While complete portability free from OS-specific code is still often not
possible, efforts such as POSIX reduce the cost of porting an application between
two POSIX-compliant operating systems. Several operating systems are at least
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partly POSIX-compatible. For example AIX, Android, FreeBSD, Haiku, INTEGRITY,
Linux, macOS, NetBSD, OpenBSD, OpenSolaris, Solaris, UP-UX and Windows.

POSIX Threads, or pthreads, is the POSIX API for multithread programming. It
specifies thread creation and synchronization through mutexes or condition vari-
ables. It is often used along with POSIX semaphores, which are not part of the same
standard. POSIX Threads is an API meant for system programming, being used by
several other libraries. It is ill-suited for programming an application in as it is a
low-level API, making it difficult to write performance-portable code.

Listing 1 shows an example of a simple POSIX Threads program. In that code
two POSIX features are used. pthread_create in lines 10-11 creates a new thread
that executes the function fibonacci and then quits. That function also receives
data through a pointer to n (n+1, in line 11), and writes the thread identifier in the
variable tid[0] (tid[1] for line 11). The other feature used is pthread_join, which
waits for the thread with the given thread identifier to finish executing before
returning and in this case is used to ensure the data in n[0] and n[1] read afterwards
has been written.

1 void * fibonacci(void *a){
2 pthread_t tid[2];
3 int n[2];
4 n[0] = *(int*)a;
5 if(n[0] < 2){
6 return 0;
7 }
8 n[0] = n[0] - 1;
9 n[1] = n[0] - 1;

10 pthread_create(tid+0,NULL,fibonacci,n+0);
11 pthread_create(tid+1,NULL,fibonacci,n+1);
12 pthread_join(tid[0],NULL);
13 pthread_join(tid[1],NULL);
14 *(int*)a = n[0] + n[1];
15 return 0;
16 }

Listing 1: Example of POSIX Threads code for Fibonacci.

2.2.2 OpenMP

Open Multi-Processing [Boa18] (OpenMP) is a shared-memory parallel program-
ming standard supported by several compilers in different operating systems and
languages. Initially, OpenMP only supported parallel loops. Parallelizing a loop
where all iterations are independent and can be run in any order can greatly speed
up the computation. Different mappings of loop iterations to threads are available
through the use of different scheduling policies. The “static” scheduler, for example,
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does this mapping statically, dividing the iterations evenly (when possible) among
the threads. This behaviour is helpful for data locality in NUMA systems using a
first-touch NUMA policy. This policy delays memory allocation to the first time a
write is made to it, and, then, allocates the memory in the node of the thread which
is attempting to write. The “static” scheduler can help locality since loops with the
same size will have their iterations mapped to the same threads, which in a simple
scenario means the threads always work on the same data, which is local because of
the first-couch policy. However, when iterations have different workloads a static
mapping will result in idle threads while other threads still have enqueued work to
do. The “dynamic” scheduler handles this scenario by dynamically distributing
the iterations to the threads during execution, such that a thread who finished all
the iterations assigned to it grabs and starts executing the next chunk of iterations
that have not been assigned to any thread yet. This however adds the overhead
of threads having to grab perhaps several new chunks of iterations. To reduce the
overhead one can increase the chunk size, so that threads will grab a larger number
of iterations each time. However a large chunk size may result in slowing down the
computation as a few threads still have enqueued work to do while other threads
are idle. To mitigate this issue OpenMP provides the “guided” scheduler. This
scheduler is similar to the "guided" scheduler but it starts with large chunks and
slowly reduces their sizes, aiming to reduce the overhead while not causing too
much work inbalance.

Parallel loops are useful for many applications, particularly when the same, or
similar, operations have to be applied to multiple data. However there are severe
limitations to this model. The OpenMP parallel loop construct can easily lead to
idle resources as threads which have finished their computation must wait for
other threads to finish, which is an larger problem when the data cannot be evenly
distributed among the threads. Furthermore, in many cases it is necessary to run
different operations in parallel, which can be difficult to do efficiently using a loop
construct. The 3.0 version of the OpenMP standard introduced support for task
programming. The 4.0 version of the OpenMP standard added support for data
dependencies in tasks. Tasks tend to be heavier than parallel loops, however tasks
can better handle more dynamic workloads as they reduce the number of synchro-
nization points necessary. The use of parallel loops or tasks without dependencies
may result in idle computational resources, but with the use of dependencies a task
may start executing as soon as its data is available and an idle thread is available.
Due to the several advantages of tasks there is far more research effort today in
improving the OpenMP tasking model than on improving its parallel loops.

Listing 2 shows an example of OpenMP code for a parallel Cholesky decomposition,
also known as Cholesky factorization, which is used for instance by Monte Carlo
methods used to simulate fluids, simulate cellular structures, calculate business

2.2 Parallel Programming 11



risks, calculate multidimensional definite integrals with complex boundaries, etc.
A Cholesky decomposition has the form A = LL∗ and consists of factorizing the
Hermitian, positive definite matrix A into the product of two matrices, the lower
triangular matrix L and its conjugate transpose L∗. Line 2 specifies the next block
should be run in parallel by a team of n threads for some previously specified n.
Line 3 indicates only a single thread should execute this block. Lines 5, 8, 14 and
19 specify the next block is run as a task. In that last case, the “depend” clause is
used to specify dependencies. Tasks with an “out” and “inout” clause fulfil the
dependencies of tasks created later and which have the same variables in their
“in” and “inout” clauses. Tasks with “in” and “inout” clauses must wait for these
dependencies to be fulfiled before starting execution.

1 void cholesky(int ts, int nt, double *A[nt][nt]){
2 #pragma omp parallel
3 #pragma omp single
4 for(int k = 0; k < nt; ++k){
5 #pragma omp task firstprivate(k) depend(inout: Ah[k][k])
6 potrf(Ah[k][k], ts, ts);
7 for(int i = k + 1; i < nt; ++){
8 #pragma omp task firstprivate(i,k) depend(in: Ah[k][k]) \
9 depend(inout: A[k][i])

10 trsm(Ah[k][k], Ah[k][i], ts, ts);
11 }
12 for(int i = k + 1; i < nt; ++i){
13 for(int j = k + 1; j < i; ++j){
14 #pragma omp task firstprivate(i,j,k) depend(in: Ah[k][j], \
15 Ah[k][i]) \
16 depend(inout: Ah[j][i])
17 gemm(Ah[k][i], Ah[k][j], Ah[j][i], ts, ts);
18 }
19 #pragma omp task firstprivate(i,k) depend(in: Ah[i][i]) \
20 depend(inout: Ah[k][i])
21 syrk(Ah[k][i], Ah[i][i], ts, ts);
22 }
23 }
24 }

Listing 2: Example of OpenMP code for Cholesky decomposition.

OpenMP requires compiler support to convert its “pragma” constructs into the ap-
propriate code, which creates threads, copies or gathers data, waits for other threads
to finish, schedules new tasks for execution, etc. Much of this code consists of func-
tion calls to the OpenMP runtime, which is the library responsible for providing all
the necessary support for OpenMP applications during their execution.

libGOMP [Lib15] is the OpenMP runtime used by GCC. It keeps track of de-
pendencies by means of a hash table mapping the data to the last writer to that
data [Lim+17]. Threads in the same parallel region push tasks to a shared dequeue,
requiring synchronization and in turn creating a bottleneck. In order to keep task
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execution order similar to the sequential execution tasks are inserted after their
parent. To reduce the task creation overhead, OpenMP uses task throttling to serial-
ize task creation when there is too large a number of pending tasks relative to the
number of threads.

The libOMP runtime was initially developed by Intel for its compilers. Initially
proprietary, the runtime has since been made open source and was adopted by
the LLVM project for use with the Clang compiler. GCC’s codebase is complex
in great part due to its legacy code. LLVM, however, is a much newer project,
enabling it to more easily make use of advancements made in compilers since and
resulting in a much more accessible codebase, making it easier to extend LLVM
when compared to GCC. Like libGOMP, libOMP keeps track of task dependencies
with a hash table. The task scheduler is based on Cilk’s work-stealing algorithm but
uses locks for the serialization of dequeue operations. Different from libGOMP, the
task dequeue is distributed among the threads. Memory allocated for task creation
uses a fast thread memory allocator. The task throttling algorithm uses a bounded
size dequeue to handle a large number of tasks being created.

2.2.3 OmpSs

OmpSs [Dur+11] continues the work of StarSs, extending SMPSs and GPUs and
integrating the heterogeneity support into a single programming model. Like StarSs,
OmpSS makes use of the Mercurium compiler and the Nanos++ runtime. Many of
the features first introduced in OmpSs are later incorporated in OpenMP.

The OmpSs runtime provides a few different scheduler policies. The breadth first
policy uses a single queue shared by all threads, ordered by default as a FIFO.
The distributed breadth-first policy is similar to breadth-first but it uses a queue per
thread. When this local task is empty the thread attempts to execute the current
task’s parent, if the current task is from a different thread’s queue). If that task
cannot be executed the thread attempts to steal a ready task. The work first policy
has one ready queue for each thread. When a new task is created it is executed
immediately, and the parent task is placed into the current thread’s ready queue.
With the default parameters, this policy is equivalent to the Cilk scheduler. The
socket-aware scheduler policy assigns top-level tasks to a user-defined NUMA node.
Nested tasks, in turn, are assigned to the NUMA node of their parent. The policy
supports but does not requires work-stealing. With work-stealing a thread may
only steal from neighbouring nodes, or, alternatively, steal from a random node or
steal top-level tasks. The bottom level-aware scheduler policy was made for single-ISA
heterogeneous machines with two types of cores, like ARM’s big.LITTLE which
features fast cores that consume more power and slower cores which require less
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power. It uses two queues, one for each kind of core, sorted by task priority. With
this policy, fast cores are assigned tasks which are performance-critical in the task
dependency graph. By default work-stealing is enabled only for fast cores.

The versioning policy supports multiple versions of a single task. The profiling of
the multiple versions is done automatically. The policy assigns a task to its earliest
executor, but when the number of tasks is large enough idle threads can execute
them even if they are not the earliest executors.

Listing 3 shows an example of OmpSs for computing Cholesky decomposition.
Lines 1, 3, 5 and 7 specify the function below each of them, when called, spawns
a task. In the pragma used by those lines the variables in the clause “in” are
input dependencies. Likewise, variables inside an “inout” clause specify both a
dependency of that variable in a previously created task and that it satisfies that
dependency of a future task. A task only begins executing when all its dependencies
(“in”) have been satisfied by tasks created previously (with “inout” or “out”).
Lastly, line 20 specifies the worker will wait for the tasks it created previously to
finish before continuing. The use of pragmas allows the program to still compile
and execute, sequentially, when compiled by compilers that do not support the
pragmas.

1 #pragma omp task inout([ts][ts]A)
2 void omp_potrf(double * const A, int ts, int ld){}
3 #pragma omp task in([ts][ts]A) inout([ts][ts]B)
4 void omp_trsm(double *A, double *B, int ts, int ld){}
5 #pragma omp task in([ts][ts]A) inout([ts][ts]B)
6 void omp_syrk(double *A, double *B, int ts, int ld){}
7 #pragma omp task in([ts][ts]A, [ts][ts]B) inout([ts][ts]C)
8 void omp_gemm(double *A, double *B, double *C, int ts, int ld){}
9 void cholesky(int ts, int nt, double *A[nt][nt]){

10 for(int k = 0; k < nt; ++k){
11 omp_potrf(Ah[k][k], ts, ts);
12 for(int i = k + 1; i < nt; ++)
13 omp_trsm(Ah[k][k], Ah[k][i], ts, ts);
14 for(int i = k + 1; i < nt; ++i){
15 for(int j = k + 1; j < i; ++j)
16 omp_gemm(Ah[k][i], Ah[k][j], Ah[j][i], ts, ts);
17 omp_syrk(Ah[k][i], Ah[i][i], ts, ts);
18 }
19 }
20 #pragma omp taskwait
21 }

Listing 3: Example of OmpSs code for Cholesky decomposition. Source: OmpSs
Documentation [Cen18].
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2.2.4 StarPU

StarPU [Aug+11] is a task programming runtime initially made for heterogeneous
architectures. It allows the user to define a set of kernel versions for CPUs and
accelerators. When a task is launched and its dependencies met the runtime se-
lects which of the provided versions to run. Data transfers between the main
memory and accelerators are done transparently to the programmer. With the
KSTAR [Aum+18], or Klang-OMP, source-to-source OpenMP compiler OpenMP
source code can transparently use the StarPU library instead.

In order to optimize the execution in different scenarios, StarPU provides a large
set of schedulers. The schedulers are split into two groups, those with and those
without a performance model. The performance model provides an estimation of
how long a task will run for, without having to execute it first.

StarPU allows the application itself to provide a performance model for each kernel.
It is also possible to use a model which measures the time taken by each execution
of each kernel and no further information, which works when the workload of
each kernel does not change during the execution. If the workload of each kernel
is not constant through the execution a regression with the form a · nb or a · nb + c

can be used instead. Due to the cost of computing non-linear regressions, they are
only done at the end of the execution — so during the execution only the recorded
performance history is used by the scheduler and new measurements will only be
used by future executions.

The group of schedulers that do not require a performance model consists of five
schedulers: eager, prio, random, work-stealing and locality work-stealing. The
eager and the prio schedulers both have a single global queue shared by all workers.
The two differ in that the eager policy puts any task with a non-zero priority at
the front of the queue and the prio policy sorts the tasks according to their priority.
The other three schedulers have one queue per worker. The random scheduler
distributes the tasks randomly among the workers. While faster workers will
receive more tasks this policy ignores how well-suited a task is for a worker. As
such if a worker is faster than another but only with one type of task it will still
receive tasks it cannot compute as quickly. With the work stealing scheduler a
worker executes first the tasks it created. Once a worker’s queue is empty, the
worker attempts to steal tasks from a random worker. The locality work-stealing
scheduler aims to improve the locality of the work stealing scheduler. Idle workers
steal not from a random worker but from a neighbouring worker, accounting for
priorities.
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Listing 4 shows an example of vector scaling in StarPU. Lines 1 and 2 provide two
versions of the kernel. Lines 3-9 group these two functions into a codelet, which can
be called afterwards and will use one of the provided versions. Line 8 defines the
data used by the task is both read and written to. Line 15 initializes StarPU with the
default parameters. Line 16 registers the data with the StarPU runtime, enabling
StarPU to transparently manage data movements between host and devices. Line
22 specifies the codelet the task will use. Lines 23-25 define the data that will be
passed to the task. Line 26 submits the task, and, since it is a synchronous task,
waits for it to finish execution. Line 27 tells StarPU the location of the data does not
need to be tracked anymore. Finally, line 28 shuts down StarPU.

1 void scal_cpu_func(void *buffers[], void *_args) { ... };
2 void scal_sse_func(void *buffers[], void *_args) { ... };
3 static struct starpu_codelet cl = {
4 .where = STARPU_CPU;
5 .cpu_funcs = { scal_cpu_func, scal_sse_func },
6 .cpu_funcs_name = { "scal_cpu_func", "scal_sse_func" },
7 .nbuffers = 1,
8 .modes = { STARPU_RW }
9 };

10 void vector_scaling() {
11 float vector[NX];
12 unsigned i;
13 for (i = 0; i < NX; i++)
14 vector[i] = 1.0f;
15 starpu_init(NULL);
16 starpu_data_handle_t vector_handle;
17 starpu_vector_data_register(&vector_handle, STARPU_MAIN_RAM,
18 (uintptr_t)vector, NX, sizeof(vector[0]));
19 float factor = 3.14;
20 struct starpu_task *task = starpu_task_create();
21 task->synchronous = 1;
22 task->cl = &cl;
23 task->handles[0] = vector_handle;
24 task->cl_arg = &factor;
25 task->cl_arg_size = sizeof(factor);
26 starpu_task_submit(task);
27 starpu_data_unregister(vector_handle);
28 starpu_shutdown();
29 }

Listing 4: Example of StarPU code for vector scaling. Simplified from the example in the
StarPU Handbook [BCI19].

While all the mentioned APIs have their pros and cons, one important attribute is
how each of them impacts performance. Although performance is a more objective
attribute to evaluate than, for instance, ease of use, its evaluation demands some
attention in order to avoid reaching invalid conclusions that do not hold in the
general case.
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2.3 Performance Analysis

This chapter describes the statistical background necessary for the analysis of
our experimental results and some of our approaches. At first we motivate the
reasons for this requirement and, afterwards, we explain the statistical methods
employed.

The analysis of HPC experiments is often limited to a direct comparison of the means
of the points being compared. Although simple this approach can be misleading in
some cases. The mean is not a robust measurement — it can be strongly affected by
even a single point which is far from most other points. Furthermore, by limiting
ourselves to the mean it becomes impossible to know how far most results are from
it, and, consequently, one cannot tell how well the mean represents the data.

To illustrate this point, Figure 2.3 shows two ways to implement some hypothetical
computation, A and B. Both versions have the same mean execution time, repre-
sented by the red dot. However, by looking at each of the 100 executions, shown as
the black dots, we can see in this case the two samples are actually very different
from each other: the executions of A are clustered close together, while those of B
are more spread. That is, B presents a higher variability than A. As the two means
are the same, A and B have the same expected value (E). However the two only
behave the same in the long term. If we were to take a single measurement, B shows
itself much more rewarding and risky than A since it has a much higher chance of
measurements farther from the mean.
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Figure 2.3.: Example of how the mean can mask details such as the shape of the
measurements.

Figure 2.4 depicts a scenario where a computing kernel K0 is being executed
by thread 0 while thread 1 is executing the kernel K1, with the horizontal axis
showing at which point in time each kernel began and finished executing. Once
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thread 1 finishes executing K1 it can begin executing another kernel, K2. The K2
kernel, however, can be computed in two different ways, K2(A) and K2(B). These
are shown, respectively, by the purple and orange bars, which end at the average
time each should finish executing. These averages come from Figure 2.3 and are,
again, the same. Another kernel, K3, is in the critical path of the application. That
is, K3 directly affects the execution time of the application and any delay in its
execution will negatively impact performance as it will increase the makespan. In
that case, if K3 depends on K0 and K2, the choice between K2(A) and K2(B) can
impact execution time despite both sharing the same mean. The red lines show
when 95% of executions of K2 should finish with each version. As K2(B) has much
higher variability than K2(A), K2(B) has a higher chance of finishing not only after
K2(A) but after K0 as well. For the same reason K2(B) also has a higher chance of
finishing earlier than K2(A). However in this particular case K2 finishing earlier
is not advantageous from a performance perspective as K3 still has to wait for
K0 to begin executing, making K2(A) better than K2(B) despite both having the
same average execution time. There are several statistical methods to measure
the variability of a sample, some of which will be briefly discussed in the next
paragraphs. These other measures add more information but do not replace the
mean as it still provides valuable information.

Kernel K0

Kernel K1

Kernel K2(A)

Kernel K2(B)

1

0

0 1 2 3 4 5

Time (s)
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Figure 2.4.: Example showing a parallel exectution. Thread 0 executes kernel K0 in
parallel with kernels K1 and K2 in thread 1. K2 has two versions available,

K2(A) and K2(B), shown by the purple and orange bars respectively. In K2(A)
and K2(B) the end of the bar indicates the mean execution time of that kernel
based on past executions, depicted in Figure 2.3. The red lines represent two

standard deviations and show where 95% of the executions should fall.

The range tells how much difference can be found among points in the sample. It
is given by the difference between the maximal and minimal measurements taken
(max(xi)−min(xi)). Like the mean, the range is a very sensitive measure as it only
takes two points, and at the extremes which are where few points lie in the most
common distributions. For example in the Figure 2.3 the ranges of A and B are,

18 Chapter 2 Background



respectively, 0.7 and 1.9. One can also limit the range to a portion of the sample
instead, making the measurement less sensitive to extreme and improbable values.
If we split the data points into quartiles, that is, if we group together the 25% lowest
values from the sample, then the next 25% of points and so on, the interquartile
range (IQR) gives a range. Instead of calculating that range from the two extreme
values of the sample the IQR takes the largest and smallest values inside the two
middle quartiles. In other words, the IQR takes the extreme values but only from
the 50% of points closest to the middle of the sample — 25% from among the points
immediately before the median and the other 25% from the points directly above it.
This range is shown in Figure 2.3 by the dotted green lines.

The interquartile range is a more robust measure of variability than the sample range
as the IQR is not as sensitive to a few extreme values, however it implies in ignoring
a large number of points. These points that are far from the average, the outliers,
are often discarded. There is no general rule on what defines an outlier, although
there are some methods which are often employed. Tukey’s inner fences [Tuk77]
define an outlier as all points below Q1 − 1.5IQR or above Q3 + 1.5IQR. Dixon’s
Q-test [DD51] can be used to identify a single outlier in each tail of a Gaussian-
distributed sample. It is a simple test, where values in both extremes are compared
with their neighbors and the range. The N values in the sample are ordered such
that x1 < x2 < · · · < xn, then the Q-value is calculated at the two tails:

Q = xN − xN−1
xN − x1

for the largest value and

Q = x2 − x1
xN − x1

for the smallest value. The Q-value is then compared with a critical value for the
desired confidence level which will decide whether the extreme values should be
considered outliers, and possibly discarded. The Grub test [Gru69; Bar+11] can
detect a single outlier in the upper and the lower ends of a Gaussian-distributed
sample. The N values in the sample are ordered such that x1 = min(x) and
xn = max(x). Then two values are calculated:

Gl = x− x1
s

where s is the sample’s standard deviation, which is explained in the next para-
graphs, for testing outliers at the lower tail and

Gu = xn − x
s
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for the upper tail. If Gl or Gu is greater than

n− 1√
n

√√√√√ t2α
2n ,n−2

n− 2 + t2α
2n ,n−2

where t α
2n ,n−2 is the critical value of the t-distribution with n− 2 degrees of freedom

and a significance level of α
2n , the respective point is considered an outlier. Peirce’s

criterion [Pei52] can detect k outliers. For each value suspected of being an outlier
|xi−x|
s is calculated. If this value is greater than a critical value R, which depends

on the number of measurements and the number of suspect points, the point is
considered an outlier.

While rejecting outliers protects measurements like the mean from possibly unde-
sired interference. There may be many sources of interference that the researcher
may not want to look into. The equipment used for taking the measurements may
not always be accurate, for instance, due to a dirty lens in the case of a telescope.
There may be environmental factors that affect the measurements like radio noise.
Or, in the case of a server, the temperature of the room it is located at, which in
turn may prevent it from reaching higher clock frequencies. While some of these
measurements may be very inaccurate, or even wrong, and do not represent the real
phenomenon being measured, like in the case of the dirty lens, in other cases these
may be normal — albeit unlikely — measurements. In those cases removing the
measurements should be avoided. The United States’ National Bureau of Standards
for example states [FPP07] “Rejection of data on the basis of arbitrary performance
limits severely distorts the estimate of real process variability. [. . . ] Realistic per-
formance parameters require the acceptance of all data that cannot be rejected for
cause.” Fortunately, a more robust statistical analysis can handle a certain number
of outliers without altering the data. Some of the statistical tools used for that end
are described next.

The standard deviation is a measure of how spread the data is around the mean. The
larger the standard deviation, the more and farther the measurements are from
the mean. If the data follows a Gaussian distribution like shown in Figure 2.5,
68% of all measurements will be within one standard deviation from the mean,
95% of all measurements will be within two standard deviations and 99.7% of all
measurements will be within three standard deviations. In other words, in that
scenario, 99.7% of all measurements are in the interval [x− 3 · σ, x+ 3 · σ], where
σ is the standard deviation. Given a population of size N composed of the points
xi,∀i ∈ {1, . . . , N} and with an average of

µ = 1
N
·
N∑
i=1

xi
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the standard deviation of that population is given by [FPP07]:

σ =

√√√√ 1
N
·
N∑
i=1

(xi − µ)2

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

Figure 2.5.: Example of a Gaussian distribution. The area in blue shows the values under
one standard deviation of distance from the mean, both above and below,

which is where 68% of the values lie. Adding those to the area in green are the
95% of values within two standard deviations from the mean. Finally, if we

add the area in red we have the 99.7% of values within three standard
deviations from the mean.

In the more common case of calculating the standard deviation of a sample instead
of the whole population, this is done slightly different. As the average of the sample,
given by

X = 1
N

N∑
i=1

Xi

is not equal to the average of the population the root mean square deviation from the
average would add bias to the standard deviation. This bias has to be compensated
and the sample standard deviation is given by

s =

√√√√ 1
N − 1 ·

N∑
i=1

(Xi −X)2

The standard error is similar to the standard deviation. However, instead of mea-
suring the dispersion of a set of points, the standard error measures the variation
around some statistic. For instance if we sample k values from some Gaussian
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distribution we can expect the sum of these values to be, on average, k · x. Since
sampling is a stochastic process sometimes this sum will be above, or below, the
previously mentioned value. The standard error tells how likely are we to see
values far from that expected value. The standard error of the mean (SEM) is given
by

σx = σ√
n

As the standard deviation of the population is often unknown this value can be
estimated using the standard deviation of the sample with σx ≈ sx = s√

n
. Notice

this estimation of the population’s standard error is biased and underestimates the
population’s standard error.

A confidence interval (CI) defines an interval in which some parameter of the popula-
tion is found, with some confidence level. For example, if a sample from a gaussian
distribution has a confidence interval of 100± 10 with a confidence level of 95% for
the population mean, there is a 95% chance the real population mean is between
90 and 110. In this same example the 10, at a 95% confidence level, corresponds to
the standard error times two, that is to say in that case the standard error is 5. With
a confidence level of 95%, there is still a 5% chance the real mean is outside that
interval. If instead we wanted a 99.7% confidence level we would need to multiply
the standard error by three, expanding the interval to 100± 15.

A result is said to be statistically significant if the chance of observing that result by
chance alone is considerably low for the chosen confidence level. What is a low
chance in turn depends on the chosen confidence level — with a confidence level of
99%, for example, results as improbable as those which happen 1% of the time are
considered statistically significant.

Aside from its central role in performance analysis, statistical methods are employed
in various scenarios where it is not possible to know all the data of the population
being analysed or when the measurements themselves pose some uncertainty due
for instance to limits in the measuring apparatus. For instance, economics, risk
analysis, weather forecasting, medicine and machine learning. Machine learning in
turn is used by diverse fields within an environment where uncertainty is present
and where the desired course of action is unknown a priori.

2.4 Machine Learning

Machine Learning is the study of algorithms which collect information and leverage
that knowledge to improve the quality of their predictions [MRT12]. Machine
learning is used to solve a broad set of problems which would otherwise require an
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extremely large number of manually-crafted rules to decide, like natural language
processing, face detection, speech recognition and document classification.

There are several different ways in which a machine learning algorithm may acquire
data. With supervised learning, the learner receives labeled training data and, from
that, must predict unlabeled points. In other words, the learner is provided with the
correct action for some points and must use that knowledge to choose an action on
new points it potentially has not seen before. While a common type of learning, its
use is limited to situations where obtaining a general enough training set is feasible.
In more interactive problems this is often not the case. Unsupervised learning, in
turn, receives only unlabeled data and is used for instance in clustering. With online
learning, there are multiple intermixed rounds of training and testing. Like with
unsupervised learning the learner receives only unlabeled points, which it must
label and, afterwards, learn the correct label for that point. Active learning is similar
to supervised learning but instead of receiving all the training data at the beginning
the learner asks an oracle for new points. The advantage of active learning is it can
reduce the number of required points, which is an important trait in applications
where the acquisition of labels is expensive like computational biology.

With reinforcement learning, the learner receives unlabeled points. Unlike un-
supervised learning, whose aim is to find the underlying structure of the data,
reinforcement learning is concerned not with the structure itself but with maxi-
mizing its reward. The reward can be anything like total energy consumed, peak
power, execution time, etc. Reinforcement learning is often used in interactive
environments, as opposed to receiving points that have been gathered previously.
Compared to other types of learning, it has the additional challenge of having to
handle the trade-off between exploration and exploitation [SB18]. To maximize its
reward, the learner must execute actions which it knows that tend to produce good
rewards. However, to know which actions tend to produce the best rewards it has
to try new actions. Consequently, the learner cannot simply disregard exploration
and exploit one action, as it may miss better rewards. Nor can the learner forego
exploiting the best action and only explore the environment as doing that results in
receiving many bad rewards as it fully explores the environment.

As an example of the use of reinforcement learning, let’s take the (very simple)
tic-tac-toe game. In this game two players compete against each other in a 3 × 3
grid. Players take turns placing an X , for one player, or an O, for the other in a
free cell in the grid. Once there are three of the same symbol in a row, column or
diagonal the game ends and the player who played that symbol wins. Alternatively,
the game ends in a draw if the previously mentioned condition is not met and there
are no more free cells in the grid. This game is solved, and by playing optimally it
is impossible to lose. So, for this example, let’s assume the adversary is not playing
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optimally. That precludes the use of the minimax algorithm, as it would avoid
reaching a game state that risks a defeat against an optimal player, even though our
non-optimal opponent may make a mistake in that case and lose.

One way to solve the tic-tac-toe problem is with a value function. Each game state
has a value, which is the probability of winning the game once that game state
is reached. However, as we initially lack any knowledge of how the adversary
plays, this probability is just an estimation. As games are played the values are
updated and the estimation improved. As the learner is playing the game it must
decide weather to act greedily, and attempt to reach states with high values, or
exploratory, and attempt to reach states which still don’t have a good estimate
of how likely a victory is. There are different ways to balance exploration and
exploitation, some of which are described later, but a simple solution would be
for the learner to prefer exploration on its first games and, after some time, prefer
exploiting its knowledge. Regardless of the exact means of balancing exploration
and exploitation, if exploration tends to zero over time, this policy converges to
optimality against any fixed opponent.

Uncertainty over the consequences of an action, lack of a mathematical model of
the environment and the need to balance information gathering with making use
of that information are common to a varied array of problems, such as playing
games like backgammon or go, selecting the best product placement to increase
sales, identifying new chess gambits, elevator scheduling, etc.

2.5 Autotuning

Many applications have the bulk of their computation done by relatively small
pieces of code called computing kernels [Big+18a]. For example, sparse matrix-
vector multiply in linear systems solvers, Fourier transforms in signal processing,
and discrete cosine transforms in JPEG image compression [VD00]. Since it is a rel-
atively minor portion of the code, improving the performance of these kernels, and
consequently the application, should be easy to a degree. However, the computing
kernel must be optimized for each target hardware architecture, resulting in not
one but several repetitions of the already costly, time-consuming and error-prone
process of manually tuning a computing kernel [Ben+14]. Autotuning attempts to
reduce the programmer effort required for this performance tuning process by mak-
ing performance gains more portable between architectures [Big+18b]. Autotuning
is used both by individual applications and by libraries such as ATLAS [WPD01],
FFTW [FJ98], MKL [Wan+14] and SPIRAL [Pus+05]. Some of these libraries
provide several versions for the same computing kernel. In those cases, the choice
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of version to use is made at runtime based on several parameters, including for
instance the problem size.

An autotuner must do two things: code generation and performance evaluation.
For code generation, usually, the developer provides the autotuning tool with code
generators. This allows the autotuner to test many different values for each opti-
mization, for example, many different tile sizes that would be cumbersome to write
manually. Furthermore, the code generators enable the autotuner to automatically
combine several optimizations, which is useful since even if each optimization in a
set of optimizations is beneficial on its own when used together they may impact
performance negatively. Performance evaluation entails running the generated
code to measure how well it performs under some system configuration. However,
it often happens the search space containing all possible versions that the code
generators can produce for a kernel is far too large to be exhaustively explored.
As the number of valid versions may be exponential to the number of parameters,
even with a large amount of computational resources it may not be feasible to fully
explore the search space regardless of the computational resources available. For
example, the Poisson benchmark from PetaBricks autotuned has 103657 possible
configurations [Ans+14].

To illustrate the difficulties present in autotuning we will go through the autotuning
process for a simple kernel. The kernel being autotuned is shown in Listing 5, and
is a tiled matrix multiplication that computes C = AB. For simplicity, we will limit
the performance tuning to three parameters: TILE_I, TILE_J and TILE_K. TILE_I
will be shown in detail in the following paragraphs, while TILE_J and TILE_K are
detailed in Appendix A. These parameters control the tile size used to access each
of the matrices, changing the order in which cells are accessed, resulting in fewer
or more cache hits on each of the matrices. Everything else is kept unchanged, all
versions generated use the same compiler flags, values for loop unrolling, etc.

1 void mmul(int m, int n, int p, double *restrict A,
2 double *restrict B, double *restrict C) {
3 int i, j, k, ii, jj, kk, il, jl, kl;
4 for (ii=0; ii < m; ii += TILE_I) {
5 il = min(ii+TILE_I, m);
6 for (jj=0; jj < n; jj += TILE_J) {
7 jl = min(jj+TILE_J, n);
8 for (kk=0; kk < p; kk += TILE_K) {
9 kl = min(kk+TILE_K, p);

10 for (i=ii; i < il; i++)
11 for (j=jj; j < jl; j++)
12 for (k = kk; k < kl; k++)
13 C(i,j) += A(i,k)*B(k,j);
14 }}}}

Listing 5: Example of a tiled matrix multiplication kernel.
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The effect of changing the tile size in the order the matrices are accessed is shown in
Figure 2.6, which depicts a multiplication of two very small 4× 4 matrices. In the
figure, TILE_I and TILE_J were kept constant at 2 and 4, respectively. Each column
corresponds to a different value for TILE_K, varying between 1 and 4. The access
pattern used by the matrix A is shown in the first row and the pattern used for B,
with the same tile sizes, is shown in the second row. In each pattern, each point
represents a memory access, with the vertical axis representing the matrix row and
the horizontal axis the matrix column being accessed. Notice that each of the points
shown is accessed 4 times. Furthermore, notice it is not possible to use the best
pattern for all matrices. For instance, the pattern for A shown in the fourth column
of the first row, which accesses adjacent columns sequentially before advancing to
the next row, can only be used together with the pattern for B shown in the fourth
column of the second row, which does the opposite, accessing adjacent rows before
advancing to the next column. When reading an element of the matrix, first this
element is searched in the CPU cache. If it is not found in the cache, the element
and those adjacent to it in memory are loaded from memory and stored in the cache.
This improves memory accesses when data is accessed sequentially, as much of the
data will be cached by the time it is accessed. As such, in Fortran it is more efficient
to access, sequentially, elements adjacent by row as these are adjacent in memory.
In C/C++, it is the opposite and it is more efficient to access, in sequence, elements
adjacent by column. Regardless of how the data is distributed in memory, we can
see that, with this kernel, if we improve the accesses to A we may be worsening
the accesses to B. Consequently, from the performance point-of-view, there are no
trivial values for the tile sizes that are clearly better than others tile sizes.

In this example, we use a 2048 × 2048 input matrix. This means there are 2048
possible values for each of the tiles, the combination of which results in 20483 ≈
8.5 billion possibilities in total. Furthermore, each of these must be executed more
than once in order to reduce the effects of the environment on the measurements.
As we chose to execute each version 5 times, an exhaustive search would require
over 40 billion executions. Finally, there is also the time required to compile each
version, which in the example is small, of about half a second. As an exhaustive
search would take a very long time to finish (about 1000 years, using the average
execution time of 7.9 seconds found in the experiments), the first step is to limit the
search space from all possible values to only those values that are reasonable, given
what we know about the kernel and the target system.

First, we execute a small experiment using only a few powers of two within the
ranges of each optimization parameter. More specifically we used, for each parame-
ter, the values 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. As we have 11 possible
values for each parameter, this leads to 113×5 = 6655 executions in total. Inspecting
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Figure 2.6.: Access patterns when multiplying two small 4× 4 matrices, using 2 for
TILE_I, 4 for TILE_J and varying TILE_K between 1 and 4, shown in gray. The
first row shows the different patterns for A, with the access pattern for B using

the same tile sizes shown immediately below on the second row. The
horizontal axis shows which column is accessed and the vertical axis shows

the respective row.

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B

1

B

2

B

3

B

4

A

1

A

2

A

3

A

4

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0

5

10

15

0

5

10

15

Timestep

C
el

l

Figure 2.7.: Access patterns when multiplying two small 4× 4 matrices, using 2 for
TILE_I, 4 for TILE_J and varying TILE_K between 1 and 4, shown in gray. The
first row shows the different patterns for A, with the access pattern for B using

the same tile sizes shown immediately below on the second row. The
horizontal axis shows the access order and the vertical axis shows the cell

accessed, with the cell number given by 4 · row + column.

even just three parameters together can be very difficult, so we will analyze TILE_I,
TILE_J, and TILE_K separately.
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Figure 2.8 shows the effect on the execution time of changing the value of TILE_I.
The vertical axis shows the execution time, in seconds. The horizontal axis shows the
value used for TILE_I. Each point is the minimum execution time of all executions
where TILE_I has the value shown in the horizontal axis. That is, the figure shows
how TILE_I affects the execution time when using the best known values for the
other two parameters. We can see TILE_I affects execution time and can make it
vary between 1.8 second at 4 and 2.2 seconds at 256. Furthermore, the curve at the
left of the figure indicates the best value for TILE_I lies between 1 and 8, although
there is no guarantee there is not some other value of TILE_I elsewhere would not
result in better performance.
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Figure 2.8.: Effect of different values of TILE_I on the execution time. Each point, one for
every value of TILE_I, represents the execution time using that value of

TILE_I and the values of TILE_J and TILE_K which give the lowest execution
time for that TILE_I.

At this point of the autotuning the best point takes 1.8 second to execute and uses 4,
256, and 1 for TILE_I, TILE_J, and TILE_K, respectively. There are often diminishing
returns, as we approach the ideal values of the parameters, so we could opt to stop
autotuning at this point. Alternatively, we could use the knowledge we gathered so
far to attempt to find more fine-grained values for the parameters. In this case we
will continue autotuning by exploring points in the ranges 1–8, for TILE_I, 64–512,
for TILE_J, and 1–32 for TILE_K.

The results of these new experiments are shown in Figures 2.9. The figure shows
the effect on performance of varying TILE_I. In the previous step the best value
for this parameter was 4. We can see 5 and 6 result in shorter execution times.
However, this difference is very small: 1.813 second for 4, 1.793 second for 5, and
1.796 for 6, i.e. a difference of 1.1% between 4 and 5. Furthermore, we have only
five executions for each. To confirm there really is a difference, albeit small, between
using these values for TILE_I we executed each of them 50 times, as the 5 executions
we have thus far do not allow us to tell whether they differ from each other or
if the measured difference is only because of external factors. These results are
shown in Figure 2.10. In that figure each point is the average of 50 executions, and
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the bars around each point show its confidence interval at a confidence level of
99.7%. Although points 4 and 5 are very close, their intervals are far apart enough
that there is a difference between the two. We can therefore expect to gain 1.4%
of performance by using a value of 5 for TILE_I compared to using the previous
known best value of 4.
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Figure 2.9.: Effect of different values of TILE_I on the execution time. Each point, one for
every value of TILE_I, represents the execution time using that value of

TILE_I and the values of TILE_J and TILE_K which give the lowest execution
time for that TILE_I.
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Figure 2.10.: Effect of different values of TILE_I on the execution time. Each point, one for
every value of TILE_I, represents the execution time using that value of

TILE_I and the values of TILE_J and TILE_K which give the lowest
execution time for that TILE_I. Each point is the average of 50 executions
and the bars indicate its confidence interval at a 99.7% confidence level.

One could opt to search the rest of the configuration space for better values for
TILE_I, or further expand the search space by adding other parameters like compiler
flags. However, at this point we opted to stop the autotuning process as the
performance gains of the previous step were very small. Notice this example was
not just very small, with a single kernel and only three parameters, but targetted
a single platform. Real applications have a larger number of computing kernels
to be tuned, often with more than three parameters each, and the autotuning has
to be repeated for each target architecture, making it impractical to do this tuning
manually.
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One alternative to make feasible the search in a large configuration space is to
prune large swaths of configurations. This, however, risks accidentally pruning
optimal solutions. To mitigate this risk, machine learning is often employed instead
of directly pruning the search space. There are many machine learning methods
which can be used, and the best search technique depends on the configuration
space. As such it can be advantageous to use more than one search technique. For
example, OpenTuner [Ans+14] implements differential evolution, several variants
of the Nelder-Mead method and Torczon hillclimbers, evolutionary algorithms,
particle swarm optimization and random search; BOAST [Vid+18] implements an
evolutionary algorithm and random search. These techniques are then employed
through a meta-technique named the multi-armed bandit with sliding window, area
under the curve credit assignment, a variant of the multi-armed bandit problem
described next.

2.6 The Multi-armed Bandit Problem

In autotuning there is, obviously, a limit on how many computational resources
and how much time the autotuner is able to employ on a given problem. The
autotuner must, then, allocate its limited resources to learn more about the different
optimizations and, with that, infer which of the kernel’s versions provides the
best performance. Multi-armed bandit problems share some similarity with the
autotuning problem. Both have a finite budget of resources, and must trade them
for knowledge. The major difference between the two is that the sole task of the
autotuner is to identify which version performs the best, a bandit problem however
does not have this as a primary, but as a secondary objective, its primary objective
being maximizing its reward, or, using the autotuning scenario, minimizing the
total execution time of all the kernel versions executed while still executing the
same number of those.

Multi-armed bandit problems [Rob52] are so named because one of the early
experiments covering this kind of problem used a two-armed bandit [LS18]. One-
armed bandit is a name for slot machines, which have a single arm and “rob” the
gambler due to the odds favouring the house. In the two-armed bandit experiment,
each arm had a different stochastic distribution for its reward. These distributions
were not known by the gambler, who had to test both arms as they attempt to
maximize their payout. Multi-armed bandits can model a broad range of problems
found in vastly different domains, like testing pharmaceutical treatments whose
efficacies are not yet well understood, and distributing funds to several research
projects which do not have well-defined payouts.
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In the general case a K-armed stochastic bandit possesses not two but K arms, each
described by some distribution Pi∀i ∈ {1, . . . ,K}. At every round t the gambler
chooses some arm At ∈ {1, . . . ,K} and pulls it, receiving some reward Xt ∼ Pt,At .
This process continues for n turns if the event horizon is finite, or indefinitely case
contrary. As the gambler cannot directly observe Pi the decision of which arm to
choose at round t depends solely on Ai∀i ∈ {1, . . . , t− 1}, Xi∀i ∈ {1, . . . , t− 1} and,

if known, n in order to maximize its total reward Sn =
n∑
t=1

Xt at the horizon.

One way to evaluate how well one policy performs is to use regret. The regret of
a policy is the difference between its total reward and that of the optimal policy.
That is, the farther a policy is from the optimal the higher its regret. Accordingly,
for a K-armed stochastic bandit ν and with µ∗(ν) = maxi∈[K]µi(ν) the largest mean
among the arms. The regret of a policy π in a bandit ν is given by

Rn(π, ν) = nµ∗ − E[
n∑
t=1

Xt]

One strategy to find the arm with the best average payout is the Explore-then-
Commit algorithm. It explores (pulls) each arm a certain number of times and,
from then on, only uses one arm. The Upper Confidence Bound algorithm chooses
each arm once, then it chooses the arm which would be the best being optimistic
regarding the data observed so far. As the name indicates, this is done by choosing
the arm with the highest upper confidence bound, which is an overestimation of
the mean.

2.7 Concluding Remarks

In this chapter we briefly described multicore architectures. We explain how unlike
other parallel techniques like ILP the use of multicore is not transparent to the
programmer and requires conscious programming effort to take advantage of the
multiple computational units. We succinctly present the further difficulties present
in NUMA systems, which require careful placement and access of data in the right
nodes to avoid for example reaching the bandwidth limit of one node while another
remains idle. We detail some parallel programming models and implementations,
namely POSIX Threads, OpenMP, OMPSs, StarPU and Kaapi. We briefly compare
two OpenMP runtimes, libGOMP, used by GCC, and libOMP, which is used by
LLVM and is the runtime our software artefact was based on. Furthermore, we
present some statistical techniques which can aid in data analysis and which are
also used by the version selector used by our proposal.

2.7 Concluding Remarks 31



We aim to provide better performance for multithreaded applications under differ-
ent scenarios without sacrificing performance portability. In order to do this we
use autotuning to automatically generate the alternative versions of a kernel, using
machine learning to decide which kernel version to use in a given scenario during
execution within the LLVM OpenMP runtime.
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3Machine Learning Assisted
Autotuning of Multi-Versioned
OpenMP Tasks

Chapter 2 highlighted some of the challenges inherent in improving the perfor-
mance of an application. Many applications spend the bulk of their execution time
in a few computing kernels. For instance, the seismic-wave propagation simulator
Ondes3D [Dup+09; Dup+08] spends most of its time on just a few kernels for
computing and updating parameters like the velocity and stress of the seismic
wave. Accordingly, an important part of performance-tuning these applications
consists of performance-tuning, individually, each of the computing kernels which
comprise the application.

Typically, optimizing a kernel consists of identifying possible optimization points
in that kernel’s code; implementing optimizations which the developer believes
should improve performance in a target platform, for instance through the use of
vectorial instructions or reducing memory accesses by making better use of caching;
benchmarking each of the optimizations on the platform, including combinations
of optimizations when possible. With the performance of each optimization known,
for each kernel, the application is then finally compiled to make use of the best
known version of those kernels for the target platform. This process can, however,
only find the set of optimizations which are generally the best for the benchmarking
data. That means a bad benchmark may cause the selection of a set of optimizations
that are sub-optimal when used with the real data.

To further complicate the optimization process described above, the optimal version
of a kernel may be input-sensitive. That is, the optimal version may be different
depending on some property of the input. For example, to compute the minimum
spanning tree (the minimum set of edges that keeps the graph connected) of a
weighted graph the algorithm Prim [Pri57; Jar30] (which has a complexity of
O(E + V · log(V )), where E is the number of edges and V the number of vertices),
making use of Fibonacci heaps, often outperforms the Kruskal’s algorithm [Kru56]
(O(E · log(E))). However, if the input graph is sparse, that is, if the graph has
many vertices relative to its number of edges, as is the case for example of social
network or road graphs, the second algorithm tends to outperform the first. A more

33



concrete example is the std::stable_sort function of the GNU implementation of the
C++ Standard Template Library (STL). This function sorts the input maintaining
the order between elements with equal keys, such that if one first sorts the data
using a key k0 and, subsequently, sorts the result using a key k1 the resulting data
will have items sharing the same k1 ordered by k0. The std::stable_sort function uses
two different sorting algorithms: insertion sort when the input has fewer than 15
elements; otherwise mergesort is used, splitting the input in two and calling the
function recursively. Tuning an application to exploit input properties requires not
only including in the application the different ways to perform the computation,
but makes it necessary to check the input before passing it to the kernel version
that will handle it, as is the case of std::stable_sort checking the number of elements
before deciding how they will be sorted.

Finally, there is the issue of optimizing for multiple platforms instead of a single
platform. Optimizations that are beneficial in one platform may be disadvantageous
in another [Tri+03]. For example, loop unrolling may improve performance as
it can increase instruction level parallelism. However, it may also be detrimental
to performance as it increases the memory required by the code, which can result
in increased cache misses. Moreover, the optimizations that perform well with
a particular input may be harmful with another. In the case of std::stable_sort for
instance the cutoff point of 15 elements was generally good for the architectures of
2001, when the code was written. However the value is not adequate for modern
architectures [Din+15]. Despite this, as the library is commonly distributed in a
compiled form and with a static value for the cutoff, this performance optimization
is not portable to modern architectures. Better performance with new architectures
could be obtained by applying the whole optimization process for each of the target
platforms, however this is often impractical, especially when the code in question
is used for several years and is run in architectures which did not exist at the time
of the initial optimization phase.

In this chapter we present our approach to provide the developer with better tools
to tackle some of the difficulties in performance-tuning a task-parallel application.
We present our proposal in Section 3.1. Section 3.2 explains the algorithms we use
for deciding which version to use for a task. Section 3.3 details how we integrated
our approach in OpenMP. Lastly, Section 3.3 concludes this chapter.

3.1 A New Approach For Autotuning

This section presents our proposed solution to improve the performance of parallel
programs using the OpenMP runtime. An OpenMP task is composed of data and a
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piece of code [LAC]. We extend the OpenMP task construct so that it has multiple,
functionally equivalent, versions of this code. The reason for this change is to
permit the use of task versions with different performance profiles, enabling the
application to use a different version according to the circumstances. For example,
task versions can be the same code compiled with different compiler flags [GS16;
HE08; NMC15]. Versions can differ more than by compile-time flags, changing
parameters like tile sizes, allowing the use of the same application executable with
different platforms while optimizing the execution for each of their cache sizes.
Task versions can differ even further. For example, by using different algorithms
for a task which sorts an array, a task could use insertion sort for small inputs and
quicksort for larger inputs [Sed78; LGP05].

While having multiple versions can improve performance, this only happens if
the correct version is used. One possibility is for the user to explicitly define the
situations when each version should be used. However, that approach demands
a great deal of effort from the developer, as it requires extensive benchmarking to
identify all situations where each task version should be used. Another disadvan-
tage is that it restrains the optimizations to situations that have been seen before,
requiring further training as new situations emerge or new platforms are targetted
since code autotuned for one platform is not guaranteed to perform well on other
platforms [SRD16]. Instead of statically defining when each task version should be
used we opted for dynamically learning what is the best task version. Note that
there can be more than one best version for a platform.

In early computer architectures, the task version which executed the fewest in-
structions would, usually, be the most efficient. However, due to the complexity
of modern computer architectures, it is often unknown which version has the best
performance in some target architecture before all versions have been executed.
In order to search for the best version we need to know the size of the problem
being solved. This is necessary so we can tell whether some version finished its
execution quicker than another version because it is indeed faster or if it is because
the solved problem was smaller. For example, the naive matrix multiplication algo-
rithm has a time complexity of O(n3), but if it is executed with a problem of size 2
it should, theoretically, take less time than the more efficient Strassen’s algorithm
(O(nlog2 7)) with a (larger) problem of size 4 (ignoring constants and other factors in
this example). That is to say, in that case, the naive version would finish faster —
but only because it solved a smaller problem than the other version did. Knowing
the problem size also has the benefit of allowing the use of a different version
depending on the input. This provides an advantage over using autotuning alone,
as autotuners typically find a single optimized version per platform, regardless
of input. Yet many problems can benefit from being input-aware [Din+15]. It
is the case of many BLAS operations, for example, as evidenced by many BLAS
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libraries using one version for large and another for small matrices. Note that our
proposal is not opposed to autotuning, as it can leverage autotuning to generate
the multiple versions, which can be useful for instance to reduce the number of
versions available to a manageable number as an autotuner can handle a larger
number of versions than we can during execution.

The input size, by itself, however, may not provide the actual computational cost
of the task. Some algorithms have a very predictable computational cost. The
multiplication of two matrices, for example, ignoring environmental factors like
data locality and dynamic CPU frequency, has a very predictable execution time
based on the input size. That is not the case, for instance, of a heap search, where
the time required depends on the input size, but it also depends on whether the
element being searched is close to the root of the heap or its leaves. In those cases
it is often impossible to know how difficult the problem being solved actually is
before it is solved. In that scenario one has to rely on the asymptotic cost, requiring
more executions of the task version with a certain input size before its performance
can be known with some degree of certainty.

The multiple task versions require no changes to the way tasks are scheduled.
However, they add a subproblem to the scheduler: with a single version the only
job of the scheduler is to decide when and where a task should run, with multiple
versions the scheduler must also decide which version will be used for the task.
Ideally, the scheduler would always run the best version for the current scenario
(problem size, data properties, data locality, processor occupancy, etc). However,
the scheduler does not know which is the best version, so, instead, whenever a task
is launched it must choose between using the version that, based on the information
it has gathered so far, is most likely to be the best, or run some other version in the
hopes that one of them is better than it seemed at first. This decision is made by the
selection policy, which is discussed in more detail in Section 3.2.

Figure 3.1 shows how our extension affects the compilation process, with our addi-
tions shown in blue. The leftmost part of the figure shows the multiple computing
kernels used in the source code. In this part, the blue boxes represent the possibility
to have multiple versions of each kernel. The rightmost part of the figure shows the
resulting application, which contains all kernel versions from the source code. We
made these additions to the LLVM [LA04] C/C++ compiler (clang). More details
are provided in Section 3.3.2.

Figure 3.2 shows how our extension affects the OpenMP runtime, during the
execution of the application. The leftmost part of the figure shows the directed
acyclic graph containing the tasks and their dependencies. When the task scheduler
decides which task to run, that task is executed in one of the available workers,
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Figure 3.1.: Overview of how our extension interacts with the compiler. Items in black
show current compilers and runtimes; items in blue show our additions.

illustrated on the rightmost part of the figure. With our additions, however, before
the execution can begin the runtime must first find which versions are available for
that task. Once the versions are found, the runtime decides on a version to run based
on data collected during previous executions. Once the task finishes executing the
collected data is updated with the timing information of that execution and the
worker used for that execution is available to execute another task. Section 3.3.3
provides more details on the changes made to the LLVM OpenMP runtime.
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Figure 3.2.: Overview of how our extension interacts with the OpenMP runtime during
execution of the application. Items in black show current compilers and

runtimes; items in blue show our additions.

3.2 Task Version Selection Policies

With the use of multiple versions per task, the scheduler must select which of the
versions versions to run — further adding to the challenge of selecting a task. Some
approaches, like some of the policies of StarPU [Aug+11] and OmpSs [Dur+11],
rely on past executions of the application to help guide the scheduler to make
better decisions instead of having to discover the same information every time
the same application is executed. We have opted however for not depending on
past executions, relying only on the information obtained during a single execution
of the application. We made no changes to OpenMP’s scheduling algorithms.
Consequently, the order in which tasks are executed is maintained aside from side
effects like changing the task execution order due to changes in task execution times,
affecting which instructions fit in the instruction cache due to changes in code size,
etc.
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To minimize the execution time, the runtime should, evidently, always use the
fastest available version of a task. However, initially the runtime is unaware of each
version’s performance. As such, the runtime must also identify which among all
the versions is the fastest. That is, the runtime has two responsabilities: exploration,
which consists of measuring the performance of all the versions, and exploitation,
which consists of running the fastest version as often as possible.

If distinct executions of a kernel version always had the same execution time, this
task could be easily accomplished by executing each version once, and, from that
point onward, always use the fastest of those. That is unrealistic — the same code,
with the same input, will exhibit different execution times if run several times. This
happens due to all the complexities present in a modern computer system. There
are other applications running simultaneously, which use shared resources like CPU
cores, cache, and memory. One execution may have all its data available in cache,
another may have to wait to load it from the memory. Furthermore, the processor
states will be different from one run to another, for instance due to temperature
changes one run may be able to use a higher frequency than another [Cha+09], or
the contents of the shared cache may be different. Due to this imprecision present
in the execution times of a kernel version, relying on the execution time of a single
execution could easily lead to a sub-optimal choice of kernel version by a naive
algorithm. Which, in turn, could drive the algorithm to perform poorly.

It follows that the version selection policy must execute at least some of the avail-
able kernel versions more than once. The question then is how many times and
when should each version be executed, as simply identifying which of the kernel
versions performs the best is insufficient, the algorithm must also make use of that
information to improve the execution time. This problem is further complicated as
the horizon, or the number of times a task must be executed, is only known once the
application finishes executing. During execution this information is not generally
known as a task may spawn new tasks. As the size of the input data of a task
tends to strongly affect execution time, we make the version selection independent
between different input sizes.

Every time a task is scheduled to begin execution the runtime may take one of
two possible courses of action. It may execute the version which performed best
up to that point in the execution. This course of action is considered greedy as it
focuses on immediate gains. The runtime might, instead, opt to further explore one
of the versions that have, so far, shown worse performance. Executing one of these
other versions may worsen the execution time as they have been slower in the past.
However, it is also possible the real best version is not the one that has been the
fastest so far — which is possible as external factors such as data being in the cache
or not, or different amount of memory bandwidth available influence the measured
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execution time. These two objectives are antagonistic, however both exploration
and exploitation are crucial for improving performance.

3.2.1 Task Versions as a Multi-Armed Bandit

The problem of choosing which task version to run can be modeled as a stochastic
multi-armed bandit, which is described in greater detail in Section 2.6. The problem
consists of minimizing the total execution time of n executions of some task T .
This task can be executed using any of k versions, each with a possibly different
performance profile. There are as many bandit problems to solve as there are
tasks (or, equivalently, it is an associative bandit), and each of those bandits is
considered independent from the others. The k versions are represented in the
model as the arms of the bandit. Each execution of a task is expressed as a turn
in the model. When the t-th task is to be executed the runtime must choose a
version to perform the execution. This is modelled as the learner choosing some
action At ∈ {1, . . . , k},∀t ∈ {1, . . . , n} which defines which arm to pull. We want
to minimize the execution time, or, more formally, the objective is to minimize the
regret [GLK16b] given by

Eµ

[
n∑
i=1

µAi

]
− n · µargmini∈1...k(µi)

where µi is the mean of the i-th arm. Note that if only the optimal arm is pulled the
regret is zero, however the learner does not know which is the optimal arm.

In the bandit model, at turn t the learner knows the reward provided by all previous
pulls, given by Xi∀i ∈ {1, . . . , n}. However in the actual problem being modeled as
a bandit problem there is no guarantee the knowledge of any previous Xi will be
available at the moment the t-th task begins execution. This is because the model we
use presumes the pulls are made in sequence, and the reward provided by pulling
an arm is available as soon as that arm is pulled. In the version selection problem,
however, the task version requires some time to execute. Consequently, the reward
of each pull is only known when that task finishes execution. Since another task
of the same type may start execution before this task finishes, it is not possible to
guarantee Xt−1 is known at the t-th pull. Even delaying the execution of the t-th
task to after all Xi∀i ∈ {1, . . . , t− 1} are known, which would have a very negative
effect on performance, would not solve the issue as a task may launch subtasks of
the same type. For example, a task t may launch a subtask t + 1 and only finish
once t+ 1 finishes, meaning we cannot require t+ 1 to wait on t without creating a
deadlock. Therefore, we opted to use the knowledge available at the time the task
version is being selected, even if this knowledge is limited. Accordingly, Xt−1 is
known not at turns i,∀i ∈ {t, . . . , n} but only for the turns after that task finished
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executing. Another consequence of this design decision is that Xi may be known
and Xj unknown even if j > i. Each arm, when pulled, provides the learner with a
reward Xi ∼ N(µ, σ2), ∀i ∈ {1, . . . , k}, with an expected value of µi. That is, each
arm has a Gaussian-distributed reward with some initially unknown mean and
variance. Additionally, these distributions are independent from one another, such
that pulling one arm does not affect the distributions of the other arms.

There are many approaches for solving a bandit problem [SB18]. Greedy policies
estimate the value of each arm and simply use the arm with the highest expected
value. These policies do not value exploring the environment, opting instead for
maximizing the current total reward by exploiting the arm that, to their knowledge,
should provide the best reward. These policies have an advantage when the reward
distributions have very small standard deviation, as the sampled values in that
case are likely to be close to the population’s average. The disadvantage of greedy
policies is they incur a very large risk of choosing a suboptimal arm and, due to the
lack of exploration, continue to choose the suboptimal arm every turn, resulting
in a large regret. In our scenario these policies can differentiate between task
versions when these have vastly different performance (for instance, when choosing
between a naive matrix multiplication algorithm and Strassen). However, they
cannot reliably detect small differences in performance, making them unsuitable
for comparing task versions which are just slightly different, as is the case between
many tasks generated with autotuning. A variation of this class of policies is
Greedy With Optimistic Initialization, which sets the initial estimates to a high
reward, in turn making it explore the arms for longer. ε-Greedy policies usually
operate greedily, pulling the arm with the highest expected reward. However,
every turn there is a small probability (ε) one of the other arms will be pulled
instead. This guarantees the method eventually finds the best arm, regardless of
the probability, if there is a large enough number of turns. There is of course a
trade off on the exploration probability, higher values mean the best arm will be
identified earlier, enabling the greedy use of that arm sooner. However, the greater
the exploration probability the less likely the method is to take the greedy action.
Some ε-Greedy policies opt to start with a large ε and decrease it gradually in order
to spend more time exploring in the beginning and more time exploiting later in
the execution. Confidence-bound policies do not have separate explore and exploit
phases. Instead, these policies have a confidence bound for each arm. At each turn,
the arm whose confidence bound is the largest is selected1. At the beginning of the
execution these bounds overestimate the mean, and every time an arm is pulled its
confidence bound is brought closer to the mean. This allows the confidence-bound

1In our use-case we pull the arm with the lowest confidence bound instead of the largest, as we want
to minimize the execution time. The name of the confidence-bound policy we use however implies
the largest bound is used since the algorithm describes a maximization problem. It performs
equally well for minimization, with trivial changes in its algorithm.
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policies to do more exploration in the beginning and focus on exploitation as more
information is gathered.

The following subsections explain in detail the policies we use and the adaptations
necessary for our use-case. Subsection 3.2.2 presents the greedy policy Mean.
Subsection 3.2.3 describes the Upper Confidence Bound policy. Subsection 3.2.4
presents the Gradient Bandit policy, which makes use of randomization for its
decisions.

3.2.2 Greedy Policy Mean

The Mean policy is perhaps the most straightforward way to handle a bandit
problem. It uses a Explore-Then-Commit (ETC) strategy, whose name concisely
describes its simple approach: it first explores the environment and then it commits
to a single task version. The exploratory phase consists of running each task version
successively in a round-robin fashion. Each of the k versions is pulled an arbitrary
number of times, m. As a consequence, the exploration phase lasts for m · k rounds,
regardless of the distributions followed by the execution times of the task versions.
After this exploratory phase is over, the policy always uses whichever version was
the fastest so far. Since the horizon n, which is the total number of times the arms
must be pulled, is unknown, one cannot know beforehand if some value of m is too
large or too small. When m is too large, the policy will spend too long learning the
distributions, limiting how much it is able to make use of the gathered knowledge.
If, on the other hand, m is too small for the horizon, the strategy will make more
use of the gathered knowledge but with a high risk of mistakenly concluding a
suboptimal task version is optimal, in turn running several times a version with
suboptimal performance and causing overall performance to degrade. Were the
horizon n known, m could be chosen optimally. However, even in the simplest case,
with two versions, a known horizon, and a value of m chosen optimally, any ETC
strategy is still suboptimal [GLK16b], with a lower bound of log(n)

|µ1−µ2| for its regret.
In many cases it is unfeasible to choose m optimally as the horizon is unknown,
in which case ETC cannot guarantee even that lower bound. For our use-case, in
order to choose m optimally, the user would need to know, when launching the
application, the number of times each task type is launched and with which data
sizes, which is unfeasible in some applications.

The ETC algorithm is shown in Listing 6. Exploration is done in line 3, for k ·m
rounds. The commitment phase is executed by line 5. Notice we use argmin instead
of argmax as we want to minimize, not maximize, the execution time, whereas often
the objective in a bandit problem is to maximize the reward.
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1 function ETC(k, t, m) {
2 if t ≤ k ·m {
3 At = (t mod k) + 1
4 }else{
5 At = argminiµi(t)
6 }
7 }

Listing 6: Explore-Then-Commit algorithm: k is the number of task versions; t is how
many times the task has been executed so far; m is the parameter defining how
many times each version should be sampled before commiting; At is the action

taken at the t–th round, that is, the version chosen to run at that round; µi(t)
holds the average execution time of the i-th task version after the task has been

executed t times.

1 Round 1 2 3 4 5 6 7 8 9 10 . . . 100
2 Version A A A A A B B B B B . . . B

executed
3 Time (ms) 899 1104 909 1013 975 972 958 749 1051 777 729

4 A
5 Avg. (ms) 1002 971 981 980 980
6 Std. Dev. 145 116 97 84 84

7 B
8 Avg. (ms) 965 893 933 901 903
9 Std. Dev. 10 125 129 132 100

Table 3.1.: Example execution of the Mean policy. Each column shows the data for one
round. Line 1 shows the round of the column; Line 2 shows the version

executed for that round, A for the first 5 rounds, and B afterwards; Line 3
shows the time the chosen task version took in that round; Lines 5 and 6 show
the average execution time and standard deviation of A up to that point in the

execution, the same statistics for B are shown in lines 8 and 9.

The deterministic nature of this policy makes it an ineffective policy for adversarial
bandits [Aue+95], which is a variation of the problem where the environment
knows the policy used and aims to minimize the reward. However, those are out of
the scope of this thesis.

To illustrate how this policy behaves in a simple scenario, let’s say we have two
versions of a kernel, A and B. These two versions are illustrated in Figure 3.3, with
A taking an average of 1 second to execute and B taking an average of 0.9, and both
having the same standard deviation of 0.1 second. This policy begins by executing
A, and then B, five times each, as shown in line 2 of Table 3.1. After executing A
five times the policy calculates its average execution time, 980 ms, shown in line
5. The same happens after executing B, which after five executions has an average
execution time of 901 ms, shown in line 8. From then on the version whose average
is lowest is always executed, in this case B. If for some reason B started to perform
worse, and its average time became larger than the average time of A, the policy
would start to execute A instead.
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Figure 3.3.: Example of two the density distributions of two versions of a kernel.

3.2.3 Upper Confidence Bound (UCB)

The Mean policy attempts to maximize its reward by fully exploiting its acquired
knowledge after an initial exploration. The Upper Confidence Bound (UCB) [Agr95;
ACF02] policy uses a more balanced approach: it never fully commits to any task
version, leaving always open the possibility of further exploring the other versions
even if these have a lower mean reward. This behaviour is justified in a stochastic
environment as the true distributions of the versions are never known — even after
a very long execution there is still uncertainty, however small. Unlike the previous
policy, with a sufficiently long execution UCB achieves a uniform logarithmic regret
even with no previous knowledge of the reward distributions.

In contrast to ETC strategies, UCB does not explore based solely on the number
of times a task version has been executed. Instead, it follows the optimism in the
face of uncertainty principle. This principle states that actions should be chosen
assuming the environment is as good as reasonably possible, from the point of view
of maximizing the reward. The “reasonably possible” part of this principle is a
parameter which can be used to make the algorithm behave more or less optimistic.
By being less optimistic, the algorithm will be more conservative when selecting task
versions to run, concentrating more on the exploitation of the gathered knowledge.
However, that comes at the price of increasing the odds of exploiting a sub-optimal
task version. In contrast, if the algorithm is too much optimistic, it will spend most
of its time exploring the different options, gathering more information but missing
many exploitation opportunities.

The first actions of UCB are the same as those of the Mean policy: it begins by
exploring the different versions. With this initial data, the algorithm computes an
upper confidence bound for each version. The confidence bound estimates how
large the true mean execution time of the task version can be expected to be, based
on the data gathered thus far and on the optimism level. The bound however
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does not directly estimates the true mean, but, instead, provides an interval inside
which there is a high probability the true mean is found. This is an important
distinction. As the bounds are first built using the little information available at
the time beginning, and they must include the mean with a high probability, these
bounds must also initially overestimate the true mean. The overestimation however
must still be reasonable. For example, a bound of infinity would be guaranteed to
contain the true mean. However, such a bound would provide no information on
the actual value of the mean. A confidence bound closer to the true mean, even if
it isn’t guaranteed to be correct, provides more useful and actionable information.
UCB makes use of this fact by always choosing the arm whose upper confidence
bound is the largest. Consequently, versions whose bounds are far from the true
mean will be pulled, and their bounds, consequently, tightened and brought closer
to the true mean.

There are different ways to estimate the upper confidence bound, chosen according
to the assumptions made on the distribution. Too tight bounds will often under-
estimate the true mean, preventing the algorithm from working as intended. On
the other hand, too loose bounds will cause the algorithm to spend too much time
exploring instead of exploiting its knowledge. In our case the upper confidence
bound (actually the lower bound, since we want to minimize, not maximize, the
execution time) of a task version i at time t is given by [ACF02]:

UCBi(t) = xi −

√
k
qi − nixi2
ni − 1

ln(t− 1)
ni

Where: k controls the degree of optimism, xi is the average execution time of
version i after t − 1 tasks of that type have been launched (this only includes
execution times of tasks which have finished, not those still in execution), qi is the
sum of squared execution times, ni is the number of times the task version i has
finished executing. Some other possible estimates for the upper confidence bound
are xi

√
2log(t)
ni

[ACF02], xi − c
√

ln t
ni

[SB18], and xi −
√

2 log(t)
ni

[Lai87; GLK16a].

The UCB algorithm is shown in Listing 7. Lines 2-3 guarantee each version is used
at least once. Line 5 selects, for round t, the version which should provide the best
reward. In this line the bound of version i at round t is estimated as:

xi −

√
k
qi − nixi2
ni − 1

ln(t− 1)
ni

.

To show how this policy behaves in a simple scenario, we will use it in a simple
situation where there are two versions of a kernel, A and B, with their execution
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1 function UCB(v, t, k) {
2 if t ≤ v {
3 At = t
4 }else{

5 At = argminixi −
√
k qi−nixi

2

ni−1
ln(t−1)

ni

6 }
7 }

Listing 7: UCB algorithm. v is the number of versions available for the task; t is the
number of tasks of this type that have been launched, regardless of the version

used; k controls the degree of optimism; At is the version chosen for the t-th
execution of the task; xi is the average time of task version i after t tasks of this
type have been launched; qi is the sum of squared times of version i; and ni is

the number of times version i has been executed.

times shown in Figure 3.3. Table 3.2 shows the first 10, and the last, steps of this
example, with the version executed at each step, the time each execution took,
average time, standard deviation of the execution time, and the lower confidence
bound for each version. We use a value of 1 for the k parameter in this example;
other values would use the same logic but could make different decisions. The
policy starts by executing A, as it is the first version for which we do not have any
measurements. Next, it executes A again, as we need at least two executions to
calculate its confidence bounds. With these two executions, which took 815 and
1235 ms, it calculates the average and standard deviation, obtaining a lower bound
of 1025 ms. Next, it repeats the same for B, running it twice, obtaining 1079 and
858 ms and calculating a confidence bound of 853 ms. As the second confidence
bound indicates B may be faster, B runs again next, taking 875 ms to finish and
updating its bound to 805. With the executions of B, the bound of A is also updated
as the computation of the bound depends on the total number of executions. As
the confidence bound of A is now better than that of B, the policy runs A next.
However, this execution makes the bound of A worse than that of B, so B runs next.
This process continues, B running again whenever the confidence bound of A is
considered high enough that seems like a better candidate.

3.2.4 Gradient Bandit

The Gradient Bandit (GB) policy [SB18] mixes exploration and exploitation, and
makes use of randomization as part of its strategy. Each task version has a prefer-
ence. When a task is launched, a version is chosen randomly but weighted by its
preference. That way, a version with a high preference has higher odds of being
chosen and will be used more often than one with a low preference. Versions with
a low preference still have a probability, however low, of executing. By never com-
pletely excluding any task version, this policy is guaranteed to eventually identify
the optimal task version, if run for long enough.
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1 Round 1 2 3 4 5 6 7 8 9 10 . . . 100
2 Version A A B B A B B B B A B

executed
3 Time (ms) 815 1235 1079 858 965 674 972 912 976 1060 714

4 A
5 Avg. (ms) 1025 1005 1019 999
6 Std. Dev. 297 122 176 140
7 UCB 1025 850 805 860 849 841 834 828 828 876

8 B
9 Avg. (ms) 967 870 896 899 912 897
10 Std. Dev. 156 203 173 150 138 108
11 UCB 853 838 722 780 805 831 828 873

Table 3.2.: Example execution of the UCB policy. Each column shows the data for one
round. Line 1 shows the round of the column; Line 2 shows the version

executed for that round; Line 3 shows the time the chosen task version took in
that round; Lines 5, 6 and 7 show the average execution time, standard

deviation, and lower bound ( xi −
√
k qi−nixi

2

ni−1
ln(t−1)

ni
) of A up to that point in

the execution, the same statistics for B are shown in lines 9, 10, and 11.

More formally, at round t, each version i has an associated preference Hi(t) and
probability πi(t) of being selected that round. Initially, all the preferences are 0
and all the probabilities are 1

k where k is the number of versions. The selection
probabilities are obtained through a soft-max function, also known as a normalized
exponential function. A soft-max function is any function which takes a vector v of k
values and normalizes it into a vector u of the same length where ∀x ∈ u : x ∈ [0, 1]
and

∑
u = 1. That is, the input vector is normalized into a probability distribution.

In our case this is done using the Boltzmann function, also known as the Gibbs
distribution, hence the selection probability of some task version a is computed
according to the arm preferences thusly:

P (At = a) = eHa(t)

k∑
i=1

Hi(t)

At round t, a version is selected according to the probabilities P . Once the learner
receives its reward xt, it computes

xt −
t∑
i=1

xi
t

which is used to tell if the reward is better or worse than the average reward until
the current round. If the reward is better than average, the preference for that task
version is increased, and the preferences for the other arms are decreased as their
sum must be 1. Likewise, if the reward is worse than average the preference for that
version is decreased and the preferences for the other task versions are increased.
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The increase, or decrease, depends on an arbitrary rate α, with a greater increase, or
decrease, the greater the difference between the reward and the average:

Ht+1(At) = HtAt + α(xt − xt)(1− πt(At)) (3.1)

Ht+1(a) = Hta− α(xt − xt)(πt(At)), ∀a 6= At (3.2)

Listing 8 shows the algorithm for this policy. Lines 2-7 initialize the preferences
(H) and probabilities (π) such that initially every version has the same chance of
being selected. Line 8 selects one version at random, according to the probabilities
of each version. Notice line 9 computes the difference between the new reward and
the average as Xt −Xt instead of Xt −Xt as we want to minimize the execution
time instead of maximizing it. Lines 9-16 update the arm preferences. Lastly, lines
17-19 update the probabilities using the new preferences.

1 function GB(k, t, a) {
2 if t = 1 {
3 for i ∈ 1, . . . , k {
4 Hi = 0
5 πi = 1

k
6 }
7 }
8 At = random_pick(π)
9 p = α · (Xi −Xt)

10 for i ∈ 1, . . . , k {
11 if i = At {
12 Hi = Hi + p · (1− πi)
13 }else{
14 Hi = Hi − p · πi

15 }
16 }
17 for i ∈ 1, . . . , t {

18 πi = eHi

k∑
j=1

eHj

19 }
20 }

Listing 8: GB algorithm. k is the number of arms, t is the current round, α controls the
degreee of optimism, random_pick(v) returns the index of one element of v

chosen according to the probabilities given by that vector, Ai is the action taken
at turn i, and Xi is the reward obtained at round i.

To better explain how this policy works we depict how the Gradient Bandit handles
a scenario as the one described in Section 3.2.2. We use a value of 0.2 for the
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1 Round 1 2 3 4 5 6 7 8 9 10 . . . 100
2 Version B A A B A B B A B A B

executed
3 Time (ms) 799 909 1013 1004 975 972 958 965 749 877 729

4 A
5 Avg. (ms) 961 966 966 948 995
6 Std. Dev. 74 53 43 54 101
7 Pref. 1 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.61
8 Prob. 50 49.7 49.1 49.5 49.3 49.4 49.5 49.4 48.4 48.7 31.6

9 B
10 Avg. (ms) 902 925 933 896 908
11 Std. Dev. 145 110 92 114 98
12 Pref. 1 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.03 1.03 1.39
13 Prob. 50 50.3 50.9 50.5 50.7 50.6 50.5 50.6 51.6 51.3 68.4

Table 3.3.: Example execution of the GB policy. Each column shows the data for one round.
Line 1 shows the round of the column; Line 2 shows the version executed for
that round; Line 3 shows the time the chosen task version took in that round;

Lines 5–8 show the average execution time, standard deviation, preference and
probability of A up to that point in the execution, the same statistics for B are

shown in lines 10–13. Preference and probability computed with α = 0.2

α parameter of the policy2. The policy starts by randomly choosing between A
and B with the same probability for either version. In this example, it executes
B first, taking 799 ms. Notice, in line 7 of Table 3.3 that the preferences of both
versions remain the same after this first execution. This is because the preferences
are increased or decreased based on how far the execution is from the average of all
executions so far, including all versions. That is, an execution faster than average
will increase the preference of that task version, and an execution slower than the
average will decrease the preference. Since at this point in the execution the average
time is the same as the time of the first execution, the preferences remain the same.
Next, the policy opts to execute A, obtaining an execution time of 909 ms. As that is
higher than the average, the preference, and, consequently, probability of A being
selected next are reduced, to 0.994 and 49.7%, respectively. The policy continues
choosing randomly between A and B, with a slight bias towards B as it has a higher
preference, up to round 10. At round 100, shown in the last column of the table,
the preference has further shifted towards B, which then has a 68% chance of being
executed.

3.2.5 Comparison Between the Policies

We presented the three task version selection policies we use: Mean, Upper Confi-
dence Bound (UCB), and Gradient Bandit (GB). Mean is a very simple policy, which
executes each task version a fixed number of times and, from then on, uses the

2The speed at which the preferences and selection probabilities change depends on the value of α.
Higher values result in faster changes, and an increased risk of converging towards a suboptimal
version.
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version that performed best on average. Instead of using a predefined number of
executions for each version, UCB runs more times versions with higher variance,
provided they have a low enough average execution time, improving its knowledge
of the versions it is less certain about. GB uses a different approach, executing
versions randomly but weighted by their expected performance.

Mean estimates a version’s performance as the average of its past executions. UCB
makes an optimistic estimation of a task version’s performance, speculating it
may be better than what the version has shown in the past on average. This is
accomplished by computing a confidence bound for each task version, so while the
estimates are optimistic this optimism is backed by past executions. These bounds
have an arbitrarily large probability of containing the true expected value of that
version’s execution time. The trade-off is that increasing the chances of a confidence
bound containing the true expectected value means increasing the bound, making it
less useful in estimating how well the task version performs. Instead of estimating
the expected value of each task version, GB has a preference for each task version.
This preference is increased or decreased based on how fast or slow each version
behaves compared to the average.

Both Mean and UCB always execute the task version expected to be the best, Mean
using the average for this decision and UCB using its optimistic estimation. If Mean
makes the wrong decision and the executed version performs badly, this is reflected
in the increased average of that version, possibly resulting in a different version
being executed next. When a task version performs worse than expectd by the
optimistic bounds of UCB, that version’s bounds are updated and brought closer
to the version’s true expected value. GB adopts a different approach, making use
of randomization when deciding which task version to run. Instead of using the
gathered data to refine estimations of how each task version performs, GB uses
this data to change its preference for running each task version. When a version
performs well, compared to the average version, its preference is increased, and
when it underperforms its preference is decreased. As the preference is used to
control the probability of a task version being run, versions with good performance
will run more often as the execution progresses.

Mean has two distinct phases in its execution. It first explores all task versions and
then exploits the gathered knowledge by always running the version with the best
average performance. UCB and GB, in contrast, mix exploration with exploitation.
While there are no clearly defined phases, in general these policies are more likely
to explore the different task versions in the beginning of execution and are more
likely to exploit the knowledge later in the execution.

3.2 Task Version Selection Policies 49



A major difference with Mean is that UCB and GB never fully exclude any task
version. The confidence bounds of UCB often allow, depending how they are
computed, a task version that has been executed relatively few times to be executed
again even if it underperformed in the past. When selecting a version to execute,
GB has a non-zero probability of selecting all task versions, even those which
underperformed in the past. As no version is ever excluded, in a sufficiently long
execution both UCB and GB are guaranteed to identify the best-performing task
version. This guarantee does not come without a cost, however, as both UCB and
GB incur the risk of running suboptimal versions more times than Mean. Mean has
its own disadvantages however, by limiting the number of times a task version is
run it risks being stuck with a suboptimal version no matter how long the execution
lasts.

3.2.6 Parameter Sensitivity

As mentioned before, each of these policies can have its behaviour influenced
through a parameter. For example, Mean can take fewer samples of each version
before committing to one choice to reduce the duration of its exploratory phase,
or take more samples to increase its chances of committing to the best version. As
another example, UCB can use a small confidence level to exploit its knowledge
earlier. As a last example, GB can use a higher preference change rate to converge
to mostly using a single version sooner.

One important attribute of a policy is how sensitive it is to the values of its param-
eters. This is particularly important if certain characteristics of the problem such
as the type of the probability distributions are unknown. We verify how sensitive
the policies are by executing each policy, with varying values for their parame-
ters, on 1000 problems. To isolate the comparison to the parameters, regardless
of differences in implementation between the policies or hardware effects, each
problem consists of executing 1000 tasks in sequence, in a single thread. There
are 10 task versions, and each of them provides a reward according to a gaussian
distribution, instead of according to its actual performance. The distributions used
by the versions have their mean generated randomly according to a gaussian distri-
bution with a mean of 1 second, and a standard deviation of 100 ms. The standard
deviation of the versions is 100 ms as well. Running versions randomly should
provide an average reward of 1 second.

Figure 3.4 shows how each policy behaves in that scenario with varying values for
their parameters. Each policy is represented by a line. Each point is the average
of 1000 runs of the policy using the parameter value shown in the horizontal axis,
with the vertical axis showing the difference, in percent, from always using the best

50 Chapter 3 Machine Learning Assisted Autotuning of Multi-Versioned OpenMP Tasks



version for all the 1000 runs. For example, a value of 0 for this difference would
mean that policy always executed the best version. We can see Mean, shown in
red, is stable so long as the value is not too small, although it performs worse than
UCB in all cases. GB, shown in green, is more sensitive to changing its parameter,
however it still performs well if the value used is not too low, which makes sense
as a value of zero means GB never changes its preferences and always gives every
version the same chance of being used. Lastly, we can see the policy which performs
the best in this theoretical scenario is UCB, in blue. This policy works well without
finetuning its parameter value so long as the confidence level used is not too low.
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Figure 3.4.: Effect of changing the parameter values in the Mean, UCB and GB policies,
shown by lines colored in blue for Mean, red for GB, and green for UCB. Each

point is the average of 1000 executions, with 10 versions each. The vertical
axis shows how much, in percent, the execution time was worse on average

after 1000 runs with 1000 being chosen every time, when compared with
always using the best version. The horizontal axis shows the value of the

policy-specific parameter.

Parameter sensitivity is an important characteristic since typically the optimal
parameter values for some application on a specific platform are unknown a priori.
If the policy is too dependent on the values of its parameters, it forces another
tuning parameter on the user, and which is contrary to our objective of alleviating
the burden of tuning the application.

3.3 Runtime and Compiler Implementation

To be able to experimentally verify the effects of our proposed approach we ex-
tended the LLVM [LA04] compiler (Clang) and its OpenMP runtime. We opted for
LLVM over GCC as its more modern codebase provides better extensibility. The
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GCC project is much older, and despite supporting a larger range of architectures
its legacy code makes LLVM a more popular choice for compiler research. Never-
theless, the LLVM compiler supports a wide range of architectures and operating
systems, however we only tested our extensions in x86 with GNU/Linux.

Section 3.3.1 describes the additions we make to the OpenMP API. Section 3.3.2
describes our additions to the compiler. Section 3.3.3 presents the changes to the
OpenMP runtime.

3.3.1 OpenMP Extension

To support our extension we modify the OpenMP task pragma. In OpenMP a task
can be launched with the following syntax:

1 {

2 #pragma omp task

3 a = f(n);

4 }

When compiled this code is translated into something akin to:

1 {

2 task = __kmpc_omp_task_alloc(&a, &n, .omp_task_entry.1)

3 __kmpc_omp_task(task)

4 }

5

6 .omp_task_entry.1(task) {

7 a = f(n);

8 }

The data used by the task, in this case the variables “a” and “n”, is copied to the
task’s data structure, in line 2. The task’s code is also moved to a new function,
shown in lines 6-8. Lastly, the function in line 3 adds the task to the task queue and
it may begin executing once its dependencies (none in this example) are satisfied.

We modify this syntax in order to allow the specification of multiple versions for
one task. We do this by adding a “define” clause to the pragma. We can then create
two versions of the previous task as follows:
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1 #pragma omp task define(1)

2 a = f(n);

3 #pragma omp task define(1)

4 a = g(n);

The define clause takes one integer argument (1 in the example above), which tells
OpenMP which type of task the provided version belongs to. In the example above,
one version calls the function “f”, and the other calls “g” instead. The compiler
translates this code to:

1 .omp_task_entry.1(task) {

2 a = f(n);

3 }

4

5 .omp_task_entry.2(task) {

6 a = g(n);

7 }

That is, it moves the two versions to separate functions. It does not, however, create
a task or copy its data. To create the task we use a second clause, “run”:

1 #pragma omp task run(1)

This, in turn, copies the required variables and creates the task, being translated by
the compiler into something similar to:

1 {

2 task = __kmpc_omp_task_alloc(&a, &n, 1)

3 __kmpc_omp_task(task)

4 }

The task is allocated similar to before, however instead of the task data containing
a pointer to a function it contains the task type, which lets the runtime know
it must run some version of the task “1”. Furthermore, the variables passed to
__kmpc_omp_task_alloc (the local variables “a” an “b” in the example) come from
the previous “task defines” instead of the “task run” which merely emits the code.

It is possible to specify the computational cost of a task by calling void

task_cost(long long n) before launching the task with task run. This func-
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tion receives a 64-bit integer, which provides the runtime with the problem size
of the next task launched by the calling thread. This information is optional, and
when not used the runtime will assume all tasks of that type are of the same size.

The runtime groups together tasks with the same parameters, including the com-
putational cost. However in some applications there are very few tasks which
have problems of the same size. In that case it is possible to group together
tasks with different, but similar, computational costs. For instance, one could
group very small tasks all in the same group, under the assumption that a task
version which performs well with one of them will also perform similarly with
the others. To group together these tasks with different computational costs one
can use void kmp_task_reltime(long long cost, long long divBy),
which will place the next launched task in the group of tasks with a computational
cost of cost. However, since it is meant to group together similar but not exactly
equal costs, to keep the measured execution times coherent, the execution time of
that task will be divided by divBy.

The functions void task_node1(void* p) and task_node2(void* p) al-
low the specification of the NUMA node(s) where the data accessed by the next task
launched by a thread is located. This can be used when the user expects the best
version depend on data locality. That is, the version used when the data is local is
not necessarily the same as the version used when the data is not local. Passing this
information to the runtime is optional.

The function void kmp_task_stats_set(kmp_uint64 t) replaces the execu-
tion time for the currently-running task with the 64-bit unsigned integer t, which
specifies a time in nanoseconds. This function can be used to include, or exclude,
the time used by subtasks. For instance, if most of the time used by a task is on
its subtasks, it makes sense to include the time spent in those. If, however, there
are two versions of the same task type and they create the same subtasks, one may
prefer to exclude the time used by the subtasks in order to reduce the noise passed
to the runtime as it attempts to find which of the two versions is faster. Since this
function replaces the value of the execution time, it requires the user to count the
elapsed time. Alternatively, the function void kmp_task_stats_delta(void*

statsp, kmp_uint64 t) can be used. This function adds the difference be-
tween the timestamp t and the current time to the recorded execution time. The
statsp pointer defines the task whose time is affected, and in order to alter the
currently-running task, this value must be the one returned by the function void *

kmp_task_stats_get(). The timestamp can be obtained by calling the function
kmp_uint64 kmp_task_stats_time(). Another way to change the recorded
time of some task is through the function void kmp_task_stats_add(void*

statsp, kmp_uint64 t). This function adds the value t to the recorded exe-
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cution for the specified task. Similarly, but to subtract instead of add, the func-
tion void kmp_task_stats_sub(void* statsp, kmp_uint64 t) can be
used.

The function void kmp_task_impl_stat_print_csv(int id) writes to the
file stats.csv a table containing some statistical data on the tasks executed. This table
contains the number of times it was executed and average execution time of every
task version of type id. This data is further separated by data location and problem
size.

The function void kmp_task_trace_write() writes a trace of all executed
tasks to the file trace.csv, with one line for each task. As the trace adds some
overhead, before it can be used it must be enabled when compiling the runtime.
The start and end columns show the time at which the task started, and ended,
execution, respectively. The thread column has the thread identifier of the thread
which finished the task execution. The socket column contains the number of
the CPU socket which finished the task execution. The address column holds the
memory address where the task version code for the task of that line is located. The
time column holds the execution time of the task, in nanoseconds. The cost column
contains the cost of the task, defined by the developer. The node1 and node2 columns
hold the node numbers where the data used by the task was located, defined by the
developer.

The function void kmp_task_trace_write() writes a trace of all executed
tasks to the file trace.csv, with one line for each task. As the trace adds some
overhead, before it can be used it must be enabled when compiling the runtime.
The trace contains the following columns:

start Time the task started execution

end Time when the task finished execution. Note a task may be preempted, for
example if it creates a subtask.

thread Thread identifier of the thread that finished the task execution.

address Memory address where the task version code for this task is located.

time Execution time of the task, in nanoseconds.

cost Cost of the task, defined by the developer.

socket CPU socket which finished the task execution.
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node1 Data location of data used by the task, defined by the developer.

node2 Data location of data used by the task, defined by the developer.

3.3.2 Compiler

Our additions to the Clang (LLVM) compiler consist of modifying the code gener-
ation of the task pragma. When the compiler finds a task pragma, it outlines the
code of the task, moving it out of the calling function and into a new function. If
the task code uses no, or only global, variables, the outlining would be done at this
point. However, the task code often references local variables, which are located
in the executing thread’s stack. Furthermore, the code may also use initialized
private variables. As the thread executing the task may not have access to these
values, as they may be located in the stack of the thread who created the task, these
variables are copied to the memory area of the new task, and possibly initialized
with the value the variable had at the time of the thread’s creation. After the values
are copied, the task is queued for execution. It may begin executing immediately,
or later, for instance if it has still unmet dependencies. Even if the task has no
unmet dependencies, however, there is no guarantee the it starts immediately. The
compiler does not (and cannot) copy the data nor does it enqueue the task, what
it does is emit code that will, during execution, instruct the runtime to perform
these operations. Our two new task pragma clauses, define and run, split in two the
functionality of the task pragma.

The define clause does the outlining, moving that task version’s code to a separate
function. It also copies the required variables. The first change is in how the task
data is allocated. The task data has to be allocated by the define clause, since it is
used to store data generated by each task version. However, only the first define
allocates this structure, the other define clauses add to the same structure as they
all are part of the same task. With a single version, the data used by that version is
copied to an array inside the task’s data. With multiple versions, there is a copy for
each version. Likewise, with a single version the size of the data also must be stored,
since the array contains other data (even without our additions to OpenMP), but
with multiple versions we store the size of the data for each version. Furthermore,
instead of the task data containing a pointer to the outlined function, it holds the
task type defined by the developer. Tasks with a single version do not have a task
type and use the pointer to the outlined version as before. As task define does most
of the work, task run simply takes the generated task data and enqueues the task for
execution.
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The runtime needs to know which task versions are associated with each task type.
More specifically, it must know the addresses of the task versions it can use with
each task type. To provide this information the compiler builds a table mapping
each task type to all its versions, and stores this table in the executable so it can be
accessed by the runtime. This is detailed further in Section 3.3.3.

3.3.3 Runtime

Aside from our modifications to the compiler we modify the LLVM OpenMP
runtime to enable it to handle multi-versioned tasks. This section describes those
modifications and explains why they are necessary.

Each task version has some data associated with it. Namely, its memory address
and the offset used to locate that particular version’s data inside the task data, which
also contains the data of the other task versions. At the beginning of its initialization,
the runtime uses the data provided by the compiler to build a table mapping each
task type to the address and offset of each of its versions. During the runtime
initialization, we check which task selection policy must be used. This is done
through the environment variable OMP_SELECT, which defaults to the Eager Mean
policy. Possible values are “mean”, uses the Mean policy; “ucb”, which uses the
Upper Confidence Bound policy; and “gb”, which uses the Gradient Bandit policy.
Furthermore, the parameter of the policies can be chosen with the environment
variable OMP_MEAN_REPS, for the Mean policy, OMP_UCB, for the UCB policy,
and OMP_GB_ALPHA, for the GB policy.

All required changes in task creation are handled by the compiler, or, more specifi-
cally, by the multi-version-aware code generated by the compiler. However, the run-
time still needs to handle the changes to task execution. With the single-versioned
runtime, when a task is about to be executed the runtime only needs to call the
pointer in the task data to the outlined function. Evidently, that is not possible in
the multi-versioned runtime. In that case the runtime checks this same pointer. If it
is at or after the beginning of the text segment, which is at the address 0x400000 in
Linux [Mat+13], by default, execution continues as in the single-versioned runtime.
If it is before that address, however, this value is not a function pointer but the
identifier of the task type, which means it is a multi-versioned task execution and
the pointer will be provided by the task selection policy.

The task selection policy uses statistical data from past executions of that task to
decide which version to use. The best version may be different depending on
problem size or data locality. Thus statistical data of a task type is separated not just
for each task version but for each pair of problem size and data locality as well.
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The statistics of each version are stored in a binary tree. There is one tree per
task type, and the key used is comprised of the problem size and data locality, as
illustrated in Table 3.4. This table shows as an example two versions for the same
kernel, and in this case the first version performs better with a problem size of 1024,
but with the second version outperforming it when the problem grows to 8192.
Data locality is decided based on three factors: two nodes where data accessed by
the task is located, and the socket of the processor that will run the task. We only
consider whether data is local or not, so the runtime does not take into account
whether the data is located in a closer or more distant NUMA node, only whether it
is in the node that is executing the task or not. The tree grows as pairs of problem
size and data locality are added. However, the tree still allows searches while an
item is being added. The downside is a slightly increased cost to insert an item
in the tree, but in general that is better than blocking searches in the tree during
insertions as those are a minority of operations which would then block all other
threads accessing that tree.

Problem size Data locality Average Standard deviation Count

1024 False 100 ms 10 ms 20
1024 False 150 ms 20 ms 7

8192 False 550 ms 50 ms 10
8192 False 500 ms 70 ms 40

Table 3.4.: Mapping of statistical data to problem size and data locality.

Once the statistical data of past executions is found, the version selection policy
chosen by the user is called to decide which version to run. When the version has
been selected, the offset for the variables used by that task version is set accordingly
and the task begins to execute. When execution finishes, the statistics of that task
version with the used problem size and with the used data locality are updated.
More precisely, the mean, standard deviation and number of executions are updated
at that point. As these values are shared by all threads, the updates are not done
concurrently. This means threads may have to wait for a thread to finish updating
before they can continue. However, as the computational cost of these updates is
very small compared to most tasks, this has little effect on performance.

As mentioned in Section 2.3, the sample average is xn = 1
n

n∑
i=1

xi and the standard

deviation of the sample is s =

√√√√ n∑
i=1

(xi−xn)2

n−1 , where n is the number of times that
task version has been executed so far and Xi the number of nanoseconds taken by
its i-th execution. As the collected statistics are updated every time a task finishes
executing, recalculating the average and standard deviation on every update could
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add substantial overhead. These can however be updated without passing through
all the points every time by expanding the formulas as follows:

xn = (n− 1)xn−1 + xn
n

s =

√√√√ 1
n− 1

n∑
i=1

(xi − xn)2 =

√√√√ 1
n− 1(

n∑
i=1

x2
i − 2nx2

n + nxn)

However, in that case, while the mean would be computed correctly, the corrected
sum of squares (

∑
x2
i ), used to calculate the standard deviation, is unstable for large

n due to the limitations of floating-point operations when operands are in very
different orders of magnitude. To avoid this issue, we use the Welford [Wel62]
single-pass method, which does not requires storing every value to compute the
standard deviation while also providing stability. This method is based on deriving
the corrected sum of squares for Xi, ∀i ∈ {1, . . . , n} from the corrected sum of
squares of Xi,∀i ∈ {1, . . . , n− 1}. By using:

Xn −Xn = n− 1
n

(Xn −Xn−1)

This shows the corrected sum of squares can be calculated as:

Sn =
n∑
i=1

(Xi −Xn)2 =
n∑
i=1

(n− 1
n

(Xn −Xn−1))2

=
n−1∑
i=1

((xn −Xn−1)− 1
n

(Xn −Xn−1))2 + (n− 1
n

)2(Xn −Xn−1)2

= Sn−1 + n− 1
n

(Xn −Xn−1)2

From that we can calculate the mean using:

µ ≈ Xn = Xn−1 + Xn −Xn−1
n

And the standard deviation can be calculated with:

σ ≈ sn =

√√√√√ n∑
i=1

(Xi −Xn)2

n− 1 =
√

Sn
n− 1

=

√
Sn−1 + n−1

n (Xn −Xn−1)2

n− 1
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Besides the general statistics recorded, each version selection policy updates its
own score for the task version after every execution. When finishing an execution
of the i-th version at round t, Mean simply uses its mean (Xi,t) as the score. UCB in

turn updates the score for that version with Xi,t −
√
k
qi,t−ni,tXi,t

2

ni,t−1
ln(t−1)
ni,t

. GB has to
update not only the score of that version but of the others as well since changing
the selection probability of one version alters the probabilities of all other versions
as well.

The bandits have a list of the versions, ranking them from highest-scoring to lowest-
scoring. These are used when launching a new task to decide which version to
run. In the case of Mean and UCB, the version with the highest ranking is selected
without looking at the others. In the beginning of the execution the rankings have
a very high chance of changing. For most of the execution however the rankings
should see few changes. Since changes must be atomic, the code makes use of
mutual exclusion to prevent two threads from updating rankings at the same time.
However, threads reading the structure can safely do so during an update. This
approach reduces the time spent by a thread waiting for another, however the
consequence is a thread may choose to execute the highest-ranked version before
the ranks are updated. In that case, if the update changes the version which is at the
top of the ranking the thread will execute a version which is not the one with the
highest score. None of the bandit algorithms used are sensitive to this difference.

To better analyze the behaviour of each selection policy we added the ability to trace
the runtime. This trace differs from the standard trace from the LLVM OpenMP
runtime in that it includes not only information about which task is running at
some time but also about which version of that task. Due to the incurred overhead,
to use the tracing capability it must first be enabled when compiling the runtime.
To reduce the overhead, the trace is only written to a file at the end of the execution.
This of course means the trace may use a high amount of memory if a large number
of tasks are launched, but in our experiments this was far below the available
memory. If we were to write the trace to a file during execution we would need to
write to not a single but one trace file per thread as the writes to a single file cannot
be done in parallel. We trace every task execution. Each thread has a different array
for storing its traced tasks. This is done so no mutual exclusion is required for the
trace. Initially, 32768 positions are allocated for each array, with more being added
during execution if necessary. Each traced task uses 416 bits (52 bytes) of memory,
as shown in Table 3.5. The meaning of each column of the trace is explained in
Section 3.3.1.
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64 64 64 64 64 32 32 32

address start end time cost socket node1 node2
Table 3.5.: Size, in bits, of each item in one row generated by the trace.

3.4 Concluding Remarks

This chapter presented our proposal and how it is integrated in OpenMP, both from
the compiler and runtime perspectives. This chapter also showed theoretical results
for the policies introduced for selecting a task version. That comparison validates
our implementation of the policies, as they behave in the way they are expected to
in a known scenario. However, by using randomly-generated values intead of real
execution times for the versions it does not shows whether the policies perform well
in reality. This is addressed in the next chapter, which presents our experimental
evaluation which actually executes each task version, without the used of artificial
data.
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4Experimental Evaluation

The aim of our experiments is to evaluate the effectiveness of our policies in identi-
fying and using the best version of a task. That is, given a task-parallel application
with different versions that can be used to compute each of its tasks, we want to
identify, during runtime and with no a priori knowledge, which of these versions
should be used so as to maximize the application’s performance. The experiments
use three policies. The Mean policy is described in Section 3.2.2. This policy ex-
ecutes each version a number of times and then uses the version whose average
time is the lowest. The number of times is specified by the user, and defaults to five.
The Upper Confidence Bound (UCB) policy is detailed in Section 3.2.3. This policy
computes a confidence bound for each task version and runs the version whose
bound indicates its true average, as opposed to the average just from its executions,
can be the lowest. The Gradient Bandit (GB) policy is explained in Section 3.2.4.
This policy executes versions at random, with the odds of each version defined by a
gradient function. Versions with lower average execution times have better chances
of being executed, however slower versions still have a chance of running.

We use two benchmarks for our experiments: Cholesky and Matrix Multiplication.
The first computes the Cholesky decomposition of a dense matrix through the use of
four BLAS kernels, namely spotrf, strsm, ssyrk, and sgemm. The multiple versions of
this benchmark come from two linear algebra libraries, Intel MKL and OpenBLAS.
This benchmark is shown in Section 4.2.1. The Matrix Multiplication benchmark
consists of a tiled matrix multiplication. It splits the matrices being multiplied into
several submatrices. The much smaller submatrices are multiplied using one of
several auto-generated versions. The Matrix Multiplication benchmark is shown in
Section 4.2.2.

The experimental methodology and the experimental environment, with hardware
and software details, are described next, in Section 4.1.

4.1 Methodology

All our experiments are run in Grid5000 [Bal+13] clusters, details of which are
given next. Each experiment is repeated 30 times to reduce the effect of noise in
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the measurements. In experiments that use more than one CPU socket, the data
is distributed among the two NUMA nodes in order to avoid overhelming one
of the nodes. In experiments that use a single CPU socket, the data is allocated
exclusively on that socket’s memory to reduce the access time. OpenMP threads
are not allowed to migrate by using OMP_PROC_BIND.

4.1.1 Experimental Environment

Two Grid’5000 clusters are used for the experiments presented in this section: dahu
and chiclet. The dahu cluster is composed of 32 Dell PowerEdge C6420 nodes,
comprised of two Intel Xeon Gold 6130, with 16 cores each, and 192 GiB of memory.
The chiclet cluster is composed of 8 Dell PowerEdge R7425 nodes, it has two AMD
EPYC 7301, with 16 cores each, and 128 GiB of memory. More details on the
hardware used are shown in Table 4.1.

dahu chiclet

Processor 2× Intel Xeon Gold 6130 2× AMD EPYC 7301
Microarchitecture Skylake Zen
Cores 2× 16 2× 16
Hardware Threads 2× 32 2× 32
CPU Frequency 2.1 GHz 2.2 GHz
L1 Cache (Instr.) 16× 32 KiB 16× 64 KB
L1 Cache (Data) 16× 32 KiB 16× 32 KB
L2 Cache 16× 1 MiB 16× 512 KiB
L3 Cache 22 MB 64 MiB
Memory 192 GiB 128 GiB
Table 4.1.: Hardware details of the two clusters used for the experiments.

The target platforms run GNU/Linux, kernel version 4.20.7. As we make mod-
ifications to the compiler and OpenMP runtime, we must compile these tools to
integrate our additions. To do so, we use the GCC compiler version 8.2.1. GCC
is only used for compiling LLVM and OpenBLAS. All benchmarks are compiled
with our customized compiler, which is built on top of version 6.0.1 of LLVM. In
the experiments using Intel MKL, build 20180829 is used. We adopt OpenBLAS
version 0.3.7, when used.

4.2 Performance

We use two benchmarks for performance evaluation: Cholesky decomposition,
from the DaSH benchmark suite, and a tiled matrix multiplication benchmark. The
Cholesky benchmark has three kernels it runs in parallel, and uses two task versions
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for each of them. The matrix multiplication benchmark has only one multiversioned
task, and uses up to 219 automatically generated versions for it.

4.2.1 Cholesky Decomposition

The Cholesky benchmark is based on the Dense Algebra benchmark of the DaSH
benchmark suite [Gaj+14]. It implements a block Cholesky factorization, also
known as Cholesky decomposition, decomposing a Hermetian, positive-definite
matrix A into the product of a lower triangular matrix L and its conjugate transpose
(A = LLT ). Cholesky factorization is used for instance for efficiently solving linear
equations or Monte-Carlo simulations, which in turn have several applications,
such as fluid and cellular structure simulations or to predict failures in engineering
problems like aircraft design or oil exploration. The benchmark makes use of the
spotrf, strsm, ssyrk, and sgemm block-based routines from LAPACK [And+90]. The
sportrf routine computes the Cholesky factorization of a block; the strsm routine
solves the matrix equation XAT = αB; the ssyrk routine computes the symmetric
rank-k operation C = αATA+βC; and the sgemm routine performs a matrix-matrix
multiplication C = αATB + βC.

Listing 9 shows the code of the benchmark as used in DaSH, omitting OpenMP
clauses such as firstprivate for clarity. It mixes loop and task parallelism. The
function call to spotrf, in line 2, is run sequentially, however it is a relatively quick
operation compared to the others, with a single instance per iteration of the loop
unlike the other operations which are run several times per iteration. The function
call to strsm, in line 5, is run in parallel by using parallel loop as determined by
the pragma in line 3. This loop executes blocks in the same row in parallel. There
is an implicit barrier at the end of the parallel loop, ensuring all iterations of the
loop have been executed before the program execution can proceed. Consequently,
strsm does not execute at the same time as the other kernels and never executes
blocks of different rows concurrently. After all the strsm operations for the row have
been executed, there is a parallel region in lines 7–19, as indicated by the pragma in
line 7. A single thread executes this region, as shown by the use of the pragma in
line 9. While the code in this region is executed by only one thread, other threads
can run the tasks it creates. Lines 12–13 launch ssyrk tasks, which can execute in
parallel with the sgemm tasks created in lines 17–18. There is another implicit barrier
at the end of the parallel region, before the next iteration of the outermost loop.
Consequently, while these tasks can run in parallel they only run in parallel with
other tasks created in the same iteration.

We modify this code to use only tasks, removing the parallel loop, as shown in List-
ing 10. Like in the DaSH benchmark, tasks do not create other tasks. Furthermore,
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1 for(j=0; j < NumBlocks; ++j) {
2 spotrf( A[j][j], BlockSize);
3 #pragma omp parallel for
4 for(i = j+1; i < NumBlocks; ++i) {
5 strsm( A[j][j], A[i][j], BlockSize)
6 }
7 #pragma omp parallel
8 {
9 #pragma omp single

10 {
11 for(i = 0; i < j; ++i) {
12 #pragma omp task
13 ssyrk( A[j][i], A[j][j], BlockSize);
14 }
15 for(k = 0; k < j; ++k) {
16 for(i = j+1; i < NumBlocks; ++i) {
17 #pragma omp task
18 sgemm(A[i][k], A[j][k], A[i][j], BlockSize);
19 }}}}}

Listing 9: Dense Algebra benchmark from DaSH, which performs a Cholesky
decomposition of a dense matrix.

each task has two ways to perform each of the strsm, ssyrk, and sgemm operations:
by calling the respective function from either OpenBLAS [Wan+13] or Intel Math
Kernel Library (MKL) [Wan+14]. This benchmark uses a single version for spotrf
since this operation is done sequentially and the overhead of creating a task for it,
which would be required to be able to use multiple versions, outweights the benefit
of computing it using the most efficient version. Even if there is a large difference in
performance between the versions, very few tasks for this kernel would be created
compared to the other kernels as the number of spotrf executions is linear with
regards to the number of blocks, whereas for example the number of times sgemm
is executed is cubic to that same number.

Three scenarios are used for this benchmark:

4K a single thread, with a 4096 by 4096 matrix as input;

16K 8 threads in a single socket, with an input matrix of size 16384 by 16384;

32K 32 threads in two sockets and an input matrix of 32768 by 32768 cells.

As seen in the benchmark’s code in Listing 10, the application groups operations by
data locality through the use of blocks, subdividing the problem into several smaller
problems. The block sizes we use are those which provide the best performance
for each combination of input size and number of threads. The performance with
other block sizes and number of threads is shown in Figure 4.1. The first column
of this figure shows the results for chiclet, with the same input sizes as scenarios
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1 for(j=0; j < NumBlocks; ++j) {
2 spotrf( A[j][j], BlockSize);
3 for(i = j+1; i < NumBlocks; ++i) {
4 #pragma omp task declare(1)
5 strsm_openblas( A[j][j], A[i][j], BlockSize)
6 #pragma omp task declare(1)
7 strsm_mkl( A[j][j], A[i][j], BlockSize)
8 #pragma omp task run(1)
9 }

10 #pragma omp taskwait
11 #pragma omp parallel
12 {
13 #pragma omp single
14 {
15 for(i = 0; i < j; ++i) {
16 #pragma omp task declare(2)
17 ssyrk_openblas( A[j][i], A[j][j], BlockSize);
18 #pragma omp task declare(2)
19 ssyrk_mkl( A[j][i], A[j][j], BlockSize);
20 #pragma omp task run(2)
21 }
22 for(k = 0; k < j; ++k) {
23 for(i = j+1; i < NumBlocks; ++i) {
24 #pragma omp task declare(3)
25 sgemm_openblas(A[i][k], A[j][k], A[i][j], BlockSize);
26 #pragma omp task declare(3)
27 sgemm_mkl(A[i][k], A[j][k], A[i][j], BlockSize);
28 #pragma omp task run(3)
29 }}}}}

Listing 10: Our modifications to the benchmark to make it use tasks instead of parallel
loops and two versions of each LAPACK operation, one from Intel MKL and

the other from OpenBLAS.

4K, 16K and 32K, for the first, second and third rows, respectively. The horizontal
axis shows the block size used, and the vertical axis shows the average execution
time of the benchmark, in seconds. Different number of threads have their values
represented by red circles, for 1 thread, blue triangles, for 8 threads, and green
squares, for 32 threads. As shown in the figure, the block size can greatly affect the
number of cache hits and misses, and with a too small block size there is significant
overhead due to the large number of submatrices, while a too large block size
limits the number of operations that can be performed in parallel. We can see that
despite the differences between the two architectures and differences in execution
time, the two clusters behave similarly: the 4096 by 4096 matrix has its lowest
execution time with a block size of 1024 when using one thread, although that size
prevents parallelism and a smaller block is better with multiple threads; with 8
threads, the 16384 by 16384 matrix performs best with a block size of 256; and with
32 threads the 32768 by 32768 matrix also performs best with a block size of 256.
The number of tasks created by the benchmark when using these block sizes is
shown in Table 4.2, varying from 16 for the 4096 matrix to more than 350 thousand
with the largest matrix.

4.2 Performance 67



Scenario 4K 16K 32K

sgemm 6 2016 8128
ssyrk 6 2016 8128
strsm 4 41664 341376

Table 4.2.: Number of times each of the three kernels is executed depending on the input
and block sizes.
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Figure 4.1.: Execution times for the Cholesky benchmark by splitting the matrices using
different block sizes.

Each of the matrix operations (strsm, ssyrk and sgemm) has two versions, one that
uses the OpenBLAS implementation of the respective operation and the other that
uses the Intel MKL implementation. The average performance of using only one of
these versions through the whole execution of the benchmark is shown in Figure 4.2,
using the best block size for each input size. The first column of this figure shows
the results on chiclet, with two AMD processors. The second column shows the
results on dahu, with two Intel processors. The first row shows the results for the
4K scenario, the second for 16K, and the last column for 32K. We can see in all cases
the OpenBLAS versions outperforms the Intel MKL versions in both platforms.

Our aim, however, is to automatically detect the best version to use during the
execution of the application. For that end, we run the Cholesky benchmark using
each of the Mean, UCB, and GB selection policies, with parameter values of 30, 16
and 0.8, respectively, and two versions to choose from at runtime for each of the
kernels. Figure 4.3 shows the results of these experiments for the three scenarios
when using 1, 8 and 32 threads. The horizontal axis shows the selection policy
used, Mean, UCB, or GB. The vertical axis shows the average execution time, in
seconds. The scale of the vertical axis changes between rows due to their range.
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Figure 4.2.: Average execution times for the Cholesky benchmark when using either only
the Intel MKL version or only the OpenBLAS version of the kernels.

Lastly, each point correspond to the average execution time of the benchmark, from
30 executions for each combination of input size, platform and policy.
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Figure 4.3.: Experimental results for the Cholesky benchmark using each of the GB, Mean
and UCB policies, with different input sizes and on two platforms.

While the execution time varies greatly between the two platforms, with dahu
executing in less than half the time chiclet does in the 16K scenario in the middle
row, the policies behave similarly except with the small matrix in the first row. With
the small matrix, the Mean policy performed better than the UCB and GB policies
in both platforms, although it showed higher variance in some cases. With the
two larger matrices, however, while the GB policy is still outperformed by the two
others, the UCB and Mean policies behave very similarly. On dahu and under
scenario 32K the UCB and Mean policies have an average execution time of 11.5
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seconds and a t-test cannot identify a difference between the use of UCB and Mean
for that problem size.

Previously, in Figure 4.2, we showed the average execution time of the benchmark
when only using the best of the two kernel versions (OpenBLAS). Table 4.3 sum-
marizes the executions when using the policies and when using a single kernel.
We can see the Mean policy successfully identifies the most efficient versions of
the kernels, obtaining similar performance to OpenBLAS in all but one case (16K
on dahu, where it takes 25% longer to finish). The UCB policy presents similar
results, also identifying the correct version in most cases, although with worse
performance than the Mean policy in the small 4K scenario. Lastly, the GB policy
seems to have identified the correct version as well, but needed to execute the other
version several times and performed worse than the other two policies.

Mean UCB GB MKL OpenBLAS
chiclet
4K 0.6 0.8 1.0 1.1 0.6
16K 8.6 8.0 9.3 11.9 6.9
32K 18.3 18.3 20.8 29.3 18.4
dahu
4K 0.2 0.5 0.7 0.9 0.3
16K 3.6 3.6 3.8 9.3 3.6
32K 11.5 11.5 12.6 27.6 11.6

Table 4.3.: Average execution times of 30 executions of the Cholesky experiments with 2
versions. The two rightmost columns use a single version for the whole

execution.

We decided to trace the execution of the policies to be able to follow their behaviour
through the whole execution instead of only knowing the total execution time. To
reduce variability, we traced the execution 30 times and looked into the trace with
the median execution time. The trace uses a single thread and a 16384 by 16384
input matrix. Figure 4.4 shows the average execution time of each kernel over
time during the benchmark’s execution on dahu. The horizontal axis shows for
how long the application has been running. The vertical axis shows the average
execution time, in milliseconds, of that kernel. The GB, Mean, and UCB policies
are shown in red, blue, and purple, respectively. The results for when only using
the most efficient kernel versions, those of OpenBLAS, are shown in green. The
leftmost, center, and rightmost columns show the sgemm, ssyrk, and strsm kernels,
respectively. In all cases we can see the UCB policy quickly approached the average
of the OpenBLAS version, indicating it quickly found the fastest version. The Mean
policy also always identifies the fastest version, however in the middle column with
the ssyrk kernel we can see that took longer than the UCB policy. Still in the middle
column, we can see GB failed to identify the best version of this kernel during the
execution, while the other policies were close to the performance of only using the
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best version of this kernel. With both the other kernels, GB manages to identify the
best version. However, the higher average time tells us it executed the suboptimal
version many more times than the other policies did. A trace showing when each
version was run during the execution is shown in Appendix B.
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Figure 4.4.: Experimental results on dahu for the Cholesky benchmark using each of the
GB, Mean and UCB policies, and for when only using the OpenBLAS version

of the kernels.

Figures 4.5, 4.6, and 4.7 show the estimated lower bound of each kernel version
with the UCB policy along the first 1000 executions of each of the sgemm, ssyrk,
and strsm kernels, respectively. The horizontal axis shows the logical time, one
corresponding to the first execution, two to the second, and so forth. The vertical
axis shows the time, in milliseconds, taken by each kernel execution. In each figure,
the first row corresponds to the OpenBLAS version and the second row to the Intel
MKL version. Individual kernel executions have their execution times shown in
blue. The red line shows the average time of that kernel version, and the green
line the lower confidence bound for the kernel. Each column shows how the lower
confidence bound is affected by changing its parameter, with a value of 1, 16, and
32, for the first, second and third columns, respectively. Each column corresponds
to an independent execution of the benchmark, so the blue points are not exactly in
the same position between columns.

In the first row of Figure 4.5 we can see that through the execution of the OpenBLAS
kernels there is a “saw” pattern of a slow kernel execution followed by several
faster kernel executions. This is due to the slow execution being caused by a cache
miss, which does not happen in the few subsequent executions of the same kernel
with data that is adjacent in memory. Because of this, the execution time average
starts at a peak due to the initial slow execution and quickly falls. The valley in
the beginning of the execution is due to large difference between the timings of the
first few executions, which results in computing a large sample standard deviation
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Figure 4.5.: Trace of the execution of the Cholesky benchmark in the 16K scenario on
dahu, showing how the dgemm kernel behaves through the first 1000 times

this kernel is executed in the benchmark.

at this point of the execution (where still few measurements are available), much
larger than the true standard deviation of the kernel version. The large distance
between the average and the lower bound in the beginning of the execution is to
account for the possibility that, just like there was a point much slower than the
others, there could be a point much faster. That would mean the true average, too,
could be much lower than the average computed at that moment in the execution.
However, as subsequent kernel executions have more similar execution times the
sample standard deviation quickly decreases and so does the distance between
the average and the lower bound. We can see the confidence bound starts large,
and approaches the average as more measurements are taken. The second row,
corresponding to the MKL kernel, however, shows this distance increasing, not
decreasing, as the execution advances. This is because the confidence bound also
accounts for how often the version has been executed, slightly lowering the bound
if the version has been executed relatively few times, which is the case as evidenced
by the few number of kernel executions (blue points) in the second row. Lastly, this
figure shows the effect of the parameter on the lower bound. With a low parameter
value, as shown in the first column, the lower bound becomes closer to the average.
Increasing its value, as evidenced in the columns to the right, increases the degree
of optimism of the algorithm, increasing the distance from the average.

Contrary to the sgemm kernel, the ssyrk kernel, shown in Figure 4.6, starts with
faster than average executions, causing its average execution time to be initially
underestimated instead of overestimated as is the case of sgemm. Another difference
from the sgemm kernel is that the points do not cluster together in clearly distinct
subgroups.
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Figure 4.6.: Trace of the execution of the Cholesky benchmark in the 16K scenario on
dahu, showing how the ssyrk kernel behaves through the first 1000 times this

kernel is executed in the benchmark.

Figure 4.7 again presents no clustering except along the average. However, unlike
the two previous kernels, which only run the MKL version in the very beginning of
the execution, with the strsm kernel the MKL version is run a few times during the
execution. We can see that while the average execution time is still higher than that
of the OpenBLAS version the lower bound is still sufficiently low to sometimes fall
below the OpenBLAS lower bound.
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Figure 4.7.: Trace of the execution of the Cholesky benchmark in the 16K scenario on
dahu, showing how the strsm kernel behaves through the first 1000 times this

kernel is executed in the benchmark.

4.2.2 Matrix Multiplication

The Matrix Multiplication (MMUL) benchmark multiplies two matrices in double
precision. That is, given two input matrices A and B, it computes a matrix C where
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each element of this resulting matrix is the dot product between a row of A and a
column of B:

−→
b1

−→
b2[ ][ ]−→a1 A11 A12 B11 B12−→a2 A21 A22 B21 B22

=
[ ]−→a1 ·

−→
b1

−→a1 ·
−→
b2

−→a2 ·
−→
b1

−→a2 ·
−→
b2

=
[ ]
C11 C12
C21 C22

whereAij ,Bij , andCij are submatrices,−→ai is the i-th row of A, and
−→
bi is the i-th row

of B. Which is to say the multiplication can be computed through the products and
sums of the submatrices. Furthermore, we can see the resulting submatrices Ci,j
above do not depend on one another and consequently can be computed in parallel.
Moreover, each of the resulting submatrices performs two matrix multiplications.
For instance, C11 is the result ofA11B11 plusA12B21, and can also be further divided
into smaller submatrices.

Listing 11 shows the code for the main function of the MMUL benchmark. It begins
by verifying if the matrices are sufficiently small to execute sequentially. This is
done by comparing the GRAIN parameter against the number of floating-point mul-
tiplications required for a sequential computation. The number of multiplications
required depends on the dimensions of the matrices and is obtained by multiplying
the number of lines in A by the number of columns in B. The result is then multi-
plied by the number of columns in A (which is necessarily the same as the number
of lines in B). This value is computed in line 2. If the value is sufficiently small, line
4 calls the function solve_sequentially, which computes the multiplication
without further dividing the matrices and will be detailed later. If the number of
floating-point operations required is large, however, the matrices are split in lines
6-21, with each submatrix multiplication being launched as a task. Although each
matrix is split into four submatrices, 8 tasks are created. This happens because,
as mentioned previously, each submatrix containing the result requires two ma-
trix multiplications. So each of these four submatrices creates two multiplication
tasks, which are added together. The depend clause of the task pragmas defines
a dependency between the two multiplications of each resulting submatrix. This
dependency exists because the results of these multiplications are added to C, an
operation which has to be done by a single thread. Alternatively, the dependency
could be removed if the addition used atomic operations, however, these come with
a performance cost.

The function which computes the multiplication of two matrices, without further
dividing the problem, is shown in Listing 12. It does so by launching a task which,
in turn, uses one of the three functions shown in Listings 13 to 15 to perform the
multiplication.
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1 mmul(m, n, p, A, B, C) {
2 size = m * n * p;
3 if(size <= GRAIN) {
4 solve_sequentially(m, n, p, A, B, C);
5 }else{
6 #pragma omp task depend(inout: C(0, 0))
7 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(0, 0));
8 #pragma omp task depend(inout: C(0, n/2))
9 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(0, n/2));

10 #pragma omp task depend(inout: C(0, 0))
11 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(0, 0));
12 #pragma omp task depend(inout: C(0, n/2))
13 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(0, n/2));
14 #pragma omp task depend(inout: C(m/2, 0))
15 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(m/2, 0));
16 #pragma omp task depend(inout: C(m/2, n/2))
17 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(m/2, n/2));
18 #pragma omp task depend(inout: C(m/2, 0))
19 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(m/2, 0));
20 #pragma omp task depend(inout: C(m/2, n/2))
21 mmul(m/2, n/2, p/2, &A(0, 0), &B(0, 0), &C(m/2, n/2));
22 }}

Listing 11: Code for the MMUL benchmark.

1 solve_sequentially(m, n, p, A, B, C) {
2 #pragma omp task declare(1)
3 solve_sequentially_1(m, n, p, A, B, C);
4 #pragma omp task declare(1)
5 solve_sequentially_2(m, n, p, A, B, C);
6 #pragma omp task declare(1)
7 solve_sequentially_3(m, n, p, A, B, C);
8 #pragma omp task run(1)
9 }

Listing 12: Code for the sequential part of the MMUL benchmark which computes the
multiplication with either solve_sequentially_1,

solve_sequentially_2, or solve_sequentially_3.

Listing 13 multiplies the two matrices in the most straightforward way possible,
simply multiplying and adding the respective lines and columns of the two matrices.
Line 4 of this code tells the compiler to unroll the innermost loop for a number of
iterations. That is, instead of executing the loop iterations one by one these are
grouped in groups of size UNROLL, when possible. In the benchmark, different
values of UNROLL are used, resulting in multiple versions from this function.

Listings 14 and 15 show two other ways to multiply the two matrices. Like the
previous function, these also make use of loop unrolling in the innermost loop.
Unlike the previous version, however, these make use of tiling to improve memory
accesses. The tile sizes are given by ITILE and JTILE in both versions, with Listing 15
also using KTILE. In both versions, we use different combinations of values for
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1 solve_sequentially_1(m, n, p, A, B, C) {
2 for(i = 0; i < m; i++) {
3 for(j = 0; j < n; j++) {
4 #pragma unroll(UNROLL)
5 for(k = 0; k < p; ++k) {
6 C(i, j) = C(i, j) + A(i, k) * B(k, j);
7 }}}}

Listing 13: Code which multiplies the matrices A and B sequentially.

these parameters. Despite the difference in the tiling, which changes the order the
cells of the matrices are accessed, the three functions perform the same number of
floating-point operations.

1 solve_sequentially_2(m, n, p, A, B, C) {
2 for(ii = 0; ii < m; ii += ITILE) {
3 il = min(ii + ITILE, m);
4 for(jj = 0; jj < n; jj += JTILE) {
5 jl = min(jj + JTILE, n);
6 for(i = ii; i < il; i++) {
7 for(j = jj; j < jl; j++) {
8 #pragma unroll(UNROLL)
9 for(k = 0; k < p; k++) {

10 C(i, j) = C(i, j) + A(i, k) * B(k, j);
11 }}}}}}

Listing 14: Code for the sequential part of the MMUL benchmark.

1 solve_sequentially_3(m, n, p, A, B, C) {
2 for(ii = 0; ii < m; ii += ITILE) {
3 il = min(ii + ITILE, m);
4 for(jj = 0; jj < n; jj += JTILE) {
5 jl = min(jj + JTILE, n);
6 for(kk = 0; kk < p; kk += KTILE) {
7 kl = min(kk+KTILE, p);
8 for(i = ii; i < il; i++) {
9 for(j = jj; j < jl; j++) {

10 #pragma unroll(UNROLL)
11 for(k = kk; k < kl; k++) {
12 C(i, j) = C(i, j) + A(i, k) * B(k, j);
13 }}}}}}}

Listing 15: Code for the sequential part of the MMUL benchmark.

By using different values for the UNROLL, ITILE, JTILE, and KTILE parameters,
we generate multiple versions from these three base functions. We generate one
version for each possible combination of the values shown in Table 4.4. Listing 13
has three values for one parameter, so it has only three versions. Listings 14 and
15 have multiple parameters, whose combination results in 24 and 192 versions,
respectively. In total, there are 219 versions. Since the runtime needs to be told
of every version, the code shown in Listing 12 is in fact a simplification of the
actual code. In the simplified version shown, there are function calls to only three
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functions, each preceded by a pragma. To make use of the 219 versions, this needs
to be replaced with 219 function calls, one for each version, each preceded by the
same pragma.

Base UNROLL ITILE JTILE KTILE Number of
version versions

13 enable, 1, 8 3
14 enable 1, 2, 4, 8, 32, 64, 1 · 6 · 4 = 24

16, 32 512, 1024
15 enable, 1, 2, 8 1, 2, 4, 8 1, 8, 32 1, 2, 4, 8 4 · 4 · 3 · 4 = 192

Table 4.4.: Parameter for generating 219 different versions of Listings 13, 14, and 15.

As we mentioned, the GRAIN size, used in line 3 of Listing 11, defines when
the application stops creating tasks and performs the multiplication sequentially
instead. When the benchmark splits the matrices it always splits each matrix in four,
consequently, if the input is two square matrices of size n the possible values for
this parameter correspond to matrices of sizes n3

8x . For example, if n is 8 the possible
values correspond to 8, 4, 2, and 1. This parameter controls not just the size for the
sequential execution but also the number of tasks created. In the same example, 0,
8, 32 and 128 tasks are created, respectively, not counting the task created for the
sequential execution.

The effect of the GRAIN parameter on performance is shown in Figure 4.8. The
first column shows the results for chiclet and the second for dahu. The rows show
three different problem sizes, each using two square matrices of sizes 2048, 4096,
and 8192 for the first, second and last rows. The matrix sizes are smaller than those
of the Cholesky benchmark because Cholesky uses much more optimized BLAS
libraries for its matrix multiplications. The vertical axis shows the execution time,
in seconds, with a different scale for each input size. The horizontal axis shows the
size of the submatrix at which execution is done sequentially. The dots show the
average execution time when using only the fastest kernel version, which will be
detailed later. The bars show the confidence interval at a confidence level of 99.7%.
The colours show the number of threads used, with red for a single thread, blue for
8 threads in a single socket, green for 16 threads in a single socket, and purple for
32 threads in two sockets.

In all cases, we can see the two smallest grain sizes, corresponding to matrices of
sizes 8 and 16, are too small, with much worse performance than larger values. We
can also see the largest value, 512, is too large for the 4096 and 8192 matrices. For
the experiments using multiple versions, we use a grain of 64 for the 2048 and 4096
input matrices, and 128 for the 8192 matrix. We use 128 for the larger matrix as that
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grain size performs slightly better than 64 for that input sizes, while 64 performs
slightly better for the smaller matrices.
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Figure 4.8.: Effect of the grain size on execution time.

Our multi-versioned experiments use 219 versions generated by varying the pa-
rameters of the base functions discussed previously. Figure 4.9 shows how each of
these versions performs when only that version is used for the whole execution. In
the figure, each point is the average execution time. The first column shows the
2048 input, using one thread. The second column shows the 4096 input, using 16
threads in a single socket. The vertical bars represent the confidence interval of
these executions at a 99.7% confidence level. The vertical axis shows the execution
time, in seconds. The horizontal axis shows the different versions, which are in no
particular order. Each base function used to generate the versions is shown in red,
blue, and green, corresponding to Listings 13, 14, and 15, respectively. We can see
the performance of the first and second base functions varies greatly, but only on
chiclet. As these base functions present high variability even when using a single
thread, the reason for the variance should not be the task scheduling. On dahu, the
parameter values in these two base function have almost no effect on performance,
evidenced by their tighter grouping. Furthermore, on chiclet, these two functions
are slow when compared to the third base function. Yet, on dahu, the third function
can perform worse or better than the first and second functions, depending on
the specific combination of values used for the UNROLL, ITILE, JTILE and KTILE
parameters.

Figure 4.10 shows the performance of the policies when used with all the 219
versions. The results for chiclet are shown in the first column and those for dahu
in the second. The rows show the input sizes we use, each corresponding to
multiplying two square matrices with that number of rows and columns: 2048, with
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Figure 4.9.: Average execution time of the MMUL benchmark when only using one of the
available versions.

one thread, 4096, with 16 threads on a single socket, and 8192, with 32 threads on
both sockets. The grain sizes used are 64 for the small matrix and 128 for the others.
The vertical axis shows the time, in seconds. The horizontal axis shows the selection
policy used, or “Best” for only using the fastest version, according to Figure 4.9,
through all the execution. The points show the average time, and the bars show the
confidence interval at a confidence level of 99.7%. Lastly, the colour shows different
parameter values for each policy. In cases when the execution takes more than 25
seconds the points are shown in Table 4.5.
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Figure 4.10.: Performance of the MMUL benchmark with the three version selection
policies.
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Mean UCB GB Best

1 30 100 1 16 128 0.2 0.5 0.8

chiclet
2048 3.3 7.4 21.2 3.7 4.8 63.7 3.6 3.5 3.4 3.3
4096 2.5 2.8 3.7 2.7 3.0 11.0 172.3 315 297.8 2.3
8192 10.1 11.3 14.1 10.2 10.3 10.4 472.9 434.3 443.4 9.1
dahu
2048 2.7 4.0 7.5 2.8 2.8 3.0 3.0 2.9 3.3 2.5
4096 2.5 2.7 2.9 2.7 2.7 2.8 11.3 6.9 11.6 2.4
8192 11.1 11.6 12.8 11.2 11.3 11.5 62.5 35.8 59.6 10.6

Table 4.5.: Results of the Matrix Multiplication experiments with 219 versions, shown as
the average execution time, in seconds. The first row shows each of the three

policies, and Best for the best version previously found. The second row shows
the parameter used with the policy.

The first row of Table 4.5 shows the three policies behave similarly on dahu, however
with the Mean policy only performing well with a parameter value of 1, which
corresponds to a single execution of each version before the policy starts using the
one whose average time is the lowest. With the two larger inputs, the GB policy
performs much slower than the other two, taking longer than 2 minutes with the
4096 input, and more than 5 minutes with the largest input. Furthermore, we can
see the Mean policy again performs best with a parameter of 1.

The Mean policy takes 6.6% longer than always using the best version previously
found, when using the best value for its parameter with each of the inputs, which
happens to be 1 in all cases. The UCB policy takes on average 10.2% longer than that
version, when using 1 for its parameter, and 14.9% when using the canon parameter
value of 16. The GB policy performs well in a few cases, however, in most cases it
does not manage to obtain a good execution time, being 2000.7% slower on average
even when always using the best value for its parameter, as it took several minutes
on chiclet.

Looking at these results alone could lead one to think the Mean policy, only exe-
cuting each version once (i.e. using a parameter value of 1), is sufficient to always
identify the best-performing version. By running each version only once, the Mean
policy risks missing the best-performing version. This can happen, for instance,
if, by chance, that single execution happens to be much slower than its average
time. However, if we look back to Figure 4.9, which shows the performance of
each version when used alone through all the execution, we can see many of these
versions present very similar performance. Since there are many versions which
perform similar to the best-performing version, in this particular case the policy has
not only a single but several chances to detect one of the best versions.
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To test how the policies perform with a set of versions which are more similar we
run the same experiment but instead of using all the 219 versions we use only 13 of
those. The versions used were some of the best-performing versions, aiming to have
versions that have similar performance. Figure 4.11 shows how each of the chosen
versions performs when used by itself during the whole execution of the application.
In the figure, the vertical axis shows the time, in seconds. The horizontal axis shows
each of the 13 versions. As the versions were selected to perform similarly, not to
simply maximize performance, the best-performing version found previously is
not among them. It is, however, shown in the figure, in blue in the right, and we
can see that while the best-performing version showed a slightly lower execution
time than the second-fastest version on chiclet this difference is not significative
given the number of versions we compare.
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Figure 4.11.: Average execution time of the MMUL benchmark when only using one of
the available versions.

The results of the experiments using this smaller set of versions are shown in
Figure 4.12. Contrasting with Figure 4.10, there is no case where a policy performs
much worse than the best version. This is expected since, in this case, all the
versions available to the runtime perform similarly. The values in this figure are
shown numerically in Table 4.6.

Mean UCB GB Best

1 30 100 1 16 128 0.2 0.5 0.8

chiclet
2048 3.2 3.1 3.2 3.2 3.2 3.2 3.1 3.2 3.2 3.3
4096 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.0 2.3
8192 8.8 8.8 8.9 8.9 8.8 8.8 12.0 11.9 11.8 9.1
dahu
2048 2.5 2.6 2.5 2.5 2.7 2.7 2.6 2.5 2.5 2.5
4096 2.8 2.5 2.8 2.8 2.6 2.6 3.0 2.9 2.9 2.4
8192 11.6 10.5 10.4 11.4 10.9 10.6 13.3 11.9 11.9 10.6

Table 4.6.: Results of the Matrix Multiplication experiments with only 13 versions
available. The first row shows each of the three policies, and Best for the best

version previously found. The second row shows the parameter used with the
policy. The values are the average execution time, in seconds.
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Figure 4.12.: Performance of the MMUL benchmark with the three version selection
policies and 13 versions to choose from.

In chiclet, in the first two rows, the three policies perform better on average than
the version we previously found to be the best, and both Mean and UCB also
outperform it on the last row. This difference is significative at a 99.7% confidence
level for all policies and input sizes, except for the GB policy with the largest input,
in the third row. This is mainly due to two factors. Firstly, the best version was
chosen based on a single input size and number of threads. That could explain
the first row, but not the second as the best version was chosen using the same
input and number of threads. Secondly, and perhaps more importantly, the best
version was chosen based on only 30 executions of the application for each version.
While 30 executions can be sufficient for instance to tell how two BLAS libraries or
compilers affect some application when this difference is somewhat large, due to
the large number of versions and the small differences between their means, this
number is not enough to identify the actual best version among hundreds with
certainty. The runtime meanwhile has access not only to 30 executions of the whole
application but to thousands of task executions using each version.

While the improvement on performance is high on chiclet, being up to 11% faster
with the 4096 input, on dahu this improvement was only seen in three cases, GB
with a parameter of 0.5 with the 2048 input, and Mean with parameter values of 30
and 100 with the 8192 input. While in these cases there is a significant difference, at
a confidence level of 99.7%, when compared with the best version, it is much more
modest than in chiclet, being of only 1% on the small input and up to 2% on the
largest input.
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On dahu and with the 8192 input, in the last row, the Mean policy shows the
opposite behaviour it shows in the experiment with the 219 versions. With many
versions, the policy performs better when executing each version just once before
switching to always using the version whose average time is lowest. With only a
few, and very similar, versions, however, the policy performs better by executing
each version more times (30 and 100, shown in light blue and blue, respectively).
The behaviour of the same input on chiclet also changes, with many versions
to choose from it was better to use a single repetition in this case, but with few
versions, differently from the case of dahu, the number of repetitions used does not
significantly affect the performance.

To explain the difference in the behaviour of the Mean policy when using few or
many versions we traced its execution, recording every decision made by the policy
and when. As the most interesting case is found with the 8192 input, we use that
input and the same number of threads (32) in the trace. To reduce the environmental
noise in the measurements we execute the trace 30 times and use the one with the
execution time closest to the median. Tracing undoubtly adds some overhead. In
the worst case, the median version with tracing enabled took 12% longer to finish
than when executing without tracing.

Figure 4.13 shows the traces. The first column shows the behaviour of the Mean
policy, and the second shows the UCB policy. The first row shows the behaviour
when using only 13 versions, with the second row showing how the policies behave
with all the 219 versions. The colours show the different values for the policy
parameter. The horizontal axis shows for how long the application has executed so
far, in seconds. The vertical axis shows the average execution time of the sequential
multiplication tasks up to that point in the execution, in milliseconds. The vertical
axis starts on 1, not 0, to better show the small differences between the parameters
for each policy. The lines show the average execution time of all the sequential
multiplication tasks executed up to that point in the execution, from any of the 32
threads. The dashed lines show the average execution time of the fastest version
found so far. This average time may increase if subsequent executions happen to be
slower since it is the average computed up to a given point in the execution. Lastly,
the vertical lines indicate where each execution finished.

The bottom right of this figure shows the UCB policy, with 219 versions, and three
parameters. We can see they behave very similarly and end at roughly the same
time, which is coherent with the behaviour it showed before tracing the execution.
The top right shows the same policy but with 13 version to choose from. This
corresponds to the bottom right of Figure 4.12, which shows the parameter value
of 128 outperforms the value of 1, with the value of 16 standing between the two.
As the dashed lines show, while the policy quickly settles on a version to use most
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of the time, with a parameter of 1 this version is slower than the version found in
the other two cases and consequently in this case the policy takes longer to finish
execution.

On the bottom left of the figure we have the Mean policy with three values for
its parameter, 1 in red, 30 in green and 100 in purple. These three executions
correspond to the bottom right of Figure 4.12, which uses 219 versions. The vertical
lines show the fastest execution used a single repetition, the second-fastest used
30 and the slowest used 100, as expected. The dashed lines on the left show that
regardless of the value of its parameter the policy quickly identified a version to
use and that version has similar performance in the three cases as the dashed lines
appear one over the other. We can see that with the 100 repetitions the policy takes
longer to converge to the time of the best version it found, with no benefit since
it does not find a better version to use. The top left of the figure shows how the
policy behaves when using only 13 versions. While we can see the use of 30 or 100
repetitions finds similar versions to use, and results in similar execution times, by
using 1 repetition the policy fails to identify that version. The drop in the dashed
red line close to 5s is due to the policy finding a better version, however, it again
failed to identify a version as good as the other two cases.

Figure 4.14 shows the first second of execution the two policies, with the UCB policy
using a parameter value of 16 shown in blue and the Mean policy shown in red for
a value of one and purple for 100. At the top of this figure, the executions with 13
versions are shown. We can see the UCB policy identified the same best version
just slightly after the Mean policy with the best parameter for this case, 100. At the
bottom, with all the 219 versions, we can see the UCB policy behaved very close to
the Mean policy, but this time to when it used a parameter of 1, which is the best
parameter value for this case.

While the Mean policy often performed best, that is only when it used the best
number of repetitions for that particular problem. The UCB policy tended to be
slightly slower than UCB, however, tended to perform well with a value of 16. The
GB policy performed well when used with the 13 versions, although it tended to be
outperformed by the other two policies, however, it performed badly with the 219
versions.

Figure 4.15 presents a summary of the previous results for the benchmark. The first
column shows the results on chiclet and the second on dahu. The first line shows
the results with 219 versions and the second with 13 versions. Instead of absolute
values, the vertical axis shows a percentage of the best version. The horizontal axis
shows the different input sizes. The colours show the Mean policy with 1 and 100
repetitions and the UCB policy with a parameter value of 16. The figure omits the
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Figure 4.13.: Trace of the Mean and UCB policies, with different parameter values, using
two square matrices of size 8192 as input and 32 threads in two sockets.

Mean policy with 100 repetitions on the smallest input when using 219 versions
since, as shown previously, it performed very badly and would make it difficult to
see the other values.

4.2.3 Concluding Remarks

We show experiments using two benchmarks, a Cholesky computation from the
DaSH benchmark suite [Gaj+14], and a tiled Matrix Multiplication. The Cholesky
benchmark has two versions for each of its kernels, one version using Intel MKL
and the other using OpenBLAS. The Matrix Multiplication benchmark is used for
two different experiments, one with 219 versions for its single kernel, and the other
with 13 versions.

In the Cholesky benchmark, the Mean and UCB policies successfully identify the
best versions to use in most cases. The UCB policy cannot identify the version
quickly enough on the smallest input as it does not generate enough tasks. The
Mean policy in most cases identified the best version even when running each
version only a single time, due to the large difference in execution time between the
two versions. The GB version failed to approach the performance obtained by only
executing the best version. Even with the largest input, it still tended to execute
both versions, resulting in high variance and higher average execution time than
the other policies. The Cholesky benchmark is, however, an easy problem since it
only has two versions, and those have a high difference in execution time.
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Figure 4.14.: First second of the trace of the Mean and UCB policies using two square
matrices of size 8192 as input and 32 threads in two sockets.
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Figure 4.15.: Summary of the Matrix Multiplication results for the Mean and UCB policies.

As the first of the Matrix Multiplication scenarios has several (219) versions, and
many of these perform similarly, it favours executing each version only a few times.
Many executions are not only superfluous but can decrease performance, and
even with the largest input running each version several times results in degraded
performance. The second scenario, with fewer (13) task versions available, favours a
higher number of executions of each version. While it is easier in the sense that there
are fewer versions than the previous scenario, its challenge lies in that the versions
presented are very similar to each other. Like with the Cholesky benchmark, the
best policy tended to be the Mean policy. However, for the policy to perform well,
it requires correctly adjusting the number of times each version must be executed,
require more repetitions with the few similar versions and fewer repetitions with
the 219 versions. The UCB policy, on the contrary, works well without the need to
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change its parameter for either scenario, presenting a safer alternative to the Mean
policy, at the price of not being as rewarding as the Mean policy with the right
number of repetitions.
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5Related Work

In this chapter, we describe the approaches taken by works which handle the
problem of selecting which of multiple task versions to use and how they compare
to ours. OmpSs and StarPU are two parallel programming frameworks which
support the use of multi-versioned tasks. We describe them in Section 2.2. Aside
from their similarities to OpenMP, of particular interest are some of their task
schedulers which handle multiple versions of the same task, possibly for different
devices. We first describe some of the schedulers used by OmpSs, in Section 5.1.
Next, we describe some of the StarPU schedulers in Section 5.2. Lastly, we compare
the approaches of OmpSs and StarPU with ours in Section 5.3.

5.1 OmpSs

When using OmpSs the user can choose one of several scheduling policies. Each
targets a different scenario, and their characteristics vary from a single queue to
several queues depending on the resource type, with different approaches to handle
the use of idle resources and the order tasks are executed.

The Breadth-First scheduling policy shares a single queue among all the workers.
When dependencies allow, tasks are executed in a first in first out (FIFO) or last in
first out (LIFO) fashion, as specified by the user.

The Distributed Breadth-First policy executes tasks in a FIFO or LIFO order, given
the tasks have their dependencies met. Each worker adds tasks to and gets tasks
from its local queue. When its ready queue is empty, the worker executes the current
task’s parent, if it is in the ready queue of another worker. If the parent is already
being executed or is not ready due to unfulfilled dependencies, the worker steals a
task from the next worker’s ready queue. Stealing is done from the opposite side of
the queue (i.e. the last task is stolen when using FIFO order), to reduce contention
between the thief and the victim.

The Work First scheduling policy has one queue per worker. This policy, when
using the default values, behaves equivalently to Cilk. New ready tasks begin
executing immediately, pushing the current task into the ready queue. By default,
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it uses FIFO order for the local queue and LIFO for steals. When the local queue is
empty the worker steals the parent task, if possible.

The Socket-Aware policy uses one queue per NUMA node. Each top-level task, that
is, the tasks created by the main application and not by other tasks, is assigned to
a user-defined NUMA node. Subtasks are assigned to the same NUMA node as
their parent. By default, when a node’s ready queue is empty its workers steal from
the closest nodes, although this behaviour can be altered to allow other nodes, to
attempt to steal top-level tasks or to disable task stealing altogether.

The Bottom Level-Aware scheduling policy is made for single-ISA heterogeneous
architectures like the ARM big.LITTLE, which have asymmetric cores, some being
fast while others are more energy-efficient. This policy uses a different queue
per core type, so all the slow cores share one queue and all the fast cores share
another queue. Tasks belonging to the longest path in the task dependency graph
are assigned to the fast cores. By default, work-stealing is only used by the fast
cores. The policy can, however, also use work-stealing for the slow cores.

OmpSs supports CPU and accelerator tasks. A task can have a CPU version and a
GPU version, for example, or even multiple CPU and GPU versions. Tasks of the
same type must use the same parameters and have the same dependencies. As a
task can be launched using different data, for instance, the same operation may be
done in a small or a large matrix, OmpSs requires the user to annotate the source
code with the size of the data the task is handling. Different input sizes can affect
not just how long a version takes to execute, but it is possible the fastest version
for a small input is not the same as the fastest version for a larger input. This size
information is used in the data structure illustrated in Table 5.1, which depicts
two tasks, the first with three versions and the second with two implementations.
The timing data collected for each version is partitioned according to the data size,
shown in the middle column of this table.

TaskVersionSet DataSetSize <VersionId, ExecTime, #Exec>

task1
2 MB

<task1-v1, 30ms, 200>
<task1-v2, 18ms, 350>
<task1-v3, 25ms, 230>

3 MB
<task1-v1, 45ms, 80>
<task1-v2, 25ms, 300>
<task1-v1, 40ms, 120>

task2 5 MB
<task2-v1, 15ms, 40>
<task2-v2, 20ms, 3>

Table 5.1.: Data structure used by OmpSs to map version timings to a specific task type
and problem size.
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The scheduling policies mentioned previously were not made with multiple ver-
sions in mind. To handle this feature, OmpSs uses the Versioning scheduling
policy [Pla+13]. This policy decides not just which task to run next but which
version it should use. Each worker is responsible for a single device, be it small like
a CPU core or large like an accelerator. So, for example, a system with 32 cores and
2 GPUs can have 34 workers. Each worker has its own task queue.

There are two distinct phases for each task type: exploration and exploitation.
At the beginning of the execution, when the scheduler still has little information
about the task versions, ready tasks are distributed to the workers with the version
used being chosen in a Round-Robin fashion. Each task is run at least k times, as
decided by the user. Every time a task is executed, even after the exploration phase,
the policy updates the task’s average execution time according to the arithmetic
mean. The average execution time is independent for each data size, as shown in
Table 5.1. After the initial learning phase, the scheduler starts to make use of the
information it gathered thus far. Every combination of task type and input size is
independent, so one task type may be still in the exploration phase while another is
in the exploitation phase.

Once in the exploitation phase, the scheduler assigns tasks to their earliest executor.
That is, tasks are assigned to the worker who should finish the task the soonest,
according to the gathered statistics. When all workers are free, this means a task is
run using the fastest task version, on the fastest worker for that task. A task can,
however, be assigned to a slower worker. This can happen if the fastest worker is
busy and is expected to remain busy for a long enough time that the task can be
finished sooner by a less efficient, but more available, worker.

5.2 StarPU

Two of StarPU’s scheduling policies support multiple implementations [BCI19]:
the Deque Model Data Aware policy (DMDA) and Parallel Heterogeneous Earliest
Finish Time policy (PHEFT). The DMDA policy follows the HEFT strategy, which
is to assign a task to whichever worker can finish it first. This means tasks can
be executed by a worker which is not the fastest for that particular task. This can
happen in a situation like the one depicted in Figure 5.1, which shows one task with
two versions, one for GPU, in red, and another for CPU, in blue, and two workers,
one with tasks in its queue and another with an empty queue. In this case, the GPU
version is faster than the CPU version. However, DMDA schedules the task using
the CPU version as the GPU has enough queued tasks that the CPU, despite being
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slower, can finish first. DMDA schedules a task as soon as it is available, not taking
priorities into account when making scheduling decisions.

Task

GPU
Version

CPU
Version

GPU

CPU Core

Figure 5.1.: A task with two versions being scheduled in one of two workers.

One limitation of the DMDA policy is it views CPU cores and accelerators at the
same level, both are considered a worker. However, for certain types of computation,
accelerators, with possibly thousands of cores, tend to be much much faster than
a single CPU core. This can make it difficult to make use of the CPU cores since
if there are not enough tasks it may be faster to leave all cores idle for much of
the computation. One could always create more fine-grained tasks, however, that
comes at the price of increased overhead. The PHEFT scheduler, which as the name
implies also uses the HEFT strategy, attempts to solve this by having a worker
handle a group of cores. For example, a socket with 16 cores can be managed not as
16 workers but as a single worker. This enables the creation of parallel tasks on the
CPU, in turn making possible the use of the parallel version of libraries, for instance
for the use of the CPU version of a BLAS library.

The aforementioned policies require a performance model to be able to estimate, in
advance, how long some task version should take to execute. Like with OmpSs, this
estimation uses a structure similar to the one depicted in Table 5.1, with separate
measurements for different input sizes. StarPU supports a few different approaches
for its performance model. The user can provide the runtime with the expected
execution time of a task by using the Common or Per Arch models. For example,
the execution time can be predicted using the input size and the number of floating-
point operations required for the computation. However, that option is often
unrealistic due to the complexity of computer architectures. An alternative is to
use a regression model with one of the Regression models. In this case, the user
runs the application several times, with varying parameters, so that the runtime
can collect the timing information for the different combinations of parameters and
build the regression. The regression is built using the least squares method, that is, it
attempts to minimize the sum of the squared differences between the predicted and
the measured performance for each of the executions. This is illustrated in Figure 5.2,
where the line shows the regression, the points show the time measurements, and
the red lines show the differences between the two. The least squares method
builds its predictor to minimize the sum of the squares of these red lines. The
effectiveness of the regression depends of course on the kind of computation being
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performed, working well if the performance is regular in regards to the parameters.
The performance can vary in a way a simple linear regression cannot always
accurately predict. In that case, it is possible to use multiple regressions or non-
linear regression, although a non-linear regression is much more computationally
expensive and must be computed offline [ATN10].

● ●

●
●

●

Figure 5.2.: Example of the working of the least squares method.

These performance models require some programming effort. The developer must
first choose the relevant parameters. Then, either manually write a predictor using
these parameters and detailed knowledge of the computation or build a regression,
which requires gathering execution data for several inputs. The parameters are
easy to choose in some applications. For instance, they can be a matrix’s width and
height. However, in other applications, the decision is far more complicated. In a
graph, for instance, the number of nodes and edges may be insufficient to predict
the computational cost of some computation if it depends, for example, in how the
edges are distributed among the nodes. Depending on the case this information
may not be readily available at runtime. Furthermore, the interactions between the
threads, due to memory contention or a shared cache level, for example, can differ
between the training phase and the real execution of the application.

Both of these performance models require the gathering of timing data for each
task version, possibly several times for different inputs. This procedure must be
repeated if, for example, a new accelerator is installed. If the system is shared
among untrusted users, the timings must be updated whenever some mitigation to
some hardware vulnerability is installed if it affects performance, as is the case with
Meltdown and Spectre for example. Moreover, when the performance depends
strongly on the data, as is the case of many operations on a sparse matrix or graph,
it may be difficult to obtain good predictors with these methods.

Instead of using a regression or requiring the developer to provide the runtime
with a performance predictor, StarPU can measure the performance of the different
task versions at runtime by using the History-based model. These measurements
can be saved and used in subsequent executions of the application. The runtime
executes each task version some user-defined number of times, whose default is
10. After this number of execution is reached, it predicts the execution time as the
average time of the past executions.
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5.3 Concluding Remarks

Both OmpSs and StarPU face the same challenge: they must not only decide when
a task should run, and which computing unit should execute it, but also which
of the multiple task versions to use. When only using data gathered during the
execution, which is transparent to the programmer, both runtimes approach this
problem the same way. Both compute the average execution time of each task
version independently for the different data sizes. Both compute the average in
the same way, with the use of the arithmetic mean instead of, for instance, giving
more weight to more recent executions. Our Mean policy takes this same approach.
While it is a simple policy, it leaves the performance at the mercy of the number of
times each task version is repeated before the policy commits to the fastest version
for that device. If this number is relatively high compared to the total number of
tasks the application creates, which the runtime does not generally know, and the
number of different versions, the policy spends too much time exploring, to the
detriment of making use of the knowledge. If, however, the number is relatively
low, the policies risk running a suboptimal version during the exploitation phase
and obtaining worse performance than they could have otherwise.

While this approach works when the differences between the versions are large,
this class of strategy, with distinct exploration and exploitation phases, is known to
be necessarily suboptimal [GLK16b]. Other predictors, like UCB, can overcome
this limitation. However, as we have shown in Chapter 4, depending on the
computation, the simpler policy of taking the mean can be sufficient.
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6Conclusion and Future Work

This chapter is divided in two parts. In Section 6.1 we present the main contributions
of this thesis. In Section 6.2, we describe some open issues and discuss directions
which may be of interest for future works in this subject.

6.1 Contributions

We introduce two task version selection policies based on two algorithms for the
multi-armed bandit problem: Upper Confidence Bound and Gradient Bandit. We
also use a policy based on the average execution time of the different versions,
Mean, which uses an Explore-Then-Commit strategy. This last policy is equivalent
to the version selection part of the multi-version-aware task schedulers of StarPU
and OmpSs: it executes each version some previously-defined number of times and,
then, always uses the version which performed the best on average. The GB policy
executes task versions randomly. As the application executes, the policy adjusts the
probability of each version being selected according to their past performance. As a
version outperforms the others, its probability of being chosen to execute increases.
In the same way, if a version performs poorly, the policy will decrease that version’s
odds of being chosen for execution. However, even poorly-performing versions still
have a chance of executing, so the policy is guaranteed to eventually identify the
best-performing version if a sufficiently high number of tasks is created. The UCB
policy does not make decisions randomly, but, like the Mean policy, it always uses
the version it believes to be the best. It differs from the Mean policy by, instead of
directly using the average performance of a version, building a confidence bound
for each version, such that it knows, with some arbitrary level of confidence, how
fast each version is likely to be.

We compare these three policies in three scenarios: a Cholesky factorization, with
two vastly different versions for each of three of its linear algebra kernels; a matrix
multiplication, with varying degrees of difference between hundreds of task ver-
sions generated through autotuning; and a matrix multiplication, with a few task
versions with similar performance, also autotuned but manually chosen. In many
experiments the GB policy failed to obtain reasonable performance, continuing to
use inefficient versions frequently during the whole execution of the applications.
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The Mean policy succeeded in identifying the right version to use. However, the
performance of the policy depends on correctly deciding how many times each
version should be executed before the policy commits. By committing too soon,
the policy is liable to commit to an inefficient version. By committing too late, the
policy risks not having enough time to take advantage of the acquired knowledge.
The UCB policy also managed to identify which version it should use to improve
performance. However, it does not always perform as well as the Mean policy with
a good number of repetitions before commitment. Despite that, the UCB policy is
also less susceptible to perform as badly as the Mean policy does when its number
of repetitions is chosen poorly. This makes the UCB policy a feasible alternative,
especially in situations where there are many different types of tasks with varied
numbers of versions each.

Lastly, we add multi-versioned task support to OpenMP. We extend the Clang
compiler to support our additions to the “omp task” pragma. And we extend the
LLVM OpenMP runtime to be able to take advantage of these multiple versions,
either using a policy similar to some of the policies of StarPU and OmpSs or with
the UCB and GB policies.

6.2 Open Issues and Future Work

Our analysis considers a limited range of parameters. While UCB uses, among
others, a parameter value which provides some theoretical guarantees that other
values do not provide, only three values are used for the parameter of the Mean
policy. It is possible, for example, that some other number of repetitions works
better than those found by us. Moreover, the GB policy, which in most of the cases
we analyze does not perform well, also only used three different parameter values.
Likewise, it is possible it would have performed better with some other value. This,
however, illustrates the programming cost associated with a high dependency on
parameter values.

Other runtime systems make use of Explore-Then-Commit policies for choosing
a task version. It would be interesting to use an algorithm like Upper Confidence
Bound instead and see how it affects not only the online policies but also the
training when using measurements collected offline, and if the behaviour differs in
a heterogeneous environment as opposed to our homogeneous experiments.

Our approach suffers from some limitations. While we extend OpenMP tasks,
other OpenMP constructs, like parallel loops and task loops, could also benefit
from multiple versions. However, for purely technical reasons, our extension only
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supports tasks. Constructs such as parallel loops can be of interest for a multi-
versioned approach since the threads in the team will often execute the same code
in different iterations of the loop, which may allow a multi-versioned policy to
better tell how each version affects the others and reduce measurement noise from
other tasks.

We have a single UCB policy, that is, we provide only one way of calculating its
confidence bounds. However, there exist several variations of UCB. While the
algorithm is usually the same, in some cases with different ways to guarantee
versions with bad bounds are still executed from time to time, there are multiple
ways to compute the confidence bounds.

In our OpenMP implementation, when a task finishes execution, its timing data is
shared between all workers. This is done by updating a central structure. This can
help workers gather information quicker than if they were working alone. However,
as updates of the same task version, by different threads, must be synchronized, it
also limits scalability. One option to increase scalability would be to keep statistics
on a per-worker level, or perhaps per socket. Splitting these statistics would also
enable the use of the multi-versioned OpenMP runtime with a heterogeneous
architecture like the ARM big.LITTLE, since the two core types have very different
performance profiles.
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AAutotuning Example

Figure A.1 shows the effect on the execution time of changing the value of TILE_J.
The vertical axis shows the execution time, in seconds. The horizontal axis shows the
value used for TILE_J. Each point is the minimum execution time of all executions
where the TILE_J has the value shown in the horizontal axis. Again, we can
easily see TILE_J influences execution time. TILE_J has a much stronger effect on
performance than TILE_I does, with the execution time varying between 1.8 second
at 256 and 9.6 seconds at 1. Unlike with TILE_I, TILE_J does not looks likely to
improve performance by much through further refiniments as the execution times
with a value of 64 or more are very similar.
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Figure A.1.: Effect of different values of TILE_J on the execution time. Each point, one for
every value of TILE_J, represents the execution time using that value of

TILE_J and the values of TILE_I and TILE_K which give the lowest execution
time for that TILE_J.

Figure A.2 shows the effect on the execution time of changing the value of TILE_K.
The vertical axis shows the execution time, in seconds. The horizontal axis shows the
value used for TILE_K. Each point is the minimum execution time of all executions
where the TILE_K has the value shown in the horizontal axis. Again, we can
easily see TILE_K influences execution time, and like TILE_J the effect is high: the
execution time can vary between 1.8 second at 1 and 10.5 seconds at 512. Like
TILE_I, the curve between 4 and 32 indicates a local optimum. However, these
values perform worse than 1 does so it is unlikely the local optimum will perform
better.

Figure A.3 shows how changing the value of TILE_J affects performance. The
differences between the execution times obtained with these values of TILE_J are
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Figure A.2.: Effect of different values of TILE_K on the execution time. Each point, one for
every value of TILE_K, represents the execution time using that value of

TILE_K and the values of TILE_I and TILE_J which give the lowest execution
time for that TILE_K.

much smaller than those for TILE_I. We can see the difference between 256, the
best value found in the previous autotuning step, and 128, the best value found
on this step, is of only 1.1%, as the point 128 took 1.79 second and 256 took 1.81
second. However, as the number of executions we have is very small, we cannot say
there is an actual difference between these points. To find whether the difference is
there, we repeat the experiment 50 times. These results are shown in Figure A.4.
We can see that while 128 seemed to be better than 256, now that we have better
precision on the results it seems 128 is actually worse than 256, and of those points
it is actually 224 which improves execution time the most, improving the execution
time by 1.4% compared to the previous iteration. Notice this is the same point
mentioned at the end of the last paragraph.
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Figure A.3.: Effect of different values of TILE_J on the execution time. Each point, one for
every value of TILE_J, represents the execution time using that value of

TILE_J and the values of TILE_I and TILE_K which give the lowest execution
time for that TILE_J.

Lastly, for TILE_K For the sake of completeness, the confidence intervals at 99.7%
are shown in Figure A.6 and confirm the value of 1 is the one that should be used
for TILE_K.
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Figure A.4.: Effect of different values of TILE_J on the execution time. Each point, one for
every value of TILE_J, represents the execution time using that value of

TILE_J and the values of TILE_I and TILE_K which give the lowest execution
time for that TILE_J. Each point is the average of 50 executions and the bars

indicate its confidence interval at a 99.7% confidence level.

Lastly, Figure A.5 shows how changing the value of TILE_K affects performance,
and confirms that this parameter should be set at 1. Figure A.6 shows the confidence
intervals after repeating the experiment 50 times. As expected due to the large
difference in execution times, there is a significative difference, at a 99.7% confidence
level, between using 1 for this parameter or the second-best value found, 8.
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Figure A.5.: Effect of different values of TILE_K on the execution time. Each point, one for
every value of TILE_K, represents the execution time using that value of

TILE_K and the values of TILE_I and TILE_J which give the lowest execution
time for that TILE_K.
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Figure A.6.: Effect of different values of TILE_K on the execution time. Each point, one for
every value of TILE_K, represents the execution time using that value of

TILE_K and the values of TILE_I and TILE_J which give the lowest execution
time for that TILE_K. Each point is the average of 50 executions and the bars

indicate its confidence interval at a 99.7% confidence level.
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BCholesky Decomposition Trace

Figure B.1 shows which kernel version was used during the first 200 times each of
the three kernels was executed when running the benchmark with a single thread
and a 16384 by 16384 input matrix. The horizontal axis represents the logical time
for each kernel. The vertical axis shows the different policies, UCB, Mean, and
GB, with the parameter used, each corresponding to an independent execution of
the benchmark. The colours show the kernel version used, with red for Intel MKL
and blue for OpenBLAS. Lastly, the first, second, and third columns correspond to
the sgemm, ssyrk, and strsm kernels, respectively. We can see in this case the UCB
policy, shown at the top, regardless of the value of its parameter, did not execute
the MKL version with the sgemm and ssyrk kernels except in the very beginning
of the execution. With the strsm kernel, however, the MKL version is still run a
few more times during the execution since the performance difference between
MKL and OpenBLAS for this operation is smaller than for the other two operations.
The Mean policy executes both versions the defined number of times, 30 in this
case, and does not switch for the remaining of the execution. The GB policy with a
large value for its parameter gave preference to the MKL version with the sgemm
and ssyrk kernels, and to OpenBLAS with the strsm kernel. In both cases, however,
it continued sometimes executing the other version later in the execution. When
using a smaller parameter value, the policy showed less preference between the
two versions. That is only in the beginning of execution, however. Figure B.2 shows
the execution in its entirety instead of only its first 200 kernel executions, and we
can see GB with a high value for its parameter eventually switches to OpenBLAS,
while GB with a low value keeps switching between the two versions during the
whole execution.
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Figure B.1.: Choices made by the different policies, with different parameters, along the
first 200 executions of the sgemm, ssyrk, and strsm kernels of the Cholesky

benchmark.
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Figure B.2.: Choices made by the different policies, with different parameters, along the
execution of the sgemm, ssyrk, and strsm kernels of the Cholesky benchmark.
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