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Abstract

Schedulability analysis aims at guaranteeing the absence of deadline misses in hard

real-time systems. This property is crucial for systems used in safety-critical domains

such as avionics because a single deadline miss may have catastrophic consequences.

In this thesis, we use the Coq proof assistant and machine-checked proofs to provide

the highest level of confidence in hard real-time systems schedulability analyses as

well as related industrial tools.

The main contributions of this thesis are:

(i) A formal interface combining the schedulability analyses proven in the Prosa

library based on Coq with a formally verified OS kernel (RT-CertiKOS). This

work demonstrated the adequacy of Prosa’s abstract model with a real system

and showed that analyses proven over an abstract and analysis-convenient

model can be also applied to a concrete system. This work also provided

RT-CertiKOS with a modular, state-of-the-art schedulability analysis proof.

(ii) CertiCAN, a formally verified result certifier for CAN (Controller Area Net-

work) analyzers. This work showed that result certification is a flexible and

light-weight process suitable for industry practice. Indeed, it does not rely on

the source code and is not impacted by software updates. Our experiments

show that CertiCAN is efficient enough to certify the results produced by the

industrial tool RTaW-Pegase even for large systems.

(iii) Gd, a very general task model and its corresponding response time analysis

amenable to a formalization in Coq. The main benefit of this approach is to

factorize and reduce the proof effort. After verifying a general schedulability

analysis for Gd, proving the correctness of an analysis for a more specific

model boils down to proving its instantiation to Gd.
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Résumé

L’analyse d’ordonnancabilité vise à garantir le respect des échéances dans les systèmes

temps réel durs. Cette propriété est cruciale pour les systèmes utilisés dans les

domaines critiques tels que l’avionique, car une échéance manquée peut avoir des

conséquences catastrophiques. Dans cette thèse, nous utilisons l’assistant de preuves

Coq afin d’assurer la correction des analyses d’ordonnancabilité des systèmes temps

réel durs et des outils industriels associés.

Les principales contributions de cette thèse sont:

(i) Une interface formelle combinant les analyses d’ordonnancabilité prouvées

dans la bibliothèque Prosa basée sur Coq avec un noyau de sytème d’exploitation

concret vérifié formellement (RT-CertiKOS). Ce travail a permis de justifier

l’adéquation du modèle abstrait de Prosa à un système réel. Il a montré que

les analyses prouvées pour un modèle abstrait et dédié à l’analyse peuvent

également être appliquées à un système concret. Ce travail a également fourni

à RT-CertiKOS une preuve d’ordonnancabilité modulaire à la pointe de l’état

de l’art.

(ii) CertiCAN, un certificateur de résultats formellement vérifié pour les analy-

seurs de réseaux CAN (Controller Area Network). Ce travail a montré que

la certification de résultats est un processus flexible et léger qui convient

bien aux pratiques de l’industrie. En effet, CertiCAN n’a pas besoin d’avoir

accès au code source et n’est pas affecté par les mises à jour logicielles. Nos

expérimentations ont montré que CertiCAN est suffisamment efficace pour cer-

tifier les résultats produits par l’outil industriel RTaW-Pegase et ceci même

pour de grands systèmes.

(iii) Gd, un modèle de tâches très général et une analyse du temps de réponse

associée se prêtant à sa formalisation en Coq. L’avantage de cette aproche est

de factoriser et de simplifier l’effort de preuve. Une fois l’analyse du temps

de réponse pour Gd formellement vérifiés, prouver la correction d’une analyse

pour un modèle plus spécifique revient à prouver son instanciation à Gd.
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Chapter 1

Introduction

Embedded systems are ubiquitous in our daily lives. They are widely used in au-

tomobiles, avionics, telecommunications, medical devices, and many other domains.

Given that embedded systems are typically designed for reacting with a physical

environment that is continuously evolving, they are expected to respond to that

environment in real-time, that is, in a timely manner. For instance, in a car sys-

tem, after the brake pedal is pressed, actual braking must take place within a few

milliseconds. Such systems are called real-time systems. Real-time systems are thus

required to satisfy both functional and temporal properties.

In the past decades, the real-time community has established a huge body of

research on real-time systems analysis in order to ensure temporal properties. Most

published works establish correctness of the proposed analyses using pen-and-paper

proofs which often depend on human intuitions, implicit assumptions and omit many

details. They do not provide formal guarantees about the results of the analyses.

The goal of this thesis is to promote formal methods for real-time systems anal-

ysis in order to provide high confidence in their results. To motivate our research,

we start with an introduction to critical real-time systems, their analysis and formal

verification. We then state the research problems tackled in this thesis, summarize

our contributions, and present the outline of this document.

Contents

1.1 Critical Real-Time Systems . . . . . . . . . . . . . . . . . 2

1.2 Schedulability Analyses and Their Correctness . . . . . 3

1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions & Outline of the Thesis . . . . . . . . . . . 5
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2 CHAPTER 1. INTRODUCTION

1.1 Critical Real-Time Systems

A system is said to be real-time when its responses to a stimulus should satisfy some

temporal constraints. For instance, an airplane pilot system should respond to the

pilot’s instructions quickly and predictably, otherwise there may be catastrophic

consequences. Such temporal constraints are usually specified as deadlines : the

response of a real-time system to some stimulus is expected to meet its deadline,

that is, to happen before a specified maximum delay. For different real-time systems,

deadline misses will have different consequences. According to the criticality of

consequences, real-time systems can be classified into three categories (more details

in Section 2.2): hard real-time systems, weakly hard (or firm) real-time systems,

and soft real-time systems.

In this thesis, we focus on hard real-time systems where missing one deadline

can lead to system failure and may have catastrophic consequences. Such systems

have attracted a lot of attention in the community due to their utmost criticality,

especially for those used in safety-critical domains such as automotive and avionics.

A real-time system consists of two parts:

• Software. System functionalities are typically implemented as software pro-

grams that can be decomposed into several tasks. The more system function-

alities there are, the higher the number of tasks and system complexity.

• Hardware. The relevant hardware elements for real-time systems are pro-

cessor units to execute the code instructions, memories to store data and

programs, and communication buses to connect system components for a co-

ordinated manipulation. The complexity of systems highly depends on the

type of processors and bus architectures. For instance, a uniprocessor exe-

cutes only one task at a time, while a multiprocessor can execute several tasks

simultaneously and may even allow task migrations between processors. In au-

tomotive domain, Electronic Control Units (ECUs) are distributed in different

parts of a vehicle, which are connected by buses for transmitting messages

between them according to some protocols e.g., CAN (Controller Area Net-

work). Each ECU uses its own time clock to communicate with the others,

which increases the complexity of analyses (see Chapter 4).

Hard real-time systems can be very complex. In particular, in the automotive

domain and avionics, they have to sustain not only basic system controls but also

increasing functionalities.



1.2. SCHEDULABILITY ANALYSES AND THEIR CORRECTNESS 3

In the automotive domain, a car should manage many functional activities all

together such as engine control, electric throttle control, battery management, trans-

mission control, navigation, airbag deployment and so on. Nowadays, with the de-

velopment of autonomous driving, car systems are becoming even more complex

in order to meet other functionalities such as connectivity, automation and safety.

All these functionalities are implemented as software applications, which are exe-

cuted on ECUs. In a modern Volvo vehicle (in 2020), there are more than 120

ECUs connected to react to about 7000 external signals. These functionalities are

implemented by 100 million lines of code (LOC) [9].

In avionics, aircraft systems have evolved over several decades, from realizing

the basic functionalities such as flight control, hydraulics and electrical functions in

the early systems to incorporate many additional functionalities such as autopilot,

cooling system, optimization of flight plans, reduction of fuel consumption, air traffic

management, anti-collision system and in-flight entertainment. In 2005, there were

already 100000 functionalities implemented using millions of LOC in an aircraft

system [76]. For instance, Boeing 787 contains about 7 million LOC [109].

As the system complexity increases, it is more and more difficult to validate

temporal correctness. For safety-critical real-time systems, it is not sufficient to

validate the temporal correctness by testing because this does not cover corner cases

and one deadline miss may cause a loss of lives. It is therefore important to provide

formal guarantees that there is no deadline miss in hard real-time systems.

1.2 Schedulability Analyses and Their Correct-

ness

Schedulability analysis aims at guaranteeing the absence of deadline misses for hard

real-time systems. In the literature, many schedulability analyses have been pro-

posed since Liu and Layland’s seminal work [96]. The correctness of most published

analyses is established using pen-and-paper proofs, which rely on implicit assump-

tions and human intuitions and sometimes omit many details. As a result, the proofs

are difficult to check, generalize and reuse because they do not point out which im-

plicit assumptions are really needed and do not address the correctness of intuitions

and omissions. In fact, quite a few analyses have been proven faulty [48, 43, 21].

In particular, the original schedulability analysis [144, 147, 145] for CAN buses has

been shown to be flawed [25] and was corrected more than ten years later [43].

Before the revised version, the original analysis has been recognized incorrect by

Volvo Car Corporation and used in the configuration and analysis of CAN buses
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for Volvo S80 [28]. This illustrates the lack of formal guarantees for analysis results

and motivates the use of formal methods for providing higher confidence in these

analyses.

Formal verifications such as model checking and theorem proving are mathemat-

ical techniques used to provide formal guarantees for software systems, analyses,

or mathematical theorems. Model checking has been widely and successfully used

in industrial applications. However, it suffers from a state-space explosion problem

and does not scale to large and complex systems without proper abstraction tech-

niques. In contrast to model checking, theorem proving (in particular interactive

theorem proving) is able to prove arbitrarily complex problems and to mechanically

check proofs. The advent of recent mechanized proofs projects such as seL4 [80],

CompCert [91], CertiKOS [66] shows that theorem proving techniques and tools (in

particular the Coq proof assistant) have now reached a maturity level such that they

can be used to formally verify schedulability analyses.

Both industry practice and academic research advocate the use of formal verifica-

tion in order to provide the highest level of confidence in industrial applications and

academic results. In industry practice, there already exist international security and

safety assurance certification standards such as Common Criteria, ISO26262 for the

automotive domain and DO-178C for avionics, which recommend the use of formal

verifications for the development and validation of safety-critical real-time systems.

For these standards, formal verifications achieve the highest security and safety as-

surance level for industry tools. In academic research, applying theorem proving to

formally verify the correctness of real-time systems analyses has the added benefit

that it helps to get a better understanding of the role played by assumptions and to

generalize results. More importantly, it rules out flaws in the corresponding proofs

which have been mechanically checked.

The goal of this thesis is to use theorem proving (specifically the Coq proof assis-

tant) to formally specify and verify schedulability analyses. This takes place within

the Prosa project and library [112], a machine-checkable framework for schedulabil-

ity analysis using Coq.

1.3 Research Problems

Applying theorem proving to the formal verification of schedulability analyses for

hard real-time systems gives rise to several research problems:

1. How can we justify the adequacy of system definitions specified using a theo-

rem prover? In fact, these definitions are usually formalized in a very abstract
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manner, which are suitable for reasoning about analyses. But, are they consis-

tent with a concrete system? Can we apply the verified analyses directly

to a concrete system? For instance, can we apply the results proven in Prosa

to a concrete OS?

2. In industry practice, many schedulability analyses have been implemented in

commercial analyzers such as RTaW-Pegase [110] and SymTA/S [135]. How-

ever, there are no formal guarantees that the results produced by these tools

are correct since: (a) as mentioned already, the underlying analyses may be

flawed; but also (b) the tool implementation may contain some undetected

bugs.

In other words, there is a gap between analysis theories and their implementa-

tions. How can we provide formal guarantees for a given commercial analyzer?

One straightforward solution is to formally prove the full tool implementation

including the correctness of its underlying analyses. This solution has several

drawbacks: For a given commercial tool,

• the tool is usually not open-source;

• it often uses complementary heuristic algorithms to improve its scalabil-

ity, which are tricky to prove correct;

• even when the tool is formally verified, its correctness proofs need to be

updated at each software update, which may be highly nontrivial.

It is, therefore, very time consuming and sometimes impossible to certify the

full tool implementation and its subsequent versions. This suggests the alter-

native approach of certifying not the implementation but only its results. Can

we build formal certifiers for the results of a commercial tool?

3. Theorem proving involves a lot of proof effort due to the fact that we cannot

rely on intuitions nor omit any specifications or proof details. How to fac-

torize proofs to make them generic and general enough such that

they can be reused for other analyses and certifiers?

1.4 Contributions & Outline of the Thesis

Contributions

The contributions presented in this thesis address the above open problems. Each

contribution is based on one of our publications [71, 59, 58].
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1. We1 implement an interface for connecting two projects involving mechanized

proofs: the Prosa project for verifying schedulability analyses and the Cer-

tiKOS project for verifying OSes. This allows the two projects to benefit

from each other: first, it gives a concrete instance of schedulability analysis as

described in Prosa, thus ensuring that it is applicable to actual systems; sec-

ond, it provides the real-time variant of the verified CertiKOS OS with formal

real-time guarantees.

2. We formally verify a result certifier, named CertiCAN, which can certify the

results of CAN analysis tools and can be used for industry practice. It is

flexible and light-weight in the sense that it does not depend on the internal

structure of the analysis tool that it complements. It is efficient enough in

terms of computation time. In particular, it is able to certify results computed

by RTaW-Pegase, an industrial CAN analysis tool, even for large systems. This

is the main contribution of this thesis.

3. In order to factorize proofs and then to reduce the proof effort, we propose

a generalized digraph task model and its corresponding analysis amenable

to its formalization in Coq. The objective of this work is to formally verify

the analysis for this general model such that the correctness proof of a more

specific (standard or novel) analysis boils down to specifying and proving its

translation into that model.

Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we review real-time system models,

analyses, and formalizations as well as some successful stories of result certifications.

In Chapter 3, we formally prove the schedulability analysis of a real OS kernel by

connecting it with the Prosa library. It permits the two projects to benefit from

each other. Next, in Chapter 4, we formally prove a result certifier for verifying the

results of commercial CAN analyzers. In order to formally verify many analyses and

to reduce the proof effort, we propose a very expressive task model as well as its

analysis amenable to its Coq formalization in Chapter 5. Finally, we conclude and

present future work in Chapter 6.

1This is a joint work with Lionel Rieg, Maxime Lesourd, Mengqi Liu, and Zhong Shao.



Chapter 2

Real-Time Systems: Model,

Analysis, and Formalization

This chapter aims at providing a general introduction to real-time system models,

schedulability analysis as well as their formalization. It starts by presenting a collec-

tion of basic system models widely studied in the community, then describes several

existing real-time schedulability analyses of those models. Next, we review the liter-

ature focused on increasing the confidence in real-time schedulability analyses using

formal approaches. In particular, we present the Prosa library, a formally proven

real-time schedulability analysis library. We discuss some success stories on result

certification at the end of the chapter. These elements (system models, schedulabil-

ity analyses, Prosa, result certification) form the basis of our work presented in the

next three chapters.
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2.4 Formalization in Prosa . . . . . . . . . . . . . . . . . . . . 33

2.4.1 System Behavior . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Result Certification . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Real-Time System Models

A real-time system consists of a set of real-time software applications executed on

a platform according to a scheduling policy. A real-time system model aims at

abstracting and characterizing behaviors of the system components, in order to

analyze whether a considered system satisfies some properties. A proper real-time

model must specify the following elements:

• Tasks. A task is either a piece of program dedicated to performing some

functionality (e.g., sampling signals or controlling actuators) or a message

transmitted on a bus e.g., CAN bus. A real-time task has timing constraints

to meet e.g., some critical tasks require to complete their execution within a

given duration, also known as deadline. Most real-time tasks are recurring.

We call each instance a job. The response time of a job is defined as a time

duration between its arrival time and its completion time. The response time

of a task is the maximum response time among all its jobs’ response times.

• Platform. A platform represents a collection of computing and communica-

tion resources (CPUs, buses, etc.) as well as memories.

• Scheduling policy. A scheduling policy is a strategy (an algorithm) that

specifies which jobs are selected to run at each time instant.

• Time. According to different needs or purposes, time can be modeled as

discrete, dense or continuous. It is modeled by natural numbers, rational

numbers, and real numbers, respectively. Usually, discrete time is used for

expressing scheduling ticks, which suffices to express most of uniprocessor

real-time theories.

In the past decades, many works have presented different models for tasks, plat-

forms and scheduling policies. We now review the most standard ones.
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2.1.1 Task models

A simple task model describes at least the frequency of arrivals and the execution

time model, that is:

• How often and when does a task request to run (this is called a task arrival,

or task activation)? A task can be activated once, multiple times or infinitely

many times. It may arrive regularly or sporadically. For instance, in a signal

processing system, the program reading sensor information will execute peri-

odically with a fixed inter-arrival separation time (task period). In contrast,

in automotive systems, the command for the brakes occurs in a non-regular

way.

• How much time does a task need to complete one execution? The execution

time of a task’s instance (a job) is the time required to complete the job’s

execution without any interference. It depends on hardware performance.

The execution time model of a task is defined as the worst-case (i.e., longest)

execution time (WCET) among all its jobs’ execution times. A job represents

a amount of workload equal to its execution time that must be serviced by the

platform.

A more expressive task model is able to model task dependencies. Basically,

there are two types of dependencies:

• Inter-task dependencies.

– It can be a timing relation on tasks’ arrivals. In the system design process,

to avoid tasks arriving simultaneously, a fixed time duration may be

imposed between tasks’ arrivals, e.g., a task always waits a fixed time

duration after the arrival of another task;

– It can be precedence relations on task executions. Tasks with precedence

constraints should be executed according to a fixed order, i.e., a task

may start to execute only after the completion of another task if there is

a precedence constraint between the two tasks. In multiprocessor schedul-

ing, a program may temporarily create some parallel threads (i.e., fork)

which execute concurrently and will then be synchronized with another

thread (i.e., join);

– Another type of inter-task dependencies is resource sharing constraints.

In certain applications, some tasks may need share the same resources to

execute. A task cannot execute when its shared resources are reserved

by other tasks.
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• Intra-task dependencies. In some cases, a task is made of a set of sub-tasks,

each one with its own execution time. The execution of these sub-tasks should

respect a specific order. We call this constraint is an intra-task dependency.

For instance, in video transmissions, there are three types of frames (i.e., three

sub-tasks) that should be transmitted respecting a specific order. There can

also be some other types of relationship between the execution time of jobs

and their arrival pattern. In an automotive system, engine control commands

are usually considered as tasks that arrive periodically. However, some of them

are triggered by specific crankshaft rotation angles and their computational

activities depend on the speed of engines. As a result, such tasks adapt their

execution times based on their inter-arrival time. They are called rate-adaptive

tasks [27].

Moreover, in order to capture more platform characteristics or to perform more

precise analyses, task models can be made more expressive by adding some additional

parameters such as:

• Jitters. In control systems, tasks such as signal sampling are assumed to

activate every regular time interval. However, in practice, the interval is not

strictly a constant. This difference can be modeled by a parameter called

jitter [101]. In addition, another form of jitter is the delay between a job’s

arrival and its detection time by a tick scheduler, i.e., a task arrives at a time

instant, but the scheduler does not detect it at the same time instant.

• Number of threads (for parallel computing). In parallel computing, a paral-

lelizable task can be partitioned into several sub-tasks to be executed simulta-

neously on different processors. In particular, some tasks can be specified to

execute on a certain number of processors/threads. To capture this feature, a

new parameter, the number of threads is added, to the model.

We now present some basic task models by increasing expressivity order.

Task models considering one single WCET

The periodic task model. The first task model formally presented by Liu and

Layland in 1973 [96], describes a task using two parameters (C, P ). C is its WCET

and P is its arrival period. A periodic task requires running every P time units and

the execution time of each arrival is upper bounded by C. The task deadline D is

implicit i.e., D = P . This model is able to cover many use cases in practice such as

sensory data acquisition, system monitoring, control loops, etc.

The sporadic task model. Mok proposed a sporadic task model [106] relaxing
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(a) Arrivals of a periodic task (c,6)
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(b) Arrivals of a sporadic task (c,6)

Figure 2.1: Periodic arrivals and sporadic arrivals

the periodic task model. The model substitutes task periods with minimum inter-

arrival times (or minimum separation times). A sporadic task may arrive at any

time except that two successive arrivals must be separated by at least its minimum

inter-arrival time. Compared to the periodic task model, the sporadic task model

can model irregular signals, e.g., external interrupts.

Figure 2.1 shows periodic and sporadic arrivals. Figure 2.1a illustrates the ar-

rivals of a periodic task with a WCET c and a period 6. Figure 2.1b represents

an example of arrivals of a sporadic task with the same WCET and a minimum

inter-arrival time 6.

The arrival curve model. Later, Thiele et al. introduced the real-time calcu-

lus [141], whose arrival curves can model more arrival patterns. The arrival curve

model uses a pair of functions η+, η− (or δ+, δ−) to characterize the arrival pattern

of a task. For a given time duration ∆, η+(∆) and η−(∆) denote the maximum

number and the minimum number of arrivals that can occur within ∆, respectively.

Alternatively, for a certain number n of arrivals, δ+(n) and δ−(n) return the maxi-

mum and the minimum time duration needed for these n arrivals, respectively.

Task models considering intra-task dependencies

The above task models assume that all arrivals of a task share the same worst-case

execution time. It is sufficient to model a lot of systems. However, this leads to

pessimistic analysis results when such models are used with some complex applica-

tions, e.g., programs with very different best and worst execution times. To tackle

this issue, we present several task models that allow a task to be composed of sev-

eral sub-tasks with different worst-case execution times. This introduces intra-task

dependencies i.e., the execution order between different types of arrivals (i.e., sub-

tasks). Among these models, we briefly review the multi-frame task model and a

series of graph-based task models. Interested readers can find more details in a

survey [133].

The multi-frame task model. Mok and Chen generalize WCETs of sporadic

tasks by using a vector of execution times [C0, C1, . . ., Cn−1] [105]. A multi-frame

task can be seen as a task with a sporadic arrival pattern as well as n WCETs. It
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(b) Arrivals of the corresponding multi-
frame task.

Figure 2.2: Video frames transmission modeled as a multi-frame task

arrives sporadically and its WCETs respect the order in the vector. The WCET of

the (i + 1)-th arrival is C i mod n. Tasks deadlines are implicit. Compared to the

sporadic task model, this model can model more precisely tasks, in particular those

tasks have several sub-tasks and each one has it own WCET.

Figure 2.2 shows an example of a multi-frame task used in multimedia appli-

cations. A video consists of three types I, P, B of frames with their own WCETs

(CI , CP , CB, respectively). Video frames are transmitted respecting an order I, P,

P, B, P, P repeatedly. And any two consecutive frames are separated by a minimum

inter-arrival time T . This application can be modeled as a multi-frame task. One

possible sequence of arrivals of this task is described in Figure 2.2b.

A generalized version of this model was presented by Baruah et al. [14]. It uses

two additional vectors of n elements to model different minimum inter-arrival times

[P 0, P 1, . . ., P n−1] and task deadlines [D0, D1, . . ., Dn−1], respectively.

Graph-based task model. Baruah introduced the recurring branching task

model [15], which adds branching structures to specify arrivals. Each task can be rep-

resented by a tree of job types (C,D) labeled by minimum inter-arrival times. Two

other extensions use directed acyclic graphs instead of trees: the recurring real-time

task model [16, 17], and the non-cyclic recurring real-time task model [13]. More

recently, Stigge et al. introduced the digraph real-time (DRT) task model [129]. We

focus here on the DRT task model which is expressive enough to describe all the

above graph-based task models. A DRT task is specified by a graph Gi := (Vi, Ei)

where:

• Vi is a set of vertices representing different job types labeled by their worst-case

execution time and their deadline (C,D);

• Ei is a set of edges connecting two vertices labeled with a duration d ∈ N rep-

resenting the minimum inter-arrival time between jobs represented by the vertices.
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The standard DRT task model assumes that task deadlines are constrained by the

labels on the edges. That is, for any vertex, its deadline is less than any minimum

inter-arrival time labeled on its outgoing edges.

Figure 2.3a shows a DRT task of three vertices u, v, w with their WCETs 1, 3, 4

and their constrained deadlines 8, 10, 15, respectively. A graph describes a (possibly

infinite) set of paths, and each path represents a set of arrival sequences. Figure 2.3b

describes one possible arrival sequence corresponding to the path [w, v, u, v] of the

graph in Figure 2.3a. Any two consecutive arrivals respect its minimum inter-arrival

separation time, e.g., instances of w and v are separated by at least 20. The ex-

ecution time of each instance respects its WCET, e.g., the execution time of any

instance of v is less than 3.

u v

w

(1, 8) (3, 10)

(4, 15)

8

16

10
20

(a) A DRT task

w v u v

0 10 20 30 40 t

(b) One valid arrival sequence of the DRT
task.

Figure 2.3: An arrival sequence of a DRT task

Task models considering inter-task dependencies

The DRT with extensions. Recently, the DRT model has been extended to

express inter-task dependencies. Mohaqeqi et al. [104] proposed an extension of the

DRT task model to allow the rendezvous mechanism, which is used for inter-task

synchronizations. Abdullah et al. [1] used two kinds of vertices (i.e., preemptive

and non-preemptive) to make the DRT task model capable of taking into account

resources sharing constraints between tasks.

Transaction with offsets. One of the most classic task models taking inter-task

dependencies into account is Tindell’s offsets model. A transaction is a collection

of periodic tasks having fixed timing relations. Each task τi is characterized by a

4-tuple (Ci, Di, Pi, Oi), which is used for denoting its WCET, its relative deadline,

its activation period, and its offset, respectively. A task offset is a time duration

that represents the delay between the beginning time of its transaction and its first

arrival time. This model is used and analyzed in Chapter 4.
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τ1
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Figure 2.4: A transaction of two periodic tasks (1, 10, 10, 2) and (2, 10, 10, 3). The first
arrivals of τ1 and τ2 are 3 and 2, respectively. Task τ1 arrives always one
time unit after an arrival of task τ2.

2.1.2 Platforms

The main hardware elements constituting a platform fall into three categories:

• Processors, i.e., computing resources on which tasks execute. These can be

single-core or multi-core, in which case one processor may execute several tasks

at the same time. A system may consist of one or more processors.

• Memories, used to store data and programs. One distinguishes between the

main memory, which is large but slow to access, and smaller but faster caches

(with possibly several levels of it).

• Buses/networks. These are used to connect computation resources with other

processors as well as memories. For instance, a CAN bus transmits messages

between ECUs (which are made of computing elements and memories).

In the following presentation of this chapter, we focus on single-core uniproces-

sors.

2.1.3 Scheduling policies

Tasks complete its execution for the use of platform resources. A scheduling policy

for a specific platform and a set of tasks is a set of execution rules that choose

tasks to execute at each time instant. To make a real-time system meet its tim-

ing requirements, a scheduling policy plays a crucial role. In the past decades,

many scheduling policies have been proposed. Depending on whether the schedul-

ing decisions are made before or during system execution, scheduling policies can

be classified as off-line or on-line.

2.1.3.1 Off-line scheduling policies

A scheduling policy is said off-line when all necessary scheduling decisions are com-

puted and stored in a table before running the system. A dispatcher checks the

table and sets the statically chosen tasks to execute. Systems using off-line schedul-

ing policies have a deterministic schedule since all scheduling decisions are statically
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Figure 2.5: TDMA slots and cycle for a set of n tasks {τi}ni=1 (si denotes task τi’s time
slot, Ts describes one TDMA cycle).

known. Off-line scheduling policies are also known as Time Triggered scheduling

policies. One example of a single-core scheduling policy is Time-Division Multiple

Access (TDMA).

The TDMA scheduling policy is defined based on the following:

1. Each task has a fixed time slot for execution;

2. Time slots are ordered in sequence to build a TDMA cycle, which repeats on

the timeline. A task can be executed only during its own time slot. The length of

one TDMA cycle is exactly the sum of all task time slots as shown in Figure 2.5.

Example 1. Consider four periodic tasks τ1, τ2, τ3, τ4 with WCETs 2, 2, 2, 3 and

periods 15, 10, 17, 14 and implicit deadlines, respectively. Assume that any instance

of tasks requests its WCET to execute.

Figure 2.6 illustrates an example of the four periodic tasks scheduled on a unipro-

cessor according to the TDMA scheduling policy. In the figures, ↑ represents a job’s

arrival time, ↓ represents a job’s completion time, and the number next to ↑ denotes

the job’s execution time. Time slots for the four tasks are 2, 2, 2, 4, respectively.

The length of a TDMA cycle is 10 time units. A task can be executed only when it

is within its own time slot. If a task instance cannot finish execution within its one

time slot, it must wait for the next time slot to resume execution. If a task is not

active (i.e., it does not have any job that has arrived but not completed yet) during

its slot, the processor remains idle.

We have formally specified the TDMA scheduling policy along with its analysis

for bounding the response time of tasks in Coq with the Prosa library. Interested

readers can find the Coq codes here [35].

2.1.3.2 On-line scheduling policies

A scheduling policy is said on-line if scheduling decisions are made at runtime ac-

cording to actual schedule states and job parameters (e.g., actual execution times).

A standard strategy, used in hard real-time systems, is to assign priorities to tasks
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Figure 2.6: An example of the TDMA scheduling.
(The setting information is in Example 1).

according to their safety criticality levels. The scheduler always selects the task with

the highest priority for execution. According to whether we use static parameters

or dynamic parameters to assign priorities to tasks, scheduling policies are clas-

sified into two categories: static priority scheduling policies and dynamic priority

scheduling policies.

Static priority scheduling policies. Each task is assigned a fixed priority to

execute depending on its criticality level or other criteria. At runtime, the scheduler

chooses among active tasks the highest priority task to execute.

Concerning hard real-time systems, all task deadlines must be met. An inter-

esting problem is how to assign priorities to tasks so as to satisfy the overall timing

constraints. Also, a good priority assignment may improve the processor utilization

i.e., more tasks can be executed on the processor without violating timing require-

ments. The following two standard priority assignment strategies are recommended

for static priority scheduling policies.

Rate Monotonic (RM). The RM priority assignment policy assigns priorities

to periodic tasks according to their periods: The smaller its period is, the higher its

priority is.

Deadline Monotonic (DM). Similar to RM rules, the DM priority assignment

policy assigns priorities to periodic tasks according to their deadlines: The smaller

its deadline is, the higher its priority is.

Priority assignment has been shown important for real-time system scheduling,

especially for those with a static scheduling policy. Several optimal priority assign-

ments are proposed and proved. We refer interested readers to a review of priority

assignments [44].
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Figure 2.7: An example of the FPP Scheduling.
(The setting information is in Example 1).

We now describe the following two static priority scheduling policies, used

throughout our works.

Fixed Priority Preemptive (FPP) A scheduler respects an FPP scheduling

policy if the schedule is always preemptive and selects the task with the highest

priority to execute among all active tasks.

Fixed Priority Non-Preemptive (FPNP). A scheduler respects an FPNP

scheduling policy if and only if 1. once a task executes, it cannot be preempted until

its completion; and 2. when there is no task being executed, the scheduler selects

the task with the highest priority to execute among all activated tasks.

Figure 2.7 (respectively, Figure 2.8) shows the scheduling of the four periodic

tasks of Example 1 using the FPP (respectively, FPNP) scheduling policy. The

priority relation between the four tasks is τ1 > τ2 > τ3 > τ4.

In Figure 2.7, the second arrival of τ4 starts executing at time instant 14. And

then it is preempted by τ1 (τ3, τ2, respectively) at 15 (17, 20, respectively), because

τ4 has the lowest priority. It is completed at 23 and its response time is 9.

In Figure 2.8, the second arrival of τ4 starts to execute at time instant 14 and is

completed at 17. At time instant 15, τ1 with a higher priority than τ4 arrives but it

is suspended because τ4 has started its execution and does not allow any preemption

until its completion.

Dynamic priority scheduling policies. Contrary to static priority scheduling

policies, in dynamic priority scheduling policies, tasks are not assigned priorities

prior to execution. Task priorities are determined on-line taking advantage of run-

time information. This kind of scheduling policy is more adaptive and can improve

processor utilization.

Early Deadline First (EDF). A scheduler respects the EDF scheduling policy

if and only if at any time instant, the job executed is the job with the earliest



18CHAPTER 2. REAL-TIME SYSTEMS: MODEL, ANALYSIS, AND FORMALIZATION

τ1

τ2

τ3

τ4

2 2

2 2 2

2 2

3 3

0 5 10 15 20 25

Figure 2.8: An example of the FPNP Scheduling.
(The setting information is in Example 1).

absolute deadline among all activated jobs. In other words, at any time instant, the

job having the earliest deadline is assigned the highest priority to execute.

Fig. 2.9 shows an example of the same four periodic tasks as before executed

under an EDF uniprocessor. The four tasks activate simultaneously at time 0 then

periodically according to their periods. At time 0, the first job of task τ2 is going

to be executed because it has the earliest absolute deadline 10. At time 20, the

absolute deadline of τ3’s second job is 34, while it is 30 for τ2’s third job. Hence,

task τ2 has a higher priority (30 < 34) than τ3 at time 20, and τ3 is preempted by

τ2.

τ1

τ2

τ3

τ4

2 2

2 2 2

2 2

3 3

0 5 10 15 20 25

Figure 2.9: An example of the EDF Scheduling.
(The setting information is in Example 1).

Besides the above basic scheduling policies, many others have been studied. For

example, Burns [26] presented the Deferred Preemption scheme also known coopera-

tive scheduling in order to address the problem of shared resources under the mutual

exclusion. To benefit from the advantage of both preemptive and non-preemptive

scheduling, Wang and Saksena introduced a concept of Preemption Thresholds that
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allows a task to disable preemption to a specified threshold priority [151]. Bertogna

and Baruah [18] presented the Limited Preemption scheduling policy, which aims to

avoid unnecessary preemptions.

2.2 Real-Time Schedulability Analyses

Real-time system analyses aim to guarantee that real-time systems satisfy their tim-

ing constraints. That is, that each task completes within its deadline. According to

the criticality of effects, real-time systems can be classified into different categories:

• Hard real-time systems. For such systems, missing one deadline can lead

to system failure. In some critical applications such as avionics, missing a

deadline may have catastrophic consequences. Hard real-time systems have

attracted a lot of attention in the real-time community. Many works aim at

guaranteeing the absence of deadline misses.

• Weakly-hard (or Firm) real-time systems. Compared to hard real-time

systems, weakly hard real-time systems can tolerate some deadline misses.

Weakly hard real-time systems still run correctly below a certain number of

deadline misses. Control systems are typical examples of weakly-hard real-

time systems. In such systems, a control loop samples and adjusts command

signals regularly to keep them close to a predefined target. The response time

of the control loop is expected to remain within a given interval. The most

important property of a control system is its stability. Usually, it is not affected

when the response time of a control loop exceeds its deadline a limited number

of times.

• Soft real-time systems. For such systems, missing deadlines does not result

in system failure but in performance degradation. A soft real-time system is

still expected to meet their deadlines as many times as possible. This goal is

called best effort and is standard in e.g., video transmissions.

Note that a real-time system is said hard if and only if all tasks of the system are

hard, and similarly for weakly/soft real-time systems. However, in some applications

like Time Sensitive Networking (TSN) [57], a real-time system may consist of a mix

of different kinds of tasks (hard, weakly hard, or soft).

In this thesis, we focus on hard real-time systems. To ensure that a hard real-

time system meets all task deadlines, many analyses have been proposed in the past

decades. They can be classified in two categories:

• WCET analyses. They evaluate the WCET of a task executed on a platform.
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The computation of the WCET of a task is a complex problem because it

depends on the targeted system architecture as well as coordinated manipula-

tions of system components such as I/O devices, CPU, memory, cache and so

on. WCET analysis has been widely studied in the real-time community. In

this thesis, we assume that the WCET of tasks are known.

• Schedulability analyses. They analyze when a task can finish its execution

considering the scheduling policy and interference other tasks (e.g., in a pre-

emptive schedule, a task can be preempted). Schedulability analysis relies on

platforms, task models, and scheduling policies as presented in Section 2.1. It

is a very active field of research in the real-time community. In the rest of this

section, we present basic concepts and some standards.

2.2.1 Schedulability and Feasibility

First of all, let us present some basic notions and concepts that are used in schedu-

lability analyses.

Schedulability. Consider a platform, a set of tasks is said schedulable using a

scheduling policy if and only if all tasks are guaranteed to meet all deadlines.

Schedulability analysis aims at guaranteeing the absence of any deadline miss. A

schedulability test is a set of conditions that guarantees that the considered system

is schedulable.

Feasibility. Consider a platform, a set of tasks is said feasible if and only if there

exists a scheduling policy which makes the set of tasks schedulable. The purpose of

feasibility analyses is to find a scheduling policy under which the considered system

is schedulable.

Optimality (in the sense of feasibility). Consider a platform and a set of tasks, a

scheduling policy SPo is said optimal if and only if: if there exists any scheduling

policy SP that makes the set of tasks schedulable, the set of tasks is schedulable

under SPo.

Utilization-based test.

We now present a series of utilization-based theories related to feasibility. Let us

consider a set of n periodic tasks Γ := {τ1, · · · , τn} with implicit deadlines executed

on a preemptive uniprocessor. The utilization of a periodic task τ is the ratio

between its worst-case execution time and its period, formally, Uτ = Cτ/Pτ . The

utilization of a system Γ is UΓ =
∑

1≤i≤n Uτi .

Static priority feasibility. Liu and Layland first presented a feasibility condition
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for the FPP scheduling policy [96]. A set of n periodic tasks with implicit deadlines

executed on a uniprocessor according to static priority scheduling policies is feasible

when:

UΓ ≤ n(21/n − 1).

We know that the function n 7→ n(21/n − 1) is monotonically decreasing and the

limit of n(21/n − 1) as n approaches infinity equals ln(2). Therefore, the system is

feasible when its utilization is less than 0.69 ≈ ln(2). Note that this is a sufficient

but not necessary condition: it is sometimes pessimistic. A tighter condition can be

computed when the number of tasks in the considered system is known. For instance,

when n = 2, the system is feasible when the utilization is less than 0.83 ≈ 2(21/2−1).

Liu and Layland showed this feasibility condition using the FPP scheduling pol-

icy based on the RM priority assignment algorithm (we call it the RM scheduling

policy for short in the following1). They proved that the RM scheduling policy is

optimal when task deadlines are implicit. Later, Leung and Whitehead [93] proved

that the DM scheduling policy is optimal when task deadlines are constrained by

task periods D ≤ P . When deadlines are arbitrary, neither the RM nor the DM

scheduling policies are optimal [90].

Dynamic priority feasibility. Liu and Layland [96] also showed that a set of

periodic tasks with implicit deadlines scheduled on a uniprocessor is feasible if and

only if:

UΓ ≤ 1.

They also proved that the EDF scheduling policy can deal with such utilization and

is optimal. Later, Dertouzos showed that the EDF scheduling policy is optimal even

for arbitrary deadlines [47].

Utilization-based tests are used to check the feasibility of a set of tasks. An

alternative approach is based on response time analysis (RTA). We present some

basic RTAs in the following subsection.

2.2.2 Response Time Analysis

The response time of a job is defined as the duration between its arrival time and its

completion time. RTA is used for computing the worst-case response time (WCRT)

of all jobs of a considered task, i.e., the task’s WCRT. Using RTA, we can perform

a tighter or even exact schedulability test by just comparing a task’s WCRT to its

deadline.

This section presents some seminal results concerning RTAs. All results apply

1Similarly for the DM scheduling policy.
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to a system made of a set of n periodic/sporadic tasks Γ := {τ1, · · · , τn} executed

on a uniprocessor according to the FPP or FPNP scheduling policy. Each task τi

is characterized by its WCET Ci and its period/minimum inter-arrival time Ti and

a deadline Di. It is assigned a unique (that is, two tasks cannot have the same

priority) priority noted by its subscript i.

First, let us introduce some basic notions needed to present RTAs. We denote

hep(i), hp(i), lp(i) the sets of tasks of the system under study whose priorities are

higher than or equal to, higher than and less than i, respectively.

Task workload bound. During analyses, tasks are usually abstracted by workloads

that are defined as follows. Consider a task τ and a time duration ∆, the workload of

this task within this duration is the maximum cumulative execution time requested

by τ . For example, for a periodic/sporadic task τi, its workload is bounded by

d∆
Pi
eCi.

Critical instant. A critical instant of a task is the worst-case scheduling scenario

for that task, such that its WCRT is reached. Liu and Layland [96] proved that for

any task τi, its critical instant occurs when all tasks with a priority higher than or

equal to i (i.e., hep(i)) activate simultaneously.

2.2.2.1 RTA with constrained deadlines

RTA for the FPP scheduling policy

Joseph and Pandya [78] provided a seminal result for a set of periodic/sporadic tasks

with constrained deadlines using the FPP scheduling policy. It is based on the fact

that the critical instant occurs when all tasks activate simultaneously. The WCRT

of task τi is the least fixed point of the following equation.

Ri = Ci +
∑

τj∈hp(i)

dRi

Pj
eCj (2.1)

As shown in this formula and illustrated in Figure 2.7, the response time R4 of task

τ4 is equal to the sum of τ4’s WCET (that is 3) and all workload requested (that is

2+2+2=6) by hp(i) within a duration equal to R4 (that is 9). Ri is computed by

iterations which are guaranteed to terminate if the system utilization is less than 1.

Note that the computed result Ri is the WCRT of task τi only if Ri ≤ Pi, otherwise,

it may not be correct as two jobs of τi may interfere with each other, which is not

taken into account in Equation 2.1.
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Refuted RTA for the FPNP scheduling policy

Later, Tindell et al. [147] proposed a RTA for the FPNP scheduling policy in the

context of analyzing CAN buses. A task executed on a non-preemptive schedule

cannot be preempted by other tasks even if they have a higher priority. This has

two consequences:

1. Queueing delay. For any job, its queueing delay 2 is the duration between

its activation and the beginning of its execution. Given that a job will continue to

execute until its completion once it starts its execution, its response time is the sum

of its queueing delay and its execution time.

2. Blocking factor. During a queueing delay, a task may be blocked by a task

with a lower priority. We call this blocking time the blocking factor, which is a part

of the queueing delay. According to the FPNP scheduling policy, a task can be

blocked at most once by a lower priority task.

Following the same intuition as for the FPP case, the worst-case queueing delay Qi

of a task τi is defined as the least fixed point of the following equation:

Qi = Bi +
∑

τj∈hp(i)

⌈
Qi + ε

Pj

⌉
Cj (2.2)

Where Bi = maxτh∈lp(i)(Ch − ε) is an upper bound of the blocking factor for task

τi. The positive constant ε is very small and used to account for the fact that 1. all

jobs from hp(i) must be completed strictly before the end of the queueing delay Qi;

and 2. there is no blocking time for the task with the lowest priority. For discrete

time models, ε is 1.

As a result, one concludes that WCRTi under the FPNP scheduling policy is the

sum of its queueing delay and its WCET,

WCRTi = Qi + Ci (2.3)

Actually, the Equation 2.2 used for computing Qi is incorrect (too optimistic).

The flaw was reported by Bril et al. [25] and corrected by Davis et al. [43] more

than one decade after the original paper. The issue is that this analysis assumes

that the WCRT of τi can be found within one period of τi after the critical instant.

It is the case for the FPP scheduling policy but not for the FPNP scheduling policy.

A counterexample is presented in Figure 2.10. The figure shows three tasks τ1, τ2, τ3

with implicit deadlines and the same WCET 4 and periods 10, 14, 14, respectively.

Their priority relation is τ1 > τ2 > τ3. We now focus on computing WCRT3. As

2Sometimes, we also call it queuing prefix that is formally defined in Chapter 4 and Chapter 5.
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Figure 2.10: A counterexample for the refuted RTA.

a first step, let us calculate Q3 using the formula 2.2, where B3 = 0 because τ3 is

the task with the lowest priority. We set 0 as Q3’s initial value denoted Q0
3 then get

Q1
3 = dQ

0
3+1

10
e × 4 + dQ

0
3+1

14
e × 4 = 8 (Q2

3 = 8, respectively) by the first (the second,

respectively) iteration. As it converges (Q1
3 = Q2

3 ) after two iterations, Q3 = 8.

Therefore, the WCRT of τ3 is 8 + 4 = 12 using formula 2.2. However, it is incorrect

due to the fact that the response time of the second instance of task τ3 is 14 which

is greater than 12. A corrected RTA for the FPNP scheduling policy is presented in

the next sub-section.

The FPNP scheduling policy is widely implemented, e.g., in the CAN communi-

cation protocol. Millions of CAN buses/ECUs are integrated into cars or industrial

vehicles every year. Any bug or flaw is unacceptable in such safety-critical domain.

This flaw can be seen as a motivation to build formal proofs for real-time system

analyses.

2.2.2.2 RTA with arbitrary deadlines

RTA for the FPP scheduling policy

Let us first focus on the FPP scheduling policy. Formula 2.1 is not sufficient when

task deadlines are not constrained, i.e., D > P . Lehoczky [90] developed an exact

schedulability criterion for D = mP (where m is a positive integer) and Tindell et

al. presented a general RTA for arbitrary deadlines. Both results are based on the

new busy window concept that we now describe. The idea is to compute WCRTi

by examining together all jobs of τi that may interfere with each other.

Busy window (or busy period [90, 64]). A level-i busy window is a time interval

[t1, t2) within which

• the processor is continuously occupied by jobs with a priority higher than or

equal to i, and

• there does not exist any job with a priority higher than or equal to i that
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arrived strictly before t1 (t2, respectively) but not be completed at t1 (t2,

respectively).

Lehoczky proved that the WCRT of τi can be found in the level-i busy window

that starts with a critical instant (i.e., at which all tasks with a priority higher than

or equal to i activate). Consider the q-th (q = 1, 2, . . .) job of task τi activated in

that busy window, the duration between the start of the busy window and the job’s

completion can be specified by:

wi(q) = qCi +
∑

τj∈hp(i)

⌈
wi(q)

Pj

⌉
Cj (2.4)

wi(q) corresponds to q times the execution time of τi and all higher priority workload

that may be requested during that time duration, it can be found by computing

the least fixed point of Equation 2.4. The formula converges when the system

utilization is less than 1. The response time of the q-th job of task τi in the window

is Ri(q) = wi(q)− (q− 1)Pi since that job arrives (q− 1)Pi after the first job of τi is

aligned with the beginning of the busy window. Finally, WCRTi is the largest one

among the response times of jobs of task τi activated in the busy window. Formally,

WCRTi = max
q=1,2,...,q+

i

Ri(q) (2.5)

where q+
i is the maximum number of jobs to be examined, it can be computed by

dLi
Pi
e, where Li is defined as the least fixed point of the following equation:

Li =
∑

τj∈hep(i)

⌈
Li
Pj

⌉
Cj (2.6)

A faster way for computing q+
i is to find the smallest number q such that the

condition wi(q) ≤ qPi holds.

RTA for the FPNP scheduling policy

As mentioned earlier, the original RTA for the FPNP scheduling policy was corrected

by Davis et al. [43] based on George et al. [62]’s analysis. We now present the

corrected version. Similar to the arbitrary deadline case for the FPP scheduling,

the analysis relies on the busy window concept. It examines all jobs activated in a

busy window (even for constrained deadlines) to compute WCRTi. The queueing
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delay3 of the q-th job of task τi in the window is the least fixed point of the following

equation.

Qi(q) = Bi + (q − 1)Ci +
∑

τj∈hp(i)

⌈
Qi(q) + ε

Pj

⌉
Cj (2.7)

This is a direct generalization of Equation 2.2. The difference with the faulty anal-

ysis lies in the stopping condition, i.e., how many jobs of τi must be analyzed, as

explained below. The response time of the job is

Ri(q) = Qi(q)− (q − 1)Pi + Ci (2.8)

Therefore, the WCRTi under the FPNP scheduling policy is

WCRTi = max
q=1,2,...,q+

i

Ri(q) (2.9)

where q+
i , the maximum number of jobs of task τi to be checked, can be determined

by using an upper bound Li of the length of the busy window. That is q+
i = dLi

Pi
e

with Li being the least fixed point of the following equation:

Li = Bi +
∑

τj∈hep(i)

⌈
Li
Pj

⌉
Cj (2.10)

Note that a level-i busy window does not necessarily close if the q-th job of τi

completes before q + 1-th job arrives. This would, e.g., be the case for the coun-

terexample of Figure 2.10, which fixes the problem. All the above analyses are

performed considering hard real-time systems running on uniprocessors. They are

useful to understand basic real-time theories as well as the research described in

this thesis. In the literature, there exist, however, quite a few different analysis

approaches for analyzing different kinds of systems. We discuss some of them in the

following subsection.

2.2.3 Related analysis approaches

Typical worst-case analysis. Weakly hard real-time systems can tolerate a

bounded number of deadline misses without jeopardizing the system behavior.

Even though we can apply the analyses for hard real-time systems directly to

weakly hard real-time systems, it is constraining. Typical Worst-Case Analysis

(TWCA) [114, 157] is dedicated to analyzing weakly hard real-time systems and

3Note that the queueing delay of a job is generalized as the duration between the beginning of
its corresponding busy window and the beginning of its execution.
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aims at providing a bounded number of potential deadline misses. This approach

has been shown suitable for analyzing closed-loop system models and verifying its

corresponding properties using Logical Execution Times (LET) techniques [61].

Stochastic analysis. Dı́az et al. [49] present Stochastic analysis to compute proba-

bilistic response time distributions by relaxing the assumption on the WCET of jobs.

It was later improved by several works [77, 102]. One motivation of this analysis is

that in many engineering applications, a small failure rate of systems is acceptable.

As specified in the automotive safety standard ISO26262, the safety level could be

quantified by a failure rate: 10−9 per hour for ASIL D 4, 10−8 for ASIL C and B,

and 10−7 for ASIL A [45]. Also, for soft real-time systems, missing deadlines does

not lead to system failure but can degrade the quality of services provided by the

systems.

Compositional performance analysis. Compositional performance analysis

(CPA) [65, 120] is an approach for performance analysis of complex heterogeneous

embedded systems e.g., distributed communication systems. In such complex sys-

tems, there are many subsystems interacting with each other. To find end-to-end la-

tencies (i.e., WCRTs for task chains) in a distributed real-time system, Tindell [146]

presented a holistic analysis by considering both processor scheduling and commu-

nication delays. However, in practice, the holistic analysis cannot deal with modern

complex distributed real-time systems due to its computation complexity. The main

idea of CPA is to allow subsystem integrations without changing local RTAs. It mod-

els each subsystem using event streams E(t), which is a function that returns the

accumulated number of events activated up to the time instant t. Then it iteratively

determines end-to-end latencies by considering the propagations of event streams at

the system-level. It was first developed by Gresser [65], and refined by Richter and

Schliecker [118, 122].

Network calculus. Very similar to the CPA theory but not relying on RTAs, the

network calculus theory [39, 34, 89] was independently developed for guaranteed

quality of service networks through bounding network latencies. It characterizes

tasks/services traffic arrivals by a cumulative function A(t), which counts the max-

imum accumulated workload arrived until time instant t. Network calculus is based

on the Min-Plus algebra and computes network delays. It was first presented by

Cruz [39] and then completed and improved by many [40, 121, 3, 41, 33, 88, 2].

Interestingly, Thiele et al. [141] adapt network calculus notions to real-time schedul-

ing. This network calculus perspective provides new insights into real-time system

4ASIL stands for Automotive Safety Integrity Level with ASIL A the lowest level and ASIL D
representing the highest level.
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models and analyses.

A recent effort aims at combining different models or analysis approaches to

improve the precision of analyses. Boyer and Roux [24] proposed a common model

for the flow model of network calculus and the event stream model of CPA. Based on

this work, Köhler et al. [82] proposed a more accurate CPA model by introducing

a new component interface. In parallel, Boyer and Doose [23] presented a novel

technique by combining network calculus and RTAs for improving the analysis of

network delay bounds. Daigmorte and Boyer [42] improved RTAs for CAN bus

protocol by using network calculus. All these works would benefit from comparisons

and combinations of the different approaches where applicable.

2.3 Formal Methods for Real-Time Schedulabil-

ity Analyses

The complexity of real-time systems and analyses make them error-prone. A reason

is that system models are usually described using informal languages. It is difficult

to verify their consistency. Another reason is that most published results are based

on pen-and-paper proofs which often rely on intuitions and omit many details. This

has motivated the use of formal methods to provide formal guarantees to real-time

theories.

Formal methods are mathematical techniques that use formal languages for spec-

ifying and solving problems. Both academic and industry advocate to use formal

methods to increase the safety or security levels of research results and industrial

products. In international standards such as ISO26262 or Common Criteria, formal

verification achieves the highest safety and security level. Formal methods theories

and tools are now mature and have been successfully applied to system (hardware

and software) verification. Importantly, formal methods not only provide mathe-

matically rigorous guarantees to the correctness of analyses results but also permit

a much better understanding of models and analyses.

Formal verification for real-time system analysis has been investigated for more

than two decades. In this section, we mainly review previous work on real-time

system analysis using formal approaches, especially those using model checking and

theorem proving.
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2.3.1 Model checking of real-time systems

Model checking is a formal verification technique based on finite-state automata to

model systems. It is able to automatically check whether a model satisfies properties.

Thanks to its automatic verification procedure, model checking has been successfully

applied to the verification of hardware and software. However, finite-state automata

have no timing aspects. In order to verify the timing behavior of real-time systems,

model checking has been extended to Timed automata [5], Stopwatch automata [4],

and Hybrid automata [4, 74].

Using Stopwatch automata [4], Corbett [36] proposed a formal model for mod-

eling scheduling algorithms with real-time tasks as well as some features such as

resource sharing, priority preemption, and task suspension. However, the reachabil-

ity analysis of Stopwatch automata is undecidable in general [36].

Fersman et al. [55] extended timed automata with asynchronous tasks to model

schedulability analyses. Based on this model, they proved that the schedulability

checking problem is decidable. Later, Fersman et al. [54] proposed a model (a timed

automation with two extra clocks5) to model and to analyze real-time scheduling

properties for uniprocessors respecting fixed priority scheduling policies. This ap-

proach has been implemented in Times [6], a tool to check schedulability analyses

for uniprocessors. Guan et al. [70] extended this approach to model schedulabil-

ity analyses for periodic tasks on multiprocessors. Cordovilla et al. [37] proposed

a multiprocessor schedulability analyzer by combining a search technique with the

UPPAAL model checker [87]. This analyzer is capable of analyzing periodic tasks ex-

ecuted on multiprocessors according to static or dynamic scheduling policies. Baker

and Cirinei [11] described a necessary and sufficient condition for schedulability of

sporadic tasks executed on multiprocessors according to the EDF scheduling pol-

icy. This work relaxed the assumption on periodic tasks in early works. Using the

UPPAAL tool, Kim et al. [79] showed how to formally validate and analyze sys-

tem design models at an early stage by combining statistical and symbolic model

checking.

More recently, Sun and Lipari [134] applied linear hybrid automata to model an

exact schedulability analysis for a set of sporadic tasks executed on a multiprocessor

respecting a global FPP scheduling policy. The authors used pre-order simulation

relations to avoid the state-space explosion problem and introduced a concept of

decidability interval to model timing constraints. Huang et al. [75] used hybrid

automata to analyze weakly-hard systems to guarantee that tasks cannot miss up

to a bounded number of deadlines for a certain number of arrivals. They also

5In addition to the original model.
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discussed relaxation techniques and over-approximation approaches.

Different from the above techniques, Lime and Roux [95] used an extension

of Petri Nets for the verification of timed properties for real-time systems with

a preemptive scheduling policy. In particular, they show how to deal with fixed

priority and EDF scheduling policies.

The main strengths of model checking are:

• It is a general formal verification technique that can be applied to both aca-

demic researches and industrial applications. Based on sound mathematical

supports such as graph theories and logic, it can provide high confidence on

checked results;

• It is a completely automatic process. Thanks to this feature, model checking

has been widely and successfully used for verifying behaviors of hardware and

software;

• It is able to provide a counterexample when a property is violated. This

information is very useful for debugging in the design process.

The main limitations of model checking are:

• The biggest issue is that model checking suffers from a state-space explosion

problem. In schedulability analyses, there is a scalability problem using model

checking [134] and it cannot be applied to verify the schedulability of relatively

large systems.

• The verified results are only as good as the abstract model is. If the actual

model is not equal to the abstract one, we have to ensure that it is a subset of

the abstract model (i.e., the abstract model is an over-approximation of the

actual model) in order to use the verified results.

2.3.2 Theorem proving real-time system analyses

Theorem proving is another formal verification approach which aims at building

formal proofs for mathematical theorems using computer programs. Several inter-

active theorem provers such as Coq [138], PVS [140], Isabelle/HOL [139] have been

developed in order to help build large-scale mechanized proofs. They have been

successfully used to formally verify OSes such as CertiKOS [66], compilers such as

CompCert [91], mathematical theorems such as the Feil-Thompson theorem [63] and

so on. We now present some mechanized proofs of scheduling analyses.

Mechanized proofs for real-time schedulers/kernels.

Fidge et al. [56] formalized a simple round-robin real-time scheduler for the
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MIPS R3000 RISC processor and proved its correctness using the Ergo theorem

prover [53, 149]. Later, Wilding et al. [153] specified and analyzed a cyclic scheduler

using the PVS theorem prover. Tol [148] formally verified a simple version of a

real-time kernel using Nqthm (also known as the Boyer-Moore theorem prover). In

this kernel, tasks are scheduled according to the EDF scheduling policy. Recently,

Xu et al. [155] provided a verification framework for real-time OS kernels using the

Coq proof assistant. They have applied this framework to verify the main parts

of the commercial µC/OS-II real-time kernel [103], and proved a simple schedul-

ing property (the executing task has the highest priority). Similarly, Andronick

et al. [7] proposed a framework for formal verification of real-time kernels using

the Isabelle/HOL proof assistant. Using this framework, the authors proved the

same simple scheduling property for the commercial eChronos real-time operating

system (RTOS) [52]. More recently, Liu et al. [99] presented a compositional frame-

work for real-time preemptive kernels by extending a verified single-core OS kernel,

i.e., mCertiKOS [66, 38]. This work uses Coq and virtual timelines (i.e., supply

and demand functions specified in [97]) for proving schedulability properties.

Mechanized proofs for real-time scheduling analyses.

Wilding [152] first established a machine-checkable proof of EDF optimality for

periodic tasks executed on uniprocessors using the Nqthm theorem prover. The

author pointed out that formal proofs require a lot of efforts because of the need to

formalize all details. For instance, a lot of concepts needed by formal proofs are not

explicit in the original informal proofs. We refer interested readers to Wilding’s dis-

sertation [154] for a more detailed comparison of formal and informal proofs. Zhang

et al. [161] formally verified EDF optimality on uniprocessors using the Propositional

Projection Temporal Logic (PPTL) system.

Sinha and Suri [126] formalized and verified the RM optimality using the PVS

proof assistant. They demonstrated the capacity of a proof assistant to formalize

a fault-tolerant real-time protocol, and identifying flaws in existing works when

formally specifying them. Later, Varma [150] proposed a modular formal analysis of

fault-tolerant real-time allocation and scheduling policies. The author showed that

the proof effort could be reduced by reusing previously proven theorems.

Dutertre [50] developed a formal specification of the priority ceiling protocol [124]

using PVS. In online scheduling, a task may be blocked by another task with a lower

priority when considering shared resources. This phenomenon is called priority in-

version. The priority ceiling protocol is designed to bound blocking times caused

by priority inversion and increasing scheduling predictability. The author provided

formal proofs in PVS for the schedulability analysis of a set of periodic tasks dis-
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patched on a uniprocessor according to the FPP scheduling policy and the priority

ceiling protocol. Dutertre and Stavridou [51] discussed extensions of this work and

highlighted the benefits of formal specifications and proofs in real-time scheduling

problems.

The original informal specification of the priority inheritance protocol [124] was

flawed [158]. This motivated Zhang et al. to build a formal precise specification

for the protocol and also to provide a rigorous proof for its correctness [162]. Fol-

lowing this work, Zhang et al. [163] proved a finite bound on priority inversions

using Isabelle/HOL, which improved their early result. Also, they provided a brief

survey on existing works concerning this protocol and pointed out a list of formal

publications [94, 86, 97, 115, 125, 124] specifying incorrect behaviors. Zhang et al. ’s

work showed that building mechanized proofs not only provides high confidence in

theories but also permits to have a better understanding of concept specifications.

De Rauglaudre [46] was the first to use the Coq proof assistant to formalize and

prove real-time scheduling problems. Specifically, the author proved a schedulability

criterion (known as Jan Korst’s theorem presented in [83, 84]) for a set of periodic

tasks executed on a uniprocessor according to the FPNP scheduling policy.

Recently, Cerqueira and Brandenburg [29] launched the Prosa project [112],

which aims at building a proven schedulability analysis library using the Coq proof

assistant. As the first case study, Cerqueira and Brandenburg [29] formalized global

RTAs [19] for both the FP and EDF scheduling policies on multiprocessors as well

as two extensions for released jitters and parallel jobs. Later, a lot of other schedu-

lability analyses including the main results of this thesis have been formalized in

Prosa. To the best of our knowledge, the Prosa library has been recognized as the

largest framework of formally proven real-time schedulability theories. In the next

section, we will give a detailed presentation of the Prosa library through a simple

formalization.

The main strengths of theorem proving are:

• It provides high confidence in the correctness of a theory. Modern theorem

proving systems themselves such as Coq have attained the utmost level of

reliability (i.e., respecting the de Bruijn criterion and/or the LCF principle).

Also, such tools use formal languages and mathematical logic to specify and

prove theorems, which requires to make all proof details explicit. And the

proofs are mechanically checked.

• Some proof assistants support the extraction technique, which permits to ob-

tain certified programs. Using such proof assistants, we can implement an

algorithm and prove some of its properties and then, from the proven algo-
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rithm, extract a compilable program which satisfies the proven properties.

This feature is able to fill the gap between theory and practice as it can ensure

that a program is correct in both its theory and its implementation (Note that

it relies on the trusted code base, including the code generation mechanism,

the compiler etc..);

• Compared with model checking, it can be used for proving arbitrarily complex

problems, and it does not suffer from the state-space explosion problem. For

example, the Feit-Thompson theorem [63] has been formally verified using

Coq.

• Moreover, a proof assistant makes proving theorems an interactive process. It

is fun to build proof scripts. As said by Leroy [92], ”Building such scripts is

surprisingly addictive, in a videogame kind of way...”.

The main limitations of theorem proving are:

• It is time-consuming. In contrast to pen-and-paper proofs, mechanized proofs

do not admit any omission in specifications and proofs. In contrast to model

checking, it does not provide much automation.

• It needs experts to formalize specifications, theorem statements, and conduct

proofs. Using a proof assistant, the proof itself can be mechanically verified,

but all specifications and statements are still required to be validated by ex-

perts.

As the developments described in this thesis are carried out within the framework

of Prosa, we now present Prosa though a simple formalization.

2.4 Formalization in Prosa

The Prosa library6[112, 31] was initially developed by Cerqueira and Brandenburg

for formally proving existing and new schedulability analyses using the Coq proof

assistant. The authors prioritize readability to make the project accessible to re-

searchers familiar with real-time scheduling theories but without prior experience

in formal methods. This feature makes the formal specifications in Prosa easily

reviewed, understood and validated by the community.

The library is now organized into four basic components as shown in Figure 2.11,

and also contains an additional component Results for collecting high-level results.

6It is (being) further developed through a French project CASERM [117] and a French-German
RT-Proofs project [137].
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System behavior:
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Figure 2.11: An overview of Prosa layers

System behavior The base representation of system behavior is based on dis-

crete time traces representing infinite sequences of events. There are two

such kinds of sequences: arrival sequences which record requests for ser-

vice called job activations and schedules which record processor states,

e.g., scheduled jobs, overhead. For instance, for an ideal uniprocessor (in

which there is no overhead), at any time instant, a processor state is that

there is a job scheduled or the processor is idle.

System model Based on system behavior, task models (arrival patterns and ex-

ecution time models), processors, scheduling policies can be defined. A sys-

tem model defines a set of possible behaviors that satisfy it. These models

and policies are axiomatic in the sense that they are given as predicates on

arrival sequences/schedules, not as generating and scheduling functions. In

this component, some properties of these models are provided and proved.

Analysis This part of the library contains definitions needed for various analyses

(e.g., busy window, schedulability) as well as the actual proofs of response

time and schedulability analyses.

Implementation This library component contains implemented examples of ar-

rival sequences and schedulers. It aims at proving the consistency of the

considered system models.

Results An additional component is used for collecting proven high-level analysis

results. It actually contains results of EDF optimality and RTAs for EDF,

FPP, FPNP and so on.
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We now present the Prosa library in more detail using a simple example: a

schedulability analysis of a set of sporadic tasks executed on a uniprocessor according

to the FPP scheduling policy.

2.4.1 System Behavior

The basic definitions in Prosa relate to concrete system behavior. Time is discrete

and can be seen as scheduling ticks: durations are given in numbers of ticks and

instants are given as numbers of ticks from the initialization. As key elements in

both arrival sequences and schedules, jobs (i.e., instances of tasks) are characterized

as follows.

Definition 1 (Job). A job  is an instance of a task τ() with a positive cost (Prosa

uses this terminology for execution time) denoted c().

In some cases, a job is associated with a unique identifier. We do not use the

identifier directly, it is only used to distinguish jobs of the same task in traces. An

arrival sequence is a trace of job activations, from which the actual workload that

must be scheduled at a given time instant can be deduced.

Definition 2 (Arrival sequence). An arrival sequence is a function ρ mapping any

time instant t to a finite (possibly empty) set of jobs ρ(t). A given job appears at

most once in an arrival sequence.

The arrival time of a job  appearing in an arrival sequence is given by the

function a(). The fact that the job  appears at instant t in arrival sequence ρ is

formalized as  ∈ ρ(t), i.e.,  ∈ ρ(t)⇒ a() = t.

The scheduler is not modeled as a function, instead, we work with schedules

which are traces of processor states reflecting schedule information (e.g., scheduled

jobs, cores on which jobs are scheduled, overheads etc.).

Definition 3 (Schedule). A schedule is a function σ mapping any time instant t to

a processor state.

This definition is generic, and we obtain a schedule for a specific platform by

specifying the processor states. For instance, a schedule for a so-called ideal unipro-

cessor is defined as follows:

Definition 4 (Uniprocessor schedule). A uniprocessor schedule is a function σ

mapping any time instant t to either the job scheduled at time t or ⊥.



36CHAPTER 2. REAL-TIME SYSTEMS: MODEL, ANALYSIS, AND FORMALIZATION

This reflects the fact that for uniprocessors, the processor is either scheduling a

job or idle (in other words, a uniprocessor cannot schedule more that one job at a

time). Given an arrival sequence ρ and a schedule σ over ρ, a job  ∈ ρ is said to

be scheduled at an instant t if σ(t) = , the service received by  up to time t is

the number of instants before t at which  is scheduled (this reflects the fact that

all scheduling overheads are assumed to be zero). A job  is said to be completed

at time t if the service it received up to time t is equal to its cost c(). A job  is

said to be pending at time t if it has arrived before time t and is not completed at

time t. In a well-formed schedule, only pending jobs can be scheduled. From now

on, we only consider well-formed schedules. A job  is said to be schedulable if it is

completed before its absolute deadline. The absolute deadline of a job is defined by

its arrival time and its task’s relative deadline d() := a() + D(τ()) where D(τ())

represents the corresponding task deadline.

2.4.2 System Model

To specify system models abstracting from their possible behaviors, Prosa defines

task models and scheduling policies based on a set of predicates on traces i.e., arrival

sequences and schedules. Response time analysis of such models can then provide

guarantees on all behaviors satisfying the analyzed model.

To illustrate this kind of definitions and specifications, we focus on the sporadic

task model and the FPP scheduling policy.

Specification of the sporadic task model

Definition 5 (Task). A task τk is defined by a deadline D(τk) ∈ N+ and a WCET

C(τk) ∈ N+.

A sporadic task is characterized by an additional parameter: its minimal inter-

arrival time P(τk) ∈ N+. Its deadline is implicit i.e., D(τk) is equal to P(τk). Task

priorities are defined by a relation order in Prosa. For the sake of simplicity, we

specify here a task’s priority using its subscript i.e., the priority of task τk is k ∈ N.

The smaller the number is, the higher priority is.

The sporadic task model (presented in Section 2.1) is specified by a sporadic

arrival pattern and an execution time model.

The sporadic arrival pattern is a constraint on job arrival times: consecutive

arrivals of a task τ are separated by a minimum inter-arrival P(τ). An arrival

sequence ρ is sporadic if for any two distinct jobs 1, 2 ∈ ρ7 of the same task τ ,

7Here, we omit the time t from ρ(t) for short and the complete notation is 1 ∈ ρ(t1), 2 ∈ ρ(t2).
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|a(1) − a(2)| ≥ P(τ). Periodic arrivals are a particular case of this model where

P(τ) is the task period. We denote Sporadic(ρ, S) a predicate on an arrival sequence

ρ and the corresponding system S to check whether this arrival sequence satisfies the

sporadic model. Note that the response time analysis which calculates the WCRT

of tasks scheduled according to an FPP policy on uniprocessors provides the same

bounds for sporadic and periodic task models.

The execution time model enforces that jobs in the arrival sequence respect the

WCET of their task, that is, for any  ∈ ρ, c() ≤ C(τ()). The execution time

model is used for computing the maximum workload requested by tasks for a given

duration.

Definition 6 (Task workload bound). Given a task τ and a duration ∆, the maxi-

mum workload requested by τ within that duration is

wl+τ (∆) := C(τ)×
⌈

∆

P(τ)

⌉

Note that
⌈

∆
P(τ)

⌉
denotes the maximum number of task arrivals which may occur

within the duration ∆.

Specification of the FPP scheduling policy

The FPP scheduling policy for uniprocessors is modeled in Prosa as two constraints

on the schedule: it is work conserving and respects the priority preemption.

Definition 7 (FPP). A schedule σ over an arrival sequence ρ respects the FPP

scheduling policy if and only if the two following conditions hold at any instant t:

• (Work conserving) If there is a pending job not scheduled at time t, then there

must be another job scheduled at time t.

• (Priority preemption) If a job is scheduled at time t, then it has the highest

priority among all pending jobs at time t.

We use FPP(ρ, σ) to denote that a schedule relying on an arrival sequence ρ

satisfies the FPP scheduling policy.

2.4.3 Analysis

Prosa contains a RTA of a set of sporadic tasks dispatched on a uniprocessor re-

specting the FPP scheduling policy. The RTA provides an upper bound for arbitrary

deadlines and the exact bound for implicit deadlines.
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We now focus on the specification of such an analysis in Prosa. Consider a set

S of sporadic tasks and a task τk from that set to analyze, the RTA computes the

WCRT of τk by maximizing all workloads requested by task with a priority higher

than or equal to k. The system workload bound is defined as follows:

Definition 8 (System workload bound). Given a specific task set S and a task

τk ∈ S and a duration ∆, the maximum workload of the system w.r.t. τk within ∆

is

wl+S,k(∆) :=
∑
τj∈S
j≤k

wl+τj(∆)

The above system workload bound function has been proven correct in Prosa

for any arrival sequence w.r.t. the set of sporadic tasks and any schedule over that

arrival sequence. The workload bound wl+S,k(∆) corresponds to the worst-case ar-

rival pattern in which all tasks are simultaneously activated with maximum costs

(corresponding to tasks’ WCETs) and minimal inter-arrival separation times. It is

an upper bound on the amount of service required by all tasks with a priority higher

than or equal to k in any interval of size ∆. Based on this definition, a response

time bound can be derived for the system model if the equation ∆ = wl+S,k(∆) has

a fixed point (Corresponding to a busy window presented in Section 2.2.2.2).

Theorem 1 (WCRT bound). Given a sporadic task set S and a task τk ∈ S, then

for any R > 0 such that R ≥ wl+S,k(R), any job  of task τk in an FPP schedule over

an arrival sequence ρ is completed by a() +R.

Note that one response time bound for a task τk ∈ S can be computed by the

least positive fixed point of the function wl+S,k(∆). It is the exact WCRT when

deadlines are implicit, while it is an upper bound when deadlines are arbitrary.

Using a response time bound, we can derive a schedulability criterion by requiring

this bound to be smaller than or equal to the deadline of task τk.

Many real-time schedulability analyses have been formalized in Prosa. Let us

cite:

• As the first case study in Prosa, Cerqueira and Brandenburg [29] formalized

RTAs [19] for both the FP and EDF scheduling policies on multiprocessors as

well as two extensions for released jitters and parallel jobs.

• We verified a RTA for a set of transactions with offsets executed on a uniproces-

sor according to the FPP scheduling policy [72]. Following this work, we [59]

formalized three RTAs for FPNP and extracted a result certifier from Coq

proofs. The extracted tool, itself being formally verified, is able to certify the

results of CAN analyses (See Chapter 4).



2.5. RESULT CERTIFICATION 39

• Cerqueira et al. [30] formalized the concepts of strong and weak suistainability.

As a proof of concept, they proved that any Job-Level Fixed Priority scheduling

policy is weakly sustainable with respect to job execution times and variable

suspension times.

• Fradet et al. [60] provided a generic proof of typical worst-case analysis, an

approach for analyzing weakly hard real-time systems. The authors empha-

sized the benefits of mechanized proofs: It provides a better understanding of

the required assumptions and makes it easier to generalize existing analyses.

• Rakotomalala et al. [116] mechanized a subset of the Network Calculus the-

ory. They provided some basic specifications and proofs of classic theorems in

Network Calculus as well as a case study for a network of five flows using the

FIFO scheduling policy.

2.4.4 Implementation

The main purpose of this part of the Prosa library is to use concrete events/programs

(e.g., schedulers, concrete tasks, concrete arrivals) to validate the specifications ax-

iomatized in the system model component. For instance, to validate the specification

of the FPP scheduling policy, we implement a FPP scheduler program and prove

that it satisfies indeed the properties described in that specification. This compo-

nent can be an interface between concrete system schedules and the proven results

in Prosa in order to benefit from each other. There exist, however, some limitations

to applying the proven results to a concrete system schedule due to their different

basics, for instance, a concrete schedule is usually finite but it is infinite in Prosa.

Chapter 3 aims at dealing with this issue.

2.5 Result Certification

There exist two main approaches to provide formal guarantees for software. An

approach, called tool verification, is to formally verify the correctness of the full

implementation of the program using a proof assistant (this can be achieved for

example by using the Coq extraction mechanism to obtain a certified program).

Another approach is to build a result certifier (also using a proof assistant) to validate

the results produced by an uncertified commercial program. The latter approach is

called result certification.

Tool verification has been used successfully in recent years to increase confidence

in the correctness of software, especially its functional correctness. We can cite for
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instance:

• The CompCert project [92] has formally verified a compiler for a significant

subset of the C language using Coq. Such a certified compiler rules out the

possibility of compiler-introduced bugs. The executable code produced by

CompCert is proved to behave exactly as the specification of its C code.

• The seL4 microkernel [80] is the first verified OS kernel that has been formally

verified for functional correctness using the Isabelle/HOL theorem prover. It

can run on a variety of hardware architectures such as x86, arm and RISC-

V. It has been deployed in many safety-critical projects such as the HACMS

project [73] attempting at building high-assurance cyber-physical systems.

• The CertiKOS project [66] contributed a deep-specified and layer-based frame-

work for verifying OS kernels using the Coq proof assistant. It specifies and

proves correct all observed functional behaviors in order to provide as many

guarantees as possible regarding the safety of an OS kernel. Using this tool,

several CertiKOS kernels for a single-core processor have been verified.

Result certification has also been investigated for three main reasons:

1. Result certifications is usually very efficient;

2. For certain problems, it reduces the proof efforts compared to tool verification

while providing the same guarantees;

3. It is sometimes more flexible and light-weight than tool verification. For each

software update, tool verification requires adapting the proofs, while there is

little or no impact when using result certification. Also, a result certifier can

certify the results of uncertified commercial programs without requiring any

access to their source code.

Some successful stories in result certifications are:

• As a part of the CompCert project, Rideau and Leroy [119] provided a register

allocation certification algorithm using the Coq proof assistant. The authors

emphasized the reduced proof effort due to using result certification. Only

900 lines of Coq code were needed for result certification, while approximately

4300 lines of Coq code were needed for tool verification, i.e., to fully verify the

register allocation program.

• Mabille et al. [100] reported an in-progress work on result certification of Net-

work Calculus computations using Isabelle/HOL. They estimated that result

certification could reduce the proof effort by a factor of 2 (or 3) compared to

a fully verified Network Calculus tool.
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• Armand et al. [10] formally verified a result checker for SAT and SMT proof

witnesses using the Coq proof assistant. The checker, itself being formally

verified, provides high guarantees for the witnesses produced by uncertified

solvers such as ZChaff, MiniSat, or VeriT.

This chapter has allowed us to have basic and necessary information for describ-

ing the next chapters in this thesis. Chapter 3 presents how to connect the Prosa

library with a verified concrete OS kernel so that they can benefit from each other.

Chapter 4 shows how to certify the results of a given commercial analyzer, and

Chapter 5 proposes an expressive model as well as a RTA for that model amenable

to its Coq formalization in order to factorize proofs and to reduce the proof effort.



Chapter 3

Schedulability Analysis of

RT-CertiKOS

Real Time Operating Systems (RTOSes) used in critical applications should have

their functional and timing correctness guaranteed. Both the OS and scheduling

communities have developed their own formally verified tools but there is a lack of

integration between them. This chapter1 presents an interface between a verified

real-time OS kernel, namely RT-CertiKOS, built from the CertiKOS project, and

a schedulability analysis from the Prosa library. Both CertiKOS and Prosa benefit

from this connection: It provides a verified OS kernel with state-of-the-art schedu-

lability analyses with reasonable proof effort; It provides Prosa with a concrete

instance illustrating the practical relevance of the Prosa definitions.
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3.1 Context and Motivation

Recently, the real-time and OS communities have intensified their efforts to-

wards formal proofs, using either model checking [108, 70] or interactive theorem

provers [80, 67, 29]. This trend is motivated by the high stakes involved in critical

systems and the complexity of such systems, which makes pen-and-paper reasoning

too error-prone.

RTOSes used in critical areas such as avionics, the automotive industry, and

the medical industry must guarantee not only functional correctness but also tim-

ing requirements. For a hard real-time OS used to run critical applications, one

missed deadline may have catastrophic consequences. Schedulability analysis aims

to guarantee the absence of deadline misses given a scheduling policy.

Our objective is to formally verify the schedulability of a set of tasks scheduled

using a concrete OS kernel. As the central part of an OS, the kernel connects

software applications to system hardware. It is responsible for task management

and scheduling. Therefore, in order to provide high confidence in the schedulability

results, we have to verify both the functional correctness of the OS kernel and

the schedulability analysis of a set of tasks executed using that kernel. In the

current state of the art, the schedulability analysis is decoupled from the kernel

code verification. This is good from a separation of concern perspective as both

kernel verification and schedulability analysis are already complex enough without

considering each other. Nevertheless, this gap also means that both communities

may lack validation from each other.

On the one hand, schedulability analysis itself is error-prone. As mentioned early

in Chapter 1, a flaw was found in the original schedulability analysis [147, 144, 145]

for the CAN bus, which is widely used in cars. To tackle this issue and to pro-

vide high confidence in analysis results, the Prosa library [29] provides mechanized

schedulability proofs. Some of its design decisions, in particular for task models and

scheduling policies, are very suitable for reasoning about real-time system analy-

ses, e.g., it assumes that task arrivals and all schedule information are known and

provided by two infinite traces: arrival sequences and schedules (See Chapter 2).

However, it is not the case for a concrete OS kernel, i.e., schedule traces of a con-

crete OS are finite, because we never know the future behavior. The applicability of

choices made in Prosa to reality should be justified by connecting them to a concrete

OS kernel enforcing a real-time scheduling policy.
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On the other hand, OS kernels are very sensitive and bug-prone pieces of code.

They inspire a lot of work on using formal methods to prove functional correctness

and other requirements, such as access control policies [80], scheduling policies [155],

timing requirements, etc. One such verified OS kernel is RT-CertiKOS [98], devel-

oped by the Yale FLINT group and built on top of sequential CertiKOS [66, 38]. Its

verification focuses on extensions beyond pure functional correctness, such as real-

time guarantees and isolation between components. However, any major extension

such as schedulability analyses adds a lot of proof burden.

Motivation

Prosa side. The basic definitions in Prosa are good for reasoning about schedu-

lability analyses, but their applicability to concrete OSes has not yet been tested.

We want to connect Prosa to concrete OSes to make practical use of our verified

analyses.

RT-CertiKOS side. Upgrading an OS kernel into a real-time one is not an easy

task. When one further adds formal proofs about functional correctness, isolation,

and timing requirements, the proof burden becomes enormous. Thus, from the

RT-CertiKOS perspective, the benefit of using Prosa is precisely to make use of

state-of-the-art schedulability analyses already certified in Coq.

Contributions

In this chapter based on [71], we solve both problems at once by combining one

formal schedulability analysis given by Prosa with the functional correctness guar-

antees of RT-CertiKOS. Thus, we get a formal schedulability proof for this kernel:

if a set of tasks satisfies the proven schedulability test from Prosa, then formal

proofs ensure that there will be no deadline miss during execution on RT-CertiKOS.

Furthermore, this work also produces a concrete instance of the definitions used in

Prosa, ensuring their consistency and applicability to a real system.

The main contributions of this chapter are:

• The definition of a clear interface for schedulability analysis between a ker-

nel (here, RT-CertiKOS) and a schedulability analyzer (here, the analyses of

Prosa);

• A formally proven connection between RT-CertiKOS and Prosa, validating

Prosa modeling choices and enabling RT-CertiKOS to benefit from the state-

of-the-art schedulability results of Prosa.
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Besides, this work provides solutions for addressing some technical issues when con-

necting RT-CertiKOS and Prosa:

• A workaround for the mismatch between the notion of jobs in schedulability

analysis (which contains actual execution times) and in OS scheduling through

the scheduling trace;

• A way to extend a finite scheduling trace (from RT-CertiKOS) into an infi-

nite one (for Prosa) while still satisfying the fixed priority preemptive (FPP)

scheduling policy. Note that the interface that we built is general and should

work with other scheduling policies. We focus here on FPP because RT-

CertiKOS uses a FPP scheduler.

3.2 The RT-CertiKOS OS Kernel

RT-CertiKOS [98], developed by the FLINT group at Yale, is a real-time extension of

the single-core sequential CertiKOS [66, 38],2 whose functional correctness has been

certified in the Coq proof assistant [136]. The sequential restriction greatly simplifies

the implementation of the OS kernel. However, it does not support multi-core, and

the lack of kernel preemption can also degrade the responsiveness of the whole sys-

tem. RT-CertiKOS proves spatial and temporal isolation (including schedulability)

between components.

In this section, we first present briefly the specification and proof methodolo-

gies used for formally verifying RT-CertiKOS and then focus on the RT-CertiKOS

scheduler which we want to interface with Prosa.

3.2.1 Specification and Proof Methodologies

RT-CertiKOS is organized around the notion of abstraction layers that allows de-

composing the kernel into small pieces that are easier to verify.

Abstraction Layers

Abstraction layers [66] are essentially a way to combine code fragments and their

interface with simulation proofs3. They consist of four elements: (a) a piece of code;

(b) an underlay, the interface that the code relies on; (c) an overlay, the interface

2There is a multi-core version of CertiKOS [67, 68], but RT-CertiKOS is developed on top of
the sequential version.

3Simulation here is a terminology in the sense of formal verification, which represents a relation
between two models of which one is more precise than the other.
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that the code provides; (d) a simulation proof ensuring that the code running on

top of the underlay indeed provides the functionalities described in the overlay.

Both the underlay and overlay are specifications written in Coq and may be ex-

pressed using the semantics of several programming languages at once. This explains

how RT-CertiKOS manages to encompass both C and assembly code verification into

a unified framework. Note that this notion of interface not only includes functions

but also some abstract state, which exposes memory states of lower layers in a clean

and structured way, and allows the overlay to access them only by invoking verified

functions.

Proof Methodology

RT-CertiKOS [98] follows the idea of deep specifications4 in which the specification

should be rich enough to deduce any property of interest: there should never be

any need to consider the implementation. In particular, even though its source

code is written in both C and assembly, the underlay always abstracts the concrete

memory states it operates on into abstract states, and abstracts concrete code into

Coq functions that act as executable specifications. Subsequent layers relying on

this underlay will invoke Coq functions instead of the concrete code, thus hiding

implementation details.

In the case of scheduling, there are essentially two functions: the scheduler and

the yield system call. The scheduler relies on two concrete data structures: a counter

tracking the current time and an array tracking the current budget for each task.

When a job yields (i.e., completed), the yield system call simply sets its remaining

budget to zero. Both functions are verified in RT-CertiKOS, that is, formal proofs

ensure that their C code implementations indeed simulate the corresponding Coq

specifications.

3.2.2 Scheduling in RT-CertiKOS

This certified OS kernel is responsible for scheduling a set of periodic tasks.

Definition 9 (Periodic task). A periodic task τk is characterized by its period Pk,

its WCET (or a budget) Ck, and its unique priority k.

A task is also associated with an identifier. Tasks arrive periodically with implicit

deadlines. All tasks are considered hard, that is, all deadlines need to be met and

we assume that 0 < Ck ≤ Pk. Particularly, RT-CertiKOS enforces budgets at the

4https://deepspec.org/

https://deepspec.org/
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task level: in each period, a task cannot be scheduled for more than its specified

budget (i.e., its WCET) and may not always use up its budget. An instance of a

task may be completed without using up its budget, and the remaining budget will

be freed.

The RT-CertiKOS scheduler supports the FPP scheduling policy. It maintains

an integer array to keep track of budget usage for each task.

• Upon invocation, the scheduler first iterates over all tasks, replenishing budgets

whenever a new period arrives. For instance, a task with its WCET 5 has a

budget of 5 for each period. Within one period, its remaining budget will be

relinquished after its actual job’s completion (yield);

• It then loops again and finds the highest priority task, that has not used up

its budget, to execute.

The scheduler is a Coq function that iterates over an abstract array of task control

blocks, updates them, and returns the highest task identifier available for scheduling.

In RT-CertiKOS, a lot of the provided information that is irrelevant to schedula-

bility analysis. Therefore, we define a simplified scheduling model of RT-CertiKOS,

with a much simpler abstract state containing only the data structures that are

actually used in scheduling, from which the interface data and its properties must

be derived.

Definition 10 (Simplified RT-CertiKOS). The simplified abstract state contains

four fields:

ticks the current time, that is, the number of past time slots;

quanta a map giving the remaining budget for each priority;

cid the identifier of the running task;

schedule the schedule prefix, a list remembering past scheduling decisions until

the time ticks. For any time instant, the scheduling decision is repre-

sented by either a task’s identifier with its yield status ( i.e., a boolean)

or none.

For a given schedule prefix σpref , the corresponding current time (ticks) is its

length noted by len(σpref ). The fact that a task τ is scheduled within σpref at time

instant t is denoted as either σpref (t) = (τ,True) if the actual job yields (completes)

at t or σpref (t) = (τ,False) otherwise. This scheduling model is not equivalent to

the complete one, because it operates on a totally different abstract data type where

all irrelevant fields are removed. Nevertheless, we still have a simulation: any step

in the full RT-CertiKOS is also allowed in the simplified version and results in the
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same scheduling decision and trace. To connect the full RT-CertiKOS model and the

simplified one, we define a projection function RData proj extracting the relevant

fields from the full RT-CertiKOS state to build the simplified one. As shown in

RT-CertiKOS:

Simplified Model:

d d’
sched

s s’
simplified sched

RData proj RData proj

Figure 3.1: Simulation between simplified scheduling and RT-CertiKOS

Figure 3.1, we prove that given a scheduler transition of RT-CertiKOS between the

(full) states d and d′, there is also a transition between their projections s and s′ by

invoking the simplified scheduler. Formally, we prove that,

Theorem 2 (Simulation). For any state d of RT-CertiKOS,

RData proj(sched(d)) = simplified sched(RData proj(d))

If the states d and s satisfy respectively the invariants for RT-CertiKOS and the

simplified model, then so do d′ and s′ (they are invariants). As the states s and s′

are projections of d and d′, the invariants of s and s′ also hold on the corresponding

fields in d and d′. This allows us to utilize the invariants proved in the simplified

model to establish properties on the full state of RT-CertiKOS.

In the following presentation, RT-CertiKOS stands for simplified RT-CertiKOS

for brevity.

3.3 Connection between Prosa and RT-CertiKOS

In this section, we focus on using a proven schedulability analysis from Prosa to

formally verifying the schedulability of a concrete schedule of RT-CertiKOS, which

is built from a set of periodic tasks scheduled using the verified OS kernel according

to the FPP scheduling policy. However, Prosa definitions cannot apply to RT-

CertiKOS directly. Indeed, the perspectives of Prosa and RT-CertiKOS on the real-

time aspects of a system are not the same, which is reflected in how to represent an
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execution (i.e., a schedule prefix in RT-CertiKOS and an infinite schedule in Prosa).

We now explain how we bridge this gap to actually perform the connection.

3.3.1 Problem Statement

The key issue when connecting RT-CertiKOS with Prosa is that the proven results in

Prosa rely on two infinite traces of events as shown in Figure 2.11: arrival sequences

and schedules, which RT-CertiKOS does not provide. Specifically, a theorem proven

in Prosa that we want to apply to RT-CertiKOS is as follows.

Theorem 3 (Schedulability analysis). Let S be a set of sporadic tasks, ρ be any

infinite arrival sequence of S, and σ be any infinite schedule over ρ, then

(∀τk ∈ S,R+
k ≤ Dk)

=⇒ Sporadic(ρ, S) ∧ FPP(ρ, σ)

=⇒ (∀ ∈ ρ, ∀τk ∈ S, τ() = τk =⇒ R ≤ R+
k )

where R is ’s response time, R+
k is a τk’s response time bound proven in Prosa for

sporadic tasks scheduled with FPP, and Dk is τk’s deadline.

Note that the basis of the theorem is the two infinite traces. In RT-CertiKOS,

we can only obtain a schedule prefix due to the fact that we do not have a priori

information about, e.g., the execution time of jobs. Therefore, to apply Theorem 3

to the RT-CertiKOS schedule, we have to:

1. build an infinite arrival sequence and prove that it respects the sporadic model;

and

2. build an infinite schedule using that arrival sequence and prove that it respects

the FPP scheduling policy.

The idea of building infinite arrival sequences and schedules is that we use the

schedule prefix and assume the worst-case scenarios for the future behavior. More

detail is presented in the following sub-sections.

• On the RT-CertiKOS side. RT-CertiKOS provides a schedule prefix as

well as its properties to the interface via its simplified model. This schedule

prefix satisfies the FPP prefix property (where the FPP scheduling policy is

defined based on a schedule prefix);

• At the interface. A job cost function is defined using a schedule prefix. The

FPP scheduling policy over a schedule prefix is specified. Note that this FPP

definition is different from Prosa’s which is based on an infinite schedule;
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• On the Prosa side. We build an arrival sequence using the schedule prefix

and the job cost function from the interface. Based on this arrival sequence

and a FPP scheduler from Prosa, we construct an infinite schedule with which

we can apply the schedulability analysis. Then, we prove that its schedule

prefix is equivalent to the one from RT-CertiKOS and is schedulable. Impor-

tantly, based on this, we prove that the subsequent executions following this

schedulable prefix are schedulable.

We now present some details about the connection.

3.3.2 The RT-CertiKOS Side

Adding the schedule in RT-CertiKOS

RT-CertiKOS only maintains the current state of the system such as the current ticks

and budget array. However, the interface requires a schedule trace. We introduce

this variable in RT-CertiKOS, and update a few scheduling-related primitives to

extend this trace whenever a task is scheduled.

This introduction adds absolutely no proof overhead, since it does not affect the

scheduling decisions, thus existing proofs about the rest of the system still hold.

Furthermore, it is a purely logical variable introduced through refinement, meaning

that it does not exist in the C code and causes no computation overhead.

Proving the properties required by Prosa.

The interface requires two key properties:

1. the service received by each job is at most the WCET of its task; and

2. the schedule prefix satisfies the FPP scheduling policy.

These properties must be proven on the RT-CertiKOS side for any possible schedule.

This way, Prosa can rely on them through the interface.

Since the RT-CertiKOS verification is based on state invariants rather than

traces, we prove these properties using the following invariants:

• the length of the schedule trace is the current time + 1 (the scheduler takes a

decision for the next time slot);

• if a task has completed in the current period, its remaining budget is 0;

• the service plus the remaining budget is equal to the job cost;

• the service received in any period is less than the WCET;
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• pending jobs have positive remaining budget or equivalently, have less service

than their job cost;

• the current schedule follows FPP.

To prove that these statements are indeed invariants, we must prove that they are

preserved by the scheduler (triggered by the user-level timer interrupt) and by the

yield system call (triggered by the user process). All other kernel steps do not modify

the scheduling data of the simplified scheduling model.

3.3.3 Interface Between RT-CertiKOS and Prosa

We design an interface to link RT-CertiKOS and Prosa, focusing on the precise

amount of information that needs to be transmitted between them. The interface

is shaped by the information Prosa needs to perform its schedulability analysis: a

task set and a schedule, together with some properties. We present the two main

issues to address at the interface.

Handling service and job cost. Prosa needs, for each job, its arrival time and

cost. The former can be easily defined using its task period, but the latter is un-

known. In RT-CertiKOS, and more generally in any OS, we only assume a bound

on the execution time of a task, used as a budget. The exact execution time of each

of its jobs is not known beforehand and can be observed only at runtime. On the

opposite, Prosa assumes that costs for all jobs of all tasks are part of the problem

description and thus are available from the start.

To fix this mismatch, we define a job cost function computed from a schedule

prefix.

Definition 11 (Job cost function). Let σpref be a schedule prefix and τ be a task,

then the cost cn,σpref (τ) of τ ’s n-th job is:

cn,σpref (τ) =


∑nP

t=(n−1)P (σpref (t) = (τ, )) if the job completes within σpref ,

C otherwise.

(3.1)

Note that for the expression (σpref (t) = (τ, )), we implicitly convert boolean

values to {0, 1} with true mapped to 1. Sometimes we omit σpref from cn,σpref (τ)

for brevity, i.e., we denote cn(τ) the cost of τ ’s n-th job. It is the service received

during its n-th period by checking σpref if the job has yielded (completed) within

σpref ; otherwise, it is τ ’s WCET.

This definition relies on the computation of service in any period, which we also

provide as part of the interface.
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Handling infinite schedules. Prosa traces are based on an infinite schedule. RT-

CertiKOS does not provide such an infinite schedule, as only a finite prefix can be

known, up to the current time. Thus, we keep RT-CertiKOS’s finite schedule as is

in the interface and it is up to Prosa to extend it into an infinite one, suitable for

its analysis.

Finally, Prosa needs two properties about the schedule prefix:

1. any task receives no more service than its WCET in any period;

2. the schedule prefix follows the FPP scheduling policy. We refer to schedules

satisfying these properties as valid schedule prefixes.

The two properties are proved in RT-CertiKOS. The former is easy. To prove the

latter, we have to specify the FPP scheduling policy over a schedule prefix (we call

it FPP prefix for short). This FPP prefix is specified by an inductive definition at

the interface.

Definition 12 (FPP prefix). The FPP scheduling policy is defined as an inductive

predicate over a task set, an arrival sequence (not explicitly mentioned below), and

a schedule prefix as follows:

• Any schedule on an empty trace is an FPP prefix.

FPP prefix(S nil).

• If you take any FPP prefix such that there is no job pending at its last time

instant, then not scheduling any job at the next time instant will yield an FPP

prefix.

∀σpref ,FPP prefix(S σpref )

=⇒ (∀τ ∈ S =⇒ ¬Pending(τ, len(σpref ))

=⇒ FPP prefix(S (None :: σpref )).

• If you take any FPP prefix such that there are jobs pending at its last time

instant, then one with the highest priority will be scheduled next.

∀τk ∈ S, ∀σpref , ∀b : boolean,

FPP prefix(S σpref )

=⇒ Pending(τk, len(σpref ))

=⇒ (∀τl ∈ S =⇒ Pending(τl, len(σpref )) =⇒ (k ≤ l))

=⇒ FPP prefix(S ((τk, b) :: σpref )).

where Pending(τ, t) means that task τ is pending at time instant t.
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3.3.4 The Prosa Side

Proven schedulability analysis in Prosa.

Prosa provides a formally proven RTA as well as its corresponding schedulability

criterion for a set of sporadic tasks executed on a uniprocessor according to the FPP

scheduling policy. This is exactly the analysis that we want to use in RT-CertiKOS.

Note that the task model used by RT-CertiKOS is periodic, which is a special case

of the sporadic task model.

Consider a set S of periodic/sporadic tasks with implicit deadlines executed on a

uniprocessor according to the FPP scheduling policy, and let us focus on task τk. Let

WCRTk be the least positive fixed point of the equation WCRTk = wl+S,k(WCRTk),

where

wl+S,k(∆) :=
∑
τj∈S
j≤k

wl+τj(∆).

As mentioned in Theorem 3, WCRTk is a response time bound of τa and has

been proven correct in Prosa. Note that Theorem 3 is based on the two infinite

traces ρ and σ.

In order to use this response time bound, we need to relate any finite schedule

prefix from the interface to an arrival sequence and a schedule satisfying the model

described in Section 2.4. We can then rely on a schedulability criterion (i.e., ∀τk ∈
S,WCRTk ≤ Dk) to prove that the response time bound holds and deduce that any

valid schedule prefix from the interface is indeed schedulable.

Bridging the gap between the interface and Prosa

The interface provides Prosa with a task set S, service and job cost functions cn,

and a valid schedule prefix σIpref (Note that the superscript I representing interface

is used to distinguish the Prosa schedule prefix, which is obtained with an infinite

schedule). We first build an arrival sequence from the schedule prefix where the n-th

job (n > 0) for a given task τk arrives at time (n−1)×Pk with the cost given by the

interface. Note that jobs that do not arrive within the prefix cannot have yielded

yet so that their costs are assumed to be the WCET of their tasks i.e., we assume

the worst case for the future.

Definition 13 (Concrete job). The n-th job  of a given task τk is defined by its

identifier n, its task τk, its cost cn(τk) (computed by the schedule prefix and job cost

function from the interface), and its arrival time (n− 1)× Pk.

Definition 14 (Concrete infinite arrival sequence). The concrete arrival sequence
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is a function ρc mapping any time instant t to a set of concrete jobs ρc(t). Let  be

a concrete job of τk, then

 ∈ ρc(t) ⇐⇒ (Pk | t) ∧ (n = bt/Pkc+ 1)

where Pk | t means t is multiple of τk’s period Pk, and n is the job identifier.

For instance, at time instant t, the (bt/Pkc + 1)-th job of task τk arrives if t is

multiple of Pk.

Next, we need to turn the finite schedule prefix into an infinite one. There are

two possibilities: either build a full schedule from the built concrete infinite arrival

sequence using the Prosa FPP scheduler, or start from the schedule prefix of the

interface and extend it into an infinite one. The first technique gives for free the

fact that the infinite schedule satisfies the FPP model from Prosa. The difficulty

lies in proving that the schedule prefix from the interface is equivalent to the prefix

of this infinite schedule. The second technique starts from the schedule prefix and

the difficulty is proving that it satisfies the FPP scheduling policy as specified on

the Prosa side.

The key to both two techniques is to prove the equivalence of the two FPP

specifications: one, named FPP prefix, is defined based on a schedule prefix at the

interface; the other, named FPP, is specified based on an infinite schedule in Prosa

(see Section 2.4). The schedule representation (i.e., option job) in Prosa is different

from the ones (i.e., (option task, yield state)) in RT-CertiKOS.

In this thesis, we present the first strategy. A concrete schedule is built using the

concrete arrival sequence and a Prosa FPP scheduler. We use a function Prefix that

takes a Prosa schedule and a length and returns a schedule prefix with the same

type as the RT-CertiKOS schedule prefix by mapping jobs to their tasks and taking

care of the task yield status.

Definition 15 (Concrete infinite schedule). The concrete schedule is a function σc

mapping any time instant t to either the concrete job scheduled at time t or ⊥. Let

 be a job from the concrete arrival sequence ρc, then

σc(t) =  ⇐⇒ (∀′ ∈ ρc, P ending(′, t) =⇒ p > p′) ∧ Pending(, t)

where p > p′ describes the priority of  is higher than that of ′.

For each time instant t, the Prosa FPP scheduler computes all pending jobs

using the concrete infinite arrival sequence and previous scheduling decisions up to
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t, and selects the job with the highest priority among all pending jobs to execute at

t. Obviously, the built concrete schedule σc satisfies FPP.

We prove that any prefix of the computed concrete schedule σc that is shorter

than len(σIpref ) satisfies FPP prefix.

Lemma 1 (FPP equivalence). For any length l ∈ N,

l ≤ len(σIpref ) =⇒ FPP prefix(S,Prefix(σc, l)) (3.2)

Then we prove that the schedule prefix σIpref provided by the interface and the

computed concrete infinite schedule σc match on the length of σIpref . To do so, we

use the fact that two FPP schedule prefixes with the same arrival sequence and

scheduling policy are the same (Note that here we implicitly assume that all tasks

have their own unique priority and that jobs of a task respect the FIFO order for

execution).

Lemma 2 (Schedule prefix equivalence).

Prefix(σc, len(σIpref )) = σIpref (3.3)

Finally, for a given task set accepted by the FPP schedulability criterion

(i.e., ∀τk ∈ S,WCRTk ≤ Dk), we know that the computed infinite schedule is

schedulable according to Theorem 3. Since its prefix is equal to the schedule pre-

fix provided from the interface, we conclude that the schedule prefix given by the

interface is schedulable.

3.4 Evaluation

As the C and assembly source code of RT-CertiKOS were not modified at all, our

connection did not introduce any overhead to its performance and there is no need

for a new performance evaluation. We focus on the benefits this works brings and

on the amount of work involved (described in Table 3.1).

Benefits for RT-CertiKOS and Prosa

The schedulability analysis already present in RT-CertiKOS was manually proved

and took around 8k LoC to handle the precise setting described in this chapter. By

contrast, interfacing with Prosa requires 50% less proof code, is more flexible and can

easily be extended. The introduction of a simplified scheduling model also reduced



56 CHAPTER 3. SCHEDULABILITY ANALYSIS OF RT-CERTIKOS

by 75% the size of proofs of invariants about the high-level abstract scheduler since

we are freed from the unnecessary information described in Section 3.3.2.

On the Prosa side, having a complete formal connection with an actual OS

kernel developed independently validates the modeling choices made for describing

real-time systems. Indeed, seeing schedulers as predicates over scheduling traces is

very general but one can legitimately wonder whether such predicates accurately

describe reality.

Proof effort

Designing a good interface allowed us to cleanly separate the work required on the

RT-CertiKOS and Prosa sides.

On the RT-CertiKOS side, the design of the simplified scheduling setting was

pretty straightforward, as was the correctness of the translation. Designing adequate

inductive invariants to prove the two properties required by the interface was the

most challenging part and unsurprisingly, it took several iterations to find correct

definitions, e.g., job cost function and valid schedule prefix.

On the Prosa side, building the concrete infinite arrival sequence and schedule

is quite effortless given a prefix and a job cost function. The subtle thing was to

find a good definition of the job cost function, which made the corresponding proofs

significantly easier. Proving that the prefix of the computed infinite schedule is the

same as the interface prefix was troublesome for two reasons. First, the interface

prefix contains an additional boolean representing whether the scheduled job yielded

and which is used for computing job costs and pending status, whereas it does not

exist in the built schedule. We need this information to prove that the prefix of the

computed schedule satisfies FPP prefix. Second, the definition of the FPP property

in the interface depends on a schedule prefix, while the one in Prosa depends on an

infinite schedule.

Overall, we see the small amount of LoC required to perform this work as a

validation of the applicability of our method to the considered problem.

Lessons Learned

Beyond the particular artifact linking RT-CertiKOS with Prosa, we have learned

more general lessons from this connection.

First, using the same proof assistant greatly helps. Indeed, beyond the absence

of technical hassle of inter-operability between different formal tools, it also avoids

the pitfall of a formalization mismatch between both formal models and permits to
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Table 3.1: Proof effort for connecting Prosa and RT-CertiKOS.

Feature Changes (LoC)
Adding a schedule field to RT-CertiKOS 15
Interface (with proofs) 380
Simplified scheduling 100
Proving the invariants about the simplified scheduling 950
Translation RT-CertiKOS → simplified scheduling 380
Conversion between ZArith and SSReflect 280
Translation interface → Prosa 1900
Using the schedulability analysis of Prosa 130
Total 4135

share common definitions.

Second, the creation of an explicit interface between both tools clearly marks

the flow of information, stays focused on the essential information, and delimits the

“proof responsibility”, that is, which side is responsible for proving which fact. It

also segregates the proof techniques used on each side so as not to pollute the other

one, either on a technical aspect (vanilla Coq for RT-CertiKOS vs the SSReflect

extension for Prosa) or on the verification methods used (invariant-based properties

for RT-CertiKOS vs trace-based properties for Prosa). This separation makes it

unnecessary to have experts in both tools at once: once the interface was clearly

defined, experts on each side could work with only a rough description of the other

one, even though this interface required a few later changes. In particular, it is

interesting to notice that this work was done partly by experts in RT-CertiKOS and

the other part by experts in Prosa.

Third, the common part of the models used by both sides must be amenable to

agreement. In our case, this involves having the same notion of time (scheduling

slots, or ticks) and a compatible notion of schedule (finite and infinite).

Finally, we expect the interface we designed to be reusable either for other verified

kernels wanting to connect to Prosa or for linking RT-CertiKOS to other formal

schedulability analysis tools.

3.5 Related Work

Schedulability analysis

In order to provide formal guarantees for those results, several formal approaches

have been used to verify schedulability analyses, such as model checking [54, 70, 37],

temporal logic [160, 156], and theorem proving [152, 50] (See Chapter 2 for more
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details).

Verification of real-time OS kernels

There is a lot of work about formal verification of OS kernels (see [81] for a survey

and also Chapter 2). In this chapter, we restrict our attention to verification of real-

time kernels using proof assistants. We also do not consider WCET computation,

be it of the kernel itself (e.g., [20, 123]) or of the task set we consider. This is a

complementary but clearly distinct task to get verified time bounds.

The eChronos OS [7, 8] is a real-time OS running on single-core embedded sys-

tems. It stops its verification at the scheduling policy level, proving that the cur-

rently running task always has the highest priority among ready tasks. Xu et al. [155]

verify the functional correctness of µC/OS-II [85], a real-time operating system with

optimizations such as bitmaps. They also prove some high level properties, such as

priority inversion freedom of shared memory IPC.

RT-CertiKOS [98] is a verified single-core real-time OS kernel developed by the

FLINT group at Yale, based on sequential CertiKOS [66, 38]. It proves both tem-

poral and spatial isolation among different components, where temporal isolation

entails schedulability, etc. However, as explained in Section 3.4, its schedulability

proof is long. Connecting to an existing schedulability analyzer makes it easier and

more flexible.

3.6 Conclusion

Both real-time scheduling and OS communities use formal verification to provide

high confidence in their theories, and they have developed their own formally verified

tools but there is a lack of connection between them. This chapter presents a first

step toward bridging the gap between scheduling verification and OS verification

by integrating a schedulability analysis already formally proven in Prosa, with a

verified sequential real-time OS kernel, RT-CertiKOS.

This has two benefits: first, it provides RT-CertiKOS with a modular, extensi-

ble, state-of-the-art formal schedulability analysis proof; second, it gives a concrete

instance of one of the scheduling theories described in Prosa, thus ensuring that its

model is consistent and applicable to actual systems. It is a validation of Prosa

decisions and shows that schedulability analyses proven in the convenient setting of

infinite traces can still be applied to lower level models of real-time systems with

finite traces. We believe this connection can be easily adapted to other verified

kernels or schedulability analyzers.
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It also showcases that it is possible and practical to connect two completely

independent medium- to large-scale formal proof developments between two com-

munities.



Chapter 4

Certification for CAN Analyses

In order to provide high confidence in CAN real-time properties, this chapter

presents several formally proven RTAs for CAN based on Tindell’s transaction with

offsets task model. Particularly, the chapter provides an optimized RTA combining

the two most widely used CAN analyses, which is then used in CertiCAN, a tool

formally specified and proved in Coq for certifying CAN analysis results.

CertiCAN first tries to certify the result provided as input using the approximate

analysis only, then resorts to a more precise analysis for cases which cannot be

certified using the approximate analysis. Experiments demonstrate the potential of

CertiCAN as well as the corresponding certified analyzer for industry practice. It is

able to certify the results returned by RTaW-Pegase even for large systems.
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4.1 Context and Motivation

A recent series of mistakes in the analysis of self-suspending tasks [21] underlines

the limitations of pen-and-paper proofs for such complex problems. This issue is

not new, as illustrated by the flaw in the original Response Time Analysis (RTA)

of CAN messages proposed by Tindell et al. [144, 147, 145], which was found and

fixed many years later [43]. This motivated us to build certified1 proofs for real-

time systems analysis in academic research. A second motivation behind the need

to certify real-time systems analysis results comes from industry. Standards such

as ISO 26262 for automotive or DO-178C for avionics advocate the use of formal

methods for the development and validation of safety critical systems. Therefore,

we aim at providing certified real-time guarantees for industrial systems.

In this chapter, we focus on the CAN analysis cited earlier [144]. The underlying

analysis is a RTA for task sets with offsets under the FPNP scheduling policy, with

a notion of transaction, i.e., messages sent from the same Electronic Control Unit

(ECU). The CAN [127] protocol is widely used in automotive applications and there

exist several commercial tools performing CAN analysis. Among these, we focus on

RTaW-Pegase [110], for which we obtained an academic license.

1Throughout the thesis, the term certified means formally verified using a proof assistant, in
our case Coq.
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Certifying the results of a CAN analysis tool

Rather than certifying RTaW-Pegase, that is, formally proving that the CAN anal-

ysis implemented in RTaW-Pegase is correct, we choose to build a tool based on the

Coq proof assistant that can certify the results of the CAN analysis performed by

RTaW-Pegase. In other words, our tool, called CertiCAN, can be called every time

a result obtained with RTaW-Pegase2 must be certified. This choice is motivated

by the fact that result certification is a process that is light-weight and flexible com-

pared to tool certification, which makes it a practical choice for industrial purposes.

Indeed, RTaW-Pegase is a complex tool for which we do not have the source code.

It is likely to be highly optimized and subject to regular changes. All this would

make it difficult to certify the tool directly and this correctness proof would need to

be updated regularly.

Our problem is then: Can we certify efficiently enough the analysis results com-

puted by RTaW-Pegase? Compared to a traditional RTA, can we use the fact that

a result certifier is given as input the bound it is expected to certify?

Our solution is based on the following idea: We use a combination of two existing

analysis techniques, one precise but with high computational complexity and another

one much faster but approximate (it may compute pessimistic upper bounds on

response times). These two analyses were introduced by Tindell for the RTA of tasks

with offsets scheduled according to the Fixed Priority Preemptive policy [142, 143].

The precise analysis was adapted to CAN by Meumeu Yomsi et al. [159].

CertiCAN combines in an optimized way the two analyses. It first tries to certify

the result provided as input using the approximate analysis only, then resorts to

a more precise analysis for cases which cannot be certified using the approximate

analysis. Experiments demonstrate the potential of CertiCAN for industry practice.

It is able to certify the results returned by RTaW-Pegase even for large systems.

Contribution

The main contribution of this chapter is CertiCAN, the first formally proven tool

able to certify the results of commercial CAN analysis tools. This is however not

the only contribution of the chapter. More specifically, we propose:

1. A new RTA for CAN that combines two well-known analyses, one precise and

another approximate;

2. The correctness proof in Coq of the three analyses;

2Note that CertiCAN does not depend on the internals of the RTA tool considered. It is
interoperable with any other tool analyzing the same CAN system models as RTaW-Pegase.
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3. Three Coq-certified tools in OCaml extracted from the proofs, one for each

analysis;

4. Based on the same principle as the new RTA, a method and its corresponding

tool formally verified in Coq; The tool, called CertiCAN, is intended to certify

the results of non certified tools such as RTaW-Pegase.

5. Proved optimizations for CertiCAN’s efficiency;

6. Experiments that demonstrate the usability of CertiCAN as well as its corre-

sponding certified analyzer for industry practice.

Beyond CertiCAN, we believe that the results presented in this chapter are signif-

icant in that they demonstrate the advantage of result certification over tool certi-

fication for the RTA of CAN buses. In addition, the underlying technique can be

reused for any other system model for which there exist RTAs with different levels

of precision.

All the Coq specifications and proofs are available online [32].

4.2 Controller Area Network

The CAN network is a vehicle communication bus which is widely used in many

industrial domains, in particular, in the automotive industry. In critical applications,

it is essential to perform RTAs in order to ensure that systems can meet their timing

requirements i.e., the response time of a message (i.e., a task) is smaller than its

deadline.

The analyses proposed by RTaW-Pegase are based on a precise RTA of periodic

tasks with offsets dispatched according to the FPNP scheduling policy [159]. In

addition to the precise analysis, RTaW-Pegase proposes an approximate but faster

version. The implementation of these analyses uses several undocumented optimiza-

tions.

In this section, first of all, we briefly present some notions of the CAN protocol

which are useful for describing a CAN system. We refer interested readers to the

official CAN specification [127] for more detail; Then, we present the system model

considered in these analyses as well as notations and definitions used throughout

this chapter.

4.2.1 The CAN protocol

The CAN protocol describes communication rules between ECUs on a CAN bus.

The topology of a CAN bus is illustrated in Figure. 4.1. Each ECU uses a local
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ECU2 ECU4

ECU1 ECU3 ECU5

CAN bus

Figure 4.1: An example of CAN bus

clock and sends messages to other ECUs according to the FPNP scheduling policy.

Each message is assigned a unique priority and cannot be preempted once it has

started transmission. When several messages are waiting for transmission, the bus

chooses the message with the highest priority. Messages to be sent are encapsulated

in a fixed frame. The frame consists of:

• a unique identifier (11 bits for the standard format and 29 bits for the extended

format);

• a message to transfer, whose size is noted m. It could be 1 to 8 bytes; and

• other control bits e.g., acknowledgment, error detection, bit stuffing, etc.

In the worst case, the size of a frame is 55 + 10m bits for the standard format and

80 + 10m bits for the extended format [43].

Maximum transmission time

Usually, the bit rate of a CAN bus is fixed, which can be one of the following:

125 kbit/s, 250 kbit/s, 500 kbit/s, 1 Mbit/s. With the above information, we can

determine the maximum transmission time of a message. For instance, on a 500

kbit/s CAN bus, the transfer of an 8 byte message using the standard frame takes

(55 + 10 ∗ 8) bits

500 kbit/s
= 270 µs

This formula is used later to produce task sets for experimental evaluations.

Response time

A message may not be immediately transmitted after its activation (i.e., its request

to send). It is delayed until the bus has sent all higher priority pending messages.

The response time of a message is defined as the time duration between its activation

and its completion (that is, the end of its transmission via the CAN bus). It is usually
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associated with a real-time constraint stating that its response time should be less

than a given duration i.e., its deadline.

Fixed timing relation between messages within one ECU

Each ECU communicates with other ECUs through several periodic messages. All

activation times of a message are known once its first activation time is fixed. To

reduce interference between different messages, messages activations are separated

by introducing a so-called offset, parameter for each message. An offset is a fixed

time duration from local time 0 to the first activation time of a message. Introducing

offsets helps to increase the bus utilization while keeping the system schedulable.

4.2.2 System model

The system model considered consists of a set of transactions representing ECU

nodes

Sys := {Tr 1,Tr 2, . . . ,TrN}

where each transaction Tr i is a set of periodic tasks (representing messages):

Tr i := {τi,1, τi,2, . . . , τi,M}

Each task τi,k has a fixed and unique priority k (a smaller number means a higher

priority) and is characterized by a 4-tuple

(C(τi,k), D(τi,k), P (τi,k), O(τi,k))

where

• C(τi,k) denotes its worst-case execution time (WCET), i.e., the maximum

transmission time,

• D(τi,k) its relative deadline,

• P (τi,k) its activation period, and

• O(τi,k) its offset, i.e., the delay between the first release of its transaction Tr i

and the first activation of the task. In this chapter, constrained offsets are

assumed, formally O(τi,k) < P (τi,k).

Tasks within the same transaction share the same clock. All tasks of Tr i being

periodic, their offsets define a precise timing relation between them.



66 CHAPTER 4. CERTIFICATION FOR CAN ANALYSES

Task τi,k activates periodically its jobs at O(τi,k) +m.P (τi,k) with m ≥ 0. A job

 of a task τi,k is characterized by

• its activation time ai,k(),

• its completion time endi,k() and

• its cost ci,k() (ci,k() ≤ C(τi,k))

Its response time Ri,k() is defined as endi,k() − ai,k(). The worst-case response

time (WCRT) of task τi,k, denoted wcrti,k, is the largest possible response time

among all jobs of task τi,k.

The model does not suppose any global synchronization between transactions.

Any possible time shift between any two transactions is assumed to be possible and

must be considered by the analysis.

4.2.3 Notations and definitions

As in previous chapters, we note hep(k), hp(k), lp(k) the sets of tasks of the system

under study whose priorities are higher than or equal to, higher than or lower than

k, respectively.

The RTAs considered here rely on the concept of busy window presented in

Section 2.2.2.2, which we formally define now.

Definition 16 (Level-k quiet time). An instant t is said to be a level-k quiet time if

all jobs of priority higher than or equal to k released strictly before t have completed

at t.

Definition 17 (Level-k busy window). A time interval [t1, t2[ is said to be a level-k

busy window if:

1. t1 and t2 are level-k quiet times;

2. there is no level-k quiet time in ]t1, t2[; and

3. at least one job with a priority higher than or equal to k is released in [t1, t2[.

Clearly, a job with a priority higher than or equal to k has completed by the end

of its level-k busy window. In other words, its response time can be bounded by the

length of the corresponding busy window. Such a bound is however quite coarse. In

particular, there may be several jobs of the same task activated in the same busy

window. We thus consider the response time of each level-k job in a level-k busy

window. To this aim, we use the notions of phase and queueing prefix as defined

in [58] and informally defined in Section 2.2.2.2.
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Figure 4.2: Example of queueing prefixes in a busy window.

Definition 18 (Queueing prefix). The q-th queueing prefix of task τi,k in a level-k

busy window [t1, t2[ is the time interval [t1, tq] where tq is the instant at which the

q-th job of task τi,k receives its first service ( i.e., is scheduled for the first time).

Figure 4.2 shows the first and second queueing prefixes of a task τx,2 in a level-2

busy window, Qx,2(1) and Qx,2(2) respectively.

Definition 19 (Phase). The phase of the q-th job  of task τi,k in a level-k busy

window [t1, t2[ is the duration ai,k()− t1.

As mentioned in Chapter 2, due to the FPNP scheduling policy, a lower priority

job than k can be executed at the beginning of a level-k busy window. This is

referred to as the blocking factor. It is easy to prove that the blocking factor of a

level-k busy window is bounded by:

Bk = max
τi,x∈lp(k)

(C(τi,x)− ε) (4.1)

where ε = 1 (i.e., a time unit). Indeed, the worst case is when the lower priority task

with the largest worst-case execution time activates a job with such an execution

time just one time unit before the start of the level-k busy window.

Another key notion for RTA is the workload of a task, which quantifies its request

for resources.

Definition 20. The maximum workload of task τi,k for a given interval [t1, t1 + ∆[

is defined as:

wl+
τi,k

(t1,∆) = (d∆− θi,k(t1)

P (τi,k)
e︸ ︷︷ ︸

na

)C(τi,k) (4.2)

where θi,k(t1) = (P (τi,k)+O(τi,k)−(t1 mod P (τi,k))) mod P (τi,k) is the time duration

between t1 and the first activation of τi,k after t1, and na is the maximum number

of activations of τi,k during the duration ∆− θi,k(t1).
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t1 t2

φi θi,k

?

O(τi,k)

BWk

(a) (O(τi,k) ≥ φi).

t1 t2

φi θi,k

? ?

O(τi,k)

BWj

(b) (O(τi,k) < φi).

Figure 4.3: Illustrations of θi,k(t1) in two cases (? = ai,k(), φi = t1 mod P (τi,k), and ↑
represents releases of transaction Tri).

When the tasks of the same transaction have distinct periods, the RTA presented

in the next section makes use of the so-called hyper-period of transactions.

Definition 21. (Hyper-period). The hyper-period T+
i of a transaction Tr i :=

{τi,1, τi,2, . . . , τi,M} is the least common multiple of the periods of all its tasks. For-

mally,

T+
i = lcm{P (τi,1), P (τi,2), . . . , P (τi,M)} (4.3)

4.3 RTAs for CAN

In this section, we describe the RTAs for CAN that we use to certify the results

of the RTaW-Pegase tool. The correctness of these RTAs has been proved using

the Coq proof assistant [138] on top of the Prosa library [112]. In the following,

we consider a task τi,k and describe how the two RTAs compute an upper bound

on its worst-case response time. The presentation follows the Coq specification.

We omit proofs of lemmas and theorems and refer the interested reader to the Coq

source [32].

The two RTAs follow the same procedure:

1. Let  be a job of task τi,k.

2. For all possible scenarios3 (precise or approximate) compute an upper bound

RBWk
() of that job  by examining all level-k queueing prefixes in its corre-

sponding worst-case level-k busy window BWk().

3. The upper bound on the response time of , denoted by RBWk
(), is the max-

imum of the results for all scenarios.

Both analyses rely heavily on the analysis of busy windows and queueing prefixes

introduced in the previous section.

3A scenario represents a specific alignment among transactions that corresponds to a set of
maximum workload functions, which is used to compute an upper bound on the response time of
τi,k for that alignment. A scenario is said approximate if some maximum workload functions are
approximated.
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4.3.1 Busy window analysis

We start by describing how to analyze the response time of a task τi,k in a concrete

busy window. Assume that there exists a level-k busy window [t1, t2[ in which a job

 of τi,k is released. It can be shown that if the utilization is below 100%, it is always

possible to compute that busy window. Assume that this job is the q-th job of task

τi,k arrived in the busy window [t1, t2[. Let Qi,k(q) denote the q-th queueing prefix

of task τi,k (see Def. 18) in that busy window, then  finishes at the latest at

t1 +Qi,k(q) + ci,k()− 1

The response time of this instance is bounded by:

Ri,k() ≤ t1 +Qi,k(q) + ci,k()− 1− ai,k()

The phase of  (see Def. 19) can also been defined as

ai,k()− t1 = θi,k(t1) + (q − 1) ∗ P (τi,k)

As a result, the bound of the response time of job  can be rewritten as

Ri,k() ≤ Qi,k(q)− (θi,k(t1) + (q − 1) ∗ P (τi,k))︸ ︷︷ ︸
phase

+ci,k()− 1

Let us write BWk = t2 − t1 to denote the size of the busy window4. We know that

there are at most

q+
τi,k,BWk

=

⌈
BWk

P (τi,k)

⌉
jobs of task τi,k in that busy window. Therefore, within busy window [t1, t2[, the

WCRT of task τi,k can be locally bounded by RBWk
() defined as

max
q≤q+

τi,k,BWk

(Qi,k(q)− (θi,k(t1) + (q − 1) ∗ P (τi,k))︸ ︷︷ ︸
phase

+ci,k(q)− 1)

where q represents the q-th job of task τi,k released in the busy window.

To find the WCRT of task τi,k, we must find, for any possible scenario,

1. an upper bound on BWk;

2. an upper bound on Qi,k(q) for any q ≤ q+
τi,k,BWk

;

4Note that we denote BWk the size of the busy window that starts with t1 and omit t1 from
BWk for brevity. Similarly for the following notation Qi,k(q).
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3. a lower bound on θi,k(t1).

BWk and Qi,k(q) are defined as fixed points of two workload functions. In order

to define these functions, we must first define the notion of workload. Note that this

definition is different from the maximum workload function defined in Section 4.2.

Definition 22 (workload). The workload wlτj,l(t1,∆) of task τj,l in a time interval

[t1, t1 + ∆[ is the cumulative cost ( i.e., required service time) of its jobs released in

that interval.

BWk can be found by computing the least fixed point of the following equation:

BWk = fB(BWk)

where

fB(∆) = bk(t1,∆) +
∑

τj,l∈Trj
Trj∈Sys
l≤k

wl τj,l(t1,∆)

and bk(t1, BWk) is the blocking factor, that is the time duration at the beginning of

the busy window when a lower priority task may execute.

Similarly, Qi,k(q) can be found by computing the least fixed point of the following

equation:

Qi,k(q) = fQ(q,Qi,k(q))

where
fQ(q,Qi,k(q)) = bk(t1,∆) +

∑
τj,l∈Trj
Trj∈Sys
l<k

wl τj,l(t1,∆)

+ wl τi,k (t1, θi,k(t1) + (q − 1) ∗ P (τi,k)) + 1

A static analysis will have to find upper bounds for any possible level-k busy

window. To this aim, it is sufficient to find two functions that bound fB(∆) and

fQ(q,∆) and to compute their fixed points. The correctness of this approach is

expressed by the following lemma.

Lemma 3. Let f , g : N → N be two monotonically increasing functions and ∆1

and ∆2 be fixed points of the equations ∆ = f (∆) and ∆ = g(∆) then, if for all

x : N, f(x) ≤ g(x) and, for all x : N+, x < ∆1, we have x < f(x), then ∆1 ≤ ∆2.

Finally, computing an upper bound on the WCRT of task τi,k amounts to finding

a finite set of scenarios such that fB(∆) and fQ(q,∆) for any busy window are

bounded by the corresponding functions of a scenario in that set. The WCRT of

the task τi,k is found by taking the maximum WCRT found for all these scenarios.
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4.3.2 Precise analysis

The precise analysis considers the finite set of scenarios corresponding to the cases

where

1. all jobs in the busy window take their worst-case execution time to complete;

and

2. t1 is aligned with an activation in each transaction.

The set of possible alignments corresponds to the set of scenarios.

We must show that, for any concrete busy window starting at t1, there is a

scenario belonging to the set described above that maximizes the functions fB(∆)

and fQ(q,∆) and minimizes θi,k(t1).

First, we show a lower bound of θi,k(t1) (i.e., the time duration between t1 and

the first activation of τi,k after t1).

We prove that θi,k decreases if we right shift t1 to t′1 where the first activation

with a priority higher than or equal to k in Tr i occurs after t1, i.e., θi,k(t
′
1) ≤ θi,k(t1).

Let us denoteOt1
i the duration between the latest release of transaction Tr i before

t1 and the first activation with a priority higher than or equal to k in Tr i after t1.

As presented in Definition 20, θi,k is computed by using the modulo operation. Due

to the modulo identity property, we have θi,k(t
′
1) = θi,k(O

t1
i ), therefore,

Lemma 4 (Alignment-θ).

θi,k(O
t1
i ) ≤ θi,k(t1) (4.4)

Next, let us compute upper bounds of functions fB(∆) and fQ(q,∆). To this

aim we bound the blocking time and the workload.

It is easy to prove that the actual blocking time in a level-k busy window is

bounded by Bk (see Equation. 4.1):

Lemma 5. bk(t1, BWk) ≤ Bk

For any task τj,l in the system, and for any time instant t1 and time duration

∆, the workload of task τj,l is maximized when all its jobs take their WCET (see

Def. 20). Formally,

Lemma 6 (WCET). wl τj,l(t1,∆) ≤ wl+
τj,l

(t1,∆)

For any task τj,l in the system, and for any time instant t1 and time duration ∆,

the workload of task τj,l is maximized when we right shift the interval [t1, t1 + ∆[

to align t1 with the first activation with a priority higher than or equal to k in Tr j

after t1.
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Lemma 7 (Alignment-wl). wl+
τj,l

(t1,∆) ≤ wl+
τj,l

(Ot1
j ,∆)

With the three above lemmas, we can provide upper bounds to the functions

fB(∆) and fQ(q,∆).

Lemma 8 (Bound-fB(∆)). For any time duration ∆,

fB(∆) ≤ f+
B (∆) (4.5)

where

f+
B (∆) := Bk +

∑
Trj∈Sys

wl+
Trj

(Ot1
j ,∆) (4.6)

and

wl+
Trj

(Ot1
j ,∆) =

∑
τj,l∈Trj
l≤k

wl+
τj,l

(Ot1
j ,∆) (4.7)

Lemma 9 (Bound-fQ(q,∆)). In any level-k busy window BWk and for any time

duration ∆

fQ(q,∆) ≤ f+
Q (q,∆) (4.8)

where

f+
Q (q,∆) := Bk

+
∑

Trj∈Sys
j 6=i

wl+
Trj

(Ot1
j ,∆)

+
∑

τi,h∈Tr i
h<k

wl+
τi,h

(Ot1
i ,∆)

+ wl+
τi,k

(
Ot1
i , θi,k(O

t1
i ) + (q − 1) ∗ P (τi,k)

)
+ 1

(4.9)

Let LO t1 be a list of alignments which consists of one Ot1
j for each transaction

Tr j ∈ Sys and let BW+
k be the least fixed point of the following equation:

BW+
LO t1

= f+
B (BW+

LO t1
) (4.10)

For any q ≤ q+

BW+

LOt1

, we compute the least fixed point of equation:

Q+
LO t1

= f+
Q (q,Q+

LO t1
) (4.11)

Then, the response times of jobs of task τi,k released in the busy window [t1, t2[
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are upper bounded by RT+
LO t1

(τi,j) defined as:

max
q≤q+

BW+

LOt1

Q+
LO t1

(q)− (θi,k(O
t1
i ) + (q − 1) ∗ P (τi,k))︸ ︷︷ ︸

phase

+C(τi,k)− 1

 (4.12)

To upper bound the WCRT wcrti,k of the task τi,k, we need to test all possible

such Ot1
j for each transaction Tr j. The list LO j of candidates for Ot1

j for each

transaction Tr j is composed of all possible activations of jobs with a higher priority

than k (∈ hep(k)) in the transaction Tr j within its hyper-period T+
j :

LO j =
⋃

τj,l∈Trj∩hep(k)

{o | o = O(τj,l) + x ∗ P (τj,l), o < T+
j , x ∈ N}

This list represents all possible alignments of the busy window with an activa-

tion. The list of all scenarios is made of all combinations of alignments over all

transactions. The WCRT wcrti,k of task τi,k is bounded by the maximal WCRT of

all scenarios. Formally,

Theorem 4. Let × denote the cartesian product, then

wcrti,k ≤ max
o∈LO1×···×LON

RT+
o (τi,k)

4.3.3 Approximate analysis

For large systems, the number of precise scenarios explodes and the precise anal-

ysis quickly becomes intractable. In this subsection, we present a more efficient

but approximate analysis. It follows the same approach as presented in [142]. Its

principle is to use the approximate scenarios, which consist in the alignments of

the considered transaction Tr i only; the other transactions are represented by the

approximate workload bound function.

The approximate workload bound function of a transaction is to maximize the

workload among all possible alignments and is defined as follows.

Definition 23. The approximate workload bound function of a transaction Tr j for

the duration ∆ is defined as the maximum workload among all possible alignments

represented by LO j:

wl∗Trj(∆) = max
o∈LOj


∑

τj,l∈Trj
l≤k

wl+
τj,l

(o,∆)


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Functions f+
B (∆) and f+

Q (q,∆) are upper bounded by using wl∗Trj(∆) for each

transaction Tr j. However, in order to obtain a tighter bound, we compute the

precise workload of transaction Tr i of task τi,k (i.e., the task we analyze).

Lemma 10 (Bound-f+
B (∆)). For any time duration ∆ and any o ∈ LO i

f+
B (∆) ≤ f ∗B(∆)

where

f ∗B(∆) := Bk +
∑

Trj∈Sys
j 6=i

wl∗Trj(∆) +
∑

τi,l∈Tr i
l≤k

wl+
τi,l

(o,∆)

Lemma 11 (Bound-f+
Q (q,∆)). For any time duration ∆

f+
Q (q,∆) ≤ f ∗Q(q,∆)

where

f ∗Q(q,∆) := Bk

+
∑

Trj∈Sys
j 6=i

wl∗Trj(∆)

+
∑

τi,h∈Tr i
h<k

wl+
τi,h

(Ot1
i ,∆)

+ wl+
τi,k

(
Ot1
i , θi,k(O

t1
i ) + (q − 1) ∗ P (τi,k)

)
+ 1

(4.13)

We compute BW ∗
O
t1
i

the least fixed point of equation

BW ∗
O
t1
i

= f ∗B(BW ∗
O
t1
i

)

and, for each q ≤ q+
BW ∗

O
t1
i

, the least fixed point of equation:

Q∗
O
t1
i

= f ∗Q(q,Q∗
O
t1
i

)

then, the response time of jobs of task τi,k released in the busy window [t1, t2[ is

upper bounded by RT ∗
O
t1
i

(τi,k) defined as:

max
q≤q+

BW∗
O
t1
i

Q∗Ot1i (q)− (θi,k(O
t1
i ) + (q − 1) ∗ P (τi,k))︸ ︷︷ ︸

phase

+C(τi,k)− 1


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Then, the WCRT wcrti,k of task τi,k is the maximum of these values for all possible

alignments represented by LO i.

Theorem 5.

wcrti,k ≤ max
o∈LOi

RT ∗o (τi,k)

Compared to the precise analysis, we do not consider all possible combinations

(the cartesian product) of all alignments of all transactions.

4.3.4 Generic Analysis

We have presented two analyses for CAN:

• A precise analysis which provides a precise result but quickly becomes in-

tractable.

• An approximate analysis which is able to efficiently return approximate results.

To benefit from the advantages of both the precise analysis and the approximate

analysis, we combine the two analyses together in order to use as much as possible

the approximate version to compute the precise results. The combined analysis pre-

sented in Section 4.4.3 relies on a generic analysis that we want to present now. The

generic analysis is a generic version of the two analyses: precise and approximate.

It separately computes precise workloads and approximate workloads. Transactions

in systems are divided into two disjoint sets:

1. Setp (Contributing precise workload); Each transaction in Setp provides a

precise workload for each specific alignment between transactions among this

set. All possible alignments are considered to perform the worst-case response

time for a given task τi,k to be analyzed. Note that the transaction Tr i con-

taining the task under consideration τi,k is considered to be in this set.

2. Seta (Contributing approximate workload). Each transaction in Seta pro-

vides an approximate workload as defined in Definition 23.

Considering the two sets, functions f+
B (∆) and f+

Q (q,∆) can be upper bounded

by using wl+(∆) for transactions from Setp and wl∗(∆) for transactions from Seta.

Lemma 12 (Refined Bound-f+
B (∆)). For any time duration ∆ and any

Õ ∈ L̃OSetp := {· · · × LOp × · · · } where LOp is the set of candidates for

transaction Tr p ∈ Setp,

f+
B (∆) ≤ f̃+

B (∆)
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where

f̃+
B (∆) := Bk +

∑
Tra∈Seta

wl∗Tra(∆) +
∑

Trp∈Setp
op∈Õ

wl+
Trp

(op,∆)

Lemma 13 (Refined Bound-f+
Q (q,∆)). For any time duration ∆

f+
Q (q,∆) ≤ f̃+

Q (q,∆)

where

f̃+
Q (q,∆) := Bk

+
∑

Tra∈Seta

wl∗Tra(∆)

+
∑

Trp∈Setp
p 6=i

wl+
Trp

(Ot1
p ,∆)

+
∑

τi,h∈Tr i
h<k

wl+
τi,h

(Ot1
i ,∆)

+ wl+
τi,k

(
Ot1
i , θi,k(O

t1
i ) + (q − 1) ∗ P (τi,k)

)
+ 1

(4.14)

Let LO t1
Setp

be a list of alignments which consists of one Ot1
j for each transaction

Tr j ∈ Setp. We can prove that LO t1
Setp
∈ L̃OSetp .

Similar to the two analyses, an upper bound of BWk is obtained by computing
˜BW

+

LO
t1
Setp

, the least fixed point of equation

˜BW
+

LO
t1
Setp

= f̃+
B ( ˜BW

+

LO
t1
Setp

)

Within ˜BW
+

LO
t1
Setp

, we can compute the maximum number q+
˜BW

+

LO
t1
Setp

of activations of

task τi,k. Then, for each q ≤ q+
˜BW

+

LO
t1
Setp

, we compute the least fixed point of equation:

Q̃+

LO
t1
Setp

= f̃+
Q (q, Q̃+

LO
t1
Setp

)

Consequently, the response time of jobs of task τi,k released in the busy window

[t1, t2[ is upper bounded by

R̃T
+

LO
t1
Setp

(τi,k) = max
q≤q+

˜BW
+

LO
t1
Setp

Q̃+

LO
t1
Setp

(q)− (θi,k(O
t1
i ) + (q − 1) ∗ P (τi,k))︸ ︷︷ ︸

phase

+C(τi,k)− 1


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Finally, the WCRT wcrti,k of task τi,k is the maximum of these values for all

possible alignments represented by L̃OSetp .

Theorem 6.

wcrti,k ≤ max
LO∈L̃OSetp

R̃T
+

LO(τi,k)

This analysis is a generic version for both the precise one and the approximate

one. It provides with the same result as the precise analysis when Setp only contains

transaction Tr i, while it returns the same result as the approximate analysis when

Seta = ∅. Of course, many other combinations can be used by using different

divisions of transactions.

Its complexity is between the precise one and approximate one. In Theorem 6,

the size of L̃OSetp reflects the time complexity of this analysis. It is greater than

the size of LO i used for the approximate analysis and less than the size of {LO1 ×
· · · × LON} used for the precise analysis. Its precision lies between the precise one

and the approximate one. It is possible to obtain many different computations and

precisions by choosing how to divide transactions into Seta and Setp.

4.4 Combined Analysis and Result Certifier

In this section, we present two combined RTAs based on the previous generic com-

bined analysis. The main idea is to use the approximate version when it can be

shown that its result is the precise one.

In addition, we would like to present CertiCAN, a result certifier combining

several certified analyses, which can certify the results of industry analyzers for

relatively large systems.

For the sake of simplicity of presentation, we start with a simple version of the

full combined RTA. We call it a 2-level combined RTA, which combines two analyses

(a precise analysis and an approximate analysis). Then, we present the full version,

which is at the basis of CertiCAN.

4.4.1 2-level Combined RTA

The 2-level combined analysis is based on a precise and an approximate analyses.

Its main features are:

• It uses the approximate analysis to avoid unnecessary computations and thus

increase performance;

• It nevertheless computes the same results as the precise analysis.
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The precise analysis, Ap, considers a list of precise scenarios Sp and computes a

worst case response time for each. Its result is the maximum of all these computa-

tions, that is:

max
sp∈Sp

Ap(sp)

The approximate analysis, Aa, does the same on a list of approximate scenarios Sa .

The two key properties of a valid approximate analysis are that:

• Each approximate scenario sa dominates a list of precise scenarios written Dsa

i.e.,

maxsp∈(Dsa)Ap(sp) ≤ Aa(sa) (4.15)

• The list Sa of approximate scenarios dominates all precise scenarios of Sp .

Therefore, we know that the result of the approximate analysis is an over approxi-

mation of the precise result, that is

maxsp∈SpAp(sp) ≤ maxsa∈SaAa(sa) (4.16)

The 2-level combined analysis is based on the following observation: If the WCRT

obtained for an approximate scenario sa is less than the WCRT found so far on the

set of precise scenarios visited, then there is no need to analyze the precise scenarios

dominated by sa.

sa1 sa2

spsp sp spsp sp

2000Approximate

Precise

1600

1900 1800 1580

· · · · · ·

Figure 4.4: Scenario domination according to the 2-level combined analysis for a system
of four transactions. Each approximate scenario (orange node) dominates
1000 precise scenarios (green nodes). Unprinted nodes and the nodes in gray
represent the scenarios which do not need to be analyzed.

Example 2. Consider a system of four transactions {Tr 1,Tr 2,Tr 3,Tr 4} and the

number of alignment candidates in each transaction is 2, 10, 10, 10 respectively.

For a task of transaction Tr 1, the precise analysis has to perform 2000 scenarios for

computing a precise result, while we only need to examine 2 scenarios for obtaining

an approximate result by over-approximating the three other transactions Tr 2, Tr 3,

and Tr 4.

This example with 2 approximate scenarios and each one dominating 1000 pre-

cise scenarios is depicted in Figure 4.4, where vertices represent scenarios, edges
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represent the domination relation and labels next to vertices are their corresponding

response times. For this example, the 2-level combined analysis is called with an

initial WCRT 0 and the list [(2000, sa1); (1600, sa2)]. It proceeds as follows:

• the current approximate response time (2000) is greater than the current

WCRT (0) then the maximum response time of the 1000 dominated precise

scenarios is computed (1900) and becomes the current WCRT;

• because 1900 is greater than or equal to the next approximate response in the

list (1600), the response times of the corresponding dominated scenarios do

not need to be computed (they are necessarily smaller);

• the analysis returns 1900 which is the precise WCRT.

The 2-level combined RTA returns the same WCRT as the precise analysis but

with fewer computations i.e., it does not need to analyze the 1000 precise scenarios

dominated by the second approximate scenario sa2 .

Using this mechanism, we can derive a result certifier. Consider a R0 computed

by an industrial analyzer to be certified, we apply the approximate/precise analysis

with an initial WCRT set at R0.

4.4.2 Full Combined RTA

The problem of the 2-level combined RTA is that an approximate scenario may dom-

inate a considerable number of precise scenarios, in particular, for systems that have

many transactions. Therefore, it is often still intractable to compute a precise result

for large systems. In order to solve this issue, we add intermediate approximate

levels to get an n-level combined RTA. We refer to this version as the full combined

RTA. This

The full combined analysis is based on the generic analysis as presented in Sec-

tion 4.3.4, which is a generic version of both the precise analysis and the approximate

analysis. The generic analysis separates all transactions into two disjoint sets Setp

and Seta. It examines all precise scenarios for transactions in Setp and takes an

approximate workload bound function for each transaction in Seta.

The main idea of the full combined analysis is to refine the approximate analysis

one transaction by one transaction until finding the same result as the precise analy-

sis. For instance, consider a system {Tr 1, . . . ,Trn}, to analyze a task in transaction

Tr 1, the full combined analysis starts with the generic analysis with the setting

Setp = {Tr 1} and Seta = {Tr 2, . . . ,Trn}. The scenarios correspond to all combi-

nations L̃OSetp of precise alignments among transactions in Setp, that is represented

by LO1; Then, if Seta is not empty, we refine the result by putting one transaction
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from Seta into Setp, and now Setp = {Tr 1,Tr 2} and Seta = {Tr 3, . . . ,Trn}.
Thus, we must now check more alignments L̃OSetp = LO1 × LO2; Consequently,

the time complexity increases but the result is more precise; When all transactions

are moved into Setp, the analysis checks all combinations of precise alignments.

Therefore, it provides the same result as the precise analysis. Using this refinement

technique, we build a tree with as many levels as the number of transactions in the

system to analyze. Each level represents a setting of the generic analysis. The first

level describes the approximate analysis, while the last level expresses the precise

analysis.

Example 3. We take the same example as in Example 2 and build a 4-level tree

according to the procedure of the full combined analysis (in Figure 4.5). The full

combined analysis first computes the sorted list [(2000, sa1); (1600, sa2)] represent-

ing scenarios at Level-1 and the transaction sets Setp := {Tr 1} and Seta :=

{Tr 2,Tr 3,Tr 4} to refine. Given that Seta is not empty, we take one transaction

from Seta to Setp and compute the results for the 10 scenarios dominated by the

scenario corresponding to the biggest approximate response time (2000) at Level 1.

Then the results for the 10 scenarios are sorted by descending order. That builds a

part of Level-2; Recursively, we take one transaction from Seta to compute Level-3,

and so on until Level-4 when the Seta is empty; At Level-4, all results are pre-

cise and the largest response time is 1900. Then, 1900 becomes the current precise

WCRT; because 1900 is greater than or equal to all next approximate response at any

level (1890 at Level 3, 1700 at Level 2, 1600 at Level 1), the response times of the

corresponding dominated scenarios do not need to be computed (they are necessarily

smaller); the analysis returns 1900 which is the precise WCRT.

sa1 sa2

s ′02s ′01 s ′10

s ′′02s ′′01 s ′′10

s ′′′02s ′′′01 s ′′′10

s ′12s ′11 s ′20

s ′′12s ′′11 s ′′20

s ′′′12s ′′′11 s ′′′20

2000Level-1 (2 scenarios)

Level-2 (2× 10 scenarios)

Level-3 (2× 10× 10 scenarios)

Level-4 (2× 10× 10× 10 scenarios)

1600

1920
1700

1580

1910
1890

1680

1900 1800 1780

· · ·

· · · · · ·

· · ·

Figure 4.5: Scenario domination according to the full combined analysis for a system of
four transactions. Each approximate scenario dominates 10 less approximate
scenarios. Unprinted nodes and the nodes in gray represent the scenarios
which do not need to be analyzed.
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Consider the generic analysis Ag with a setting specified by Setp = {Tr 1} and

Seta = {Tr 2,Tr 3,Tr 4} as the Level 1 in Example 3 and Figure 4.5. Its scenar-

ios are denoted by Sr = {sa1 , sa2}. The response time for a scenario s ∈ Sr is

Ag(s), e.g., Ag(sa1) = 2000 and Ag(sa2) = 1600. The WCRT for this analysis is the

maximum response time among all its scenarios Sr , that is maxs∈Sr Ag(s) = 2000.

In order to get a more precise result, the refinement mechanism is applied if the

set Seta is not empty. It computes the scenarios dominated Ds by a scenario

s ∈ Sr e.g., Dsa1
= {s′01, s

′
02, · · · , s′10}. The result of this refinement depends on

the selected transaction to refine from Seta. We discuss the order in which trans-

actions are chosen for the refinement in Section 4.5.3. After having applied the

refinement technique, the two transaction sets are updated as Setp = {Tr 1,Tr 2}
and Seta = {Tr 3,Tr 4}, which it the setting for the new level i.e., Level 2 in Fig-

ure 4.5. The scenarios at the new level are the concatenations DSr of all Ds such

that s ∈ Sr . And the WCRT computed by the generic analysis with the new setting

is maxs′∈DSr
Ag(s ′) = 1920.

We can prove that the response time for any scenario in Ds is smaller than the

one for its dominant scenario s , formally,

max
s′∈Ds

Ag(s ′) ≤ Ag(s)

Further, the analysis with the new setting obtained using the refinement mechanism

can find a more precise result than the previous setting, formally,

max
s′∈DSr

Ag(s ′) ≤ max
s∈Sr

Ag(s)

Overall, the procedure of the full combined analysis is similar to the 2-level

combined analysis: It uses the computed results from approximate scenarios to

help the refinement procedure then to reduce the number of scenarios to analyze.

Generally, it can be seen as a branch-and-bound algorithm applied to a tree.

The structure of the full combined analysis is shown in Algorithm 1. First,

the generic analysis is first applied to each scenario at the first level (we denote

S1 the set of scenarios at the first level). These results (i.e., one WCRT for each

scenario) paired with their corresponding scenario are sorted in descending order

lS := sort(map(λs.(Ag(s), s)) S1) as shown at Line 3 in Algorithm 1. Sorting the list

in that order leads to considering the scenario with the largest approximate WCRT

first. This heuristic relies on the intuition that the largest precise WCRT (which is

the value to be found) is more likely to be dominated by a large approximate WCRT

and therefore, will be found earlier with that ordering.
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Algorithm 1 Combined RTA

1: % R denotes the current WCRT, its initial value is 0
2: % lS denotes a list of scenarios (at the first level) paired with their corresponding

WCRT
3: lS := sort(map(λs.(Ag(s), s)) S1)
4: % ltr denotes a list of transactions (i.e., Seta)
5: procedure CRTA(R, lS, ltr)
6: match lS with
7: % lS empty: returns the WCRT
8: | nil ⇒ return R
9: % otherwise: takes one element to analyze

10: |(r, s) :: l′S ⇒
11: % if the current WCRT is greater than the approximate result r,
12: then returns the current WCRT
13: if R ≥ r then return R
14: else
15: match ltr with
16: % if ltr is empty, returns max(r, R)
17: | nil ⇒ return max(r, R)
18: % otherwise, takes one transaction to refine
19: |t :: l′tr ⇒
20: % computes the dominated scenarios as well as their results,
21: and sorts their results
22: llocal ← (sort (map (λs.(Ag(s), s)) (refine s ltr)));
23: % computes the result for those dominated scenarios
24: Rlocal ← CRTA(R, llocal, l

′
tr);

25: % recursively, analyzes the remaining elements l′S of the list lS
26: CRTA(Rlocal, l

′
S, ltr)

27: end if
28: end procedure
29: CRTA(0, lS, ltr)
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Then, at Line 5 in Algorithm 1, the combined RTA (CRTA) is called with 0 as

the initial result (noted R, it will be updated after each iteration), the list lS :=

sort (map (λs.(Ag(s), s)) S1), and a list ltr of transactions to be refined (that are

transactions in Seta). CRTA considers each approximate WCRT of list lS in turn

and starts with the first member (r, s) of lS. Note that r = Ag(s) is the WCRT for

scenario s. If R ≥ r then it stops and returns R (it is not the case when R = 0

as the initial input); Otherwise, at Line 15, examine whether there are still some

transactions in ltr to be refined. If ltr is empty, that means that all transactions

have been taken into account precisely and the current WCRT becomes max(r, R);

If there are still transactions in ltr, for the current scenario s , at Line 22, the function

refine compute its dominated scenarios as well as their results using the refinement

mechanism and sort their results by descending order. These dominated scenarios

paired with their results are stored in the list llocal. Next we calculate the local

WCRT, noted Rlocal, for that list. Recursively, CRTA proceeds with the next element

of the initial list and the local result Rlocal until it finds the global WCRT, i.e., the

precise WCRT. We have proven that the result returned by the combined analysis

is the same as the one computed by the precise analysis.

4.4.3 Result Certifier

From the full combined RTA, we derive our result certifier, CertiCAN, which is able

to check results of CAN analysis tools.

The algorithm of CertiCAN is shown in Algorithm 2. To check that R0 is equal

to or larger than the precise WCRT, CertiCAN considers each approximate WCRT

of the argument list (i.e., sort (map (λs.(Ag(s), s)) S1), noted by lS) in turn and

starts with the first member (r, s) of lS. If the current WCRT is equal to or less

than R0 then the certification is completed (and returns True) since all remaining

approximate WCRTs (and the WCRTs of the corresponding dominated scenarios) of

the list lS are also less than R0. Otherwise, it examines whether there are still some

transactions in ltr to be refined. If ltr is empty, it means that there is no transaction

left to be refined and the current WCRT is a precise result, consequently if R0

is smaller than that precise WCRT, CertiCAN returns False. Otherwise, for the

scenario s , the function refine computes the dominated scenarios as well as their

corresponding WCRT. These dominated scenarios paired with their corresponding

WCRT are stored in the list llocal. Then, CertiCAN checks results computed using

that list. If the result is False then the certification procedure completes and returns

False. Otherwise, CertiCAN proceeds, recursively, with the next element of the

initial list lS.
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Algorithm 2 The CertiCAN Result Certifier

R0 contains the WCRT to certify

1: % lS denotes a list of scenarios (at the first level) paired with their corresponding
WCRT

2: lS := sort(map(λs.(Ag(s), s)) S1)
3: % ltr denotes a list of transactions (i.e., Seta)
4: procedure CertiCAN(lS, ltr)
5: match lS with
6: % if lS is empty, returns True
7: | nil ⇒ return True
8: % otherwise, takes one element of lS to analyze
9: |(r, s) :: l′S ⇒

10: % if the WCRT to certify is greater than the approximate result r,
11: then returns True
12: if R0 ≥ r then return True
13: else
14: match ltr with
15: % if ltr is empty, returns False
16: | nil ⇒ False
17: % otherwise, takes one transaction to refine
18: |t :: l′tr ⇒
19: % computes the dominated scenarios as well as their results,
20: and sorts their results
21: llocal ← (sort (map (λs.(Ag(s), s)) (refine s ltr)));
22: % certifies the result for those dominated scenarios
23: Rlocal ← CertiCAN(llocal, l

′
tr);

24: if Rlocal = False then return False
25: else
26: % recursively, certifies the results for the remaining elements l′S
27: CertiCAN(l′S, ltr)
28: end if
29: end if
30: end procedure
31: CertiCAN((sort (map (λs.(Ag(s), s)) S1)), ltr)



4.5. OPTIMIZATION 85

If CertiCAN returns True then it can be formally proved that R0 is greater than

or equal to the precise WCRT i.e., the result produced by the precise analysis.

Our combined RTA and CertiCAN follow a principle that is similar to the ab-

straction refinement method used in [131, 132]. In particular, these two papers

already use different abstraction levels to compute precise bounds with increased

efficiency. The main difference is that [131] deals with the analysis of digraph tasks

with constrained deadlines, which does not fit the CAN context. Also, this approach

proves to be particularly well suited for result certification.

4.5 Optimization

In order for CertiCAN to certify results for large systems, we present three opti-

mizations in this section. They are based on the following observations:

1. Within one transaction, there are possibly many alignments. Each alignment

can be considered as a specific workload function to analyze as shown in Fig-

ure 4.6a. Therefore, we can determine the domination relation between align-

ments by comparing their corresponding workload functions. One can thus

remove dominated alignment candidates without loss of precision;

2. During the analysis, some functions are called with the same arguments re-

peatedly. This can be avoided using some techniques like lookup tables, mem-

oization;

3. The order of transactions considered for refinement affects the analysis speed.

We have investigated several heuristics to accelerate the analysis.

4.5.1 Removing dominated alignment candidates

Each alignment of one transaction corresponds to a workload function as shown in

Figure 4.6. For instance, for the alignment represented by the red dashed line (at

time 2) in Figure 4.6a, its cumulated workload for a given duration ∆ is wl1(∆) in

Figure 4.6b. Thus, a transaction can be considered as a set of workload functions to

analyze. We design an algorithm that filters out dominated alignment candidates

(i.e., workload functions) from each transaction. For example, we can remove the

function wl5 because its value is always smaller than the one of wl1. Then we prove

that the filter is correct, that is, it preserves the final results.

First, let us introduce some definitions expressing relations between workload

functions and between scenarios.
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Figure 4.6: Abstraction of one transaction to workload functions.

Definition 24 (Strong workload domination). A workload function wl1 is said to

strongly dominate the workload function wl2, denoted wl1 � wl2, if and only if for

any duration ∆ ∈ N ,

wl1(∆) ≥ wl2(∆)

Definition 25 (Weak workload domination). A workload function wl1 is said to

weakly dominate the workload function wl2 w.r.t. a duration L, denoted wl1 �
L

wl2,

if and only if for any duration ∆ ∈ [0, L],

wl1(∆) ≥ wl2(∆)

Note that to determine the weak domination relation between workload functions

for a set of periodic tasks, it is sufficient to set L as the hyper-period of all task

periods.

A scenario corresponding to a specific alignment can be considered as a collection

of workload functions, which consist of one function from each transaction. We

generalize the notion of domination to scenarios.

Definition 26 (Scenario workload). Consider a scenario s corresponding to a col-

lection of n workload functions {wl1,wl2, . . . ,wln}, for a given time duration ∆, its

workload is the sum of all workloads provided by the n workload functions. Formally,

wl s(∆) =
n∑
i=1

wl i(∆)
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Definition 27 (Scenario domination). A scenario s1 is said to dominate the scenario

s2, denoted s1 � s2, if and only if the response time computed for s1 is greater than

the one obtained for s2. Formally,

s1 � s2 ⇐⇒ R̃T
+

s1
≥ R̃T

+

s2

Lemma 14 (Workload function domination implies scenario domination). Consider

two scenarios s1 and s2, their workload function are wl s1 and wl s2, respectively. Let

L be the least fixed point of equation f(L) = Bk +
∑

Tr∈Sys wl∗Tr(L). If wl s1 weakly

dominates wl s2 w.r.t. L, then R̃T
+

s1
≥ R̃T

+

s2
. As a result,

wl s1 �
L

wl s2 =⇒ s1 � s2 (4.17)

In order to determine the domination relations between scenarios, we compute

the weak domination relations between their corresponding workload functions.

Then, we design a procedure to filter out dominated functions using domination

relations and prove its correctness.

That algorithm relies on three simple functions:

1. Filter(lf , f ) removes the function f from the list lf of functions if f is a member

of that list;

2. Compare(wl1, wl2, L) computes whether wl1 is weakly dominated by wl2

w.r.t. L. It returns true if wl1 is dominated by wl2 for any ∆ ∈ [0, L] and false

otherwise;

3. DominatedByOthers(f, lf , L), defined in Algorithm 3, computes whether a

function f is weakly (w.r.t. L) dominated by any function except itself from

a list lf of functions.

The main procedure, presented in Algorithm 4, proceeds as follows:

• It starts with n workload functions f0, .., fn−1 to be filtered and a length L for

computing their weak domination relations;

• DominantFunction is called to filter out all dominated functions from lf (Line

15). It takes two lists (initially, they are the same i.e., lf ) and a number L;

it returns the list of all dominant functions of lf (i.e., the functions which are

not dominated by any other function from lf );

• if l2 is empty then it returns the list l1 (Line 4), otherwise it checks whether

the first function wl from l2 is dominated by any other function from l1 (Line

8);
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Algorithm 3 Dominated by Others

1: f denotes a workload function
2: lf denotes a list of workload functions f0, f1, .., fn−1

3: L denotes the sufficient length for determining the weak domination relations
between workload functions from the list lf

4: procedure DominatedByOthers(f, lf , L)
5: match lf with
6: | nil ⇒ false
7: |f ′ :: l′f ⇒
8: % if f ′ is f itself (note that each function has an identifier)
9: if f ′ isf then

10: % then examine other functions l′f
return DominatedByOthers(f, l′f , L)

11: % else if f is dominated by f ′ return true
12: else if Compare(f, f ′, L) then

return true
13: else
14: % else examine other functions l′f

return DominatedByOthers(f, l′f , L)
15: end if
16: end procedure

• if wl is dominated by another function of l1 then it removes wl from l1 and

continues to examine the functions l′2 by calling DominantFunction (Line 9);

otherwise,

• otherwise, it examines the remaining functions l′2 without changing l1 (Line

11).

As mentioned before, the LCM of task periods is one sufficient length for deter-

mining weak domination relation among workload functions. In order to increase

the tool efficiency, we have proven the smallest sufficient length (SSL) for filtering

out the dominated workload functions by computing the biggest busy window. We

will compare the efficiency of the filter with LCM and the one with SSL in the next

section. This optimization has been applied it in our tool.

4.5.2 Avoiding recomputations

To analyze the response time of one task, we need to examine many scenarios, which

are actually combinations of workload functions. And to certify a system, we need

to analyze all tasks. Workload functions will be evaluated numerous times including

many recomputations. We can certainly improve this issue by applying techniques

like lookup tables and memoization. For the sake of simplicity of proofs, we used
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Algorithm 4 Dominant Function Filter

1: lf denotes a list of workload functions f0, f1, .., fn−1 to filter
2: L denotes the sufficient length for determining the weak domination relations

between workload functions from the list lf
3: procedure DominantFunction(l1, l2, L)
4: match l2 with
5: | nil ⇒ l1
6: |wl :: l′2 ⇒
7: % if wl is dominated by any other function from l1
8: if DominatedByOthers(wl, l1, L) then
9: % then wl is removed from l1 then the functions l′2 are examined

return DominantFunction(Filter(l1 ,wl), l′2, L)
10: else
11: % else examine the functions l′2

return DominantFunction(l1, l
′
2, L)

12: end if
13: end procedure

14: % ldomf contains all dominant functions for the list lf
15: ldomf := DominantFunction(lf , lf , L)

lookup tables to store results of workload functions.

For each transaction, we can pre-calculate each workload function up to a large

enough value5, e.g., its hyper period T+ and store all values in a table. When

a specific value is demanded, we search from this table, instead of recalculating.

However, it is necessary to compute all workload values for the domain [0, T+[. We

only compute workloads for discontinued instants i.e., when their values change.

For instance, in Figure 4.6b, the instants when wl1 must be computed are just 1, 2,

7, 11, 13, and similarly 1, 5, 7, 13, 14 for wl2.

This optimization has been implemented and its correctness has been proven.

4.5.3 Heuristic algorithms

The analysis starts with approximate results, then it refines them by examining

precise alignments one transaction by one transaction. The question is: which

transaction should be selected first to analyze? We investigated whether the order

in which transactions are precisely considered (i.e., put in the set Setp) affects the

efficiency of the combined analysis and CertiCAN. For this, we implemented two

different heuristics:

5It should be greater than the length of any busy window computed in analyses. In our imple-
mentation, it is the length of the largest busy window that is computed when analyzing the lowest
task. We have proven its sufficiency.
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• Static order. We sort transactions to refine by putting the transaction with the

highest utilization first before performing the analysis. The intuition is that

when computing an approximate workload, the higher the utilization of the

transaction, the more pessimistic results probably are. In other words, if the

transaction with the highest utilization is considered first for each refinement,

the result is probably refined the most. Therefore, there will be more chances

to speed up the analysis by using the utilization-sorted transaction list to

refine. This configuration costs very little and works for most systems. This

strategy is used by our tool. The gain of this optimization depends on the

utilization distribution over transactions.

• Dynamic order. In the case where the utilization of the different transactions

is similar, the static order does not provide significant benefit. In this case,

we tried a dynamic order. For each refinement, we examine each transaction

to refine (i.e., compute the corresponding dominated scenarios as well as their

WCRT) then choose the transaction with the largest WCRT to analyze. Thus,

it needs quite a lot more computations to find the transaction at each step. In

some cases, it speeds up the analysis, but slows it down for other cases. This

optimization is not currently used in our tool.

4.6 Experimental Evaluation

Having completed the Coq formalization and correctness proofs of our analyses, we

used the Coq extraction feature to obtain four certified tools: a precise analyzer6,

an approximate analyzer, a combined analyzer, and CertiCAN, the result certifier

based on the combined analysis. Note that all these extracted analyzers implement

the optimizations presented in Section 4.5.

In this section, we evaluate these certified tools in terms of performance and

scalability.

The evaluated task sets are generated by NETCARBENCH7, a benchmark gener-

ator for automotive message sets. This generator is used in the design and configura-

tion of CAN and FlexRay communication systems. The following experimentations

have been performed on 3000 systems that were generated by NETCARBENCH us-

ing a set of parameters presented in Section 4.1. More detail about configuration pa-

rameters8 can be found in our NETCARBENCH configuration file in Appendix A.1.

6Given that the precise analyzer has a very high time complexity and can only deal with small
systems, it is not considered in the following experimentations which focus on large systems.

7http://www.netcarbench.org/
8These parameters are provided by an expert from automotive domain. Note that the utilization

http://www.netcarbench.org/
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Table 4.1: Configuration parameters for NETCARBENCH generator.

ECUs 7 - 15
Utilization 40% - 60%
Period {5, 10, 20, 50, 100, 200, 500, 1000}
Offset random with granularity = 5
Priority unique, arbitrary distribution
Transmission speed 500 kbits/s

In all figures, all results are obtained from an Intel Core i7@2.6GHz, 16Gb, 64bits

laptop.

4.6.1 Evaluation of analyzers

First, we compare the three analyzers: the approximate analyzer, the combined

analyzer, and RTaW-Pegase.
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Figure 4.7: Comparison between certified analyzers and RTaW-Pegase

Figure 4.7 shows that the combined analyzer has a remarkable performance. It

returns precise results and its time efficiency is close to the one of the approximate

analyzer. Compared to Pegase, the combined analyzer has a better scalability. For

the most complex systems, Pegase uses approximately two hours to compute a re-

sult whereas the combined analyzer needs less than 30 seconds to provide the same

result. The main reason is that the combined analyzer combines two analyses (a

of the first ECU is allocated 30% of the whole utilization, e.g., its 18% if the system utilization is
60%



92 CHAPTER 4. CERTIFICATION FOR CAN ANALYSES

precise and an approximate) in an optimized way that analyzes scenarios on de-

mand. Other reasons may be that our optimizations avoid re-computations as much

as possible, e.g., by calculating the discontinued points and removing dominated

scenarios. On the other hand, Pegase is more efficient than the combined analyzer

on simple systems. One reason is that Pegase is written in C whereas the analyzer

is extracted from Coq proofs in OCaml.
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Figure 4.8: Evaluated scenarios by the certified analyzers

During our experimentations, we recorded the number of scenarios evaluated by

the certified tools as showed in Figure 4.8. The number of scenarios for the precise

analyzer is theoretically computed to be compared with the two other analyzers.

This figure shows again that the combined analyzer has a good scalability. It is

comparable to the approximate analyzer. Note that the trend of the combined and

approximate analyzers’ curves is similar to the one in Figure 4.7 because the runtime

of the analyses depends directly on the number of scenarios that are evaluated.

4.6.2 CertiCAN vs Combined analyzer

We evaluate CertiCAN by verifying the results produced by the industrial tool

RTaW-Pegase. We compared the performance of CertiCAN and the combined ana-

lyzer in Table 4.2.

The results in Table 4.2 show that CertiCAN is as good as the combined analyzer

which is not surprising since they both share the same techniques and optimizations.

Knowing the result to check, CertiCAN is a bit more efficient than the combined

analyzer (by 17%). Both tools return a result in less than four seconds for most
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Table 4.2: Performance comparison between CertiCAN and the combined analyzer.

Tool min mean median max

# Evaluated scenarios
CertiCAN 496 3573 3330 17136

Combined Analyzer 855 4392 4082 25126

Runtime (s)
CertiCAN 0.10 3.67 3.09 24.29

Combined Analyzer 0.14 3.85 3.23 29.15

systems. For the most complex systems, they both only take less than half a minute.

Note that the number of evaluated scenarios is not exactly proportional with the

runtime because different scenarios may have a different time complexity, e.g., an

approximate scenario requires more computations to find the maximum workload

among all its workload functions.

In addition, we evaluated 100 more complex systems with the configuration (uti-

lization = 60 - 80 %, 15 - 20 ECUs) presented in Appendix A.2. In this experiment,

we verify the system schedulability, i.e., using task deadlines as CertiCAN inputs.

With this setting, CertiCAN is 45 times more efficient than the combined analyzer.

According to all our experiments, we found that both the combined analyzer

and CertiCAN have a high scalability. As far as we know, in modern cars, no more

than 15-20 ECUs are connected to a single CAN bus [107, 113]. This indicates that

CertiCAN can provide formal guarantees for industrial CAN bus analyzers.

4.6.3 Impact of optimizations

Additionally, we have generated 100 systems using the same configuration presented

in Table 4.2 then evaluated them to understand the impact of optimizations. The

result is presented in Table 4.3. CertiCAN with 2 levels cannot deal with large

systems, using many levels of refinement and a filter for filtering out dominated

functions makes it possible. The filter with SSL (smallest sufficient length) is 5 - 8

times more efficient than the one with LCM. The optimization of avoiding recom-

putations9 contributes a factor of 15 - 25.

Table 4.3: Impact of optimizations.

Statistic 2 levels
Many Levels
Filter-LCM

Without AVO

Many Levels
Filter-SSL

Without AVO

Many Levels
Filter-LCM
With AVO

Many Levels
Filter-SSL
With AVO

CertiCAN runtime (s)
Mean - 492 61 20 4
Max - 6435 329 831 15

9In Table 4.3, AVO stands for avoiding recomputations, i.e., lookup table, discontinued points.
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4.7 Discussion

4.7.1 Experience with the Coq proof assistant

We have formally proven in Coq the correctness of the precise, approximate and

generic RTAs presented in Section 4.3. Our proofs build upon the Prosa library [112]

and use the basic definitions that it provides (task, job, arrival sequence, schedule,

busy window, etc.). The combined analyzer and the result certifier (see Section 4.4.3)

as well as their optimizations have also been specified and proved correct in Coq.

Note that if proofs are machine-checked, this cannot be the case for specifications

and theorem declarations. Besides using some basic definitions from Prosa, we also

had to define the FPNP scheduling policy and the task model. Those specifications

are quite small and simple compared to the proofs and can be scrutinized by the

interested reader [32].

Table 4.4 illustrates the complexity of the proof effort (note that it excludes the

proof from Prosa).

Table 4.4: Proof effort for certifying CAN analyses.

Feature LOC
System model (with proof) 1000
Workload property & removing re-computation 3142
Fixed point property 700
Busy window analysis 3037
Generic analysis 294
Combined analysis 1680
Combination property 545
Approximate and precise analyses 432
Candidate property 1562
Removing dominated candidates 1060
Analyzers & CertiCAN (with proof) 4000
Arithmetic proofs 1400
Total 18852

Formalizing these developments in Coq requires more time and effort than on

paper, but it also brings important benefits:

• It gives formal guarantees about the soundness of the specification and the

absence of flaws in the proofs;

• It provides a better understanding of the role of each assumption, which helps

to generalize proofs;
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• The Coq extraction technique permits to produce formally verified tools (such

as analyzers and certifiers) in the form of OCaml programs.

4.7.2 Possible extensions of the approach

One of the most interesting by-products is that formalization often leads to more

general and reusable proofs. For instance, our proof of busy window analysis does

not rely on a specific task model but on abstract functions. It can be reused for

other task models as long as we have the corresponding abstract functions.

Also, we defined two RTAs by instantiating the abstract functions with two

different workload functions. Actually, the approach could be applied to get other

RTAs with different levels of approximation. The combined analysis and certifier

depend of generic properties (domination relations) that do not rely on the specific

real-time model under study. The correctness proofs for the combined algorithm

would apply to many other kinds of analyses possibly disconnected from real-time

theories.

4.8 Conclusion

In this chapter, we have presented CertiCAN, a tool extracted from Coq proofs for

the certification of CAN analysis results.

The analysis underlying CertiCAN is based on a combined use of two well-known

CAN analysis techniques, one precise and the other approximate. The resulting

analysis is as tight as the precise analysis, but much faster. All three analyses have

been proven correct in Coq on top of the Prosa library.

We have shown that CertiCAN is efficient enough in terms of computation time,

the CertiCAN approach, which provides result certification rather than tool certi-

fication, is a realistic solution for industry practice. The reason for this is twofold:

First, it is flexible and light-weight in the sense that it does not depend on the inter-

nal structure of the analysis tool that it complements. Second, it is efficient enough

in terms of computation time. In particular, it is able to certify results computed by

RTaW-Pegase, an industrial CAN analysis tool, even for large systems. This work

suggests RTaW-Pegase implement all the optimizations proven in this chapter to

make it more efficient.

We believe that this work represents a significant step toward a formal certifi-

cation of real-time systems analysis results in general. In particular, the underlying

technique can be reused for any other system model for which there exist RTAs with

different levels of precision.



Chapter 5

Generalized Digraph Model

Applying theorem proving in the formal verification of RTAs requires a large proof

effort. It is time consuming to prove one RTA. To deal with this issue, we pro-

pose a very expressive task model and prove its corresponding RTA, then many

more specific (standard or novel) analyses boil down to specifying and proving their

translations into that model.

In this chapter, we propose a task model that generalizes the digraph model

and its corresponding analysis for fixed-priority scheduling with limited preemption.

A task may consist of several types of jobs (also called sub-tasks), each with its

own WCET, priority, non-preemptable segments and maximum jitter. With such

parameters, it is expressive enough to model intra- and inter- tasks dependencies.

It encompasses many task model such as periodic/sporadic taks, arrival curves,

digraph tasks, transactions with offsets and so on. We present the correctness proof

of the analysis in a way amenable to its formalization in the Coq proof assistant.
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5.1 Motivation and Objective

Formal verification of real-time analyses with the help of a proof assistant like Coq

has become an active field of research in the real-time community because it pro-

vides high confidence in the correctness of the analyses. However, it requires an

important human effort, so making proofs general, generic, and/or reusable is of

great importance.

Our objective is to propose a very expressive task model and to prove its corre-

sponding RTA, such that many more specific (standard or novel) analyses boil down

to specifying and proving their translations into that model. There exists a wide

variety of task models and analyses for such policies. However, most of these models

are incomparable and very few can describe both intra- and inter- task dependen-

cies. The DRT task model [129] seems a good candidate for modeling intra-task

dependencies, but its ability to capture inter-task dependencies is very limited. It

cannot, for example, capture Tindell’s offset model [142] presented in Section 2.1.
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In this chapter, we propose a task model that generalizes the DRT model and its

corresponding RTA, with the restriction that we consider only discrete time while

some results about DRT apply also to dense time. A task may consist of several

types of jobs (also known as sub-tasks), each with its own WCET, priority, non-

preemptable segments (i.e., its WCET is separated into several execution segments,

it cannot be preempted within a segment) and jitter. Our model can capture de-

pendencies between jobs of the same task as well as jobs of different tasks. We focus

on fixed-priority scheduling policies and our model can encompass preemptive and

non-preemptive models, as well as limited preemption. Despite being much more

general, the RTA for our model is not significantly more complex than the origi-

nal one. Also, it underlines similarities between existing analyses, in particular the

analysis for the DRT model and Tindell’s offset model.

We present the correctness proof of the analysis in a way amenable to its for-

malization in the Coq proof assistant and in the Prosa library. For the time being,

the proof of the RTA of the general model within the Coq proof assistant is not

yet complete. When it is certified, obtaining a certified more specific RTA will boil

down to specifying and proving its translation into our model. Note that it may

need more work to get an efficient RTA analyzer. Furthermore, expressing many

different RTAs in a common framework paves the way for formal comparisons and

generalizations (e.g., design of novel RTAs).

The main contributions are:

• A general task model which encompasses complex dependencies between jobs

and tasks;

• A RTA for that model;

• A correctness proof of that RTA amenable to its formalization in Coq and

applicable to other task models.

5.2 System Behavior

In order to make the work amenable to its formalization in Coq, more precisely in

Prosa, we begin with specifying system behaviors. We target concrete systems im-

plemented as a set of tasks executing on a uniprocessor. The execution proceeds ac-

cording to a job-level fixed-priority limited preemptive (JFPLP) scheduling policy. A

JFPLP scheduler arbitrates between jobs competing for processor time by choosing

the highest priority job, but it can only preempt a running job at some predefined

execution points. In other words, each job is decomposed into non-preemptable
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segments. This model subsumes the FPP and FPNP policies, and permits mixed

policies [1]. A task may consist of different types of jobs (also called sub-tasks). Jobs

of the same type have similar properties, in particular they have the same priority.

5.2.1 Definition of system behavior

We assume a set T of type names (types, for short). Each type entails a number of

characteristics that are described in Section 5.3.

Let us recall the job definition specified in Section 2.4, a job is an instance of a

task with a positive cost. We now generalize and enrich this definition using some

functions in order to make it more expressive.

Definition 28 (Enriched Job). A job  is specified by:

• its type v() ∈ T;

• its priority k() ∈ N inherited from its type; A greater number means a higher

priority.

• its arrival time a() ∈ N;

• its jitter j() ∈ N (also called release delay);

• a vector ~c() = 〈c1, . . . , cs〉, ci ∈ N+, of durations corresponding to the cost

( i.e., execution time) of each non-preemptable segment.

The cost (or required service time) of a job  as above is c() =
∑

1≤i≤s ci. The

release time of  is r() := a() + j().

We do not exclude different jobs from having the same parameters, but we assume

that they can be distinguished (e.g., through an identifier). We also assume that the

set of jobs is partitioned into tasks. The behavior of a system is described using a set

of executions defined by two infinite traces as used in Prosa: a job arrival sequence

and a schedule presented in Section 2.4. The following schedule is a uniprocessor

schedule.

Definition 29 (Job arrival sequence). A job arrival sequence is a function ρ map-

ping any time instant t to a finite (possibly empty) set of jobs ρ(t) such that  ∈ ρ(t)

iff a() = t.

Definition 30 (Schedule). A schedule is a partial function σ which maps any time

instant t to the job (if any) that is scheduled ( i.e., receives service) at t. A job  can

be scheduled only when it is pending i.e., it is released but not finished.

Definition 31 (JFPLP schedule). A JFPLP schedule is a schedule such that the job

that is scheduled is: either the job that is already executing one of its non-preemptable
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segments, or a job that has the highest priority h among pending jobs. If there are

several pending jobs with priority h, a task is arbitrarily selected among those with

such jobs; the chosen job is then the first released job with priority h in this task

(FIFO policy).

Note that once the set of jobs and the function arrival time a are given, ρ

is uniquely determined. A job  completes when it has received as much service

time as it required, which is determined by the schedule. To recall some notations,

we denote its completion time by end(). The response time of  is defined as

R := end()− a(). From its release time and until completion, a job is said to be

pending.

5.2.2 Additional definitions and notations

In the following, we introduce additional definitions and notations needed in the

following section.

Definition 32 (Job release sequence). Let ρ be a job arrival sequence. The corre-

sponding job release sequence, written ρ̂, is defined as ρ̂(t) := { | ∃t′,  ∈ ρ(t′) ∧ t =

t′ + j()}. We have  ∈ ρ̂(t) iff r() = t.

That is, the released sequence is the arrival sequence plus its jitters. For instance,

[(t1, {1, 2}), (t2, {3}), . . .] denotes a sequence ρ such that ρ(t1) = {1, 2}, ρ(t2) =

{3} and ρ(t) = ∅ for all instants t absent from the list.

The restriction of a job arrival sequence ρ to a time interval [t1, t2[ is denoted

ρ/[t1,t2[. The same applies to job release sequences.

For a given set of jobs and a time duration, we can compute its requested work-

load by a job arrival sequence and its received service by a schedule.

Definition 33 (workload). Let ρ be a job arrival sequence and V a set of job types.

The workload wlV,ρ of jobs with type in V in a time interval [t, t+∆[ is the cumulative

cost ( i.e., required service time) of such jobs released in that interval. Formally,

wlV,ρ(t,∆) :=
∑
:v∈V

t≤r()<t+∆

c() (5.1)

Definition 34 (Service time). Let σ be a schedule and V a set of job types. The

service time servV,σ received by jobs with type in V in a time interval [t1, t1 + ∆[ is

servV,σ(t1,∆) :=
∑

t∈[t1,t1+∆[
v(σ(t))∈V

1 (5.2)
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The two definitions of workload and service time are used to perform a generic

analysis using the concept of busy window which has been formally specified in

Section 4.2 and which we recall here. The following definitions are implicitly pa-

rameterized by a job arrival sequence ρ and a schedule σ.

Definition 35 (Level-k quiet time). An instant t is said to be a level-k quiet time if

all jobs of priority higher than or equal to k released strictly before t have completed

at t.

Definition 36 (Level-k busy window). A time interval [t1, t2[ is said to be a level-k

busy window if:

1. t1 and t2 are level-k quiet times;

2. there is no level-k quiet time in ]t1, t2[; and

3. at least one job with a priority higher than or equal to k is released in [t1, t2[.

The last condition excludes degenerate cases of busy windows in which no job is

scheduled. Since several jobs with the same type may be released in the same busy

window, an additional concept of queueing prefix is required and has been presented

in Chapter 4. We adapt it to task models considering non-preemptable segments.

Definition 37 (Queueing prefix). The q-th queueing prefix of jobs of type v in a

level-k busy window [t1, t2[ is the time interval [t1, tq] where tq is the instant at which

the last non-preemptable segment of the q-th job of type v receives its first service

( i.e., is scheduled for the first time).

Example 4. Figure 5.1 presents a job arrival sequence ρ (split into the two task-

level sequences ρ1 and ρ2) in a system made of two tasks. One task produces jobs

of type v, priority 1, jitter 0 and segments 〈2, 2〉 and two consecutive arrival times

of its jobs are separated by at least 9 time units. The other task produces jobs of

priority 2. The three first queueing prefixes of jobs of type v in the level-1 busy

window [0, 27[ are Qv,ρ(1), Qv,ρ(2) and Qv,ρ(3).

Qv,ρ(1)

Qv,ρ(2)

Qv,ρ(3)

ρ1

ρ2

0 5 10 15 20 25

Figure 5.1: Queueing prefixes of jobs of type v.
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5.3 Generalized Digraph Model

Our task model, called the generalized digraph (Gd) model, is an extension of the

digraph model [129] (presented in Section 2.1) with job level priorities, possibly null

inter-arrival times, jitter and non-preemptable segments.

5.3.1 Syntax

A system consists of a set of n independent tasks Σ := {G1, . . . , Gn}, each task

being specified by a graph Gi := (Vi, Ei) where:

• Vi is a set of vertices representing different job types;

• Ei is a set of edges such that an edge connecting two vertices v1 and v2 of Vi

is labeled with a duration d(v1, v2) ∈ N representing the minimum inter-arrival time

between jobs of types v1 and v2.

A job type v is characterized by the following parameters:

• K(v) ∈ N defines the priority of jobs of type v;

• J(v) ∈ N specifies the maximum jitter (i.e., delay between arrival and release

time) for jobs of type v;

• ~C(v) = 〈C1, . . . ,Cs〉 is a vector specifying the maximum cost of each non-

preemptable segment of jobs of type v; C(v) =
∑s

i=1 Ci defines the maximum cost

of jobs of type v.

Note that jobs have arbitrary deadlines and the RTA presented in this chapter does

not rely on this parameter.

The sets of vertices Vi are assumed to be disjoint (i.e., tasks activate jobs of

different types). The set of vertices of the complete system is denoted by VΣ =⋃n
i=1 Vi. For simplicity and to improve readability, we assume in this chapter that

the jitter is constrained1: the jitter of any vertex v ∈ VΣ is smaller than or equal to

the minimum inter-arrival time labeled on any edge going out of v.

In contrast with the standard digraph task model, null inter-arrival times are

allowed. We however disallow tasks (i.e., graphs) that contain null cycles (which

would permit an infinite nomber of job arrivals at the same instant). This constraint

is easily verified statically.

Example 5. The graph Ge represented in Figure 5.2 defines a task with three types

of jobs ( i.e., three vertices). Vertex u is decorated with the triplet (〈1, 1〉, 0, 1) where

〈1, 1〉 indicates that jobs of this type can be preempted at each instant (segments of

length 1) and that their maximum cost is 2(that is, 1 + 1); their maximum release

1The extension to arbitrary jitter is discussed in Section 5.4.3.
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jitter is 0 and their priority is 1. Similarly, jobs of type v have a maximum cost of 5

and cannot be preempted, their maximum jitter and priority are 3 and 2, respectively.

Jobs of type w have a maximum cost of 8 and can be preempted once after their first

segment (it could be 1, 2, 3, or 4) is completed.

u v

w

(〈1, 1〉, 0, 1) (〈5〉, 3, 2)

(〈4, 4〉, 0, 1)

8

16

10
20

Figure 5.2: A graph Ge specifying a task with 3 types of jobs

5.3.2 Task-level and system paths

As a graph, a task Gi = (Vi, Ei) specifies a set of paths, i.e., sequences of vertices

of Gi such that (vj, vj+1) ∈ Ei. Note that a task will typically have cycles, thus

specifying an infinite set of paths, some of them being infinite as well. In the

following, we sometimes refer to paths of tasks as task-level paths for clarity.

Example 6. In Figure 5.2, [u, v, u, w, v], [w, v, u, v, u], and the infinite sequence

X = [u, v,X] are paths of Ge, but [u, v, w] is not.

Definition 38 (System path). A system path of system Σ is a set π := {π1, . . . , πn}
such that for each i, πi is a task-level path of task Gi in Σ. The set of system paths

of Σ is denoted ΠΣ.

We use the following functions on task-level paths.

• The function len returns the sum of all minimum inter-arrival times on the

edges of a finite path. Formally:

len([v1, v2, . . . , vk]) :=
∑

1≤j<k

d(vj, vj+1)

• The function pre∆(πi) returns the longest prefix πp of πi such that len(πp) < ∆.

A variant, written prenv (πi), returns the prefix of πi up to the n-th occurrence of

vertex v in πi.

• We write lennv (πi) for len(prenv (πi)) which returns the sum of all minimum

inter-arrival times between the first vertex and the n-th occurrence of vertex v in

πi.
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• The function cost(seq) returns the sum of the maximum costs of all vertices

in a vertex sequence seq.

• The filter function |π|
V

returns the vertex sequence obtained from π where all

vertices not belonging to V have been filtered out.

5.3.3 Semantics

The semantics of a system Σ := {G1, . . . , Gn} is given by the set of arrival sequences

that are consistent with a system path of Σ. Consistency between an arrival sequence

and a system path ensures that jobs in the sequence satisfy the constraints imposed

on them by their type. The order and timing of job arrivals is compatible with the

constraints specified on the edges of the graphs Gi.

Definition 39 (Consistency of an arrival sequence w.r.t. a path). An arrival se-

quence ρ is consistent with a task-level path πi = [v1, v2, . . .], which is denoted ρ ∼ π,

iff there exists a flattening2 [(t1, 1), (t2, 2), . . .] of ρ such that for all k:

• k is consistent with vk, i.e., :

– v(k) = vk;

– k(k) = K(v);

– j(k) ≤ J(vk); and

– ~c(k) = 〈c1, . . . , cs〉 ∧ ~C(vk) = 〈C1, . . . ,Cs〉 ∧ ci ≤ Ci, i = 1 . . . s.

• d(vk, vk+1) ≤ tk+1 − tk

The definition naturally extends to system-level paths.

We write ρ ∼ Σ to denote that an arrival sequence ρ is consistent with a system

path in ΠΣ.

5.4 Expressiveness

In this section, we show how a variety of existing task models can be expressed using

the Gd model. We also hint at extended or new models that could be defined as

Gd and analyzed by the proposed RTA proposed in Section 5.5.

2For example, the arrival sequence [(t1, {1, 2}), (t3, {3})] can be flattened into either
[(t1, 1), (t1, 2), (t3, 3)] or [(t1, 2), (t1, 1), (t3, 3)].
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5.4.1 Models without task dependencies

The Gd model can easily emulate many kinds of arrival models. Obviously, a

simple sporadic task whose jobs are of type v and with a minimum inter-arrival

time p is represented by a single vertex v and self-loop labeled with p. A periodic

task of period p can be represented by the same Gd task. Of course, this Gd task

represents many more consistent job arrival sequences but the worst case analyzed

by the RTA is precisely the periodic sequence.

Arrival curves [141] represent more expressive arrival models. For instance, the

minimal distance function d
−

(a) returns the smallest time interval that may contain

a+ 1 occurrences of a job. This function must be super-additive i.e., d
−

(a) +d
−

(b) ≤
d
−

(a + b). In general, an arrival curve may have an infinite description in terms

of Gd task (e.g., d
−

(a) = a2 is super-additive and describes ever growing inter-

arrival times). However, such functions3 are usually given by a collection of values

from 1 to some constant k. Then, the analysis uses the minimal super-additive

extension (e.g., the smallest function compatible with d
−

(1), . . . , d
−

(k)). Such super-

additive closures can be represented faithfully by a Gd task. When d
−

is convex

(i.e., d
−

(x+ 1) + d
−

(x− 1)− 2d
−

(x) ≥ 0) then the minimal super-additive extension

is periodic and ∀x = qk + r, d
−

(x) = qd
−

(k) + d
−

(r). The corresponding Gd task is

then made of a cycle of k vertices v0, . . . , vk−1 where the minimum inter-arrival time

decorating each edge is d(vi, v(i+1) mod k) = d
−

((i+ 1) mod k)− d−(i).

Example 7. Consider, for instance, the arrival curve specified by d
−

(1) = 2, d
−

(2) =

5, d
−

(3) = 10, d
−

(4) = 20 which specifies that 2 (resp. 3, 4, and 5) jobs cannot arrive

in less than 2 (resp. 5, 10 and 20) time units. The corresponding Gd task is given

in Figure 5.3 (a).

For non convex functions, it has been shown that their minimal super-additive

extensions are pseudo-periodic functions [22] which can also be represented by a

finite Gd task.

v

2v3

v

5 v 10

v1

10
v2

10

v1

20
v1

0
v2

20

(a) (b)

Figure 5.3: Gd representing (a) an arrival curve model and (b) a transaction with offsets
a la Tindell)

3By default d
−

(0) = 0
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5.4.2 Models with job and task dependencies

As a generalization of digraphs, the Gd model can of course express all task models

with intra-task dependencies that standard digraphs can. Let us cite, the multiframe

model [105] and its generalized version [14], the recurring branching [15] or recurring

RT [16] models, the non cyclic RT [13] and digraph model (DRT) [129].

Allowing job-level fixed priorities and null minimal inter-arrival times allows the

Gd model to model inter-task dependencies (e.g., fixed timing relation among tasks,

the offset model of Tindell [142]) which cannot be represented in the standard DRT

model.

In Tindell’s model (used in Chapter 4), a system is made of a set of independent

transactions {Tr 1, . . . ,Trn}. Each transaction Tr i consists of a set of periodic tasks

with offsets Tr i := {. . . , τi,k, . . .} where each task τi,k has its own WCET, period,

offset, priority, and deadline. A transaction and its set of periodic tasks with offsets

can be represented within a single Gd task. It is sufficient to compute the hyper-

period of the transaction and to build the circular Gd task representing the inter-

arrival time (which may be null) between arrivals of the different jobs in the hyper-

period. The periods and offsets are represented by inter-arrival times. The WCET,

priority and deadline of tasks are represented by the corresponding vertices.

Example 8. Consider, for instance, a transaction Tr with two periodic tasks with

jobs of type v1 and v2, with periods 20 and 30 and with offsets 5 and 15. The hyper-

period is 60 and taking the first arrival of v1 as the time origin, the arrival times are

[(v1, 0), (v2, 10), (v1, 20), (v1, 40), (v2, 40), (v1, 60)]. The transaction Tr is represented

by the Gd task in Figure 5.3 (b). Its worst job arrival sequence w.r.t. the RTA is

exactly the job arrival sequences of Tr.

Shared resources, which entail inter-task dependencies, is a common issue in hard

real-time systems. Abdullah et al. [1] addressed this problem using DRT by allow-

ing two kinds of vertices : preemptable (tasks) and non-preemptable (resources).

They proposed an extension of the RTA to take into account these two kinds of

vertices. Using the Gd model, this is directly modeled using segments with always

preemptable vertices for tasks and non-preemptable ones for resources.

Rendez-vous mechanisms, another kind of inter-task dependencies, have been

expressed using an extension of digraphs (SDRT) [104]. We believe that the encoding

of such inter-task synchronization is possible in Gd tasks but the exact encoding as

well as its complexity remain to be investigated.
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5.4.3 Beyond existing models

All these features, including jitter, can be combined to express and analyse new task

models. For instance, non-preemptable segments and jitter have not been considered

by many intra-task dependencies task models (e.g., MF, GMF, RB, RR, DRT) nor

does Tindell’s model consider intra-task dependencies (e.g., if a transaction could

be a set of MF tasks instead of simple periodic tasks). Since all these models can

be expressed as the Gd model, they can be analyzed using the RTA described next.

Note that our RTA targets the Gd model with constrained jitters. Any Gd task

with arbitrary jitters can be transformed into a Gd task with constrained jitters

with the same worst case scenario for the RTA. For instance, a sporadic task of the

minimum inter-arrival time 10 and jitter 22 represented byG can be transformed into

G’ with jitter 0 in Figure 5.4. For a given time duration, the maximum cumulated

workloads of the two tasks (original and transformed) are the same.

v

10

v v v v
0 0 8

10

G(〈3, 3〉, 22, 1) G’ (〈3, 3〉, 0, 1)

Figure 5.4: Encoding of arbitrary jitter

5.5 Response Time Analysis

The objective of RTA is to bound, as tightly as possible, the worst-case response

time of each vertex (job type) v, defined as the maximum response time among all

jobs of type v occurring in all arrival sequences and schedules consistent with each

possible system path. Formally,

wcrt(v) := max{R |  : v ∧ ∃π ∈ ΠΣ,∃ρ ∼ π,  ∈ ρ}

In this section, we present the overall structure of the analysis that we propose for

Gd systems. We suppose given a vertex v, with priority k, of a task Gi ∈ Σ and

focus on upper bounding its worst-case response time.

Our analysis relies on a path-specific analysis of level-k busy windows, hence the

following definition (implicitly parameterized as before by a job arrival sequence ρ).

Definition 40 (Busy window path). A level-k busy window [t1, t2[ is said to be

represented by the shortest system path π such that the corresponding job release

sequence ρ̂/[t1,t2[ ∼ π, and any extension of it.
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The shortest path representing a busy window [t1, t2[ is the path obtained after

restricting the job release sequence to [t1, t2[. In other words, a busy window path is

an abstraction of a level-k busy window. Equipped with these notions, the general

principle of our RTA analysis can now be presented.

5.5.1 Overall structure of the RTA of Gd systems

The RTA of a vertex v with priority p, of task Gi, consists in analyzing a set of

paths such that all possible level-p busy windows are represented by one path in the

set. The methodology to bound the worst-case response time of jobs of type v is

thus as follows.

Step 1: Derive a set of system paths Πv
Σ such that any possible level-p busy

window (for any arrival sequence and schedule consistent with any system

path in ΠΣ) is represented by one path in Πv
Σ.

Step 2: For each system path π ∈ Πv
Σ:

a) Compute an upper bound BW+
k,π on the length of any level-k busy

window represented by π;

b) Derive from πi (the task-level path of Gi in π) and BW+
k,π an upper

bound q+

v,πi,BW
+
k,π

on the number of jobs of type v released in any level-k

busy window represented by π;

c) Compute, for each q ≤ q+

v,πi,BW
+
k,π

, an upper bound Q+
v,π(q) on the

length of the q-th queueing prefix of jobs of type v in any level-k busy

window represented by π;

d) For each q ≤ q+

v,πi,BW
+
k,π

, compute a lower bound θ−v,πi(q) on the (possi-

bly negative) time difference between the q-th arrival of a job of type

v in in any level-k busy window represented by π and the start of that

busy window;

e) Based on the above, compute an upper bound R+
π (v) on the worst-

case response time of any job of type v in any level-k busy window

represented by π.

Step 3: Finally, find an upper bound R+
Σ(v) on wcrt(v) by computing the maxi-

mum value using all system paths.

In the following subsection, we provide the formulas used for the computations

associated with each step of the methodology that we just presented, along with
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some intuition of where they come from. The proof of correctness of the computed

values is presented in Section 5.6.

5.5.2 Step-by-step RTA of Gd systems

Our RTA relies on an upper bound on the workload of a set of jobs in any level-p busy

window by the workload for the path in Πv
Σ that represents it, where the workload

of a given set of vertices V ⊆ VΣ for a system-level path π := {π1, . . . , πn} ∈ Πv
Σ

and a duration ∆ is

wl+
V,π(∆) :=

n∑
x=1

wl+
V,πx

(∆) (5.3)

with wl+
V,πx

(∆) := cost(|pre∆+J(fst(πx))(πx)|V )

We will show (see Lemma 15 in Section 5.6) that the workload of a set of vertices

V ⊆ VΣ for any prefix of length ∆ of a level-k busy window represented by a system

path π is upper bounded by wl+
V,π(∆).

Step 1: Computing Πv
Σ — see Theorem 7 in Section 5.6

Let Πv
x(∆) denote a set of paths of task Gx ∈ Σ in which each path πx is the

longest path fitting in ∆ + J+
x , that is, such that len(πx) ≤ ∆ + J+

x and for all valid

suffixes s, len(πx · s) > ∆ + J+
x ; where J+

x representing the largest release jitter

among Vx. Note that if the vertex under study v belongs to Gi then we consider

only paths πx with occurrences of v.

With this notion of path, we compute a sufficiently large duration which can

bound the length of any level-k busy window. That duration is the least positive

fixed point, written Wk, of the following equation

∆ = N +
n∑
x=1

max
πx∈Πvx(∆)

{wl+
hep(k),πx

(∆)} (5.4)

with N denoting the greatest non-preemptable segment in the system. At each

iteration, the greatest workload among all possible paths within ∆ is selected. The

obtained fixed point is clearly an upper bound on the duration of any possible busy

window. Therefore, to bound wcrt(v), it is sufficient to examine all the following

combinations,

Πv
Σ :=

n×
x=1

Πv
x(Wk) (5.5)

where×n

x=1
denotes the Cartesian product of all paths of length bounded by Wk

for the n tasks. Thus, any level-p busy window can be represented by (possibly a

prefix of) a path in Πv
Σ.
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Step 2: Computing upper bounds for each path in Πv
Σ

We now show how to compute BW+
k,π, q+

v,πi,BW
+
k,π

, Q+
v,π(q) and θ−v,πi(q) for a given

system path π := {π1, . . . , πn} ∈ Πv
Σ.

a) Computing BW+
k,π — see Theorem 8 in Section 5.6

Having non-preemptable segments implies that vertices in lp(k) may execute

within a level-k busy window. Still, the definition of a level-k busy window implies

that:

• at most one non-preemptable segment of a vertex in lp(k) can execute in a

level-k busy window; and

• such a segment (if it exists) must have started its execution before the begin-

ning of the level-k busy window.

As a result, the maximum duration that vertices in lp(k) can execute in a level-k

busy window is upper bounded by:

bk(t1, k) := max
vx∈lp(k)

C∈~C(vx)

(C − 1) (5.6)

with the convention that bk(t1, k) := 0 if lp(k) = ∅. Now, let BW+
k,π be the least

positive fixed point of the following equation:

∆ = bk(t1, k) + wl+
hep(k),π(∆) (5.7)

Then BW+
k,π is an upper bound on the length of any possible level-k busy window

represented by π.

Note that it may be pessimistic to use bk(t1, k) to bound the workload from

lp(k) because the largest non-preemptable segment among lp(k) may not contribute

to any level-k busy window represented by π. On the other hand, it reduces the

complexity of the analysis and simplifies its correctness proof 4.

b) Computing q+

v,πi,BW
+
k,π

Definition 40 implies that the number of jobs of type v in a busy window is

equal to the number of v in its representing path. In addition, since BW+
k,π is an

upper bound on the length of any possible level-k busy window represented by π,

let q+

v,πi,BW
+
k,π

be the number of vertices v in the prefix preBW+
k,π+J(fst(πi))

(πi) of path

πi, then q+

v,πi,BW
+
k,π

is an upper bound on the number of jobs of type v released in

any level-k busy window represented by π.

4An exact analysis is easy to define but it would require considering up to n+1 different critical
instants for a system with n tasks.
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c) Computing Q+
v,π(q) — see Theorem 9 in Section 5.6

The q-th queueing prefix of jobs of type v in a level-k busy window represented

by π spans the execution of:

• at most one non-preemptable segment from a vertex in lp(k) which started

before that busy window;

• all jobs of task Gi with the same priority as v released during the prefix, up

to the q-th job of v in πi (minus the cost of its last segment);

• the jobs of vertices from Gi in hp(k) released during the prefix; and

• the jobs of vertices in hep(k) released during the prefix, except those from Gi.

Let Q+
v,π(q) be the least positive fixed point of the following equation:

∆ = bk(t1, k)

+ wl+
ep(k)∩Vi,π(lenqv(πi) + 1)− last(~C(v)) + 1

+ wl+
hp(k)∩Vi,π(∆)

+ wl+
hep(k)\Vi,π(∆)

(5.8)

where last(~C(v)) is the maximum cost of the last segment of v. Then, Q+
v,π(q) is

an upper bound on the length of the q-th queueing prefix of jobs of type v in any

possible level-k busy window represented by π.

d) Computing θ−v,πi(q) — see Theorem 10 in Section 5.6

For each q ≤ q+

v,πi,BW
+
k,π

, a lower bound on the duration between t1 and the q-th

arrival of jobs of type v in any possible level-k busy window represented by π is:

θ−v,πi(q) := lenqv(πi)− J(fst(πi)) (5.9)

e) Computing R+
π (v) — see Theorem 11 in Section 5.6

The worst-case response time R+
π (v) for path π can be upper bounded based on

the above upper and lower bounds.

R+
π (v) := max

q≤q+

v,πi,BW
+
k,π

{Q+
v,π(q)− θ−v,πi(q) + last(~C(v))− 1} (5.10)

Step 3: Computing R+
Σ(v)

Finally, performing the same computation for all paths in Πv
Σ yields the worst-

case response time of jobs of type v.

R+
Σ(v) := max

π∈Πv
Σ

(R+
π (v)) (5.11)
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Note that the max functions in Equation 5.10 and 5.11 play different roles. The

first one (Equation 5.10) accounts for the fact that there may be several jobs of the

same type (vertex) in a level-k busy window. The second one (Equation 5.11) allows

a fine-grained analysis of dependencies which are captured by the notion of path.

5.5.3 Improvements

For the sake of clarify, we have presented the analysis by first computing a superset

of possible paths and then focusing on a single vertex. Clearly, this approach is

not the most efficient. First, the paths considered are larger than needed and the

analysis is likely to consider many times the same prefix common to many paths.

Second, as presented, a complete system analysis would need to iterate the same

process for each vertex. Both points entail costly and/or useless recomputations.

A more reasonable approach is to analyse pertinent paths only once. An analysis

of the whole system would proceed by considering all possible alignments between

vertices of all tasks. For each alignment {v1, . . . , vn}, we compute the level-p busy

window (with p the minimal priority) for all possible paths starting from the con-

sidered alignment. Paths are built on demand; they end when a level-p quiet time

is reached. That busy window is the longest and includes all other busy windows.

The computation should keep enough information to evaluate Q+
v,π(q), θ−v,πi(q) and

therefore R+
π (v) for each vertex v in the path. Finally, the maximum of R+

π (v) over

all alignments gives the worst-case response time for any vertex v (i.e., jobs of type

v).

Further improvements can be made. Consider a vertex vi in an alignment

{v1, . . . , vn}, then if there is some vj with a lower priority than vi whereas task

Gj has another vertex with a priority equal or higher than vi, then this alignment

cannot be a worst case for vi and R+
π (vi) does not need to be computed in that

alignment.

The analysis described so far is precise; the only source of approximation lies in

the blocking factor bk(t1, k) (see Equation 5.6). However, depending on the size of

Gd, considering all possible alignments may be overly expensive. Approximations

should be studied. A possible approximation consists in computing a single over-

approximated workload function for each priority and each task. This would lower

drastically the number of combinations to test. Note that this approach is similar to

the approximation used by Tindell in his offset analysis [143] and by Guan et al. in

their DRT analysis [69]. The optimization techniques presented in Section 4.5 can

be applied to this RTA without degrading the precision of the result.
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5.6 Proof of Correctness

We outline here the proofs of the main lemmas used to establish the correctness

of the RTA presented in Section 5.5. Future works would be to formalize these

proofs using Coq and the Prosa library. We present here these proofs in a way

that is amenable to their formalizations in Coq. In contrast with classical proofs

in the RT community, machine-verified proofs require to list all used hypotheses, to

specify formally concrete executions and to prove many properties usually taken for

granted.

In the following, we consider a JFPLP schedule σ and a system-level job arrival

sequence ρ ∼ Σ having a job  of type v with priority k and belonging to task Gi.

Any such job occurs within a level-k busy window. Therefore, we consider that 

occurs as the q-th job of type v in a level-k busy window starting at instant t1.

5.6.1 Concrete busy window and queueing prefix

The key to the proof of the RTA is to show the correctness of the upper/lower

bounds (e.g., BW+
p,π) computed using the abstract model (i.e., Gd). So, we need

to specify precisely the length BWk of the considered level-k busy window and the

length Qv,ρ(q) of the q-th queueing prefix of jobs of type v in order to bound them.

Length of the level-k busy window

The length of a level-k busy window starting at t1, denoted by BWk, can be

computed as the least positive fixed point of the following equation.

∆ = servlp(k),σ(t1,∆) + wlhep(k),ρ(t1,∆) (5.12)

The first term represents the service provided to the possible non preemptable seg-

ment of a lower priority job. Then, the amount of services performed by the sched-

uler for hep(k)k jobs is equal to the workload requested from hep(k)k within the

duration of the busy window.

Length of the q-th queueing prefix

Similarly, computing the length of the q-th queueing prefix of jobs of type v

(i.e., the queueing prefix of ) in the level-k busy window [t1, t1 +BWk[ amounts to

evaluate:

• the service provided to the possible non preemptable segment of a lower pri-

ority job;
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• the workload of jobs of task Gi with the priority k (minus the cost of ’s last

segment);

• the workload of jobs of vertices from Gi in hp(k)k;

• the workload of other jobs with priorities in hep(k)k.

Thus, the length of the q-th queueing prefix of jobs of type v, denoted by Qv,ρ(q),

can be defined as the least positive fixed point of the following equation.

∆ =servlp(k),σ(t1,∆)

+wl ep(k)∩Vi,ρ(t1, (a()− t1 + 1))− last(~c()) + 1

+wlhp(k)∩Vi,ρ(t1,∆)

+wlhep(k)\Vi,ρ(t1,∆)

(5.13)

5.6.2 Basic lemmas

To bound BWk and Qv,ρ(q) we rely on the following lemma.

Using Lemma 3 proved in Chapter 4, the proof that BW+
k,π and Q+

v,π(q) up-

per bound BWk and Qv,ρ(q) respectively, amounts to show that serv and wl are

increasing and to compare the rhs of their recursive definitions.

A key step to this end is to bound the workload of a set of jobs of types in

V during a busy window by the workload of the set of vertices in V of the path

representing that busy window. More generally, we prove the following lemma:

Lemma 15. Let ∆ be a time interval and let π := {π1, . . . , πn} be the system path

representing ρ̂/[t1,t1+∆[ i.e., ρ̂/[t1,t1+∆[ ∼ π, then

wlV,ρ(t1,∆) ≤ wl+
V,π(∆) (5.14)

Furthermore, that bound is tight.

Proof. The arrival sequence ρ can be decomposed into n independent task-level job

arrival sequences {ρ1, . . . , ρn} where each ρx is the arrival sequence of the jobs of

task Gx. Then,

wlV,ρ(t1,∆) =
n∑
x=1

wlV,ρx(t1,∆)

Recall the definition of

wl+
V,π(∆) :=

n∑
x=1

cost(|pre∆+J(fst(πx))(πx)|V )
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Therefore, it is sufficient to prove, for all tasks Gx that

wlV,ρx(t1,∆) ≤ cost(|pre∆+J(fst(πx))(πx)|V )

We show that the workload of ρ̂x/[t1,t1+∆[ is maximal when:

1. any two consecutive jobs of ρx are separated by their minimum inter-arrival

time d;

2. all jobs take their maximum cost (i.e., WCET) C;

3. the first job in the interval releases at t1 after having experienced its maximum

release jitter (J(fst(πx))) whereas the jitter of all other jobs is null.

When these three conditions are met, wlV,ρx(t1,∆) is maximal and exactly equal

to cost(|pre∆+J(fst(πx))(πx)|V ). That directly implies Lemma 15.

5.6.3 Correctness of system paths

As a first step towards the correctness proof of the RTA, we must show that any

possible level-p busy window is represented by one path in Πv
Σ.

Theorem 7. Any level-k busy window is represented by at least one path in Πv
Σ as

defined in Equation 5.5.

Proof. It suffices to show that Wk bounds the length of any level-k busy window.

i.e.,

BWk ≤Wk (5.15)

Recall that Wk is the least positive fixed point of the equation

∆ = N +
n∑
x=1

max
πx∈Πvx(∆)

{wl+
hep(k),πx

(∆)} (5.16)

We first prove that the rhs of Equation 5.16 bounds the one of Equation 5.17. It is

fairly easy to prove that bk(t1, k) ≤ N since N represents the largest segment in the

system. Furthermore, for each task Gx ∈ Σ, we clearly have

wl+
hep(k),πx

(∆) ≤ max
πx∈Πvx(∆)

{wl+
hep(k),πx

(∆)}

and therefore, for the system path and all tasks,

wl+
hep(k),π(∆) ≤

n∑
x=1

max
πx∈Πvx(∆)

{wl+
hep(k),πx

(∆)}
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Then, Lemma 3 entails BW+
p,π ≤ Wk and Theorem 8 permits to establish Equa-

tion 5.5 by transitivity.

5.6.4 Correctness of bounds for jobs

Now, we show the correctness of the upper/lower bounds BW+
p,π, q+

v,πi,BW
+
k,π

, Q+
v,π(q)

and θ−v,πi(q) which implies the correctness of the upper-bound R+
π (v) for the response

time of . Let π be the path representing the level-k busy window [t1, t1 +BWk[,

Theorem 8. Let BW+
p,π be the least positive fixed point of the equation

∆ = bk(t1, k) + wl+
hep(k),π(∆) (5.17)

then BWk ≤ BW+
p,π (5.18)

Proof. We first prove that the rhs of Equation 5.17 bounds the rhs of

∆ = servlp(k),σ(t1, BWk) + wlhep(k),ρ(t1,∆) (5.19)

The definition of a level-p busy window implies that at most one non-preemptable

segment of any vertex in lp(k) of π can execute in [t1, t1 + BWk[. Further,

such a segment (if it exists) must have started execution before t1. Therefore,

servlp(k),σ(t1, BWk) is bounded by bk(t1, k). Lemma 15 ensures that the second term

of the rhs of Equation 5.19 is bounded by wl+
hep(k),π(∆). Then, Lemma 3 permits to

conclude.

Lemma 16. The number of vertices v in πi upper-bounds q:

q ≤ q+

v,πi,BW
+
k,π

(5.20)

Proof. This result follows by the definition of a path representing a busy window

and q+

v,πi,BW
+
k,π

.

Theorem 9. Let Q+
v,π(q) be the least positive fixed point of the equation

∆ = bk(t1, k)

+ wl+
ep(k)∩Vi,π(lenqv(πi) + 1)− last(~C(v)) + 1

+ wl+
hp(k)∩Vi,π(∆)

+ wl+
hep(k)\Vi,π(∆)

(5.21)
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then it bounds the length of the q-th queueing prefix of jobs of type v in the level-k

busy window i.e.,

Qv,ρ(q) ≤ Q+
v,π(q) (5.22)

Proof. As for Theorem 8, it suffices to prove that the rhs of Equation 5.21 bounds

the rhs of Equation 5.13. We prove it by considering each term in turn.

1. In Theorem 8, we proved servlp(k),σ(t1, BWk) ≤ bk(t1, k). Further, the

definition of a queueing prefix implies that Qv,ρ(q) ≤ BWk. Therefore,

for all ∆ ≤ Qv,ρ(q) (which is sufficient for Lemma 3), servlp(k),σ(t1,∆) ≤
servlp(k),σ(t1, BWk) ≤ bk(t1, k).

2. The second term can be divided in two parts:

wl+
ep(k)∩Vi,π\vq(lenqv(πi) + 1) (5.23)

+ C(v)− last(~C(v)) + 1 (5.24)

where vq denotes the q-th v in π.

The second term of Equation 5.13 can be separated in two parts as well:

wl ep(k)∩Vi,ρ\(t1, a()− t1 + 1) (5.25)

+ c()− last(~c()) + 1 (5.26)

Now, it is sufficient to prove that (5.25) ≤ (5.23) and (5.26) ≤ (5.24).

• According to Definition 40, the type of any job of hep(k)k ∩ Vi released

in [t1, a() + 1[ appears in preJ(fst(πi))+lenqv(πi)+1(πi). Taking into account

the minimum inter-arrival time, we have

wl ep(k)∩Vi,ρ(t1, a()− t1 + 1) ≤ wl+
ep(k)∩Vi,π(lenqv(πi) + 1)

If we filter out  from ρ and the q-th v (job ’s type) from π, (5.25) ≤
(5.23) follows.

• By definition, we know that ~c() = 〈c1, . . . , cs〉, ~C(v) = 〈C1, . . . ,Cs〉 and,

for all i = 1, . . . , s, ci ≤ Ci. So

s−1∑
i=1

ci ≤
s−1∑
i=1

Ci

Equivalently (c()− last(~c()) ≤ (C(v)− last(~C(v)). Therefore (5.26) ≤
(5.24) follows.
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The last two inequalities between the last two terms of (5.21) and of (5.13) follow

directly from Lemma 15.

Theorem 10. The term θ−v,πi(q) = lenqv(πi) − J(fst(πi)) is a lower bound of the

duration between the arrival of  and the beginning of its level-k busy window.

θ−v,πi(q) ≤ a()− t1 (5.27)

Proof. By cases.

(1) a()− t1 < 0. The job  arrives before t1 but releases at or after t1 i.e., t1 ≤
a() + j(). Constrained jitter implies that no other job of the same task arrives

before the release of . So job  must be the first vertex of πi and lenqv(πi) = 0.

By convention, j() ≤ J(v), therefore −J(v) ≤ −j() ≤ a()− t1 and Equation 5.27

holds.

(2) a()− t1 ≥ 0. Let ′ be the job corresponding to the first vertex in πi. We

know a() − a(′) ≥ lenqv(πi) and j(′) ≤ J(fst(πi)). Then, lenqv(πi) − J(fst(πi)) ≤
a()−a(′)−j(′) and since a(′)+j(′) ≥ t1 that is −a(′)−j(′) ≤ t1, Equation 5.27

follows.

Lemma 17. Let R be the response time of job  then

R ≤ Q+
v,π(q)− θ−v,πi(q) + last(~C(v))− 1 (5.28)

Proof. By definition R := end() − a(). Also, when a job begins to execute its

last non-preemtable segment it cannot be preempted until its completion. Using the

notion of q-th queueing prefix, we have

end() = t1 +Qv,ρ(q) + last(~c())− 1

Note that Qv,ρ(q) includes the first cost unit of job ’s last segment, so we should

subtract 1 from last(~c()). Equivalently, we have

R = Qv,ρ(q)− (a()− t1) + last(~c())− 1

The result follows from Theorem 9, Theorem 10 and the fact that costs in the model

upper-bounds costs in the execution.
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5.6.5 Correctness of the RTA

The previous result applies to an arbitrary job  of type v in a busy window starting

at t1. It can be used to upper-bound the response times of any job of type v in that

busy window, and by extension any job of type v in the arrival sequence.

Theorem 11. The response time of any job of type v released in a busy window

starting at t1 is bounded by

max
q≤q+

v,πi,BW
+
k,π

{Q+
v,π(q)− θ−v,πi(q) + last(~C(v))− 1} (5.29)

Proof. Follows from properties of max and Lemma 17.

Theorem 12. The response time of any job of type v released in any arrival sequence

ρ ∼ Σ is bounded by

max
π∈Πv

Σ

 max
q≤q+

v,πi,BW
+
k,π

{
Q+
v,π(q)− θ−v,πi(q) + last(~C(v))− 1

} (5.30)

Proof. Follows from properties of max and Theorem 11.

5.7 Towards Formal Verification

In this section, we discuss the significance of the presented model and analysis in

the context of our broader effort toward a Coq library of schedulability results.

As presented early in Chapter 2, the Prosa library [30, 29] has been proposed

to provide formal specifications and mechanized proofs for schedulability analyses

using the Coq proof assistant. The motivation behind our general task model for

fixed priority scheduling is to add it to the Prosa library and prove the correctness

of its RTA. It can thus cover a large variety of existing models and analyses.

5.7.1 Proving in Coq the RTA of GD systems

The complete Coq proof of the RTA for Gd systems is still in progress and can be

separated into two parts:

1. The generic proof of RTAs for the JFPLP scheduling policy. For this part,

many definitions (i.e., those in Section 5.2) have been formalized and used in Prosa,

as well as a significant part of the proof. We still need to formalize the proof of a
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more general statement, which does not rely on a task model, but on an abstract

workload function

wl+ : (ρ→ N→ N→ T )→ N→ N

where: (a) the first argument (ρ → N → N → T ) denotes a function taking a

job arrival sequence, a time instant and a time duration and returning an abstract

candidate represented by the type T , where candidates correspond to incomparable

scenarios which must be analyzed, i.e., paths for the Gd model; (b) the second

argument denotes a time duration such that wl+ returns the workload during that

duration. The proof as well as the analysis are then applicable to many task models

respecting the fixed priority scheduling policy, including the Gd model, by instan-

tiating that function.

2. Specifying the Gd task model and instantiating the function wl+. The key of

instantiating the function wl+ is to find a system path which maximizes the actual

workload requested by a given arrival sequence within a given duration. Consider a

system Σ and a set of its system paths ΠΣ, to validate this instantiation, we have

to prove that for any arrival sequence ρ ∼ Σ and a given duration ∆, there exists

a system path π ∈ ΠΣ such that wlV,ρ(0,∆) ≤ wl+
V,π(∆). Which ensures that that

set of system paths can cover any cases of system behavior and can be used for

computing an upper bound of the response time of any vertex in the system using

the RTA algorithm presented in Section 5.5.

5.7.2 Intended use of the analysis

One of our objectives is to formally certify our RTA in order to:

• obtain certified existing RTAs for task models which can be expressed by Gd.

As Gd is very expressive, we can instantiate all more precise task models

into it then obtain their certified RTAs by proving the correctness of their

instantiations i.e., a more specif model and its instantiation into Gd share the

same workload functions (scenarios);

• obtain certified RTAs for task models beyond Gd by reusing the generic part

of the proof. For those task models that cannot be expressed by Gd, we

can formally specify them and instantiate them into the abstract workload

functions, then to get certified RTAs. This can reduce many proof efforts;

• obtain certified approximate RTAs by reusing the generic proofs part and

focusing on upper bounding the workload. For a task model, we can get

different approximation-level RTAs by proposing different sets of workload
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functions, which can be used to instantiate the abstract workload functions.

A set of workload functions is validated if these workload functions can cover

or dominate all possible scenarios;

• obtain many certified result certifiers like CertiCAN using certified RTAs. To

this goal, one main concern is the efficiency of certified tools, and we may need

more proof efforts to optimize them and to make them scalable.

5.7.3 Beyond the current analysis

By proposing a unified analysis for models as different as the DRT model and Tin-

dell’s offset model, our work underlines the generic parts of the proof structure of

such RTAs. Based on this, we can now propose a framework which formalizes these

steps in a generic manner, to be reused for any new task model. Such steps in-

clude the use of sustainability properties [12, 30], but also strategies to efficiently

approximate the worst-case response time.

Note that the schedulability analysis of the Gd task model for the JLFPNP

policy is a strongly coNP-hard problem because this model is a generalized version

of the DRT task model whose FP schedulability analysis has been proven coNP-hard

in the strong sense [128].

5.8 Related Work

Many task models have been proposed to analyze different fixed-priority scheduling

policies. Depending on their capacity to model intra- or inter-task dependencies,

those models can be divided into three categories.

The simplest models do not consider any kind of dependency: there is only

one type of job for each task. The classic periodic task model, presented by Liu

and Layland [96] characterizes a task by its worst-case execution time C and its

activation period P . The sporadic task model [106] generalizes activation periods of

tasks by introducing the concept of minimum inter-arrival time. Later Thiele et al.

introduced the real-time calculus [141], whose arrival curves can model many more

arrival patterns.

Another category of models considers intra-task dependencies: there may be

several types of jobs for each task. The multiframe model [105], characterizes a

task by an array of execution times (C0, C1, . . . , CN−1) and a minimum inter-arrival

time P . A task has N types of jobs and the (i + 1)-st job in the arrival sequence

has the worst-case execution time C (i mod N) and arrives at least P time units af-
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ter the arrival time of the i-th job. The model (C,P ,D) extends the multiframe

model by allowing each type of job to have a different inter-arrival time and dead-

line [14]. Later, Baruah introduced the recurring branching task model [15], which

adds branching structures. Each task can be represented by a tree of job types

(C,D) labeled by minimum inter-arrival times. Two other extensions use directed

acyclic graphs instead of trees: the recurring real-time task model [16, 17]), and the

non-cyclic recurring real-time task model [13]. More recently, Stigge et al. intro-

duced the DRT task model [129] and its extended version [130] that use arbitrary

graphs. None of those models allows to model inter-task dependencies.

One of the most classic task model taking inter-task dependencies into account is

Tindell’s offsets model. A system is made of a collection of transactions regrouping

periodic tasks having fixed timing relations. More recently, the DRT model was

extended by Mohaqeqi et al. to allow the RDV mechanism [104] and by Abdullah

et al. to take into account shared resources [1].

To the best of our knowledge, none of the previous models is general enough to

express at the same time intra- and inter-task dependencies as well as arrival curves.

Our model is a generalization in this respect and is able to express all the above task

models. The formal certification of its associated RTA should permit to factorize

the correctness proofs of many analyses.

5.9 Conclusion

In this chapter, we have introduced the Gd model, a generalization of the DRT task

model that is expressive enough to model and analyze many different fixed-priority

systems. In particular, Gd can express dependencies between jobs as well as tasks.

The work presented in this chapter is motivated by our ongoing contribution to

Prosa, a Coq library of models and analyses of real-time systems. The Gd model

and its associated RTA provide the needed foundations for a Coq certified response

time analysis of complex systems, in particular regarding dependencies.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we have used theorem proving to provide high confidence in hard real-

time systems schedulability analysis as well as related industrial tools. In particular,

we have considered and addressed three open problems:

• Consistency of formal abstract models. Theorem proving can formally

guarantee the correctness of analyses because it permits to mechanically check

all corresponding proofs. However, the consistency of the specifications of

the model needs to be manually checked. Using theorem proving, system

models are often specified in an abstract and analysis-convenient manner. The

adequacy of these models to reality remains to be justified. It is not always

clear that the analyses proven over a high-level model can be applied to a

lower-level or concrete model.

To address this problem, Chapter 3 proposed a formal interface using the Coq

proof assistant. It combines the schedulability analyses proven in the Prosa

library with a formally verified concrete OS kernel, RT-CertiKOS. In Prosa, the

abstract system model is suitable for reasoning about schedulability analysis,

but its consistency is not established using a real system. This work used a

concrete schedule from RT-CertiKOS to validate Prosa’s abstract model. It

showed that analyses proven over an abstract and analysis-convenient model

can be applied to a concrete system. This work also provided RT-CertiKOS

with a modular, state-of-the-art schedulability proof. Our interface is general

enough to be used for integrating other analyses from Prosa into RT-CertiKOS.

We believe that this work provides new insights into the formal connections

between two independent mechanized proof projects.

123



124 CHAPTER 6. CONCLUSION

• Certification of industrial tools. Schedulability analysis aims at guaran-

teeing the absence of deadline misses for hard real-time systems. This property

is crucial for the systems used in safety-critical domains such as avionics and

automotive. To provide these guarantees, many schedulability analyses have

been implemented in industrial tools. However, there is no formal guarantees

that these tools are correct because the underlying analyses may be flawed or

their implementation may contain undetected bugs.

To address this problem, Chapter 4 proposed to use result certification, instead

of tool certification. Specifically, using Coq, we formally verified a result certi-

fier, named CertiCAN, for certifying the results produced by industrial CAN

analyzers. Result certification is a flexible and light-weight process which is

suitable for industry practice since it does not need the source code and is

not impacted by software updates. The idea is to: 1) combine a precise and

approximate analyses for time efficiency; 2) prove them correct using Coq; 3)

extract an Ocaml result certifier from proofs using Coq’s extraction technique.

Our experiment shows that CertiCAN is efficient enough and can be used to

certify the results produced by the industrial tool RTaW-Pegase even for large

systems.

• Factorization of formal proofs. Formal verification of RTAs requires a

significant proof effort. Typically, the formal verification of a single analysis

takes several person weeks. An obvious question is then how to factorize the

proofs to make them generic and general enough so that they can be reused

by several analyses?

To address this problem, Chapter 5 proposed Gd, a very general task model

and its corresponding RTA amenable to Coq formalizations. The model is

based on the DRT model and extends it with several additional parameters

such as jitters, non-preemptable segments. Gd is expressive enough to model

many kinds of systems. The idea is to formally verify a general RTA for this

model. Then, proving the correctness of a specific RTA boils down to proving

its instantiation to this model. This should reduce the proof effort.

6.2 Future Work

In this last section, we discuss several further research directions this thesis suggests.

• General models, analyses, and proofs. �A straightforward future work

is to complete the Coq formalization of the RTA of Gd. It would permit
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a formal comparison of our proposed analysis in Chapter 5 with the existing

RTAs of specific types of models, e.g., constrained deadline with job-level FPP

or task-level FPNP [132], and arbitrary deadline with task-level FPP [111]. As

the generic part of this RTA permits to instantiate many RTAs with different

approximation levels, it would be interesting to conduct a practical study of

the complexity of the analysis and of the possible trade-off between accuracy

of the computed bounds and runtime performance of an RTA implementation.

Then, using the same ideas as presented in Chapter 4, the formally verified

RTAs would permit to extract many result certifiers. Whether these extracted

tools will be efficient enough for industry practice is an open question.

Another research topic is to study the theoretical connection between the

RTA proposed in Chapter 5 and the notion of sustainability. Both RTA and

sustainability analysis can be abstracted as a scenario-based analysis. The

connection between them is the exact worst-case scenarios. For instance, for a

system, the property that an RTA is sustainable with respect to a parameter

P is defined as the system that is schedulable according to the RTA being still

schedulable when parameter P becomes better. In other words, the worst-case

scenarios would not be worse when parameter P becomes better. The idea

of RTA is to upper bound the exact worst-case scenarios. We believe that a

formal connection of these two concepts would allow us to build a fundamental

and general structure for schedulability analysis.

• Regarding result certification. CertiCAN shows that result certification is

possible and suitable for industry practice. It is, however, still time consuming

to obtain a verified result certifier using a theorem prover. CertiCAN requires

many optimizations to be proved to reach sufficient efficiency. Therefore, an

interesting research problem is to find simpler and more efficient certification

strategies. CertiCAN only requires the results produced by industrial tools

as its input. We should study what kind of additional information industrial

tools could provide to reduce the proof effort and increase efficiency of result

certifiers. For instance, CertiCAN computes a lot of fixed points of workload

functions, and it needs several iterations to find a fixed point. If industrial

tools could provide these fixed points, CertiCAN would only need to check their

correctness and it would increase efficiency. Another additional information

would could be useful is the worst scenarios considered by industrial tools.



Appendix A

A.1 NETCARBENCH Configuration 1

1 <netcarbench−data version=”3.2” >

2 <can−network name=”EVALUATION” granularity=”5” bandwidth=”500” >

3 <network−load min=”0.4” max=”0.6” />

4 <nb−network−interfaces min=”7” max=”15” />

5 <fixed−station−loads>

6 <station id=”1” value=”0.30” />

7 </fixed−station−loads>

8 <frame−periods>

9 <period value=”5” weight=”2” margin=”1” prio low range=”1” prio high range=”200”/>

10 <period value=”10” weight=”5” margin=”2” prio low range=”201” prio high range=”400”/>

11 <period value=”20” weight=”5” margin=”2” prio low range=”401” prio high range=”600”/>

12 <period value=”50” weight=”10” margin=”4” prio low range=”601” prio high range=”800”/

>

13 <period value=”100” weight=”10” margin=”4” prio low range=”801” prio high range=”1000

”/>

14 <period value=”200” weight=”5” margin=”2” prio low range=”1001” prio high range=”1200

”/>

15 <period value=”500” weight=”2” margin=”1” prio low range=”1201” prio high range=”1400

”/>

16 <period value=”1000” weight=”2” margin=”1” prio low range=”1401” prio high range=”

1600”/>

17 </frame−periods>

18 <frame−payloads>

19 <payload value=”1” weight=”1” margin=”1”/>

20 <payload value=”2” weight=”1” margin=”1”/>

21 <payload value=”3” weight=”1” margin=”1”/>

22 <payload value=”4” weight=”2” margin=”1”/>

23 <payload value=”5” weight=”3” margin=”2”/>

24 <payload value=”6” weight=”4” margin=”2”/>

25 <payload value=”7” weight=”5” margin=”2”/>

26 <payload value=”8” weight=”6” margin=”3”/>

27 </frame−payloads>

28 <offsets mode=”RANDOM”/>

29 </can−network>

30 </netcarbench−data>
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Listing A.1: Configuration file for NETCARBENCH

A.2 NETCARBENCH Configuration 2

1 <netcarbench−data version=”3.2” >

2 <can−network name=”EVALUATION” granularity=”5” bandwidth=”500” >

3 <network−load min=”0.6” max=”0.8” />

4 <nb−network−interfaces min=”15” max=”20” />

5 <fixed−station−loads>

6 <station id=”1” value=”0.30” />

7 </fixed−station−loads>

8 <frame−periods>

9 <period value=”5” weight=”2” margin=”1” prio low range=”1” prio high range=”200”/>

10 <period value=”10” weight=”5” margin=”2” prio low range=”201” prio high range=”400”/>

11 <period value=”20” weight=”5” margin=”2” prio low range=”401” prio high range=”600”/>

12 <period value=”50” weight=”10” margin=”4” prio low range=”601” prio high range=”800”/

>

13 <period value=”100” weight=”10” margin=”4” prio low range=”801” prio high range=”1000

”/>

14 <period value=”200” weight=”5” margin=”2” prio low range=”1001” prio high range=”1200

”/>

15 <period value=”500” weight=”2” margin=”1” prio low range=”1201” prio high range=”1400

”/>

16 <period value=”1000” weight=”2” margin=”1” prio low range=”1401” prio high range=”

1600”/>

17 </frame−periods>

18 <frame−payloads>

19 <payload value=”1” weight=”1” margin=”1”/>

20 <payload value=”2” weight=”1” margin=”1”/>

21 <payload value=”3” weight=”1” margin=”1”/>

22 <payload value=”4” weight=”2” margin=”1”/>

23 <payload value=”5” weight=”3” margin=”2”/>

24 <payload value=”6” weight=”4” margin=”2”/>

25 <payload value=”7” weight=”5” margin=”2”/>

26 <payload value=”8” weight=”6” margin=”3”/>

27 </frame−payloads>

28 <offsets mode=”RANDOM”/>

29 </can−network>

30 </netcarbench−data>

Listing A.2: Configuration file 2 for NETCARBENCH
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François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi

Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and

Laurent Théry. A Machine-Checked Proof of the Odd Order Theorem. In

Sandrine Blazy, Christine Paulin, and David Pichardie, editors, ITP 2013,

4th Conference on Interactive Theorem Proving, volume 7998 of LNCS, pages

163–179, Rennes, France, July 2013. Springer. (Cited on pages 30 and 33.)

[64] Michael Gonzalez, Harbour Mark, H Klein, and John P Lehoczky. Fixed

priority scheduling of periodic tasks with varying execution priority. In In

Proceedings, IEEE Real-Time Systems Symposium. Citeseer, 1991. (Cited on

page 24.)

[65] Klaus Gresser. An event model for deadline verification of hard real-time

systems. In Fifth Euromicro Workshop on Real-Time Systems, pages 118–

123. IEEE, 1993. (Cited on page 27.)

[66] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-

nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep

specifications and certified abstraction layers. In Proceedings of the 42nd



BIBLIOGRAPHY 135

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), pages 595–608, 2015. (Cited on pages 4, 30, 31, 40, 44,

45, and 58.)

[67] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
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