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Abstract

This thesis focuses on the development of mathematical models to calculate electromagnetic fields in foil and stranded windings. It aims at devising finiteelement formulations that consider the whole stack (bundle) of conductors as a periodic homogenizable structure. In such formulations, the eddy-current and capacitive effects are estimated without the explicit representation of each winding turn in the geometry. By doing so, affordable simulations with sufficient accuracy are intended as the research outcome; since traditional finiteelement models remain too computationally expensive to be practical software tools. The proposed models are established upon the well-known Maxwell's equations. Between the magnetic and electric fields, the strong coupling is neglected to allow a separate estimation of the eddy-current (resistive and inductive) and capacitive effects; full wave models are out of the thesis scope. While homogenized eddy-current models are formulated for both foil and stranded windings; the study of the parasitic capacitive effect is limited to the latter.

To treat eddy-current effects, the foil-winding homogenization is characterized by an unidirectional current-density redistribution and an inter-turn space-dependent voltage. Conversely, when dealing with stranded windings, the model is based on the use of frequency-dependent parameters that are fitted into Foster-network forms, which allows for time-domain analysis. Furthermore, to study the parasitic capacitive effect, this work proposes two electrostatic homogenizations for the computation of a terminal capacitance and one semi-homogenized model, built upon Darwin's formulation, that locally estimates the displacement currents. By way of validation, the results of all homogenized models are compared to those obtained by accurate but expensive reference finite-element models wherein all turns are explicitly discretized.
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Beknopte samenvatting

Dit proefschrift betreft de ontwikkeling van wiskundige modellen om elektromagnetische velden in gewikkelde geleiders (foils en draden) te berekenen, en beoogt eindige-elementenformuleringen die de stapel geleiders beschouwen als een periodiek homogeniseerbare structuur. In dergelijke formuleringen worden de wervelstroom en capacitieve effecten in rekening gebracht zonder de expliciete aanwezigheid van elke winding in de geometrie, en dit op pragmatische wijze, t.t.z. met voldoende nauwkeurigheid en redelijke rekentijd (in tegenstelling tot traditionele eindige-elementenmodellen). Tussen de magnetische en elektrische velden wordt de koppeling verwaarloosd om een aparte schatting van de wervelstroom (resistieve en inductieve) en capacitieve effecten mogelijk te maken; volledige golfmodellen vallen buiten het bestek van dit proefschrift.

De gehomogeniseerde wervelstroommodellen zijn geformuleerd voor wikkelingen met zowel foils als draden, terwijl de studie van de capacitieve effecten is beperkt tot het laatste.

Om wervelstroomeffecten te behandelen, wordt de homogenisatie van de foliewikkeling gekenmerkt door een unidirectionele herverdeling van de stroomdichtheid en een ruimte-afhankelijke spanning tussen de windingen. Omgekeerd is het model met draadwikkelingen gebaseerd op het gebruik van frequentieafhankelijke parameters die verder in Foster-netwerken worden gebruikt.

Om het parasitaire capacitieve effect te bestuderen, stelt dit werk bovendien twee elektrostatische homogenisaties voor de berekening van terminale capaciteit en een semi-gehomogeniseerd model dat lokaal de verplaatsingsstromen schat. Ter validatie worden de resultaten van alle gehomogeniseerde modellen vergeleken met die verkregen door nauwkeurige maar dure referentie-eindigeelementenmodellen waarin alle windingen expliciet worden gediscretiseerd.
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Résumé

Cette thèse porte sur le développement de modèles mathématiques pour calculer les champs électromagnétiques dans des bobines en feuillard et en fil fin.

Elle vise à concevoir des formulations par éléments finis qui considèrent l'ensemble de l'empilement de conducteurs comme une structure périodique homogénéisée. De telles formulations doivent estimer les effets des courants de Foucault et les effets capacitifs sans représenter géométriquement chaque tour des enroulements. Avec cette approche, des simulations abordables et garantissant une précision suffisante peuvent être mises en oeuvre alors que les modèles traditionnels par éléments finis restent trop coûteux pour être utilisables. Les modèles proposés sont établis pour l'ensemble des équations de Maxwell. Entre les champs magnétique et électrique, l'hypothèse d'une estimation séparée des effets des courants de Foucault et capacitifs est effectuée. Alors que des modèles homogénéisés à courants de Foucault sont formulés à la fois pour les bobines en feuillard et en fil fin, l'étude des effets capacitifs se limite à ces dernières.

Pour traiter les effets des courants de Foucault, l'homogénéisation des bobines en feuillard est caractérisée par une redistribution unidirectionnelle de la densité de courant et une tension inter-spires dépendante de l'espace. Lorsqu'il s'agit de bobines en fil fin, le modèle est basé sur l'utilisation de paramètres dépendant de la fréquence qui sont décrits par des circuits Foster, ce qui permet une analyse dans le domaine temporel. De plus, pour étudier l'effet capacitif, ce travail propose deux homogénéisations électrostatiques pour le calcul d'une capacité terminale et un modèle semi-homogénéisé qui estime localement les courants de déplacement. À titre de validation, les résultats des modèles homogénéisés sont comparés à ceux obtenus par des modèles par éléments finis précis mais coûteux dans lesquels tous les tours de l'enroulement sont discrétisés.
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List of Symbols General Typesetting

Hereafter, a generalized typesetting is adopted. In some cases, time or spatial dependency is explicitly indicated in brackets e.g., I(t). Matrices (including row and column vectors) are typeset in uppercase between square brackets e.g., [S]. If necessary, entries in matrices are specified with the same symbol and subscripts indicate their position e.g., S i,j is an entry of matrix [S]. Consistently, complex-valued matrices are boldfaced e.g., [A]. 

Coordinate Systems

Introduction Context and Motivation

Worldwide, energy efficiency has become a paramount objective tendency towards the fulfillment of low-carbon policies. In industrialized countries, electrical machines are significant consumers: only in the European Union, they take up 70% of the electrical energy share [START_REF] Gavrila | New trends in energy efficient electrical machines[END_REF]. Therefore, different regulations have been adopted in electrical-machine manufacturing to establish a framework of minimum performance requirements [34,35].

Electromagnetic devices have in general high efficiencies, with values varying from 85% in electric motors to even 98% in transformers [START_REF] Guru | Electric machinery and transformers[END_REF][START_REF] Fitzgerald | Electric machinery[END_REF]. Nonetheless, due to their intensive usage, these devices have a considerable environmental impact. Efficiency in electrical machines is mainly determined by the power loss. Typically, these losses are divided into: winding, core and mechanical losses [START_REF] Guru | Electric machinery and transformers[END_REF]. Among them, winding losses are substantial contributors; for instance, in induction motors, they constitute approximately 75% of the total losses [START_REF] De Almeida | Beyond induction motors -Technology trends to move up efficiency[END_REF]. Winding loss is commonly separated into its DC and eddy-current components; the latter characterized by the skin and proximity effects.

Moreover, in high-frequency devices, efficiency is also affected by parasitic capacitive effects that generate displacement currents. Such currents account for time-varying electric fields that appear in the dielectrics e.g., the winding insulation. Unintended resonances, limited bandwidth, hot spots and dielectric degradation are the possible consequences linked to the parasitic capacitive effect.

Thus, manufacturers are required to improve machine efficiency through novel designs and operation modes, requiring certainly an accurate estimation of the eddy-current and capacitive effects in the windings. Engineering such improvements is nowadays done by means of CAE, which permits the performance assessment of a newly-designed device with a significant reduction of prototyping. Commonly, the electromagnetic behavior of electrical machines is simulated with numerical techniques, wherefrom the FEM is the most widely used [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF][START_REF] Dhatt | Finite element method[END_REF].

FE models divide the studied domain into small subdomains wherein the PDEs, in this case Maxwell's equations, are locally solved. The finer the division is, the more accurate the results are. A correct estimation of the eddycurrent and capacitive effects requires thereby a fine discretization within the conducting and dielectric parts. However, a finely-discretized domain implies substantial computational costs, both in time and memory utilization, given the burdensome meshing process and the resulting amount of unknowns. In that regard, winding modeling poses a challenging problem in FE analysis for two main reasons. First, conductor cross-section sizes are much smaller than those of the other machine components; feature that leads to highly disproportional geometries. Second, windings comprise numerous turns, which means that those cross-sections are spatially reproduced over the considered geometry. Consequently, adequate FE discretizations of windings result in enormous numerical problems. Whereas in 2-D these problems yield vast computational times; in 3-D they are most often untreatable, even with massive computing power.

Developers of machine-modeling software must therefore design techniques to overcome the aforementioned difficulties, while assuring sufficient accuracy.

With such motivation, this thesis is conceived and represents the outcome of a collaboration between l'Université Grenoble Alpes, the KU Leuven and Altair Engineering France, developer of the FE software Altair Flux™. Within the universities, the involved research groups are the Laboratoire de génie électrique de Grenoble (G2Elab) and the division of Electrical Energy Systems and Applications (ESAT-ELECTA), respectively.

Objective and Scope

The main objective of this thesis is to devise FE formulations to facilitate winding modeling by considering the whole bundle of conductors as a periodic homogenizable structure. Such formulations ought to estimate correctly the electromagnetic behavior, accounting for eddy-current and capacitive effects, without explicitly considering each and every winding turn in the FE geometry.

Even though electrical machines comprise different components, this work is focused on the electromagnetic analysis of windings. Advanced core modeling, heat transfer and mechanical movement are consequently out of scope. Nevertheless, the proposed formulations are conceived to allow for coupling with other FE models, including other advanced modeling techniques, so that the full physical behavior of an electromagnetic device can be ultimately simulated.

Most of this work consists of mathematical models formulated on the basis of physical assumptions and observations. Although it is developed to be as mathematically rigorous as possible, the associated hypotheses are a product of an engineering perspective. Therefore, the resulting FE formulations are validated by means of numerical tests, rather than by mathematical demonstrations. Such tests compare the results of the proposed homogenized formulations to those obtained with reference models (see Chapter 2), whose accuracy is known to be very high.

Throughout this thesis, the resulting FE formulations are written in their 3-D forms, except for Chapter 5 that introduces purely 2-D approaches. However, all numerical validations are carried out in 2-D for two main reasons: 1) the homogenized approaches are straightforwardly extensible from a 2-D case to a 3-D one; 2) as mentioned before, the proposed formulations are validated through numerical tests in which a reference 3-D case is, in most cases, too computationally expensive to be simulated. In that view, test-case devices are by no means intended to represent real-life devices; they are instead designed to prove the efficacy of the mathematical statements.

Summary of Original Contributions

In agreement with the objectives, the original contributions of this thesis are summarized as follows:

1) A time-domain extension of a homogenized foil-winding model through the application of the implicit Euler method and Lagrange polynomials.

2) A time-domain approach for the homogenization of stranded windings based on the use of Foster networks, the so-called Vector-Fitting technique and the inverse Laplace transform.

3) A performance comparison between the approach in Contribution 2 and an existing time-domain homogenization in which Cauer networks are used instead. 4) Two homogenization approaches for the electrostatic modeling of windings aiming at the computation of a terminal capacitance: one relies on an elementary characterization of the zones where the electrostatic energy is concentrated; the other estimates an equivalent electric permittivity for the insulation layers. 5) A frequency-domain semi-homogenized approach based on Darwin's formulation that seeks to calculate both eddy-current and capacitive effects in windings through a weak coupling of the magnetic and electric fields. 

Outline

This thesis comprises five chapters: Chapter 1 introduces the fundamentals of computational electromagnetism i.e., the numerical resolution of Maxwell's equations with the FEM. This first chapter establishes the theoretical support required for the developments thereafter. Chapter 2 explains the two possible approaches for winding modeling with the FEM: explicit and homogenized. Explicit winding modeling is considered as the standard accepted technique and thus it serves as a reference model; whereas the homogenized modeling, in a standard approach (stranded model), is restricted to low-frequency applications with negligible eddy-current and capacitive effects. Chapter 3 proposes therefore a homogenization to account for the eddy-current effects in foil windings.

Such homogenization is based on behavioral assumptions regarding the current density and the terminal voltage. Chapter 4, in a similar manner, presents an approach to include the eddy-current effects in homogenized stranded windings. This time, it relies on the use of frequency-dependent parameters, namely a complex equivalent reluctivity and an equivalent impedance. Chapter 5 attempts lastly to broaden the homogenization of stranded windings to account additionally for the parasitic capacitive effect. On that basis, it proposes two electrostatic approaches for the computation of a terminal equivalent capacitance and one semi-homogenized model that solves locally the problem of the displacement currents. Finally, the general conclusions and the perspective for further future work are given.

Introduction

This thesis develops a series of mathematical approaches that seek to calculate electromagnetic fields in windings. Such approaches are built upon the widely known set of Maxwell's equations, which gather the laws of electromagnetism.

Maxwell's equations constitute a system of PDEs, whose solutions are often obtained with numerical methods, particularly the FEM. Throughout this thesis, the FEM is therefore used to resolve the PDEs resulting from the proposed approaches.

The objective of this chapter is thus to introduce the principles of electromagnetic fields and the FEM. In the first part, a review of Maxwell's equations is given. Particular subsets are detached from the original equations to account for the DC, eddy-current and capacitive effects. In the second part, an overview of the FEM is presented. Its application to electromagnetism is outlined with specific emphasis on the Galerkin method. Ultimately, the discrete weak formulations required for the subsequent chapters are deduced.

Modeling of Electromagnetic Fields

Maxwell's Equations

Electromagnetic phenomena characterize the interactions between electric and magnetic fields, charges and currents. These interactions are governed by physical laws known as Maxwell's equations. The formalism, established by James 6
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Clerk Maxwell (1831-1879), is mainly based on four equations that unify the theories of Ampère, Gauss and Faraday. The differential form of Maxwell's equations is extensively used to solve boundary-value problems. In the 3-D Euclidean space, it reads [START_REF] Jin | Theory and computation of electromagnetic fields[END_REF][START_REF] Balanis | Advanced engineering electromagnetics[END_REF]:

curl h = j + ∂ t d, (1.1) curl e = -∂ t b, (1.2) div b = 0, (1.3) div d = q, (1.4)
where h is the magnetic field (A/m), b the magnetic flux density (T), e the electric field (V/m), d the electric flux density or electric displacement (C/m 2 ), j the current density (A/m 2 ) and q the electric charge density (C/m 3 ).

Equations (1.1), (1.2), (1.3) and (1.4) are known as the Ampère law, Faraday law, Gauss law for magnetic fields and Gauss law for electric fields, respectively.

A fifth equation is obtained by taking advantage of the curl divergence-free property in (1.1) together with (1.4). This equation is referred to as the continuity equation, or the equation of conservation of charge, and takes the form of div j = -∂ t q.

(1.5)

Time and Frequency Domains

Electromagnetic interactions in (1.1)-(1.5) have time as an independent variable and all field variations are functions of it. Thus, in a natural time-domain calculation, they constitute a system of time-dependent PDEs [START_REF] Jin | Theory and computation of electromagnetic fields[END_REF][START_REF] Balanis | Advanced engineering electromagnetics[END_REF]. That said, many practical cases involve time-harmonic excitations and linear responses in time. Such responses can be represented as functions of e ıωt , in the frequency domain, by application of the Laplace transform [START_REF] Balanis | Advanced engineering electromagnetics[END_REF].

The frequency-dependent set of Maxwell's equations is obtained by using the corresponding complex field values (h, b, e, d) and the multiplier ıω, instead of the time derivative ∂ t , in (1.1)- (1.5). Frequency domain computations correspond to steady-state conditions wherein instantaneous fields relate to their frequency counterparts by e.g.,

h(t) = Re |h|e ıωt . (1.6)
It is worth mentioning that nonsinusoidal excitations and nonlinear responses can be treated as well in the frequency domain with harmonic balance techniques [START_REF] Gyselinck | Harmonic-balance finite-element modeling of electromagnetic devices: A novel approach[END_REF]. However, those techniques are out of the scope of this work.

Constitutive Relations and Materials

Materials, when subjected to electromagnetic fields, interact and modify these fields. Matter-field interactions are caused by the particle composition in every material. An exhaustive inclusion of the matter-field interactions requires the introduction of a microscopic lattice structure into the analysis, which would lead to very complicated problems. Hence, an approximate macroscopic behavior is often employed. This behavior is summarized in three relations widely known as constitutive relations. For linear and isotropic materials, they read [START_REF] Jackson | Classical electrodynamics[END_REF][START_REF] Balanis | Advanced engineering electromagnetics[END_REF]:

b = µh, (1.7) d = εe, (1.8) j = σe, (1.9) 
where µ is the magnetic permeability (H/m), ε the electric permittivity (F/m) and σ the electric conductivity (S/m). The inverses of the magnetic permeability and the electric conductivity are the magnetic reluctivity ν (m/H) and the electric resistivity ρ (Ω • m), respectively. µ, ε, σ, ν and ρ are denominated constitutive parameters [START_REF] Jackson | Classical electrodynamics[END_REF][START_REF] Balanis | Advanced engineering electromagnetics[END_REF]. In vacuum, the magnetic permeability and the electric conductivity take the constant values of µ 0 = 4π • 10 -7 H/m and ε 0 = 8.8541878128 • 10 -12 F/m. In any other media, constitutive parameters, thoroughly modeled, depend on the direction and strength of the applied field, the position within the medium and the frequency.

With regard to materials, windings comprise a conductive part and a dielectric part. Whereas the conductive part is often composed of copper or aluminum 1 , the dielectric part is made of air and insulating materials. Thus, for the purposes of winding modeling, it is reasonable to assume the constitutive parameters to be linear and isotropic as in (1.7)-(1.9) [START_REF] Jackson | Classical electrodynamics[END_REF][START_REF] Vassallo | Electromagnétisme classique dans la matière[END_REF].

Domain and Boundary Conditions

Maxwell's equations (1.1)-(1.5), together with the constitutive relations (1.7)-(1.9), are to be solved in a bounded domain Ω of the 2-or 3-D Euclidean space that is divided into subdomains. For the developments hereafter, it is necessary to define a conducting subdomain Ω c , where σ = 0, and a nonconducting subdomain Ω nc , where σ = 0; with Ω = Ω c ∪Ω nc . Air, magnetic nonconducting materials, where µ = µ 0 , and dielectrics (insulation), where ε = ε 0 , constitute the nonconducting subdomain Ω nc . Moreover, a winding subdomain Ω w is defined to be either conducting or nonconducting, i.e. Ω w ⊂ Ω c or Ω w ⊂ Ω nc , depending on the applied model. For instance, the homogenized approach of Chapter 3 considers that Ω w ⊂ Ω c , whereas the one in Chapter 4 considers instead that Ω w ⊂ Ω nc . Whether the winding is considered conducting or not is indicated for each formulation. It is additionally assumed that Ω w is nonmagnetic, with µ = µ 0 , because windings, in most cases, consist of paramagnetic conductors (copper or aluminum) [START_REF] Vassallo | Electromagnétisme classique dans la matière[END_REF]. The boundaries of Ω, including subdomain boundaries, are denoted Γ with n the unit vector normal to them. Figure 1.1 shows the considered domain Ω and its subdomains Ω c , Ω nc and Ω w .

In order to be unique at any point of space and time, fields described by Maxwell's equations require boundary conditions [START_REF] Jackson | Classical electrodynamics[END_REF][START_REF] Vassallo | Electromagnétisme classique dans la matière[END_REF]. Boundary conditions relate either to the tangential components of e and h, or to the normal components of d, j and b. Homogeneous boundary conditions are associated to idealized materials, or symmetry, because they impose the tangential or normal components of the fields. For electric quantities, defined on complementary surfaces Γ e and Γ d (or Γ j ), with Γ = Γ e ∪Γ d (or Γ = Γ e ∪Γ j ), the homogeneous boundary conditions read:

n × e Γe = 0, (1.10)

n • d Γ d = 0, (1.11) n • j Γj = 0. (1.12)
Likewise, for the magnetic quantities, defined on complementary surfaces Γ h and Γ b , with Γ = Γ h ∪ Γ b , the homogeneous boundary conditions read:

n × h Γ h = 0, (1.13) n • b Γ b = 0. (1.14)
Nonhomogeneous forms of Equations (1.10)-(1.14) refer to source fields. Typically, electric sources involve charge densities and magnetic sources involve current densities [START_REF] Jackson | Classical electrodynamics[END_REF]. Furthermore, discontinuous distributions of the fields occur at the interfaces between different materials. These discontinuous distributions are indicated with boundary conditions as well, which are known as interface conditions [START_REF] Jackson | Classical electrodynamics[END_REF][START_REF] Vassallo | Electromagnétisme classique dans la matière[END_REF][START_REF] Balanis | Advanced engineering electromagnetics[END_REF]. Let Γ 12 be the boundary intersecting two domains: Ω 1 and Ω 2 . There, the interface conditions are defined as

n × (e 1 -e 2 ) Γ12 = 0, (1.15) n • (d 1 -d 2 ) Γ12 = q c , (1.16 
)

n • (j 1 -j 2 ) Γ12 = -∂ t q c , (1.17) n × (h 1 -h 2 ) Γ12 = j c , (1.18) n • (b 1 -b 2 ) Γ12 = 0, (1.19) 
where q c (C/m ) and j c stand for the concentrated surface charge and current densities, respectively. For the sake of brevity, boundary and interface conditions are not explicitly written in the following formulations.

Power and Energy

Electromagnetic waves store energy by virtue of their electric and magnetic fields. The amount of energy stored, and the eventual power, can be calculated via the Poynting vector [START_REF] Balanis | Advanced engineering electromagnetics[END_REF][START_REF] Campos | About Poynting's theorem[END_REF]. The Poynting vector describes the directional energy flux. From it, energy and power expressions are extracted:

W m = 1 2 Ω h • b dΩ, ( 1.20 
)

W e = 1
2 Ω e • d dΩ, (1.21)

P j = Ωc e • j dΩ c , (1.22 
)

P t = P j + ∂ t W m + ∂ t W e , (1.23)
where W m is the magnetic energy (J), W e the electric energy (J), P j the Joule losses (W) and P t the total power (W). In the frequency domain, the total power P t becomes the apparent power S (VA), the joule losses P j become the real power P (W) and the remaining terms in (1.23) become the reactive power Q (VAr) [START_REF] Grimes | The complex Poynting theorem: reactive power, radiative Q, and limitations on electrically small antennas[END_REF].

Vector and Scalar Potentials

Maxwell's equations, as they are in (1.1)-(1.5), pose a complicated system of PDEs. For this reason, vector and scalar potentials are commnonly used. These potentials exploit the properties of differential operators to ease the solution.

Among the different potentials existing in the literature, this work focuses on the well-known magnetic vector potential a and electric scalar potential v [START_REF] Cardoso | Electromagnetics through the finite element method: A simplified approach using Maxwell's equations[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF][START_REF] Ida | Electromagnetics and calculation of fields[END_REF].

The Magnetic Vector Potential

Gauss' law of magnetism (1.3) establishes the null divergence of the magnetic flux density. The law is mathematically satisfied, if the magnetic flux density b is associated to the curl of a vector field called the magnetic vector potential a (T/m), i.e. b = curl a.

(1.24)

Indeed, for any a, vector field identities fulfill:

div (curl a) = 0. (1.25)
However, the definition in (1.24) does not guarantee the uniqueness of a. One may replace a by a + grad x, with x a scalar field, and (1.24) still holds. Thus, formulations involving a need to fix the divergence of the potential. This is often achieved by imposing a gauge condition [START_REF] Creusé | About the gauge conditions arising in finite element magnetostatic problems[END_REF][START_REF] Dular | A discrete sequence associated with mixed finite elements and its gauge condition for vector potentials[END_REF]. Two main gauges are used in numerical analysis of electromagnetic fields. The first is referred to as the Coulomb gauge [START_REF] Heyun | Numerical investigation of penalty factor for Coulomb gauge of magnetic vector potential for 3D fields[END_REF][START_REF] Li | Vectorial solution to double curl equation with generalized Coulomb gauge for magnetostatic problems[END_REF][START_REF] Zhao | A novel Coulomb-gauged magnetic vector potential formulation for 3-D eddy-current field analysis using edge elements[END_REF]. It imposes explicitly the divergence of a through an additional equation. The second is known as the tree-cotree gauge, particular to edge FE formulations [START_REF] Manges | A generalized tree-cotree gauge for magnetic field computation[END_REF][START_REF] Manges | Tree-cotree decompositions for first-order complete tangential vector finite elements[END_REF][START_REF] Dular | A discrete sequence associated with mixed finite elements and its gauge condition for vector potentials[END_REF]. The tree-cotree gauge eliminates the nontrivial null space, product of the unfixed divergence of a, by setting the vector potential to zero on certain unclosed paths of the FE mesh (branches) [START_REF] Manges | A generalized tree-cotree gauge for magnetic field computation[END_REF]. Alternatively, nongauged problems may reach convergence in spite of the indetermination, provided that an interative solver (e.g. ICCG) is employed [START_REF] Igarashi | On the property of the curl-curl matrix in finite element analysis with edge elements[END_REF][START_REF] Lee | On the convergence rate improvement of ICCG solver on the FE mesh[END_REF]. 
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Subsets of Maxwell's Equations

Maxwell's equations are often divided into subsets to simplify the analysis.

The formulae given by (1.1)-(1.5) is also referred to as the full wave problem this first domain [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. On the other hand, quasi-static fields keep a decoupled time-varying behavior that disregards entirely radiation and propagation effects. Magnetodynamics, electrodynamics and Darwin's model belong to this second domain [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Koch | Different types of quasistationary formulations for time domain simulations[END_REF]. Figure 1.2 summarizes the domains of the electromagnetic phenomena. In the following, the deduction of each subset is presented.

Note that hereafter the subscript s refers to source values.

Electrostatics

The electrostatic domain investigates the distribution of the electric field caused by static electric charges. In the domain Ω with boundary Γ, the electrostatic formulation is defined by

curl e = 0, (1.29) 
div d = q s , (1.30)

d = εe, ( 1.31) 
with boundary conditions given by (1.10) and (1.11) [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. Redefining the electric field e in terms of the electric scalar potential v, the electrostatic formulation reduces to

-div (ε grad v) = q s .
(1.32)

Magnetostatics

The magnetostatic domain investigates the distribution of the magnetic field caused by time-invariant currents or permanent magnets with remanent induction. For the sake of simplicity, the remanent induction is not considered, since it is not relevant for the developments in the subsequent chapters. In the domain Ω with boundary Γ, the magnetostatic formulation is defined by

curl h = j s , (1.33) div b = 0, (1.34) b = µh, (1.35)
with boundary conditions given by (1.13) and (1.14) [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Biro | On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D 114 magnetostatic problems[END_REF]. Redefining the magnetic flux density b in terms of the magnetic vector potential a, the magnetostatic formulation reduces to curl (ν curl a) = j s .

(1.36)

Electrokinetics

The electrokinetics domain investigates the distribution of the current density in conductive media. In the domain Ω with boundary Γ, the electrokinetic formulation is defined by

curl e = 0, (1.37) 
div j = 0, (1.38)

j = σe, ( 1.39) 
with boundary conditions given by (1.10) and (1.12) [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. Redefining the electric field e in terms of the electric scalar potential v, the electrokinetic formulation reduces to div (σ grad v) = 0.

(1.40)

Magnetodynamics

The magnetodynamic domain investigates the induced eddy currents in conductive media, while excluding entirely the displacement currents. In the domain Ω with boundary Γ, the magnetodynamic formulation reads with boundary conditions given by (1.13) and (1.10) [START_REF] Kriezis | Eddy currents: Theory and applications[END_REF][START_REF] Biro | On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents[END_REF]. Redefining the electric field e in terms of the magnetic vector potential a and the electric scalar potential v, the magnetodynamic formulation reduces to curl (ν curl a ) + σ ∂ t a + σ grad v = j s .

curl h = j + j s , ( 1 
(1.45)

The formulation in (1.45) requires a second equation because it contains two unknowns. Thus, it is common practice to solve (1.45) together with the continuity equation:

div (σ ∂ t a + σ grad v) = 0. (1.46)

Electrodynamics

The electrodynamic domain investigates the displacement currents, while excluding entirely the induced eddy currents. In the domain Ω with boundary Γ, the electrodynamic formulation is given by curl e = 0, (

div ∂ t d = 0, 1.47) 
d = εe, (1.48) 
with boundary conditions given by (1.10) and (1.11) [START_REF] Kalluri | Electromagnetic Waves, Materials, and Computation with MATLAB®[END_REF]. Note that (1.48) is the continuity equation without conductive current density. Redefining the electric field e in terms of the electric scalar potential v, the electrodynamic formulation reduces to div (ε ∂ t grad v) = 0.

(1.50)

Darwin's Model

In the domain Ω with boundary Γ, the complete set of Maxwell's equations, in terms of the magnetic vector potential a and the electric scalar potential v, can be represented by the Ampère equation (1.1) and the continuity equation

(1.5) i.e. curl (ν curl a ) + σ ∂ t a + ε ∂ 2 t a + σ grad v + ε ∂ t grad v = j s , (1.51) div (σ ∂ t a + ε ∂ 2 t a + σ grad v + ε ∂ t grad v) = 0, (1.52) 
with appropriate boundary conditions. The form in (1.52) is obtained by substituting the charge density q in (1.5) according to Gauss' law (1.4) and assuming a divergence-free source j s .

Darwin's model investigates simultaneously eddy-current and capacitive effects, while excluding the wave propagation phenomenon [START_REF] Koch | Different types of quasistationary formulations for time domain simulations[END_REF][START_REF] Fang | Darwin approximation to Maxwell's equations[END_REF][START_REF] Degond | An analysis of the Darwin model of approximation to Maxwell's equations[END_REF]. The idea behind Darwin's model is based on the quasi-stationary limit. If the considered pulsation ω holds for ω < ω max where ω max = 2πc/T min with c the speed of light and T min the minimum expected period of the electromagnetic waves, the effects of wave propagation and radiation are negligible [START_REF] Koch | Different types of quasistationary formulations for time domain simulations[END_REF][START_REF] Fang | Darwin approximation to Maxwell's equations[END_REF][START_REF] Degond | An analysis of the Darwin model of approximation to Maxwell's equations[END_REF]. Thus, second time derivatives of a in (1.51) and (1.52) can be disregarded, so that the formulation becomes

curl (ν curl a ) + σ ∂ t a + σ grad v + ε ∂ t grad v = j s , (1.53) div (σ ∂ t a + σ grad v + ε ∂ t grad v) = 0. (1.54)
Equations (1.53) and (1.54) are also referred to as the modified Darwin model [START_REF] Koch | Different types of quasistationary formulations for time domain simulations[END_REF][START_REF] Koch | A low-frequency approximation to the Maxwell equations simultaneously considering inductive and capacitive phenomena[END_REF], since the original formulation uses Gauss' law for electric fields instead of the continuity equation.

Continuous Function Spaces

The previously defined formulations use differential operators to characterize the spatial distribution of the corresponding vector and scalar fields in the considered domain Ω. Hence, a mathematical structure needs to be specified to allocate the operators and their domains of definition. These domains of definition are called function spaces [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. A structure comprising four function spaces and three differential operators is considered, following the conditions in [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. The four function spaces are denoted E o (Ω), with o = 0, 1, 2, 3, and the three differential operators are naturally the curl, the gradient and the divergence. Since the operators are defined in Ω with boundary conditions, they are restricted by the boundary Γ. For a field i, the operators connect the function spaces, i.e.

E 0 i -grad i → E 1 i -curl i → E 2 i -div i → E 3 i . (1.55)
Electromagnetic fields, with their inherent function spaces and operators, appear in duality. This dual structure is accommodated using Tonti diagrams [START_REF] Bossavit | en vue de la modelisation[END_REF]. In general, the dual structure of electromagnetic fields follows the Tonti diagram for fields i and l in Figure 1. 
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The Finite Element Method

The FEM is one of the most widely used methods for the numerical resolution of mathematical models in engineering and physics [START_REF] Salon | Numerical methods in electromagnetism[END_REF][START_REF] Dhatt | Finite element method[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. These mathematical models refer to boundary-value PDEs with 2-or 3-D space variables.

For the solution, the FEM divides a large and intricate domain into small and simple parts called finite elements. FEs are composed of points, known as nodes, and the interconnections between them are done through shape functions. The whole assembly of FEs constitutes the mesh, which reconstructs a discrete representation of the original continuous domain.

The FEM solves the PDEs, in the form of algebraic equations, for each element and then assembles the elementary solutions, following the mesh, to represent the entire problem. To that end, it requires the profile of the solution to be defined and which is a priori unknown. Several methods exist in the literature for the determination of the approximate profile. Among them, the Galerkin method [START_REF] Dhatt | Finite element method[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF] has been widely applied to FEA and it is thus the one used in this work.

Discrete Function Spaces

FEA require a discretization of the domain Ω and therefore the associated discrete function spaces ought to be generated. In general, four discrete function spaces D o (Ω), with o = 0, 1, 2, 3, are defined to be the analogous to E o (Ω) [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF], i.e. 

D 0 i -grad i → D 1 i -curl i → D 2 i -div i → D 3 i . ( 1 

Problem to Solve

In FEA, variables are represented in a piece-wise form over the domain and the differential equations are solved for each element [START_REF] Salon | Numerical methods in electromagnetism[END_REF][START_REF] Dhatt | Finite element method[END_REF]. The solution in the entire domain is then approximated through the assembly of each element contribution in an appropriate way such that the resulting matrix represents the behavior of the entire domain. The global matrix system to be solved takes the form of

[M ][A] = [F ], (1.57) 
where [M ] is the global left-hand side matrix assembled from the individual element contributions, [A] the unknown vector for which the system is being solved and [F ] the vector made up of the sources and boundary conditions.

Elements and Shape Functions

An approximation of the variables within the FEs is done by means of suitable known functions that establish a relation between the differential equations and the element shape [START_REF] Salon | Numerical methods in electromagnetism[END_REF][START_REF] Dhatt | Finite element method[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. For this reason, the functions employed to represent the solution at each element are called shape functions, interpolating functions or basis functions. Depending on the shape function, the discrete unknowns of the problem are associated either to the nodes, edges, faces or volumes of the FEs. Figure 1.4 shows three types of first-order FEs commonly employed in FEA, namely the line, the triangle and the tetrahedron. To these elements are associated the corresponding shape functions, for which two types are considered in this thesis: nodal and edge basis functions [START_REF] Dhatt | Finite element method[END_REF][START_REF] Bossavit | Whitney forms: A class of finite elements for threedimensional computations in electromagnetism[END_REF].

Shape functions are usually defined for reference elements [START_REF] Dhatt | Finite element method[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF], which are elements of simple shape in a fixed reference space that facilitate the analysis.

By use of a geometrical transformation, reference elements can be transformed into any real element. In the subsequent chapters, first-order triangular elements are used for the 2-D numerical examples.

Nodal Shape Functions

Nodal shape functions are assigned to every point, or node, of the FEs. They are characterized to be equal to one at the coordinates of node i (x i ), with continuous variation throughout the elements having node i, and equal to zero for any other node l. In a FE mesh with N n nodes, nodal shape functions α are represented by means of the Kronecker delta δ k [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF][START_REF] Cardoso | Electromagnetics through the finite element method: A simplified approach using Maxwell's equations[END_REF], i.e.

α i (x l ) = δ k il    1 if i = l 0 if i = l , ∀ i, l ∈ N n . (1.58)
The set of nodal shape functions belong to the discrete function space D 0 and they guarantee normal and tangential continuity at every point in space. The approximation of a scalar field, e.g. for the electric scalar potential v, is given by

v ≈ Nn i=1 v i α i , ∀ α i ∈ D 0 e (Ω). (1.59)
where the v i values are the N n coefficients of the basis functions.

Edge Shape Functions

Edge shape functions are assigned to the borderlines, or edges, of the FEs [START_REF] Bossavit | A rationale for 'edge-elements' in 3-D fields computations[END_REF][START_REF] Mur | Edge elements, their advantages and their disadvantages[END_REF][START_REF] Dular | Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms[END_REF]. They guarantee tangential continuity and allow discontinuity in the normal component of fields; characteristic suitable for electromagnetic fields in view of (1.15)- (1.19). In a FE mesh with N e edges and N n nodes, edge shape functions α are expressed by

α m,l = α m grad α l -α l grad α m , ∀ m, l ∈ N n , ( 1.60) 
where α m and α l are the linear nodal shape functions at nodes m and l, respectively. The set of edge shape functions belong to the discrete function space D 1 . The approximation of a vector field, e.g. for the magnetic vector potential a, is given by

a ≈ Ne i=1 a i α i , ∀ α i ∈ D 1 b (Ω). (1.61)
where the a i values are the N e coefficients associated to the circulation of the fields along the FE edges. In the following chapters, the variable N w is used to denote the number of unknowns associated to the discretization of the winding subdomain Ω w .

The Galerkin method

The FEM solves the PDEs in the form of algebraic equations for each element via (1.57). This implies that the algebraic equations accounting for the solution profile of the PDEs must be known. Hence, an approximate solution profile is usually found by dint of variational methods or weighted residual methods [START_REF] Salon | Numerical methods in electromagnetism[END_REF][START_REF] Dhatt | Finite element method[END_REF]. The method of the weighted residuals offers a powerful alternative to PDEs for which a variational formulation cannot be written; thus it is the method used throughout this work.

Let H be a governing system of PDEs in Ω for which a solution a is sought, so that

H(a) = η, (1.62)
where η is the residual. A null residual is obtained only for the exact solution of a. Conversely, if an approximate solution is used, say in the form of (1.61), then (1.62) always leads to η = 0. In this sense, the method of the weighted residuals requires the coefficients a i in (1.61) to fulfill

Ω ξ i • η dΩ = 0, (1.63) 
where the functions ξ i are the weighting functions. The choice of the weighting functions results in different possible approaches. In this regard, the method of the weighted residuals diversifies into the collocation, subdomain, least-squares and Galerkin methods [START_REF] Lewis | Fundamentals of the finite element method for heat and fluid flow[END_REF].

The Galerkin method has been widely used in FEA because it uses the shape functions as weighting functions. By applying the Galerkin method to (1.63), the approximation of the solution to the governing system of PDEs H in Ω is found through

Ω α i • η dΩ = 0. (1.64)
Systems of PDEs in the form of (1.64) are referred to as weak formulations;

whereas in the form of (1.62), they are known as strong formulations [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF].

As shown before, the weak form turns the differential equations into integral equations whose solutions are sought with respect of the test functions. Weak forms always provide a solution with relatively high accuracy, even when there is no solution to the strong form.

Weak Formulations

The application of the Galerkin method to the formulations in Section 1.2.7 leads to their corresponding weak forms. Since the equations take an integral form, the differentiability requirements can be further relaxed using Green's identities (see Appendix A.2) [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF][START_REF] Lewis | Fundamentals of the finite element method for heat and fluid flow[END_REF]. Thereby, second-order derivatives can be transformed into a product of first-order derivatives. Weak forms of the formulations in Section 1.2.7, simplified via Green's identities, are the ones solved with the FEM. To that end, the electric scalar potential v is discretized with nodal basis functions (1.59) and the magnetic vector potential a with edge basis functions (1.61).

Electrostatic Weak Formulation

The electrostatic weak formulation is obtained by application of the Galerkin method, together with Green's identity of the grad-div type, to (1.32). In the domain Ω with boundary Γ, it reads [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]: find v such that

Ω ε grad v • grad α dΩ - Ω q s • α dΩ = 0, ∀ α ∈ D 0 e (Ω).
(1.65)

Magnetostatic Weak Formulation

The magnetostatic weak formulation is obtained by application of the Galerkin method, together with Green's identity of the curl-curl type, to (1.36). In the domain Ω with boundary Γ, it reads [START_REF] Ida | Electromagnetics and calculation of fields[END_REF][START_REF] Biro | On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D 114 magnetostatic problems[END_REF]: find a such that

Ω ν curl a • curl α dΩ - Ωc j s • α dΩ c = 0, ∀ α ∈ D 1 b (Ω).
(1.66)

Electrokinetic Weak Formulation

The electrokinetic weak formulation is obtained by application of the Galerkin method, together with Green's identity of the grad-div type, to (1.40). In the domain Ω c with boundary Γ, it reads [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]:

find v such that Ωc σ grad v • grad α dΩ c = 0, ∀ α ∈ D 0 e (Ω c ).
(1.67)

Magnetodynamic Weak Formulation

In the domain Ω with boundary Γ, the magnetodynamic weak formulation contains two equations. The first equation is obtained by applying the Galerkin method, together with Green's identity of the curl-curl type, to (1.45). The second equation is obtained by applying the Galerkin method, together with Green's identity of the grad-div type, to (1.46). The formulation reads [START_REF] Kriezis | Eddy currents: Theory and applications[END_REF][START_REF] Biro | On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents[END_REF]:

find a and v such that

Ω ν curl a • curl α dΩ + Ωc σ ∂ t a • α dΩ c + Ωc σ grad v • α dΩ c - Ωc j s • α dΩ c = 0, ∀ α ∈ D 1 b (Ω), (1.68) Ωc σ ∂ t a • grad α dΩ c + Ωc σ grad v • grad α dΩ c = 0, ∀ α ∈ D 0 e (Ω c ). (1.69)

Electrodynamic Weak Formulation

The electrodynamic weak formulation is obtained by application of the Galerkin method, together with Green's identity of the grad-div type, to (1.50). In the domain Ω with boundary Γ, it reads [START_REF] Kalluri | Electromagnetic Waves, Materials, and Computation with MATLAB®[END_REF]: find v such that

Ω ε ∂ t grad v • grad α dΩ = 0, ∀ α ∈ D 0 e (Ω).
(1.70)

Darwin's Weak Formulation

In the domain Ω with boundary Γ, Darwin's weak formulation also contains two equations. The first equation is obtained by applying the Galerkin method, together with Green's identity of the curl-curl type, to (1.53). The second equation is obtained by applying the Galerkin method, together with Green's identity of the grad-div type, to (1.54). The formulation reads [START_REF] Koch | Different types of quasistationary formulations for time domain simulations[END_REF][START_REF] Fang | Darwin approximation to Maxwell's equations[END_REF][START_REF] Degond | An analysis of the Darwin model of approximation to Maxwell's equations[END_REF]: find a and v such that

Ω ν curl a • curl α dΩ + Ωc σ ∂ t a • α dΩ c + Ωc σ grad v • α dΩ c + Ω ε ∂ t grad v • α dΩ - Ωc j s • α dΩ c = 0, ∀ α ∈ D 1 b (Ω), (1.71) Ωc σ ∂ t a • grad α dΩ c + Ωc σ grad v • grad α dΩ c + Ω ε ∂ t grad v • grad α dΩ = 0, ∀ α ∈ D 0 e (Ω c ).
(1.72)

Chapter Summary

In the first part of this chapter, the principles of electromagnetic modeling The second part of the chapter overviews the FEM. First, the discrete function spaces, analogous to the continuous function spaces, are introduced.

Subsequently, the approximation of fields by means of FEs is explained. Nodal and edge shape functions associated to the FEs are thereafter described. Lastly, the Galerkin method is elucidated and applied to obtain the discrete weak formulations to be employed in the following chapters.

Winding Modeling Approaches:

Explicit vs Homogenized

Introduction

With the FEM, there are two possible approaches for the modeling of windings: explicit and homogenized. Whereas the former contains each and every winding turn in the FE geometry, the latter considers the winding section as a block. The explicit approach allows a straightforward inclusion of the eddycurrent and capacitive effects, through the formulations presented in Chapter 1, because all conductive and nonconductive regions are explicitly defined. However, it results in computationally expensive FE models given the prohibitive number of unknowns required for the discretization of every winding turn. Contrarily, the homogenized approach leads to a much reduced computational cost, but the inclusion of the inductive and capacitive effects is not evident since a homogenized region replaces the set of turns. Both approaches are widely used in FE models, yet a homogenization is usually preferred due to the low computational cost. This second chapter is thus intended to explain the fundamentals of explicit and homogenized modeling. It starts with the definition of an electrical winding, in which the types to be treated in this work are differentiated, namely foil and stranded windings. Then, the solid conductor is introduced and associated to the formulations given in Chapter 1. Explicit approaches accounting for the eddy-current and capacitive effects are thereon generalized from the solid conductor to a complete winding. Subsequently, the standard homog-enized approach, known as the stranded model, is defined to account for the low-frequency effects. In the end, the limitations of the stranded model are enunciated, which provide motive to the succeeding chapters.

Winding Definition

An electromagnetic winding1 , or simply winding, consists of an electrical conductor wound around a center [START_REF] Laplante | Comprehensive dictionary of electrical engineering[END_REF]. The starting and ending points of the conductor are known as terminals. Each loop of the conductor is called a turn and turns may be grouped in layers. The spatial distribution of the layers is given by the winding disposition, which is either orthogonal or orthocyclic.

While in an orthogonal winding the turns of adjacent layers lay on top of each other; in an orthocyclic winding, the turns of adjacent layers lay in the gaps between two turns of the preceding layer. Note that the orthocyclic disposition is inherent to round conductors. Otherwise, windings that are randomly wound, and therefore do not comprise layers, are referred to as jumble windings.

In multi-turn windings, the conductor is coated with dielectric materials to prevent the current circulation between the turns. Thus, each turn comprises a conductive part and the insulation around it. The ratio of the conductive volume to the total winding volume is known as fill factor. Windings are usually arranged on coil formers, made of a dielectric material, to keep them in place.

The hollow center of the winding is commonly referred to as the core area.

Ferromagnetic and air cores exist in winding manufacture, but the former is of greater interest due to their high magnetic permeability. Figure 2.1 illustrates the dispositions and concepts associated to the winding definition.

Types of Windings

Several types of windings exist in electrical-machine manufacture. According to the conductor used, they can be classified as follows:

1) Foil windings use a conductive foil whose height is much larger than its thickness. They possess only one turn per layer and are wound in the shape of a roll.

2) Stranded windings use strands or wires of round, square or rectangular conductors. They comprise numerous turns that can be grouped in sev- (between 2 to 8) inserted in rectangular slots [START_REF] Berardi | Design guideline of an AC hairpin winding[END_REF][START_REF] Islam | Asymmetric bar winding for high-speed traction electric machines[END_REF].

That said, the homogenized approaches proposed in the following chapters focus on the first two types of windings: foil and stranded. Nonetheless, all types can be modeled with the explicit approaches of Section 2.5.

Electromagnetic Behavior

Windings are used in electric motors, generators, transformers, electromagnets and inductors [START_REF] Guru | Electric machinery and transformers[END_REF][START_REF] Fitzgerald | Electric machinery[END_REF]. In such devices, the purpose of windings is either: to generate a magnetic field concentrated in the core area when fed by a current, following Ampère's law; or to develop an EMF on their terminals when subjected to a time-varying magnetic flux, following Faraday's law [START_REF] Guru | Electric machinery and transformers[END_REF][START_REF] Fitzgerald | Electric machinery[END_REF]. Both the concentrated field and the induced EMF are directly proportional to the number of winding turns. Figure 2.3 illustrates such electromagnetic behavior in a single-turn winding.

At nonzero frequencies, the electromagnetic behavior of windings depends on two phenomena: eddy-current and parasitic capacitive effects. Generally speaking, eddy-current effects are predominant up until mid-high frequencies, but beyond that threshold both must be taken into account [START_REF] Ida | Electromagnetics and calculation of fields[END_REF]. These effects have been largely covered in the literature [START_REF] Balanis | Advanced engineering electromagnetics[END_REF][START_REF] Ferreira | Electromagnetic modelling of power electronic converters[END_REF][START_REF] Guru | Electric machinery and transformers[END_REF]; thus, only a brief outline on how they affect windings is given. 
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Eddy-Current Effects

Eddy currents are closed loops of electrical current induced in conductive media by a time-varying magnetic field, following Ampère's law (1.1). In multi-turn windings, eddy currents are not only induced by the own magnetic field of each turn, referred to as the skin effect; but also by the magnetic field of near turns, known as the proximity effect. Figure 2.4a illustrates both the skin and proximity effects in two round conductors. On one hand, the skin effect refers to the redistribution of the current density in a conductor towards its outer surface. As the frequency increases, the effective resistance of the conductor increases due to the reduction of its effective cross-section. Quantitatively, the skin effect is measured with a parameter called the skin depth δ s , which defines the depth of the inner surface until where the majority of the current density (|j|/e) is concentrated; its expression reads:

δ s = ν πf σ . (2.1)
On the other hand, the proximity effect refers to the redistribution of the current density in a conductor caused by the changing magnetic field of adjacent conductors. Between two turns, it results in a concentration of the current density to the opposite side of the neighboring turn, considering that both currents flow in the same direction. Eddy currents in windings are highly undesirable because they lead to additional losses and heating.

Parasitic Capacitive Effect

The parasitic capacitive effect, or simply capacitive effect, defines the tendency of near conductors to develop a capacitance between them. Whenever two conductors, with different time-varying electric potentials, are very close to each other, their respective electric field affects one another. Displacement currents appear wherefore in the nonconducting media surrounding the conductors, as shown in Figure 2.4b. The capacitive effect is in general undesired, although inevitable, since it limits the operation bandwidth of high-frequency electromagnetic devices and degrades the dielectric insulation.

Circuit Quantities

Winding terminals are connected to external circuits with active and passive elements. Therefore, a coupling between the local quantities in Maxwell's equations and the global quantities of the circuit ought to be defined. In an electric circuit, the two global quantities of interest are: the current I (A) and the voltage V (V). Currents and voltages may be included in the models of Section 1.2.7 through global boundary conditions on the fields [START_REF] Meunier | The finite element method for electromagnetic modeling[END_REF]. In that regard, a flux functional, through a given surface Γ (with n the unit vector normal to it), relates the current density to the current; while a circulation functional, along a given curve γ, relates the electric field e to the voltage, i.e.

Γ n • j dΓ = I, (2.2) γ e dγ = V. (2.3)

The Solid Conductor

A solid conductor, or massive conductor, consists of one single and indivisible piece of conducting material. Since the solid conductor is the prime part of a winding, its circuit-coupled formulations need to be defined. Indeed, the inclusion of (2.2) and ( 2.3) into a solid conductor formulation can then be generalized to the complete winding. To that end, a portion of insulated solid conductor is considered and represented in Figure 2.5. A source of EMF is located between the surfaces Γ 1 and Γ 2 , which for their part are considered as electrodes. With such a source are associated its voltage V and the current I, so that the integral (2.3) holds for any path γ connecting both electrodes.
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Circuit-Coupled Magnetodynamic Formulation

If only eddy-current effects are considered, the magnetodynamic formulation in Section 1.2.7.4 is to be solved. In this context, one can assume that the current I in Figure 2.5 crosses the solid conductor from Γ 1 to Γ 2 with no current flow through Γ 3 . Under this assumption, (2.2) holds for any cross-section Γ between Γ 1 and Γ 2 .

The voltage V may be directly included in the equations provided that the electric scalar potential is redefined as [START_REF] Dular | A general and natural method to define circuit relations associated with magnetic vector potential formulations[END_REF]:

v = V v 0 , ( 2.4) 
where v 0 is a unit electric scalar potential satisfying in an electrokinetic model that:

v 0 Γ1 = 1, (2.5 
)

v 0 Γ2 = 0. (2.6)
Conditions (2.5) and (2.6) impose on v 0 the behavior of a unit source that varies from 1 to 0 between the two electrodes Γ 1 and Γ 2 . In such a way, any voltage source can be associated to the elementary v 0 , which gives meaning to (2.4). This redefinition of the electric scalar potential is the 3-D analogous to the classical 2-D assumption in which v is expressed along the constant depth in terms of the voltage V [START_REF] Geuzaine | High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account[END_REF].

By rewriting (1.68) in terms of (2.4), the voltage is included in the magnetodynamic formulation, i.e. find a and V such that

Ω ν curl a • curl α dΩ + Ωc σ ∂ t a • α dΩ c +V Ωc σ grad v 0 • α dΩ c = 0, ∀ α ∈ D 1 b (Ω), (2.7) 
where a null current density source j s is assumed. It is necessary now to establish a relationship between the voltage and the current. Therefore, one can apply product rule (A.4) to the weak form of the continuity equation (1.69), so that it yields

Ωc j • grad α dΩ c = Ωc div (j • grad α). (2.8)
Note that the divergence-free property of the current density cancels the third term in (A.4). By application of the divergence theorem (see Appendix A.1)

to the right-hand side of (2.8), together with a surface decomposition (Γ =

Γ 1 + Γ 2 + Γ 3 ), one gets Ωc j • grad α dΩ c = Γ1 α j • n dΓ 1 + Γ2 α j • n dΓ 2 + Γ3 α j • n dΓ 3 . (2.9)
If the unit electric scalar potential v 0 is used in (2.9), conditions (2.5) and (2.6) ensure for the shape functions that α Γ1 = 1 and α Γ2 = 0. Since there is no current flow through Γ 3 , (2.9) can be rewritten as

Ωc j • grad α dΩ c = Γ1 j • n dΓ 1 . (2.10)
By incorporating the flux functional (2.2) into (2.10), the circuit relation is finally obtained in terms of a, V and v 0 , i.e. find a and V such that

Ωc (-σ ∂ t a -σ V grad v 0 ) • grad α dΩ c = I, ∀ α ∈ D 0 e (Ω). (2.11)
In that way, the circuit-coupled magnetodynamic weak formulation is fully defined by (2.7) and (2.11), where the circuit relation replaces the continuity equation initially considered in Section 1.2.7.4.

The introduction of the unit electric scalar potential has the advantage of allowing the voltage V and the current I to be directly included in the formulation. However, the distribution of v 0 in Ω c must be known beforehand.

To this end, an elementary electrokinectic problem, with boundary conditions (2.5) and (2.6), has to be previously solved. Or else, it is possible to reduce the support of v 0 with the definition of a transition layer limited to the FEs located on one of the surfaces, e.g. Γ 1 . Thereby, the thin source region does not have to be defined in the mesh; only one of its surfaces is considered as a cross-section where v 0 is discontinuous [START_REF] Dular | A general and natural method to define circuit relations associated with magnetic vector potential formulations[END_REF].

Circuit-Coupled Relaxed Darwin Formulation

Darwin's model may easily include the circuit relation (2.11), if a relaxed interaction between the electric and magnetic fields is assumed [START_REF] Dular | Dual finite element formulations for the three-dimensional modeling of both inductive and capacitive effects in massive inductors[END_REF][START_REF] Dular | Three-dimensional finite element modeling of inductive and capacitive effects in micro-coils[END_REF][START_REF] Garcia | Magneto-dynamic formulation to solve capacitive effect problems in an axi-symmetrical coil[END_REF]. In this perspective, the assumption consists in neglecting the displacement currents in (1.71) but not in (1.72). As a result, the equations to be solved split into two subproblems: a circuit-coupled magnetodynamic problem, defined by (2.7) and (2.11), and a electric problem defined by (1.72). The magnetodynamic problem comes first and aims at calculating e in Ω c , whereas the electric problem, solved afterwards, aims at determining e in Ω nc . Hence, the voltage applied to a conductor is initially determined for the magnetodynamic problem and then it serves as a source for the electric problem, together with the magnetic solution [START_REF] Dular | Dual finite element formulations for the three-dimensional modeling of both inductive and capacitive effects in massive inductors[END_REF].

Therefore, after the magnetodynamic problem, one has to solve the continuity equation (1.72), i.e. find v such that

Ωc σ ∂ t a s • grad α dΩ c + Ωc σ grad v s • grad α dΩ c + Ω ε ∂ t grad v • grad α dΩ = 0, ∀ α ∈ D 0 e (Ω), (2.12) 
where a s and v s are the sources coming from the magnetodynamic resolution.

The known values v s in Ω c serve as a boundary condition for Ω nc , while the term ∂ t a s can be considered as a source electric field. In this sense, grad v is the unknown reaction field that allows the electric flux density conservation [START_REF] Dular | Dual finite element formulations for the three-dimensional modeling of both inductive and capacitive effects in massive inductors[END_REF]. Since displacements currents are disregarded in the magnetic problem, the divergence-free property of the curl ensures:

div j = 0, (2.13) 
which means that the sum of the first two terms in (2.12) are equal to zero. In a FE discretization, (2.13) is guaranteed when grad α is included in the function space of α. If edge and nodal shape functions are used for the discretization of a and v, such condition is automatically satisfied [START_REF] Dular | A general and natural method to define circuit relations associated with magnetic vector potential formulations[END_REF]. As a result, the electric model reduces to: find v such that

Ω ε ∂ t grad v • grad α dΩ = 0, ∀ α ∈ D 0 e (Ω), (2.14)
which is indeed the electrodynamic formulation in (1.70) solved with a set of predefined source terms. Equation (2.14) is also a time-derivative weak form of Gauss law for electric fields (1.4) [START_REF] Dular | Three-dimensional finite element modeling of inductive and capacitive effects in micro-coils[END_REF].

This relaxed approach has been proved to be effective for the computation of inductive and capacitive effects in a broad frequency range [START_REF] Dular | Dual finite element formulations for the three-dimensional modeling of both inductive and capacitive effects in massive inductors[END_REF][START_REF] Dular | Three-dimensional finite element modeling of inductive and capacitive effects in micro-coils[END_REF][START_REF] Garcia | Magneto-dynamic formulation to solve capacitive effect problems in an axi-symmetrical coil[END_REF]. Note that the relaxation proposed in [START_REF] Dular | Dual finite element formulations for the three-dimensional modeling of both inductive and capacitive effects in massive inductors[END_REF][START_REF] Dular | Three-dimensional finite element modeling of inductive and capacitive effects in micro-coils[END_REF] 

(-σ ∂ t a -σ V grad v 0 ) • grad α dΩ c - Ω ε ∂ t grad v • grad α dΩ = I, (2.15)
where the first integral is known from the magnetodynamic problem, while the second one requires the solution of the electric model. In (2.15), test function α is the one associated to v 0 .

Explicit Modeling of Windings

Eddy-current and capacitive effects in windings might be estimated with the formulations given for the solid conductor in Sections 2.4.1 and 2.4.2. Indeed, in a full 3-D FE model, the winding is described by one wound solid conductor.

Or else, in more simplified models, 3-D portions or 2-D cross-sections, each winding turn can be represented as a separate solid conductor. Hence, the solid conductors, accounting for the winding turns, have to be electrically connected.

A series connection corresponds to the conductor turning pattern, which is depicted in Figure 2.6 for a winding with N c turns. Such electrical connection implies that the same conducting current flows through the turns with N c resulting voltages.

Only the magnetodynamic formulation has to be modified to account for the complete winding, by reason of its circuit coupling. Evidently, an explicit model considers that Ω w ⊂ Ω c . Assuming that the conducting part Ω c is sourceless (no voltage associated) outside Ω w , the circuit-coupled magnetody- namic formulation reads: find a and V i such that 

Ω ν curl a • curl α dΩ + ∂ t Ωc σ a • α dΩ c + Nc i=1 V i Ωw σ grad v 0i • α dΩ w = 0, ∀ α ∈ D 1 b (Ω), ( 2 
V i = V t .
(2.17)

In the case of the relaxed Darwin Formulation, the V i voltages coming from the magnetodynamic problem (2.16) become the sources in the electric problem, knowing that the distribution of the electric scalar potential in each turn is given by v i = V i v 0i . Moreover, N c current relations (2.15) are required together with (2.14). This time, such relations are computed in the postprocessing stage to determine the total current (conducting and displacement) flowing through every winding turn.

Standard Homogenized Modeling of Windings

The standard homogenized model for windings is known as the stranded model [START_REF] Bouissou | Study of 3D formulations to model electromagnetic devices[END_REF][START_REF] Golovanov | 3D edge element based formulation coupled to electric circuits[END_REF][START_REF] Leonard | Voltage forced coils for 3D finiteelement electromagnetic models[END_REF]. It considers a uniform current density with constant fill factor over a winding window, as depicted in Figure 2.7. This model fits ideally the description of a DC winding and is based on the magnetostatic formulation in Section 1.3.5.2, considering thereby that Ω w ⊂ Ω nc .

In that regard, let I be the current flowing through the N c winding turns, so that the current density is redefined from (2.2) as

j = N c Γ w I u, (2.18) 
where Γ w is the total cross-sectional conductive surface of the winding and u a unit vector tangent to the turns. Specifically, u keeps the current density in a fixed direction, ensuring that there is no current flowing between the turns.

The magnetostatic weak formulation can then be rewritten in terms of I, i.e.

find a and I such that

Ω ν curl a • curl α dΩ - N c Γ w I Ωw u • α dΩ w = 0, ∀ α ∈ D 1 b (Ω), (2.19) 
where it is assumed again that the conducting part Ω c is sourceless and hence no current density is associated.

At low frequencies, a circuit relation can be established to link the current with the winding terminal voltage. To do so, let Φ be the flux linkage in the winding, which can be expressed as [START_REF] Golovanov | 3D edge element based formulation coupled to electric circuits[END_REF]:

Φ = N c Γ w Ωw u • a dΩ w . (2.20)
The voltage at the winding terminals V t is the sum of the resistive and inductive contributions. Whereas the former is given by Ohm's law with a total DC winding resistance R DC , the latter is obtained through the time derivative of the flux linkage, i.e.

N c Γ w Ωw u • ∂ t a dΩ w + IR DC = V t (2.21)
Hence, the standard circuit-coupled homogenized formulation accounting for the low-frequency effects, the stranded model, is given by (2. [START_REF] De Grève | Numerical modeling of capacitive effects in HF multiwinding transformers -Part I: A rigorous formalism based on the electrostatic equations[END_REF]) and (2.21).

Limitations

The stranded model has been widely used not only to account for the DC effects, but also for the AC ones at low frequencies [START_REF] Bouissou | Study of 3D formulations to model electromagnetic devices[END_REF][START_REF] Golovanov | 3D edge element based formulation coupled to electric circuits[END_REF][START_REF] Leonard | Voltage forced coils for 3D finiteelement electromagnetic models[END_REF]. Certainly, at nonzero frequencies, it remains valid as long as the skin depth δ s is greater than the longest side in a conductor cross-section, regardless of the conductor shape (foil, rectangular, square and round) [START_REF] Bouissou | Study of 3D formulations to model electromagnetic devices[END_REF][START_REF] Golovanov | 3D edge element based formulation coupled to electric circuits[END_REF][START_REF] Leonard | Voltage forced coils for 3D finiteelement electromagnetic models[END_REF]. In other words, the cross-sections of the conductors are considered too small to allow eddy currents to appear. Once this condition fails to hold, other approaches accounting for the inductive effects, and at even higher frequencies the capacitive effects as well, have to be considered.

Chapter Summary

In this chapter, the two approaches for winding modeling with the FEM are 

Homogenization of Foil Windings

Considering Eddy-Current Effects

Introduction

Foil windings are extensively used in transformers and inductors in a wide range of frequencies and rated powers. For these devices, several analytical, semianalytical or empirical approaches have been developed for the estimation of the eddy-current effects [START_REF] Dowell | Effects of eddy currents in transformer windings[END_REF][START_REF] Ferreira | Electromagnetic modelling of power electronic converters[END_REF][START_REF] Wojda | Magnetic field distribution and analytical optimization of foil windings conducting sinusoidal current[END_REF][START_REF] Diaz | Semianalytic integral method for fast solution of current distribution in foil winding transformers[END_REF][START_REF] Robert | Two-dimensional analysis of the edge effect field and losses in highfrequency transformer foils[END_REF]. Numerical methods haven also been used, e.g. the Partial Element Equivalent Circuit (PEEC) method [START_REF] Kovačević-Badstübner | A fast method for the calculation of foil winding losses[END_REF] and certainly the FEM. In FE models, as explained in Section 2.5, a classical eddy-current analysis represents winding turns by way of solid conductors [START_REF] Sullivan | Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or threedimensional field geometry[END_REF]. However, the cross-sectional aspect ratio of the conductive foil leads to very dense meshes with a prohibitive number of unknowns, which results in computationally expensive simulations. To overcome this problem, some solutions are proposed in the literature, e.g. a semi-numerical approach [START_REF] Leuenberger | Semi-numerical method for losscalculation in foil-windings exposed to an air-gap field[END_REF], an acceleration procedure [START_REF] Villén | Procedure to accelerate calculations of additional losses in transformer foil windings[END_REF] or homogenization techniques [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF][START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF].

With regard to homogenization, the traditional approach of Section 2.6

rapidly becomes invalid at relatively low frequencies. Indeed, the height of the foil is usually much greater than the skin depth. For instance, at utility frequency (50 Hz), the skin depth in copper conductors is δ s ≈ 9 mm; value largely exceeded in some power transformers wherein the foil height of the low-voltage winding might measure more than 1 m [START_REF] Villén | Procedure to accelerate calculations of additional losses in transformer foil windings[END_REF]. Ad hoc homogenization techniques dedicated to foil windings are in consequence required. So far available in the literature, to the best of the author's knowledge, these techniques are limited to the frequency domain and have only been validated at utility frequency [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF][START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF]. Time-domain analysis has an important role as well, it allows for: transient phenomena (such as e.g., inrush currents), operation under nonsinusoidal excitations or nonlinearity (windings are linear, but usually embedded in nonlinear domains). Furthermore, the fringing flux, which has an important influence on gapped foil-winding devices [START_REF] Kutkut | Optimal air-gap design in highfrequency foil windings[END_REF][START_REF] Jez | Influence of the distributed air gap on the parameters of an industrial inductor[END_REF], has not been considered either in the homogenized models.

The purpose of this chapter is therefore to describe and test an approach, based on the developments in [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF][START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF], for the homogenization of foil windings including eddy-current effects. Such approach considers: a current density solely redistributed along the foil height and an inter-turn voltage in the direction perpendicular to the foil, which are modeled by a simplification of the circuit-coupling equation and a 1-D spatial discretization, respectively. In this regard, the novelty of the chapter is gathered in two contributions. First, the chapter proposes a time-domain extension of the homogenization by application of the implicit Euler method, where Lagrange Polynomials are employed for the approximation of the inter-turn voltage. This way, the concepts of an additional mesh in [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF] and spatially-dependent quantities in [START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF] are unified. Second, it investigates the limitations in frequency of the homogenization; certainly, operation beyond 50 Hz may be considered. Moreover, in the application, the chapter includes a study on the effect of the fringing flux upon the model performance.

This chapter is organized as follows: First, the hypotheses of the homogenized model are presented. These hypotheses are subsequently included in the magnetodynamic model of Section 2.5, so as to simplify it and account for the eddy-current effects in foil windings. Then, discrete time-domain weak formulations are obtained for current-and voltage-driven foil windings. In the second half, the proposed approach is applied to a numerical test in which a gapped 20-turn copper foil-winding inductor is considered. The results of the homogenized model are compared to those obtained with a reference explicit FE model.

Homogenization Principle

A typical foil winding of cylindrical disposition with N c turns, height l h , total width l w , fill factor λ and thickness l f = λl w /N c is considered and represented in Figure 3 along its height and ϕ along its length (see Figure 3.1, right). For convenience, the origin in the χ-direction is placed on the first turn. Moreover, the reduced frequency is defined as

ζ = l f /δ s .
Whenever an AC source is connected to the terminals of a foil winding, two particular phenomena arise: 1) in the χ-direction, an inter-turn voltage appears due to the insulation in-between the turns; 2) in view of the foil cross-sectional aspect ratio, a concentrated current density is most likely to appear along the foil height, since its thickness is usually much thinner than the skin depth. A homogenized foil winding model needs thus to include these phenomena into the winding window. With that purpose, the homogenization approach described hereon attempts to adapt the magnetodynamic formulation in Section 2.5, considering thus that Ω w ⊂ Ω c .

Inter-turn Voltage

According to (2.17), the terminal voltage V t is given by the sum of the N c turn voltages. In the χϑ-plane, such behavior can be interpreted as an inter-turn voltage that varies at each turn intersection in the χ-direction, while it is assumed constant within the cross-section Γ f of every single turn. Since the homogenized model does not include a geometrical definition of the turns, the jumps of V i in (2.17) can be modeled with a 1-D continuous function dependent on the position in χ: V χ (χ). Thus, for any foil turn i, the voltage V i is approximated by

V i ≈ V χ (χ), ∀ χ ∈ [0, l w ]. (3.1)
Thereon, a relation between V t and V χ , equivalent to (2.17), can be obtained by calculating the average of V χ , i.e.

V χ = 1 l w lw V χ (χ) dχ. (3.2)
From (2.17) and (3.1), one can deduce that the average turn voltage is also given by

V χ = V i = V t N c . ( 3.3) 
Hence, by substituting (3.3) into (3.2), the expression for the terminal voltage in terms of V χ reads:

V t = N c l w lw V χ (χ) dχ.
(3.4)

Discretization

In Section 2.5, the voltages V i are treated as individual constants associated to the N c solid conductors through N c circuit relations (2.11). In this case, the voltages are all defined by the function V χ (χ), which is a priori unknown.

Therefore, V χ has to be interpolated in the χ-direction from a discrete set of N V voltages. Such interpolation can be expressed in a matrix-vector form in order to be simultaneously calculated with the magnetodynamic problem. In [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF],

this is achieved by considering an extra 1-D FE mesh in Ω w . Alternatively, in [START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF], spatially-dependent global quantities are used to approximate V i without requiring an extra mesh.

In this work, the function V χ , representing the behavior of V i , is interpolated with Lagrange polynomials. At the discrete level, Lagrange polynomials unify the concepts proposed in [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF][START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF]. When considered in a piece-wise form, Lagrange Polynomials require a 1-D mesh across l w . However, when considered in a continuous nonlinear form, they behave as meshless spatially-dependent global quantities. Either way, regardless of the interpretation, additional unknowns are added to the FE problem. Hereafter, a continuous form is employed to define the discretization of V χ , i.e.

V χ = N V i=1 V χi β i , for N V ≥ 2, (3.5) 
with

β i (χ) = N V m=1 m =i χ -χ m χ i -χ m , ( 3.6) 
where the N V points are equidistantly spaced along l w . Note that N V does not have to coincide with N c as it is only defined by the order of the polynomial, which is conditioned to be at least a first-order approximation. Indeed, if only one N V is used, the winding behaves as a single solid conductor because a constant voltage is spanned over the winding window. The discretization of V χ , whatever the order, is independent of the FE mesh used for the potentials.

Concentrated Current Density

In compliance with the formulation of Section 2.5, every foil turn can be considered as a solid conductor, so that (2.11) is valid for all the N c turns. In a conductive foil, the current density is solely redistributed towards its axial ends (ϑ-direction) and is considered constant across its thickness (χ-direction), as long as l f δ s < l h . If so, the evaluation of (2.11) for any turn i yields:

ϑϕ (-σ ∂ t a -σ V i grad v 0 ) • grad α dΓ ϑϕ = I l f , ( 3.7) 
where it is assumed that a does not vary within the foil thickness. 

(-σ ∂ t a -σ V χ grad v 0 ) • grad α dΓ ϑϕ - I l f • β dχ = 0, ∀ β ∈ {χ ∈ R | 0 < χ < l f }. (3.8) 
This way, V χ spans (3.8) to a continuum across the winding valid for all the N c turns.

Limitations

For a given frequency f , the model assumes that the foil thickness l f is always smaller than the skin depth δ s . In theory, this condition allows the definition of a maximum frequency of operation f max . Such frequency is obtained by considering δ s = l f in (2.1), i.e.

f max = ν πσ N c λl w 2 .
(3.9)

Foil windings can thus be represented with the model provided that f < f max .

Homogenized Formulation

In the domain Ω with boundary Γ, the homogenized foil-winding weak formulation contains two equations. The first one is obtained by introducing V χ in (2.16), i.e. find a and V χ such that

Ω ν curl a • curl α dΩ + λ Ωw σ ∂ t a • α dΩ w +λ Ωw σ V χ grad v 0 • α dΩ w = 0, ∀ α ∈ D 1 b (Ω), (3.10) 
where the fill factor λ has been included to account for the insulation within Ω w . Note that (3.10) features a unified v 0 instead of the individuals v 0i in the explicit model because the foil-winding region is considered as a whole. Hence, the electrokinetic solution accounting for v 0 must keep the current tangent to the turns. Such behavior can be modeled with either a unit vector u as in (2.18), or with an anisotropic conductivity (tensor) in the χ-direction [START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF].

The second equation is the circuit relation (3.8), which can be rearranged and expressed as: find a and V χ such that

λ Ωw (-σ ∂ t a -σ V χ grad v 0 ) • β grad α dΩ w - N c l w I χ β dχ = 0, ∀ β ∈ {χ ∈ R | 0 < χ < l f }. (3.11) 
In matrix form, a current-driven foil winding is fully described by (3.10) and

(3.11), i.e. [S][A] + [E]∂ t [A] + [C][V χ ] = [0], [C] ∂ t [A] + [D][V χ ] = -[U ]I, (3.12) 
while a voltage-driven foil winding needs additionally (3.4) to fix the voltage:

[S][A] + [E]∂ t [A] + [C][V χ ] = [0], [C] ∂ t [A] + [D][V χ ] + [U ]I = [0], [U ] [V χ ] = V t , (3.13) 
where following (3.10) and (3.11), [S] ∈ R Ne×Ne is the reluctivity-dependent stiffness matrix, [E] ∈ R Ne×1 the conductivity-dependent eddy-current matrix,

[C] ∈ R Ne×N V the conductivity-dependent connectivity matrix, [D] ∈ R N V ×N V the conductance matrix, [U ] ∈ R N V ×1
the inter-turn voltage vector and [A] ∈ R Ne×1 the magnetic vector potential unknown vector. Their entries read:

S i,j = Ω ν curl α i • curl α j dΩ, ( 3.14) 
E i,j = λ Ωw σ α i • α j dΩ w , (3.15) C k,j = λ Ωw σ β k grad v 0 • α j dΩ w , ( 3.16 
)

D k,l = Ωw σ β k grad v 0 • β l grad α l dΩ w , ( 3.17 
)

U l = - N c l w χ β l dχ.
(3.18)

Time-Domain Extension

The time domain extension proposed in this work is based on the application of the implicit Euler method (see Appendix A.3). If a time step ∆t is considered, so to define t i = t i-1 +∆t, the time-dependent formulations of the homogenized current-and voltage-driven foil winding read respectively:

[S][A(t i )] + 1 ∆t [E][A(t i )] + [C][V χ (t i )] = 1 ∆t [E][A(t i-1 )], 1 ∆t [C] [A(t i )] + [D][V χ (t i )] = -[U ]I(t i ) + 1 ∆t [C] [A(t i-1 )]; (3.19) [S][A(t i )] + 1 ∆t [E][A(t i )] + [C][V χ (t i )] = 1 ∆t [E][A(t i-1 )], 1 ∆t [C] [A(t i )] + [D][V χ (t i )] + [U ]I(t i ) = 1 ∆t [C] [A(t i-1 )], [U ] [V χ (t i )] = V t (t i ).
(3.20)

Numerical Test

The proposed method is applied to an axisymmetric FE model (see Appendix where V t = 1∠0 V RMS is the imposed complex terminal voltage, P the active power and Q the reactive power. For the resistance, good agreement is observed in Figure 3 It can be observed that the general pattern of the magnetic vector potential is preserved in all cases. Indeed, even in the 20 kHz case the accuracy is preserved given the dominant inductive behavior at high frequencies (see Figure 3.4).

The inter-turn voltage across the turns of the foil winding is shown in Figure 3.7 at instants t = T /8 and t = T /2 for all frequencies. These time instants are selected to coincide with maximum and minimum values of the applied voltage.

The continuum voltage approximation follows precisely the behavior of the reference case at both times instants. It is clear that a first-order approximation would only decrease the model accuracy in exchange of a small reduction in t ∆t .

The terminal voltage can be obtained from the values in Figure 3.7 together with (3.4).

It is important to notice that the homogenized model adds extra unknowns due to the discretization of the inter-turn voltage. The number of extra unknowns depends on the degree of the polynomial used to approximate V χ , which in this case adds 3 extra unknowns. The lowest degree of approximation that can be considered is a first-order polynomial; if a constant approximation is chosen, the model behaves as a solid conductor. For a first-order approximation, t ∆t is slightly lower: 30 ms at 200 Hz or 2 kHz and 69 ms at 20 kHz; but, as mentioned before, the results are less precise.

Current density distributions over the axial direction for the first turn are presented in Figure 3.8 at t = T /8 and t = T /2. The homogenized model depicts correctly the concentration in the middle of the foil as a consequence of the fringing flux coming from the air-gap. Likewise, current densities across the total radial width, for z = 0, are compared in Figure 3.9. Here, it can be observed that the current density is not constant within l f , even at 200 Hz, in the foils closer to the air-gap. In general, the homogenization follows the tendency of the reference. In terms of the current I, Figure 3.10 shows that an excellent correspondence is maintained even at 20 kHz. This behavior is again explained by the highly inductive behavior of the device. The magnetic energy as a function of time is presented in Figure 3.12. An excellent accuracy is obtained for the 200 Hz and 2 kHz cases. At 20 kHz, the homogenization follows the reference except for the last quarter of period where the homogenized curve falls slightly below it.

To establish the influence of the homogenized mesh in the precision of the results, Table 3.1 compares the L2-error L2 (calculated for the Joule losses), the corresponding average computational time t ∆t and the speed-up factor sp for N u varying from 1 to 3 at all frequencies. A mesh with N u = 1 results in inaccurate results even at 200 Hz. For N u = 2, as discussed before, an excellent accuracy is obtained at 200 Hz and decreases as the frequency increases. In the preceding analysis, instantaneous comparisons are made at t = T /8

and t = T /2 corresponding to maximum and minimum values of the terminal voltage V t , yet similar results are obtained for the remaining instants. In general, the proposed time-domain extension confirms the excellent accuracy of the homogenized model at low frequencies already presented for the frequency domain in [START_REF] De Gersem | A finite element model for foil winding simulation[END_REF][START_REF] Dular | Spatially dependent global quantities associated with 2-D and 3-D magnetic vector potential formulations for foil winding modeling[END_REF]. At higher frequencies, the precision gets highly reduced caused by the inability of the model to correctly represent the Joule losses.

The air-gap effect does not affect the accuracy of the homogenized model at low frequencies, however its fringing flux is a source of disturbances that worsens the behavior at high frequencies, specially for the Joule losses.

Chapter Summary and Conclusions

In this chapter, a homogenization approach that accounts for the eddy-current effects in foil windings is presented. First, the chapter introduces the two main characteristics of the homogenization, namely the inter-turn voltage and the concentrated current density. The inter-turn voltage leads to an additional spatial discretization, perpendicular to the foil, that accounts for the potential jumps between the turns; while the concentrated current density simplifies the circuit relation by assuming a redistribution only over the foil height. Starting from the magnetodynamic formulation in Section 2.5, weak forms that allow the modeling of current-and voltage-driven foil windings are obtained. A timedomain extension is additionally developed using the implicit Euler method.

Furthermore, the frequency limitation of the homogenization is estimated with the winding parameters, leading to a maximum operating frequency f max .

In the second part of the chapter, the homogenization approach is applied to solve the time-domain eddy-current problem in a 2-D axisymmetric FE model of an inductor. Excellent accuracy and reasonable computational cost are obtained at low frequencies. At higher frequencies, the method becomes imprecise due to its inability to correctly represent the Joule losses in the foil-winding region. Moreover, the effect of the fringing flux does not affect the accuracy of the model at low frequencies, but it worsens the results at high frequencies.

Below f max , a refinement of the mesh may improve the accuracy of the results at the expense of a higher computational time. Further work is required to improve the high-frequency eddy-current effects in the model, particularly at frequencies above f max .

Homogenization of Stranded

Windings Considering

Eddy-Current Effects

Introduction

Stranded windings in electromagnetic devices may exhibit considerable skin and proximity effects when operated at sufficiently high frequencies. Therefore, a correct prediction of these effects constitutes a major design aspect for e.g., switched mode power supply (SMPS) transformers. In explicit FE models (Section 2.5), even though some modeling techniques allow for efficient meshing by inserting preprocessed values in the boundary of the conductors [START_REF] Gürbüz | Domain decomposition with subdomain preprocessing for finite element modelling of transformers with stranded conductors[END_REF][START_REF] Marjamäki | Domain decomposition technique with subdomain pre-processing in 2-D simulations of wireless power transfer[END_REF][START_REF] Lehti | Coil winding losses: Decomposition strategy[END_REF][START_REF] Sabariego | Time-domain surface impedance boundary conditions enhanced by coarse volume finite-element discretisation[END_REF][START_REF] Yuferev | Surface impedance boundary conditions in terms of various formalisms[END_REF]; the FE mesh still comprises a considerable number of elements, a fortiori in 3-D. Thus, the use of dedicated homogenization techniques is an excellent and effective alternative.

The simplest homogenized model for windings, the stranded model in Section 2.6, may prove itself useful in a broad range of frequencies, given the small cross-section of the winding turns. Yet, as the frequency of operation increases, it becomes insufficient. Several studies have shown that equivalent frequency-dependent parameters can be used to account for the eddy-current effects in periodic electromagnetic structures. Being groups of conductors, windings can be seen as periodic structures and hence their eddy-current effects may be modeled by means of a complex reluctivity and an impedance. Such parameters are obtained analytically [START_REF] Moreau | Proximity losses computation with a 2D complex permeability modelling[END_REF], semi-analytically [START_REF] Igarashi | Semi-analytical approach for finite-element analysis of multi-turn coil considering skin and proximity effects[END_REF] or using an elementary FE model [START_REF] Meeker | An improved continuum skin and proximity effect model for hexagonally packed wires[END_REF][START_REF] Meunier | Homogenization for periodical electromagnetic structure: Which formulation[END_REF][START_REF] Gyselinck | Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations[END_REF][START_REF] Phung | High-frequency proximity losses determination for rectangular cross-section conductors[END_REF]. Since the equivalent parameters are frequency-dependent, frequency-domain analyses are the straightforward alternative. Nonetheless, as explained in Chapter 3, time-domain analysis allows for the representation of certain phenomena that cannot otherwise be modeled in the frequency domain. For that reason, a time-domain approach has also been proposed in [START_REF] Gyselinck | Time-domain homogenization of windings in 2-D finite element models[END_REF][START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF], where the frequency-dependent coefficients are associated to RL Cauer networks and translated into the time domain as real constants linked to differential equations, thanks to the inclusion of additional unknowns (flux densities in the winding window and currents in the supply circuit).

Hence, the objective of this chapter is to propose and validate an approach for the homogenization of stranded windings both in the frequency and time domain. The novelty of the chapter is gathered in two main contributions:

First, it introduces an alternative approach for the time-domain homogenization of stranded windings. Such approach associates the frequency-dependent parameters to equivalent Foster networks using the Vector-Fitting technique [START_REF] Gustavsen | Rational approximation of frequency domain responses by vector fitting[END_REF]. The inverse Laplace transform is then applied to translate these parameters into the time domain. Second, the performance of the proposed approach is compared to the use of RL Cauer networks as in [START_REF] Gyselinck | Time-domain homogenization of windings in 2-D finite element models[END_REF][START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF].

The rest of the chapter contains three main sections. In the first one, the methodology for the frequency-domain homogenization of stranded windings is explained. This methodology is based on the use of an elementary FE model to obtain the frequency-dependent parameters. The second section introduces the alternative time-domain approach which, in general, attempts to modify the stranded model to account for the eddy-current effects. Lastly, in the third section, numerical tests are carried out, including an in-depth performance analysis of the proposed approach and, additionally, the comparison with the one in [START_REF] Gyselinck | Time-domain homogenization of windings in 2-D finite element models[END_REF][START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF].

Homogenization Principle

On a macroscopic scale, eddy-current effects in windings may be accurately represented by means of an equivalent impedance Z e , accounting for the skin effect, and an equivalent reluctivity ν e , accounting for the proximity effect [START_REF] Meeker | An improved continuum skin and proximity effect model for hexagonally packed wires[END_REF][START_REF] Meunier | Homogenization for periodical electromagnetic structure: Which formulation[END_REF][START_REF] Gyselinck | Frequency-domain homogenization of bundles of wires in 2-D magnetodynamic FE calculations[END_REF][START_REF] Phung | High-frequency proximity losses determination for rectangular cross-section conductors[END_REF]. One can straightforwardly relate the concept of impedance to the skin effect, and the associated losses, since by definition the impedance is the complex frequency-dependent ratio of the voltage phasor to the current phasor. However, the link between an equivalent complex reluctivity and the b I proximity effect is not evident. The idea, illustrated in Figure 4.1, is to substitute the material compound that constitutes the winding (conductor, air and insulation) with an equivalent nonconducting ferromagnetic material characterized by an elliptical hysteresis loop. Such material yields the same active and reactive power, for a given geometry, as the wound conductor [START_REF] Moreau | Proximity losses computation with a 2D complex permeability modelling[END_REF]. In that regard, the procedure described hereafter calculates the complex frequencydependent parameters and integrates them in the stranded model of Section 2.6, so that Ω w ⊂ Ω nc . In this chapter, it is assumed that windings are composed of periodically spaced turns carrying the same net current, since parasitic capacitive effects are disregarded.

σ ≠ 0 ν 0 σ = 0 ν e b h

The Elementary Periodic Cell

The complete eddy-current characterization of the winding can be carried out by means of an elementary 2-D FE model in Cartesian coordinates, which consists of a cell comprising the conductor, modeled as a solid conductor, and the insulation around it (magnetodynamic formulation in Appendix B.2.1).

Depending on the conductor shape (round, square or rectangular) and the winding disposition (orthogonal or orthocyclic), different types of elementary cells can be envisaged, as illustrated in 

S = P + ıQ = l z 2 Ω cell jj * σ + ıων 0 bb * dΩ cell , (4.1)
where l z is the length along the third dimension and the * denotes a complex conjugate. Note that the factor 1/2 comes from the manipulation of RMS values.

If a winding is described by the spatial reproduction of the elementary cell, 

)

ν e = ν r e + ıν i e , ( 4.4) 
where R e is the equivalent resistance, X e the equivalent reactance, ν r e and ν i e the real and imaginary parts of the equivalent reluctivity.

Proximity Effect

Following the approach in [START_REF] Meunier | Homogenization for periodical electromagnetic structure: Which formulation[END_REF] or [START_REF] Phung | High-frequency proximity losses determination for rectangular cross-section conductors[END_REF], a pure proximity-effect excitation is obtained by imposing a horizontal or vertical flux and a zero net circulating current (I = 0). For the cells in Note that for cells with square packing, the frequency-dependent reluctivity is a scalar quantity, with ν ex = ν ey , given its geometrical isotropy. For the sake of simplicity, it is considered henceforth that the complex frequency-dependent reluctivity is a scalar quantity. A straightforward extension to a tensorial quantity can be deduced from the developments in the following sections.

Thus, via the complex power S (4.2), the frequency-dependent equivalent reluctivity is defined by 

ν e (ω) = 2 Q + ıP ωl z A c b av b * av . ( 4.6) 

Skin Effect

A pure skin-effect excitation is obtained by imposing a sinusoidal current with a zero average flux density (b av = 0). For the cells in Analogously, via the complex power S (4.2), the frequency-dependent equivalent impedance Z e is defined: where the factor N c is added to account for the full winding. Note that at low frequencies, for both parameters in Figure 4.4, the normalized real and imaginary parts tend to 1 and 0, respectively, which approximates to a DC behavior with negligible eddy currents (principle of the stranded model).

Z e (ω) = 2 N c P + ıQ II * , (4.7) (a) (b) (c) (d)

Frequency-Domain Homogenized Formulation

In the frequency domain, one can straightforwardly adapt the stranded model to include the frequency-dependent parameters and account for the skin and proximity effects in the winding. It suffices to replace the reluctivity and the winding resistance by ν e and Z e , respectively, i.e. find a and I such that

Ω c w ν curl a • curl α dΩ c w + Ωw ν e curl a • curl α dΩ w - N c Γ w I Ωw u • α dΩ w = 0, ∀ α ∈ D 1 b (Ω), (4.8 
)

ıω N c Γ w Ωw u • a dΩ w + IZ e = V t , (4.9)
where Ω c w is the complement of Ω w (Ω = Ω w ∪ Ω c w ). Equations (4.8) and (4.9) can be rewritten in matrix form as 

[S][A] + ν e [S w ][A] -[C]I = 0, ıω[C] [A] + IZ e = V t ,
S i,j = Ω c w ν curl α i • curl α j dΩ c w , (4.11)
S wi,j = Ωw curl α i • curl α j dΩ w , (4.12)

C j = N c Γ w Ωw u • α j dΩ w . (4.13)

Time-Domain Homogenized Formulation

Foster Network Synthesis

The frequency-dependent equivalent reluctivity ν e and impedance Z e can be represented over the frequency range of interest by rational functions with a classical Debye model [START_REF] Sarto | On the use of fitting models for the time-domain analysis of problems with frequencydependent parameters[END_REF]. Therefore, the m-order approximation of (4.6) and (4.7) read:

ν e (s) ν 0 + s + m i=1 k i 1 + sg i , ( 4.14 
)

Z e (s) R DC + s L + m i=1 K i 1 + sG i . (4.15)
By restricting the Laplace variable s to be purely imaginary, the frequencydomain response is obtained, i.e. s = ıω [START_REF] Grivet-Talocia | Passive macromodeling: Theory and applications[END_REF][START_REF] Sarto | On the use of fitting models for the time-domain analysis of problems with frequencydependent parameters[END_REF]. The parameters , L, k i , K i , g i and G i can be obtained using the well-known Vector-Fitting technique [START_REF] Gustavsen | Rational approximation of frequency domain responses by vector fitting[END_REF].

The choice of m depends on the treated elementary cell and the frequency band of interest. Despite the wide usage of the VF in applications such as transmission-line modeling [START_REF] Tang | A precise time-step integration method for transient analysis of lossy nonuniform transmission lines[END_REF][START_REF] Liu | Simulation of electromagnetic transients of the bus bar in substation by the time-domain finite-element method[END_REF], it is here applied for the first time to 

Weak Form

The time-domain weak formulation is obtained from (4.10), including (4.14) and (4.15), via the inverse Laplace transform, i.e. find a and I such that

Ω c w ν curl a • curl α dΩ c w + Ωw ν e * curl a • curl α dΩ w - N c Γ w I Ωw u • α dΩ w = 0, ∀ α ∈ D 1 b (Ω), (4.16 
) where the * denotes a convolution product. In matrix form, the formulation reads:

N c Γ w Ωw u • ∂ t a dΩ w + I * Z e = V t , (4.17) b ν 0 s𝓁 𝑘 1 /g 1 sk 1 b r 1 b 𝓁 1 𝑘 m /g m sk m b r m b 𝓁 m (a) I R DC sL K 1 /G 1 sK 1 I R 1 I L 1 K m /G m sK m I R m I L m (b)
[S][A] + ν e * [S w ][A] -[C]I = 0, [C] ∂ t [A] + I * Z e = V t , ( 4.18) 
where

ν e = ν 0 δ + ∂ t δ + m i=1 k i g i δ - e -t/gi g i , ( 4.19 
)

Z e = R DC δ + L∂ t δ + m i=1 K i G i δ - e -t/Gi G i , (4.20)
and δ is the Dirac delta function. By performing the convolution product, the i-th terms of (4.18) are expressed as

[S][A] + ν 0 + k i g i [S w ][A] + [S w ]∂ t [A] -[J ri ] -[C]I = 0, [C] ∂ t [A] + R DC + K i G i I + L∂ t I -V ri = V t , (4.21) with [J ri (t)] = [S w ] t 0 k i g 2 i e -τ /gi [A(t -τ )] dτ, (4.22) V ri (t) = t 0 K i G 2 i e -τ /Gi I(t -τ ) dτ. (4.23)
The reaction current density j r , associated to matrix [J r ], and the reaction voltage V r are the terms that include the dynamic responses of the parallel branches in the equivalent mangnetic and electric circuits.

In (4.22) and (4.23), the exponential functions allow for a simple recursive evaluation of the convolutions [START_REF] Grivet-Talocia | Passive macromodeling: Theory and applications[END_REF][START_REF] Semlyen | Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions[END_REF]. For instance, the recursive form of (4.22), relying on the properties of the exponential, is given by

[J ri (t n )] = [S w ] ∆t 0 k i g 2 i e -τ /gi [A(t n -τ )] dτ + e -∆t/gi [J ri (t n-1 )], (4.24)
where ∆t is the time step defining t n = t n-1 + ∆t. In that way, [J ri (t n )] can be exactly expressed as a function of the previous value [J ri (t n-1 )]. A complete discrete representation is obtained through a piece-wise linear approximation of the integral in the right-hand side of (4.24):

[J ri (t n )] = θ i [J ri (t n-1 )] + υ i [S w ][A(t n )] + ψ i [S w ][A(t n-1 )], (4.25) 
where

θ i = e -∆t/gi , ( 4.26) 
υ i = k i g i 1 - 1 -θ i 1/g i ∆t , ( 4 
.27)

ψ i = k i g i 1 -θ i 1/g i ∆t -θ i . (4.28)
Analogously, the recursive form (4.23) is given by 

V ri (t n ) = Θ i V ri (t n-1 ) + Υ i I(t n ) + Ψ i I(t n-1 ), ( 4 
[S][A(t n )] + ν 0 + ∆t + k i g i -υ i [S w ][A(t n )] -[C]I(t n ) = ∆t + ψ i [S w ][A(t n-1 )] + θ i [J ri (t n-1 )], 1 ∆t [C] [A(t n )] + R DC + L ∆t + K i G i -Υ i I(t n ) = V t (t n ) + 1 ∆t [C] [A(t n-1 )] + L ∆t + Ψ i I(t n-1 ) + Θ i V ri (t n-1 ).
(4.30)

Loss and Magnetic Energy

In the time domain, the equivalent networks in Figure 4.5 are preserved, which allows for the computation of the losses and the magnetic energy in the postprocessing stage. Hence, by performing a simple circuit analysis, it is possible to separate the contributions due to skin and proximity effects. The proximityand skin-effect losses, P pe and P se , are computed from the flux densities b li and the currents I Ri as

P pe = Ωw ∂ t b 2 + m i=1 ∂ t b 2 i k i dΩ w , ( 4.31 
)

P se = I 2 R DC + m i=1 I 2 Ri K i G i . (4.32)
Note that the DC losses are also included in P se . Likewise, the proximity-and skin-effect contributions to the magnetic energy, W pe and W se , are computed from the flux densities b ri and the currents I Li :

W pe = 1 2 Ωw b 2 ν 0 + m i=1 b 2 ri k i g i dΩ w , ( 4.33 
) 

W se = 1 2 I 2 L + m i=1 I 2 Li K i . ( 4 

Computational Cost

Convolutions (4.25) and (4.29) must be evaluated at each time step: whereas V r is mesh independent, [J r ] varies with the number of unknowns in the winding window N w . The evaluation of [J r ] has therefore a computational cost dependent on the mesh size. It should be noted that the approximation order m has little effect on the computational cost since it does not add degrees of freedom to the FE resolution stage. Thus, regarding the convolutions, the proposed approach yields a small extra computational cost compared to the traditional stranded model. Moreover, the formulation in (4.30) is defined for a scalar reluctivity. An extra convolution in the form of (4. [START_REF] De Grève | Numerical modeling of capacitive effects in HF multiwinding transformers -Part I: A rigorous formalism based on the electrostatic equations[END_REF]) is required, if a tensorial reluctivity is considered. 

Numerical Test

Model Performance

The proposed homogenized approach is first applied to a planar 2-D FE model of the 256-turn inductor shown in The main objective of the proposed homogenized approach is to accurately account for the Joule losses in the time domain. In terms of accuracy, the proposed homogenization relies on the quality of the Vector-Fitting process [START_REF] Gustavsen | Rational approximation of frequency domain responses by vector fitting[END_REF]. In practice, an excellent agreement is achieved with a rather low order of approximation, since the frequency-dependent curves describing the equivalent parameters (reluctivity and impedance) tend to be smooth as in Figure 4.8 [START_REF] Moreau | Proximity losses computation with a 2D complex permeability modelling[END_REF][START_REF] Gyselinck | Time-domain homogenization of windings in 2-D finite element models[END_REF][START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF]. The adopted RC scheme has been proved convergent independently of the time-step size; even if the accuracy of the solution depends on the selection of the time step, a matching solution by RC has always been obtained [START_REF] Semlyen | Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions[END_REF]. Moreover, the RC scheme avoids truncation in the integration due to the mathematical redefinition in (4.24).

A secondary winding can be considered, in the case of transformer modeling, as long as it belongs to a separate region with an independent circuit relation [START_REF] Niyomsatian | Closedform complex permeability expression for proximity-effect homogenisation of litz-wire windings[END_REF]. It is worth noting that the elementary cell may vary from winding to winding. Conductive nonlinear materials, proper to ferromagnetic cores, can be straightforwardly considered in the winding surroundings. Furthermore, a post-processing could be performed to reconstruct the local current density and Joule losses that would serve e.g. as source terms in a thermal problem [START_REF] Idoughi | Thermal model with winding homogenization and FIT discretization for stator slot[END_REF].

Comparison with a RL Cauer Approach

Two additional test cases are considered to compare the proposed approach to the one in [START_REF] Gyselinck | Time-domain homogenization of windings in 2-D finite element models[END_REF][START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF]: where the frequency-dependent parameters are ap- As for the second case, one stator slot (out of 36) of a 4-pole 3 kW cage induction motor is studied [START_REF] Gyselinck | Direct inclusion of proximity-effect losses in two-dimensional time-domain finite-element simulation of electrical machines[END_REF]. The stator slot is shown in Figure 4.15 and , where a fine discretization is kept inside the conductors to accurately account for the eddy-current effects. In the inductor case, this fine mesh leads to a total of 12 534 unknowns with a computational time per step of 375 ms.

X Y Z (a) X Y Z (b) X Y Z (c) (d) 
For the stator slot, the fine mesh comprises 8 669 unknowns, which yields a computational time per step of 290 ms. In contrast, the homogenized meshes are much coarser with a total of 1 367 and 719 unknowns for the inductor and the stator slot, as shown in Figures 4.15b and 4.15d respectively.

Comparisons are focused on the Joule losses, since they are highly sensitive to the eddy-current effects. It is of interest to observe the accuracy of the approaches as the degree of approximation m increases. The inductor case is considered for this purpose. Here, m is varied from 1 to 4, with a computation of the Joule losses for each order. In Figure 4.17 such computations are presented and compared to the reference case, where the "C." and the "F." stand for the Cauer and Foster approaches, respectively. The biggest difference occurs in the first-order approximation where the Cauer approach is incapable of following the behavior of the reference, whereas the Foster approach has very good accuracy. From m = 2 onward, both approaches deliver excellent results.

For a better insight, Figure 4.18 shows the absolute error of the Joule losses for both methods. On the one hand, a considerable improvement is observed for the Cauer approach from m = 1 to m = 2. If the approximation degree increases further, slight improvements in the accuracy are still observed. On the other hand, the Foster approach produces an excellent stable accuracy at all orders of approximation, but again with a small gain at the highest orders.

Table 4.1 summarizes the performance of both models by listing the unknowns in the winding region N w (see Appendix C for Ñw ), the average computational time per step t ∆t and the L2-error (3.23). The Cauer approach produces the lowest error at the expense of a high computational cost due to the additional unknowns in Ω w . The Foster approach on the contrary performs with the same computational cost regardless of the value of m, since it is not linked to the unknowns of the FE problem. At the highest order, a difference of only 0.2% in L2 is found between the approaches. Now the results for the stator slot are presented with two objectives: to apply the elementary cell principle to a jumble winding and to compare the behavior with a highly distorted input signal. The approximation order in this case is fixed to m = 2. From Figure 4.15c, it can be noticed that the winding turns do not follow a repetitive pattern suitable for the definition of an elementary cell. Nevertheless, a cell can still be defined provided that the packing around the conductor matches the overall fill factor of the winding λ.

A square packing as in Figure 4.2a is considered, but other types of packing can be envisaged as well; indeed, what matters is λ [START_REF] Gyselinck | Direct inclusion of proximity-effect losses in two-dimensional time-domain finite-element simulation of electrical machines[END_REF].

Following this approach, the frequency-domain characterization is carried out and the time-domain homogenizations are applied to the domain described in The computational times per step are: 70 ms and 4.9 ms for the Cauer and Foster approaches, respectively; this is a speed-up factor of 4.1 for the Cauer approach and 59 for the Foster approach. The L2-errors for the complete period are 0.88% and 0.49% for the Cauer and Foster approaches, respectively.

These results, in agreement with those in Table 4.1, prove that the homogenization technique based on an elementary cell is valid even if the winding has an irregular conductor distribution (jumble windings).

Chapter Summary and Conclusions

In this chapter, an approach has been proposed for the homogenization of stranded windings accounting for the eddy-current effects. In the first part, the homogenization principle is explained, which is based on the use of equivalent frequency-dependent parameters: an equivalent reluctivity represents the proximity effect and an equivalent impedance the skin effect. Such parameters are straightforwardly introduced in a modified frequency-domain formulation of the stranded model in Section 2.6. Thereafter, an original time-domain extension is developed by using RL Foster networks, one for each equivalent parameter. With these networks, a time-domain formulation is obtained through the inverse Laplace transform and by application of the implicit Euler method, where the resulting convolutions are simplified with a RC scheme.

In the second part of the chapter, three test cases are considered to evaluate the performance of the proposed homogenization. First, in a standalone application, the eddy-current problem in a 2-D planar FE model of an inductor is solved with excellent accuracy and reasonable computational cost. Subsequently, a comparison with another time-domain approach, characterized by the use of RL Cauer networks, is carried out. 2-D axisymmetric and planar models of a gapped inductor and a stator slot are considered. Both approaches deliver accurate results, but the Foster approach performs better at the lowest order of approximation. The computational cost is dependent on the approximation order for the Cauer approach, whereas it is mostly independent for the Foster approach.

In general, the proposed homogenization may be used to cover any frequency range, as long as the frequency dependence of the parameters can be described by the circuits. Nonetheless, the adequacy should be studied on a case-to-case basis as the frequency increases, since the capacitive effects are disregarded.

The treatment of such high-frequency applications provides motivation for the next chapter.
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Introduction

Recent developments in solid-state electronics have led to a high increase in the switching frequency of power converters [START_REF] Chagas | Analytical calculation of static capacitance for high-frequency inductors and transformers[END_REF]. Multi-turn windings in these electromagnetic devices, i.e. transformers and inductors, are subjected to considerable capacitive effects. These effects result in undesired parasitic displacement currents within the dielectric layers, which result in e.g., EMI, low efficiency and thermal degradation of the insulation [START_REF] Ishigaki | A novel soft switching bidirectional DC-DC converter using magnetic and capacitive hybrid power transfer[END_REF][START_REF] Saket | LLC converters with planar transformers: Issues and mitigation[END_REF]. Therefore, a correct prediction of these capacitances is essential.

Local and global approaches have been proposed in the literature for the prediction of capacitive effects [START_REF] De Grève | Numerical modeling of capacitive effects in HF multiwinding transformers -Part I: A rigorous formalism based on the electrostatic equations[END_REF]. On one hand, local approaches treat the parasitic capacitances at the conductor level. This often results in the resolution of the full-wave Maxwell equations [START_REF] Zhao | A new stable full-wave Maxwell solver for all frequencies[END_REF][START_REF] Hiptmair | A robust Maxwell formulation for all frequencies[END_REF][START_REF] Eller | A symmetric low-frequency stable broadband Maxwell formulation for industrial applications[END_REF], or approximations to them that account for both the inductive and capacitive effects [START_REF] Fu | An electromagnetic field and electric circuit coupled method for solid conductors in 3-D finite-element method[END_REF][START_REF] Koch | A low-frequency approximation to the Maxwell equations simultaneously considering inductive and capacitive phenomena[END_REF][START_REF] Dular | Three-dimensional finite element modeling of inductive and capacitive effects in micro-coils[END_REF].

An example of the latter is expounded in Section 2.4.2. Evidently, with such approaches, an explicit representation of the winding turns (conductor and insulation) is required.

On the other hand, global approaches attempt to calculate an equivalent terminal capacitance for the winding. Different analytical techniques already exist for the computation of the terminal capacitance; yet their application is restricted, in most cases, to round conductors with a certain winding configuration [START_REF] Biela | Using transformer parasitics for resonant converters -A review of the calculation of the stray capacitance of transformers[END_REF]. For instance, approaches suitable for single-layer windings are proposed in [START_REF] Ayachit | Self-capacitance of singlelayer inductors with separation between conductor turns[END_REF][START_REF] Liu | A terminal capacitance method for analyzing global capacitive effects of magnetic components[END_REF][START_REF] Zhang | Analysis of inter-turn insulation of high voltage electrical machine by using multi-conductor transmission line model[END_REF]. Multi-layer windings have also been treated [START_REF] Jaritz | General analytical model for the thermal resistance of windings made of solid or litz wire[END_REF][START_REF] Liu | Calculation of capacitance in high-frequency transformer windings[END_REF], but these approaches usually disregard the capacitance between conductors of the same layer. More complex models include the capacitances between turns both in the same and adjacent layers [START_REF] Chagas | Analytical calculation of static capacitance for high-frequency inductors and transformers[END_REF][START_REF] Shen | An improved stray capacitance model for inductors[END_REF][START_REF] Wu | An analytical model for predicting the self-capacitance of multi-layer circular-section induction coils[END_REF][START_REF] Aghaei | On the effect of disorder on stray capacitance of transformer winding in high-voltage power supplies[END_REF][START_REF] Massarini | Self-capacitance of inductors[END_REF], where the main difference among them concerns the definition of the electric field path, from one conductor to the other, for the respective analytic integrals. Numerical methods have been used too, particularly the FE method. Classically, the terminal capacitance is obtained through an electrostatic FE model in which the representation of each separate winding turn is required [START_REF] De Grève | Numerical modeling of capacitive effects in HF multiwinding transformers -Part II: Identification using the finite-element method[END_REF][START_REF] Deng | Modeling and analysis of parasitic capacitance of secondary winding in high-frequency high-voltage transformer using finiteelement method[END_REF]. In [START_REF] De Grève | Homogenization of the thin dielectric layers of wound components for the computation of the parasitic capacitances in 2-D fe electrostatics[END_REF], a homogenization technique has been proposed for the thin dielectric layers around the conductors.

In this chapter, three homogenization approaches for the inclusion of the capacitive effects in winding modeling are presented. While two of them are global approaches, the third is local. In such way, the novelty of the chapter resides in three main contributions: First, it introduces a homogenization approach that exploits the periodicity of windings by using a 2-D electrostatic elementary cell. Such cell characterizes the concentration zones of electrostatic energy. The second contribution concerns an approach that focuses on the dielectric properties of the winding insulation; indeed, it calculates an equivalent electric permittivity for the insulation layers, so as to lessen the numerical burden of the full-device electrostatic simulation. Both approaches compute the terminal capacitance through the stored electrical energy and the winding terminal voltage. Lastly, the third contribution presents a frequency-domain semi-homogenized approach that seeks to estimate the capacitive effects at the conductor level. Such procedure is based on the relaxed Darwin model described in Section 2.4.2. Conductors of arbitrary cross-section and packing, orthogonal or orthocyclic disposition, and standard or fly-back electrical connection can be treated with any of the three approaches.

The remainder of the chapter contains thus three main sections. First, the two global electrostatic approaches for the computation of a terminal capacitance are presented. Subsequently, in the second section, the local semihomogenized approach is introduced with its respective hypotheses. The third part includes the numerical tests of the proposed approaches. When computing a terminal capacitance, windings with round and rectangular conductors are considered, where an explicit FE model, with all turns explicitly discretized, provides an accurate reference solution for all cases. As for the local semihomogenized approach, the planar inductor of Section 4.5.1 is reconsidered in the frequency domain to add the parasitic displacement currents.

Terminal Capacitance Computation

Homogenization Principle

The parasitic capacitance of a multi-turn multi-layer winding depends on the wire parameters, the winding disposition and the electrical connection. Wire parameters concern the conductor shape and the dielectric properties of the insulation layers around it. The winding disposition specifies the spatial distribution of the winding layers, as explained in Section 2.2. The two regular winding dispositions are considered: orthogonal and orthocyclic (see Figure 5.1). Electrical connections determine the starting point of the consecutive winding layers, for which two are considered: fly-back and standard. In a fly-back connection, the starting point of the subsequent layer is fixed and corresponds to the starting point of the preceding layer. Inversely, in a standard connection, the starting point of the subsequent layer coincides with the end of the preceding one. In Figure 5.1, fly-back and standard connections are associated to the orthogonal and orthocyclic windings, respectively.

On that basis, the two procedures described hereafter attempt to homogenize a winding in Ω w , of N c periodically spaced turns and fill factor λ, that is modeled with the electrostatic formulation of Section 1.3.5.1. Conductors are treated as perfect conductors, with fixed uniform potentials, and dielectric materials are assumed linear and isotropic. The N c turns are spatially distributed in N l layers with N t turns per layer, where N t may vary from layer to layer.

A linear distribution of the terminal voltage V t is assumed across the winding turns with N c -1 independent voltages [START_REF] De Grève | Numerical modeling of capacitive effects in HF multiwinding transformers -Part I: A rigorous formalism based on the electrostatic equations[END_REF].

Elementary Neighbor-Conductor Model

Windings are by nature quasi-periodic structures (bundles of wires) and their capacitive effects may be accurately calculated with an equivalent elementary 2-D FE representation. Therefore, the complete electrostatic characterization of a winding can be carried out by means of an elementary cell comprising two or three conductors (depending on the winding disposition) and the dielectric layers around them. Such cell represents the periodic zones where the electrostatic energy is concentrated throughout the winding. This way, only immediate neighboring turns are considered (both in a turn-to-turn and layer-to-layer basis) and the contribution of distant turns is neglected.

Since the conductors have fixed imposed potentials, special attention is given to the resulting voltages between the neighboring turns. The turn-toturn voltage V tt defines the potential difference between two turns in the same layer and it is expressed, in terms of the terminal voltage, as

V tt = V t N c . ( 5.1) 
Likewise, the layer-to-layer voltage defines the potential difference between two conductors of adjacent layers. Its definition depends on the winding disposition and the electrical connection. Therefore, in an orthogonal winding, the definition of the layer-to-layer voltage is straightforward and involves the two adjacent conductors in consecutive layers e.g., turns 1 and 5, 2 and 6, etc. in Figure 5.1a. As for the orthocyclic winding, it is defined to represent an ascending pattern e.g., the voltages between turns 4 and 7, 3 and 6, etc. in Figure 5.1b.

In a winding with fly-back connection, the layer-to-layer voltage is always constant regardless of the turn position in the layer. In terms of the terminal voltage V t , the layer-to-layer voltage in a fly-back winding is given by

V lf = N t V t N c , ( 5.2) 
As for the standard connection, the layer-to-layer voltage is not constant and depends on the treated pair of turns p. Bottom-to-top wise for p in Figure 5.1b, the layer-to-layer voltage reads:

V ls = (2p -1) V t N c , ( 5.3) 
where p = 1, 2, 3, etc. so that p = 1 accounts for turns 4 and 7, p = 2 for 3 and 6, etc. This approach considers that orthocyclic windings have an even-odd distribution of turns per layer, one turn difference between adjacent layers as in Figure 5.1b, where N t corresponds to the lowest number of turns per layer.

In such a way, V lf and V ls are periodically reproduced over the N l winding layers.

The choice of the elementary cell depends on the winding disposition. In 

Orthogonal Winding Capacitance

In an orthogonal winding, the cell type in Figure 5.2a can be used to represent both the turn-to-turn and layer-to-layer capacitive effects. Indeed, with round or square conductors, the geometry of the elementary cell in the turn-to-turn case is identical to the layer-to-layer case. In regard to rectangular conductors, two different elementary cells are required for the turn-to-turn and layer-tolayer simulations given the geometrical asymmetry. Either way, with one or two elementary cells, it is assumed for all cases that

v A -v B = V tt , ( 5.5) 
which leads to the electric field lines shown in Figure 5.2c. Such condition results in the stored energies W tt and W ll for the turn-to-turn and layer-tolayer cases, respectively. Note that in the case of round and square conductors

W tt = W ll .

Fly-Back Connection

The electrical connection determines the amount of energy stored inside the winding layers. The electrostatic energy is proportional to the square value of the applied voltage, which allows the definition of the stored energy in a fly-black winding as

W w = N l (N t -1)W tt + N t (N l -1) V lf V tt 2 W ll .
(5.6)

Standard Connection

The standard connection implies a changing behavior of the layer-to-layer stored energy, given the voltages between the turns of adjacent layers. Based on (5.3) and acknowledging again that electrostatic energy is proportional to applied voltage squared, the stored energy in a standard winding is defined as

W w = N l (N t -1)W tt + (N l -1) Nt p=1 V ls V tt 2 W ll .
(5.7)

In (5.6) and (5.7), the first term in the right-hand side accounts for the turnto-turn repetitions and the second term for the layer-to-layer repetitions in the complete winding.

Orthocyclic Winding Capacitance

The elementary cell for the orthocyclic case is presented in Figure 5.2b. In this cell, the turn-to-turn and layer-to-layer effects are estimated together. The potentials v A and v B preserve the condition in (5.5) and the stored electrical energy of the cell is denoted W tl .

Fly-Back Connection

In a fly-back connection, the third potential v C is defined as

v C = v B -V lf .
(5.8)

In that way, both the turn-to-turn and layer-to-layer effects are included in the elementary cell. Since V lf is constant, the stored energy in the winding is obtained through the number of cell repetitions over the domain, i.e.

W w = N t (N l -1)W tl .

(5.9)

Standard Connection

The standard connection implies that the changing behavior of the layer-to-layer voltage has to be included in the cell. This can be easily achieved by imposing

v C = v B -V ls , ( 5.10) 
which leads to the electric field lines shown in Figure 5.2d. For the sake of simplicity with a unique simulation, an expression in the form of (5.7) is required.

Since the elementary cell comprises three turns, V ls is not suitable. Nevertheless, the changing voltage in the elementary cell follows a linear behavior.

Hence, a voltage V ls is defined to be a function of the involved trio of turns o (in the same way as V ls is a function of p). By means of numerical simulations, a general expression for V ls is obtained. Bottom-to-top wise in Figure 5.1b, it reads:

V ls (1.1545o -0.2708) V t N c , ( 5.11) 
where o = 1, 2, 3,... Thanks to the chosen even-odd distribution of the turns,

V ls is valid for any set of three turns throughout the winding; provided that the shape of the elementary cell is maintained. 

W w = (N l -1) W tl + Nt o=2 V ls V tt 2 W tl .
(5.12)

Note that (5.6), (5.7), (5.9) and (5.12) are defined for complete windings with N t turns per layer. However, incomplete windings can be treated as well provided that the contribution of the turns in the incomplete layers are added.

Furthermore, axisymmetric windings may be treated with such expressions, on condition that these energies are multiplied by the coordinate transformation factor:

κ = π l z (r s + r e ), (5.13) 
where r s and r e are the winding starting and ending points over the r-direction, and l z the depth of the elementary cell in Cartesian coordinates.

The Equivalent Electric Permittivity

Windings in magnetic devices are surrounded by other components, namely the magnetic core, coil formers, electrostatic shields, etc. In some cases, these components affect the terminal capacitance considerably. Thus, a terminal capacitance of the full device C d needs to be calculated. It can be obtained either by analytical or numerical approaches. On the one hand, analytical calculations perform circuit analysis to estimate C d from C w together with the equivalent capacitance of the other components in the device. The winding equivalent capacitance in (5.4) can be combined with such approaches as in e.g., [START_REF] Shen | An improved stray capacitance model for inductors[END_REF].

On the other hand, numerical approaches require the representation of the full device in the electrostatic simulation to obtain C d . The explicit modeling of the thin dielectric layers surrounding each winding turn increases the computational cost of the simulation. In that regard, an homogenization approach can be followed to obtain an equivalent electric permittivity ε e = ε er ε 0 that accounts for the dielectric behavior of the whole set of layers. Here, the procedure proposed in [START_REF] De Grève | Homogenization of the thin dielectric layers of wound components for the computation of the parasitic capacitances in 2-D fe electrostatics[END_REF] is applied with the improvement of a simplified elementary cell. Thus, the equivalent electric permittivity ε e can be found by considering two elementary cells: a fine one, in which the insulation layers are fully described, and a homogenized one with an equivalent dielectric material.

By equating the stored electrostatic energy in both cells, ε e is found. This approach simplifies the elementary cell proposed in [START_REF] De Grève | Homogenization of the thin dielectric layers of wound components for the computation of the parasitic capacitances in 2-D fe electrostatics[END_REF], which comprises nine turns. Indeed, the electrical connection is disregarded in the elementary cell of Figure 5.4 because it has no effect on local properties.

From the stored electrostatic energies in the fine and homogenized cells W cf and W ch , respectively, ε er can be extracted as [START_REF] De Grève | Homogenization of the thin dielectric layers of wound components for the computation of the parasitic capacitances in 2-D fe electrostatics[END_REF]:

ε er = W cf W ch .
(5.14)

In the electrostatics simulation of the full device, ε er is used to represent the dielectric properties of the insulation layers in the winding. The terminal capacitance of the device is then obtained analogously to (5.4) and it is defined as

C d = 2 W d V 2 t , ( 5.15) 
where W d is the stored electrostatic energy in the device.

Semi-homogenized Relaxed Darwin Model

Homogenization Principle

A 2-D semi-homogenized approach of the relaxed Darwin model in Section 2.4.2 can be achieved thanks to the possibility of separating the magnetic problem from the electric one. In such approach, the magnetodynamic formulation is replaced by the model proposed in Chapter 4, which relies on frequency-dependent parameters for the inclusion of the skin and proximity effects. Afterwards, the electric model is solved as in the original case of Section 2.5, but the sources of the electric scalar potential are obtained from the resolution of homogenized eddy-current model. This method is referred to as semihomogenized because in its magnetic subproblem a fully homogenized winding window can be achieved; whereas in its electric counterpart, the representation of the conductors in the FE geometry is unavoidable. However, considering that the dielectric materials are assumed linear and isotropic, an equivalent electric permittivity may be used, as proposed in Section 5.2.3.

This 2-D semi-homogenized approach (planar or axisymmetric) relies on the hypothesis that the conduction current can be separated from the displacement current. Hence, it is assumed that:

• The magnetic vector potential and the conducting current have a unique component along the translational axis: z-or φ-direction.

• Displacement currents appear only in the plane perpendicular to the translational axis: xy-or rz-plane. Indeed, they are considered negligible compared to the conducting current along the z-or φ-direction.

• Conductors are equipotential regions and thus the charge density is null.

Regarding the boundary conditions, the extraction of v from the homogenized eddy-current stranded model is not straightforward. To that end, the approach consists in establishing a voltage relation on a turn-to-turn basis in terms of the current, the impedance and the local values of the magnetic vector potential; all of them explicitly defined after the resolution of the magnetic subproblem. In the frequency domain such relation reads:

ıω 1 Γ i Ωi a dΩ i + I Z e N c = V i , ( 5.16) 
where Ω i is the domain enclosing each turn with boundary surface Γ i . Since the homogenization in Chapter 4 does not describe geometrically the conductive region, one may transform (5.16) into:

ıω a c + I Z e N c ≈ V i , ( 5.17) 
with a c the interpolated value of the magnetic vector potential at the geometrical center of every turn in the winding window, as shown in Figure 5.5.

Hence, it is assumed that a has roughly an homogeneous distribution within the small cross-section of the conductors. Different interpolations methods can be applied to obtain a c , among them: bilinear interpolation, nearest neighbor or natural neighbor. Following the turn numbering in Figure 5.5, where the first turn is connected to the electromotive source and the last one is grounded, the v i values to be imposed on the boundary of each conductor are straightforwardly reconstructed:

v 1 = V t , v 2 = v 1 -V 2 , v 3 = v 2 -V 3 , . . . v i = v i-1 -V i .
(5.18)

Frequency-Domain Formulation

The proposed semi-homogenized relaxed Darwin model contains two subproblems. First, the magnetic suproblem is solved with the homogenized eddycurrent model for stranded windings. In a 2-D planar case (see Appendix B), it reads: find a z and I such that

Ω c w ν grad a z • grad α dΩ c w + Ωw ν e grad a z • grad α dΩ w - N c Γ w I Ωw α dΩ w = 0, ∀ α ∈ D 0 b (Ω), (5.19) ıω N c Γ w Ωw a z dΩ w + IZ e = V t .
(5.20)

Once the magnetic solution is obtained, the values v s , source of the electric subproblem, are extracted with (5.17 

Validity and Limitations

The proposed relaxed approach remains valid as long as the quasi-stationary limit holds for the considered case of study [START_REF] Rapetti | On quasi-static models hidden in Maxwell's equations[END_REF]. With such assumption, wave propagation is disregarded (main hypothesis of this work) and consequently the electric and magnetic fields are no longer strongly coupled. This way, the two-step procedure to solve the magnetic and electric subproblems is viable, allowing therefore for an accurate and individual estimation of the eddy-current and capacitive effects.

In terms of applicability, two main limitations can be pointed out in the proposed approach: First, the model is limited to the frequency domain, and in consequence to steady-state conditions, given the methodology to obtain the potential sources of the electric model. In this aspect, it relies on the assumption that the distribution of the electric scalar potential does not vary abruptly between neighboring conductors. A rather uniform distribution of the terminal voltage is thus presumed. Therefore, it is a priori not suitable for the analysis of transient phenomena, e.g. lightning-impulse response. Second, since the model deals with a semi-homogenized approach, where the electric subproblem still requires the explicit representation of every winding turn, it has been deliberately limited to a 2-D domain. Yet, the approach can be extended to 3-D analyses at the expense of a higher numerical burden.

3-D Extension

In a 3-D model, the electric subproblem requires the distribution of the source electric scalar potential along the conductors. Considering that the magnetic subproblem only allows for the recovery of the turn voltages, both in 2-D and 3-D; a possible strategy consists in the resolution of an additional electrokinetic subproblem. Such subproblem is solved for the unit electric scalar potential v 0 (see Section 2.4.1), so as to obtain the elementary local behavior of the voltage source. This way, the source voltages coming from the magnetic subproblem can be associated to a local distribution along the conductor length by applying (2.4). Naturally, the electrokinetic subproblem is explicit, which means that it is solved for each and every winding turn.

Numerical Test

Terminal Capacitance Computation

The four windings shown in Figure 5.6 are considered to validate the elementary neighbor-conductor model (Section 5.2.2), while the axisymmetric inductor in 

Elementary Neighbor-Conductor Model

First, the 32-turn orthogonal winding shown in Figure 5.6a is considered, for which the elementary cell proposed in Figure 5.2a is used. The reference case leads to a total of 140 441 unknowns in the FE problem with a total energy of W wr = 40.238 nJ. By applying (5.4), the resulting terminal capacitance is C wr = 78.591 pF. In the homogenized case, the number of unknowns is reduced to 9 329, which is approximately 1/16th of the reference case unknowns. In As for the 20-turn winding in Figure 5.6d, the reference FE computations lead to a stored energy and a winding capacitance of W wr = 7.250 nJ and C wr = This time, the stored energy in the winding is obtained with (5.9) plus the contribution of the additional cell in the incomplete layer (i.e. N t (N l -1)W c + W c ). Hence, the homogenized terminal capacitance is C w = 36.361 pF, which is again in excellent agreement with the reference. If an incomplete winding with standard connection is considered, special attention must be given to the position in terms of the trio o for the incomplete layer. Table 5.1 summarizes the obtained terminal capacitances, with the corresponding relative error = (C wr -C w )/C wr , for the windings in Figure 5.6.

Equivalent Electric Permittivity

To estimate the terminal capacitance of a complete device, the inductor shown in Figure 5.7 is considered. In the reference case, all the insulation layers around the conductors are explicitly considered. Conversely, in the homogenized case, the insulation layers are replaced by a homogeneous equivalent material of relative permittivity ε er = 1.995. The equivalent relative permittivity is obtained from the elementary cells shown in Figure 5.4. The reference case results in a mesh of 339 649 unknowns, whereas the homogenized case yields to a coarser mesh of 28 682 unknowns. A detail of both the reference and homogenized meshes is shown in Figure 5.8.

The electric potential distribution is shown in Figure 5.9 for the reference case. Since the potentials are imposed, a similar distribution is obtained for the homogenized case. In respectively. Again, excellent correspondence is found between the reference and homogenized results. 

Semi-homogenized Relaxed Darwin Model

For this validation, the test case in Q = -2.379 VAr is obtained. Evidently, there is no active power resulting from the electric subproblem.

Parasitic Capacitive Effects: When?

In the previous numerical tests, the accuracy and validity of the proposed approaches is evaluated. Yet, the question arising is: when does the parasitic capacitive effect have to be considered? Windings in magnetic devices such as: motors, generators, transformers, etc. can rapidly be affected by eddycurrent effects as soon as the operating frequency ceases to be zero. Contrarily, parasitic capacitive effects are most often negligible up until a high-frequency threshold. Defining such threshold is not evident and it is generally done on a case-to-case basis.

In theory, one may perform analyses of the well-known Helmholtz equations based on the domain dimension, the skin depth and the wavelength [START_REF] Rapetti | On quasi-static models hidden in Maxwell's equations[END_REF]; which is in fact the methodology to obtain the quasi-stationary limits. As a result, the pertinence of the parasitic capacitive effects is determined. In practice, the answer usually relies on an engineering perspective wherein the designer takes into consideration the device type, the application, the materials and the operation frequency.

Chapter Summary and Conclusions

This chapter introduces three techniques for the estimation of the parasitic capacitive effect in multi-turn windings. Two of them compute a terminal capacitance through an electrostatic FE model. In that context, the first approach estimates the winding capacitance based on an elementary cell that characterizes the regions where the electrostatic energy is concentrated, without describing the full winding in the FE problem. The second approach simplifies the full-device problem by means of an equivalent electric permittivity that accounts for the properties of the insulation layers within the winding. Windings with orthogonal or orthocyclic disposition, fly-back or standard connection, and arbitrary cross-section can be treated with either of them. Concerning the numerical tests, excellent accuracy and reduced computational cost is achieved in all the treated cases.

The third approach is a frequency-domain semi-homogenized version of Darwin's model based on a relaxed coupling between the magnetic and electric fields. Such relaxation allows for a decoupled resolution of the eddy-current and capacitive problems. In this case, a magnetic homogenized model solves the eddy-current subproblem, through frequency-dependent parameters, and provides boundary conditions for the capacitive one. Since the turns are not explicitly defined in the FE geometry of the magnetic subproblem, an interpolation method is proposed for extracting the electric scalar potential, source of the electric subproblem. By means of a numerical test, this approach is applied to the inductor treated in Section 4.5.1 to extend its analysis and include the capacitive effect. 
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General Conclusions and Outlook

Windings are directly linked to energy efficiency in electromagnetic devices.

Therefore, manufacturers must enhance winding performance to comply with the current low-carbon trends. In doing so, CAE constitutes a powerful tool that allows the digital testing of cutting-edge designs, whereby Maxwell's equations are solved with numerical methods, in particular the FEM.

At nonzero frequencies, winding modeling requires a correct prediction of the eddy-current and parasitic capacitive effects. With the FEM, a classical modeling of such effects results in huge numerical problems given the size of the conductors, usually very small compared to the rest of the device components, and the amount of turns required to conform a winding. Hence, alternative techniques with reduced computational cost are needed.

This thesis proposes on this matter different approaches for the modeling of windings. Under the hypothesis of periodicity, windings are considered as homogenizable FE regions. Assuming a decoupled behavior between the electric and magnetic fields, homogenized FE formulations are obtained for two types of windings: foil and stranded. Such formulations are intended for commercial implementation in the FE software Altair Flux™.

With respect to foil windings, an approach is proposed to include the eddycurrent effects in a time-domain homogenized formulation. It assumes that the current density is solely distributed towards the foil height, since its thickness is considered smaller than the skin depth. Moreover, an extra spatial discretization is included to account for the voltage jumps from one turn to the other in the direction perpendicular to the foil. Through numerical validations, it 102 is demonstrated that the proposed homogenization is highly dependent on the operation frequency: excellent accuracy is nonetheless guaranteed at utility frequency.

In the case of stranded windings a different technique is used to account for the eddy-current effects. The homogenization is achieved by using frequencydependent parameters, which characterize an equivalent winding window. In the proposed original time-domain formulation, such parameters are fitted, with the Vector-Fitting technique, into a Foster-network form that enables an easy inverse-Laplace transform and the application of a RC scheme. With the test cases, the accuracy of the proposed approach is validated, in which excellent results are obtained. Besides, a comparison with an existing time-domain model is carried out, where the proposed approach yields better performance. Furthermore, three methods for the estimation of the parasitic capacitive effects in stranded windings are proposed. Two of them attempt to compute a terminal capacitance either by: an elementary neighbor-conductor model, that characterizes the periodic regions where the electrostatic energy is concentrated; or an equivalent electric permittivity, which reduces the number of unknowns within the dielectric layers in a full-device electrostatic simulation.

The third approach introduces a relaxation between the magnetic and electric fields, feature that allows for the resolution of Darwin's model in two subproblems: magnetic and electric. Such approach results in a semi-homogenized formulation. The accuracy of all three methods is investigated with numerical tests.

Finally, based on the results obtained in this thesis, some aspects to be considered in further future work are listed:

1) The inclusion of the eddy-current effects in the homogenized foil-winding model at frequencies above f max . In that case, the current density is not only redistributed along the foil height, but also across its thickness.

Consequently, the assumptions made in Section 3.2.2 are no longer vaild and a different approach ought to be followed.

2) An incorporation of the terminal capacitance, obtained with either of the approaches in Section 5.2, into the eddy-current homogenization in Chapter 4. This could be achieved by adding the capacitance to the equivalent impedance. This way, both the eddy-current and capacitive effects could be globally estimated with the same model. 

B.1.2 The 2-D Axisymmetric Case

In cylindrical coordinates (r, φ, z), the magnetic vector potential a, the electric field e and the current density j get reduced to their φ component: a = (0, a φ , 0), e = (0, e φ , 0) and j = (0, j φ , 0). The magnetic field h and the mag- 

B.2.2 2-D Axisymmetric

The axisymmetric counterpart of the circuit-coupled magnetodynamic formulation in (2.7) and (2.11) reads: find a Φ and V such that 
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Cauer Network Synthesis where the fractions can be expanded up to an m-order. The parameters R 1 , L 1 , R 1 , L 1 ... are obtained through the fitting of the permeability µ e (s) = 1/ν e (s) and admittance Y e (s) = 1/Z e (s) that match rational, causal and stable transfer functions [START_REF] Niyomsatian | Timedomain homogenization of multiturn windings based on RL Cauer ladder networks[END_REF]. The behavior of (C.1) and (C. 
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 11 Figure 1.1: Bounded domain Ω and its subdomains Ωc, Ωnc and Ωw (depending on the model: Ωw ⊂ Ωc or Ωw ⊂ Ωnc).
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 312 Figure 1.2: Domains of the electromagnetic phenomena.
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 41 curl e = -∂ t b, (1.42) b = µh, (1.43) j = σe, (1.44) 
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 3 The duality between i and l can represent either: h and b, e and d or e and j. Dual fields are in addition linked through their respective constitutive relation (1.7)-(1.9).
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 13 Figure 1.3: Tonti diagram representing the duality of fields i and l.
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 56 These discrete function spaces can be accommodated in a Tonti diagram as well. Shape functions associated to the FEs, and in consequence discrete electromagnetic fields, are allocated in D o (Ω).
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 14 Figure 1.4: First-order finite elements: (a) 1-D line (b) 2-D triangle (c) 3-D tetrahedron.

  are presented. It begins with the definition of Maxwell's equations in the differential form, which may be resolved in the time domain or in the frequency domain. The constitutive relations linking Maxwell's equations are stated as well. Moreover, the bounded domain in which Maxwell's equations are to be solved is characterized. Expressions for the power and energy associated to electromagnetic fields are then deduced. Afterwards, the various formulations accounting for the DC, eddy-current and capacitive effects are written in terms of the magnetic vector potential and the electric scalar potential. The first part of the chapter ends with the definition of the continuous functions spaces.
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 21223423 Figure 2.1: Cross-sectional view of a: (a) 8-turn orthogonal winding (b) 7-turn orthocyclic winding (c) 7-turn jumble winding.
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 24 Figure 2.4: Electromagnetic interactions between two turns in a winding: (a) skin and proximity effects (b) parasitic capacitive effect (V2 > V1).
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 25 Figure 2.5: Portion of solid conductor connected to a source of EMF.
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 26 Figure 2.6: Circuit representation of a winding with Nc turns where the terminals can be connected to a source (voltage or current) and other circuit elements.
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 27 Figure 2.7: Representation of a homogenized winding.

  introduced. It begins with the definition of a winding, where concepts such as: turn, layer, fill factor, orthogonal and orthocyclic dispositions are put into context. Furthermore, the main characteristics of the different winding types are provided. Since windings are in most cases connected to external circuits, flux and circulation functionals, required to couple the formulations in Chapter 1 to voltages and currents, are enunciated as well. Circuit-coupled formulations are subsequently established for the solid conductor, so as to account for the eddy-current and capacitive effects. Then, the notion of a winding described by one wound solid conductor or by a collection of them, connected in series, allows for the definition of the explicit modeling for windings. By the end of the chapter, the standard homogenized model, the stranded model, is formulated to account for the DC as well as the low-frequency effects in a winding. Its limitations are enunciated and constitute the challenges to be addressed in the next chapters.
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 131 Figure 3.1: Foil winding representation.
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 4232 Figure 3.2: Axisymmetric foil inductor (upper half, dimensions: mm).
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 333435 Figure 3.3: Detail of the model mesh (upper-right zoom of the outer foil turns): (a) reference case and (b) homogenized case.

  .4 until ζ = 0.75 (f ≈ 13 kHz). As for the inductance, excellent accuracy is shown for all the considered frequencies. It is worth mentioning that in Figure 3.4 the model is pushed beyond f max ≈ 17 kHz (ζ = 1) only to illustrate the limitations in accuracy. In all figures, "r." stands for the reference model and "h." for the homogenized model. In the time domain, three square-wave voltage excitations are applied to the winding, for which the waveform is depicted in Figure 3.5. The only difference between the three waves is their fundamental frequency: 200 Hz (ζ = 0.107), 2 kHz (ζ = 0.339) and 20 kHz (ζ = 1.071), where the latter is above the maximum frequency. Time-stepping simulations are carried out for one period (T = 1/f ) with constant time step ∆t = T /200. For the reference case, an average computational time per step t ∆t of 5 389 ms is obtained at all frequencies (fixed mesh). Conversely, the homogenization requires a t ∆t of 31 ms at 200 Hz or 2 kHz and 70 ms at 20 kHz. The flux lines of the reference and homogenized cases in the winding domain are compared in Figure 3.6 at t = T /8 (maximum voltage) for all frequencies.
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 364637 Figure 3.6: Flux lines in Ωw at t = T /8 (Vt = 1 V, maximum value): 200 Hz (a) reference (b) homogenized, 2 kHz (c) reference (d) homogenized, 20 kHz (e) reference (f) homogenized.
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 38 Figure 3.8: Current density along half-heigth of the first turn (1/20) at t = T /8 and t = T /2 obtained with the reference "r." and homogenized "h." models.
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 39310 Figure3.9: Current density along the total width lw at t = T /8 and t = T /2 for z = 0 obtained with the reference "r." and homogenized "h." models.
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  Figure 3.11 shows how the Joule losses vary in time. An excellent agreement
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 41 Figure 4.1: Concept of the equivalent frequency-dependent reluctivity.
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 42 The complex power S absorbed by the elementary cell is calculated from the local flux density b and the local current density j as
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 422 Figure 4.2: Types of elementary cells: (a) round conductor with square packing for orthogonal disposition (b) square conductor with square packing (c) round conductor with hexagonal packing for orthocyclic disposition (d) rectangular conductor with rectangular packing.
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 42 a vertical flux is imposed with e.g. a z = -1∠0 and a z = 1∠0 on the left and right boundaries, respectively, and homogeneous Neumann conditions (∂ n a z = 0) on the upper and lower boundaries; otherwise for a horizontal flux, a z = -1∠0 and a z = 1∠0 on the upper and lower boundaries, respectively, and homogeneous Neumann conditions on the left and right boundaries. Such conditions, depending on the cell geometry, may lead to a anisotropic behavior in the xy-plane associated to the proximity effect, so that (4

Figures 4 .

 4 Figures 4.3aand 4.3b show respectively the real and imaginary parts of the flux lines in an elementary cell with a round copper conductor and square packing (radius r = 0.56 mm, σ = 59 MS/m and λ = 0.65). For the same cell, the frequency dependence up to 100 kHz for the equivalent reluctivity (ν r e and ν i e ) obtained with the elementary FE model is depicted in Figure 4.4.

Figure 4 . 2 ,

 42 this is achieved by imposing an arbitrary current through the supply circuit, e.g. I = 1∠0, and a z = 0 on the complete boundary of the elementary cell. Note that in the cell of Figure 4.2c, the conductors are connected in series. Such conditions lead to the real and imaginary parts of the flux lines shown in Figures 4.3c

  and 4.3d, respectively.

Figure 4 . 3 :

 43 Figure 4.3: Flux lines for the elementary cell with a round copper conductor and square packing (radius r = 0.56 mm, σ = 59 MS/m and λ = 0.65) at 50 kHz: proximity effect (a) real and (b) imaginary parts and skin effect (c) real and (d) imaginary parts. Results obtained with Altair Flux™.

Figure 4 . 4 :

 44 Figure 4.4: Normalized equivalent impedance and reluctivity (real and imaginary parts) vs frequency obtained with the elementary FE model of the elementary cell in Figure 4.3.

Figure 4 . 4

 44 shows the frequency dependence up to 100 kHz for the equivalent impedance (R e and X e ) obtained with the elementary FE model of the cell depicted in Figure 4.3.

( 4 .

 4 10) with [S] ∈ R Ne×Ne the reluctivity-dependent stiffness matrix in Ω c w , [S w ] ∈ R Ne×Ne the reluctivity-independent stiffness matrix in Ω w , [C] ∈ R Ne×1 the connectivity matrix and [A] ∈ C Ne×1 the magnetic vector potential unknown vector. Their entries read:

  [START_REF] Cardoso | Electromagnetics through the finite element method: A simplified approach using Maxwell's equations[END_REF]) and (4.15) can be straightforwardly associated to an equivalent Foster network with passive elements. The equivalent magnetic network in Figure4.5a accounts for the proximity effect, whereas the equivalent electric network in Figure4.5b accounts for the skin effect. It is worth mentioning that the Debye model satisfies the Kramers-Kronig relation in the frequency domain; thus, causality is guaranteed in the time domain[START_REF] Sarto | On the use of fitting models for the time-domain analysis of problems with frequencydependent parameters[END_REF].

Figure 4 . 5 :

 45 Figure 4.5: Equivalent Foster networks: (a) magnetic and (b) electric. The magnetic network keeps a vectorial b to indicate a circuit resolution for each coordinate component (with different parameters, if the equivalent complex reluctivity is a tensor).

  .34) It is worth mentioning that no additional unknowns are required in the FE resolution stage, since I Ri , I Li , b i and b ri are obtained directly from I, b and the circuit parameters.

Figure 4

 4 Figure 4.6: 2-D inductor (1/4th right upper-half, depth: 0.5 m, dimensions: mm).

Figure 4 . 6 .

 46 Only 1/4th of the domain is considered in Figure 4.6 by taking advantage of symmetry. Thus, tangential magnetic field is imposed on the left boundary and normal magnetic field on the bottom boundary. Normal magnetic field is also considered on the right and top boundaries. The core is considered nonconductive and has relative reluctivity ν r = 1/1000. The winding is fed by the 2 kHz PWM signal of unit amplitude and 50% duty cycle, shown in Figure 4.7, whose expression reads: ωt -cos 5ωt) + 1 . (4.35) A round copper conductor of radius r = 1.15 mm, σ = 59 MS/m and λ = 0.43 is comprised in the winding, for which the square cell in Figure 4.2a is used.

Figure 4 .Figure 4 . 7 :

 447 Figure 4.7: Imposed PWM voltage.

Figure 4 . 8 :

 48 Figure 4.8: Equivalent parameters (normalized real and imaginary parts) vs frequency obtained with the elementary FE model and fitted with VF: (a) reluctivity νe/ν0 (b) impedance Ze/RDC .

Figure 4 . 9 :

 49 Figure 4.9: Model mesh (upper-right zoom of the outer turns): (a) reference case and (b) homogenized/stranded case.

Figure 4 .

 4 11 compares the reference, homogenized and stranded winding current I variation in time, where both the homogenized and stranded models produce an excellent agreement. The current is only influenced by the skin effect, which in this case is negligible; hence no difference can be appreciated between the homogenized and stranded models.

Figure 4 . 10 :Figure 4 . 11 :

 410411 Figure 4.10: Flux lines in the winding at t = T /2: (a) reference and (b) homogenized.

Figure 4 .Figure 4 . 12 :Figure 4 . 13 :

 4412413 Figure 4.12: Joule losses vs time: reference, homogenized and stranded models.

ure 4 . 13 .

 413 The proposed homogenization delivers more accurate results than the stranded model.In order to assess the influence of the homogenized mesh, two additional discretizations were tested: one with a mesh of approximately one third of the mesh elements in Figure4.9b and the other with three times the number of elements in Figure4.9b. The respective computational times per step are 3.39 ms and 38.3 ms. The results for the Joule losses between 0.1 ms and 0.2 ms are presented in Figure4.14. It can be appreciated that the size of the homogenized mesh has little influence on the results.

Figure 4 . 14 :

 414 Figure 4.14: Homogenized Joule losses vs time obtained with 1/3 and 3 times the mesh elements in Figure 4.9b.

  proximated with RL Cauer networks instead (see Appendix C). The first case considers the 120-turn axisymmetric inductor shown in Figure 4.15, with the conductor characterized in Figures 4.3and 4.4 [91]. The core is considered nonconductive and has relative magnetic reluctivity ν r = 1/1000. Tangential magnetic field is imposed on the outer boundary of the core. The winding is fed by a 50 kHz sinusoidal voltage of amplitude 25 V (Figure 4.16). Time-stepping simulations are carried out for one period with constant time step ∆t = T /120.

Figure 4 . 15 :Figure 4 . 16 :

 415416 Figure 4.15: Geometries and meshes: axisymmetric inductor (a) reference and (b) homogenized, stator slot (c) reference and (d) homogenized.

Figure 4 . 17 :

 417 Figure 4.17: Inductor case: Joule losses vs time for the reference, Cauer "C." and Foster "F." approaches.

Figure 4 . 18 :

 418 Figure 4.18: Inductor case: absolute error vs time for the Joule losses obtained with the Cauer "C." and Foster "F." approaches.

Figure 4 . 19 :Figure 4 . 20 :

 419420 Figure 4.19: Stator slot case: Joule losses vs time for the reference, Cauer "C." and Foster "F." approaches.

Figure 4 .

 4 15d. The Joule losses as a function of time are shown in Figure 4.19, with the corresponding absolute error presented in Figure 4.20. Both approaches approximate accurately the behavior of the reference case for the imposed current in Figure 4.16, yet the Foster approach yields better correspondence in the first and third quarters of the fundamental period, as shown in Figure 4.20.

  C. A. Valdivieso, G. Meunier, B. Ramdane, J. Gyselinck, C. Guerin and R. V. Sabariego. Time-Domain Finite-Element Eddy-Current Homogenization of Windings using Foster Networks and Recursive Convolution. IEEE Transactions on Magnetics, doi: 10.1109/TMAG.2020.3032884. • C. A. Valdivieso, G. Meunier, B. Ramdane, J. Gyselinck, C. Guerin and R. V. Sabariego. A Comparison of Multiturn Winding Homogenization Approaches in Time-Domain 2-D Finite Element Models. In 13th International Conferences on Scientific Computing in Electrical Engineering (SCEE) (2020), Eindhoven, The Netherlands. • C. A. Valdivieso, G. Meunier, B. Ramdane, J. Gyselinck, C. Guerin and R. V. Sabariego. Time-Domain 2-D Finite-Element Homogenization of Windings Using RL Foster Networks and Recursive Convolution. In 19th Biennial Conference on Electromagnetic Field Computation (CEFC) (2020), Pisa, Italy.

Figure 5 . 1 :

 51 Figure 5.1: Winding electrical connection: (a) orthogonal winding with fly-back connection and (b) orthocyclic winding with standard connection. Numbers indicate turn ordering.

Figure 5 . 2 ,Figure 5 . 2 :

 5252 Figure 5.2, the cell is shown for one of the conductors to be used hereafter in both orthogonal and orthocyclic dispositions. The conductor and insulation layers have radiuses: r c = 0.124 mm, r 1 = 0.147 mm and r 2 = 0.157 mm, respectively, with fill factor λ = 0.48. The relative electric permittivities of the insulation layers are: ε r1 = 3.2 and ε r2 = 2.55. In the orthogonal case (Figure 5.2a), the cell comprises two winding turns embedded in an air-filled square packing. In the orthocyclic case (Figure 5.2b), the cell contains additionally a third turn and features instead an air-filled hexagonal packing. At the resolution stage, the potentials v A , v B and v C (corresponding to the conductive surfaces A, B and C in Figure 5.2) are imposed, depending on the winding disposition and the electrical connection, together with floating potentials on the cell boundary. If a winding is described by the spatial reproduction of the elementary cell, periodic conditions are guaranteed. In that case, the stored electrical energy in the winding W w can be obtained from the stored electrical energy in the elementary cell by means of an energy balance. Such energy balance is based on the repetitions of the elementary cell across the winding. Thereon, the winding terminal capacitance C w is obtained based on the global redefinition of the stored electrostatic energy (1.21), i.e. C w = 2 W w V 2 t

Figure 5 . 3 :

 53 Figure 5.3: Layer-to-layer voltage behavior vs pair p or trio o in an orthocyclic winding.

Figure 5 .

 5 3 compares the layerto-layer voltage behavior, treated by pairs or trios, in an orthocyclic winding as a function of the pair p or trio o. The energy stored in the winding is thus given by

Figure 5 . 4 :

 54 Figure 5.4: Elementary 2-D cell for the equivalent electric permittivity: (a) fine case and (b) homogenized case.

c 4 Figure 5 . 5 :

 455 Figure 5.5: z-or φ-component of the magnetic vector potential interpolated at the center of the turns.

  ) and(5.18). In second place comes then the electric problem, it reads: find v such thatıω Ω ε grad v • grad α dΩ = Ωw v s α dΩ w , ∀ α ∈ D 0 e (Ω).(5.21)The axisymmetric counterparts of (5.19)-(5.21) can be straightforwardly obtained following the considerations in Appendix B.

Figure 5 . 6 :

 56 Figure 5.6: Application cases (dimensions: mm): (a) 32-turn orthogonal fly-back winding with round conductors (b) 20-turn standard winding with rectangular conductors (c) 18-turn orthocyclic standard winding with round conductors (d) 20-turn orthocyclic fly-back winding with round conductors and an incomplete layer. Cases (a), (c) and (d) comprise the conductor and insulation characterized in Figure 5.2.

Figure 5 .Figure 5 . 7 :

 557 Figure 5.7 is considered for the homogenization based on the equivalent electric permittivity (Section 5.2.3). Furthermore, the elementary neighbor-conductor model is applied to the inductor in Figure 5.7 as well in order to compare the performance. All FE computations are carried out with the software Altair Flux™.

  general, the number of unknowns is reduced proportionally to the number of nontreated turns, if the same meshing conditions are kept. Via the elementary cell, the stored energy in the winding and the terminal capacitance are W w = 40.286 nJ and C w = 78.683 pF, respectively, where C w agrees very well with C wr . With the objective of treating nonround conductors as well, the 20-turn standard winding with rectangular conductors shown in Figure 5.6b is modeled. Each turn (rectangle of 1.2 mm by 2.2 mm) comprises the conductor and one layer of insulation around it. The relative permittivity of the insulation is ε r = 1 with fill factor λ = 0.76. In the reference case, the stored energy is W wr = 23.929 nJ, which through (5.4) results in a winding capacitance of C wr = 119.645 pF. As for the homogenized case, two different elementary cells are considered to account for the turn-to-turn and layer-to-layer effects (see Figure 5.6b). By means of (5.7), the stored energy in the homogenized approach is W w = 23.959 nJ. The homogenized terminal capacitance is then C w = 119.796 pF, which is in excellent agreement with the reference. The windings in Figures 5.6c and 5.6d have an orthocyclic disposition with standard and fly-back connections, respectively. In both cases, the elementary cell of Figure 5.2b is used for the homogenized estimation. The reference FE computations for the 18-turn winding yield a stored electrical energy W wr = 8.061 nJ with a corresponding terminal capacitance C wr = 49.759 pF. In the homogenized model, the stored electrical energy in the cell is W tl = 79.920 pJ.Applying (5.11) together with (5.12), the stored electrical energy in the winding is W w = 8.211 nJ. Thus, the homogenized winding capacitance results in C w = 50.684 pF; value that agrees effectually with the reference.

Figure 5 .Figure 5 . 8 :

 558 Figure 5.8: Mesh detail of the winding turns: (a) reference and (b) homogenized.

Figure 5 . 9 :

 59 Figure 5.9: Distribution of the electric scalar potential in the axisymmetric inductor of Figure 5.7.

Figure 5 . 10 :

 510 Figure 5.10: Electric field magnitude |e| vs r along the radial path at z = 1.1 mm.

5. 4 . 1 . 3 Comparison

 413 It is possible to use an elementary neighbor-conductor model for the axisymmetric inductor of Figure 5.7. Such application only concerns the inductor winding and disregards the influence of the surrounding components, namely the core and the coil former. This way, the stored energy in the winding is obtained through the multiplication of (5.6) by (5.13) (with r s = 1.525 mm and r e = 3.427 mm in Figure 5.7), so that it yields W w = 3.485 nJ with a terminal capacitance of C w = 1.394 pF. Compared to the reference capacitance of the device C dr = 1.655 pF, C w leads to an error of 18.77%. As mentioned in Section 5.2.3, one can either perform a circuit analysis to obtain C d from C w together with the capacitances of the other components, or use the equivalent electric permittivity in a full-device simulation. Nonetheless, if the dielectric behavior of the surrounding components can be approximated with an unitary relative permittivity, then there is no need to apply circuit analysis nor the full-device simulation because the results obtained for the elementary neighbor-conductor model are accurate enough. Indeed, in such cases the device capacitance is approximately the same as the winding capacitance, i.e. C d ≈ C w .

Figure 4 . 6 of

 46 Section 4.5.1 is considered, but this time with depth of 1 m. The winding is fed by a 150 kHz current source of 10∠0 mA RMS. First, the magnetic model is simulated to obtain the potential sources of the electric model. Bilinear interpolation is used for the computation of a c . An explicit magnetodynamic model is also considered as a reference to validate the accuracy of the voltage and electric potentials computed with (5.17) and (5.18), respectively. The reference v i values are obtained from the circuit-coupling equations associated to the explicit model (see Appendix B.2).

Figure 5 .Figure 5 . 11 :

 5511 Figure 5.11a compares the real part of the potentials obtained with the reference and the homogenized models, while Figure5.11b compares the imaginary part. In both cases, excellent accuracy is achieved, which confirms the applicability of the proposed method for estimating the electric potential. Moreover, the results in terms of power are compared in Table5.2, where stands for

Figure 4 . 6 .Figure 5 . 12 :

 46512 Figure 4.6.In the electric subproblem, a relative electric permittivity of ε r = 1 is considered all over the domain, together with floating potentials as boundary conditions. A fly-back electrical connection is assigned to the winding turns. The electrical connection only intervenes in the electric subproblem because the se-

Figure 5 . 13 :Figure 5 . 14 :

 513514 Figure 5.13: Distribution of the electric scalar potential (magnitude: |v|) in the inductor of Figure 4.6.

  3) A 3-D version of the approaches in Chapters 3 and 4 coupled with hys-to be A-stable ify(t i ) -→ 0 as i, t -→ ∞.In Cartesian coordinates (x, y, z), the magnetic vector potential a, the electric field e and the current density j get reduced to their z component: a = (0, 0, a z ), e = (0, 0, e z ) and j = (0, 0, j z ). The magnetic field h and the magnetic flux density b have components only in the xy-plane, i.e. h = (h x , h y , 0) and b = (b x , b y , 0). In that way, the magnetic flux density is redefined asb = curl a = (∂ y a z , -∂ x a z , 0). (B.1)A voltage V defines the gradient of the electric scalar potential asgrad v = -V l z , (B.2)where l z is the depth along the z-direction. Hence, the electric field in the z-direction is given bye z = -∂ t a z + V l z . (B.3) Expressions for the magnetic field and the current density can be straightforwardly obtained from (B.1) and (B.3) together with constitutive relations (1.7) and (1.9). With such conditions, the double curl arising from the weak forms of Ampère's equation becomes curl(curl a) = (0, 0, -div(grad a z )). (B.4) 108

B. 1 . 3 The 2 -

 132 netic flux density b have components only in the rz-plane, i.e. h = (h r , 0, h z ) and b = (b r , 0, b z ). To ease the solution, the unknown a Φ = ra φ is introduced, so that the magnetic flux density is redefined asb = curl a = 1 r (-∂ z a Φ , 0, ∂ r a Φ ). (B.5)A voltage V defines the gradient of the electric scalar potential asgrad v = -V 2πr . (B.6)Hence, the electric field in the φ-direction is given bye φ = -1 r ∂ t a Φ + V 2π . (B.7) Expressions for the magnetic field and the current density can again be straightforwardly obtained from (B.5) and (B.7) together with constitutive relations (1.7) and (1.9). With such conditions, the double curl arising from the weak forms of Ampère's equation becomes curl(curl a) = 0, -∂ r 1 r ∂ r a Φ -∂ z 1 r ∂ z a Φ , 0 . (B.8) Since (B.8) is individually applied to the FEs, one can assume that r is constant across them, given their small dimensions compared to those of the entire domain [14]. This way, (B.8) takes the form of curl(curl a) = 0, -div 1 r grad a Φ , 0 . (B.9) Weak Forms and Discretization Weak forms in the following subsections are obtained with the 2-D version of (A.2). In such formulations, the z or φ component of magnetic vector potential is discretized with nodal shape functions i.e. a z = a φ ≈ Nn i=1 a i α i , ∀ α i ∈ D 0 b (Ω), (B.10) where the a i values are the N n coefficients of the basis functions. Note that axisymmetric problems are solved for a Φ instead of a φ . D planar counterpart of the circuit-coupled magnetodynamic formulation in (2.7) and (2.11) reads: find a z and V such that l z Ω ν grad a z • grad α dΩ + l z Ωc σ ∂ t a z α dΩ c -Ωc σ V α dΩ c = 0, ∀ α ∈ D 0 b (Ω), (B.11) Ωc -σ∂ t a z + σ V l z dΩ c = I. (B.12)

The 2 -The 2 -The 2 -The 2 -

 2222 a Φ • grad α dΩ + Ωc 2π r σ ∂ t a Φ α dΩ c -Ωc σ r V α dΩ c = 0, ∀ α ∈ D 0 b (D planar counterpart of the stranded model in (2.19) and (2.21) reads: find a z and I such that Ω ν grad a z • grad α dΩ -N c Γ w I Ωw α dΩ w = 0, ∀ α ∈ D 0 b (Ω), (B.15) N c Γ w Ωw ∂ t a z dΩ w + IR DC = V t . (B.16) D axisymmetric counterpart of the stranded model in (2.19) and (2.21) reads: find a Φ and I such thatΩ 2π r ν grad a Φ • grad α dΩ -2π N c Γ w I Ωw α dΩ w = 0, ∀ α ∈ D 0 b (Ω), (B.17) 2π N c Γ w Ωw ∂ t a Φ dΩ w + IR DC = V t . (B.18)Note that the value of the resistance R DC varies between the planar and ax-D planar counterpart of the homogenized foil-winding formulation in (3.10) and (3.11) reads: find a z and V χ such thatΩ ν grad a z • grad α dΩ + λ Ωw σ ∂ t a z α dΩ w -λ Ωw σ V χ α dΩ w = 0, ∀ α ∈ D 0 b (Ωw σ ∂ t a z β dΩ w + λ Ωw σ V χ β dΩ w -N c l w I χ β dχ = 0, ∀ β ∈ {χ ∈ R | 0 < χ < l f }. D axisymmetriccounterpart of the homogenized foil-winding formulation in (3.10) and (3.11) reads: find a Φ and V χ such that Ω 2π r ν grad a Φ • grad α dΩ + λ Ωw 2π r σ ∂ t a Φ α dΩ w -λ Ωw σ r V χ α dΩ w = 0, ∀ α ∈ D 0 b (a Φ β dΩ w + λ Ωw σ 2πr V χ β dΩ w -N c l w I χ β dχ = 0, ∀ β ∈ {χ ∈ R | 0 < χ < l f }. (B.22)

2 ) 2 Figure C. 1 :

 221 Figure C.1: Equivalent Cauer network.

  

.2.6.2 The Electric Scalar Potential

  

	Faraday's law (1.2) defines the curl of the electric field. For time-invariant
	problems, e is a conservative field and therefore (1.2) equals to zero. Thus, the
	law is mathematically satisfied, if the electric field is associated to the gradient
	of a scalar field named the electric scalar potential v (V), i.e.	
	e = -grad v,	(1.26)
	so that for any v, one always has	
	curl (-grad v) = 0.	(1.27)
	Once more, the definition in (1.26) does not ensure the uniqueness of v. If v
	is replaced by v + x, with x a constant, (1.26) still holds. Hence, formulations
	involving v fix the scalar field by setting its value at any point in space [14]. In
	the case of time-varying fields, e becomes nonconservative and then (1.26) is
	incomplete. To suit the nonconservative form, the magnetic vector potential is
	introduced through ∂ t b = ∂ t curl a. Rearranging (1.2) in terms of both v and
	a, the electric field takes the form of	
	e = -∂ t a -grad v.	(1.28)

  3.11 shows how the Joule losses vary in time. An excellent agreement is obtained at 200 Hz with an L2-error L2 , over the complete period, of 2.2%.
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	Figure 3.11: Joule losses vs normalized time (one period) obtained with the reference
	"r." and homogenized "h." models. Values normalized with respect to the maximum
	reference values: 1.41 W, 103 mW, 5.31 mW for 200 Hz, 2 kHz and 20 kHz, respectively.
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	Similar results are obtained for 2 kHz, but L2 increases to 5.3%. The Joule
	losses are considerably worsened at 20 kHz with L2 reaching a value of 29.4%;
	linked to the overestimated terminal resistance from ζ = 0.75 on. The error
				P jr 2	.	(3.23)

L2 is measured with the L2-norm of the difference between the reference P jr and the homogenized P j h losses in a period i.e. L2 = P jr -P j h 2 Figure 3.12: Magnetic energy vs normalized time (one period) obtained with the reference "r." and homogenized "h." models. Values normalized with respect to the maximum reference values: 7.5 mJ, 9.4 µJ, 75.3 pJ for 200 Hz, 2 kHz and 20 kHz, respectively.

Table 3 .

 3 1: Performance of the Homogenized Foil-Winding Model

	f	N u	L2 (%) t ∆t (ms)	sp
		1	7.5	10	538.9
	200 Hz	2	2.2	31	173.8
		3	1.3	70	77
		1	27.1	10	538.9
	2 kHz	2	4.7	31	173.8
		3	2.1	70	77
		1	183.9	22	245
	20 kHz	2	29.4	70	77
		3	5.7	221	24.4
	Refining the mesh to N				

u = 3 results in excellent accuracy for 2 kHz, but an error of 5.7% is still found at 20 kHz. Evidently, as N u increases, t ∆t increases as well; however, same times are obtained for 200 Hz and 2 kHz.

Table 4 .

 4 1: Inductor Case: Performance of the Time-Domain Homogenized Models.

	m	Ñw	RL Cauer t ∆t (ms)	RL Foster L2 (%) N w t ∆t (ms)	L2 (%)
	1	500	38	75	500	5	2.1
	2 1000	91	2.8	500	5	2.1
	3 1500	129	1.8	500	5	1.8
	4 2000	165	1.6	500	5	1.8

Table 5 .

 5 1: Terminal Capacitances Obtained with the Elementary Neighbor-Conductor Model. The stored energy in the homogenized cell is W tl = 559.441 pJ.

	Case C wr (pF) C w (pF)	(%)
	a	78.591	78.683	0.11
	b	119.645	119.796	0.13
	c	49.759	50.684	1.86
	d	36.250	36.361	0.31
	36.250 pF.			

Table 5 .

 5 2: Total Power Obtained with the Magnetic Subproblem: Reference and Homogenized Models.

		Reference Homogenized	(%)
	P (mW)	28.907	29.231	1.12
	Q (mVAr)	210.252	212.433	1.04
	the relative error. It is worth mentioning that the reference mesh is finer than
	the one in Figure 4.9a, to account for the frequency increase. Such mesh leads
	in this case to a total of 298 850 unknowns, comprising the whole domain of

  • C. A. Valdivieso, G. Meunier, B. Ramdane, J. Gyselinck, C. Guerin and R. V. Sabariego. 2-D Electrostatic Finite-Element Homogenization of Windings for Terminal-Capacitance Computation. IEEE Transactions on Electromagnetic Compatibility, UNDER REVIEW. • C. A. Valdivieso, G. Meunier, B. Ramdane, J. Gyselinck, C. Guerin and R. V. Sabariego. Capacitance Computation of Multiturn Windings via Elementary Neighbour-Conductor Models. In 19th International IGTE Symposium on Numerical Field Calculation in Electrical Engineering (IGTE'20) (2020), Graz, Austria.

  The complex frequency-dependent parameters ν e and Z e can be represented, over the frequency range of interest, by rational functions with a ladder form, i.e.

	ν e (s) R 1 +	1 sL 1	+	1 R 2 +	1 sL 2 1	+ 1	. . .	,	(C.1)
	Z e (s) R 1 +	1 sL 1	+	1 R 2 +	1 sL 2 1	+ 1	. . .	,	(C.2)

In general, the terms winding and coil are indistinctly used, though coils, strictly speaking, imply spiral-or ring-shaped arrangements[START_REF] Mckean | The new Oxford American dictionary[END_REF]; hence the word winding is preferred.

It can be demonstrated for any centrosymmetric elementary cell[START_REF] Bossavit | Homogenizing spatially periodic materials with respect to Maxwell equations: Chiral materials by mixing simple ones[END_REF].
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2-D teresis models, inherent to ferromagnetic cores, to simulate a real-life machine.

4) An adaptation of the frequency-dependent parameters, proper to the homogenization approach in Chapter 4, aiming at simulating shielded wires with conductive materials in-between the insulating layers. where n is the outward unit vector normal to every point of the surface Γ.

Although (A.1) is defined in 3-D, the divergence theorem can be generalized to any number of dimensions. 

A.2 Green's Identities

Green's identities are a set of integro-differential identities used in vector calculus, which are named after the British mathematician George Green (1793-1841). Let u, v and w be two vector fields and a scalar field, respectively, defined in a bounded domain Ω of the 3-D Euclidean space with boundary Γ.

Based on such definitions, Green's identities read:

where n is the outward unit vector normal to every point of Γ. Equation (A.2) is referred to as the grad-div type identity and (A.3) as the curl-curl type identity. Green's identities are obtained by applying the divergence theorem (A.1) to the integral over Ω of the following product rules:

A.3 Implicit Euler Method

The implicit Euler method (or backward Euler method) is a numerical method to solve first-order PDEs with initial value, which takes its name after the Swiss mathematician Leonard Euler (1707-1783). The method is called to be implicit because it seeks for a solution by involving simultaneously the current system state and a future one. Consider the time-dependent differential equation:

with initial value y(0) = y 0 . If a time step ∆t is considered, so to define t i = t i-1 + ∆t; the numerical solution of (A.6), by applying the implicit Euler method, is:

Compared to its explicit counterpart, the implicit Euler method is more complicated to implement. Nonetheless, it is preferred for the solution of stiff equations due to its numerical stability. Indeed, the implicit Euler method is unconditionally A-stable. In finite-difference approximations, a method is said