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Abstract

In 2014, use of deep neural networks (DNNs) revolutionised facial recognition (FR).

DNNs are capable of learning to extract feature-based representations from images

that are discriminative and robust to extraneous detail. Arguably, one of the most

important factors now limiting the performance of FR algorithms is the data used

to train them. High-quality image datasets that are representative of real-world test

conditions can be difficult to collect. One potential solution is to augment datasets

with synthetic images. This option recently became increasingly viable following

the development of generative adversarial networks (GANs) which allow generation

of highly realistic, synthetic data samples. This thesis investigates the use of GANs

for augmentation of FR datasets. It looks at the ability of GANs to generate new

identities, and their ability to disentangle identity from other forms of variation in

images. Ultimately, a GAN integrating a 3D model is proposed in order to fully

disentangle pose from identity. Images synthesised using the 3D GAN are shown

to improve large-pose FR and a state-of-the-art accuracy is demonstrated for the

challenging Cross-Pose LFW evaluation dataset.

The final chapter of the thesis evaluates one of the more nefarious uses of syn-

thetic images: the face-morphing attack. Such attacks exploit imprecision in FR

systems by manipulating images such that they might be falsely verified as belong-

ing to more than one person. An evaluation of GAN-based face-morphing attacks

is provided. Also introduced is a novel, GAN-based morphing method that min-

imises the distance of the morphed image from the original identities in a biometric

feature-space. A potential counter measure to such morphing attacks is to train FR

networks using additional, synthetic identities. In this vein, the effect of training

using synthetic, 3D GAN data on the success of simulated face-morphing attacks

is evaluated.
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Résumé

En 2014, l’utilisation des réseaux neuronaux profonds (RNP) a révolutionné la

reconnaissance faciale (RF). Les RNP sont capables d’apprendre à extraire des im-

ages des représentations basées sur des caractéristiques qui sont discriminantes et

robustes aux détails non pertinents. On peut dire que l’un des facteurs les plus im-

portants qui limitent aujourd’hui les performances des algorithmes de RF sont les

données utilisées pour les entraîner. Les ensembles de données d’images de haute

qualité qui sont représentatives des conditions de test du monde réel peuvent être

difficiles à collecter. Une solution possible est d’augmenter les ensembles de données

avec des images synthétiques. Cette option est récemment devenue plus viable suite

au développement des “generative adversarial networks” (GAN) qui permettent de

générer des échantillons de données synthétiques très réalistes. Cette thèse étudie

l’utilisation des GAN pour augmenter les ensembles de données FR. Elle examine

la capacité des GAN à générer de nouvelles identités, et leur capacité à démêler

l’identité des autres formes de variation des images. Enfin, un GAN intégrant un

modèle 3D est proposé afin de démêler complètement la pose de l’identité. Il est

démontré que les images synthétisées à l’aide du GAN 3D améliorent la reconnais-

sance des visages aux poses larges et une précision état de l’art est démontrée pour

l’ensemble de données d’évaluation “Cross-Pose LFW”.

Le dernier chapitre de la thèse évalue l’une des utilisations plus néfastes des

images synthétiques : l’attaque par morphing du visage. Ces attaques exploitent

l’imprécision des systèmes de RF en manipulant les images de manière à ce qu’il

puisse être faussement vérifié qu’elles appartiennent à plus d’une personne. Une

évaluation des attaques par morphing de visage basées sur le GAN est fournie.

Une nouvelle méthode de morphing basée sur le GAN est également présentée,

qui minimise la distance entre l’image transformée et les identités originales dans

un espace de caractéristiques biométriques. Une contre-mesure potentielle à ces
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attaques par morphing consiste à entraîner les réseaux FR en utilisant des identités

synthétiques supplémentaires. Dans cette veine, l’effet de l’entraînement utilisant

des données synthétiques GAN 3D sur le succès des attaques simulées de morphing

facial est évalué.

Mots clés: Reconnaissance faciale, enrichissement des données, generative ad-

versarial networks, GAN, disentanglement, attaque par morphing du visage
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Chapter 1

Introduction

The fundamental challenge in facial recognition (FR) is to be able to extract ro-

bust representations of identity from images. Ideally, these representations should

be unique, easily separable in feature-space, and invariant to confounding factors

such as pose, illumination, age and expression. Until circa 2010, the most success-

ful representations for FR were formed by combining hand-crafted features such

as Gabor [Liu & Wechsler 2002] or local binary pattern (LBP) filter activations

[Ahonen et al. 2006]. These local appearance features demonstrated a degree of in-

variance to illumination and expression in face-images. However, in 2010 with the

introduction of learned filters [Cao et al. 2010], and particularly in 2011/2012 with

the popularisation of deep learning [Ciresan et al. 2011, Krizhevsky et al. 2012],

hand-crafted features quickly became obsolete. In 2014, Facebook released Deep-

Face [Taigman et al. 2014] - a deep neural network with an architecture similar

to that of AlexNet [Krizhevsky et al. 2012]. AlexNet is well-known for having

significantly outperformed all other methods in the ImageNet challenge in 2012

[Russakovsky et al. 2015]. Inheriting from this success, DeepFace was the first FR

system to achieve equivalent to human-level performance on the Labelled Faces

in the Wild (LFW) benchmark. It’s success derives from it’s ability to learn ro-

bust, discriminative features from Facebook’s dataset of 4.4 million images of four

thousand different identities.

This shift from hand-crafted to learned features also shifted many researchers’

focus towards the effective use of data. In order to learn robust, discriminative

features, deep neural networks must be “shown” in what consists an identity; i.e.

the dataset should contain many examples of different identities (in order to learn

to discriminate between them), and it should contain a variety of different ex-
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amples of each of those identities (in order to learn robustness to the differences

within those image sets). On both of these fronts, it can be problematic to ob-

tain such datasets in practice. Data-protection regulations inhibit the collection

and use of images of most subjects with the exception of celebrities, and even for

celebrities, automatic image-scraping algorithms can introduce large amounts of

labelling noise [Wang et al. 2018]. The domain-shift present due to differences in

the image-capture conditions of training and test data also poses a major problem.

The very fact of being permitted to use an image for training implies some degree

of cooperation with the subject. Images released publicly tend to be high-quality,

frontal images of well-lit, smiling subjects. This contrasts with the non-cooperative

capture conditions involved in many applications of FR. For example, images cap-

tured by CCTV cameras may be poorly lit and may contain any range of pose and

expression. Bridging this gap between conditions at training and test time is an

important challenge in FR.

Facial recognition is a somewhat special case of image-classification since faces

display a priori form, with most faces being describable by points on a continuum

of common features. This makes it possible to accurately model and manipulate

facial appearance and provides an avenue by which one might tackle the problem

of limited training data. Two possible approaches present themselves:

1. Normalisation of test data

2. Augmentation of training data

Both of these options have been evaluated by the FR community with vary-

ing degrees of success. Normalisation of test data was extensively used prior to

the adoption of deep learning methods. Given frontalised face images, for exam-

ple, facial appearance can be reasonably well described by simple linear combi-

nations of features, as was done explicitly by the well-known EigenFaces method

[Turk & Pentland 1991]. Even DeepFace found that it was important to perform

face frontalisation using a 3D shape model prior to encoding. Despite its name, how-

ever, DeepFace was a relatively shallow network by today’s standards, employing

2
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only two convolutional layers followed by three fully connected layers. More recent

networks have been able to achieve higher accuracy than DeepFace without perform-

ing frontalisation [Schroff et al. 2015, Hasnat et al. 2017, Deng et al. 2019a]. These

deeper, more nonlinear networks are able to infer relatively stable representations

of identity from images with less sensitivity to the context. Given this ability of

modern networks to ignore nonlinear phenomena, we aim to improve robustness via

augmentation of training data rather than normalisation of test data. This has the

additional benefit of involving one less step in the recognition pipeline at test time,

which is potentially important given the often time-critical applications of FR.

1.1 Data-augmentation and synthetic identities

The main sources of non-identity variation in face images are pose, illumination

and expression (sometimes known as the PIE attributes). The effect on an image

of manipulating these attributes is (or at least should be) directly related to the

3D shape of the face. Most attempts at face data-augmentation therefore involve

the use of some 3D face model to facilitate image-manipulation. Commonly used

models are 3D morphable models (3DMMs) [Blanz & Vetter 1999], which repre-

sent 3D face-shape, and sometimes texture, as linear combinations of basis vectors.

These linear texture models can be useful during fitting of the 3D shape model

to images. However, images rendered using the linear texture models tend to be

unrealistic and smooth, lacking in high-frequency detail. For this reason, face data-

augmentation methods have tended to extract textures directly from input images

prior to manipulation of the PIE attributes. This means that synthesised images

used in data-augmentation tend to belong to identities that are already present in

the training dataset.

In 2014, [Goodfellow et al. 2014] introduced the Generative Adversarial Net-

work (GAN) as a method of generating synthetic data samples. (A thorough intro-

duction to the GAN will be given in section 2.1.) The GAN was enthusiastically

adopted by the deep learning community and has since been the subject of a vast

amount of development. During the time taken to compile this manuscript, the ci-

3
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tation count for [Goodfellow et al. 2014] increased from 18829 to 28647 (and count-

ing). By 2017 it was possible to generate highly realistic synthetic face images at a

resolution of 1024×1024 pixels [Karras et al. 2018]. Based on tests of the perceptual

continuity of images upon linear interpolation in the latent spaces of GANs, and

also upon identification of “nearest neighbour” images in training datasets, face

images randomly synthesised by GANs are believed to represent novel identities

[Karras et al. 2018]. In Section 3, further evidence will be provided that supports

this to indeed be the case. GANs therefore provide a potential avenue for augmen-

tation of FR training datasets with realistic images of synthetic identities. This is

an area that has not been well explored in the literature and is the primary subject

of this thesis.

Augmentation of FR datasets with synthetic identities has several potential

benefits:

1. Training of FR networks with additional identity samples is likely to lead to

a more discriminative feature space.

2. Image sets generated for a synthetic identity will not suffer from labelling

problems (provided the synthetic identity is well maintained).

3. It may be possible to generate useful synthetic FR training sets from face-

image datasets containing little useful identity information, e.g. datasets con-

taining only one photo per identity.

4. Image quality and identity consistency within synthetically augmented image

sets may be greater since no reconstruction of existing identities need be

performed.

These potential benefits are re-visited in Chapter 5 where datasets of synthetic

identities, generated by our 3D GAN, are evaluated for FR.

Whilst GANs may potentially provide the aforementioned benefits to FR, the

ability to generate realistic synthetic identities may be a double-edged sword: GANs

also constitute a tool that could be used to attack FR systems. The following section

explains why this is the case and introduces the face-morphing attack.

4
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1.2 Face-morphing attacks

Whilst FR must be robust to non-identity variation, it must also be robust to

imposters, i.e. two subjects sharing similar facial characteristics should not be

confused with one-another. In 2017, [Ferrara et al. 2014] demonstrated how im-

precision in identity classification, by both humans and FR systems, could be ex-

ploited in order for an imposter to be granted unauthorised access. An attack on a

passport-controlled frontier might proceed as follows:

1. An accomplice is identified who is willing to share their passport with an

imposter. (Ideally the chosen accomplice will resemble the imposter.)

2. A morphed image is produced of a synthetic identity that resembles both the

accomplice and the imposter.

3. The accomplice presents the morphed image at the time of application for a

new passport. (The image is found to be plausible and so is accepted.)

4. The resulting passport is then shared with and used by the imposter.

Work in the literature has shown that detection of morphed images is not suffi-

ciently effective [Scherhag et al. 2017b, Makrushin & Wolf 2018]. Rather than try-

ing to detect morphed images, Chapter 6 presents work showing that a significant

reduction in the number of successful simulated morphing attacks can be achieved

via improvements in fidelity of the FR system. The impact of training an FR sys-

tem with additional, synthetic identities is also assessed. Results currently show

only subtle improvements. However, we believe training with synthetic identities

to be a promising direction for improving robustness to morphing attacks.

1.3 Problem definition

Facial recognition systems need to be robust to intra-class variation (i.e. non-

identity variation), and also to imposters, whether those imposters be coincidental

or deliberate face-morphing attacks. It is assumed by the FR community that the

5



Chapter 1. Introduction

nonlinear feature encodings of deep neural networks are capable of learning such

robustness given data constituting a suitably dense and wide sampling of both

identity and non-identity variation. For various reasons, such high-quality datasets

are difficult to collect. The recent development of GANs, however, provides a

potential solution for generation of high-quality synthetic datasets.

Four potential advantages of data-augmentation using synthetic identities (as

opposed to existing ones) were identified in Section 1.1. Data-augmentation using

synthetic identities is an approach that has not yet been widely evaluated in the

literature. In this thesis, the feasibility and effectiveness of performing such data-

augmentation is investigated. The specific research problems to be addressed are

as follows:

1. Do GANs actually generate new identities? Published results suggest that

this is the case. However, there have been no systematic, quantitative studies

to confirm this.

2. How can identity be successfully disentangled from other attributes in images

generated by GANs?

3. Can synthetic identities be used successfully to improve the accuracy of facial

recognition?

4. Do images generated by GANs pose a threat to the security of FR systems?

5. Do synthetic identities help to improve robustness of FR systems to face-

morphing attacks?

1.4 Contributions

The contributions made in each chapter of this thesis are listed here:

• Chapter 3

1. Explicit demonstration that GANs do not overfit to the training dataset

and do, in fact, generate new identities (thereby introducing an indirect

method of assessing overfitting, and also mode-collapse, in GANs).

6
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• Chapter 4

1. Introduction of the intra-class variation isolation mechanism for training

conditional GANs to learn disentangled, multi-variate models of varia-

tion with only the weak supervision of binary labels.

2. Introduction of a “GAN triplet loss” for improved disentanglement of

identity from other image factors in SD-GANs.

3. Demonstration that identity-constrained, 2D GAN methods do not ad-

equately disentangle identity from other kinds of variation in generated

images.

• Chapter 5

1. Development of the 3D GAN which integrates a 3DMM into the gener-

ator of a GAN for identity-preserving disentanglement of pose.

2. Demonstration that synthetic, 3D GAN data can be used to improve

robustness of FR algorithms to large poses giving a state-of-the-art ac-

curacy on the challenging CPLFW dataset.

• Chapter 6

1. An assessment of “style-based” GAN face-morphing attacks (concurrent

with the evaluation in [Venkatesh et al. 2020]).

2. Introduction and evaluation of the “dual biometric face-morphing

method”.

3. Demonstration that improvements to the fidelity of FR systems lead to

increased robustness to face-morphing attacks provided morphed images

are considered when setting acceptance thresholds.

4. An assessment of the effect of training with synthetic identities on the

success of simulated face-morphing attacks.

1.5 Outline of the thesis

The thesis has been organised into the following chapters:

7
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• Chapter 2 – “Literature review”

A synthesis of the literature covering the fundamentals of GANs and data-

augmentation for FR.

• Chapter 3 – “Do GANs actually generate new identities?”

This chapter investigates over-fitting in GANs and provides explicit, quanti-

tative evidence that new identities, not present in the training dataset, are

generated.

• Chapter 4 – “Disentanglement of identity in GANs”

This chapter introduces a new mechanism for disentangling various forms of

labelled variation, from identity and from one another, in the latent space

of a conditional GAN. Also introduced is a novel triplet loss function for

training “SD-GANs” which is demonstrated to improve the disentanglement

of identity. The characteristics of the resulting synthetic data are assessed and

compared with those of data generated by other, similar methods. Despite

the demonstrated improvements, full disentanglement of identity in typical

GANs is shown to remain an unsolved problem.

• Chapter 5 – “A 3D GAN for identity-preserving disentanglement of pose”

Motivated by the disappointing conclusions of the previous chapter, this work

integrates a 3D morphable model into a GAN as a fool-proof way of modifying

pose whilst preserving identity. The method inherits the stability of a 3DMM

and the realism of GAN-generated images. Results show that image sets

generated using this method can be successfully used to improve the accuracy

of large-pose FR.

• Chapter 6 – “Robustness of facial recognition algorithms to morphing attacks”

This chapter investigates the threat posed by style-based GAN face-morphing

methods to FR systems. Also assessed is the effect on the success of simulated

attacks of training using synthetic 3D GAN data.

• Chapter 7 – “Conclusions and Future Work”

Finally we conclude and discuss potential directions for future research.

8



Chapter 2

Literature Review

2.1 Development of Generative Adversarial Networks

The work in this thesis builds upon the Generative Adversarial Network (GAN)

[Goodfellow et al. 2014] and some of the recent developments thereto. This part

of the literature review aims to provide a solid theoretical background of GANs,

drawing from various important works in the literature and providing additional

intuitive explanations where possible. It will cover GANs, Wasserstein GANs, con-

ditional GANs, and various improvements to training techniques. We first begin,

however, with a brief look at the form of generative neural networks prior to GANs.

2.1.1 From Boltzmann Machines to GANs

Most work on generative neural networks prior to GANs was based on some version

of the Boltzmann Machine [Hinton & Sejnowski 1983]. The Boltzmann Machine or

its deep equivalent [Salakhutdinov & Hinton 2009] (an example of which is pictured

in Figure 2.1) is an undirected graph of binary nodes h and v connected by edges

with weights W. The h are “hidden nodes” and the v are “visible nodes”. The

aim is to train the weights such that, by following certain node-update rules, the

visible nodes activate with the same distribution from which a set of training data

were sampled (for example, a set of training images that have been binarised and

vectorised). Unlike typical causal networks such as multi-layer perceptrons, there

is no feed-forward mechanism to generate visible outputs deterministically from a

hidden state. Boltzmann machines are energy-based models and generate stochastic

output where the probability of occurrence of a particular global state (hidden plus

visible nodes) is inversely proportional to the global energy assigned to that state
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h12 h22 h32

h11 h21 h31

v1 v2 v3

W2

W1

Figure 2.1: An example of the structure of a Deep Boltzmann Machine (DBM)
with two hidden layers and a visible layer of nodes connected by weights W1 and
W2. DBMs have no within-layer connections to enable efficient updates of layers in
parallel.

by the following equation.

E(v,h1,h2;W1,W2) = −vTW1h1 − h1TW2h2 (2.1)

If we assume the edge-weights have been trained, a sample may then be generated

as follows. Initially, both the hidden and visible nodes are set randomly. Nodes

are then selected in a random order (with hidden and visible nodes being treated

equally) and are assigned a value of either 0 or 1 to locally minimise equation (2.1).

Eventually, the network will reach “thermal equilibrium” at which point the visible

units should represent high probability (and therefore low energy), coherent images.

(The weights were trained such that this would be the case.) Note that this thermal

equilibrium is not a static state. Since each node-update (or layer-update for deep

Boltzmann machines) is performed in isolation, the network does not reach a global

minimum. Instead, oscillations occur and the network “fizzes” with each update

causing the configuration of visible nodes to gradually cycle through samples of

the learned model distribution corresponding to the current energy minimum. This

gradual sampling procedure is often described as “running a Markov chain” since

each global configuration is dependent only on the previous state. To sample from

isolated regions of the distribution, the network may need to be re-initialised to a

different random state before following a different chain to thermal equilibrium.

10
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The training procedure for the weights aims to maximise the probability that

randomly occurring visible states correspond to the training data vectors when the

system is at thermal equilibrium. The probability of occurrence of a particular

vector, v, is given by

p(v;W1,W2) =

∑
h1,h2

e−E(v,h1,h2;W1,W2)

∑
u

∑
h1,h2

e−E(u,h1,h2;W1,W2)
(2.2)

and the chosen training procedure minimises

G(W1,W2) = −Ev∼pdata [log(p(v;W1,W2))] (2.3)

where pdata is the real data-generating distribution.

The principal issue with Boltzmann machines is the difficulty of estimating the

values of the sums in equation (2.2). The denominator of equation (2.2) is a sum

over all possible configurations of the Boltzmann machine, which quickly becomes

intractable as the size of the network increases. Instead, an approximation is made

by taking a few samples of the more important modes of the distribution by running

a set of Markov chains to their corresponding thermal equilibria. However, even

this sampling procedure is computationally expensive.

As a solution to some of the problems with Boltzmann Machines,

[Bengio et al. 2014] proposed the Generative Stochastic Network (GSN). The

method transforms the problem of unsupervised distribution learning into some-

thing akin to supervised function approximation, and in doing so is able to capitalise

on some of the recent successes in deep learning; in particular denoising autoen-

coders [Vincent et al. 2008]. Rather than training a neural network to parametrise

full, multi-modal probability distributions, GSN parametrise only the transition

function of the Markov chain between global states; i.e. given a state x̃t (where

the tilde denotes that noise has been added to the state xt) the GSN learns to gen-

erate xt+1. Note that the weights of a Boltzmann machine explicitly represented

correlations between elements of the state vector whereas the weights of a GSN

11
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Figure 2.2: Synthetic samples generated by running the Markov chain of a GSN.
The image from the training set closest to the final synthetic image in each row is
shown in the final column. Figure taken from [Bengio et al. 2014].

belong to a function applied to a state vector. Since the weights of the network

are trained to approximate the conditional distribution p(xt+1|x̃t) rather than the

entire distribution p(x), the training need only be concerned with maximising the

probability of “realistic states” xt+1 (i.e. states corresponding to the training data)

occurring in the vicinity of x̃t. This local, conditional distribution is likely to have

far fewer modes than the full probability distribution of the data and so presents an

easier learning task to the network. During training of the transition function, the

states x̃t are created by applying a stochastic “corruption function”, x̃t = C(xt),

to training images. The GSN is then trained via backpropagation as a denoising

autoencoder to minimise the reconstruction error between xt+1 = GSN(x̃t) and xt,

and therefore maximise the likelihood that xt+1 approximates a sample from the

data distribution. Running of the Markov chain to generate samples then involves

alternately injecting noise to locally perturb the model state (the image) followed

by applying the GSN to walk the perturbed state back to the manifold of probable

images. The effect of running a GSN Markov chain is shown in Figure 2.2 together

with nearest neighbour samples from the training dataset.

Although GSNs simplify the training procedure of generative networks by facil-

itating the use of backpropagation, sampling of a diverse set of images can be slow

due to low mixing rates, i.e. the rate at which the model distribution is explored

12
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by the Markov chain. The generative adversarial network (GAN) overcomes this

issue by avoiding the use of Markov chains altogether.

Whereas GSNs transformed the unsupervised problem of generating samples

from some data distribution into the supervised problem of image-denoising, Gener-

ative Adversarial Networks (GANs) [Goodfellow et al. 2014] transform the problem

into one of supervised binary classification. GANs learn a deterministic mapping

between some known, input distribution - typically a standard, multi-variate Gaus-

sian distribution - and some complex, multi-dimensional distribution from which

data can be sampled, in our case the distribution of images of faces. As with GSNs,

this mapping is trained via back-propagation. However, unlike GSNs, the train-

ing signal is not derived from a maximum likelihood loss function that aims to

reconstruct training data samples. Indeed, since the form of the GAN’s mapping

between the input distribution and the data distribution is not known a priori, it

is not clear to which data samples the random model output would be compared.

Instead, a network known as the discriminator, is trained to judge whether images

belong to the model distribution or the training distribution. The GAN’s generator

and discriminator networks are trained alternately in a mini-max game in which the

generator’s goal is to produce images that are incorrectly judged as being real by

the discriminator. This is equivalent to minimising the distance between the model

distribution and the training distribution. The precise distance being minimised

depends on the form of the loss function used to train the discriminator. Two loss

functions will be described in the following sections: the original “non-saturating”

loss, and the Wasserstein loss which is used preferentially in the work of this thesis.

2.1.2 The “non-saturating” GAN

The loss function originally recommended for training GANs, proposed by

[Goodfellow et al. 2014], is now commonly known as the “non-saturating loss” due

to the modification made to generator’s loss function to avoid weak gradients. The

discriminator is trained using the standard cross-entropy loss for binary classifica-
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Figure 2.3: Visualisation of generator loss functions of the saturating and non-
saturating GAN. The output of the GAN’s discriminator is a sigmoid function
trained to output 1 for real images and 0 for fake images. Where the sigmoid
output is 0, however, training of the generator struggles to minimise the saturating
loss function due to weak gradients. Instead, the non-saturating loss is maximised.

tion:

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.4)

where z is a vector of random values drawn from some known distribution pz, G(z)

is the generator network, and D(x) is the discriminator network that outputs a

scalar value in the range [0, 1], typically squashed by a sigmoid function. Where

the input to the discriminator is real, the relevant term of equation (2.4) is the cross-

entropy term corresponding to labels of 1, and where the input to the discriminator

is generated, it is the cross-entropy term corresponding to labels of 0, i.e. the

discriminator is trained to output the probability that it’s input is drawn from

pdata rather than G(pz).

The generator could then be trained to minimise the same loss function, i.e.

min
G

V (D,G) = Ez∼pz [log(1−D(G(z)))] (2.5)

However, since the output of D is limited to the interval [0, 1], training a good

discriminator can quickly cause output to saturate, resulting in weak gradients

with respect to the parameters of the generator. This can be seen in Figure 2.3

where the gradient of the “Saturating” loss function (“log(1 - Sigmoid(x))”) tends

to zero as the output of the discriminator (“Sigmoid(x)”) tends to zero. Instead, it
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is recommended that the generator be trained to maximise the function

max
G

V (D,G) = Ez∼pz [logD(G(z))] (2.6)

which results in the same fixed point of the dynamics of G and D but ensures

stronger gradients with respect to the raw output of the discriminator, and to the

parameters of the generator via back-propagation. (See the green curve in Figure

2.3.)

Assuming the discriminator has been trained to give a good estimate of pdata(x),

training the generator to minimise (2.4) (or alternatively equation (2.5)) is equiv-

alent to minimising the Jensen-Shannon divergence between the model distribu-

tion, pg, and the training distribution, pdata. This can be shown by substituting

D(x) = pdata(x) = pdata(x)/(pdata(x) + pg(x)) (since pdata(x) + pg(x) = 1) into the

following definition of the Jensen-Shannon divergence for a finite set of samples:

JSD(pdata|pg) =
1

2
Ex∼pdata

[
log

(
pdata(x)

(pdata(x) + pg(x))/2

)]
+

1

2
Ex∼pg

[
log

(
pg(x)

(pdata(x) + pg(x))/2

)]
(2.7)

Performing the aforementioned substitution, and also that of pg(x)/(pdata(x) +

pg(x)) = 1− (pdata(x)/(pdata(x) + pg(x))) = 1−D(x) gives

JSD(pdata|pg) =
1

2
Ex∼pdata [log (2D(x))] + 1

2
Ex∼pg [log (2(1−D(x)))] (2.8)

2 JSD(pdata|pg) = Ex∼pdata [log (D(x))] + Ex∼pg [log (1−D(x))] + 2log(2) (2.9)

Finally, substituting G(z) where z ∼ pz for x ∼ pg and rearranging gives

2 JSD(pdata|pg)− log(4) = Ex∼pdata [log (D(x))] +Ez∼pz [log (1−D(G(z)))] (2.10)

which is identical to equation (2.4) and has a minimum at the same point in the

generator’s parameter space as the Jensen-Shannon divergence.

As previously noted, if the discriminator becomes too effective at distinguish-
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ing between generated images and training images, the loss saturates leading

to weak gradients. This is a fundamental problem of the Jensen-Shannon di-

vergence: if the supports of distributions pdata and pg do not overlap, i.e. if

pdata(x) = 0 ∀ x s.t. pg(x) > 0, then the divergence assumes its maximum value which

remains constant regardless of distance between the two disjoint distributions. The

introduction of the “non-saturating” loss of equation (2.6) partially remedies this is-

sue. However, whereas the Jensen-Shannon divergence has finite values everywhere,

for perfect classification of disjoint distributions, the non-saturating generator loss

becomes undefined; i.e. if the discriminator is able to classify all generated samples

with no uncertainty, equation (2.6) collapses to log(0) = NaN . For this reason,

training of non-saturating GANs is notoriously tricky and it is necessary to find a

good balance between the generator and discriminator, either by limiting the ca-

pacity of the discriminator or by limiting the number of training iterations prior

to updating the generator. The following section introduces the Wasserstein loss

which greatly simplifies the training of GANs.

2.1.3 The Wasserstein GAN

The previous section discussed how the original, non-saturating GAN approximates

minimisation of the difference between the generated distribution and the training

distribution as measured by the Jensen-Shannon divergence. It was noted, however,

that the Jensen-Shannon divergence saturates for disjoint distributions, which are

in fact common when learning mappings from a low-dimensional latent space onto

manifolds in a high-dimensional image space. To avoid this problem, the Wasser-

stein GAN [Arjovsky et al. 2017] aims to estimate the Wasserstein-1 distance, com-

monly known as the “earth mover’s distance”, which is defined as follows:

W (pdata, pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ [ ||x− y|| ] (2.11)
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Figure 2.4: An example of a joint probability distribution, γ(x, y), representing one
possible “transport plan” between its marginal distributions, pdata(x) and pg(y).

where Π(pdata, pg) is the set of all joint distributions, γ(x, y), with marginals equal

to pdata and pg, i.e.

∫
γ(x, y)δy = pdata(x),

∫
γ(x, y)δx = pg(y), (2.12)

See Figure 2.4 for an example with one-dimensional pdata and pg. The Wasserstein

distance quantifies the solution to an optimal transport problem in which the aim

is to move the “mass” from one distribution to the other whilst exerting the least

amount of “work”. The mass can be thought of as being moved in infinitesimal

units of consistent size meaning that the work is a function only of the transporta-

tion distance, as can be seen from equation (2.11). The amount of mass being

transported, let’s say from pdata(x) to pg(y) (although the distance is symmetric),

depends on the frequency with which coordinates (x, y) are sampled from γ(x, y).

In essence, γ(x, y) acts like a transportation plan dictating how often the “earth

mover” should visit x to move mass to y. Optimal plans will tend to lie closer to

the diagonal where x ∼ y and so less space need be traversed.

Calculating the Wasserstein distance, and therefore the optimal “transport

plan”, is intractable since the number of potential solutions, γ(x, y), to equations

(2.12) is infinite. Instead, [Arjovsky et al. 2017] makes use of the Kantorovich-
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Rubinstein duality which states that

W (pdata, pg) = sup
||f ||L≤1

Ex∼pdata [f(x)]− Ex∼pg [f(x)] (2.13)

i.e. the Wasserstein distance can be calculated by finding the 1-Lipschitz function

f : X → R that maximises the above difference of expectations. In practice, f(x)

is parametrised by a neural network, D(x), with parameters θd, and so equation

(2.13) becomes

W (pdata, pg, θd) = max
θd

Ex∼pdata [D(x; θd)]− Ex∼pg [D(x; θd)] (2.14)

where the network plays a similar role to the discriminator in equation (2.4).

Since the output of D(x; θd) belongs to R rather than being a probability,

[Arjovsky et al. 2017] refers to the network as the “critic”. Here, however, we will

continue to refer to it as the discriminator and so keep the notation D(x). Finally,

we introduce the generator network that provides the mapping between the known

distribution, pz, and the distribution of generated images, pg. The goal is to train

the parameters of the generator, θg, to minimise the estimated Wasserstein distance,

and so we arrive at our final mini-max objective function.

W (pdata, pz, θd, θg) = min
θg

max
θd

Ex∼pdata [D(x; θd)]− Ez∼pz [D(G(z; θg); θd)] (2.15)

Figure 2.5 is taken from [Arjovsky et al. 2017] and shows the response of a “WGAN

Critic” trained to distinguish between two widely separated, Gaussian distributions.

The Lipschitz constraint on the discriminator - implemented in this example by

clipping all elements of θd to the interval [−0.01, 0.01] - limits the growth of the

function to be at most linear with clean gradients at all points. This fact means

that Wasserstein GANs train quickly and stably.

2.1.4 Regularising GANs

Enforcing the Lipschitz constraint of the Wasserstein GAN by clipping weights is

problematic if the width of the clipping interval is not well tuned. An interval that
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Figure 2.5: Diagram depicting the form of the output of a weight-clipped critic
trained using the Wasserstein loss in comparison to a discriminator with sigmoid
output. Gradients for the critic are linear despite the real and fake distributions
being disjoint. Figure take from [Arjovsky et al. 2017].

is too wide or too narrow can lead to exploding or vanishing gradients respectively.

Even if the clipping interval is well tuned, it may still be overly restrictive since

interventions are performed everywhere that weights grow beyond a certain size

irrespective of whether or not Lipschitz continuity is obeyed by the learned func-

tion as a whole. It was found by [Gulrajani et al. 2017] that weight clipping leads

to simplistic functions being learned by the discriminator. Instead, they propose

enforcing Lipschitz continuity via penalisation of the norm of gradients.

A function is K-Lipschitz continuous if there exists a K ≥ 0 such that

||f(x1)− f(x2)|| ≤ K||x1 − x2|| ∀x1, x2 ∈ X (2.16)

K is the Lipschitz constant that we wish to be equal to 1. If the function is

differentiable everywhere then this is equivalent to saying

||∇xf(x)|| ≤ K ∀x ∈ X (2.17)
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The regularisation proposed by [Gulrajani et al. 2017] is then

Ld = E
z∼pz

[D(G(z))]− E
x∼pdata

[D(x)] + λ E
x̂∼px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
(2.18)

where λ is some positive constant and x̂ = αG(x) + (1− α)x with α sampled from

the uniform distribution in the range [0, 1]. Lipschitz continuity should be enforced

everywhere in the space. However, for computational efficiency gradients are eval-

uated only at a sample of random points intermediate to the real and generated

samples. The motivation for evaluating at these points is to have well-behaved gra-

dients as the generated distribution approaches the real distribution. Note that, to

be consistent with [Gulrajani et al. 2017], we have swapped the order of the gen-

erated and real terms of the discriminator loss. The order is irrelevant, however,

since the Wasserstein distance is symmetric. The loss in equation (2.18) is to be

minimised meaning the negation of the Wasserstein distance is estimated. In doing

so, the difference of the L2 norm of gradients from a value of 1 is also minimised.

The method is found to perform well in practice resulting in stable training and the

learning of more appropriate functions than those learned using a weight-clipped

network.

It was identified in [Mescheder et al. 2018] that, although training using

WGAN-GP is stable, it does not converge. This is true even locally for simple,

toy data distributions. Upon convergence of GAN training, one would expect the

generator weights to reach a stable point and for the discriminator to cease pro-

ducing corrective gradient directions, i.e. the Wasserstein distance would evaluate

to zero. The gradient penalty term of [Gulrajani et al. 2017], however, is quadratic

about the point at which gradients have a norm on 1, i.e. the regularisation does

not just dampen gradients but also encourages them to maintain non-zero values.

This leads the GAN training procedure to continuously update the generator such

that it never achieves convergence.

In parallel to the development of Wasserstein GANs, [Roth et al. 2017] aimed

to solve the previously identified problem of non-overlapping supports in standard

and non-saturating GANs by use of regularisation similar to that of the Wasserstein
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GAN’s gradient penalty. The problem had previously been avoided, for example in

[Li et al. 2017a], by adding instance noise to images. [Roth et al. 2017] showed that

adding a zero-centred gradient penalty to the discriminator loss is locally equivalent

to adding instance noise. [Mescheder et al. 2018] propose the following simplified

zero-centred gradient penalty:

R1(θd) =
γ

2
Ex∼pdata

[
||∇xD(x; θd)||2

]
(2.19)

As well as bridging gaps between disjoint supports, this R1 regularisation acts

to penalise the discriminator for deviating from the Nash-equilibrium (at which

point the generated distribution should coincide with the real data distribution).

[Mescheder et al. 2018] showed training of non-saturating GANs with R1 regularisa-

tion to be locally convergent. A second form of regularisation (“R2”) with gradients

evaluated at points in the space corresponding to generated data, was also proposed

and found to perform similarly.

In the work of this thesis, we preferentially use the Wasserstein loss due to

its stability and ability to approach realistic distributions more quickly than the

non-saturating GAN. Despite the gradient penalty of [Gulrajani et al. 2017] being

known to impede convergence, we do not switch to a zero-centred penalty. Such

strong regularisation is not required by Wasserstein GANs and we instead opt for

the one-sided gradient penalty proposed in [Chen et al. 2018].

Rmax(θd) = Ex̂∼px̂ [max(0, ||∇x̂D(x̂; θd)||2 − 1)] (2.20)

The effect of this form of regularisation is to dampen gradients breaking the 1-

Lipschitz condition but to switch off regularisation where gradients are within the

allowed limit. We have not seen work, however, that explicitly demonstrates con-

vergence of Wasserstein GANs under such regularisation.
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2.1.5 Conditional GANs

A virtue of the fact that GANs learn a deterministic mapping between the la-

tent distribution and the data distribution is that generated images are directly

controllable via manipulation of the latent vector. Control over specific seman-

tics can be given to elements of the input distribution via conditional training

using labelled training images. Rather than learning to judge membership of the

training image distribution alone, the discriminator of a conditional GAN (cGAN)

[Mirza & Osindero 2014] learns to judge membership of the joint distribution of

images and associated labels, i.e. if a generated image is to be judged as real, its

characteristics must be in agreement with the accompanying label. The following

equation gives the conditional version of the discriminator loss of the Wasserstein

GAN in equation (2.14):

LθD = E(x,y)∼pdata [D(x, y; θD)]− Ez∼pz ,ρ∼pρ [D(G(z,ρ; θG),ρ; θD)] (2.21)

where x is an image and y ∈ Rn the associated vector of labels drawn from the

distribution of real data; ρ ∈ Rn is a vector of conditioning parameters of the same

form as the label vector, y, selected from the distribution pρ. Typically pρ will be

the distribution of labels of the real data. Notice that y and ρ share the same

pathway into the discriminator. G(z,ρ; θG) must therefore learn to generate images

with the same relationship to ρ as x has to y. Once the cGAN’s discriminator

is trained, the following loss is minimised with respect to the parameters of the

generator:

LθG = Ez∼pz ,ρ∼pρ [D(G(z,ρ; θG),ρ; θD)] (2.22)

Conditional GANs are used extensively in the literature to control both categor-

ical and continuous characteristics of images, for example, pose and expression.

This thesis primarily investigates the use of conditional GANs for the purpose of

data-augmentation of facial recognition datasets. The following section therefore

gives an overview of the recent work on data-augmentation in the facial recognition

literature.
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2.2 Data-augmentation for Facial Recognition

The primary goal of this thesis is to improve facial recognition (FR) via augmen-

tation of image datasets. We aim to do so by exploiting GANs and their ability

to generate new identities. Alternative approaches might be to normalise or aug-

ment images of existing identities, or to use non-GAN-based methods such as auto-

encoders or standard 3D-based methods. There are many works in the literature

demonstrating image-manipulation techniques. Here, we focus on those that were

evaluated on FR tasks. Classical, non-face-specific data-augmentation methods

such as image-jitter and photometric modifications will not be covered.

Table 2.1 gives a reasonably comprehensive overview of recent augmentation and

normalisation methods in the literature that evaluate on FR tasks. The methods

are split roughly 55% / 45% between training-data-augmentation and test-data-

normalisation respectively. (See the “Augmentation” and “Norm” columns.) This

proportion may be biased given the topic of this thesis. The majority of augmen-

tation methods manipulate existing identities. Only four of the methods choose to

generate synthetic identities despite the various potential advantages of doing so.

We have also indicated whether the work proposes a 2D generative method (column

“2D Gen”). By this we mean, for example, a method that uses a CNN to generate

face-images directly, often relying on a biometric identity constraint in order to

generate the desired identity. We believe that this is an important distinction and

have doubts as to the usefulness of such methods for improving FR. This will be

discussed in more detail below. Other methods either make use of 3D models or

manipulate input images directly without risk of altering the identity.

It can be seen that the variety of attributes manipulated by the augmentation

methods is wider than that of the normalisation methods. This is the case for the

simple reason that it is easier to add plausible nuisance factors to images than it

is to correctly model and remove existing ones. For example, a model of a pair

of glasses can easily be superimposed on an image, whereas removal of glasses

would require regeneration of occluded facial detail. Table 2.1 gives examples of

both a 2D and a 3D method of normalising expression. However, it is typically
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Method 2D Gen Augmentation Norm Pose Illum. Exp. Glasses Hair Makeup
[Masi et al. 2016]+ - Existing IDs - Yes - Yes - - -
[Crispell et al. 2017] - Existing IDs - Yes Yes - - - -
[Lv et al. 2017] - Existing IDs - Yes Yes - Yes Yes -
[Peng et al. 2017] - Existing IDs - Yes - - - - -
[Guo et al. 2018] - Existing IDs - - - - Yes - -
[Kortylewski et al. 2018] - Synth IDs - Yes Yes Yes - - -
[Gecer et al. 2020] - Synth IDs - Yes Yes Yes - - -
[Gecer et al. 2018] Part Synth IDs - Yes Yes Yes - - -
[Sáez Trigueros et al. 2021]∗ Yes Both - Yes Yes Yes Yes Yes Yes
[Zhao et al. 2017] Part Existing IDs - Yes - - - - -
[Sajid et al. 2018] ? Existing IDs - - - - - - Yes
[Deng et al. 2018] Part Existing IDs Yes Yes - - - - -
[Shen et al. 2018] Part - Yes Yes - - - - -
[Yin et al. 2017] Part - Yes Yes - - - - -
[Cao et al. 2018a] Yes - Yes Yes - - - - -
[Hu et al. 2018] Yes - Yes Yes - - - - -
[Huang et al. 2017] Yes - Yes Yes - - - - -
[Song et al. 2018] Yes - Yes - - Yes - - -
[Hassner et al. 2015] - - Yes Yes - - - - -
[Zhu et al. 2015] - - Yes Yes - Yes - - -
[Tran et al. 2019]◦ Yes - - Yes - - - - -

Table 2.1: An overview of recent data-augmentation and data-normalisation meth-
ods in the literature that evaluated on FR. The “2D Gen” column indicates methods
that use CNNs to directly generate images. “Part” indicates that the method is
only partially 2D and that some 3D information has been used in the generation
process. The method of [Sajid et al. 2018] was not exposed in the paper.
+ Face-shape is also augmented.
∗ This method modifies all image properties, limited not only to the categories of
the right-hand part of the table.
◦ [Tran et al. 2019] performs disentanglement via generation and not augmentation
or normalisation.
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only normalisation of pose that is tackled, which is the primary source of error in

FR. Notice that the methods performing augmentation with synthetic identities

are each able to manipulate the three most important nuisance factors of pose,

illumination and expression. Being able to do so is a natural consequence of having

generated a full model of the synthetic identity. Methods that augment or normalise

existing identities tend to limit themselves to the manipulation of certain forms of

variation, probably due to the difficulty of reconstructing existing conditions. The

method ultimately proposed by this thesis avoids the difficulty of reconstruction by

augmenting FR datasets using 3D-modelled, synthetic identities and varies pose,

illumination and expression. In the rest of this section, each of the works in Table

2.1 is described in more detail.

2.2.1 Classical 3D methods

We begin by discussing some of the purely 3D normalisation and augmentation

methods that were popular before GANs took the limelight. In the category of nor-

malisation, these methods are [Hassner et al. 2015] and [Zhu et al. 2015], and in the

category of augmentation, [Masi et al. 2016], [Crispell et al. 2017], [Lv et al. 2017]

and [Peng et al. 2017]. The basic method of each begins by fitting a 3D model to an

input image, usually by ensuring that the projection of a set of fiducial points cor-

responding to particular vertices of the 3D model’s mesh, align with those detected

in some input image. Texture is then extracted from the image onto the model’s

surface before being rotated, either to reduce or augment the pose variation, and

projected back into the image.

The work of [Hassner et al. 2015] observes that estimation of 3D shape from a

2D image is not always robust when dealing with images in the wild. Due to er-

rors in detected fiducial points and approximations in the 3D model representation,

useful identifying features of the shape are not always well captured. They argue

that use of a prototype head-shape is an adequate approximation and that adjust-

ing only pose and projection parameters is a more robust and efficient solution.

[Masi et al. 2016] extends this idea to fitting a selection of prototype head-shapes

to each input image before augmenting pose. (Expression is also augmented via
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Figure 2.6: An example of the effect of augmenting face-shape. Figure taken from
[Masi et al. 2016].

the adjustment of expression blendshapes during fitting and the addition of neu-

tralised expressions to the training dataset.) Note that [Masi et al. 2016] argues

use of multiple face-shapes for each image to be a useful augmentation and claims

that identity is not affected. Figure 2.6 shows the effect of fitting the ten proto-

type heads to an image. Indeed, the textured faces in Figure 2.6 appear similar

at first glance. However, use of such shape-augmentation probably prohibits use

of a 3D lighting model for augmentation since the underlying shapes of the mod-

els would be more clearly revealed. The fact that the relatively crude methods

of [Hassner et al. 2015] and [Masi et al. 2016] are able to improve FR corroborates

the work of [Geirhos et al. 2019] which found that CNNs largely depend on texture

rather than shape for classification. Although able to exploit this weakness of cur-

rent CNNs, we have doubts as to the usefulness of such augmentation of shape in

the long-term.

The methods of [Zhu et al. 2015], [Peng et al. 2017], [Crispell et al. 2017] and

[Lv et al. 2017] each adjust both the pose and the shape of 3D models to fit fidu-

cial points detected in input images before extracting the texture. The problem of

estimating 3D shape from a 2D image is ill-posed and adjusting what is typically

thousands of mesh vertices to capture the face shape is not feasible without prior

information, i.e. without having a prior, statistical model of human head-shapes.

Each of these methods simplifies the problem through use of a linear 3D morphable

model (3DMM) originally proposed by [Blanz & Vetter 1999]. [Zhu et al. 2015]

and [Peng et al. 2017] each use the Basel 3DMM of [Blanz & Vetter 1999] (aug-

mented with Facewarehouse expression blendshapes [Cao et al. 2014] in the case of
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[Zhu et al. 2015]), whereas [Lv et al. 2017] builds a model from the USF Human

ID 3-D database of 100 laser-scanned heads, and [Crispell et al. 2017] builds one

from samples from [Inc. 2016]. Each of these models reduces the problem of esti-

mating thousands of vertex locations to one of estimating relatively few shape-basis

coefficients, β = [b1, ..., bNs ], and optionally a set of expression-basis coefficients,

ψ = [c1, ..., cNe ]. The 3D shape, S ∈ RNv×3, described by these coefficients (where

Nv is the number of vertices) is given by the following equation

S = S̄ +

Ns∑
n=1

bnsn +

Ne∑
n=1

cnen (2.23)

where S̄ is the mean model shape, S = [s1, ..., sNs ] are the principal components of

non-expression shape variation, and ε = [e1, ..., eNe ] are the principal components of

expression variation. It was shown in [Booth et al. 2016] that as few as 40 principal

component vectors are enough to recover 90% of the variance in the training dataset

of 3D face scans, with 98% being recovered by 80. Even though 3D shape can be

captured reasonably well by using 3DMMs, 3D methods that extract texture from

an image each suffer from the problem of self-occlusion. Methods for tackling this

problem are discussed in the following sections.

2.2.1.1 Symmetric in-filling

Despite it being possible to plausibly rotate textures extracted from images in three

dimensions using 3D models, cases where there is self-occlusion in the input image

remain problematic. For example, when the subject of the image is at pose, re-

gions occluded by the nose and by the head itself leave gaps in the texture when

projected to different angles. Another, more subtle effect is that surfaces at large

angles to the camera are represented by fewer pixels in the original image. 3D rota-

tion can then cause striping effects as these few pixels are projected to a larger area

in the modified image. (See Figure 2.9.) Various in-filling and blending techniques

that exploit facial symmetry are employed to combat these issues. The method of

[Crispell et al. 2017], which performs augmentation of pose (and also of illumina-

tion), fills gaps caused by occlusion by sampling of pixels from symmetric regions
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Figure 2.7: An example taken from [Hassner et al. 2015] of application of their
symmetric in-filling technique. a) Original image; b) Blending weights calculated
as a function of sampling frequency of pixels in the original image, super-imposed
on the incomplete, frontalised texture; c) The result of symmetric in-filling and
blending.

of the face. To avoid obvious discontinuities in the reconstructed texture, and also

to avoid striping effects, symmetrically sampled pixels are blended with the incom-

plete texture using weights based on the angle of the estimated 3D surface to the

viewing direction. In [Hassner et al. 2015], a similar method is used. However, the

map of blending weights is formed by observing the number of times pixels in the

original image are sampled in order to form the manipulated image. As previously

described, surfaces at a large angle to the camera direction are represented by fewer

pixels in the original image and so those pixels are likely to be frequently sampled

to construct the manipulated image. This high sampling rate is used to indicate

that regions constructed using these pixels may benefit from symmetric blending.

An example of a frontalised face taken from [Hassner et al. 2015] is shown in Figure

2.7.

The method of [Zhu et al. 2015] uses a more sophisticated method of in-filling.

It was recognised that uneven lighting effects break the assumption of symme-

try made in the previously discussed in-filling methods. Reflecting lighting con-

ditions into previously occluded regions where they may be out of context can

look unnatural, particularly at occlusion boundaries. To help avoid this problem,

[Zhu et al. 2015] applies the mean model-texture of the Basel 3DMM to their esti-

mated shape and estimates the parameters of the spherical harmonic lighting model

of [Ramamoorthi & Hanrahan 2001]. A complete image of “facial detail” is then

constructed by taking the difference of the incomplete, frontalised image from the

projection of the illuminated model and reflecting detail into occluded regions. Pois-

28



Chapter 2. Literature Review

Figure 2.8: Diagram taken from [Zhu et al. 2015] showing the process of 3DMM
+ illumination model fitting followed by symmetric in-filling via reconstruction of
facial detail. The approximate lighting conditions are removed from the detail map
meaning the assumption of symmetry is more valid.

son editing is performed to ensure that there are no discontinuities at the occlusion

boundaries in the detail image. The full, reconstructed detail is then added to the

illuminated model to form the final image. This process is shown in Figure 2.8.

Symmetric in-filling is far from an ideal solution for completion of occluded tex-

tures. It can be seen in Figures 2.7 and 2.8 that the resulting images contain prob-

lematic artefacts that are likely to contribute to a domain gap between real and syn-

thetic data. For this reason, the methods of [Lv et al. 2017] and [Peng et al. 2017]

choose to avoid in-filling by only augmenting the pose of frontal images. This means

that the rear of the head is still occluded but that the more important, central facial

regions are intact. The problem of striping on the sides of the head remains, how-

ever, as can be seen in Figure 2.9. The “classical” (by which we mean non-GAN)

methods discussed so far are able to manipulate pose whilst seemingly having little

detrimental effect on the identity. In the next subsection we describe works that

combine 3D methods with adversarial losses in attempts to preserve identity whilst

avoiding artefacts.

2.2.2 Adversarial refinement methods

The works of [Zhao et al. 2017], [Gecer et al. 2018] and [Deng et al. 2018] each

make use of 3D models for pose manipulation and are able to generate realistic
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Figure 2.9: Artificial, “at-pose” images created by manipulating a frontal image in
3D. Notice the striping effects on the sides of the head in the top-left and bottom-
right images due to low resolution of these regions in the original image. Figure
taken from [Lv et al. 2017].

textures by applying adversarial losses. The methods used are significantly differ-

ent from one another and are worth comparing.

Similar to the classic 3D methods described so far, [Zhao et al. 2017] fits a

3DMM to fiducial points detected in the image, extracts texture from the image,

and re-projects at augmented angles. Occluded regions are then filled, and striped

regions refined, by applying a fully convolutional, image-translation network trained

using an adversarial loss. Since augmented, large-pose images do not belong to the

training distribution, the adversarial loss is likely to encourage the image-refinement

network to warp images back into something resembling the frontally biased images

of the training dataset. To avoid this problem, the network is trained with additional

reconstruction and identity-preserving losses: the reconstruction loss minimises the

L1 distance of the translated image from the original, artefact-containing, pose-

augmented image - a formulation that is obviously not ideal; identity is preserved

by applying a cross-entropy loss to intermediate features of the discriminator. The

use of identity preserving losses when generating images for augmentation of FR

datasets is a questionable practice that is best avoided. As will be seen below,

however, it is a fairly common practice that tarnishes many 2D normalisation and

augmentation methods.

The work of [Gecer et al. 2018] aims to generate balanced distributions of pose,

expression and lighting conditions, not by augmenting existing images, but by sam-

pling synthetic identities from the space of the Basel 3DMM. Balanced sets of
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images are generated for each synthetic identity before being passed through an

adversarially trained, “synthetic-to-real” translation network to improve realism

and reduce the domain gap between real and synthetic data. The method suffers

from the same issues as [Zhao et al. 2017] and, again, requires reconstruction and

identity-preserving losses. Rather than application of a direct reconstruction loss

between the 3DMM image and the translated version, a cycle-consistency loss is

used [Zhu et al. 2017]. This cycle-consistent formulation is less problematic than

the direct reconstruction used in [Zhao et al. 2017]. However, the incestuous use of

an identity-preserving loss for data-augmentation for FR remains.

The method of [Deng et al. 2018] benefits from high quality training data and

represents the state-of-the-art in pose normalisation. Following 3DMM fitting and

extraction of an incomplete texture, the method applies a convolutional U-Net

which completes the texture in texture space, rather than first projecting and per-

forming texture-completion in image space. This is made possible by a high-quality

set of ground-truth textures captured by a 3D scanner and also built from multi-

view datasets (Multi-PIE and the UMDFaces video dataset [Bansal et al. 2017])

using Poisson editing techniques. The U-Net is trained as an auto-encoder to re-

generate the ground-truth dataset of textures from incomplete textures with sim-

ulated occlusions. Quality of the re-generated texture is ensured by application

of an adversarial loss. An identity-preserving loss is also applied. However, this

seems only to be applied for good measure and does not represent an integral part

of the method. Identity-consistent texture-completion is already ensured by recon-

struction of the complete ground-truth texture. The work of [Deng et al. 2018] is

particularly interesting since their model was evaluated for both pose-normalisation

and augmentation of poses for existing identities. A selection of their results are

shown in Table 2.2. Evaluation on the CFP dataset [Sengupta et al. 2016] shows

that normalisation of pose to an intermediate angle (15◦), between the large-pose

probe image and the frontal reference image, gave the best mean accuracies. Aug-

mentation of the training dataset (CASIA) with additional poses gave a similar

but slightly lower mean within the same margin of error as the normalisation re-

sults. N.B. since Multi-PIE and UMDFaces were used for training of the texture-
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Test CFP Frontal-Profile verification accuracy (%)
Baseline 87.74± 1.07
Augmentation 93.09± 1.72
Normalisation to Frontal 93.55± 1.67
Normalisation to Profile 93.72± 1.59
Normalisation to 15◦ 94.05± 1.73

Table 2.2: Verification accuracy (%) comparison on the CFP dataset. Results taken
from [Deng et al. 2018].

completion model, a strict evaluation should include these datasets when training

the baseline FR network. Attributing improvements of 6% to these methods would

therefore be an exaggeration given the additional training data used.

Rather than using adversarial losses to refine incomplete textures, a whole host

of methods aim to directly generate images of subjects at new poses. These methods

are discussed in the following section.

2.2.3 Direct generative (2D) methods

Direct generative methods could be divided into two categories: auto-encoder-type

methods that require paired ground-truth images (e.g. a frontal image and a corre-

sponding image taken from a different angle), and disentangled GAN-type methods

that are trained without paired images, but which require attribute labels and a

biometric loss to maintain the identity. Works that fall into the auto-encoder-type

category are [Hu et al. 2018], [Huang et al. 2017] and [Yin et al. 2017], which are

each trained to translate at-pose images to resemble their frontal counterparts, and

also [Cao et al. 2018a], which operates in two stages - first to translate to frontal,

and then to translate from frontal to another pose (although the method is evaluated

for FR by frontalising images). Works that fall into the disentangled GAN category

are [Tran et al. 2019] which generates pose-conditioned images, [Song et al. 2018]

which generates images conditioned on feature-point configurations to give vary-

ing expressions (but was evaluated for FR by normalising expressions), and also

[Sáez Trigueros et al. 2021] which generates images containing arbitrary conditions

for specified identities (although those conditions are limited to the conditions of
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Method Type Base Architecture 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

[Tran et al. 2019] GAN Multi-PIE DR-GAN 95.0 91.3 88.0 85.8 - -
Baseline - Multi-PIE CASIA-Net 95.0 92.6 89.8 84.3 75.9 58.2
[Yin et al. 2017] Auto-enc Multi-PIE CASIA-Net 94.6 92.5 89.7 85.2 77.2 61.2
Baseline - CASIA + MS-Celeb-1M Light CNN 99.78 99.80 97.45 73.30 32.35 9.00
[Huang et al. 2017] Auto-enc + Multi-PIE Light CNN 99.78 99.85 98.58 92.93 84.10 64.03
[Hu et al. 2018] Auto-enc + Multi-PIE Light CNN 99.95 99.37 98.28 93.74 87.40 77.10

Table 2.3: Rank-1 identification rate (%) across poses for the Multi-PIE dataset
under setting 1.

Method Type Base Architecture 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Baseline - CASIA + MS-Celeb-1M Light CNN 98.59 97.38 92.13 62.09 24.18 5.51
[Huang et al. 2017] Auto-enc + Multi-PIE Light CNN 98.68 98.06 95.38 87.72 77.43 64.64
[Cao et al. 2018a] Auto-enc + Multi-PIE Light CNN 99.1 98.9 96.7 91.0 80.3 65.4
[Hu et al. 2018] Auto-enc + Multi-PIE Light CNN 99.82 99.56 97.33 90.63 83.05 66.05

Table 2.4: Rank-1 identification rate (%) across poses for the Multi-PIE dataset
under setting 2.

the training set).

Multi-PIE is the most common dataset used for evaluation of the above

works. Where possible, we have provided published results in Tables 2.3 and

2.4. (Note that this does not include evaluation of [Song et al. 2018] and

[Sáez Trigueros et al. 2021].) The majority of these methods are auto-encoder-

type methods that are necessarily trained on controlled data-sets such Multi-PIE

that have corresponding frontal-pose pairs. This evaluation on Multi-PIE there-

fore masks any problems of generalisation to other datasets that are inevitable for

this type of method. [Huang et al. 2017], [Cao et al. 2018a] and [Hu et al. 2018]

each frontalise the poses in probe images before comparing the feature encodings

of Light CNN [Wu et al. 2018] with those for frontal reference images. Light CNN

is used as the baseline for these studies. For poses of 45◦ and above, frontalisa-

tion using a network trained on Multi-PIE is shown to consistently improve the

rank-1 identification rate, by a significant amount at larger poses. Note, however,

that Light CNN has only been trained using the CASIA-Webface and MS-Celeb-1M

datasets. Since the training partition of Multi-PIE is available, strictly, it should be

used to train the Light CNN baseline. The only work that provides an appropriate

baseline with which to compare is [Yin et al. 2017]. As part of the frontalisation

method of [Yin et al. 2017], a biometric network with the CASIA-Net architecture
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Augmentation type Num synth images per ID / Num synth IDs
0 250 500 1000 1500

Existing IDs 67.58% 66.65% 69.02% 67.74% -
Synth IDs (500 imgs each) 67.58% - 65.76% 66.32% 68.77%

Table 2.5: TAR@FAR=0.01 evaluated on IJB-A for a non-specified ResNet archi-
tecture trained on VGGFace augmented with either various numbers of synthetic
images for existing identities or various numbers of synthetic identities. Results
taken from [Sáez Trigueros et al. 2021].

is trained as a constraint on the generated identity. This network is then used to

provide feature encodings for the identification task. The properly trained CASIA-

Net recovers most of the improvement due to frontalisation when other methods are

compared with the Light CNN baseline. The improvements of [Yin et al. 2017] over

its own baseline are far smaller than those assumed for the other methods. Given

that frontalisation requires additional resources and time at test time, a fairer com-

parison would perhaps be to augment the Light CNN and CASIA-Net baselines to

have the same number of parameters as the GAN and biometric networks combined.

DR-GAN [Tran et al. 2019] is compared only against other works in the litera-

ture, and so it is difficult to judge whether the method provides any benefit. This

is especially so as DR-GAN creates templates by combining the feature-encodings

of six images of each subject, a practice not used by other methods.

The method of [Sáez Trigueros et al. 2021] disentangles identity from other im-

age properties in the latent space of a GAN using an auxiliary classifier of the

identity. The generator is not conditioned directly on identity labels. Instead, an

encoder is trained to transform identity labels into latent vectors obeying a Gaus-

sian distribution (according to a second discriminator). This makes it possible to

straightforwardly sample new identities from the ID latent space. Table 2.5 shows

values of TAR@FAR=0.01 evaluated on IJB-A for a non-specified ResNet architec-

ture trained on VGGFace and augmented with their synthetic data (also generated

from VGGFace). Augmentation of existing identities and also with new identities

was performed. The results are somewhat noisy with the synthetic data causing

performance to drop in half of the cases. Their best result was achieved by aug-
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menting existing identities with 500 synthetic images each. Similar to many of the

previously described methods, the generation of useful training data by this method

depends on the performance of the identity constraint. If the identity constraint

is more powerful than the biometric network to be augmented, e.g. if the network

implementing the GAN’s ID-constraint uses a larger CNN, then the synthetic data

may indeed be useful. The entire GAN + biometric network system may benefit

from a form of semi-supervised learning [Salimans et al. 2016]. Whereas for frontal-

isation methods we might dispute the usefulness of the GAN due to the additional

resources required at test time, data-augmentation can be performed entirely off-

line. Therefore, even though this purely 2D method does not exploit additional

information (such as that which might be provided by a 3D model), it may be able

to make better use of training data. Specifically designed teacher student methods,

however, would probably outperform semi-supervised methods such as this. It is

more plausible that augmentation and normalisation methods making use of ad-

ditional information, such as 3D models, would be more beneficial to FR. In the

following section we present a selection of these methods.

2.2.4 Augmentation of information

As discussed in the previous section, it is not clear that direct generative 2D methods

can help improve facial recognition. Improvements shown for 2D pose normalisation

methods all but disappear when compared against an appropriate baseline, and

results for 2D augmentation are noisy at best. It is more plausible that FR might

be improved by injecting new forms of information into the training rather than

just recycling existing training data. Plausible methods include those described

in Sections 2.2.1 and 2.2.2, although final 2D translation steps may jeopardise the

integrity of the modified images. In [Kortylewski et al. 2018] data-augmentation

using synthetic identities sampled from a 3DMM is used. Unlike [Gecer et al. 2018],

however, a GAN is not used to retrospectively increase the realism of the data.

Instead, FR networks are pre-trained using the synthetic data and then fine-tuned

on real data. Such pre-training is shown to consistently improve FR performance

as can be seen from the results in Table 2.6. It is possible, however, that some 3D
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Datasets Multi-PIE LFW IJB-A
Accuracy Accuracy TAR@FAR=0.1

CASIA 91.2% 94.1% 86.8%
SYN-1M + CASIA 93.3% 95.8% 90.6%
SYN-2M + CASIA 95.4% 96.0% 92.4%

Table 2.6: Performances on various metrics achieved by a FaceNet-NN4 network
[Schroff et al. 2015] trained using CASIA and synthetic data sampled from the Basel
3DMM. Synthetic data is used for pre-training only followed by fine-tuning on
CASIA. Information taken from [Kortylewski et al. 2018].

information is being lost during fine-tuning. Ideally the 3D model would be realistic

enough to be able to forgo the fine-tuning stage.

Another method providing potential value is the partially 3D method of

[Shen et al. 2018]. The method is a disentangled GAN, conditioned on pose and is

evaluated for FR via frontalisation of images in LFW and IJB-A. In addition to a

constraint on the identity, a pre-trained estimator of 3DMM shape coefficients is

applied. This estimator network introduces new information into training of the

GAN and can be expected to improve the preservation of identity upon frontal-

isation of images. Unfortunately quantitative comparisons are, again, only made

with other methods in the literature and so it is not clear whether the method is

beneficial to FR or not. The largely 2D method of [Yin et al. 2017] also includes

an estimator of 3DMM coefficients. However, unlike [Shen et al. 2018], there is no

constraint in the loss function to ensure that this information is used correctly.

In [Guo et al. 2018], 3D model fitting is performed but not for the purpose of ad-

justing pose. Instead, the model is used to correctly position and render one of

four pairs of 3D-modelled pairs of glasses. Evaluation of synthetically augmented

training shows improvement on their “MeGlass” evaluation dataset derived from

the MegaFace dataset [Kemelmacher-Shlizerman et al. 2016]. Faces are also aug-

mented with glasses in [Lv et al. 2017] but using 2D shapes rather than 3D models.

Nevertheless, information is still being injected into the training as opposed to

[Sáez Trigueros et al. 2021] that learns to generate glasses from patterns in existing

training data.
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Method Base Network ID vec Crop Loss Method CFP-FP
Human - Brain - - - - 94.57%
[Tran et al. 2019] CASIA DR-GAN 320 96x96 - Feature disentanglement (n=1) 90.82%
[Tran et al. 2019] CASIA DR-GAN 320 96x96 - Feature disentanglement (n=6) 93.41%
[Peng et al. 2017] CASIA, CASIA-net 512 ??x?? Softmax Augmentation of existing IDs 93.76%

(300WLP, +CRL
Multi-PIE)

Baseline CASIA ResNet-27 512 112x112 Softmax - 87.74%
[Deng et al. 2018] CASIA, ResNet-27 512 112x112 Softmax Augmentation of existing IDs 93.09%

(Multi-PIE,
UMDFaces)

[Deng et al. 2018] CASIA ResNet-27 512 112x112 Softmax Normalisation to 15◦ 94.05%
(Multi-PIE,
UMDFaces)

Baseline CASIA ResNet-50 512 112x112 ArcFace - 95.56%
[Gecer et al. 2020] CASIA ResNet-50 512 112x112 ArcFace Augmentation with synth IDs 97.12%

Table 2.7: A selection of state-of-the-art results evaluated on the frontal-profile pro-
tocol of the CFP dataset. Where available, baseline experiments from the respective
papers have been included. In the cases of [Peng et al. 2017] and [Deng et al. 2018],
pose-manipulation networks were trained using additional 2D FR datasets (shown
in parentheses) that should strictly have been included in the baseline experiments.
CRL refers to the additional “Cross-pose reconstruction loss” of [Peng et al. 2017].
We also note the number of images used to form templates by the method of
[Tran et al. 2019] whose best results were achieved for n = 6 probe images.

As previously mentioned, an ideal method for augmentation of pose would in-

volve being able to generate training images directly by rendering a more realistic

3D model. The method of [Gecer et al. 2020] comes very close to this by train-

ing a GAN to generate synthetic samples from the distribution of a high-quality

training set of scanned 3D face-shapes and textures. The textures and shapes for

specific, synthetic identities are then combined with generic UV maps for sub-

surface scattering, translucency, specular intensity, roughness, detail normals and

their weights, and are rendered using the Marmoset Toolbag [Marmoset 2019] using

illumination parameters from the Gaussian distribution of the 300W-LP dataset

[Zhu et al. 2016]. A dataset of 10,000 synthetic identities with 50 images each

is generated and added to CASIA-Webface in order to improve the performance

of large-pose FR. Evaluation on the frontal-profile protocol of the CFP dataset is

shown in Table 2.7. The method shows good improvement over the baseline (trained

on CASIA only) but cannot be easily compared with other methods in the liter-

ature due to use of different FR networks and training losses. Advantages of the

method are that is makes use of additional 3D information and it does not intro-
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duce unwanted variation in identities since no reconstruction of existing identities is

performed. The main disadvantage of the method is it’s dependence on 3D-scanned

training data, which is costly to collect. Also, the model covers the facial region

only, rather than the full head. The 3D GAN method proposed in Chapter 5 allows

generation of realistic, synthetic identities whilst avoiding both of these issues.

2.3 Summary

The work of this thesis makes extensive use of GANs; in particular the Wasserstein

GAN. In Section 2.1 we described the development of GANs, beginning with their

evolution from Botlzmann machines via the Generative Stochastic Network (GSN).

GANs transformed the problem of unsupervised distribution-learning into one of

supervised classification of real and synthetic images. By taking advantage of deep

classification networks to judge whether arbitrary images belong to the real distri-

bution or the model distribution, it became possible to train deterministic genera-

tors to map random latent space configurations to arbitrary images from the data-

generating distribution, thus avoiding the need for maximum likelihood training

and stochastic sample-generation. It was shown that training generator networks

to minimise the standard cross-entropy loss for binary classification is equivalent to

minimising the Jensen-Shannon divergence (JSD) between the model distribution

and the data distribution. It was also shown, however, that the JSD saturates for

disjoint distributions, which tend to be common in very high-dimensional spaces

such as images, leading to weak training gradients. The alternative, non-saturating

loss helps to avoid weak gradients but can lead to instabilities if training of the

generator and discriminator is not well-balanced. The Wasserstein GAN was intro-

duced to stabilise training but requires regularisation of gradients. We described

how the widely adopted quadratic gradient penalty of [Gulrajani et al. 2017] im-

pedes convergence of the Wasserstein GAN and argued the case for the one-sided

penalty of [Chen et al. 2018], which is the form of regularisation used in the work

of this thesis. Finally, we described the conditional GAN which allows disentan-

glement of the latent space and has many practical applications, for example in
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data-augmentation for FR.

In Section 2.2 we gave an overview of recent works in the literature that at-

tempt to improve the performance of FR by either augmenting training data or by

normalising probe data at test time. We observed that data-augmentation meth-

ods target a multitude of nuisance factors whereas normalisation methods tend to

specialise, on pose or expression in our examples. Works employing “classical 3D”

methods of manipulating pose were then described and were shown to suffer from

problems due to self-occlusion. Many works propose the use of adversarial losses

as a potential solution, allowing removal of artefacts in synthetic images. Some

methods attempted to bypass the 3D manipulation stage altogether, generating

new poses directly. These methods, however, rely on identity constraints which

raises the question of how useful they could actually be for improving FR. We

showed that many works in the literature employing direct, 2D generative methods

for normalisation trained their normalisation networks using additional data that

was excluded from their baseline experiments. It is therefore not clear that these

methods add value, especially given the additional resources required to perform

normalisation at test time. We argued that FR is more likely to be improved via

injection of new information into training rather than just re-cycling existing train-

ing data via 2D generative neural networks. The methods of [Deng et al. 2018] and

[Gecer et al. 2020] represent the state of the art in pose-normalisation and augmen-

tation of pose for both existing and synthetic identities. Better performance on the

CFP dataset is achieved by augmentation using synthetic identities generated by

the method of [Gecer et al. 2020]. However, comparison is not clear due to different

experimental settings. In chapter 5, our 3D GAN method is evaluated against both.
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Do GANs actually generate

new identities?

3.1 Introduction

It is widely accepted that Generative Adversarial Networks (GANs) are able to

generate images of new identities when trained on datasets of face-images; so

much so that websites such as https://thispersondoesnotexist.com/ were cre-

ated to publicise the work of [Karras et al. 2018], [Karras et al. 2019] and later

[Karras et al. 2020]. Can we be sure, however, that generated images of faces do

in fact depict imagined subjects? This is an important question for applications

such as data-augmentation and also data-anonymisation. Typically, qualitative ev-

idence is presented in the form of a handful of generated images accompanied by

their nearest neighbours from the training dataset. The visual differences between

the identities are usually enough to satisfy the reader that new identities are in-

deed being generated. However, in the same way that we find doppelgangers in the

real world, it is inevitable that, occasionally, images of subjects will be generated

that resemble subjects in the training dataset. The question is how often does this

occur?

Since there is no reason for standard GANs to differentiate facial features, im-

portant for facial recognition (FR), from any other image feature, assessing the

degree to which synthetic identities resemble those of the training dataset is es-

sentially equivalent to assessing the degree of overfitting of the generator to the

training dataset. Measuring the degree of overfitting is an aspect of GAN training

that is typically neglected, with most metrics assessing only the quality and vari-

https://thispersondoesnotexist.com/
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ety of images. In this chapter we apply a state-of-the-art FR network to compare

images synthesised by GANs with those of the training dataset. By comparing dis-

tributions of matching scores we are able to conclude that GANs do indeed generate

images of imagined identities. We also show that the same method can be used as

a proxy for measuring the amount of mode-collapse suffered by GANs. We begin

by identifying the shortcomings of existing GAN metrics in Section 3.2.1 before

elaborating on the importance of the ability of GANs to generate new identities

in Sections 3.2.2 and 3.2.3; in Section 3.3 we describe our assessment of various

real and synthetic datasets and present results; finally, in Section 4.5 we make

concluding remarks.

3.2 Related work

3.2.1 GAN metrics

The de facto standards for assessing GANs are currently the Inception

Score (IS) [Salimans et al. 2016] and the Fréchet Inception Distance (FID)

[Heusel et al. 2017]. Both of these metrics, however, suffer from two main issues:

1. They make strong assumptions about the probability distributions of data.

For example, IS makes the assumption that the distribution of images can

be well represented by the distribution across ImageNet categories, whereas

FID assumes that the distribution can be approximated by a multi-variate

Gaussian, which can lead to ambiguity between the correct distribution, and

a distribution with dropped modes but additional, spurious modes that act

to give the same mean and variance.

2. They summarise measures of both the quality of generated images and the

variety of images in a single score. This can lead to ambiguity between,

for example, distributions containing high quality images from a single mode

compared to distributions containing multi-modal but low quality images.

The more recent methods of [Sajjadi et al. 2018] and [Kynkäänniemi et al. 2019]

avoid the second issue above by providing two separate measures: Precision as a
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measure of image-quality, and Recall as a measure of image variety. Values of

Precision and Recall (P&R) are derived from the overlap between estimates of the

forms of the real and synthetic data distributions in a discriminative feature space.

The models used to represent data distributions are more general than those used

by IS and FID, and so go some way to solving the first issue above. None of these

metrics, however, is sensitive to the problem of overfitting. A “Memory GAN” that

simply memorises and reproduces exact copies of the training data will produce

optimal IS, FID and P&R scores. In this chapter we wish to assess the ability of

GANs to generate new identities, i.e. to ensure that GANs’ generators do not overfit

training datasets with respect to identity. None of the aforementioned metrics is

able to provide this information.

The lack of a suitable metric for assessing overfitting was identified in

[Lucic et al. 2018] although, despite being stated as one of the motivations for

proposing their measure of P&R calculated for toy datasets, the paper does not

elaborate on how overfitting might be measured. In [Webster et al. 2019], overfit-

ting is measured by analysing discrepancies in the distributions of reconstruction er-

ror for training and validation images upon inversion of the generator. The method

appears to be informative. However, in practice it is expensive to invert the GAN’s

generator for all training images and, on a more fundamental level, the invertibility

of the generator for a particular image does not necessarily reveal the proclivity of

the generator to generate that image. In the work of this chapter, we efficiently

project datasets of facial images into a biometric feature-space where comparisons

of the generated distribution and the training distribution can be made based on

subtle yet robust features. Doing so is primarily motivated by our interest in iden-

tity. However, biometric datasets may serve as a useful standard for evaluating

GANs in general.

3.2.2 Data-anonymisation

With the recent implementation of the General Data Protection Regulation

(GDPR) in Europe, and similar regulations elsewhere, the anonymisation of data is

increasingly becoming a topic of interest. Unrestricted use of images and datasets
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of images containing faces depends on the ability to remove information that allows

identification of the original subjects. A crude method of doing this might be sim-

ply to detect faces and to set those pixels to zero. Ideally, however, we would like

to remove identity information without affecting other semantic properties of the

image or of the dataset as a whole.

Most methods in the literature tackle the problem of data-anonymisation by

modifying individual images, leaving all properties untouched except for the iden-

tity. Some of the more successful early attempts at doing so involved recon-

structing the subject of the original image using a 3D morphable model (3DMM)

[Blanz & Vetter 1999] before modifying the model’s shape parameters to change

the identity [Gross et al. 2008, Samarzija & Ribaric 2014]. In [Meden et al. 2017],

a CNN conditioned on biometric vectors is used to generate a face-image that is a

mixture of nearby identities before blending it back into the original image. More

recent methods treat the problem as image-to-image translation or as image in-

painting. In [Wu et al. 2019] an auto-encoder is trained to optimise a reconstruction

loss, but also a biometric loss to enforce distance between the original and translated

images in an identity feature-space. In [Sun et al. 2018a] and [Hukkelas et al. 2019]

faces are first obscured and then auto-encoders trained to in-paint the obscured re-

gions, harmonising them as best they can with the rest of the image in order to fool

an adversarial loss. In [Sun et al. 2018b] a hybrid 3DMM plus in-painting method

is used.

Due to the constraint of having to maintain the specific contexts of individual

images, the aforementioned problem is difficult and generated images tend to be of

low quality, either lacking in high-frequency detail or containing obvious artefacts.

A simpler task which generally results in generated images of higher quality is to

train a GAN whose sole objective is to accurately approximate the distribution of

real images as a whole. In this case, synthetic images sampled from the learned

distribution retain much of the character of the original dataset but the specifics

of images generally differ. As mentioned in Section 3.2.1, although much work has

been done to assess the quality and variety of GAN-generated images, there is no

work explicitly demonstrating such GANs to consistently generate new identities.
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3.2.3 Augmentation using synthetic identities

In the work of this thesis we aim to make use of synthetic identities for data-

augmentation. Synthetic data-augmentation might take one of two forms:

1. Supervised: generation of sets of ID-labelled images where each set contains

a “unique” identity;

2. Semi-supervised: generation of examples of arbitrary identity (the goal being

to avoid classifying them as the labelled identities of the training dataset).

We are aware of only a handful of examples of “supervised” data-augmentation

using synthetic identities. These were identified in Table 2.1 of the Literature

Review. Both [Gecer et al. 2018] and [Gecer et al. 2020] train FR networks using

both real and synthetic identities simultaneously. This makes it important to be

sure that new, synthetic identities are being generated to ensure that collisions with

existing identities are rare. If this were not the case, there would be undesirable

consequences for the compactness of learned class-representations in the feature-

space. In [Kortylewski et al. 2018] synthetic identities were used for pre-training

only and so generation of new identities is less important. As noted in Section

2.2.4, however, pre-training followed by fine-tuning on real data is probably not

ideal due to forgetting of information from the synthetic dataset.

To our knowledge, there are no evaluations of semi-supervised learning for fa-

cial recognition in the literature using synthetic data generated by GANs. However,

the technique has been evaluated for the similar problem of person re-identification

[Zheng et al. 2017]. Although not pursued in this thesis, the concept of semi-

supervised learning is discussed in the following subsection to help emphasise the

importance of being able to generate new identities.

3.2.3.1 Semi-supervised, synthetic augmentation

Semi-supervised learning using GANs was originally proposed in

[Salimans et al. 2016] (the same paper to introduce the Inception Score),

and concurrently in [Odena 2016]. These works proposed what we will term a
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“k + 1” method in which the classifier that they are trying to improve (which has

k classes) is also trained to be the discriminator of a GAN by assigning synthetic

images to an additional, k+1th class. Why this was found to improve classification

of real images is not entirely clear. One might imagine that it has something to

do with multi-task learning, or alternatively that the larger generator+classifier

network acts as teacher of the smaller, student network that is the classifier alone.

It was later shown in [Dai et al. 2017] that classification using a semi-supervised,

k + 1 training method is optimised when using a “bad” GAN, i.e. a GAN with

a “complement generator”, trained to generate data samples that lie outside the

regions in feature space that describe real members of the classes. The reason for this

is that, when using a complement generator, the classifier learns decision boundaries

at the edge of, rather than within, the feature manifold of each class. With a typical

generator, decision boundaries might stray within the manifold if real examples

happen to look too much like synthetic samples. For the case of augmenting facial

recognition datasets, generated samples should therefore represent novel identities

that lie in distinct regions of an image feature space.

The findings of [Dai et al. 2017] suggest that it might not be straightforward

to train a classifier with a k + 1th class using realistic face images generated

by a standard GAN. The assumption that the GAN generates only new identi-

ties might be too strong. An alternative semi-supervised training method that

makes a weaker assumption is Label Smoothing Regularisation for Outliers (LSRO)

[Zheng et al. 2017]. LSRO takes a randomly generated set of synthetic images and

assigns each a label vector with uniformly distributed values, as opposed to a one-

hot vector indicating a specific class. This label-smoothing for the synthetic images

is thought to have a regularising effect on the classifier, reducing the classifier’s

confidence when seeing identities that are similar to those in the training set. Even

for the LSRO method, however, it is still important that the synthetic training set

does not overfit to the identities of the training dataset. In the following section we

show results that explicitly confirm this to be the case.
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3.3 Results

As previously discussed, existing GAN metrics (e.g. IS, FID and P&R) measure

the quality and variety of generated images but do not indicate whether overfit-

ting to the training dataset has occurred. Here, we assess the overfitting of the

official versions of the Progressive GAN [Karras et al. 2018], and of the more re-

cent StyleGAN [Karras et al. 2019], by generating sets of synthetic face-images and

comparing them against the training dataset using a state-of-the-art biometric net-

work based on [Deng et al. 2019a]. We show results for two versions of StyleGAN:

the default, validation version, as is used to generate the statistics presented in

the paper, and a version with StyleGAN’s style-mixing enabled during generation,

labelled as “mix” in the Figures and in Table 3.1. Style-mixing is typically only en-

abled during training of StyleGAN to help disentangle different scales. However, we

note that reducing the variability of input to StyleGAN by disabling style-mixing

causes increased mode-collapse. Each GAN was trained on the CelebA-HQ dataset

containing 30, 000 images at 1024 × 1024 resolution of 6, 217 labelled identities.

Labelling in CelebA (and therefore in CelebA-HQ) is noisy, with many subjects

belonging to more than one ID category. This causes the level of similarity between

identities in the real data to be overestimated. For this reason, we have also in-

cluded results for an additional, proprietary dataset of mugshot images with clean

labels. This dataset was not used to train the GANs being assessed here and is only

included for comparison. Datasets of 30, 000 images of random, synthetic identities

were generated for each GAN.

The matching scores used in our analysis are analogous to cosine similarities in

the feature space of a biometric network. Feature vectors were generated and then

converted to scores such that higher scores represent stronger similarity between

identities. Two images might be considered to contain the same identity if the

matching score is larger than, for example, 3614.5. This threshold corresponds to a

false acceptance rate (FAR) of 1× 10−4 for the CelebA-HQ dataset, as can be seen

from Figure 3.1. In Section 3.3.1 we discuss results showing that new identities are

indeed generated by both GANs; then in Section 3.3.2 we describe how the same
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Figure 3.1: False acceptance rates across biometric matching score thresholds for
all pairs of non-mated images either within or between real and synthetic datasets
as indicated in the legend.

matching scores can be used as a measure of mode-collapse.

3.3.1 Generation of new identities

To assess overfitting, we compare each synthetic image with all images from the

training dataset (CelebA-HQ). Inevitably, some of the images match more closely

than others. There is no score threshold that we can define, however, that tells

us when any individual image has “overfit” to the training dataset. We wish for

the GAN to approximate the real-world distribution of images of faces and, as in

the real world, sometimes look-alikes do occur. Instead, we must ensure that the

frequency at which look-alikes occur is not significantly greater than within the

training dataset itself.

Figure 3.1 shows false acceptance rates as a function of matching score thresh-

old, i.e. the curves are the normalised cumulative distributions of all non-mated
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matching scores within and between various combinations of dataset. The curves

labelled “Real vs. Real” show the distributions within the proprietary “Mugshots”

dataset, and within CelebA-HQ. By definition, if we were to choose a matching

score threshold of 3614.5, at an FAR of 1 × 10−4 for CelebA-HQ, one in every

10, 000 randomly selected pairs of identities would be found to be look-alikes. It

can be seen that, within CelebA-HQ, the proportion of identities found to match

remains relatively high even for large matching score thresholds of 5, 000 and above.

This is due to the previously mentioned labelling problems within CelebA. Despite

these problems, we have left the curve as an example of the dynamics that can be

expected if duplicate identities are present. The three curves labelled as “Fake vs.

Real” show the distributions of matching scores between the dataset generated by

the indicated GAN and CelebA-HQ. (Note that the green curve of the Progressive

GAN is hidden beneath the red curve of the standard StyleGAN.) Each of these

curves demonstrates consistently lower matching frequencies than for the images of

CelebA-HQ. What is more, the matching frequencies are in close agreement with

those of the clean, Mugshots dataset indicating that the synthetic datasets do not

resemble CelebA-HQ significantly more than you would expect non-mated identities

to resemble one-another in a dataset of real images. The dashed “Fake vs. Fake”

curves will be discussed in Section 3.3.2.

Figure 3.1 shows distributions of matching scores for all image combinations,

even those that map to distant parts of the identity feature-space. An alternative

way to assess overfitting is to look only at the largest score for each image, i.e. to

observe the distributions of nearest neighbour scores. These are plotted in Figure

3.2. Upon interpreting these results, we notice that the story is essentially the same:

each of the three “Fake vs. Real” curves displays lower nearest neighbour matching

scores than are found for CelebA-HQ, and they are in close agreement with the

scores for the clean, Mugshots dataset. In fact, the distribution for “StyleGAN mix”

has shifted to consistently lower scores than for the Mugshots dataset. This change

in the relative positions of the curves is difficult to interpret. Examples of strongly

matching image pairs are shown in Figure 3.3 accompanied by the corresponding

matching score. Images with blue borders in the first three rows are images taken
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Figure 3.2: False acceptance rates of nearest neighbour images across across biomet-
ric matching score thresholds for non-mated image-pairs either within or between
real and synthetic datasets as indicated in the legend. Examples of the synthetic
images are given in Figure 3.3.

from CelebA-HQ, and images with green borders were generated by StyleGAN with

style-mixing enabled. We include these images for completeness and have no need to

draw further conclusions from them with regard to the frequencies of occurrence of

look-alikes. It should be noted that, although we attempted to show the strongest

non-mated matches within the CelebA-HQ dataset, due to labelling issues some

stronger matches may have been missed due to doubts as to whether the images

depicted the same subject or not. The selection may therefore be biased towards

weaker matches that more obviously depict different subjects. One thing that can

be noted from Figure 3.3 is that stronger matches tend to be found for female

subjects. CelebA-HQ contains roughly two-thirds female subjects, which is sure to

contribute to this effect. Lack of robustness of the FR algorithm to make-up may

also contribute.
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5444 5443 5412 5196 5076

5743 5584 5520 5470 5461

8321 7835 7794 7409 7273

Figure 3.3: A selection of non-mated image-pairs displaying strong matching scores.
Images with blue borders (first three rows) were taken from CelebA-HQ; images
with green borders (final three rows) were generated by StyleGAN with style-mixing
enabled during generation.
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Comparison False Acceptance Rate
@3000 @3614.5

Real vs. Real (CelebA-HQ) 1.29× 10−3 1.00× 10−4

Fake vs. Real (ProGAN) 1.26× 10−3 0.80× 10−4

Fake vs. Real (StyleGAN) 1.25× 10−3 0.80× 10−4

Fake vs. Real (StyleGAN mix) 1.11× 10−3 0.66× 10−4

Fake vs. Fake (ProGAN) 7.19× 10−3 1.16× 10−3

Fake vs. Fake (StyleGAN) 8.64× 10−3 1.62× 10−3

Fake vs. Fake (StyleGAN mix) 5.80× 10−3 0.82× 10−3

Table 3.1: FARs read from Figure 3.1 at two thresholds.

3.3.2 Mode-collapse of identity

In this section we discuss interpretation of the “Fake vs. Fake” curves (dashed lines)

of Figures 3.1 and 3.2. These curves represent the distributions of matching scores

within the synthetic datasets and show much higher frequencies of strong matches

than are found within or between the other datasets (with the exception of the

noisily labelled CelebA-HQ at certain thresholds). This indicates that, although

synthetic subjects do not strongly resemble those of the training dataset, they do

strongly resemble one-another. This is a symptom of the well-known problem of

mode-collapse in GANs in which well-separated, random input vectors are mapped

to similar points in image-space. Examples of strongly matching, non-mated syn-

thetic images are presented in the final two rows of Figure 3.3.

Similar to the case for overfitting, since the Progressive GAN and StyleGAN

have no reason to treat identity features differently from any other image-feature,

we can use the increase in “Fake vs. Fake” matching frequency as a general measure

of mode-collapse in GANs. One might try to quantify the degree of mode-collapse

as a single value by measuring the number of distinct identities being generated and

representing this as a fraction of that for the dataset of real images. For example,

the threshold of 3614.5 was chosen to give an FAR of 1×10−4 for CelebA-HQ. This

means that the algorithm, in conjunction with this threshold, is capable of distin-

guishing 1/1× 10−4 = 10, 000 real identities. When applied to a synthetic dataset

(say “StyleGAN mix”), the biometric network finds only 1/0.82× 10−3 = 1220 dis-
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tinguishable identities, implying that the synthetic identities have collapsed to span

a region of only 1220/10, 000 = 12.2% of that of the real distribution. However,

by performing the equivalent calculation using values from Table 3.1 for the cruder

threshold of 3000, we find that the estimate of the level of mode-collapse improves

to 1.29/5.80 = 22.2%; i.e. the estimation of the degree of mode-collapse is depen-

dent on the precision with which data-points are represented in the feature space.

To avoid this complication, we therefore recommend making comparisons between

datasets by analysing the dynamics of the FAR at all thresholds, as presented in

Figure 3.1.

3.4 Conclusion

We performed an analysis of the ability of GANs to generate new identities. In

doing so, we introduced a technique of analysing both the degree of overfitting of

generators to the training dataset, and the degree of mode-collapse. We used this

technique to show that overfitting is minimal and that GANs trained on face-images

are therefore capable of generating new identities. This validates the use of GANs

for data anonymisation and also validates the assumptions made when performing

data-augmentation with synthetic identities, both supervised and semi-supervised,

for example, the assumption that synthetic images can indeed be safely assigned to

a k + 1th class without detrimentally affecting existing classes.
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Chapter 4

Disentanglement of identity in

GANs

4.1 Introduction

In order to be able to perform supervised data-augmentation for facial recognition

(FR) using GAN-generated, synthetic identities, it must be possible to control fac-

tors of variation in images without affecting the identity. In Section 4.4 of this

chapter we present an analysis of the ability of various formulations of GAN to

disentangle identity from other image characteristics in their latent spaces. Ulti-

mately we conclude that the level of disentanglement of identity in 2D GANs is not

sufficient for the data to be of use for supervised data-augmentation for FR. Before

discussing the results of this study, we introduce two contributions in the field of

disentanglement in GANs. Although perhaps not useful for data-augmentation,

these developments may find suitable applications in other areas such as generating

anonymised evaluation sets of mated images or image-editing. The first contribu-

tion is the Intra-class Variation Isolation (IVI) mechanism [Marriott et al. 2020a]

that allows the learning of disentangled, multivariate representations of variation in

images using only the weak supervision of simple, binary labels. IVI is introduced in

Section 4.2. The second contribution is the integration of a triplet loss term into the

loss function of an SD-GAN [Donahue et al. 2018] to improve the disentanglement

of identity [Marriott et al. 2020b]. Both of these methods are assessed in the final

disentanglement study alongside a third method proposed by [Shen et al. 2020].
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4.2 Taking control of intra-class variation under weak

supervision

While standard GANs can generate realistic images, the precise form of these im-

ages cannot be easily controlled. The subject of the images is dependent in some

way on the values of the random input vector, but a priori we do not know in

what way. An obvious solution to this problem is the Conditional GAN (cGAN),

in which the GAN’s discriminator is trained to distinguish real image+label pairs

from fake image+label pairs, thereby encouraging the generator to produce images

that correctly correspond to the label upon which it is conditioned. In their typ-

ical form, cGANs are trained under the strong supervision of these labels: given

binary category labels, images belonging to certain categories can be generated

(but whose specific form is still governed by the entangled, real-valued random

vector); and given continuous, real-valued labels, cGANs can be forced to obey

more specific semantics. Previous works, for example, have conditioned on binary

hair-colour labels [Choi et al. 2018], and on continuous expression action unit mag-

nitudes [Pumarola et al. 2018]. However, the annotation of training images with

descriptions of multi-dimensional phenomena such as expression and lighting, is

notoriously difficult. In this section we introduce a method that enables GANs to

learn continuous, multi-variate representations of variation without the need for

precise annotation of training images. Training data need only be annotated with

binary labels indicating the presence or absence of a particular form of variation, for

example, “ambient lighting / non-ambient lighting”. We coin the method Intra-class

variation isolation (IVI) and the resulting network the IVI-GAN. A video demon-

strating the continuous variation of various isolated parameter sets can be viewed

at https://youtu.be/hoWOFeADwdY.

4.2.1 Related work

Most recent works aiming to manipulate the semantics of synthesised images take

the form of image-translation networks or auto-encoders with adversarial losses

added to help ensure that images look realistic. In [Lai & Lai 2018] face images are
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translated from being “at pose” to frontal while a discriminator ensures realism and

that expression remains constant. The identity and other image properties, how-

ever, are only preserved via a pixel-wise comparison of the generated image with

a ground-truth frontal image. Since such corresponding pairs of images are rarely

available, other researchers have instead proposed auto-encoding methods such as

CycleGAN [Zhu et al. 2017], whose image-shaped latent space is trained to resem-

ble the distribution of a different class of images, not necessarily paired with the

input image. For example, in both [Choi et al. 2018] and [Bozorgtabar et al. 2019],

a discriminator is used to encourage generated images to belong to different ex-

pression categories, while the cycle-consistency loss ensures that the general struc-

ture of the image remains unaffected, thus implicitly preserving the identity. In

[Pumarola et al. 2018], continuous expression action unit labels are used to provide

continuous control over the transformed images, rather than just control over the

expression category. The downside, however, is that precise, real-valued labels are

difficult to obtain. In addition, methods relying on cycle-consistency losses cannot

be easily used to manipulate pose since this involves more significant alterations to

image structure, thereby destroying the implicit constraint on identity.

Other works consider identity preservation explicitly by adding biometric losses.

In [Lindt et al. 2019] a pre-trained biometric network is added as a constraint during

manipulation of expression. In [Bao et al. 2018] a biometric network is trained

in parallel with the generative network whereas in [Tran et al. 2019] the GAN’s

discriminator itself is trained to classify the identity as a secondary task. Both

[Bao et al. 2018] and [Tran et al. 2019] are able to convincingly modify the pose of

input images. All of these methods, however, require strong supervision to control

image properties: in [Tran et al. 2019] fine-grained pose-category labels are needed

and in [Lindt et al. 2019], similar to [Pumarola et al. 2018], continuous expression

labels are needed.

InfoGAN [Chen et al. 2016] is the only work of which we are aware that attempts

to disentangle control of image properties in an entirely unsupervised manner. By

maximising the mutual information between a small subset of input parameters and

the generated images, those parameters are attributed control over the most signif-
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icant forms of variation in the image dataset. In practice these forms of variation

tend to resemble semantics such as pose and lighting. However, there is no guaran-

tee of which semantics will be learned, nor that identity will be preserved. Rather

than an entirely unsupervised approach, in this work we propose a weakly super-

vised alternative, compromising between the unpredictable semantics of InfoGAN

and the strong requirement for precise labels of typical conditional generation meth-

ods. Our weakly supervised technique allows control of specific forms of variation

but does not require a prior model of that variation.

Concurrent with our own work, [Shen et al. 2020] demonstrates an alternative

method for achieving continuous control over image properties using only binary

labels. Rather than training a conditional GAN on labelled training images, labels

are used retrospectively to identify the principal directions of variation of various at-

tributes in the latent space of a pre-trained GAN. In their work, no special attention

is paid to preserving identity. Also, in the absence of multiple labels, their method

is not capable of identifying multi-variate forms of variation such as illumination or

the configuration of the background.

4.2.2 Method

Intra-class Variation Isolation (IVI) can be implemented in any conditional GAN.

Our best results are achieved using the Wasserstein loss and so we present this

version. The original loss functions for a conditional Wasserstein GAN were given

in Chapter 2. We restate them here for convenience.

LθD = E(x,y)∼pdata [D(x, y; θD)]− Ez∼pz ,ρ∼pρ [D(G(z,ρ; θG),ρ; θD)] (4.1)

LθG = Ez∼pz ,ρ∼pρ [D(G(z,ρ; θG),ρ; θD)] (4.2)

In order to control some attribute of a generated image in a continuous fashion, for

example the pose, a typical cGAN requires each training image to be labelled with a

precise pose-estimation, y ∈ Rn. Intra-class variation isolation, on the other hand,

requires only the weak supervision of binary category labels indicating whether or

not a particular form of variation is present. The IVI-GAN is then allowed to learn
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Figure 4.1: An illustration of IVI-GAN. The real-valued parameter-vector, ρ, is
formed by masking sections of an extended, random vector using the randomly
selected, binary label-vector, β. It is β (not ρ) that is then fed to the discriminator
with the generated image.

its own multivariate model of that form of variation. Technically, the changes to

the standard cGAN are very simple and involve modifying only the form of the

labels provided to the cGAN. The loss functions to be minimised are

LθD = E(x,y)∼pdata [D(x, y; θD)]− Ez∼pz ,β∼pβ [D(G(z,ρ; θG),β; θD)] (4.3)

LθG = Ez∼pz ,β∼pβ [D(G(z,ρ; θG),β; θD)] (4.4)

where y ∈ {0, 1}n are now binary labels for n categories, and β ∈ {0, 1}n are binary

labels sampled from the same distribution as y (but, as before, do not necessarily

have to be the same). The novel aspect of the loss is the way in which the random

parameters, ρ, are chosen.

ρ =


p1

p2

...

pn

where pi ∈


N qi , if βi = 1

0qi , if βi = 0

(4.5)

Here, N qi is a random Gaussian vector of length qi, and 0qi is a vector of zeros.

N.B. The mechanism used to form ρ in (4.5) could be interpreted as a function
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f(z′,β) = (z,ρ), where z′ is an extended random vector providing the additional

random values used to form ρ. Since this function could be implemented as part

of a modified generator, G′ (which is permitted to have an arbitrary architecture),

we have G(z,ρ) = G(f(z′,β)) = G′(z′,β); i.e. equations (4.3) and (4.4) are mathe-

matically equivalent to (4.1) and (4.2) but for binary labels. Figure 4.1 depicts this

intra-class variation isolation mechanism as part of our IVI-GAN.

All variation in images generated by the IVI-GAN must be derived from the

combination of z and ρ. The values of z are independent of β and so can always be

used freely by the generator, irrespective of the labels. The parameter sets forming

ρ, however, are only available when certain forms of variation are labelled as being

present. The idea is that the generator will then only use those parameters to

describe that form of variation since the presence of non-zero parameters cannot be

relied upon to describe anything else.

When labelling training images, it is best that βi = 0 be used to describe a

unique image property. For example, in the case of expression, βexp = 0 should

correspond to a neutral expression and βexp = 1 to all non-neutral expressions. If

βexp = 0 were chosen to represent a non-unique property, such as “not smiling”,

then all of the different ways of not smiling would necessarily end up being encoded

by z. In the case of lighting, we chose βlighting = 0 to represent “ambient lighting”.

This means that the colour and intensity of ambient light in our images is encoded

by z but that all non-ambient lighting phenomena are encoded by ρlighting.

We find that the IVI mechanism does indeed encourage disentanglement of la-

belled variation. This is aided by the natural parsimony of the generator which

must find efficient ways of representing the training image distribution despite hav-

ing only limited capacity. To do this, common features are, of course, reused by

the generator to form different images. When making only subtle modifications to

images, e.g. adding lighting effects, the generator tends to leave the general struc-

ture of images unchanged, thus implicitly preserving the identity along with other

image attributes. However, when making more significant changes to images, such

as modifying the pose, this implicit identity preservation cannot be relied upon.

We therefore introduce an explicit constraint on the identity which is described in
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Figure 4.2: Lighting conditions manipulated by IVI-GAN for four synthetic identi-
ties. Left-hand column: ρlighting = 04 (ambient); the other columns show the effect
of assigning a value of 3.0 or −3.0 to individual elements of the lighting vector while
keeping other parameters constant.

the following section.

4.2.2.1 The biometric identity-constraint

To ensure that identity remains constant upon adjusting other image-properties,

we have added a term to the generator loss of IVI-GAN involving a pre-trained

biometric network [Hasnat et al. 2017] that accepts a facial image as input and

produces a 128-dimensional encoding of the identity.

LID = Ez∼pz

[
∥B(G(z,ρ))−B(G(z,ρ2))∥2

]
(4.6)

where B is the biometric network and ρ2 is a second set of random label-parameters.

(N.B. we have dropped the θ for convenience of notation.) By running the generator

twice for the same z but different ρ, and constraining the identity encodings to

remain close, we ensure that the identity is encoded as part of z and not affected
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by changes to ρ. The full generator loss is then

LθG = Ez∼pz ,β∼pβ [D(G(z,ρ),β)] + λIDLID (4.7)

where λID is a hyper-parameter to be tuned. The biometric identity constraint is

depicted on the right-hand side Figure 4.1.

4.2.2.2 An additional, structural constraint for lighting

Despite the natural tendency of the generator to leave the structure of images

unaffected when modifying properties such as lighting, subtle unwanted changes can

still be seen, e.g. small changes to pose. To avoid this, we introduce a constraint

on the image structure to be used when modifying lighting conditions.

Lighting is an additive phenomenon. For example, an image of a scene with two

light sources is equivalent to the sum of two images of the same scene with the two

light sources acting on it separately. One way to generate an image of a face under

a particular lighting condition, therefore, is to add together two constituent images

of the same subject. By re-formulating our generator in this way, the constraint

that the composite image must appear realistic to the discriminator ensures that

features in the two constituent images are of the same general structure. If not,

the composite image would appear blurry and unrealistic due to misalignment and

other inconsistencies. We propose that the generator be replaced with the following:

G(z,ρ)comp = G(z, 0) +G(z,ρ) (4.8)

where ρ represents lighting parameters only and 0 is a vector of zeros the same

length as ρ indicating that ambient lighting should be generated. In our IVI-GAN,

G(z,ρ)comp replaces G in both equation (4.3) and (4.4). By choosing G(z, 0) as

the second constituent image, we straightforwardly ensure that G(z, 0)comp gener-

ates ambiently lit images. We also find that this formulation can be used to help

constrain facial structure when modifying the appearance of the background.
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4.2.3 Implementation

Our implementation is built upon the stable and efficient progressive GAN of

[Karras et al. 2018], a Tensorflow implementation of which was made publicly avail-

able by Nvidia. The progressive GAN begins by generating images of 4×4 resolution

and then progressively fades in new convolutional upscaling layers until the desired

resolution is reached. There has been much recent work on improving the quality of

GAN-generated images published in the literature. We tested a selection of these en-

hancements and found that the best results were produced by a progressive Wasser-

stein GAN with the standard gradient penalty (GP) term of [Gulrajani et al. 2017]

where the weight of the GP term was allowed to evolve throughout training based

on an adaptive lambda scheme similar to that in [Chen et al. 2018]. In the gen-

erator we use orthogonal initialisation of weights and replace the pixel-wise fea-

ture normalisation used in [Karras et al. 2018] with the orthogonal regularisation

of [Brock et al. 2017] using the suggested weight of 0.0001.

4.2.3.1 Conditioning the GAN

The way in which labels and label-parameters are used to condition GANs is an open

area of research. For example, [Miyato & Koyama 2018] finds that, given certain

assumptions about the form of the distribution of data, the optimal method of

conditioning the discriminator should be to learn some inner-product of the label-

vector with the channels at each pixel; in [Dumoulin et al. 2017b] the generator

network is conditioned via instance-normalisation parameters. We have used the

more straight-forward method of concatenating label-vectors with inputs but expect

that these more sophisticated methods of conditioning may be used to improve

results. We concatenate our IVI parameter vector, ρ, with the random vector

on input to the generator, and on input to the discriminator we concatenate the

binary labels, y and β, as additional channels repeated at each pixel of the real and

generated images respectively.

An analysis of where best to introduce conditioning vectors to the discriminator

was performed in [Perarnau et al. 2016]. They predicted that earlier in the network
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Figure 4.3: Examples of broken nose features generated during tests of an auxiliary
classifier (not used in IVI-GAN).

should be better since the discriminator would be afforded more learning interac-

tions with the information. In fact they conclude that it is best to concatenate the

conditioning with the first hidden layer. However, in a progressive architecture, the

first convolutional layer of the discriminator is not faded in until the final stages of

training. In our case, it therefore makes more sense to concatenate the conditioning

with the image where it is then scaled down and fed to each layer of the progressive

network as they are being faded in. Ultimately, once all layers of the progressive

discriminator are active, the conditioning information and image are only fed to the

first layer of the discriminator.

Many applications make use of auxiliary classifiers (ACs) [Odena et al. 2017] as

a way of ensuring that conditional parameters are not ignored during generation

of images. We tested this method in conjunction with IVI using the auxiliary clas-

sifier already implemented in Nvidia’s progressive GAN code. However, we found

results to be unsatisfactory. As noted in [Miyato et al. 2018], auxiliary classifiers

encourage the generator to produce images that are easy to classify; a goal which

is not in alignment with the principal training objective of the GAN. We found

that, given a large weight in the discriminator loss, the AC-term caused mode-

collapse, squeezing variation into narrow, well-separated categories. For example,

upon varying continuous, conditional pose parameters we observed a discrete jump

in the generated pose between frontal and large poses. Giving less weight to the

AC-term ameliorated the discrete jumps in pose. However, more subtle artefacts

remained, such as broken noses pointing in one direction or the other; a feature

obviously used by the discriminator to help classify slightly non-frontal poses. See

Figure 4.3 for examples of this behaviour.
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Figure 4.4: Results demonstrating drift in identity when varying a pitch-like pa-
rameter in IVI-GAN without biometric identity constraint. Each row of images was
generated from the same z vector.

4.2.3.2 Tuning of the biometric constraint

As previously mentioned, modifications to images that significantly affect their

general structure, such as changes to pose, can lead to identity shift and shifts in

other image properties. Changes to the property of pitch seem to be particularly

prone to this issue. (See Figure 4.4.) To counter these problems, IVI-GAN in-

corporates the explicit, biometric identity constraint described in Section 4.2.2.1.

The biometric network [Hasnat et al. 2017] was pre-trained on images of resolution

96 × 96 and so we only activate the additional ID-loss during the final stabilisa-

tion period of the training of the progressive GAN. We performed experiments with

λID = [1.0, 0.1, 0.01, 0.001, 0.0001] and finally use λID = 0.0001. Higher values were

found to inhibit pose-variation too much.

4.2.4 Preliminary Results

We evaluated IVI-GAN on the CelebA dataset [Liu et al. 2015a], and on a

dataset of synthetic face images generated using the Basel 3D morphable model

(3DMM) [Blanz & Vetter 1999]. In Section 4.2.4.1 we present a selection of re-

sults for CelebA, including a qualitative comparison with similar results taken from

[Shen et al. 2020]. In Section 4.2.4.2 we quantitatively investigate pose changes in

images generated from CelebA to give an idea of the form and consistency of mul-

tivariate models learnt via weak supervision. Finally, in Section 4.2.4.3, we show

additional results for a balanced dataset of synthetic 3DMM images.
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Figure 4.5: Left: A continuous eye-wear model learned by IVI-GAN. The style of
eye-wear is controlled by the direction of a two-dimensional unit vector. Setting
the length of the vector to zero removes the eye-wear (top row); Right: A colourful
selection of images demonstrating the capability of IVI-GAN to generate a range
of different backgrounds while preserving identity and other image attributes.

4.2.4.1 Taking control of variation in CelebA

We trained IVI-GAN on a 100k image subset of the CelebA dataset. Images were

prepared in a similar way to the CelebA-HQ dataset of [Karras et al. 2018] but

super-resolution was not used. Our network was trained progressively up to a reso-

lution of 128×128 and was conditioned on a selection of the attribute labels available

with CelebA. These attributes were complemented with binary labels for lighting,

the background, and for pose. Lighting and background labels were found by hand

labelling a set of 10k images as containing either ambient or non-ambient lighting,

and having either plain or busy/coloured backgrounds. Two simple classifiers were

then trained to label the remaining images. Pose labels were found by applying

an off-the-shelf pose detector and categorising all images with yaw or pitch greater

than three degrees as being non-frontal.

Figures 4.2, 4.5, 4.6 and 4.7 show the effect of varying the multi-dimensional

parameter vectors learned for lighting (4 parameters), eye-wear (2 parameters nor-

malised to unit length), background (10 parameters) and pose (2 parameters).
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Figure 4.6: Images demonstrating the effect of varying one of the pose parameters,
used by IVI-GAN to represent yaw-like variation. The parameter is varied between
−3.0 and 3.0. In the middle column ρpose = (0, 0).

Figure 4.7: Images demonstrating the effect of varying the other pose parameter,
used by IVI-GAN to represent pitch-like variation. The parameter is varied between
−3.0 and 3.0. In the middle column ρpose = (0, 0).

Each row of images in Figure 4.5 (left) corresponds to a particular configuration

of ρglasses. We use a vector of two parameters normalised to unit length. Only

four instances of variation are shown but the style of glasses can be varied continu-

ously by rotating the unit vector, with each style morphing smoothly into the next.

Glasses can be removed completely by setting ρglasses = (0, 0) (top row). We see

that modifications to the style of glasses are well disentangled from the other image

parameters and from the identity.

In Figure 4.5 (right), each row corresponds to a different random instantiation

of ρbackground. (Setting ρbackground = 010 results in the same set of images as

shown in the first row of Figure 4.5 (left).) Again, we see that modifications to

the background leave other image properties and the identity largely unaffected.

However, we notice that certain features of the background have a tendency to
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Figure 4.8: Images taken from [Shen et al. 2020].

be present in most images of certain identities. We believe this effect is due to

unwanted, spurious correlations in the training dataset.

Although unguided by precise labels, Figures 4.6 and 4.7 show that IVI-GAN

has learned to use one pose parameter to represent yaw-like variation and the sec-

ond to represent pitch-like variation. Other image properties such as lighting, the

background and the identity remain consistent. These results (and also those of

Figure 4.5 (left)) can be compared with those in Figure 4.8 which have been taken

from [Shen et al. 2020]. Note that in [Shen et al. 2020], images were generated at

higher resolution. Here, we have down-sampled them to 128 × 128 resolution for

closer comparison with our own. The identities in Figure 4.8 seem to be reasonably

well preserved despite [Shen et al. 2020] having taken no explicit steps to achieve

this. We suspect that this would not be the case, however, if pitch were to be varied

using the same method. With fewer images in the training set exhibiting pitch vari-

ations, correlation of large pitches with certain identities can lead to shifts towards

those identities. In contrast to [Shen et al. 2020], IVI-GAN simultaneously learns

a multivariate representation of both yaw and pitch. It also explicitly ensures that

identity-drift is kept to a minimum via its biometric identity constraint.

4.2.4.2 Weak learning of multivariate models

IVI-GAN is able to learn its own models of variation given only binary labels that

indicate the presence or absence of that form of variation. A desirable property

of such a model is that the same parameter values result in the same semantic

properties irrespective of the identity and other image properties. In Table 4.1 we
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Table 4.1: Statistics of poses detected in images of 100 random identities for the
given parameter-configurations.

GAN configuration Mean pose StdDev
Type ρ yaw pitch pose

IVI-GAN
(0.0, 1.0) 10.2◦ −1.3◦ 7.5◦

(0.0, 2.0) 23.8◦ −6.5◦ 8.8◦

(0.0, 3.0) 33.7◦ −12.6◦ 8.8◦

cGAN
(10.2◦,−1.3◦) 9.3◦ 0.8◦ 4.8◦

(23.8◦,−6.5◦) 23.5◦ −5.2◦ 6.3◦

(33.7◦,−12.6◦) 32.5◦ −11.4◦ 6.9◦

Figure 4.9: Detected poses in images generated by an IVI-GAN. Horizontal and
vertical axes indicate detected yaw and pitch for a selection of parameter values
(indicated in the plot) averaged over 100 identities.

compare the consistency of poses generated by IVI-GAN (without ID constraint)

with those generated by a cGAN conditioned on precise, real-valued pose labels.

The only difference between the cGAN and the IVI-GAN is that, for the cGAN,

ρpose are real-valued pose labels instead of random parameters, and are fed to

the discriminator in place of the binary labels, βpose. We generated 100 random

identities for each of the pose parameter configurations given in Table 4.1 and then

used a pose-detector to find the mean generated pose and the standard deviation

of angles from that direction. Note that, for a more straightforward comparison,

the pose parameter configurations that were fed to the cGAN are the mean poses

69



Chapter 4. Disentanglement of identity in GANs

Figure 4.10: Examples of images analysed in Table 4.1 generated by an IVI-GAN.
Five random identities are shown in frontal poses (top row) and with pose param-
eters prescribed as ρpose = (0.0, 2.0) (bottom row).

Figure 4.11: Examples of images analysed in Table 4.1 generated by the cGAN. Five
random identities are shown in frontal poses (top row) and with pose parameters
prescribed as ρpose = (23.8◦,−6.5◦) (bottom row).

detected in the images generated by IVI-GAN. We see that, despite the absence of

strong supervision, IVI-GAN is able to generate poses with a consistency close to

that of a standard cGAN. (Note that the consistency of the cGAN statistics may

be artificially high since the same detector was used to label the training images.)

The form of the pose model learned by IVI-GAN (with ID constraint) is depicted in

Figure 4.9 and examples of the images analysed in Table 4.1 are given in Figures 4.10

and 4.11. It can be seen that the visual quality of images generated by IVI-GAN is

similar to that of the cGAN.

4.2.4.3 Learning from a balanced, synthetic dataset

The quality of generated images at large poses and containing other extreme condi-

tions is limited by the availability of such images in training datasets. As a cleaner
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Figure 4.12: Results demonstrating pose-variation in images generated by IVI-GAN
trained on a synthetic dataset. The two rows show the effect of varying the two,
uniform pose parameters between −3.0 and 3.0. All other parameters were kept
the same.

Figure 4.13: Results demonstrating expression and lighting variation in images
generated by IVI-GAN trained on a synthetic dataset. The left-hand images show
neutral expression (ρexp = 08, top) and ambient lighting (ρlighting = 09, bottom).
The other images show the effects of activating individual, expression and lighting
parameters with values of −3.0 or 3.0.

test of IVI, we trained IVI-GAN on synthetic face images generated by a 3D mor-

phable model (3DMM) [Blanz & Vetter 1999] and lit using a spherical harmonic

lighting model [Ramamoorthi & Hanrahan 2001]. Identities and expressions were

sampled from random Gaussian distributions, and lighting and pose from uniform

distributions. Figure 4.12 demonstrates that, given adequate data, IVI-GAN is

able to generate high-quality results for the full range of poses, i.e. for yaws in the

range [−90◦, 90◦] (top) and pitches in the range [−45◦, 45◦] (bottom). We note that,

since there is no explicit constraint on expression, the expression we selected for the

frontal image is lost during the disruptive pose changes. The desired expression can

often be recovered, however, by readjusting expression parameters afterwards, as

71



Chapter 4. Disentanglement of identity in GANs

has been done in the bottom row of Figure 4.13. Since adjusting the expression is

a more subtle image-modification, it does not affect the pose.

With full control over the synthetic, 3DMM dataset, we were able to easily

generate ground-truth labels of neutral/non-neutral expression. (Similar labels were

not available during our tests on CelebA.) The top row of Figure 4.13 shows the

range of expressions learnt by IVI-GAN, whilst the bottom row shows some of the

more distinctive lighting modes that were learned. Note that the lighting condition

remains consistent as expression is varied and vice-versa.

4.3 A Triplet Loss for GANs

We now introduce our second contribution to the field of disentanglement in GANs.

The method builds upon the SD-GAN of [Donahue et al. 2018] which is a method

designed to disentangle identity from other image characteristics by training the

GAN’s discriminator to judge whether pairs of generated images appear to be from

a training data distribution of mated image pairs. To improve upon the method

we integrate an “imposter” term into the SD-GAN’s loss function to help limit

intra-class identity variance. We first introduce the formulation of the SD-GAN

in Section 4.3.1 before describing the novel GAN triplet loss in Section 4.3.2. In

Section 4.3.3 we present a partial evaluation of the method leaving full evaluation

of the ability of the method to disentangle identity until the disentanglement study

of Section 4.4 where comparisons are made with other methods.

4.3.1 SD-GAN

The SD-GAN (“Semantic Decomposition” GAN) was proposed in

[Donahue et al. 2018]. Like IVI-GAN, the training of SD-GAN causes se-

mantic disentanglement of dimensions in the generator’s latent space. A variety

of formulations of SD-GAN is proposed in [Donahue et al. 2018] including an

energy-based formulation making use of an auto-encoder as its discriminator. We

opted for the simpler, DC-GAN version which we have depicted in Figure 4.14.

Similar to the biometric constraint of IVI-GAN, a generator pass is performed
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Figure 4.14: Diagram showing the specific SD-GAN architecture used in our evalua-
tion. zID, z1IV and z2IV are random vectors; the dotted line indicates shared network
weights and the plus indicates channel-wise concatenation of generated images. (IV
refers to “Intra-class Variation”.)

for each of two latent vectors, z1 =
[
zID, z1IV

]
and z2 =

[
zID, z2IV

]
, that share

the common sub-vector zID. The two generated images are then concatenated

along the channel axis before being passed to the discriminator that judges the

realism of the image pair as compared to pairs of distinct training images that

share a common identity. The discriminator therefore judges based on two criteria:

image pairs must appear to be realistic and must also appear to contain the same

identity.

As in [Donahue et al. 2018], we train the SD-GAN via an adapted version of

the Wasserstein loss functions. For convenience, we restate the original Wasserstein

loss functions here.

LθD = Ex∼pdata [D(x; θD)]− Ez∼pz [D(G(z; θG); θD)] (4.9)

LθG = Ez∼pz [D(G(z; θG); θD)] (4.10)

where x are images selected at random from the real data distribution, pdata; z is a

random vector whose values are selected randomly from some simple distribution,

typically a standard Gaussian; and θD and θG parameterise the discriminator, D,
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and the generator, G, respectively. For the SD-GAN, these losses are then adapted

to

LθD =D(x)−D([G(z1), G(z2)]) (4.11)

LθG =D([G(z1), G(z2)]) (4.12)

where we have dropped the expectations and network parameters for simplicity of

notation. Here, x is a pair of images of matching identity. In the following section

we describe how these loss functions are modified to form our GAN triplet loss.

4.3.2 Formulation of the GAN triplet loss

The triplet loss was first used for face recognition in [Schroff et al. 2015], derived

from [Weinberger & Saul 2009], and is typically used to train classifier networks.

It has two terms that each ensure desirable characteristics of embeddings in the

discriminative feature space: a first term minimises the distance between pairs of

images of the same class and ensures intra-class compactness, while a second term

maximises the distance from one image of each pair to an image of a different class

and ensures good inter-class separation. During training of an SD-GAN, in addition

to learning to judge the realism of images, the discriminator performs a biometric

function, learning to judge whether pairs of images belong to the same identity class

or not. Learning of this function is based only on the consumption of pairs of mated

images by the discriminator. This could be thought of as being analogous to the

first term of the original triplet loss that ensures good intra-class compactness. Our

results show that the biometric function of the SD-GAN’s discriminator can also

benefit from the integration of a term that acts upon non-mated pairs of images,

i.e. pairs of “imposters”.

To integrate the imposter term of our GAN triplet loss, the losses in equations
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(4.11) and (4.12) are modified to

LθD = D(x)− 1

2
[D([G(z1), G(z2)]) +D(x)] + λ(D([G(z1), G(z2)])−D(x))2 (4.13)

LθG = D([G(z1), G(z2)]) (4.14)

where x is a pair of images containing non-mated identities. To strictly follow the

analogy with the original triplet loss, one of these images would be shared with x

and the second would be an imposter. However, in practice we sample x randomly

from a set of pre-defined image pairs that demonstrate high matching scores as

judged by a biometric network.

The core idea of the GAN triplet loss is encapsulated in the second term of

equation (4.13): the discriminator is applied to the non-mated image pairs and

the resulting scores averaged with those of the synthetic images to create a new

“fake data” term. These two different ways of image pairs appearing to be “fake”

(either being synthetic, or real but non-mated) are then contrasted with a real pair

of matching images in the first term of the loss. Having added the term D(x),

LθD could now be minimised by simply forcing apart the embeddings of x and x in

the feature space of the discriminator and ignoring the synthetic images. To avoid

this, we add the third, quadratic term to ensure that the synthetic and non-mated

terms retain roughly the same magnitude. This ensures that useful gradients are

back-propagated to the generator. In our experiments we found that a weight of

λ = 0.001 worked well and that a value of λ = 0 resulted in decreased image quality.

4.3.3 Preliminary Results

Official code is not available for SD-GAN and so we implemented our own ver-

sion, again, building upon the architecture of NVidia’s Progressive GAN. Since the

discriminator performs an additional biometric function, we double the number of

filters in each of its convolutional layers. We found that doing so improved the visual

quality of generated images. Other than this modification, the architectures of the

generator and discriminator are the same as those found in [Karras et al. 2018]. We

trained the SD-GAN and our SD-GAN with triplet loss on a proprietary dataset of
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Figure 4.15: Distributions of biometric matching scores for non-mated pairs within
and between the real and synthetic datasets. The right-hand plot shows the distri-
butions of nearest neighbour matching scores only.

Figure 4.16: Synthetic samples generated by an SD-GAN trained on a proprietary
dataset of mugshots.

96, 286 frontal mugshot images containing 10, 064 identities. To ensure that overfit-

ting to the dataset has not occurred, we performed the analysis of matching scores

recommended in Chapter 3. From Figure 4.15 we see that distributions of matching

scores within the real, Mugshots dataset are similar to those between the real and

synthetic datasets. Matching scores between nearest neighbours were found to be

significantly weaker. We can conclude, therefore, that overfitting has not occurred

and are able to show images in Figures 4.16 and 4.17 generated by the two GANs

despite the dataset being proprietary.
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Figure 4.17: Synthetic samples generated by an SD-GAN trained using our GAN
triplet loss.

4.4 Results: Measuring the disentanglement of identity

in GANs

This section presents a study of the level of disentanglement of identity from other

image characteristics in various forms of disentangled GAN, including IVI-GAN

and SD-GAN that were presented in the previous two sections. In the literature we

find three general methods of disentanglement:

1. Training a conditional GAN (cGAN) and adding a biometric constraint on the

identity. In this work we evaluate IVI-GAN. However, there are other works

that fall into this category [Tran et al. 2019, Sáez Trigueros et al. 2021].

2. Training a standard GAN and retrospectively discovering se-

mantically meaningful axes of variation in the latent space

[Shen et al. 2020, Härkönen et al. 2020]. We assess the InterFaceGAN

method of [Shen et al. 2020]. The method does not explicitly avoid changes

to identity upon traversing the GAN’s latent space and assumes that a

robustly trained GAN will naturally learn to disentangle semantic factors.

3. Training the discriminator of the GAN to act upon pairs of images and to

simultaneously penalise poor realism and poor identity consistency. The only

work of which we are aware that has previously attempted this is the SD-GAN

of [Donahue et al. 2018].

To assess the ability of the various GAN-types to disentangle identity from
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other image properties, we analyse distributions of matching scores within mated

image sets intended to depict the same subject. If disentanglement is successful,

we should expect False Rejection Rates (FRR) (at say FAR=10−4) to be com-

parable to those for sets of real images. We perform this analysis for datasets

generated by examples of each type of GAN identified above. These methods are

IVI-GAN [Marriott et al. 2020a], InterFaceGAN [Shen et al. 2020] and SD-GAN

[Donahue et al. 2018]. We also evaluate the improved disentanglement of the SD-

GAN resulting from integration of our GAN triplet loss term.

IVI-GAN and the Progressive GAN used by the InterFaceGAN method were

trained using CelebA and CelebA-HQ respectively. The SD-GAN was trained on

our proprietary dataset of mugshots since it’s discriminator must also learn a reliable

biometric function. As shown in the previous chapter, CelebA is not cleanly labelled

and also contains fewer identities than are typically used to train state-of-the-art

biometric networks such as that used by IVI-GAN. Each GAN was used to generate

sets of ten images for 1000 identities as described in the subsections below. Since

pose is generally the most disruptive factor to the identity and is disentangled

by both IVI-GAN and InterFaceGAN, we ensure a fair comparison with the SD-

GANs by selecting pose parameters such that the standard deviation of yaw angles

detected in generated images matches that of images generated by SD-GAN.

4.4.1 Generation of the synthetic datasets

4.4.1.1 IVI-GAN

Two datasets of 10, 000 images were generated for IVI-GAN trained on the CelebA

dataset. For each dataset, 1000 random z were selected as well as ten random

parameter vectors, ρ, for each z, corresponding to varying pose, expression, lighting

and eyewear. All parameters were selected as during training of the IVI-GAN with

the exception of the pose parameters which were selected from a standard Gaussian

distribution but then, for one of the datasets, were scaled by 0.21 in order for the

standard deviation of detected yaw angles to match those generated by SD-GAN

trained on the Mugshots dataset. Two sets of samples generated by IVI-GAN with
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Figure 4.18: Two sets of synthetic samples generated by IVI-GAN with random
pose, expression, lighting and eyewear.

Figure 4.19: Two sets of synthetic samples generated using the InterFaceGAN
method [Shen et al. 2020]. Pose, expression and eyewear were manipulated by ran-
dom amounts.

scaled pose can be seen in Figure 4.18.

4.4.1.2 SD-GAN

A dataset of 10, 000 images was generated for both the SD-GAN described in Section

4.3.1, and the SD-GAN with triplet loss described in Section 4.3.2. Each GAN

was trained on the proprietary dataset of mugshot images. For each dataset 1000

random zID were selected as well as ten random zIV for each zID. Samples of

images generated by the SD-GAN can be seen in Figures 4.16 and 4.17.

4.4.1.3 InterFaceGAN

InterFaceGAN [Shen et al. 2020] is not a GAN architecture but rather a method

of controlling properties in images generated by existing, pre-trained GANs. By

observing generated images G(z; θ) and associating binary attribute labels with
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latent vectors, z, e.g. “smiling/not smiling”, classifiers can be trained to find the

hyper-planes in the latent space separating these image characteristics. An image

characteristic can then be controlled by traversing the latent space along the axis

perpendicular to the associated hyper-plane. Image sets were generated using the

publicly available version of the Progressive GAN trained on CelebA-HQ. Again,

two datasets of 10, 000 were generated, each with scaled pose. A thousand random z

were first selected and then ten different images generated for each by traversing the

latent space by random distances in the pose, smile and eyewear directions. Final

distances from each of the three hyper-planes were selected from standard Gaussian

distributions. Pose distances were scaled by 0.9 and 0.15 to give the same standard

deviation of yaw angles as for the unscaled IVI-GAN and for the SD-GAN. In

[Shen et al. 2020] correlations were observed between eyewear and gender. To help

avoid these unwanted changes to the identity, the eyewear boundary conditioned on

gender, provided by the authors, was used. Two sets of samples generated by the

Progressive GAN using the InterFaceGAN method (with pose scaled by 0.15) can

be seen in Figure 4.19.

4.4.2 Comparison of matching-score distributions for disentangled,
synthetic datasets

Figure 4.20 shows distributions of matching scores for all mated image pairings

within the various datasets. Note that in Figure 4.20 (left), all curves are not

strictly comparable since the variance in yaw angle generated by both IVI-GAN

and InterFaceGAN was significantly larger than for the SD-GAN datasets. This

has been indicated by plotting dashed curves. We include this figure to demonstrate

the poor matching scores found for mated pairs in the InterFaceGAN dataset. In

Figure 4.20 (right), in which the variance in yaw has been matched across syn-

thetic datasets, the distribution of matching scores for InterFaceGAN is improved.

However, perhaps unsurprisingly, InterFaceGAN remains to be the least successful

method at disentangling identity. Ideally, score distributions should be similar to

those calculated for the dataset of real images (blue curve). We note, however,
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Figure 4.20: The probability distributions of biometric matching scores for all mated
pairs of images within the dataset indicated in the legend. Left: the pose-parameters
of InterFaceGAN were scaled down such that the standard deviation of yaw detected
in images matches that of IVI-GAN (10.1◦); Right: the pose-parameters of both
InterFaceGAN and IVI-GAN were scaled down such that the standard deviation of
yaw detected in images matches those of the SD-GAN (3.4◦).

Dataset FRR@3677.5 FRR@FAR=10−4 StdDev(Yaw) LPIPS-Intra LPIPS-Inter
Reals (mugshots) 2.97× 10−3 2.97× 10−3 5.5◦ 0.402 0.506
IVI-GAN (CelebA) 4.14× 10−2 4.35× 10−1 10.1◦ 0.334 0.558
InterFacePGAN (CelebA-HQ) 2.75× 10−1 3.78× 10−1 10.1◦ 0.315 0.583
IVI-GAN (CelebA) 2.45× 10−2 2.95× 10−1 3.4◦ 0.225 0.527
InterFaceGAN (CelebA-HQ) 1.05× 10−1 1.71× 10−1 3.4◦ 0.176 0.555
SD-GAN (mugshots) 4.37× 10−2 8.94× 10−2 3.4◦ 0.320 0.419
SD-Triplet (mugshots) 1.86× 10−2 6.69× 10−2 3.4◦ 0.306 0.428

Table 4.2: A selection of statistics for mated image sets from various datasets. Also
reported are mean, inter-class LPIPS distances. The grey rows show statistics for
datasets with larger variance in pose.

that significant portions of each synthetic distribution lie below the threshold of

3677.5 which corresponds to FAR=10−4 for the dataset of real images. Table 4.2

reports FRRs at this threshold, and also at points corresponding to FAR=10−4

based on the matching scores between non-mated pairs for each synthetic dataset.

To give an idea of the remaining discrepancies in non-identity variation, Table 4.2

also reports average perceptual distances between mated pairs (“LPIPS-Intra”) and

non-mated pairs (“LPIPS-Inter”) as measured by the LPIPS perceptual similarity

metric [Zhang et al. 2018]. We used version 0.1 of LPIPS with a VGGNet base and

additional linear calibration layer. (Note that these distances are not insensitive to

changes in identity.)
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Figure 4.21: The probability distributions of biometric matching scores for all pairs
of images not sharing the same identity within the real or synthetic dataset indicated
in the legend.

As previously mentioned, in absolute terms (based on FRR@3677.5), InterFace-

GAN proved to be the least effective method at maintaining identity with an FRR of

10.5% despite demonstrating lower intra-class LPIPS distances than both IVI-GAN

and SD-GAN. It appears that, without applying an explicit biometric constraint,

identity is not well disentangled from other properties in the latent space of the Pro-

gressive GAN. SD-GAN with triplet loss was found to be the most effective method

at preserving identity, followed by IVI-GAN. Based on this metric (FRR@3677.5),

IVI-GAN outperforms the standard SD-GAN, even in the case that we do not limit

the range of generated poses. This is the case despite IVI-GAN demonstrating

larger intra-class LPIPS distances. (See the grey rows of Table 4.2.)

While the identity constraints of SD-GAN Triplet and IVI-GAN are the most

effective, using them appears to come at a cost. Figure 4.21 shows matching score

distributions for non-mated pairs. We see that IVI-GAN suffers from significant

mode-collapse in the biometric feature space and demonstrates strong matching

scores for a high proportion of non-mated pairs. We also notice that integration of

the triplet loss into SD-GAN increases mode-collapse in comparison to the standard

SD-GAN. Interestingly, this collapse appears to be confined to the biometric fea-

ture space and does not strongly affect the inter-class LPIPS distances. SD-GAN

Triplet, for example, demonstrates larger inter-class LPIPS distances than for the

standard SD-GAN despite mode-collapse having been measured for identity. The

82



Chapter 4. Disentanglement of identity in GANs

Figure 4.22: ROC curves for each of the identity-disentangled datasets.

overall level of disentanglement is probably best judged by statistics such as the

FRR@FAR=10−4, which takes account of both intra-class compactness and inter-

class separation. By this metric we see that integration of the GAN triplet loss was

beneficial, decreasing FRR@FAR=10−4 from 8.94 × 10−2 to 6.69 × 10−2. In fact,

when looking at the ROC curves in Figure 4.22 we see that the triplet loss improves

FRR at all FAR thresholds. We also see that InterFaceGAN outperforms IVI-GAN

at most thresholds (solid curves). However, this is not the case if pose is allowed to

vary more freely (dashed curves). Note that none of the synthetic datasets comes

close to the level of disentanglement seen in the dataset of real images.

4.5 Conclusion

Through implementing Intra-class Variation Isolation, we showed that it is possible

to adapt a conditional GAN in order to gain continuous, disentangled control over

image attributes without the need for extensive labelling. Only simple binary labels,

indicating whether an attribute is present in one form or another, are required. IVI

then allows a GAN to discover its own, multivariate way of modelling the variation
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present within that attribute category in an unsupervised fashion. To the best of

our knowledge, IVI-GAN is the first network to achieve this separation in a weakly

supervised manner.

We also assessed the performance of methods designed to disentangle identity

from other image properties. We evaluated InterFaceGAN, IVI-GAN and SD-GAN,

and showed that our novel GAN triplet loss can be used to improve the disentangle-

ment of identity. None of the algorithms, however, is able to disentangle identity to

a satisfactory degree. Even the lowest value of FRR@FAR=10−4, found for our SD-

GAN with triplet loss, is more than an order of magnitude larger than that found

for real data. Supervised data-augmentation involving the generation of sets of

identity-disentangled images is therefore unlikely to be fruitful when using methods

similar to those evaluated here, and more work needs to be done to in order to gain

full control over image variation for applications such as generation of anonymised

test sets and identity-robust image-editing.
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Chapter 5

A 3D GAN for

identity-preserving

disentanglement of pose

5.1 Introduction

State-of-the-art facial recognition (FR) algorithms are trained using millions of im-

ages. With the internet as a resource, face-images are relatively easy to come by.

However, the distribution of semantics throughout these images is usually highly un-

balanced. For example, the majority of available photographs are frontal portraits

of smiling subjects, with images containing large poses being relatively scarce. Ro-

bustness to pose is currently thought to be the largest challenge for face recognition.

Some researchers have attempted to avoid the problem by first frontalising probe im-

ages [Zhu et al. 2015, Hassner et al. 2015, Shen et al. 2018], whilst others have at-

tempted to learn additional robustness to pose by synthetically augmenting training

datasets [Masi et al. 2016, Crispell et al. 2017, Zhao et al. 2017, Deng et al. 2018].

We advocate this second approach since it does not require additional resources at

test time.

Synthetic augmentation of poses in training data has typically been achieved

by fitting some 3D face model to input images, extracting textures, and then re-

projecting those textures at modified poses [Crispell et al. 2017, Zhao et al. 2017].

With recent advances in the development of Generative Adversarial Networks

(GANs), however, a viable alternative has emerged. In Chapter 3, GANs were

shown to be capable of generating realistic images of new identities and so restrict-
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Figure 5.1: The 3D GAN’s generator consists of two CNNs that generate facial
texture and background. Facial texture is rendered into the background using some
random sample of shape from the 3D model’s distribution. The random pose and
expression vectors are used only for rendering, not for generation of texture, and so
remain disentangled from the identity. All parameters are passed to the background
generator to allow harmonisation of the background conditions with the rendered
subject. Note that all vectors are randomly sampled and that no direct comparison
with training images is performed.

ing data-augmentation to existing identities is not necessary. We then showed in

Chapter 4 that, even with explicit constraints on identity, 2D GANs are not capable

of adequately disentangling identity from other characteristics. To remedy this situ-

ation, we incorporate a 3D morphable model (3DMM) [Li et al. 2017b] into a GAN

so that images of new, synthetic identities can be generated, and the pose modified

without identity being compromised. As pointed out in Chapter 2, 3D models were

used to augment FR datasets with synthetic identities in [Kortylewski et al. 2018]

and [Gecer et al. 2020]. The method presented here makes the contribution of al-

lowing synthetic identities to be generated in 3D using only in-the-wild images. No

specially captured scans of facial texture are required.

The rest of the chapter is organised as follows: in Section 5.2 we discuss work

related to the use of 3D face models in image-generation and data-augmentation;

in Section 5.3 we introduce our method; in Section 5.4 we present results justifying

the formulation of our 3D GAN as well as an evaluation of data-augmentation using

the synthesised data; and in Section 5.5 we conclude.
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5.2 Related Work

5.2.1 Generative 3D networks

Prior to the recent explosion in the development of GAN-related methods, the best

way of generating synthetic face images was to use a 3D morphable model (3DMM).

The original 3DMM of [Blanz & Vetter 1999] was learned from a relatively small set

of approximately 200 3D shape and texture scans. More recently, several efforts have

been made to build more representative 3D models. For example, the Large Scale

Face Model (LSFM) [Booth et al. 2016] was constructed using 9663 facial scans, and

the FLAME model (Faces Learned with an Articulated Model and Expressions)

[Li et al. 2017b] was learned from 3800 scans and has separate male and female

shape models. While the linear spaces of these models are known to capture most

of the variation in the training datasets, generated faces still appear to be smooth

with textures lacking in high frequency detail. This is thought to be a limitation of

using a linear texture model.

In [Gecer et al. 2020] and [Gecer et al. 2019] the linear texture model of the

LSFM is replaced by the nonlinear, CNN generator of a GAN trained to approxi-

mate the distribution of their dataset of high-quality texture scans. The quality of

generated textures is outstanding. However, the dataset of scans is not available for

general use. The difficulty of obtaining high-quality texture datasets motivates the

development of methods such as our own, which aims to learn textures from natu-

ral (non-scanned) images. The method of [Tran & Liu 2018] has a similar aim and

attempts to train an auto-encoder to reconstruct in-the-wild training images. Their

disentangled auto-encoding pipeline involves generation of intermediate texture es-

timations for input images which are then rendered back into the reconstructed

images. Since the method requires an input image to be encoded, new identities

cannot easily be generated. The method proposed in this chapter is a GAN rather

than an auto-encoder, and so can generate new, synthetic identities. The quality

of our generated textures is also not limited by reconstruction losses, which tend to

destroy high-frequency detail.
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5.2.2 Large-pose 3D data-augmentation

As discussed in detail in Chapter 2, there are a number of works that have attempted

data-augmentation for FR using techniques involving 3D models. Earlier methods

extracted textures from images onto a 3D model’s surface for manipulation of pose

and sometimes illumination or expression [Masi et al. 2016, Crispell et al. 2017,

Lv et al. 2017, Peng et al. 2017]. Due to self-occlusion in images and therefore holes

in the textures, various in-filling techniques were employed. In [Zhao et al. 2017]

this problem is tackled by refining the projected texture in image-space using a

GAN. A similar idea is used in [Gecer et al. 2018] but it is synthetic 3DMM images

that are refined by performing unsupervised translation to the real domain. These

final refinement phases require identity-preserving losses, which is less than ideal

for the purpose of data-augmentation for FR.

A preferable method is to produce a complete texture in the texture refer-

ence space to ensure that the identity remains consistent when projected to dif-

ferent poses. In [Deng et al. 2018], a texture-completion network is trained using

a set of carefully prepared ground-truth textures. In [Kortylewski et al. 2018] and

[Gecer et al. 2020] the problem of texture completion is avoided entirely by generat-

ing textures for synthetic identities. [Kortylewski et al. 2018] uses a linear texture

model whereas [Gecer et al. 2020] trains a nonlinear model. Each of these methods

makes use of datasets of scanned textures. The method proposed here also makes

use of synthetic identities in order to avoid the problem of texture completion and

reconstruction of existing identities. The method, however, does not require care-

fully prepared/captured ground-truth textures and, instead, learns textures directly

from in-the-wild images.

5.3 The 3D GAN

Generative Adversarial Networks typically consist of a convolutional generator and

discriminator that are trained alternately in a mini-max game: the discriminator is

trained to distinguish generated images from those of a training set of real images,

and the generator is trained to minimise the success of the discriminator. Although

88



Chapter 5. A 3D GAN for identity-preserving disentanglement of pose

generated images appear to represent real-world, 3D subjects, they are in fact noth-

ing more than collections of 2D features learned by the 2D convolutional filters of

the generator. For this reason, upon linearly traversing the latent space of a GAN’s

generator, one tends to see “lazy”, 2D transformations between forms rather than

transformations that are semantically meaningful in 3D space. For example, even

if a direction in the latent space is identified that influences the pose of a face in

a generated image, the 3D form of the face is unlikely to be maintained. Indeed,

the generator may not even be capable of generating the same face at a different

pose. In order to ensure that 3D form is maintained in synthesised images upon

manipulation of pose, we enhance the generator by integrating a 3D morphable

model (3DMM).

Typically a GAN’s input is a random vector. The inputs to our 3D GAN are

random texture and background vectors but also random 3DMM shape, expression

and pose parameters. A differentiable renderer is then used to render random head-

shapes into a generated “background image” with the facial texture being provided

by the texture generator. No matter what the shape or pose of the random model

instance, the rendered image must appear realistic to the discriminator. To achieve

this, the texture generator learns to generate realistic textures with features that

correctly correspond with the model shape. Figure 5.1 depicts the architecture of

our 3D GAN. The lower half of the diagram depicts a standard conditional GAN

in which some image is generated from random parameters and pose information,

and is then fed to the discriminator. (In our implementation, pose information is

repeated spatially and concatenated as additional channels of the image). The top

half of the diagram depicts the integration of a 3DMM where a learned texture

is rendered into this image via a differentiable renderer. With the main subject

of the image being provided by the rendered texture, the background generator

learns to generate only the background and features not modelled by the 3DMM,

for example, the edges of glasses and hair. Since the texture generator is not

conditioned on pose information, nor expression parameters, these aspects of the

image can be manipulated without affecting the texture of the 3D model, as shown

in Figures 5.3, 5.4, 5.7 and 5.8.
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(a) (b) (c)

Figure 5.2: a) The FLAME 3DMM’s texture map where RGB represents the corre-
sponding 3D point on the mean model shape; b) a rendering of the texture shown
in (c).

5.3.1 Implementation

Our full generator is a function of five sets of random input parameters and two

sets of trained parameters:

x = G([zT , zB, β, ψ, ϕ]; [θT , θB]) (5.1)

= (1 − K) ◦GB(zB, zT , β, ψ, ϕ; θB) + K ◦M(GT (zT , β; θT ), y) (5.2)

where x is a generated image; GB and GT are the background and texture gener-

ators; zT ∈ NNT and zB ∈ NNB are vectors of random texture and background

parameters of length NT and NB respectively, selected from standard normal dis-

tributions; β ∈ NNs and ψ ∈ NNe are vectors of shape and expression parameters

that control the form of the 3DMM, again selected from standard normal distribu-

tions; ϕ is pose information, typically values of yaw and pitch selected at random

from the labels of the training set of images; and θT and θB parametrise the texture

and background generator networks. The background image and rendered texture

are combined using a binary mask, K, generated by the renderer. (Note that the

masking by K is not shown in Figure 5.1.) 1 is a vector of ones of the same shape

as the image and a ◦ b represents the element-wise product of vectors a and b. M

is an inverse texture-mapping function that maps interpolations from the gener-

ated texture map to appropriate locations in image space based on a rendering of

texture coordinates in image-space, y. Inverse texture mapping effectively allows

the generated texture to be pasted onto the model surface rather than having only
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single colours at each vertex and interpolating across facets. To make the most

of texture-mapping, our texture generator operates at twice the resolution of the

background generator. Rendering of y (and simultaneously, K) is performed by the

differentiable rendering function, R:

y,K = R(S, ϕ; τ, γ) (5.3)

where S ∈ RNv×3 is a vector of shape vertices for some random instance of the

3DMM; ϕ is pose information; τ ∈ ZNτ×3 is the 3DMM’s triangle list of Nτ

vertex indices; γ ∈ R3Nτ×2 is the vector of texture coordinates where each of

the Nτ triangles has its own set of three 2D texture vertices. The rendering

function, R, is implemented by DIRT (Differentiable Renderer for Tensorflow)

[Henderson & Ferrari 2020] and we use the FLAME (Faces Learned with an Artic-

ulated Model and Expressions) [Li et al. 2017b] 3DMM. FLAME is an articulated

model with joints controlling the head position relative to the neck, the gaze di-

rection, and the jaw. During training of our 3D GAN we fix the joint parameters

in their default positions such that the shape is given by the following, simplified

equation

S = S̄ +

Ns∑
n=1

bnsn +

Ne∑
n=1

cnen (5.4)

where S̄ is the mean model shape; S = [s1, ..., sNs ] are the principal components of

shape; ε = [e1, ..., eNe ] are the principal components of expression; and [b1, ..., bNs ]

and [c1, ..., cNe ] are the individual elements of the previously defined shape and

expression vectors, β and ψ, that are also fed to the generator networks in equation

(5.2). For the FLAME model, Ns = 200, Ne = 200, and Nv = 5023. We also set

NT = NB = 200.

The architectures of GT and GB are based on that of the Progressive GAN

[Karras et al. 2018]. However, to simplify implementation and speed up training,

no progressive growing was used. We believe that use of a 3D model may act

to stabilise training since it provides prior form that need not be learned from
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scratch. The architecture was augmented with bilinear interpolation on upscal-

ing (rather than nearest-neighbour upscaling), which helps to avoid checker-board

artefacts, and with static Gaussian noise added to each feature map, as used in

[Karras et al. 2019], which helps to prevent wave-like artefacts from forming. (See

Figure 5.5 for examples.)

5.3.2 Training

Despite the more elaborate architecture of the generator, the 3D GAN can

be trained like any other GAN. We choose to optimise a Wasserstein loss

[Arjovsky et al. 2017] by alternately minimising equations (5.5) and (5.6). The

values of all input vectors (with the exception of the conditional pose parameters)

are selected from a standard Gaussian distribution. For simplicity of notation we

agglomerate them into a single vector ν = [zT , zB, β, ψ].

LθD = E(xr,ϕ)∼pdata [D(xr, ϕ; θD)]− Eν∼N ,ϕ∼pdata [D(G(ν, ϕ; θG), ϕ; θD)] +Reg.

(5.5)

LθG = Eν∼N ,ϕ∼pdata [D(G(ν, ϕ; θG), ϕ; θD)] (5.6)

where (xr, ϕ) is a real image and associated pose labels selected at random from

the distribution of training data, pdata; θG = [θT , θB]; and Reg. indicates the

addition of a gradient penalty [Gulrajani et al. 2017] that acts to regularise the

discriminator such that it approximately obeys the required k-Lipschitz condition

[Arjovsky et al. 2017]. Note that, during training, the shape and expression param-

eters passed to the generator are random. There is never any direct reconstruction

of training images via fitting of the 3D model. The only constraint on textures is

that they must appear realistic (as judged by the discriminator) when projected

at any angle and with any expression. Our motivation for training our generator

as a GAN and avoiding reconstruction is to generate new identities and to avoid

smoothed textures caused by reconstruction errors.
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5.3.3 Limitations

The 3D GAN method has certain limitations, the most fundamental possibly being

the fact that hair and glasses are not included in the 3D shape model. This can lead

to projections of these features onto the surface of the model that do not necessarily

look realistic when viewed from certain angles. The inclusion of such features in

the shape model would be difficult at best. Instead, it may be better to detect and

remove images containing unmodelled features from the training dataset and to

seek another method for augmentation with glasses and occlusion by overhanging

hair.

As currently formulated, the 3D GAN learns lighting effects and shadows as part

of the texture. Although this helps generated images appear to be realistic, it is not

ideal for our goal of improving FR since specific lighting conditions become part

of the synthetic identities. Since we have the 3D shape for each generated image,

a lighting model could be used to produce shading maps of randomised lighting

conditions during training. Ideally, the random lighting conditions should follow

the distribution of lighting in the training set. In this way the texture generator

might avoid inclusion of the modelled lighting effects in the texture.

We also make the assumption that the distributions of shape and expression

in the training dataset match the natural distributions of the 3DMM. This is not

necessarily the case and improvements could be possible by first fitting the model

to the dataset. N.B. we suggest this only for estimating the distributions, not for

reconstructing images since fitting errors would be large in individual cases. We

also assume that the distributions of feature points (used for alignment) and poses

are known. For our in-the-wild experiments, these were detected automatically. We

believe the mislabelling of poses to be one of the reasons for the drop in quality

between our experiments using Multi-PIE and using either CelebA or FFHQ. (See

the results in the following section.)

Finally, the texture map provided with the FLAME 3DMM (see Figure 5.2a) is

spatially discontinuous. Since CNNs function by exploiting spatial coherence, these

discontinuities in the texture-space lead to discontinuity artefacts in the rendered
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Texture Neutral Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Figure 5.3: 3D GAN textures and renderings for various expressions trained using
Multi-PIE.

images. This can be seen, for example, in Figure 5.3 where the facial texture meets

the texture of the back of the head. These artefacts could be avoided by using an

alternative, spatially continuous texture mapping.

5.4 Results

5.4.1 Controlled evaluation of the 3D GAN

During development of the 3D GAN, tests were conducted by training on the con-

trolled, Multi-PIE dataset [Gross et al. 2010]. Doing so avoided potential problems

that might have been caused by the incorrect detection of poses, which are required

to condition the GAN. During these tests, the pitch angle was not varied and so

we excluded Multi-PIE’s CCTV-like camera angles (cameras 8 and 19). The first

column of Figure 5.3 shows examples of random textures learned by the 3D GAN.

To demonstrate the level of correspondence with the shape model, we render each

texture for six different expressions. We see that features are well aligned and that

expressions can be manipulated realistically. This is thanks to the requirement that
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Figure 5.4: 3D GAN renderings at a range of yaw angles trained using Multi-PIE.
(The model instances correspond to the Neutral column of Figure 5.3.

the texture look realistic for renderings of all poses and expressions. The texture is

not dependent on the expression parameters and so the identity is implicitly main-

tained, at least to the limit of disentanglement present in the 3DMM. Figure 5.4

shows renderings of the same textures with a neutral expression at a selection of

yaw angles in the range [−90◦, 90◦]. We see that the model heads are pleasingly in-

tegrated with the background with additional, unmodelled details such as hair and

the edges of glasses being generated. In some cases, however, this is problematic.

For example, in the final column, something resembling a protruding chin has been

generated in the background for both of the male subjects. Note, however, that

the background is only needed for training and that facial textures can be rendered

onto arbitrary backgrounds.

Figure 5.5 shows a set of images that characterise the effects of disabling various

aspects of our 3D GAN. Figure 5.5a shows that disabling the pose-conditioning

can lead to degenerate solutions where the generators conspire to generate faces

as part of the background and to camouflage the model. In the given example,

pose-conditioning would have caused the discriminator to expect a leftward-facing

subject and to therefore penalise such an image. Attempting to avoid this problem
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a) No cond b) No bckd c) No bilinear d) No noise e) Final

Figure 5.5: Results characterising the effects of disabling various features of the
final implementation of our 3D GAN.

by switching off the background generator causes a different problem. We can see

this in Figure 5.5b where the texture generator now produces a mixture of face-like

and background-like features in order to satisfy the discriminator. Figure 5.5c has

the background and pose-conditioning enabled. It demonstrates, however, obvious

checker-board artefacts in the texture. We found that this problem was caused

by the nearest-neighbour up-sampling of feature-maps upon resolution doubling

within the generator. Following the work of [Karras et al. 2019] we switched to

bilinear up-sampling. Whilst this prevented the checkerboard artefacts, it led to

wave-like artefacts being generated. These can be seen in Figure 5.5d. Finally, we

added static, channel-wise Gaussian noise into the generator, similar to that used

in [Karras et al. 2019]. See Figure 5.5e. The noise acts to provide high-frequency,

stochastic features by default so that the generator need not attempt to derive these

details from the random input vectors. Images generated by our full model are of

comparable quality to those of [Tran & Liu 2018], which is perhaps the closest work

to our own since it attempts to learn a non-linear texture model from in-the-wild

images. Our method also has the benefit, however, of being able to 1) easily generate

new identities, 2) generate full facial images, including the back of the head and the

background, and 3) does not require the 3DMM to be fit to training images, thus

avoiding reconstruction errors.

5.4.2 Data-augmentation in the wild

In the previous section we saw that it is possible to learn textures of good quality

from a controlled dataset of images containing a wide range of pose. It is un-

likely, however, that the synthetic 3D GAN data will be more informative than
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Dataset Num IDs Num images
MS1M-V3 93.4k 5.2M
NetScrape (in-house) 26.8k 3.5M
CASIA Webface 10.6k 0.5M
CelebA 10.2k 0.2M
Flickr-Faces-HQ N/A 0.07M

Table 5.1: Training dataset comparison.

the original, high-quality dataset. Although the 3D GAN is able to generate new

identities and allows full control over the pose, the data also inevitably suffers

from problems such as mode-collapse and from limited realism. In Chapter 2 we

identified that many data-augmentation and data-normalisation methods in the

literature make use of controlled datasets but do not perform fair comparisons by

also including those data in baseline experiments. In this section we wish to demon-

strate improvement to FR by making better use of noisy, in-the-wild datasets. We

present experiments for various FR algorithms trained using one of three training

datasets: either our in-house “NetScrape” datset, CASIA Webface [Yi et al. 2014],

or MS1M-V3 [Deng et al. 2019b]. The datasets are augmented using synthetic data

generated by the 3D GAN trained using either CelebA [Liu et al. 2015b] or Flickr-

Faces-HQ (FFHQ) [Karras et al. 2019]. Since CelebA is a dataset of potential

benefit to FR, it was also included in additional baseline experiments. Evalua-

tion was performed for two challenging, large-pose datasets, Celebrities in Frontal-

Profile in the Wild (CFP) [Sengupta et al. 2016] and Cross-Pose LFW (CPLFW)

[Zheng & Deng 2018], as well as their frontal-frontal counterparts. Benefit from use

of 3D GAN data arises from a combination of the balanced distribution of poses

and expressions, the use of a 3D lighting model, the presence of additional synthetic

identities, and the GAN’s ability to clean noisy datasets.

5.4.2.1 Training datasets

Our baseline FR experiments are trained on either CASIA Webface, MS1M-V3 or

our in-house dataset of 3.5 million images scraped from the internet, labelled as

“NetScrape” in Figure 5.6 and Tables 5.2 and 5.3. (CelebA is also used for baseline
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Figure 5.6: The relative pose distributions of the datasets used in the experiments
described in Section 5.4.2.2 and Table 5.2.

training to provide a cleaner comparison where the dataset has been used to train

the 3D GAN.) These datasets were then augmented using the 3D GAN trained on

either CelebA or Flickr-Faces-HQ. Details of these datasets are presented in Table

5.1. We also show the distributions of detected yaw and pitch angles in Figure 5.6.

CelebA was found to have the narrowest ranges of both yaw and pitch. Despite this,

in conjunction with the 3D GAN, we were able to use the dataset to improve large-

pose facial recognition. CASIA Webface displays a noticeably wider distribution of

yaw angles than the other datasets. Again, despite this prior advantage, we were

able to improve FR results above the CASIA baselines.

Synthetic datasets of 10k, 20k and 30k IDs were generated, each with 120 images

per ID. Yaw and pitch angles were selected randomly from uniform distributions

with ranges [−90◦, 90◦] and [−45◦, 45◦] respectively, whereas all other parameters

(shape, expression, texture and background) were selected from a standard normal

distribution, as during training. Synthetic images were augmented further using

a spherical harmonic (SH) lighting model [Ramamoorthi & Hanrahan 2001]. We

augmented using only white light and chose ambient and non-ambient lighting co-

efficients from random uniform distributions in the ranges [0.6, 1.4] and [−0.4, 0.4]

respectively. In performing this lighting augmentation, we make the assumption

that images in the synthetic training dataset are only ambiently lit. This is not the

case, however, and learned textures contain problematic, embedded lighting effects.

For example, a cast shadow may be coloured black in the texture. Applying the SH
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Figure 5.7: CelebA-like 3D GAN renderings at a range of yaw angles.

model may then brighten this region to give an unnatural grey colour rather than

revealing a realistic facial texture. Nevertheless, performing this relatively crude

lighting augmentation is shown to improve FR accuracy.

Examples of in-the-wild synthetic images can be seen in Figures 5.7 and 5.8.

In Figure 5.7 we show a selection of images generated from CelebA with pitch,

expression, background and lighting parameters set to 0. The images are generally

of lower quality than those generated from Multi-PIE and display visible artefacts,

particularly on the sides of the head. We suspect that this is due to a combination

of the larger variation in textures and lighting conditions in CelebA, the lower

number of images at large poses, and the absence of reliable pose labels. Despite

these issues, our experiments show that the synthetic data is of adequate quality

to successfully augment FR datasets. In Figure 5.8 we show a selection of images

generated from FFHQ. These images have been cropped to 112× 112 resolution as

used in our data-augmentation experiments. All parameters were randomised, as

described above.

5.4.2.2 Data-augmentation experiments

In all of our experiments we use the ResNet architecture of [Deng et al. 2019a]

trained for 15 epochs. The only changes made were to the number of layers and to

the loss function, as noted in Tables 5.2 and 5.3. Table 5.2 presents results for a

series of experiments in which we augmented the NetScrape dataset with 3D GAN

data generated from CelebA. Experiment 1 gives our baseline, trained only on the

“NetScrape” dataset. Experiment 2 shows that the effect of adding in CelebA is to
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Figure 5.8: Random examples for a selection of IDs generated by the 3D GAN
trained on FFHQ. The images have been cropped to 112× 112 pixels for use in the
experiments recorded in Table 5.3.

increase accuracy on CFP-FP and CPLFW by 0.47% and 0.25% respectively. The

effect of adding the synthetic data, however, is to increase accuracy by up to 1.7%

for CFP-FP, with an accuracy of 95.29% being achieved in Experiment 6, and by up

to 1.69% for CPLFW, with an accuracy of 86.25% being achieved in Experiment 5;

i.e. the 3D GAN was able to exploit the images of CelebA somewhere between three

to six times more effectively. Experiments 3 and 4 show that disabling the spherical

harmonic lighting, and limiting the variance of the pose to that detected in CelebA

itself, each decrease accuracy on both CFP-FP and CPLFW, with limitation of the

pose having the largest effect. Both experiments, however, still perform better than

the baseline. Finally, in Experiments 5, 6 and 7, we augment the dataset with 10k,

20k and 30k synthetic identities. For each experiment the measured accuracies are

above those of the baseline experiments, although performance drops for either 20k
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Exp Network Loss Training sets Num IDs Num images CFP-FP CPLFW
1 ResNet-34 ArcFace NetScrape (in-house) 26.8k 3.5M 93.59% 84.56%
2 ResNet-34 ArcFace NetScrape + CelebA 26.8k + 10.2k 3.5M + 0.2M 94.06% 84.81%
3 ResNet-34 ArcFace NetScrape + 3D Synth (no SH) 26.8k + 10k 3.5M + 1.2M 94.46% 85.55%
4 ResNet-34 ArcFace NetScrape + 3D Synth (narrow pose) 26.8k + 10k 3.5M + 1.2M 93.76% 84.93%
5 ResNet-34 ArcFace NetScrape + 3D Synth 26.8k + 10k 3.5M + 1.2M 94.89% 86.25%
6 ResNet-34 ArcFace NetScrape + 3D Synth 26.8k + 20k 3.5M + 2.4M 95.29% 85.96%
7 ResNet-34 ArcFace NetScrape + 3D Synth 26.8k + 30k 3.5M + 3.6M 94.63% 85.91%

Table 5.2: A comparison of the effect dataset-augmentation on verification accu-
racies for the 7000 positive and negative frontal-profile pairs of the CFP dataset
[Sengupta et al. 2016], and the 6000 positive and negative image pairs of CPLFW
[Zheng & Deng 2018].

or 30k identities depending on the evaluation dataset. The reason for this decrease

in performance could be due to synthetic identities being too densely sampled,

i.e. with too many look-alikes being generated. Alternatively, it could be due to

overfitting of the biometric network to 3D GAN data since, in Experiments 6 and

7, significant proportions of the training dataset were synthetic (40.7% and 50.7%

as opposed to only 25.5% in Experiment 3).

Table 5.3 presents the results of experiments for comparison with the 3D model-

based data-augmentation methods of [Deng et al. 2018] and [Gecer et al. 2020], and

also with [Deng et al. 2019a] which had the state of the art accuracy for CPLFW.

Results taken from the literature are highlighted in grey. The cleanest comparison

is with the method of [Gecer et al. 2020] in which synthetic data generated by their

TB-GAN was used to augment CASIA Webface giving an improvement of 1.56%

from 95.56% to 97.12% verification accuracy on the Frontal-Profile protocol of CFP.

Augmentation using 20k synthetic identities generated from FFHQ using our 3D

GAN gave an improvement of 1.24% from the slightly lower baseline of accuracy of

95.50% up to 96.74%. Note that, in this experiment, the 3D GAN extracts useful

information from the noisy FFHQ dataset, which is not accompanied by identity

information, whereas the TB-GAN of [Gecer et al. 2020] is trained using a dataset

of high-quality texture scans. Improvements in accuracy were also seen for CPLFW

with addition of 10k and 20k synthetic identities leading to improvements of 0.84%

and 1.16% respectively. Evaluation on the frontal protocol of CFP and on LFW

gave only small improvements.
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Method FR network Loss Training sets Method type CFP-FF CFP-FP LFW CPLFW
Human Brain - - - 96.24% 94.57% 97.27% 81.21%
Baseline ResNet-27 Softmax CASIA - 98.59% 87.74% 99.02% -
[Deng et al. 2018] ResNet-27 Softmax CASIA, Aug (existing IDs) 98.83% 93.09% 99.22% -

(Multi-PIE,
UMDFaces)

[Deng et al. 2018] ResNet-27 Softmax CASIA Norm to 15◦ - 94.05% - -
(Multi-PIE,
UMDFaces)

Baseline ResNet-28 Softmax CASIA - 94.74% 84.76% 95.47% 68.01%
3D GAN (FFHQ) ResNet-28 Softmax CASIA Aug (10k synth IDs) 95.44% 85.70% 95.97% 68.52%
Baseline ResNet-50 ArcFace CASIA - - 95.56% - -
[Gecer et al. 2020] ResNet-50 ArcFace CASIA Aug (10k synth IDs) - 97.12% - -
Baseline ResNet-50 ArcFace CASIA - 99.37% 95.50% 99.30% 85.69%
3D GAN (FFHQ) ResNet-50 ArcFace CASIA Aug (10k synth IDs) 99.49% 96.40% 99.35% 86.53%
3D GAN (FFHQ) ResNet-50 ArcFace CASIA Aug (20k synth IDs) 99.40% 96.74% 99.42% 86.85%
[Deng et al. 2019a] ResNet-100 ArcFace MS1M-V2 - - - 99.82% 92.08%
Baseline ResNet-100 ArcFace MS1M-V3 - 99.90% 98.47% 99.87% 93.36%
3D GAN (FFHQ) ResNet-100 ArcFace MS1M-V3 Aug (20k synth IDs) 99.90% 98.51% 99.85% 93.53%

Table 5.3: A comparison of data-augmentation using synthetic identities generated
by the 3D GAN with various similar methods from the literature (highlighted in
grey). Evaluation is performed for the frontal-frontal (FF) and frontal-profile (FP)
protocols of the CFP dataset as well as for LFW (view 2) and CPLFW. Datasets
parenthesised in the “Training sets” column are FR datasets used to train the data-
generation networks but not the FR network.

In a second set of experiments we scaled down the ResNet to have 28 layers and

trained using a standard softmax loss in order to compare more closely with the work

of [Deng et al. 2018]. These experiments, again, showed consistent improvements

above baseline accuracies for all evaluation datasets. The frontal-profile accuracy

for CFP did not come close to the accuracies of 93.09% and 94.05% achieved by

[Deng et al. 2018]. This is perhaps not surprising, however, given the initially higher

baseline accuracy and the additional high-quality data used during training of their

texture-completion network. (Use of this additional training data is indicated in

the “Training sets” column of the table.)

Finally, experiments were performed for a ResNet-100 architecture trained on

the MS1M-V3 dataset. Augmentation using 20k synthetic identities generated from

FFHQ using our 3D GAN gives a state-of-the-art accuracy of 93.53% on CPLFW.
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5.5 Conclusions

We proposed a novel 3D GAN formulation for learning a nonlinear texture model

from in-the-wild images and thereby generating synthetic images of new identities

with fully disentangled pose. Unlike other similar methods, the 3D GAN does not

require a training set of specially captured texture scans. We demonstrated that

images synthesised by our 3D GAN can be used successfully to improve the accuracy

of large-pose facial recognition. Finally, since the 3D GAN can generate images of

new identities, it provides an avenue for extraction of useful information from noisy

datasets such as FFHQ.
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Chapter 6

Robustness of facial recognition

to morphing attacks

6.1 Introduction

The potential threat of morphing attacks to systems secured by facial recog-

nition (FR) was first identified in the 2014 paper “The Magic Passport”

[Ferrara et al. 2014]. The paper demonstrated the relative ease with which im-

ages can be manipulated to simultaneously resemble multiple identities using com-

mercially available tools, and the vulnerability of FR systems to those images.

The extent to which face-morphing as a method of attack has been adopted

by criminals is not known since, by definition, successful attacks remain unde-

tected. Nevertheless, a pre-emptive arms race was spawned in the literature,

with evermore sophisticated morphing methods being proposed in conjunction with

tools for their detection [Damer et al. 2018, Debiasi et al. 2018, Ferrara et al. 2018,

Scherhag et al. 2018, Seibold et al. 2018]. Various datasets of morphed examples

have been made publicly available [Mahfoudi et al. 2019, Raghavendra et al. 2017]

and an ongoing morphing detection benchmark has been included as part of NIST’s

Face Recognition Vendor Test (FRVT) [Ngan et al. 2020].
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There are three broad approaches that might be taken to prevent morphing

attacks:

1. Trusted capture. In the prelude to a morphing attack, the accomplice

exploits his freedom to provide an image to the issuing authority. Removing

this freedom by enforcing live image-capture at the time of application would

make attacks significantly more challenging to perpetrate.

2. Morph-detection. Although currently known morphing methods produce

images of high quality, none of them is perfect. Morphed images may contain

certain features that betray their dubious provenance. Deploying automated

detection of these features, either prior to creation of the identity document

or at the time of use, could potentially prevent attacks.

3. Robustness of recognition. A morphed image contains an identity that

is neither that of the accomplice nor of the imposter. A facial recognition

system that is effective enough to recognise the identity as such would not be

vulnerable to the attack.

In this chapter we consider the third approach and evaluate the effect that

improvements to FR systems have on the success rate of morphing attacks. We

evaluate the robustness of two FR algorithms to two morphing methods that make

use of style-based generative networks; specifically, we make use of the generator of

StyleGAN [Karras et al. 2019] pre-trained on the Flickr-Faces-HQ (FFHQ) dataset.

At the time of writing, style-based GAN morphing methods had not been evaluated

in the literature in the context of face-morphing attacks. The similar work of

[Venkatesh et al. 2020] has since been published which evaluates a method similar

to the “midpoint method” presented here. Whereas [Venkatesh et al. 2020] focusses

on assessment of the extent to which FR systems are vulnerable to GAN-based face-

morphing attacks in comparison to landmark-based attacks, and also on detection

of such attacks, here we focus on the changing response of FR systems to morphed

images as fidelity improves. We observe that improvements to FR systems do not

necessarily translate to improved robustness to morphing attacks and that morphed
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images should be taken into account when setting acceptance thresholds. We also

introduce and evaluate a second style-based morphing method: the “dual biometric

method”. Finally, we show that FR networks trained using synthetic, 3D GAN

images demonstrate improved robustness to morphing attacks.

The rest of the chapter is organised as follows: in Section 6.2 we discuss work in

the literature proposing to complement FR systems with algorithms for detection

of morphed images, and also work leading to the development of the style-based

morphing methods proposed here; in Section 6.3 we describe the style-based mor-

phing methods being evaluated, providing results in Section 6.4; In Section 6.4.3

we analyse the effect of training with synthetic 3D GAN images on the success of

simulated morphing attacks; and in Section 6.5 we draw conclusions.

6.2 Related Work

6.2.1 Securing systems against morphing attacks

The largest part of the face-morphing attack literature consists of the development

of methods for the detection of morphs, for example, by using deep learning tech-

niques [Damer et al. 2018], analysis of sensor noise in images [Debiasi et al. 2018],

detection of landmark shifts [Scherhag et al. 2018], verification of the consis-

tency of lighting conditions [Seibold et al. 2018], or by de-morphing images to

reveal the original subject [Ferrara et al. 2018]. It is generally accepted, how-

ever, that detection methods are ineffective and suffer from high error rates that

worsen when morphed images are printed and scanned [Makrushin & Wolf 2018,

Scherhag et al. 2017b]. In [Makrushin & Wolf 2018] it is recommended that iden-

tity document-issuing authorities enforce the submission of high-resolution digital

images. However, they also point out that attackers could still manipulate digital

noise signatures to obfuscate traces of image editing. In a recent survey of mor-

phing attacks and detection methods [Scherhag et al. 2019] it was concluded that

morphing attack detection methods do not generalise well to datasets incorporating

real-world capture conditions. Indeed, in the most recent FRVT morph detection

report [Ngan et al. 2020], the best value of APCER@BPCER=0.01 (Attack Pre-
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Figure 6.1: StyleGAN midpoint morph of NIST subjects A and B. Images of subject
A (left) and B (right) were taken from [Ngan et al. 2020]. The central image is the
morph.

Figure 6.2: Examples of the output of various alternative, automated morphing
methods taken from [Ngan et al. 2020]. These correspond to Figure 2 (g), (i), (j)
and (l) of the NIST report.

sentation Classification Error Rate at a Bona fide Presentation Classification Error

Rate of 0.01) for detection of morphs of the types shown in Figure 6.2 (i.e. the

“Local Morph Colorized Match”, “Splicing”, “‘Combined” and “DST” methods)

was 88% for the “Splicing” method.

An assessment of the vulnerability of FR to the average of images of two iden-

tities [Raghavendra et al. 2017] showed it to be a more effective method than mor-

phing. They also showed, however, that the averaged images were much easier to

detect. It is unlikely, therefore, that an attacker would choose this type of method.

In this work we propose two StyleGAN-based morphing methods and, in light of

the evident difficulty of detecting morphs, we instead focus on demonstrating the

effect on morphing attacks of improvements to the robustness of FR algorithms.

6.2.2 The development of style-based face-morphing

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014] learn to map la-

tent vectors of random values to points on a manifold in data-space, usually image-
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space, representing realistic data-samples that can fool a concurrently trained dis-

criminator into classifying them as real samples. Typically, generator architec-

tures take a similar form to other deep neural networks, starting with the in-

put - in this case the random vector - and applying a series of convolutions. In

[Karras et al. 2019], however, the vector of random values is projected to each con-

volutional layer of the network and used to directly influence the scale of variation

in each feature map of each convolutional layer. This is achieved via conditional

instance normalisation [Dumoulin et al. 2017b], which was originally introduced as

a method to manipulate the styles of images via the use of image-to-image trans-

lation networks [Isola et al. 2017]. Since the generators of GANs do not translate

images but grow them, each convolutional layer naturally learns to control image

features at different scales. For example, pose is controlled by early, large-scale

features at low resolutions, whereas the presence of wrinkles is controlled later on,

at higher resolutions [Karras et al. 2019]. This natural, scale-wise disentanglement

(in conjunction with the “style mixing” used in [Karras et al. 2019]) causes the pro-

jections of the latent vector - the so called “w+” vectors - to be largely independent

of one another. It is this independence that makes style-based GANs particularly

suitable for image reconstruction and then morphing.

In order to use GANs to perform morphing attacks, one needs to be able to

invert the generator, i.e. to find the latent vector that best describes some in-

put image. There are various one-shot ways to do this, for example, one could

train an encoder to regress the latents from synthetic images or, alternatively,

train an encoder via Adversarially Learned Inference (ALI) [Dumoulin et al. 2017a,

Donahue et al. 2017] as was done in [Damer et al. 2018]. However, it is more effec-

tive, albeit slower, to find the latents using some iterative gradient descent method.

Typically, it is difficult to fit GANs to non-synthetic images; so much so that the

failure to reproduce images precisely has been used as a evidence that memori-

sation of images is not taking place in GANs [Webster et al. 2019]. However, in

[Abdal et al. 2019] it was noticed that precise reconstructions could be achieved by

treating the projected latents of StyleGAN independently during fitting, thereby

taking advantage of the aforementioned scale-wise disentanglement. (This increase

109



Chapter 6. Robustness of facial recognition to morphing attacks

Figure 6.3: Ablation tests of the midpoint morphing method. Top - Results of the
full method as described in Section 6.3.1; middle - perceptual loss and regularisation
of the latent vector removed (reconstruction of pixel intensities only); bottom - using
non-independent latent vectors at each convolutional layer. (The full loss was used,
as in the top row.)

in precision can be seen by comparing the reconstructed images in the top and bot-

tom rows of Figure 6.3.) It is then straightforward to generate realistic face-morphs

by linearly interpolating between two sets of recovered w+ vectors. In this work,

we also manipulate images in the w+ latent space. Further details of our methods

are given in the following section.

6.3 Face-morphing with StyleGAN

We will evaluate robustness of FR algorithms to two different methods of face-

morphing based on StyleGAN: the “midpoint method”, which is similar to that

demonstrated in [Abdal et al. 2019] and [Venkatesh et al. 2020], and the “dual bio-

metric method”, which has been developed for this study. In both methods we

optimise the loss functions using Adam [Kingma & Ba 2015]. To speed up conver-

gence and improve reconstruction quality, initialisations of the latent vectors are

provided by a one-shot encoder trained on pairs of random vectors and associated

synthetic images.

110



Chapter 6. Robustness of facial recognition to morphing attacks

6.3.1 The midpoint method

Face-morphing using the midpoint method consists of two steps: recovering the

two latent vectors that best describe two input images, and generating a synthetic

image from the midpoint interpolation of those two vectors. To recover w+ for an

input image x, the following loss function is minimised:

Lw+ = P(G(w+), x) + λr
Nx

||G(w+)− x||22 + λw||w+ − w||1 (6.1)

where G is the generator (with StyleGAN’s mapping network removed), Nx is the

number of image pixels, w is the average of the w+ seen during training of G, and

P is a perceptual loss given by

P(G(w+)), x) = λv
Nv

||V GG9(G(w+)− V GG9(x)||22 + λm(1−MSSSIM(G(w+), x))

(6.2)

where V GG9 is the output of the ninth layer of the VGG classification network

[Simonyan & Zisserman 2015] used to extract discriminative features, Nv is the

number of VGG features, and MSSSIM is the Tensorflow implementation of the

MS-SSIM metric described in [Wang et al. 2003]. The generator, G, is the offi-

cial version of the StyleGAN generator trained on the Flickr-Faces-HQ dataset.

The code implementing the inversion of StyleGAN’s generator was taken from

[Baylies 2019] and the coefficients weighting each term of equations (6.1) and (6.2)

are left at their default values of λr = 1.5, λw = 0.5, λv = 0.4 and λm = 200. Once

two vectors, w+
1 and w+

2 have been recovered, the final morphed image is given by

xmorph = G(
w+
1 + w+

2

2
) (6.3)

In the middle row of Figure 6.3 we demonstrate the effect of reverting the method

to that used in [Abdal et al. 2019] by removing the perceptual loss term and the

regularisation of w+ from equation (6.1) during latent recovery. The reconstructed

images as well the midpoint morph become more blurred, lacking in high-frequency

detail. This result motivates our use of the full, perceptual loss function in our

111



Chapter 6. Robustness of facial recognition to morphing attacks

experiments. Results showing the level of robustness of FR to morphing attacks

using this method are given in Section 6.4.1.

6.3.2 The dual biometric method

Although the latent space of StyleGAN is disentangled with respect to some scale-

dependent features, identity features are not necessarily disentangled. This means

that the equality

B(xmorph) =
1

2
B(G(w+

1 )) +
1

2
B(G(w+

2 )) (6.4)

where B is a biometric network producing an identity feature vector, does not

necessarily hold; i.e. the identity of the midpoint morph does not necessarily lie

between the identities of the two reconstructed images in a biometric feature space.

A more reliable method of ensuring that the morphed identity remains close to

each of the original identities could be to explicitly minimise those distances in the

feature space. This motivates our dual biometric method in which the following

cost function is minimised:

Lw+ = ||B(G(w+))−B(x1)||22 + ||B(G(w+))−B(x2)||22 + λw||w+ − w||1 (6.5)

For B we used a Keras implementation of the VGGFace2 “SENet” network

[Cao et al. 2018b] taken from [Malli 2020]. We have also included the same L1

regularisation of the latent vector as was used in the midpoint method. Since the

biometric loss terms are robust to (i.e. ignore) all image features except for the iden-

tity, the L1 regularisation is important for maintaining a realistic looking image.

λw was tuned by hand based on the appearance of a handful of morphed images

and set to a value of 3. Results showing the level of robustness of FR to morphing

attacks using this second method are given in Section 6.4.2.
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Figure 6.4: Examples of image-reconstructions and morphs produced using the
midpoint method. The set of morphs in the left half of the figure represent successful
attacks against Algo. 2017 but not Algo. 2019 with an acceptance threshold at
FRR=0.25%. Attacks using the set of morphs to the right were successful against
both Algo. 2017 and Algo. 2019.

6.4 Experiments

We evaluate robustness of FR to morphing attacks using the Labeled Faces in the

Wild (LFW) dataset [Huang et al. 2007]. To simulate realistic morphing attacks we

first select the highest quality image for each of the 5478 identities. We then assign

fifty random “friends” to each identity and select the strongest identity match to be

the accomplice, as judged by a biometric matching algorithm. Morphed images were

produced for each of these image pairs using both the midpoint method and our

dual biometric method. The original, bona fide images were then matched against

the morph mated with those two images. Note that we do not compare morphs

with independent images of the mated subjects. Comparisons are made with the

bona fide images used to create the morph meaning that matching scores are likely

to be at a maximum thus giving exaggerated, conservative estimates of FR system

vulnerability. We present results for two matching algorithms, the first based on

DeepVisage [Hasnat et al. 2017] that we refer to as “Algo. 2017” and the second

based on ArcFace [Deng et al. 2019a] that we refer to as “Algo. 2019”.
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Figure 6.5: Distributions of matching scores for Algo. 2017 (left) and Algo. 2019
(right). Morphed imposters were produced using the midpoint method. Dashed
lines represent thresholds of FAR=1× 10−5 for bona fide imposters.

6.4.1 Results - The midpoint method

Figure 6.4 gives examples of face-morphs generated from pairs from LWF using the

midpoint method. In Figure 6.5 we plot distributions of matching scores produced

for this type of morph by the 2017 and 2019 algorithms. The green, “Morphed

imposters” curves show the distributions of the Minimum Mated Morph Similarity

Scores (MMMSS), i.e. the minimum of either the accomplice-morph or morph-

imposter matching score. The minimum score is interesting since is the strength of

the weakest similarity that determines whether the attack as a whole succeeds. The

blue, “Genuines” curves show the distribution of mated matching scores for sets of

bona fide images from LFW sharing the same identity, and the orange, “Imposters”

curves show non-mated matching scores. In each figure we have drawn a threshold

at the score corresponding to a False Acceptance Rate (FAR) of 1 × 10−5 based

on the distribution of imposters (not of the morphs). Values of Mated Morph
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Figure 6.6: Examples of morphs produced using the dual biometric method. The
set of morphs in the left half of the figure represent successful attacks against Algo.
2017 but not Algo. 2019 with an acceptance threshold at FRR=0.25%. Attacks
using the set of morphs to the right were successful against both Algo. 2017 and
Algo. 2019.

Presentation Match Rate (MMPMR) [Scherhag et al. 2017a] at this threshold are

presented in Table 6.1 and correspond to the proportions of points lying in the

top-right quadrant of the scatter plots in Figures 6.5 and 6.7.

In typical circumstances, both algorithms are able to well separate the distribu-

tions of mated and non-mated matching scores. However, inclusion of the MMMSS

blurs this separation and at FAR=1× 10−5 the success rate of simulated morphing

attacks, the MMPMR, is 1.99% for Algo. 2017 and 2.96% for Algo. 2019, i.e. the

MMPMR is three orders of magnitude larger than the FAR. What is more, despite

the Genuine and Imposter curves clearly being better separated by Algo. 2019, the

value of MMPMR@FAR=1× 10−5 increases. This is not because the MMMSS be-

come less distinguishable from bona fide mated matching scores; in fact, from Figure

6.5 we also see an improvement in separation of the Genuine and Morphed imposter

curves. The issue arises from the fact that the improvement in separation of the
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Figure 6.7: Distributions of matching scores for Algo. 2017 (left) and Algo. 2019
(right). Morphed imposters were produced using the dual biometric method.
Dashed lines represent thresholds of FAR=1× 10−5 for bona fide imposters.

bona fide mated and non-mated matching scores is larger than for the MMMSS.

This acts to shift the threshold of FAR=10−5 to a lower score that “overtakes” the

improvements in MMMSS. This means that we cannot assume that improvements

to FR systems will lead directly to increased robustness to morphing attacks. In-

stead, the response of the FR system to datasets of morphed images should be

considered when setting operational acceptance thresholds.

Table 6.2 shows values of MMPMR, and also FAR, at a threshold corresponding

to FRR=0.73% for the bona fide mated pairs of LFW. We see that this corresponds

to the original threshold of FAR=1×10−5 for Algo. 2017 but that for Algo. 2019 it

corresponds to FAR=1.81×10−6. At this much more stringent threshold, MMPMR

drops to 0.07% for Algo. 2019 (and drops to 0% for the morphs produced by the dual

biometric method). This means that, by compromising on improvements to FRR,

essentially all face-morphing attacks of the type presented here can be prevented.
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Morphing method Algo. 2017 Algo. 2019
Bone fide imposters (FAR) 1× 10−5 1× 10−5

Genuines (FRR) 0.73% 0.25%
Midpoint Morphs (MMPMR) 1.99% 2.96%
Biometric Morphs (MMPMR) 3.88% 2.34%

Table 6.1: MMPMRs and FRR at a False Acceptance Rate of 1 × 10−5 for two
different face-recognition algorithms.

Morphing method Algo. 2017 Algo. 2019
Bone fide imposters (FAR) 1× 10−5 1.81× 10−6

Genuines (FRR) 0.73% 0.73%
Midpoint Morphs (MMPMR) 1.99% 0.07%
Biometric Morphs (MMPMR) 3.88% 0.00%

Table 6.2: MMPMRs and FAR at a False Rejection Rate of 0.73% for two different
face-recognition algorithms.

[Scherhag et al. 2017a] suggests reporting Relative Morph Match Rate (RMMR)

as a measure of FR system vulnerability where RMMR = MMPMR + FRR. This

measure varies with threshold, however, and implicitly weights robustness to morphs

and low FRR as being equal in priority, which is not necessarily the case. We find

it preferable to observe the compromise between MMPMR and FRR by plotting

the relevant ROC curve, as has been done in Figure 6.8. Here we see that the ROC

curves for Algo. 2019 are significantly steeper than for Algo. 2017 indicating that

accepting only a small increase in FRR can cause the success rates of morphing

attacks to plummet relative to those measured against Algo. 2017.

6.4.2 Results - The dual biometric method

Figure 6.9 gives a direct comparison of face-morphs generated using the dual bio-

metric method (“BioMorph”) with those generated by the midpoint method (“Mid-

Morph”). We see that the biometrically morphed identities are plausible and that

they are distinct from the midpoint morphs. We also notice that the image-quality

of the bio-morphs is higher than that of the midpoint morphs. This is because

the images of LFW are of a lower quality than the images of FFHQ used to train
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Figure 6.8: ROC curves showing the trade-off between MMPMR and FRR.

StyleGAN. Image artefacts from LFW therefore seep into the midpoint morphs via

the image-reconstructions. During generation of the bio-morphs, the original im-

ages are never reconstructed. The only constraint is that similar identity-related

features be generated.

Figure 6.7 shows the distributions of matching scores for the biometrically mor-

phed images. From the scatter plots, we see that the matching scores are less

balanced between accomplices and imposters, i.e. a large proportion of bio morphs

were found to match one identity much more strongly than the other. This contrasts

with the midpoint method where a larger proportion of morphs were found to give

weak matching scores for both original images. From Table 6.1 we see that despite

the imbalanced matching scores, MMPMR@FAR=1 × 10−5 is larger for biometric

morphs than for midpoint morphs as measured by Algo. 2017. This situation re-

verses, however, for Algo. 2019 which succeeds in reducing the number of successful

simulated attacks without modification to the threshold of FAR=1 × 10−5. Table

6.2 shows that by sacrificing improvements to FRR and modifying the acceptance

threshold of Algo. 2019 to FAR=1.81 × 10−6, all simulated biometric morphing

attacks can be prevented. Figure 6.6 (right) shows examples of bio-morphs that re-
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Figure 6.9: Comparison of morphs generated using the midpoint and dual biometric
methods.

main to be problematic for the 2019 algorithm with a threshold at FAR=1× 10−5.

Those shown in Figure 6.6 (left) were previously problematic for Algo. 2017 but

are correctly rejected by Algo. 2019.

By evaluating the dual biometric method on an in-the-wild dataset, we have

inadvertently disguised the fact that desirable (for the attacker), non-identity im-

age characteristics are lost. For example, Figure 6.10 (top) demonstrates the result

of applying the biometric morphing method to the passport-style photographs of

Figure 6.1. The generated morph resembles an in-the-wild image from FFHQ and

would likely not be accepted for use on an identity document. To avoid this prob-

lem, a pixel-wise reconstruction loss can be applied to background regions. Figure

6.10 (bottom) shows an example of a biometric morph produced in this way. An

alternative approach for an attacker to overcome this issue could be to train a GAN

using solely passport-style images.
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Figure 6.10: Demonstration of the dual biometric method applied to the passport-
style images of Figure 6.1. Top: as described in equation (6.5); Bottom: with added
reconstruction loss on the background regions.

6.4.3 The effect of training with synthetic identities on morphing
attacks

In the previous chapter we saw that synthetic data generated by a GAN integrating

a 3D morphable model can be used to improve the accuracy of large-pose facial

recognition. (See Table 5.3.) The effect on performance when evaluating on datasets

containing little pose variation, however, was less clear. Small improvements in

accuracy were seen for LFW and so one would hope that this translates to improved

robustness to our LFW-based, simulated morphing attacks. As we saw for the

midpoint morphs, however, changes in response of the FR system to bona fide

imposters are not necessarily equal to those to morphed imposters.

To evaluate the effect of training with synthetic data, we produced match-

ing scores for LFW and for our two sets of morphed images using our baseline

ResNet-50 network from the previous chapter, trained on CASIA Webface, and

also the version augmented with 20k synthetic identities. In Figure 6.11 we plot

the corresponding ROC curves showing the compromise between the attack success

rate (MMPMR) and FRR. Overall, simulated attacks conducted using the mid-

point morphing method were more successful against both networks with higher
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Figure 6.11: ROC curves showing the trade-off between MMPMR and FRR for
biometric networks trained with and without synthetic 3D GAN data.

MMPMR at most values of FRR. Training with synthetic data was found to reduce

the MMPMR of midpoint morphs at all FRR. For biometric morphs, the change in

performance is noisier. However, clear improvements can be seen at lower values of

FRR.

6.5 Conclusions

In this chapter we evaluated the robustness of two facial recognition algorithms to

face-morphing attacks using a recent, StyleGAN-based morphing method. We also

proposed and evaluated a second, related morphing method in which biometric dis-

tances of morphed faces from the contributing identities are minimised explicitly.

Both morphing methods were found to be of potential threat with their relative

success rates depending on the FR algorithm under attack. Assuming that we have

been able to simulate realistic attack scenarios, it is likely that fewer than 3% of

StyleGAN-based morphing attacks would succeed against a state-of-the-art facial

recognition algorithm with a matching threshold set at FAR=1 × 10−5. We also

observed that improvements to FR algorithms do not necessarily translate directly
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to increased robustness to face-morphing attacks and recommend that matching

scores for datasets of morphed images be considered when setting operational ac-

ceptance thresholds. Finally, we showed that augmenting FR training datasets with

synthetic 3D GAN data leads to increased robustness to both kinds of StyleGAN-

based morphing method at low FRR.
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Conclusions and Future Work

Augmentation of facial recognition datasets with synthetic identities promises vari-

ous advantages. For example, necessitation of the learning of a more discriminative

feature-space, and the possibility of extracting useful information from noisy / un-

labelled datasets. The work of this thesis investigated the use of GANs to generate

such synthetic datasets and demonstrated these particular advantages.

We began by assessing the ability of GANs to generate images of subjects not

found in the training dataset. It is widely believed that GANs are indeed capable

of doing so. However, this belief is mainly based on observing qualitative differ-

ences between a handful of synthetic images and their nearest neighbours from the

training dataset. Such analyses give little idea of whether the generators of GANs

over-fit to the training dataset or not. Here, we provided analyses of full sets of

biometric matching scores between synthetic and real datasets showing that they

display similar dynamics to non-mated matching scores within training datasets

of non-synthetic images. This allowed us to conclude that any over-fitting of gen-

erators is minimal and that subjects from training datasets are not being prefer-

entially generated relative to any other possible identity in the biometric feature

space. This conclusion validates the use of GANs for dataset anonymisation and

for data-augmentation with synthetic identities.

Chapter 4 investigated the ability of GANs to disentangle identity from other

image characteristics. We proposed a new method of gaining fine-control of la-

belled image characteristics but found that an additional biometric constraint was

necessary to ensure consistent identity. We also evaluated the “SD-GAN” method

of disentangling identity and proposed a modified, triplet-style loss incorporating

an imposter term. Evaluation of these methods demonstrated our SD-GAN with
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triplet loss to be the most successful method of disentangling identity. However,

False Rejection Rates remain an order of magnitude larger than for real data in-

dicating that identity-drift within synthetic sets of mated images remains to be a

problem, particularly when augmenting pose to large angles.

In Chapter 5 we proposed a method of cleanly disentangling pose from identity

in GANs by introducing a 3D shape model into the architecture of the genera-

tor. Unlike other generative methods employing 3D models and adversarial losses,

our formulation does not involve reconstruction of training images and is therefore

adapted for generation of new, synthetic identities. Augmenting FR datasets with

sets of these synthetic identities was shown to improve biometric verification ac-

curacy and we demonstrated state-of-the-art performance on the Cross-Pose LFW

dataset.

Finally, analysis of the susceptibility of two recent FR algorithms to simulated

face-morphing attacks showed the two proposed StyleGAN-based morphing meth-

ods to be threats, although fewer than 3% of attacks were successful for the plausible

acceptance threshold of FAR=10−5. A potentially important observation was made

in that improvements to the fidelity of FR systems do not necessarily translate di-

rectly to improved robustness to morphing attacks. The response of FR algorithms

to datasets of morphed images should therefore be taken into account when setting

operational acceptance thresholds, and compromises to FRR made where necessary

in order to ensure that morphed images can be reliably excluded. A similar anal-

ysis for an FR algorithm augmented with synthetic, 3D GAN data showed some

improvement in resilience to attacks.

7.1 Future Work

Robustness to pose remains to be one of the greatest challenges for facial recognition.

We believe data-augmentation using synthetic identities to be the simplest and most

elegant solution, and strongly advocate further research into improved 3D methods.

The current state-of-the-art in 3D generation is represented by [Gecer et al. 2020].

As discussed previously, however, the method depends on availability of a dataset
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of high-quality 3D scans and corresponding textures. In contrast, the work of this

thesis confirmed that data-augmentation using synthetic identities is feasible whilst

making use of only in-the-wild images. Bridging the gap in image quality between

the 3D GAN proposed here and that of [Gecer et al. 2020] whilst learning only from

in-the-wild images is an important research direction.

In Chapter 5, various limitations of our 3D GAN method were identified. It

was speculated that it might be possible to learn more realistic textures if the 3D-

modelled conditions more closely reflected those found in the training datasets. This

could be achieved, for example, by first fitting the 3DMM to the images of the train-

ing dataset to get sets of shape, expression and pose parameters, and then selecting

the corresponding random parameters from those distributions during training of

the 3D GAN. Similarly, shading of generated textures during training using a plau-

sible 3D lighting model and distribution of lighting parameters may help to avoid

lighting effects being learned as part of the texture. The linear shape model is also

a limitation in the current formulation of the 3D GAN. Some nonlinear deviation

from the model shape could be introduced in a similar way to [Tran & Liu 2018],

although this is likely to lead to decreased stability during training.
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