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“You must forge your own path for it to mean anything.”

-Rick Riordan, The Lost Hero





Abstract

In this thesis, we study a class of quasilinear elliptic equations posed in a
two-component domain with an L1 data and its asymptotic analysis. More
precisely, we consider a two-component domain, denoted by Ω, which can
be written as the disjoint union Ω = Ω1 [ Ω2 [ Γ, where the open sets Ω1

and Ω2 are the two components of Ω, and Γ is the interface between these
components. We study the following quasilinear elliptic problem posed in Ω:

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f in Ω1,

� div(B(x, u2)ru2) = f in Ω2,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ,

u1 = 0 on @Ω,

where ⌫1 is the unit outward normal to Ω1, f is an L1 function, and B is
a coercive matrix field which has a restricted growth assumption (B(x, r) is
bounded on any compact set of R).

The first part of this thesis is dedicated to existence and uniqueness re-
sults for this problem in the framework of renormalized solutions, which was
introduced by R.J. DiPerna and P.L. Lions.

In the second part, we study the corresponding homogenization problem
for a two-component domain with a (disconnected) periodic second com-
ponent by combining the notion of renormalized solutions and the periodic
unfolding method, introduced D. Cioranescu, A. Damlamian and G. Griso.
It has been successively adapted to two-component domains by P. Donato,
K.H. Le Nguyen, and R. Tardieu.

In order to obtain a uniqueness result for the homogenized problem, we
study the properties of the corresponding cell problem. In particular, we show
that if the matrix field in the cell problem, denoted A(y, t), is local Lipschitz-
continuous with respect to t, then the resulting homogenized matrix A0 keeps
this property. This uniqueness result ensures that the convergences obtained
in the homogenization process hold for the whole sequence of the periodicity
parameter (and not only a subsequence).
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Résumé

Dans cette thèse, nous étudions une classe de problèmes elliptiques quasi-
linéaires posés dans un domaine à deux composantes avec une donnée L1 et
son analyse asymptotique. Plus précisement, on considère un domaine Ω,
que l’on écrit comme une réunion disjointe Ω = Ω1[Ω2[Γ, où les ensembles
ouverts Ω1 et Ω2 sont les deux composantes de Ω, et Γ est l’interface entre
les composantes. Nous étudions le problème elliptique quasi-linéaire suivant
posé dans Ω :

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f dans Ω1,

� div(B(x, u2)ru2) = f dans Ω2,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 sur Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) sur Γ,

u1 = 0 sur @Ω,

où ⌫1 est le vecteur normal unitaire extérieur à Ω1, f 2 L1(Ω) et B est une
matrice coercitive qui vérifie une hypothèse assez générale (B(x, r) n’est pas
uniformément borné mais borné sur tout ensemble compact de R).

La première partie de cette thèse est donc dédiée à des résultats d’existence
et d’unicité de ce problème dans le cadre des solutions renormalisées, qui a
été introduit par R.J. DiPerna et P.L. Lions.

Dans la deuxième partie, nous étudions l’homogénéisation d’un problème
du même type, posé dans un domaine à deux composantes dont la deuxième
est une réunion périodique d’ensembles déconnectés, en mélangeant le notion
des solution renormalisées et la méthode de l’éclatement périodique. Cette
méthode a été introduite par D. Cioranescu, A. Damlamian and G. Griso et
adaptée aux domaines à deux composantes par P. Donato, K.H. Le Nguyen,
et R. Tardieu.

Pour obtenir un résultat d’unicité pour le problème homogénéisé qui
puisse assurer que les convergences obtenues sont valables pour toute la suite
du paramètre de périodicité (et non pas à une sous-suite près), nous étudions
les propriétés du problème périodique correpondant, posé dans la cellule de
référence. En particulier, nous démontrons que si la matrice A(y, t) du prob-
lème dans la cellule de référence est localement lipschitzienne par rapport à
t, alors la matrice homogénéisée résultante A0(t) garde cette propriété.
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Résumé de la thèse

Dans cette thèse, nous étudions une classe de problèmes elliptiques quasi-
linéaires posés dans un domaine à deux composantes avec une donnée L1 et
nous en faisons l’analyse asymptotique dans un domaine périodique à deux
composantes. Plus précisement, on considère un domaine Ω, que l’on écrit
comme une réunion disjointe

Ω = Ω1 [ Ω2 [ Γ,

où les ensembles ouverts Ω1 et Ω2 sont les deux composantes de Ω, et Γ

est l’interface entre les composantes. Nous étudions le problème elliptique
quasi-linéaire suivant posé dans Ω :

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f dans Ω1,

� div(B(x, u2)ru2) = f dans Ω2,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 sur Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) sur Γ,

u1 = 0 sur @Ω,

(1)

où ⌫1 est le vecteur normal unitaire extérieur à Ω1, f 2 L1(Ω) et B est une
matrice coercitive qui vérifie une hypothèse assez générale (B(x, r) n’est pas
uniformément borné mais borné sur tout ensemble compact de R).

Observons que sous les hypothèses précédentes sur f et B nous ne pouvons
pas, en général, obtenir l’existence d’une solution faible. Même si f 2 L2(Ω)
sans hypothèse de bornitude sur B(x, r) par rapport à r, on ne sait pas
démontrer en général l’existence d’une solution faible (de même si B est
borné et f 2 L1(Ω)).

Rappelons que le problème

� div(A(x, u)ru) = f

avec des conditions de Dirichlet sur le bord, si A(x, r) est bornée, elliptique
et f appartient à L1(Ω) (ou même est une mesure bornée de Radon), il existe



d’apres Boccardo-Gallouët [18] une solution au sens des distributions (et ces
résultats sont valable pour une classe plus général d’opérateurs non linéaires

à croissance p). Les auteurs démontrent que u 2 W 1,q
0 (Ω), 81 < q <

N

N � 1
et verifie Z

Ω

A(x)rur' dx =

Z

Ω

f' dx, 8' 2 C1
0 (Ω).

Cependant, cette solution au sens des distributions ne peut pas avoir, en
général, une énergie finie, au sens où u /2 H1

0 (Ω). De plus même dans le
cas linéaire, c’est-à-dire A(x, r) = A(x), la solution au sens des distributions
n’est pas unique en général d’apres le contre exemple de Serrin [78] (voir
aussi [76]).

Pour pallier cet inconvénient, plusieurs notions de solutions ont été dévelop-
pées : solutions entropiques (voir [10]), SOLA (solutions obtenues comme
limite d’approximation, voir [37]) et solutions renormalisées.

Pour mener à bien notre étude sur le problème (1) (existence, unicité,
analyse asymptotique), nous avons besoin d’une notion de solution qui per-
met des résultats d’unicité et de stabilité. Nous utiliserons dans cette thèse
la notion de solution renormalisée.

La notion de solution renormalisée a été introduite dans [39] par R.J.
DiPerna et P.L. Lions pour des équations du premier ordre. Elle a été
développée ensuite par F. Murat dans [71], par P.L. Lions et F. Murat dans
[63] pour des équations elliptiques avec conditions de Dirichlet et données
L1, puis par G. Dal Maso et al. dans [36] pour des équations elliptiques
avec données mesures. La plupart des travaux concernant le développement
des solutions renormalisées traite de problèmes elliptiques (ou paraboliques)
à données L1 et avec des conditions de Dirichlet, mais plus rarement le cas
d’autres conditions sur le bord (citons [13] pour des conditions de Neumann,
[59] pour un domaine perforé). L’existence et l’unicité d’une solution renor-
malisée ont été étudiées pour des domaines perforés dans [59], avec une condi-
tion de Fourier sur le bord des trous, mais, à notre connaissance les équations
de type (1) avec donnée L1 et saut à l’interface n’ont pas été abordées dans
la littérature.

La première partie de cette thèse est donc dédiée à des résultats d’existence
et d’unicité pour la solution du problème (1). Nous avons donné d’abord une
définition appropriée de solution renormalisée du problème. Cette définition,
ainsi que le résultat d’existence, sont présentés dans le chapitre 2. L’unicité
de cette solution est démontrée dans le chapitre 3, où une hypothése supplé-
mentaire de lipschitzianité locale pour la matrice B est nécessaire.

Dans la deuxième partie, nous étudions l’homogénéisation d’un problème
du même type, posé dans un domaine à deux composantes dont la deuxième

2



est une réunion périodique d’ensembles déconnectés, qui est présentée dans le
chapitre 5. Dans ce chapitre, nous identifions d’abord, en utilisant les estima-
tions a priori obtenues dans la première partie, le problème éclaté (théorème
12). Nous obtenons ensuite le problème homogénéisé dans Ω (théorème 13).

Pour y parvenir, nous utilisons la méthode de l’éclatement périodique,
qui a été introduite dans [31] pour des domaines fixes et dans [29] pour des
domaines perforées. Elle a été étendue successivement au cas de domaines
à deux composantes dans [46] et [45] (pour une présentation générale nous
renvoyons au livre récent [32]).

Pour obtenir un résultat d’unicité pour le problème homogénéisé qui
puisse assurer que les convergences obtenues sont valables pour toute la suite
du paramètre de périodicité (et non pas à une sous-suite près), nous étudions
dans le chapitre 4 les propriétés du problème périodique correpondant, posé
dans la cellule de référence (voir (10)). En particulier, nous démontrons que
si la matrice A(y, t) du problème dans la cellule de référence est localement
lipschitzienne par rapport à t, alors la matrice homogénéisée résultante A0(t)
(voir (12)) garde cette propriété. Les résultats obtenus dans cette thèse sont
présentés ci-dessous en détails.

Le chapitre 1 est dédié à l’introduction de la thèse en anglais.

Partie I

Dans cette partie, nous étudions l’existence et l’unicité de la solution renor-
malisée de (1). On définit d’abord le domaine à deux composantes Ω, qui
est un ensemble ouvert borné connexe de R

N de frontière @Ω. Nous décom-
posons le domaine comme la réunion disjointe Ω = Ω1 [Ω2 [Γ, où Ω2 est un
ensemble ouvert tel que Ω2 ⇢ Ω de frontière lipschitzienne Γ, et Ω1 = Ω \Ω2

(voir figure 1).

Ω
Ω2

Γ

Ω2

Γ

Ω1

∂Ω

Figure 1: Le domaine à deux composantes Ω
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lim
n!1

1

n

Z

Γ

(u1 � u2)(Tn(u1)� Tn(u2)) d� = 0; (3b)

et pour tout S1, S2 2 C1(R) (ou S1, S2 2 W 1,1(R)) à support compact, u
satisfait
Z

Ω1

S1(u1)B(x, u1)ru1 ·rv1 dx+

Z

Ω1

S 0
1(u1)B(x, u1)ru1 ·ru1 v1 dx

+

Z

Ω2

S2(u2)B(x, u2)ru2 ·rv2 dx+

Z

Ω2

S 0
2(u2)B(x, u2)ru2 ·ru2 v2 dx

+

Z

Γ

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2)) d�

=

Z

Ω1

fv1S1(u1) dx+

Z

Ω2

fv2S2(u2) dx, (4)

pour tout v 2 V \ (L1(Ω1)⇥ L1(Ω2)).

Notons que, dans le cadre des solutions renormalisées, une solution u
peut ne pas avoir assez de régularité pour avoir un gradient et une trace
dans le sens classique des espaces de Sobolev. Nous devons donc d’abord
donner une définition appropriée du gradient et de la trace d’une solution
renormalisée. Dans ce but, nous démontrons la proposition suivante (qui est
une généralisation de [10, Lemma 2.1] et [59, Proposition 2.3]) :

Proposition 2. Soit u = (u1, u2) : Ω \Γ �! R une fonction mesurable telle
que Tk(u) 2 V pour tout k > 0.

1. Pour i = 1, 2, il existe une fonction mesurable unique Gi : Ωi �! R
N

telle que pour tout k > 0,

rTk(ui) = Gi�{|ui|<k} p.p. dans Ωi,

où �{|ui|<k} dénote la fonction caractéristique de l’ensemble

{x 2 Ωi : |ui(x)| < k}.

On définit Gi comme le gradient de ui et on écrit Gi = rui.

2. Si

sup
k�1

1

k
kTk(u)k

2
V < 1,

alors il existe une fonction mesurable unique

wi : Γ �! R, for i = 1, 2,
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telle que pour tout k > 0,

�i(Tk(ui)) = Tk(wi) p.p. sur Γ,

où �i : H
1(Ωi) �! L2(Γ) est l’opérateur de trace. On définit la fonction

wi comme la trace de ui sur Γ et on écrit

�i(ui) = wi, i = 1, 2.

L’originalité de cette définition réside dans la régularité (2b), la décrois-
sance d’une énergie sur le bord (3b) ainsi que la présence du terme sur le
bord Z

Γ

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2)) d�.

La régularité (2a), la décroissance de l’énergie (3a) sont classiques et
permettent via notamment 1 de la proposition 2 de donner un sens à tous
les termes de (4) excepté le terme sur le bord.

En effet, soit Si 2 C1(R), i = 1, 2 à support compact. Pour tout v 2
V \ (L1(Ω1) ⇥ L1(Ω2)), si suppSi ⇢ [�k, k] (i = 1, 2), alors pour i = 1, 2,
on a

Si(ui)B(x, ui)rui ·rvi = Si(ui)B(x, Tk(ui))rTk(ui) ·rvi 2 L1(Ωi),

S 0
i(ui)B(x, ui)rui ·rui vi = S 0

i(ui)B(x, Tk(ui))rTk(ui) ·rTk(ui) vi 2 L1(Ωi),

et
fviSi(ui) 2 L1(Ωi).

Corcernant le terme sur le bord Γ, il est important de remarquer que (2a)
et (3a) ne suffisent pas à donner un sens à h(x)(u1�u2)(v1S1(u1)�v2S2(u2)).
En général, il n’y a aucune raison d’avoir

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2))

= h(x)(u1 � u2)(v1S1(u1)� v2S2(u2))�{|u1|n}�{|u2|n}

pour n grand.
Pour traiter l’intégrale sur Γ, nous allons utiliser (2b). Pour tout n 2 N,

on définit ✓n : R �! R (voir figure 3) par

✓n(s) =

8
>>>>>>><
>>>>>>>:

0, si s  �2n,
s

n
+ 2, si � 2n  s  �n,

1, si � n  s  n,

�
s

n
+ 2, si n  s  2n,

0, si s � 2n.

6





(b) la fonction x 7! B(x, r) est mesurable p.p. r 2 R,

et vérifie les hypothèses suivantes :

(A3.1) B(x, r)⇠ · ⇠ � ↵|⇠|2, avec ↵ > 0,

pour p.p. x 2 Ω, 8r 2 R, 8⇠ 2 R
N ;

(A3.2) pour tout k > 0, B(x, r) 2 L1(Ω⇥ (�k, k))N⇥N .

Alors, il existe une solution renormalisée de (1) dans le sens de définition 1.

La preuve du theorème 3 se fait par passage à la limite dans un problème
approché. La première étape, si {f ε} ⇢ L2(Ω) telle que

f ε �! f fortement dans L1(Ω),

et Bε(x, t) = B(x, T1/ε(t)), nous considérons une solution uε 2 V vérifiant
8
>>>>>><
>>>>>>:

� div(Bε(x, u
ε
1)ruε

1) = f ε dans Ω1,

� div(Bε(x, u
ε
2)ruε

2) = f ε dans Ω2,

(Bε(x, u
ε
1)ruε

1)⌫1 = (Bε(x, u
ε
2)ruε

2)⌫1 sur Γ,

(Bε(x, u
ε
1)ruε

1)⌫1 = �h(x)(uε
1 � uε

2) sur Γ,

uε
1 = 0 sur @Ω.

La deuxième étape consiste à établir des estimations a priori, puis de con-
struire (à l’aide de résultats de compacité de Rellich-Kondrachov) u telle que,
à une sous-suite près,

8
>>><
>>>:

uε
i �! ui p.p. dans Ω,

Tk(u
ε
i )* Tk(ui) faiblement dans H1(Ωi),

�i(u
ε
i ) �! �i(ui) p.p. dans Γ,

�i(Tk(u
ε
i )) �! �i(Tk(ui)) fortement dans L2(Γ), p.p. sur Γ.

La nouveauté ici vient une fois encore des termes sur le bord et d’exploiter
efficacement, par exemple, dans la troisième étape, l’estimation a priori

8k > 0, (uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) borné dans L1(Γ),

et la limite

lim
n!1

lim sup
ε!0

1

n

✓Z

Ω\Γ

B(x, Tn(u
ε))rTn(u

ε)rTn(u
ε) dx

+

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

◆
= 0.

8



Dans la quatrième étape, on passe à la limite avec un choix judicieux de
fonction test et on démontre que u est une solution renormalisée de (1).

Remarque 4. Pour définir le terme sur le bord, il est possible de remplacer
(2b) et (3b) par une condition de régularité, donnée par

u1 � u2 2 W 1� 1
q
,q(Γ), avec q > 1. (6)

Ce type de régularité découle des estimations du type Boccardo-Gallouët,
mais dépend fortement des constantes de Sobolev. Comme ces constantes
de Sobolev peuvent exploser dans l’analyse asymptotique, il n’est pas possible
d’utiliser (6). Ajoutons que (6) sera mise en défaut pour des problèmes non
linéaires plus généraux. C’est pour ces raisons que nous avons choisi (2b) et
(3b) dans la définition de solution renormalisée.

Chapitre 3 : L’unicité de la solution renormalisée

Dans ce chapitre, nous démontrons l’unicité d’une solution renormalisée de (1).
Pour cela, nous rajoutons aux hypothèses (A1)-(A3) du théorème 3 la con-
dition de lipschitzianité locale suivante sur la matrice B :

(A4) B(x, r) est localement lipschitzienne par rapport à r, c’est-à-dire, pour
tout compact K de R il existe MK > 0 tel que

|B(x, r)� B(x, s)|  MK |r � s|, 8r, s 2 K, p.p. x 2 Ω.

Pour démontrer le résultat d’unicité, nous appliquons la méthode dévelopée
dans [16, 38]. Cette méthode utilise l’existence d’une fonction auxiliaire
' 2 C1(R) qui vérifie des propriétés intéressantes. Plus précisément, nous
utilisons la proposition suivante de [38] :

Proposition 5 ([38]). On suppose (A4). Alors, il existe une fonction ' 2
C1(R) telle que

'(0) = 0 et '0 � 1.

De plus, il existe des constantes � > 1/2, 0 < k0 < 1, et L > 0 telles que

'0

(1 + |'|)2δ
2 L1(R).

En outre, pour tout r, s 2 R tels que

|'(r)� '(s)|  k, pour 0 < k < k0,

on a

9



����
B(x, r)

'0(r)
�

B(x, s)

'0(s)

���� 
1

'0(s)

Lk

(1 + |'(r)|+ |'(s)|)δ

et
1

L

'0(s)

'0(r)
 L.

Une des difficultés vient de l’intégrale sur le bord Γ qui est liée au saut de
la solution. La proposition suivante est un outil important pour la démon-
stration du théorème d’unicité, liée aux estimations de Boccardo-Gallouët :

Proposition 6. Pour i = 1, 2, soit �i l’opérateur de trace défini sur H1(Ωi).
Sous les hypothèses de théorème 3, si u est une solution renormalisée de (1),
alors �i(ui) 2 L1(Γ), i = 1, 2.

La méthode développée dans [16, 38] consiste formellement à utiliser
Tk('(u) � '(v)) comme fonction test. La justification est très technique
et se fait par passage à la limite à l’aide de la fonction ✓n(u)Tk('(u)� '(v))
autorisée dans la définition de solution renormalisée.

Cependant, la non linéarité du terme Tk('(u)�'(v)) n’est pas compatible
avec le terme du bord dans le sens où le terme obtenu
Z

Γ

h(x)((u1 � v1)� (u2 � v2))(Tk('(u1)� '(v1)� Tk('(u2)� '(v2))) d�

n’est pas nécessairement de signe positif.
Pour surmonter cette difficulté, nous démontrons une propriété de signe

sur Γ :

Lemme 7. On suppose (A1)–(A4). Si u et v sont deux solutions renormal-
isées de (1), alors sgn(u1 � v1) = sgn(u2 � v2) p.p. sur Γ.

Ce lemme est essentiel pour la démonstration du théorème d’unicité suiv-
ant, qui est le résultat principal de ce chapitre :

Théorème 8. Sous les hypothéses (A1)-(A4), la solution renormalisée de
(1) est unique.

Une des étapes principales de la démonstration du théorème 8 est de
montrer que

lim
k!0

1

k2

Z

Ωi

✓
1

'0(ui)
+

1

'0(vi)

◆
|rTk('(ui)� '(vi))|

2 dx = 0, i = 1, 2, (7)

où u = (u1, u2) et v = (v1, v2) sont deux solutions renormalisées de (1) et '
est la fonction introduite dans proposition 5.
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Pour le démontrer, nous obtenons d’abord, aprés de long calculs, l’inégalité
suivante :

lim sup
k!0

✓
1

k2

Z

Uk
1

✓
1

'0(u1)
+

1

'0(v1)

◆
|r'(u1)�r'(v1)|

2 dx

+
1

k2

Z

Uk
2

✓
1

'0(u2)
+

1

'0(v2)

◆
|r'(u2)�r'(v2)|

2 dx+
1

k2
Ck

◆
 0,

où
Uk
i = {x 2 Ωi : 0 < |'(ui)� '(vi)| < k}, i = 1, 2,

et

Ck =

Z

Γ

h(x)[(u1� v1)� (u2� v2)][Tk('(u1)�'(v1))�Tk('(u2)�'(v2))] d�.

Alors, pour montrer (7), il suffit de montrer que

lim sup
k!0

1

k2
Ck � 0. (8)

Comme écrit précédemment à cause de la présence de la fonction ', nous

ne connaissons pas en général le signe de Ck. Le controle de
1

k2
Ck quand

k ! 0 est l’une des difficultés principale. Pour ce faire, on utile la propriété
de signe sur Γ (lemme 7) et on divise l’ensemble {x 2 Γ ; u1(x)� v1(x) > 0}
(défini à un ensemble de mesure nulle près) en 4 sous-ensembles disjoints,

{u1 � v1 > 0} = P1 [ P2 [ P3 [ P4,

où

P1 := {'(u1)� '(v1) � k} \ {'(u2)� '(v2) � k},

P2 := {0 < '(u1)� '(v1) < k} \ {0 < '(u2)� '(v2) < k},

P3 = {'(u1)� '(v1) � k} \ {0 < '(u2)� '(v2) < k},

P4 := {0 < '(u1)� '(v1) < k} \ {'(u2)� '(v2) � k}.

Grâce au lemme 7 et à ce découpage, on démontre (8).
Une fois que (7) est démontrée, on s’inspire de [16, 38] pour obtenir dans

un premier temps que u1 = v1 dans Ω1 (car u1 et v1 ont une trace nulle sur
@Ω, ce qui permet d’utiliser l’inégalité de Poincaré). Ainsi u1 = v1 sur Γ, ce
qui, combiné au lemme 7 et (7) donnent u2 = v2 dans Ω2.
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quasi-linéaire suivant :
8
>>>>>>>>>>><
>>>>>>>>>>>:

� div
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
= f dans Ω

ε
1,

� div
⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
= f dans Ω

ε
2,⇣

A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 =

⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
⌫ε1 sur Γ

ε,
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 = �"�1h

⇣x
"

⌘
(uε

1 � uε
2) sur Γ

ε,

uε = 0 sur @Ω,

(9)

sous les mêmes hypothèses considérées dans la première partie, pour " fixé.
On suppose de plus ici la condition de périodicité usuelle pour A et h.

Concernant l’étude de l’homogénéisation de (9) avec f 2 L2(Ω) (voir par
exemple [46, 45]), l’hypothèse de proportionnalité du saut de la solution et
du flux sur Γ

ε dépend de "γ (au lieu de "�1), où �  1 est un paramètre.
L’homogénéisation est étudiée alors dans les trois cas : � 2 (�1, 1], � =
�1, et � 2 (�1,�1). La différence principale entre ces cas réside dans le
problème périodique posé dans la cellule de réference, qui permet de décrire
la matrice homogénéisée. Nous nous bornons ici au cas � = �1, dont la
particularité est la présence dans le problème elliptique dans la cellule de
référence, du saut de la solution sur l’interface de référence Γ.

Chapitre 4 : Propriétés du problème dans la cellule de

référence

Dans ce chapitre, nous étudions le problème elliptique suivant, posé dans la
cellule de référence qui est lié au problème homogénéisé de (9) :

8
>>>>>>>><
>>>>>>>>:

� div(Ar�λ
1) = Gλ

1 dans Y1,

� div(Ar�λ
2) = Gλ

2 dans Y2,

Ar�λ
1 · n1 = �Ar�λ

2 · n2 sur Γ,

Ar�λ
1 · n1 = �h(y)(�λ

1 � �λ
2) sur Γ,

�λ
1 Y � périodique,

MΓ(�
λ
1) = 0,

(10)

où � 2 R
N et Gλ

i est défini par

hGλ
i , vi =

Z

Yi

A�rv dy, 8v 2 H1(Yi), i = 1, 2, (11)
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qui appartient à (H1(Yi))
0.

Nous nous sommes intéressés aux propriétés de la solution de (10), qui
n’étaient pas étudiées dans la littérature. Ceci est motivé par le fait que la
matrice homogénéisée A0 qui correspond à (9) est définie en fonction de la
solution �λ de (10), et pas seulement de A. Plus précisément, la matrice A0

est définie par
A0(t) = A0

1(t) + A0
2(t), (12)

où

A0
i (t)� =

1

|Y |

Z

Yi

A(y, t)ryw
λ
i (y, t) dy, i = 1, 2, 8� 2 R

N ,

avec
wλ

i (y, t) = � · y � �λ
i (y, t),

et �λ = (�λ
1 ,�

λ
2) solution de (10).

Les propriétés démontrées dans ce chapitre sont, à notre avis, intéres-
santes en elles-mêmes.

Nous démontrons, en particulier, que si la matrice A est lipschitzienne
par rapport à la deuxième variable, alors A0 garde cette propriété. Grâce á
cette propriété, nous pouvons obtenir un résultat d’unicité pour le problème
homogénéisé posé dans Ω (voir théorème 13) correspondant à (9).

Rappelons que dans [23] les auteurs ont démontré un résultat similaire
pour l’homogénéisation des problèmes elliptiques dans un domaine perforé,
en utilisant une estimation de type Meyers bien connue.

Dans notre cas, où la solution de (10) présente un saut sur l’interface Γ,
nous avons dû d’abord démontrer le résultat suivant, qui établit une estima-
tion du type Meyers, adaptée à notre problème périodique.

Théorème 9. Soit � 2 R
N et soit �λ = (�λ

1 ,�
λ
2) 2 H la solution de (10).

Alors, pour tout � 2 R
N , il existe pi > 2, i = 1, 2, tel que

�λ
i 2 W 1,pi(Yi).

De plus, pour tout qi tel que 2  qi  pi, i = 1, 2, il existe une constante
positive ci, qui depend de ↵, �, qi et Yi, telle que

kr�λ
i kLqi (Yi)  ci|�|.

Nous montrons ce théorème en utilisant les estimations prouvées par T.
Gallouët et A. Monier dans [55] pour des equations elliptiques avec des con-
ditions de Neumann non homogènes.

Ceci nous a permis de démontrer le résultat principal de ce chapitre,
énoncé ci-dessous :

14



Théorème 10. Soit A : (y, t) 2 Y ⇥R 7! A(y, t) 2 R
N⇥N une matrice reélle

qui vérifie :

(P1) A(·, t) appartient à M(↵, �, Y ) pour tout t 2 R;

(P2) A(·, t) = {aij}i,j=1,...,N est Y�périodique pour tout t;

(P3) A(y, t) est localement lipschitzienne par rapport à la deuxième variable,
i.e., pour tout r > 0, il existe une constante positive Mr telle que

|A(y, s)� A(y, t)|  Mr|s� t| 8s, t 2 (�r, r), p.p. y 2 Y.

Alors, la matrice homogénéisée A0 (voir (12)) est aussi localement lipschitzi-
enne, i.e., pour tout r > 0, il existe une constante positive Cr telle que

|A0(s)� A0(t)|  Cr|s� t| 8s, t 2 (�r, r).

Ce théorème est ce dont nous avions besoin pour démontrer un résultat
d’unicité pour le problème homogénéisé, qui est présenté dans la section
suivante.

Chapitre 5 : Résultats d’homogénéisation

Dans ce chapitre, nous étudions le comportement asymptotique du prob-
lème (9). Nous utilisons une adaptation de la méthode de l’éclatement péri-
odique aux domaines à deux composantes introduite dans [46]. Cette méth-
ode utilise l’opérateur d’éclatement périodique T

ε

i , i = 1, 2, agissant pour
toute fonction mesurable ui, définie dans Ω

ε
i . Son intérêt principal est qu’il

transforme les intégrales sur les ensembles variables Ω
ε
i en des intégrales sur

les ensembles Ω⇥ Yi qui sont indépendants de ".
À notre connaissance, la première étude qui combine le cadre des solutions

renormalisées et la méthode de l’éclatement périodique a été faite dans [43],
pour des problèmes elliptiques dans des domaines périodiquement perforés
avec des conditions de Robin sur le bord des trous. Nous avons adopté ici
une approche similaire.

L’homogénéisation dans le cadre des solutions renormalisées est encore
plus difficile que celle dans le cas de données L2. Ceci est dû au fait que la
fonction uε

i , qui est la restriction de la solution uε de (9) à Ω
ε
i , n’appartient

pas nécessairement à H1(Ωε
i ), i = 1, 2.

On rappelle que quand la donnée f dans (9) appartient á L2(Ω), on
peut obtenir des estimations a priori sur uε

i dans H1(Ωε
i ) (voir [7]). Donc,
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en utilisant les résultats montrés dans [46], on en déduit les convergences
suivantes :
8
<
:
T

ε

i (u
ε
i ) �! u1 fortement dans L2(Ω, H1(Yi)), i = 1, 2

T
ε

i (ruε
i )* ru1 +rybui faible dans L2(Ω⇥ Yi), i = 1, 2,

(13)

avec u1 2 H1
0 (Ω) et bui 2 L2(Ω, H1(Yi)), i = 1, 2. Ainsi, grâce à ces conver-

gences, on obtient le problème homogénéisé dans Ω, qui est satisfait par la
fonction u1.

Par contre, dans notre cas, uε
i n’appartient pas à H1(Ωε

i ), i = 1, 2 et par
conséquent nous ne pouvons pas procéder de cette façon. Nous considérons
alors les troncatures de uε

i (i.e. Tk(u
ε
i )), puisque dans le cadre des solutions

renormalisées, Tk(u
ε
i ) 2 H1(Ωε

i ) (voir définition 1), i = 1, 2, pour tout k > 0.
Donc, au lieu à (13), en mélangeant les techniques des solutions renormalisées
et celles de l’éclatement périodique (en particulier les résultats de compacité),
nous démontrons qu’il existe u1 et une suite {bun

i }n2N ⇢ L2(Ω, H1(Yi)), i =
1, 2, vérifiant pour tout n 2 N, i = 1, 2,

8
>>><
>>>:

Tn(u1) 2 H1
0 (Ω),

T
ε

i (Tn(u
ε
i )) �! Tn(u1) fortement dans L2(Ω, H1(Yi)),

T
ε

i (rTn(u
ε
i ))* rTn(u1) +rybun

i faiblement dans L2(Ω⇥ Yi).

(14)

Même s’il y a des similitudes entre l’homogénéisation de (9) et celle étudiée
dans [43], il y a des difficultés supplémentaires dans notre cas, à cause de la
présence du saut de la solution à l’interface.

La première différence peut être vue dans la définition d’une solution
renormalisée de (9) (voir définition 1), qui contient des hypothèses supplé-
mentaires, comme discutées dans le chapitre 2. De plus, la démonstration du
théorème suivant, qui est la construction de la partie oscillante bui, i = 1, 2,
à partir de la suite de fonctions {bun

i }n2N et d’un résultat d’identification, est
encore plus délicate que celle du théorème analogue dans [43] :

Théorème 11. Soit bun
1 2 L2(Ω, H1

per(Y1)) et bun
2 2 L2(Ω, H1(Y2)), n 2 N,

les fonctions introduites dans (14), avec MΓ(bun
1 ) = 0. Alors, il existe une

unique fonction
bui : Ω⇥ Yi �! R, i = 1, 2,

telle que pour tout R 2 C1(R) à support compact vérifiant suppR ⇢ [�m,m],
pour un m 2 N, on a

R(u1)bun
i = R(u1)bui p.p. dans Ω⇥ Yi,
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pour tout n � m, où u1 est la fonction donnée par (14).
De plus,

bui(x, ·) 2 H1(Yi), i = 1, 2, avec MΓ(bu1) = 0, p.p. x 2 Ω.

La partie la plus originale de la démonstration est liée au fait que la
moyenne de bun

2 , pour n 2 N, n’est pas nécessairement zéro.
Grâce à ce théorème et aux convergences dans (14), on peut alors démon-

trer le théorème suivant, qui décrit le problème homogénéisé éclaté satisfait
par (u1, bu1, bu2) :

Théorème 12 (Le problème homogénéisé éclaté). Soit u1, bu1 et bu2 les fonc-
tions définies par (14). Soient  1, 2 des fonctions appartenant à C1(R) (ou
 1, 2 2 W 1,1(R)) à support compact. Alors, (u1, bu1, bu2) satisfait
8
>>>>>>><
>>>>>>>:

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui)(r( 1(u1)') +  2(u1)ryΦi) dx dy

+
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)(Φ1 � Φ2) dx d�y =

Z

Ω

f(x) 1(u1)'(x) dx

8' 2 H1
0 (Ω) \ L1(Ω), Φi 2 L2(Ω, H1

per(Yi)), i = 1, 2.

De plus, pour k > 0, on a les limites suivantes :

lim
k!1

1

k

Z

{|u1|<k}⇥Yi

A(y, u1)(rTk(u1) +rybui)(rTk(u1) +rybui) dx dy = 0,

pour i = 1, 2, et

lim
k!1

1

k

Z

{|u1|<k}⇥Γ

(bu1 � bu2)
2 dx d�y = 0.

Enfin, nous obtenons le problème homogénéisé dans Ω, ce qui complète
le chapitre :

Théorème 13 (Le problème homogénéisé dans Ω). Soit u1 une valeur d’adhérence
de la suite {T

ε

i (u
ε
i )}, i = 1, 2. Alors u1 est une solution renormalisée du prob-

lème (
� div(A0(u1)ru1) = f dans Ω

u1 = 0 sur @Ω,
(15)

i.e.,

Tk(u1) 2 H1
0 (Ω), pour tout k > 0, (16)

lim
k!1

1

k

Z

{|u1|<k}

A0(u1)ru1ru1 dx = 0, (17)
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et pour tout  2 C1(R) (ou  2 W 1,1(R)) à support compact,

Z

Ω

 (u1)A
0(u1)ru1r' dx

+

Z

Ω

 0(u1)A
0(u1)ru1ru1 ' dx =

Z

Ω

f (u1)' dx,

(18)

pour tout ' 2 H1
0 (Ω)\L1(Ω), où A0 est la matrice homogénéisée définie au

dessus (voir (12)).
Si de plus (A4) est vérifiée, alors u1 est l’unique solution renormalisée de

(9), les fonctions bu1, bu2 sont définies de manière unique et toutes les suites
dans (14) convergent (et pas seulement les sous-suites).

La démonstration de la dernière affirmation de ce théorème utilise le
théorème 10 du chapitre précédent. Soulignons ici que la preuve de la con-
dition de décroissance de l’énergie (condition (17)) n’est pas classique.

En conclusion, soulignons que, comme on peut voir tout au long de
cette thèse, gérer l’intégrale sur le bord qui provient du saut de la solu-
tion sur l’interface est délicat. Cette difficulté ne se limite pas aux résultats
d’homogénéisation. Elle peut aussi être observée dans l’étude de l’existence
et de l’unicité de la solution renormalisée de (1), ainsi que dans l’étude des
propriétés de la solution du problème dans la cellule de référence (10).
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Chapter 1

Introduction

The aim of this thesis is to study a class of elliptic partial differential equa-
tions (PDE) with weak data. More precisely, we study a quasilinear elliptic
problem posed in a domain with an imperfect interface, where the data is
an L1 function and the matrix field of the quasilinear term has a restricted
growth assumption (it is only bounded with respect to the solution on the
compact sets of R) and we consider the corresponding asymptotic analysis
in a periodic two-component domain.

Let us point out that since we have these weak assumptions, a weak
solution may not exist (even in the presence of just one of them). Hence,
the convenient framework of renormalized solution needs to be introduced
for our problem.

This notion is related to partial differential equations (PDE) with data
less summable than L2, e.g. data in L1, or measure data (more on renormal-
ized solutions is presented in the next section).

The existence and uniqueness results in the framework of renormalized
solution for a domain with imperfect interface has previously not been studied
in the literature. The first part of this study is dedicated to obtaining such
results.

The second part of this thesis is concerned with the corresponding homog-
enization for a two-component domain with a (disconnected) periodic second
component. We use the periodic unfolding method, originally introduced in
[30] (see also the recent book [32]), and adapted to a domain with imperfect
interface in [46] (more on the periodic unfolding method in Section 1.2.4).

In the study of the homogenization, the framework usually considered
is the variational setting, where the data are L2 (or H�1) functions. The
framework considered in this thesis presents non-trivial additional difficulties,
which need to be treated specifically. However, combining homogenization
with the notion of renormalized solution is not completely new, one may refer



to the pioneer paper [70], see also [8, 22] for some cases. More recently, in
[56], the authors studied the homogenization of a linear elliptic problem with
Neumann boundary conditions, highly oscillating boundary and L1 data.

In addition, P. Donato, O. Guibé and A. Oropeza studied in [43] the
homogenization of a quasilinear elliptic problem with nonlinear boundary
conditions and L1 data. In their study, as far as we know, the notion of
renormalized solution is combined for the first time with the period unfolding
method. We follow a similar approach for this thesis.

In this chapter, we present in details the framework of renormalized so-
lutions and the homogenization theory. In the next section, dedicated to the
notion of renormalized solution, we present the existence and uniqueness re-
sults for a model case. In addition, we give a summary of the results obtained
in the first part of this thesis.

In Section 1.2, devoted to the homogenization theory, we discuss several
methods that were developed for periodic homogenization. We also present
there a summary of the second part of this thesis.

1.1 Renormalized solutions

In this section, we discuss the framework of renormalized solutions.
When considering a weak data (e.g., L1 data and measure data), we

cannot, in general, show the existence of a weak solution. Recall that the
problem

� div(A(x, u)ru) = f

with Dirichlet boundary conditions, if the matrix field A(x, r) is bounded
and coercive, and f belongs to L1(Ω) (similarly, when f is a bounded Radon
measure), from Boccardo-Gallouët [18], there exists a solution in the sense
of distributions (this result is also true for a class of more general nonlinear
operators with increasing p). The authors show that u 2 W 1,q

0 (Ω), 81 < q <
N

N � 1
and verifies

Z

Ω

A(x)rur' dx =

Z

Ω

f' dx, 8' 2 C1
0 (Ω).

However, this solution in the sense of distributions can not have, in general,
a finite energy, in the sense that u /2 H1

0 (Ω). Moreover, even in the linear
case, that is, A(x, r) = A(x), the solution in the sense of distributions is not
unique in general, one can see the counter example by Serrin in [78] (see also
[76]).
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To overcome this inconvenience, a number of notions of solutions were
developed: entropy solutions (see [10]), SOLA (solutions obtained as limit
approximations, see [37]) and renormalized solutions.

The notion of renormalized solutions was originally introduced in [39]
by R.J. Di Perna and P.L. Lions for first order equations. It was then fur-
ther developed by F. Murat in [71], by P.L. Lions and F. Murat in [63] for
elliptic equations with Dirichlet boundary conditions and L1 data, and by
G. Dal Maso et al. in [36] for elliptic equations with general measure data.
Most of the works concerning the development of renormalized solutions con-
sider elliptic (or parabolic) problems with L1 data and Dirichlet boundary
conditions, but rarely other boundary conditions (see for example [13] for
Neumann conditions and [59] for perforated domains).

There are some physical motivations in considering a weaker data (e.g. L1

or measure data). As an example, in [66] the authors considered a reaction-
diffusion system with L1 data, which is then applied to image processing.
In addition, some engineering problems can require the source to be a mass
concentration in a point, which is represented by a measure.

To have more understanding of the notion of renormalized solutions, we
present in the sequel the existence and uniqueness results of a model case
(see (1.1)).

1.1.1 A model case

Let Ω be an open bounded set in R
N with Lipschitz continuous boundary

@Ω, where N � 2.
We are interested to study the following quasilinear Dirichlet problem:

8
<
:
� div(A(x, u)ru) + �u = f in Ω

u = 0 on @Ω,
(1.1)

where � � 0 and the matrix A : Ω⇥R �! R
N⇥N is a Carathéodory function,

that is,

1. the map r 7! A(x, r) is continuous for a.e. x 2 Ω; and

2. the map x 7! A(x, r) is measurable for a.e. r 2 R,

which satisfies the following properties for some ↵, � 2 R with 0 < ↵ < �,

(
A(x, r)⇠ · ⇠ � ↵|⇠|2, 8⇠ 2 R

N , 8r 2 R,

|A(x, r)|  �, 8r 2 R.
(1.2)
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Before we consider the case when the function f belongs to L1(Ω), let us
first look at the variational case, where f 2 L2(Ω). Under this assumption,
the variational formulation of problem (1.1) is

8
>>>><
>>>>:

Find u 2 H1
0 (Ω) such that

Z

Ω

A(x, u)rurv dx+ �

Z

Ω

uv dx =

Z

Ω

fv dx,

for any v 2 H1
0 (Ω).

(1.3)

Note that all three of the integrals in this formulation are well-defined. More-
over, using Lax-Milgram Theorem and Schauder’s Fixed Point Theorem, we
can show the existence of a solution to (1.3).

As for showing the uniqueness of said solution, we need to separate the
cases for � > 0 and � = 0. When � > 0, an additional assumption that
A(x, r) is locally Lipschitz continuous with respect to the second variable r
must be made to show uniqueness. The case � = 0 is even more difficult and
in order to show the uniqueness of solution of (1.3), the additional condition
of global Lipschitz continuity with respect to r of A(x, r), has to be done (see
e.g. [5, 18]).

Now, let us consider the case when the function f belongs to L1(Ω). As
mentioned before, the weak formulation can not be used, since the integrals
involved may not make sense. We then consider the notion of renormalized
solution. We present here the definition of a renormalized solution of (1.1).

For simplicity, we only prove in this section the existence and uniqueness
results for the linear case (that is, A(x, r) = A(x)) with � > 0. The proof of
existence and uniqueness for the case where � = 0 requires more arguments
(see Remark 1.6).

Before giving the definition of renormalized solution, we need to make
sure that the integrals that will be in the renormalized formulation make
sense. In particular, it is not clear if a solution u of (1.1) (with f 2 L1(Ω))
belongs to any Sobolev space. This means that a solution u may not have
enough regularity to have a gradient in the usual sense of Sobolev spaces.
Hence, one must first give a proper definition for the gradient of any mea-
surable function using its truncate, where the truncation operator is defined
by Tk(t) = min{k,max{t,�k}} (see Figure 1.1).

Proposition 1.1 ([10, Lemma 2.1]). Let u be a measurable function defined
from Ω to R. If Tk(u) 2 H1

0 (Ω) for any k > 0, then there exists a unique
measurable function v defined from Ω to R

N such that

rTk(u) = v�{|u|<k}, 8k > 0,
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Let S 2 C1(R) with suppS ⇢ [�k, k], for some k > 0. Then, we have

S(u)u = S(u)Tk(u)

S 0(u)ruru = S 0(u)ruru�|u|<k = S 0(u)rTk(u)rTk(u).

Let v 2 H1
0 (Ω) \ L1(Ω). The functions S(u), Tk(u), and v are bounded in

Ω, which implies that S(u)u and S(u)v both belong to L1(Ω). It follows that
the third and fourth integral of (1.6) are well-defined. Furthermore, since
Tk(u) 2 H1

0 (Ω), we have by (1.29),

S(u)A(x, u)ru 2 (L2(Ω))N

S 0(u)A(x, u)ruru = S 0(u)A(x, u)rTk(u)rTk(u) 2 L1(Ω).

Hence, the first two integrals of (1.6) make sense.
On the other hand, condition (1.5) is important in showing the stability

and uniqueness of the renormalized solution.

We now consider, for simplicity, the linear case and present the proof of
the following theorem from [71]:

Theorem 1.4 ([71]). Suppose that A(x, r) = A(x) for a.e. (x, r) 2 Ω ⇥
R (that is, the problem is linear) and � > 0. Then there exists a unique
renormalized solution to (1.1) in the sense of Definition 1.2.

Proof. The proof is divided into 2 steps. The first step is dedicated to show
the existence of a renormalized solution. This will be done by approximating
f by a sequence {fε} in L2(Ω), and considering a sequence of approximate
solutions {uε} in H1

0 (Ω). The limit of {uε} will be a candidate for a renor-
malized solution, and we show that this is the case. In the second step, we
show the uniqueness of the obtained solution.

Step 1. Existence of a renormalized solution.

Let {fε} be a sequence in L2(Ω) such that as " tends to 0,

fε �! f strongly in L1(Ω). (1.7)

For a fixed " > 0, we consider the following variational formulation:
Z

Ω

A(x)ruεrv dx+ �

Z

Ω

uεv dx =

Z

Ω

fεv dx, 8v 2 H1
0 (Ω). (1.8)

Since � > 0 and A satisfies (1.29), the Lax-Milgram Theorem gives the
existence and uniqueness of the solution uε 2 H1

0 (Ω) of (1.8).
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Now, we want to show that uε is Cauchy in L1(Ω). For ", "0 > 0, by
linearity, we obtain that uε � uε0 satisfies

Z

Ω

A(x)r(uε�uε0)rv dx+�

Z

Ω

(uε�uε0)v dx =

Z

Ω

(fε�fε0)v dx, 8v 2 H1
0 (Ω).

Note that Tk(uε � uε0) 2 H1
0 (Ω), and so, we can use it as a test function in

this last formulation. We then obtain
Z

Ω

A(x)r(uε � uε0)rTk(uε � uε0) dx+ �

Z

Ω

(uε � uε0)Tk(uε � uε0) dx

=

Z

Ω

(fε � fε0)Tk(uε � uε0) dx.

(1.9)

Note that from Proposition 1.1, we have

A(x)r(uε � uε0)rTk(uε � uε0)

= �{|uε�u
ε
0 |<k}A(x)r(uε � uε0)r(uε � uε0) � 0,

a.e. in Ω. Moreover, by Hölder’s inequality and the fact that |Tk(t)|  k for
any t 2 R, we have

Z

Ω

(fε � fε0)Tk(uε � uε0) dx  kkfε � fε0kL1(Ω).

It then follows from (1.9) that

1

k

Z

Ω

(uε � uε0)Tk(uε � uε0) dx 
1

�
kfε � fε0kL1(Ω).

Taking the limit of both sides of this inequality as k tends to 0, and noting
that ����(uε � uε0)

Tk(uε � uε0)

k

����  |uε � uε0 | 2 L1(Ω),

and
Tk(uε � uε0)

k
�! sgn(uε � uε0) as k ! 0 a.e. in Ω,

where sgn is the usual sign function (i.e., sgn(r) = r/|r| if r 6= 0 and sgn(0) =
0), we obtain by Lebesgue dominated convergence theorem,

kuε � uε0kL1(Ω) 
1

�
kfε � fε0k. (1.10)
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We then conclude from (1.7) that {uε} is a Cauchy sequence in L1(Ω). Hence,
there exists u 2 L1(Ω) (and so u is finite a.e. in Ω) such that (up to a
subsequence) (

uε �! u strongly in L1(Ω),

uε �! u a.e. in Ω.
(1.11)

We now claim that u is a renormalized solution of (1.1). To show this, we
need to show that u satisfies (1.4), (1.5), and (1.6).

We first obtain some estimates for Tk(uε), for any k > 0, then show some
convergences for the sequence {Tk(uε)} as " approaches 0. We start by using
Tk(uε) 2 H1

0 (Ω) as a test function in (1.8), which gives
Z

Ω

A(x)ruεrTk(uε) dx+ �

Z

Ω

uεTk(uε) dx =

Z

Ω

fεTk(uε) dx. (1.12)

Since Tk is an increasing function, we know that uεTk(uε) � 0 a.e. in Ω.
Then, we deduce from (1.12) and Hölder’s inequality that

Z

Ω

A(x)rTk(uε)rTk(uε) dx 

Z

Ω

fεTk(uε) dx  kkfεkL1(Ω). (1.13)

By coercivity of A and (1.7), we have

krTk(uε)k(L2(Ω))N  kM,

for any k > 0, for any " > 0, and for some M > 0 independent of k and ".
This implies that for any k > 0, the sequence {Tk(uε)}ε is uniformly bounded
in H1

0 (Ω).
By a diagonal process and Rellich Theorem, we can extract a subsequence

(which will still be denoted by ") such that for any k > 0 (taken from a
countable set), there exists vk 2 H1

0 (Ω) such that

(
Tk(uε)* vk weakly in H1

0 (Ω),

Tk(uε) ! vk strongly in L2(Ω) and a.e. in Ω.

From (1.11), the continuity of Tk, and the uniqueness of the limit, we deduce
that for any k > 0, Tk(u) = vk 2 H1

0 (Ω) (this shows that u satisfies (1.4)),
and

8
><
>:

Tk(uε)* Tk(u) weakly in H1
0 (Ω),

Tk(uε) ! Tk(u) strongly in L2(Ω) and a.e. in Ω,

rTk(uε)* rTk(u) weakly in (L2(Ω))N .

(1.14)
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We now show that u satisfies (1.5). By (1.13), (1.14), and (1.7), for all
k > 0, we have

1

k

Z

Ω

A(x)rTk(u)rTk(u) dx  lim sup
ε!0

1

k

Z

Ω

A(x)rTk(uε)rTk(uε) dx

 lim sup
ε!0

1

k

Z

Ω

fεTk(uε) dx

=
1

k

Z

Ω

fTk(u) dx.

Since u is finite a.e. in Ω, we have

����
Tk(u)

k

���� �! 0 a.e. in Ω as k ! 1.

Moreover, from the definition of Tk, we have for any k > 0,

����f
Tk(u)

k

����  |f | 2 L1(Ω).

Then the Lebesgue dominated convergence theorem implies

lim
k!1

1

k

Z

Ω

A(x)rTk(u)rTk(u) dx = 0

(which gives that u satisfies (1.5)), and

lim
k!1

lim sup
ε!0

1

k

Z

Ω

A(x)rTk(uε)rTk(uε) dx = 0. (1.15)

To end this step, we show that u satisfies (1.6). For n > 0, let us define the
function hn as (see Figure 1.2)

hn(s) =

8
>>>>>>>>><
>>>>>>>>>:

0, if s  �2n

s

n
+ 2, if � 2n  s  �n

1, if � n  s  n

�
s

n
+ 2, if n  s  n

0, if s � 2n.
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Moreover, we have

hn(uε)ruε = hn(uε)rT2n(uε),

which implies that
Z

Ω

A(x)ruεrv S(u)hn(uε) dx =

Z

Ω

A(x)rT2n(uε)rv S(u)hn(uε) dx,

and
Z

Ω

S 0(u)A(x)ruεruhn(uε)v dx =

Z

Ω

S 0(u)A(x)rT2n(uε)ruhn(uε)v dx.

Since hn is continuous, we know from (1.11) that hn(uε) ! hn(u) a.e. in Ω as
" tends to 0. We also have |hn|  1 from the definition of hn, which implies
that

hn(uε) �! hn(u) in L1(Ω) weak-* as "! 0.

Combining this with (1.14), we obtain

lim
ε!0

Z

Ω

A(x)ruεrv S(u)hn(uε) dx =

Z

Ω

A(x)rurv S(u)hn(u) dx, (1.20)

and

lim
ε!0

Z

Ω

S 0(u)A(x)ruεruhn(uε)v dx =

Z

Ω

S 0(u)A(x)ruruhn(u)v dx.

(1.21)
If we choose n sufficiently large such that suppS ⇢ [�n, n], then we have

S(u)hn(u) = S(u) a.e. in Ω.

Applying this identity to (1.17), (1.18), (1.20), and (1.21), we can pass to
the limit as n tends to infinity. Together with (1.19) and (1.16), we have the
desired result.

Step 2. Uniqueness of the renormalized solution.

From the previous step, we know that there exists at least one solution.
Suppose that u and v are two renormalized solutions of (1.1). Let n 2 N and
k > 0. From the definitions of Tk and hn, it follows that

hn(u)hn(v)Tk(T2n(u)� T2n(v)) 2 H1
0 (Ω) \ L1(Ω).

Hence, this can be used as a test function for the renormalized formulation
(1.6) for u (with S = hn and v = hn(v)Tk(T2n(u) � T2n(v))) and also for v
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(with S = hn and v = hn(u)Tk(T2n(u) � T2n(v))). Subtracting the resulting
equations and the fact that

hn(u)hn(v)Tk(T2n(u)� T2n(v)) = hn(u)hn(v)Tk(u� v) a.e. in Ω,

yield
I1 + I2 + I3 � I4 � I5 + I6 = 0,

where

I1 =

Z

Ω

A(x)(ru�rv)(ru�rv)�{|u�v|<k}hn(u)hn(v) dx

I2 =

Z

Ω

h0
n(u)A(x)ruruhn(v)Tk(u� v) dx

I3 =

Z

Ω

h0
n(v)A(x)rurv hn(u)Tk(u� v) dx

I4 =

Z

Ω

h0
n(u)A(x)rvruhn(v)Tk(u� v) dx

I5 =

Z

Ω

h0
n(v)A(x)rvrv hn(u)Tk(u� v) dx

I6 = �

Z

Ω

(u� v)hn(u)hn(v)Tk(u� v) dx.

We want to evaluate the limit of each term as n approaches +1.
By the decay of the truncate energy (1.5), the properties of the matrix A

in (1.29), the fact that supphn ⇢ [�2n, 2n], and Young’s inequality (for I3
and I4), it follows that

lim
n!1

I2 = lim
n!1

I3 = lim
n!1

I4 = lim
n!1

I5 = 0.

Note that I1 � 0, and thus, from Fatou’s Lemma
Z

Ω

(u� v)Tk(u� v) dx  lim inf
n!1

I6  0.

Since Tk is an increasing function, it follows that u � v = 0 a.e. in Ω. This
concludes this step and this proof.

We can also have the following stability result. This can be proved by
using the same method used in the proof above.

Remark 1.5 (Stability). Let {fε} be a sequence that strongly converges to a
function f in L1(Ω). Suppose uε is the renormalized solution corresponding
to the data fε. Then {uε} converges to u in L1(Ω), where u is the renormal-
ized solution corresponding to the function f . In addition, Tk(uε) converges
strongly to Tk(u) in H1

0 (Ω), for any k > 0.
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Remark 1.6 (The case � = 0). Note that if we consider the case � = 0, we
clearly do not have the estimate (1.10) from the proof of the existence result
of Theorem 1.4. To show existence for this case, we argue first by showing
that the approximate solution uε of (1.8) is Cauchy in measure then use the
Rellich-Kondrachov compactness result to obtain convergences (1.14).

For the uniqueness result, if u and v are two renormalized solutions, notice
that from the proof of the uniqueness part of Theorem 1.4, the argument to
show that u = v involves mainly integral I6, which is the integral related to the
term with �. As � = 0, we do not have this term when showing uniqueness
for this case. The proof of uniqueness of the renormalized solution for this
case requires more delicate arguments.

These delicate arguments can be observed in the first part of this thesis,
as we consider there the case � = 0.

1.1.2 Our renormalized solution results

In the first part of this thesis, we study the existence and uniqueness of
renormalized solution of a class of quasilinear elliptic equations posed in a
two-component domain with an L1 data. More precisely, the domain Ω is a
connected bounded open set in R

N with boundary @Ω. We write Ω as the
disjoint union Ω = Ω1 [ Ω2 [ Γ, where Ω2 is an open set such that Ω2 ⇢ Ω

with a Lipschitz boundary Γ, and Ω1 = Ω \ Ω2 (see Figure 1.3). We study
the following quasilinear elliptic problem posed in Ω:

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f in Ω1,

� div(B(x, u2)ru2) = f in Ω2,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ,

u1 = 0 on @Ω,

(1.22)

where ⌫1 is the unit outward normal to Ω1, f is an L1 function, and B is
a coercive matrix field which has a restricted growth assumption (B(x, r) is
bounded on any compact set of R).

To properly define a renormalized solution of (1.22), we first introduce
the space that we will be working with, that is well adapted to our problem.

We define the space V as

V := {v ⌘ (v1, v2) : v1 2 V1 and v2 2 H1(Ω2)},

equipped with the norm

kvk2V := krv1k
2
L2(Ω1)

+ krv2k
2
L2(Ω2)

+ kv1 � v2k
2
L2(Γ),
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Ω
Ω2

Γ

Ω2

Γ

Ω1

∂Ω

Figure 1.3: The two-component domain Ω

where V1 is the space defined by

V1 = {v 2 H1(Ω1) : v = 0 on @Ω} with kvkV1
:= krvkL2(Ω1).

We follow a similar definition from [36] with the additional term on the
interface Γ and condition for the jump. More precisely:

Definition 1.7. Let u = (u1, u2) : Ω \ Γ �! R be a measurable function.
Then u is a renormalized solution of (1) if

Tk(u) 2 V, 8k > 0; (1.23a)

(u1 � u2)(Tk(u1)� Tk(u2)) 2 L1(Γ), 8k > 0; (1.23b)

lim
n!1

1

n

Z

{|u|<n}

B(x, u)ru ·ru dx = 0; (1.24a)

lim
n!1

1

n

Z

Γ

(u1 � u2)(Tn(u1)� Tn(u2)) d� = 0; (1.24b)

and for any S1, S2 2 C1(R) (or equivalently for any S1, S2 2 W 1,1(R)) with
compact support, u satisfies
Z

Ω1

S1(u1)B(x, u1)ru1 ·rv1 dx+

Z

Ω1

S 0
1(u1)B(x, u1)ru1 ·ru1 v1 dx

+

Z

Ω2

S2(u2)B(x, u2)ru2 ·rv2 dx+

Z

Ω2

S 0
2(u2)B(x, u2)ru2 ·ru2 v2 dx

+

Z

Γ

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2)) d�

=

Z

Ω1

fv1S1(u1) dx+

Z

Ω2

fv2S2(u2) dx, (1.25)

for all v 2 V \ (L1(Ω1)⇥ L1(Ω2)).
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Note that since we are in the renormalized framework, a solution u of (1)
may not have enough regularity to have a gradient and trace in the usual
sense of Sobolev spaces. Hence, we first have to make sure that the gradient
and the trace of a solution are properly defined. To this aim, we prove the
following proposition (which is a generalization of [10, Lemma 2.1] and [59,
Proposition 2.3]):

Proposition 1.8. Let u = (u1, u2) : Ω \ Γ �! R be a measurable function
such that Tk(u) 2 V for every k > 0.

1. For i = 1, 2, there exists a unique measurable function Gi : Ωi �! R
N

such that for all k > 0,

rTk(ui) = Gi�{|ui|<k} a.e. in Ωi,

where �{|ui|<k} denotes the characteristic function of

{x 2 Ωi : |ui(x)| < k}.

We define Gi as the gradient of ui and write Gi = rui.

2. If

sup
k�1

1

k
kTk(u)k

2
V < 1,

then there exists a unique measurable function

wi : Γ �! R, for i = 1, 2,

such that for all k > 0,

�i(Tk(ui)) = Tk(wi) a.e. in Γ,

where �i : H1(Ωi) �! L2(Γ) is the trace operator. We define the
function wi as the trace of ui on Γ and set

�i(ui) = wi, i = 1, 2.

The originality of this definition is found in the regularity (1.23b) and the
decay of the energy on the interface (1.24b), together with the presence of
the term on Γ,

Z

Γ

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2)) d�.
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The regularity (1.23a) and the decay of the truncated energy (1.24a) are
classical and it allows us (with Proposition 1.8) to give a sense to all the
integrals in (1.25) except for the boundary integral on Γ.

Indeed, let Si 2 C1(R), i = 1, 2, with compact support. Then for all
v 2 V \ (L1(Ω1)⇥L1(Ω2)), if suppSi ⇢ [�k, k] (i = 1, 2), then for i = 1, 2,
we have

Si(ui)B(x, ui)rui ·rvi = Si(ui)B(x, Tk(ui))rTk(ui) ·rvi 2 L1(Ωi),

S 0
i(ui)B(x, ui)rui ·rui vi = S 0

i(ui)B(x, Tk(ui))rTk(ui) ·rTk(ui) vi 2 L1(Ωi),

fviSi(ui) 2 L1(Ωi).

Concerning the boundary integral on Γ, note that (1.23a) and (1.24a) are
not enough to give a sense to h(x)(u1�u2)(v1S1(u1)� v2S2(u2)). In general,
there is no reason to have

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2))

= h(x)(u1 � u2)(v1S1(u1)� v2S2(u2))�{|u1|n}�{|u2|n}

for large n.
For the boundary term, for any n 2 N, let us define ✓n : R �! R by (see

Figure 1.4)

✓n(s) =

8
>>>>>>><
>>>>>>>:

0, if s  �2n,
s

n
+ 2, if � 2n  s  �n,

1, if � n  s  n,

�
s

n
+ 2, if n  s  2n,

0, if s � 2n.

Then since S1 has a compact support, we have for some large enough n,

h(u1 � u2)v1S1(u1) = hv1(u1 � u2)(S1(u1)� S1(u2))✓n(u1)

+ hv1(u1 � u2)S1(u2)✓n(u1).

Since ✓n also has a compact support, then hv1(u1�u2)S1(u2)✓n(u1) is bounded,
and is therefore in L1(Γ). Moreover, since

S1(u1)� S1(u2) = S1(T2n(u1))� S1(T2n(u2))

and S1 are Lipschitz-continuous, we have

|hv1(u1 � u2)(S1(u1)� S1(u2))✓n(u1)|

 khv1kL1(Γ)kS
0
1kL1(R)|u1 � u2||T2n(u1)� T2n(u2)|,
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and we let Bε(x, t) = B(x, T1/ε(t)). We consider a solution uε 2 V of
8
>>>>>><
>>>>>>:

� div(Bε(x, u
ε
1)ruε

1) = f ε in Ω1,

� div(Bε(x, u
ε
2)ruε

2) = f ε in Ω2,

(Bε(x, u
ε
1)ruε

1)⌫1 = (Bε(x, u
ε
2)ruε

2)⌫1 on Γ,

(Bε(x, u
ε
1)ruε

1)⌫1 = �h(x)(uε
1 � uε

2) on Γ,

uε
1 = 0 on @Ω.

The second step is to obtain a priori estimates, then construct (with the
help of Rellich-Kondrachov compactness results) a function u such that (up
to a subsequence)

8
>>><
>>>:

uε
i �! ui a.e. in Ω,

Tk(u
ε
i )* Tk(ui) weakly in H1(Ωi),

�i(u
ε
i ) �! �i(ui) a.e. in Γ,

�i(Tk(u
ε
i )) �! �i(Tk(ui)) strongly in L2(Γ), a.e. on Γ.

The originality here comes again from the boundary integral on Γ, and
using, for example, in the third step, the a priori estimate

8k > 0, (uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) bounded in L1(Γ),

and the limit

lim
n!1

lim sup
ε!0

1

n

✓Z

Ω\Γ

B(x, Tn(u
ε))rTn(u

ε)rTn(u
ε) dx

+

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

◆
= 0.

In the final step of the proof, we are able then to pass to the limit with an
appropriate choice of test function and show that u is a renormalized solution
of (1).

Remark 1.10. To give a sense to the integral on Γ, it is possible to replace
(1.23b) and (1.24b) by a regularity condition given by

u1 � u2 2 W 1� 1
q
,q(Γ), for some q > 1. (1.26)

This type of regularity comes from the Boccardo-Gallouët type estimates, but
depends heavily on the Sobolev embedding constants. Since these constants
may blow up with asymptotic analysis, we are not able to use (6). In addition,
(1.26) will not work when considering a more general nonlinear problem.
Thus, we chose (1.23b) and (1.24b) in the definition of renormalized solution.
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To prove the uniqueness result, we adopt the method developed in [16, 38].
This method makes use of an auxiliary function ' 2 C1(R) with interesting
properties. To be more precise, we use the following proposition from [38]:

Proposition 1.11 ([38]). Suppose that (A4) holds. Then there exists a func-
tion ' 2 C1(R) that satisfies the following properties:

'(0) = 0 and '0 � 1.

In addition, there are constants � > 1/2, 0 < k0 < 1, and L > 0 such that

'0

(1 + |'|)2δ
2 L1(R).

Moreover, for any r, s 2 R satisfying |'(r)� '(s)|  k, for 0 < k < k0,����
B(x, r)

'0(r)
�

B(x, s)

'0(s)

���� 
1

'0(s)

Lk

(1 + |'(r)|+ |'(s)|)δ

and
1

L

'0(s)

'0(r)
 L.

One of the difficulties in the proof of uniqueness comes from the boundary
integral on Γ, which is related to the jump of the solution. The following
proposition is an important tool in the proof of the uniqueness theorem,
which is related to the Boccardo-Gallouët estimates:

Proposition 1.12. For i = 1, 2, let �i be the trace function defined on
H1(Ωi). Under the assumptions of Theorem 1.9, if u is a renormalized solu-
tion of (1), then �i(ui) 2 L1(Γ), i = 1, 2.

The method developed in [16, 38] consists of using Tk('(u)�'(v)) as test
function. The proof is very technical and is done by passing to the limit with
the help of the function ✓n(u)Tk('(u)�'(v)) in the renormalized formulation
in the definition of a renormalized solution.

However, the nonlinearity of the term Tk('(u)� '(v)) is not compatible
with the boundary integral on Γ, since the term obtained
Z

Γ

h(x)((u1 � v1)� (u2 � v2))(Tk('(u1)� '(v1)� Tk('(u2)� '(v2))) d�

is not necessarily positive.
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To overcome this difficulty, we show a sign property on Γ:

Lemma 1.13. Suppose assumptions (A1)–(A4) hold. If u and v are two
renormalized solutions of (1), then sgn(u1 � v1) = sgn(u2 � v2) a.e. on Γ.

This lemma is essential in the proof of the following uniqueness theorem,
which is the main result of this chapter:

Theorem 1.14. If assumptions (A1)-(A4) hold, then the renormalized so-
lution of (1) is unique.

One of the major steps of the proof of Theorem 1.14 consists of showing
that

lim
k!0

1

k2

Z

Ωi

✓
1

'0(ui)
+

1

'0(vi)

◆
|rTk('(ui)� '(vi))|

2 dx = 0, i = 1, 2,

(1.27)
where u = (u1, u2) and v = (v1, v2) are two renormalized solutions of (1),
and ' is the function in Proposition 1.11.

To prove this, after some long computations, we obtain

lim sup
k!0

✓
1

k2

Z

Uk
1

✓
1

'0(u1)
+

1

'0(v1)

◆
|r'(u1)�r'(v1)|

2 dx

+
1

k2

Z

Uk
2

✓
1

'0(u2)
+

1

'0(v2)

◆
|r'(u2)�r'(v2)|

2 dx+
1

k2
Ck

◆
 0,

where
Uk
i = {x 2 Ωi : 0 < |'(ui)� '(vi)| < k}, i = 1, 2,

and

Ck =

Z

Γ

h(x)[(u1� v1)� (u2� v2)][Tk('(u1)�'(v1))�Tk('(u2)�'(v2))] d�.

Hence, to show (1.27), it is enough to show that

lim sup
k!0

1

k2
Ck � 0.

As already mentioned above, due to the presence of the function ', we

don’t know in general the sign of Ck. The limit of
1

k2
Ck as k ! 0 is one

of the main difficulties. To proceed, we use the sign property on Γ (Lemma
1.13) and we divide the set {x 2 Γ ; u1(x)�v1(x) > 0} (up to a zero measure
subset) into 4 disjoint subsets,

{u1 � v1 > 0} = P1 [ P2 [ P3 [ P4,

38



where

P1 := {'(u1)� '(v1) � k} \ {'(u2)� '(v2) � k},

P2 := {0 < '(u1)� '(v1) < k} \ {0 < '(u2)� '(v2) < k},

P3 = {'(u1)� '(v1) � k} \ {0 < '(u2)� '(v2) < k},

P4 := {0 < '(u1)� '(v1) < k} \ {'(u2)� '(v2) � k}.

This division is possible due to Lemma 1.13. Then we are able to compute
the limit of the boundary integral over each subset.

Once (1.27) is shown, we follow the same approach as in [16, 38] to show
first that u1 = v1 in Ω1 (since u1 and v1 have zero trace on @Ω, which allows
us to use the Poincaré inequality). As a consequence, we have u1 = v1 on Γ.
This, combined with Lemma 1.13 and (1.27), gives u2 = v2 in Ω2.

1.2 Homogenization theory

Homogenization theory is motivated from the study of the macroscopic be-
haviour of microscopic composite materials. Composite materials are com-
posed of 2 or more finely mixed components and their main physical char-
acteristics (e.g. thermal or electric conductivity) can be modelled by PDEs
with oscillating coefficients, describing the heterogeneities at the micro-scale.
Then, the mathematical homogenization theory allows to give a macroscopic
description of these materials, considered as homogeneous, at the macro-
scale.

There are different types of composite materials that can be studied by
homogenization, some examples are plywood (a layered material) and con-
crete (a periodic material). Also, additional oscillations can come, in some
case, from the domain. Let us mention the ones with oscillating boundaries,
such as heat radiators and engines, or perforated materials like sponge (a
porous medium), or trusses.

In this thesis, we are concerned in the homogenization of finely period-
ically mixed materials, that is, periodic homogenization. Indeed, when the
components of these materials are finely mixed, a reasonable assumption is
that the distribution of the heterogeneities is periodic.

To explain intuitively how periodic homogenization works, imagine a com-
posite material with two components, Material 1 and Material 2. We suppose
that an "-sized Material 1 is periodically scattered throughout Material 2,
with "-periodicity in each axis-direction. This is obtained by a change of
scale from a fixed unit cell (see Figure 1.2).
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Let " be a positive parameter taken from a positive sequence that goes
to 0. This parameter characterizes the periodicity of the domain.

We now introduce the reference cell Y , defined by

Y =
NY

j=1

[0, lj),

for some lj > 0, j = 1, . . . , N .
The heat conductivity in Ω, can be modelled by the following problem:

(
� div(Aεruε) = f in Ω,

uε = 0 on @Ω,
(1.28)

where f 2 L2(Ω) is the heat source, uε is the temperature distribution, and
Aε represents the conductivity of the material. We assume that

Aε(x) = A
⇣x
"

⌘
,

where A(y) is a Y -periodic measurable matrix field, that satisfies the follow-
ing properties, for some fixed ↵, � 2 R

+, 0 < ↵ < �:
(
A(y)⇠ · ⇠ � ↵|⇠|2,

|A(y)⇠|  �|⇠|,
(1.29)

for all ⇠ 2 R
N , and for all y 2 Y .

Note that the conductivity Aε is, in general, discontinuous due to the
nature of the domain Ω. This means that the heat flux Aεruε may not be
differentiable in the classical sense. Thus, we need to consider derivatives in
the weak sense, and we look for a weak solution uε in an appropriate Sobolev
space.

In order to find a weak solution, we consider the variational formulation
of problem (1.28), which is the following:

8
<
:

Find uε 2 H1
0 (Ω) such thatZ

Ω

Aεruεrv dx =

Z

Ω

fv dx, 8v 2 H1
0 (Ω).

(1.30)

Since f 2 L2(Ω), for a fixed ", it is easily established by the Lax-Milgram
Theorem that this problem has a unique solution with the following a priori
estimate:

kuεkH1
0 (Ω) 

1

↵
kfkL2(Ω). (1.31)
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Our goal is to pass to the limit in the integrals in (1.30) as " goes to 0.
Actually, we are only concerned with the integral

Z

Ω

Aεruεrv dx, (1.32)

since the other integral in (1.30) is independent of ". Let us examine the
sequences {Aε} and {uε}.

From (1.31), we know that the sequence {uε} is uniformly bounded in
H1

0 (Ω). Thus, we can extract a subsequence from {uε} such that

uε * u0 weakly in H1
0 (Ω), (1.33)

which then implies that

ruε * ru0 weakly in L2(Ω)N .

Now, to easily pass to the limit of (1.32), we need a strong convergence for Aε.
However, this is not the case. In fact, from classical results (see Theorem 2.6
of [33]), we only have a weak convergence for functions with the form similar
to Aε.

In general, we cannot pass to the limit of an integral of a product of
two weakly convergent sequences. This difficulty justifies the interest and
development of the homogenization theory. The various methods for periodic
homogenization were developed specifically to solve this problem.

It is worth noting that the weak limit u0 of uε describes the thermal
distribution in the homogenized material. However, except for this u0, we
have no information about this homogenized material. By passing to the
limit of (1.30), we will obtain an elliptic problem satisfied by this u0. This
homogenized problem gives the conductivity matrix A0 (see (1.35)) for the
homogenized material.

We now discuss the different methods for periodic homogenization by
proving the following homogenization result for problem (1.28):

Theorem 1.15. Let Aε be the matrix Aε(x) = A(x
ε
), where A is Y -periodic

and satisfies (1.29), and f be a function in L2(Ω). If uε is the weak solution
of (1.30), then there exists u0 2 H1

0 (Ω) such that
(
uε * u0 weakly in H1

0 (Ω),

Aεruε * A0ru0 weakly in (L2(Ω))N ,
(1.34)

where A0 is the constant matrix defined by (see [11])

A0� =
1

|Y |

Z

Y

A(y, t)rycwλ(y) dy, 8� 2 R
N , (1.35)
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or equivalently,

tA0� =
1

|Y |

Z

Y

tA(y, t)rywλ(y) dy, 8� 2 R
N . (1.36)

The functions cwλ and wλ are respectively the unique solutions of the following
cell problems: 8

>><
>>:

� div(A(y)rcwλ) = 0 in Y,

cwλ � � · y Y -periodic

MY (cwλ � � · y) = 0,

(1.37)

and 8
>><
>>:

� div(tA(y)rwλ) = 0 in Y,

wλ � � · y Y -periodic

MY (wλ � � · y) = 0,

(1.38)

for every � 2 R
N .

The function u0 is the unique solution in H1
0 (Ω) of the homogenized prob-

lem (
� div(A0ru0) = f in Ω,

u0 = 0 on @Ω.
(1.39)

Remark 1.16. The uniqueness of the function u0 implies that the conver-
gences in (1.34) applies to the whole sequence and not just for a subsequence.
This is very important in homogenization since this means that the function
u0 approximates the thermal distribution in Ω for whatever value of " we
choose.

In the sequel, we discuss briefly some methods, originally developed to
prove this last theorem. For more in-depth discussion of these methods, one
can see [33].

1.2.1 Multiple-scales method

The multiple-scales method, which is also known as asymptotic expansion
method, is a non-rigorous method of homogenization introduced in [11, 12]
(see also [77]). It features the formal asymptotic expansion of the solution
uε of (1.30) (see (1.40)). It must be mentioned first that the problem can be
characterized in two scales: the macroscopic scale, which gives the position
of a point on the domain Ω, and the microscopic scale y = x

ε
, which locates

a point in the cell Y and describes the micro-oscillations.
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This leads to the consideration of the following formal expansion (which
is also called ansatz) for uε:

uε(x) = u0

⇣
x,

x

"

⌘
+"u1

⇣
x,

x

"

⌘
+"2u2

⇣
x,

x

"

⌘
+· · · =

1X

i=0

"iui

⇣
x,

x

"

⌘
, (1.40)

where the functions ui = ui(x, y) are functions from Ω⇥ Y to R and are Y -
periodic with respect to the second variable y. It is clear that u0 is the limit
of uε as " tends to 0. The idea of this method is to substitute this formal
expansion of uε in (1.28) and then solve for the functions uj, j 2 N [ {0}.
We need a few preliminaries before we can further discuss this method.

Let Ψ = Ψ(x, y) be a function defined on R
N ⇥R

N . Let Ψε be defined by

Ψ
ε(x) = Ψ

⇣
x,

x

"

⌘
.

Define the operator Aε by

Aε = � div(Aεr) = �
X

1i,jN

@

@xi

✓
aεij

@

@xj

◆
.

Note that
@Ψε

@xi

(x) =
1

"

@Ψ

@yi

⇣
x,

x

"

⌘
+
@Ψ

@xi

⇣
x,

x

"

⌘
.

Then, we can write

Aε
Ψ

ε(x) = [("�2A0 + "�1A1 +A2)Ψ]
⇣
x,

x

"

⌘
,

where

A0 = �
X

1i,jN

@

@yi

✓
aij(y)

@

@yj

◆
,

A1 = �
X

1i,jN

@

@xi

✓
aij(y)

@

@yj

◆
�

X

1i,jN

@

@yi

✓
aij(y)

@

@xj

◆
,

A2 = �
X

1i,jN

@

@xi

✓
aij

@

@xj

◆
.

It then follows, using (1.40), that we have the following infinite systems of
equations: (

A0u0 = 0 in Y

u0 Y -periodic in y,
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(
A0u1 = �A1u0 in Y

u1 Y -periodic in y,
(
A0u2 = f �A1u1 �A2u0 in Y

u2 Y -periodic in y,

and (
A0us+2 = �A1us+1 �A2us in Y

us+2 Y -periodic in y,

for s � 1. The following theorem is the result of solving these systems. One
can refer to [33] for details.

Theorem 1.17. Let f 2 L2(Ω) and uε be the unique solution of (1.28).
Then uε can be written as

uε = u0 � "

NX

k=1

b�k

⇣x
"

⌘ @u0

@xk

+ "2
NX

k,l=1

b✓kl
⇣x
"

⌘ @2u0

@xk@xk

+ · · · ,

where u0 is the solution to (1.39), b�k = yk� bwek , with bwek the unique solution

of the cell problem (1.37), {ek} is the canonical basis of RN , and b✓kl is the
solution of

8
>><
>>:

� div(A(y)rb✓kl) = �akl �
NX

i,j=1

@(aij�kib�l)

@yi
�

NX

j=1

akj
@(b�l � yl)

@yj
in Y,

b✓kl Y -periodic, MY (b✓kl) = 0.

As mentioned earlier, this is a non-rigorous method. In particular, there
is no justification as to why we can write uε as the formal expansion (1.40).
However, the results of this method is justified by the subsequent methods.

1.2.2 Tartar’s method of oscillating test functions

Tartar’s method of oscillating test functions is introduced by L. Tartar in
[82, 83]. As the name suggests, this method makes use of a suitable oscillating
test function to remove the problem of passing to the limit of an integral with
a product of two weakly convergent sequences. This is a more mathematically
rigorous method than the multiple-scales method and it also confirms the
results obtained in the previous method.

We now present a sketch of the proof of Theorem 1.15 using this method
(the details of which can be found in Section 8 of [33]).
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We first recall that we have convergence (1.33), and it follows that we
have for a subsequence

8
><
>:

uε * u0 weakly in H1
0 (Ω)

uε ! u0 strongly in L2(Ω)

ruε * ru0 weakly in (L2(Ω))N .

(1.41)

From (1.29) and (1.31), we deduce that

kAεruεkL2(Ω) 
�

↵
kfkL2(Ω).

This implies that there exists ⇠0 2 (L2(Ω))N such that

Aεruε * ⇠0 weakly in (L2(Ω))N . (1.42)

This allows us to pass to the limit of the integral in (1.30) as " tends to 0,
which gives Z

Ω

⇠0rv dx =

Z

Ω

fv dx,

for any v 2 H1
0 (Ω). Hence, to prove Theorem 1.15, it is enough to prove that

⇠0 = A0ru0,

where A0 is defined in (1.35).
Define

wε
λ(x) = "wλ

⇣x
"

⌘
= � · x� "�λ

⇣x
"

⌘
,

where wλ is the solution of (1.38) and �λ is the solution of
8
><
>:

Find �λ 2 H1
per(Y )with MY (�λ) = 0 such that

Z

Y

tA(y)r�λrv dy =

Z

Y

tA(y)�rv dy, 8v 2 H1
per(Y ).

(1.43)

Functions taking the form similar to wε
λ are the main feature of this method.

By classical results, it can be shown that

rxw
ε
λ * � weakly in L2(Ω).

By compact embedding of H1(Ω) in L2(Ω), we have
(
wε

λ * � · x weakly in H1(Ω)

wε
λ ! � · x strongly in L2(Ω).

(1.44)
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Now, let ⌘ελ be the vector function

⌘ελ = tAεrwε
λ = (tArywλ)

⇣x
"

⌘
.

Note that tArywλ is Y -periodic, and it follows from classical results on func-
tions of the form ⌘ελ that

⌘ελ * MY (
tArwλ) =

tA0� weakly in (L2(Ω))N . (1.45)

Using (1.43), it can be shown that
Z

Ω

⌘ελrv dx = 0, 8v 2 H1
0 (Ω). (1.46)

Note also that
Aεruεrwε

λ = tAεrwε
λruε = ⌘ελruε.

Let ' 2 D(Ω). Choose 'wε
λ as test function in (1.38) and 'uε in (1.46). We

then obtain, by subtracting the resulting equations,
Z

Ω

Aεruεr'wε
λ dx�

Z

Ω

⌘ελr'u
ε dx =

Z

Ω

f'wε
λ dx, 8' 2 D(Ω).

Note that since the integrals with a product of two weakly convergent se-
quences cancelt, we don’t have any problem passing to the limit of this equa-
tion. Using (1.41), (1.42), (1.44), and (1.45), and doing some calculations,
we have Z

Ω

⇠0�' dx =

Z

Ω

tA0�ru0' dx, 8' 2 D(Ω).

By the arbitrary nature of �, we have the desired result, that is

⇠0 = A0ru0.

1.2.3 Two-scale convergence method

The two-scale convergence method was introduced by Nguetseng in [72], and
further developed by Allaire in [1, 2]. This method introduced a new type of
convergence which is called the two-scale convergence. This kind of conver-
gence is concerned with the limit of the integrals of the form

Z

Ω

vε(x) 
⇣
x,

x

"

⌘
dx,

where {vε} is a sequence in L2(Ω) and  (x, y) is a smooth Y -periodic func-
tion.
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Before we present the definition of this convergence, we need to define
the appropriate space for the function  . The space D(Ω;C1

per(Y )) is the
space of measurable functions defined from Ω ⇥ R

N to R such that for any
fixed x 2 Ω, u(x, ·) 2 C1

per(Y ), and the map x 2 Ω 7! u(x, ·) 2 C1
per(Y ) is

indefinitely differentiable with a compact support inside Ω.
We now have the following definition of the two-scale convergence:

Definition 1.18. Let {vε} be a sequence of functions in L2(Ω). The sequence
{vε} is said to be two-scale convergent to a function v0 = v0(x, y) 2 L2(Ω⇥Y )
if

lim
ε!0

Z

Ω

vε(x) 
⇣
x,

x

"

⌘
dx =

1

|Y |

Z

Ω

Z

Y

v0(x, y) (x, y) dy dx, (1.47)

for any  =  (x, y) 2 D(Ω;C1
per(Y )).

We remark that the two-scale convergence justifies the formal asymptotic
expansion that was introduced in the multiple-scale method (see Remark 9.6
of [33] for more details).

The following theorems are two of the main results of this method. These
compactness results allow us to pass to the limit when proving the homoge-
nization results.

Theorem 1.19. Let {vε} be a bounded sequence in L2(Ω). Then, we can ex-
tract a subsequence {vε

0

} such that {vε
0

} two-scale convergences to a function
v0 2 L2(Ω⇥ Y ).

Theorem 1.20. Let {vε} be a sequence of functions in H1(Ω) such that

vε * v0 weakly in H1(Ω).

Then {vε} two-scale converges to v0, and there exist a subsequence "0 and
v1 = v1(x, y) 2 L2(Ω⇥ Y ) such that

rvε
0

two-scale convergences to rxv0 +ryv1.

We now give the idea of the proof of Theorem 1.15 using the two-scale
convergence method.

Note that we still have the convergences (1.41), specifically the first two.
Then, from Theorem 1.20,

uε two-scale converges to u0.

In addition, we can find u1 = u1(x, y) 2 L2(Ω⇥ Y ) such that

ruε two-scale converges to rxu
0 +ryu1.
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We choose v0(x)+ "v
⇣
x,

x

"

⌘
as test function in (1.30), where v0 2 D(Ω) and

v1 = v1(x, y) 2 D(Ω;C1
per(Y )). We then have

Z

Ω

Aεruε
h
rv0(x) + "rxv1

⇣
x,

x

"

⌘
+ryv1

⇣
x,

x

"

⌘i
dx

=

Z

Ω

f
⇣
v0(x) + v1

⇣
x,

x

"

⌘⌘
dx.

By using the two-scale convergence of ruε and other classical results, we can
pass to the limit of both of these integrals to obtain

1

|Y |

Z

Ω

Z

Y

A(y)(ru0 +ryu1(x, y))(rv0(x) +ryv1(x, y)) dxdy =

Z

Ω

fv0 dx,

(1.48)
for any (v0, v1) 2 H1

0 (Ω) ⇥ L2(Ω ⇥ Y ). This variational formulation can be
shown to have a unique solution (u0, u1) 2 H1

0 ⇥ L2(Ω ⇥ Y ) by the Lax-
Milgram Theorem.

Choosing first (0, v1) and then (v0, 0) as test functions in (1.48), it can be
shown that (1.48) is equivalent to the problem

8
>>>>>><
>>>>>>:

� divy(A(y)ryu1(x, y)) = divy(A(y)ru0) in Ω⇥ Y

� divx

Z

Y

A(y)(ru0(x) +ryu1(x, y)) dy

�
= |Y |f in Ω

u0 = 0 on @Ω

u1(x, ·) Y -periodic.

By performing some calculations, it follows that u1 can be written as

u1(x, y) = �

NX

j=1

b�j(y)
@u0

@xj

, (1.49)

where, for j = 1, . . . , n, b�j satisfies

8
<
:

Find b�j 2 H1
per(Y )with MY ( b�j) = 0 such thatZ

Y

A(y)rb�jrv dy =

Z

Y

A(y)ejrv dy, 8v 2 H1
per(Y ),

with {ej}
N
j=1 the canonical basis of RN .

Replacing u1 in (1.48) with its rewritten form in (1.49), and performing
some calculations, we can deduce that u0 satisfies (1.39).
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1.2.4 The periodic unfolding method

The periodic unfolding method was introduced by D. Cioranescu, A. Damlamian
and G. Griso in [30] and further developed in [31] for the study of periodic
homogenization in classical domains (that is, with no holes or interfacial re-
sistance). It was then later developed for perforated domains in [29] and for
two-component domains in [46].

This method relies heavily on an operator which is called the unfolding
operator and usually denoted by Tε. This operator, which sends an Lp(Ω)
function to an Lp(Ω⇥Y ) function, has a lot of interesting properties to help
in passing to the limit. One of which is it transforms an integral over Ω to
an integral over Ω⇥ Y . The resulting integral over Ω⇥ Y is then relatively
easier to manage than the original integral. One can refer to [32] for a very
detailed discussion on the periodic unfolding method.

In the sequel, we will discuss the proof of Theorem 1.15 using the periodic
unfolding method on classical domains. As we will be using this method for
this thesis, we will give more details in the proof using this method. In
addition, since this thesis focuses on two-component domains, we will also
say some few words about the Periodic Unfolding Method on two-component
domains.

The periodic unfolding method for classical domains

Let B = {b1, b2, . . . , bN} be a basis for RN . In this method, one can define a
more general reference cell Y as

Y =

(
` 2 R

N : ` =
NX

i=1

`ibi, (l1, . . . , lN) 2 (0, 1)N

)
. (1.50)

We now denote for almost every z 2 R
N ,

[z]Y =
NX

j=1

ljbj, lj 2 Z, j = 1, . . . , N,

the unique integer combination such that z � [z]Y 2 Y . We set {z}Y =
z � [z]Y 2 Y , for a.e. z 2 R

N . Then we can write

z = {z}Y + [z]Y , for a.e. z 2 R
N ,

that is, we can decompose z as the sum of {z}Y , which is its local position
in the cell Y , and [z]Y , which gives the location of the cell where z is. Then,

writing this decomposition for z =
x

"
, for any x 2 R

N , we have

x

"
=
nx
"

o
Y
+
hx
"

i
Y
.
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Now, we define the following sets:

• G =

(
⇠ 2 R

N : ⇠ =
NX

i=1

kibi, (k1, . . . , kN) 2 Z
N

)
,

• Ξε = {⇠ 2 G : "(⇠ + Y ) ⇢ Ω},

• bΩε = interior

([

ξ2Ξε

"(⇠ + Y ) ⇢ Ω

)
,

• Λε = Ω \ bΩε.

Clearly, from the definition of Ξε, the set bΩε is the interior of the largest
union of cells "(⇠ + Y ) such that the cells "(⇠ + Y ) are entirely inside Ω. We
can also see that its complement Λε is the subset of Ω that contains the parts
of the cells "(⇠ + Y ) that intersects the boundary @Ω.

We now present the following definition of the unfolding operator Tε for
classical domains.

Definition 1.21. Let ' be a measurable function. The unfolding operator
Tε is given by

Tε(')(x, y) =

8
<
:
'
⇣
"
hx
"

i
Y
+ "y

⌘
for a.e. (x, y) 2 bΩε ⇥ Y,

0 for a.e. (x, y) 2 Λε ⇥ Y.
(1.51)

It must be noted that the unfolding operator Tε doubles the dimension
of the space, and all the oscillations are in the second variable y.

We also need the following definition for the mean value operator.

Definition 1.22. For p 2 [1,1], the mean value operator MY is defined
from Lp(Ω⇥ Y ) to Lp(Ω), and is given by

MY (')(x) =
1

|Y |

Z

Y

'(x, y) dy for a.e. x 2 Ω. (1.52)

We now present the following proposition which states the interesting
properties of the unfolding operator Tε. These properties are very helpful in
passing to the limit during the homogenization process. The proof of this
proposition can be found in [31, 32].

Proposition 1.23 ([31, 32]). Let p 2 [1,1).

1. Tε is a linear and continuous operator from Lp(Ω) to Lp(Ω⇥ Y ).
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2. For any measurable functions ' and  , we have

Tε(' ) = Tε(')Tε( ).

3. For any ' 2 Lp(Ω),

Tε(') �! ' strongly in Lp(Ω⇥ Y ).

4. For any ' 2 L1(Ω), we have

Z

bΩε

'(x) dx =

Z

Ω

'(x) dx�

Z

Λε

'(x) dx

=
1

|Y |

Z

Ω⇥Y

Tε(')(x, y) dx dy.

5. For any ' 2 Lp(Ω),

kTε(')kLp(Ω⇥Y )  |Y |1/pkwkLp(Ω).

For the case p = 1, kTε(')kL1(Ω⇥Y )  kwkL1(Ω).

6. Let {wε} be a bounded sequence in Lp(Ω). It follows from the previous
item that the sequence {Tε(wε)} is bounded in Lp(Ω ⇥ Y ) (which also
holds when p = +1). Suppose further that

Tε(wε)* bw weakly in Lp(Ω⇥ Y ),

then
wε * MY ( bw) weakly in Lp(Ω).

If p = +1 and Tε(wε) converges weakly-* to bw in L1(Ω), then

wε * MY ( bw) weakly-* in L1(Ω).

7. Let {wε} be a sequence in Lp(Ω) such that for some w 2 Lp(Ω),

wε �! w strongly in Lp(Ω).

Then
Tε(wε) �! w strongly in Lp(Ω⇥ Y ).

The following proposition gives an interesting result on the action of the
unfolding operator to a highly oscillating function. This is very helpful in
periodic homogenization as we deal with highly oscillating coefficients.
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Proposition 1.24. Let f be a function defined on Y , then extended by Y -
periodicity to the whole of RN . Define the sequence of functions {f ε} by

f ε(x) = f
⇣x
"

⌘
for a.e. x 2 R

N .

Then

Tε(f
ε|Ω)(x, y) =

(
f(y) for a.e. (x, y) 2 bΩε ⇥ Y,

0 for a.e. (x, y) 2 Λε ⇥ Y.

Let p 2 [1,1). If f 2 Lp(Y ), then

Tε(f
ε|Ω) �! f strongly in Lp(Ω⇥ Y ).

It is worth noting that there is a relationship between the two-scale con-
vergence of a sequence and the weak convergence of the unfolded sequence.
This is stated in the following proposition, which is proved in [31].

Proposition 1.25 ([31]). Let {wε} be a bounded sequence in Lp(Ω), with
p 2 (1,1), and w 2 Lp(Ω). The following statements are equivalent:

1. {Tε(wε)} converges weakly to w in Lp(Ω).

2. {wε} two-scale converges to w.

Now, we present a proposition that gives the convergence results for un-
folded sequence of functions and unfolded sequence of gradients of these
functions. These convergences are essential to the homogenization process
when using this method.

Proposition 1.26 ([31]). Let p 2 (1,+1). Let {wε} be a bounded sequence
sequence in W 1,p(Ω). Then there exist a subsequence (which will still be
denoted by "), w 2 W 1,p(Ω), and bw 2 Lp(Ω;W 1,p

per(Y )) such that

(
Tε(wε)* w weakly in Lp(Ω;W 1,p(Y ))

Tε(rwε)* rw +ry bw weakly in Lp(Ω⇥ Y ).

Moreover, if p = +1, then we have the same convergences in the weak-*
topology.

We are now ready to prove Theorem 1.15 using the periodic unfolding
method.

Note that we still have estimate (1.31) and convergence (1.33). Then
from Proposition 1.23 and Proposition 1.26, we can extract a subsequence
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(which we will still denote by "), such that for some u0 2 H1
0 (Ω), and

u1 2 L2(Ω;H1
per(Y )), we have the following convergences:

8
>><
>>:

uε * u0 weakly in H1
0 (Ω),

Tε(u
ε)* u0 weakly in L2(Ω;H1(Y )),

Tε(ruε)* ru0 +ryu1 weakly in L2(Ω⇥ Y ).

(1.53)

Now, we choose a test function ' 2 H1
0 (Ω) in the variational formulation

(1.30) and we obtain
Z

Ω

Aε(x)ruεr' dx =

Z

Ω

f' dx.

Using the properties of the unfolding operator in Proposition 1.23 and the
convergences in (1.53), we have

lim
ε!0

Z

Ω

A
⇣x
"

⌘
ruεr' dx = lim

ε!0

1

|Y |

Z

Ω⇥Y

Tε

⇣
A
⇣x
"

⌘
ruεr'

⌘
dx dy

= lim
ε!0

1

|Y |

Z

Ω⇥Y

A(y)Tε(ruε)Tε(r') dx dy

=
1

|Y |

Z

Ω⇥Y

A(y)(ru0 +ryu1)r' dx dy.

Moreover, by Proposition 1.23 and the fact that both functions f and ' are
independent of y,

lim
ε!0

Z

Ω

f' dx = lim
ε!0

1

|Y |

Z

Ω⇥Y

Tε(f') dx dy = lim
ε!0

1

|Y |

Z

Ω⇥Y

Tε(f)Tε(') dx dy

=
1

|Y |

Z

Ω⇥Y

f' dx dy =

Z

Ω

f' dx.

It follows that

1

|Y |

Z

Ω⇥Y

A(y)(ru0 +ryu1)r' dx dy =

Z

Ω

f' dx, (1.54)

for all ' 2 H1
0 (Ω).

We now consider the function vε(x) = "'(x) (x
ε
), where ' 2 D(Ω) and

 2 H1
per(Y ). By the properties of the unfolding operator in Proposition

1.23, we have

Tε(vε) = "Tε(') (y), Tε(rvε) = "Tε(r') + Tε(')ry .
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Then, as " tends to 0, we obtain
(
Tε(vε) �! 0 strongly in L2(Ω⇥ Y ),

Tε(rvε) �! 'ry strongly in L2(Ω⇥ Y ).
(1.55)

Choosing vε as a test function in (1.30) gives
Z

Ω

Aε(x)ruεrvε dx =

Z

Ω

fvε dx.

Similar to what was done above, we again use Proposition 1.23 to pass to the
limit of the left-hand side of this equation. Together with the convergences
in (1.55), we will obtain

lim
ε!0

Z

Ω

A
⇣x
"

⌘
ruεrvε dx =

1

|Y |

Z

Ω⇥Y

A(y)(ru0 +ryu1)'ry dx dy

and

lim
ε!0

Z

Ω

fvε dx = 0.

This gives
1

|Y |

Z

Ω⇥Y

A(y)(ru0 +ru1)'ry dx dy = 0.

Adding this last equation to (1.54), and using the density of the tensor prod-
uct D(Ω)⌦H1

per(Y ) in L2(Ω;H1
per(Y )), we obtain

1

|Y |

Z

Ω⇥Y

A(y)(ru0 +ryu1)(r'+ryΦ) dx dy =

Z

Ω

f' dx,

for any ' 2 H1
0 (Ω) and for all Φ 2 L2(Ω;H1

per(Y )). This is equivalent to
the formulation (1.48) obtained in the previous section by the the two-scale
convergence method. To obtain the homogenized problem (1.39) that is
satisfied by u0, we argue as in the proof above. This concludes the proof.

The periodic unfolding method for an imperfect interface

We briefly discuss here the method for a two-component domain, which is the
domain considered in this thesis. The main difference of a classical domain
and a two-component domain is the jump of the solution on the interface of
the two materials. This jump may be caused by an imperfect contact in the
interface.

The method will be presented in more detail in Chapter 5, which is ded-
icated to the homogenization. One can also see [45, 46] for a full discussion
of this method.
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We study the asymptotic behavior of the following quasilinear elliptic
problem in Ω:

8
>>>>>>>>>>><
>>>>>>>>>>>:

� div
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
= f in Ω

ε
1,

� div
⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
= f in Ω

ε
2,⇣

A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 =

⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
⌫ε1 on Γ

ε,
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 = �"�1h

⇣x
"

⌘
(uε

1 � uε
2) on Γ

ε,

uε = 0 on @Ω,

(1.56)

where ⌫ε1 is the unit outward normal to Ω
ε
1, f 2 L1(Ω), h is a Y -periodic

L1(Γ) function and A(y, t) is a coercive matrix field with restricted growth
assumption which is also Y -periodic.

In the literature, in the study of homogenization of (1.56) for f 2 L2(Ω),
the proportionality assumption on Γ

ε depends on "γ (instead of "�1), where
�  1. The homogenization then is done in three cases: � 2 (�1, 1], � = �1,
and � 2 (�1,�1). The major difference between these cases is the corre-
sponding cell problem. We only consider here the case � = �1, which has
the particularity that also the cell problem presents a jump on the reference
interface.

Before we obtain homogenization results, we first study the following
periodic elliptic cell problem, related to the homogenized problem of (1.56):

8
>>>>>>>><
>>>>>>>>:

� div(Ar�λ
1) = Gλ

1 in Y1,

� div(Ar�λ
2) = Gλ

2 in Y2,

Ar�λ
1 · n1 = �Ar�λ

2 · n2 on Γ,

Ar�λ
1 · n1 = �h(y)(�λ

1 � �λ
2) on Γ,

�λ
1 Y � periodic,

MΓ(�
λ
1) = 0,

(1.57)

where � 2 R
N and Gλ

i is defined by

hGλ
i , vi =

Z

Yi

A�rv dy, 8v 2 H1(Yi), i = 1, 2, (1.58)

which belongs to (H1(Yi))
0.

We are interested in the properties of the solution of (1.57), which were
not studied in the literature. This is motivated by the fact that the cor-
responding homogenized matrix A0 corresponding to (1.56) is defined with
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through the solution �λ of (1.57). More precisely, the definition of A0 is as
follows:

A0(t) = A0
1(t) + A0

2(t), (1.59)

where

A0
i (t)� =

1

|Y |

Z

Yi

A(y, t)ryw
λ
i (y, t) dy, i = 1, 2, 8� 2 R

N ,

with
wλ

i (y, t) = � · y � �λ
i (y, t),

and �λ = (�λ
1 ,�

λ
2) the solution of (1.57).

The properties that we obtained in this thesis are interesting in itself.
In particular, we prove that if the matrix field A is Lipschitz-continuous
with respect to the second variable, then also A0 retains this property. This
allows us to obtain a uniqueness result for the homogenized problem in Ω

(see Theorem 1.31) corresponding to (1.56).
Let us recall, in [23], the authors proved a similar result for the homoge-

nization of elliptic problems in a perforated domains, which involves the use
of a Meyers-type estimate.

We then proceed by proving first the following theorem, which states that
a suitable Meyers-type estimate holds for the periodic solution of (1.57):

Theorem 1.27. Let � 2 R
N and let �λ = (�λ

1 ,�
λ
2) 2 H be the solution of

(1.57). Then for any � 2 R
N , there exists pi > 2, i = 1, 2, such that

�λ
i 2 W 1,pi(Yi).

Moreover, for i = 1, 2, for every 2  qi  pi, there exists a positive constant
ci, dependent on ↵, �, qi, and Yi, such that

kr�λ
i kLqi (Yi)  ci|�|.

This theorem is proved using the estimates given by Gallouët and Monier
in [55] for elliptic equations with nonhomogeneous Neumann boundary con-
ditions.

We are then able to prove the following main result:

Theorem 1.28. Let A : (y, t) 2 Y ⇥ R 7! A(y, t) 2 R
N⇥N be a real matrix

field with the following properties:

(P1) A(·, t) belongs to M(↵, �, Y ) for all t 2 R;

(P2) A(·, t) = {aij}i,j=1,...,N is Y�periodic for every t;

58



(P3) A(y, t) is locally Lipschitz with respect to the second variable, that is,
for every r > 0, there exists a positive constant Mr such that

|A(y, s)� A(y, t)|  Mr|s� t| 8s, t 2 (�r, r).

Then the corresponding homogenized matrix A0 (see (1.59)) is also locally
Lipschitz, that is, for every r > 0, there exists a positive constant Cr such
that

|A0(s)� A0(t)|  Cr|s� t| 8s, t 2 (�r, r).

This theorem is used to show uniqueness results for the homogenized
problem in Ω presented below (see Theorem 1.31).

We now proceed with the homogenization of (1.56). We use the periodic
unfolding method adapted to the domain with imperfect interface introduced
in [46]. This method makes use of the periodic unfolding operators T

ε

i ,
i = 1, 2, which is defined for any measurable function ui defined in Ω

ε
i . One

of the main interesting properties of this operator is that it transforms the
integrals over the varying domain Ω

ε
i to integrals over the set Ω⇥Yi, i = 1, 2,

which is independent of ".
As far as we know, a study that combines the framework of renormalized

solution and the periodic unfolding method has been first done in [43], and
we adopt a similar approach in this thesis.

The homogenization in the framework of renormalized solution is not as
straightforward as in the case with L2 data. This is because the restrictions
to Ω

ε
i of the solution uε of (9) do not necessarily belong to H1(Ωε

i ), i = 1, 2.
In particular, when f in (9) belongs to L2(Ω), one can obtain some a

priori estimates on uε
i in H1(Ωε

i ) (see [7]). Then, using the results in [46],
these estimates lead to the following convergences:
8
<
:
T

ε

i (u
ε
i ) �! u1 strongly in L2(Ω, H1(Yi)), i = 1, 2

T
ε

i (ruε
i )* ru1 +rybui weakly in L2(Ω⇥ Yi), i = 1, 2,

(1.60)

for some u1 2 H1
0 (Ω) and bui 2 L2(Ω, H1(Yi)), i = 1, 2. Then using these

convergences, one obtains the homogenized problem in Ω satisfied by u1.
However, in our case, uε

i does not belong to H1(Ωε
i ), i = 1, 2 and hence,

this is not how we will proceed. We instead work on the truncates of uε
i (i.e.,

Tk(u
ε
i )), since in the framework of renormalized solutions, Tk(u

ε
i ) 2 H1(Ωε

i )
(see Definition 1.7), i = 1, 2, for all k > 0. Thus, in place of (1.60), combining
the techniques of the framework of renormalized solutions and that of the
periodic unfolding method (in particular, the compactness results), we show
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that there exists u1 and a sequence {bun
i }n2N ⇢ L2(Ω, H1(Yi)), i = 1, 2, such

that for any n 2 N, i = 1, 2,
8
>><
>>:

Tn(u1) 2 H1
0 (Ω)

T
ε

i (Tn(u
ε
i )) �! Tn(u1) strongly in L2(Ω, H1(Yi)), i = 1, 2,

T
ε

i (rTn(u
ε
i ))* rTn(u1) +rybun

i weakly in L2(Ω⇥ Yi), i = 1, 2.

(1.61)
Even if there are similarities between the homogenization of (9) and that

studied in [43], there are additional difficulties that arise here, due to the
presence of the jump of the solution on the interface Γ.

The first main difference can be observed in the definition of a renor-
malized solution of (9) (see Definition 1.7), containing additional conditions,
as presented in Chapter 2. In addition, the proof of the following theorem,
which is the construction of the oscillating part bui, i = 1, 2, from the sequence
of functions {bun

i }n2N and an identification result, is also more delicate than
the corresponding theorem in [43]:

Theorem 1.29. Let bun
1 2 L2(Ω, H1

per(Y1)) and bun
2 2 L2(Ω, H1(Y2)), n 2 N,

be the functions given in (1.61) with MΓ(bun
1 ) = 0. Then there exists a unique

measurable function

bui : Ω⇥ Yi �! R, i = 1, 2,

such that for every R 2 C1(R) with compact support, that is, suppR ⇢
[�m,m], for some m 2 N, we have

R(u1)bun
i = R(u1)bui a.e. in Ω⇥ Yi,

for all n � m, where u1 is the function given above.
Moreover, we have

bui(x, ·) 2 H1(Yi), i = 1, 2, with MΓ(bu1) = 0, for a.e. x 2 Ω.

The delicate part of the proof comes from the fact that the average value
on Γ of bun

2 , n 2 N, is not necessarily zero.
Using this theorem and the convergences in (1.61), we are able to show the

following theorem, describing the unfolded homogenized problem satisfied by
the triple (u1, bu1, bu2):

Theorem 1.30 (The unfolded homogenized problem). Let u1, bu1, and bu2 be
functions introduced in (1.61). Let  1, 2 be functions in C1(R) (or equiva-
lently,  1, 2 2 W 1,1(R)) with compact supports.
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Then the triple (u1, bu1, bu2) satisfies
8
>>>>>>><
>>>>>>>:

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui)(r( 1(u1)') +  2(u1)ryΦi) dx dy

+
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)(Φ1 � Φ2) dx d�y =

Z

Ω

f(x) 1(u1)'(x) dx

8' 2 H1
0 (Ω) \ L1(Ω), Φi 2 L2(Ω, H1

per(Yi)), i = 1, 2.

In addition, for k > 0, the following limits hold:

lim
k!1

1

k

Z

{|u1|<k}⇥Yi

A(y, u1)(rTk(u1) +rybui)(rTk(u1) +rybui) dx dy = 0,

for i = 1, 2, and

lim
k!1

1

k

Z

{|u1|<k}⇥Γ

(bu1 � bu2)
2 dx d�y = 0.

From this unfolded problem, we obtain the homogenized problem in Ω,
which completes the chapter.

Theorem 1.31 (The homogenized problem in Ω). Let u1 be a cluster point
of the sequence {T

ε

i (u
ε
i )}, i = 1, 2. Then u1 is a renormalized solution of
(
� div(A0(u1)ru1) = f in Ω

u1 = 0 on @Ω,
(1.62)

that is,

Tk(u1) 2 H1
0 (Ω), for any k > 0, (1.63)

lim
k!1

1

k

Z

{|u1|<k}

A0(u1)ru1ru1 dx = 0, (1.64)

and for every  2 C1(R) (or equivalently,  2 W 1,1(R)) with compact
support,

Z

Ω

 (u1)A
0(u1)ru1r' dx

+

Z

Ω

 0(u1)A
0(u1)ru1ru1 ' dx =

Z

Ω

f (u1)' dx,

(1.65)

for every ' 2 H1
0 (Ω)\L1(Ω), where A0 is the homogenized matrix as defined

above.
If in addition, (A4) holds, then u1 is the unique renormalized solution of

(9) and all of the sequences in (1.61) converge (not just a subsequence).
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The proof of the last assertion of this theorem makes use of Theorem 10
of the previous chapter. It is worth noting that proving of the decay of the
“truncated” energy (condition (1.64)) is not standard and also delicate.

Finally, let us point out that, as observed along this thesis, managing the
boundary integral that arise from the jump of the solution on the interface is
not an easy task. This difficulty is not limited to the homogenization result.
This can also be seen in the existence and uniqueness of the renormalized
solution of (1) and also in studying the properties of the solution of the cell
problem (10).
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Part I

Existence and uniqueness results





Chapter 2

Quasilinear elliptic problems in a

two-component domain with L1

data

2.1 Introduction

In the present chapter, we study the existence of a solution u := (u1, u2) of
the following class of quasi-linear equations:

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f in Ω1,

� div(B(x, u2)ru2) = f in Ω2

u1 = 0 on @Ω,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ.

(2.1)

Here, Ω is our two-component domain and @Ω is its boundary. The open sets
Ω1 and Ω2 are the two disjoint components of Ω, Γ is the interface between
them (see Figure 1), and the vector ⌫i is the unit outward normal to Ωi. The
matrix field B(x, r) is coercive and is not restricted by any growth condition
with respect to r (B(x, r) is bounded on any compact set of R), and the data
f is an L1-function. On the boundary @Ω, we have a Dirichlet boundary
condition, while on the interface Γ, we have a continuous flux and the jump
of the solution is proportional to the flux. We refer to [26] for a justification
of the model in the case of the conduction of heats in solids.

The existence and uniqueness of solution of (2.1) when f 2 L2(Ω) was
studied in [7, 45, 46]. In [45, 46] the equations are linear, that is, the matrix
field B does not depend on the solution u, while in [7], the equations are



quasilinear, which is also the case in this study. The above mentioned papers
are all motivated by homogenization, which is also our main goal (see [42]).

Since we consider in this chapter an L1 data, we need an appropriate
notion of solution. Let us recall that, for the elliptic equation

� div(A(x, u)ru) = f

with Dirichlet boundary condition, if the matrix A is bounded, a solution in
the sense of distribution exists (see [18]) but it is not unique in general (see
the counterexamples in [76, 78]). If the matrix field is not bounded, then
we cannot expect to have a solution in the sense of distribution since there
is no reason to have A(x, u) 2 L1

loc. In this chapter, we use the notion of
renormalized solution, which was first discussed in [39] by R.J. DiPerna and
P.L. Lions for first order equations. This notion was then further developed
by F. Murat in [71], by P.L. Lions and F. Murat in [63] for elliptic equations
with Dirichlet boundary conditions and L1 data, and by G. Dal Maso et
al. in [36] for elliptic equations with general measure data. There is a wide
range of literature for elliptic equations with Dirichlet boundary condition
and L1 data, among them are [10, 18, 36, 37, 63, 71]. Considering elliptic
equations with Neumann or Robin boundary conditions and L1 data, which
are connected to our problem, gives, in general, additional difficulties due the
lack of Poincaré inequality or the low regularity of the solution (definition
of the trace for e.g.). In the case of one-component domain, L1 data and
Neumann or Robin boundary conditions, let us mention [3, 4, 73] using the
framework of entropy solutions, [49] using a duality method and [13, 59] using
the framework of renormalized solutions.

The main originality here is the jump of the solution which produces in
the formulation a term in the interface Γ. Recalling that the regularity of
the renormalized solution is given through the truncate, the first difficulty is
to give a sense on the interface for functions (u1, u2) whose truncates belong
to H1 only in each component. Following the ideas of [3, 59] (but in the case
of one-component domain), we define an appropriate notion of trace (see
Proposition 2.2). The second difficulty is the regularity of �1(u1) � �2(u2)
(where �1 is the trace function for H1(Ω1)�functions and �2 is the trace
function for H1(Ω2)�functions), since we have to deal, in the renormalized
formulation, with terms on the boundary like (�1(u1)��2(u2))S(�(u1)), where
S is a C1 function with compact support. To have (�1(u1)� �2(u2))S(�(u1))
belonging to L1(Γ) is then equivalent to have �2(u2)S(�(u1)) 2 L1(Γ), which
is unusual and is in some sense a coupled regularity on the boundary. It
is worth noting that it is not a direct consequence of Tk(u1) 2 H1(Ω1) and
Tk(u2) 2 H1(Ω2) (Tk is the usual truncation function at height ±k, see
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(2.4)). Using the structure of the equation, we impose an extra regularity
(see (2.12b)), namely

(�1(u1)� �2(u2))[Tk(�(u1))� Tk(�(u2))] 2 L1(Γ), for any k > 0,

which allows one to prove that �2(u2)S(�(u1)) 2 L1(Γ) and then (�1(u1) �
�2(u2))S(�(u1)) 2 L1(Γ) (see Remark 2.5). We also impose a decay of the
energy of the trace (see (2.13b)) in addition to the usual decay of the energy
which are crucial to obtain stability results (see Remark 2.10). Consequently,
we are able to give a definition of renormalized solution for problem (2.1) for
which we prove the existence (see Theorem 2.8).

This chapter is organized as follows. The next section discusses the as-
sumptions on our problem and some definitions, including the definition of
a renormalized solution of (2.1) (see Definition 2.4). Section 2.3 is devoted
to the proof of the existence of a renormalized solution for (2.1). We also
remark here that by using the Boccardo-Gallouët estimates, we can actually
replace conditions (2.12b) and (2.13b) of Definition 2.4 by another regularity
condition on the interface. However, we prefer not to use these estimates
because we have the homogenization process in mind (see Remark 2.9).

2.2 Assumptions and Definitions

In this section, we present the assumptions and definitions necessary for
our problem. We begin by introducing the two-component domain Ω. The
domain Ω is a connected bounded open set in R

N with boundary @Ω. We
can write Ω as the disjoint union Ω = Ω1 [ Ω2 [ Γ, where Ω2 is an open set
such that Ω2 ⇢ Ω with a Lipschitz boundary Γ, and Ω1 = Ω \Ω2. We denote
by ⌫i the unit outward normal to Ωi.

If we have a function u defined on Ω \ Γ, then we denote ui = u
��
Ωi

the
restriction of u in Ωi. Furthermore, we have the following assumptions:

(A1) The data f belongs to L1(Ω).

(A2) The function h satisfies

h 2 L1(Γ) and 0 < h0 < h(y) a.e. on Γ, (2.2)

for some h0 2 R
+.

(A3) The matrix field B is a Carathéodory function, that is,

(a) the map r 7! B(x, r) is continuous for a.e. x 2 Ω;
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Ω
Ω2

Γ

Ω2

Γ

Ω1

∂Ω

Figure 2.1: The two-component domain Ω

(b) the map x 7! B(x, r) is measurable for a.e. r 2 R,

and it has the following properties:

(A3.1) B(x, r)⇠ · ⇠ � ↵|⇠|2, for some ↵ > 0, for a.e. x 2 Ω, 8r 2 R,
8⇠ 2 R

N ;

(A3.2) for any k > 0, B(x, r) 2 L1(Ω⇥ (�k, k))N⇥N .

The space for this class of equations is not a usual Lp�space or a Sobolev
space due to the jump on the interface. We need the normed space V defined
as follows. Let V1 be the space defined by

V1 = {v 2 H1(Ω1) : v = 0 on @Ω} with kvkV1
:= krvkL2(Ω1).

Define V := {v ⌘ (v1, v2) : v1 2 V1 and v2 2 H1(Ω2)}, equipped with the
norm

kvk2V := krv1k
2
L2(Ω1)

+ krv2k
2
L2(Ω2)

+ kv1 � v2k
2
L2(Γ). (2.3)

Identifying rv := grv1 + grv2, we have that kvk2V = krvk2L2(Ω\Γ) + kv1 �

v2k
2
L2(Γ).

Proposition 2.1 ([68]). The norm given in (2.3) is equivalent to the norm
of V1 ⇥H1(Ω2), that is, there exist two positive constants c1, c2 such that

c1kvkV  kvkV1⇥H1(Ω2)  c2kvkV , 8v 2 V.
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We now define the function Tk, which is known as the truncation function
at height ±k. The function Tk : R �! R is given by

Tk(t) =

8
><
>:

�k, if t  k,

t, if � k  t  k,

k, if t � k.

(2.4)

This function will be crucial in the definition of a renormalized solution of
(2.1).

In the case of L1 data, we cannot expect to have the solution u belonging
to V . In general, in the framework of renormalized solution, the regularity of
the solution is given through the regularity of any truncate. So it is necessary
in our case to define the gradient and the trace of the solution u. For the
gradient, we follow the definition given in [10]. For the trace, we have to
precise the trace of u1 on Γ and the one of u2 on Γ. With respect to [3, 59],
we have the additional difficulty for u2 since we do not have the Poincaré
inequality.

Proposition 2.2. Let u = (u1, u2) : Ω \ Γ �! R be a measurable function
such that Tk(u) 2 V for every k > 0.

1. For i = 1, 2, there exists a unique measurable function Gi : Ωi �! R
N

such that for all k > 0,

rTk(ui) = Gi�{|ui|<k} a.e. in Ωi, (2.5)

where �{|ui|<k} denotes the characteristic function of

{x 2 Ωi : |ui(x)| < k}.

We define Gi as the gradient of ui and write Gi = rui.

2. If

sup
k�1

1

k
kTk(u)k

2
V < 1, (2.6)

then there exists a unique measurable function

wi : Γ �! R, for i = 1, 2,

such that for all k > 0,

�i(Tk(ui)) = Tk(wi) a.e. in Γ, (2.7)

where �i : H1(Ωi) �! L2(Γ) is the trace operator. We define the
function wi as the trace of ui on Γ and set

�i(ui) = wi, i = 1, 2.
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Proof.

1. This is proved in [10] (see Lemma 2.1).

2. The case i = 1, or more generally the truncates have a zero trace on a
part of the boundary (which allows one to use Poincaré-kind inequality)
is presented in [59]. We just have to prove the result for i = 2.

The uniqueness is in the almost everywhere sense. Note that if we find
two functions that satisfies (2.7), then the uniqueness of w2 is assured
by the monotonicity of Tk and the fact that w2 is finite a.e. in Γ.

By Proposition 2.1, we know that

kTk(u2)kH1(Ω2)  c1kTk(u)kV ,

for some positive constant c1, independent of k. It follows from (2.6)
that

kTk(u2)k
2
H1(Ω2)

 Mk, (2.8)

with M 2 R
+ independent of k. Due to the regularity of Γ, �2(Tn(u2))

is well-defined and

k2measΓ{|�2(Tk(u2))| � k} =

Z

Γ\{|Tk(u2)|�k}

(�2(Tk(u2)))
2 d�

 k�2(Tk(u2))k
2
L2(Γ).

Hence, by Trace Theorem and (2.8), we have

k2measΓ{|�2(Tk(u2))| � k}  k�2(Tk(u2))k
2
L2(Γ)

 kTk(u2)k
2
L2(Ω2)

+ krTk(u2)k
2
L2(Ω2)

 Mk.

As a result,

measΓ{|�2(Tk(u2))| � k} �! 0 as k �! 0. (2.9)

Define Γn = {x 2 Γ : |�2(Tn(u2))| < n} for n 2 N.

From (2.9), it follows that

Γ =
[

n�1

Γn [ A, (2.10)

where A is a subset of Γ with zero measure.
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Note that for k < n, we have Tk(Tn(u2)) = Tk(u2). Fix k > 0. Then
for every n 2 N such that n > k, we have the following equality

Tk(�2(Tn(u2))) = �2(Tk(Tn(u2))) = �2(Tk(u2)) a.e. on Γ,

and then
�2(Tk(u2)) = �2(Tn(u2)) a.e. on Γk. (2.11)

Since for every n1  n, we have Γn1
✓ Γn, in view of (2.10) and (2.11),

we can define w2 in the following way:

w2 = �2(Tn(u2)) on Γn,

and noting that Γ =
S
n�1

Γn (up to measure zero set), we have for any

k > 0
�2(Tk(u2)) = Tk(w2) a.e. on Γ.

This concludes the proof.

Remark 2.3. In the following, we give an example of a measurable function u
where Tk(u) 2 V but u2 is not defined on a part of the interface. We consider
Ω = (�1, 2) with Ω1 = (�1, 0) [ (1, 2) and Ω2 = (0, 1) (so Γ = {0, 1}), and
u = (u1, u2) is defined as

u(x) =

(
u1(x) = (x+ 1)(x� 2) if x 2 Ω1

u2(x) = x�2 if x 2 Ω2.

We have for some positive constants C1, C2,

krTk(u1)k
2
L2(Ω1)

=

Z

{|u1|<k}

(2x� 1)2 dx 

Z

Ω1

(2x� 1)2 dx  C1,

and

krTk(u2)k
2
L2(Ω2)

=

Z 1

k1/2
(�2x�3)2 dx = 4


�
x7

7

�1

x=k1/2
=

4

7
(k7/2 � 1).

Thus, we can see that

k7/2

C
 kTk(u)k

2
V  Ck7/2,

for some C > 0 but clearly u2 does not have a trace on {0} ⇢ Γ.
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We are now in a position to give the definition of renormalized solution.

Definition 2.4. Let u = (u1, u2) : Ω \ Γ �! R be a measurable function.
Then u is a renormalized solution of (2.1) if

Tk(u) 2 V, 8k > 0; (2.12a)

(u1 � u2)(Tk(u1)� Tk(u2)) 2 L1(Γ), 8k > 0; (2.12b)

lim
n!1

1

n

Z

{|u|<n}

B(x, u)ru ·ru dx = 0; (2.13a)

lim
n!1

1

n

Z

Γ

(u1 � u2)(Tn(u1)� Tn(u2)) d� = 0; (2.13b)

and for any S1, S2 2 C1(R) (or equivalently for any S1, S2 2 W 1,1(R)) with
compact support, u satisfies

Z

Ω1

S1(u1)B(x, u1)ru1 ·rv1 dx+

Z

Ω1

S 0
1(u1)B(x, u1)ru1 ·ru1 v1 dx

+

Z

Ω2

S2(u2)B(x, u2)ru2 ·rv2 dx+

Z

Ω2

S 0
2(u2)B(x, u2)ru2 ·ru2 v2 dx

+

Z

Γ

h(x)(u1 � u2)(v1S1(u1)� v2S2(u2)) d�

=

Z

Ω1

fv1S1(u1) dx+

Z

Ω2

fv2S2(u2) dx, (2.14)

for all v 2 V \ (L1(Ω1)⇥ L1(Ω2)).

Remark 2.5. Conditions (2.12a) (the regularity of the truncate) and (2.13a)
(the decay of the "truncated energy") are standard in the framework of renor-
malized solutions. As mentioned in the introduction, the main originality here
is the presence of the traces in conditions (2.12b) and (2.13b).

In view of Proposition 2.2, �(u1) and �(u2) are well-defined. Condition
(2.12b) is an extra regularity of (u1 � u2)(Tk(u1)� Tk(u2)).

Indeed, (u1 � u2)(Tk(u1)� Tk(u2)) cannot be written as

(u1 � u2)(Tk(u1)� Tk(u2))�{|u1|<n}�{|u2|<n},

for any n 2 N, so that having (u1 � u2)(Tk(u1)� Tk(u2)) belonging to L1(Γ)
is not a consequence of (2.12a).

Conditions (2.12a) and (2.12b) allow one to give a sense of all the terms
in (2.14). Let Si 2 C1(R), i = 1, 2, with compact support.

72



Then for all v 2 V \ (L1(Ω1) ⇥ L1(Ω2)), we have if suppSi ⇢ [�k, k]
(i = 1, 2), then for i = 1, 2,

Si(ui)B(x, ui)rui ·rvi = Si(ui)B(x, Tk(ui))rTk(ui) ·rvi 2 L1(Ωi),

S 0
i(ui)B(x, ui)rui ·rui vi = S 0

i(ui)B(x, Tk(ui))rTk(ui) ·rTk(ui) vi 2 L1(Ωi),

fviSi(ui) 2 L1(Ωi).

For the boundary term, for any n 2 N, let us define ✓n : R �! R by

✓n(s) =

8
>>>>>>><
>>>>>>>:

0, if s  �2n,
s

n
+ 2, if � 2n  s  �n,

1, if � n  s  n,

�
s

n
+ 2, if n  s  2n,

0, if s � 2n.

(2.15)

Then since S1 has a compact support, for some large enough n, we have

h(u1 � u2)v1S1(u1) = hv1(u1 � u2)(S1(u1)� S1(u2))✓n(u1)

+ hv1(u1 � u2)S1(u2)✓n(u1).

Since both S1 and ✓n have compact support, we have that hv1(u1�u2)S1(u2)✓n(u1)
is bounded and is therefore in L1(Γ). Moreover, since

S1(u1)� S1(u2) = S1(T2n(u1))� S1(T2n(u2))

and S1 is Lipschitz, we have

|hv1(u1 � u2)(S1(u1)� S1(u2))✓n(u1)| khv1kL1(Γ)kS
0
1kL1(R)

⇥ |u1 � u2||T2n(u1)� T2n(u2)|,

a.e. in Γ. Thus, in view of (2.12b), h(u1 � u2)v1S1(u1) 2 L1(Γ). Similarly,
h(u1 � u2)v2S2(u2) 2 L1(Γ).

It is worth noting that condition (2.12b) is equivalent to have

u2�{|u1|<k} 2 L1(Γ) and u1�{|u2|<k} 2 L1(Γ), (2.16)

for any k > 0. Indeed,

u2�{|u1|<k} = (u2 � u1)�{|u1|<k}(✓n(u1)� ✓n(u2)) + u2✓n(u2)�{|u1|<k}

+ u1✓n(u1)�{|u1|<k} � u1✓n(u2)�{|u1|<k},
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and by condition (2.12b), the first term on the right-hand side belongs to
L1(Γ) while the next 3 terms are bounded and thus also belong to L1(Γ).

Finally, let us comment that conditions (2.13a) and (2.13b) are crucial
to recover that formally, for any k > 0, Tk(u) is an admissible function in
(2.1), that is,

Z

Ω1

B(x, u1)ru1rTk(u1) dx+

Z

Ω2

B(x, u2)ru2rTk(u2) dx

+

Z

Γ

h(x)(u1 � u2)(Tk(u1)� Tk(u2)) d� =

Z

Ω

fTk(u1) dx.

To prove this, fix k > 0. For n 2 N, using S1 = S2 = ✓n and v = Tk(u) as a
test function in (2.14), we have

Z

Ω1

✓n(u1)B(x, u1)ru1 ·rTk(u1) dx

+

Z

Ω1

✓0n(u1)B(x, u1)ru1 ·ru1 Tk(u1) dx

+

Z

Ω2

✓n(u2)B(x, u2)ru2 ·rTk(u2) dx

+

Z

Ω2

✓0n(u2)B(x, u2)ru2 ·ru2 Tk(u2) dx

+

Z

Γ

h(x)(u1 � u2)(✓n(u1)Tk(u1)� ✓n(u2)Tk(u2)) d�

=

Z

Ω

fTk(u)✓n(u) dx. (2.17)

Condition (2.13a) allows one to pass to the limit of the second and fourth
integral in (2.17) while condition (2.13b) is useful for passing to the limit of
the integral on the boundary in (2.17).

Remark 2.6. As observed in the previous remark, the main purpose of in-
troducing condition (2.12b) is to allow us to make sense of the integral on
the interface. We can avoid introducing this extra regularity condition on Γ

by using the Boccardo-Gallouët estimates presented in [18]. However, these
estimates are heavily dependent on the Sobolev constants. With the final aim
of doing the homogenization process, we try as much as possible to refrain
from using these estimates (see Remark 2.9).
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Remark 2.7. In the variational case (i.e. B is a bounded matrix field and
f 2 Lq with q � (N + 2)/(2N)), if B(x, r) is global Lipschitz continuous
with respect to r or if its modulus of continuity is strongly controlled, the
(variational) solution is unique (see [48]). In the L1 case, the uniqueness
question is addressed in [54]: under assumptions (A1)–(A3) and a local Lip-
schitz condition on B(x, r) with respect to r, we prove that the renormalized
solution is unique.

2.3 Existence Results

In this section, we present the proof for the existence of a renormalized
solution of (2.1).

Theorem 2.8. Suppose assumptions (A1)-(A3) hold. Then there exists a
renormalized solution to (2.1) in the sense of Definition 2.4.

Proof. The proof is divided into 4 steps. In Step 1, we consider an approxi-
mate problem (see (2.18) below) in which B is approximated by a bounded
function and f ε is an L2�data. Using Schauder’s fixed point theorem, the
existence of at least a variational solution of (2.18) can be shown. Step 2 is
devoted to prove some a priori estimates and then extracting a convergent
subsequence. In Step 3, we prove that conditions (2.12a), (2.12b), (2.13a)
and (2.13b) are satisfied by the limit. Finally, in Step 4, we pass to the limit
and we show that the constructed function is a renormalized solution.

From this point until the end of the proof, we let i 2 {1, 2}.

Step 1: Introducing the approximate problem and showing the existence of
solution of the approximate problem
Let " > 0. Suppose {f ε} ⇢ L2(Ω) such that

f ε �! f strongly in L1(Ω),

as " ! 0. Define Bε(x, t) = B(x, T1/ε(t)). We now consider the following
approximate problem

8
>>>>>><
>>>>>>:

� div(Bε(x, u
ε
1)ruε

1) = f ε in Ω1,

� div(Bε(x, u
ε
2)ruε

2) = f ε in Ω2,

uε
1 = 0 on @Ω,

(Bε(x, u
ε
1)ruε

1)⌫1 = (Bε(x, u
ε
2)ruε

2)⌫1 on Γ,

(Bε(x, u
ε
1)ruε

1)⌫1 = �h(x)(uε
1 � uε

2) on Γ.

(2.18)
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The variational formulation of problem (2.18) is the following
8
>>>><
>>>>:

Find uε 2 V such that 8' 2 VZ

Ω1

Bε(x, u
ε
1)ruε

1 ·r'1 dx+

Z

Ω2

Bε(x, u
ε
2)ruε

2 ·r'2 dx

+

Z

Γ

h(x)(uε
1 � uε

2)('1 � '2) d� =

Z

Ω

f ε' dx.

(2.19)

Using Proposition 2.1 and Schauder’s Fixed Point Theorem, the proof of the
existence of solution for (2.19) is quite standard (see e.g. [7]).

Step 2: Extracting subsequences and examining convergences
Let uε = (uε

1, u
ε
2) be a solution to the approximate problem (2.18). By

Stampacchia’s theorem, for k > 0, Tk(u
ε) 2 V since uε 2 V .

Using Tk(u
ε) as a test function in the variational formulation (2.19), we

have
Z

Ω1

Bε(x, u
ε
1)ruε

1rTk(u
ε
1) dx+

Z

Ω2

Bε(x, u
ε
2)ruε

2rTk(u
ε
2) dx

+

Z

Γ

h(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d� =

Z

Ω

f εTk(u
ε) dx. (2.20)

By the definition of Tk, the coercivity of B, and the assumption on h, we
have

Z

Ω1

Bε(x, u
ε
1)ruε

1rTk(u
ε
1) dx+

Z

Ω2

Bε(x, u
ε
2)ruε

2rTk(u
ε
2) dx

+

Z

Γ

h(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d�

� ↵krTk(u
ε
1)k

2
L2(Ω1)

+ ↵krTk(u
ε
2)k

2
L2(Ω2)

+ h0kTk(u
ε
1)� Tk(u

ε
2)k

2
L2(Γ)

� C1kTk(u
ε)k2V ,

for some positive constant C1. On the other hand, by Holdër inequality,
����
Z

Ω

f εTk(u
ε) dx

���� =
����
Z

Ω1

f εTk(u
ε
1) dx+

Z

Ω2

f εTk(u
ε
2) dx

����
 kf εkL1(Ω)k  Mk,

for some positive constant M , which is independent of ".
Thus,

kTk(u
ε)k2V 

Mk

C1

, (2.21)

that is, the sequence {Tk(u
ε)} is bounded in V for every k > 0.
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By the Rellich theorem, the inclusions V ,! L2(Ω1)⇥L2(Ω2) and H1/2(Γ) ,!
L2(Γ) are compact. Consequently, since {Tk(u

ε)} is bounded in V for every
k > 0 (countable), by a diagonal process, we can extract a subsequence of
{Tk(u

ε)} such that for any k > 0 (k being a rational number), there is a
vk 2 V such that

8
><
>:

Tk(u
ε0

i ) �! vk,i strongly in L2(Ωi), a.e. in Ωi,

Tk(u
ε0

i )* vk,i weakly in V,

�i(Tk(u
ε0

i )) �! �i(vk,i) strongly in L2(Γ), a.e. on Γ.

(2.22)

Now, we show that {uε0

i } and {�i(u
ε0

i )} are Cauchy sequences in measure.
For uε0

i , we follow the arguments developed in [10]. For �i(uε0

i ), we have
additional difficulties which are overcome by using Proposition 2.1.

Note that we have

kTk(u
ε0

i )k
2
L2(Ωi)

=

Z

{|uε
0

i |�k}

|Tk(u
ε0

i )|
2 dx+

Z

{|uε
0

i |<k}

|Tk(u
ε0

i )|
2 dx

=

Z

{|uε
0

i |�k}

k2 dx+

Z

{|uε
0

i |<k}

|uε0

i |
2 dx.

It follows by Poincaré inequality, Proposition 2.1, and (2.21), we have

k2meas{|uε0 | � k} =

Z

{|uε
0

1 |�k}

k2 dx+

Z

{|uε
0

2 |�k}

k2 dx

 kTk(u
ε0

1 )k
2
L2(Ω1)

+ kTk(u
ε0

2 )k
2
L2(Ω2)

 C3krTk(u
ε0

1 )k
2
L2(Ω1)

+ kTk(u
ε0

2 )k
2
H1(Ω2)

 C4kTk(u
ε0)k2V 

C4Mk

C1

.

for some C3, C4 2 R
+. Thus, we can find a positive constant C independent

of " such that

meas{|uε0

i | � k} 
C

k
. (2.23)

For �1(uε0

1 ), observe that by Poincaré inequality and (2.21),

k2measΓ{|�1(u
ε0

1 )| � k} =

Z

{|γ1(uε
0

1 )|�k}

k2 d�

=

Z

{|γ1(uε
0

1 )|�k}

�1(Tk(u
ε0

1 ))
2 d�

 k�1(Tk(u
ε0

1 ))k
2
L2(Γ)

 C5krTk(u
ε0

1 )k
2
L2(Ω2)

 C6k.
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Consequently,

measΓ{|�1(u
ε0

1 )| � k} 
C6

k
�! 0 as k �! 1. (2.24)

For �2(uε0

2 ), by the Trace Theorem, Proposition 2.1, and (2.21), we have

k2measΓ{|�2(u
ε0

2 )| � k} =

Z

{|γ2(uε
0

2 )|�k}

k2 d�

=

Z

{|γ2(uε
0

2 )|�k}

�2(Tk(u
ε0

2 ))
2 d�

 k�2(Tk(u
ε0

2 ))k
2
L2(Γ)

 C7kTk(u
ε0

2 )k
2
H1(Ω2)

 C8k.

It follows that

measΓ{|�2(u
ε0

2 )| � k} 
C8

k
�! 0 as k �! 1. (2.25)

By (2.24) and (2.25), for every ⌘ > 0, there exists k0 such that for every
k � k0,

measΓ{x 2 Γ; |�i(u
ε0

i )| � k} < ⌘. (2.26)

Let !, ⌘ > 0. By (2.23) and (2.26), we can find k large enough such that

meas{|uε0

i | � k} 
⌘

3
, (2.27)

measΓ{x 2 Γ; |�i(u
ε0

i )| � k} 
⌘

3
, (2.28)

for every "0 > 0. Note that from (2.22), we can deduce that the sequences
{Tk(u

ε
i )}, {�i(Tk(u

ε
i ))} are Cauchy in measure. Hence, there exists "0 > 0

such that

meas{|Tk(u
ε0

i )� Tk(u
ε00

i )| � !} <
⌘

3
, (2.29)

measΓ{|�i(Tk(u
ε0

i ))� �i(Tk(u
ε00

i ))| � !} <
⌘

3
, (2.30)

for every 0 < "0, "00 < "0.
Observe that

{|uε0

i � uε00

i | � !} ⇢ {|uε0

i | � k} [ {|uε00

i | � k} [ {|Tk(u
ε0

i )� Tk(u
ε00

i )| � !},

and thus,

meas{|uε0

i � uε00

i | � !}  meas{|uε0

i | � k}+ meas{|uε00

i | � k}

+ meas{|Tk(u
ε0

i )� Tk(u
ε00

i )| � !}.
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It follows from (2.27) and (2.29) that

meas{|uε0

i � uε00

i | � !} < ⌘,

that is, {uε0

i } is actually Cauchy in measure. Using the inequalities (2.28)
and (2.30), and similar arguments, it can be shown that {�i(uε0

i )} is Cauchy
in measure.

Consequently, there is a subsequence of {uε0

i } that is convergent a.e. to
some measurable function ui : Ωi �! R, that is

uε0

i �! ui a.e. in Ωi. (2.31)

It follows from (2.23) that ui is finite a.e. in Ωi. This u := (u1, u2) is our
candidate for a renormalized solution for problem (2.1).

We now prove that u satisfies the conditions (2.12). Indeed, by the con-
tinuity of Tk, we have

Tk(u
ε0) �! Tk(u) = vk 2 V a.e. in Ω \ Γ. (2.32)

Moreover, we can deduce that {�i(u
ε0

i )} is convergent a.e. on Γ up to a
subsequence. Hence, there exists !i : Γ �! R such that

�i(u
ε0

i ) �! !i a.e. on Γ, (2.33)

with !i finite a.e. on Γ by (2.26). We now identify wi and �i(ui). Using
(2.21) and (2.22), we obtain

1

k
kTk(u)k

2
V 

M

C1

,

for any k > 0.
By Proposition 2.2, �i(ui) (the trace in the truncate sense) is well defined.

From (2.22), (2.32) and (2.33), we obtain that for any k > 0,

Tk(!i) = �i(vk,i) = �i(Tk(ui)) = Tk(�i(ui)) a.e. on Γ.

Then we have !i = �i(ui) a.e. on Γ. By Fatou’s Lemma, Tk being non-
decreasing, we have for all k > 0,
Z

Γ

(u1 � u2)(Tk(u1)� Tk(u2)) d�  lim inf
ε0!0

Z

Γ

(uε0

1 � uε0

2 )(Tk(u
ε0

1 )� Tk(u
ε0

2 )) d�

 kM,

which is (2.12b).
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From this point, we just denote our sequence by ". Rewriting all the
results we got in terms of ", we have the following: for all k > 0,

8
>>><
>>>:

uε
i �! ui a.e. in Ω,

Tk(u
ε
i ) �! Tk(ui) strongly in L2(Ωi), a.e. in Ωi,

�i(u
ε
i ) �! �i(ui) a.e. on Γ,

�i(Tk(u
ε
i )) �! �i(Tk(ui)) strongly in L2(Γ), a.e. in Γ.

(2.34)

In addition, we have

rTk(u
ε
i )* rTk(ui) weakly in (L2(Ωi))

N . (2.35)

Step 3: Showing conditions (2.13) of Definition 2.4.

From the continuity of B and (2.34), we have that for any fixed n > 0,

B(x, Tn(u
ε)) �! B(x, Tn(u)) a.e. in Ω and weakly* in L1(Ω). (2.36)

Due to assumption (A3.1) and the lower semi-continuity of the weak conver-
gence,

1

n

Z

{|u|<n}

B(x, u)ru·ru dx =
1

n

Z

Ω\Γ

B(x, Tn(u))rTn(u) ·rTn(u) dx

 lim inf
ε!0

1

n

Z

Ω\Γ

B(x, Tn(u
ε))rTn(u

ε)rTn(u
ε) dx,

and by Fatou’s Lemma,

1

n

Z

Γ

(u1�u2)(Tn(u1)�Tn(u)) d�  lim inf
ε!0

1

n

Z

Γ

(uε
1�uε

2)(Tn(u
ε
1)�Tn(u

ε
2)) d�.

Since
Z

Ω\Γ

B(x, Tn(u
ε))rTn(u

ε)rTn(u
ε) dx and

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

are nonnegative, it is sufficient to show that

lim
n!1

lim sup
ε!0

1

n

✓Z

Ω\Γ

B(x, Tn(u
ε))rTn(u

ε)rTn(u
ε) dx

+

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

◆
= 0.

(2.37)
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We use
1

n
Tn(u

ε) as a test function in (2.19) to obtain

1

n

Z

Ω1

Bε(x, u
ε
1)ruε

1rTn(u
ε
1) dx+

1

n

Z

Ω2

Bε(x, u
ε
2)ruε

2rTn(u
ε
2) dx

+
1

n

Z

Γ

h(x)(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d� =

1

n

Z

Ω

f εTn(u
ε) dx.

Consequently, for " small enough, we have

1

n

Z

Ω1

B(x,Tn(u
ε
1))ruε

1rTn(u
ε
1) dx+

1

n

Z

Ω2

B(x, Tn(u
ε
2))ruε

2rTn(u
ε
2) dx

+
1

n

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d� =

1

n

Z

Ω

f εTn(u
ε) dx.

Furthermore, since Tn(u
ε) converges to Tn(u) weakly⇤ in L1(Ω) and f ε con-

verges to f in L1(Ω), we have

1

n

Z

Ω

f εTn(u
ε) dx �!

1

n

Z

Ω

fTn(u) dx as " �! 0.

It follows that

lim sup
ε!0

1

n

✓Z

Ω\Γ

B(x,Tn(u
ε))rTn(u

ε)rTn(u
ε) dx

+

Z

Γ

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

◆
=

1

n

Z

Ω

fTn(u) dx.

Observe that since u is finite a.e.,

1

n
Tn(u) �! 0 a.e. in Ω.

In addition, for any n > 0, |Tn(u)|  n a.e. and thus,
����
1

n
fTn(u)

����  |f | 2 L1(Ω).

By the Lebesgue Dominated Convergence Theorem, we obtain

lim
n!1

1

n

Z

Ω

fTn(u) dx = 0,

which gives (2.37).
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Step 4. Show that u satisfies (2.14) of Definition 2.4.

Let S1, S2 2 C1(R) with compact support and let k > 0 such that

suppSi ⇢ [�k, k]. (2.38)

We need to show that for any v 2 V \ (L1(Ω1)⇥L1(Ω2)), u satisfies (2.14).
We use the function ✓n defined in (2.15). Note that

✓n(u
ε
i ) = ✓n(T2n(u

ε
i )) 2 H1(Ωi) \ L1(Ωi),

and thus, if we define
 i = viSi(ui)✓n(u

ε
i ),

for v 2 V \ (L1(Ω1)⇥ L1(Ω2)), we have that

 = ( 1, 2) 2 V \ (L1(Ω1)⇥ L1(Ω2)).

Using  as a test function in (2.19), we have

I11 + I12 + I21 + I22 + I31 + I32 + I4 = I51 + I52, (2.39)

where

I1i =

Z

Ωi

Bε(x, u
ε
i )ruε

i ·rviSi(ui)✓n(u
ε
i ) dx

I2i =

Z

Ωi

Bε(x, u
ε
i )ruε

i ·ruiS
0
i(ui)✓n(u

ε
i ) dx

I3i =

Z

Ωi

Bε(x, u
ε
i )ruε

i ·ruε
iSi(ui)S

0
n(u

ε
i ) dx

I4 =

Z

Γ

h(x)(uε
1 � uε

2)(v1S1(u1)✓n(u
ε
1)� v2S2(u2)✓n(u

ε
2)) d�

I5i =

Z

Ωi

fviSi(ui)✓n(u
ε
i ) dx.

We look at the behavior of each integral. In particular, we will pass to the
limit as " �! 0 and then as n �! 1.

Note that for n � k, since suppSi ⇢ [�k, k], we have

✓n(s)Si(s) = Si(s) and ✓n(s)S
0
i(s) = S 0

i(s), for a.e. s 2 R. (2.40)

We first look at I1i. Observe that if " is small enough, we have

Bε(x, u
ε
i )ruε

irviSi(ui)✓n(u
ε
i ) = B(x, T1/ε(u

ε
i ))rT2n(u

ε
i )Si(ui)✓n(u

ε
i ).
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Choosing " small enough, we have

B(x, T1/ε(u
ε
i ))✓n(u

ε
i ) = B(x, T2n(u

ε
i ))✓n(u

ε
i ) �! ✓n(ui)B(x, Tn(ui)),

a.e. in Ωi. Moreover, by the assumptions on B, we have

|B(x, T1/ε(u
ε
i ))✓n(u

ε
i )|  sup

Ωi⇥[�2n,2n]

|B(x, r)|.

It follows from the Lebesgue Dominated Convergence Theorem that

B(x, T1/ε(u
ε
i ))✓n(u

ε
i ) = B(x, T2n(u

ε
i ))✓n(u

ε
i ) �! ✓n(ui)B(x, T2n(ui)).

a.e. in Ωi and in L1(Ωi) weak-⇤. This and (2.35) imply as " �! 0,

I1i �!

Z

Ωi

B(x, T2n(ui))rT2n(ui)rviSi(ui)✓n(ui) dx

=

Z

Ωi

B(x, ui)ruirviSi(ui)✓n(ui) dx.

By (2.40) we have,

lim
n!1

lim
ε!0

I1i =

Z

Ωi

B(x, ui)ruirviSi(ui) dx. (2.41)

We now observe the behavior of I2i. For small enough ", we have

Bε(x, u
ε
i )ruε

irui viS
0
i(ui)✓n(u

ε
i ) = B(x, T2n(u

ε
i ))rT2n(u

ε
i )rui viS

0
i(ui)✓n(u

ε
i ),

a.e. in Ωi.
Since rui viS

0
i(ui) = rT2n(ui)vS

0
i(ui) 2 (L2(Ωi))

N , by (2.35) we obtain
as " �! 0,

I2i �!

Z

Ωi

B(x, T2n(ui))rT2n(ui)rui viS
0
i(ui)✓n(ui) dx

=

Z

Ωi

B(x, ui)ruirui viS
0
i(ui)✓n(ui) dx.

By (2.40),

lim
n!1

lim
ε!0

I2i =

Z

Ωi

B(x, ui)rui ·rui viS
0
i(ui) dx. (2.42)

For the behavior of I3i, we observe that

|✓0n(s)| 
1

n
, for |s|  2n.
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Consequently,

|I3i| 
kvikL1(Ωi)kSikL1(R)

n

Z

{|uε

i |<2n}

B(x, uε
i )rT2n(u

ε
i )rT2n(u

ε
i ) dx.

By (2.37), we have
lim
n!1

lim sup
ε!0

I3i = 0. (2.43)

For I4, we note that

h(x)(uε
1 � uε

2)viSi(ui)✓n(u
ε
i ) = h(x)(uε

1 � uε
2)viSi(ui)✓n(u

ε
i )✓2n(u

ε
i ).

Then we can write I4 as

I4 = I41 + I42 + I43 � I44,

where

I41 =

Z

Γ

h(x)(uε
1 � uε

2)v1S1(u1)✓2n(u
ε
1)(✓n(u

ε
1)� ✓n(u

ε
2)) d�,

I42 =

Z

Γ

h(x)(uε
1 � uε

2)v1S1(u1)✓n(u
ε
2)✓2n(u

ε
1) d�,

I43 =

Z

Γ

h(x)(uε
1 � uε

2)v2S2(u2)✓2n(u
ε
2)(✓n(u

ε
1)� ✓n(u

ε
2)) d�,

I44 =

Z

Γ

h(x)(uε
1 � uε

2)v2S2(u2)✓n(u
ε
1)✓2n(u

ε
2) d�.

Observe that ✓n is Lipschitz and ✓n(uε
i ) = ✓n(T2n(u

ε
i )). This gives

|✓n(u
ε
1)� ✓n(u

ε
2)| = |✓n(T2n(u

ε
1))� ✓n(T2n(uε

2)
)|


1

n
|T2n(u

ε
1)� T2n(u

ε
2)|.

Consequently,

|I41| 
khkL1(Γ)kv1kL1(Γ)kS1kL1(R)k✓nkL1(R)

n

Z

Γ

|uε
1�uε

2||T2n(u
ε
1)�T2n(u

ε
2)| d�,

and then by (2.37) we get

lim
n!1

lim sup
ε!0

I41 = 0. (2.44)

By similar arguments, it can be shown that

lim
n!1

lim sup
ε!0

I43 = 0. (2.45)
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For I42, we observe that

|h(uε
1 � uε

2)v1S1(u1)✓2n(u1)✓n(u
ε
2)|  M,

where the constant M depends only on the L1�norms of h, S1, ✓n and ✓2n,
and n. Also,

h(x)(uε
1 � uε

2)v1S1(u1)✓2n(u
ε
1)✓n(u

ε
2) �! h(x)(u1 � u2)v1S1(u1)✓2n(u1)✓n(u2),

a.e. on Γ as " �! 0. By Lebesgue Dominated Convergence Theorem, as
" �! 0,

I42 �!

Z

Γ

h(x)(u1 � u2)v1S1(u1)✓2n(u1)✓n(u2) d�,

and similarly,

I44 �!

Z

Γ

h(x)(u1 � u2)v2S2(u2)✓2n(u2)✓n(u1) d�.

For large enough n, for j = 1, 2, i 6= j, we have Si(ui)✓2n(ui)✓n(uj) =
Si(ui)✓n(uj). In view of (2.16) in Remark 2.5, (u1 � u2)Si(ui) 2 L1(Γ),
for i = 1, 2, so that by Lebesgue Dominated Convergence Theorem,

lim
n!1

lim
ε!0

I42 =

Z

Γ

h(u1 � u2)v1S1(u1) d�, (2.46)

lim
n!1

lim
ε!0

I44 =

Z

Γ

h(u1 � u2)v2S2(u2) d�. (2.47)

Combining (2.44)-(2.47), we conclude that

lim
n!1

lim
ε!0

I4 =

Z

Γ

h(u1 � u2)(v1S1(u1)� v2S2(u2)) d�. (2.48)

Finally for I5, observing that ✓n(uε
i ) weakly converges to ✓n(ui) in L1(Ωi)

weakly⇤ and a.e. in Ωi, f ε converges strongly to f in L1(Ω), we have

I5i =

Z

Ωi

f εviSi(ui)✓n(u
ε
i ) dx �!

Z

Ωi

fviSi(ui)✓n(ui) dx.

From (2.40), we have

lim
n!1

lim
ε!0

I5i =

Z

Ωi

fviSi(ui) dx. (2.49)

Passing through the limit of (2.39) and using (2.41), (2.42), (2.43), (2.48),
and (2.49), we have the desired conclusion.

This concludes the proof for the existence of a renormalized solution.
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Remark 2.9. As explained in the introduction, it is possible to use the
Boccardo-Gallouët estimates, that is, to show that uε = (uε

1, u
ε
2) is bounded in

W 1,q(Ω1)⇥W 1,q(Ω2), and that leads to u = (u1, u2) 2 W 1,q(Ω1)⇥W 1,q(Ω2),

for all q <
N

N � 1
. Such a result may simplify the proof since it implies

that �1(u
ε
1), �2(u

ε
2) 2 W 1� 1

q
,q(Γ) and in particular, �1(u

ε
1), �2(u

ε
2) are bounded

in L1+η(Γ), for some small enough ⌘. It follows that we can give another

definition of renormalized solution including u1 � u2 2 W 1� 1
q
,q(Γ) instead of

(2.12b) and then (2.13b) is not necessary since it is a direct consequence of

the regularity u1 � u2 2 W 1� 1
q
,q(Γ).

However, since we plan to deal with the periodic homogenization of this
problem (see [42]), we cannot use the Boccardo-Gallouët estimates since they
are strongly related to the Sobolev constant which may blow up in a varying
domain. Moreover, our techniques allow us to consider more general equa-
tions (with a nonlinear boundary terms) for which the Boccardo-Gallouët
estimates are not useful.

Remark 2.10 (Stability). By adapting the proof of Theorem 2.8, it is pos-
sible to derive a stability result. More precisely, let us consider uε, a renor-
malized solution of

8
>>>>>><
>>>>>>:

� div(Bε(x, u
ε
1)ruε

1) = f ε in Ω1,

� div(Bε(x, u
ε
2)ruε

2) = f ε in Ω2,

uε
1 = 0 on @Ω,

(Bε(x, u
ε
1)ruε

1)⌫1 = (Bε(x, u
ε
2)ruε

2)⌫1 on Γ,

(Bε(x, u
ε
1)ruε

1)⌫1 = �hε(x)(uε
1 � uε

2) on Γ,

(2.50)

where

1. f ε 2 L1(Ω);

2. Bε(x, t) is a Carathéodory matrix verifying

(a) Bε(x, r)⇠ · ⇠ � ↵|⇠|2, a.e. x 2 Ω, for all r 2 R, for any ⇠ 2 R
N ,

and

(b) for any k > 0, Bε(x, r) 2 L1(Ω⇥ (�k, k))N⇥N ;

3. hε 2 L1(Γ) with 0 < h0 < hε(y) a.e. on Γ and hε(y) < M (uniform),
for some M > 0.

Let f 2 L1(Ω), B : Ω ⇥ R �! R
N⇥N is a Carathéodory function, and

h : Γ �! R with h � 0. If

f ε �! f strongly in L1(Ω);
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8
><
>:

Bε(x, rε) �! B(x, r)

for every sequence rε 2 R such that

rε �! r a.e. on R;

hε �! h a.e. in Γ,

then uε converges to u a.e. where u is a renormalized solution of

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f in Ω1,

� div(B(x, u2)ru2) = f in Ω2

u1 = 0 on @Ω,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ.

The main point is to obtain the a priori estimates of Step 2. In view of (2.17)
in Remark 2.5, Tk(u

ε) is an "admissible" test function, so that

Z

Ω1

Bε(x, u
ε
1)ruε

1 ·rTk(u
ε
1) dx+

Z

Ω2

Bε(x, u
ε
2)ruε

2 ·rTk(u
ε
2) dx

+

Z

Γ

hε(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d� =

Z

Ω

f εTk(u
ε) dx,

which gives all the necessary estimates. Then we can extract subsequences
so that (2.34) hold true. In view of conditions on f ε, Bε, and hε, we can
perform Step 3 of the proof of Theorem 2.8.
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Chapter 3

Uniqueness for quasilinear elliptic

problems in a two-component

domain with L1 data

3.1 Introduction

In this chapter, we study the uniqueness of the renormalized solution of the
following class of quasilinear elliptic problems:

8
>>>>>><
>>>>>>:

� div(B(x, u1)ru1) = f in Ω1,

� div(B(x, u2)ru2) = f in Ω2,

u1 = 0 on @Ω,

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ,

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ.

(3.1)

The domain Ω can be written as the disjoint union of Ω1, Ω2 and Γ, where
Ω1 and Ω2 are the two open components of Ω, and Γ is the interface between
them. The matrix field B is a Carathéodory function that is uniformly elliptic
(see assumption (A3)). The function h is in L1(Γ) while f belongs to L1(Ω).

When f belongs to L2(Ω) and the domain is composed of only one com-
ponent, that is, � div(B(x, u)ru) = f in Ω with Dirichlet boundary con-
ditions, the uniqueness of the solution was obtained in [5] and [25] under
a global Lipschitz-kind condition on B with respect to the second variable.
Some generalizations to nonlinear elliptic problems were addressed in [19],
[27] and [28].

As far as the two-component domain is concerned, additional difficulties
arise due to the jump at the interface. When f 2 L2(Ω), the uniqueness of



the variational solution was proved in [7] by adapting the method of Chipot
introduced in [27] (see also [48] for (3.1) with a singular term).

Elliptic problems in the usual one component domain and L1 data, that
is, � div(B(x, u)ru) = f in Ω with Dirichlet boundary conditions, are not in
the standard variational setting. Furthermore, in the sense of distribution, we
do not have uniqueness of the solution (see [78]). Thus, we need a convenient
framework to prove the uniqueness of the solution.

Uniqueness results were proved by using the notion of entropy solutions
(see [75]) or by using the (equivalent) notion of renormalized solutions (see
[16], [38], and [52]).

Since we consider L1 data, we choose the appropriate framework of renor-
malized solutions (see [36, 71]). The existence of a renormalized solution
(which is motivated by homogenization, see [42]) has been obtained in [54]
(see Definition 3.2).

The main novelty of this chapter is the uniqueness of the renormalized
solution under a fairly used assumption on the matrix field B(x, s) in s
(similar to [38], see assumption (A4)). With respect to the already mentioned
references, let us point out that mixing technical test functions developed in
[16] for L1 problem and the jump give additional difficulties.

In particular, we cannot expect to control the sign of the contribution of
the interface terms. To overcome this, we first prove in Lemma 3.6 that if
u and v are two renormalized solutions of (3.1), then u1 � v1 and u2 � v2
have the same sign on the interface Γ. This sign property is crucial to prove
the uniqueness result, Theorem 3.8, which we accomplish by adapting the
method of [38].

This chapter is organized as follows. The next section is devoted to the
assumptions and the definitions that are necessary to achieve our aim. Here,
we present the definition of a renormalized solution of (3.1) (see Definition
3.2). Section 3.3 is devoted to prove some properties of the renormalized
solution to (3.1), in particular, the sign property (see Lemma 3.6) mentioned
above. Our uniqueness result (see Theorem 3.8) is proved in Section 3.4.

3.2 Assumptions and Definitions

We now present the assumptions and some definitions for our problem. The
domain Ω is a connected bounded open set in R

N with its boundary @Ω. We
can write Ω as the disjoint union Ω = Ω1 [ Ω2 [ Γ, where Ω2 is an open set
such that Ω2 ⇢ Ω with a Lipschitz continuous boundary Γ and Ω1 = Ω \ Ω2

(see figure below).
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Ω
Ω2

Γ

Ω2

Γ

Ω1

∂Ω

Figure 3.1: The two-component domain Ω

We denote by ui = u|Ωi
the restriction of u in Ωi, where u is any measur-

able function defined on Ω \ Γ.
We prescribe the following assumptions on f , h and B:

(A1) The function f is in L1(Ω).

(A2) The function h belongs to L1(Γ) and for some h0 > 0,

h(y) � h0 for a.e. y 2 Γ. (3.2)

(A3) The matrix field B is a Carathéodory function, that is,

(a) the map r 7! B(x, r) is continuous for a.e. x 2 Ω;

(b) the map x 7! B(x, r) is measurable for a.e. r 2 R,

and it satisfies the following properties:

(a) B(x, r)⇠ · ⇠ � ↵|⇠|2, for some ↵ > 0 a.e. x 2 Ω, 8r 2 R, 8⇠ 2 R
N ;

(b) for any k > 0, B(x, r) 2 L1(Ω⇥ (�k, k))N⇥N ;

(A4) B(x, r) is Locally Lipschitz with respect to r, that is, for any compact
subset K of R, there exists MK > 0 such that

|B(x, r)� B(x, s)|  MK |r � s|, 8r, s 2 K. (3.3)
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Due to the jump of a solution on the interface Γ, the usual Sobolev spaces
are not suitable to work with for our problem. Hence, we need to define a
special normed space V .

Let V1 be the normed space defined as

V1 = {v 2 H1(Ω1) : v = 0 on @Ω} with kvkV1
:= krvkL2(Ω1).

The space V is defined as

V := {v ⌘ (v1, v2) : v1 2 V1 and v2 2 H1(Ω2)},

equipped with the norm

kvk2V := krv1k
2
L2(Ω1)

+ krv2k
2
L2(Ω2)

+ kv1 � v2k
2
L2(Γ). (3.4)

As presented in [54], since the data f is in L1(Ω), we do not expect a solution
u of (3.1) to be in any Lp-space. Moreover, it is also not expected to have
the regularity required to have a gradient and trace in the usual sense. The
following proposition was proved in [54] to give a definition for the gradient
and trace of any measurable function. This proposition made use of the
truncation function Tk : R �! R, given by

Tk(t) =

8
><
>:

�k, if t  k,

t, if � k  t  k,

k, if t � k.

(3.5)

Proposition 3.1 ([54]). Let u = (u1, u2) : Ω \ Γ �! R be a measurable
function such that Tk(u) 2 V for every k > 0.

1. For i = 1, 2, there exists a unique measurable function Gi : Ωi �! R
N

such that for all k > 0,

rTk(ui) = Gi�{|ui|<k} a.e. in Ωi, (3.6)

where �{|ui|<k} denotes the characteristic function of

{x 2 Ωi : |ui(x)| < k}.

We define Gi as the gradient of ui and write Gi = rui.

2. If

sup
k�1

1

k
kTk(u)k

2
V < 1, (3.7)
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then there exists a unique measurable function wi : Γ �! R, for i =
1, 2, such that for all k > 0

�i(Tk(ui)) = Tk(wi) a.e. in Γ, (3.8)

where �i : H1(Ωi) �! L2(Γ) is the trace operator. We define the
function wi as the trace of ui on Γ and set

�i(ui) = wi.

With this proposition, we can now present the definition of a renormalized
solution of (3.1) given in [54].

Definition 3.2. Let u = (u1, u2) : Ω \ Γ �! R be a measurable function.
Then u is a renormalized solution of (3.1) if

Tk(u) 2 V, 8k > 0; (3.9a)

(u1 � u2)(Tk(u1)� Tk(u2)) 2 L1(Γ), 8k > 0; (3.9b)

lim
n!1

1

n

Z

{|u|<n}

B(x, u)ru ·ru dx = 0; (3.10a)

lim
n!1

1

n

Z

Γ

(u1 � u2)(Tn(u1)� Tn(u2)) d� = 0; (3.10b)

and for any S1, S2 2 C1(R) (or equivalently for any S1, S2 2 W 1,1(R)) with
compact support, u satisfies
Z

Ω1

S1(u1)B(x, u1)ru1 ·r 1 dx+

Z

Ω1

S 0
1(u1)B(x, u1)ru1 ·ru1  1 dx

+

Z

Ω2

S2(u2)B(x, u2)ru2 ·r 2 dx+

Z

Ω2

S 0
2(u2)B(x, u2)ru2 ·ru2  2 dx

+

Z

Γ

h(x)(u1 � u2)( 1S1(u1)�  2S2(u2)) d�

=

Z

Ω1

f 1S1(u1) dx+

Z

Ω2

f 2S2(u2) dx, (3.11)

for all  2 V \ (L1(Ω1)⇥ L1(Ω2)).

Remark 3.3. In the previous definition, conditions (3.9a) and (3.10a) are
standard in the definition of renormalized solution. However, due to the
presence of the boundary integral on Γ, (3.9b) and (3.10b) have to be added.
In particular, since �i(ui) 2 L1(Γ) is not an assumption in Definition 3.2,
we need (2.12b) to give sense to the integral on Γ in (3.11) (see [54, Remark
2]).
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As presented in [54], assumptions (A1)-(A3) are enough to show the exis-
tence of a renormalized solution of (3.1) in the sense of this previous defini-
tion. However, to have uniqueness of the solution, an additional assumption
on matrix B must be added (see (A4)), as will be seen in the next section.

3.3 Preliminary Results

In this section, we prove some properties on renormalized solutions of (3.1)
(see Lemma 3.4 and Proposition 3.5), which are standard in the L1 frame-
work. Moreover, we prove Lemma 3.6, which states that if u and v are two
renormalized solutions of (3.1) for the same data f , then we have the sign
condition on the interface Γ, that is sgn(u1 � v1) = sgn(u2 � v2) on Γ. This
result is crucial for the proof of our uniqueness result (see Theorem 3.8).

Lemma 3.4. Let u be a renormalized solution of (3.1). If ' is a bounded
and increasing function belonging in C1(R) such that '(0) = 0, then

'0(ui)B(x, ui)rui ·rui 2 L1(Ωi), i = 1, 2, (3.12)

(u1 � u2)
�
'(u1)� '(u2)

�
2 L1(Γ). (3.13)

Proof. Let ' be a bounded increasing function that belongs in C1(R) such
that '(0) = 0. Let n > 0. Define the function ✓n : R �! R by

✓n(s) =

8
>>>>>>>>><
>>>>>>>>>:

0, if s  �2n

s

n
+ 2, if � 2n  s  �n

1, if � n  s  n

�
s

n
+ 2, if n  s  2n

0, if s � 2n.

(3.14)

We can clearly see from the definition of ✓n that it is a continuous Lipschitz
function verifying

|✓n(r)|  1 and |✓0n(r)| 
1

n
, a.e. in R. (3.15)

Substituting S1 = S2 = ✓n and  = '(T2n(u)) in (3.11) of Definition 3.2,
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we have
Z

Ω1

✓n(u1)'
0(u1)B(x, u1)ru1ru1 dx+

Z

Ω2

✓n(u2)'
0(u2)B(x, u2)ru2ru2 dx

+

Z

Ω1

✓0n(u1)'(u1)B(x, u1)ru1ru1 dx+

Z

Ω2

✓0n(u2)'(u2)B(x, u2)ru2ru2 dx

+

Z

Γ

h(x)(u1 � u2)(✓n(u1)'(u1)� ✓n(u2)'(u2)) d� =

Z

Ω

f✓n(u)'(u) dx.

(3.16)

We now study the terms in (3.16) to pass to the limit as n goes to infinity.
Regarding the third and fourth terms we have, for i = 1, 2,

���
Z

Ωi

✓0n(ui)'(ui)B(x, ui)ruiruidx
���


k'kL1(R)

n

Z

{n<|ui|<2n}

B(x, ui)ruiruidx,

so that the decay of the energy of the truncates (3.10a) implies that

lim
n!+1

���
Z

Ωi

✓0n(ui)'(ui)B(x, ui)ruiruidx
��� = 0, for i = 1, 2. (3.17)

As far as the fifth term of (3.16) is concerned, we have in view of the
definition of ✓n,

h(x)(u1 � u2)(✓n(u1)'(u1)� ✓n(u2)'(u2))

= h(x)(u1 � u2)✓n(u1)
�
✓2n(u1)� ✓2n(u2)

�
'(u1)

+ h(x)(u1 � u2)✓n(u1)✓2n(u2)
�
'(u1)� '(u2)

�

� h(x)(u1 � u2)✓2n(u2)
�
✓n(u1)� ✓n(u2)

�
'(u2).

(3.18)

Since the functions ✓n and ✓2n are Lipschitz continuous and recalling that '
is bounded, we deduce that
���h(x)(u1 � u2)✓n(u1)

�
✓2n(u1)� ✓2n(u2)

�
'(u1)

���


khkL1(Γ)

2n
(u1 � u2)(T4n(u1)� T4n(u2))k'kL1(R),

���h(x)(u1 � u2)✓2n(u2)
�
✓n(u1)� ✓n(u2)

�
'(u2)

���


khkL1(Γ)

2n
(u1 � u2)(T2n(u1)� T2n(u2))k'kL1(R),
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so that condition (3.10b) leads to

lim
n!+1

Z

Ω

���h(x)(u1 � u2)✓n(u1)
�
✓2n(u1)� ✓2n(u2)

�
'(u1)

���dx = 0, (3.19)

lim
n!+1

Z

Ω

���h(x)(u1 � u2)✓2n(u2)
�
✓n(u1)� ✓n(u2)

�
'(u2)

���dx = 0. (3.20)

At last, the integral on the right-hand side of (3.16), by (3.15), is bounded
by ����

Z

Ω

f✓n(u)'(u) dx

����  kfkL1(Ω)k'kL1(R). (3.21)

Combining (3.16)-(3.21), we obtain

Z

Ω1

✓n(u1)'
0(u1)B(x, u1)ru1ru1 dx+

Z

Ω2

✓n(u2)'
0(u2)B(x, u2)ru2ru2 dx

+

Z

Γ

h(x)(u1 � u2)✓n(u1)✓2n(u2)
�
'(u1)� '(u2)

�
d�

 !(n) + kfkL1(Ω)k'kL1(R),

where w(n) ! 0 as n goes to infinity.
Since u1 (resp. u2) is finite almost everywhere in Ω1 (resp. Ω2), the

definition of ✓n and Fatou’s Lemma allow one to deduce that
Z

Ω1

B(x, u1)'
0(u1)ru1ru1 dx+

Z

Ω2

B(x, u2)'
0(u2)ru2ru2 dx

+

Z

Γ

h(x)(u1 � u2)
�
'(u1)� '(u2)

�
d�  kfkL1(Ω)k'kL1(R). (3.22)

This gives (3.12) and (3.13).

As mentioned in Remark 3.3, we do not impose in Definition 3.2 that
�i(ui) (i = 1, 2) belongs to L1(Γ). However, having no regularity on �i(ui),
for i = 1, 2, seems to be an obstacle to prove Theorem 3.8. By adapting the
estimates of Boccardo-Gallouët (see [18]) to our two-component domain, we
are able to prove in Proposition 3.5 that �i(ui) belongs to L1(Γ), for i = 1, 2.

Proposition 3.5. For i = 1, 2, let �i be the trace function defined on H1(Ωi).
If u is a renormalized solution of (3.1), then �i(ui) 2 L1(Γ), i = 1, 2.

Proof. By taking ' = Tk in Lemma 3.4, and by observing the precise estimate
(3.22) at the end of the proof of Lemma 3.4, we have

kTk(u)k
2
V  kkfkL1(Ω), 8k > 0.
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Since on V , the norm k ·kV is equivalent to the norm of H1(Ω1)⇥H1(Ω2), the
Boccardo-Gallouët estimates hold true, so that ui 2 W 1,p(Ωi), i = 1, 2, for
any p < N

N�1
. We are then able to conclude that �i(ui) 2 L1(Γ), i = 1, 2.

In proving the uniqueness result, one of the main difficulties we encoun-
tered is managing the integral on the interface Γ with test functions which
are nonlinear with respect to the unknown. The very first step to overcome
this difficulty is the following lemma which establishes a sign property of
the difference of any two renormalized solutions of (3.1) on the interface.
We will denote by sgn the usual sign function (sgn(r) = r/|r| if r 6= 0 and
sgn(0) = 0).

Lemma 3.6. Suppose (A1)–(A4) hold. If u and v are two renormalized
solutions of (3.1), then sgn(u1 � v1) = sgn(u2 � v2) a.e. on Γ.

Proof. Let u and v be renormalized solutions of (3.1). Writing (3.11) of

Definition 3.2 for S1 = S2 = ✓n and  =
1

k
Tk(u� v), where 0 < k < 1, for u

and v, and subtracting the resulting equations, we have

Ik,n1 + Ik,n2 + Jk,n
1 + Jk,n

2 + Lk,n = Mk,n, (3.23)

where for i = 1, 2,

Ik,ni =
1

k

Z

Ωi

(✓n(ui)B(x, ui)rui � ✓n(vi)B(x, vi)rvi)rTk(ui � vi) dx,

Jk,n
i =

1

k

Z

Ωi

(✓0n(ui)B(x, ui)ruirui � ✓0n(vi)B(x, vi)rvirvi)Tk(ui � vi) dx,

Lk,n =
1

k

Z

Γ

h(x)(u1 � u2)(✓n(u1)Tk(u1 � v1)� ✓n(u2)Tk(u2 � v2)) d�

�
1

k

Z

Γ

h(x)(v1 � v2)(✓n(v1)Tk(u1 � v1)� ✓n(v2)Tk(u2 � v2)) d�,

Mk,n =
1

k

Z

Ω

f(✓n(u)� ✓n(v))Tk(u� v) dx.

We study the behavior of each term first as k �! 0 and then as n �! 1.
We can write Ik,ni , i = 1, 2, as

Ik,ni = Ik,ni,1 + Ik,ni,2 + Ik,ni,3 ,
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where

Ik,ni,1 =
1

k

Z

Ωi

✓n(ui)B(x, ui)rTk(ui � vi)rTk(ui � vi) dx, i = 1, 2,

Ik,ni,2 =
1

k

Z

Ωi

✓n(ui)(B(x, ui)� B(x, vi))rvirTk(ui � vi) dx, i = 1, 2,

Ik,ni,3 =
1

k

Z

Ωi

(✓n(ui)� ✓n(vi))B(x, vi)rvirTk(ui � vi) dx, i = 1, 2.

Clearly, Ik,ni,1 � 0, i = 1, 2. For Ik,ni,2 , i = 1, 2, we use (3.3) and (3.15) to obtain

|Ik,ni,2 | =

����
1

k

Z

Ωi

✓n(ui)(B(x, ui)� B(x, vi))rvirTk(ui � vi) dx

����


1

k

Z
{0<|ui�vi|<k}
\{|ui|2n}

\{|vi|2n+1}

|✓n(ui)||B(x, ui)� B(x, vi)||rvi||rTk(ui � vi)| dx


1

k

Z
{0<|ui�vi|<k}
\{|ui|2n}

\{|vi|2n+1}

C|ui � vi||rvirTk(ui � vi)| dx

 C

Z

{0<|ui�vi|<k}

|rT2n+1(vi)rTk(ui � vi)| dx.

From (3.9a) of Definition 3.2, we know that for any 0 < k < 1, i = 1, 2,

|rT2n+1(vi)rTk(ui � vi)�{0<|ui�vi|<k}|  |rT2n+1(vi)rT1(ui � vi)| 2 L1(Ωi).

In addition, we have,

rTk(ui � vi)�{0<|ui�vi|<k} �! 0 as k ! 0, a.e. in Ωi, i = 1, 2.

By Lebesgue Dominated Convergence Theorem, we conclude that

C

Z

{0<|ui�vi|<k}

|rT2n+1(vi)rTk(ui � vi)| dx �! 0 as k �! 0, i = 1, 2,

which gives

lim
n!1

lim
k!0

Ik,ni,2 = 0, i = 1, 2. (3.24)

For Ik,ni,3 , noting that ✓n is Lipschitz continuous with (3.15), we have for
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i = 1, 2,

|Ik,ni,3 | =

����
1

k

Z

Ωi

(✓n(ui)� ✓n(vi))B(x, vi)rvirTk(ui � vi) dx

����


1

k

Z
{0<|ui�vi|<k}
\{|ui|<2n+1}
\{|vi|<2n+1}

|✓n(ui)� ✓n(vi)||B(x, ui)rvir(ui � vi)| dx


1

n

Z
{0<|ui�vi|<k}
\{|ui|<2n+1}
\{|vi|<2n+1}

|B(x, ui)rvir(ui � vi)| dx


1

n

Z
{0<|ui�vi|<k}
\{|u|<2n+1}
\{|vi|<2n+1}

|B(x, vi)ruirvi| dx

+
1

n

Z
{0<|ui�vi|<k}
\{|ui|<2n+1}
\{|vi|<2n+1}

B(x, vi)rvirvi dx


1

n

Z

{0<|ui�vi|<k}

|B(x, vi)rT2n+1(ui)rT2n+1(vi)| dx

+
1

n

Z

{0<|ui�vi|<k}

B(x, vi)rT2n+1(vi)rT2n+1(vi) dx.

Again, from (3.9a) of Definition 3.2, we deduce that for i = 1, 2,

|rT2n+1(ui)rT2n+1(vi)|�{0<|ui�vi|<k}  |rT2n+1(ui)rT2n+1(vi)| 2 L1(Ωi)

and
|rT2n+1(vi)|

2�{0<|ui�vi|<k}  |rT2n+1(vi)|
2 2 L1(Ωi).

Furthermore,

rT2n+1(ui)rT2n+1(vi)�{0<|ui�vi|<k} �! 0 as k ! 0, a.e. in Ωi, i = 1, 2,

and

|rT2n+1(vi)|
2�{0<|ui�vi|<k} �! 0 as k ! 0, a.e. in Ωi, i = 1, 2.

Using the Lebesgue Dominated Convergence Theorem, we have

1

n

Z

{0<|ui�vi|<k}

|B(x, vi)rT2n+1(ui)rT2n+1(vi)| dx

+
1

n

Z

{0<|ui�vi|<k}

B(x, vi)|rT2n+1(vi)|
2 dx �! 0 as k ! 0.
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Hence,
lim
n!1

lim
k!0

Ik,ni,3 = 0, i = 1, 2. (3.25)

For Jk,n
i , i = 1, 2, since we have (3.15) and

|Tk(r)|  k, 8r 2 R, 8k > 0, (3.26)

we obtain for i = 1, 2,

|Jk,n
i | =

����
1

k

Z

Ωi

(✓0n(ui)B(x, ui)ruirui � ✓0n(vi)B(x, vi)rvirvi)Tk(ui � vi) dx

����



Z

Ωi

|✓0n(ui)B(x, ui)ruirui| dx+

Z

Ωi

|✓0n(vi)B(x, vi)rvirvi| dx


1

n

Z

{|ui|<2n}

B(x, ui)ruirui dx+
1

n

Z

{|vi|<2n}

B(x, vi)rvirvi dx.

By (3.10a) of Definition 3.2, it follows that

lim
n!1

lim
k!0

Jk,n
i = 0, i = 1, 2. (3.27)

For the integral on the boundary, we use Proposition 3.5 to pass to the
limit. Note that by (3.15) and (3.26), we have

����
1

k
h(x)(u1 � u2)✓n(u1)Tk(u1 � v1)

����  khkL1(Γ)|u1 � u2| 2 L1(Γ).

Furthermore,

1

k
h(x)(u1 � u2)✓n(u1)Tk(u1 � v1) ��!

k!0
h(x)(u1 � u2)✓n(u1) sgn(u1 � v1)

a.e. on Γ, and

h(x)(u1 � u2)✓n(u1) sgn(u1 � v1) ���!
n!1

h(x)(u1 � u2) sgn(u1 � v1),

a.e. on Γ. The Lebesgue Dominated Convergence Theorem implies

lim
n!1

lim
k!0

1

k

Z

Γ

h(x)(u1 � u2)✓n(u1)Tk(u1 � v1) d�

=

Z

Γ

h(x)(u1 � u2) sgn(u1 � v1) d�,
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Similarly, we obtain

lim
n!1

lim
k!0

1

k

Z

Γ

h(x)(u1 � u2)✓n(u2)Tk(u2 � v2) d�

=

Z

Γ

h(x)(u1 � u2) sgn(u2 � v2) d�,

lim
n!1

lim
k!0

1

k

Z

Γ

h(x)(u1 � u2)✓n(vi)Tk(u2 � v2) d�

=

Z

Γ

h(x)(u1 � u2) sgn(u2 � v2) d�, i = 1, 2.

Thus,

lim
n!1

lim
k!0

Lk,n

=

Z

Γ

h(x)[(u1 � v1)� (u2 � v2)](sgn(u1 � v1)� sgn(u2 � v2)) d�.

(3.28)

For the integral on the right-hand side of (3.23),

|Mk,n| =

����
1

k

Z

Ω

f(✓n(u)� ✓n(v))Tk(u� v) dx

����



Z

Ω

|f ||✓n(u)� ✓n(v)| dx.

Note that |f ||✓n(u)� ✓n(v)|  2|f | 2 L1(Ω) with

✓n(u)� ✓n(v) �! 0 as n �! 1, a.e. in Ω.

Thus, by the Lebesgue Dominated Convergence Theorem,
Z

Ω

|f ||✓n(u)� ✓n(v)| dx �! 0 as n ! 1,

which gives
lim
n!1

lim
k!0

Mk,n = 0. (3.29)

From (3.23) and the fact that Ik,ni,1 � 0, we obtain

Ik,ni,2 + Ik,ni,3 +Xk,n + Lk,n  Mk,n.

Taking the limit of both sides of the last inequality first as k �! 0 then as
n �! 1, we get

Z

Γ

h(x)((u1 � v1)� (u2 � v2))(sgn(u1 � v1)� sgn(u2 � v2)) d� = 0.

That is, sgn(u1 � v1) = sgn(u2 � v2) on Γ.

101



3.4 Main Result

This section is devoted to our main result, Theorem 3.8, namely the unique-
ness of the renormalized solution under assumptions (A1)-(A4). The proof
of this uniqueness result makes use of the results of the previous section and
the method developed in [16, 38]. The following proposition, proved in [38],
states that assuming a very local Lipschitz control of B(x, s) with respect
to s, we have the existence of a function ' which controls the Lipschitz
continuous character of the matrix field B through very technical conditions.

Proposition 3.7 ([38]). Suppose that (3.3) holds. Then there exists a func-
tion ' 2 C1(R) that satisfies the following properties:

'(0) = 0 and '0 � 1. (3.30)

In addition, there are constants � > 1/2, 0 < k0 < 1, and L > 0 such that

'0

(1 + |'|)2δ
2 L1(R), (3.31)

and for any r, s 2 R satisfying |'(r)� '(s)|  k, for 0 < k < k0,

����
B(x, r)

'0(r)
�

B(x, s)

'0(s)

���� 
1

'0(s)

Lk

(1 + |'(r)|+ |'(s)|)δ
(3.32)

and
1

L

'0(s)

'0(r)
 L. (3.33)

We now state and prove the main theorem.

Theorem 3.8. If assumptions (A1)-(A4) hold, then the renormalized solu-
tion of (3.1) is unique.

Proof. In view of Theorem 1 in [54], assumptions (A1)–(A3) are sufficient
to give the existence of at least one solution to (3.1). Let u and v be two
renormalized solutions of (3.1).

Since (3.3) holds, by Proposition 3.7, we can find a function ' 2 C1(R),
such that for some constants � > 1/2, 0 < k0 < 1, and L > 0, ' satisfies
(3.30)–(3.33).

The proof is then decomposed into two steps. Step 1 is devoted to show
the very technical result (3.34). Roughly speaking, (3.34) is an extension
of the method developed by Artola in [5] (see also [19]), and allows one to
consider very general dependency of B(x, s) with respect to s and L1 data.
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Limit (3.34) was also derived in [16] (see also [38]) for elliptic equations with
Dirichlet boundary condition. Since we have to deal with the boundary term,
we give here a complete proof of (3.34). In Step 2, we are able to conclude
that u = v a.e. in Ω.

Step 1. In this step we prove that

lim
k!0

1

k2

Z

Ωi

✓
1

'0(ui)
+

1

'0(vi)

◆
|rTk('(ui)� '(vi))|

2 dx = 0, i = 1, 2.

(3.34)
Writing (3.11) of Definition 3.2 for u and v, with S1 = S2 = ✓n and

 = Wk := Tk('(T3n(u)) � '(T3n(v))), where n 2 N, n � 1 and 0 < k < 1,
and subtracting the resulting equations, we have

Ak,n
1 + Ak,n

2 +Bk,n
1 +Bk,n

2 + Ck,n = Dk,n, (3.35)

where

Ak,n
i =

Z

Ωi

(✓n(ui)B(x, ui)rui � ✓n(vi)B(x, vi)rvi)rWk dx, i = 1, 2,

Bk,n
i =

Z

Ωi

(✓0n(ui)B(x, ui)ruirui � ✓0n(vi)B(x, vi)rvirvi)Wk dx, i = 1, 2,

Ck,n =

Z

Γ

h(x)(u1 � u2)(Wk,1✓n(u1)�Wk,2✓n(u2)) d�

�

Z

Γ

h(x)(v1 � v2)(Wk,1✓n(v1)�Wk,2✓n(v2)) d�,

Dk,n =

Z

Ω

fWk(✓n(u)� ✓n(v)) dx.

We will first look at the limit of each term as n �! 1.
We can write Ak,n

i as

Ak,n
i =

Z

Ωi

✓n(ui)
B(x, ui)

'0(ui)
(r'(ui)�r'(vi))rWk dx

+

Z

Ωi

✓n(ui)

✓
B(x, ui)

'0(ui)
�

B(x, vi)

'0(vi)

◆
'0(vi)rvirWk dx

+

Z

Ωi

(✓n(ui)� ✓n(vi))B(x, vi)rvirWk dx, i = 1, 2.

Using the symmetry with respect to vi, we obtain

Ak,n
i = Ak,n

i,1 + Ak,n
i,2 + Ak,n

i,3 , i = 1, 2,
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where

Ak,n
i,1 =

1

2

Z

Ωi

✓
✓n(ui)

B(x, ui)

'0(ui)
+ ✓n(vi)

B(x, vi)

'0(vi)

◆
(r'(ui)�r'(vi))rWk dx,

Ak,n
i,2 =

1

2

Z

Ωi

✓
B(x, ui)

'0(ui)
�

B(x, vi)

'0(vi)

◆

⇥ (✓n(ui)'
0(vi)rvi + ✓n(vi)'

0(ui)rui)rWk dx,

Ak,n
i,3 =

1

2

Z

Ωi

(✓n(ui)� ✓n(vi))(B(x, ui)rui +B(x, vi)rvi)rWk dx.

For i = 1, 2, let us define Uk
i = {x 2 Ωi : 0 < |'(ui) � '(vi)| < k}. For

any k > 0 small enough, since supp ✓n = [�2n, 2n], we have a.e. in Uk
i ,

✓n(ui)rTk('(ui)� '(vi)) = ✓n(ui)rTk('(T3n(ui))� '(T3n(vi)))

= ✓n(ui)rWk, i = 1, 2.
(3.36)

As a consequence of (3.36), for any k > 0 small enough, we get for i = 1, 2,

Ak,n
i,1 =

1

2

Z

Ωi

✓n(ui)
B(x, ui)

'0(ui)
(r'(ui)�r'(vi))rWk dx

+
1

2

Z

Ωi

✓n(vi)
B(x, vi)

'0(vi)
(r'(ui)�r'(vi))rWk dx

=
1

2

Z

Uk
i

✓n(ui)
B(x, ui)

'0(ui)
(r'(ui)�r'(vi))(r'(ui)�r'(vi)) dx

+
1

2

Z

Uk
i

✓n(vi)
B(x, vi)

'0(vi)
(r'(ui)�r'(vi))(r'(ui)�r'(vi)) dx.

Using the coercivity of B we obtain that

↵

2

Z

Uk
i

✓
✓n(ui)

'0(ui)
+
✓n(vi)

'0(vi)

◆
|r('(ui)� '(vi))|

2 dx  Ak,n
i,1 , i = 1, 2. (3.37)

As far as Ak,n
i,2 are concerned, by (3.32), we have for i = 1, 2, and any k > 0

small enough
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|Ak,n
i,2 | 

1

2

Z

Uk
i

����
B(x, ui)

'0(ui)
�

B(x, vi)

'0(vi)

���� |✓n(ui)r'(vi) + ✓n(vi)r'(ui)|

⇥ |r('(ui)� '(vi))| dx


1

2

Z

Uk
i

1

'0(ui)

Lk

(1 + |'(ui)|+ |'(vi)|)δ

⇥ |✓n(ui)r'(vi) + ✓n(vi)r'(ui)||r('(ui)� '(vi))| dx


1

2

Z

Uk
i

1

'0(ui)

Lk

(1 + |'(ui)|+ |'(vi)|)δ

⇥ ✓n(ui)|r'(vi)||r('(ui)� '(vi))| dx

+
1

2

Z

Uk
i

1

'0(ui)

Lk

(1 + |'(ui)|+ |'(vi)|)δ

⇥ ✓n(vi)|r'(ui)||r('(ui)� '(vi))| dx.

For " > 0 (which will be chosen later), Young’s inequality leads to, for
i = 1, 2,

|Ak,n
i,2 | 

Z

Uk
i

✓n(ui)'
0(vi)

2

"
1

"

✓
Lk

'0(ui)

|r'(vi)|

(1 + |'(ui)|+ |'(vi)|)δ

◆2

+ "

✓
1

'0(vi)
|r'(ui)�r'(vi)|

◆2
#
dx

+

Z

Uk
i

✓n(vi)'
0(ui)

2

"
1

"

✓
Lk

'0(ui)

|r'(ui)|

(1 + |'(ui)|+ |'(vi)|)δ

◆2

+ "

✓
1

'0(ui)
|r'(ui)�r'(vi)|

◆2
#
dx

 C1k
2

Z

Uk
i

(✓n(ui)'
0(vi)|r'(vi)|

2 + ✓n(vi)'
0(ui)|r'(ui)|

2)

('0(ui))2(1 + |'(ui)|+ |'(vi)|)2δ
dx

+ C2"

Z

Uk
i

✓
✓n(ui)

'0(ui)
+
✓n(vi)

'0(vi)

◆
|r'(ui)�r'(vi)|

2 dx.
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In view of assumption (3.33), we deduce that, for i = 1, 2,

C1k
2

Z

Uk
i

[✓n(ui)'
0(vi)|r'(vi)|

2 + ✓n(vi)'
0(ui)|r'(ui)|

2]

('0(ui))2(1 + |'(ui)|+ |'(vi)|)2δ
dx

 C1k
2

Z

Uk
i

(L2✓n(ui)'
0(vi)|rvi|

2 + ✓n(vi)'
0(ui)|rui|

2)

(1 + |'(ui)|+ |'(vi)|)2δ
dx

 C3k
2

Z

Uk
i

(✓n(ui) + ✓n(vi))
'0(ui)|rui|

2 + '0(vi)|rvi|
2

(1 + |'(ui)|+ |'(vi)|)2δ
dx.

It follows that

|Ak,n
i,2 |  C3k

2

Z

Uk
i

(✓n(ui) + ✓n(vi))
'0(ui)|rui|

2 + '0(vi)|rvi|
2

(1 + |'(ui)|+ |'(vi)|)2δ
dx

+ C2"

Z

Uk
i

✓
✓n(ui)

'0(ui)
+
✓n(vi)

'0(vi)

◆
|r'(ui)�r'(vi)|

2 dx, i = 1, 2,

(3.38)

where C2 and C3 are positive constants independent of k and n (with C2 also
independent of ").

We now turn to the term Ak,n
i,3 . By (3.30) and (3.33), we have

|ui � vi| 
L

'0(ui)
|'(ui)� '(vi)| a.e. in Uk

i , i = 1, 2, (3.39)

and since ✓n is a Lipschitz continuous function verifying |✓0n(r)| =
1
n
�{n<|r|<2n}

a.e. in R, we obtain

|✓n(ui)� ✓n(vi)| 
1

n
|ui � vi| 

Lk

n'0(ui)
a.e. in Uk

i , i = 1, 2. (3.40)

Observe that this inequality still holds if the roles of ui and vi are inter-
changed.
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Therefore using (3.40), we obtain, for i = 1, 2,

|Ak,n
i,3 | 

1

2

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

|✓n(ui)� ✓n(vi)|
���B(x, ui)'

0(ui)ruirui

+B(x, ui)'
0(ui)ruirvi � B(x, vi)'

0(vi)ruirvi

� B(x, vi)'
0(vi)rvirvi

��� dx


Lk

2n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

(B(x, ui)ruirui +B(x, vi)rvirvi) dx

+
Lk

2n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

(B(x, ui)|ruirvi|+B(x, vi)|ruirvi|) dx

Applying Young’s Inequality on the second term of the previous inequality,
we get, for i = 1, 2,

Lk

2n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

(B(x, ui)|ruirvi|+B(x, vi)|ruirvi|) dx


Lk

4n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

h
B(x, ui)(ruirui +rvirvi)

+ [B(x, vi)(ruirui +rvirvi)
i
dx.

It follows that, for i = 1, 2,

|Ak,n
i,3 | 

C4k

n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

(B(x, ui)ruirui +B(x, vi)rvirvi) dx

+
C5k

n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

(B(x, ui)rvirvi +B(x, vi)ruirui) dx.

(3.41)

By (3.10a) of Definition 3.2, the first term of the right-hand side of (3.41)
goes to zero as n goes to infinity. It is worth noting that the second term
of the right-hand side of (3.41) contains non symmetric terms in ui and vi,
so that without any bound on B, the behavior of this term is not a direct
consequence of the decay of the truncate energy (3.10a). Using (3.10a) and
condition (3.32), we claim that the second term also goes to zero as n goes
to infinity.
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Indeed, writing for i = 1, 2,
Z

Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

B(x, ui)rvirvi dx

=

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

✓
B(x, ui)

'0(ui)
�

B(x, vi)

'0(vi)

◆
'0(ui)rvirvi dx

+

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

B(x, vi)

'0(vi)
'0(ui)rvirvi dx,

and using (3.32) and (3.33), we have, for i = 1, 2,

C5k

n

Z
Uk
i \

{|ui|<2n+1}
\{|vi|<2n+1}

B(x, ui)rvirvi dx


C5Lk

2

n

Z

{|vi|<2n+1}

|rvi|
2

(1 + |'(ui)|+ |'(vi)|)δ
dx

+
C5Lk

n

Z

{|vi|<2n+1}

B(x, vi)rvirvi dx.

It follows that by (3.10a) of Definition 3.2, we have

lim
n!1

C

n

Z
Uk
i \{|ui|<2n+1}
\{|vi|<2n+1}

B(x, ui)rvirvi dx = 0, i = 1, 2.

By similar computations, it can be shown that

lim
n!1

C

n

Z
Uk
i \{|ui|<2n+1}
\{|vi|<2n+1}

B(x, vi)ruirui dx = 0, i = 1, 2.

Consequently,
lim
n!1

Ak,n
i,3 = 0, i = 1, 2. (3.42)

Regarding the term Bk,n
i , i = 1, 2, we have

|Bk,n
i | =

����
Z

Ωi

(✓0n(ui)B(x, ui)ruirui � ✓0n(vi)B(x, vi)rvirvi)Wk dx

����



Z

Ωi

|✓0n(ui)|B(x, ui)ruirui|Wk| dx+

Z

Ωi

|✓0n(vi)|B(x, vi)rvirvi|Wk| dx


k

n

Z

{|ui|<2n}

B(x, ui)ruirui dx+
k

n

Z

{|vi|<2n}

B(x, vi)rvirvi dx.
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These last two integrals go to zero as n goes to infinity by (3.10a) of Defini-
tion 3.2. Thus,

lim
n!1

Bk,n
i = 0, i = 1, 2. (3.43)

To pass to the limit of Ck,n as n goes to 1, we use Proposition 3.5. Note
that

|h(x)(u1 � u2)Wk,1✓n(u1)|  khkL1(Γ)|u1 � u2|k 2 L1(Γ),

and

h(x)(u1 � u2)Wk,1✓n(u1) ���!
n!1

h(x)(u1 � u2)Tk('(u1)� '(v1)) a.e. on Γ.

By the Lebesgue Dominated Convergence Theorem, we have

lim
n!1

Z

Γ

h(x)(u1 � u2)Wk,1✓n(u1) d� =

Z

Γ

h(x)(u1 � u2)Tk('(u1)� '(v1)) d�.

Using similar arguments, we obtain that

lim
n!1

Z

Γ

h(x)(u1 � u2)Wk,2✓n(u2) d� =

Z

Γ

h(x)(u1 � u2)Tk('(u2)� '(v2)) d�

and for i = 1, 2,

lim
n!1

Z

Γ

h(x)(v1 � v2)Wk,i✓n(vi) d� =

Z

Γ

h(x)(v1 � v2)Tk('(ui)� '(vi)) d�.

Therefore, we conclude that

lim
n!1

Ck,n =

Z

Γ

h(x)[(u1 � u2)� (v1 � v2)]

⇥ [Tk('(u1)� '(v1))� Tk('(u2)� '(v2))] d�.

(3.44)

Finally, concerning Dk,n, since

|fWk(✓n(u)� ✓n(v))|  2k|f | 2 L1(Ω),

while
✓n(u)� ✓n(v) �! 0 a.e. in Ω as n �! 1,

the Lebesgue Dominated Convergence Theorem leads to

lim
n!1

Dk,n = 0. (3.45)
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Combining (3.37), (3.38), (3.42), (3.43), and (3.45), and choosing " small
enough, we obtain

Z

Uk
1

✓
✓n(u1)

'0(u1)
+
✓n(v1)

'0(v1)

◆
|r'(u1)�r'(v1)|

2 dx

+

Z

Uk
2

✓
✓n(u2)

'0(u2)
+
✓n(v2)

'0(v2)

◆
|r'(u2)�r'(v2)|

2 dx+ Ck,n

 Ck2

Z

Uk
1

(✓n(u1) + ✓n(v1))
'0(u1)|ru1|

2 + '0(v1)|rv1|
2

(1 + |'(u1)|+ |'(v1)|)2δ
dx

+ Ck2

Z

Uk
2

(✓n(u2) + ✓n(v2))
'0(u2)|ru2|

2 + '0(v2)|rv2|
2

(1 + |'(u2)|+ |'(v2)|)2δ
dx+ ⇢(n),

(3.46)

where C is a positive constant independent of k and n, and where ⇢(n) goes
to zero as n goes to 1.

Let ⌧ : R �! R such that

⌧(r) =

Z r

0

'0(t)

(1 + |'(t)|)2δ
dt.

Clearly, ⌧ is an increasing C1(R)-function and since 2� > 1, ⌧ is bounded.
Then, by Lemma 3.4 and (3.30) of Proposition 3.7, we deduce that

'0(ui)|rui|
2

(1 + |'(ui)|)2δ
and

'0(vi)|rvi|
2

(1 + |'(vi)|)2δ
2 L1(Ωi). (3.47)

Hence, we can pass to the limit on the right-hand side of (3.46). Furthermore,

✓n(ui) �! 1 as n �! 1, a.e. in Ωi, i = 1, 2.

By Fatou’s Lemma and (3.44), we have

Z

Uk
1

✓
1

'0(u1)
+

1

'0(v1)

◆
|r'(u1)�r'(v1)|

2 dx

+

Z

Uk
2

✓
1

'0(u2)
+

1

'0(v2)

◆
|r'(u2)�r'(v2)|

2 dx+ Ck

 Ck2

Z

Uk
1

'0(u1)|ru1|
2 + '0(v1)|rv1|

2

(1 + |'(u1)|+ |'(v1)|)2δ
dx

+ Ck2

Z

Uk
2

'0(u2)|ru2|
2 + '0(v2)|rv2|

2

(1 + |'(u2)|+ |'(v2)|)2δ
dx,

(3.48)
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where

Ck =

Z

Γ

h(x)[(u1� v1)� (u2� v2)][Tk('(u1)�'(v1))�Tk('(u2)�'(v2))] d�.

Dividing both sides of (3.48) by k2 and noting that �Uk
i
�! 0 a.e. in Ωi

as k �! 0, (3.47) and the Lebesgue Dominated Convergence Theorem allow
one to conclude that

lim sup
k!0

✓
1

k2

Z

Uk
1

✓
1

'0(u1)
+

1

'0(v1)

◆
|r'(u1)�r'(v1)|

2 dx

+
1

k2

Z

Uk
2

✓
1

'0(u2)
+

1

'0(v2)

◆
|r'(u2)�r'(v2)|

2 dx+
1

k2
Ck

◆
 0.

(3.49)

As a consequence, proving (3.34) is equivalent to showing that

lim sup
k!0

1

k2
Ck � 0. (3.50)

We now study the behavior of Ck/k2 as k goes to zero. To shorten the
notation, we will denote by gk the function given by

gk = h[(u1 � v1)� (u2 � v2)]⇥ [Tk('(u1)� '(v1))� Tk('(u2)� '(v2))].

The main difficulty in managing this term is its non-linearity. Indeed, even
if sgn(u1 � v1) = sgn(u2 � v2) a.e. on Γ, there is no reason to have gk � 0
nor to give a bound of gk/k2. In order to study the behavior of Ck/k2, we
decompose the integral on Γ into the integral on different subsets. Since from
Lemma 3.6, sgn(u1 � v1) = sgn(u2 � v2) a.e. on Γ, in view of the symmetry
of gk with respect to ui and vi (i = 1, 2), proving (3.50) is equivalent to prove

lim sup
k!0

1

k2

Z

{u1�v1>0}

gkd� � 0.

We now split the set {x 2 Γ ; u1(x) � v1(x) > 0} (up to a zero measure
subset) into 4 subsets,

{u1 � v1 > 0} = P1 [ P2 [ P3 [ P4,

where

P1 := {'(u1)� '(v1) � k} \ {'(u2)� '(v2) � k},

P2 := {0 < '(u1)� '(v1) < k} \ {0 < '(u2)� '(v2) < k},

P3 = {'(u1)� '(v1) � k} \ {0 < '(u2)� '(v2) < k},

P4 := {0 < '(u1)� '(v1) < k} \ {'(u2)� '(v2) � k}.
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Since we have

Tk('(u1)� '(v1))� Tk('(u2)� '(v2)) = 0 a.e. on P1,

we obtain that
1

k2

Z

P1

gkd� = 0. (3.51)

As far as
R
P2

gkd� is concerned, recalling that ' 2 C1(R) with '0(t) � 1
for any t 2 R gives

0 < u1 � v1  '(u1)� '(v1) < k a.e. on P2

and
0 < u2 � v2  '(u2)� '(v2) < k a.e. on P2.

As a consequence, we deduce that

1

k2
|gk| =

1

k2
|h||(u1 � v1)� (u2 � v2)||('(u1)� '(v1))� ('(u2)� '(v2))|

 khkL1(Γ) a.e. on P2.

Since
�P2

! 0 as k ! 0 a.e. on Γ,

the Lebesgue Dominated Convergence Theorem leads to

lim
k!0

1

k2

Z

P2

gkd� = 0. (3.52)

We now study
R
P3

gkd� by splitting P3 into P3 \ {u1 � v1 � k} and
P3 \ {u1 � v1 < k}. With already used arguments, we have

0 < u2 � v2 < k a.e. on P3.

It follows that

[(u1 � v1)� (u2 � v2)] � 0 a.e. on P3 \ {u1 � v1 � k},

so that
gk � 0 a.e. on P3 \ {u1 � v1 � k}.

On the other hand, we have

1

k2
|gk| =

1

k2
|h||(u1 � v1)� (u2 � v2)|(k � ('(u2)� '(v2)))

 khkL1(Γ) a.e. on P3 \ {0 < u1 � v1 < k}.
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Since
�P3

! 0 as k ! 0, a.e. on Γ,

the Lebesgue Dominated Convergence Theorem leads to

lim
k!0

1

k2

Z

P3\{0<u1�v1<k}

gkd� = 0.

Noting that we can write
Z

P3

gkd� =

Z

P3\{u1�v1�k}

gkd� +

Z

P3\{0<u1�v1<k}

gkd�,

we deduce that

lim sup
k!0

1

k2

Z

P3

gkd� � 0. (3.53)

At last, by writing
Z

P4

gkd� =

Z

P4\{u2�v2�k}

gkd� +

Z

P4\{0<u2�v2<k}

gkd�,

and by proving with similar arguments that
Z

P4\{u2�v2�k}

gkd� � 0

and

lim
k!0

1

k2

Z

P4\{0<u2�v2<k}

gkd� = 0,

yield

lim sup
k!0

1

k2

Z

P4

gkd� � 0. (3.54)

The results (3.51)–(3.54) give

lim sup
k!0

1

k2
Ck � 0. (3.55)

Therefore, (3.34) holds true.

Step 2. In this step, we prove that u1 = v1 a.e. in Ω1 and u2 = v2 a.e. in Ω2.
We first show that u1 = v1 a.e. in Ω1. To do this, we consider the function

✓n(u1)Tk('(u1)� '(v1)) 2 L1(Ω1) \ V1.
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Since u1 = v1 = 0 on @Ω, we can apply Poincaré inequality which leads to

Z

Ω1

(✓n(u1))
2

����
Tk('(u1)� '(v1))

k

����
2

dx

 C

Z

Ω1

(✓n(u1))
2

✓
rTk('(u1)� '(v1))

k

◆2

dx

+ C

Z

Ω1

(✓0n(u1))
2|ru1|

2

����
Tk('(u1)� '(v1))

k

����
2

dx,

(3.56)

where C > 0 does not depend on k and n. The second integral on the
right-hand side of (3.56) can be bounded by

Z

Ω1

(✓0n(u1))
2|ru1|

2

����
Tk('(u1)� '(v1))

k

����
2

dx 
1

n2

Z

{|u1|<2n}

|ru1|
2 dx.

The integral on the right-hand side goes to zero as n goes to 1 by (3.10a)
of Definition 3.2. This implies

lim
n!1

lim
k!0

Z

Ω1

(✓0n(u1))
2|ru1|

2

����
Tk('(u1)� '(v1))

k

����
2

dx = 0. (3.57)

For the first integral on the right-hand side of (3.56), we have

Z

Ω1

(✓n(u1))
2

✓
rTk('(u1)� '(v1))

k

◆2

dx


maxs2[�2n,2n] '

0(s)

k2

Z

Uk

1

'0(u1)
|r'(u1)�r'(u2)|

2 dx.

The integral on the right-hand side of this inequality goes to 0 as k goes to
0 by (3.34). Thus,

Z

Ω1

�{ϕ(u1) 6=ϕ(v1)} dx

= lim
n!1

lim
k!0

Z

Ω1

(✓n(u1))
2

����
Tk('(u1)� '(v1))

k

����
2

dx = 0,

(3.58)

that is, '(u1) = '(v1) a.e. in Ω1. Since '0 � 1, we have u1 = v1 a.e. in Ω1.
As a consequence, �1(u1) = �1(v1), that is, u1 = v1 a.e. on Γ.

From Lemma 3.6, sgn(u1 � v1) = sgn(u2 � v2) on Γ. Since u1 � v1 = 0
a.e. on Γ, we also have u2 � v2 = 0 a.e. on Γ. Thus, u2 = v2 a.e. on Γ.
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It only remains to prove that u2 = v2 in Ω2. Consider the function

✓n(u2)Tk('(u2)� '(v2)) 2 L1(Ω2) \H1(Ω2),

which has a zero value a.e. on Γ since u2 = v2 a.e. on Γ. We can then apply
Poincaré inequality which implies that

Z

Ω2

(✓n(u2))
2

����
Tk('(u2)� '(v2))

k

����
2

dx

 C

Z

Ω2

(✓n(u2))
2

✓
rTk('(u2)� '(v2))

k

◆2

dx

+ C

Z

Ω2

(✓0n(u2))
2|ru2|

2

����
Tk('(u2)� '(v2))

k

����
2

dx.

Using the same arguments to show (3.58), we conclude that

Z

Ω2

�{ϕ(u2) 6=ϕ(v2)} dx = lim
n!1

lim
k!0

Z

Ω2

(✓n(u2))
2

����
Tk('(u2)� '(v2))

k

����
2

dx = 0.

This implies '(u2) = '(v2) a.e. in Ω2. Therefore, since '0 � 1, u2 = v2 a.e.
in Ω2.

This concludes the proof of the uniqueness of the renormalized solution
of (3.1).
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Part II

Homogenization results





Chapter 4

Some properties of an elliptic

periodic problem with an

interfacial resistance

4.1 Introduction

In several models of partial differential equations, an imperfect contact on the
interface between two materials gives rise to an interfacial resistance, often
modelled by a jump of the solution on the interface, which is proportional to
the normal derivative. For a heat diffusion model, this means that the jump
of the temperature is proportional to the flux (see [26] for a justification of
the model).

When the coefficients are periodically oscillating, and the interface is "-
periodic, the asymptotic behaviour of the problem as "! 0 has been widely
studied in literature. In this case, the proportionality factor is of order "γ,
and the homogenized problem depends on the value of �. Let us briefly
describe the domain, more precisely defined in Section 4, and the problem
we are concerned about in this chapter (see Figure 4.1).

The two-component domain is an open bounded set Ω of RN (with N �
2), which is the union of two open subsets Ω

ε
1 and Ω

ε
2, and of their common

boundary (the interface) denoted Γ
ε. The component Ωε

2 is the union of the "-
periodic translated sets of "Y2, Y2 being contained in the reference periodicity
cell Y . The other component Ω

ε
1 is connected and defined by Ω

ε
1 = Ω\Ωε

2,
while the interface is given by Γ

ε = @Ωε
2.





Let us recall the results for the case � = �1 (see [47], [46]), which motivate

our study. For i = 1, 2, set ✓i =
|Yi|

|Y |
, with Y1 = Y \ Y2.

Let uε = (uε
1, u

ε
2) be the solution of problem (4.1) for � = �1. Then,

there exists u1 2 H1
0 (Ω) such that

8
>><
>>:

euε
i * ✓iu1 weakly in L2 (Ω) , i = 1, 2,

Aεgruε
1 * A0

1ru1 weakly in (L2 (Ω))
N ,

Aεgruε
2 * A0

2ru1 weakly in (L2 (Ω))
N ,

(4.2)

where e· denotes the zero extension to the whole of Ω, and u1 is the unique
solution of the problem

(
� div (A0ru1) = f in Ω,

u1 = 0 on @Ω.
(4.3)

The homogenized matrix A0 is defined as

A0 = A0
1 + A0

2, A0
i� =

1

|Y |

Z

Yi

A(y)(��r�λ
i (y)) dy, i = 1, 2, 8� 2 R

N ,

where �λ
i = �λ|Yi

, �λ is the solution of
8
>>>>>><
>>>>>>:

� div(Ar�λ) = � div(A�) in Y1 [ Y2,

[Ar�λ · n1] = 0 on Γ,

Ar�λ
1 · n1 = �h(y)[�λ] on Γ,

�λ
1 Y � periodic,

MΓ(�
λ
1) = 0,

(4.4)

and [·] denotes the jump through Γ, the term � div(A�) being intended as
in (4.13)-(4.14) below.

For similar elliptic homogenization problems we refer to [24], [50], [51],
[64], [65] and [74]. More recently, a similar boundary condition has been
considered in [67], where the authors study the homogenization of linearized
elasticity in a two-component medium with slip displacement conditions.

We also refer to [23] for the homogenization, by unfolding, of a quasilinear
elliptic problem in perforated domains with Robin conditions on the interface,
which motivates this study.

Indeed, in the homogenization of quasilinear elliptic problems, it is crucial
for the homogenized matrix to have some kind of Lipschitz continuity to prove
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the uniqueness of the solution of the limit problem. For example, in [23,
Theorem 3.3], it is proved that if a sequence of periodic matrices satisfies
the assumption introduced by Chipot in [27] (see Remark 4.12), then this
assumption still holds true for the homogenized matrix field. To prove this
result, a Meyers type estimate for the solution of the periodic cell problem
is needed.

In this chapter, we present some results similar to Theorem 3.3 of [23],
but in the case where the solution of the cell problem describing the homog-
enized matrix is the solution of problem (4.4), which present a jump, which
corresponds to the homogenization of problem (4.1) in the case � = �1.

To do that, we need first to prove a Meyers type estimate for the solu-
tion of the cell problem in this case, which makes use of a Meyers type result
proved by T. Gallouët and A. Monier in [55] for elliptic equations with nonho-
mogeneous Neumann boundary conditions. We also prove, for completeness,
a boundedness result for that solution.

The main difficulty here comes from the fact that a weak solution of this
problem is not an H1(Y )-function, since only the restriction of the solution to
each component Yi belongs to H1(Yi). Hence, we have to deal with a jump
on the interface Γ, which gives rise to a boundary term in the variational
formulation (see (4.15)). This implies that one cannot merely repeat the
arguments of the classical case without jump in the proofs, but most of the
steps are more delicate and need suitable arguments.

The present chapter is organised as follows:
In the next section, we introduce some definitions and we state the peri-

odic problem in a two-component cell.
Section 4.3 is devoted to the Meyers type result.
In Section 4.4, we prove some results for a rescaled version of (4.15),

which will be needed for the main result of the last section.
Section 4.5 contains some additional properties adapted to the quasilinear

case, where A = B(y, t) is a Carathéodory matrix field depending also on a
real parameter t. More precisely, we prove an estimate of the difference of
two homogenized matrices in terms of the difference of the oscillating ones.
As a consequence, in Corollary 4.11 (see also Remark 4.12) we deduce a
generalization of Theorem 3.3 of [23] to the case with jump.

Finally, in Section 4.6, we prove the boundedness of the solution to (4.15).

We believe that these results can be very helpful not only to extend
the homogenization results proved for problem (4.1) with � = �1 to the
quasilinear case, but also in the homogenization of other elliptic problems
in progress (e.g. quasilinear problems with singularity or with L1 data in
two-component domains).
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Recall that (4.8) defines a norm since a Poincaré-Wirtinger inequality holds
on Wper(Y1).

From now on, for any measurable function u defined on Y , for i = 1, 2,
we denote by ui = u

��
Yi

, the restriction of u on Yi and bye· the zero extension
to the whole of Y .

Let us introduce the space

H = {u 2 L2(Y ) | u1 2 Wper(Y1), u2 2 H1(Y2)}

equipped with the norm

kuk2H = kru1k
2
L2(Y1)

+ kru2k
2
L2(Y2)

+ ku1 � u2k
2
L2(Γ). (4.9)

N.B. In the sequel, we identify the gradient ru of a function u in H with
its absolutely continuous part gru1 + gru2, and we set

kruk2L2(Y \Γ) = kru1k
2
L2(Y1)

+ kru2k
2
L2(Y2)

, (4.10)

so that, (4.9) reads

kuk2H = kruk2L2(Y \Γ) + ku1 � u2k
2
L2(Γ).

Remark 4.1. The norm given in (4.9) is equivalent to the norm

kuk2Wper(Y1)⇥H1(Y2)
= ku1k

2
Wper(Y1)

+ ku2k
2
H1(Y2)

, (4.11)

that is, there exist 2 positive constants c1, c2, depending on Y1, Y2, such that

c1kukWper(Y1)⇥H1(Y2)  kukH  c2kukWper(Y1)⇥H1(Y2). (4.12)

The proof of the equivalence is similar to that of Proposition 2.6 of [68],
where the result is presented for the space V1 ⇥H1(Y2), with

V1 = {v 2 H1(Y1) : v = 0 on @Y } with kvkV1
= krvkL2(Y1).

In [68], the estimates for V1 ⇥ H1(Y2) is obtained by using the Poincaré
inequality in V1. The only difference here is that one has to use the Poincaré-
Wirtinger inequality on Wper(Y1) instead.

Our aim is to study some properties of the solution of the following prob-
lem: 8

>>>>>>>><
>>>>>>>>:

� div(Ar�λ
1) = Gλ

1 in Y1,

� div(Ar�λ
2) = Gλ

2 in Y2,

Ar�λ
1 · n1 = �Ar�λ

2 · n2 on Γ,

Ar�λ
1 · n1 = �h(y)(�λ

1 � �λ
2) on Γ,

�λ
1 Y � periodic,

MΓ(�
λ
1) = 0,

(4.13)
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where � 2 R
N and Gλ

i is defined by

hGλ
i , vi =

Z

Yi

A�rv dy, 8v 2 H1(Yi), i = 1, 2, (4.14)

which belongs to (H1(Yi))
0.

Remark 4.2. Observe that a Poincaré-Wirtinger inequality still holds in
Wper(Y1) if in (4.7) we replace the condition MΓ(u) = 0 by MY1

(u) = 0,
where

MY1
(u) =

1

|Y1|

Z

Y1

u dy.

Consequently, if we set

b�λ
i = �λ

i �MY1
(�λ

1), i = 1, 2, 8� 2 R
N ,

then b�λ = (b�λ
1 , b�λ

2) is the unique solution of
8
>>>>>>>><
>>>>>>>>:

� div(Arb�λ
1) = Gλ

1 in Y1,

� div(Arb�λ
2) = Gλ

2 in Y2,

Arb�λ
1 · n1 = �Arb�λ

2 · n2 on Γ,

Arb�λ
1 · n1 = �h(y)(b�λ

1 � b�λ
2) on Γ,

b�λ
1 Y � periodic,

MY1
(b�λ

1) = 0,

which is a problem of the same type as (4.13).
Hence, all the results stated here for �λ are still true for b�λ. We present

here the problem under the form (4.13), since it is the problem which is
used for describing the homogenization of elliptic problems with a jump when
� = �1(see [46]-[47]).

We make the following assumptions on A and h:

(A1) The matrix field A belongs to M(↵, �, Y ), where 0 < ↵ < �.

(A2) The function h is in L1(Γ) with 0 < h0 < h(y) for a.e. y 2 Γ, for some
h0 2 R.

Using (4.14), the variational formulation of (4.13) is
8
>>>><
>>>>:

Find �λ = (�λ
1 ,�

λ
2) 2 H such that

Z

Y \Γ

Ar�λrv dy +

Z

Γ

h(y)(�λ
1 � �λ

2)(v1 � v2) d� =

Z

Y \Γ

A�rv dy,

for any v = (v1, v2) 2 H.

(4.15)
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The existence and uniqueness of the solution of (4.15) can be easily es-
tablished by the Lax-Milgram theorem. In the next sections, we investigate
some properties of the solution of (4.15).

4.3 A Meyers type estimate

We prove here that the gradient of the solution, which is in L2(Y \ Γ), has a
better summability.

Theorem 4.3. Let � 2 R
N and let �λ = (�λ

1 ,�
λ
2) 2 H be the solution of

(4.15). Then for any � 2 R
N , there exists pi > 2, i = 1, 2, such that

�λ
i 2 W 1,pi(Yi). (4.16)

Moreover, for i = 1, 2, for every 2  qi  pi, there exists a positive constant
ci, dependent on ↵, �, qi, and Yi, such that

kr�λ
i kLqi (Yi)  ci|�|. (4.17)

To prove this theorem, we apply the following Meyers type result, which
has been proved by Gallouët and Monier in [55].

Theorem 4.4 ([55]). Let N � 2 and Ω be a bounded connected open subset
of R

N with a Lipschitz continuous boundary @Ω. Suppose u is the unique
solution of (

� div(Aru) = F in Ω

Aru · n+ hu = 0 on @Ω,
(4.18)

where A 2 M(↵, �,Ω), for some 0 < ↵ < �, and h 2 L1(@Ω) with 0 < h0 
h(y), for a.e. y 2 @Ω, for some real number h0.

Define

2⇤ =

8
<
:

2N

N � 2
, if N � 3

any number in (2,+1), if N = 2.

(4.19)

Then there exists p0 > 2 (with p0 < 2⇤ for N � 3) such that for every
2 < q < p0, if F 2 (W 1,q0(Ω))0 then u 2 W 1,q(Ω), and for some C > 0,

kukW 1,q(Ω)  CkFk(W 1,q0 (Ω))0 , (4.20)

where C depends on ↵, �, Ω, and q.
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Remark 4.5. 1. It is easy to check that Theorem 4.4 still holds if Ω = Y1

and we prescribe the boundary condition only on Γ, and the Y�periodicity
of u.

2. Theorem 4.4 also holds if Ω = Y2 as defined in (4.5) since we can apply
it to every connected component Y j

2 of Y2.

We establish the following lemma which is needed to prove Theorem 4.3.

Lemma 4.6. Let � 2 R
N and let �λ = (�λ

1 ,�
λ
2) be the solution to (4.15).

For i = 1, 2, set

t =

8
><
>:

2(N � 1)

N � 2
if N � 3,

any number in (2,+1) if N = 2,

(4.21)

and let µλ
1 and µλ

2 be the linear functionals defined by

µλ
1(v1) =

Z

Γ

h�λ
2v1 d�, 8v1 2 W 1,t0(Y1), (4.22)

and

µλ
2(v2) =

Z

Γ

h�λ
1v2 d�, 8v2 2 W 1,t0(Y2), (4.23)

respectively. Then, for i = 1, 2, for every 1  ri  t we have

µλ
i 2 (W 1,r0i(Yi))

0, (4.24)

and for some bi > 0,

kµλ
i k(W 1,r0

i (Yi))0
 bi|�|, 8� 2 R

N . (4.25)

Proof. We first observe that

k�λkWper(Y1)⇥H1(Y2)  c�1
1 k�λkH  c|�|, (4.26)

for some positive constant c that depends on ↵, �, h0, Y1, and Y2. Indeed, the
first inequality is a consequence of the equivalence of the norms in (4.12). To
prove the second inequality, take �λ = (�λ

1 ,�
λ
2) as a test function in (4.15),

which gives
Z

Y \Γ

Ar�λr�λ dy +

Z

Γ

h(y)(�λ
1 � �λ

2)(�
λ
1 � �λ

2) d� =

Z

Y \Γ

A�r�λ dy.
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Then, by the ellipticity of A, the assumptions on h, and Hölder’s inequality,
we obtain

min{↵, h0}k�
λk2H  ↵kr�λk2L2(Y \Γ) + h0k�

λ
1 � �λ

2k
2
L2(Γ)



Z

Y \Γ

Ar�λr�λ dy +

Z

Γ

h(y)(�λ
1 � �λ

2)(�
λ
1 � �λ

2) d�

=

Z

Y \Γ

A�r�λ dy  �|�|kr�λkL2(Y \Γ)  �|�|k�λkH.

Hence, (4.26) holds true.
Note that for i = 1, 2, ri  t, we have r0i � t0 and hence vi 2 W 1,r0i(Yi) ✓

W 1,t0(Yi). Moreover, we have the following continuous embeddings,

H1(Y1) ⇢ Lt(Γ) ✓ Lr2(Γ),

H1(Y2) ⇢ Lt(Γ) ✓ Lr1(Γ).

Then, since �λ
i 2 H1(Yi) for i = 1, 2, it follows that for some positive con-

stants a1 and a2,

�λ
1 2 Lr2(Γ) with k�λ

1kLr2 (Γ)  a1k�
λ
1kH1(Y1), (4.27)

�λ
2 2 Lr1(Γ) with k�λ

2kLr1 (Γ)  a2k�
λ
2kH1(Y2). (4.28)

Note that for i = 1, 2, µλ
i is linear and using the Trace Theorem, Hölder’s

inequality, (4.27), (4.28), and (4.26), we have

|hµλ
1 , v1i|  khkL1(Γ)k�

λ
2kLr1 (Γ)kv1kLr0

1 (Γ)

 a2khkL1(Γ)k�
λ
2kH1(Y2)kv1kW 1,r0

1 (Y1)

 b1|�|kv1kW 1,r0
1 (Y1)

,

and

|hµλ
2 , v2i|  khkL1(Γ)k�

λ
1kLr2 (Γ)kv2kLr0

2 (Γ)

 a1khkL1(Γ)k�
λ
1kH1(Y1)kv2kW 1,r0

2 (Y2)

 b2|�|kv2kW 1,r0
2 (Y2)

,

for some positive constants b1, b2 which depend on ↵, �, h, Y1, Y2, r1, and r2.
These imply (4.24) and (4.25).
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Proof of Theorem 4.3: Fix � 2 R
N . From (4.13)-(4.14), we can write the

following system for �λ
1 :

8
>>><
>>>:

� div(Ar�λ
1) = Gλ

1 in Y1,

Ar�λ
1 · n1 + h�λ

1 = h�λ
2 on Γ,

�λ
1 Y � periodic,

MΓ(�
λ
1) = 0,

(4.29)

while for �λ
2 we have

(
� div(Ar�λ

2) = Gλ
2 in Y2,

Ar�λ
2 · n2 + h�λ

2 = h�λ
1 on Γ.

(4.30)

System (4.29) can be rewritten as

8
>>><
>>>:

� div(Ar�λ
1) = Gλ

1 + µλ
1 in Y1,

Ar�λ
1 · n1 + h�λ

1 = 0 on Γ,

�λ
1 Y � periodic,

MΓ(�
λ
1) = 0,

(4.31)

and (4.30) as (
� div(Ar�λ

2) = Gλ
2 + µλ

2 in Y2,

Ar�λ
2 · n2 + h�λ

2 = 0 on Γ,
(4.32)

where µλ
1 and µλ

2 are as defined in (4.22) and (4.23), respectively.
For i = 1, 2, set

Fi = Gλ
i + µλ

i . (4.33)

Let us apply Theorem 4.4 (taking also into account Remark 4.5) first to
(4.31) with F = F1 and then to (4.32) with F = F2. Then for i = 1, 2, we
can find 2 < pi0 < 2⇤ such that

8qi 2 (2, pi0), if Fi 2 (W 1,q0i(Yi))
0, then the solution �λ

i 2 W 1,qi(Yi),
(4.34)

and due to (4.20), for some ci > 0,

8qi 2 (2, pi0), k�λ
i kW 1,qi (Yi)  cikFik(W 1,q0

i (Yi))0
. (4.35)

Let now t be as in (4.21). Set

si = min {t, pi0}, i = 1, 2.
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From Lemma 4.6 (written for t = si and ri = pi), we deduce that

µλ
i 2 (W 1,p0i(Yi))

0, 8pi 2 (2, si), i = 1, 2. (4.36)

Moreover, for i = 1, 2, since A� 2 L1(Yi), for every vi 2 W 1,p0i(Yi), we have
by Hölder’s inequality,

|hGλ
i , vii| =

��
Z

Yi

A�rvi dy
��

 kA�kLpi (Yi)krvikLp0
i (Yi)

 di|�|kvikW 1,p0
i (Yi)

,

where di depends on � and Yi. This implies that for i = 1, 2, for every pi < si,

Gλ
i 2 (W 1,p0i(Yi))

0

with
kGλ

i k(W 1,p0
i (Yi))0

 di|�|. (4.37)

This, together with (4.33) and (4.36), implies

Fi 2 (W 1,p0i(Yi))
0, 8pi 2 (2, si),

which, due to (4.34), proves the first statement of the theorem for every pi
in (2, si), since si < pi0.

Fix now, for i = 1, 2, such a pi and let us prove the second statement.
For every qi 2 (2, pi), i = 1, 2, from (4.35),

kr�λ
i kLqi (Yi)  cikFik(W 1,q0

i (Yi))0
.

Hence, to prove (4.17), it suffices to show that for some positive constant ci,

kFik(W 1,q0
i (Yi))0

 ci|�|, 8� 2 R
N , i = 1, 2. (4.38)

Since qi < pi < si, from (4.33), (4.25) of Lemma 4.6 (written for ri = qi),
and (4.37) (written for pi = qi), we have

kFik(W 1,q0
i (Yi))0

 kGλ
i k(W 1,q0

i (Yi))0
+ kµλ

i k(W 1,q0
i (Yi))0

 ci|�|.

This shows (4.38) and ends the proof.
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4.4 The rescaled problem

In this section, we rescale the function �λ and prove that it satisfies a rescaled
version of (4.15) in R

N .
Let Ω be a connected open set of RN with a Lipschitz continuous boundary

@Ω. Under the notations of Section 2, for k 2 Z
N , let kl = (k1l1, k2l2, . . . , kN lN)

and define
Y k = kl + Y and Y k

i = kl + Yi, i = 1, 2,

and
Y #
2 =

[

k2ZN

Y k
2 , Γ

# = @Y #
2 , Y #

1 = R
N \ Y #

2 . (4.39)

Let {"} be a sequence of positive real numbers that converges to zero.
Set Gε = {k 2 Z

N | "Y k
2 ⇢ Ω}.

We define the sets Ω
ε
1, Ω

ε
2, and Γ

ε as

Ω
ε
2 =

[

k2Gε

"Y k
2 with Γ

ε = @Ωε
2, and Ω

ε
1 = Ω \ Ωε

2. (4.40)

In what follows, for any measurable function u defined in Ω, we set

ui = u
��
Ωε

i
, the restriction of u in Ω

ε
i , i = 1, 2,

and we denote by eui, the zero extension to Ω of any function ui defined in
Ω

ε
i .

N.B. In the sequel, we identify a function in H1(Y2) with its extension by
periodicity to Y #

2 . Moreover as in (4.10), for any function u such that ui 2
H1(Ωε

i ), i = 1, 2 we identify the gradient with its absolutely continuous part,
and we set

kruk2L2(Ω\Γε) = kru1k
2
L2(Ωε

1)
+ kru2k

2
L2(Ωε

2)
.

Let now �λ the solution of (4.15) and set

wλ(y) = ��λ(y) + �y for a.e. y 2 Y. (4.41)

For a.e. x 2 Ω, define

�λ
ε (x) = "�λ

⇣x
"

⌘
, wλ

ε (x) = "wλ
⇣x
"

⌘
= ��λ

ε (x) + �x. (4.42)

131



Let us first prove the following result:

Proposition 4.7. The solution �λ of (4.15) satisfies

Z

RN\Γ#

Ar�λr' dy +

Z

Γ#

h(y)(�λ
1 � �λ

2)('1 � '2) d� =

Z

RN\Γ#

A�r' dy,

(4.43)
for any ' 2 L2(RN) with supp' compact and the restriction of ' in Y #

i ,
denoted by 'i, belongs to H1(Y #

i ).

Proof. We adapt here the proof of Theorem 4.28 of [33] to the case with a
jump on Γ. First, for i = 1, 2, let  i 2 C1

per(Yi), and set vi =  i �MΓ( 1).
Then v = (v1, v2) 2 H and choosing v as test function in (4.15), we have

Z

Y \Γ

Ar�λr dy +

Z

Γ

h(y)(�λ
1 � �λ

2)( 1 �  2) d� =

Z

Y \Γ

A�r dy. (4.44)

Let ' be a function in L2(RN) with a compact support K and 'i 2 H1(Yi),
i = 1, 2. Let {Y j}mj=1 be a finite set of translated cells of Y such that

K ⇢

m[

j=1

Y j.

Let Γ
j ⇢ Y j be the corresponding translated sets of Γ, j = 1, . . . ,m.

Let {✓j}mj=0 be a partition of unity associated to this covering, i.e., a
family of functions such that,

8
><
>:
✓j 2 D(RN), 0  ✓j  1, 8j 2 {0, 1, . . . ,m},

mX

j=0

✓j = 1,

supp ✓j ⇢ Y j, 8j 2 {1, . . . ,m}, supp ✓0 ⇢ R
N \K.

(4.45)

Since ' = 0 in supp ✓0, we have

' = '

mX

j=1

✓j =
mX

j=1

('✓j) in R
N . (4.46)

We denote the extension by periodicity of '✓j by ('✓j)#, j = 1, . . . ,m. By
(4.45), ✓j = 0 in a neighborhood of @Y j, j = 1, . . . ,m, and hence, for i = 1, 2,
('i✓

j)# 2 C1
per(Yi).
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Writing (4.44) for  i = ('i✓
j)#, i = 1, 2, and then adding the resulting

equations for j = 1, . . . ,m, we obtain,
mX

j=1

Z

Y \Γ

Ar�λr('✓j)# dy +
mX

j=1

Z

Γ

h(y)(�λ
1 � �λ

2)(('1✓
j)# � ('2✓

j)#) d�

=
mX

j=1

Z

Y \Γ

A�r('✓j)# dy. (4.47)

Note that by (4.45), and (4.46), we have by periodicity

mX

j=1

Z

Y \Γ

Ar�λr('✓j)# dy =
mX

j=1

Z

Y j\Γj

Ar�λr('✓j) dy

=

Z

RN\Γ#

Ar�λr' dy. (4.48)

Similarly,
mX

j=1

Z

Y \Γ

A�r('✓j)# dy =

Z

RN\Γ#

A�r' dy. (4.49)

Also, from (4.45), and (4.46), we have by periodicity, for the integral on the
boundary,

mX

j=1

Z

Γ

h(y)(�λ
1 � �λ

2)(('1✓
j)# � ('2✓

j)#) d�

=
mX

j=1

Z

Γj

h(y)(�λ
1 � �λ

2)('1✓
j � '2✓

j) d�

=
mX

j=1

Z

Γ#

h(y)(�λ
1 � �λ

2)('1✓
j � '2✓

j) d�

=

Z

Γ#

h(y)(�λ
1 � �λ

2)('1 � '2) d� (4.50)

Finally, combining (4.47) with (4.48)-(4.50), we get the desired result.

The main result of this section is the following one:

Theorem 4.8. For  = ( 1, 2) 2 H1(Y1) ⇥ H1(Y2), set  ε(x) = " 
⇣x
"

⌘

for a.e. x 2 Ω. Then, for every ' 2 D(Ω) and for " sufficiently small, the
function wλ

ε defined by (4.42) satisfies
Z

Ω\Γε

Aεrwλ
εr(' ε) dx = �"�1

Z

Γε

hε(x)(wλ
1,ε � wλ

2,ε)( 
ε
1 �  ε

2)' d�, (4.51)

133



where
Aε(x) = A

⇣x
"

⌘
and hε(x) = h

⇣x
"

⌘
. (4.52)

Proof. Let ' 2 D(Ω) and " sufficiently small such that supp' \ "Γ# ⇢ Γ
ε.

Set 'ε(y) = '("y) and

vi(y) = 'ε(y) i(y), i = 1, 2.

Using v = (v1, v2) as a test function in (4.43), we have
Z

RN\Γ#

Ar�λr('ε ) dy +

Z

Γ#

h(y)(�λ
1 � �λ

2)( 1 �  2)'ε d�

=

Z

RN\Γ#

A�r('ε ) dy.

Using Proposition 4.7 and making the change of scale x = "y, by construction
we have

"�N

Z

Ω\Γε

A
⇣x
"

⌘
ry�

λ
⇣x
"

⌘
ry

⇣
'ε

⇣x
"

⌘
 
⇣x
"

⌘⌘
dx

+ "�N+1

Z

Γε

h
⇣x
"

⌘⇣
�λ
1

⇣x
"

⌘
� �λ

2

⇣x
"

⌘⌘⇣
 1

⇣x
"

⌘
�  2

⇣x
"

⌘⌘
'ε

⇣x
"

⌘
d�

= "�N

Z

Ω\Γε

A
⇣x
"

⌘
�ry

⇣
'ε

⇣x
"

⌘
 
⇣x
"

⌘⌘
dx. (4.53)

Observe now that

ry�
λ
⇣x
"

⌘
= rx�

λ
ε (x), ry 

⇣x
"

⌘
= rx 

ε(x), ry'ε

⇣x
"

⌘
= "rx'(x).

It follows that

ry

⇣
'ε

⇣x
"

⌘
 
⇣x
"

⌘⌘
= 'ε

⇣x
"

⌘
ry 

⇣x
"

⌘
+  

⇣x
"

⌘
ry'ε

⇣x
"

⌘

= '(x)rx 
ε(x) +  ε(x)rx'(x)

= rx('(x) 
ε(x)).

Then, we can rewrite (4.53) as

"�N

Z

Ω\Γε

Aεr�λ
εr(' ε) dx+ "�N�1

Z

Γε

hε(x)(�λ
1,ε � �λ

2,ε)( 
ε
1 �  ε

2)' d�

= "�N

Z

Ω\Γε

Aε�r(' ε) dx.

Multiplying both sides of this equation by "N and using (4.42) we obtain
(4.51).
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4.5 Further properties for a quasilinear case

In this section, we want to prove that some estimates providing the unique-
ness for a class of quasilinear problems in a periodic two-component domain,
remain valid after the homogenization process.

More precisely, we show that if a sequence of periodic matrices satisfies the
assumption introduced by Chipot in [27] (see (4.62)), then this assumption
still holds true for the homogenized matrix field. To do that, we combine the
Meyer-like estimate obtained in Theorem 4.3 with some ideas from [23].

Lemma 4.9. There exists p > 2 such that for i = 1, 2, wλ
i 2 W 1,p(Yi).

Furthermore, for all q 2 [2, p], there exists c > 0, depending on ↵, �, Y1, Y2,
and q such that

krwλkLq(Y \Γ)  c|�|, for every � 2 R
N . (4.54)

In addition,

lim
ε!0

krwλ
ε kLq(Ω\Γε)  c

|Ω|
1
q

|Y |
1
q

|�| for every � 2 R
N . (4.55)

Proof. From Theorem 4.3, for i = 1, 2, we can find pi, 2 < pi < 2⇤ (where
2⇤ is defined in (4.19)), such that �λ

i 2 W 1,pi(Yi). It follows that for p =
min{p1, p2}, wλ

i 2 W 1,p(Yi), i = 1, 2. Furthermore, for every 2  q  p, there
exists a positive constant b such that

kr�λkLq(Y \Γ)  b|�|.

This, together with (4.41), gives (4.54) with c = b+ 1.

Moreover, since the function |r̂ywλ
i |

qi is a Y�periodic function in L1(Y ),
from classical results on functions of the form f(x/") (see for instance [33,
Chapter 2]), we get

lim
ε!0

kr̂wλ
i,εk

qi
Lqi (Ω) = lim

ε!0

Z

Ω

���r̂ywλ
i

⇣x
"

⌘���
qi

dx =
|Ω|

|Y |

Z

Yi

|ryw
λ
i (y)|

qidy.

(4.56)
This gives, using (4.54),

lim
ε!0

krwλ
ε kLq(Ω\Γε) =

|Ω|
1
q

|Y |
1
q

krwλkLq(Y \Γ)  c
|Ω|

1
q

|Y |
1
q

|�|,

which completes the proof.
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For A 2 M(↵, �, Y ), let us introduce now the homogenized matrix A0

(see [47]), defined as

A0 = A0
1+A0

2, A0
i� =

1

|Y |

Z

Yi

A(y)rwλ
i (y) dy, i = 1, 2, 8� 2 R

N , (4.57)

where wλ is defined by (4.41).
From classical results (see for instance (see for instance [33, Chapter 6])

we know that the following convergences hold, for i = 1, 2:
8
<
:

f�λ
i,ε �! 0 strongly in L2(Ω),

Aεr̂wλ
i,ε * A0

i� weakly in [L2(Ω)]N ,

(4.58)

where Aε is defined in (4.52).

The following result extends to the periodic case with a jump on Γ a
similar result for a fixed domain, proved in the general framework the G-
convergence in Colombini-Spagnolo [35] and for the H-convergence in [20].
A simpler proof for the case of a periodic matrix field and a periodically
perforated domain, has been given in [23, Proposition 3.2]. We adapt here
to the case with jump some arguments used therein.

Theorem 4.10. Let B and D be in M(↵, �, Y ), with the corresponding ho-
mogenized matrices B0 and D0, given by (4.57). Then there exists c0 > 0
dependent on ↵, �, Y1 and Y2 such that

|B0 �D0|  c0kB �DkL1(Y ). (4.59)

Proof. Let tD denote the transposed matrix of D. Let �λ,B
i,ε , wλ,B

i,ε , �µ,tD
i,ε and

wµ,tD
i,ε , i = 1, 2, be the functions defined in (4.41) and (4.42) for A = B and

A = tD, respectively.
Let us show that for every �, µ 2 R

N , we have

(Bε �Dε)(^rwλ,B
1,ε

^
rwµ,tD

1,ε + ^rwλ,B
2,ε

^
rwµ,tD

2,ε )* (B0 �D0)�µ (4.60)

weakly in L1(Ω). To do this, we first prove that for any ' 2 D(Ω),

lim
ε!0

Z

Ω\Γε

(Bε �Dε)rwλ,B
ε rwµ,tD

ε ' dx =

Z

Ω

(B0 �D0)�µ' dx. (4.61)

Let ' 2 D(Ω). We have

Iε =

Z

Ω\Γε

(Bε �Dε)rwλ,B
ε rwµ,tD

ε ' dx

=

Z

Ω\Γε

Bεrwλ,B
ε rwµ,tD

ε ' dx�

Z

Ω\Γε

tDεrwµ,tD
ε rwλ,B

ε ' dx.
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From Theorem 4.8, written for  = wµ,tD, we obtain
Z

Ω\Γε

Bεrwλ,B
ε rwµ,tD

ε ' dx =

Z

Ω\Γε

Bεrwλ,B
ε r(wµ,tD

ε ') dx

�

Z

Ω\Γε

Bεrwλ,B
ε wµ,tD

ε r' dx

= �"�1

Z

Γε

hε(x)(wλ,B
1,ε � wλ,B

2,ε )(w
µ,tD
1,ε � wµ,tD

2,ε )' d�

�

Z

Ω\Γε

Bεrwλ,B
ε wµ,tD

ε r' dx.

Similarly, from Theorem 4.8, written for  = wλ,B, we have
Z

Ω\Γε

tDεrwµ,tD
ε rwλ,B

ε ' dx = �

Z

Ω\Γε

tDεrwµ,tD
ε wλ,B

ε r' dx

� "�1

Z

Γε

hε(x)(wµ,tD
1,ε � wµ,tD

2,ε )(wλ,B
1,ε � wλ,B

2,ε )' d�.

Then

Iε = �

Z

Ω\Γε

Bεrwλ,B
ε wµ,tD

ε r' dx+

Z

Ω\Γε

tDεrwµ,tD
ε wλ,B

ε r' dx.

From (4.57), (4.42), and (4.58) (written for A = B), we have

lim
ε!0

Z

Ω\Γε

Bεrwλ,B
ε wµ,tD

ε r' dx = lim
ε!0

2X

i=1

Z

Ω

Bε ^rwλ,B
i,ε (µ · x�

]
�
µ,tD
i,ε )r' dx

=
2X

i=1

Z

Ω

B0
i �(µ · x)r' dx

= �

Z

Ω

B0�µ' dx.

Similarly,

lim
ε!0

Z

Ω\Γε

tDεrwµ,tD
ε wλ,B

ε r' dx = �

Z

Ω

D0�µ' dx.

It follows that

lim
ε!0

Iε =

Z

Ω

(B0 �D0)�µ' dx.

This proves (4.61).
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By Lemma 4.9, there exists ⌘ > 0 such that (Bε � Dε)^rwλ,B
ε

^
rwµ,tD

ε is
bounded in L1+η(Ω). This, together with (4.61), gives us (4.60).

Noting that B0 and D0 are constants, and kBε � DεkL1(Ω) = kB �
DkL1(Y ), using the Cauchy-Schwarz inequality, from (4.55) written for q = 2
and (4.60) we have,

|Ω||(B0 �D0)�µ| = k(B0 �D0)�µkL1(Ω)

 lim inf
ε!0

����(Bε �Dε)(^rwλ,B
1,ε

^
rwµ,tD

1,ε + ^rwλ,B
2,ε

^
rwµ,tD

2,ε )

����
L1(Ω)

 kB �DkL1(Y ) lim
ε!0

⇣
k rwλ,B

ε kL2(Ω\Γε)krwµ,tD
ε kL2(Ω\Γε)

⌘

 c2
|Ω|

|Y |
kB �DkL1(Y )|�||µ|.

It follows that for some c0 depending on ↵, �, Y, Y1, and Y2,

|(B0 �D0)�µ|  c0kB �DkL1(Y )|�||µ|.

Writing this inequality with � = ej and µ = ek, where {ej}Nj=1 is the canonical
basis, gives the desired result.

As a consequence, we have the following corollaries:

Corollary 4.11. Let A : (y, t) 2 Y ⇥ R 7! A(y, t) 2 R
N⇥N be a real matrix

field with the following properties:

(P1) A(·, t) belongs to M(↵, �, Y ) for all t 2 R;

(P2) A(·, t) = {aij}i,j=1,...,N is Y�periodic for every t;

(P3) there exists a function ! : R �! R such that
8
<
:
(a) ! is continuous, non-decreasing and !(t) > 0, 8t > 0;

(b) |A(y, s)� A(y, t)|  !(|s� t|) for a.e. y 2 Y, 8s, t 2 R.

(4.62)

Let A0 be the corresponding homogenized matrix to A given by (4.57). Then

1. A0 is continuous on R and A0(t) 2 M

✓
↵,
�2

↵
,Ω

◆
for all t 2 R;

2. there exists C depending on ↵, �, Y1, and Y2 such that

|A0(s)� A0(t)|  C!(|s� t|),

for all s, t 2 R.
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Proof. The result A0(t) 2 M

✓
↵,
�2

↵
,Ω

◆
is a classical result. The others

are direct consequences of Theorem 4.10 written for B = A(·, s) and D =
A(·, t).

Remark 4.12. To show the interest of Corollary 4.11, let us mention that M.
Chipot introduced in [27] the class of matrix field satisfying the assumptions
of Corollary 4.11, and the following additional condition:

For any r > 0, lim
s!0+

Z r

s

dt

!(t)
= +1. (4.63)

He proved that under these assumptions, which are weaker then the Lipschitz-
continuity, the corresponding quasilinear problem with Dirichlet boundary
conditions admits a unique solution. Consequently, from Corollary 4.11 we
can derive that under these assumptions on the periodic matrix field, also the
homogenized matrix has the same property, so that the homogenized problem
has a unique solution. This is crucial in homogenization, since it implies
that the whole sequences under consideration converge (and not only subse-
quences). A similar result has been proved in in [23, Theorem 3.3] for the
homogenization of a quasilinear problem in perforated domains with some
nonlinear Robin conditions.

As mentioned in the introduction, we believe that this can be applied to
many other interesting homogenization problems.

Corollary 4.13. Suppose that the matrix field A(y, t) satisfies (P1) and (P2)
from Corollary 4.11 and

(P4) A(y, t) is locally Lipschitz with respect to the second variable, that is,
for every r > 0, there exists a positive constant Mr such that

|A(y, s)� A(y, t)|  Mr|s� t| 8s, t 2 (�r, r).

Then the homogenized matrix A0 is also locally Lipschitz, that is, for every
r > 0, there exists a positive constant Cr such that

|A0(s)� A0(t)|  Cr|s� t| 8s, t 2 (�r, r).

Proof. It follows again from Theorem 4.10 written for B = A(·, s) and D =
A(·, t).
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4.6 Boundedness of the solution

To complete the study done in the previous sections, adapting classical argu-
ments from G. Stampacchia [80], we prove here that for every �, the solution
�λ of (4.15) belongs to L1(Y ).

Theorem 4.14. For any � 2 R
N , if �λ = (�λ

1 ,�
λ
2) 2 H is the solution of

(4.15), then �λ
i 2 L1(Yi), i = 1, 2.

Proof. Fix � 2 R
N . Define for any h � 1,

Ah = {y 2 Y \ Γ | �λ(y) � h}. (4.64)

Let gh(x) = (x� h)+, where

(x� h)+ =

8
<
:
x� h, if x� h > 0

0, if x� h  0.

Using gh(�
λ) as a test function in (4.15), we have

Z

Y \Γ

Ar�λrgh(�
λ) dy +

Z

Γ

h(y)(�λ
1 � �λ

2)(gh(�
λ
1)� gh(�

λ
2)) d�

=

Z

Y \Γ

A�rgh(�
λ) dy.

(4.65)

Let us first show that if w and z are two functions defined on Γ, we have

(w � z)[gh(w)� gh(z)] � [gh(w)� gh(z)]
2. (4.66)

If w � h and z � h, then gh(w) = w � h and gh(z) = z � h. Thus

(w� z)[gh(w)�gh(z)] = [(w�h)� (z�h)][gh(w)�gh(z)] = [gh(w)�gh(z)]
2.

When w  h and z  h, we have gh(z) = 0 = gh(w), and it follows that

(w � z)[gh(w)� gh(z)] = 0 = [gh(w)� gh(z)]
2.

If w  h and z � h, then gh(w) = 0 and gh(z) = z � h. Hence,

(w � z)[gh(w)� gh(z)] = (w � z)[�gh(z)] = (z � w)gh(z)

� (z � h)gh(z) = [gh(z)]
2 = [gh(w)� gh(z)]

2.

Finally, by symmetry, we also have the result when w � h and z  h. This
proves (4.66).
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By the ellipticity of A, the assumption on h, (4.66) (written for w = �λ
1

and z = �λ
2), and Hölder’s inequality, we obtain from (4.65),

min{↵, h0}k(�
λ � h)+k2H  ↵kr(�λ � h)+k2L2(Y \Γ)

+ h0k(�
λ
1 � h)+ � (�λ

2 � h)+k2L2(Γ)



Z

Y \Γ

A�r(�λ
1 � h)+ dy

=

Z

Ah

A�r(�λ � h)+ dy

 �|�||Ah|
1/2kr(�λ � h)+kL2(Y \Γ)

 �|�||Ah|
1/2k(�λ � h)+kH.

Then from the equivalence of the two norms in (4.12), for some positive
constant C,

k(�λ � h)+k2Wper(Y1)⇥H1(Y2)
 c�2

1 k(�λ � h)+k2H  C|Ah|. (4.67)

By the Sobolev embeddings, we have from (4.67),
✓Z

Y1

[(�λ
1 � h)+]2

⇤

dy

◆2/2⇤

+

✓Z

Y2

[(�λ
2 � h)+]2

⇤

dy

◆2/2⇤

 C|Ah|, (4.68)

where 2⇤ is defined in (4.19).
For r � h, we have from (4.64) that Ar ✓ Ah. It follows that (�λ

i �h)+ =
�λ
i � h � r � h in Ar. Thus,

(r � h)2|Ar|
2/2⇤ 

✓Z

Ar

[(�λ
1 � h)+]2

⇤

dy

◆2/2⇤

+

✓Z

Ar

[(�λ
2 � h)+]2

⇤

dy

◆2/2⇤

 C|Ah|.

Fix k0 > 1 and for h � k0, define '(h) = |Ah|. Then ' is decreasing and for
all r > h,

'(r) 
C

(r � h)2⇤
('(h))2

⇤/2.

Since
2⇤

2
> 1, by the classical Stampacchia’s lemma (see Lemma 4.1 in [80]),

there exists d > 0 such that

'(k0 + d) = |Ak0+d| = 0,

where d depends on C and k0. This gives us the desired result, with

k�λ
i kL1(Yi)  k0 + d.
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Chapter 5

Homogenization results for

quasilinear elliptic problems in a

two-component domain with L1

data

5.1 Introduction

The main goal of this chapter is to study the homogenization of a class of
quasilinear elliptic problems in a two-component domain with L1 data and
a matrix field not necessarily bounded with respect to the solution.

To describe the domain, we first introduce the reference cell Y , which has
two components Y1 and Y2, with Y2 ⇢ Y and Y1 = Y \ Y2, and the interface
between them denoted by Γ. The two-component domain, denoted Ω, can be
written as the union Ω

ε
1 [Ω

ε
2 [ Γ

ε, where Ω
ε
2 is a disjoint union of "-periodic

translated sets "Y2 with Ωε
2 ⇢ Ω, Ωε

1 = Ω\Ωε
2, and Γ

ε is the interface between
Ω

ε
1 and Ω

ε
2.

We prescribe a Dirichlet boundary condition on @Ω, while on Γ
ε we as-

sume that the flux is continuous and proportional to the jump of the solution,
with a proportionality function of order "�1. This models an imperfect con-
tact between the two components Ωε

1 and Ω
ε
2 (see [26] for the justification of

this model).



To be more precise, the elliptic problem has the following form:
8
>>>>>>><
>>>>>>>:

� div
⇣
A
⇣x
"
, uε
⌘
ruε

⌘
= f in Ω

ε
1 [ Ω

ε
2,

h
A
⇣x
"
, uε
⌘
ruε

i
· ⌫ε = 0 on Γ

ε,
⇣
A
⇣x
"
, uε
⌘
ruε

⌘
⌫ε = �"�1hε(x)[uε] on Γ

ε,

uε = 0 on @Ω,

(5.1)

where ⌫ε is the unit outward normal to Ω
ε
1, [·] denotes the jump on Γ

ε, and
f 2 L1(Ω). Moreover, we do not prescribe a restricted growth assumption
on the matrix field A(y, t) with respect to t (see assumption (A3.2) in the
next section).

In general, in the study of homogenization of (5.1), the proportionality
assumption on Γ

ε depends on "γ (instead of "�1), where �  1. The ho-
mogenization then has 3 cases: � 2 (�1, 1], � = �1, and � 2 (�1,�1).
The major difference between these cases is the corresponding cell problem.
In this chapter, we consider the case � = �1, which has the particularity
that also the cell problem presents a jump on the reference interface. The
remaining cases will be studied in a forthcoming paper.

We consider a quasilinear term since for several composite materials, the
thermal conductivity depends, nonlinearly, on the temperature itself. Some
of the dependence are monotone, for example, glass or wood, the conductivity
of which nonlinearly increases with the temperature, while for ceramics, the
dependence is decreasing. There are also cases where the dependence is not
monotone, for instance, aluminium or semi-conductors (see [9, 15] for more
details).

On the other hand, taking an L1 data is motivated by thermo-dynamics.
A thermoviscoelasticity model that considers the nonlinear mechanical dissi-
pation (which depends on the square of the gradient of the displacement), by
the methods in [57, 81] gives a balance energy equation, where the right-hand
side is expected to be in L1.

Since we are considering an L1 data, we cannot work in a variational
setting. Hence, we choose the appropriate framework of renormalized so-
lution for our problem, which provides existence, stability and, with some
additional assumptions, uniqueness results.

The notion of renormalized solution was first introduced by R. J. DiPerna
and P. L. Lions in [39] for first order equations. It was then further developed
for elliptic equations with L1 data by F. Murat in [71] and by P. L. Lions
and F. Murat in [63], and for elliptic equations with measure data by G. Dal
Maso et al. in [36].
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The existence of a renormalized solution to (5.1) for fixed " is proved in
[54], while the uniqueness has been studied in [53], where an additional local
Lipschitz continuity assumption must be prescribed on the matrix field A.

As mentioned above, we study in this chapter the homogenization of
(5.1). Homogenization theory deals with the study of the macroscopic be-
haviour of composite materials. Composite materials are composed of two or
more finely mixed components and their main physical characteristics (e.g.
thermal or electric conductivity) can be modelled by problems with oscillat-
ing coefficients, describing the heterogeneities at the micro-scale. Then, the
mathematical homogenization theory allows to give a macroscopic descrip-
tion of these materials, considered as homogeneous, at the macro-scale.

There are various literatures concerning the homogenization theory, as
there is a wide interest on the subject. One can refer to the following ref-
erences: [11, 33, 34, 83]. It is worth mentioning that the first results on
homogenization was by Spagnolo in [79].

There are several methods developed for homogenization. Some of which
are the multiple-scale method introduced by Bensoussan et al. in [11] (one
can also see [77]), the oscillating test function method developed by Tartar
in [83], and the two-scale convergence method first studied by Nguetseng in
[72] which is further developed by Allaire in [1].

The most recently developed method, which is what we use in this chap-
ter, is the periodic unfolding method. This method was introduced by D.
Cioranescu et al. in [30] and further developed in [31] for the study of peri-
odic homogenization in classical domains (that is, with no holes or interfacial
resistance). It was then later developed for perforated domains in [29] and
for two-component domains in [46]. For a detailed and comprehensive pre-
sentation of the method with several applications we refer to the recent book
[32].

The periodic unfolding method for two-component domains makes use
of the unfolding operator T ε

i , i = 1, 2, which is defined on any measurable
functions in Ω

ε
i (see Definition 5.8 for more details). This operator has some

interesting properties that can be used in homogenization, one of which is
that it allows us to transform an integral in Ω

ε
i to an integral on the fixed

domain Ω⇥ Yi.
Moreover, when the data f in (5.1) belongs to L2(Ω) and A(y, t) is

bounded, we can obtain some a priori estimates on the restriction of the so-
lution uε to each component Ω

ε
i , which we denote by uε

i = uε|Ωε

i
, in H1(Ωε

i ),
i = 1, 2 (see [7]).
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Using the results in [46], these estimates lead to the following conver-
gences:

8
<
:
T

ε

i (u
ε
i ) �! u1 strongly in L2(Ω, H1(Yi)), i = 1, 2

T
ε

i (ruε
i )* ru1 +rybui weakly in L2(Ω⇥ Yi), i = 1, 2,

(5.2)

for some u1 2 H1
0 (Ω) and bui 2 L2(Ω, H1(Yi)), i = 1, 2.

These convergences allow us to identify first the unfolded limit problem
(Theorem 5.22), satisfied by (u1, bu1, bu2). This is the most delicate proof,
which is long and quite labourous. Then we obtain, by standard computa-
tions, the homogenized problem in Ω, satisfied by u1 (Theorem 5.25). Never-
theless, the proof of the decay of the “truncated” energy (see (5.111)), which
proves that u1 is a renormalized solution, is not standard and also delicate.

In literature, the homogenization results for (5.1) (with f 2 L2(Ω)) have
been studied by different methods. The linear case was studied in [68, 69]
using the oscillating test function method, and in [46, 45] using the periodic
unfolding method. Some results in the quasilinear case are contained in [21],
with the use the periodic unfolding method.

So far, we have only referenced literatures that dealt with homogenization
in the variational setting, that is, when the data belongs to L2(Ω) and the
matrix field A(y, t) is globally bounded. There are various works in homoge-
nization in the framework of renormalized solution, one can see for instance
[8, 22, 70]. More recent works are [56, 43]. The authors in [56] worked
on the homogenization of a linear elliptic problem with Neumann boundary
conditions, highly oscillating boundary, and L1 data.

On the other hand, with the use of periodic unfolding method, the authors
in [43] studied the asymptotic behaviour of a quasilinear elliptic problem in
perforated domains with nonlinear Robin boundary condition and L1 data.
To our knowledge, [43] is the first study to mix the periodic unfolding method
and the notion of renormalized solution, we adopt a similar approach in this
chapter.

Let us recall that for a fixed ", the solutions uε
i , i = 1, 2, does not necessar-

ily belong to H1(Ωε
i ), due to the fact that the data f is an L1 function. This

means that we cannot have the usual convergences as in (5.2). We instead
consider the truncates of uε

i , i = 1, 2, where the truncation function is defined
as Tk(r) = min(k,max(�k, r)), for any k > 0. This is possible since, in the
framework of renormalized solution, the truncated of the solution for any
k > 0 is an H1 function. Thus, in place of (5.2), combining the techniques of
the framework of renormalized solutions and that of the periodic unfolding
method (in particular, the compactness results), we show that there exist a
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function u1 : Ω �! R and a sequence {bun
i }n2N ⇢ L2(Ω, H1(Yi)), i = 1, 2,

such that for any n 2 N, i = 1, 2,

8
>><
>>:

Tn(u1) 2 H1
0 (Ω)

T
ε

i (Tn(u
ε
i )) �! Tn(u1) strongly in L2(Ω, H1(Yi)), i = 1, 2,

T
ε

i (rTn(u
ε
i ))* rTn(u1) +rybun

i weakly in L2(Ω⇥ Yi), i = 1, 2.

Even if we are using the process developed in [43], important additional
differences and difficulties arise here, due to the presence of the jump. We use
the definition of a renormalized solution adapted to our problem, introduced
in [53], and which contains an additional condition on the interface integral.
In particular, Theorem 5.18 has a more delicate proof in our case compared to
the corresponding theorem in [43], since the second component bun

2 , for n 2 N,
does not necessarily have a zero average on Γ. Furthermore, throughout this
study, it can be observed that managing the boundary integral resulting from
the jump is not a straightforward task and must be handled with care.

This chapter is organized as follows. The next section is dedicated to
all the preliminary definitions and assumptions that we need. In particular,
we define there the renormalized solution of (5.1) (Definition 5.6) and the
periodic unfolding operator T ε

i , i = 1, 2 (Definition 5.8). We also present the
properties of T ε

i , i = 1, 2 (see Proposition 5.10).
In Section 5.3, we obtain some a priori estimates for the renormalized

solution of (5.1). We also prove some pointwise convergence of T ε

i (u
ε
i ) on

Ω⇥ Yi, i = 1, 2 and on Ω⇥ Γ (see Theorem 5.17).
Section 5.4 is devoted to the statement and proof of the main homoge-

nization results. In particular, we identify the unfolded problem in Theorem
5.22 and the homogenized problem on Ω in Theorem 5.25.

5.2 Preliminaries and Position of the Problem

In this section, we present some definitions and the assumptions relevant to
our problem. We also discuss here the unfolding operator that will be used
in the homogenization results, as well as its important properties.

We first define our two-component domain. Let Ω be a connected open
bounded subset of RN with a Lipschitz continuous boundary @Ω. We then
define the reference cell Y as

Y =
NY

j=1

[0, lj),
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The main goal of this research is to study the homogenization of the
following quasilinear problem in the two-component domain described above:

8
>>>>>><
>>>>>>:

� div(Aε(x, uε
1)ruε

1) = f in Ω
ε
1,

� div(Aε(x, uε
2)ruε

2) = f in Ω
ε
2,

uε = 0 on @Ω,

(Aε(x, uε
1)ruε

1)⌫
ε
1 = (Aε(x, uε

2)ruε
2)⌫

ε
1 on Γ

ε,

(Aε(x, uε
1)ruε

1)⌫
ε
1 = �"�1hε(x)(uε

1 � uε
2) on Γ

ε,

(5.3)

with a L1 data and a not globally bounded matrix field.

More precisely, we prescribe the following assumptions:

(A1) f 2 L1(Ω);

(A2) h is a Y�periodic function in L1(Γ) and there exists h0 2 R such that
0 < h0 < h(y) a.e. on Γ, and set

hε(x) = h
⇣x
"

⌘
a.e. on Γ

ε;

(A3) A : (y, t) 2 Y ⇥ R 7! A(y, t) 2 R
N⇥N is a real matrix field such that

A(·, t) = {aij}i,j=1,...,N is Y�periodic for every t, A is a Carathéodory
function with the following properties:

(A3.1) A(y, t)⇠ · ⇠ � ↵|⇠|2, a.e. y 2 Y, 8t 2 R, 8⇠ 2 R
N ;

(A3.2) A(y, t) 2 L1(Ω⇥ (�k, k))N⇥N , 8k > 0,

and set
Aε(x, t) = A

⇣x
"
, t
⌘
,

for every (x, t) 2 Ω⇥ R.

We also introduce the following assumption, which is important in showing
uniqueness results.

(A4) The matrix field A(y, t) is locally Lipschitz continuous with respect to
the second variable, that is, for every r > 0, there exists a positive
constant Mr such that

|A(y, s)� A(y, t)| < Mr|s� t|, 8s, t 2 [�r, r], 8y 2 Y.
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In the sequel, we use the following notations:

• ✓i =
|Yi|

|Y |
, i = 1, 2;

• eui is the zero extension to the whole Ω of a function ui defined on Ω
ε
i ,

for i = 1, 2;

• ui = u
��
Ωε

i
is the restriction to Ω

ε
i , i = 1, 2, of a function u defined in Ω;

• ⌫εi is the unit outward normal to Ω
ε
i for i = 1, 2;

• �ω is the characteristic function of a set !;

• Mω(f) :=
1

|!|

Z

ω

f dx, for any open set ! and for any f 2 L1(!).

We now define the Sobolev space that we will be working with, adapted
to the fact that we are dealing with a jump on the interface.

Definition 5.1. The functional space Hε is defined by

Hε := {u = (u1, u2) : u1 2 V ε and u2 2 H1(Ωε
2)}, (5.4)

equipped with the norm

kuk2Hε := kru1k
2
L2(Ωε

1)
+ kru2k

2
L2(Ωε

2)
+ "�1ku1 � u2k

2
L2(Γε), (5.5)

where V ε = {u 2 H1(Ωε
1) : u = 0 on @Ω} is endowed with the norm

kukV ε := krukL2(Ωε

1)
. (5.6)

Remark 5.2. The norm (5.6) is equivalent to that of H1(Ωε
1), with constants

independent of " (see [68] for details).

We have the following proposition on the equivalence of the norms of
V ε ⇥H1(Ωε

2) and Hε, which is proved in [44].

Proposition 5.3 ([44]). The norm (5.5) is equivalent to that of V ε⇥H1(Ωε
2),

that is, there are positive constants c1 and c2 (independent of ") such that for
any u = (u1, u2) 2 Hε,

c1kuk
2
V ε⇥H1(Ωε

2)
 kuk2Hε  c2(1 + "�2)kuk2V ε⇥H1(Ωε

2)
. (5.7)

We also have the following lemma from [68]:
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Lemma 5.4 ([68]). There exists a constant C > 0, independent of ", such
that

kvik
2
L2(Γε)  C("�1kvik

2
L2(Ωε

i )
+ "krvik

2
L2(Ωε

i )
),

for every vi 2 H1(Ωε
i ), i = 1, 2.

Note that the above assumptions for problem (5.3) give rise to two main
difficulties: the data f belongs to L1(Ω), and assumption (A3.2) on A only
supposes local boundedness with respect to t. This means that a solution of
(5.3) in the weak sense may not exist (even in the presence of only one of
the two difficulties). Hence, we need to introduce a framework that provides
existence and uniqueness of a solution of (5.3). Remark that, if so, a solution
uε may not have enough regularity in order to have a gradient and a trace
in the usual sense of Sobolev spaces. In the following proposition, which is
proved in [54], we give a definition of gradient and trace of any measurable
function u, using the truncation function Tk, defined by

Tk(t) =

8
><
>:

�k, if t  k

t, if � k  t  k

k, if t � k.

(5.8)

Proposition 5.5 ([54]). Let u = (u1, u2) : Ω \ Γ
ε �! R be a measurable

function such that Tk(u) 2 Hε for every k > 0. Then

1. there exists a unique measurable function vi : Ω
ε
i �! R

N such that for
all k > 0,

rTk(ui) = vi�{|ui|<k} a.e. in Ω
ε
i , i = 1, 2. (5.9)

We define vi as the gradient of ui and write vi = rui.

2. If

sup
k�1

1

k
kTk(u)k

2
Hε < 1, (5.10)

there exists a unique measurable function wi : Γ
ε �! R, for i = 1, 2,

such that for all k > 0,

�i(Tk(ui)) = Tk(wi) a.e. on Γ
ε, i = 1, 2, (5.11)

where �i : H
1(Ωε

i ) �! L2(Γε) is the trace operator. For i = 1, 2, we
define the function wi as the trace of ui on Γ

ε and set

�i(ui) = wi.
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With this proposition, we are now in the position to define a renormalized
solution of (5.3).

Definition 5.6. The function uε = (uε
1, u

ε
2) is a renormalized solution of

(5.3) if

Tk(u
ε) 2 Hε, 8k > 0; (5.12a)

(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) 2 L1(Γε), 8k > 0; (5.12b)

lim
k!1

1

k

Z

{|uε|<k}

Aε(x, uε)ruε ·ruε dx = 0; (5.13a)

lim
k!1

1

k

Z

Γε

(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d� = 0; (5.13b)

and for any  2 C1(R) (or equivalently for any  2 W 1,1(R)) with compact
support, uε satisfies

2X

i=1

Z

Ωε

i

 (uε
i )A

ε(x, uε
i )ruε

i ·rvi dx+
2X

i=1

Z

Ωε

i

 0(uε
i )A

ε(x, uε
i )ruε

i ·ruε
i vi dx

+ "�1

Z

Γε

hε(x)(uε
1 � uε

2)(v1 (u
ε
1)� v2 (u

ε
2)) d� =

Z

Ω

fv (uε) dx, (5.14)

for all v = (v1, v2) 2 Hε \ (L1(Ωε
1)⇥ L1(Ωε

2)).

Remark 5.7.

1. In the renormalized formulation presented in [54], convergences (5.13a)-
(5.13b) are stated for k 2 N, which reads

lim
n!1

1

n

Z

{|uε|<n}

Aε(x, uε)ruε ·ruε dx = 0; (5.15a)

lim
n!1

1

n

Z

Γε

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d� = 0. (5.15b)

Actually, convergences (5.13a)-(5.13b) can be deduced from conver-
gences (5.15a)-(5.15b). Indeed it is sufficient to observe that if n 
k < n+ 1 then the ellipticity condition (A3.1) gives

0 
1

k

Z

{|uε|<k}

Aε(x, uε)ruε ·ruε dx 
1

n

Z

{|uε|<n+1}

Aε(x, uε)ruε ·ruε dx,
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while properties of Tk imply

0 
1

k

Z

Γε

(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d�

=
1

k

Z

Γε

(uε
1 � uε

2)(Tk(Tn+1(u
ε
1))� Tk(Tn+1(u

ε
2))) d�


1

n

Z

Γε

(uε
1 � uε

2)(Tn+1(u
ε
1)� Tn+1(u

ε
2)) d�.

2. Let us mention that the definition in [54] involves two different C1(R)
functions,  1, 2, for the two components Ω

ε
1 and Ω

ε
2 as opposed to the

one function  for both as in (5.14). We use here the latter option for
simplicity, as there is no difference in the proofs whichever renormalized
formulation we use.

3. If we have assumptions (A1)-(A3), then the existence (as well as sta-
bility) of a renormalized solution of (5.3) in the sense of the previ-
ous definition is assured by [54]. If, in addition, (A4) holds, then the
uniqueness of the renormalized solution is proved in [53].

For the homogenization process, we will use the periodic unfolding op-
erator, which was introduced in [31] (for classical domains) and [29] (for
perforated domains), and extended to the case of two-component domains in
[46] and [45] (see also the recent book [32]).

For a.e. z 2 R
N , we denote by [z]Y the integer part of z, i.e., [z]Y =

(k1l1, k2l2, . . . , kN lN), for some ki 2 Z, i = 1, . . . , N such that z � [z]Y 2 Y .
We now define the periodic unfolding operator adapted to the two-component

domain.

Definition 5.8. For i = 1, 2, and for any function 'i Lebesgue measurable
on Ω

ε
i , the periodic unfolding operator T

ε

i is defined by

T
ε

i ('i)(x, y) =

(
'i

⇣
"
hx
"

i
Y
+ "y

⌘
a.e. (x, y) 2 bΩε ⇥ Yi

0 a.e. (x, y) 2 Λε ⇥ Yi.

Remark 5.9. In the sequel, if ' 2 H1(Ωε
i ), i = 1, 2, the trace of T

ε

i (') on
Ω⇥ Γ (sometimes denoted T

ε

b (') in the literature) is still denoted by T
ε

i ('),
for i = 1, 2.

We now present the following result from [46], completed in [45], which
states some very helpful properties of the unfolding operator for two-component
domains.
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Proposition 5.10 ([45, 46]). For p 2 [1,1), the operators T
ε

i , i = 1, 2 are
linear and continuous from Lp(Ωε

i ) to Lp(Ω⇥ Y ). Moreover, for i = 1, 2,

(P1) T
ε

i (' ) = T
ε

i (')T
ε

i ( ), for every ', Lebesgue measurable on Ω
ε
i .

(P2) For every ' 2 L1(Ωε
i ), one has

1

|Y |

Z

Ω⇥Yi

T
ε

i (')(x, y) dx dy =

Z

bΩε

i

'(x) dx =

Z

Ωε

i

'(x) dx�

Z

Λε

i

'(x) dx.

(P3) For every ' 2 Lp(Ωε
i ),

kT
ε

i (')kLp(Ω⇥Yi)  |Y |1/pk'kLp(Ωε

i )
.

(P4) For ' 2 Lp(Ω),

T
ε

i (') �! ' strongly in Lp(Ω⇥ Yi).

(P5) Let {'ε} be a sequence in Lp(Ω) such that 'ε �! ' strongly in Lp(Ω).
Then

T
ε

i ('ε) �! ' strongly in Lp(Ω⇥ Yi).

(P6) Let ' 2 Lp(Yi) be a Y�periodic function and set 'ε(x) = '
⇣x
"

⌘
. Then

T
ε

i ('
ε) �! ' strongly in Lp(Ω⇥ Yi).

(P7) Let 'ε 2 Lp(Ωε
i ) satisfy k'εkLp(Ωε

i )
 C. If T

ε

i ('ε) * b' weakly in
Lp(Ω⇥ Yi), then

e'ε * ✓iMYi
(b') weakly in Lp(Ω).

(P8) For any ' 2 W 1,p(Ωε
i ), one has

ry[T
ε

i (')] = "T
ε

i (r') and T
ε

i (') 2 L2(Ω,W 1,p(Yi)).

(P9) If ' 2 Lp(Γε), then

kT
ε

i (')kLp(Ω⇥Γ)  |Y |1/p"1/pk'kLp(Γε).

The following result is crucial for the sequel. It follows from [46] and [45],
using the notations given in Remark 4.4 of [45] for � = �1.
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Proposition 5.11 ([46, 45]). Let vε = (vε1, v
ε
2) be a bounded sequence in Hε.

Then there exist a subsequence (still denoted by "), and three functions v1 2
H1

0 (Ω), bv1 2 L2(Ω, H1
per(Y1)) with MΓ(bv1) = 0 a.e. in Ω, bv2 2 L2(Ω, H1(Y2))

such that as "! 0,

(
T

ε

i (v
ε
i ) �! v1 strongly in L2(Ω, H1(Yi)), i = 1, 2,

T
ε

i (rvεi )* rv1 +rybvi weakly in L2(Ω⇥ Yi), i = 1, 2.

Furthermore,

T
ε

1 (v
ε
1)� T

ε

2 (v
ε
2)

"
* bv1 � bv2 weakly in L2(Ω⇥ Γ), as "! 0.

5.3 A priori estimates

We now prove some results that we will use when proving the homogenization
results.

Proposition 5.12. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3).

Then there exists a positive constant C such that for every k > 0 and " > 0,

kTk(u
ε)k2Hε  Ck, (5.16)

where C is independent of " and k.

Proof. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3). Fix k > 0. For

n > 0, define the function Sn : R �! R by

Sn(s) =

8
>>>>>>>>><
>>>>>>>>>:

0 if s  �2n,

s

n
+ 2 if � 2n  s  �n,

1 if � n  s  n,

�
s

n
+ 2 if n  s  2n,

0, if s � 2n.

(5.17)

Let n > 0. Choosing  = Sn and v = Tk(u
ε) as test function in (5.14) of
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Definition 5.6, we obtain

2X

i=1

Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )ruε

irTk(u
ε
i ) dx

+
2X

i=1

Z

Ωε

i

S 0
n(u

ε
i )A

ε(x, uε
i )ruε

iruε
iTk(u

ε
i ) dx

+ "�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)Tk(u

ε
1)� Sn(u

ε
2)Tk(u

ε
2)) d�

=

Z

Ω

fSn(u
ε)Tk(u

ε) dx.

(5.18)

For i = 1, 2, note that
Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )ruε

irTk(u
ε
i ) dx

=

Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )rTk(u

ε
i )rTk(u

ε
i ) dx.

(5.19)

On the other hand, since

|S 0
n| 

1

n
, for any n > 0, (5.20)

|Tk|  k, for any k > 0, (5.21)

by (5.13a) of Definition 5.6,

���
Z

Ωε

i

S 0
n(u

ε
i )A

ε(x, uε
i )ruε

iruε
iTk(u

ε
i ) dx

���

 2k ·
1

2n

Z

{|uε

i |2n}

Aε(x, uε
i )ruε

iruε
i dx = k⇢i(n), i = 1, 2,

(5.22)

where
lim
n!1

⇢i(n) = 0, i = 1, 2. (5.23)

Moreover, since we have (5.21) and

|Sn|  1, for any n > 0, (5.24)

we obtain ����
Z

Ω

fSn(u
ε)Tk(u

ε) dx

����  kkfkL1(Ω). (5.25)

156



Combining (5.18), (5.19), (5.22), and (5.25), we deduce that

2X

i=1

Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )rTk(u

ε
i )rTk(u

ε
i ) dx

+ "�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)Tk(u

ε
1)� Sn(u

ε
2)Tk(u

ε
2)) d�

 k(⇢1(n) + ⇢2(n) + kfkL1(Ω)).

(5.26)

We wish to pass to the limit as n approaches 1 on both sides of (5.26).
The right-hand side goes to kkfkL1(Ω). For the first integral of (5.26), since
for i = 1, 2 and n > k we have Sn(u

ε
i )rTk(u

ε
i ) = rTk(u

ε
i ) stt a.e. in Ω, we

obtain
Z

Ωε

i

Aε(x, uε
i )rTk(u

ε
i )rTk(u

ε
i ) dx

= lim
n!1

Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )rTk(u

ε
i )rTk(u

ε
i ) dx, i = 1, 2.

(5.27)

To pass to the limit of the integral on the boundary of (5.26), we write

lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)Tk(u

ε
1)� Sn(u

ε
2)Tk(u

ε
2)) d�

= lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)Sn(u
ε
1)(Tk(u

ε
1)� Tk(u

ε
2)) d�

+ lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)� Sn(u

ε
2))Tk(u

ε
2) d�.

(5.28)

From (5.24) and (5.12b) of Definition 5.6, we have

|hε(x)(uε
1 � uε

2)Sn(u
ε
1)(Tk(u

ε
1)� Tk(u

ε
2))|

 khkL1(Γ)(u
ε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) 2 L1(Γε).

Moreover,

Sn(u
ε
i ) �! 1 a.e. on Γ

ε as n �! 1, i = 1, 2. (5.29)

Then, by Lebesgue Dominated Convergence Theorem, we obtain

lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)Sn(u
ε
1)(Tk(u

ε
1)� Tk(u

ε
2)) d�

= "�1

Z

Γε

hε(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d�.

(5.30)
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In addition, since Sn is Lipschitz continuous with (5.20), we have

|Sn(u
ε
1)� Sn(u

ε
2)| = |Sn(T2n(u

ε
1))� Sn(T2n(u

ε
2))| 

1

n
|T2n(u

ε
1)� T2n(u

ε
2)|,

(5.31)
a.e. on Γ

ε. Consequently, by (5.21),
���"�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)� Sn(u

ε
2))Tk(u

ε
2) d�

���


khkL1(Γ)k"

�1

n

Z

Γε

(uε
1 � uε

2)(T2n(u
ε
1)� T2n(u

ε
2)) d�,

where the integral on the right-hand side goes to zero as n approaches 1 by
(5.13b) of Definition 5.6. As a result,

lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)� Sn(u

ε
2))Tk(u

ε
2) d� = 0. (5.32)

Combining (5.28), (5.30), and (5.32), we conclude that

lim
n!1

"�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)Tk(u

ε
1)� Sn(u

ε
2)Tk(u

ε
2)) d�

="�1

Z

Γε

hε(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d�.

(5.33)

Consequently, using (5.23), (5.27), and (5.33), we can pass to the limit in
(5.26). We obtain

Z

Ωε

1

Aε(x, uε
1)rTk(u

ε
1)rTk(u

ε
1) dx+

Z

Ωε

2

Aε(x, uε
2)rTk(u

ε
2)rTk(u

ε
2) dx

+ "�1

Z

Γε

hε(x)(uε
1 � uε

2)(Tk(u
ε
1)� Tk(u

ε
2)) d�  C1k,

where C1 is independent of " and k.
Now, observe that for any functions f, g defined on Γ

ε, we have

(f � g)(Tk(f)� Tk(g)) � (Tk(f)� Tk(g))
2, 8k > 0, (5.34)

since Tk is an increasing Lipschitz continuous function with Lipschitz con-
stant 1.

By the ellipticity of A, assumption on h, and (5.34) (written for f = uε
1

and g = uε
2), we have

C2kTk(u
ε)k2Hε  ↵

Z

Ωε

1

|rTk(u
ε
1)|

2 dx+ ↵

Z

Ωε

2

|rTk(u
ε
2)|

2 dx

+ "�1h0

Z

Γε

(Tk(u
ε
1)� Tk(u

ε
2))

2 d�  C1k,
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for some positive constants C1, C2 independent of " and k, which gives the
desired estimate.

Proposition 5.13. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3).

Then, for any k > 0,

kTk(u
ε
i )k

2
L2(Ωε

i )
 C1k, i = 1, 2, (5.35)

for some positive constant C1 independent of k and ".
Moreover, for " < 1, we have for any k > 0

kTk(u
ε
i )k

2
L2(Γε)  C2k"

�1, i = 1, 2, (5.36)

where C2 is a positive constant independent of k and ".

Proof. To prove (5.35), we use the first inequality in (5.7), Remark 5.2, and
Proposition 5.12. We then obtain for i = 1, 2,

kTk(u
ε
i )k

2
L2(Ωε

i )
 C1kTk(u

ε
i )k

2
H1(Ωε

i )
 C1kTk(u

ε
i )k

2
Hε  C1k,

where C1 is a positive constant independent of k and ".
To prove (5.36), when " < 1 (and hence " < "�1), we have from Lemma

5.4 (taking vi = Tk(u
ε
i ), i = 1, 2),

kTk(ui)k
2
L2(Γε)  C"�1kTk(ui)k

2
H1(Ωε

i )
, i = 1, 2.

Arguing as in the proof of (2.21), we obtain (5.36).

Corollary 5.14. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3). We

can find a subsequence (still denoted by ") such that for any n 2 N, there
exist un

1 2 H1
0 (Ω), bun

1 2 L2(Ω, H1
per(Y1)) with MΓ(bun

1 ) = 0 a.e. in x 2 Ω,
and bun

2 2 L2(Ω, H1(Y2)) such that the following convergences hold:

8
>><
>>:

T
ε

i (Tn(u
ε
i )) �! un

1 strongly in L2(Ω, H1(Yi)), i = 1, 2,

T
ε

i (rTn(u
ε
i ))* run

1 +rybun
i weakly in L2(Ω⇥ Yi), i = 1, 2,

T̂n(uε
i )* ✓iu

n
1 weakly in L2(Ω), i = 1, 2,

(5.37)
as " goes to 0.

Furthermore, for any n 2 N, as " tends to 0,

T
ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"
* bun

1 � bun
2 weakly in L2(Ω⇥ Γ). (5.38)
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Proof. By Proposition 5.12, for any k > 0, the sequence

{Tk(u
ε)} = {(Tk(u

ε
1), Tk(u

ε
2))}

is bounded in Hε. Choosing k = n with n 2 N, the first two convergences in
(5.37) and convergence (5.38) follow from Proposition 5.11 and a standard
diagonal process. To show the third one, we use the first one, estimate (2.21)
of Proposition 5.13 and (P7) of Proposition 5.10. We obtain

T̂n(uε
i )* ✓iMYi

(un
1 ) weakly in L2(Ω), i = 1, 2.

Since un
1 is independent of y, we have the desired result.

Remark 5.15. The diagonal process used in the proof of Corollary 5.14
requires that k belongs to some countable set which tends to +1. For sim-
plicity, we take k 2 N.

Remark 5.16. Let f be a function defined on Ω. Since by definition, T
ε

i

vanishes in Λ
ε ⇥ Yi, the identity

T ε
i (f(u

ε
i )) = f(T

ε

i (u
ε
i )), i = 1, 2, (5.39)

does not hold in Ω ⇥ Yi, unless f(0) = 0 (see also Remark 3.3 of [43]).
However, for any Lebesgue measurable function ', we have

T
ε

i (f(u
ε
i ))T

ε

i ('(x)) = f(T
ε

i (u
ε
i ))T

ε

i ('(x)), i = 1, 2 (5.40)

in Ω⇥ Yi even if f(0) 6= 0, since T
ε

i (')(x, y) = 0 in Λ
ε ⇥ Yi.

The following result, stating a pointwise convergence of T ε

i (u
ε
i ), i = 1, 2,

is an important tool for the identification of the homogenized problem in Ω.

Theorem 5.17. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3). Then

there exists a measurable function u1 : Ω �! R, finite almost everywhere,
such that (up to a subsequence)

T
ε

i (u
ε
i ) �! u1 a.e. in Ω⇥ Yi and on Ω⇥ Γ, i = 1, 2, (5.41)

with
Tn(u1) = un

1 , 8n 2 N, (5.42)

where un
1 is given in Corollary 5.14, and

T
ε

i (A
ε(x, Tn(u

ε
i ))) �! A(y, Tn(u1)) a.e. in Ω⇥ Yi, i = 1, 2. (5.43)
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Proof. Let n 2 N. Note that (5.39) holds true, since Tn(0) = 0. Then, from
Corollary 5.14, we have as " tends to 0,

Tn(T
ε

i (u
ε
i )) �! un

1 strongly in L2(Ω, H1(Yi)), i = 1, 2. (5.44)

In addition, from the trace theorem,

kT
ε

i (Tn(u
ε
i ))� un

1k
2
L2(Ω⇥Γ) =

Z

Ω

kT
ε

i (Tn(u
ε
i ))� un

1k
2
L2(Γ) dx



Z

Ω

kT
ε

i (Tn(u
ε
i ))� un

1k
2
H1(Yi)

dx, i = 1, 2.

This last quantity goes to 0 in view of Corollary 5.14. It follows from (5.39)
that

Tn(T
ε

i (u
ε
i )) �! un

1 strongly in L2(Ω⇥ Γ), i = 1, 2. (5.45)

We now claim that T ε

i (u
ε
i ), i = 1, 2, is Cauchy in measure and hence, point-

wise convergent (up to a subsequence).
Let n > 0. By (P3) of Proposition 5.10 and (2.21) of Proposition 5.13,

we obtain for i = 1, 2,

n2meas{|T ε

i (u
ε
i )| � n} =

Z

{|T
ε

i (u
ε

i )|�n}

(Tn(T
ε

i (u
ε
i )))

2 dx dy



Z

Ω⇥Yi

(T
ε

i (Tn(u
ε
i )))

2 dx dy

 |Yi|kTn(u
ε
i )k

2
L2(Ωε

i )

 |Yi|Cn,

where C is a positive constant independent of n and ". Consequently,

meas{|T ε

i (u
ε
i )| � n} 

C

n
�! 0 as n �! 1, i = 1, 2. (5.46)

Since we have for ! > 0 and n 2 N,

meas{|T
ε0

i (u
ε0

i )� T
ε00

i (u
ε00

i )| � !}  meas{|T
ε0

i (u
ε0

i )| � n}

+meas{|T
ε00

i (u
ε00

i )| � n}

+meas{|Tk(T
ε0

i (u
ε0

i ))� Tk(T
ε00

i (u
ε00

i ))| � !},

using similar arguments to the ones in [54], (5.37) and (5.46) allow one to
show that {T

ε

i (u
ε
i )}, i = 1, 2, is Cauchy in measure. We can then find a

subsequence of {T ε

i (u
ε
i )}, i = 1, 2, which converges almost everywhere.
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Hence, there exists a subsequence (still denoted by ") and ui : Ω⇥Yi �!
R, such that

T
ε

i (u
ε
i ) �! ui a.e. in Ω⇥ Yi, i = 1, 2. (5.47)

Note that by (5.46), ui is finite a.e. for i = 1, 2.
To show a pointwise convergence on Ω⇥ Γ, let n > 0. Define

Bn
i,ε = {(x, y) 2 Ω⇥ Γ | |T

ε

i (u
ε
i )(x, y)| � n}, i = 1, 2.

Then by (5.39), (P9) of Proposition 5.10, and (5.36) of Proposition 5.13, we
have for " small enough, and i = 1, 2,

n2meas(Bn
i,ε) =

Z

Bn
i,ε

(Tn(T
ε

i (u
ε
i )))

2 dx d�



Z

Ω⇥Γ

(T
ε

i (Tn(u
ε
i )))

2 dx d�

 "|Y |kTn(u
ε
i )k

2
L2(Γε)

 "|Y |(Cn"�1)

 Cn|Y |,

where C > 0, independent of n and ".
Then, using similar arguments as above, we have by a trace argument

(up to a subsequence)

T
ε

i (u
ε
i ) �! ui a.e. on Ω⇥ Γ, i = 1, 2.

Let us prove now (5.42). The continuity of Tn, (5.44), and (5.47) imply

Tn(ui) = un
1 , a.e. in Ω⇥ Yi 8n 2 N, i = 1, 2. (5.48)

Since un
1 is independent of y for any n > 0, it follows that for i = 1, 2, ui

is independent of y. Moreover, (5.48) also implies that Tn(u1) = Tn(u2) for
every n 2 N, and thus, u1 = u2 a.e. in Ω.

To end the proof, observe that convergence (5.43) can be proved as that
given in Proposition 5.1 of [23] for perforated domains.

The following theorem, essential for the homogenization procedure done
in the next section, makes use of some ideas of Proposition 5.3 of [43]. Here,
the situation is more delicate due to the presence of the second component
and the jump on the boundary (see Remark 5.19).
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Theorem 5.18. Let bun
1 2 L2(Ω, H1

per(Y1)) and bun
2 2 L2(Ω, H1(Y2)), n 2 N,

be the functions given by Corollary 5.14 with MΓ(bun
1 ) = 0. Then there exists

a unique measurable function

bui : Ω⇥ Yi �! R, i = 1, 2,

such that for every R 2 C0(R) with compact support, verifying

suppR ⇢ [�m,m], for some m 2 N, (5.49)

we have

R(u1)bun
i = R(u1)bui a.e. in Ω⇥ Yi, (5.50)

for all n � m, where u1 is the function given by Theorem 5.17.

Moreover, we have

bui(x, ·) 2 H1(Yi), i = 1, 2, with MΓ(bu1) = 0, for a.e. x 2 Ω. (5.51)

Proof. The uniqueness of bui, for i = 1, 2, is in the almost everywhere sense.
We first prove (5.50). Let R 2 C0(R) with compact support verifying

(5.49) and n � m.
By (P1) of Proposition 5.10, Remark 5.16 Corollary 5.14, and using The-

orem 5.17 together with the Lebesgue dominated convergence theorem, we
obtain for i = 1, 2,

T
ε

i (R(uε
i )rTn(u

ε
i )) = R(T

ε

i (u
ε
i ))T

ε

i (rTn(u
ε
i ))* R(u1)(rTn(u1) +rybun

i ),

T
ε

i (R(uε
i )rTm(u

ε
i )) = R(T

ε

i (u
ε
i ))T

ε

i (rTm(u
ε
i ))* R(u1)(rTm(u1) +rybum

i ),

both weakly in L2(Ω⇥ Yi). Since suppR ⇢ [�m,m], then for any n � m,

R(uε
i )rTn(u

ε
i ) = R(uε

i )rTm(u
ε
i ), i = 1, 2,

R(u1)rTn(u1) = R(u1)rTm(u1),

and thus,

R(u1)rybun
i = R(u1)rybum

i , 8n � m, i = 1, 2.

Since R(u1) is independent of y, for some Φ
m,n
i (x) 2 L2(Ω) (independent of

y), i = 1, 2, we have

R(u1)bun
i �R(u1)bum

i = Φ
m,n
i (x), i = 1, 2, 8n � m. (5.52)
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From Remark 5.16, convergence (5.38) of Corollary 5.14, and Theorem 5.17,
using the boundedness of R, we have

T
ε

1 (R(uε
1))T

ε

2 (R(uε
2))

T
ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

= R(T
ε

1 (u
ε
1))R(T

ε

2 (u
ε
2))

T
ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

* R(u1)R(u1)(bun
1 � bun

2 ),

(5.53)

weakly in L2(Ω⇥ Γ). Similarly, we have

T
ε

1 (R(uε
1))T

ε

2 (R(uε
2))

T
ε

1 (Tm(u
ε
1))� T

ε

2 (Tm(u
ε
2))

"

* R(u1)R(u1)(bum
1 � bum

2 ),
(5.54)

weakly in L2(Ω⇥ Γ).
On the other hand, using (5.49), we obtain

R(uε
i )Tn(u

ε
i ) = R(uε

i )Tm(u
ε
i ), 8n � m, i = 1, 2,

which implies that

T
ε

1 (R(uε
1))T

ε

2 (R(uε
2))

T
ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

= T
ε

1 (R(uε
1))T

ε

2 (R(uε
2))

T
ε

1 (Tm(u
ε
1))� T

ε

2 (Tm(u
ε
2))

"
.

Hence, from convergences (5.53) and (5.54), we deduce that

[R(u1)]
2(bun

1 � bun
2 ) = [R(u1)]

2(bum
1 � bum

2 ) on Ω⇥ Γ, 8n � m,

or equivalently,

R(u1)(bun
1 � bun

2 ) = R(u1)(bum
1 � bum

2 ) on Ω⇥ Γ, 8n � m. (5.55)

Recall now that from Corollary 5.14,

MΓ(bum
1 ) = MΓ(bun

1 ) = 0, 8m,n > 0. (5.56)

Then, noting that R(u1) and Φ
m,n
1 are independent of y, taking the average

on Γ in both sides of (5.52) (for i = 1), we have

Φ
m,n
1 ⌘ 0.
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Similarly, from (5.56), taking the average on Γ in both sides of (5.55), we
have

R(u1)MΓ(bun
2 ) = R(u1)MΓ(bum

2 ), 8n � m,

which, using again (5.52) (now for i = 2), gives

Φ
m,n
2 ⌘ 0.

As a consequence, (5.52) becomes

R(u1)bun
i = R(u1)bum

i a.e. in Ω⇥ Yi, 8n � m, i = 1, 2.

Define the set Ωn = {x 2 Ω | |u1| < n}. The collection {Ωn}n2N is an
increasing sequence of subsets of Ω. Let {↵n}n2N be a sequence of functions
in C0(R) with compact support such that supp↵n ⇢ [�n, n] and ↵n > 0 for
all x 2 (�n, n).

Then, for any n2 � n1, we have

↵n1
(u1)bun1

i = ↵n1
(u1)bun2

i , i = 1, 2.

It follows that

bun1

i = bun2

i a.e. in Ωn1
⇥ Yi, i = 1, 2, 8n2 � n1.

Then, we can define the function bui : Ω⇥ Yi �! R for i = 1, 2, as

bui(x, y) = bun
i (x, y), 8(x, y) 2 Ωn ⇥ Yi, n 2 N. (5.57)

Since u1 is finite almost everywhere,

Ω =
[

n2N

Ωn (up to a zero measure set).

This proves (5.50). Finally, to show (5.51), note that from (5.57), we can de-
duce that for any R 2 W 1,1(R) with compact support, the product R(u1)bui

belongs to L2(Ω, H1(Yi)), for i = 1, 2, with R(u1)MΓ(bu1) = 0. Then, since
u1 is finite a.e., we have (5.51).

Remark 5.19. Let us point out that in the proof of the previous theorem,
the fact that Φ

m,n
1 ⌘ 0 in (5.52) follows from (5.56). However, in order to

prove that Φ
m,n
2 ⌘ 0 in (5.52) (which is essential in the proof of Theorem

5.18), we need additional and more delicate arguments since the average on
Γ of bun

2 , for n 2 N, is not necessarily zero.
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5.4 Homogenization Results

In this section, we will discuss our homogenization results. We begin by
proving the following proposition.

Proposition 5.20. Let uε = (uε
1, u

ε
2) be the subsequence of renormalized

solutions of (5.3) given by Corollary 5.14 and n 2 N. Then

lim
n!1

lim sup
ε!0

1

n

Z

{|uε

i |<n}

Aε(x, uε
i )ruε

iruε
i dx = 0, i = 1, 2 (5.58)

lim
n!1

lim sup
ε!0

"�1

n

Z

Γε

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d� = 0. (5.59)

Proof. Let m,n 2 N. Writing (5.14) of Definition 5.6 for

 = Sm and v =
1

n
Tn(u

ε),

where Sm is defined by (5.17), we have

Iε11 + Iε21 + Iε12 + Iε22 + Iε3 = Iε4 , (5.60)

where

Iεi1 =
1

n

Z

Ωε

i

Sm(u
ε
i )A

ε(x, uε
i )ruε

irTn(u
ε
i ) dx, i = 1, 2

Iεi2 =
1

n

Z

Ωε

i

S 0
m(u

ε
i )A

ε(x, uε
i )ruε

iruε
iTn(u

ε
i ) dx, i = 1, 2

Iε3 =
"�1

n

Z

Γε

hε(x)(uε
1 � uε

2)(Sm(u
ε
1)Tn(u

ε
1)� Sm(u

ε
2)Tn(u

ε
2)) d�

Iε4 =

Z

Ω

fSm(u
ε)
Tn(u

ε)

n
dx.

We study the behavior of each integral first as m approaches 1. As far as
Iεi1, I

ε
i2 and Iε3 are concerned, the proof of Proposition 5.12 (see in particular

(5.22), (5.23), (5.27) and (5.30)) gives that

lim
m!1

Iεi1 =
1

n

Z

{|ui
ε
|<n}

Aε(x, uε
i )ruε

iruε
i dx, i = 1, 2 (5.61)

lim
m!1

Iεi2 = 0, i = 1, 2 (5.62)

lim
m!1

Iε3 =
"�1

n

Z

Γε

hε(x)(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�. (5.63)
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For Iε4 , since Sm(u
ε) ! 1 a.e. in Ω, as m ! +1, while |Sm(u

ε|  1 a.e.
in Ω and since ����fSm(u

ε)
Tn(u

ε)

n

����  |f | 2 L1(Ω),

we can apply the Lebesgue Dominated Convergence Theorem, which gives

lim
m!1

Iε4 =

Z

Ω

f
Tn(u

ε)

n
dx. (5.64)

We now look at the limit of this as " tends to 0. By convergence (5.37) of
Corollary 5.14 and (5.42) of Theorem 5.17, we have

lim sup
ε!0

Z

Ω

f
Tn(u

ε)

n
dx = lim sup

ε!0

1

n

Z

Ω

fT̂n(uε
1) dx+ lim sup

ε!0

1

n

Z

Ω

fT̂n(uε
2) dx

=
1

n

Z

Ω

f✓1u
n
1 dx+

1

n

Z

Ω

f✓2u
n
1 dx

=

Z

Ω

f
Tn(u1)

n
dx.

Now, we evaluate the limit of this last integral as n goes to 1. We again use
the Lebesgue Dominated Convergence Theorem. Note that by (5.21),

����f
Tn(u1)

n

����  |f | 2 L1(Ω)

and since u1 is finite a.e.,

Tn(u1)

n
�! 0 as n �! 1, a.e. in Ω.

It follows that
lim
n!1

lim sup
ε!0

lim
m!1

Iε4 = 0. (5.65)

Combining (5.60)–(5.65), we obtain

lim
n!1

lim sup
ε!0

 
2X

i=1

1

n

Z

{|uε

i |<n}

Aε(x, uε
i )ruε

iruε
i dx

+
"�1

n

Z

Γε

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�

!
= 0.

Since all the integrals are nonnegative, this gives (5.58) and (5.59).

The following lemma states the convergence results that we need to iden-
tify the limit problem.
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Lemma 5.21. Let uε = (uε
1, u

ε
2) be a renormalized solution of (5.3). We can

find a subsequence (still denoted by ") such that for any n 2 N the following
convergences hold as " tends to 0:

8
<
:
T̂n(uε

i )* ✓iTn(u1) weakly in L2(Ω), i = 1, 2,

T
ε

i (Tn(u
ε
i )) �! Tn(u1) strongly in L2(Ω, H1(Yi)), i = 1, 2,

(5.66)

and for any S 2 C0(R) with compact support and suppS ⇢ [�n, n], for
i = 1, 2,
8
>>>><
>>>>:

T
ε

i

�
S(uε

i )rTn(u
ε
i )
�
* S(u1)(rTn(u1) +rybui), weakly in L2(Ω⇥ Yi),

T
ε

i

�
S(uε

i )
�T ε

1

�
Tn(u

ε
1)
�
� T

ε

2

�
Tn(u

ε
2)
�

"
* S(u1)(bu1 � bu2), weakly in L2(Ω⇥ Γ),

(5.67)
where u1 : Ω �! R is measurable and finite a.e., and bui : Ω⇥ Yi �! R, for
i = 1, 2 with bui(x, ·) 2 H1(Yi) for a.e. x 2 Ω, and MΓ(bu1) = 0.

Proof. From (5.37) of Corollary 5.14, there is a subsequence of {"} (still
denoted by ") such that for any n 2 N, we can find un

1 2 H1
0 (Ω), bun

1 2
L2(Ω, H1

per(Y1)) with MΓ(bun
1 ) = 0 a.e. in x 2 Ω, and bun

2 2 L2(Ω, H1(Y2))
such that the following convergences hold as " tends to 0:
8
>>>>>>>>><
>>>>>>>>>:

sT̂n(uε
i )* ✓iu

n
1 weakly in L2(Ω), i = 1, 2,

T
ε

i

�
Tn(u

ε
i )
�
�! un

1 strongly in L2(Ω, H1(Yi)), i = 1, 2,

T
ε

i

�
rTn(u

ε
i )
�
* run

1 +rybun
i weakly in L2(Ω⇥ Yi), i = 1, 2,

T
ε

1

�
Tn(u

ε
1)
�
� T

ε

2

�
Tn(u

ε
2)
�

"
* bun

1 � bun
2 weakly in L2(Ω⇥ Γ).

(5.68)
Then, convergences (5.66) follow from the first two convergences in (5.68)
and identity (5.42) of Theorem 5.17.

Now, we show (5.67). Let S 2 C0(R) with suppS ⇢ [�n, n]. Then S is
bounded, and by (5.41) of Theorem 5.17, we have for i = 1, 2,

S
�
T

ε

i (u
ε
i )
�
�! S(u1) in L1(Ω⇥ Yi) weak-* and a.e. in Ω⇥ Yi. (5.69)

This convergence also holds when we replace Ω⇥ Yi by Ω⇥ Γ. Then, using
Remark 5.16, by the third convergence in (5.68), we deduce for i = 1, 2

T
ε

i

�
S(uε

i )rTn(u
ε
i )
�
= S

�
T

ε

i (u
ε
i )
�
T

ε

i

�
rTn(u

ε
i )
�
* S(u1)(rTn(u1) +rybun

i ),
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weakly in L2(Ω ⇥ Yi), while by the fourth convergence in (5.68), it follows
that for i = 1, 2,

T
ε

i

�
S(uε

i )
�T ε

1

�
Tn(u

ε
1)
�
� T

ε

2

�
Tn(u

ε
2)
�

"
= S

�
T

ε

i (u
ε
i )
�T ε

1

�
Tn(u

ε
1)
�
� T

ε

2

�
Tn(u

ε
2)
�

"

* S(u1)(bun
1 � bun

2 ),

weakly in L2(Ω ⇥ Γ). Then (5.67) follows from Theorem 5.18 written for
R = S.

We now identify the unfolded problem satisfied by the triple (u1, bu1, bu2).
This is the most difficult proof, which is long and quite labourous.

Theorem 5.22 (The unfolded homogenized problem). Let u1, bu1, and bu2

be functions as in Lemma 5.21. Let  1, 2 be functions in C1(R) (or equiv-
alently,  1, 2 2 W 1,1(R)) with compact supports.

Then the triple (u1, bu1, bu2) satisfies

8
>>>>>>><
>>>>>>>:

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui)(r( 1(u1)') +  2(u1)ryΦi) dx dy

+
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)(Φ1 � Φ2) dx d�y =

Z

Ω

f(x) 1(u1)'(x) dx

8' 2 H1
0 (Ω) \ L1(Ω), Φi 2 L2(Ω, H1

per(Yi)), i = 1, 2.

(5.70)
In addition, for k > 0, the following limits hold:

lim
k!1

1

k

Z

{|u1|<k}⇥Yi

A(y, u1)(rTk(u1) +rybui)(rTk(u1) +rybui) dx dy = 0,

(5.71)
for i = 1, 2, and

lim
k!1

1

k

Z

{|u1|<k}⇥Γ

(bu1 � bu2)
2 dx d�y = 0. (5.72)

Proof. We do the proof in two steps. The first step is to obtain the unfolded
equation (5.70). The next step is proving the convergences (5.94) and (5.95).

Step 1. Obtaining the unfolded equation (5.70).

Let v 2 D(Ω) and n 2 N. Choosing vi = v and  = Sn (see (5.17)) as
test functions in (5.14) of Definition 5.6, we have

Jε
11 + Jε

21 + Jε
12 + Jε

22 + Jε
3 = Jε

4 , (5.73)
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where

Jε
i1 =

Z

Ωε

i

Sn(u
ε
i )A

ε(x, uε
i )ruε

irv dx, i = 1, 2

Jε
i2 =

Z

Ωε

i

S 0
n(u

ε
i )A

ε(x, uε
i )ruε

iruε
iv dx, i = 1, 2

Jε
3 = "�1

Z

Γε

hε(x)(uε
1 � uε

2)(Sn(u
ε
1)� Sn(u

ε
2))v d�

Jε
4 =

Z

Ω

fSn(u
ε)v dx.

We will evaluate the limit of each term first as " goes to zero, and then as
n approaches infinity. To do this, we use convergences (5.66) of Lemma
5.21, Proposition 5.20, and some properties of the unfolding operator in
Proposition 5.10.

By (P1) and (P2) of Proposition 5.10, and the fact that v has compact
support, we have for i = 1, 2,

lim
ε!0

Jε
i1 = lim

ε!0

Z

Ωε

i

Sn(u
ε
i )A

ε(x, T2n(u
ε
i ))rT2n(u

ε
i )rv dx

= lim
ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i

�
Sn(u

ε
i )A

ε(x, T2n(u
ε
i ))rT2n(u

ε
i )rv

�
dx dy

= lim
ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i

�
Aε(x, T2n(u

ε
i ))
�
T

ε

i

�
Sn(u

ε
i )rT2n(u

ε
i )
�
T

ε

i (rv) dx dy.

Note that T ε

i

�
Aε(x, T2n(u

ε
i ))
�

is bounded and by (5.43) of Theorem 5.42,

Aε
�
y, T2n(T

ε

i (u
ε
i ))
�
* A

�
y, T2n(u1)

�
in L1(Ω⇥ Yi) weak- ⇤ . (5.74)

Hence, it can be shown by Lebesgue Dominated Convergence Theorem that

T
ε

i

�t
Aε(x, T2n(u

ε
i ))
�
T

ε

i (rv) �! tA
�
y, T2n(u1)

�
rv,

strongly in (L2(Ω ⇥ Yi))
N . Consequently, by (5.67) of Lemma 5.21 (written

for S = Sn), for i = 1, 2,

lim
ε!0

Jε
i1 =

1

|Y |

Z

Ω⇥Yi

tA
�
y, T2n(u1)

�
rvSn(u1)(rT2n(u1) +rybui) dx dy

=
1

|Y |

Z

Ω⇥Yi

Sn(u1)A
�
y, T2n(u1)

�
(rT2n(u1) +rybui)rv dx dy. (5.75)
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On the other hand, for Jε
i2, i = 1, 2, by (5.20), we have

lim
n!1

lim sup
ε!0

|Jε
i2|  lim

n!1
lim sup

ε!0

Z

Ωε

i

|S 0
n(u

ε
i )||A

ε(x, uε
i )ruε

iruε
i ||v| dx

 2 · lim
n!1

lim sup
ε!0

kvkL1(Ω)

2n

Z

{|uε

i |<2n}

Aε(x, uε
i )ruε

iruε
i dx.

Denoting

!1(n) = 2 · lim sup
ε!0

1

2n

Z

{|uε

i |<2n}

Aε(x, uε
i )ruε

iruε
i dx,

we have by (5.58) of Proposition 5.20,

lim
n!1

lim sup
ε!0

Jε
i2  kvkL1(Ω) lim

n!1
!1(n) = 0, i = 1, 2. (5.76)

For Jε
3 , by (5.31), we obtain

lim
n!1

lim sup
ε!0

|Jε
3 |

 lim
n!1

lim sup
ε!0

"�1

Z

Γε

|hε(x)||uε
1 � uε

2||Sn(u
ε
1)� Sn(u

ε
2)||v| d�

 2 · lim
n!1

lim sup
ε!0

"�1kvkL1(Ω)khkL1(Γ)

2n

Z

Γε

(uε
1 � uε

2)(T2n(u
ε
1)� T2n(u

ε
2)) d�.

If we set

!2(n) = 2khkL1(Γ) lim sup
ε!0

"�1

2n

Z

Γε

(uε
1 � uε

2)(T2n(u
ε
1)� T2n(u

ε
2)) d�,

then by (5.59) of Proposition 5.20,

lim
n!1

lim sup
ε!0

Jε
3  kvkL1(Ω) lim

n!1
!2(n) = 0. (5.77)

For the integral on the right-hand side of (5.73), by (P1) and (P2) of Propo-
sition 5.10, and Remark 5.16, and since v has a compact support, we have

lim
ε!0

Jε
4 = lim

ε!0

1

|Y |

2X

i=1

Z

Ω⇥Yi

T
ε

i

�
fSn(u

ε
i )v
�
dx dy

= lim
ε!0

1

|Y |

2X

i=1

Z

Ω⇥Yi

T
ε

i (f)Sn

�
T

ε

i (u
ε
i )
�
T

ε

i (v) dx dy.
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Using (P4) of Proposition 5.10, (5.69) (with S = Sn), and the fact that f ,
Sn(u1), and v are independent of y, we obtain

lim
ε!0

Jε
4 =

1

|Y |

Z

Ω⇥Y1

fSn(u1)v dx dy +
1

|Y |

Z

Ω⇥Y2

fSn(u1)v dx dy

= ✓1

Z

Ω

fSn(u1)v dx+ ✓2

Z

Ω

fSn(u1)v dx

=

Z

Ω

fSn(u1)v dx. (5.78)

Combining (5.75)-(5.78), we have
2X

i=1

1

|Y |

Z

Ω⇥Yi

Sn(u1)A(y, u1)(ru1 +rybui)rv dx dy

+ !(v, n) =

Z

Ω

fSn(u1)v dx,

(5.79)

where !(v, n)  kvkL1(Ω)!(n), with !(n) �! 0 as n ! 1. By density, this
last identity holds for all v 2 H1

0 (Ω) \ L1(Ω).
Let  1, 2 be functions in C1(R) with compact support, verifying

supp i ⇢ [�m,m], i = 1, 2,

for some m > 0. Using v =  1(u1)', where ' 2 H1
0 (Ω) \ L1(Ω), as the test

function in (5.79), we get
2X

i=1

1

|Y |

Z

Ω⇥Yi

Sn(u1)A(y, u1)(ru1 +rbui) 
0
1(u1)ru1' dx dy

+
2X

i=1

1

|Y |

Z

Ω⇥Yi

Sn(u1)A(y, u1)(ru1 +rybui) 1(u1)r' dx dy

+ !(v, n) =

Z

Ω

fSn(u1) 1(u1)' dx.

(5.80)

For n � m, since supp 1 ⇢ [�m,m], we have

 1(u1)Sn(u1) =  1(u1) and  0
1(u1)Sn(u1) =  0(u1).

Consequently, if we pass to the limit on both sides of (5.80) as n �! 1, we
obtain

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rbui) 
0
1(u1)ru1'1 dx dy

+
2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui) 1(u1)r' dx dy =

Z

Ω

f 1(u1)' dx,
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which can be rewritten as

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui)r( 1(u1)') dx dy =

Z

Ω

f 1(u1)' dx.

(5.81)
Now, let vεi (x) = "!(x)⇠i

�
x
ε

�
, i = 1, 2, where

! 2 D(Ω) and ⇠i 2 H1
per(Yi) \ L1(Yi), i = 1, 2.

Note that we have

T
ε

i (v
ε
i ) = "T

ε

i (!)⇠i �! 0 strongly in L2(Ω⇥ Yi), i = 1, 2. (5.82)

Moreover, since, for i = 1, 2, rvεi (x) = "r!(x)⇠i
�
x
ε

�
+ !(x)ry⇠i

�
x
ε

�
, we get

T
ε

i (rvεi ) = "⇠iT
ε

i (r!) +ry⇠iT
ε

i (!) �! !ry⇠i, i = 1, 2, (5.83)

strongly in L2(Ω⇥ Yi).
Taking  =  2 and vε = (vε1, v

ε
2) as test function in (5.14) we have

Lε
11 + Lε

21 + Lε
12 + Lε

22 + Lε
3 = Lε

14 + Lε
24, (5.84)

where

Lε
i1 =

Z

Ωε

i

 2(u
ε
i )A

ε(x, uε
i )ruε

1rvεi dx, i = 1, 2

Lε
i2 =

Z

Ωε

i

 0
2(u

ε
i )A

ε(x, uε
i )ruε

iruε
iv

ε
i dx, i = 1, 2

Lε
3 = "�1

Z

Γε

hε(x)(uε
1 � uε

2)(v
ε
1 2(u

ε
1)� vε2 2(u

ε
2)) d�

Lε
i4 =

Z

Ωε

i

f 2(u
ε
i )v

ε
i dx, i = 1, 2.

We study each term as " tends to 0. For Lε
i1, using similar arguments to

show (5.75), and by (5.67) of Lemma 5.21 (written for S =  2), we obtain
for i = 1, 2,

lim
ε!0

Lε
i1 = lim

ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i

�
Aε(x, Tn(u

ε
i ))
�
T

ε

i

�
 2(u

ε
i )rTn(u

ε
i )
�
T

ε

i (rvεi ) dx dy

=
1

|Y |

Z

Ω⇥Yi

 2(u1)A(y, u1)(ru1 +rybui)!ry⇠i dx dy. (5.85)

173



For Lε
i2, we have for i = 1, 2,

|Lε
i2| =

�����

Z

Ωε

i

 0
2(u

ε
i )A

ε(x, uε
i )ruε

iruε
i

⇣
"!(x)⇠i

⇣x
"

⌘⌘
dx

�����

 "k!kL1(Ω)k⇠ikL1(Yi)

Z

Ωε

i

 0
2(u

ε
i )A

ε(x, uε
i )ruε

iruε
i dx.

By (5.16) of Proposition 5.12 and the fact that A 2 L1(Ω⇥ (�m,m))N⇥N ,
this last integral is uniformly bounded. As a consequence,

lim
ε!0

Lε
i2 = 0. (5.86)

For Lε
i4, by (P1) of Proposition 5.10 and Remark 5.16, we have

lim
ε!0

Lε
i4 = lim

ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i

�
f 2(u

ε
i )v

ε
i

�
dx dy

= lim
ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i (f) 2

�
T

ε

i (u
ε
i )
�
T

ε

i (v
ε
i ) dx dy.

Then by (P4) of Proposition 5.10, (5.69) (written for S =  2), and (5.82),
we obtain

lim
ε!0

Lε
i4 = 0. (5.87)

Using the definition of vε, we can write Lε
3 as

Lε
3 =

Z

Γε

hε(x)(uε
1 � uε

2)( 2(u
ε
1)!(x)⇠

ε
1(x)�  2(u

ε
2)!(x)⇠

ε
2(x)) d�.

To pass to the limit of this expression, we want to be able to express the term
 2(u

ε
i )(u

ε
1 � uε

2) as  2(u
ε
i )(Tn(u

ε
1)� Tn(u

ε
2)), for i = 1, 2. This will enable us

to use the second convergence in (5.67) of Lemma 5.21. But this is not a
straightforward task since

 2(u
ε
i )(u

ε
1 � uε

2) 6=  2(u
ε
i )(u

ε
1 � uε

2)�{|uε

1|<n}�{|uε

2|<n}.

To achieve our aim, we make use again of the functions Sn. We choose n
large enough, such that

 2(t) = Sn(t) 2(t) 8t 2 R. (5.88)

Then, we can write
Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x) d�

=

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x)

�
Sn(u

ε
1)� Sn(u

ε
2)
�
d�

+

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x)Sn(u

ε
2) d�.

(5.89)
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By (5.31), we obtain

����
Z

Γε

hε(x)(uε
1 � uε

2)!(x)⇠1

⇣x
"

⌘
 2(u

ε
1)
�
Sn(u

ε
1)� Sn(u

ε
2)
�
d�

����
 2khkL1(Γ)k!kL1(Ω)k⇠1kL1(Γ)k 2kL1(R)

⇥
1

2n

Z

Γε

(uε
1 � uε

2)(T2n(u
ε
1)� T2n(u

ε
2)) d�,

and (5.59) of Proposition 5.20 implies

lim
n!1

lim sup
ε!0

Z

Γε

hε(x)(uε
1 � uε

2)!(x)⇠1

⇣x
"

⌘
 2(u

ε
1)
�
Sn(u

ε
1)� Sn(u

ε
2)
�
d� = 0.

(5.90)
Note that (5.88) implies supp 2 ⇢ suppSn = [�2n, 2n]. Hence, we can write

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x)Sn(u

ε
2) d�

=

Z

Γε

hε(x)(T2n(u
ε
1)� T2n(u

ε
2)) 2(u

ε
1)!(x)⇠

ε
1(x)Sn(u

ε
2) d�.

By Lemma 2.16 of [46], (P1) of Proposition 5.10, and Remark 5.16, we obtain

Z

Γε

hε(x)(T2n(u
ε
1)� T2n(u

ε
2)) 2(u

ε
1)!(x)⇠

ε
1(x)Sn(u

ε
2) d�

=
1

"|Y |

Z

Ω⇥Γ

h(y)T
ε

1

�
 2(u

ε
1)
�⇣
T

ε

1

�
T2n(u

ε
1)
�
� T

ε

2

�
T2n(u

ε
2)
�⌘

⇥ T
ε

1 (!)⇠1(y)T
ε

2

�
Sn(u

ε
2)
�
dx d�y

=
1

"|Y |

Z

Ω⇥Γ

h(y)T
ε

1

�
 2(u

ε
1)
�⇣
T

ε

1

�
T2n(u

ε
1)
�
� T

ε

2

�
T2n(u

ε
2)
�⌘

⇥ T
ε

1 (!)⇠1(y)Sn

�
T

ε

2 (u
ε
2)
�
dx d�y.

Note that, by (5.24),

kSn

�
T

ε

2 (u
ε
2)
�
kL1(Ω⇥Γ)  1,

and hence, (5.41) of Theorem 5.17 gives

Sn

�
T

ε

2 (u
ε
2)
�
�! Sn(u1) weakly-⇤ in L1(Ω⇥Γ) and a.e. on Ω⇥Γ. (5.91)

By (5.67) of Lemma 5.21 (written for S =  2), (5.91), (P4) of Proposition
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5.10, and (5.88), we have

lim
ε!0

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x)Sn(u

ε
2) d�

= lim
ε!0

1

"|Y |

Z

Ω⇥Γ

h(y)T
ε

1

�
 2(u

ε
1)
�⇣
T

ε

1

�
T2n(u

ε
1)
�
� T

ε

2

�
T2n(u

ε
2)
�⌘

⇥ T
ε

1 (!)⇠1(y)Sn

�
T

ε

2 (u
ε
2)
�
dx d�y

=
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)!(x)⇠1(y)Sn(u1) dx d�y

=
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)!(x)⇠1(y) dx d�y.

Thus, combining this with (5.89) and (5.90), gives

lim
ε!0

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
1)!(x)⇠

ε
1(x) d�

=
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)!(x)⇠1(y) dx d�y.

Using similar arguments to obtain the preceding identity, we deduce that

lim
ε!0

Z

Γε

hε(x)(uε
1 � uε

2) 2(u
ε
2)!(x)⇠

ε
2(x) d�

=
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)!(x)⇠2(y) dx d�y.

It follows that

lim
ε!0

L3 =
1

|Y |

Z

Ω⇥Γ

 2(u1)h(y)(bu1 � bu2)(!⇠1 � !⇠2) dx d�y. (5.92)

Hence, passing to the limit of (5.84) as " goes to 0, using the results (5.85)-
(5.87) and (5.92), we conclude that

2X

i=1

1

|Y |

Z

Ω⇥Yi

 2(u1)A(y, u1)(ru1 +rybui)!ry⇠i dx dy

+
1

|Y |

Z

Ω⇥Γ

 2(u1)h(y)(bu1 � bu2)(!⇠1 � !⇠2) dx d�y = 0,

for any ! 2 D(Ω) and for any ⇠i 2 H1
per(Yi) \ L1(Yi), i = 1, 2.

Note that  2 has a compact support, then from (5.51) of Theorem 5.18,
we deduce that

 2(u1)A(y, u1)(ru1 +rybui) 2 (L2(Ω⇥ Yi))
N , i = 1, 2,
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and
h(y) 2(u1)(bu1 � bu2) 2 L2(Ω⇥ Γ).

Hence, we obtain by density,

2X

i=1

1

|Y |

Z

Ω⇥Yi

 2(u1)A(y, u1)(ru1 +rybui)ry(!⇠i) dx dy

+
1

|Y |

Z

Ω⇥Γ

 2(u1)h(y)(bu1 � bu2)(!⇠1 � !⇠2) dx d�y = 0,

for every ! 2 L2(Ω) and ⇠i 2 H1
per(Yi), i = 1, 2.

Since for i = 1, 2, !⇠i 2 L2(Ω) ⌦H1
per(Yi) and L2(Ω) ⌦H1

per(Yi) is dense
in L2(Ω, H1

per(Yi)), we have

2X

i=1

1

|Y |

Z

Ω⇥Yi

 2(u1)A(y, u1)(ru1 +rybui)ryΦi dx dy

+
1

|Y |

Z

Ω⇥Γ

 2(u1)h(y)(bu1 � bu2)(Φ1 � Φ2) dx d�y = 0,

(5.93)

for every Φi 2 L2(Ω, H1
per(Yi)), for i = 1, 2.

Adding (5.81) and (5.93) gives the limit problem (5.70).

Step 2. Proof of the convergences (5.71) and (5.72).

Let us first prove that for n 2 N,

lim
n!1

1

n

Z

{|u1|<n}⇥Yi

A(y, u1)(rTn(u1) +rybui)(rTn(u1) +rybui) dx dy = 0,

(5.94)
for i = 1, 2, and

lim
n!1

1

n

Z

{|u1|<n}⇥Γ

(bu1 � bu2)
2 dx d�y = 0. (5.95)

To prove convergence (5.94), for any n 2 N, and i = 1, 2 set

Ei,n =
1

|Y |

Z

{|u1|<n}⇥Yi

A(y, u1)(rTn(u1) +rybui)(rTn(u1) +rybui) dx dy,

Note that we have the following convergences as " tends to 0:

T
ε

i (A
ε(x, uε

i )) �! A(y, u1) a.e. in Ω⇥ Yi,

T
ε

i (rTn(u
ε
i ))* rTn(u1) +rybun

i weakly in L2(Ω⇥ Yi), 8n 2 N,
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where bun
i is the function defined in (5.68) for i = 1, 2.

Taking into account (5.57), by Lemma 4.9 of [29] (with Dε = Aε(x, uε
1)

and ⇣ε = rTn(u
ε
1)), and (P2) of Proposition 5.10, we have

Ei,n 
1

|Y |

Z

Ω⇥Yi

A(y, u1)(rTn(u1) +rybun
i )(rTn(u1) +rybun

i ) dx dy

 lim inf
ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i (A
ε(x, uε

i ))T
ε

i (rTn(u
ε
i ))T

ε

i (rTn(u
ε
i )) dx dy

 lim sup
ε!0

1

|Y |

Z

Ω⇥Yi

T
ε

i (A
ε(x, uε

i ))T
ε

i (rTn(u
ε
i ))T

ε

i (rTn(u
ε
i )) dx dy

 lim sup
ε!0

Z

Ωε

i

Aε(x, uε
i )rTn(u

ε
i )rTn(u

ε
i ) dx.

By (5.58) of Proposition 5.20,

lim
n!1

1

n
Ei,n  lim

n!1
lim sup

ε!0

1

n

Z

Ωε

i

Aε(x, uε
i )rTn(u

ε
i )rTn(u

ε
i ) dx = 0.

Observing that for any 0 < n  k < n + 1 the ellipticity condition (A3.1)
(see Remark 5.7 for a similar argument) gives

1

k

Z

{|u1|<k}⇥Yi

A(y, u1)(rTk(u1) +rybui)(rTk(u1) +rybui) dx dt 
1

n
Ei,n+1,

we obtain (5.71).
It remains to show (5.95). By (5.38) of Corollary 5.14, we have

kbun
1 � bun

2kL2(Ω⇥Γ)  lim inf
ε!0

����
T

ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

����
L2(Ω⇥Γ)

.

Consequently, by (5.57), (P9) of Proposition 5.10, and (5.34) (written for
f = uε

1 and g = uε
2), we obtain

Z

{|u1|<n}⇥Γ

(bu1 � bu2)
2 dx d�y 

1

|Y |

Z

Ω⇥Γ

(bun
1 � bun

2 )
2 dx d�y

 lim inf
ε!0

1

|Y |

Z

Ω⇥Γ

✓
T

ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

◆2

dx d�y

 lim sup
ε!0

1

|Y |

Z

Ω⇥Γ

✓
T

ε

1 (Tn(u
ε
1))� T

ε

2 (Tn(u
ε
2))

"

◆2

dx d�y

 lim sup
ε!0

1

"

Z

Γε

(Tn(u
ε
1)� Tn(u

ε
2))

2 d�

 lim sup
ε!0

1

"

Z

Γε

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d�.

178



By (5.59) of Proposition 5.20,

lim
n!1

1

n

Z

{|u1|<n}⇥Γ

(bu1 � bu2)
2 dx d�y

 lim
n!1

lim sup
ε!0

"�1

n

Z

Γε

(uε
1 � uε

2)(Tn(u
ε
1)� Tn(u

ε
2)) d� = 0.

This proves (5.95) and then (5.72) by a monotony argument. This completes
the proof.

In order to state the next theorem, we introduce the space Wper(Y1), by

Wper(Y1) = {u 2 H1
per(Y1) | MΓ(u) = 0}

equipped with the norm

kukWper(Y1) = krukL2(Y1). (5.96)

Since a Poincaré-Wirtinger inequality holds in Wper(Y1), (5.96) defines a
norm.

The following results give a characterization of bui, i = 1, 2, which allows
us to obtain the homogenized problem in Ω. This kind of result is a classical
and a quite simple step in the literature. For completeness, we prove it here
in detail since the corresponding theorem in [46] was proved without giving
details. With respect to the case of perforated domains studied in [43], the
situation here has the additional difficulties due to the fact that the second
component bu2 does not necessarily have a zero average on Γ.

Theorem 5.23. Let �λ = (�λ
1 ,�

λ
2) be the unique solution of the following

variational problem:
8
>>>>>>>>><
>>>>>>>>>:

Find �λ(·, t) = (�λ
1(·, t),�

λ
2(·, t)) 2 Wper(Y1)⇥H1(Y2) such that

2X

i=1

Z

Yi

A(y, t)ry�
λ
i (y, t)ryvi dy +

Z

Γ

h(y)(�λ
1(y, t)� �λ

2(y, t))(v1 � v2) d�

=
2X

i=1

Z

Yi

A(y, t)�ryvi dy

for any v = (v1, v2) 2 H1
per(Y1)⇥H1(Y2),

(5.97)
for all t 2 R and � 2 R

N .

Using the assumptions and notations of Theorem 5.22, the function bui,
i = 1, 2, can be expressed as

bui(x, y) = �
NX

j=1

�
j
i (y, u1(x))

@u1

@xj

(x), i = 1, 2, (5.98)
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where �j = (�j
1,�

j
2) is the unique solution of (5.97) written for � = ej with

{ej}
N
j=1 being the canonical basis.

Proof. Let ' ⌘ 0 and Φi(x, y) = !(x)vi(y) in (5.70) of Theorem 5.22, where
! 2 D(Ω) and vi 2 H1

per(Yi). Substituting these values, we obtain

2X

i=1

1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui) 2(u1)!ryvi dx dy

+
1

|Y |

Z

Ω⇥Γ

h(y) 2(u1)(bu1 � bu2)(v1 � v2)! dx d�y = 0.

Equivalently,

Z

Ω

✓ 2X

i=1

Z

Yi

A(y, u1) 2(u1)(ru1 +rybui)ryvi dy

+

Z

Γ

h(y) 2(u1)(bu1 � bu2)(v1 � v2) d�y

◆
! dx = 0.

Since this holds for all ! 2 D(Ω) and u1 is independent of y, we have

 2(u1)

 
2X

i=1

Z

Yi

A(y, u1)(ru1 +rybui)ryvi dy

+

Z

Γ

h(y)(bu1 � bu2)(v1 � v2) d�y

!
= 0.

Let k > 0 and choose  2 such that  2(t) = 1 whenever |t|  k. Consequently,

2X

i=1

Z

Yi

A(y, u1)(ru1 +rybui)ryvi dy

+

Z

Γ

h(y)(bu1 � bu2)(v1 � v2) d�y = 0,

(5.99)

for all v = (v1, v2) 2 H1
per(Y1)⇥H1

per(Y2), and a.e. in {x 2 Ω | |u1(x)|  k},
for any k > 0. Since u1 is finite a.e. in Ω, (5.99) holds for a.e. x 2 Ω.

Note that by linearity with respect to �, we have

�λ
i (y, t) =

NX

j=1

�j�
j
i (y, t), i = 1, 2, 8� 2 R

N , 8t 2 R,
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where �j = (�j
1,�

j
2) is the unique solution of (5.97) with � = ej. More

particularly, if we take

� = ru1 and t = u1(x), for some x 2 Ω, (5.100)

and denote the corresponding solution by b� = (b�1, b�2), we have

b�i(y, u1(x)) =
NX

j=1

@u1

@xj

(x)�j
i (y, u1(x)), i = 1, 2. (5.101)

Let x 2 Ω. Replacing (5.100) in (5.97), we obtain

2X

i=1

Z

Yi

A(y, u1)ryb�iryvi dy +

Z

Γ

h(y)(b�1 � b�2)(v1 � v2) d�

=
2X

i=1

Z

Yi

A(y, u1)ru1ryvi dy.

(5.102)

Now, let '1 2 D(Y1). Consider v = ('1, 0) as test function for both (5.99)
and (5.102). Taking into account that '1 has a compact support, we obtain,
from (5.99), Z

Y1

A(y, u1)(ru1 +rybu1)ry'1 dy = 0,

and, from (5.102),
Z

Y1

A(y, u1)ryb�1ry'1 dy =

Z

Y1

A(y, u1)ru1ry'1 dy.

Subtracting these last two equations, we have
Z

Y1

A(y, u1)(rybu1 +ryb�1)ry'1 dy = 0, 8'1 2 D(Y1). (5.103)

By density, this holds for every '1 2 H1(Y1). Then, (5.103) written for
'1 = bu1 + b�1 (taking into account (5.51) of Theorem 5.18) gives

Z

Y1

A(y, u1)(rybu1 +ryb�1)(rybu1 +ryb�1) dy = 0.

The ellipticity of A implies

kry(bu1 + b�1)k
2
L2(Y1)

= krybu1 +ryb�1k
2
L2(Y1)

= 0.
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It follows that for some ⇠1(x) 2 L2(Ω) (independent of y),

bu1(x, y) = �b�1(y, u1(x)) + ⇠1(x), a.e. in Ω⇥ Y1. (5.104)

Similary, taking v = (0,'2), where '2 2 D(Y2), as test function for both
(5.99) and (5.102), we conclude that

bu2(x, y) = �b�2(y, u1(x)) + ⇠2(x), a.e. in Ω⇥ Y2, (5.105)

for some ⇠2(x) 2 L2(Ω) (independent of y).
Consequently, from (5.101),

bui(x, y) = �
NX

j=1

@u1

@xj

(x)�j
i (y, u1(x)) + ⇠i(x), a.e. in Ω⇥ Yi. (5.106)

To show (5.98), we need to prove that ⇠i ⌘ 0, for i = 1, 2.

Case i = 1.
Taking the average on Γ on both sides of (5.104) and using (5.51) of

Theorem 5.18, we obtain

0 =

Z

Γ

bu1(x, y) dy = �

Z

Γ

b�1(y, u1(x)) dy + ⇠1(x)|Γ|, for a.e. x 2 Ω.

Since MΓ(b�1) = 0 for a.e. x 2 Ω, it follows that

⇠1 ⌘ 0. (5.107)

Case i = 2.
To show that ⇠2 ⌘ 0, note that from (5.104), (5.105), and (5.107), we

have
b�1 � b�2 = �bu1 + bu2 � ⇠2, on Ω⇥ Γ,

with
ryb�i = �rybui in Ω⇥ Yi, i = 1, 2.

Replacing these identities in (5.102) gives

2X

i=1

Z

Yi

A(y, u1)(�rybui)ryvi dy

+

Z

Γ

h(y)(�bu1 + bu2 � ⇠2)(v1 � v2) d� =
2X

i=1

Z

Yi

A(y, u1)ru1ryvi dy.
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Rearranging the terms, we obtain

2X

i=1

Z

Yi

A(y, u1)(ru1 +rybui)ryvi dy

+

Z

Γ

h(y)(bu1 � bu2 + ⇠2)(v1 � v2) d� = 0.

This, together with (5.99), leads to

⇠2(x)

Z

Γ

h(y)(v1 � v2) d� = 0, for a.e. x 2 Ω.

Choosing (v1, v2) 2 H1
per(Y1) ⇥ H1

per(Y2) such that v1 > v2 a.e. on Γ, we
conclude that

⇠2 ⌘ 0,

since h > 0 a.e. on Γ. This, together with (5.106) and (5.107), gives (5.98).

We are now able to describe the homogenized problem in Ω. Let us first
define, the homogenized matrix A0(t), introduced in [68] for the linear case
and given by

A0(t) = A0
1(t) + A0

2(t), for every t 2 R,

where

A0
i (t)� =

1

|Y |

Z

Yi

A(y, t)ryw
λ
i (y, t) dy, i = 1, 2, 8� 2 R

N ,

with
wλ

i (y, t) = � · y � �λ
i (y, t),

and �λ = (�λ
1 ,�

λ
2) the solution of (5.97). Standard arguments (see for in-

stance [33] or [32]), provide the following uniform ellipticity:

A0(t)⇠ · ⇠ � ↵|⇠|2, 8t 2 R, 8⇠ 2 R
N . (5.108)

We recall the following recent result from [41], which is important for unique-
ness results.

Theorem 5.24 ([41]). Suppose that the matrix field A(y, t) satisfies the as-
sumptions (A3) and (A4). Then the homogenized matrix A0 is locally Lips-
chitz, that is, for every r > 0, there exists a positive constant Cr such that

|A0(s)� A0(t)|  Cr|s� t| 8s, t 2 (�r, r).
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Theorem 5.25 (The homogenized problem in Ω). Let u1 be a cluster point of
the sequence {T

ε

i (u
ε
i )}, i = 1, 2, as in Lemma 5.21. Then u1 is a renormalized

solution of (
� div(A0(u1)ru1) = f in Ω

u1 = 0 on @Ω,
(5.109)

that is,

Tk(u1) 2 H1
0 (Ω), for any k > 0, (5.110)

lim
k!1

1

k

Z

{|u1|<k}

A0(u1)ru1ru1 dx = 0, (5.111)

and for every  2 C1(R) (or equivalently,  2 W 1,1(R)) with compact
support,

Z

Ω

 (u1)A
0(u1)ru1r' dx+

Z

Ω

 0(u1)A
0(u1)ru1ru1 ' dx

=

Z

Ω

f (u1)' dx, for every ' 2 H1
0 (Ω) \ L1(Ω).

(5.112)

If in addition, (A4) holds, then u1 is the unique renormalized solution of
(5.109) and all of the sequences in Lemma 5.21 converge (not just a subse-
quence).

Proof. From Corollary 5.14 and (5.42) of Theorem 5.17, we have (5.110). To
obtain (5.112), we take Φi ⌘ 0 for i = 1, 2 in (5.70) of Theorem 5.22. Hence,
we have

1

|Y |

Z

Ω⇥Y1

A(y, u1)(ru1 +rybu1)r( 1(u1)') dx dy

+
1

|Y |

Z

Ω⇥Y2

A(y, u1)(ru1 +rybu2)r( 1(u1)') dx dy =

Z

Ω

f 1(u1)' dx.

Substituting the expressions for bui, i = 1, 2, from (5.98) of Theorem 5.23 and
denoting  1 as  to simplify the notation, we get

Z

Ω

A0
1(u1)ru1r( (u1)') dx+

Z

Ω

A0
2(u1)ru1r( (u1)') dx

=

Z

Ω

f (u1)' dx,

which is equivalent to (5.112).
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To show (5.111), let us first take k = n 2 N. Choose ' = T2n(u1), Φi =
bui�{|u1|<2n}, and  i = Sn, i = 1, 2, for (5.70) of Theorem 5.22. Substituting
these functions, we have

J1 +K1 + J2 +K2 + L+M = 0, (5.113)

where

Ji =
1

|Y |

Z

Ω⇥Yi

Sn(u1)A(y, u1)(ru1 +rybui)(ru1 +rybui) dx dy, i = 1, 2

Ki =
1

|Y |

Z

Ω⇥Yi

A(y, u1)(ru1 +rybui)ru1S
0
n(u1)T2n(u1) dx dy, i = 1, 2

L =
1

|Y |

Z

Ω⇥Γ

h(y)Sn(u1)(bu1 � bu2)(bu1 � bu2) dx d�y

M = �

Z

Ω

fSn(u1)T2n(u1) dx.

We study the behavior of each integral as n approaches 1.
Note that, for i = 1, 2,

Ji 
1

|Y |

Z

{|u1|<2n}⇥Yi

A(y, u1)(rT2n(u1) +rybui)(rT2n(u1) +rybui) dx dy.

By (5.94) of Theorem 5.22,

lim
n!1

1

n
Ji = 0, i = 1, 2. (5.114)

If we substitute (5.98) of Theorem 5.23 to Ki, i = 1, 2, then we get

Ki =

Z

Ω

A0
i (u1)ru1ru1S

0
n(u1)T2n(u1) dx

=

Z

{n<|u1|<2n}

A0
i (u1)ru1ru1S

0
n(u1)T2n(u1) dx  0,

since S 0
n(u1)T2n(u1)  0 in {n < |u1| < 2n}. Note that

|S 0
n(u1)T2n(u1)| =

����
sgn(u1)

n
�{n<|u1|<2n}T2n(u1)

����

=

����
sgn(u1)

n
�{n<|u1|<2n}u1

����
� �{n<|u1|<2n}.
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Consequently, for i = 1, 2,

�Ki =

Z

{n<|u1|<2n}

A0
i (u1)ru1ru1(�S 0

n(u1)T2n(u1)) dx

�

Z

{n<|u1|<2n}

A0
i (u1)ru1ru1 dx. (5.115)

For L, using Theorem 5.18 (written for R = Sn) and (5.24), we obtain

|L| =

����
1

|Y |

Z

{|u1|<2n}⇥Γ

h(y)Sn(u1)(bu1 � bu2)(bu1 � bu2) dx d�y

����


khkL1(Γ)

|Y |

Z

{|u1|<2n}⇥Γ

(bu1 � bu2)
2 dx d�y.

We can conclude from (5.95) of Theorem 5.22 that

lim
n!1

1

n
L = 0. (5.116)

For M , since u1 is finite a.e. in Ω, we have

T2n(u1)

n
�! 0 a.e. in Ω,

and, by (5.21) and (5.24),

1

n
|fSn(u1)T2n(u1)|  2|f | 2 L1(Ω).

By Lebesgue Dominated Convergence Theorem,

lim
n!1

1

n
M = 0. (5.117)

As a result, by (5.113)-(5.117),

0  lim
n!1

1

n

Z

{n<|u1|<2n}

A0(u1)ru1ru1 dx

= lim
n!1

1

n

2X

i=1

Z

{n<|u1|<2n}

A0
i (u1)ru1ru1 dx

 lim
n!1

1

n
(�K1 �K2)

= lim
n!1

1

n
|J1 + J2 + L+M |

 lim
n!1

1

n
(|J1|+ |J2|+ |L|+ |M |)

= 0,
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that is,

lim
n!1

1

n

Z

{n<|u1|<2n}

A0(u1)ru1ru1 dx = 0,

which is equivalent by a Cesaro argument (see [58, Remark 6]) to

lim
n!1

1

n

Z

{|u1|<n}

A0(u1)ru1ru1 dx = 0.

At last, in view of the ellipticity of the homogenized matrix A0(t) stated in
(5.108), we obtain (5.111) (see Remark 5.7).

Moreover, with the additional assumption (A4) on the matrix field A, the
uniqueness of u1 follows from Theorem 5.24 and [16]. Furthermore, since u1

is unique, it follows that both bu1 and bu2 are uniquely determined by (5.98).
As a consequence, the limit problem (5.70) has a unique solution and the
convergences in (5.66) and (5.67) of Lemma 5.21 in fact hold for the whole
sequence {"}.
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Perspectives

In this thesis, we showed some results concerning a quasilinear problem in
a two-component domain with L1 data. In the first part, we obtained ex-
istence and uniqueness results in the framework of renormalized solutions.
In the second part, we proved homogenization results and also studied some
properties of the corresponding cell problem.

There are very interesting open problems related to this problem that we
wish to study in the future.

As mentioned in Chapter 5, the homogenization of the following quasi-
linear problem with L1 data

8
>>>>>>>>>>><
>>>>>>>>>>>:

� div
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
= f in Ω

ε
1,

� div
⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
= f in Ω

ε
2,⇣

A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 =

⇣
A
⇣x
"
, uε

2

⌘
ruε

2

⌘
⌫ε1 on Γ

ε,
⇣
A
⇣x
"
, uε

1

⌘
ruε

1

⌘
⌫ε1 = �"γh

⇣x
"

⌘
(uε

1 � uε
2) on Γ

ε,

uε = 0 on @Ω,

for the cases � 2 (�1, 1] and � 2 (�1,�1) is not yet studied. These cases
appear to be relatively easier compared to the case � = �1 except probably
for the case � = 1. This case is still an open problem even for the variational
case, i.e., f 2 L2(Ω), which we also plan to look at in the future. In addition,
we want to obtain some corrector results for all the cases of �. We will
first consider the corrector results for the case � = �1 as it was what we
considered in this thesis. It is worth mentioning that corrector results in the
framework of renormalized solutions are yet to be studied.

We can also study the existence, uniqueness and homogenization results
for problem (2.1) with a nonlinear boundary condition. That is, we consider
the following condition on Γ

(B(x, u1)ru1)⌫1 = �h(x, u1 � u2),



where the function h(y, t) : RN ⇥ R ! R satisfies the following properties:

1. h is a Carathéodory function,

2. h is an increasing function in C1(R) such that h(y, 0) = 0 for all y 2 R
N ,

3. there exists a constant c1 > 0 and an exponent q, with

1  q < 2 if N = 2, 3 and 1  q <
N

N � 2
if N > 3,

such that
����
@h

@t
(y, t)

����  c1(1 + |t|q�1) for a.e. y 2 Y and for all t 2 R,

4. there exists a constant c2 > 0 such that

th(y, t) � c2|t|
2 for a.e. y 2 Y and for all t 2 R.

This kind of nonlinear boundary condition was considered by [45], where
the authors studied the existence, uniqueness and homogenization results for
a linear problem in the variational setting (that is, the data f belongs to
L2(Ω)).

Another aim is to consider the parabolic version of (2.1), i.e.,

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

@u1

@t
� div(B(x, u1)ru1) = f in Ω1 ⇥ (0, T ),

@u2

@t
� div(B(x, u2)ru2) = f in Ω2 ⇥ (0, T )

(B(x, u1)ru1)⌫1 = (B(x, u2)ru2)⌫1 on Γ⇥ (0, T ),

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ⇥ (0, T ),

u1 = 0 on @Ω⇥ (0, T ).

u1(x, 0) = U0
1 (x) in Ω1

u2(x, 0) = U0
2 (x) in Ω2,

(5.118)

where f 2 L1(Ω) and T is a given time.
Moreover, we would like to give a definition of a renormalized solution of

the parabolic problem (5.118), and obtain existence and uniqueness results.
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Then we can also study the homogenization of the corresponding periodic
problem, that is

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

@uε
1

@t
� div(B(x, uε

1)ruε
1) = f in Ω

ε
1 ⇥ (0, T ),

@uε
2

@t
� div(B(x, uε

2)ruε
2) = f in Ω2 ⇥ (0, T )

(B(x, uε
1)ruε

1)⌫1 = (B(x, uε
2)ruε

2)⌫1 on Γ
ε ⇥ (0, T ),

(B(x, u1)ru1)⌫1 = �h(x)(u1 � u2) on Γ⇥ (0, T ),

uε
1 = 0 on @Ω⇥ (0, T ).

uε
1(x, 0) = U0,ε

1 (x) in Ω
ε
1

u2(x, 0) = U0,ε
2 (x) in Ω

ε
2,

where f 2 L1(Ω ⇥ (0, T )) and for i = 1, 2, gU0,ε
i converges weakly to ✓iU0

i in
L1(Ω), for some U0

i 2 L1(Ω).
Finally, another possible extension for problem (2.1) is considering a non-

linear problem with a Leray-Lions operator with p-growth in the same kind
of domain and similar boundary conditions. That is, an operator of the form

� div(a(x, u,ru)),

where
a : (x, s, ⇠) 2 Ω⇥ R⇥ R

N �! a(x, s, ⇠) 2 R
N

is a Carathéodory function such that for some p 2 (1, N),

a(x, s, ⇠)⇠ � ↵|⇠|p, ↵ > 0,

|a(x, s, ⇠)|  c(|⇠|p�1 + |s|p�1 + a0(x)), a0 2 Lp0(Ω), c > 0,

ha(x, s, ⇠)� a(x, s, ⌘), ⇠ � ⌘i > 0, ⇠ 6= ⌘.

This operator was introduced by J. Leray and J.L. Lions in [61] and by
J.L. Lions in [62]. In the framework of renormalized solutions with this kind
of operator, we refer to [63, 36] for the case of Dirichlet boundary condition
and to [13, 14] for the case of Neumann boundary condition.
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