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Résumé en français

La question de la flexibilité a en réalité toujours accompagné le marché du gaz naturel. Elle

reflète en tant que telle la nature même de la commodité : une demande largement inélastique

(surtout résidentielle) sujette aux aléas climatiques et une offre qui ne réagit pas toujours aux

signaux prix compte tenu des lourds investissements en infrastructure de production, transport

et stockage. Ce besoin de flexibilité a essentiellement été associé à un enjeu de volume pour

des producteurs de gaz naturel devant limiter les risques d’insécurité d’approvisionnements.

Une myriade d’outils de flexibilité a pu se développer pour ainsi équilibrer offre et demande

de gaz, sous la forme d’instruments physiques et d’arrangements contractuels. Parmi eux, les

installations de stockage y jouent un rôle pivot tant pour la gestion des variations saisonnières

que pour répondre à des changements abrupts de la demande et dans certains cas d’interruptions

de la production. En injectant du gaz en été lorsque la demande est faible et le soutirant en hiver

lorsque celle-ci augmente, ces dernières permettent d’éviter des coûts d’extraction et de transport

démesurés tout en limitant les fluctuations de prix excessives. Les systèmes gaziers ont également

eu recours aux line-pack pour contrecarrer les variations horaires de la demande en augmentant

la pression dans les gazoducs afin d’y accrôıtre la capacité de stockage. Le stockage dans les

terminaux de gaz naturel liquéfié (GNL) est aussi envisagé lorsque les conditions géologiques

offrent des options de stockage limitées. D’autres mécanismes d’équilibrages sont centrés sur la

demande à travers par exemple des contrats d’interruptibilité qui se font sur la base de critères

mutuellement consentis.

Ces stratégies de résilience se sont adaptées aux évolutions du marché gazier. La donne

posée par les vagues de libéralisation des marchés électriques et gaziers en a constitué la clé

de voûte.1 L’abolition des monopoles d’états et des concessions exclusives pour le transport et
1Le marché gazier américain est précurseur en la matière, passant d’un marché fortement réglementé à un
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la distribution de gaz a permis l’émergence de hubs de gaz où se sont développés de nouveaux

services gaziers. Ils sont des zones d’interconnexions entre pipelines, idéalement à proximité

d’infrastructures de stockage et de centres de consommation, assurant une facilité de transport

et un équilibrage à court terme de l’offre et la demande de gaz. Les marchés spot et futures

viennent quant à eux offrir une nouvelle source de flexibilité aux acteurs de ce marché pour se

couvrir contre les risques de prix et profiter d’opportunités d’arbitrages. Le gaz s’y échange

comme toute autre commodité mais plus important encore, les outils de flexibilité sont devenus

des services échangeables à part entière avec une valeur de marché. Le recours au stockage est

très représentatif de cette tendance : il est passé d’un outil de gestion physique apportant de

la flexibilité lors d’épisodes de pics de demande, à un service indépendant de trading combinant

une couverture physique à l’exploitation d’opportunités d’arbitrages (Cret̀ı et al., 2009).

Figure emblématique de la notion de flexibilité, l’industrie du GNL a connu une recon-

struction substantielle de son modèle économique. Matière première initialement complexe à

transporter, le processus de liquéfaction du gaz naturel sous -160 degrés Celsius permet de

réduire son volume de 600 fois. Le commerce de GNL s’est plus rapidement développé durant

la période 2000-15 que durant les 35 années de son histoire. Devenu un élément clé des marchés

gaziers à l’échelle mondiale, le GNL contourne une propriété physique majeur du gaz naturel -

celle d’être 1000 fois moins dense que le pétrole sous des conditions atmosphériques normales - et

permet d’atteindre des marchés inoüıs en évitant les risques de tensions géopolitiques qu’inflige

le transit de gaz par pipeline. Le secteur est sur un sentier de croissance important avec une

hausse substantielle des capacités d’exportation. Le nombre de pays exportateurs a plus que

doublé depuis le début des années 2000 assignant au GNL un rôle de flexibilité et de sécurité

d’approvisionnement notable. Au cœur de cette dynamique, la libéralisation des marchés de

l’énergie, l’accès des tiers aux infrastructures de regazéification, l’augmentation substantielle de

la flotte de navires méthaniers et l’augmentation du nombre d’acheteurs ont été déterminants

(Corbeau and Ledesma, 2016). De surcrôıt, les développements récents du secteur ont conduit

à une profonde reconfiguration de la structure contractuelle encadrant le commerce de GNL.

marché libéralisé sous le “Natural Gas Policy Act” de 1978. A l’échelle européenne, il a fallu attendre les directives

gazières de 1998 (98/30/CE) et 2003 (2003/55/CE) du Parlement européen pour définir les règles communes de

transport, distribution, approvisionnement et stockage de gaz naturel sous un cadre concurrentiel.
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Fonctionnant initialement comme un business de point à point via des terminaux dédiés, scellés

sous des contrats de long-terme largement inflexibles sur la destination et les volumes, l’industrie

a aujourd’hui pris un tout autre tournant. La révolution américaine du gaz et pétrole de schiste,

combiné à la forte demande asiatique au lendemain de la catastrophe de Fukushima en 2011, a

exacerbé les écarts de prix régionaux, encourageant les décisions de détournement des navires de

leurs destinations initiales. Avec des modèles économiques fondamentalement différents, les vol-

umes mis à disposition par les projets américains récents sont exempts de clauses de destination

et incluent des formules de tarification basées sur une indexation sur les prix hubs.2

A l’heure du dérèglement climatique, d’inéluctables inter-flexibilités se dessinent entre le

marché des énergies renouvelables et celui du gaz naturel. La transition vers une économie

décarbonée a permis aux énergies renouvelables d’émerger comme une source importante dans le

mix énergétique mondial. En 2018, 28% de l’électricité mondiale est issue de sources d’énergies

renouvelables, dont la plupart (96%) est produite à partir de technologies hydroélectriques,

éoliennes et solaires (EIA). Les politiques de soutien à ces énergies combinées à la baisse sub-

stantielle des coûts technologiques expliquent largement la tendance. De manière concomitante,

le gaz naturel a connu des développements sans précédent durant la dernière décennie. Ce dernier

est considéré comme l’énergie fossile la plus respectueuse de l’environnement ; sa combustion

émettant deux fois moins de CO2 que le charbon. La révolution du pétrole et gaz de schiste

américain a également ravivé le potentiel économique gazier sur les marchés énergétiques mon-

diaux. Mais plus important encore, il est au cœur des problématiques posées par le recours aux

énergies renouvelables et en particulier les enjeux liés à leur intermittence. En effet, la capacité

du gaz naturel à complémenter la production d’énergie renouvelable presque instantanément

pour assurer une alimentation ininterrompue en cas d’absence de vent ou d’approvisionnement

solaire, pose la question d’une véritable synergie. En agissant comme des unités de pointes ou

d’équilibrages, les centrales électriques au gaz serviraient de pont vers une production d’énergie

2Néanmoins, du côté asiatique, une période de transition vers une structure de marché plus flexible est attendue.

En effet, les volumes de GNL importés par l’Asie n’étaient flexibles qu’à 5% en 2016 (IEA/OECD, 2016) et la

perspective commune dans l’industrie du GNL prévoit une période de transition de cinq à dix ans pour voir les

marchés d’importation de GNL achever leurs processus de libéralisation et établir un hub disposant de liquidités

suffisantes pour construire un prix de référence crédible pour le commerce asiatique de GNL.
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décarbonée.

Les perspectives de recherches menées au cours de cette thèse ont été largement dictées par

ces évolutions. Pour rendre compte du contexte dans lequel opèrent les mécanismes de flexibilité,

un premier chapitre est consacré à la question de la flexibilité de destination dans les contrats de

long terme de GNL. La période de transition que traverse le secteur rend la question d’autant

plus opportune. A moyen terme, de nouveaux contrats continuerons d’adosser des clauses de

destination, des formules de prix indexés au prix du pétrole et un recours limité au marché spot

(IEA/OECD, 2016). Par ailleurs, la flexibilité des marchés du GNL en tant que métrique des

évolutions actuelles du marché, découlera des contrats eux-mêmes dans les années à venir. Même

si la flexibilité du marché pourrait provenir des approvisionnements de GNL qui ne sont pas sous

contrat, des gestionnaires de portefeuille ou encore des détournements des approvisionnements

de GNL; en réalité, seule la troisième option offre effectivement de la flexibilité. En effet, pour

ce qui concerne les gestionnaires de portefeuille, leur impact en termes de flexibilité s’est avéré

ambigu puisque le GNL acheté sur les marchés spot a tendance à être vendu à des clients sous des

contrats de GNL indexés sur les cours du pétrole (Rogers, 2017). Quant aux approvisionnements

de GNL qui ne sont pas sous contrat, des volumes limités devraient entrer en service au cours

des prochaines années, ce qui signifie que la propension de la production de GNL à répondre à

un choc potentiel de demande est très limitée (IEA/OECD, 2016). Nous nous attachons ainsi

à assigner une valeur économique à l’option de flexibilité de destination dans les contrats de

long-terme à travers l’étude de scénarios de détournement des cargaisons de GNL basée sur une

approche par options réelles couplée à de l’économétrie non linéaire.

Un second chapitre se penche sur l’enjeu majeur de la financiarisation des marchés gaziers

et la flexibilité apportée par l’émergence des hubs gaziers. A cet égard, l’environnement insti-

tutionnel des marchés européens du gaz naturel a connu un changement significatif au cours

de la dernière décennie. Les hubs gaziers britanniques (National Balancing Point) et hollandais

(Title Transfer Facility) ont considérablement gagné en popularité (Heather, 2016). De manière

concomitante, la pratique d’indexation au prix du pétrole dans les contrats de long terme de

gaz naturel a progressivement été remplacée par l’indexation aux prix hub, pour une meilleure

représentation de la dynamique des fondamentaux. Nous posons alors la question de savoir si

l’efficience informationnelle sur ces marchés est atteinte. Nous nous appuyons sur la méthode de
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traitement du signal des ondelettes (Maximum Overlap Discrete Wavelet Decomposition) pour

décomposer les données quotidiennes des marchés spot et futures de gaz naturel Américain

(Henry Hub), Britannique (NBP) et Néerlandais (TTF) pour différentes maturités. Cette

décomposition fréquentielle nous permet ensuite d’étudier les phénomènes de causalité linéaire et

non linéaire à la Granger en multi-résolution mais aussi d’effectuer des tests de marche aléatoires

pour rendre compte du degré de prévisibilité des cours des futures.

Enfin, un troisième chapitre entend rendre compte de l’inter-flexibilité qui se dessine au-

jourd’hui entre le marché du gaz et celui de l’électricité. Des données au niveau Américain

nous permettent de voir si la relation entre le prix du gaz naturel et les investissements dans

les capacités solaires et éoliennes est non linéaire. Plus précisément, nous cherchons à vérifier si

pour des niveaux de production renouvelables relativement bas, les deux modes de production

sont des substituts et si lorsqu’un seuil de volume de production est atteint, les deux deviennent

complémentaires. Un modèle de régression à la Markov Switching a permis de rendre compte

du compromis entre deux caractéristiques majeures de ces modes de production : le degré élevé

de flexibilité de la production d’électricité utilisant le gaz naturel comme intrant et le faible coût

marginal des sources d’énergies renouvelables.

Chapitre I - Flexibilité de destination dans les contrats de long-

terme de GNL

L’archétype du schéma contractuel dans l’industrie du GNL a longtemps été celui d’un

producteur mettant sous contrat la totalité ou une partie substantielle de la production d’une

usine de liquéfaction à des acheteurs pour une moyenne de 25 ans ou plus et pour un prix

indexé sur le pétrole brut. Ces contrats incluaient également des clauses dites ”take or pay”

selon lesquelles le vendeur garantit que le gaz soit mis à disposition de l’acheteur, qui en retour

garantit le paiement d’une quantité minimale d’énergie, qu’il en prenne livraison ou non. Pendant

longtemps, l’indexation des prix s’est faite avec des variations géographiques: le prix du gaz se

fixe en fonction des prix des énergies concurrentes sur chaque marché considéré. Ces clauses

dites netback ne pouvaient être appliquées que si le gaz était effectivement vendu sur le marché

qu’il lui été destiné. Toute possibilité de revente du gaz sous contrat pour l’approvisionnement
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de marchés adjacents était exclue, rendant quasi inexistantes les opportunités d’échanges entre

distributeurs de différents pays ou différents marchés nationaux. Cette structure contractuelle a

connu une profonde reconfiguration au cours de la dernière décennie. La révolution américaine du

gaz et pétrole de schiste combinée à la forte demande asiatique au lendemain de la catastrophe

de Fukushima en 2011 a exacerbé les écarts de prix régionaux, encourageant les décisions de

détournement des navires de leurs destination initiales. Représentatifs d’une tendance globale,

les volumes mis à disposition par les projets américains récents sont exempts de clauses de

destination et incluent des formules de tarification reposant sur l’indexation des hubs gaziers.

Du côté asiatique, une période de transition vers une structure de marché plus flexible est en

revanche attendue durant les prochaines années.

Ce premier chapitre réexamine la question de la flexibilité de destination dans les contrats de

long-terme de GNL en prenant en compte les évolutions récentes du marché et les incertitudes

susceptibles d’affecter sa dynamique. Pour donner une valeur économique à la flexibilité de

destination dans les contrats de GNL, nous combinons une approche par les options réelles

telle que proposée par (Yepes Rodŕıguez, 2008) à de l’économétrie non linéaire. Nous évaluons

la rentabilité d’un routage flexible des cargaisons de GNL en fonction du degré d’incertitude

sur le marché pour un producteur de gaz situé aux États-Unis, en Europe ou en Asie. Cette

étude s’inscrit dans un domaine de recherche relativement vaste qui a considéré l’impact de la

reconfiguration du marché du GNL sur les pratiques contractuelles (Von Hirschhausen, 2008;

Ruester, 2009; Hartley, 2015) et les conséquences sur la question de l’intégration régionale

du marché du gaz naturel (Siliverstovs et al., 2005; Neumann, 2009). Des études récentes se

concentrent sur les efforts des marchés asiatiques pour créer des hubs et modifier les termes des

contrats en vue de la suppression des clauses de destination et l’adoption de formules d’indexation

aux prix hubs (Shi and Variam, 2016).

Méthodologie

La méthodologie retenue peut être décomposée en deux étapes successives. Premièrement,

nous examinons et modélisons les interdépendances dynamiques complexes entre les prix du gaz

naturel observées dans les trois principales régions consommatrices (Japon, Europe et États-

Unis). Puis, des simulations de Monte-Carlo du modèle empirique obtenu sont effectuées pour
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générer un échantillon de trajectoires de prix futures. Ces trajectoires sont à leur tour utilisées

pour déterminer les décisions optimales d’expédition de GNL et leur rentabilité. D’un point

de vue empirique, la stratégie de modélisation retenue considère la nature éventuellement non

linéaire des interdépendances dynamiques entre les prix dans les trois régions. A cet effet,

un modèle VAR à seuil (Threshold Vectorial Auto Regressive) est estimé dans une approche

similaire à celle de Balke (2000), dans laquelle la volatilité des prix du pétrole joue le rôle de

propagateur non linéaire des chocs sur les marchés régionaux du GNL. Le modèle VAR à seuil

combiné à des fonctions de réponses impulsionnelles non linéaires possède un certain nombre

de caractéristiques intéressantes. Premièrement, un tel modèle fournit un moyen assez simple

de capturer des dynamiques non linéaires telles que les réponses asymétriques aux chocs, les

changements de régime et les équilibres multiples. De surcrôıt, la variable par laquelle différents

régimes sont définis peut elle-même être endogène et inclue dans le VAR. Enfin, il nous permet

d’enrichir les analyses existantes sur la relation pétrole-gaz, dans un cadre où le système bascule

entre des régimes élevés et faibles de volatilité des prix du pétrole en réponse à des chocs sur

d’autres variables. L’utilisation de la volatilité des prix du pétrole comme propagateur de chocs

non linéaires prend appui sur plusieurs pratiques: l’utilisation persistante de formules de prix

indexées sur le pétrole dans les contrats de GNL à moyen terme, en particulier pour le principal

importateur (Japon); le comportement des gestionnaires de portefeuille qui ancre sensiblement

la dynamique des prix du pétrole à celle du gaz naturel dans les contrats à court terme; et le lien

bien reconnu des fluctuations des prix du pétrole avec les incertitudes sur l’activité économique

mondiale.

Résultats et interprétations

Les résultats ont généralement mis en évidence une valeur significative de l’option de flexi-

bilité de destination. De surcrôıt, cette dernière s’est avérée considérablement plus importante

dans un scénario de forte volatilité du prix du pétrole. Cela signifie que, plus le marché (asia-

tique notamment), est apte à se repositionner rapidement vers une reconfiguration plus flexible,

impliquant finalement la dissolution des clauses de destination et l’utilisation d’une tarification

marché dans ses termes contractuels, plus les acteurs de cette industrie seront enclins à s’engager

et à profiter d’opportunités d’arbitrage. À cet égard, nos résultats sont en parfait accord avec
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ceux de Shi and Variam (2016) qui appellent à privilégier la question de la flexibilité de desti-

nation dans le cas asiatique.

L’implication de ces résultats est multiple. Premièrement, du point de vue de l’industrie, le

manque à gagner pour un producteur qui serait contraint en termes de destination est con-

sidérable. L’option de destination constitue également une source de profit importante pour les

acteurs en position d’arbitrage. Deuxièmement, au cœur du vif débat sur l’intégration poten-

tielle des marchés régionaux, cette analyse montre que l’aspect contractuel de cette industrie est

susceptible de constituer une sérieuse barrière au commerce mondial de GNL. Nous concluons

qu’il est trompeur de s’attendre à une intégration des marchés du gaz naturel uniquement par

l’effet de l’appropriation des meilleures rentabilités lorsque les fournisseurs peuvent choisir leur

destination finale. Le manque à gagner des producteurs géographiquement restreints met plutôt

en évidence les avantages d’une plus grande dépendance future au marché spot, car même les

partenaires engagés dans des contrats à long terme pourraient bénéficier d’une participation au

marché spot, augmentant ainsi la liquidité de ce dernier. S’il fonctionne en coordination avec

une indexation plus faible aux prix du pétrole, alors, dans ce cas précis, on pourrait s’attendre

à une éventuelle “convergence”. Enfin, la liberté de destination du GNL jouera un rôle pivot en

termes de résilience aux événements imprévus. De ce point de vue et compte tenu du besoin

constant de gérer l’incertitude de la demande de gaz, la valeur de la flexibilité de la destination

dépasse la valeur optionnelle calculée dans cette étude par rapport aux conséquences possibles

d’un choc imprévu.

Chapitre II - Efficience informationnelle des hubs gaziers

Malgré de profondes disparités entre les pays de l’Union européenne, la part de la concur-

rence dite gaz-gaz est passée de 15% en 2005 à 70% en 2017 (IGU, 2018) et semble devenir

le mécanisme dominant de formation des prix. Néanmoins, l’Europe n’est pas encore parv-

enue à créer un marché du gaz complètement concurrentiel requérant la mise à disposition

d’informations sur le marché qui soient non discriminatoires, fiables et opportunes (Garaffa et

al., 2019). Dans le contexte de réserves éparses et d’un nombre limité de fournisseurs, le poten-

tiel d’arbitrage élevé, en particulier à court terme, reste inexploité par les acteurs du marché en

raison d’un accès limité aux infrastructures, d’une insuffisance d’informations fiables et de coûts
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de transaction élevés (Stronzik, Rammerstorfer, and Neumann, 2009). La question de l’efficience

au sens informationnel des hubs gaziers européens se pose donc et suscite des inquiétudes quant

à leur capacité à constituer un support important pour la gestion des risques financiers des

portefeuilles gaziers et l’équilibrage physique.

Ce contexte nous a conduit à examiner l’efficience informationnelle des deux plus grands

marchés européens du gaz naturel (UK NBP et Dutch TTF) en établissant un parallèle avec

le Henry Hub américain via une approche de décomposition en ondelettes, faisant l’objet d’un

second chapitre. L’enjeu d’efficience sur les marchés à terme européens du gaz naturel et leur

rôle dans l’élaboration de stratégies de couverture s’inscrit dans un domaine de recherche limité.

La majorité des travaux sur le sujet s’est concentrée sur le marché nord-américain (Herbert

(1995), Susmel and Thompson (1997), Dincerler, Khokher, and Simin (2005) ou encore Serletis

and Shahmoradi (2006)). Cette question fait écho aux travaux originaux de Cootner (1964) tels

que formalisés par Fama dans les années 1960 qui suppose que les prix observés sur un marché

efficient devraient refléter instantanément toutes les informations disponibles. À tout moment,

les prix sont censés être représentatifs des événements passés et futurs et des attentes des agents

sur ce marché. Implicitement, l’information est censée être accessible à faible coût pour un grand

nombre d’opérateurs qui ne peuvent pas à eux seuls exercer une influence notable sur les prix

ou contrôler systématiquement le marché.

Méthodologie

Nous nous appuyons sur la méthode de traitement du signal des ondelettes (Maximum Over-

lap Discrete Wavelet Decomposition) pour décomposer les données quotidiennes des marchés

spot et futures de gaz naturel Américain (Henry Hub), Britannique (NBP) et Néerlandais (TTF)

pour différentes maturités. Nos séries temporelles sont transformées en domaine fréquentiel sans

perte d’informations dans le domaine temporel. Nos données sont ainsi analysées à plusieurs

échelles de temps et nous permet de ne pas négliger l’aspect saisonnier de la dynamique des

marchés du gaz naturel. Une fois décomposées, elles sont utilisées pour effectuer des tests de

causalité linéaires et non linéaires en s’appuyant sur le test de Diks and Panchenko (2006).

Nous effectuons également plusieurs tests de robustesse pour nous assurer que nos résultats se

maintiennent sous différentes configurations en répétant l’analyse pour les contrats à terme de
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deux et trois mois et en nous appuyant sur différents filtres selon la méthodologie en ondelettes.

Enfin, nous mesurons l’efficience informationnelle des marchés futurs à court et à long terme en

appliquant des tests de marche aléatoires aux résidus des rendement des séries des futures pour

mesurer leur capacité à refléter instantanément toutes les informations de prix disponibles.

Résultats et interprétations

Pour tous les marchés considérés, nous obtenons de solides preuves en faveur d’une relation

de cointégration entre les marchés spot et futures. De surcrôıt, la conduite de tests de causalité a

montré que pour les trois marchés, les informations disponibles circulent entre les marchés spot

et futures. En revanche, pour certaines échelles de temps, les marchés à terme jouent un rôle

plus important dans la découverte des prix pour les hubs gaziers européens. Enfin, l’efficience

informationnelle des trois hubs gaziers n’est atteinte que sur le long terme; l’hypothèse nulle de

marche aléatoire étant rejetée sur des horizons court et moyen termes.

Ces résultats permettent d’établir une évaluation des hubs en fonction de leur capacité à fournir

des prix de référence fiables pour les quantités de gaz sous contrat. En matière de découverte

des prix, les résultats du hub gazier américain se sont avérés robustes à toutes les échelles de

temps considérées, contrairement aux marchés européens. Nous attribuons ce résultat à leurs

divergences structurelles. En effet, les plateformes d’échange de gaz physiques et virtuels ont

des configurations différentes : animées par des activités de transport entièrement privatisées

et compétitives aux États-Unis, elles fonctionnent sous l’égide d’une réglementation par les

gestionnaires de réseaux de transport au niveau européen. Le rôle crucial de la liquidité et de

la capacité de stockage dans les hubs de gaz naturel est discuté et appelle à une augmentation

significative du nombre de transactions physiques européennes entre les marchés, nécessaire pour

réduire les goulets d’étranglement dans les réseaux de transport et les points d’interconnexion.

Chapitre III- Inter-flexibilités entre le marché de l’électricité et

du gaz naturel

L’hypothèse d’une stricte substitution entre des sources stables de production d’électricité

et des sources intermittentes telles que l’énergie éolienne ou solaire s’est vue tempérée dans la

littérature. Alors qu’elles constituent des compléments stratégiques lorsque la production re-
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nouvelable est défavorable, ces énergies peuvent demeurer des substituts à l’équilibre (Bouckaert

et De Borger, 2014). Les capacités renouvelables pourraient également être considérées comme

un substitut aux technologies de base et complémentaires aux technologies de pointe (Garcia,

Alzate, and Barrera, 2012). Dans l’arène politique, Lee et al. (2012) soutiennent l’idée d’une

relation complémentaire en considérant le contexte technique, économique, environnemental et

politique. Les technologies renouvelables et le gaz naturel sont supposés avoir des profils de

risque différents qui offrent des options de portefeuille complémentaires ; comme le suggère

l’importante volatilité des prix du gaz naturel par rapport à un coût de combustible nul pour

les énergies renouvelables ou encore les faibles coûts initiaux pour les usines de gaz naturel par

rapport à la moindre compétitivité des projets d’énergie éolienne et solaire.

Lorsqu’il est question de cibler les moteurs essentiels à une large pénétration des énergies

solaires et éoliennes, la littérature ne parvient à offrir une combinaison unanime entre par ex-

emple, la baisse des coûts des technologies renouvelables, l’impact des politiques climatiques ou

encore la disponibilité du stockage. Comme le soulignent Bistline and Young (2019), les struc-

tures des modèles retenus et les hypothèses d’entrée peuvent expliquer de telles différences, mais

la principale raison tient au fait que la plupart d’entre elles se concentrent sur quelques facteurs

pris isolément. Par exemple, Rodŕıguez et al. (2015) ont étudié l’effet des politiques publiques

sur l’investissement privé dans les énergies renouvelables et ont constaté que, contrairement aux

régimes basés sur des quotas, les régimes de soutien basés sur les prix sont positivement corrélés

avec les contributions financières privées. Dans le même esprit, Criscuolo et al. (2014) ont ex-

aminé le rôle des différentes mesures de politique environnementale (par exemple, les tarifs de

rachat, la réduction de la TVA et le soutien direct aux investissements en capital par le biais

de subventions et incitations fiscales) pour induire un financement à un stade précoce. İşlegen

and Reichelstein (2011) examinent également la question d’un prix des émissions de carbone à

l’équilibre qui propulserait les technologies de séquestration et de stockage du carbone. Sous

le spectre des politiques climatiques, Shearer et al. (2014) soutiennent que l’abondance du gaz

naturel diminuera l’utilisation des technologies du charbon et des énergies renouvelables.

Cette analyse qui fait l’objet d’un troisième chapitre s’est donné pour dessein de relier

ces volets de la littérature dans un cadre cohérent capable d’évaluer de manière exhaustive le

potentiel économique de la pénétration de l’éolien et du solaire sous un angle multifactoriel
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et y explorer le degré de substituabilité / complémentarité entre le gaz naturel et les énergies

renouvelables. En ce sens, nous nous intéressons au même problème que celui discuté par Bistline

and Young (2019) et Baranes, Jacqmin, and Poudou (2017).

Méthodologie

D’un point de vue empirique, la stratégie de modélisation retenue dans ce chapitre con-

sidère la nature éventuellement non linéaire de la dynamique des énergies renouvelables. Plus

spécifiquement, nous testons la présence d’un effet de régime en estimant un Modèle à change-

ment de régime Markovien (MCRM) basé sur des données de janvier 2010 à décembre 2019

de production d’électricité éolienne et solaire et des variables explicatives potentielles couvrant

le marché de l’électricité, les risques de politique carbone, les coûts technologiques ainsi que la

santé économique mondiale. Une caractéristique majeure de ce modèle est telle que le mécanisme

de basculement entre régimes est contrôlé par une variable d’état non observable qui suit une

châıne de Markov d’ordre 1. Le processus peut basculer entre les régimes à plusieurs reprises sur

l’échantillon et nous sommes en mesure d’estimer les probabilités associées à chaque état. Nous

évitons les erreurs de spécification encourues lorsque l’estimation de l’échantillon est simplement

divisée en différents sous-échantillons pour tester la présence d’une rupture structurelle. Qua-

tre MCRM alternatifs sont estimés. Chacune des quatre régressions examine les déterminants

des capacités investies dans l’éolien et le solaire pour mieux saisir le potentiel économique de

la pénétration des énergies renouvelables sous cinq moteurs potentiels. Plus précisément, nous

comparons des modèles qui ajoutent progressivement des variables d’information pour évaluer

leur impact relatif et explorer l’étendue de la substituabilité avec le marché du gaz naturel.

Résultats

Concernant la relation entre la production renouvelable intermittente et le coût du gaz na-

turel, nous apportons des preuves en faveur d’une interdépendance significative entre ces deux

modes de production. Plus important encore, nos résultats soutiennent l’hypothèse que cette

relation est non linéaire, basculant entre un régime élevé et un régime faible de production

d’électricité renouvelable. Ce résultat implique que, pour un niveau de production relativement

élevé via les énergies renouvelables, une augmentation marginale des prix du gaz tend à aug-

menter la part de la production renouvelable. Cette relation de substituabilité ne tient plus
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lorsque nous passons à un régime de production plus faible, étant donné qu’une augmentation

marginale du prix du gaz génère une baisse de la part de la production d’énergies renouvelables.

Par ailleurs, notre modèle laisse présager une probabilité plus élevée d’être dans un régime

élevé de production d’énergie éolienne et un faible régime de production d’énergie solaire. La

probabilité de rester dans le régime faible de production d’énergie solaire est d’environ 95% en

moyenne et la probabilité de passer d’un régime bas à un régime élevé de production d’énergie

éolienne varie entre 39% et 46%, selon le modèle considéré. De surcrôıt, les résultats ont montré

que le gaz naturel et les énergies éoliennes sont plus prompts à être des substituts alors que le

gaz naturel et le solaire exhibent un terrain plus propice à la complémentarité. Le degré possible

de substitution de l’énergie éolienne par le gaz naturel dépendra considérablement du facteur

technologique capable de promouvoir une gamme d’innovations telles que celles du pétrole et

du gaz de schiste et pose la question cruciale du rôle du stockage dans le déploiement de ces

technologies pour contrer le problème de l’intermittence.

L’approche retenue dans cette analyse fait écho à celle suivie par Baranes, Jacqmin, and

Poudou (2017) mais l’enrichit et le complète de plusieurs manières. Premièrement, nous exam-

inons non seulement les différences dans l’impact de nos variables explicatives selon le régime

considéré, mais nous livrons également la probabilité associée au régime de production renouve-

lable élevé ainsi qu’au régime de faible production, la probabilité de transiter de l’un à l’autre

et les durées attendues. Deuxièmement, nous examinons la relation entre le coût du gaz et celui

de la production d’électricité à partir d’énergies renouvelables sous un angle multifactoriel où

la non-linéarité est testée pour toutes les variables informatives intégrées dans le modèle : les

changements de régime peuvent émaner de facteurs liés au marché de l’électricité, au risque de

politique carbone, à la santé économique mondiale et aux coûts des technologies renouvelables.
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Introduction

The question of flexibility has actually always been part of the natural gas industry. It

reflects the very nature of the commodity: demand is not particularly flexible (especially res-

idential) and supply does not always react to price signals in view of the heavy required in-

vestments in production, transport and storage infrastructure. The new situation posed by the

electric demand for natural gas serving as a back-up to the intermittency of renewable energies

and envisaged more and more as a storage solution poses enormous technical, physical, orga-

nizational and regulatory challenges. In this context, the supply and demand for flexibility is

the result of a complex interaction between several factors: among them the development of

natural gas trading hubs, renewable electricity production levels, the availability of cargoes of

liquefied natural gas (LNG) or the development of floating storage. 3 It is from this perspective

that this thesis seeks to analyze the issues that call for flexibility on the natural gas market by

considering recent developments in this market .

The archetypal contractual scheme used in the LNG industry is that of a producer that

contracts either the entire output or a substantial portion of the output of a liquefaction plant to

buyers for an average of 25 years or more for a price indexed to crude oil. In most cases, buyers are

mid-stream utilities that sell gas and electricity to end customers. A typical contract also includes

the so-called ”take or pay” clauses according to which the seller guarantees the gas will be made

available to the buyer, who in return guarantees the payment of a minimum quantity of energy,

that he takes delivery or not. For a long time, price indexation was done with geographical

variations: the price of gas was fixed according to the prices of competing energies on each

market considered. These ”netback” clauses could be applied only if the gas was indeed sold on

3See e.g. Cornot-Gandolphe (2002), IEA/OECD (2016) and IGU (2017).
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the market for which it was intended. This clause excluded any possibility of resale of contracted

gas to supply in adjacent markets. There was therefore no opportunity for trade between

distributors in different countries, nor for trade-offs between the different national markets.

Security of supply and investment has been claimed as reasonable reasons to introduce these

traditional “dedicated contracts” with a predefined destination of the cargoes (Glachant and

Hallack, 2009) even if it clearly constitutes a roadblock to a ”gas-to-gas competition”.4 Recent

developments have led to a deep reconfiguration of the contractual structure governing the LNG

trade. The waves of market liberalization, third-party access to regasification infrastructures,

the substantial increase of the fleet of LNG vessels and the rise in the number of buyers have

been crucial (Corbeau and Ledesma, 2016). The American shale gas revolution combined with

strong Asian demand in the aftermath of the Fukushima disaster in 2011 have exacerbated

regional price differentials, further encouraging diversion decisions. In this context, long-term

contracts experienced fundamental changes in comparison with their former structure : the

contract duration substantially decreased and hub pricing is increasingly replacing oil-indexed

prices (Hartley, 2015).16. Asia is still experiencing a transition period toward more flexible

market structure. Indeed, LNG volumes imported by Asia were only flexible at 5% in 2016

(IEA/OECD, 2016) and the common prospect among the LNG industry foresees that it will

take five to ten years to see LNG import markets complete their liberalization processes and

establish a hub with sufficient liquidity to build a credible reference price for Asian LNG trade.

In the meantime, Asian buyers are showing their support for a change in oil price indexation for

new long-term contracts.

Against this background, the persistent need to resort to long-term contracts in the LNG

industry leaves open the issue of destination flexibility that remains unresolved in Asian markets.

The transition period toward a more flexible repositioning independent of oil indexation needs

time to be completed and is accompanied by strong uncertainties over the medium-term horizon

of the LNG market. To take this into account, we have adopted in the first chapter the only

approach that has gave an economic value to the diverting option in the LNG market (Yepes

Rodŕıguez, 2008) by connecting a real option approach to two literature strands: one on the

4See among others Creti and Villeneuve (2004), Ruester (2009), Neumann, Siliverstovs, and Hirschhausen

(2006) and Massol and Tchung-Ming (2010).
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integration of regional natural gas markets where little research has been investigated since the

post-2010 gas price differentials and the other one on the persistent influence of oil prices on the

dynamics of the gas markets. More specifically, the profitability of an LNG cargo shipment is

examined for a single supplier taking into account the uncertainty in the medium-term dynamics

of the gas markets. The natural gas price trajectories in Asia, America and Europe are modeled

using a threshold VAR representation (Threshold Vectorial Autoregressive Model) in which the

dynamics of the system switches back and forth between a regime of high and low uncertainty

on oil prices. A real option approach is then used to give an economic value to this flexibility of

destination of LNG supplies via Monte-Carlo simulations of our empirical model. The calculation

of the flexibility option made it possible to determine for each possible trajectory of a producer

located in the United States, Asia or Europe the optimal destination decisions and the associated

profitability. Our results point to an important source of profit for the sector and reveal the future

movements of the vessels. Finally, they shed light on the question of the conditional impact of

flexibility of destination on the question of the global integration of natural gas markets.

The abolition of state monopolies and exclusive concessions for the transport and distribu-

tion of gas has led to the emergence of gas hubs where new gas services have developed. These

interconnection zones between pipelines, ideally near storage infrastructures and consumption

centers, ensure ease of transport and short-term balancing of gas supply and demand. The spot

and future markets offer a new source of flexibility to market players to hedge against price

risks and take advantage of arbitrage opportunities. Gas is traded like any other commodity

but more importantly, flexibility tools are provided as tradable services with market value. The

use of storage is very representative of this trend: it has gone from a physical management tool

providing flexibility during episodes of demand peaks to an independent trading service combin-

ing physical hedging with the exploitation of arbitrage opportunities. Over the past decade, the

institutional environment for European natural gas markets has changed significantly. In this

regard, British (National Balancing Point) and Dutch (Title Transfer Facility) gas hubs have

grown considerably in popularity (Heather, 2016). Concomitantly, the practice of indexing to

oil prices in long-term natural gas contracts has gradually been replaced by hub indexation for

a better reflection of the dynamics of fundamentals.

In this context, a second chapter focuses on a major issue of the financialization of gas



6 Introduction

markets by examining the question of the informational efficiency of natural gas hubs. We rely

on Maximum Overlap Discrete Wavelet Decomposition to decompose the daily data of the spot

and future markets of American (Henry Hub), British (NBP) and Dutch (TTF) natural gas for

different maturities. This frequency decomposition then allows us to study linear and non-linear

Granger-like causality phenomena in multi-resolution but also to perform random walk tests to

account for the degree of predictability of future prices. Causality tests show that the Henry

Hub market exhibits strong bidirectional causality between the spot and futures markets. The

results are less unanimous for the European markets with inconsistencies in the direction of

causal relationships across time scales and maturities of futures contracts. Finally, for the three

futures markets considered, information efficiency is only achieved in the long term. The results

made it possible to establish an evaluation of the three hubs considered in terms of capacity to

provide reliable reference prices for the quantities of gas under contract through a discussion on

the crucial role of liquidity and storage capacity.

Against the backdrop of climate change and global warming, inevitable inter-flexibilities are

emerging between the renewable energy market and the natural gas market. The transition to a

low-carbon economy has enabled renewable energy to emerge as an important source in the global

energy mix. In 2018, 28% of the world’s electricity came from renewable energy sources, most

of which (96%) was produced from hydroelectric, wind and solar (EIA) technologies. Support

policies for these energies combined with the substantial drop in technological costs largely

explain the trend. Concomitantly, natural gas has experienced unprecedented developments over

the past decade. The American shale oil and gas revolution has rekindled the economic potential

of gas in the global energy markets. The latter is considered to be the most environmentally

friendly fossil fuel; its combustion emitting half as much CO2 as coal. But more importantly, it

is at the heart of the issues raised by the use of renewable energies and in particular the issues

related to their intermittency. Indeed, the ability of natural gas to complement the production of

renewable energy almost instantaneously to ensure uninterrupted supply in the event of absence

of wind or solar supply poses the question of a real synergy.

The hypothesis of a stricto sensu substitution between reliable source of electricity production

and intermittent sources such as wind or solar power have been tempered in the literature. They

might be strategic complements when renewable generation is unfavorable, remaining substitutes
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at the equilibrium (Bouckaert and De Borger, 2014). Renewable capacity could also be seen

as a substitute to baseload technologies and complementary to peak generation technologies

(Garcia, Alzate, and Barrera, 2012). In the policy arena, Lee et al. (2012) support the idea of

a complementary relationship by considering technical, economic, environmental and political

context. Moreover, the economic literature disagree as to which combinations of a plethora of

potential drivers will allow for a wide penetration of wind and solar technologies (e.g. declining

renewable costs of conventional technologies, climate policies, energy storage availability). For

example, Rodŕıguez et al. (2015) investigated the effect of government policies on private finance

investment in renewable energy and found that, in contrast to quota-based schemes, price-based

support schemes are positively correlated with private finance contributions. In the same vein,

Criscuolo et al. (2014), examined the role of different environmental policy measures (e.g. feed-in-

tariffs, tradable renewable certificates, sales tax or VAT reduction, and direct capital investment

support through subsidies, grants, rebates, and tax incentives) in inducing early-stage financing.

The third chapter aims to connect these strands of literature in a consistent framework able

to comprehensively assess the economic potential of wind and solar penetration under many

prospective drivers and explore in the same vein the degree of gross substitutabilities/ comple-

mentarities between natural gas and renewable energy. In this sense, we are interested in the

same problem to the one discussed by Bistline and Young (2019)and Baranes, Jacqmin, and

Poudou (2017). From an empirical perspective, the modeling strategy retained in the present

paper considers the possibly non-linear nature of the renewable energy dynamics. More specifi-

cally, we test for the presence of regime effect by estimating a Markov Regime-Switching Model

(MRSM) based on monthly data from January 2010 to December 2019 of wind and solar elec-

tricity generation and potential explanatory variables spanning from electricity market, carbon

policy risks to global economic health. Four alternative MRSMs are estimated. Each of the four

regressions looks at the determinants of invested wind and solar capacities by adopting a “from

specific to general” strategy to better grasp the economic potential of renewables penetration un-

der five prospective drivers. In this context, we compare models that gradually add information

variables to comprehensively assess their relative magnitude and explore thoroughly the extent

of substitutabilities with the natural gas market. First, our results support the hypothesis that

renewable electricity generation dynamics is non-linear, switching between a high regime and a
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low regime of production. Second, results portend a higher probability of being in a high regime

of wind power generation and a low regime of solar power generation. Thirdly, natural gas and

wind energies are more prompt to be substitutes whereas natural gas and solar energies exhibit

more scope for complementarity. We discuss the crucial role of storage in the deployment of

such technologies.
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Chapter 1

What can be learned from the free

destination option in the LNG

imbroglio?

Foreward

This first chapter is my first contribution as a PhD student. It’s the culmination of reflexions
and dicussions with Anna Creti and Olivier Massol, who coauthored the final paper published
in Energy Economics (Baba et al., 2020). I wish to thank the anonymous referees for their con-
tructive comments. I am also grateful to the participants of the CEMA conference at Sapienza
University, Rome in June 2018, the FAEE workshop at Mines de ParisTech in July 2018 and the
doctoral Energy Workshop at the University Paris Dauphine in September 2018 for construc-
tive comments and suggestions. Iam also indebted to Marc Joëts for his very constructive review.

Abstract

We examine the profitability of flexible routing by LNG cargoes for a single supplier taking
into account uncertainty in the medium-term dynamics of gas markets. First, we model the
trajectory of natural gas prices in Asia, Northern America, and Europe using a Threshold Vector
AutoRegression representation (TVAR) in which the system’s dynamics switches back and forth
between high and low regimes of oil price volatility. We then use the generalized impulse response
functions (GIRF) obtained from the estimated threshold model to analyze the effects of volatility
shocks on the regional gas markets dynamics. Lastly, the valuation of destination flexibility in
LNG supplies is conducted using a real option approach. We generate a sample of possible future
regional price trajectories using Monte Carlo simulations of our empirical model and determine
for each trajectory the optimal shipping decisions and their profitability. Our results portend a
substantial source of profit for the industry and reveal future movements of vessels. We discuss
the conditional impact of destination flexibility on the globalization of natural gas markets.
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CHAPTER 1. WHAT CAN BE LEARNED FROM THE FREE

DESTINATION OPTION IN THE LNG IMBROGLIO?

1.1 Introduction

The 21st century imperative of flexibility has not spared the liquefied natural gas (LNG)

industry. Reaching a historic high in 2016 with 258 million tons (Mt) of traded LNG volumes

(IGU, 2017), global LNG trade is set to be fostered by projections of strong growth of global

gas supplies mainly driven by the US shale advent and the arrival of new liquefaction capacities

from Australia. In terms of additional capacities, the emergence of new actors not only has

a major impact but it also provides a key contribution to flexible contracted volumes. With

fundamentally different business models, volumes made available by US projects are sold free on

board (FOB) and include pricing formulas that rely on hub-indexation. The growing flexibility

wisdom is part of a more generalized movement that has led to an increase of spot and short-term

LNG trade and fewer long-term binding contracts with decreased duration, relaxed inflexible

clauses (e.g., take-or-pay obligations), fewer destination contraints1 and an increasing reliance

to hub-indexation allowing for gas-to-gas competition (Ruester, 2009; Hartley, 2015).2

However, this shift remains progressive. A transition period with new contracts that still

includes destination clauses, oil indexation pricing formulas and limited reliance on spot trade

is expected on the medium-term horizon (IEA/OECD, 2016). This transitional phase primarily

involves Asia as the focal point of action in the coming years. The common prospect in the LNG

industry foresees that it will take five to 10 years to see LNG imports markets complete their

liberalization process and establish a hub with sufficient liquidity to build a credible reference

price for Asian LNG trade.

Meanwhile, flexibility in LNG markets, as a good metric of the current market evolutions,

will stem from contracts themselves in the coming years. Yet market flexibility could come from

uncontracted LNG supplies, portfolio players3 and diverted LNG supplies. However, only the

1The US shale gas revolution and the aftermath of the Fukushima disaster in 2011 have exacerbated regional

price differentials, further encouraging buyers to re-sell/divert LNG cargoes to third-party destinations.
2Among the market developments that have prominently contributed to this reconfiguration, the waves of

market liberalization, the end of destination clauses in Europe, the substantial increase in the number of buyers,

third-party access to regasification terminals, the large growth of LNG fleet and the regional gas price differentials

post-2010 have been crucial.
3They aggregate supplies from diverse projects and re-sell to different customers.
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third option effectively provides flexibility.4

Our paper aims at putting contract flexibility into the perspective of medium-term market

evolution based on market forecast. To determine the value of destination flexibility in LNG

contracts, we follow and extend the real option approach proposed by Yepes Rodŕıguez (2008)

by evaluating the profitability of flexible routing of LNG cargoes for a single supplier according

to the degree of uncertainty in the market. That methodology can be decomposed into two

successive steps. First, one has to examine and model the intricate dynamic interdependences

among the prices of natural gas observed in the three main consuming regions (Japan, Europe,

and United States). Then, Monte Carlo simulations of the obtained empirical model are con-

ducted to generate a sample of future price trajectories that are consistent with the observed

price dynamics. These trajectories are in turn used to determine the optimal LNG shipping

decisions and their profitabilities.

From an empirical perspective, the modeling strategy retained in the present paper considers

the possibly non-linear nature of the dynamic interdependences among these prices to meet the

following three requirements. The first is to exploit the inter-relationships between the three

markets by moving beyond of the generally used linear cointegrating framework as in Neumann

(2009), Brown and Yücel (2008) and Kao and Wan (2009). In this vein, Siliverstovs et al.

(2005) analyzed the relationship between international natural gas market prices through prin-

cipal components analysis and Johansen likelihood-based cointegration procedure.5 Their most

important result is that the natural gas markets accross the Atlantic were not integrated with

limited opportunities for arbitrage between either side of the Atlantic. This finding implies that

the contractual structures and the dynamics of fundamentals remained intrinsically different.6

4Indeed, concerning portfolio players, their impact in terms of flexibility has been found to be ambiguous as

the flexible LNG purchased tend to be sold to customers with oil-indexed LNG contracts (Rogers, 2017). As for

the uncontracted LNG supplies, limited volumes are expected to come on stream over the next few years meaning

that the extent to which LNG production would be able to respond to a potential demand shock is very limited

(IEA/OECD, 2016).
5Both of them show a high level of natural gas market integration within Europe, between the European and

Japanese markets as well as within the North American market.
6The rise in Henry Hub prices in the early 2000s has triggered the construction of major regasification terminals

that the shale gas revolution finally converted into liquefaction units. On the other side of the Atlantic, Europe

has experienced a gradual decoupling of natural gas prices from those of oil since 2009 in a context of limited
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The second is to consider the presence of nonlinearities: linear models may not correctly capture

transaction costs, market power (Ritz, 2014), asymmetry of the economic cycle, extreme events,

regulations and inherent rigidity in the market. All these factors may cause non-linear effects

such as unexpected changes, structural breaks or asymmetric responses to news.7 Thirdly, we

need to recognize the uncertainties that may affect the dynamics of natural gas markets. The

current context especially highlights the uncertainty weighing on the Asian demand, the extent

to which Europe will maintain its role of balancing the market and on the pace at which the

transition to market- related pricing mechanisms will take place, particularly in Asia, to replace

oil indexation pricing in long-term contracts.

Our paper breaks new ground by estimating a threshold vector autoregressive model (TVAR)

in a similar approach to that of Balke (2000), in which oil price volatility8 plays the role of

non-linear propagator of shocks in the regional LNG markets. The Threshold VAR model

combined with nonlinear impulse response functions has a number of interesting features that

make it attractive for our purpose. First, a TVAR model provides a fairly simple way to

capture non-linear dynamics such as asymmetric responses to shocks, regime-switching and

multiple equilibriums. Moreover, the variable by which different regimes are defined can itself

be endogenous and included in the VAR.9 More interestingly, the impulse response functions are

no longer linear as they depend on the sign and the size of the shock but also on initial conditions;

they are derived as conditional forecasts at each period of time. Therefore, it becomes possible to

analyze time-variance in responses to shocks not only across regimes, but also within regimes.10

regasification capacities across the region. Compared to the US and European gas markets that are mainly

supplied by local producers or pipeline imports, Japan is highly dependent on LNG imports. In this market, the

Fukushima disaster in 2011 brought a turning point inthe LNG price dynamics.
7Creamer and Creamer (2014) applied Brownian Distance Correlation tests for non-linearity to one-month

forward futures of natural gas from the NYMEX and found significant non-linear relationships. This is also

confirmed by Matilla-Garćıa (2007) based on the generalized Brock-Dechert-Scheinkman and Kaplan’s test.
8Measured as the sample standard deviation of adjusted log price changes by using WTI spot prices.
9This is not the case within the framework of Markov-switching models where regime shifts evolve according to

a Markov chain with a state variable not directly observable, or nonlinear logistic smooth transition VAR models

where regime changes are determined by the asymmetric and dynamic interactions of all the variables.
10This feature makes a threshold VAR a convenient alternative to time-varying parameter (TVP)-VAR that

imposes a priori structure and will allow us to analyze the impact of shocks according to different regimes of oil

price volatility in the European, Japanese, and US markets.
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Finally, the TVAR allows us to exploit the oil-gas relationship as the system switches back and

forth between high and low regimes of oil price volatility in response to shocks to other variables.

The use of that variable is supported by several practices: the persisting use of oil-indexed price

formulas in long-term LNG contracts over the medium-term horizon, especially for the major

importer (Japan); the behavior of portfolio players that will substantially anchor the oil price

dynamics to that of the natural gas in contracts with short-term expiration dates;11 and the

well-recognized linkage of oil price fluctuations with uncertainties about the global economic

activity.

We then generate Monte Carlo simulations of the future price series and the subsequent

shipping decisions to get the distribution of values for the option of diverting cargoes. The mean

value over 10,000 possible future price trajectories in the three alternative destination markets is

considered in each scenario. By taking into account the freight route costs, we have considered

several configurations of an LNG supplier based either in Australia, Africa, the Middle-East,

or North America. A base case where the supplier is committed to send its LNG cargoes to

a unique destination (Europe, Japan or North America) is compared to a free destination case

where LNG could be flowed to one of three alternative markets to maximize the profits obtained

from the sale of that cargo on a monthly basis.

Results have generally highlighted a significant value of the flexibility option. Moreover, the

option of free destination has been found to be substantially larger in the high case scenario

suggesting that the more the market, particularly in Asia, swiftly repositions to a more flexible

reconfiguration, ultimately involving the dissolution of destination clauses and the use of a hub-

pricing in contractual terms, the more the players of this industry will be inclined to commit and

take advantage of arbitrage opportunities. In this respect, our results are in perfect agreement

with those of Shi and Variam (2016) that call for a prioritization of the destination issue over

oil-indexation in East Asia .

This paper fits into a relatively large research area that considers the impact of the LNG

market reconfiguration on the contractual practices (Von Hirschhausen and Neumann (2008),

Ruester (2009), Hartley (2015)) and the consequences on the issue of regional NG market in-

tegration (Siliverstovs et al. (2005) and Neumann (2009)). Recent studies focus on East Asian

11They tend to buy gas-indexed volumes and resell with oil-indexed formulas (IEA/OECD, 2016).
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markets efforts in creating hubs and changing contract terms toward a removal of destination

clauses and the adoption of hub indexation (Shi and Variam, 2016). The debate over whether

the Asian premium in NG trade is due to price discrimination or market fundamentals is also

considered (Zhang, Shi, and Shi, 2018). Concerning the specific question of destination re-

striction in long term LNG contracts, YepesRodŕıguez (2008) is the only study that exclusively

focuses on this issue. Our paper enriches this literature as no existing study re-examined this

issue by taking into account recent developments in the LNG market and the uncertainties that

may affect its dynamics.

We extend Yepes Rodŕıguez (2008) in several ways. First, instead of describing the evolution

of NG prices with Brownian motions which have the drawback of moving far away from their

initial point, we rather consider a threshold modeling strategy based on a non-linear econometric

approach (Balke, 2000). To the best of our knowledge, this is the first modeling analysis that

takes into account the role of oil price volatility as a non-linear propagator of shocks to provide

a new understanding of the link between regional natural gas price references. It hence fills

the gap in the literature about gas market integration as the issue has been neglected since

201012 and also the one related to the more complex evolving relationship between oil and gas

markets. Secondly, our model allows the value of the free destination option to be associated

to a level of uncertainty in the market: these scenarios expand the scope of the valued option

to the increasingly complex outlook of LNG. This is an other line of improvement regarding

the hypothesis of constant prices volatility assumed in the Yepes Rodŕıguez (2008) approach as

regional prices dynamics in our model switch back and forth between a high and low regime of oil

price volatility. Thirdly, we have assumed the possibility to benefit from arbitrage opportunities

on a monthly basis as a way to strengthen Yepes Rodŕıguez (2008) results that have suggested

an important share of the destination flexibility option in the LNG value chain on a yearly basis.

Finally, by taking into account spatial considerations, we have extended the calculation of the

flexibility option to suppliers based in five countries and have estimated the profitability from

diverting their cargoes to an alternative market.

Our results have useful implications. First, from the industry standpoint, not only the

12To the best of our knowledge, there has been are no econometric study on the degree of integration of

intercontinental gas markets since 2011.
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shortfall for a producer who would be constrained in terms of destination by a long-term contract

could be conveyed by the destination option but also the important source of value for profit

motive actors who are in a position to arbitrage. In this respect, the recent arrival of trading

houses in this market would be prominent in terms of flexibility and market diversification;

and the present work should help to understand how to value and manage these participants’

businesses. Secondly, at the heart of the vivid debate over the potential integration of regional

markets, this paper shows that the contractual aspect of this industry is capable of constituting

a serious barrier in global LNG trade. The required cautious interpretation of the impact of the

destination option on natural gas price convergence debate has been discussed. We conclude that

expecting an integration of NG markets only via the effect of appropriation of best netbacks

when suppliers can choose their ultimate market destination is misleading. The shortfall of

geographically constrained producers rather highlights the benefits of greater future spot market

reliance as even partners engaged in long-term contracts could profit from a participation in the

spot market, thus increasing the liquidity of the latter. If it works in tandem with a lower

indexation of oil prices and the market forces driving movements of vessels then, in this exact

case, one would expect a possible ”convergence”. Finally, from a security of supply standpoint,

with relatively low physical flexibility from the LNG export infrastructure and high utilization

of liquefaction plants that tend to be base load (IEA/OECD, 2016), making it possible for the

contracting parties to supply additional LNG or shifting the destination of LNG delivery, would

play a pivotal role in terms of the resiliency to unforeseen events. From this perspective and in

view of the steadfast need to manage gas demand uncertainty, the value of destination flexibility

far outweighs the optional value calculated in this paper compared to the possible consequences

of an unforeseen shock.

The remainder of the paper is organized as follows. The next section presents a brief overview

of the existing theoretical and empirical studies surrounding the contractual aspect of the LNG

industry and the question of destination flexibility. Sections 3 and 4 describe the real option

model for the valuation of destination flexibility option and the model underlying LNG prices

forecasts. Sections 5 and 6 present the results. Sections 7 and 8 discuss and conclude the paper.
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1.2 Background

In the following, we present an overview of the contractual aspects of the natural gas industry

and the issue of destination clauses that we contextualize in the new LNG market environment.

1.2.1 Long-term commitments and LNG trade

The pivotal question of destination flexibility is above all a matter of contract. Long-term

commitments have always been an inherent component of the LNG business and the economics

literature has extensively grasped the issue by flaunting the merits of these contractual im-

peratives on the one hand and analyzing their impact on NG trade on the other. Williamson

(1979)’s seminal work helps us to understand the irrepressible need for long-term contracts via

transaction costs economic theory. The durable transaction-specific and infrastructure-related

nature of NG investments not only call for long-term contracts to support high investment costs

but it also exposes the parties to hold-up risk. More specifically, it assumes the possibility of

ex-post opportunistic behavior and strategic bargaining by the trading partners that suggest we

move beyond the picture of an impersonal market and perceive the idiosyncrasy of contractual

relations. Klein, Crawford, and Alchian (1978) described it as “appropriable quasi rents” that

substantially explain decisions to vertically integrate. Entering into long-term contracts is then

seen as an efficient tool to minimize transaction costs in view of the limited rationality of the

players adding the issue of asymmetric information. Masten (1998)’s study refers to several

works that aimed at analyzing contracts duration and design. Pirrong (1993) concludes that

long-term arrangements prevail in specialized markets and reputation and repeat transactions

are not enough to prevent strategic behavior without formal commitments. In this respect, the

capital intensity of infrastructures in the gas industry has paved the way for several analyses

on the sector from both a theoretical and an empirical point of view (see, among others, Gray

(1978), Hubbard and Weiner (1986), Crocker and Masten (1988) and Klein, Frazier, and Roth

(1990)). Creti and Villeneuve (2004) provide empirical and theoretical insights on long term

contracts by examining the role of take-or-pay clauses and price indexation and opening up

the discussion on the impact of regulation in the optimal contract duration. In Neuhoff and

Hirschhausen (2006), they studied the role of long-term contracts under the liberalization point

of view. In the same vein, Von Hirschhausen and Neumann (2008) focused on factors affecting
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the duration of contracts by examining 311 long-term contracts between natural gas producers

and consumers between 1964 and 2006. Contract duration is found to be shorter for deliver-

ies in the US and UK markets and contracts related to investment in specific projects are of

longer duration (see Ruester (2009)). Massol and Tchung-Ming (2010) underline that these rigid

contractual structures result in a cost-inefficient organization of LNG shipping that could be ra-

tionalized. Price convergence within regional markets has also been studied (Serletis (1997);

Walls (1994), and Neumann, Siliverstovs, and Hirschhausen (2006)). Few researches have in-

vestigated the potential integration of gas markets from a global perspective. Siliverstovs et al.

(2005) obtain mixed results from a cointegration technique with evidence of market integration

between European and Japanese markets but no integration between North America and Japan.

Over the period 1999 to 2008, Neumann (2009) finds increased convergence of gas spot prices

between North America and Europe and Barnes and Bosworth (2015)’s results suggests that

the international NG market is less regional overall due to increased trade in LNG via a gravity

model.

1.2.2 Destination flexibility

The archetypal contractual scheme used in the LNG industry is that of a producer that

contracts either the entire output or a substantial portion of the output of a liquefaction plant

to buyers for an average of 25 years or more for a price indexed to crude oil. In most cases,

buyers are mid-stream utilities that sell gas and electricity to end customers. A typical contract

also includes the so-called ”take or pay” clauses according to which the seller guarantees the

gas will be made available to the buyer, who in return guarantees the payment of a minimum

quantity of energy, that he takes delivery or not. For a long time, price indexation was done

with geographical variations: the price of gas was fixed according to the prices of competing

energies on each market considered. These ”netback” clauses could be applied only if the gas

was indeed sold on the market for which it was intended.13 This clause excluded any possibility

of resale of contracted gas to supply in adjacent markets. There was therefore no opportunity for

trade between distributors in different countries, nor for trade-offs between the different national

markets. Security of supply and investment has been claimed as reasonable reasons to introduce

13More specifically, final destination clause made it possible to base the formula for calculating the price in

”netback”.
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these traditional “dedicated contracts” with a predefined destination of the cargoes (Glachant

and Hallack, 2009) even if it clearly constitutes a roadblock to a ”gas-to-gas competition”.

Nevertheless, even when long-term contracts do not entail destination restrictions, the in-

coterms may be such as to hinder market flexibility. In this respect, the Delivered Ex Ship

(DES) contracts require that the gas exchange takes place at the port of destination and that

any redirection of LNG cargoes prior to arrival at the agreed port requires some negotiation

between buyers and sellers. On the other hand, Free on Board (FOB) contracts suggest that the

exchange of LNG is done at the port of loading thus leaving more room for maneuver to divert

the cargoes from their original destination.14 When FOB deliveries are concerned, “destination

flexibility” actually refers to the fact of being able to divert a shipment of LNG according to

its original destination; for a DES contract, one speaks about “right of diversion” to designate

this phenomenon (Corbeau and Ledesma, 2016). Beyond these contractual considerations, buy-

ers under the aegis of a long-term contract may come to demand the diversion of their cargo

to an alternative market for operational reasons such as technical issues, insufficient demand,

limited storage capacity at unloading terminals or force majeure. These so-called “cargo swaps”

represent only a tiny fraction of the LNG trade and are often seen as an effective means of

reducing navigation distances when both counterparts are able to receive LNG in two different

destinations.15

When it comes to commercial reasons underpinning the diversion decision, the contractual

landscape becomes complex. As highlighted by the survey on LNG trades by the Japan Fair

Trade Commission (2017), there are some contracts providing that diversion “shall not be due

to buyer’s commercial reasons” or “diversion is not for resale to seller’s other customers” or that

“diversion shall be due to only seller’s direct sales to a third party, who owns or manages an

unloading terminal”.

14In the DES contracts, the seller is responsible for the delivery of LNG and assumes the costs of transport and

insurance contrary to FOB contracts where the buyer must bear these costs.
15Additional costs must be taken into account in the event of a diversion decision: transport costs, port charges,

insurance fees, additional costs of the replaced LNG in the initial market and regasification fees in the alternative

market.
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1.2.3 LNG markets’ growing flexibility

Recent developments have led to a deep reconfiguration of the contractual structure gov-

erning the LNG trade. The waves of market liberalization, third-party access to regasification

infrastructures, the substantial increase of the fleet of LNG vessels and the rise in the number

of buyers have been crucial (Corbeau and Ledesma, 2016). The American shale gas revolution

combined with strong Asian demand in the aftermath of the Fukushima disaster in 2011 have

exacerbated regional price differentials, further encouraging diversion decisions. In this context,

long-term contracts experienced fundamental changes in comparison with their former struc-

ture : the contract duration substantially decreased and hub pricing is increasingly replacing

oil-indexed prices (Hartley, 2015).16. Asia is still experiencing a transition period toward more

flexible market structure. Indeed, LNG volumes imported by Asia were only flexible at 5% in

2016 (IEA/OECD, 2016) and the common prospect among the LNG industry foresees that it

will take five to ten years to see LNG import markets complete their liberalization processes and

establish a hub with sufficient liquidity to build a credible reference price for Asian LNG trade.

In the meantime, Asian buyers are showing their support for a change in oil price indexation for

new long-term contracts.17 Shi and Variam (2016) examined the potential impact of East Asia’s

efforts in creating hubs and changing contract terms toward a removal of destination clauses

and the adoption of hub indexation. Using the Nexant World Gas Model, their findings suggest

that the removal of the destination clause in long-term LNG contracts should be the priority

over indexation issues for two reasons. First, this does not imply liberalizing the market, which

can be very costly in terms of time. Secondly, importing countries have all the sovereignty to

forbid firms to sign contracts with oil indexation (Cogan Jr, 2006).

Against this background, the persistent need to resort to long-term contracts in the LNG

industry leaves open the issue of destination flexibility that remains unresolved in Asian markets.

The transition period toward a more flexible repositioning independent of oil indexation needs

16This result is also related to the elimination of destination clauses in European contracts that were found to be

anticompetitive by the European Commission in 2011. Such restrictions were considered as price discrimination

by maintaining the seller’s prices in different markets.
17The share of oil indexed contracted LNG and pipeline gas in East Asia was 88% higher than the global average

of 65% (IGU, 2016).
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time to be completed and is accompanied by strong uncertainties over the medium-term horizon

of the LNG market. To take this into account, we have adopted the only approach that has gave

an economic value to the diverting option in the LNG market (Rodŕıguez, 2008) 18 by connecting

a real option approach to two literature strands: one on the integration of regional NG markets

where little research has been investigated since the post-2010 gas price differentials19 and the

other one on the persistent influence of oil prices on the dynamics of the gas markets (section

1.4.3 explains in detail the transmission mechanisms at play).

1.3 Real option model for the valuation of the free destination

We develop a model to evaluate the opportunity of flexible routing of LNG cargoes for a

single supplier. Our approach can be decomposed into three successive steps. First, we model

the interactions among the price series observed in the three main importing regions using a

threshold VAR specification. In a second step, we use that empirical model to conduct a series of

Monte Carlo simulations aimed at generating a large number (10,000) of future price trajectories

over a 36-month horizon. By construction, these trajectories are consistent with the observed

dynamics. Third, we evaluate, for each of these trajectories, the stream of future net revenues

obtained by an LNG exporter under two cases depending on whether the destination of its

shipments is kept fixed or flexible.

By construction, the net present value of the exporter’s stream of future revenue depends on

the location of the exporter’s liquefaction plant. Hence, we successively consider several possible

locations in Oceania (Australia), Middle-East (Qatar), North America (USA - Atlantic), North

Africa (Algeria), West Africa (Nigeria) where the LNG is committed to a unique destination

(Europe, Japan or North America) as a base case (hereafter, labeled reference case). We will

then compare it to the free destination case where LNG can flow to one of the three alternative

markets to maximize the profits obtained from the sale of that cargo. Depending on the location

of the supplier and its alternative destinations, the extra transportation costs would reflect,

among others, the fuel oil cost, the vessel charter rate, the ship size, the trip length, and
18Results suggested that the free destination option is highly likely to improve the value of long-term LNG

supplies by between 6% and 43% .
19International price correlations should have declined compared to the mid/late 2000s with the Fukushima

accident representing a structural break.
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other fundamental elements of the full-blown shipping market. Benefiting from an arbitrage

opportunity will then occur in those months in which the price differentials between the initial

and alternative market destination would be large enough to counterbalance the incremental

shipping costs of diversion.20 Following Yepes Rodŕıguez (2008), the value of a destination

flexibility option for a unit production capacity in a given month m:

v(m) = Max(palternative(m)− preference(m)−4t(m); 0) (1.1)

with palternative: the average price of LNG in a future month m in the three possible alternative

markets (Europe, Japan, and the US) and preference the average price of LNG in the initial

market in a future month m.

The value v(m) has to be compared with the value of LNG supply without destination

flexibility:

v̄(m) = max(preference(m)− treference(m); 0) (1.2)

The results of each scenario are presented in terms of the monthly average unit of v(m) for

a supply period T of 36 months. We let V denote the average value of destination flexibility for

this medium-term period for a unit production capacity as the discounted sum of v(m) over the

supply period of T months:

V =

T∑
m=1

v(m).δm

T∑
m=1

δm
(1.3)

where δ the risk-free discount factor.21 The value V is compared to V̄ the average unit value

obtained in case of a project with an inflexible shipping policy:

20The additional costs arising from diversion include: honoring the LNG volumes initially granted to the original

destination market, access fees to regasification terminals in the alternative market and extra maritime costs.
21We assume a discount factor δ of 0,99 as a reasonable risk-free discount factor when considering a long-term

supply period, T, of 25 years. As emphasized by Yepes Rodŕıguez (2008), a lower value δ would affect the

calculation of the value of the free destination option as it will give more weight to the first years of the supply

period and hence increasing the sensitivity of the results to the initial market prices. .
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V̄ =

T∑
m=1

v̄(m).δm

T∑
m=1

δm
(1.4)

1.4 Empirical strategy

1.4.1 Data

The data consists of monthly prices of NG for the three major gas-consuming regions world-

wide, namely Continental Europe, Japan, and the US. Henry Hub natural gas spot price, Japan

LNG import price from Indonesia and Russian natural gas border prices in Germany are used to

proxy the LNG price in US, Japan, and Europe. These prices were collected from January 1992

to June 2017. Data has been gathered from the IMF Primary Commodity prices. The prices

are denominated in US$ /MMBtu. The model also includes a measure of oil price volatility

calculated from the weekly spot prices of WTI. Given the purpose of the study, we opted for a

monthly frequency of the data with the aim of exploiting the possibility of monthly arbitrage

opportunities between the three regions upon which the destination flexibility option will be

based, which is a reasonable assumption with regard to shipping considerations.

A preliminary overview of the data in Figure 3.8 shows a reaction of markets to major

exceptional events, e.g., the Californian crisis of 2000, the upward trend in natural gas prices

following the soaring oil prices in the 2000s, the global financial crisis of 2007-2008 or the

Fukushima disaster in 2011. The global picture underlying the price dynamics displays the

following main facts: the rise in Henry Hub prices in the early 2000s (spiking in 2005 and 2008)

that triggered the construction of major regasification terminals that the shale gas revolution

finally converted into liquefaction units. Besides, on the other side of the Atlantic, Europe has

experienced a gradual decoupling of natural gas prices from those of oil since 2009 in a context

of limited regasification capacities across the region. Compared with the US and European

gas markets that are mainly supplied by local producers or pipeline imports, Japan is highly

dependent on LNG imports. In this context, the Fukushima disaster in 2011 brought about

a turning point of the LNG price dynamics. The following period of a tight market pushed

LNG prices in long-term contracts to be completely guided by oil prices. The subsequent rise
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was also felt in Asian spot prices which are linked to the Japanese oil-indexed average price.

The resulted regional price differentials enhanced the incentive to redirect LNG cargoes initially

destined for Europe as the latter had the ability to rely on pipeline gas imports. Finally, the

drop in oil prices in 2014 marked the end of the « boundless Asian premium », leading to a new

LNG environment affected by the strong growth in global gas supply.22

Figure 1.1: Natural gas import prices from the three main consuming regions and WTI crude

oil price

1.4.2 Preliminary analysis of time series

Table 1.1 reports some descriptive statistics of the prices in first-logarithmic difference. The

skewness and kurtosis coefficients indicate a non-normal distribution for all prices with a higher

probability of extreme values. The highly likely occurrence of extreme values and the asymmetric

nature of distributions calls for a non-linear specification. The Jarque-Bera (1980) statistics

confirmed the non-normality at the 5% and 1% level. To check the stationarity properties of

the series, we used Perron (1989), Augmented Dickey-Fuller (1979) and Philipps-Perron (1988)

tests. The series are all integrated of order 1 according to all test results. In the sequel, all

22Driven by the US shale gas revolution and the arrival of new liquefaction capacities from Australia and other

regions all over the world.
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variables are transformed into their first-logarithmic difference form.

Table 1.1: Descriptive statistics of the prices in first-logarithmic difference.

Natural gas Oil

US Europe Japan WTI

Descriptive statistics

Observations 305 305 305 305

Mean 0.002 0.002 0.001 0.002

Median -0.001 0.000 50.008 0.011

Maximum 0.479 0.405 0.258 0.214

Minimum -0.429 -0.288 -0.368 -0.331

Std. Dev. 0.133 0.063 0.068 50.082

Skewness 0.057 0.281 -1.057 -0.657

Kurtosis 3.930 11.695 7.746 4.484

Jarque-Bera 11.178 964.806 342.997 49.937

Probability 0.003 0.000 0.000 0.000

1.4.3 Testing and Estimation of the TVAR model

The Threshold Vector Autoregression (TVAR) approach23 used in this paper is similar to

that of Balke (2000) who examined whether credit conditions act as a non-linear shock propa-

gator. This propagation takes the form of regime change when credit conditions cross a critical

threshold.

The TVAR model combined with nonlinear impulse response functions has a number of

interesting features that make it attractive for our purpose. First, a TVAR model provides

a fairly simple way to capture non-linear dynamics such as asymmetric responses to shocks,

regime-switching and multiple equilibriums. Moreover, the variable by which different regimes

are defined can itself be endogenous and included in the VAR.24 More interestingly, the impulse

23See Tong (1990) for the general structure of non-linear autoregressive models.
24This is not the case within the framework of Markov-switching models where regime shifts evolve according to

a Markov chain with a state variable not directly observable, or nonlinear logistic smooth transition VAR models
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response functions are no longer linear as they depend on the sign and the size of the shock

but also on initial conditions; they are derived as conditional forecasts at each period of time.

Therefore, it becomes possible to analyze time-variance in responses to shocks not only across

regimes, but also within regimes.25 Finally, the TVAR allows us to exploit the oil-gas relationship

as the system switches back and forth between high and low regimes of oil price volatility in

response to shocks to other variables.26

Threshold vector autoregression model can be specified as follows:

Yt = A1Yt + B1(L)Yt−1 + (A2Yt +B2(L)Yt−1)I[st−d > γ] + Ut (1.5)

where Yt is a vector containing the endogenous stationary variables namely the logged first-

difference of Japan LNG prices, Europe LNG prices, US Henry Hub, and a measure of oil price

volatility. st−d is the threshold variable that determines the volatility regime that prevails in

the system27 and I is an indicator function that takes the value one when the transition variable

exceeds the threshold value γ and 0 otherwise. B1(L) and B2(L) are lag polynomial matrices

and Ut is the vector of orthogonalized error terms. Shocks to the three regional LNG prices and

also to the volatility variable will identify whether the market is in a regime of high volatility.

A1 and A2 represent the contemporaneous relationships in both regimes of volatility28 and are

supposed to have a recursive structure with the causal ordering of US LNG prices, Japan LNG

prices, European NG prices and the variable of uncertainty conditions;29 implying that the

volatility variable would respond contemporaneously to all variables in the system.

When estimating TVAR models, we are confronted with the endogeneity issue as the thresh-

old variable is allowed to endogenously respond to natural gas price shocks. To overcome this

issue, the common approach is to consider that the threshold variable switches accross regimes

with a delay. Also, the TVAR literature suggests defining the threshold variable as a mov-

where regime changes are determined by the asymmetric and dynamic interactions of all the variables.
25This feature makes a threshold VAR a convenient alternative to time-varying parameter (TVP)-VAR that

imposes a priori structure and will allow us to analyze the impact of shocks according to different regimes of oil

price volatility in the European, Japanese, and US markets.
26The model is estimated using WinRATS and the dedicated estimation procedure provided by Nathan Balke.
27By being an element of Yt, the threshold autoregressive model hence reflects both the evolution of Yt and the

volatility regimes.
28Which are also likely to vary according to the volatility regime considered (idem for the lag polynomials).
29The choice of a threshold structure is not affected by other orderings.
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ing average process needing some persistence in the variation of the threshold variable before

shocks cause regime switching. Altogether, to thoroughly address the endogeneity issue, we have

combined these two approaches by considering a three-period moving average of the two-month-

lagged threshold variable. Robustness checks have shown that results are robust to different lag

specifications.

An important question is whether the estimated TVAR model is statistically significant

relative to a linear VAR. As the threshold value is unknown and needs to be estimated, the

threshold model is estimated by least squares for all possible thresholds values. For each possible

value of the threshold, we test the hypothesis that the coefficients of the model are equal across

regimes, that is A2= B2(L) = 0, by using a multivariate extension of the linearity test by Hansen

(1999) and Lo and Zivot (2001).

Before testing for a threshold effect in the vector autoregression representation of the data,

we estimate a linear VAR in order to select the optimal lag order that has been set to three in

compliance with Akaike (AIC) and Hannan-Quinn (HQ) information criterions.30

Choice of the transition variable

To better grasp the price dynamics that lay ahead in the LNG markets, we have chosen

to consider volatility scenarios by exploiting the oil-gas relationship. More specifically, we have

retained the oil price volatility,31 found to be a significant predictor of natural gas returns

(Pindyck, 2004), as a non-linear propagator of shocks in the LNG markets. A plethora of

elements may explain this choice:

First, if oil price volatility matters when looking at the future of LNG markets, this could

be explained by the historic relationship between the two commodities.

In this regard, Serletis and Herbert (1999) and Brown and Yücel (2008) find that crude oil or

refined products and US gas prices exhibit a high correlation and are cointegrated. Villar and

Joutz (2006) results suggest the existence of a long-run relationship in which the price of WTI is

weakly exogenous to the price of natural gas at the Henry Hub; meaning that the price of natural

gas adjusts to deviations in the long-run evolving relationship but these deviations do not affect

30For all variables except the volatility measure, we have used the first difference of natural logarithm tranfor-

mation.
31Measured as the sample standard deviation of adjusted log price changes by using WTI spot prices.
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the oil price. Substitution and competition are not the only driving forces of such a trend.

Legislations or technological changes have also been found to be crucial (Hartley, Medlock III,

and Rosthal, 2007).

The energy industry has long tried to relate natural gas prices to those of oil via rules of

thumb (Brown and Yücel, 2008), but the failure of these rules to explain differential trajectories

of oil and natural gas prices in long periods has contributed to the emerging idea of a decoupling

of natural gas from the crude oil prices. Brown and Yücel (2008) argued that the relationship has

complex short-term dynamics because of factors that affect market fundamentals such as extreme

weather events, level of storage or disruption of production, but is quite stable in the long run.32

Their empirical work calls for a continuum of market links as a result of more complex market

forces. Empirical studies have examined this issue by testing for the presence of structural

breaks and investigating a non-linear relationship between oil and natural gas prices. Ramberg

and Parsons (2012) find evidence for structural breaks in 2006 and 2009 in the cointegrating

relationship. Along this line, Brigida (2014) modeled structural breaks in the relative pricing

relationships as switches between cointegrating regimes and finds that the decoupling was a

temporary shift in regime. Using Student-t copulas to model the non-linear links between crude

and natural gas prices, Grégoire, Genest, and Gendron (2008) find evidence of extreme co-

movement as well. Theoretical and empirical insights suggest a non-linear price transmission as

most of the energy commodities exhibit non-linear behavior because of, among others, recessions,

unforeseen extreme events, transaction costs, market power, geopolitical tensions, asymmetric

information or stickiness in prices. The difference of the market structure also matters: as the oil

market is global and responds more quickly to global factors whereas natural gas prices respond

more to the regional dynamics of the markets.

Secondly, over a medium-term horizon, LNG markets will still experience a transition pe-

riod during which oil-indexation, especially for the major importer (Japan), will still underpin

contracts with limited reliance on spot trade.33 The long road towards a liquid trading hub in

32Erdős (2012) finds that oil and gas prices are close substitutes and should form a long-run equilibrium level

close to the thermal parity around which they switch in the short run.
33Oil indexation in Asia is expected to slightly decrease, moving from 78% in 2016 to 69% in 2022 (Rogers,

2017).
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Asia (requiring 5 to 10 years) and the enigmatic role of portfolio players who buy gas-indexed

volumes and resell with oil-indexed formulas (IEA/OECD, 2016) will substantially anchor the

oil price dynamics to that of the natural gas in the near future.

The implications of the above findings are twofold. First, there is a strong correlation between

oil and gas prices, and this relationship has to be modeled as non-linear.

Last but not least, oil price uncertainty has direct effects on global economic activity. This

question has been studied by a huge strand of the economics literature pointing out different

transmission channels. For instance, Elder and Serletis (2010) find that uncertainty overthe

price of oil had a negative and significant effect on real gross domestic products (GDP), durables

consumption, several components of fixed investment and industrial production. In the same

vein, theories of investment under uncertainty and real options suggest that an asymmetric

relationship between uncertainty and economic activity tends to postpone firm’s decision-making

when committing irreversible investments by creating an option value to wait and see . Such

micro decisions are likely to affect the macro-level dynamics by creating cyclical fluctuations:

as explained by Bernanke (1983), this could be the result of an economic system that is not

sufficiently diversified or a misperception about the duration of the shock by agents under

imperfect information who tend to extend in time the effects of a temporary shock.34

Oil price volatility

Oil price volatility, found to be a significant predictor of natural gas returns (Pindyck,

2004), is measured as the sample standard deviations of adjusted log price changes by using

weekly WTI spot prices. Following Chen and Hsu (2012), the monthly volatility of WTI spot

prices is considered:

wtivolt =

√√√√( 1
N − 1

) N∑
t=1

(rt −
1
N

N∑
t=1

rt)2 (1.6)

rt = log(wtiwt )− log(wtiwt−1) (1.7)

34The uncertainty over the future path of oil has also been found to be a decreasing factor of international trade

flows (Chen and Hsu, 2012).



1.4. EMPIRICAL STRATEGY 31

with rt the weekly oil price returns and N the number of trading weeks during the t month.

Several reasons explain this choice: First, as highlighted by Pindyck (2004), spot prices rep-

resent the best single statistic for market conditions when considering their capacity to reflect

the volatility of current and future values of production, consumption and inventory demand.

Secondly, by using a standard deviation as a measure, we attribute the same weight to the

observations used in the estimation. Campbell et al. (2001) emphasize the benefit of such an

approach that does not require any parametric model to describe the evolution of volatility over

time. It also provides unbiased estimators of the underlying latent volatility (see Fleming, Kirby,

and Ostdiek (2001) and Radchenko (2005)).

Lastly, an interesting result from Ewing, Malik, and Ozfidan (2002) consolidates our choice.

By empirically modeling time-varying conditional variances of returns calculated from natural

gas and oil indexes in a multivariate GARCH frame, they find that volatility persistence is less

important in the oil market than in the gas market meaning that the return of volatility to its

long-run level is faster in the case of oil returns. This result suggests that the unconditional

variance of the series would yield a good forecast of the future volatility.

Hence, the approach we have retained to deal with the latency nature of return volatility

enable us to imbed the oil price volatility in the VAR system as a function of its lagged value

and values of the natural gas prices returns in US, Japanese and European markets and will act

as a non-linear propagator of shocks in those markets.

1.4.4 Non-linear impulse responses

In the class of non-linear models, some properties of linear models no longer hold namely the

impulse responses can no longer be directly derived from the estimated coefficients, the responses

are no longer symmetrical in terms of sign and size to structural shocks and, above all, impulse

responses are no longer constant since the variance-covariance matrix of the residuals depends

on the considered regime.35 The non-linear impulse response function (NIRF) is the change in

the conditional expectation of Yt+k as a result of knowing the value of an exogenous shock:

E[Yt+k|Ωt−1, ut]− E[Yt+k|Ωt−1] (1.8)

35See Gallant, Rossi, and Tauchen (1993) and Koop, Pesaran, and Potter (1996).
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where Yt+k is a vector of variables at horizon k, Ωt−1 is the information set available at time t-1

and ut is a particular realization of exogenous shocks. Besides, the calculation of the impulse

response functions for the non-linear model requires a specification of the size and sign of shocks

and the initial condition. We proceed by simulating the model conditional on an initial condition

Ωt−1 and a given realization of ut.36

1.4.5 Simulation-Based Forecasting

As the multivariate forecast errors are asymptotically normally distributed with covariance

matrix, the forecasts of Yt+h are simulated by generating multivariate normal random variables

with mean zero and covariance matrix from the residuals of the estimated TVAR. More specifi-

cally, we generate Multivariate Monte-Carlo Simulations to get the future LNG prices paths for

each regime of volatility as the TVAR model is linear within each regime and the subsequent

shipping decisions to obtain the distribution of values for the diversion option. This choice

is empirically supported by the results of the Andersen-Darling normality test applied to the

TVAR model residuals distribution in each regime.

1.5 Regime-dependent volatility transmission

1.5.1 Tests for TVAR and estimation of the threshold value

Table 1.4 presents results of the test of a linear VAR model against the alternative threshold

effect. To test the null hypothesis of linearity (1 regime) against the alternative of nonlinearity

(with 2 or 3 regimes), we relied on a multivariate extension of the linearity test of Hansen (1999)

and Lo and Zivot (2001). The LR test statistic is calculated in the following way:

LR01 = T (ln(det(Σ̂0)− ln(det(Σ̂1)) (1.9)

with Σ̂0 the estimated covariance matrix of the model under the null hypothesis of linearity and

Σ̂1 the estimated covariance matrix under the alternative hypothesis of a threshold specification.

The p-values are calculated by simulation. 37 Three tests are computed. The both two first

(panel A and B in Table 1.2) can be considered as linearity tests whereas the third (Panel

36The employed algorithm for GIRFs computation is described in Appendix B.
37Based on 500 replications, the bootstrap distribution is obtained by resampling the residuals from the null

hypothesis model, estimating the threshold parameter and then computing the test.
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Table 1.2: LR test results for a VAR(3)

LR test results

Panel A: LR test for linearity against 2 regimes

LR statistic 154.774

p-value [0.008*]

Estimated threshold 0.0386

Panel B: LR test for linearity against 3 regimes

LR statistic 276.6101

p-value [0.0300**]

Estimated thresholds 0.0386 0.0502

Panel C: LR test for 2 regimes against 3 regimes

LR statistic 121.836

p-value [0.404]

Estimated threshold 0.0386 0.0502

.

Note: The response of LNG prices to changes in volatility context is supposed to occur with a delay d of 2

months. P-values based on Hansen’s (1996) procedure method of inference with 500 replications are between

brackets. *, ** denote the rejection of the null hypothesis at 1% and 5% respectively.
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C in Table 1.4) can be seen as a specification test to check whether one or two thresholds

are preferable. Results consolidate the choice of a threshold specification with two regimes of

volatility that have one threshold. A better overview of this threshold effect is depicted in

Figure 1.3 in Appendix A which represents the evolution of the uncertainty measure and the

threshold estimated value above which the market toggles to the highest regime. It shows that oil

prices react to major exceptional events: such as the 1997 Asian financial crisis, 2005 Hurricane

Katrina, Global financial crisis of 2007-2008, the Fukushima disaster in 2011, and oil price slump

in 2014. The uncertainty generated by these episodes of high volatility represents nearly 35% of

the observations. The remainder is attributed to relatively low volatility regimes.

1.5.2 Non-linear impulse response functions

Figures 1.4 to 1.6 in Appendix B illustrate the estimated impulse response of liquefied natural

gas returns to positive and negative shocks from oil price volatility in high regime (HR) and

low regime (LR) configuration.38 Overall, the non-linear impulse responses suggest that oil

price volatility has a negative effect on natural gas returns in the three regions regardless of the

regime. As discussed before, this result is with respect to the increased uncertainty of current

and future oil price trajectories, consumption and inventory demand that will give credence to

the option value to wait of investments, thereby delaying the consumption. More importantly,

for all the regional price returns, the impact of oil price volatility shocks exhibits an asymmetrical

phenomenon as it is more significant in the high case scenario: a result that consolidates the

choice of the threshold specification with the oil price volatility as a non-linear propagator of

shocks.

As one could expect, disparate impacts are wielded by oil price volatility shocks in the three

regional markets. This result could mainly be explained by the differences in the oil dependence

scheme and the natural gas market structures. Asian gas returns are the most responsive (in

period 1) to a positive oil price volatility shock regardless of the considered regime. This result

directly echoes the oil dependence of the country and the huge recourse to the oil-indexation in

the LNG contracting structure.

Concerning the European market, there are some lag effects (period 3) in the gas returns
38Four lines are displayed, corresponding to positive and negative nonlinear impulse response functions (IRFs)

under high and low volatility states following a two-standard-deviation oil price volatility shock.
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response to a positive shock from oil price volatility when the market is already in a high regime

of volatility. This lag effect might be explained by the relatively large share of domestic gas

production and pipeline import, the hybrid system of price formation and the competition with

other energy sources that tend to postpone the effect of oil price volatility. Whatever the sign

and the considered regime, there is a persistance effect in the European response to shock from

oil price volatility with a slow return to the pre-shock values.

In the highest regime, North American gas returns have experienced a quick redirection

toward their pre-shock values: the transitory nature of this response is indicative of the partial

influence of oil prices dynamics in the US gas market, as the latter widely responds to its own

supply and demand issues, storage level considerations, etc. This result is supported by the

slightest difference between the response of gas returns in the high and low regime of volatility

which is indicative of the reliance on the derivatives products to manage their risks.

1.5.3 Robustness checks

Overall, our results are found to be robust to different specifications of the threshold VAR

model and the variables. More specifically, our conclusions are robust to variations in the number

of lags in the TVAR system, to different delays d of the transition variable, and different orders of

the moving average process.39 Moreover, results are also robust to a threshold variable measured

by using daily WTI spot prices to calculate the sample standard deviations of adjusted log price

changes.40 Finally, we have considered an other proxy of uncertainty to test the robustness of the

model to another transition variable. Following Bloom (2009), we retained the Chicago Board of

Exchange VXO stock market volatility measure constructed using the implied volatilities on S&P

500 index options.41 The latter is reputed to provide a measure of financial market uncertainty

and shows the market’s expectations of 30-day volatility and is hence primarily forward-looking.

As it turns out, this alternative threshold variable makes little difference in terms of our testing

39Tables 1.11.6, 1.7 and 1.11.6 in Appendix F present tests of a linear VAR against a threshold alternative.

Three tests are computed: sup-Wald, avg-Wald and exp-Wald, which respectively represent the maximum, average

and function of the sum of exponential Wald statistics over all possible threshold values (See Hansen (1996) for

the simulation method used here to conduct inference).
40See Table 1.4 and Figures 1.15 to 1.17 in Appendix E.
41The number of lags in the VAR was set to three.
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of a threshold specification and also in terms of conclusions of the impulse response functions.42

1.6 Destination flexibility option

1.6.1 Regime-dependent LNG prices paths

We will associate the high scenario to an increased uncertainty about the use of oil-indexation

in long-term LNG contracts. An increasing oil price volatility could affect their duration and

give a significant impetus to the willingness of Asian markets to push forward gas-to-gas com-

petition. This could lead to a situation where buyers would tend to not renew their expiring

contracts and would choose to enter into shorter spot indexed contracts. We will associate the

low scenario with a persisting high reliance on oil-indexation and a relatively slow beginning of

large US LNG volumes being exported to the global gas market.

1.6.2 Free destination option

To capture the dynamics of future flows by 2020 and determine the adapted shipping deci-

sions, we have chosen to calculate the value of the free destination option for producers located

in the US, Australia, Africa, and Middle East. Table 1.3 gathers the result for all tested con-

figurations. Figures 1.9 to 1.14 in Appendix D depicts the cumulative frequency distribution

throughout the 10,000 Monte Carlo simulations of monthly unit value of the free destination

option in low and high regime of volatility for producers involved in transatlantic arbitrages

with a map in Figure 1.2.

Australia As the looming prospect of large new LNG supplies by 2020 is partly coming from

Australia, analyzing the spread-responsive LNG cargo movements from this region should be

instructive. We consider four case scenarios and each one is related to the above described high

and low regimes of volatility. In the first one, we compare a base case in which an Australian

supplier could flow LNG only to Japan (the most reasonable destination in terms of shipping

costs) 43 and a free destination case that allows for diverting LNG cargoes toward the European

markets. Following the methodology described above, the monthly average unit value of des-

tination flexibility in this case is found to be equal to $0.02 per MMBtu in the highest regime
42See Table 1.5 and Figures 1.18 to 1.20 in Appendix E.
43See Appendix C.
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Table 1.3: Expected values of the free destination option in a high and low regime of volatility

Supplier Initial Alternative Volatility Regime Flexibility option Gain

Most profitable studied cases

Qatar US Japan
High Regime 3.42$/MMBtu 172%

Low Regime 1.55$/MMBtu 156%

Algeria US Japan
High Regime 2.33$/MMBtu 70%

Low Regime 0.94$/MMBtu 62%

Nigeria US Japan
High Regime 2.55$/MMBtu 103%

Low Regime 1.06$/MMBtu 85%

Transatlantic arbitrages

Qatar US Europe
High Regime 2.13$/MMBtu 109%

Low Regime 0.90$/MMBtu 90%

Algeria US Europe
High Regime 2.16$/MMBtu 82%

Low Regime 0.93$/MMBtu 70%

Nigeria US Europe
High Regime 1.99$/MMBtu 81%

Low Regime 0.84$/MMBtu 67%

Japan / Europe arbitrages

Australia Japan Europe
High Regime 0.02$/MMBtu 1%

Low Regime 0.00$/MMBtu 0%

US Europe Japan
High Regime 1.07$/MMBtu 25%

Low Regime 0.41$/MMBtu 20%

Qatar Japan Europe
High Regime 0.32$/MMBtu 6%

Low Regime 0.06$/MMBtu 2%

Algeria Europe Japan
High Regime 0.84$/MMBtu 18%

Low Regime 0.27$/MMBtu 12%

Nigeria Europe Japan
High Regime 1.06$/MMBtu 24%

Low Regime 0.38$/MMBtu 18%

Note: ”Initial” refers to the agreed destination in the long-term LNG contract, ”Alternative” is the diverting
option and the ”Gain” column features the flexibility option/inflexible project value ratio.
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Figure 1.2: Expected value of free destination option when suppliers are initially commited to

serve US in the high regime

Note: Blue spots represent the suppliers locations, Red spots are the European and Japanese alternative markets, Red
(Blue) lines represent the derouting of LNG toward the European (Japanese) market and the associated value of the free
destination option.

and $0.00 per MMBtu in the low case scenario. Here, the flexibility to respond to market price

signals does not improve the expected value of an LNG project compared to an inflexible project

as there is little chance to see a supplier from Australia engage in this physical arbitrage when

transportation costs differentials are threefold. The optimization of LNG flows saliently explains

this interpretation as the low oil and gas price environment has prominently tightened margins,

not counting the additional costs incurred when the diversion option is exercised. Altogether,

whatever the level of uncertainty that weighs on Japanese and European demand and the pace

at which the transition toward a more flexible LNG market will move away from oil indexation,

the looming new LNG supply from Australia would remain in the region when original contracts

plan to send LNG to Japan. As the portfolio of Australian LNG supply could be diversified,

we have also studied three other cases by comparing a base case in which an Australian LNG

supplier is initially committed to the US market and a free destination case where LNG is able

to be diverted either to Europe or Japan or both. The contingency of these situations has to
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be considered as a way to widen the sphere of possibilities in terms of shipping decisions in a

portfolio perspective rather than an exclusive optimization of shipping distances. It appears

that the price spread stimuli between the markets in the US and Europe/Japan leads to the

optionof destination flexibility to be exercised regardless of sizeable extra maritime costs. For

instance, the ability to respond to European market price signals allows for an 89% improvement

in a high case scenario and for a 74% improvement in the lowest regime.

US Arbitrage decisions underpinned by the new wave of US LNG are equally of paramount

importance.44 Two cases are analyzed here: the first one embodies an American supplier which

is committed to flowing LNG to Europe and evaluates the possibility to redirect its cargoes to

Japan as an alternative destination. To give more support to the latter shipping decision, a

second case exemplifies an American supplier which is initially involved in a long-term contract

with Japan and sees in the European market a way to benefit from arbitrage opportunities. In

terms of extra maritime costs, it is about twice as expensive for an American supplier to ship an

LNG cargo to Japan as it is to Europe: this feature does not undermine the diversion decision

of LNG cargoes in the first case. In this present instance, a $1.07 per MMBtu is expected for

the flexibility option in the high regime and $0.41 per MMBtu in the low regime. In the adverse

case, the value of free destination for a unit production capacity is expected to represent on

average of $0.16 per MMBtu in the low scenario case and $0.56 per MMBtu in the high scenario

case. More precisely, the distribution of the value of destination flexibility varies from zero to

$2.24 per MMBtu with a standard deviation of $0.80 per MMBtu in the high case scenario and

oscillates from zero to $0.71 per MMBtu with a standard deviation of $0.25 per MMBtu in

the low case scenario. Hence, the Atlantic Basin is well positioned to take a turning point and

become an important LNG arbitrage market by horizon of 2020 especially in a context of an

increased uncertainties about the future path of LNG demand in Europe and Japan.

Middle-East The Middle East counts major players in the LNG industry. Even though some

producers will see their export-oriented LNG production drop as Abu Dhabi or Oman, the

stability of a key player such as Qatar will keep ensuring LNG flows from this region. The

increase in capacity was phenomenal between 2009 and 2011 in Qatar, which resulted in large

44The associated probability distributions of the free destination option are available upon request.
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spare capacity that was able to significantly affect the dynamics of future LNG flows.45 In

a context of a producer initially engaged in the medium term on a contract with the United

States,46 the potential benefits of diverting LNG cargoes to Europe and Japan are both analyzed.

When the latter has to arbitrate between the US and Europe, it appears that the monthly

average unit value of destination flexibility is calculated at $2.13 per MMBtu in the high case

scenario and $0.90 per MMBtu in the low case scenario (see figures 1.9 and 1.10 in Appendix

D). This is a significant value when reconsidering the relatively bleak outlook of LNG prices on

the medium-term horizon. This decision turns out to be rational enough to be concretized as

there is no huge extra-maritime cost ($0.02 per MMBtu). Moreover, the decision to divert its

LNG cargoes to the Japanese market is equally feasible: the monthly unit value of destination

flexibility in this case totals $1.55 per MMBtu in the low case scenario and $3.42 per MMBtu

in the high scenario case , the monthly average unit value of the destination flexibility option

is about $2.13 per MMBtu in the high case scenario and $1.68 per MMBtu in the low case

scenario.47 The improvement provided by the flexibility option here is 1.72 times higher in a

high scenario case and 1.56 higher in low scenario case compared with the case where the only

destination alternative was the US.

Africa Finally, we have chosen to calculate the value of the destination flexibility option for

a country in North Africa (Algeria) and in West Africa (Nigeria) whose production forecasts

for 2020 are substantial (IGU, 2017). These countries have also shown by past diversions of

LNG cargoes that they are very inclined to this type of practice. These two countries share in

common their close link to the European market that receives LNG from these countries on a

regular basis and have fairly comparable transportation cost differentials in that the Japanese

market is far more laborious to reach than the European or US market.48 As a first case, we

then calculated the medium-term gains associated with a possible diversion of LNG cargoes

45This production is mainly due to low production costs which explains the resilience of the latter to a low oil

price environment.
46A case that echoes the large production capacity that was intended to this market before the American shale

gas revolution.
47And with 90% probability, this value ranges from $1.24 per MMBtu to $1.64per MMBtu in the low case

scenario and from $1.77per MMBtu to $7.38 per MMBtu in the low case scenario
48See Table 1.8.
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initially committed to Europe to the Japanese market. Whether from Algeria or Nigeria, the

conclusions are unanimous: the free destination option has more chance of being exercised in

the high regime. Nonetheless, whatever the considered volatility regime, the expected value of

the option is found to be less profitable comparing to the transatlantic options (see Table 1.3).

The end of the “boundless” Asian premium following the Fukushima disaster should give less

rationality to this decision.

Two other cases are focused on Nigerian and Algerian suppliers who are initially committed

to serve the US markets and study the possibility of diverting these cargoes to Europe or Japan

(See Figures 1.11 to 1.14 in Appendix D). When Europe takes the role of alternative market ,

the monthly average unit value of destination flexibility is found to be equal to $1.99 per MMBtu

in the high case scenario and $1.12 per MMBtu in the low case scenario for a Nigerian supplier

and reaches $2.16 per MMBtu in the high case scenario and $0.93per MMBtu in the low case

scenario from an Algerian supplier point of view. These results reflect a high probability of

exercising the option in the medium-term horizon as with 90% certainty, the value of the free

destination option is about to vary from $1.12 per MMBtu to $3.02 per MMBtu in the high

case scenario and from $0.69 per MMBtu to $0.99 per MMBtu in the low scenario case when

a Nigerian supplier is free to divert its cargoes to Europe. The same improvement is expected

on the Algerian side as the free destination option has the potential to bring an added value of

around 82% in a high scenario case and 70% in a low scenario case compared to a geographically

constrained project. In the same vein, when Japan is considered as the market destination of

diverted LNG cargoes, the option of free destination is slightly less significant than in the Eu-

ropean case for Algerian suppliers but increases from a Nigerian supplier point of view.

As part of our modeling, by increasing extra transportation costs to alternative markets from

10% to 50%, we find that for all suppliers involved in US-Japan and US-Europe arbitrages, the

value of the free destination option turns out to be slightly more sensitive to extra-transportation

costs when the market is under high volatility. By contrast, when the arbitrage decision hinges

on the dynamics of the Japanese and European markets, it’s not only the value of the option

that is necessarily higher in the more volatile regime but also the sensitivity to the additional
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maritime costs.49 In all cases, given the weak oil and gas environment, particular attention will

be paid to transportation costs which, combined with future price trajectories, will prominently

drive diversion decisions.

1.7 Discussion

In comparison with the results obtained in the Yepes Rodŕıguez (2008) study, the value

of the flexibility option remains a very important part of the value of LNG, and even more so on

a monthly basis. Taking into account the volatility of oil prices, which is supposed to capture the

pressure on the practice of oil indexation and partly the uncertainties related to global activity,

three important points are to be emphazised.

First, the results described above show that the price differentials between the US and Eu-

rope/Asia will still be very significant in the coming years, creating considerable arbitrage op-

portunities. Indeed, our model has shown that for a producer located in Nigeria, Algeria or

Qatar that must initially deliver the US market, it will always be profitable to exercice their

right to diverge to Europe or Japan (see Figure 1.2).

Secondly, arbitrage opportunities are found to be more profitable in the highest regime of

oil price volatility. Associated to an increased uncertainty about the practice of oil-indexation

in long-term LNG contracts, this result echoes the study of Zhang et al. (2018) that sought

to understand whether higher prices in Asia are due to pricing discrimination or simply reflect

differences in the market fundamentals. From this point of view, our results suggests that

oil indexation has probably had a significant impact on the Asian premium as the pressure

on oil stability and thus the indexation process pushes Japanese prices to be more sensitive to

uncertainties in fundamentals. This also means that the more the market swiftly repositions to a

more flexible reconfiguration, ultimately involving the dissolution of destination clauses and the

use of a hub-pricing in all contractual terms, the more the players of this industry will be inclined

to commit and take advantage of arbitrage opportunities. Focusing on destination flexibility will

49In a more relevant and exhaustive way, shipping market has to be considered here as a market itself. The

latter is significantly affected by the economic business cycle, the ordering of new vessels and the subsequent

balance of tanker supply and demand, on market expectations or on the lag between the start of liquefaction and

the delivery of dedicated vessels.
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thus be an effective way of giving some momentum to a quasi-inescapable transition period for

the Asian markets. In this respect, our results are in perfect agreement with those of Shi and

Variam (2016) who advocate a prioritization of the destination issue in the contractual terms of

LNG sales.50

Thirdly, our results suggest the end of the Asian premium with a tightening of price dif-

ferentials between Europe and Asia, whatever the volatility regime considered (see Table 1.3).

Indeed, in both high and low regime, producers from US, Algeria or Nigeria will probably not

systematically exercise a diversion right to divert a shipment originally scheduled for Europe to

Asia.

Finally, the low price environment for oil and gas industry and the subsequent tight margins

are prominently calling for an optimization of LNG flows in the medium-term horizon. The

greater the transport distances are, the greater the uncertainty that weighs on the days of travel,

fuel costs and labor costs. From this point of view, the exercise of the valued options might give

an indication of the direction of future LNG flows by 2020 that will depend on the two possible

scenarios: a high case scenario under which the above described uncertainties about future LNG

demand in Europe and Japan are exacerbated and where the transition to a more flexible LNG

market away from oil indexation is occurring at a sustained pace and a low case scenario that

does not really deviate from the current market configuration with a time-consuming transition.

Thereby, one might expect that: US LNG would prominently go to Europe in both scenarios but

is more likely to end up in Europe in a low case scenario; Australian and Middle Eastern LNG

are expected to be moved toward the Japanese market and the European alternative would be

profitable only when a producer in one of the two regions is initially committed to serving the US

for both scenarios; and an African LNG will be found mainly in Europe with a higher probability

of diverting an Algerian LNG to Japan than a Nigerian LNG given its lower sensitivity to extra

maritime costs. As highlighted by Corbeau and Ledesma (2016), the high transaction cost LNG

market is obviously not at a stage where LNG flows can be perfectly optimized. Logistical,

50For two main reasons: the first being that a removal of destination clauses does not suggest the liberalization

of the domestic market and would therefore be much easier to implement compared to a change of indexation;

secondly, importing governments should have the sovereignty to prohibit firms under its competence to sign

contracts with destination clauses, such as in the case of European Union.
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operational and contractual bottlenecks are actually putting off the prime essence of the LNG

industry: that of being a cargo business. For instance, the need for the compatibility of the

offloading and the receiving infrastructure, the possible limited berth availability at terminals

or the size restriction in accordance to the receiving liquefaction terminal show how the lack

of standardization from an infrastructure point of view can pose significant barriers to LNG

trade. And when considering the diversion decision, the additional costs can seriously deter

the exercise of the option as it might imply that the supplier fulfills its commitments to the

initial buyer by supporting all additional costs of the replaced LNG in addition to the question

of rent-sharing which is also a government issue, bunker fuel costs, boil-off gas equivalent fees,

charter costs, regas fees and costs to access to regasification terminals in the alternative market.

All the complexity of these decisions is based on the fact that evolving physical, cost, and pricing

aspects must be considered in tandem.

1.8 Conclusion

In fine, what could be learned from the destination flexibility option in the LNG markets?

As mentioned above, LNG is a cargo business that makes the ability to move gas by sea over long

distances the cornerstone for splitting natural gas markets from their regional dynamics. A spec-

ulation on the possibility of converging regional LNG prices requires a cautious interpretation of

the valued destination flexibility option. Expecting an integration of natural gas markets by the

only effect of appropriation of best netbacks when suppliers can choose their ultimate market

destination could be misleading. Here, the shortfall of geographically constrained producers

rather highlights the benefits of greater future market spotification as even partners engaged

in long-term contracts could profit from a participation in the spot market, thus increasing the

liquidity of the latter. If it goes in tandem with a lower indexation of oil prices and market

forces driving prices and movements of vessels, then in this precise case, one would expect a

possible ”convergence”. The transition to this state suggests looking closely at the process of

liberalization of national gas markets, the pricing terms in forthcoming long-term contracts and

the expansion of spot trade and its legitimacy in establishing itself as a reference for long-term

LNG contracts. The question of the impact of destination flexibility would therefore have to
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do with the time horizon considered. In the medium-term, it would be misleading to combine

greater destination flexibility with a systematic price convergence mechanism as regional price

formations remain intrinsically too divergent by responding to fundamentally different dynam-

ics. At the limit, one could expect a convergence of regional prices. In the long run, if long-term

contracts are able to completely get rid of oil indexation with an increased spot trade, these

conditions would make flexibility destination a serious barrier in less to global LNG trade. Des-

tination flexibility is one piece of the puzzle as global LNG trade is prone to remain strongly

constrained by costly infrastructure challenges and logistical barriers. Nonetheless, the strong

willingness for increased flexibility in the LNG market could bring new liquefaction technologies

that will change the way to address the issue of flexibility in the destination, as evidenced by

the Coral FLNG project in Mozambique.

Notwithstanding the value of our findings, our analysis can be extended in several directions.

First of all, one could ambition to extend the analysis to incorporate the dynamics of the

shipping market (i.e., the price formation and the volatility of the freight rates used for LNG

tankers instead of the simple point estimates used in the present work). Indeed, the LNG market,

historically stable, has been recently experiencing substantial changes over the last decade as the

share of vertically integrated LNG trading companies owning tankers has declined whereas short-

term chartering practices based on spot market rates are more and more frequent. However, to

the best of our knowledge, this kind of investigation can hardly be conducted at present because

of a lack of publicly available data. Should that limitation be slackened, an analysis incorporating

that shipping dimension could offer an interesting avenue for future research. Another strand of

research could also extend the geographical scope of our analysis by incorporating other LNG

importing markets, such as the emerging ones in Latin America and Asia (e.g., China, India)

where demand is expected to noticeably increase in the coming years.
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1.11 Appendices

1.11.1 Appendix A: Evolution of the uncertainty measure and the estimated

threshold value

Figure 1.3: MA(3) of Oil Price Volatility and estimated threshold

1.11.2 Appendix B: Algorithm for GIRFs computation and their represen-

tation

The method for computing generalised impulse response functions follows Balke (2000). The
employed algorithm is the following:

1. Pick a history Ωr
t−1 of all the lagged endogenous variables of the model at a particular date.

2. Pick a sequence of shocks from the covariance matrix by bootstraping the estimated
residuals of the TVAR model. The residuals are assumed to be jointly distributed.
3. Using this sequence of shocks, we produce forecasts conditional on initial conditions Ωr

t−1 by
simulation.
4. We repeat step 3 by adding a new shock at time 0 equal to +/- 1 or 2 SD.
5. We repeat steps 2 to 4 are B times (B=500).
6. We repeat steps 1 to 5 R times and compute the average impulse response function as the
average difference between the forecast from step 3 and 4.
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Figure 1.4: JAP LNG response from oil price volatility* shocks of +/- 2 SD

Figure 1.5: US LNG response from oil price volatility shocks of +/- 2 SD

Figure 1.6: EU LNG response from oil price volatility shocks of +/- 2 SD

Notes: The x-axis corresponds to the months.

*: Oil price volatility calculation is based on weekly oil price returns.
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1.11.3 Appendix C: Shipping considerations

Figure 1.7: Freight route costs

Source: Platts LNG Daily, 2016. Volume 13/ Issue 223.

Figure 1.8: Shipping days

Source: Platts LNG Daily, 2016. Volume 13/ Issue 223.
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1.11.4 Appendix D: Cumulative probability distributions for 10.000 Monte-
Carlo simulations with a 90% certainty level ($ /MMbtu)

Figure 1.9: Value of flexibility - High Regime - QATAR

Expected value = 2.13$ /MMBtu.
Lower limit value (10%) = 1.26$ /MMBtu.
Upper limit value (90%) = 3.15$ /MMBtu.

Figure 1.10: Value of flexibility - Low Regime - QATAR

Expected value = 0.90$ /MMBtu.
Lower limit value (10%) = 0.76$ /MMBtu.

Upper limit value (90%) = 1.06$ /MMBtu.
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Figure 1.11: Value of flexibility - High Regime - ALGERIA

Expected value = 2.16$ /MMBtu.
Lower limit value (10%) = 1.27$ /MMBtu.

Upper limit value (90%) = 3.18$ /MMBtu.

Figure 1.12: Value of flexibility - Low Regime - ALGERIA

Expected value = 0.93$ /MMBtu.
Lower limit value (10%) = 0.78$ /MMBtu.

Upper limit value (90%) = 1.08$ /MMBtu.
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Figure 1.13: Value of flexibility - High Regime - NIGERIA

Expected value = 1.99$ /MMBtu.
Lower limit value (10%) = 1.12$ /MMBtu.

Upper limit value (90%) = 3.02$ /MMBtu.

Figure 1.14: Value of flexibility - Low Regime - NIGERIA

Expected value = 0.84$ /MMBtu.
Lower limit value (10%) = 0.69$ /MMBtu.

Upper limit value (90%) = 0.99$ /MMBtu.



1.11. APPENDICES 57

1.11.5 Appendix E: Sensitivity to alternative threshold variables

Table 1.4: LR test results based on the VXO stock market volatility threshold

Panel A: LR test for linearity against 2 regimes
LR statistic 110.946
p-value [0.000*]
Estimated threshold 25.12
Panel B: LR test for linearity against 3 regimes
LR statistic 188.0672
p-value [0.000*]
Estimated thresholds 24.33 28.01
Panel C: LR test for 2 regimes against 3 regimes
LR statistic 77.121
p-value [0.500]
Estimated threshold 24.33 28.01

.

Note: The response of LNG prices to changes in volatility context is supposed to occur with a delay d of 2 months.

P-values based on Hansen’s (1996) procedure method of inference with 500 replications are between brackets. *,

** denote the rejection of the null hypothesis at 1% and 5% respectively.

Table 1.5: LR test results with volatility threshold based on daily oil price returns

Panel A: LR test for linearity against 2 regimes
LR statistic 115.198
p-value [0.000*]
Estimated threshold 0.0371
Panel B: LR test for linearity against 3 regimes
LR statistic 257.086
p-value [0.000*]
Estimated thresholds 0.0371 0.0447
Panel C: LR test for 2 regimes against 3 regimes
LR statistic 141.888
p-value [0.404]
Estimated threshold 0.0371 0.0447

.

Note: The response of LNG prices to changes in volatility context is supposed to occur with a delay d of 2 months.

P-values based on Hansen’s (1996) procedure method of inference with 500 replications are between brackets. *,

** denote the rejection of the null hypothesis at 1% and 5% respectively.
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1.11.6 Appendix F: Robustness to different specifications of the TVAR model

Table 1.6: Test for Threshold VAR for different delays of the transition variable.

Delay of the
Best Threshold Value

Wald Statistics

transition variable Sup- Avg- Exp-

1 0.02987 746.7516
(0.000*)

712.2056
(0.000*)

712.0976
(0.000*)

2 0.03850 748.5684
(0.000*)

706.8801
(0.000*)

706.5793
(0.000*)

3 0.04055 745.6221
(0.000*)

705.5923
(0.000*)

705.1586
(0.000*)

4 0.02650 523.5905
(0.000*)

523.5905
(0.000*)

523.5905
(0.000*)

5 0.02676 523.5905
(0.000*)

523.5905
(0.000*)

523.5905
(0.000*)

6 0.02676 523.5905
(0.000*)

523.5905
(0.000*)

523.5905
(0.000*)

7 0.02676 523.5905
(0.000*)

523.5905
(0.000*)

523.5905
(0.000*)

8 0.02676 523.5905
(0.000*)

523.5905
(0.000*)

523.5905
(0.000*)

Note: P-values based on Hansen’s (1996) method of inference with 500 replciations are in parentheses. *,**

denotes the rejection of the null hypothesis at 1 % and 5 % respectively.
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Table 1.7: Test for Threshold VAR for different orders of the moving average process of the
threshold variable.

Order of the
Best Threshold Value

Wald Statistics

MA process Sup- Avg- Exp-

1 0.04023 184.5802
(0.570)

145.3699
(0.482)

144.1165
(0.482)

2 0.03888 559.6944
(0.000)

509.5040
(0.000)

508.8447
(0.000)

3 0.03850 748.5684
(0.000)

706.8801
(0.000)

706.5793
(0.000)

4 0.04067 961.8254
( 0.000)

903.9336
(0.000)

903.3456
(0.000)

5 0.03639 1031.256
(0.000)

992.858
(0.000)

992.476
(0.000)

6 0.03887 1085.520
(0.000)

1048.393
(0.000)

1048.162
(0.000)

7 0.03914 1165.940
0.000

1130.706
(0.000)

1130.492
(0.000)

8 0.03707 1235.725
(0.000)

1196.078
(0.000)

1195.901
(0.000)

Note: P-values based on Hansen’s (1996) method of inference with 500 replciations are in parentheses. *,**

denotes the rejection of the null hypothesis at 1 % and 5 % respectively.
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Table 1.8: Test for Threshold VAR for different lags of the VAR.

TVAR lags Best Threshold Value Wald Statistics

Sup- Avg- Exp-

1 0.02558 503.3623
0.000*

503.3623
0.000*

503.3623
0.000*

2 0.03850 733.0622
(0.000*)

687.4937
(0.000*)

687.1522
(0.000*)

3 0.03850 748.5684
(0.000)

706.8801
(0.000*)

706.5793
(0.000*)

4 0.03850 799.9046
(0.000)

750.4848
(0.000*)

750.2539
(0.000*)

5 0.03850 810.6776
(0.000*)

764.8100
(0.000*)

764.5587
(0.000*)

6 0.03850 831.0653
(0.000*)

789.2654
(0.000*)

789.0786
(0.000*)

7 0.03850 867.0831
(0.000*)

827.2700
( 0.000*)

827.0429
(0.000*)

8 0.03850 918.2078
(0.000*)

863.4365
(0.000*)

863.1159
(0.000*)

Note: P-values based on Hansen’s (1996) method of inference with 500 replciations are in parentheses. *,**

denotes the rejection of the null hypothesis at 1 % and 5 % respectively.



Figure 1.15: JAP LNG response from oil price volatility* shocks of +/- 2 SD

Figure 1.16: US LNG response from oil price volatility shocks of +/- 2 SD

Figure 1.17: EU LNG response from oil price volaility shocks of +/- 2 SD

Note: The x-axis corresponds to the months.

*: Oil price volatility calculation is based on daily oil price returns
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Figure 1.18: JAP LNG response from CBOE VXO volatility shocks of +/- 2 SD

Figure 1.19: US LNG response from CBOE VXO volatility shocks of +/- 2 SD

Figure 1.20: EU LNG response from CBOE VXO volatility shocks of +/- 2 SD

Note: The x-axis corresponds to the months.







Chapter 2

How efficient are natural gas
markets in practice? A
wavelet-based approach

Foreward

This chapter is the fruit of lengthy discussions and reflexions with Anna Creti and Sana Ben
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I had the opportunity to present and discuss this paper at the second International Conference
on the Economics of Natural Gas in June 2019 and the Paris Dauphine Finance workshop in
May, 2019. I am grateful to the participants for their constructive comments and suggestions.

Abstract

This paper is the first attempt to provide a comprehensive account of pricing and informational
efficiency of the US and EU natural gas markets. We rely on Maximum Overlap Discrete
Wavelet decomposition (MODWT) of daily data of US Henry Hub, British NBP and Dutch
TTF natural gas physical and futures returns at different maturities between 2013 and 2019.
Multiscale linear and nonlinear Granger causality and random walk testing are investigated. We
find that futures prices and spot prices of Henry Hub, NBP, and TTF are cointegrated. Moreover,
multiscale causality testing shows that Henry Hub markets exhibit strong bidirectional causality
between spot and futures markets. EU markets are globally efficient in terms of pricing despite
some inconsistencies on the causality direction across time scales and maturities of the futures
contracts. Finally, for the three selected futures markets, informational efficiency is reached only
in the long-run. The results make it possible to establish an evaluation of the hubs in terms of
their capacity to provide reliable reference prices for the quantities of gas under contract through
a discussion on the crucial role of liquidity and storage capacity.

65
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2.1 Introduction

The institutional environment of the European natural gas markets has experienced a sig-

nificant change in the last decade. Trading at the British National Balancing Point (NBP) and

the Dutch Title Transfer Facility (TTF) gas hubs has significantly gained traction (Heather and

Petrovich, 2017).1 Concomitantly, the anchored practice of oil indexation in long-term natural

gas contracts has progressively been replaced by the hub indexation for a better reflection of

fundamentals dynamics. Gas-to-gas competition’s share increased from 15 % in 2005 to 70% in

2017 (IGU, 2018) and seemed to become the dominant price formation mechanism despite some

deep disparities between the European Union countries.2

Nevertheless, Europe has not entirely created a truly competitive gas market yet that

requires non-discriminatory, reliable, and timely market information (Garaffa et al., 2019). In

the context of scattered reserves and a limited number of suppliers, high arbitrage potential,

especially in the short-term, remains unexploited by market participants because of limited

access to infrastructure, insufficient reliable and timely information, and high transaction costs

(Stronzik, Rammerstorfer, and Neumann, 2009).3

The question of efficiency of European traded gas hubs is hence questionable and raises

concerns about their ability to constitute an important support for financial risk management

of gas portfolios and physical balancing. As derived from the original work of Cootner (1964)

and formalized by Fama in the 1960s, prices observed in an efficient market should instantly

reflect all available information. At all times, prices are supposed to be representative of past

and future events and the expectations of agents in this market. Implicitly, the information is

supposed to be accessible at no cost to a large number of operators that cannot on their own

exert a significant influence on prices or systematically control the market.

In this context, this paper investigates the weak form pricing and informational efficiency

1See also Heather (2016).
2These disparities suggest a path of development towards a more established integration of gas markets at the

European scale, though growing (Neumann and Cullmann, 2012).
3These questions are in the cross-hair of the European Commission in ensuring sufficient liquidity to reduce

price uncertainty and transactions costs associated with natural gas trade and to strengthen market integration

across the continent.
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of the two largest European natural gas markets (UK NBP and Dutch TTF) by drawing a

parallel with the US Henry Hub (HH) through a wavelet decomposition approach.4 Following

Rong and Zheng (2008), we consider pricing efficiency as the no-arbitrage prices depending on

whether arbitrage strategies could be utilized and informational efficiency as the reaction of

futures prices to new information. First, the pricing efficiency is tested by investigating the

existence of a potential cointegrating relationship between spot and futures prices of the three

considered hubs. The step further is to examine the process of price discovery through linear and

nonlinear causality analyses between spot and futures prices at different time scales. Finally, we

examine the informational efficiency/rationality of futures markets in the short-term and long-

term by applying random walk tests to the residuals of futures log returns, and hence measure

their ability to reflect all available price information instantly.

Our analysis controls for major methodological problems that are likely to impact the nature

of the results significantly. First, we gain insight from the time-scale decomposition of our data

by applying a Maximum Overlap Discrete Wavelet Transformation (MODWT) decomposition

to NBP, TTF and HH spot and futures price returns of one-month maturity. The wavelet

methodology went through successive refinements of Fourrier analysis to allow non-linear and

non-stationary time series to be transformed into frequency domain without loss of time-domain

information and have been considered as the best scaling method to deal with complex dynamics

of economic and financial time series (Nicolau and Palomba, 2015). It avoids us the need

to assume certain parametric models of the series and accounts for time-dependent volatility

covariance and structural breaks. More importantly, it enables us not to neglect a major aspect of

natural gas markets characterized by highly seasonal dynamics. Moreover, linear and nonlinear

causality testing have been used to investigate the causality direction by relying on Diks and

Panchenko (2006) test through a multiresolution approach. As gas market participants differ in

their objective and investment horizons, the true dynamics and causal relationship between gas

spot and futures prices can only be uncovered when we decompose gas prices into different time

4Wavelets are an increasingly popular alternative for analyzing time series thanks to their efficient computa-

tional algorithms. The multiresolution approach let us examine the time series at different time scales. For a

complete literature review on the application of wavelets in the economic and finance sphere, see Ramsey (2002)

and Crowley (2007).
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scales or horizons. Longer scales resemble the horizons of non-financial traders (producers and

consumers) while shorter scales resemble various speculators horizons.5 We also conduct several

robustness checks to make sure our results hold under different configurations, repeating the

analysis for two-months and three-months maturities futures contracts and relying on different

filters under the wavelet methodology.

This paper fits into a limited research area that has investigated the question of efficiency

on European natural gas futures markets and their role in developing hedging strategies. The

majority have focused on the North American market. For instance, Herbert and Kreil (1996)

have examined US natural gas spot and futures markets and found that the market was not

only informationally inefficient with a systematic difference between spot and futures prices but

this difference was also predictable.6 Susmel and Thompson (1997) analyzed the relationship

between commodity price volatility and investment in US storage facilities during natural gas

market deregulation. Their results suggest that investments in additional storage facilities are

followed by an increase in volatility. Dincerler, Khokher, and Simin (2005) have focused on the

mean reverting process to provide additional evidence for the dependency of commodity futures

prices on storage levels, including natural gas. Serletis and Shahmoradi (2006) confirmed the

predictions of the theory of storage in the US between 1990 and 2002. Gebre-Mariam (2011)

study examined unit roots, causality, cointegration, and efficiency of the natural gas market

using the Northwest US natural gas market. He found that the efficient market hypothesis

holds only for contracts with only about a month to maturity.7

The emerging European markets are less studied in the literature with clearly not enough

data to conduct empirical investigations able to account for their medium-term and long-term

5Non-financial traders such as gas producers and consumers are interested in the physical commodity and

thus trade on the spot market while participating in the futures market as hedgers. On the other hand, financial

traders such as market makers, hedge funds, mutual funds and swap dealers are interested in the changes in prices

but not the physical commodity and thus participate mainly in the futures market.
6Transparency of gas and transport prices, idiosyncracies and industry practices were pointed out to distinguish

the relatively new (at that time) volatile short-term futures and spot for natural gas from other markets.
7More recently, Zhang and Liu (2017) explored the causal relationships between natural gas spot and futures

prices in the New York Mercantile Exchange. Their results suggest that spot and futures prices are positive cross-

correlated, the natural gas futures can linearly Granger cause spot price and there are bidirectional nonlinear

causality relationships between natural gas spot and futures prices.
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trends.8 At this stage, it is also important to note that in Europe, the process of change followed

two very different courses: that of Britain’s privatizations and Continental Europe’s liberaliza-

tion (Heather, 2016). It took 15 years for the UK market to complete its liberalization process

(since the early 1980’s). Today the NBP has reached maturity and constitutes a sufficiently liq-

uid hub to provide support for financial risk management of gas portfolios for the British Isles.

In Continental Europe, even if the transformation process dates from the end of the 1990s, real

signs of change were not felt until the mid-2000s and only in western Europe. In this regard,

a strong political commitment to make the Dutch TTF the pivotal point for European gas has

fully contributed to its restructuring. Since 2003, the growing number of traders in other con-

tinental countries that rely on TTF hub to financially hedge and risk-manage their portfolios is

fully representative of this trend.

We contribute to the literature in several ways. To the best of our knowledge, this is the first

paper that investigates the issue of natural gas pricing and informational efficiency in European

and American gas hubs using frequency domain approach. Indeed, most previous studies have

ignored the possibility that direction, extent and strength of Granger causality may vary at

different time scales. Furthermore, the literature of European natural gas futures prices is thin

as the market is rather young compared to the North American experience. European markets

have undergone such significant changes that a comprehensive approach was needed to analyze

the two main functioning gas hubs. The question of their efficiency raises concerns about their

ability to constitute an important support for financial risk management and to provide credible

price creation, discovery and reference points, which could be used in medium and long-term

gas contractual pricing terms. The question is all the more important when considering the

European Commission’s vision of a single energy market. Moreover, past studies neglected the

nonlinearities governing energy commodities dynamics and mostly have considered linear causal

effects between spot and futures prices. More recent empirical studies show the importance of

considering nonlinearities of price dynamics in the study of causality effects because of, among

others, recessions, unforeseen extreme events, transaction costs, market power, geopolitical ten-

8See e.g. Haff, Lindqvist, and Løland (2008) and Asche, Osmundsen, and Sandsmark (2006) that have examined

the decoupling of natural gas, oil and electricity prices in the UK market.
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sions, asymmetric information or stickiness in prices.9 Moreover, literature does not provide a

clear consensus with respect to the direction of causality between natural gas spot and futures

prices. These divergences stem from different specifications of volatility in the spot and futures

markets, the periods considered and the employed methodologies. Finally, our results make it

possible to establish an evaluation of the hubs in terms of their capacity to provide reliable

reference prices for the quantities of gas under contract. We consider the subject very timely as

long-term contracts are increasingly based on hub indexation and market participants are also

effectively seeking to cover the risks associated with their physical gas portfolios efficiently.

Several outcomes are reached. First, all considered gas markets are found to be globally

efficient in pricing with strong evidence of cointegrating relationships between spot and futures

markets. Moreover, information flows between spot and futures markets although the futures

markets play a leading role in price discovery at some time scales for NBP and TTF gas hubs.

Furthermore, Henry Hub, NBP, and TTF gas hubs are found to be informationally efficient in

the long run. For short-term and medium-term scales, the null hypothesis of futures acting as

random walk is rejected.

The results make it possible to establish an evaluation of the hubs in terms of their capacity

to provide reliable reference prices for the quantities of gas under contract. In terms of pricing

efficiency, Henry hub showed the strongest and most robust results for all time scales considered.

We attribute these results to structural divergences between European and American natural gas

markets. Indeed, physical and virtual gas trading hubs have different set-ups to accommodate

the different structures of their industries between fully privatized and competitive transport

activities in the US versus regulated TSO in the European Union and respond to disparate

objectives: if the US aims at facilitating trade, balancing trade is privileged in the European

Union. The crucial role of liquidity and storage capacity in natural gas hubs are discussed and

call for a significant increase in the number of European physical transactions between markets

that is still required to reduce bottlenecks in transmission networks and interconnection points.

Significant investments in transport infrastructure are required to extend the supply in the

gas industry and the economic feasibility of these investments are highly dependent on pricing

9This has given rise to the use of nonlinear causality tests, including that of Baek and Brock (1992) or Diks

and Panchenko (2006).
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structure and predictability (Komlev, 2013).

Our results have useful implications. It can be argued that our findings shed some lights on

the true nature of causality between natural gas spot and futures prices at European and Amer-

ican gas hubs. From an informational point of view, if all relevant information is incorporated

into the prices, the allocation of capital would be all the more efficient as it would be attracted

by the most productive producers. These findings have important implications for investors,

producers, and policymakers.

The remainder of the paper is organized as follows. The next section presents a brief

overview of the existing theoretical and empirical studies surrounding the question of efficiency.

We describe the methodology of wavelet in section 2.3. The wavelet decomposed data and the

resulted empirical evidence of pricing and informational efficiency are presented in section 2.4.

We discuss our results in section 2.5 and conclude the paper in section 2.6.

2.2 Related literature

The causality relationship between futures and spot markets is and has been the subject

of lively debates. Theoretical and empirical investigations on the subject did not reach a clear

consensus on the causality direction. The theory of storage (Working, 1949) states that spot

and futures markets for storable commodities have a long-term relationship through market

players that perform intertemporal transactions in order to optimize their portfolio. Any devi-

ation from the intertemporal equilibrium can lead to arbitrage activities by market players that

benefit from substitutability between spot and futures markets. An alternative theory that has

linked spot and futures markets is based on the efficient market hypothesis. The latter is the

cornerstone of financial models and is derived from the original work of Cootner (1964) and was

formalized by Fama in the 1960s. The theory of efficiency assumes that the price observed in

the market instantly reflects all available information. At all times, the price is supposed to be

representative of past and future events and the expectations of agents in this market. Implic-

itly, the information is supposed to be accessible at no cost to a large number of operators that

cannot on their own exert a significant influence on prices or systematically control the market.

It follows that price changes are only the result of unforeseeable events. This has brought the

theory of efficiency closer to the random walk model and the martingale theory (Samuelson,
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1965). Even though both theories recognize the existence of a long-term relationship between

spot and futures prices, only the efficiency assumption suggests a potential sense of causality

between the two markets.

Most of the empirical investigations that have addressed the issue of the relationship be-

tween spot and futures relied on cointegration techniques based on Johansen (1988) test and

vector error correction model (VECM). For instance, Walls (1995) employed Johansen’s cointe-

gration methodology to test the efficiency of the US natural gas futures market with monthly

data from June 1990 to January 1994 and found no statistically departures from the unbiased-

ness hypothesis (see also Herbert (1995)). De Vany and Walls (1993) tested for cointegrating

relationships between price pairs between 20 locations and their results suggested that reforms

have led to an increase of spatial integration. Serletis (1997) and King and Cuc (1996) have also

analyzed the market integration for the North American market (US and Canada).10 Stronzik,

Rammerstorfer, and Neumann (2009) investigated the application of the theory of storage to the

European gas market using two indirect tests developed by Fama and French (1988) to study

the overall market performance. Most of their findings do not confirm predictions of the theory

of storage. Indeed, contrary to expectations, they found a positive correlation of inventory level

with twelve-month maturity yields, and that natural gas price volatility correlates negatively

with convenience yield approximations.11 More recently, Chinn and Coibion (2014) found that

futures prices are unbiased predictors of crude oil, gasoline, and heating oil prices but not of US

natural gas prices. In Europe, Asche, Osmundsen, and Sandsmark (2006) have examined the

decoupling of natural gas, oil, and electricity prices in the UK market.

Concerning the lead-lag relationship and the analysis of information flows between spot

and futures markets under the process of price discovery, literature provides no consensus on

the causality direction.12 Doane and Spulber (1994) employed the Granger causality test to

10See also: Mohammadi (2011).
11They attribute these results to possible obstacles concerning the appropriate use of storage in European

natural gas market: limited access to infrastructure, insufficient information, missing secondary markets for

unused capacities and high transaction costs.
12Garbade and Silver (1983) suggest that futures prices should lead spot prices in an efficient market because

futures market are more responsive to new information than spot prices and represent a benchmark in arbitrageurs

decision-making (Silvapulle and Moosa, 1999). Other researches support the idea that the spot market provides
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assess US gas market integration prior to open access; their results have suggested Granger

causality between only one of 20 pairs of gas prices from 5 regions. A contrario, open access has

led to instantaneous bi-directional causality. In the same vein, Ghoddusi (2016) examined the

integration between different types of physical (upstream/end use) and futures prices of natural

gas in the U.S by applying cointegration tests and causality analysis. Based on monthly data

from 1990 to 2014, results suggested that futures prices are cointegrated with wellhead, power,

industrial, and city gate prices; futures prices Granger cause spot prices and finally shocks to

futures prices have persistent effects on all physical prices.13 Gebre-Mariam (2011) found that

spot prices in the market hubs exhibit bidirectional or two-way causal relationships, suggesting

instantaneous response of price changes across markets.

Different areas of improvement emerge from this literature. First, most previous studies

have ignored the possibility that direction, extent and strength of Granger causality may vary at

different time scales. Secondly, among the studies that have analyzed the natural gas industry

through the theory of storage, the majority have focused on the North American market (see

e.g., Dincerler, Khokher, and Simin (2005) and Serletis and Shahmoradi (2006)). Thirdly, the

empirical investigations of price discovery process are also rather thin for European markets

and have neglected the nonlinearities governing energy commodities dynamics and mostly have

considered linear causal effects between spot and futures prices. More recent empirical studies

show the importance of considering nonlinearities of price dynamics in the study of causality

effects because of, among others, recessions, unforeseen extreme events, transaction costs, mar-

ket power, geopolitical tensions, asymmetric information or stickiness in prices. Fourthly, the

literature does not provide a clear consensus about the direction of causality: these differences

stem from the use of different methodologies and studied periods that need to be fortified.

In this context, we contribute to this literature by investigating the issue of natural gas

efficiency from both a pricing and informational14 point of view in European (NBP and TTF) and

a potent benchmark underlying any future transaction (Moosa, 1996) or that bidirectional causality between the

two markets is more sustainable.
13Futures markets are also found to cause fluctuations in spot prices (Brenner and Kroner, 1995).
14Following Rong and Zheng (2008), we associate pricing efficiency to the no-arbitrage prices depending on

whether arbitrage strategies could be utilized and informational efficiency to the reaction of futures prices to new

information. The first one is tested by investigating the relationship between spot price and futures prices, the
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American (Henry Hub) gas hubs using a multi-scale analysis approach. More precisely, wavelet

decomposition is applied to spot and futures prices to account for the intrinsic seasonality of

natural gas markets when investigating linear and nonlinear causal relationships. We also rely on

random walk testing to examine the informational efficiency of the natural gas hubs at different

time scales.

2.3 Methodology

In this section, the retained Maximum Overlapped Discrete Wavelet Transformation (MODWT)

methodology used to explore market efficiency on a multiresolution basis is described.15 First,

wavelet decomposition is applied to spot and futures price returns to investigate multiscale linear

and nonlinear causal relationships. We then rely on random walk testing via a variance ratio

test applied both to raw data and wavelet details to examine the informational efficiency of the

natural gas hubs.

2.3.1 Maximum overlapped discrete wavelet transformation

A crucial quality of wavelets is their ability to decompose the time series into details affiliated

to different time scales characterized by increasing frequencies. In all wavelet’s families, the

wavelet is basically decomposed into two major functions. First, the father wavelet noted φ

integrated to one
∫
φ (t) dt = 1 . The father wavelet represents the smooth component and the

low frequencies of the signal; reflecting the time series general trend. It is represented by :

sj,k =
∫
x (t)φJ,k (t) dt

Second, the mother wavelet noted ψ integrated to zero
∫
ψ (t) dt = 0 . It represents the detail

components which characterizes the deviations from the trend of the economic time series and

describes the high frequency signals. The mother wavelet is represented by

dj,k =
∫
x (t)ψj,k (t) dt, j = 1, 2 . . . , J.

second is tested by examining the residuals of futures log returns via random walk analysis.
15Wavelet decomposition is attractive from both the industry and the academic fields as investors, traders and

policymakers seek to understand prices predictability and optimize investment decisions (see Zavadska, Morales,

and Coughlan (2018), Reboredo, Rivera-Castro, and Ugolini (2017), and Nicolau and Palomba (2015)).
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where j is the maximum integer and 2j must not exceed the length of the time series. dj,k is

the increasing finer scale deviation from the flat trend sj,k . Indeed, the decomposed time series

x (t) can be written as:

x (t) = Sj,k (t) +Dj,k (t) +Dj−1,k + . . .+D1 (t)

Where Sj,k is the global smooth signal and Dj,k (t) + Dj−1,k + . . . + D1 (t) are the details

components. They can be defined as:

Sj (t) =
∑
k

sj,kφJ,k (t)

Dj (t) =
∑
k

dj,kψJ,k (t)

These coefficients measure the contribution of each component to the total signal. In order

to decompose natural gas spot and futures prices, the maximum overlapped discrete wavelet

transformation (MODWT) is used. The MODWT is considered as the best scaling method to

deal with economic time series such as energy spot and futures prices (Nicolau and Palomba,

2015). It is suitable for any data size and overcomes the discrete wavelet transform difficulities

such as the down sampling problem, in order to avoid information loss. Moreover, the variance

estimator associated to MODWT is asymptotically more efficient compared to DWT. Indeed,

MODWT enables the estimation of wavelet variance and covariance in the different time scale

components.

The Daubechies filter of length eight is employed in time series decomposition. Daubechies

is suitable for discrete wavelet analysis. Indeed, it conserves the energy of each detail and

redistributes it into more bunched form. Besides, the filter width 8 is long enough to ensure

the un-correlation between coefficients at the different scales and at the same time is short
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enough to reflect fewer boundary condition (Daubechies, 1992). This decomposition level leads

to eight details components (D1 to D8) in addition to the smooth component S8. The time-

scale frequency is described in table 2.2. D1 is the highest frequency detail which reflects the

short-term variations of the energy prices time series due to shocks occurring on a daily basis

(21=2 days). D2 and D3 represent the weekly effects and variations on a time scale of 22=4

days and 23=8 days, respectively. D4 and D5 measure the variations on mid-term and reflects

monthly variations with time scales from 24=16 to 25=32. Last, D6, D7 and D8 represent long

term prices variations on time scales of 64 to 512 days. Finally, S8 measures the residue of the

original time series and reflects the smooth movement of the original data.

2.3.2 Multi-scale analysis of correlation and cross correlation

To investigate the variability and dependence between energy spot and futures prices on a

scale by scale basis, we use the multi-resolution analysis to calculate the correlation and cross

correlation.

We consider a bivariate stochastic process Yt=(xt,yt), where xt is the spot price and yt

is the futures price, and we consider Zt = (Zx,j,t, Zy,j,t) as a scale, and wj wavelet coefficient

determined from Yt . We apply the MODWT to each wavelet process of Yt and we calculate

the coefficient of each bivariate process. Once the coefficient is properly determined and finite,

it is possible to calculate the time dependent wavelet variance σ2
Y for the scale wj of the detail

Yt as follows:

σ2
Y (wj) = V ar

(
Ẑx,j,t

) (
Ẑy,j,t

)

Equivalently, we can calculate the wavelet covariance of the scale wj as follows:

γx,y (wj) = Cov
{
Ẑx,j,t, Ẑy,j,t

}

Consequently, the wavelet correlation coefficient is obtained by:
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ρx,y (wj) =
Cov

{
Ẑx,j,t, Ẑy,j,t

}
(
var

{
Ẑx,j,t

}
var

{
Ẑy,j,t

})1/2 = γx,y (wj)
σx (wj)σy (wj)

The wavelet cross-correlation can be defined as a scale localized cross-correlation between

two detail components. It helps understanding the similarity between two signals by shifting one

relative to the other. Therefore, we consider a lag l in one of the time series when calculating

the covariance, thereupon, we represent the wavelet cross-correlation as:

ρx,y,l (wj) = γx,y,l (wj)
σx (wj)σy (wj)

Furthermore, we calculate the confidence intervals for the nonlinear Fisher’s z-transformation

of the correlation coefficient using the asymptotic normality of ρY (wj) . Following Gençay,

Selçuk, and Whitcher (2002), we present the Fisher’s z-transformation correlation as hρ =

tanh (ρ)−1 . Thus, for H independent gaussian observation, the estimated correlation ρ̂ ver-

ifies
√
H − 3 [h (ρ̂)− h (ρ)] ∼ N (0, 1) . Hence, the (1− α) confidence interval of the wavelet

correlation and cross correlation can be represented by:

tanh

h [ρ̂x,y (wj)]± βα2

(
1
V̂j

3
) 1

2

Where V̂j represents the number of MODWT coefficients of the scale wj . βα
2

is a coefficient

satisfying P
[
−βα

2
≤ U ≤ βα

2

]
= 1− α and U ∼ N (0, 1) .

2.3.3 Price discovery process

A linear and nonlinear Granger causality test is employed to understand the price discovery

mechanism in gas markets. The corresponding section briefly describes the econometric method-

ology of the causal relationship between energy spot and futures prices applied to both original

data and MODWT scales components. The linear causality is a standard Granger causality

test (Granger (1969) and Engle and Granger (1987)). For the non-linear causal relationship,

we adopted a modified version of Hiemstra and Jones (1994) developed by Diks and Panchenko

(2006). Both methods are described in the following subsections 2.3.3 and 2.3.3, respectively.
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Linear Granger causality test

The Granger causality is a bivariate test that provides the predictability of a future estima-

tion of a time series using the historical information of another time series. Granger causality

test between two time series xt and yt can be descrobed as follows:

Ryt = γ +
a∑
i=1

αiRyt−i +
b∑

j=1
βjRxt−j + εt

where Ryt = log (yt)− log (yt−1) , and Rxt = log (xt)− log (xt−1) ,

Ryt and Rxt denote the log returns of yt and xt, respectively. γ is a constant, a and b are

the lag length of the time series, and εt is a white noise.

Consequently, the null hypothesis of no Granger causality can by defined by the equation:

β1 = β2 = . . . = βb = 0. To define the Granger causality, we use the Wald F-statistic as:

F = (RSS (a)−RSS (a, b)) /b
RSS (a, b) / (N − b− a− 1) ∼ F (a,N − a− b− 1)

Where N is the number of observations, RSS(a,b) is the sum of squared residuals of Ry (t)

respecting the lag order a.

However, according to Engle and Granger (1987) , if the two series are cointegrated 16, we

rather use Granger causality test based on VECM model presented as:

Ry (t) = −a (yt−1 − δxt−1) +
a∑
i=1

αiRyt−i +
b∑

j=1
βjRxt−j

Where δ is the cointegration coefficient. The null hypothesis remains the same as the previous

Granger causality based on VAR.

Nonlinear Granger causality

The economic literature assumes that energy commodity prices exhibit complex nonlinear

dynamics and as such, linear causality may lead to inaccurate results when the tested variables

display nonlinear structure. The first nonlinear causality test was proposed by Baek and Brock
16To test the cointegration, we adopted the Johansen (1991) test.
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(1992) to investigate the relationship between stationary time series. This test was further

developed by Hiemstra and Jones (1994) allowing the nonlinear causality testing between inde-

pendent and identically distributed stationary time series. On this basis, Diks and Panchenko

(2006) associated the Hiemstra and Jones (1994)) test as a non-persistent test with the proper-

ties of Granger causality test and developed a new non-parametric test, able to investigate the

Granger causality between two stationary time series. This test decreases the bias and reduces

the risk of over rejection of the null hypothesis by using the estimated residuals of the vector au-

toregressive (VAR) model between energy spot and futures returns as input for non-parametric

causality in order to escape any linear influence. Diks and Panchenko (2006) non-parametric

test for causality is described as follows:

Consider xt and yt two stationary time series. xt Granger causes yt if xt historical and

current information are able to influence the future value of yt . In addition, let’s suppose that:

X lX
t = (Xt−l+1, . . . , Xt) and Y lY

t = (Yt−l+1, . . . , Yt) are the delay vectors, and lX , lY ≥ 1.

The null hypothesis of the non-parametric causality test between two stationary time series

considers a distribution of a vector Vt = (Xt, Yt, Rt) , where Rt = Yt+1 and (lx + ly + 1) is the

dimension of the vector. Thus H0 is described by:

H0 : Yt+1|
(
X lX
t ;Y lY

t

)
∼ Yt+1|Y lY

t

Which means that the historical observations of X lX
t do not hold significant information of

Y lY
t where ∼ express the equivalence in distribution. We assume that lx = ly = 1 in order

to respect the notation and to justify that H0 is a statement about the invariant distribution

of
(
X lX
t , Y lY

t , Rt
)
. Consequently, with respect to the null hypothesis, we can assume that

the conditional distribution of R under (X,Y)=(x,y) equals the conditional distribution of R

given Y=y. Hence, we can present the joint probability density function fX,Y,R (x, y, r) and the

corresponding marginals as follows:

fX,Y,R (x, y, r)
fY (y) = fX,Y (x, y)

fY (y) · fY,R (y, r)
fY (y)
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According to Diks and Panchenko (2006), this means that X and R are independent condi-

tionally on Y=y for the fixed values of y. Thus, the null hypothesis could be reformulated as

follows:

q = E [fX,Y,R (x, y, r) fY (y)− fX,Y (x, y) fY,R (y, r)] = 0

fv (Vi) = (2εn)−dv (n− 1)−1∑
jj 6=i I

V
ij is the local density estimator of a dv variate random

vector V. Where IVij = I (‖Vi − Vj‖ < εn) and I (.) is the indicator function and εn is the band-

width of the non-parametric test. Given this indicator, the test statistic can be written as a

scaled sample version of q as follows:

Tn (ε) = (n− 1)
n (n− 2)

∑
i

(
f̂X,Y,R (Xi, Yi, Ri) f̂Y (Yi)− f̂X,Y (Xi, Yi) f̂Y,R (Yi, Ri)

)

The bandwidth choice depends on the sample size n. Following Powell and Stoker (1996),

the test is consistent if the bandwidth is εn = Cn−β where C is a constant ( C > 0.1 and

βε]1
4 ,

1
3 [ , given if lx = ly = 1 . In this case, if the vectors Vi are independent, the test statistic

Tn is asymptotically normally distributed under suitable mixing factors taking into account the

covariance between local density estimators Denker and Keller (1983) as follows:

√
n

(Tn (εn)− b
Sn

→ N (0, 1)

Where , → presents the convergence in distributions and Sn denotes the asymptotic variance of

Tn (.) .

Bandwidth choice

According to Diks and Panchenko (2006) and Bekiros and Diks (2008) the optimal β =

2/7 . Thus, the optimal bandwidth which asymptotically provides the optimal estimator Tn

characterized by the smallest mean squared error is ε∗n = C∗n−
2
7 , where

C∗ =
(

18.3q2

4 (E [s (V )])2

)1/7
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To facilitate the calculation of C∗ , Diks and Panchenko (2006) provide its’ value for some

specific processes. In our work, we followed Diks and Panchenko (2006) to select the optimal

bandwidth depending on our data length. In our case, the data length is close to 2000 and

consequently the bandwidth is equal to 1.

Informational efficiency and the random walk hypothesis

The idea of combining efficiency and random walk concept is a way of testing whether all

subsequent price changes represent random departures from previous prices. More precisely, if

information flows are not impeded and information is instantly reflected in prices, then tomor-

row’s price changes will only reflect tomorrow’s news and are therefore independent of today’s

price changes.

We further tested the random walk of the natural gas futures prices for the US and Euro-

pean markets using Automatic Bootstrap variance ratio tests of Choi (1999) under conditional

heteroskedasticity. The AVR test can be described as follows:

Consider Yt as a stationary time series for the period (t=1, ..,T), the statistic of the variance

ratio is presented by;

V R (h) = 1 + 2
T−1∑
t=1

m

(
i

k

)
ρ̂ (i)

Where V R (h) is the ratio of 1
h times the variance of h-period return, ρ̂ (i) =

∑T−i
t=1 (Yt−µ̂)(Yt+i−µ̂)∑T

t=1(Yt−µ̂)
2

and µ̂ = T−1∑T
t=1 Yt .

Moreover, m (v) = 25
12π2v2

[
sin( 6πv

5 )
( 6πv

5 ) − cos
(

6πv
5

)]
represents the quadratic spectral Kernel.

Let fY (0) be the normalized spectral density of Yt at a null frequency and V R (h) is an

efficient estimator for 2πfY (0) . Consequently, the null hypothesis states that Yt is serially

uncorrelated:

HB
0 : 2πfY (0) = 1

AV R (h) =

√
T
h [V R (h)− 1]
√

2
−→ N(0, 1)
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Choi (1999) used the data-dependent approach of Andrews (1991) to select the optimal lag

length at the zero frequency for spectral density. In fact, the AVR test with optimal lag length

is noted AV R
(
ĥ
)
. We employed the wild bootstrap to the Lo-MacKinlay and Chow-Denning

test to avoid any problem of heteroskedasticity according to the three following steps:

1. Y ∗t = τtYt (t = 1, . . . , T ) where τt is a random variable that verifies E (τt) = 0 and E
(
τ 2
t

)
= 1

2. Compute the statistic of AV R
(
ĥ
)

obtained from {Y ∗t }
T
t=1

3. Repeat the first two steps K times until having a bootstrap distribution
{
AV R∗

(
ĥ∗; j)

}
K
j=1

As a result, we have two-tailed p-values of the test verifying |
{
AV R∗

(
ĥ∗; j)

}
K
j=1 | >

|AV R
(
ĥ) |

2.4 Empirical strategy

2.4.1 Data and unit root tests

Argus provides the daily prices of natural gas spot and futures in UK and Netherlands. The

sample ranges from 2nd January 2013 to 22th January 2019, consisting of 1532 observations.

Futures contracts with three maturity lengths of one, two, and three months are considered.

The US daily prices of natural gas spot and futures of one, two, and three months maturities are

downloaded from the Energy Information Administration (EIA) website. Figure 2.1 shows the

returns (i.e. first log-differenced) of natural gas spot and futures (one-month maturity) in the

US, UK, and the Netherlands. We limit the starting date to 2013 to account for major changes in

European natural gas markets to date in terms of market efficiency. Among them, the important

change in price formation mechanisms (IGU, 2018) towards gas-on-gas competition, the progress

in terms of market maturity, liquidity and integration as promulgated by the relevant regulatory

authorities (see, e.g., ACER (2017) and ACER (2015)).
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Table 2.1: Summary statistics

Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera

HH Spot 3.211 2.990 8.150 1.490 0.822 1.188 6.803 1202.980*

HH Futures 1 3.189 2.980 6.149 1.639 0.729 0.581 3.203 83.521*

HH Futures 2 3.225 3.037 5.465 1.767 0.691 0.431 2.565 55.852*

HH Futures 3 3.265 3.085 4.846 1.867 0.668 0.378 2.406 55.381*

NBP Spot 50.138 48.600 230 20.475 13.988 1.714 20.360 19988.46*

NBP Futures 1 50.147 49.250 77.650 26.350 12.566 0.105 1.959 71.904*

NBP Futures 2 50.649 48.950 81.750 25.400 12.584 0.154 2.117 55.745*

NBP Futures 3 51.160 48.800 84.325 25.800 12.606 0.188 2.269 43.18*

TTF Spot 20.319 20.250 85 10.500 5.033 1.603 20.292 19745.3*

TTF Futures 1 20.189 20.037 29.250 10.650 4.525 0.018 2.060 56.414*

TTF Futures 2 20.383 20.150 29.525 11.125 4.500 0.012 2.011 62.400*

TTF Futures 3 20.521 20.200 29.650 11.050 4.481 0.019 2.005 63.274*

Notes: The following table summarizes the descriptive statistics of the daily spot and futures returns of the diffrent
natural gas markets.* reflects the significant level at 1 % .

Table 2.1 describes summary statistics for the US and the European natural gas spot and

futures returns. The difference between spot and futures prices decreases when futures prices

approch maturity. The data exhibits positive skewness and kurtosis which proves the significant

assymetry and heavy tails, further justified by the significant Jarque-bera statistics.

The Augmented Dicky-Fuller (ADF), Phillips and Perron (1989) (PP) and Perron (89) unit

root tests are used to check for the stationarity properties of our data (see Table 2.9 and 2.8 in

Appendix A). We cannot reject the null hypothesis of unit root for all considered price series,

suggesting non-stationarity. We hence apply a logarithmic first difference filter to work with

stationary return series. Same results are yielded from the Perron (89) unit root test with a

breakpoint (see 2.8 in Appendix A).
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Figure 2.1: Natural gas spot and futures returns

Wavelet decomposition of daily natural gas returns

The first step of our approach is to decompose each of the daily spot and futures price returns

via the Maximal Overlap Discrete Wavelet Transform (see Figure 2.2 to 2.7 in Appendix B).

Contrary to tests performed at arbitrary time scales (e.g., daily, monthly or quarterly), here the

wavelet decomposition avoids any loss of information since any information that is not captured

on a scale is in the next scale.
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Table 2.2: Frequency interpretation of MRD scale levels

Scale crystals Daily frequency resolution

D1 1d-2d

D2 2d-4d

D3 4d-8d

D4 8d-16d

D5 16-32=4d-1wk 3d

D6 32-64 = 6wks 2d- 12wks 4d

D7 64-128= 12wks 4d- 25wks 3d

D8 128-256 = 51wk 1d - 102 wks 2d

This overlapping of information is enabled by the orthogonality property of the Daubechies

(1992) and allows the wavelet decomposition to detect sudden regime changes and isolated

shocks in the analysis of components of a non-stationary process (Ramsey, 2002). The MODWT

is similar to the Discrete Wavelet Transform (DWT) but presents some advantages.17 In this

paper, the original data have been transformed by the wavelet filter Symmlet [S(8)] up to time

scale 8.18

Wavelet cross-correlation analysis

The wavelet cross-correlation is an intuitive way to measure the overall statistical relation-

ships that might exist at different time scales among a set of observations on a bivariate random

variable. To allow for more predictive interpretations of the data, a graphic representation (see

Figure 2.8 to 2.10 in Appendix B) of wavelet cross-correlation is presented to indicate the type

of correlation that exists within daily spot and futures natural gas returns, at different time

17First, the MODWT can handle any sample size while the DWT of level j restricts the sample size to 2J. Also,

MODWT is invariant to circularly shifting the time series, and the multiresolution details and smooth coefficients

are associated with zero filters (Gençay, Selçuk, and Whitcher, 2002),(Percival and Mofjeld, 1997). Theses two

properties do not hold for DWT. Finally, when it comes to calculating the wavelet correlations, the MODWT

variance estimator is asymptotically more efficient than the same estimator based on DWT.
18Table 2.2 displays the frequency interpretation of the multiresolution decomposed scale levels.
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scales, along with their confidence intervals and the lead and lag for each component. The red

curves are the 95% confidence intervals. If the curve is significantly high, above the horizontal

axis and skewed to the right, it means that there is a positive wavelet cross-correlation and the

first variable leads, otherwise, the second variable leads.

Figure 2.8 in Appendix B displays the wavelet cross-correlation between Henry Hub spot and

futures returns. It shows that there is no evidence of a clear lead across all the levels. Figure 2.9

in Appendix B reprensents the wavelet cross-correlation between NBP spot and futures returns.

It shows that in level 8, the curve is right skewed, which means that spot lead-lag futures and in

level 7 the curve is left skewned which means that the futures price lead-lag spot returns. from

level 1 to 6, the curves do not reaveal any leader.

Figure 2.10 in Appendix B shows a positive high correlation skewed to the left suggesting

that futures prices lead spot prices in the TTF market for levels 8 to 3 (in the long and medium

term). However, it decreases to reach low levels in the short run (levels 1 and 2). Only level 1

shows a centured curve.

Moreover, correlations are increasing with the time scale and reach almost 1 in the long-

run. In other words, when periods exceed the year, the existence of a strictly linear relationship

between spot and futures returns of the three natural gas markets considered cannot be rejected.

It is worth noting that for the US case, correlations between spot and futures reach a high level

faster than European ones.

2.4.2 Efficiency of intertemporal arbitrage: Johansen cointegration test on

raw data

Before investigating the causal relationship between spot prices and futures prices, we first

need to confirm the cointegration between natural gas spot and futures prices in the three

considered hubs. Table 2.10 in Appendix C shows the results of the cointegration test based on

both Johansen’s maximum eigenvalues and the Trace test. We can reject in all cases the null

hypothesis of no cointegration relationship between spot and futures prices at the conventional

significance level of 5%, but we cannot reject the null hypothesis according to which at most

one cointegration relationship exists for both American and European spot and futures natural
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gas markets respectively.19 Therefore, results suggest the existence of a long-run relationship

between Henry Hub spot and futures prices, NBP spot and futures prices, and TTF spot and

futures prices. Results are robust to different maturities of futures contracts (one, two, and

three months ahead contracts).

2.4.3 Price discovery process

Linear Granger causality test on raw and decomposed data

To determine the direction of Granger causality implied by the existence of a cointegrat-

ing relationship, we run a Vector Error Correction Model (VECM) which integrates an error

correction term (EC) supposed to depict the adjustment process towards the long run rela-

tionship in the series. For comparison purpose, we also run Granger causality test based on

unrestricted VAR. Results based on original data are quite comparable for NBP and TTF gas

hubs as they suggest unidirectional Granger causality running from futures prices of one month

and two months maturities to spot prices and no causality when three-months ahead futures

contracts are considered. Henry Hub futures prices of two- and three-months maturities Granger

cause spot prices. However, bidirectional causality is found when two-months ahead Henry Hub

futures contracts are considered. After investigating the causality direction in the original se-

ries of price returns, we examine the time-scale components of the price return series based

on wavelet transformation.20 Table 2.3 shows that for most of the cases, there is bidirectional

Granger causality between Henry Hub spot and futures price returns except for the 7th level for

one-month ahead futures contracts and the 3rd level for two-month ahead futures contracts.

Concerning the UK gas hub NBP, results unveil bidirectional causality between spot and

futures returns of 1- and 2-months maturities for most of the scale levels. Results are less unan-

imous when 3 months maturities contracts are considered. Indeed, inconsistency in causality

direction when we go from one scale to another is found between TTF spot and futures re-

19Results are robust to three alternative models with different levels of restrictions: restricted intercept and no

trend, unrestricted intercept and no trend, and unrestricted intercept and restricted trend. In all cases, the null

hypothesis is rejected in favor of the existence of a cointegrating relationship between spot and futures prices for

all considered gas hubs. Results are available upon request.
20We test Granger causality between the time-scale components of spot and futures price returns in the three

gas hubs based on an unrestricted VAR.
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turns of two- and three-months maturities with an absence of causality from levels 1 to 3 and a

bidirectional causality in the long run (levels 7 and 8).

Furthermore, as in the case where the original return series are considered, we find sim-

ilarities between the TTF and NBP gas hubs where no causality is found between spot and

two and three months ahead futures contracts suggesting lower visibility with longer futures

contract maturities of market participants. Consequently, TTF and NBP can be considered as

less informationally efficient than Henry Hub. Moreover, when unidirectional causality is found,

it is almost exclusively running from futures to spot prices, emphasizing the explanatory power

of futures for the next day spot price change. It corroborates the idea that futures markets tend

to be used because they are more fluid and informative to adjust physical prices. This implies

that the futures market discovers prices and spot market prices are influenced by the futures

market prices. Consequently, futures markets have a stronger ability to predict subsequent spot

prices. All in all, what can be learned from the linear Granger causality test is that:

• NBP and TTF spot and one-month maturity futures returns can be considered as efficient

all along the considered time scales and only in the long run when two and three-months

maturities contracts are considered.

• Bidirectional causality is clearly dominant for US gas hub suggesting instantaneous re-

sponse of price change across markets and efficiency in short, medium and long term.

More precisely, Henry Hub can be considered as efficient from intra-week to approximately

annual period.

Nonlinear Granger causality test on original and decomposed data

Financial and commodity markets exhibit nonlinear dynamics because of, among others,

transaction costs, unforeseen events, recessions, stickiness in prices, etc. To accommodate these

nonlinearities in causality testing, Baek and Brock (1992) have proposed a nonparametric test for

detecting nonlinear causal relationships based on the correlation integral, which is an estimator

of spatial dependence across time. Hiemstra and Jones (1994) have provided an improved version

that has been widely used in the economics literature. More recently, Diks and Panchenko (2006)

found that these tests tend to over-reject the null hypothesis if it is accurate and proposed a

non-parametric test that avoids over-rejection. Tables 2.4 to 2.6 present the results of nonlinear
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Granger causality tests between spot and futures prices based on this test. The latter has been

applied to both the time-scale components and original time series based on unrestricted VAR

specification. The number of lags has been selected by relying on the Schwarz information

criterion.

As displayed in Table 2.4, neither of the Henry Hub spot or futures markets seem to lead

the other (with some exceptions where two- and three-months maturities futures prices seem to

lead spot prices). In other words, both markets are efficient in terms of pricing, and the activity

at the spot market is likely to affect prices as futures markets.

Concerning the case of the NBP (see Table 2.6), the results are not unanimous across the

different wavelet details and vary between unidirectional causality from futures price returns

to spot market price returns and bidirectional causality. When one-month ahead futures are

considered, no market leads the other for all wavelet details except the level D8: suggesting that

futures market plays a dominant role in price discovery on an annual basis. The same result

is also found when two-months maturities contracts are considered as levels 2, ,7 and 8 exhibit

unidirectional causality from futures to spot prices while for all other frequencies, there is a

feedback relationship between the two markets. The same is detected between spot and one-

month ahead TTF futures except for an absence of causality for the 6th level. However, when

two- and three-months maturities are considered, results are less unanimous with punctuated

unidirectional causalities running from TTF futures prices to spot prices.

Futures markets providing price discovery for the spot market is noteworthy as the infor-

mation sets in natural gas spot and futures markets are different (short-term influences, such

as weather conditions or infrastructure outages are expected to have a significant impact on

spot prices and a limited one on futures). Following Silvapulle and Moosa (1999) and Bohl and

Stephan (2013), this is the result of the broader scope of market participants in the futures

market where they have the opportunity to trade the commodity multiple time before maturity.

The futures markets hence become attractive for hedgers and speculators without interest in

the physical delivery of the underlying asset. It implies a greater informational efficiency of the

market compared to the one of the spot. Futures markets hence play a dominant role in price

discovery.
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Table 2.3: Multiscale linear Granger Causality test based on VAR.

Henry Hub
Maturity 1 Maturity 2 Maturity 3

S → F F → S S → F F → S S → F F → S
Timescale (days) F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value
Original level Original 1.9297 0.1456 108.489 0.0000 7.4302 0.0000 60.3909 0.0000 0.8002 0.4495 62.7845 0.0000
Short scale D1 5.0073 0.0000 18.2651 0.0000 3.7508 0.0002 3.7508 0.0002 11.5775 0.0000 21.9113 0.0000

D2 1.8669 0.0613 15.4797 0.0000 1.0474 0.3980 14.0416 0.0000 8.7628 0.0000 32.4641 0.0000
Medium scale D3 3.3204 0.0016 27.5350 0.0000 2.6833 0.0092 26.3501 0.0000 61.5653 0.0000 61.5653 0.0000

D4 8.1115 0.0000 35.5340 0.0000 11.4122 0.0000 36.0752 0.0000 11.4122 0.0000 36.0752 0.0000
D5 3.4713 0.0006 36.3207 0.0000 3.7335 0.0002 33.1086 0.0000 9.5163 0.0000 37.7405 0.0000
D6 14.9722 0.0000 31.8082 0.0000 16.5630 0.0000 28.1400 0.0000 23.0441 0.0000 35.6345 0.0000
D7 1.4331 0.1778 37.5900 0.0000 4.4100 0.0000 37.6928 0.0000 8.7873 0.0000 43.8998 0.0000

Long scale D8 9.2195 0.0000 20.3114 0.0000 8.6360 0.0000 18.8043 0.0000 10.8266 0.0000 23.7487 0.0000
TTF

Maturity 1 Maturity 2 Maturity 3
S → F F → S S → F F → S S → F F → S

Timescale (days) F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value
Original level Original 1.6307 0.1349 13.9679 0.0000 0.9150 0.4007 4.6324 0.0099 1.0218 0.6000 3.4092 0.1818
Short scale D1 1.5629 0.1312 2.4034 0.0141 0.7796 0.6208 1.0496 0.3963 0.7603 0.6381 0.9973 0.4361

D2 2.2285 0.0231 4.0916 0.0001 1.3654 0.2160 0.9906 0.4362 1.0264 0.4137 1.5731 0.1280
Medium scale D3 4.6372 0.0000 5.6445 0.0000 1.3654 0.2160 0.9906 0.4362 1.2759 0.2585 1.3512 0.2223

D4 5.6826 0.0000 8.5633 0.0000 1.2906 0.2439 2.5901 0.0082 1.1791 0.3080 1.8356 0.0665
D5 8.6640 0.0000 11.6771 0.0000 2.3582 0.0161 4.2395 0.0001 3.0187 0.0023 3.1162 0.0017
D6 0.5486 0.7978 0.8508 0.5451 0.4230 0.8884 0.5813 0.7716 0.8364 0.5570 0.8364 0.5570
D7 9.4265 0.0000 17.4629 0.0000 4.2382 0.0001 6.9044 0.0000 5.6698 0.0000 6.9619 0.0000

Long scale D8 13.6710 0.0000 21.8379 0.0000 9.0826 0.0000 9.2583 0.0000 7.8678 0.0000 8.0394 0.0000
NBP

Maturity 1 Maturity 2 Maturity 3
S → F F → S S → F F → S S → F F → S

Timescale (days) F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value F-test P-value
Original level Original 2.0250 0.0594 14.2069 0.0000 2.13801 0.1439 11.8843 0.0006 1.0218 0.6000 3.4092 0.1818
Short scale D1 1.9906 0.0442 1.8544 0.0633 2.0558 0.0371 1.0513 0.3951 1.4874 0.1568 1.2447 0.2690

D2 1.2342 0.2749 3.5383 0.0005 1.1801 0.3073 2.0463 0.0381 1.0513 0.3951 1.4874 0.1568
Medium scale D3 4.4352 0.0001 4.3790 0.0001 2.1833 0.0331 1.7329 0.0973 1.3347 0.2299 1.9786 0.0547

D4 5.7843 0.0000 8.7505 0.0000 1.2318 0.2763 2.1833 0.0331 1.8283 0.0677 3.2113 0.0013
D5 6.1356 0.0000 11.4883 0.0000 2.6655 0.0066 7.7813 0.0000 1.3163 0.2307 7.8749 0.0000
D6 8.6921 0.0000 8.6921 0.0000 3.9076 0.0003 6.3413 0.0000 3.2045 0.0013 8.7322 0.0000
D7 11.7638 0.0000 19.0803 0.0000 2.4395 0.0173 5.6855 0.0000 5.0945 0.0000 5.6790 0.0000

Long scale D8 21.1932 0.0000 16.5408 0.0000 12.9411 0.0000 9.0093 0.0000 4.7637 0.0000 9.6151 0.0000

Notes: The results of the joint Wald test are reported in the table with associated p-values. A statistically significant
result means the rejection of the null hypothesis of no Granger causality F refers to futures price returns and S to
spot price returns. F → S means testing for a Granger cause from futures to physical price returns. S → F means
testing for a Granger cause from the physical prices to the futures prices.
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Table 2.4: Multiscale Nonlinear Granger Causality test, Henry Hub.

Maturity 1 Maturity 2 Maturity 3
Lx=Ly S → F F → S S → F F → S S → F F → S

T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value
Panel A: Original data

1 4.6740 0.0000 9.2420 0.0000 3.7160 0.0001 7.0910 0.0000 2.5860 0.0049 6.4410 0.0000
2 4.1560 0.0000 9.9840 0.0000 4.0110 0.0000 8.5970 0.0000 2.8350 0.0023 7.8420 0.0000
3 5.2670 0.0000 8.9570 0.0000 4.7010 0.0000 7.7410 0.0000 3.5400 0.0002 6.6170 0.0000
4 4.8200 0.0000 7.9390 0.0000 4.3070 0.0000 7.0350 0.0000 3.0550 0.0011 6.4850 0.0000
5 4.0820 0.0000 6.8440 0.0000 3.4480 0.0003 6.0280 0.0000 2.6290 0.0043 5.4340 0.0000

Panel B: D1
1 5.7450 0.0000 6.6800 0.0000 5.4280 0.0000 7.1070 0.0000 4.7640 0.0000 6.3410 0.0000
2 5.6240 0.0000 5.5370 0.0000 4.3210 0.0000 6.0970 0.0000 3.2300 0.0006 5.6680 0.0000
3 5.2660 0.0000 5.6400 0.0000 4.3470 0.0000 5.9480 0.0000 3.0350 0.0012 5.5350 0.0000
4 4.9570 0.0000 4.8410 0.0000 3.9750 0.0000 5.3890 0.0000 2.8280 0.0023 5.0910 0.0000
5 4.7490 0.0000 4.1930 0.0000 3.6010 0.0002 4.9850 0.0000 2.6530 0.0040 4.8260 0.0000

Panel C: D2
1 5.4770 0.0000 8.7480 0.0000 5.7020 0.0000 9.5180 0.0000 4.4990 0.0000 8.7460 0.0000
2 4.4940 0.0000 8.9140 0.0000 2.8950 0.0019 9.3130 0.0000 1.1380 0.1276 8.2460 0.0000
3 4.0880 0.0000 8.2180 0.0000 2.3750 0.0088 8.1450 0.0000 0.7430 0.2288 6.9520 0.0000
4 4.4340 0.0000 7.5660 0.0000 2.5620 0.0052 7.4560 0.0000 1.2650 0.1030 0.5420 0.0000
5 3.8280 0.0000 7.0950 0.0000 2.1300 0.0166 7.0700 0.0000 1.2330 0.1087 6.2000 0.0000

Panel D: D3
1 2.7430 0.0000 8.9750 0.0000 2.2310 0.0128 9.3520 0.0000 -0.9810 0.8367 8.1970 0.0000
2 4.6990 0.0000 8.7580 0.0000 5.5680 0.0000 9.1120 0.0000 3.5130 0.0002 7.9140 0.0000
3 3.6480 0.0001 8.2510 0.0000 3.8110 0.0001 9.1910 0.0000 2.4500 0.0072 8.0950 0.0000
4 2.9700 0.0015 7.2140 0.0000 2.7240 0.0032 7.7640 0.0000 1.3230 0.0930 6.8330 0.0000
5 3.4350 0.0003 6.7840 0.0000 3.0040 0.0013 7.1210 0.0000 1.5070 0.0659 6.1940 0.0000

Panel D: D4
1 -0.0020 0.5010 9.8490 0.0000 -3.7080 0.9999 12.0140 0.0000 -4.5940 1.0000 11.2690 0.0000
2 3.4380 0.0003 9.9240 0.0000 0.5900 0.2774 11.5570 0.0000 -0.5970 0.7248 10.8300 0.0000
3 5.9200 0.0000 9.5750 0.0000 4.8690 0.0000 11.0770 0.0000 3.5000 0.0002 10.3430 0.0000
4 6.0370 0.0000 8.9200 0.0000 5.4390 0.0000 10.1350 0.0000 4.3630 0.0000 9.6110 0.0000
5 5.4630 0.0000 7.9980 0.0000 4.5540 0.0000 9.0060 0.0000 3.4820 0.0003 8.6240 0.0000

Panel E: D5
1 3.3690 0.0004 7.3890 0.0000 3.5000 0.0002 7.7970 0.0000 3.8960 0.0001 7.3140 0.0000
2 3.4000 0.0012 7.3060 0.0000 3.2990 0.0005 7.9100 0.0000 3.5680 0.0002 7.2800 0.0000
3 3.2400 0.0006 7.2260 0.0000 3.6070 0.0002 8.0460 0.0000 3.8770 0.0001 7.3880 0.0000
4 4.1060 0.0000 7.1850 0.0000 4.1480 0.0000 8.0210 0.0000 4.4620 0.0000 7.5840 0.0000
5 4.8600 7.1810 0.0000 4.7720 0.0000 8.0700 0.0000 5.1630 0.0000 7.8570 0.0000

Panel F: D6
1 4.4260 0.0000 5.4160 0.0000 2.7540 0.0029 5.4140 0.0000 2.2510 0.0122 4.9580 0.0000
2 4.1990 0.0000 5.3560 0.0000 2.5470 0.0054 5.2920 0.0000 1.9580 0.0251 4.8680 0.0000
3 3.9410 0.0000 5.2980 0.0000 2.4290 0.0076 5.2510 0.0000 1.7120 0.0435 4.8290 0.0000
4 3.6940 0.0000 5.2950 0.0000 2.3000 0.0107 5.3180 0.0000 1.5740 0.0577 4.8630 0.0000
5 3.5010 0.0000 5.2890 0.0000 2.3340 0.0098 5.4360 0.0000 1.5820 0.0568 4.9700 0.0000

Panel G: D7
1 4.1080 0.0000 7.1510 0.0000 0.2550 0.3993 6.4780 0.0000 0.9690 0.1664 3.4580 0.0003
2 3.9820 0.0000 7.0760 0.0000 0.1990 0.4211 6.3560 0.0000 1.0730 0.1417 3.2880 0.0005
3 3.8500 0.0000 7.0050 0.0000 0.2210 0.4124 6.2250 0.0000 0.9510 0.1708 3.1700 0.0008
4 3.7310 0.0000 6.9310 0.0000 0.2160 0.4145 6.1190 0.0000 0.9480 0.1716 3.0460 0.0012
5 3.6090 0.0000 6.8600 0.0000 0.2400 0.4050 6.0360 0.0000 1.0000 0.1586 3.0320 0.0012

Panel H: D8
1 7.2470 0.0000 3.8900 0.0000 8.3400 0.0000 4.1830 0.0000 7.7960 0.0000 4.9430 0.0000
2 7.1960 0.0000 3.8630 0.0000 8.3100 0.0000 4.0980 0.0000 7.7500 0.0000 4.8710 0.0000
3 7.1500 0.0000 3.8220 0.0000 8.2800 0.0000 4.0190 0.0000 7.7260 0.0000 4.8160 0.0000
4 7.1080 0.0000 3.8090 0.0000 8.2480 0.0000 3.9530 0.0000 7.6960 0.0000 4.7540 0.0000
5 7.0670 0.0000 3.7790 0.0000 8.2100 0.0000 3.8930 0.0001 7.6730 0.0000 4.6980 0.0000

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger causality running from futures
to physical price returns. S → F means testing for a Granger causality running from the physical prices to the
futures prices.
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Table 2.5: Multiscale nonlinear Granger causality test- TTF returns

Maturity 1 Maturity 2 Maturity 3
Lx=Ly S → F F → S S → F F → S S → F F → S

T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value
Panel A: Original data

1 2.0370 0.0208 4.1760 0.0000 0.9920 0.1605 2.3910 0.0084 -0.9850 0.8378 0.8450 0.1989
2 2.476, 0.0067 4.2760 0.0000 1.5750 0.0576 2.9770 0.0015 -0.710, 0.7612 2.1310 0.0165
3 2.8530 0.0022 4.2830 0.0000 1,716, 0.0431 2.7540 0.0029 -0.2940 0.6157 1.6170 0.0529
4 2.8900 0.0019 4.5910 0.0000 2.0260 0.0214 3.4930 0.0002 0.0930 0.4631 2.3630 0.0091
5 2.7410 0.0031 4.3250 0.0000 1.8690 0.0308 3.3700 0.0004 0.1340 0.4467 2.0760 0.0189

Panel B: D1
1 2.1700 0.0150 4.5650 0.0000 1.5620 0.0592 3.1050 0.0010 -0.4560 0.6757 2.8200 0.0024
2 2.9710 0.0015 6.2170 0.0000 1.8830 0.0299 4.8360 0.0000 0.5010 0.3081 4.3480 0.0000
3 3.1570 0.0008 6.1830 0.0000 1.7380 0.0411 4.8240 0.0000 0.0930 0.4629 3.8750 0.0001
4 3.0690 0.0011 5.7840 0.0000 1.8820 0.0299 4.3010 0.0000 0.0630 0.4751 3.3250 0.0004
5 2.9660 0.0015 5.8490 0.0000 1.8050 0.0355 4.2170 0.0000 -0.0920 0.5365 3.1550 0.0008

Panel C: D2
1 1.8920 0.0293 4.6560 0.0000 -0.8050 0.7897 2.9260 0.0017 -1.1100 0.8664 2.7490 0.0030
2 2.3000 0.0107 7.8640 0.0000 1.4700 0.0708 7.0000 0.0000 0.4650 0.3208 6.3320 0.0000
3 2.2840 0.0112 6.7810 0.0000 1.4010 0.0806 6.0880 0.0000 0.4800 0.3157 5.3420 0.0000
4 1.2270 0.1098 6.3150 0.0000 1.0440 0.1484 5.9230 0.0000 0.1450 0.4423 5.2900 0.0000
5 1.4240 0.0773 6.1030 0.0000 1.2110 0.1130 5.4990 0.0000 0.2450 0.4034 4.9750 0.0000

Panel D: D3
1 2.1330 0.0164 8.2510 0.0000 0.0900 0.4640 6.5740 0.0000 -0.3030 0.6191 5.4860 0.0000
2 2.4080 0.0080 8.5480 0.0000 1.3950 0.0815 7.4240 0.0000 0.6890 0.2453 5.8880 0.0000
3 2.151, 0.0157 8.4490 0.0000 0.7590 0.2239 7.8220 0.0000 1.2460 0.1064 6.4780 0.0000
4 2.0160 0.0219 6.9690 0.0000 0.7590 0.3525 6.6160 0.0000 1.2150 0.1121 5.3340 0.0000
5 1.966, 0.0246 6.3790 0.0000 0.2580 0.3984 5.8690 0.0000 0.8950 0.1854 4.6490 0.0000

Panel D: D4
1 4.1670 0.0000 5.7840 0.0000 4.1670 0.0000 5.7840 0.0000 1.0550 0.1457 4.3710 0.0000
2 4.047, 0.0000 6.2150 0.0000 4.0470 0.0000 6.2150 0.0000 0.6350 0.2626 4.1600 0.0000
3 3.9660 0.0000 7.0700 0.0000 3.9660 0.0000 7.0700 0.0000 0.9390 0.1738 4.4820 0.0000
4 3.3980 0.0000 7.7090 0.0000 3.3980 0.0003 7.7090 0.0000 0.9070 0.1822 4.6140 0.0000
5 3.0690 0.0000 7.5280 0.0000 3.0690 0.0011 7.5280 0.0000 0.7540 0.2253 4.5940 0.0000

Panel E: D5
1 4.6160 0.0000 6.434, 0.0000 4.6160 0.0000 6.4340 0.0000 2.0410 0.0206 4.8760 0.0000
2 4.2240 0.0000 6.1710 0.0000 4.2240 0.0000 6.1710 0.0000 1.4730 0.0704 4.7940 0.0000
3 4.0770 0.0000 6.0340 0.0000 4.0770 0.0000 6.0340 0.0000 0.8340 0.2021 4.9030 0.0000
4 4.0520 0.0000 6.1530 0.0000 4.0520 0.0000 6.1530 0.0000 0.5240 0.3001 4.9100 0.0000
5 4.1050 0.0000 6.3110 0.0000 4.1050 0.0000 6.3110 0.0000 0.4960 0.3100 4.9080 0.0000

Panel F: D6
1 0.4660 0.3206 0.2690 0.3940 0.4660 0.3206 0.2690 0.3940 0.3720 0.3548 0.7180 0.2364
2 0.3470 0.3642 0.4600 0.3227 0.3470 0.3642 0.4600 0.3227 0.4040 0.3432 0.8710 0.1920
3 0.2370 0.4063 0.7050 0.2404 0.2370 0.4063 0.7050 0.2404 0.4440 0.3287 1.0260 0.1524
4 0.1700 0.4324 0.8230 0.2054 0.1700 0.4324 0.8230 0.2054 0.4800 0.3156 1.0480 0.1472
5 0.0060 0.4975 1.1010 0.1356 0.0060 0.4975 1.1010 0.1356 0.6680 0.2520 1.2590 0.1040

Panel G: D7
1 6.1650 0.0000 5.1330 0.0000 6.1650 0.0000 5.1330 0.0000 2.1380 0.0163 3.0860 0.0010
2 6.0890 0.0000 5.0600 0.0000 6.0890 0.0000 5.0600 0.0000 2.1520 0.0157 3.0350 0.0012
3 6.0250 0.0000 4.9950 0.0000 6.0250 0.0000 4.9950 0.0000 2.1720 0.0149 3.0020 0.0013
4 5.9630 0.0000 4.8940 0.0000 5.9630 0.0000 4.8940 0.0000 2.2150 0.0134 3.0760 0.0011
5 5.9070 0.0000 4.7980 0.0000 5.9070 0.0000 4.7980 0.0000 2.2510 0.0122 3.0370 0.0012

Panel H: D8
1 4.2340 0.0000 7.6030 0.0000 4.2340 0.0000 7.6030 0.0000 -4.4840 1.0000 6.8720 0.0000
2 4.1770 0.0000 7.5550 0.0000 4.1770 0.0000 7.5550 0.0000 -4.5200 1.0000 6.8420 0.0000
3 4.0950 0.0000 7.5090 0.0000 4.0950 0.0000 7.5090 0.0000 -4.5580 1.0000 6.8140 0.0000
4 4.0090 0.0000 7.4740 0.0000 4.0090 0.0000 7.4740 0.0000 -4.4420 1.0000 6.7880 0.0000
5 3.9180 0.0000 7.4330 0.0000 3.9180 0.0000 7.4330 0.0000 -4.2470 1.0000 6.7540 0.0000

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger causality running from futures
to physical price returns. S → F means testing for a Granger causality running from the physical prices to the
futures prices.
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Table 2.6: Multiscale nonlinear Granger causality - NBP returns

Maturity 1 Maturity 2 Maturity 3
Lx=Ly S → F F → S S → F F → S S → F F → S

T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value T-stat P-value
Panel A: Original data

1 0.9420 0.1732 2.9840 0.0014 0.3400 0.3671 1.1320 0.1287 -0.8110 0.7912 0.0390 0.4845
2 1.0450 0.1480 3.2230 0.0006 0.5530 0.2901 1.5610 0.0593 -0.9390 0.8261 0.4320 0.3329
3 1.2490 0.1058 3.9710 0.0000 0.7600 0.2237 2.5340 0.0056 -1.0830 0.8605 1.5340 0.0626
4 1.7130 0.0433 5.0440 0.0000 0.6130 0.2698 3.1540 0.0008 -0.3110 0.6221 2.2950 0.0109
5 1.5420 0.0615 5.0890 0.0000 0.2380 0.4058 3.4970 0.0002 -0.3190 0.6250 -0.3190 0.6250

Panel B: D1
1 1.7110 0.0435 4.4070 0.0000 2.0770 0.0189 3.6030 0.0002 0.7110 0.2386 2.5670 0.0051
2 2.1440 0.0160 6.0560 0.0000 2.3530 0.0093 5.2300 0.0000 1.2760 0.1009 3.7600 0.0001
3 2.0870 0.0184 6.3340 0.0000 2.0180 0.0218 4.6580 0.0000 1.0590 0.1447 3.7270 0.0001
4 1.7410 0.0408 5.5220 0.0000 1.7560 0.0396 4.0740 0.0000 1.1860 0.1179 3.8040 0.0001
5 1.8530 0.0319 5.3080 0.0000 1.7810 0.0374 3.8320 0.0001 0.7270 0.2336 3.4790 0.0003

Panel C: D2
1 1.6590 0.0485 3.8920 0.0000 -0.3390 0.6327 2.3360 0.0098 -0.8860 0.8123 1.2730 0.1015
2 1.9170 0.0276 7.2040 0.0000 0.9960 0.1597 5.5220 0.0000 0.2070 0.4181 3.9320 0.0000
3 1.9640 0.0248 6.4820 0.0000 1.0080 0.1566 4.8410 0.0000 0.4870 0.3133 3.4480 0.0003
4 1.3070 0.0956 6.1600 0.0000 0.6610 0.2543 4.6070 0.0000 0.4590 0.3229 3.2350 0.0006
5 1.4290 0.0766 5.8030 0.0000 0.8730 0.1914 4.1180 0.0000 0.6100 0.2710 2.9470 0.0016

Panel D: D3
1 2.9630 0.0015 7.6380 0.0000 1.9680 0.0246 5.9760 0.0000 0.8320 0.2027 5.1670 0.0000
2 3.9070 0.0001 7.7110 0.0000 2.4960 0.0063 6.6440 0.0000 1.4520 0.0733 5.2520 0.0000
3 3.0580 0.0011 7.6650 0.0000 1.7160 0.0431 7.1180 0.0000 1.5530 0.0602 6.2080 0.0000
4 2.6620 0.0039 5.9870 0.0000 1.1760 0.1197 5.8170 0.0000 1.1760 0.1198 5.2720 0.0000
5 2.4250 0.0077 5.3990 0.0000 0.9110 0.1810 5.2810 0.0000 0.7700 0.2205 4.7290 0.0000

Panel D: D4
1 3.4990 0.0002 6.0840 0.0000 2.9530 0.0016 4.6000 0.0000 2.0900 0.0183 2.4350 0.0074
2 3.8660 0.0001 5.9580 0.0000 2.7550 0.0029 4.2190 0.0000 1.4980 0.0670 2.2820 0.0112
3 4.6370 0,0000 6.5240 0.0000 3.2390 0.0006 4.9110 0.0000 1.4020 0.0805 3.1410 0.0008
4 4.6500 0,0000 6.7630 0.0000 3.0460 0.0012 5.2450 0.0000 1.1810 0.1187 3.6540 0.0001
5 4.0920 0,0000 6.1840 0.0000 2.7360 0.0031 4.8700 0.0000 1.4020 0.0804 3.3130 0.0005

Panel E: D5
1 3.7440 0.0001 5.8480 0.0000 3.1080 0.0009 3.6570 0.0001 1.8640 0.0312 3.5030 0.0002
2 3.4090 0.0003 5.5170 0.0000 2.7270 0.0032 3.4360 0.0003 1.5450 0.0612 3.3410 0.0004
3 3.2460 0.0006 5.3660 0.0000 2.4090 0.0080 3.5970 0.0002 1.2890 0.0988 3.4920 0.0002
4 3.2030 0.0007 5.3390 0.0000 2.2090 0.0136 3.8550 0.0001 1.2050 0.1141 3.7840 0.0001
5 3.4790 0.0003 5.4210 0.0000 2.2000 0.0139 4.3060 0.0000 1.2730 0.1014 4.1340 0.0000

Panel F: D6
1 3.2280 0.0006 4.6380 0.0000 2.5370 0.0056 4.3390 0.0000 3.6690 0.0001 4.2830 0.0000
2 3.0530 0.0011 4.6700 0.0000 2.5490 0.0054 4.2380 0.0000 3.5590 0.0002 4.2020 0.0000
3 2.9510 0.0016 4.7240 0.0000 2.7110 0.0034 4.1500 0.0000 3.4870 0.0002 4.1220 0.0000
4 2,998, 0.0014 4.7770 0.0000 2.8550 0.0022 4.1000 0.0000 3.4110 0.0003 4.0450 0.0000
5 3.4670 0.0003 4.8340 0.0000 3.1820 0.0007 4.1420 0.0000 3.5050 0.0002 4.0160 0.0000

Panel G: D7
1 5.3100 0.0000 5.2060 0.0000 1.2110 0.1130 3.8060 0.0001 -1.2530 0.8949 3.1630 0.0008
2 5.2050 0.0000 5.1140 0.0000 1.0920 0.1374 3.8330 0.0001 -1.2460 0.8936 3.1400 0.0009
3 5.0900 0.0000 4.9720 0.0000 0.9810 0.1632 3.8460 0.0001 -1.3060 0.9042 3.0870 0.0010
4 4.9720 0.0000 4.9120 0.0000 0.8270 0.2042 3.8320 0.0001 -1.3320 0.9086 3.0200 0.0013
5 4.8190 0.0000 4.8680 0.0000 0.7880 0.2152 3.8230 0.0001 -1.2210 0.8890 2.9430 0.0016

Panel H: D8
1 -0.1270 0.5507 8.4400 0.0000 -6.0740 1.0000 8.2390 0.0000 -3.2400 0.9994 6.9540 0.0000
2 -0.2500 0.6018 8.4040 0.0000 -6.0790 1.0000 8.1930 0.0000 -2.5990 0.9953 6.9450 0.0000
3 -0.3790 0.6478 8.3600 0.0000 -6.0760 1.0000 8.1390 0.0000 -2.0730 0.9809 6.9500 0.0000
4 -0,524, 0.6999 8.3290 0.0000 -6.0650 1.0000 8.1060 0.0000 -1.5860 0.9436 6.9430 0.0000
5 -0.6480 0.7416 8.2990 0.0000 -6.1440 1.0000 8.0650 0.0000 -1.1160 0.8678 6.9410 0.0000

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger cause from futures to physical
price returns. s→ F means testing for a Granger causality running from the physical prices to the futures prices.
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2.4.4 Informational efficiency test

Table 2.7: Multiscale Automatic Bootstrap Variance Ratio Tests of HH, NBP and TTF futures
returns of one-month maturity

HH Futures 1 NBP Futures 1 TTF Futures 1
AB stat. P-value AB stat. P-value AB stat. P-value

Original series 0.9610 0.22 0.5221 0.524 0.0805 0.814
Frequency bands
D1 -13.3679 0.000 -13.446 0.000 -13.4471 0.000
D2 -10.6909 0.000 -10.7808 0.000 -10.7450 0.000
D3 -5.3826 0.004 -5.5527 0.000 -5.4916 0.000
D4 -3.1092 0.056 -3.3042 0.008 -3.2739 0.022
D5 -1.8128 0.190 -1.8008 0.200 -1.7907 0.194
D6 -0.7683 0.538 -1.0322 0.486 -0.9747 0.468
D7 -0.6422 0.578 -0.2970 0.700 -0.0065 0.980
D8 -0.3092 0.764 -0.3481 0.720 -0.2236 0.762

Note: AB stat is t-statistic of the Automatic Bootstrap variance ratio test. The corresponding
P-value is the Bootstrap p-value for the Chow-Denning test.

The idea of combining efficiency and random walk concept is a way of testing whether all

subsequent price changes represent random departures from previous prices. More precisely, if

information flows are not impeded and information is instantly reflected in prices, then tomor-

row’s price changes should only reflect tomorrow’s news.

We further tested the random walk hypothesis of the natural gas futures returns for the US

and EU markets using Automatic Bootstrap Variance Ratio tests of Choi (1999). According to

table 2.7, results for original data of futures returns of one-month maturity exhibit deviations

from the random walk behaviors. As for the multiresolution nature of the informational efficiency

allowed by the wavelet decomposed returns, the random walk test exhibits significance only at

short and medium scales, that is from intra-week (D1), weekly (D2) and monthly (D4) scales.

It is fundamental to underline at this stage that the relation between random walk and in-

formational efficiency is not an equivalence.21 Nevertheless, if these results are to be linked to

the knowledge of the gas market and the literature which has strongly emphasized imperfect

21This echoes the problem inherent in any study of efficiency: while econometric tests can show predictability

of returns from past values, proponents of efficiency argue that knowledge of this phenomenon does not put it into

question; which has prompted various authors to test the efficiency hypothesis by working on higher horizons.
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competition and high transaction costs of this industry, we are leaning towards a form of ineffi-

ciency of the market in the short and medium run. This result is certainly not systematic, but

is very representative of the challenges intrinsic to the gas market where informational efficiency

is significantly reached only in the long-run.

Several explanations can justify these findings and interpretations. First, market partici-

pants may exhibit low risk aversion levels in the short-run and consequently depend upon low risk

premium(Gebre-Mariam, 2011). This behavior could be explained by the limited hedging ad-

vantages, low opportunities in making storage and transportation arrangements, and insufficient

information across the market. Moreover, characteristics of natural gas, such as indivisibility

and the required volume to ensure a transaction, make it harder to trade and less amenable for

exchanges in small quantities.22 Furthermore, it is approved that news related to production

and marketing of natural gas are not fully available to public (MacKinnon, Haug, and Michelis

(1999) , Mu (2007)). In other words, information and data on market fundamentals (e.g., de-

mand, supply, production, imports, exports and prices of concurrent gas markets) are neither

meticulous nor transparent, ultimately preventing the market to reach market efficiency in the

short-run. It is only in the long run, when investors exhibit higher risk aversion and implement

higher storage that the market is able to reach the efficiency from an informational point of

view.

2.4.5 Robustness checks

Our previous findings are based on time-scaling decomposition via the Maximum Overlapped

Discrete Wavelet Transformation (MODWT) using the Symlets filter. To make sure that our

findings are not influenced by the choice of the wavelet transformation method, we repeated our

analysis using the Discrete Wavelet Transformation method (DWT).23 Results are found to be

robust to this decomposition (See Appendix E). Moreover, the robustness of our specification

to alternative wavelet transformation filter and length has also been investigated by considering

the Daubechies Extremal Phase filter with different wavelet lengths from 2 to 6. Again, results

proved to be robust and are available in the Appendix E.

22For more details, please refer to the following link:https://www.cmegroup.com/.
23DWT approach has several similarities compared to MODWT. This method, also, decomposes the energy

spot and futures returns into dependent components.

 https://www.cmegroup.com/
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2.5 Discussion

All considered gas markets are found to be globally efficient in pricing with strong evidence

of cointegrating relationships between spot and futures markets implying that market partic-

ipants can better anticipate price convergence by observing the deviations from the long-run

relationships. Moreover, information flows between spot and futures market, although the fu-

tures markets play a leading role in price discovery at some time scales for NBP and TTF gas

hubs.

Concerning informational efficiency, the null hypothesis of futures acting as a random walk

is rejected for short and medium scales suggesting that Henry Hub, NBP and TTF gas hubs

could be considered as informationally efficient only in the long run. Of course, the relation

between random walk and informational efficiency is not an equivalence but knowledge of the

gas market and the literature which has strongly emphasized imperfect competition and high

transaction costs of this industry allows us to defend this hypothesis of short-term inefficiency.

The multiresolution approach have greatly enriched the analysis by extending the view of our

time series from time domain to frequency domain as when series of original log-returns are

considered, we cannot reject the null hypothesis of the random walk. Considering this, the

wavelet methodology sheds some light into the importance of taking into account the time

horizon that has led to conflicting results in the literature. For instance, Poterba and Summers

(1988) were unable to reject the null hypothesis of no serial correlation in returns even though

their point estimates suggest a substantial degree of return predictability. This means that we

avoid informational loss involved when long-horizons are investigated that ultimately alter the

precision of the statistical inference.

Last but not least, in addition to depending on the time scales considered, information

efficiency seems to be similar across the time scales in the three considered gas markets. In

other words, in terms of informational efficiency, the US natural gas market is as efficient as

TTF and NBP in the long-run. This result testifies a crucial breakthrough of the natural gas

market known to be hampered by multiple logistical and transport barriers, making transactions

in this industry both unclear and costly. Thirdly, the absence of informational efficiency in the

short run is in line with the argument of Rong and Zheng (2008), according to which the pricing
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efficiency is not necessarily consistent with the information efficiency.

The results make it possible to establish an evaluation of the hubs in terms of their capacity

to provide reliable reference prices for the quantities of gas under contract. In terms of pricing

efficiency, Henry hub showed the most reliable and most robust results at all time scales consid-

ered and for all considered maturities of futures contracts compared to the EU case. This comes

from the conjunction of various elements regarding fundamentals development, hub structure

and the respective role of liquidity and storage capacity in the considered gas hubs as developed

hereafter.

Firstly, concerning wholesale gas market developments, European indigenous production

does not make it possible to get rid of imports: the latter rose by 10% in 2017 compared

to the previous year to cover for declined domestic gas production and growing consumption

(ACER, 2017).24 By 2030, the share of domestic production is expected to decrease to below

20%. This is mainly due to the lower cap on the extraction of gas from the Dutch Groningen

field that has limited total domestic production to 24% of EU suppliers. On the other side

of the Atlantic, the American gas landscape is characterized by strong growth in US natural

gas production (IEA/OECD, 2016) and is schematically articulated around a complex set of

production, transmission, storage, import/export and consumption associated with different

nodes. The price of gas at different end-user nodes (e.g., commercial or residential points) shares

a long-run equilibrium relationship with wholesale prices (Mohammadi, 2011). Henry Hub is also

at a single point of junction of independent pipelines in a continental pipeline transport system

that is completely competitive, 25 and sits on a vast network of 13 interstate and intrastate

pipelines which allowed for non-interruptible and constant gas transportation with a very low

risk of congestion and is located in a zone of conventional historical production.26 Its role in

futures markets could hence only be duplicated in parts of the world where pipeline systems

have highly competitive transport (Makholm, 2016).

Secondly, a crucial distinction between US and EU gas markets lies on the fact that US

24The gas supply portfolio of the EU mainly relies on imports from third countries via piped gas and LNG,

accounting for 70% of total consumption, according to ACER (2015). 30% of European gas is imported from

Russia followed by Norway and Algeria. Qatar is the major LNG supplier followed by Algeria.
25Trading of Henry Hub futures started in 1990, while trading of TTF futures only took off in 2010.
2650% of US gas production in the past was transferred via it (ACER, 2017).
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Henry Hub (HH) is a physical trading hub setting the benchmark price for the entire North

America trading area whereas, for the European Union, natural gas markets are integrated

through the establishment of virtual (regional) trading hubs.27 Physical and virtual gas trading

hubs respond to a disparate structures of the gas industry: fully privatized in the United States

versus regulated by the TSO in the European Union. Unique to natural gas markets and at

the crossroads of different segments of the gas market between commodity markets, derivative

financial markets, pipeline markets and regulatory policy environment, physical and virtual gas

trading hubs object also differs in that it is more a means of facilitating trade in the United

States and balancing in Europe.

Thirdly, the quality of the market is also a major factor in the explanation of our results:

low liquidity is able to hamper intertemporal arbitrage between spot and futures markets and

would be likely to increase the pressure exerted by trading activities on prices and hinder the

development of gas hubs (Nick, 2016). In this regard, (Garaffa et al., 2019) have tested the

hypothesis that asymmetric price responses in the continental European hubs derive from trans-

action costs. He concludes that, despite substantial efforts towards market integration, there

remain concerns regarding the intensity of competition in European natural gas spot markets. In

the same vein, De Menezes, Russo, and Urga (2019) have investigated the nature of transaction

costs in European natural gas markets by focusing on the British case. More precisely, by draw-

ing from the financial microstructure literature, their study was designed to capture tightness,

depth and resilience of the one-month ahead NBP forward market from May 2010 to December

2014 for a comprehensive assessment of its liquidity in the period. Their results suggest that

inventory costs and asymmetric-information costs represent 50.5% and 14.7% of the transaction

costs, with the remaining 34.8% being attributable to order processing costs. They also found

that 50% of the one-month-ahead NBP forward market’s tightness is due to inventory costs.28

27A physical hub can be defined as a geographical point in the network where the price is set for natural gas

delivered on that specific location. As for a virtual trading point, it is a non-physical hub associated with an

entry-exit system from which gas can be transported to exit points by network users and is usually in a balancing

area (see (Sieminski, 2013).
28They finally observed an increase in market tightness during 2014, which was coupled with low depth and

resilience, decreasing number of transactions and higher variability in the average of volumes, which is a high

concentration of the market at that time.
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Last but not least, flexible storage capacity is crucial for efficient intertemporal arbitrage

activity.29 The US experience has shown that with a futures market at NYMEX, storage is

not just dedicated to seasonal adjustments (Von Hirschhausen, 2008). There are about 123

natural gas storage operators in the United States, which control approximately 400 underground

storage facilities. These facilities have a storage capacity of 4,059 Bcf of natural gas, and

average daily deliverability of 85 Bcf per day. The issue of storage is widely debated among

European regulators in order to counter supply disruptions. The access to storage facilities is

often constrained: a strand of literature relied on game theory to analyze the strategic behavior

of agents (see among others Maskin and Tirole (1988)). The effect of capacity constraints on

collusion and market efficiency are also analyzed (e.g. Dechenaux and Kovenock (2003)). At the

European level, the storage process responds to the seasonal consumption of gas in the face of a

production that has less room for maneuver to adapt to it. The inventories are filled in summer

to be used in winter. Storage levels below the seasonal standard tend to put upward pressure

on prices, and conversely, storage levels above the seasonal standard tend to lower prices.

All in all, our results call for a significant increase in the number of physical transactions

between European markets that are still required to reduce bottlenecks in transmission networks

and interconnection points. Significant investments in transport infrastructure are required to

extend the supply in the gas industry, and the economic feasibility of these investments are

highly dependent on pricing structure and predictability (Komlev, 2013).

2.6 Conclusion

Gas hubs are actually at the crossroads of different segments of the gas market between

commodity markets, derivative financial markets, pipeline market, and regulatory policy envi-

ronment. Futures commodity exchange provides a centralized marketplace where market users

can discover the prices of commodities for futures delivery and where risk-averse people can

shift commodity price risk to others, who are willing to bear it. Ali and Bardhan Gupta (2011)

highlight that the sustainability of commodity futures markets depends on the transparency and

efficiency of its functioning in terms of price discovery, price risk management, flexible contract

29Brennan (1958) and Fama and French (1987) work has allowed storage theory to link the impact of storage

level on price differentials between spot and futures price
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specification, controlling unfair speculation, commodity delivery system and coverage, infras-

tructural support, etc. As natural gas constitutes today a major commodity in the US and EU

energy mix, examining the efficiency of the commodity futures market is of paramount impor-

tance to various stakeholders of commodities markets such as producers, traders, commission

agents, commodity exchange participants, regulators and policymakers.

The present study empirically examines the direction of causality between the return series

of futures and spot prices of US and European natural gas markets using frequency domain

approach. We used daily data of physical and futures prices between 2013 and 2019. To

the best of our knowledge, this is the first attempt to provide a comprehensive account of

the connection between physical and futures market prices in European and US natural gas

markets based on a multi-resolution approach through a wavelet decomposition of our data.

Our analysis yielded interesting results. First, futures prices and spot prices of Henry Hub,

NBP and TTF are cointegrated implying that market participants are able to better anticipate

price convergence by observing the deviations from the long-run relationships. The existence

of a cointegrating relationship enhances the capacity of physical market participants to hedge

their exposure to market prices using futures prices. These results have potential implications

for both firms hedging production risks using futures contracts and participants in natural gas

trading. Secondly, nonlinear causality testing shows that neither of the Henry Hub spot or

futures markets seems to lead the other (with some exceptions where two- and three-months

maturities futures prices seem to lead spot prices). In other words, both markets are efficient

in terms of pricing. The activity at the spot market is likely to affect prices as futures markets.

This result reflects the adjustment process towards the long-run relationship (See Brenner and

Kroner (1995)). Concerning NBP and TTF markets, results are not unanimous across the

different time scales. Thirdly, the analysis shows evidence of limited informational efficiency

of the three selected futures markets that cannot be concluded to be an unbiased predictor of

prices at delivery in the short-term and medium-term. In contrast, informational efficiency is

reached in the long-run.

Overall, it can be argued that the findings of this work shed some new light on the true nature

of causality between the NG spot and futures prices contributing towards a better understanding

of the existing interdependencies between the natural gas spot and futures markets. Investors
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and other market participants can use our findings in order to develop more efficient investment

strategies. For instance, the high-frequency components of futures contracts with one-month

maturity can be utilized to realize excess returns in the spot market, while the low-frequency

components of futures contracts with one-month maturity can be used to improve investors’

ability to appraise the existing risk in the natural gas spot market.
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2.8 Appendices

2.8.1 Appendix A: Unit root tests

Table 2.8: Perron (89) Unit root test with a breakpoint

Break Date Constant and Trend Constant

HH SPOT
Level 10/1/18 -6.015*** -5.257***

<0.01 <0.01
Difference 12/1/18 -39.461*** -39.464***

<0.01 <0.01

HH FUT 1
Level 11/20/2014 -4.433 -4.327*

0.1552 0.0698
Difference 11/1/13 -43.780*** -43.792***

<0.01 <0.01

HH FUT 2
Level 11/20/2014 -4.706104* -4.628**

0.076 0.030
Difference 8/1/13 -33.666*** -33.675***

<0.01 <0.01

HH FUT 3
Level 11/20/2014 -4.793* -4.762**

0.0602 0.0198
Difference 8/1/13 -32.618*** -32.625***

<0.01 <0.01

TTF SPOT
Level 1/07/2013 -6.428*** -6.123***

<0.01 <0.01
Difference 8/1/13 -35.466*** -35.476***

<0.01 <0.01

TTF FUT 1
Level 3/12/13 -3.234 -3.071

0.8313 0.6445
Difference 10/1/13 -39.845*** -39.832***

<0.01 <0.01

TTF FUT 2
Level 5/2/18 -3.368 -3.141

0.7678 0.6017
Difference 1/14/2013 -39.2265 -39.21665

<0.01 <0.01

TTF FUT 3
Level 2/05/2018 -3.481 -3.088

0.7034 0.6341
Difference 1/14/2013 -38.834*** -38.828***

<0.01 <0.01

NBP SPOT
Level 7/1/13 -5.974*** -5.912***

<0.01 <0.01
Difference 8/1/13 -35.518*** -35.527***

<0.01 <0.01

NBP FUT1
Level 7/14/2017 -3.369 -2.872

0.7669 0.7517
Difference 8/1/13 -29.305*** -29.279***

<0.01 <0.01

NBP FUT 2
Level 7/19/2017 -3.439 -3.068

0.7284 0.646
Difference 1/17/2013 -40.018*** -40.006***

<0.01 <0.01

NBP FUT3
Level 11/26/2014 -3.730 -3.227

0.545 0.5512
Difference 10/1/13 -39.242*** -39.240***

<0.01 <0.01
Note: Critical values are based on Vogelsong. *, ** and *** denote the rejectiob
of the null hypothesis at 10 %,5 % and 0 % respectively. Break selection is based
on Dickey-Fuller t-statistic minimization. We have considered innovationnal outliers
break type.
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Table 2.9: Unit root tests results on spot and futures prices

ADF test PP test
Raw Log-difference Raw Log-difference

NBP spot -3.0687 -24.4436*** -5.6572 -96.6009
NBP Futures1 -0.5698 -40.3534*** -0.5454 -40.5723***
NBP Futures2 -0.5443 -40.0368*** -0.5381 -40.0525***
NBP Futures3 -0.5651 -39.2751*** -0.5663 -39.2766***
TTF spot -3.2198 -24.3419*** -6.1266 -100.821***
TTF Futures1 -1.9231 -39.8554*** -0.7350 -39.9124***
TTF Futures2 -0.7324 -39.2309*** -0.7357 -39.2469***
TTF Futures3 -0.7705 -38.8262*** -0.7750 -38.8345***
HH spot -2.4886 -20.5511*** -4.5584** -45.2334***
HH Futures1 -2.3302 -38.8839*** -2.0855 -39.3399***
HH Futures2 -2.0255 -39.6721*** -2.0830 -39.6938***
HH Futures3 -1.9803 -39.6721*** -1.9803 -39.6797***

Note: Critical values are based on MacKinnon (1996). Associated P-values are in
the underlines. The Schwartz information criterion is used for optimal lag selection
in the ADF test. The truncation lags for PP are decided by Newey-West default.
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2.8.2 Appendix B: MODWT of spot and futures returns and cross-correlaion
analysis

Figure 2.2: MODWT Henry Hub spot returns.
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Figure 2.3: MODWT Henry Hub Futures returns (one-month ahead maturity).
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Figure 2.4: MODWT NBP spot returns.
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Figure 2.5: MODWT NBP futures returns (one-month ahead maturity).
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Figure 2.6: MODWT TTF spot returns.
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Figure 2.7: MODWT TTF Futures returns (one-month ahead maturity).
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Figure 2.8: Wavelet cross-correlation between Henry Hub spot and futures1 returns.
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Figure 2.9: Wavelet cross-correlation between NBP spot and futures1 returns.
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Figure 2.10: Wavelet cross-correlation between TTF spot and futures1 returns.
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2.8.3 Appendix C: Johansen cointegration test between spot and futures
prices.

Table 2.10: Johansen cointegration test between spot and futures prices.

Maturity 1 Maturity 2 Maturity 3

No. of cointegrating
eq.

Eigen Trace test P-value Eigen Trace test P-value Eigen Trace test P-value

HH
None 0.0833 136.3405 0.0000 65.3736 20.2618 0.0000 0.0248 39.4988 0.0000
At most one 0.0034 5.2028 0.2619 3.7744 9.1645 0.4467 0.0025 3.5727 0.4795

NBP
None 0.1381 230.9784 0.0000 0.07926 128.9045 0.0000 0.0583 94.3893 0.0000
At most one 0.0022 3.4421 0.5015 0.0017 2.6397 0.6499 0.0015 2.40365 0.5245

TTF
None 0.1204 200.0916 0.0000 0.0922 151.3797 0.0000 0.0720 117.4782 0.0000
At most one 0.0025 3.8696 0.4319 0.0022 3.3875 0.5109 0.0020 3.0964 0.5628

Note: Results of Johansen Cointegration test are reported in this table and * denotes the rejection of the null
hypothesis at the 5 % significance level. Lag lengths have been selected using the Shwarz information criterion.

2.8.4 Appendix D: Linear Granger causality test based on VECM.

Table 2.11: Linear Granger causality test based on VECM.

‘

Timescale
Maturity 1 Maturity 2 Maturity 3

S → F F → S S → F F → S S → F F → S
Original level Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

HH 3.3199 0.1902 10.7588 0.0046 2.0899 0.1241 74.1299 0.0000 2.8417 0.0000 61.0687 0.0000
NBP 4.0015 0.1352 17.5930 0.0002 1.1367 0.5665 5.4910 0.0642 0.1477 0.9288 0.7275 0.6951
TTF 1.5945 0.4506 264.8163 0.0000 0.3515 0.8388 1.9614 0.3750 0.1477 0.9288 0.7275 0.6951

Note: Results oflinear Granger causality test based on VECM of raw data are reported in this table and. the lag
lengths have been selected using the Shwarz information criterion.
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2.8.5 Appendix E: Robustness check based on DWT

Table 2.12: Multi-scale linear Granger causality between natural gas spot returns and futures
returns based on DWT

Henry Hub
Linear Granger causality test based on VECM
Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

5 Chi-sq P-value Chi-sq P-value
Original level Original 5 3.319874 0.1902 10.758 0.004 Fut. → spot

Multiscale linear Granger causality test based on VAR
Original level Original 2 1.929 0.145 108.489 1.E-44 Fut. → spot
Short scale D1 6 9.314 0.156 32.341 0 Fut. → spot

D2 4 3.174 0.529 5.939 0.203 No causality
Medium scale D3 2 19.600 0.000 7.494 0.023 spot ↔ Fut

D4 2 2.130 0.344 7.288 0.026 Fut. → spot
D5 2 8.784 0.012 3.343 0.187 No causality
D6 1 4.832 0.027 3.476 0.062 Fut. → spot

Long Scale D7 1 0.164 0.684 1.486 0.222 No causality
D8 1 22.173 0 22.826 0 spot ↔ Fut

NBP
Linear Granger causality test based on VECM
Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

Chi-sq P-value Chi-sq P-value
Original level Original 2 4.001 0.135 17.593 0.000 Fut. → spot

Multiscale linear Granger causality test based on VAR
Original level Original 6 2.025 0.059 14.206 0.000 Fut. → spot
Short scale D1 5 3.933 0.559 9.323 0.096 Fut. → spot

D2 3 4.392 0.222 7.215 0.065 Fut. → spot
Medium scale D3 2 8.578 0.013 15.836 0.000 spot ↔ Fut

D4 1 0.800 0.371 0.357 0.549 No causality
D5 1 0.003 0.955 6.997 0.008 Fut. → spot
D6 1 1.343 0.2464 0.325 0.568 No causality

Long Scale D7 1 0.299 0.584 0.470 0.492 No causality
D8 1 0.976 0.323 0.539 0.462 No causality

TTF
Linear Granger causality test based on VECM
Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

Chi-sq P-value Chi-sq P-value
Original level Original 2 1.594 0.450 264.816 0.000 Fut. → spot

Multiscale linear Granger causality test based on VAR
Original level Original 6 1.630 0.134 13.967 0.000 Fut. → spot
Short scale D1 5 8.681 0.122 15.175 0.009 Fut. → spot

D2 2 3.833 0.147 16.632 0.000 Fut. → spot
Medium scale D3 3 6.825 0.077 27.344 0.000 Fut. → spot

D4 1 0.283 0.594 0.776 0.378 No causality
D5 1 0.037 0.846 4.648 0.031 Fut. → spot
D6 1 2.174 0.140 1.776 0.182 No causality

Long scale D7 1 0.561 0.453 1.401 0.236 No causality
D8 1 2.029 0.154 0.259 0.610 No causality

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger cause from futures to physical
price returns. S → F means testing for a Granger cause from the physical prices to the futures prices.
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Table 2.13: Multi-scale nonlinear Granger causality test between NBP spot and futures returns
based on DWT

Timescale
(days)

Spot does not Ganger
cause futures

Futures does not
Ganger cause spot Results

Lx=Ly T-test P-value T-test P-value

Henry Hub

Original level

Short scale D1 6 2.218 0.013 2.708 0.003 spot ↔ Fut
D2 4 2.980 0.001 3.528 0.000 spot ↔ Fut

Medium scale D3 2 2.223 0.013 3.435 0.000 spot ↔ Fut
D4 2 0.987 0.161 1.176 0.119 No causality

Long scale D5 2 0.696 0.243 0.984 0.162 No causality
D6 1 0.217 0.414 -0.399 0.655 No causality
D7 1 -1.200 0.884 0.985 0.162 No causality
D8 1 -1.195 0.884 -1.447 0.856 No causality

NBP

Original level Original
Short scale D1 5 0.663 0.253 1.516 0.064 Fut. → spot

D2 3 1.026 0.152 1.778 0.037 Fut. → spot
Medium scale D3 2 0.436 0.331 -0.791 0.785 No causality

D4 5 1.113 0.132 -0.335 0.631 No causality
Long scale D5 1 0.238 0.405 -0.144 0.557 No causality

D6 1 -1.435 0.924 0.506 0.306 No causality
D7 1 0.595 0.275 0.482 0.314 No causality
D8 1 -1.452 0.915 -1.155 0.875 No causality

TTF

Original level Original
Short scale D1 5 0.926 0.177 1.884 0.029 Fut. → spot

D2 2 -0.020 0.507 2.565 0.005 Fut. → spot
Medium scale D3 3 -0.195 0.577 0.176 0.430 No causality

D4 1 -0.772 0.779 0.876 0.190 No causality
Long scale D5 1 -1.049 0.852 1.147 0.125 No causality

D6 1 -0.914 0.819 -1.284 0.900 No causality
D7 1 0.564 0.198 0.550 0.290 No causality
D8 1 0.489 0.854 0.412 0.915 No causality

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger cause from futures to physical
price returns. S → F means testing for a Granger cause from the physical prices to the futures prices.

2.8.6 Appendix F: Robustness check based on different filter



Table 2.14: Multi-scale nonlinear Granger causality test between Natural gas spot and futures
returns based on db4

Henry Hub

Timescale
(days)

Spot does not Ganger
cause futures

Futures does not
Ganger cause spot Results

Lx=Ly T-test P-value T-test P-value

Short scale D1 6 1.346 0.089 2.793 0.002 spot ↔ Fut
D2 4 3.209 0.000 6.028 0.000 spot ↔ Fut

Medium scale D3 2 5.786 0 10.306 0.000 spot ↔ Fut
D4 2 5.524 0 9.353 0.000 spot ↔ Fut

Long scale D5 2 3.035 0.001 7.172 0.000 spot ↔ Fut
D6 1 3.703 0.000 5.078 0.000 spot ↔ Fut
D7 1 0.763 0.222 7.114 0.000 Fut. → spot
D8 1 7.338 0 2.219 0.013 spot ↔ Fut

NBP

Short scale D1 8 2.213 0.013 3.400 0.000 spot ↔ Fut
D2 10 2.052 0.020 3.395 0.000 spot ↔ Fut

Medium scale D3 8 2.035 0.020 4.825 0.000 spot ↔ Fut
D4 10 2.075 0.018 4.400 0.000 spot ↔ Fut

Long scale D5 10 2.897 0.001 4.529 0.000 spot ↔ Fut
D6 8 5.288 0 5.399 0.000 spot ↔ Fut
D7 10 4.363 0.000 3.750 0.000 spot ↔ Fut
D8 10 4.539 1.000 7.727 0.000 spot ↔ Fut

TTF

Short scale D1 8 2.459 0.006 3.076 0.001 spot ↔ Fut
D2 8 1.552 0.060 4.757 0.000 spot ↔ Fut

Medium scale D3 10 2.298 0.010 5.393 0.000 spot ↔ Fut
D4 10 1.989 0.023 4.715 0.000 spot ↔ Fut

Long scale D5 10 3.798 0.000 5.414 0.000 spot ↔ Fut
D6 10 5.278 0.000 5.278 0.000 spot ↔ Fut
D7 10 5.121 0.000 4.240 0.000 spot ↔ Fut
D8 10 0.312 0.377 6.680 0.000 Fut. → spot

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger cause from futures to physical
price returns. S → F means testing for a Granger cause from the physical prices to the futures prices.
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Table 2.15: Multi-scale linear Granger causality between natural gas spot returns and futures
returns based on db4

Henry Hub

Linear Granger causality test based on VECM

Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

Chi-sq P-value Chi-sq P-value
Original level Original 5 3.319 0.190 10.758 0.0046 Fut.→ spot

Multiscale linear Granger causality test based on VAR

Original level Original 2 1.929 0.145 108.489 1.E-44 Fut.→ spot
Short scale D1 6 12 37.226 159.333 0.000 spot ↔ Fut

D2 4 8 18.760 123.656 0.000 spot ↔ Fut
Medium scale D3 2 8 23.681 200.315 0.000 spot ↔ Fut

D4 2 12 51.054 327.703 0.000 spot ↔ Fut
Long scale D5 2 8 36.656 309.518 0.000 spot ↔ Fut

D6 1 8 270.578 90.852 0.000 spot ↔ Fut
D7 1 8 23.055 321.674 0.000 spot ↔ Fut
D8 1 12 433.053 104.512 0.000 spot ↔ Fut

NBP

Linear Granger causality test based on VECM

Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

Chi-sq P-value Chi-sq P-value
Original level Original 2 4.001 0.135 17.593 0.000 Fut. → spot

Multiscale linear Granger causality test based on VAR

Original level Original 6 2.025 0.059 14.207 0.000 Fut. → spot
Short scale D1 8 14.868 0.062 15.748 0.046 spot ↔ Fut

D2 12 30.063 0.003 50.447 0.000 spot ↔ Fut
Medium scale D3 8 34.129 0.000 53.290 0.000 spot ↔ Fut

D4 12 16.835 0.156 49.374 0.000 Fut. → spot
Long scale D5 12 55.619 0.000 123.339 0.000 spot ↔ Fut

D6 8 50.073 0.000 94.069 0.000 spot ↔ Fut
D7 12 84.268 0.000 123.003 0.000 spot ↔ Fut
D8 12 232.890 0.000 195.163 0.000 spot ↔ Fut

TTF

Linear Granger causality test based on VECM

Timescale
(days)

Series Lag Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

Chi-sq P-value Chi-sq P-value
Original level Original 2 1.594 0.450 264.816 0.000 Fut. → spot

Multiscale linear Granger causality test based on VAR

Timescale
(days)

Spot does not Ganger
cause futures

Futures does not
Ganger cause spot

Results

F-test P-value F-test P-value

Original level Original 6 1.630 0.134 13.967 2.E-15 Fut. → spot
Short scale D1 8 12.399 0.134 19.228 0.014 Fut. → spot

D2 8 17.987 0.021 32.965 0.000 spot ↔ Fut
Medium scale D3 12 40.150 0.000 50,672 0.000 spot ↔ Fut

D4 12 24.524 0.017 59.214 0.000 spot ↔ Fut
Long scale D5 12 70.627 0.000 115.015 0.000 spot ↔ Fut

D6 12 74.121 0.000 144.793 0.000 spot ↔ Fut
D7 12 77.726 0.000 116.461 0.000 spot ↔ Fut
D8 12 264.458 0.000 168.496 0.000 spot ↔ Fut

‘

Notes: The results of the Diks and Panchenko (2006) test are reported in the table with associated p-values. A
statistically significant result means the rejection of the null hypothesis of no Granger causality. F refers to the
futures price returns and S to spot price returns. F → S means testing for a Granger cause from futures to physical
price returns. S → F means testing for a Granger cause from the physical prices to the futures prices.







Chapter 3

Natural gas at the energy-climate
nexus: a bridge fuel or a barrier?

Foreward

Even if this work could not have been presented at conferences due to the health crisis, it bene-
fited from fruitful discussions with Anna Creti and members of the Chair Economcis of Natural
Gas. I also had the chance to disucuss this work with Peter Hartley and Jim Krane at the
Rice University of Houston and participants of the USAEE workshop on the long term outlook
for Natural gas and the French-American Chamber of Commerce of Houston workshop on the
impact of climate risk on the energy investment industry in February 2020.

Abstract

Are natural gas and intermittent renewable sources of electricity competitors or rather provide
some scope of complementarity? We propose to empirically assess the economic potential of wind
and solar penetration in the U.S. electricity generation mix under a multi-factorial perspective.
The modeling strategy considers the possibly non-linear nature of the renewable energy dynamics
by estimating a Markov Regime-Switching Model (MRSM) based on monthly data from January
2010 to December 2019 of wind and solar electricity generation. Four alternative MRSMs
are estimated. Each of the four regressions looks at the determinants of invested wind and
solar capacities by adopting a “from specific to general” strategy to better grasp the economic
potential of renewables penetration. First, our results support the hypothesis that renewable
electricity generation dynamics is non-linear, switching between a high regime and a low regime
of production. Second, results portend a higher probability of being in a high regime of wind
power generation and a low regime of solar power generation. Thirdly, natural gas and wind
energies are more prompt to be substitutes whereas natural gas and solar energies exhibit more
scope for complementarity. We discuss the crucial role of storage in the deployment of such
technologies.
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3.1 Introduction

The frantic race for the U.S. most dominant source of electric power is passing a turning

point. The sustained development of shale gas resources along with the shift in economics

between existing coal-fired and natural gas-fired combined-cycle generators led to a significant

drop in the rate of use of coal-fired power plants. In 2019, the average capacity factor of

the U.S. coal-fired fleet was 48% compared with an average natural gas-fired combined-cycle

capacity factor of 58% (EIA, 2020). Concomitantly, generating capacity fueled by renewable

energy sources, especially solar and wind, has increased steadily (cf. Figure 3.1). EIA expects

the U.S. electric power sector will add 19.3 GW of new utility-scale solar capacity in 2019 and

2020, a 65% increase from 2018 capacity levels. Notwithstanding the continued decline in the

capital costs1 for new wind and solar projects, these technologies would have not been able to

compete without subsidies and mandates that have largely supported their growing share in the

U.S. electric mix.

Focal point of debates on the reduction of greenhouse gas emissions, the above mentioned

highly influential developments leaves open the question of whether renewable energies and

natural gas technologies are competitors or rather provide some scope of complementarities. The

quest of their true relationship has been grasped by the economic literature and the policy arena

that largely regard them as substitutes, implying that increased fuel prices would ultimately

lead to a rise of investments in renewable energies.2 The theoretical literature mostly unravels

the way choices of capacity between intermittent and conventional generation technologies are

done. While Aflaki and Netessine (2017) investigate a strategic market-based rationale, others

retained a social a point of view such as the general equilibrium in Schwerin (2013) or the partial

equilibrium analysis in Ambec and Crampes (2010).

Nevertheless, the hypothesis of a stricto sensu substitution between reliable source of elec-

tricity production and intermittent sources such as wind or solar power have been tempered in

the literature. They might be strategic complements when renewable generation is unfavorable,

1See Figure 3.9 in Appendix C.
2The current natural gas dynamics with enhanced availability and low prices largely propelled by the shale oil

and gas advent is believed to lead to a gas dominated electricity sector where renewable energy is muffled by a

large surge of natural gas and coal is displaced (Small et al., 2014 ; Shearer et al., 2014).
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remaining substitutes at the equilibrium Bouckaert and De Borger (2013). Renewable capacity

could also be seen as a substitute to baseload technologies and complementary to peak gen-

eration technologies (Garcia, Alzate, and Barrera, 2012). Yuan et al. (2011) claim that “the

wind generation capacity generally substitutes the investment in combined cycle gas turbine

capacity but complements the investment in gas turbine units.” In the policy arena, Lee et al.

(2012) support the idea of a complementary relationship by considering technical, economic,

environmental and political context. Renewable technologies and natural gas are assumed to

have different risk profiles and as such offer complementary portfolio options (e.g. high volatility

of natural gas prices vs. zero fuel costs for renewables, low upfront costs for natural gas plants

vs. hardly competitive wind and solar energy projects). As far as the empirical literature on

the determinants of renewable energy generation is concerned, the latter largely focused on the

impact of policy measures such as renewable portfolio standards or feed-in tariffs (see among

others, Delmas and Montes-Sancho (2011), Hitaj (2013), Polzin et al. (2015), Marques, Fuinhas,

and Manso (2010), Shrimali and Kniefel (2011)).

Beyond the above-mentioned extent of possible substitutabilities and complementarities be-

tween natural gas and renewable energy, the economic literature also disagree as to which com-

binations of a plethora of potential drivers will allow for a wide penetration of wind and solar

technologies (e.g. declining renewable costs of conventional technologies, climate policies, en-

ergy storage availability) 3. As emphasized by Bistline and Young (2019), the model structures

and input assumptions can explain such differences, but the main reason lies to the fact that

most of them focus on couple of drivers taken in isolation (e.g. Fell and Linn (2013) and Craig,

Jaramillo, and Hodge (2018)). For example, Rodŕıguez et al. (2015) investigated the effect of

government policies on private finance investment in renewable energy and found that, in con-

trast to quota-based schemes, price-based support schemes are positively correlated with private

finance contributions. In the same vein, Criscuolo et al. (2014) examined the role of different

environmental policy measures (e.g. feed-in-tariffs, tradable renewable certificates, sales tax or

VAT reduction, and direct capital investment support through subsidies, grants, rebates, and tax

incentives) in inducing early-stage financing. Their results suggest strong evidence for the role

3See e.g. MacDonald et al. (2016), Luderer et al. (2017), Bistline and Young (2019), Mai et al. (2018), Craig,

Jaramillo, and Hodge (2018), and Sepulveda et al., 2018.
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of such policy measures in allowing for increased levels of finance, especially for policy measures

related to investment costs. The question of a break-even carbon emission price that would

propel carbon capture and storage technologies is also examined by İşlegen and Reichelstein

(2011). Across a range of climate policies, Shearer et al. (2014) find that abundant natural gas

will decrease use of both coal and renewable energy technologies in the future.

The present research aims to connect these strands of literature in a consistent framework

able to comprehensively assess the economic potential of wind and solar penetration under many

prospective drivers and explore in the same vein the degree of gross substitutabilities/ comple-

mentarities between natural gas and renewable energy. In this sense, we are interested in the

same problem to the one discussed by Bistline and Young (2019) and Baranes, Jacqmin, and

Poudou (2017).4 From an empirical perspective, the modeling strategy retained in the present

paper considers the possibly non-linear nature of the renewable energy dynamics. More specifi-

cally, we test for the presence of regime effect by estimating a Markov Regime-Switching Model

(MRSM) based on monthly data from January 2010 to December 2019 of wind and solar elec-

tricity generation and potential explanatory variables spanning from electricity market, carbon

policy risks to global economic health. Four alternative MRSMs are estimated. Each of the four

regressions looks at the determinants of invested wind and solar capacities by adopting a “from

specific to general” strategy to better grasp the economic potential of renewables penetration

under five prospective drivers. IMore precisely, we compare models that gradually add infor-

mation variables to comprehensively assess their relative magnitude and explore thoroughly the

extent of substitutabilities with the natural gas market.

Our contribution lies to the estimation of a Markov Switching Regression Model (MRSM)

that has a number of interesting features that make it attractive for our purpose. 5 A MRSM

provides a fairly simple way to capture more complex non-linear dynamic patterns such as

asymmetries and regimes shifts of energy markets in a simple dynamic econometric model. A

4Our objective is to measure the relative magnitude of a range of potential drivers, spanning from policy

support, electricity market factors, declining renewable costs, carbon policies and global economic growth to

understand which factor or combination of factors foster or limit the wind and solar penetration.
5The seminal work of (Hamilton, 1989) suggested that quarterly real gross national product exhibits significant

asymmetries stemming from the differences in the mean growth rates, in the transition probabilities between the

two states, and in the unconditional expected duration of each state.
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Figure 3.1: U.S. electricity generation by major energy source, 1950-2019

novel feature of the Markov switching model is that the switching mechanism is controlled

by an unobservable state variable that follows a first-order Markov chain. The process can

switch between regimes repeatedly over the sample and we are able to estimate the probabilities

associated with each state. We avoid plausible model misspecification incurred when the sample

estimation is simply splitted into different subsamples to test for the presence of a structural

break.6 Also, MRSM admits only occasion and exogenous changes and are therefore suitable for

describing correlated data that exhibit distinct dynamic patterns during different time periods.

This aspect is important as our sample period incorporates several financial, economic and

geopolitical events: between the new geopolitical world that is emerging from the US shale oil

and gas revolution or the technological advances and falling costs of renewables energy sources.7

More importantly, states of investment in renewables are unobservable in essence: therefore,

the Markov Regime Switching model is appropriate to capture unobserved regimes with an

estimation of transition probabilities and expected durations for each regime. More interestingly,

we have coupled the Markov Switching specification to a strategy that gradually add information

variables to the model, so that the true determinants of renewable electricity penetration can

6Following this methodology, we have to accept the hypothesis according to which all parameters change at

the same time and we need to define a priori break date (Boivin, 2006).
7It is important to note that these events are exogenous only with respect to triggering regime switch for the

Markov process and not with respect to their impact on the US renewable invested capacity.
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be observed.

Our results have useful implications. First, regarding the relationship between intermittent

renewable generation and natural gas cost, we provide evidence in favor of a significant inter-

dependence between these two modes of production. More importantly, our results support

the hypothesis that this relationship is non-linear, switching between a high regime and a low

regime of renewable electricity generation. This result implies that, for a relatively high level

of production via renewables, a marginal increase in gas prices tends to increase the share of

renewable production. This relationship of substitutability no longer holds when we switch to a

lower production regime, given that a marginal increase in the price of gas generates a fall in the

share of production of renewables. Secondly, our model portends a higher probability of being

in a high regime of wind power generation and a low regime of solar power generation. The

probability of remaining in the low regime of solar energy generation is around 95% on average

and the probability to switch from a low regime to a high regime of wind energy generation varies

between 39% and 46%, depending on the considered model. Thirdly, results have shown that

natural gas and wind energies are more prompt to be substitutes whereas natural gas and solar

exhibit more scope for complementarity. We discuss the possible degree of wind substitution by

natural gas, emphasizing the technological factor able to promote a range of innovations such

as those of shale oil and gas and put into perspective the crucial question posed by the role of

storage in the deployment of these technologies to counteract the issue of intermittency.

The retained approach in this paper echoes the one followed by Baranes, Jacqmin, and

Poudou (2017) but enriches and complements it in several ways. First, we are not only examining

the differences in the impact of our explanatory variables according to the regime considered,

but also deliver the probability associated with the high renewable production regime as well as

with the lower production regime, the probability of transiting to each other and their expected

durations.8 Second, we examine the relationship between the gas cost and that of electricity

8Starting from the premise that ranking states by the proportion of invested capacities in intermittent renew-

ables energies could be misleading when the associated networks are characterized by a high level of trade in

electricity, we have chosen to work on a federal level. For example, Hartley (2018) focused on the Texan ER-

COT system because the latter has weak connections with its neighbors and could be considered as a standalone

network.
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production from renewable energy from a multifactorial angle where non-linearity is tested for

all the informative variables integrated into the model. In fact, the degree of investment is

non-linear with the cost of natural gas cost but not only: regime shifts can emanate from factors

related to the electricity market, carbon policy risk, global economic health and renewable

technologies costs. Thirdly, we have examined renewable production under two distinct spectra:

that of wind and solar energies whose dynamics are not completely similar.

The structure of the paper is as follows: Section 2 describes methodology of Markov Regime

Switching. Section 3 presents the used data and Section 4 yields estimation outputs of alter-

native Markov Regime Switching models. We discuss the results in Section 5 before providing

concluding remarks in Section 6.

3.2 Empirical strategy

Hamilton (1989) pioneering work rests on the existence of regime changes that are not directly

observable but for which a probabilistic inference would make it possible to know whether these

regime changes took place and when they took place; all based on the observable behavior of

the series in question. The major advantage of Markov-switching models lies in their ability

to capture the non-linear asymmetry and persistence phenomena in extreme observations that

are commonly observed in energy data. In this regard, regime switching models are used in the

electricity prices modeling as a result of their empirical performance and their ability to deal

with multiple equilibria in markets with repeated interactions (Fabra and Toro, 2005). See for

example, Weron, Bierbrauer, and Trück (2004), Mari (2006), Karakatsani and Bunn (2008),

Janczura and Weron (2010), and Sapio (2015). In the context of our paper, the use of this type

of model is motivated by the desire to investigate the effect of various potential drivers on the

penetration of renewable energies in the U.S. electric mix.

The Markov Regime-Switching model is widely used in the detection of business cycles

by estimating so-called latent state variables. In this regard, Hamilton (1989) introduced the

founding model of Markov Switching in order to detect American business cycles by comparing

them to the estimated NBER cycles. An important literature has continued in this line of

research: for example, Filardo (1994), Kim and Nelson (1998), Chauvet (1998) among others.

All these analyzes allow Markov Switching models to constitute a real alternative to linear models
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by authorizing changes in parameters via stochastic processes. Changes in volatility between

periods of contraction and expansion are therefore detected through probabilistic inference. By

authorizing regime changes to the time series generating process, Markov Switching models

have been proposed as an alternative to constant parameter models, linear time series models

which are part of the traditional modeling of Box and Jenkins (1970). The general idea behind

these regime change models is such that the parameters of a vector time series process { yt }

of dimension K, depend on an unobservable state variable st ∈ { 1. . . ,M} , that represents the

probability of being in a particular state of the world (Krolzig, 2000) such as:

p (yt| (Yt−1, Xt, st) =



f (yt| (Yt−1, Xt, θ1) if st = 1

.

.

.

f (yt| (Yt−1, Xt, θM ) if st = M

(3.1)

where Yt−1 = {yt−j∞j=0 indicates the history of yt , Xt represent exogenous variables and θm

the parameter vector associated to regime m. The regime-generating process is a homogenous

and ergodic first order Markov chain with a finite number of states defined by the transition

probabilties:

pij = Pr (st+1 = j|st = i) ,
M∑
j=1

pij = 1 ∀i, j ∈ {1, . . . ,M (3.2)

The probability of transition from regime 1 to regime m at time period t+1 depends entirely

on the regime at time period t.

In the seminal work of Hamilton (1989) , U.S. business cycles are modeled as switching regimes

of the stochastic process generating the growth rate of real output ∆yt :

∆yt−µ (st) = A1 (∆yt−1 − µ (st−1))+. . .+Ap (∆yt−p − µ (st−p))+ut (3.3)
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Where µ represent the mean growth rate of yt and ut is normally and independently distributed.

Two regimes (expansions and contractions) are associated with different conditional distributions

of the growth rate of real output where µ depends on the state st (Krolzig, 2000).

This general form has been extended to a multivariate framework as in Raymond and Rich

(1997), Jeanne and Masson (2000), Frömmel, MacDonald, and Menkhoff (2005). In this line,

the approach used in this paper refers to a dynamic multivariate Markov-Switching model, as

described in equations 3.4 and 3.5, in order to investigate the drivers of wind and solar production

in the U.S. and sharpen our knowledge on the relationship with the gas market.

WINDt= β0,St + β1,St t +
n∑
i=2

βi,St Xi,t + ut (3.4)

SOLARt= β0,St + β1,St t +
n∑
i=2

βi,St Xi,t + ut (3.5)

WINDt , SOLARt are wind and solar electricity generation, St represents the regime at time t ,

and Xi,t the explanatory variables i at time t and ut the error term following a normal distribu-

tion. Parameters β0,St , β1,St ...,βn,St are regime-dependant time-varying parameters. Maxi-

mum likelihood methodology of MSM is employed in this paper in order to detect potential regime

changes as explained in Hamilton (1989) by employing analytical derivates of Feasible Sequential

Quadratic Programming (SQPF) (see Lawrence and Tits, 2001).

We estimate equations 3.4 and 3.5 in the framework of two regimes then we derive the re-

gression coefficients which are regime-dependent. Since the Markov chain is unobservable, the

probability of being in a specific state is included in our estimation results. A Markov-Switching

Regression Model is deemed to be good-fit when the smoothed probabilities are either close to zero

or to one. In this context, we follow Ang and Bekaert (2002) approach to estimate the regime

classification measure (RCM) that characterizes the accuracy of Markov-Switching Regression

models.
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RCM (S) = 100S2 1
T

∑T
t=1

∏S
j=1 pj,t (3.6)

RCM corresponds to the average of the product of smooth probabilities p and s, the number

of states. The RCM can take values ranging from 0 to 100. Lower is the RCM value and better

is the ability of the model to discriminate between regimes.

3.3 Data

3.3.1 Preliminary analysis of the data

Our dataset comes from the U.S. Energy Information Administration (via the Electric Power

Monthly report) where monthly data on net generation of electricity from renewables9 (wind

and solar), average cost of natural gas delivered for electricity generation and revenue from

retail sales of electricity is available. We also rely on the Module Spot Price Index10 from

Bloomberg New Energy Finance platform and the Nasdaq (NQ) wind index that tracks companies

involved in the production of wind power to capture technological cost evolution of the wind and

solar industry. As stringent carbon policies are prone to significantly impact renewable energy

penetration if enacted by raising the costs of emissions-intensive generation, we also consider the

S&P 500 Carbon Efficient Index as a carbon policy risk proxy. Finally, as energy technology is

deemed to have a strong influence on, and is also strongly influenced by, economic growth, the

Business Confidence Index11, as published by the OECD website, allows us to take into account

the macroeconomic anticipations surrounding the decision to invest in intermittent renewable

capacities.

The monthly raw data of U.S. wind power generation, solar power generation, and the natural

gas cost in the electricity generation variables are collected from EIA (Electric Power Monthly
9Supposed to capture the capacity investments dynamics as the latter is only available on a yearly basis.

10The Module Spot Price Index is surveying spot prices for the dominant technologies of crystalline silicon, thin

film silicon, cadmium telluride and copper indium gallium selenide modules.
11 It provides information on future developments, based upon opinion surveys on developments in production,

orders and stocks of finished goods in the industry sector. The latter is used to monitor output growth and to

anticipate turning points in economic activity. Numbers above 100 suggest an increased confidence in near future

business performance, and numbers below 100 indicate pessimism towards future performance.
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Figure 3.2: Historical evolution of the series (2010M1-2019-M9).

Notes: The monthly raw data of U.S. wind power generation, solar power generation, and the natural gas cost
in the electricity generation variables are collected from EIA (Electric Power Monthly Survey Data). Monthly
business confidence index (BCI) is sourced from OECD: numbers above 100 suggest an increased confidence in
near future business performance, and number 100 indicate pessimism towards future performance. The solar
module spot price index is extracted from the Bloomberg New Energy Finance platform. The monthly S&P 500
Carbon efficient index tracks multi-sectorial company’s exposure to carbon emissions as a proxy of climate policy
risk. The Nasdaq (NQ) wind index tracks companies involved in the production of wind power and is used to
capture technological cost evolution of the wind industry.

Survey Data). Monthly business confidence index (BCI) is sourced from OECD: numbers above

100 suggest an increased confidence in near future business performance, and number 100 indicate

pessimism towards future performance. The solar module spot price index is extracted from the

Bloomberg New Energy Finance platform. The monthly S&P 500 Carbon efficient index tracks

multi-sectorial company’s exposure to carbon emissions as a proxy of climate policy risk. The

Nasdaq (NQ) wind index tracks companies involved in the production of wind power and is

used to capture technological cost evolution of the wind industry. 12 The sample period spans

12Table 3.1 provides a summary of used variables.
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from January 2010 to September 2019, yielding a total of 117 observations. The plots (3.2 of

solar electricity generation and wind electricity generation show a sharp increase during the last

decade. A quick graphical intuition let us associate this trend to the concomitant effect of an

increase of the carbon risk policy and a substantial decrease of renewable energy costs. As far

as the natural gas cost variable is concerned, the dynamics of the latter is representative of the

substantial increase in US natural gas supplies and the corresponding decrease in natural gas

prices resulting from the development of shale gas.

Table 3.1: A summary of variables.

Variables Meaning

WIND GEN U.S. Wind power generation

SOL GEN U.S. Solar power generation

REV ELEC Revenues from retail prices of electricity

NG COST Natural gas cost for electrcity generation

NQ WIND NASDAQ Wind Index

SOL MOD Solar Module Spot Price Index

S&P CEI S&P Carbon Efficient Index

BCI Business Confidence Index

Note: The variables NQ WINDt and SOL MODt are used to proxy capital

costs involved in wind and solar power generation. The S&P CEIt and BCIt

are used to proxy the carbon policy and economic environment under which

investments in solar and wind energies are made.

3.3.2 Unit root tests

In order to further investigate the time series properties of the data13, three versions of unit

root tests are conducted for each data series. We apply the DF-GLS (Elliott, Rothenberg, and

Stock, 1992) that tests the null hypothesis of a unit root, the KPSS (Kwiatkowski et al., 1992)

that tests the null hypothesis of stationarity and a breakpoint unit root test which allow for a
13Summary statistics are presented in Table 3.6 in Appendix A.
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structural break in the trend process (Perron, 1989). The optimum lag length is based on Schwarz

Information Criteria. For the first two unit root tests, two versions of each test are calculated:

one with a constant and one with a linear trend. Results are shown in Table 3.2. Overall, they

reveal stationarity among all variables with few exceptions. In the case of the KPSS test, we fail to

reject the null hypothesis of stationarity in all instances (except for the Business Confidence Index

variable when a model with constant is considered). When considering the DF-GLS test, the null

hypothesis of a unit root is rejected at the 1% significance level for natural gas cost, revenues

from retail sales of electricity (model with constant), carbon risk variable, Business Confidence

Index (model with constant). Finally, breakpoint unit root test leads us to strongly reject the

null hypothesis of a unit root for all variables. All in all, our data are integrated of order 1. To

work with stationary time series, we apply a first logarithmic difference filter to our data series.

Table 3.2: Unit root tests on monthly first log-differenced data.

Conventional URTs Breakpoint URTs

DF-GLS (c) DF-GLS (t) KPSS (µ) KPSS (τ) TBs T-statistics

DL WIND GEN -12.913*** -12.239*** 0.167 0.162 2015M06 -9.668*** [10]

DL SOL GEN -12.449*** -12.939*** 0.251 0.054 2014M01 -10.752***[8]

DL REV ELEC -13.127*** -13.262*** 0.052 0.051 2018M01 -13..969***[0]

DL NG COST -7.128*** -8.315*** 0.071 0.061 2014M01 -10.336***[1]

DL NQ WIND -6.884*** 8.852*** 0.209 0.109 2016M02 -9.954***[0]

DL MOD SPOT -1.722* -3.886*** 0.559 0.117 2012M10 -9.019***[9]

DL BCI -2.979*** -5.950*** 0.109 0.106 2018M08 -8.079***[1]

DL CEI -9.102*** -9.296*** 0.070 0.068 2016M04 -9.782***[0]

Notes: The DF-GLS (Elliot et al., 1996) tests the null hypothesis of a unit root. The KPSS (Kwiatkowski et al.,

1992) tests the null hypothesis of stationarity. The Schwarz Information Criteria have been used to choose the

optimal lag length. ***, **, * indicates the rejection of a unit root hypothesis at the 1%, 5% and 10%

significance level respectively. The breakpoint unit root test tests the null hypothesis of a unit root. Lag length

is selected following Schwarz criterion and the optimal lag is reported in brackets. Dickey-Fuller min-t method is

used for the breakpoint selection.
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3.3.3 BDS independance test

We also examine the distributional pattern of the monthly first log-differenced data by applying

the BDS test proposed by Broock et al. (1996). This test is based on the concept of correlation

integral, a measure of the frequency with which temporal patterns are repeated in the data. This

is a broadly accepted test to detect the presence of non-linear structure and spatial dependence

of a time-series. This test can also be applied to check whether increments to a data series is

independent and identically distributes (iid). 14 The test is asymptotically distributed as standard

normal under the null hypothesis of independence. Table 3.3 reports the results. Overall, for

almost all combinations of m parameter (which corresponds to the number of consecutive data

points to include in the set) and ε values (which corresponds to the distance used for testing

proximity of the data points), we can reject the null hypothesis of independent and identical

distribution at the 1% significance level. Confronting these results to the plotted monthly variables

in Figure 3.2 suggest the presence of a likely nonlinear structure of the considered data.

3.4 Results

By employing the monthly data of U.S. wind and solar PV power generation and potential

explanatory variables from January 2010 to December 2019, four alternative Markov Regime

Switching Models (MSMs) are estimated. Each of the four regressions looks at the determinants

of invested renewables capacities by adopting a “from specific to general” strategy to better

grasp the economic potential of renewables penetration under many prospective drivers. We

hence compare models that gradually add information variables to comprehensively assess their

relative magnitude. For each specification of the model outlined in Equation 3.4 and Equation

3.5, estimation results are presented in Table 3.4 and Table 3.5. The first columns of Table 3.4

and Table 3.5 (Panel A) feature the explanatory variables of U.S. renewables generation to be

analyzed in alternative MSMs. Columns 2 to 5 of these same tables display estimations results of

Markov Regime Switching Model 1 (MSM1) to Markov Regime Switching Model 4 (MSM4). 15

14To perform the test, we first choose a distance, ε . We then consider a pair of points. If the observations of

the series truly are iid, then for any pair of points, the probability of the distance between these points being less

than or equal to epsilon will be constant.
15Estimated coefficients are on Panel A whereas transition probabilities and expected durations are on Panel

B.



3.4. RESULTS 139

Table 3.3: BDS tests for monthly first log-differenced data.

m ε(1) ε(2) ε(3) ε(4)

DL WIND GEN 2 -5.131 (0.000) 0.682 (0.496) 0.844 (0.399) 0.063 (0.950)

3 -1.518 (0.129) 3.742 (0.000) 1.459 (0.000) 2.989 (0.003)

4 -6.736 (0.000) 3.393 (0.001) 2.233 (0.001) 4.293 (0.000)

5 -4.128 (0.000) 4.404 (0.000) 2.502 (0.000) 4.455 (0.000)

6 -2.822 (0.005) 7.883 (0.000) 2.571 (0.000) 4.350 (0.000)

DL SOL GEN 2 2.940 (0.003) 7.724 (0.000) 5.037 (0.000) 14.752 (0.000)

3 2.325 (0.020) 10.270 (0.000) 6.027 (0.000) 13.525 (0.000)

4 1.127 (0.260) 11.823 (0.000) 5.890 (0.000) 12.358 (0.000)

5 -2.489 (0.013) 14.158 (0.000) 5.984 (0.000) 11.456 (0.000)

6 -1.617 (0.106) 16.702 (0.000) 5.781 (0.000) 10.755 (0.000)

DL REV ELEC 2 30.950 (0.000) 43.119 (0.000) 2.258 (0.000) 3.105 (0.002)

3 57.387 (0.000) 83.205 (0.000) 3.198 (0.000) 2.590 (0.010)

4 165.026 (0.000) 187.142 (0.000) 5.306 (0.000) -2.892 (0.004)

5 413.889 (0.000) 427.316 (0.000) 6.941 (0.000) -1.117 (0.264)

6 1132.076 (0.000) 996.731 (0.000) 8.094 (0.000) 0.964 (0.335)

DL NG COST 2 2.875 (0.004) 3.726 (0.000) 3.286 (0.000) 2.575 (0.010)

3 6.928 (0.000) 3.638 (0.000) 3.546 (0.000) 2.435 (0.015)

4 16.468 (0.000) 4.952 (0.000) 3.219 (0.000) 2.142 (0.032)

5 66.156 (0.000) 3.828 (0.000) 2.684 (0.000) 1.719 (0.086)

6 282.916 (0.000) 4.025 (0.000) 2.152 (0.000) 1.356 (0.175)

DL NQ WIND 2 1.154 (0.249) 1.257 (0.209) 1.972 (0.209) 0.930 (0.352)

3 1.058 (0.290) 1.501 (0.134) 1.749 (0.134) 0.350 (0.726)

4 2.534 (0.011) 1.329 (0.184) 2.037 (0.184) 0.799 (0.424)

5 -2.644 (0.008) -1.453 (0.146) 1.931 (0.146) 1.150 (0.250)

6 -1.756 (0.079) -2.716 (0.007) 1.727 (0.007) 1.402 (0.161)

DL MOD SPOT 2 7.479 (0.000) 7.131 (0.000) 1.637 (0.000) 0.134 (0.893)

3 8.611 (0.000) 8.764 (0.000) 1.575 (0.000) -0.347 (0.729)

4 18.276 (0.000) 12.992 (0.000) 1.807 (0.000) -0.558 (0.577)

5 38.960 (0.000) 18.777 (0.000) 1.819 (0.000) -0.862 (0.388)

6 125.717 (0.000) 31.501 (0.000) 1.956 (0.000) -0.844 (0.398)

DL CEI 2 2.073 (0.038) 1.194 (0.232) 1.595 (0.232) 0.449 (0.654)

3 3.906 (0.000) 2.782 (0.005) 2.411 (0.005) 1.517 (0.129)

4 0.839 (0.402) 2.623 (0.009) 2.400 (0.009) 1.291 (0.197)

5 -2.244 (0.025) 3.293 (0.001) 2.733 (0.001) 1.391 (0.164)

6 -1.583 (0.113) 1.617 (0.106) 2.452 (0.106) 0.933 (0.351)

DL BCI 2 28.647 (0.000) 44.070 (0.000) 17.409 (0.000) 15.111 (0.000)

3 61.466 (0.000) 60.120 (0.000) 14.841 (0.000) 12.341 (0.000)

4 75.288 (0.000) 79.971 (0.000) 13.453 (0.000) 10.576 (0.000)

5 65.641 (0.000) 108.841 (0.000) 13.151 (0.000) 9.897 (0.000)

6 -4.469 (0.000) 147.579 (0.000) 12.961 (0.000) 9.497 (0.000)

Notes: BDS test statistics are reported with associated p-values within brackets. The m parameter is the
embedding dimension with the epsilon values for close points (numerical values are not reported).
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Inferences are based upon the hypothesis of two regimes. 16 A number of features stand out.

It turns out that, for all considered models MSM1 to MSM4, there is a strong regime effect

with changing directions of coefficients across regimes. Estimated coefficients associated to the

state-dependant variables are statistically different and their magnitude changes significantly and

economically. In other words, the sample effectively dichotomizes in phases of production decline

and phases of production growth, which allows us to relate them to a high regime and low regime

of intermittent renewable production.17 In what follows, we describe the results associated with

each of the four retained specifications.

MSM1s employs, besides a constant term and a linear trend, independent variables of natural

gas cost in electricity generation and revenues from retail sales. Positive impact of natural gas

cost in the high regime (regime 1) turns out to be negative and statistically significant in the

low regime (regime 2) suggesting that a one-unit increase of natural gas cost induces for instance

an increase of 18% of wind energy production in the high regime and a seven-fold decrease of

wind energy production in the low regime (Table 3.4). The downward impact in the low regime

of wind production is hence much stronger in magnitude. The same pattern is observed in the

case of solar but with a different magnitude: higher natural gas prices double solar production

in the high regime while reducing it by 14% in the low regime. These results are consistent with

prior expectation and empirical evidence of Baranes et al., (2017) of a non-linear relationship

between natural gas prices and renewable capacity investments. When looking at the impact of

the revenues from retail sales of electricity on renewable generation growth, one may notice that

while the estimated coefficients are statistically significant at the 1% significance level and positive

in the low regime (20.42 in the case of wind and 0.84 in the case of solar), they turn out to be

negative in the highest regime (-0.15 in the case of wind and -4.91 in the case of solar). Here

again, whether we consider wind or solar production, the signs of the estimated coefficients are

similar but differ in magnitude. For instance, the increase of wind production induced by a raise

of revenues from retail sales of electricity is significantly stronger than the one obtained in the

case of solar generation.

16Given the sample of available data, it would not have been reasonable to consider more than two regimes of

renewable generation growth.
17Note that for all regressed MSMs, the state 1 is associated with a high regime of renewable penetration and

the state 2 is associated with a low renewable generation regime.
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In comparison to MSM1s, MSM2s seek to evaluate the impact of an additional driver in

connection with climate policy risk variable. Similar to MSM1, results show evidence of strong

regime effect with changing directions of coefficients associated to natural gas costs and revenues

from retail sales of electricity across regimes. Indeed, natural gas cost coefficients are statistically

significant at the 1% level and negative in the low regime (regime 2) and turn out to be positive

in the high regime (regime 1)18. As for MSM1s, the reverse holds true for the revenue variable.

From this point, this specification is robust to the introduction of the policy risk variable. The

latter does not show any regime change effect in the case of wind as coefficients are positive in

both regimes. A contrario, it contributes toward improving solar energy penetration only in the

low regime. Here again, estimated coefficients associated to the state-dependant variables are

statistically different and their magnitude changes significantly and economically: in the case of

solar, while the estimated coefficient of carbon policy risk variable is negative and significant in

the high regime, it turns out to be positive in the lower one. In others words, when the penetration

of solar energy is on a high path, results suggest that a more ambitious carbon policy would lead

to a drop-in production. Conversely, when the latter is in a low regime, any policy that could

lead to an increase of carbon price is found to boost investment in renewables. We will discuss

the economic mechanisms underlying these results in the next section.

Our third specification, MSM3, goes further by including the renewable energy cost variable19

as additional regime-switching regressors. Previous results about the impact of revenues, natural

gas costs, renewables costs and climate policy risk are robust to this specification.20 The contri-

bution of the MSM3 is to shed light on the impact of renewable energy costs which seem to be in

favor of a state-dependant effect only in the case of wind.

Indeed, the estimated coefficients of the solar cost variable are not state-dependant: increasing

capital costs by 1% leads to a 13% drop of solar production in the low regime and a four-fold

decrease in the high regime. This absence of regime effect in the case of solar may testify an

intensified sensitivity of the solar industry to incurred technological costs.

18It should be noted that in this case, the estimated coefficient associated with the costs of natural gas is

borderline significant in the regime 1 (at the 10% significance level) in the case of wind (Table 3.4).
19With reference to the variables DL NQ WIND in the case of wind (Table 3.4) and DL MOD SPOT in the

case of solar (Table 3.5).
20Except for the case of the climate risk variable in the case of wind which exhibits a regime effect by having a

positive and statistically significant impact in the low regime and a negative impact in the high regime.
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Table 3.4: Markov Regime-Switching Models for U.S. wind electricity generation growth:

2010M11 - 2019M9

Panel A: Estimated coefficients

MSM1 MSM2 MSM3 MSM4

Independent var. State

DL NG COST 1 0.176 (0.081) 0.181 (0.095) 0.074 (0.389) 0.162 (0.116)

2 -7.194 (0.000) -7.241 (0.000) -1.836 (0.000) -4.154 (0.000)

DL REV ELEC 1 -0.147 (0.761) -0.206 (0.663) -0.132 (0.769) -0.115 (0.819)

2 20.424 (0.000) 20.256 (0.000) -7.489 (0.000) 6.815 (0.000)

Constant 1 0.001 (0.878) 0.000 (0.979) 0.002 (0.847) 0.001 (0.904)

2 0.185 (0.000) 0.180 (0.000) 0.291 (0.000) -0.033 (0.000)

Trend 1 0.000 (0.602) 0.000 (0.444) 0.000 (0.541) 0.000 (0.721)

2 -0.002 (0.000) -0.002 (0.000) -0.004 (0.000) 0.000 (0.000)

DL CEI 1 0.026 (0.931) -0.539 (0.160) -0.008 (0.982)

2 0.517 (0.604) 6.463 (0.000) 8.341 (0.000)

DL NQ WIND 1 0.043 (0.784) 0.142 (0.326)

2 -5.496 (0.000) -1.902 (0.000)

DL BCI 1 -4.040 (0.492)

2 293.597 (0.000)

Sigma 1 0.037 (0.000) 0.037 (0.000) 0.037 (0.000) 0.037 (0.000)

Sigma 2 0.034 (0.000) 0.036 (0.000) 0.001 (0.000) 0.001 (0.000)

Log-Likelihood 185.857 185.140 203.074 208.617

AIC -3.231 -3.199 -3.563 -3.563

SIC -2.906 -2.849 -3.159 -3.113

Linearity test 9.886 (0.000) 4.769 (0.000) 7.607 (0.000) 4.096 (0.002)

(Max Wald F-stat)

Panel B: Transition probabilities and expected durations

MSM1 MSM2 MSM3 MSM4

P11 0.97 0.97 0.97 0.97

P12 0.03 0.03 0.03 0.03

P21 0.42 0.43 0.46 0.39

P22 0.58 0.57 0.54 0.61

DU1 30.61 30.16 28.82 32.91

DU2 2.38 2.33 2.16 2.56

RCM 4.36 4.38 1.02 0.60

Notes: the dependant variable is the monthly wind electricity generation. State 1 (2) refers to the high (low)
regime of wind power production. Regime-specific coefficients are reported with the associated p-values in
brackets. Sigma refers to the standard deviation of each state. RCM is the regime classification measure. The
transition probabilities are reported as pij. The expected duration of being in state i are reported as DUi, i.e.,
DU1 for state 1 and DU2 for state 2.



3.4. RESULTS 143

Table 3.5: Markov Regime-Switching Models for U.S. solar electricity generation growth:

2010M1 - 2019M9

MSM1 MSM2 MSM3 MSM4

Independant var. State

DL NG COST 1 0.9996 (0.275) 0.892 (0.355) 0.086 (0.917) 0.427 (0.555)

2 -0.135 (0.070) -0.134 (0.072) -0.134 (0.092) -0.152 (0.089)

DL REV ELEC 1 (4.918) (0.124) -4.901 (0.196) -2.589 (0.508) -4.271 (0.369)

2 0.840 (0.006) 0.742 (0.028) 0.776 (0.025) 0.801 (0.038)

Constant 1 -0.00831 (0.877) 0.002 (0.979) -0.028 (0.656) -0.001 (0.504)

2 0.039 (0.000) 0.038 (0.000) 0.037 (0.000) 0.033 (0.000)

Trend 1 0.00000 (0.996) 0.000 (0.912) 0.000 (0.749) 0.000 (0.991)

2 -0.00036 (0.000) 0.000 (0.000) 0.000 (0.001) 0.000 (0.509)

DL CEI 1 -1.11860 (0.767) -0.871 (0.779) -0.342 (0.902)

2 0.46773 (0.102) 0.477 (0.102) 0.754 (0.026)

DL MOD SPOT 1 -4.468 (0.243) 0.866 (0.787)

2 -0.133 (0.654) -0.520 (0.088)

DL BCI 1 -35.268 (0.461)

2 6.411 (0.303)

Sigma 1 0.101 (0.000) 0.101 (0.000) 0.092 (0.000) 0.097 (0.000)

Sigma 2 0.032 (0.000) 0.031 (0.000) 0.031 (0.000) 0.034 (0.000)

Log-Likelihood 204.613 206.113 206.983 195.202

AIC -3.379 -3.370 -3.351 -3.144

SIC -3.091 -3.034 -2.967 -2.760

Linearity test 7.836 (0.000) 6.919 (0.000) 5.507 (0.000) 4.716 (0.002)

(Max Wald F-stat)

Panel B: Transition probabilities and expected durations

MSM1 MSM2 MSM3 MSM4

P11 0.64 0.63 0.61 0.65

P12 0.36 0.37 0.39 0.35

P21 0.04 0.04 0.05 0.05

P22 0.96 0.96 0.95 0.95

DU1 2.75 2.70 2.54 2.88

DU2 25.77 24.81 20.51 19.22

RCM 10.55 10.49 14.42 17.38

Notes: the dependant variable is the monthly solar electricity generation. State 1 (2) refers to the high (low)
regime of wind power production. Regime-specific coefficients are reported with the associated p-values in
brackets. Sigma refers to the standard deviation of each state. RCM is the regime classification measure. The
transition probabilities are reported as pij. The expected duration of being in state i are reported as DUi, i.e.,
DU1 for state 1 and DU2 for state 2.
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Finally, our fourth specification, MSM4, takes into account the macroeconomic environment

supposed to affect agents’ expectations during their investment decisions through the additional

variable: Business Confidence Index (BCI). Results suggest that economic growth is relevant and

statistically significant in at least one regime. More precisely, the associated coefficient is positive

and statistically significant at the 1% significance level in the lower regime (regime 1) and turns

out to be negative in the high regime (regime 2). The impact of the other variables remains robust

to the addition of the BCI variable.

By gauging the significance, direction and magnitude of our estimated coefficients, we can, at

this stage, note an obvious dichotomy effect of our sample, alternating between phases of decline

in the production of renewables and phases of growth of production. This result consolidates our

choice to work under a Markov-Switching regime regression. We are then dealing with two widely

distinct regimes, where our explanatory variables; whether linked to the natural gas market, to

carbon risk or to the health of global economy, generally exhibit a state-dependant impact. These

results turn out to be completely robust to specifications that gradually integrate these different

drivers.

All four MSM models seem to fit data well. Nevertheless, in the case of wind, Table 3.4 show

that MSM4 fits the data the best, according to lowest AIC of -3.563 and highest log-likelihood of

208.616, among others, while the poorest fit is recorded for MSM2. Looking at the RCM values,

we see that the Markov Switching model fits the MSM4 the best (smaller RCM value) while the

poorest fits the data is recorded for MSM2. One may notice that MSM3 has the second lowest

RCM, as well. When looking at the solar case in Table 3.5, MSM1 fits the data the best, according

to lowest AIC of -3.379 and SIC of -3.091. MSM1 is the second best option when looking at the

regime classification measure of RCM. If we rely on another indicator, that of variance, we notice

that: the variance of Regime 1 chooses MSM1 whereas the variance of Regime 2 chooses MSM2.

All in all, we can conclude that the four MS models fit well the data as they all reach strong

convergence through SQPF using analytical derivatives from one part and exhibit no conflict in

terms of significances and signs of our five potential drivers. Our progressive approach is justified

by the fact that the higher is the number of estimated parameters, the riskier is to have poorer

goodness of fit measurements or strong convergences. Finally, all MSMs conducting nonlinear

estimations are preferred against their linear counterparts. Linearity tests in Table 3.4 and Table

3.5 show that the null hypothesis of linearity is strongly rejected for all models, at the 1% level
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of significance.

Panel B of Table 3.4 and Table 3.5 presents results of transition probabilities from one regime

to another and the expected durations. From MSM1 to MSM4, all four of them reveals that, when

the current state of renewable production is in regime 121 at time t, the probability of transiting

from regime 1 to regime 2 at time t+1 is 3% on average in the case of wind and 36% on average in

the case of solar. The results hence suggest a higher probability of transiting from a high regime

to a low regime for solar than for wind. On the other side, when the current state of renewable

production is at its low state (regime 2) at time t, the probability of transiting to the high regime

at time t+1 is nine time higher in the case of wind (42.5% on average) than in the solar one (4.5%

on average). Table 3.4 and Table 3.5 also yield the probability of staying in the highest regime

(regime2) at time t+1: 0.97 in the case of wind and 0.36 in the case of solar. Therefore, one

may claim that the cumulative effect of any shock in the system to renewable energy penetration

whatever the regime considered is prompt to be persistent.

Notice also that the estimated coefficient on sigma is positive in each model and statistically

significant in both regimes at the 1% significance level. Sigma refers to the standard deviation of

each regime. It provides the magnitude of volatility (measured by the standard deviation) of each

regime. The state with the largest estimated coefficient on sigma is the “high” volatility regime,

while the state with the smallest coefficients on sigma is the “low” volatility regime. The estimated

coefficients of sigma support this switching between high-and-low volatility regimes. Table 3.4 and

Table 3.4, for example, shows that for MSM3 and MSM4, there is a strong distinction between a

high-and-low volatility regime, where the conditional variance in the former is 37 times as large.

For all MSMs, the estimated sigma value in state 1 is larger than the estimated sigma value in

state 2 indicating that state 1 has more volatility. In the case of solar, MSM1 and MSM2 exhibit

highest volatility coefficients in state 1.

Figures 3.3 and 3.4 that exhibit the smoothed probabilities of high regime of wind production

and low regime of solar production derived from Markov Switching regressions with regime-specific

variance error, highlight all the results discussed above. One may notice that the RCM values are

in agreement with the plots of the smoothed probabilities. Smaller values of RCM correspond to a

clearer pattern in switching between states. According to the RCM values, the MSM4 fits the best

21For all MSMs, regime 1 corresponds to the high state of renewable production and regime 2 to the low state

of renewable production.
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our data in the case of wind and MSM1 in the case of solar. These representations confirm our

primary intuition of alternating between high and low regimes of renewable production, resulting

from the interaction of a multitude of factors.

Figure 3.3: Probability of high wind generation regime smoothed from MSMs (fixed transition

probabilities).

3.4.1 Robustness checks

Finally, we have tested the robustness of our empirical specification to a Markov Switching

model with variable transition probability (MS-TVTP). Filardo (1994) and Diebold, Hahn, and

Tay (1999) have extended the Markov-Switching model of Hamilton (1989) to a model that not

only estimate the probabilities of transition among regimes, but allow also transition probabilities

to vary with respect to chosen information variables. Researchers relied on MS-TVTP model to

examine the dynamics of important economic variables such as interest rate or exchanges rates

(see Gray (1996) and Diebold, Lee, and Weinbach (1993). In our case, it turns out that the main

results have proven to be completely robust to this specification (See reported results in Appendix
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Figure 3.4: Probability of high solar generation regime smoothed from MSMs (fixed transition

probabilities).

B).

3.5 Discussion

If we examine the results under the lens of the electricity generation from natural gas and

intermittent renewable energies, this study provides strong evidence in favor of a significant in-

terdependence between these two modes of production. Moreover, this relationship is found to

be nonlinear, switching between a regime of complementarity and a regime of substitutability.

This implies that, for a relatively high level of wind production through renewables, a marginal

increase in gas prices tends to increase the share of renewable production. A contrario, this sub-

stitutability no longer holds when we switch to a low production regime, since a marginal increase

in the price of gas generates a decrease in the share of production from renewables. Indeed, in

all the regressions we carried out, the coefficients associated with the natural gas variables are
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positive and statistically significant at the 1% in regime 1 (high regime), positive in the regime 2

(low regime).

Not only are these results corroborating those obtained by Baranes, Jacqmin, and Poudou

(2017) but they also complement them in three ways. First, we are not only examining the

differences in the impact of our explanatory variables according to the regime considered, but also

deliver the probability associated with the high renewable production regime as well as with the

lower production regime, the probability of transiting to each other and their expected durations.

Second, we examine the relationship between the gas cost and that of renewable electricity from a

multifactorial angle where non-linearity is tested for all the informative variables integrated into

the model. In fact, the degree of investment in renewables is non-linear with the cost of gas but

not only: regime shifts can emanate from factors related to the electricity market, to carbon policy

risks, global economic health or renewable capital costs. Thirdly, we have examined renewable

production under two distinct spectra: that of wind and solar energies whose dynamics are not

completely similar. In this context, we have tested the robustness of our results by adopting a

strategy that gradually take into account our chosen information variables to better grasp their

contribution in enhancing intermittent renewables penetration. In what follows, we discuss the

implications of these results made possible by these three key contributions, which we describe in

detail and compare with a fairly broad spectrum of literature.

Concerning the first contribution, our model have exhibited two striking features of the re-

newable energy market: i) there is clearly a higher probability of being in a high regime of wind

production and a higher probability of being in a low regime of solar production 22 and ii) natural

gas and wind energy are more prompt to be substitutes whereas natural gas and solar energy

present more scope for complementarity.

3.5.1 High wind regime vs. low solar regime

This first result is indicative of a more advanced level of U.S. wind power development com-

pared to solar so far. The U.S. was one of the first leaders in wind electricity, with the world’s

largest wind investments in California in the 1980’s (Righter, 1996). Solar still represents a tiny

22The probability of moving from a low regime to a high regime varies between 39% and 46% in the case of

wind, depending on the considered model. The probability of remaining the low regime of solar energy generation

varies between 95% and 96% .
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fraction of U.S. electric generation mix23; though growing : solar installations represented 32% of

all new U.S. electric generation capacity in 2019, just behind natural gas with 39.8% (see Figure

3.6). This state of fact interferes with a myriad of factors posing a certain number of challenges to

the U.S. solar industry. When looking at the incurred cost of renewable technologies through the

commonly used levelized cost of energy24 (LCOE) estimate25, the U.S. case exhibits two salient

features in Figure 3.5. First, it is significantly cheaper to produce electricity from the wind energy

than from the solar energy when compared to electricity generated from gas turbines. 26 Second,

the cost difference with that of natural gas is significantly higher in the case of solar. 27 This

result echoes the need of innovation-driven cost and performance improvements in module design

and manufacturing (Chung et al., 2016). Denholm and Margolis (2016) raised issues regarding

transportation challenges toward an efficient deployment of the grid-flexibility options28; able to

accelerate PV penetration by 25% .

The combined effect of these two cost structures is able to justify the lower probability of

being on a sustained path of solar generation when comparing with the wind industry. But policy

orientations are also of a great interest. The federal Production Tax Credit (PTC) and state Re-

newable Portfolio Standard (RPS) are important drivers of wind penetration. Initially supported

by the Public Utilities Regulatory Policy Act (PURPA) and the Business Energy Tax Credits in

23 In 2019, 17% of U.S. electricity have been generated thanks to renewables with solar and wind representing

1.8% and 7.3% of this part, respectively (EIA, 2020).
24Levelized cost of electricity represents the average revenue per unit of electricity generated that would be

required to recover the costs of building and operating a generating plant during an assumed financial life and

duty cycle. Key inputs to calculating LCOE include capital costs, fuel costs, fixed and variable operations and

maintenance (O& M) costs, financing costs, and an assumed utilization rate for each plant type (EIA, 2020). See

also Figure 3.10 in Appendix C.
25It quickly becomes a tricky exercise to make a strico sensu comparison of the costs incurred by the deployment

of wind and solar PV technologies by relying on the commonly used levelized cost of energy (LCOE) estimate. The

latter is not always successful in its enterprise to fully capture all the factors that contribute to actual investment

decisions (EIA, 2020) but is still indicative of economic competitiveness between generation technologies in the

capacity expansion.
26This result must be linked to the fact that solar has not reached wind popularity at the utility scale level, but

generally make more sense for residential energy production. Moreover, solar suffers from a lack of standardization

from a quality point of view.
27The extent of the solar cost range is partly related to the disparity of available solar technologies.
28Through a better grid management, demand response and affordable energy storage technologies.
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Figure 3.5: Levelized Cost of Energy Comparison

Source: Lazard estimates, 2019. Notes: (1) Low end assumes crystalline utility-scale solar with a single-axis

tracker. High end assumes rooftop Commercial and Industrial (CI) solar. Solar projects assume illustrative U.S.

capacity factors of 28%. (2) Wind projects assume illustrative capacity factors of 55%. (3) Assumes natural gas

prices of $3.45; capacity factors of 55% - 70% on the high and low ends, respectively.

the 1978 National Energy Act, the U.S. was one of the first leaders in wind electricity (Righter,

1996). Since the late 1990’s, the federal Production Tax Credit (PTC) and state Renewable Port-

folio Standard (RPS) policies have constituted the two major supporting policies of the U.S. wind

electricity penetration. During the decades that follow, the PTC went through a succession of

expirations and renewals including the Energy Policy Act of 2005 (Stokes and Breetz, 2018) and

played a pivotal role in wind project financing combined with state RPS requirements. The RPS

regulation requires electricity suppliers to produce a specified fraction of their electricity from

renewable energy sources. 29 In reality, even if these regulations targeted several renewables ener-

gies including solar, wind, geothermal and biomass; in fact, they have mostly contributed to meet

the RPS requirement of the wind energy, up to 68% (Barbose, 2016). As illustrated by the Texan

29Since 2005, several states have adopted non-binding voluntary RPS policies (see Stokes and Breetz (2018) for

a detailed analyze of policies supporting renewable deployment in the U.S.).
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case, the U.S. extension of RPS to the case of solar30 failed in the years that followed, gradually

widening the disparities we observe today with wind energy dynamics (Stokes and Breetz, 2018).

Figure 3.6: New U.S. electricity-generating capacity additions, 2010-19

Source: Wood Mackenzie U.S. Solar Market Insight 2019 year in review

3.5.2 Substitutability vs. complementarity

When facing the current market situation, we believe that the degree of substitution between

wind energy and natural gas will depend on the technological factor. In other words, if a technol-

ogy as important as that of hydraulic fracturing is brought to prove itself, the advent of the shale

oil and gas could represent the first of a long series, threatening by the same token the penetra-

tion of renewables and especially the solar. In this respect, literature has sought to understand

how unconventional gas development has changed the landscape of American energy in a very

short time. Some forecast that increased availability and low prices will lead to a gas-dominated

electricity sector, in which coal is displaced and loses its prominent share of the market—as is

already occurring—and renewable energy is stifled by the large influx of natural gas (Krupnick

et al. (2014); Shearer et al. (2014). While fuel-switching from coal to natural gas may reduce

greenhouse gas emissions, the potential for a decrease in renewable penetration into the generation

30With less vigorous impetus compared to the dynamics known in Germany or Japan, U.S. solar technology

benefits mostly from the federal Investment Tax Credit (ITC) and state level net energy metering (NEM) laws

(Stokes and Breetz, 2018).
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sector has led researchers to conclude that a gas-dominant generation portfolio will not be enough

to prevent the 2-degree Celsius temperature rise limit associated with high risks of catastrophic

climate change (Newell and Raimi, 2014). 31

3.5.3 Regime effects

Concerning the second contribution, we examine the relationship between the gas market

and that of electricity production from renewable energy from a multifactorial angle where non-

linearity is tested for all the informative variables integrated into the model, and not only with

the price of natural gas. The regime effects these variables have exhibited are discussed in the

following three points.

• First, our model has shown that in a regime of low wind production, increasing costs gen-

erates a decrease in wind invested capacity but that in high regime, the reverse holds true:

we believe this regime effect might be linked with a process that economists have called

”valley of death”. Norberg-Bohm (2000), one of the earliest authors to apply the valley

of death notion to energy technologies, noted that the phrase is meant to reflect the com-

mon experience that many new technologies “die” before being successfully commercialized.

31Others raise concerns about that methane leakage associated with natural gas extraction, transport, and

storage, may perpetuate climate change.

The scope of complementarity with natural gas as a support option providing flexible back-up power that can

ramp up quickly may also be limited. Hartley and Medlock III (2017), argue that the price of energy is often

insufficient to cover even the operating costs of renewable energy production, let alone provide a competitive rate

of return to the capital employed. In fact, they show that the full long-run costs of renewable energy (including a

competitive rate of return on capital) are not covered until sometime after fossil fuels are abandoned. Their model

points to potential difficulties in financing investments in productive capital in the face of competition from fossil

fuels. 32 In the same vein, Esposito, Rupp, and Carley (2015) shows that the limited scope of complementarity

can raise from the fact that, as the two sources of electricity are developed at the same time, the individual risks

associated with developing these two different types of systems may interact, resulting in overall increased risks

to the portfolio. The question of the effect of generation intermittency on investment in renewable capacity is also

crucial. Wind blows neither continuously nor in concert with demand. And solar production is volatile due to the

sensitivity to weather conditions, air pollution and other driving determinants of solar radiation intensity. Even

if this variability can be partly programmed (e.g., absence of solar production at night), a significant uncertainty

associated to the output of renewable energy remains. 33
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She suggested that generating technologies may find it difficult to capture a market niche

because the homogeneity of electricity as a product meant that it was not possible to use

“quality improvements to charge higher prices to the lead adopters.” Uncertainty about

competitiveness and government support (Murphy and Edwards, 2003) coupled with an

inability to capture benefits external to the firm, including some benefits of learning-by-

doing, learning-by-using and network externalities that limits the ability of new technology

firms to attain the economies of scale that could lead to lower costs are identified as serious

barriers to commercialization of renewable energies. These elements imply that, the longer

the path to technological maturity, the greater the sensitivity of renewable production to

the technological costs incurred.

Second, in perfect agreement with Aflaki and Netessine (2017) our results showed that in-

creasing the carbon price has two counteracting effects on investment in renewables. This

result can be explained by two concomitant phenomena: on the one hand, increasing the

carbon price improves the cost competitiveness of renewables relative to non-renewable tech-

nologies. On the other hand, renewables require back up generation, which typically comes

from generators using fossil fuels; thus, an increase in the carbon price leads to an increase

in the costs of reserves to cover intermittency. Often, it’s the older, more emission-intensive

technologies that are used as backup. So, in stark contrast with intuition, increasing the

carbon price may actually reduce the overall proportion of renewable generation. Drake,

Kleindorfer, and Van Wassenhove (2016)) also suggest that increasing carbon prices might

have an adverse effect on investment in the clean technology via carbon leakage i.e., in-

creased dirty production in unregulated regions. In a context of liberalized markets, the

negative effect of intermittency is amplified by the marginal cost pricing typical of such

markets.

Third, in the face of growing demand for electricity, our results show a tendency to invest

less during high regimes. We can see this through the revenue variable whose coefficient

is both negative and statistically significant in the high regimes and positive in the low

regimes. One possible explanation would be to consider that investing in these intermittent

energies would not have the main leitmotiv of assuming a production in baseload. As a

result, a revival in demand would make technologies offering a greater margin of flexibility
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more eligible in the face of a security of supply objective. This result perfectly matches the

one obtained by Baranes, Jacqmin, and Poudou (2017)who relied on a Panel Tobit model

to look at this question at the state level using annual data from 1998 to 2015.

3.5.4 Storage: the ultimate solution?

Beyond the results obtained by the empirical approach retained in this article, it seems

important to us to refocus the crucial issue that storage solutions represent in the penetration

of renewable energies and that we did not take into account. In tune with the most advanced

technological advances, they are often claimed as a quick fix in the industrial arena. They would

make it possible to modify the production profile of renewable energies by charging when the

production is high and the load low, and by discharging when the production level is low and

the load high. However, these storage solutions are capital-intensive and may incur significant

operational losses (high initial cost, safety concerns, not yet proven for cycle life or maintenance

cost, significant environmental effects and sophisticated management). In that respect, Bistline

and Young (2019) results suggest that low-cost energy storage would not induce a substantial

increase of renewable penetration. Using their own words, “Low cost energy storage is neither

necessary nor sufficient for higher wind and solar penetration, as storage can be valuable at

lower variable renewable shares (e.g. for regions with high shares of inflexible generation and

high gas prices) and is not economic under some conditions with higher shares (e.g. for wind-

heavy mixes in areas with extensive transmission)” . They rather suggest how storage “is quite

dissimilar from a hypothetical scenario with constant renewable output, as neither storage nor

transmission surmount the hourly profile correlation challenges between intermittent renewable

energy and load”.

In this vein, Balducci et al. (2018) and Arbabzadeh et al. (2019) suggest that it would be more

reasonable to assign to the storage solution a role of facilitator to the penetration of renewable

energies. It could pave the way to a modernization of the electrical networks by improving their

flexibility and by limiting saturation periods through a range of services that go beyond the

integration of intermittent energies. In addition, lower-cost storage options can help reduce the

impact of declining incomes but do not solve the problem because the latter itself also exhibit

deflation (Bistline and Young (2019), Mai et al. (2018)).
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What would ultimately imply a large-scale penetration of renewable energies like solar or

wind technologies for the electrical system? This article is intended to identify the real de-

terminants and to take a closer look at the interdependence with the natural gas market. In

this quest, we also implicitly put into perspective a question that is of great importance: what

would be the cost of replacing fossil fuels? Hartley (2018) looked at the case of Texas to find

out whether combining wind and storage would be the cheapest way to replace fossil fuels in

power generation. The choice of this precise state is not trivial: it echoes the fact that it is one

of the only ISOs to have very little exchange with neighboring electrical systems. This makes

it all the more eligible to gauge system costs that would involve replacing fossil fuels with an

increased reliance on wind power. Results suggest that wind plus storage has a higher cost than

the nuclear plus storage. More interestingly, the level of storage required by these scenarios is

“extraordinary” : it’s about 30% more than the current pumped storage capacity in all of the

US in the nuclear case, and more than 2.5 times current US capacity in the wind case. He also

found that an electricity system exclusively based on gas would be the least expensive option

even when gas prices rise substantially. An implication is that a tax on natural gas use, or on

CO2 emissions, would raise electricity prices substantially while doing very little to reduce gas

use until the tax rate is high enough to trigger the entry of wind, or especially nuclear generation

into the system.

3.6 Conclusion

In fine, the answer to the question of whether natural gas at the energy-climate nexus is

rather a bridge fuel or a barrier: our model showed that it was difficult to talk about a strict

substitutability or a pure complementarity. A regime swing as the result of a complex inter-

action of a multitude of factors is more reasonable. Nevertheless, our data showed a higher

likelihood of a substitution relationship between natural gas and wind power technology in a

high path regime and a complementary relationship with solar power in a lower regime of solar

electricity generation. We associate this result to the more advanced level of U.S. wind power

development compared to solar energy whose multiple challenges give direction for future polit-

ical support. From a political ground, these increasing interrelationships show how important

is for investments in renewable and non-renewable energy to be considered simultaneously.
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Gas and renewables should not be left to compete? To answer this question, one must be

aware of the full range of technologies that exist to generate electricity using natural gas. When

greener technologies like fuels cells or micro-turbines are used, natural gas might become more

attractive than a more expensive renewable alternative.
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3.8 Appendices

3.8.1 Appendix A: Data

Table 3.6: Descriptive analysis of first log-differenced data.

DL WIND GEN DL SOL GEN DL REV ELEC DL NG COST DL NQ WIND DL MOD SPOT DL CEI DL BCI

Observations 116 116 116 116 116 116 116 116

Mean 0.021 0.005 0.000 -0.004 0.003 -0.008 0.004 0.000

Median 0.020 0.005 0.000 -0.007 0.003 -0.006 0.006 0.000

Maximum 0.364 0.158 0.027 0.164 0.067 0.031 0.026 0.001

Minimum -0.215 -0.124 -0.033 -0.156 -0.072 -0.052 -0.048 -0.002

Std. Dev. 0.063 0.049 0.010 0.046 0.029 0.012 0.012 0.001

Skewness 0.889 0.350 0.087 0.438 -0.351 -0.946 -1.140 0.038

Kurtosis 11.918 4.251 3.768 5.669 3.174 5.701 5.360 2.084

Jarque-Bera 399.65*** 9.15** 2.99 38.14*** 2.33 52.56*** 52.06*** 4.08

. Note: ***, ** denote the rejection of the null hypothesis at 1% and 5% respectively.

3.8.2 Appendix B: Robustness analysis
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Table 3.7: Markov Regime-Switching Models for U.S. wind electricity generation growth:

2010M11 - 2019M9 with time-varying transition probabilities

Panel A: Estimated coefficients

MSM1 MSM2 MSM3 MSM4

Independant var. State

DL NG COST S1 0.185 -0.069 0.184 -0.073 0.175 -0.093 0.184 -0.087

S2 -7.249 (0.000) -7.256 (0.000) -6.465 (0.000) -6.373 (0.000)

DL REV ELEC S1 -0.228 -0.638 -0.237 -0.631 -0.103 -0.835 -0.223 -0.693

S2 20.775 (0.000) 20.796 (0.000) 20.098 (0.000) 21.216 (0.000)

Constant S1 0.001 -0.906 0.001 -0.924 -0.001 -0.867 0.000 -0.996

S2 0.190 (0.000) -0.136 (0.000) 0.149 (0.000) 0.136 (0.000)

Trend S1 0.000 -0.506 0.000 -0.509 0.000 -0.395 0.000 -0.573

S2 -0.002 (0.000) -0.002 (0.000) -0.001 (0.000) -0.001 (0.000)

DL CEI S1 0.046 -0.896 0.053 -0.881 0.075 -0.840

S2 -0.136 (0.000) 0.892 -0.045 1.553 -0.226

DL NQ WIND S1 0.095 -0.513 0.116 -0.445

S2 1.889 (0.000) 1.942 (0.000)

DL BCI S1 -3.704 -0.547

S2 4.237 -0.864

Sigma 1 0.037 (0.000) 0.037 (0.000) 0.037 (0.000) 0.037 (0.000)

Sigma 2 0.036 (0.000) 0.036 (0.000) 0.004 (0.000) 0.015 (0.000)

Log-Likelihood 186.039 186.051 196.142 191.264

AIC -3.216 -3.179 -3.361 -3.231

SIC -2.866 -2.779 -2.909 -2.729

Panel B: Time-varying transition probabilities and expected durations

MSM1 MSM2 MSM3 MSM4

P11 Mean 0.97 0.97 0.97 0.96

SD 0.03 0.03 0.01 0.04

P12 Mean 0.03 0.03 0.03 0.04

SD 0.03 0.03 0.01 0.04

P21 Mean 0.38 0.38 0.39 0.36

SD 0.18 0.18 0.14 0.15

P22 Mean 0.62 0.62 0.61 0.64

SD 0.18 0.18 0.14 0.15

DU1 Mean 47.27 47.84 35.32 46.53

SD 42.65 43.90 9.22 43.83

DU2 Mean 3.78 3.81 2.98 3.48

SD 4.33 4.41 1.73 2.45

RCM 4.19 4.13 0.31 4.23

Notes: the dependant variable is the monthly wind electricity generation. State 1 (2) refers to the high (low)
regime of wind power production. Regime-specific coefficients are reported with the associated p-values in
brackets. Sigma refers to the standard deviation of each state. RCM is the regime classification measure. The
transition probabilities are reported as pij. The expected duration of being in state i are reported as DUi, i.e.,
DU1 for state 1 and DU2 for state 2.
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Table 3.8: Markov Regime-Switching Models for U.S. solar electricity generation growth:

2010M11 - 2019M9 with time-varying transition probabilities

Panel A: Estimated coefficients

MSM1 MSM2 MSM3 MSM4

Independant var. State

DL NG COST S1 1.261 (0.224) 0.872 (0.389) 0.274 (0.703) 0.049 (0.968)

S2 1.261 (0.362) -0.140 (0.074) -0.158 (0.043) -0.249 (0.004)

DL REV ELEC S1 0.072 (0.988) -0.265 (0.957) -2.603 (0.514) -2.793 (0.565)

S2 -0.183 (0.649) -0.226 (0.542) 0.832 (0.016) 1.053 (0.006)

Constant S1 -0.001 (0.979) 0.021 (0.789) 0.002 (0.983) -0.226 (0.542)

S2 0.039 (0.000) 0.038 (0.000) 0.036 (0.000) 0.021 (0.789)

Trend S1 0.000 (0.722) 0.000 (0.854) 0.000 (0.881) 0.000 (0.979)

S2 0.000 (0.001) 0.000 (0.001) 0.000 (0.001) 0.000 (0.389)

DL CEI S1 -1.708 (0.697) -2.617 (0.584) 0.470 (0.894)

S2 0.614 (0.037) 0.501 (0.073) 0.692 (0.023)

DL SOL MOD S1 -3.263 (0.342) -3.584 (0.549)

S2 -0.176 (0.549) -0.959 (0.001)

DL BCI S1 -2.866 (0.971)

S2 6.658 (0.208)

Sigma 1 (2.221) (0.000) 0.116461446 (0.000) -2.365 (0.000) 0.100 (0.000)

Sigma 2 -3.438 (0.000) 0.031861783 (0.000) -3.504 (0.000) 0.033 (0.000)

Log-Likelihood 201.794 202.719 211.022 202.839

AIC -3.294637 -3.276 -3.38635 -3.243

SIC -2.959 -2.892 -2.954 -2.811

Panel B: Transition probabilities and expected durations

MSM1 MSM2 MSM3 MSM4

P11 Mean 0.682896 0.646028 0.733069 0.649122

SD 0.278 0.030 0.370 0.479

P12 Mean 0.317 0.354 0.267 0.351

SD 0.278 0.030 0.370 0.479

P21 Mean 0.042 0.043 0.046 0.056

SD 0.023 0.000 0.076 0.076

P22 Mean 0.958 0.957 0.954 0.944

SD 0.023 0.000 0.076 0.076

DU1 Mean 272.371 2.846 1.97000 NA

SD 1869.139 0.255 1.87000 NA

DU2 Mean 28.812 23.519 61.868 41.696

SD 14.091 0.263 114.842 64.520

RCM 11.962 12.008 8.256 8.455

Notes: the dependant variable is the monthly wind electricity generation. State 1 (2) refers to the high (low)
regime of wind power production. Regime-specific coefficients are reported with the associated p-values in
brackets. Sigma refers to the standard deviation of each state. RCM is the regime classification measure. The
transition probabilities are reported as pij. The expected duration of being in state i are reported as DUi, i.e.,
DU1 for state 1 and DU2 for state 2.
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Figure 3.7: Probability of high wind generation regime smoothed from TVTP-MSMs.
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Figure 3.8: Probability of high solar generation regime smoothed from TVTP-MSMs.
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3.8.3 Appendix C: Renewable cost benchmark

Figure 3.9: NREL PV system cost benchmark (inflation adjusted), 2010-18.

Source: U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018. Golden, CO: NREL.
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Figure 3.10: U.S. component-level LCOE contribution for the 2018 NREL land-based wind

reference project.

Source: 2018 Cost of Wind Energy Reviews, NREL (Stehly et al., 2018)





Conclusion

Overall, this thesis made it possible to refocus the issue of flexibility under the prism of recent

developments in the natural gas market. The three chapters studied have shown that it remains

a fully contractual issue when it comes to LNG trade, that it brings to the fore the question of

the efficiency of gas hubs in view of their increasing financialization and finally that it becomes

imminently dependent on the dynamics of the electricity markets. Under a resolutely applied

framework, the analysis that were carried out considered the non-linear features of natural gas

dynamics in an attempt to fill the gaps in an emerging empirical literature.

The first chapter aimed at putting contract flexibility into the perspective of medium-term

market evolution based on market forecast. The retained modelling strategy moved beyond of

the generally used linear cointegrating framework to be able to capture transaction costs, market

power, asymmetry of the economic cycle, extreme events, regulations and inherent rigidity in the

market. Results have generally highlighted a significant value of the flexibility option. Moreover,

the option of free destination has been found to be substantially larger in the high case scenario of

oil price volatility suggesting that the more the market, particularly in Asia, swiftly repositions

to a more flexible reconfiguration, ultimately involving the dissolution of destination clauses and

the use of a hub- pricing in contractual terms, the more the players of this industry will be

inclined to commit and take advantage of arbitrage opportunities.

From the industry standpoint, not only the shortfall for a producer who would be constrained

in terms of destination by a long-term contract could be conveyed by the destination option but

also the important source of value for profit motive actors who are in a position to arbitrage.

In this respect, the recent arrival of trading houses in this market would be prominent in terms

of flexibility and market diversification; and the present work should help to understand how

169
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to value and manage these participants’ businesses. Moreover, at the heart of the vivid debate

over the potential integration of regional markets, this first chapter showed that the contractual

aspect of this industry is capable of constituting a serious barrier in global LNG trade. The

required cautious interpretation of the impact of the destination option on natural gas price

convergence debate has been discussed. We concluded that expecting an integration of NG

markets only via the effect of appropriation of best netbacks when suppliers can choose their

ultimate market destination is misleading. The shortfall of geographically constrained producers

rather highlights the benefits of greater future spot market reliance as even partners engaged

in long-term contracts could profit from a participation in the spot market, thus increasing

the liquidity of the latter. If it works in tandem with a lower indexation of oil prices and

the market forces driving movements of vessels then, in this exact case, one would expect a

possible ”convergence”. Finally, from a security of supply standpoint, with relatively low physical

flexibility from the LNG export infrastructure and high utilization of liquefaction plants that

tend to be base load, making it possible for the contracting parties to supply additional LNG or

shifting the destination of LNG delivery, would play a pivotal role in terms of the resiliency to

unforeseen events. From this perspective and in view of the steadfast need to manage gas demand

uncertainty, the value of destination flexibility far outweighs the optional value calculated in this

chapter compared to the possible consequences of an unforeseen shock.

The second chapter poses the question of efficiency of European traded gas hubs that raises

concerns about their ability to constitute an important support for financial risk management of

gas portfolios and physical balancing. More precisely, pricing and informational efficiency of the

two largest European natural gas markets (UK NBP and Dutch TTF) have been investigated

by drawing a parallel with the US Henry Hub through a wavelet decomposition approach. We

contribute to the literature in several ways. To the best of our knowledge, this is the first

study that investigates the issue of natural gas pricing and informational efficiency in European

and American gas hubs using frequency domain approach. Indeed, most previous studies have

ignored the possibility that direction, extent and strength of Granger causality may vary at

different time scales. Furthermore, the literature of European natural gas futures prices is thin

as the market is rather young compared to the North American experience. The question of

their efficiency raises concerns about their ability to provide credible price creation, discovery
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and reference points, which could be used in medium and long-term gas contractual pricing

terms. The question is all the more important when considering the European Commission’s

vision of a single energy market. Moreover, past studies neglected the nonlinearities governing

energy commodities dynamics and mostly have considered linear causal effects between spot and

futures prices.

Several outcomes are reached. First, all considered gas markets are found to be globally

efficient in pricing with strong evidence of cointegrating relationships between spot and futures

markets. Moreover, information flows between spot and futures markets although the futures

markets play a leading role in price discovery at some time scales for NBP and TTF gas hubs.

Furthermore, Henry Hub, NBP, and TTF gas hubs are found to be informationally efficient in

the long run. For short-term and medium-term scales, the null hypothesis of futures acting as

random walk is rejected. From a policy standpoint, our results call for a significant increase in

the number of physical transactions between European markets that are still required to reduce

bottlenecks in transmission networks and interconnection points.

Are renewable and natural gas technologies competitors or rather provide some scope of

complementarities? To answer this question, the third chapter aimed to connect different strands

of the literature in a consistent framework able to comprehensively assess the economic potential

of wind and solar penetration under many prospective drivers and explore in the same vein

the degree of gross substitutabilities/ complementarities between natural gas and renewable

energies. From an empirical perspective, we have tested for the presence of regime effects by

estimating a Markov Regime-Switching Model (MRSM) based on US monthly data of wind and

solar electricity generation and potential explanatory variables spanning from electricity market,

carbon policy risks to global economic health. Compared to the literature on the subject, we

are not only examining the differences in the impact of our explanatory variables according

to the regime considered, but also deliver the probability associated with the high renewable

production regime as well as with the lower production regime, the probability of transiting to

each other and their expected durations. Furthermore, we have examined renewable production

under two distinct spectra: that of wind and solar energies whose dynamics are not completely

similar.

The answer to the question of whether natural gas at the energy-climate nexus is rather
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a bridge fuel or a barrier: our model showed that it was difficult to talk about a strict substi-

tutability or a pure complementarity. A regime swing as the result of a complex interaction of

a multitude of factors is more reasonable. Nevertheless, our data showed a higher likelihood

of a substitution relationship between natural gas and wind power technology in a high path

regime and a complementary relationship with solar power in a lower regime of solar electricity

generation. We associate this result to the more advanced level of U.S. wind power development

compared to solar energy whose multiple challenges give direction for future political support.

From the political ground, these increasing interrelationships show how important is for invest-

ments in renewable and non-renewable energy to be considered simultaneously.

Notwithstanding the value of our findings, we do not claim to answer all questions requiring

flexibility in the natural gas market and this work can be extended in several directions. One

could ambition to extend the analysis on destination flexibility to incorporate the dynamics of

the shipping market or widen the geographical scope of the analysis by incorporating other LNG

importing markets, such as the emerging ones in Latin America and Asia (e.g., China, India)

where demand is expected to noticeably increase in the coming years. Also, apart from the

British and Dutch cases, what about the rest of Europe in terms of the informational efficiency

of gas hubs? Are they able to provide valid price signals? To what extent would the results

obtained on the growing inter-flexibility with renewable energies be sensitive to the regional

specificities of American electricity markets? These fundamental questions constitute avenues

for future research on the flexibility mechanisms in natural gas market.





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
 
The question of flexibility in the natural gas industry reflects the very nature of the commodity: 
demand is not particularly flexible (especially residential) and supply does not always react to price 
signals in view of the heavy required investments in production, transportation and storage 
infrastructures. The new situation posed by the electric demand for natural gas serving as a back-
up to the intermittency of renewable energies poses enormous technical, physical, organizational 
and regulatory challenges. In this context, the supply and demand for flexibility is the result of a 
complex interaction between several factors: among them the development of natural gas trading 
hubs, renewable electricity production levels, the availability of cargoes of liquefied natural gas 
(LNG) or the development of floating storage. This thesis focuses on the challenges that call for 
flexibility mechanisms from the perspective of recent developments in the gas market. Three lines 
of research are investigated to account for the contractual weight of this industry, the degree of 
financialization of the gas market and finally the increased inter-flexibility that is emerging with the 
electricity market. 

MOTS CLÉS 
 
Gaz naturel; flexibilité de destination; efficience; complémentarité; énergies renouvelables 
 

RÉSUMÉ 
 
La question de la flexibilité sur le marché du gaz naturel reflète la nature même de la commodité: 
la demande n'est pas particulièrement flexible (surtout résidentielle) et l'offre ne réagit pas toujours 
aux signaux de prix au vu des lourds investissements en infrastructure de production, transport et 
stockage requis. La nouvelle donne posée par la demande électrique de gaz naturel servant de 
back-up à l'intermittence des énergies renouvelables et envisagé de plus en plus comme une 
solution de stockage pose d'énormes défis techniques, physiques, organisationnels et 
réglementaires. Dans ce contexte, l'offre et la demande de flexibilité est le fruit d'une intéraction 
complexe entre plusieurs facteurs: parmi eux le développement des hubs trading de gaz naturel, 
des niveaux de production d'électricité renouvelable, de la disponibilité des cargaisons de gaz 
naturel liquéfié (GNL) ou encore du développement du stockage flottant. Cette thèse s’intéresse 
aux enjeux qui font appel aux mécanismes de flexibilité sous la perspective des développements 
récents du marché gazier. Elle s’articule autour de trois axes d’étude cherchant à rendre compte 
du poids contractuel de cette industrie, de son degré de financiarisation ainsi que l’inter-flexibilité 
croissante qui se dessine avec le marché électrique.  
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