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Chapter 1

Introduction

The production and delivery of fresh food products have undergone important

changes in Europe since the 1950s, especially through the modernization of the

tools and processes in order to meet the customer demand with low production

costs. Multinational companies have played a major role as intermediaries between

farmers and consumers (Rucabado-Palomar & Cuéllar-Padilla, 2018). Nowadays,

one of the major problems faced by farmers is the shortfall of their incomes: over

the last decades, they have been encouraged to produce more, while their unit sell-

ing price was decreasing. However, in many regions there coexist (1) supplies with

medium-sized farms where various products of high quality (freshness, few pesti-

cides) are cultivated and (2) customers with a strong desire for product quality and

traceability (King et al., 2015). Hence, the idea has emerged to locally connect

suppliers and customers (Berti & Mulligan, 2016), through a short (and/or) local

food supply chain. The main purpose of this kind of supply chain is to capture more

end-use value for the farmers.

Short food supply chains are officially defined by the French Ministry of Agricul-

ture as a marketing mode for agricultural products either through direct sales from

producers to consumers, either through indirect sales with only one intermediary

between producers and consumers. Local food supply chains may involve several

intermediaries, but all the actors have to be located on a limited area (e.g. consid-

ering geographical or political restrictions). The maximum distance between actors

usually corresponds to around 80 km (Blanquart et al., 2010). Conventional supply

chains involve numerous manual operations on the products and significant storage

and transportation times. It is then crucial, in long supply chains, to avoid food

1



1. INTRODUCTION

waste and economic loss due to fresh products perishability. Indeed, according to

a report from the Food and Agriculture Organization of the United Nations (Gus-

tavsson et al., 2012), around one-third of the food for human consumption is lost or

wasted around the world. In short and local food supply chains, actors are located

in a restricted area and there are few intermediaries. This naturally provides better

guarantee on the traceability and freshness of products. Indeed, the time between

collection and delivery is typically at most 24 hours, and handling activities are

limited since the number of intermediaries is restricted.

Short and local food supply chains involve few intermediaries. Hence farmers

have to take charge of a large part of their product marketing and distribution,

which is not their core business. It is feasible when farmers directly sell their prod-

ucts to customers since the volumes are usually low. For indirect sales (canteens,

restaurants or supermarkets), volumes are more important, so the supply chain has

to be designed appropriately to organize product flows and minimize transportation

costs to be competitive with conventional food supply chains.

Short and local food supply chains usually rely on a set of distribution centers.

As pointed out by Berti & Mulligan (2016), distribution centers (also named food

hubs) are the most commonly used infrastructures to meet the growing demand

for local products. Farmers usually supply these distribution centers by performing

direct trips since the volumes are large. The distribution centers are then in charge

of consolidation and delivery of the products to customers. Besides, it is usually

assumed that a single decision-maker manages all the distribution centers, and co-

ordinates the transportation planning for both collection and delivery operations.

This decision-maker can be an association of farmers or a local political authority.

The distribution centers are considered as the only intermediary in the supply chain.

The objective of this thesis is to design and implement efficient solution methods

for routing problems that arise in fresh and local food supply chain. In particular, a

key feature of these routing problems is to explicitly consider multiple commodities

since: (1) all farmers do not produce the same commodities, and (2) the commodities

may be delivered to customers by different vehicles.

In this thesis, we aim to study a complex distribution problem in a two-echelon

supply chain where three sets of stakeholders are involved: suppliers, distribution

centers and customers. Multiple commodities are collected from the suppliers and

delivered to the customers through distribution centers for consolidation purposes.

2



Each supplier has a given available quantity for each commodity (possibly 0), and

each customer has a demand for each commodity (possibly 0). The commodities are

collected from suppliers and delivered to distribution centers through direct trips,

and distributed from the distribution centers to customers with a fleet of vehicles

performing routes. Direct deliveries from suppliers to customers are not considered.

We assume that commodities are compatible, that is any vehicle can transport any

subset of commodities as long as its capacity is not exceeded. Multiple visits to

a customer are allowed to reduce transportation costs. However, for the sake of

customers convenience, a single commodity has to be delivered at once.

In the following, we define the structure of the thesis and the topics covered in

it.

Thesis structure

The thesis contains six chapters including this one. In the following, we present a

brief description of the content of each chapter.

Chapter 2: Vehicle routing with multiple commodities: a sur-

vey

In this chapter, we survey vehicle routing problems that explicitly consider multiple

commodities. Classically, routing problems implicitly consider multiple commodi-

ties, for example by aggregating the requested commodities based on volume or

weight to form a single demand, or by decomposing the problem for each commod-

ity (e.g. if they are delivered from different depots or if the vehicles are dedicated to

a single commodity). In this survey, for each problem, we determine what motivates

the explicit consideration of multiple commodities, how multiple commodities are

modeled in the formulations and solving methods, and what are the main applica-

tions.

Chapter 3: Adaptive Large Neighborhood Search for the Com-

modity constrained Split Delivery VRP

In this chapter, we develop a heuristic based on the Adaptive Large Neighborhood

Search (ALNS) to address the delivery of customers from a single distribution center,

3
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considering multiple commodities. More precisely, the problem studied is named the

Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP). This

problem arises when customers require multiple commodities and accept that they

are delivered separately. All the commodities can be mixed in a vehicle as long as

the vehicle capacity is satisfied. Multiple visits to a customer are allowed, but a

given commodity must be delivered in a single delivery.

We propose a heuristic based on the Adaptive Large Neighborhood Search (ALNS)

to solve the C-SDVRP, with the objective of efficiently tackling medium and large

sized instances. We take into account the distinctive features of the C-SDVRP and

adapt several local search moves to improve a solution. Moreover, a Mathematical

Programming based Operator (MPO) that reassigns commodities to routes is used

to improve a new global best solution. Computational experiments have been per-

formed on benchmark instances from the literature. The results assess the efficiency

of the algorithm, which can provide a large number of new best-known solutions in

short computational times.

This chapter has been published as:

Gu, W., Cattaruzza, D., Ogier, M., and Semet, F. (2019). Adaptive large neigh-

borhood search for the commodity constrained split delivery VRP. Computers &

Operations Research, 112.

Chapter 4: A decomposition approach to a multi-commodity

two-echelon distribution problem

In this chapter, we propose sequential solving approaches for the whole problem,

namely the Multi-Commodity two-echelon Distribution Problem (MC2DP). We pro-

pose a decomposition of the MC2DP into two subproblems, namely a collection

problem where farmers transport their own commodities to distribution centers by

performing round trips, and a delivery problem where the distribution centers deliver

customers with a fleet of homogeneous vehicles performing routes. The collection

problem is modeled as a mixed integer linear program. The delivery problem is the

multi-depot case of the C-SDVRP. Hence, we extend the ALNS developed for the

C-SDVRP to the multi-depot case for the delivery operations. Then, we address

sequential solving approaches for the whole MC2DP. In the MC2DP, collection

decisions (which quantity of each commodity is delivered to which distribution cen-

ter) impact delivery operations. Thus, collection and delivery must be determined

4



jointly. We present two sequential solution approaches based on the solving, in

different order, of the collection and the delivery subproblems. In both cases, the

solution of the first subproblem determines the quantity of each commodity at each

distribution center. The second subproblem takes this information as an input. We

also propose different strategies to guide the solution of the first subproblem in or-

der to take into account the impact of its solution on the second subproblem. The

proposed sequential approaches are evaluated and compared both on randomly gen-

erated instances and on a case study related to a short and local fresh food supply

chain. The results show the impact of problem characteristics on solution strategies.

This chapter has been done in cooperation with Professor Claudia Archetti from

ESSEC Business School in Paris and Professor M.Grazia Speranza from University

of Brescia. This chapter has been submitted to Omega-The International Journal

of Management Science.

Chapter 5: An integrated approach to a multi-commodity two-

echelon distribution problem

In this chapter, we develop an integrated solution approach for the MC2DP. Based

on the sequential approaches presented in Chapter 4, we improved the ALNS. We

add new operators able to modify both collection and delivery operations, by moving

some quantities from one distribution center to another. Some of these operators

are based on mathematical programming in order to modify the current solution of

the collection subproblem. This integrated approach is evaluated and compared to

the best solutions obtained with the sequential approaches.

This chapter has been done in cooperation with Professor Claudia Archetti from

ESSEC Business School in Paris and Professor M.Grazia Speranza from University

of Brescia.

Chapter 6: Conclusions and perspectives

This chapter concludes the thesis and provides some perspectives. We first conclude

the main contributions of the thesis. Then, we provide some directions for further

research in terms of methodology and problems to study.
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Abstract: In this chapter we propose a survey on vehicle routing problems with

multiple commodities and we focus on the routing problems where multiple com-

modities are explicitly considered. It is a common assumption when solving routing

problems to implicitly consider multiple commodities, for example by aggregating

the requested commodities based on volume or weight to form a single demand, or

by decomposing the problem by commodity (e.g. if they are delivered from different

depots, or the vehicles are dedicated to a single commodity).

This practice may lead to infeasible solutions since regulations impose that par-

ticular commodities (e.g. food and detergent) cannot be transported together or

dedicated vehicles are needed for special commodities (e.g. vehicles with capaci-

tated compartments for petroleum products). Moreover, the explicit consideration

of several commodities may lead to transportation planning with lower delivery cost.

This is the case, for example, when customer requests can be split with respect to

the commodities and several visits to customers are allowed. These savings come

at the price of more complicated (thus challenging and interesting) optimization

problems.

Moreover, vehicle routing problems that consider multiple commodities are very

relevant in the real life with applications in transportation of food, distribution of

petroleum products, collection of waste, transportation of hazardous materials.

In this chapter, for each routing problem with multiple commodities, we moti-

vate the interest to explicitly consider the multiple commodities, and how they are

considered in the models and solving methods. We also provide a review on the

main applications of the multiple commodities routing problems.

Keywords: survey, multiple commodities, vehicle routing problems.

2.1 Introduction

The Vehicle Routing Problem (VRP) and its extensions have been widely studied

in the last decades (Laporte (2009), Toth & Vigo (2014), Braekers et al. (2016)). In

the classical Capacitated VRP (CVRP), a set of customers with a known demand

have to be served by a homogeneous fleet of capacitated vehicles located at a single

depot. The CVRP consists in determining a set of feasible routes that start and end
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at the depot and such that each customer is visited exactly once. A route is feasible

if the sum of the customers’ demands served during the route does not exceed the

vehicle capacity. A solution of the CVRP is feasible if all its routes are feasible. The

objective is to minimize the total transportation cost.

Note that in this definition of the CVRP, the demand of a customer i is just

represented by a scalar Di ≥ 0, and the term commodity is not even mentioned.

The underlying assumption behind this definition is that there is a single commodity

delivered to all the customers or that different commodities to be delivered to same

customer are aggregated to form a request that occupies Di units of the capacity of

the vehicle.

However, in many cases, classical VRPs implicitly consider multiple commodi-

ties. Let us first consider the case where commodities can be aggregated. This case

considers that each customer requires a set of different commodities that are com-

patible, i.e. any set of commodities can be mixed inside the same vehicle. Moreover,

it is imposed that all the commodities required by a customer have to be delivered

at once by a single vehicle, i.e. the demand of a customer is the sum of the de-

mands of the required commodities and the different commodities do not have to be

considered explicitly. The problem that arises by aggregating the commodities is a

classical CVRP.

Figure 2.1 shows an example, in which each customer requires two commodities

and the vehicle capacity is 10. The number on each edge corresponds to the asso-

ciated travel cost, and the numbers in the dotted ellipses are the demands for each

commodity. By aggregating the commodities, the problem that arises is a classical

CVRP where the demands for customers 1, 2 and 3, are respectively 6, 8 and 6.

Then, an optimal solution uses 3 vehicles, and the total cost is 25, as depicted in

Figure 2.2.

Aggregation of the commodities can also concern extensions of the VRPs. Some

examples are provided in the following. In the Split Delivery VRP (SDVRP), a

customer can be served by different vehicles, as long as the sum of the quantities

delivered by the vehicles equals its demand. This problem has been introduced by

Dror & Trudeau (1989) and Dror & Trudeau (1990). For an extensive review of SD-

VRP, the interested reader is referred to the survey by Archetti & Speranza (2012).

Split deliveries are usually interesting when customer demands are large compared

to vehicle capacity. Splitting the delivery permits to decrease the transportation

9
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Fig. 2.1. An instance of VRP with two commodities.
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Fig. 2.2. An optimal solution when commodities are aggregated.

costs since it allows for better packing of the demands in the vehicles and results in

better use of the vehicle capacity. Moreover it increases the chances to find feasible

solutions when the fleet of the vehicles is limited and it is the only viable solutions

when the demands of customers are larger than vehicle capacity.

If these large demands result from an aggregation of several commodities, then

splitting the deliveries may also imply that the delivery of a single commodity is

performed by several vehicles, which may not be convenient especially from the

customer point of view. Figure 2.3 shows the optimal solution of the SDVRP for

the instance presented in Figure 2.1. Commodity 2 of customer 2 is delivered by two

vehicles, the transportation total cost is 23. This strategy minimizes transportation

costs but may cause inconvenience to customers.

In the Multi-Depot VRP (Golden et al. (1977), Montoya-Torres et al. (2015)),

the vehicles operate from several depots and a customer can be delivered from any of

them. If only one aggregated demand quantity is associated with each customer, it is

implicitly supposed that each of the commodity is available at each depot resulting

in a much larger inventory than needed. On the other side, explicit consideration of

each commodity would require knowledge of its availability in each depot.
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Fig. 2.3. An optimal solution of the SDVRP.

The pickup and delivery problem (Parragh et al., 2008) consists in satisfying a

set of transportation requests instead of delivering a set of customers. A transporta-

tion request consists in a pair of pickup and delivery operations with an associated

quantity that has to be brought from the pickup location to the delivery location.

A pickup operation has to take place before the associated delivery operation, and

be performed in the same route. One can imagine that different commodities may

be part of a single or different requests. However these commodities are usually not

explicitly considered. As a consequence, it is tacitly supposed that all commodities

are compatible and can be transported by any vehicle of the fleet.

However, all the above assumptions about compatibility among commodities,

compatibility between commodities and vehicles, availability of commodities at the

depots, split delivery of a single commodity are not always satisfied in real life.

For example, regulations impose that fresh food (meat, fish, dairy products) has

to be transported in a refrigerated vehicle, or that food and detergent can not be

transported at the same time in the same vehicle, even if the vehicle is compatible

with both products separately. It is also the case for bulk organic and conventional

food products that cannot be mixed in the same vehicle. More generally, bulk

materials cannot be transported in the same vehicle without specific equipment to

avoid mixing different types of material.

A different way to implicitly consider multiple commodities in routing problems

is to have a natural decomposition by commodity of the original problem, and

then to solve separate routing problems. If a specific set of vehicles is dedicated

to each commodity, and any commodity has to be delivered to any customer by

a single vehicle visit, then the problem can be decomposed by commodities. A

consequence of such a policy is that each customer is visited as many times as the

number of commodities that he/she requires. In other words, if a customer needs

multiple commodities, this customer needs to be served several times, even if all
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the commodities come from the same depot and could be aggregated into a single

request. The solution to this separate routing problem for the instance presented

in Figure 2.1 is shown in Figure 2.4. One vehicle is dedicated to commodity 1, and

two vehicles are dedicated to commodity 2. The total transportation cost of such

solution is 33.5. The same situation appears in the multi-depot case if each depot

is dedicated to a single commodity. Then, the problem can also be decomposed by

commodity.
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Fig. 2.4. Solution of separate routing problems for each commodity.

Note that the decomposition of the routing problem by commodity may also

appear for convenience reasons. As an example, it is easier to load and unload

a vehicle carrying a single commodity. A depot dedicated to a single commodity

may permit to reduce the transportation costs related to supply since each depot

requires a single commodity. It also makes it easier to manage the depot. However,

it should be noticed that decomposing the problem by commodity results in higher

distribution costs since commodities cannot be mixed in a same vehicle. The example

of Figure 2.4 provides an example of this cost increase when we compare with a

solution with aggregation of commodities.

In this chapter, we aim at reviewing the literature on vehicle routing where mul-

tiple commodities are explicitly considered. The main question we want to answer

is: why do we need and when it is beneficial to consider multiple commodities?

We propose to classify the problems in two main categories. In the first, we con-

sider grouping problems with vehicles with multiple compartments. Here different

compartments accommodate different commodities in order to allow the transport

of incompatible commodities in the same vehicle. Thus, the explicit consideration of

multiple commodities is natural for this class of problems. The second category con-

tains extension of well-known routing problems (that usually do not treat multiple
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commodities) where multiple commodities are explicitly considered. We also focus

on some applications where it is usual to consider multiple commodities explicitly.

In order to ease the description of the problems, from here on we will refer to a

customer-commodity to indicate a single commodity required by a customer, with

its associated demand and the location of the customer. For example, in Figure 2.1,

there are two customer-commodities associated with the customer 1: the first with

a demand of 2 for commodity 1, the second with a demand of 4 for commodity 2.

The remainder of this chapter is organized as follows. Section 2.2 surveys the

multi-compartment vehicle routing problems and related applications. In Section

2.3, six extensions of multi-commodity VRP are surveyed. Section 2.4 discusses

two additional applications where multiple commodities are explicitly considered.

Section 2.5 concludes the chapter.

2.2 Multi-Compartment VRP and its applications

In this section, we provide an overview of the works on Multi-Compartment VRP.

We first describe the problem and its characteristics related to multiple commodities

(see Section 2.2.1). Then, the main related applications are reviewed: petroleum

products transportation (Section 2.2.2), waste collection (Section 2.2.3), livestock

collection (Section 2.2.4), and food transportation (Section 2.2.5).

2.2.1 Multi-Compartment VRP

In the Multi-Compartment VRP (MCVRP), according to the general definition pro-

posed by Derigs et al. (2011), each vehicle is divided in the same set of compartments

each with a limited capacity and each customer requires a set of commodities. Two

dimensions of incompatibilities are considered. First, some pairs of commodities are

incompatible and must not be transported in the same compartment. Second, some

commodities must not be loaded into some compartments. Each customer may be

visited by several vehicles, but each required commodity has to be delivered at once

by a single vehicle. In term of assignment decisions, the MCVRP requires to deter-

mine, for each customer, in which compartment goes each required commodity. The

result is a more complex problem than the classical CVRP where decisions simply

involve the assignment of customers to vehicles. The MCVRP imposes additional

13
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constraints specifically related to the compartments: (i) the capacity of a compart-

ment has to be respected, (ii) incompatible commodities cannot be assigned to the

same compartment, (iii) each commodity is assigned to a compatible compartment.

Hence the main change from the classical CVRP is in the structure of the vehicles

that are adapted to be able to transport several incompatible commodities. When

all commodities are incompatible with each other, the routing problem is usually

decomposed, which results in a higher routing cost. Using specific vehicles with

multiple compartments is a way to decrease the routing costs when commodities are

incompatible.

We still refer to the example shown in Figure 2.1, and we assume that each

vehicle has 2 compartments with 5 units of capacity for each commodity. Figure 2.5

shows the solution to this instance, the total cost is 31. Obviously, this cost is lower

than the case of separate routing (Figure 2.4), but greater than the SDVRP variant

(Figure 2.3) where all commodities are compatible, and the deliveries can be split.
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Fig. 2.5. Solution of the MCVRP.

Note that in the definition of the MCVRP provided by Derigs et al. (2011), the

number of compartments of each vehicle, as well as the size of each compartment,

are fixed. Henke et al. (2015) introduce a variant of the MCVRP where the number

and the size of the compartments on each vehicle need to be determined. Differently

than Derigs et al. (2011), in Henke et al. (2015) compartments may transport all

commodities but only one at a time. As a consequence, commodities are supposed

to be incompatible with each other.

In the following, we address some works on MCVRP. El Fallahi et al. (2008)

study a case where compartments are not flexible, and each compartment is dedi-

cated to a single commodity. Two algorithms are proposed to solve the problem: a

memetic algorithm improved by a path relinking method, and a tabu search. For
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each algorithm, the MCVRP is first separated into several VRPs, one per commod-

ity, in order to obtain an initial solution. A solution is represented by considering

all the customer-commodities in the routes. Derigs et al. (2011) propose a set of

heuristic components to solve the general case of the MCVRP. The representation of

a solution is as El Fallahi et al. (2008). They propose several construction heuristics,

local search operators, large neighborhood search, and metaheuristics.

Mirzaei & Wøhlk (2019) study two versions of the MCVRP where compart-

ments are not flexible, and each compartment is dedicated to a single commodity.

In the first version, the commodities of a single customer can be delivered by dif-

ferent vehicles, while in the second version all the commodities of a single customer

have to be delivered at once by a single vehicle. They developed a branch-and-

price algorithm to solve these two variants of the MCVRP. Henke et al. (2015) and

Henke et al. (2019) address the MCVRP where the compartments are flexible, and

their capacity can take some discrete values. Each vehicle has a maximum number

of compartments, potentially lower than the number of commodities, and the ca-

pacity of the compartments should be multiple of a defined unit capacity. Henke

et al. (2015) propose a variable neighborhood search algorithm while in Henke et al.

(2019) the authors propose a Mixed Integer linear Programming (MIP) formulation,

and develop a branch-and-cut algorithm to solve the problem. Coelho & Laporte

(2015) propose a classification of the MCVRP, based on the possibility to use a

compartment for one or several deliveries, and the possibility to split the delivery of

a customer or not. For each case, they propose two MIP formulations, with explicit

and implicit assignment of products to compartments.

The MCVRP arises in many real-life applications. In the following sections, we

first overview the most frequent applications of MCVRP: petroleum distribution,

waste collection, livestock collection, and food transportation.

2.2.2 Petroleum distribution

The petroleum products/fuel distribution problem is known as the petrol station

replenishment problem (Cornillier et al., 2008a). It is the most widely studied ap-

plication of the MCVRP. The objective is to minimize the transportation costs for

the distribution of several fuel products to a set of fuel stations (customers), using

vehicles with multiple compartments since the fuel products cannot be mixed in

the same compartment. Hence, each fuel product represents a commodity. Since
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accidental mixing of fuel products can be hazardous, compartments are not flexible

and well separated from each other (Chajakis & Guignard, 2003). According to

Cornillier et al. (2008a), compartments are usually not equipped with debit meters,

which implies that when a delivery is made from a compartment to a tank in the

fuel station, all the quantity loaded in the compartment has to be delivered. Hence,

each compartment is dedicated to a single customer and a single commodity. Several

compartments can be used to deliver a single commodity. In this application, all

the commodities required by a customer have to be delivered at once by a single

vehicle. Note that in practice a vehicle contains from 3 to 6 compartments and

stations require from 2 to 3 fuel products, hence the number of stations visited on

a given route rarely exceed 2 (Cornillier et al., 2008a). Moreover, the quantity of a

fuel product delivered to a station is a decision variable. It has to be sufficient to

cover the demand for this product, but cannot exceed the capacity of the tank in

the station.

The introduction of the petroleum products distribution can be credited to

Brown & Graves (1981). They studied a special case with time windows for the

delivery considering only direct trips to the stations. Later, more and more re-

searchers began to pay attention to the petroleum products distribution problems.

Avella et al. (2004) study a particular case where the vehicle compartments can-

not be partially filled: they have be either completely filled or empty. The authors

propose a fast heuristic and a branch-and-price algorithm to solve the problem.

Cornillier et al. (2008a) propose an exact algorithm to solve the problem by decom-

posing the routing problem and the vehicle loading problem. The routing problem

takes advantage of the fact that routes are usually short and can be enumerated.

The vehicle loading problem is formulated as a MIP, and the authors propose an

optimal algorithm to solve the problem. Cornillier et al. (2009) study an extension

of the problem where stations have to be delivered within specified time windows. In

that case, a vehicle can perform several trips during the one-day planning horizon.

The authors propose two heuristics to solve the problem.

The petroleum products are usually delivered over a planning horizon of several

days. Hence they integrate inventory management for the tanks in the stations.

Cornillier et al. (2008b) propose a MIP model and a heuristic to solve the problem

in the multi-period case. In this case, the objective is to maximize the total profit.
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Cornillier et al. (2012) address the multi-depot version, and they propose a heuristic

based on the generation of feasible pairs of routes and vehicles.

Surjandari et al. (2011) study a particular case faced by the national petroleum

company in Indonesia. A set of 208 petrol stations require two fuel products within

a given time window. A fleet of 76 heterogeneous vehicles are located in two depots

and have to deliver the stations over a horizon of one day. A vehicle can perform

several trips. In this work, it is allowed to split the delivery for a station, but not

for a given commodity. The authors proposed a tabu search algorithm to solve the

problem. Christiansen et al. (2015) study a real-world application in Greece for an

oil company where commodities are different types of fuel. The customers are ships

that are supplied with fuel by a fleet of specialized fuel supply vessels. The vessels

have fixed compartments where the fuels are loaded. Each vessel can perform several

trips during the planning horizon. Each trip starts by refilling the compartments

with fuel. In a given trip, a compartment contains only one type of fuel, but in

the next trip the type of fuel loaded in this compartment may change. Different

compartments can contain the same type of fuel. Moreover, if different ships require

the same fuel type, a single compartment can be used to deliver them. The authors

propose a MIP formulation for the problem.

Vidović et al. (2014) and Popović et al. (2012) study the inventory routing version

of the petrol station replenishment problem. The planning horizon is divided into

several periods, and the consumption at each station is known for each period. Each

station can be served only once, i.e. splitting is not allowed for a customer. The ob-

jective is to minimize the inventory and routing costs, while ensuring that the level

of fuel at the stations always belong to a given interval. Vidović et al. (2014) pro-

pose a MIP formulation and a heuristic approach based on Variable Neighborhood

Descent (VND) and local search to solve this problem. Popović et al. (2012) develop

a Variable Neighborhood Search (VNS) heuristic to tackle this problem. The two

main procedures of the VNS are the local search and the shaking procedure, which

are based on three adapted neighborhoods: relocation of individual compartments,

relocation of all compartments for the current station’s fuel type, and relocation of

all compartments for the current station. The proposed VNS heuristic is compared

to the results obtained by Vidović et al. (2014). The results showed that the VNS

provides better results on larger size instances.
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2.2.3 Waste collection

The collection of waste is an essential and challenging operational problem for any

manager who is in charge of it (Golden et al., 2002). In this context, different types

of waste have to be collected, for example, general waste, glass, paper, plastic. Each

type of waste has a specific disposal or recycling process and naturally represents

a commodity. If all commodities are aggregated, then they have to be sorted when

they arrive at the depot, which is a complex and time consuming task. Nowadays,

waste is usually sorted by the users, and then the collection can be performed by

decomposing the problem by commodity (dedicated vehicles are used for each type

of waste), or by using more sophisticated vehicles with multiple compartments. In

the latter case, compartments are not flexible, and each compartment is dedicated to

a single commodity. Muyldermans & Pang (2010) conduct experiments that show

that using vehicles with multiple compartments is beneficial, especially when the

number of commodities increases, when the vehicle capacity increases, when a large

number of clients request the collection of all commodities, when the client density

is lower and when the depot is centrally located in the collection area. A customer

may be collected by a single vehicle (Reed et al., 2014), or by different vehicles,

but each commodity to be collected is collected by a single vehicle (Muyldermans

& Pang, 2010).

Muyldermans & Pang (2010) propose a local search procedure with classical

operators (2-opt, cross, exchange and relocate) to solve the problem. The represen-

tation of a solution is obtained by duplicating each customer as many times as the

number of commodities required. Reed et al. (2014) study a version of the problem

where all the commodities of a customer are collected at once by a single vehicle.

They develop an ant colony algorithm for this problem. Henke et al. (2019) study

the case where compartments are flexible. This comes from a real-world application

where different types of glass (colorless, green, brown) have to be collected.

Note that there are several works on vehicle routing with application on waste

collection that do not consider multiple compartments. The interested reader can

refer to the review by Ghiani et al. (2013) for example.
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2.2.4 Livestock collection

Transportation of live animals is a problem where a fleet of heterogeneous vehicles

with limited capacity collects animals from a set of farms in order to deliver them

to a central slaughterhouse over a planning horizon of several days (Gribkovskaia

et al., 2006). The slaughterhouse has a demand for several types of animals (bovine,

sheep, pigs). Each day, vehicles with different compartments collect the animals in

order to satisfy the demand at the slaughterhouse. Due to animals welfare regu-

lations, different types of animals cannot be mixed inside the same compartment.

Thus, it is natural to consider each type of animal as a commodity and to impose

incompatibility among commodities. A farm can be visited by several vehicles, but

all the animals of the same type have to be collected at once by a single vehicle.

The planning extends over several days since it is possible to keep the animals at

the slaughterhouse, which makes it possible to anticipate some demands during the

collection.

If we focus on the vehicle routing part of the problem, the vehicles are divided

into compartments, and different types of animals cannot be mixed inside the same

compartment. The vehicles are very specific and their configuration is dynamic

(Oppen et al. (2010)). In (Oppen et al., 2010) vehicles are divided horizontally

into three sections with permanent partitions. Usually, it is possible to split these

sections in an upper part and a lower part using a movable floor. Some vehicles

have enough height to have pigs or sheep in the upper compartment and bovine in

the lower. Since loading operations take place only from the rear of the vehicles

and different animals cannot share the same compartment, the order in which the

animals are loaded into the vehicle is critical to optimize capacity.

Gribkovskaia et al. (2006) present a MIP model for the livestock collection prob-

lem. This MIP formulation is only able to solve very small size instances. Oppen

& Løkketangen (2008) propose a tabu search heuristic algorithm to tackle larger

instances. They represent a solution by considering all the customer-commodities in

the routes. Oppen et al. (2010) develop a column generation procedure to provide

optimal solutions to the livestock collection problem for instances with less than 30

orders to collect. Miranda-De La Lama et al. (2014) provide a general review on

livestock transportation, which does not focused only on vehicle routing.
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2.2.5 Food transportation

The MCVRP arises in food transportation because of two mains reasons: the quality

of products and the required temperature.

Caramia & Guerriero (2010) study a milk collection problem where different

types of raw milk produced by the farmers have to be transported in vehicles with

multiple compartments. The types of milk represent commodities. The compart-

ments are not flexible, and each compartment can be filled with a single commod-

ity. Each farmer can be visited by several vehicles, even for the same commodity.

El Fallahi et al. (2008) consider an application of distribution of cattle food to farm.

Lahyani et al. (2015) study the collection of olive oil in Tunisia. Each commodity

represents a quality of olive oil: extra, virgin, and lampante. The vehicles con-

tain several compartments, and different commodities cannot be mixed in the same

compartment since the problem is studied on a multi-period planning horizon, the

vehicle can perform different trips. Additional constraints impose to perform clean-

ing operations if a compartment loaded with lampante oil has to transport another

type of commodity in the subsequent trip. Cleaning operations involve additional

cost and time.

Chen et al. (2019) solve a MCVRP for a cold-chain distribution company which

manages the distribution of fresh perishable foods. Each commodity represents

a group of products that has to be transported within a certain temperature zone.

Each compartment is dedicated to a single commodity. Chajakis & Guignard (2003)

and Ostermeier & Hübner (2018) also consider similar problems where the compart-

ments correspond to different temperature zones.

2.3 Multi-Commodity VRP extensions

In this section, we review vehicle routing problems that explicitly consider multi-

ple commodities. First, we consider extensions for the one vehicle case, i.e. the

Traveling Salesman Problem (TSP): the Multi-Commodity Pickup and Delivery

Traveling Salesman Problem (Section 2.3.1), and the Traveling Purchaser Problem

(Section 2.3.2). Then, we review variants for the multi-vehicle case: the Commod-

ity constrained Split Delivery VRP (Section 2.3.3), the Multi-Commodity Inven-

tory Routing Problem (Section 2.3.4), the Multi-Commodity Multi-Trip VRP (Sec-

tion 2.3.5), and the Multi-Commodity Location Routing Problem (Section 2.3.6).
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2.3.1 Multi-Commodity Pickup and Delivery TSP

The Pickup and Delivery Traveling Salesman Problem (PDTSP), also known as

the one-commodity PDTSP, introduced by Hernández-Pérez & Salazar-González

(2004), is a generalization of the classical TSP where the customers are divided into

two groups: delivery customers that require a given amount of a commodity, and

pickup customers that provide a given amount of this same commodity. A single

vehicle with a fixed capacity has to perform a single tour to visit all the customers,

starting and ending at the depot. The initial load of the vehicle can take any value

between 0 and the capacity. The visit of a delivery customer decreases the load of

the vehicle while the visit of a pickup customer increases the load. The objective

of the PDTSP is to design a minimum cost Hamiltonian route such that the load

of the vehicle is always feasible (between 0 and the capacity). It is assumed that a

single commodity that has to be transported from pickup points to delivery points

without pairing these points. Note that, according to the classification of pickup and

delivery problems (Battarra et al., 2014), this definition corresponds to the many-

to-many problems where a single commodity has multiple origins and destinations.

For an extensive review of the pickup and delivery problems, the interested reader

is referred to the survey by Berbeglia et al. (2007).

In the Multi-Commodity Pickup and Delivery Traveling Salesman Problem (m-

PDTSP), a set of different commodities are transported by a single capacitated

vehicle. Each customer requires and/or provides a given quantity of one or several

commodities and must be visited once by the vehicle. All the commodities are

compatible and can be mixed in the vehicle. The initial quantity of each commodity

in the vehicle is a decision variable. The m-PDTSP aims to determine a Hamiltonian

circuit such that all pickup and delivery requirements are satisfied and the vehicle

capacity is not exceeded. The objective is to minimize the total transportation cost.

In this problem, it is important to explicitly consider the different commodities since

we have to ensure that there is sufficient amount of each required commodity in the

vehicle when a customer is delivered.

The m-PDTSP was introduced by Hernández-Pérez & Salazar-González (2014).

A straightforward application of the m-PDTSP is the inventory repositioning be-

tween retailers (Anily & Bramel, 1999). Some retailers have an excess of inventory

for some commodities which others have a lack of stock. The firm, that manages all
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retailers, wants to use a vehicle to balance the inventory levels between the retail-

ers. An example is the self-service bike-sharing system (Raviv et al., 2013), where

every night, a capacitated vehicle picks up or delivers the bikes from/to the bike

stations to restore the initial configuration of the system. Multiple commodities are

considered when there are different types of bikes (for instance, with and without

baby chairs). Another example involves bank services (Hernández-Pérez & Salazar-

González, 2007) where some branches of a bank provide or require money. Here the

depot is the main branch of the bank. When different bills and coins are considered,

the problem to solve is a m-PDTSP.

Hernández-Pérez & Salazar-González (2014) propose a MIP formulation for the

m-PDTSP, and some valid inequalities to strengthen the model. They develop

a branch-and-cut procedure to solve the problem. Hernández-Pérez et al. (2016)

propose a three stage algorithm where they apply constructive heuristics and local

search operators to modify the route. Note that, for each solution, it is necessary to

apply a procedure to check the feasibility of the solution. With n customers and m

commodities, the authors propose an improved checking procedure in O(m log n).

In the following, we list some problems related to the m-PDTSP. The non-

preemptive capacitated swapping problem (NCSP) was proposed by Erdoǧan et al.

(2010). Multiple commodities are considered, but each customer requires or pro-

vides a single commodity, or two commodities (one for pickup and the other one for

delivery). Moreover, some transshipment locations may be used for the temporary

storage of the load of the vehicle. Hence, the route of the vehicle is not a Hamiltonian

circuit anymore. The one-to-one m-PDTSP is a special case of the m-PDTSP in

which each commodity must be transported from a given pickup customer (origin)

to a given delivery customer (destination). In that case, it is not necessary any-

more to explicitly consider multiple commodities since the problem corresponds to

the capacitated version of the TSP with precedence constraints (Hernández-Pérez

& Salazar-González, 2009). Li et al. (2019) study a real life problem faced by a

fast fashion retailer. The application considers a warehouse and a set of stores.

Each week, based on the forecasted demands, a fleet of vehicles picks up and de-

livers several products from/to the stores in order to balance the storage levels of

these products at the stores. Moreover commodities can be picked-up and delivered

from/to the warehouse with an additional handling cost. The underlying problem
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is a variant of the m-PDTSP with multiple vehicles and handling costs at the ware-

house. A branch-price-and-cut algorithm is developed to solve the problem. Zhang

et al. (2019) propose a heuristic method to solve this problem. They design some

local search operators, and they propose a procedure to check the feasibility of a

segment of consecutive nodes in O(m) where m is the number of commodities. Each

segment is associated with information for each commodity.

2.3.2 Traveling Purchaser Problem

The Traveling Purchaser Problem (TPP) is an extension of the Traveling Salesman

Problem (TSP) in which a purchaser is based at the depot, and other nodes represent

suppliers. The purchaser has a list of commodities to buy with an associated required

quantity. A set of suppliers offer a limited amount of these commodities (possibly 0)

with an associated unit selling price. The TPP consists in finding an optimal tour,

starting and ending at the depot, that visits some of the suppliers in order to buy

all the required commodities. The objective is to minimize the sum of traveling and

purchasing costs. The TPP involves compatible commodities that must be explicitly

considered due to the required quantities, and the availabilities and the selling prices

at the suppliers.

There is are numerous papers on the TPP. The interested reader is referred to

the recent literature review by Manerba et al. (2017). In vehicle routing, a common

application for corresponds to a company in charge of the collection of several raw

materials from a set of reliable suppliers. Another application is the school bus

routing, where suppliers correspond to bus stop, and the commodities to students

to pick-up (Riera-Ledesma & Salazar-González, 2012). A student may be assigned

to different bus stops, and the objective is to find a route for the bus such that all

students are picked-up at a bus stop, while minimizing the total transportation cost

and assignment cost of the students to stops of the bus.

2.3.3 Commodity constrained Split Delivery VRP

The name C-SDVRP was introduced by Archetti et al. (2014). The Commodity

constrained Split Delivery VRP (C-SDVRP) is an extension of the Split Delivery

VRP in which additional constraints are imposed to split a delivery. Each customer

requires multiple commodities, that are compatible with each other. The demand

23



2. VEHICLE ROUTING WITH MULTIPLE COMMODITIES: A
SURVEY

of a customer can be split, but each customer-commodity must be delivered by a

single vehicle. As a consequence, a customer is visited at most as many times as the

number of commodities he/she requires.

As mentioned in the introduction (Section 2.1), the aggregation of commodities

leads to large customer demands, when multiple commodities are compatible. Hence,

splitting the delivery permits to optimize the load of the vehicles and, then, to

decrease the transportation costs. On the other side, this is not convenient for

the customers: if a single commodity is split, a customer may need to handle the

deliveries of the same commodity several times during the planning horizon.

The C-SDVRP is an intermediate delivery strategy between delivering all the

commodities at once by a single vehicle, and arbitrarily splitting the deliveries.

Note that the C-SDVRP can be seen as a special case of the MCVRP where only

one compartment is available and all commodities are compatible. Thus the assign-

ment of commodities to compartments is trivial. The C-SDVRP can also be viewed

as a special case of the MCVRP with flexible compartments. We have as many

compartments as the commodities and the step of division is the greatest common

divisor of the customer demands. Thus, each packing of commodities is a feasible

solution of the problem that determines the size of the compartments.

Figure 2.6 shows the solution to the C-SDVRP for the instance provided in

Figure 2.1. Customer 3 is served by two vehicles, and the total cost is 24.5. This

cost is higher than the cost of the VRP when commodities are aggregated, and lower

than the cost of the SDVRP.
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Fig. 2.6. Solution of the C-SDVRP.

The C-SDVRP is of practical relevance when the demand consists in a set of items

with different sizes (Nakao & Nagamochi, 2007). Indeed, in this case, the solution

of the SDVRP may not be feasible since the splitting of a customer request may

not correspond to a splitting of the set of items required by the customers. Another

application of the C-SDVRP (Gu et al., 2019) occurs when we consider categories of
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products: dairy products, fresh fruits, or vegetables. A group of products represents

commodities which are compatible. From the customer point of view, it is acceptable

to have more than one delivery, but splitting the delivery of a specific commodity

(a category of products) is not practical. When a few commodities are considered,

the number of deliveries for a customer remains acceptable.

Nakao & Nagamochi (2007) introduce this problem under the name Discrete Split

Delivery VRP. They propose a heuristic based on dynamic programming, where the

customer-commodities are iteratively inserted into the routes. Ceselli et al. (2009)

study a rich VRP where the demand of a customer consists in a set of items where

each item is a pallet of products with specific dimensions. Each item represents a

commodity. The delivery of a customer can be split, but it is not possible to split

the delivery of an item. They also consider incompatibilities between commodities

and vehicles. The authors propose a three-phase column generation approach: in

the first phase, splitting is not considered; in the second phase, splitting of large de-

mands is possible by considering customer-commodities instead of customers; in the

third phase, all the customer-commodities are considered in the pricing algorithm.

Archetti et al. (2014) introduce the name C-SDVRP, and propose to solve the prob-

lem as a CVRP considering all the customer-commodities. A branch-and-cut is used

to solve small instances, and a heuristic algorithm for the CVRP is used to solve

medium and large instances. Archetti et al. (2015) propose an extended formula-

tion for the C-SDVRP and develop a branch-price-and-cut algorithm. Gschwind

et al. (2019) develop a new branch-price-and-cut algorithm that includes stabiliza-

tion techniques and uses the dual optimal inequalities for the stabilization of the

column-generation process. Gu et al. (2019) propose an Adaptive Large Neighbor-

hood Search (ALNS) heuristic to address medium and large size instances. The

destroy and repair operators, as well as local search operators are designed for a

representation of the solution with either customers or customer-commodities. De-

pending on the operator to apply, only one representation of the solution is consid-

ered.

Salani & Vacca (2011) study an extension of the C-SDVRP where any subset

of commodities required by a customer represents an order. With each order is

associated a service time, which may not be linear in the number of commodities or

the size of the order. This problem is solved by a branch-and-price algorithm.
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2.3.4 Multi-Commodity Inventory Routing Problem

Multi-Commodity Inventory Routing Problem (MCIRP) is an extension of the In-

ventory Routing Problem (IRP). The IRP is different from the classical VRP since

it is based on customers’ consumption rather than customers’ orders. It is then a

combination of vehicle routing and inventory management problems. The IRP con-

siders the distribution of a single commodity, from a supplier (the depot), to a set

of customers over a given planning horizon. At each period, a quantity of the com-

modity is available at the supplier, with the possibility to make storage between two

periods. Each customer consumes the commodity at a given rate (number of units

per period) and maintains a local inventory of the commodity up to a maximum

volume. A fleet of homogeneous capacitated vehicles is available for the delivery

of the commodity. The objective is to minimize the average distribution costs plus

the inventory costs over the planning horizon without causing any stockout at the

customers. The interested reader is referred to the literature review on the IRP by

Coelho et al. (2013).

Multi-Commodity Inventory Routing Problem (MCIRP) is the extension the

the IRP when multiple commodities have to be delivered to the customers. It is

often referred in the literature as multi-product IRP. Usually, multiple commodities

have to be considered explicitly since they share some common resources (storage

capacity, vehicle capacity). They also have different inventory costs and customers’

consumption rates.

Several applications motivate the study of the MCIRP. The most common one

is related to maritime logistics, i.e. different types of fuel and gases have to be de-

livered using compartmentalized ships. Other applications are in the distribution of

perishable commodities, the transportation of gases by tanker trucks, the automo-

bile components industry, and fuel delivery (Coelho & Laporte, 2013). In the IRP

and the MCIRP, the number of suppliers and customers may vary, and the problems

are usually classified based the structure of the distribution network: one-to-one,

one-to-many, many-to-one or many-to-many. In the following, we review the works

on MCIRP according to this classification.

In the one-to-one case, a single supplier serves a single customer. Speranza &

Ukovich (1994, 1996) consider a special case of the problem where several com-

modities are shipped from the supplier to the customer on a regular basis over an

infinite horizon. More precisely, they consider a set of finite frequencies to ship
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the commodities. A frequency is expressed as a number of trips per period. Each

commodity is produced at the supplier and consumed by the customer at a given

constant rate. A product may be partially shipped with different frequencies, and

the commodities can be mixed inside the same vehicle. The problem is to deter-

mine, for each frequency, the portion of each commodity shipped, and the number

of vehicles to use. The objective is to minimize the total transportation and holding

costs while ensuring that all the products are shipped to the customer. Multiple

commodities have to be explicitly considered since they do not have the same unit

holding cost, unit volume and rate of production, but they share the same vehicles.

Note that Speranza & Ukovich (1994) also consider a variant where all simultaneous

shipments (maybe with different frequencies) may share the same vehicles. Speranza

& Ukovich (1994) propose MIP formulations for the two variants of the problem.

Speranza & Ukovich (1996) propose a branch-and-bound to solve the first variant.

One-to-many is the most common case in which one supplier delivers several

customers. It directly refers to the definition provided at the beginning of this sec-

tion. Coelho & Laporte (2013) propose a MIP formulation and some additional

valid inequalities. They develop a branch-and-cut to solve the problem to optimal-

ity. Cordeau et al. (2015) consider a different version of the problem where the

commodities are not mixed in the inventory of the customers and have a dedicated

storage capacity. This arises, for example, when customers have dedicated stor-

age locations for each commodity and cannot mix them. The authors propose a

three-phase heuristic to tackle this problem. The first phase consists in planning

the delivery quantities for each period, each customer and each commodity while

ensuring the respect of the capacity constraints. In the second phase, the deliv-

ery quantities computed in the first phase are aggregated for all the commodities.

Then, for each period, a set of routes is determined in order to deliver the customers

with their corresponding aggregated quantities. The third phase is a reoptimiza-

tion procedure. Popović et al. (2012) consider an application in fuel delivery with

multi-compartment homogeneous vehicles. Only full compartments are delivered

to petrol stations. The authors propose a MIP formulation and develop a Vari-

able Neighborhood Search (VNS) heuristic to solve the problem. In the VNS, the

shaking procedure does not consider the routing decisions, but only changes the

inventory decisions by modifying the delivering periods for customers or customer-

commodities. In the local search procedure, they develop intra-period operators
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for the routing part (only considering customers) and inter-period operators on

the delivery planning by moving customers or customer-commodities. Shaabani &

Kamalabadi (2016) study an extension of the MCIRP when the commodities are

perishable. This results in additional constraints for the storage capacity. In the

proposed solution method the whole problem is decomposed into a set of routing

subproblems (one for each period) and an inventory subproblem based on the solu-

tion of the routing subproblems. The routing subproblems only consider customers

and are solved using a population-based simulated annealing heuristic. The inven-

tory subproblem is modeled as a MIP and solved with a commercial solver. The

commodities only appear in the inventory subproblem.

The case many-to-one considers a single depot, multiple suppliers and only one

customer. Moin et al. (2011) study this distribution network where many suppliers

deliver a single assembly plant. It is assumed that the customer requires multiple

commodities and each supplier provides a single commodity. A route starts at the

depot, visits some suppliers to pick up the commodities and then visits the customer

to deliver the commodities just before going back to the depot. A supplier may be

visited by more than one vehicle during a given period in order to reduce trans-

portation costs. In the proposed genetic algorithm, there are two representations of

a solution. The first one is based on the visits of the suppliers over the planning

horizon, and the quantities to collect are computed based on a simple inventory rule.

It consists in collecting at period t, the sum of the demands from t to t′ where t′ is

the next period during which the commodity is collected. The second representation

only focuses on the collected quantity and is more flexible than the inventory rule

mentioned before. Mjirda et al. (2014) propose a two-phase heuristic based on VNS.

The representation of a solution corresponds to the set of routes performed during

each period. The first phase consists in solving a VRP for each period without con-

sidering the inventory. In the second phase, the moves modify the routes, and the

solution is evaluated taking into account the different commodities for the inventory.

Based on a routing solution, the inventory subproblem is solved using a MIP solver

or a dedicated heuristic.

The case many-to-many considers several suppliers and several customers. Ramku-

mar et al. (2012) study the extension of the many-to-one case where there are several

customers. Each supplier may produce several commodities, but a single supplier
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produces each commodity. Each route begins at the depot, then consists of a se-

quence of pick-ups from suppliers, followed by a sequence of deliveries to customers

before returning to the depot. At each period, the collection and the delivery of an

individual commodity may be split, i.e. performed by different vehicles. Ramku-

mar et al. (2012) propose a MIP formulation for this problem. Ghorbani & Jokar

(2016) study a variant of in a two-echelon supply chain: each supplier delivers one

or several depots using direct trips, and each depot has an inventory and delivers

several customers performing routes. Decisions involve the depots to open and the

assignment of customers to depots. They propose a MIP formulation and a hybrid

algorithm based on Simulated Annealing (SA) to solve the problem. Decisions are

taken in sequence: first, the design of the network, then the inventory management,

and finally the routing decisions.

2.3.5 Multi-Commodity Multi-Trip VRP

The Multi-Commodity Multi-Trip VRP with Time Windows (MC-MTVRP-TW)

was introduced by Battarra et al. (2009). It is an extension of the Multi-Trip

VRP with Time Windows (MTVRP-TW) that in turn extends the Multi-Trip

VRP (MTVRP). Cattaruzza et al. (2016) provide a review for the MTVRP. In

the MTVRP each vehicle is allowed to perform several trips during the planning

horizon. To allow vehicles to perform multiple trips is important, especially when

the vehicle capacity is small compared with the demand over the time horizon. In

the MTVRP-TW the delivery at the customer location must take place during a

pre-determined time interval called Time Window (TW).

The MC-MTVRP-TW explicitly considers different commodities. It is assumed

that commodities are incompatible and cannot be transported during the same trip.

However, a vehicle can deliver incompatible commodities in different trips. As a

consequence, each commodity for a customer is delivered in different trips. Thus,

the TWs are not associated with the customers (for all the deliveries) but with the

customer-commodities. The objective is to minimize the size of the fleet. Ties are

broken by minimizing the routing cost. Allowing a vehicle to carry different com-

modities for each trip makes it possible to make a full use of the vehicles during the

planning horizon, and therefore to reduce the size of the fleet. Using vehicles dedi-

cated to a single commodity would lead to decompose the problem by commodities

(see Section 2.1).
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In Battarra et al. (2009), the application that motivates the MC-MTVRP-TW

is the distribution of three commodities to supermarkets: vegetables, fresh prod-

ucts, and non-perishable items. The regulation imposes that these commodities are

incompatible with each other and cannot be transported together in a vehicle. The

authors propose an adaptive mechanism that is used to guide simple heuristics. Cat-

taruzza et al. (2014) develop an iterated local search for the MC-MTVRP-TW. Note

that the methods of both authors consider instances with customer-commodities

since two customer-commodities associated with the same customer will never be

served together on the same trip.

2.3.6 Multi-Commodity Location Routing Problem

In the classical Location Routing Problem (LRP), there are a set of potential depots

associated with an opening cost. A set of customers with known demands for a single

commodity must be served from the opened depots using a fleet of vehicles. Each

customer has to be visited by a single vehicle. No inventory considerations apply,

neither at depots nor at customers. The LRP consists in determining the depots to

open, assigning each customer to one open depot, and determining the vehicle routes

to deliver customers from the open depots. The objective is to minimize the total

cost: opening costs of the depots, fixed costs for each vehicle used, and the total

routing cost (Prodhon & Prins, 2014). For the review of the LRP, interested reader

is referred to the surveys by Prodhon & Prins (2014) and by Drexl & Schneider

(2015).

The Multi-Commodity Location Routing Problem (MCLRP) is studied in the

context of many-to-many LRP introduced by Nagy & Salhi (1998), where the net-

work structure consists of three layers with suppliers, potentials depots to open

and customers. Suppliers and customers have a known demand to be, respectively,

picked-up or delivered for a set of commodities. At each open depot, a fleet of vehi-

cles performs routes with pickup operations at the suppliers and delivery operations

at the customers. Some routes may contain only pickup or only delivery operations.

Each supplier and customer is visited once by a single vehicle. Another fleet of

vehicles performs direct trips between the open depots in order to consolidate the

commodities at the depots. All the commodities are compatible, thus can be mixed

inside the vehicles. The objective is to minimize the total opening and transporta-

tion costs. In the original many-to-many LRP studied by Nagy & Salhi (1998), it
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was assumed that a couple supplier-customer is associated with each commodity.

Hence the multi-commodity aspect of the problem was not explicitly considered.

At the opposite, it is necessary to explicitly consider commodities when they are

produced by several suppliers and/or required by several customers.

Burks (2006) is known as the first work on MCLRP (Boccia et al., 2018a). In

addition to the above definition of the MCLRP, they also consider timing constraints

(time windows, maximal route duration) and the decisions about the opening of

the supply points. They consider an application for the distribution of personnel,

equipment and material to a theater of war. Customers are cities, suppliers are

airports, sea-port or train stations, and depots are the locations where the vehicles

are based. Multiple commodities are considered since the same resources are used

to transport materials and personnel to the theater of war. Burks (2006) propose a

MIP formulation and a Tabu Search (TS) algorithm to solve the problem.

Rieck et al. (2014) study the MCLRP, motivated by a real-life application in

the timber-trade industry. Suppliers are sawmills and wood manufacturers, and

customers are distributors of wood products. Sawmills produce some commodities

like beams and planks from different kind of woods, whereas wood manufacturers

produce wood for construction purpose or indoor equipment (e.g. door and window

frames). Distributors of wood require a mix of all these commodities for their

production or retail activities. In order to avoid extensive stock holding at the

customers, and to better exploit the capacity of the trucks, it is beneficial to consider

a supply network that explicitly takes into account these commodities. Rieck et al.

(2014) propose a MIP formulation and some valid inequalities. They develop a

heuristic procedure and a genetic algorithm to solve medium and large size instances.

In both algorithms, partial solutions represent the depots to open, and the pickup

and delivery routes performed from these depots. Based on these partial solutions,

a multi-commodity fixed charge network flow problem is solved to determine the

number of direct trips between depots.

Gianessi et al. (2015) study a particular variant of the MCLRP: the multi-

commodity-ring LRP, where the depots to be located have to be connected via a

ring, i.e. the selected direct trips between the open depots must form a Hamiltonian

cycle. The application is in city logistics where depots represent urban distribution

centers (UDCs), and self-service parking lots (SPLs) permit to park electric vehicles.

The ring connecting depots (UDCs) is used to transport massive flow of goods from
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one depot to another. Final customers are served by electric vehicles performing

routes. A route starting at a depot (UDC) may end at the same depot, another

depot, or a SPL, while a route starting at a SPL ends at a depot. Gianessi et al.

(2015) propose a MIP formulation based on set partitioning where an exponential

number of variables represent the feasible routes. They propose a matheuristic al-

gorithm to solve this problem: only a subset of the feasible routes is generated, and

the solving is decomposed in three phases. Based on a set of routes, the first phase

decides the depots to open and the routes assigned the depots; the second phase

builds the ring; the third phase sends the flow of commodities along the ring. This

third phase is modeled as a multi-commodity flow problem.

Rahmani et al. (2016) consider a MCLRP with two-echelon distribution network.

At the first echelon, a single supplier produces several commodities and performs

routes to deliver the open depots. At the second echelon, each route starts and ends

at the same depot. A route is composed of delivery operations at the customers and

potential pickup operations at the depots. Hence, a route may visit several depots

to pick up some commodities. Note that the delivery of a customer may be split, but

the delivery of an individual commodity cannot be split. To solve the problem, the

authors propose extensions of nearest neighbor, insertion, and clustering heuristics.

Boccia et al. (2018b) also address a MCLRP in a two-echelon distribution net-

work. Each commodity has a single origin (supplier) and a single destination (cus-

tomer). The authors propose a MIP formulation based on a flow model where each

commodity explicitly appears.

2.4 Other applications with multiple commodities

In this section, we overview two applications of routing problems where multiple

commodities are considered: transportation of many hazardous materials (Section

2.4.1) and multi-commodity disaster relief (Section 2.4.2).

2.4.1 Transportation of multiple hazardous materials

The transportation of hazardous materials (hazmat or dangerous goods, e.g., gaso-

line, toxic gases) is treated differently from the classical transportation problems

since the risk associated with accident or incident has to be considered. Due to

its nature, the transportation of hazardous materials is regulated by law in most

32



2.4 Other applications with multiple commodities

countries (Holeczek, 2019). There are several modes of transportation for hazmat:

road, rail, water, air, and pipeline (Erkut et al. (2007), Bianco et al. (2013)). Haz-

mat routing problems often aim at finding one or several paths to route a single

commodity from its origin to its destination (Holeczek, 2019). However, selecting

optimal routes for each pair of origin-destination may result in the concentration of

the transportation of hazmat on some links of the network. This is dangerous since

a huge traffic on a link of the network leads to increase the probability of an acci-

dent (Iakovou et al., 1999). Hence, some works explicitly consider multiple hazmat

commodities since they have different origin and/or destinations, but are routed in

the same network with shared capacity constraints.

Several articles on hazmat transportation with multiple commodities consider

origins and destinations for each commodity. The aim is to find an optimal path

to route each origin-destination pair in a shared network. Iakovou et al. (1999)

study the marine transportation of oil products. Each commodity represents an

oil product, associated with a transportation cost and a transportation risk. Given

a capacitated network and a set of commodities with their associated origins and

destinations, the problem is to find a path to route each commodity for each origin-

destination pair, such that no arc of the network has a flow exceeding the capacity.

The objective is to minimize a trade-off between transportation costs and risks.

Iakovou et al. (1999) propose a MIP formulation with an exponential number of

variables, based on the selection of paths to route each commodity. To solve the

problem, they propose a Lagrangean relaxation and adapt a subgradient algorithm

to provide both lower and upper bounds. Verter & Kara (2008) study the trans-

portation of several hazmats from the point of view of a single regulator who may

forbid the use of some links in the network, and whose objective is to minimize

the total exposure of the population. From the carriers’ point of view, based on

the decisions of the regulator, they choose the path with the lowest transportation

cost. They provide a MIP formulation with an exponential number of variables,

requiring to list all the paths to ship a commodity from an origin to a destination.

They propose some applications of the transportation of hazmats through the high-

way network of some Canadian provinces. Erkut & Gzara (2008) propose a bi-level

multi-commodity network flow model for the problem, as well as a dedicated heuris-

tic. Bianco et al. (2009) consider a hazmat transportation problem with two levels

of regulators: (1) a regional regulator who imposes capacities for the transportation
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of hazmats on the network links and aims at minimizing the maximum risk; and

(2) local regulators who choose the path to route the commodities from their origin

to their destination while respecting the capacity constraints, and with the aim to

minimize the total risk. The authors propose a bi-level formulation and solve it

using a reformulation into a single level MIP.

To the best of our knowledge, Paredes-Belmar et al. (2017) is the first work to

deal with a VRP with multiple commodities in the context of hazmat transporta-

tion. A set of hazmats must be collected by a fleet of homogeneous capacitated

vehicles starting and ending their route at a single depot. Each hazmat represents a

commodity and is associated with a level of risk. All the commodities are compati-

ble and can be mixed inside the same vehicle. One or several commodities must be

collected at each customer. The collection at a customer may be split, but a single

commodity has to be collected at once. When the vehicle passes through an arc of

the network (a street) it imposes a risk equals to the highest risk of the commodities

currently loaded in the vehicle. Hence, each time a vehicle collects hazmats from a

customer, the risk associated with the vehicle remains the same or increases. The

objective is to minimize a weighted sum of costs and risks. Note that the sequence

of the commodities collected in the vehicle impacts the risks. Paredes-Belmar et al.

(2017) propose a MIP formulation based on an auxiliary graph of the network and

use a commercial solver.

2.4.2 Transportation of multiple commodities in disaster re-

lief

Golden et al. (2014) define disaster as an extraordinary event that occurs with or

without limited forewarning and has devastating effects on the population (e.g.,

earthquakes, hurricanes, terrorist attacks, and industry disasters). The response

phase considers the logistics operations to satisfy the urgent needs of a population

just after a disaster. Unlike most of the VRPs, the goal of the VRPs in disaster

relief is to provide the best possible supply regardless of the expenses rather than

maximize the profits or to meet customer demands at minimum cost (Golden et al.,

2014).

Routing problems in disaster response consider a set of supply points (suppliers)

and a set of demand points (customers). Each supplier provides one or several com-

modities with limited quantities. The required commodities may be water, food,
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medicine, clothes, machinery. Usually, demands are large, and it is necessary to

split the delivery to a single customer. Since the commodities have different char-

acteristics, several origins and destinations, they have to be explicitly considered.

Distribution of commodities in disaster relief is often considered in the literature

as a multi-commodity network flow problem. Barbarosoǧlu & Arda (2004) study a

transportation problem for disaster response in case of earthquake. They consider

several suppliers and customers and a set of commodities with multiple origins and

destinations for each commodity. Some additional points are used for transshipment

operations. Each arc of the network represents a route, and may be traversed using

different transportation modes e.g. trucks and helicopters. Each commodity is

compatible with one or several modes, and a change of mode of transportation

for a commodity entails in a cost. Since it is difficult to predict a disaster, the

authors consider uncertainty on the supply quantities and the capacities of the

arcs of the network. The problem is consists in determining paths in the network

in order to route each commodity from its origin to destination while satisfying

the capacity constraints. The objective is to minimize the sum of transportation

costs plus shortage costs for the unsatisfied demands. They propose a two-stage

stochastic programming model to solve this problem. Özdamar et al. (2004) study

a similar problem in a deterministic context, but over a planning horizon. They

explicitly consider the flow of vehicles at each period. This is not a classical routing

problem since the vehicles do not go back to a depot. The authors propose a MIP

formulation for this problem. Yi & Özdamar (2007) extend the work of Özdamar

et al. (2004) by considering the problem of locating emergency medical centers to

evacuate wounded people that have to be picked up at some gathering points. Yi

& Kumar (2007) propose a two-phase heuristic to solve the problem defined by

Özdamar et al. (2004). At the first stage, they use an ant colony algorithm to find

vehicle paths for each period while the second phase consists in the distribution of

the commodities using the set of vehicle paths. This second stage is modeled as a

multi-commodity flow problem. Tzeng et al. (2007) dynamically choose the number

of relief items to be transported from depots to demand points such that three

objectives are achieved: minimum total cost, minimum travel time, and maximum

demand satisfaction.

Abounacer et al. (2014) consider a location-transportation problem for disas-

ter response, which involves three conflicting objectives: minimize the total trans-
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portation duration of required products from the distribution centers to the demand

points, minimize the number of agents needed to open and operate the selected distri-

bution centers, and minimize the non-covered demand for all demand points within

the affected area. They propose an exact method (epsilon-constraint) to solve the

problem. Ghasemi et al. (2019) propose a multi-objective multi-commodity multi-

period multi-vehicle location-allocation MIP model for the response phase (i.e. the

logistics operations to satisfy the urgent needs of a population just after a disaster) of

an earthquake. The objective is to minimize the total cost of the location-allocation

of facilities and minimize the amount of the shortage of relief commodities.

2.5 Conclusions and directions for further research

In this chapter, we have reviewed the literature on vehicle routing problems with

multiple commodities. We have focused on the routing problems where multiple

commodities have to be explicitly considered. The problems have been classified

into three categories: the VRP where the vehicle has multiple compartments to

transport incompatible commodities, extensions of VRPs where multiple commodi-

ties are explicitly considered, and applications where the transportation problems

usually consider multiple commodities. For each problem, we determined what is

the motivation to explicitly consider multiple commodities. We also reviewed the

main applications related to the multiple commodities VRP.

From this literature review, it can be concluded that multiple commodities have

to be considered for the following reasons.

• Commodities are incompatible, i.e. they cannot be mixed. However, it is

possible to transport them in the same vehicle. A solution is to use specific

vehicles with multiple compartments such that a compartment contains a sin-

gle commodity. Another solution is when a vehicle performs multiple trips. In

this case, two incompatible commodities cannot be loaded in the same vehicle

in the same trip, but they can be loaded in the same vehicle on different trips.

Solution methods that face these problems need to determine the size of each

compartment or the scheduling of the trips assigned to the same vehicle.

• Commodities are compatible with each other. Hence they share a common

resource. However, they have different characteristics. For example in the
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traveling purchaser problem, commodities have different prices, volumes and

supply quantities; or in the inventory routing problem, they have different

inventory costs and customer consumption rates.

Solution methods that face these problems not only need to determine min-

imum cost tours to visit a set of locations but also need to determine the

quantity of each commodity to collect or deliver at each location.

• Each commodity has to be transported from some origin locations (suppliers)

to destination locations (customers). When delivering a demand location, we

have to ensure that the amount of each required commodity has been loaded

inside the vehicle. The related problems are pickup and delivery TSP, location

routing problems, or routing problems related to transportation of hazardous

materials and transportation for disaster relief.

Solution approaches that deal with these problems need to take into account

precedence constraints imposed by the pairing of pickup and delivery locations.

• The delivery of a customer can be split, but the delivery to an individual com-

modity cannot be split. The related problem is the Commodity constrained

Split Delivery VRP.

Here, solution approaches need to determine whether or not to split a delivery

resulting in methods that need to deal with both customers and customer-

commodities.

There are many applications for the transportation of multiple commodities. The

main ones are the following.

• Transportation of petroleum, fuel, gas. The different commodities represent

different products, e.g. different types of fuel or gas. The transportation of

these products is considered in the Multi-Compartment VRP where the prod-

ucts cannot be mixed in the same compartment. However, it is also considered

in the Multi-Commodity IRP and in the transportation of hazardous materials.

• Transportation of perishable food. Commodities represent different kinds of

food. Some problems consider Multi-Compartment VRP since the foods can-

not be mixed because of different quality, or because they have to be trans-

ported at different temperatures, or it is imposed by regulations. Transporting
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perishable food in the same vehicles is interesting since it permits to have more

frequent deliveries and to reduce the storage levels at the customers. That is

why this aspect is studied for example in Multi-Commodity IRP.

• Transportation of waste and livestock are usually studied in the Multi-Compartment

VRP since the different types of waster or livestock cannot be mixed in the

same compartment.

• Transportation of products in case of disaster or war. In these applications,

the commodities may be food, water, medicine, and people. It is interesting

to transport all these commodities together in order to fully use the capacity

of the vehicles and to ensure short delivery times. It can be noticed that in

this case the products to transport are heterogenous.

• Transportation of the same type of product with different customization. This

is typically the case when the products are compatible in the same vehicle, but

they have different origins and destinations, or different characteristics. Some

examples we have reviewed deal with bikes (with different configurations),

money (bills and coins), wood (beam, plank, door and window frames).

Moreover, we also found that an interesting feature for several problems is related

to the fact to split or not the deliveries. In multi-commodity VRP, there are three

cases: (1) no split: all the commodities have to be delivered at once; (2) constrained

split: the delivery can be split, but each commodity has to be delivered at once by

a single vehicle; (3) full split: the deliveries can be split in any way. In the case

with constrained split, the solving methods usually directly deal with the individual

commodities, by replicating the same customer as many times as the number of

required commodities. Some solving methods deal with both representations of the

solution: customers and commodities.

Considering multiple commodities in VRPs implies to increase the number of

variables and constraints in the MIP formulations, and the problems are more chal-

lenging to solve than the ones with a single commodity. Some solving methods

decompose the solving into two phases: the routing problem is solved in a first

phase, and then the commodities to transport on each route are decided on the

second phase.

The main perspective for VRPs with multiple commodities is to develop efficient

solution methods. One interesting perspective consists in avoiding to replicate the
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customers when the delivery of an individual commodity cannot be split. Another

one relies in more integrated approaches to solve large size instances involving many

commodities.
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Abstract: This paper addresses the Commodity constrained Split Delivery Ve-

hicle Routing Problem (C-SDVRP) where customers require multiple commodities.

This problem arises when customers accept to be delivered separately. All commodi-

ties can be mixed in a vehicle as long as the vehicle capacity is satisfied. Multiple

visits to a customer are allowed, but a given commodity must be delivered in one

delivery.

In this paper, we propose a heuristic based on the Adaptive Large Neighborhood

Search (ALNS) to solve the C-SDVRP, with the objective of efficiently tackling

medium and large sized instances. We take into account the distinctive features of

the C-SDVRP and adapt several local search moves to improve a solution. Moreover,

a Mathematical Programming based Operator (MPO) that reassigns commodities

to routes is used to improve a new global best solution.

Computational experiments have been performed on benchmark instances from

the literature. The results assess the efficiency of the algorithm, which can provide

a large number of new best-known solutions in short computational times.

Keywords: vehicle routing problem; multiple commodities; adaptive large neigh-

borhood search; local search.

3.1 Introduction

The Vehicle Routing Problem (VRP) and its variants have been widely studied in the

literature (Toth & Vigo, 2014). In the VRP with multiple commodities, capacitated

vehicles are used to deliver a set of commodities and meet the demands of customers.

Four different strategies to deliver a set of commodities to customers were presented
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by Archetti et al. (2014): separate routing, mixed routing, split delivery mixed routing

and commodity constrained split delivery mixed routing.

In the separate routing strategy, a specific set of vehicles is dedicated to each com-

modity, and any commodity has to be delivered to any customer by a single vehicle

visit. In this case, considering each commodity separately is a classical capacitated

VRP (CVRP). A customer is visited as many times as the number of commodities

that he/she requires. In other words, if a customer needs multiple commodities,

this customer needs to be served several times, even if all the commodities could be

delivered by only one vehicle.

In the mixed routing strategy any set of commodities can be mixed in the same

vehicle, and all customers must be delivered at once. If a customer requires one

or more commodities, all of them are delivered by a single vehicle in a single visit.

Here again, the problem that arises corresponds to a single CVRP. In this delivery

strategy, when the remaining capacity of a vehicle is not sufficient to deliver all the

demand of a given customer, it is wasted with a possible increase in transportation

costs.

In the split delivery mixed routing strategy, any set of commodities can be mixed

in the same vehicle. The commodities can be split in any possible way. Moreover,

a commodity can be delivered to a customer by several vehicles. The problem that

arises corresponds to the split delivery VRP (SDVRP) that was introduced by Dror

& Trudeau (1989) and Dror & Trudeau (1990). For an extensive review of SDVRP,

the interested reader is referred to the survey by Archetti & Speranza (2012). In

the split delivery mixed routing strategy, a customer can be visited several times if

this is beneficial, even if this customer requires only one commodity. This strategy

minimizes transportation costs but may cause inconvenience to customers (Archetti

et al., 2008). For example, if one commodity is delivered by several vehicles, the

handling time for the customer may increase significantly.

The commodity constrained split delivery mixed routing (C-SDVRP) is a strategy

recently proposed by Archetti et al. (2014) to deliver multiple commodities. In the

C-SDVRP, any set of commodities can be mixed in the same vehicle. The demand

of a customer can be split, but only as many times as the required commodities and

when a commodity is delivered to a customer, the entire required amount is handed

over. As a consequence, one commodity can be delivered by only one vehicle.
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The C-SDVRP shares similarities with the SDVRP. However, a significant differ-

ence is that the demand of a customer cannot be arbitrarily split since a commodity

has to be delivered by the same vehicle. Thus, only splitting a request of a customer

according to different commodities is allowed. Considering the convenience of cus-

tomers and transportation costs, the C-SDVRP is more interesting than the other

three strategies to deliver multiple commodities. This problem arises in several real-

life situations, for instance in the delivery of groups of products: dairy products,

fresh fruits, or vegetables to supermarkets, catering services or restaurants. Each

group of products represents a commodity. These commodities can be mixed in the

same vehicle. For the customer, it is acceptable to have more than one delivery, but

splitting the delivery of a specific commodity (a group of products) is not practical

at all. Few commodities are considered. The number of deliveries for a customer

is therefore acceptable. Moreover, considering to split deliveries is beneficial for the

entire logistic system since it reduces transportation costs.

Despite its practical relevance, the C-SDVRP has received very little attention.

The C-SDVRP was first introduced by Archetti et al. (2014). A branch-and-cut

algorithm was proposed by the authors and is able to solve to optimality 25 out

of 64 small instances (15 customers) within 30 minutes. Archetti et al. (2014) also

proposed a heuristic method to tackle this problem. The heuristic consists in making

copies of each customer (one for each required commodity) and uses an open-access

injection-ejection algorithm for the CVRP. This solving method is simple but does

not seem to be very efficient. Indeed, customer replicas share the same location, so

the resulting capacitated VRP has many equivalent solutions. We use an example

to highlight this point.

Figure 3.1 shows an example where customers require multiple commodities.

A square indicates the location of the depot and circles represent the locations of

the three clients. The number of commodities is three. The number on each edge

corresponds to the associated travel cost, and the numbers in the dotted ellipses are

the demands for each commodity. To increase readability, a different colored ellipse

represents each commodity. For instance, for each customer, the number in the red

ellipse is the demand of commodity one required by this customer. Each vehicle has

a capacity of Q = 10 units.

According to the heuristic used by Archetti et al. (2014), the C-SDVRP is solved

as a CVRP where the set of customers contains all the customer replicas. Figure
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Fig. 3.1. An example from Archetti et al. (2014).

3.2 shows two solutions of this example.

(a) Solution 1. (b) Solution 2.

Fig. 3.2. Two solutions of the instance in Figure 3.1.

Solution 1 is composed of three routes to serve all of the demand. Route 1 serves

the whole demand for customer 1 (6 units) and commodity 1 of customer 2 (3 units)

for a total of 9 units. Route 2 delivers the remaining of the demand of customer 2

(5 units) and commodities 1 and 2 (5 units) of customer 3. The remaining demand

for customer 3 (1 unit) is delivered in route 3. The three routes cost 11.5, 11.5 and

8 respectively. The total cost is then 31.

Solution 2 is also composed of three routes. Route 1 is the same as in solution 1.

Route 2 delivers the remaining of the demand of customer 2 (5 units) and commodity

1 (3 units) of customer 3. The remaining demand for customer 3 (3 units) is delivered

in route 3. The three routes cost 11.5, 11.5 and 8 respectively, for a total cost of 31.

These two solutions are different. However, in essence, the two solutions are

equivalent in that customers’ replicas share the same location. Taking this specific

feature of the problem into account to avoid exploring many equivalent solutions is

a real challenge.
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In a more recent work Archetti et al. (2015) proposed an extended formulation

for the C-SDVRP and developed a branch-price-and-cut algorithm. This algorithm

has limitations for solving large-scale instances: optimal solutions were obtained

with up to 40 customers and 3 commodities per customer within 2 hours. We are

not aware of any other study in the literature solving the C-SDVRP.

This paper aims at proposing an efficient heuristic to tackle medium and large

sized C-SDVRP instances. To this end, we propose an Adaptive Large Neighborhood

Search (ALNS) heuristic taking into account the specialty of the C-SDVRP. ALNS

is an efficient metaheuristic proposed by Ropke & Pisinger (2006) and extends the

Large Neighborhood Search (LNS) heuristic (Shaw, 1997, 1998) by allowing multiple

destroy and repair methods to be used within the same search. Recently, ALNS has

been successfully applied to the capacitated VRP (Sze et al., 2016) and to many

variants of the VRP (Azi et al., 2014; François et al., 2016; Masson et al., 2013; Sze

et al., 2017).

The contributions of this paper are as follows. First, a new heuristic method

for the C-SDVRP is proposed. As mentioned earlier, if a customer is replicated as

many time as the required commodities, many equivalent solutions exist. Hence,

to avoid this pitfall, the proposed method explicitly takes this feature into account.

To improve a solution, we adapt existing local search (LS) operators to deal with a

customer as a whole (i.e., with the whole demand he/she requires) or only as a part

(i.e., with a single commodity he/she requires). Second, in order to further improve

the quality of a new and better encountered solution, a mixed integer programming

(MIP) based operator is developed. Finally, we provide a large number of new

best-known solutions for medium and large sized C-SDVRP instances up to 100

customers and 3 commodities per customer within about 10 minutes of computing

time.

The rest of this paper is organized as follows. Section 3.2 defines the C-SDVRP.

The proposed algorithm for the C-SDVRP is described in Section 3.3. Section 4.5

reports the computational results. Section 3.5 concludes the paper and suggests new

directions for future research.
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3.2 Problem definition

The C-SDVRP is defined on a directed graph G = (V,A) in which V = {0}⋃VC is

the set of vertices, and A is the set of arcs. More precisely, VC = {1, ..., n} represents

the set of customer vertices, and 0 is the depot. A cost cij is associated with each

arc (i, j) ∈ A and represents the non-negative cost of travel from i to j. Let M

= {1, ...,M} be the set of available commodities. Each customer i ∈ VC requires a

quantity dim ≥ 0 of commodity m ∈ M. Note that a customer i ∈ VC may request

any subset of commodities, namely dim may be equal to zero for some m ∈M.

A fleet of identical vehicles with capacity Q is based at the depot and is able to

deliver any subset of commodities.

The problem is to find a solution that minimizes the total transportation cost,

and that involves two related decisions such as finding a set of vehicle routes that

serve all customers and selecting the commodities that are delivered by a vehicle

route to each customer. Moreover, each solution must be such that:

1. each route starts and ends at the depot;

2. the total quantity of commodities delivered by each vehicle does not exceed

the vehicle capacity;

3. each commodity requested by each customer must be delivered by a single

vehicle;

4. the demands of all customers need to be satisfied.

We use the example presented in Figure 3.1 to illustrate an optimal solution of

a C-SDVRP instance. The solution is provided in Figure 3.3. In the C-SDVRP

case, two vehicle routes are required to deliver all the commodities required by the

customers. One route (black line) delivers all the commodities of customer 1 (6

units) and delivers commodities 1 and 3 of customer 3. The cost of this route is 13.

The other route (purple line) delivers all the commodities of customer 2 (8 units)

and commodity 2 of customer 3 (2 units). The cost of this route is 11.5. The total

cost of the solution is 24.5. For the solutions obtained using the other three delivery

strategies (separate routing, mixed routing and split delivery mixed routing), the

interested reader is referred to Archetti et al. (2014).
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Fig. 3.3. An optimal solution for the C-SDVRP instance proposed in Figure 3.1.

3.3 Adaptive Large Neighborhood Search

In order to tackle the C-SDVRP for medium and large instances, we propose a

heuristic method based on the ALNS framework of Ropke & Pisinger (2006). We

make use of local search, and we develop a mathematical programming based oper-

ator to improve the quality of solutions.

Due to the characteristics of the problem under study, one node can be duplicated

as many times as the number of commodities required by the associated customer

(Archetti et al., 2014). With each duplicated node, we then associate the demand

of the customer for the corresponding commodity. However, the simple duplication

of customers without further consideration of the customer location can produce

several equivalent solutions as illustrated previously in the paper. To enhance the

performance of the algorithm, we explicitly consider customer replications for each

commodity and the customer as a single entity associated with its total demand.

To this intent and for the sake of clarity, in the following, we will call the dupli-

cated nodes customer-commodity, and we will use the term customer to refer to the

customer associated with the total demand.

We represent a solution of C-SDVRP as the set of routes needed to serve all

customers. In order to take into account the specific features of the C-SDVRP, a

route can be represented by (1) a sequence of customers, or by (2) a sequence of

customer-commodities. Note that, because a customer can be delivered by several

vehicles, in the representation with customers, it is possible that a customer appears

in several routes (with different commodities).

The second representation gives more flexibility but increases in complexity. To

clarify this, we consider the case of removing a customer from a solution. In the
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first case, when removing a customer from a route, the customer associated with all

the commodities delivered by the route is removed. In the second case, it is possible

to remove only one commodity. We illustrate the two representations in Figures 3.4

and 3.5. We use the example presented in Figure 3.1. Figure 3.4 shows a set of

routes represented as two sequences of customers. If customer 1 is removed from

route 1, then customer 1 with all the three commodities is removed. If customer 3 in

route 2 is removed, then customer 3 with commodity 2 is removed. Once a customer

is removed, the remaining capacity of this route increases and the cost decreases.

Note that even if customer 3 has been removed from route 2, he is still present in

route 1.

Figure 3.5 shows a set of routes represented as two sequences of customer-

commodities. In order to better understand the feature of C-SDVRP, we hide the

circle which represents the customer. In fact, the two routes imply the same solution

as shown in Figure 3.4. If commodity 2 of customer 3 in route 2 is removed, then

the remaining capacity of this route increases and the cost decreases. However, if

one commodity (like commodity 1) of customer 1 is removed, then the remaining

capacity of this route increases but the cost of this route does not change.

(a) Initial solution. (b) Solution after removing customer 1
from route 1 and customer 3 from route 2.

Fig. 3.4. Two sequences of customers.

As mentioned above, in this paper we present operators for customers and

customer-commodities that work based on the specific need. It is important to

note that to deal with both customers and customer-commodities, each route in

the solution has two concurrent representations. In the first representation, each

route contains a sequence of customers, and a set of commodities is associated with

each customer (see Figure 3.4 for an example). In the second representation, each

route contains a sequence of customer-commodities (see Figure 3.5 for an example).
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(a) Initial solution. (b) Solution after removing commodity 1 of customer 1
from route 1 and commodity 2 of customer 3 from route 2.

Fig. 3.5. Two sequences of customer-commodities.

When using an operator, the corresponding representation (customers or customer-

commodities) is used. The following considerations are then taken into account when

translating one representation to the other:

• In the second representation with customer-commodities, when a route con-

tains several commodities of the same customer, it is always optimal to group

them (since there is zero cost to travel between these customer-commodities).

Thus, in the first representation, a customer will not appear twice on the same

route.

• When dealing with the second representation with customer-commodities, it is

possible that a customer appears in different routes (with different commodi-

ties). Hence, it is possible in the first representation with customers that a

customer appears in several routes (e.g., customer 3 in Figure 3.4(a)).

• When dealing with the first representation with customers, moving a customer

means to move that customer with the associated commodities in the current

route. These commodities may be a subset of the commodities required by

this customer.

3.3.1 General framework

The basic idea of ALNS is to improve the current solution by destroying it and

rebuilding it. It relies on a set of removal and insertion heuristics which iteratively

destroy and repair solutions. The removal and insertion heuristics are selected using

a roulette wheel mechanism. The probability of selecting a heuristic is dynamically
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influenced by its performance in past iterations (Pisinger & Ropke, 2010). A sketch

of the method is outlined in Algorithm 1.

In Algorithm 1, sbest represents the best solution found during the search, while

s is the current solution at the beginning of an iteration. The cost of a solution s is

denoted by f(s).

A removal heuristic hrem and an insertion heuristic hins are applied to the current

solution s. We indicate by srem and sins the intermediate solutions obtained after

applying hrem and hins respectively.

hrem removes and hins inserts ρ customers or customer-commodities, where ρ is

a parameter that varies between ρmin and ρmax. We adapt the strategy proposed

by François et al. (2016) to set the value of ρ: we slightly destroy the current solution

when a new solution has just been accepted (small values of ρ), and we increase the

value of ρ proportionally to the number of iterations without improvements. The

probabilities of selecting a removal or an insertion heuristic are dynamically adjusted

during the search (Section 3.3.8).

Once the heuristics hrem and hins have been applied, the solution obtained sins

is possibly improved by applying a local search. The resulting solution is denoted

by s′ (Section 3.3.3).

We allow the insertion heuristics to propose solutions that violate the capacity

constraint. This is done with the aim of reducing the number of routes in the

solution. Infeasibility is then penalized in the objective function by adding a factor

proportional to the violation. Details on the penalization of the load violation are

given in Section 3.3.9. We then try to recover feasibility by applying the local search.

Whenever a new best solution is obtained, a Mathematical Programming based

Operator (MPO) is applied to further improve the new best solution (Section 3.3.7).

This can be seen as an intensification phase of the algorithm.

The new solution s′ is then subject to an acceptance rule. If accepted, the new

solution becomes the current solution. Otherwise, the current solution does not

change. This is repeated until a stopping criterion is met and the best solution

found sbest is returned.

In the following, each component of this algorithm is explained in detail.
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Algorithm 1 Adaptive Large Neighborhood Search framework.

1: sinit ←generate an initial feasible solution using split procedure and LS
2: ρ← ρmin, s← sinit, sbest ← sinit
3: repeat

4: Roulette wheel: select a removal heuristic hrem and an insertion heuristic
hins

5: Destroy: srem ← remove ρ customers (or customer-commodities) from s

applying hrem

6: Repair: sins ← insert removed customer-commodities into srem applying hins

7: Improve: s′ ← improve solution sins with local search (Algorithm 2)
8: if f(s′) < f(sbest) then

9: sbest ← improve solution s′ with MPO (Section 3.3.7)
10: s′ ← sbest
11: end if

12: if accept(s′, s) then

13: s← s′, ρ← ρmin

14: else

15: ρ← ρ+ 1, or ρmin if ρ = ρmax

16: end if

17: Update roulette wheel
18: until stopping criterion is met
19: return sbest

3.3.2 Initial solution

Let ncc be the number of customer-commodities. A feasible initial solution is con-

structed as follows. First, we randomly determine a sequence of customer-commodities

and we construct a giant tour S = (S0, S1, . . . , Sncc), where S0 represents the de-

pot and Si is the ith customer-commodity in the sequence. Then, we apply a split

procedure to get a feasible solution. This procedure is inspired by the works of ?

and Prins (2004). It works on an auxiliary graph H = (X,Acc,Z), where X contains

ncc + 1 nodes indexed from 0 to ncc, where 0 is a dummy node and node i, i > 0,

represents customer-commodity Si. Acc contains one arc (i, j), i < j, if a route

serving customer-commodities Si+1 to Sj is feasible with respect to the capacity Q

of the vehicle. The weight zij of arc (i, j) is equal to the cost of the trip that serves

(Si+1, Si+2, . . . , Sj) in this same order. The optimal splitting of the giant tour S cor-

responds to a minimum cost path from 0 to ncc in H. Finally, this feasible solution

is improved by applying local search (Algorithm 2).
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3.3.3 Local search

In order to improve a solution, a Local Search procedure (LS) is applied. LS is based

on a set of classical operators that work on customers and on customer-commodities.

Let us first introduce some notation that will be useful in the remaining part

of the section. Let u and v be two different nodes. They are associated with a

customer or a customer-commodity, or one of them may be the depot depending on

the operator. These nodes may belong to the same route or different routes. Let

x and y be the successors of u and v in their respective routes. R(u) denotes the

route that visits node u.

Operators on customers

Here we present the operators that are defined for customers. These operators

consider a customer together with all the commodities delivered to this customer in

a given route. The different operators are illustrated in Figure 3.6 (where we only

represent the intra-route cases).

(a) Insert customer. (b) Swap customers. (c) 2-opt on customers.

Fig. 3.6. Local search operators with customers.

Insert customer: this operator removes a customer u and inserts it after cus-

tomer v.

Swap customers: this operator swaps the positions of customer u and customer

v.

2-opt on customers: if R(u) = R(v), this operator replaces (u, x) and (v, y)

by (u, v) and (x, y).
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Operators on customer-commodities

Here, we present the operators that are defined for customer-commodities. The

different operators are illustrated in Figure 3.7.

Insert customer-commodity : this operator removes a customer-commodity u

then inserts it after customer-commodity v.

Swap customer-commodities: this operator swaps customer-commodity u

and customer-commodity v.

(a) Insert customer-commodity. (b) Swap customer-commodities.

Fig. 3.7. Local search operators with customer-commodities.

We can notice that the insert and swap operators for customer-commodities allow

some moves that are not feasible when we consider only customers. In most cases, the

insertion of a customer or of only one of the commodities to be delivered has the same

cost. However, during the search, we allow the violation of the vehicle capacity, and

the infeasibility is penalized (see Section 3.3.9). In an infeasible solution with some

overcapacity in a route, it may be possible that inserting customers in other routes

also leads to an infeasibility; while inserting only a customer-commodity decreases

the infeasibility or leads to a feasible solution. Similarly, a swap of customers may not

be feasible (or lead to an increase in the cost) due to the vehicle capacity restriction.

At the opposite, when the commodities of some customers are delivered in several

routes, swapping customer-commodities may be feasible with respect to the capacity

and decreases the solution cost. As an example, in Figure 3.7, case (b), v and w
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are two commodities for the same customer, while u is a commodity for another

customer who requires two commodities. Swapping u with both v and w may not

be possible because of vehicle capacity while swapping customer-commodities u and

v decreases the cost of the solution.

Note that we do not consider a 2-opt operator based on customer-commodities.

Since this operator works on elements of the same route, it is never beneficial to

split apart customer-commodities associated to the same customer. It follows that

its behavior would be the same as the operator 2-opt on customers.

LS is applied when the split procedure has generated an initial solution or when

the removal and insertion heuristics have modified the solution. In the first case,

we do not allow the solution to be infeasible with respect to the vehicle capacity.

In the second case, the insertion heuristic can produce infeasible solutions. As a

consequence, LS (and thus the operators) may have to address the infeasibility of

the current solution. LS is depicted in Algorithm 2. Given a solution, first, four lo-

cal search operators are applied: insert customer, insert customer-commodity, swap

customers and swap customer-commodities. They are invoked iteratively until there

is no further improvement. Then the operator 2-opt of customers is applied. If it

improves the solution, we reiterate with the first four operators. After exploring

the neighbor defined by each operator, the move that improves the most is imple-

mented. When all the local search operators fail, routes of the current solution are

concatenated and split algorithm is applied again. This strategy is inspired by Prins

(2009). If this provides a better solution, the whole procedure is repeated.

3.3.4 Removal heuristics

This section describes the set of removal heuristics we propose to destroy the cur-

rent solution. Heuristics Shaw removal and worst removal use the representation of

a solution with customers, while random removal can be applied to both representa-

tions with customers and customer-commodities. Another operator that randomly

removes one route is also considered.

Shaw removal: this heuristic aims to remove a set of customers which are

similar based on a specified criterion (e.g., location or demand). When customers

with really different characteristics are removed, it is likely that each customer is
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Algorithm 2 Local search procedure.

1: Let s be a (feasible or infeasible) solution
2: repeat
3: repeat
4: repeat
5: Obtain s′ by applying the insert customer operator; s = s′

6: Obtain s′ by applying the insert customer-commodity operator; s = s′

7: Obtain s′ by applying the swap customers operator; s = s′

8: Obtain s′ by applying the swap customer-commodities operator; s = s′

9: until No improvement has been obtained
10: Obtain s′ by applying the 2-opt of customers operator; s = s′

11: until No improvement has been obtained
12: Obtain a giant tour by concatenation of trips
13: Apply the split procedure
14: until No improvement has been obtained

then reinserted at the same position in the solution. Hence, by removing similar cus-

tomers, Shaw removal aims to provide a different solution once an insertion heuristic

has been applied.

Here, we define similarity between two customers as the distance between these

two customers. The heuristic works as follows: a first customer i is randomly selected

and removed. We then compute the similarity between customer i and the other

customers (here, it is the distance), and sort the customers in a list L, according

to the similarity with customer i. A determinism parameter pd (pd ≥ 1) is used to

have some randomness in the customer selection to be removed in L, with a higher

probability for the firsts customers. The removed customer then plays the role of

customer i and the procedure is repeated until ρ customers have been removed. The

interested reader can find a detailed Shaw removal pseudocode in Ropke & Pisinger

(2006).

Worst removal: this heuristic aims at removing the customers who induce a

high cost in the solution. More precisely, at each iteration, we first calculate for

each customer the cost decrease if it is removed from the solution. Then customers

are sorted in decreasing order according to these values. As in Shaw removal, a

determinism parameter pd controls the randomization in the choice of the worst

customer to remove.

Random removal: this removal heuristic randomly chooses ρ customers and

removes them from the current solution. It can also be applied with customer-
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commodities, by randomly removing ρ customer-commodities.

Route removal: in this removal heuristic, an entire route from the current

solution is randomly selected, and all the customer-commodities on this route are

removed.

3.3.5 Insertion heuristics

In this section, we describe the insertion heuristics implemented in the proposed

ALNS algorithm. In this work, all insertion heuristics consider customer-commodities.

Greedy insertion: in this insertion heuristic, at each iteration, for each re-

moved customer-commodity i, we first compute the best insertion cost ∆f 1
i : cost of

inserting the customer-commodity at its best position into the solution (i.e., the in-

sertion that minimizes the increase of the cost of the solution). Then, the customer-

commodity with the minimum insertion cost is selected to be inserted at its best po-

sition. After each iteration, the insertion costs of the remaining removed customer-

commodities are recomputed. This process stops when all customer-commodities

have been inserted.

Regret insertion: this insertion heuristic chooses, at each iteration, the re-

moved customer-commodity which produces the biggest regret if it is not inserted at

its best position at the current iteration. In regret-k heuristic, at each iteration, we

first calculate, for each removed customer-commodity i, ∆f 1
i the cost of inserting i

at its best position, and ∆f η
i (η ∈ {2; ...; k} the cost of inserting i at its ηth best

position. Then, for each customer-commodity i the regret value is computed as:

regi =
∑k

η=2(∆f η
i −∆f 1

i ). This represents the extra cost if i is not inserted at the

current iteration in its best position. Finally, the customer-commodity with highest

regret value regi is inserted at its best position into the solution. The heuristic

continues until all customer-commodities have been inserted. For regret-k insertion

heuristics in this work, we have considered the values of k to be two and three.

Random insertion: this insertion heuristic randomly chooses a removed customer-

commodity, and randomly chooses the insertion position in the solution.

Note that when inserting customer-commodities, violations of vehicle capacity

are allowed and penalized in the cost function (see Section 3.3.9). However, we also

impose a maximum capacity violation on each route. Hence, it is possible that a

customer-commodity cannot be inserted in any route of the current solution. In this

case, we create one additional route which includes this customer-commodity.
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3.3.6 Acceptance and stopping criterion

When the removal, insertion and LS steps have been applied, we use a simulated

annealing criterion to determine if the new solution obtained s′ is accepted. How-

ever, a deterministic decision rule is applied in two cases. At each iteration of the

algorithm, if s′ has a lower cost than the current solution s (f(s′) < f(s)), then s′

is accepted. The solution s′ is rejected if the costs f(s′) and f(s) are equal. We

reject solutions with the same cost in order to avoid working with equivalent solu-

tions where some customer-commodities belonging to the same customer have been

exchanged.

When f(s′) > f(s), then s′ is accepted with probability e−(f(s′)−f(s))/T , where

T > 0 is the temperature. As proposed in Ropke & Pisinger (2006), the initial

temperature is set such that a solution which is w% worst than the initial solution

sinit is accepted with a probability paccept. More formally, T is chosen such that

e−(w·f(sinit))/T = paccept. Then, at each iteration of the ALNS, the temperature T is

decreased using the formula T = T · γ, where γ ∈ [0, 1] is the cooling factor.

The stopping criterion for the whole procedure is a fixed number of ALNS iter-

ations.

3.3.7 Mathematical Programming based Operator to reas-

sign commodities

When a new best solution is identified, we intensify the search by applying a Math-

ematical Programming based Operator (MPO). The main purpose is to assign the

visits to a specific customer among the solution routes in a different way by solving

a capacitated facility location problem.

We use Figures 3.8 (a) and (b) to explain the idea behind MPO. In the example,

we assume the vehicle capacity is 10 units. The number dim in the ellipse reflects

the demand of commodity m required by customer i. We focus on the commodities

of customer 2: the ellipses with a solid line in Figure 3.8. We assume that Figure 3.8

(a) is a solution obtained after LS. Customer 2 has two commodities: the first is

delivered on route 2, and the second is delivered on route 3. Inserting or swapping

one of these two customer-commodities does not provide a better solution. However,

we can notice that the deliveries to customer 2 can be reassigned to the first route
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and the total cost decreases, as shown in Figure 3.8 (b). The reader can notice that

the operators implemented in LS do not consider this kind of movements.

(a) Solution before using MPO. (b) Solution after using MPO.

Fig. 3.8. MPO for reassigning commodities.

Let us introduce the notation that we need to formally present MPO. First, we

assume that customer i is considered. We indicate by:

• Mi the set of commodities required by customer i;

• si the solution obtained from the current solution by removing all the visits

to customer i;

• Ri the set of routes in si;

• cir the cost to insert (best insertion) customer i in route r ∈ Ri;

• Qi
r the remaining capacity in route r ∈ Ri.

Then, we introduce the following binary decision variables:

xi
mr =

{

1 if the delivery of commodity m of customer i is assigned to route r ∈ Ri;
0 otherwise.

xi
r =







1 if at least the delivery of one commodity required by customer i is assigned
to route r ∈ Ri;

0 otherwise.

The mathematical program that we solve in order to apply MPO is the following:
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(IPMPO)min
∑

r∈Ri

cirx
i
r (3.1)

s.t.
∑

r∈Ri

xi
mr = 1, ∀ m ∈Mi (3.2)

∑

m∈Mi

dimx
i
mr ≤ Qi

rx
i
r, ∀ r ∈ Ri (3.3)

xi
mr ∈ {0, 1}, ∀ m ∈Mi, r ∈ Ri (3.4)

xi
r ∈ {0, 1}, ∀ r ∈ Ri (3.5)

This mathematical program corresponds to a capacitated facility location prob-

lem, where only the costs related to the inclusion of a new route in the solution

(the fixed cost) are taken into account. The objective function (3.1) aims to min-

imize the total insertion cost. Constraints (3.2) require that the delivery of each

commodity (i.e., the delivery of each customer-commodity) must be assigned to one

route. Constraints (3.3) impose that the total quantity of commodities assigned to

a selected vehicle does not exceed its remaining capacity. Constraints (3.4)-(3.5)

define the decision variables.

(IPMPO) is solved for each i ∈ VC , but only the reassignment of visits associated

with the highest cost reduction is effectively implemented.

3.3.8 Adaptive weight adjustment

A roulette wheel is used to give more or less importance to the removal and inser-

tion heuristics to be used. The procedure implemented is based on the principles

described in Ropke & Pisinger (2006) and François et al. (2016). This last variant

includes a normalization process for the score. The main difference in our approach

is that removal and insertion heuristics are not selected independently. A pair of

removal and insertion heuristics hp = {hrem; hins} is chosen in each iteration. We

denote by Hp the set of pair of heuristics to be used. Each pair hp is associated with

a weight ωhp, a score πhp, and θhp the number of times that pair hp has been used.

Initially, all pairs of heuristics have the same weight and
∑

p∈Hp
ωhp = 1.

We define a segment as a fixed number of ALNS iterations in the proposed

algorithm. During a segment, the weights of all pairs are kept constant. Before

starting a new segment, for each pair hp ∈ Hp, the score πhp and the number of
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times the pair is used θhp are reset to 0. During a segment, each time a pair hp is

used, θhp is increased by 1, and if the new solution s′ is accepted after using pair

hp, the score πhp is updated according to: πhp ← πhp + σµ, where σµ (µ ∈ {1; 2; 3})
reflects different cases regarding the score change πhp . That is, the score πhp is

increased by σ1 when s′ is a new best solution, or σ2 when s′ is a new improved

solution (f(s′) < f(s)) but not a new best solution, or σ3 when s′ is not an improved

solution but has been accepted according to the simulated annealing criterion. The

values σµ (σµ ∈ [0, 1]) are normalized to satisfy σ1 + σ2 + σ3 = 1.

At the end of each segment, we update all the weights of the pairs of heuristics

based on the recorded scores. First, the score πhp is updated as: πhp ←
πhp

θhp
, where

θhp is the number of times that pair hp was used in this segment. If θhp = 0, we set

πhp to the same value as in the previous segment. Then, the scores of all pairs of

heuristics are normalized:

π̄hp =
πhp

∑

h∈Hp
πh

. (3.6)

Let ωhp,q be the weight of pair hp used in segment q, and λ ∈ [0, 1] a factor which

determines the change rate in the performance of the pair of heuristics. At the end

of segment q, the weight of all pairs of heuristics hp to be applied in segment q + 1

is updated as:

ωhp,q+1 = (1− λ)ωhp,q + λπ̄hp. (3.7)

3.3.9 Infeasibility penalization scheme

In our implementation of the ALNS, we allow some violations of the vehicle capacity

in order to reduce the number of routes. Let Kinit be the number of vehicles used

in the initial solution sinit. Then, the vehicle capacity Q can be extended by an

amount of Qextra = Q
Kinit

. If a vehicle delivers more than Q units of products, we

penalize the infeasibility by adding to the solution cost a term proportional to the

load violation which is βl(s), where l(s) is the total load violation of the solution s

and β is the penalty rate.

The penalty rate β is related to capacity violations. Initially, β is set equal to a

minimum value βmin computed as

βmin = 10 · f(sinit)
∑

i∈VC ,m∈M dim
,
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where f(sinit) is the cost of the initial solution obtained after applying the split

procedure and LS. This ratio approximates an average transportation cost per unit

of demand.

The penalty rate β is dynamically modified during the search since a high rate

may eliminate infeasibility quickly, but may also prevent searching other promising

regions. We keep track of the number of infeasible solutions obtained during the

last consecutive I iterations of the ALNS algorithm. If Iinf infeasible solutions are

obtained consecutively, the value of β is increased to 2β. Similarly, if Ifeas feasible

solutions are generated consecutively, the value of β is decreased to max {βmin; β/2}.

3.4 Computational experiments

In this section, we present the results obtained by the proposed ALNS heuristic. The

algorithm was implemented in C++ and ran on an Intel (R) Core(TM) i7-4600U,

2.10GHz, and 16GB of RAM.

We first describe in Section 3.4.1 the test instances on which we evaluate our

algorithm. In Section 3.4.2 we report the values of the parameters that we set for

the ALNS. Then, in Section 3.4.3 we perform a sensitivity analysis to determine

which insertion and removal heuristics lead to the best performance of the proposed

algorithm. A set of settings is tested on a subset of instances, and the best is used

to perform all other computational tests. In Section 3.4.4, we analyze the effect

of the number of iterations on the computational time and the solution quality.

Then, Section 3.4.5 reports the results on the testbed. The effectiveness of the

MPO is studied in Section 3.4.6, while in Section 3.4.7 we validate the effectiveness

of integrating a local search in the large neighborhood search. We examine how the

computational time of our method varies according to the instance size in Section

3.4.8. Finally, Section 3.4.9 provides managerial insights about the split customers

that are delivered by more than one vehicle.

3.4.1 Instances

To assess the efficiency of our algorithm, we perform computational experiments on

the benchmark instances proposed by Archetti et al. (2014). These instances are

built from the R101 and C101 Solomon instances for the VRP with Time Windows

(Solomon (1987)), from which the customer locations are kept. From instances R101
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and C101, several instances for the C-SDVRP were generated by considering the n

first customers, with n ∈ {15, 20, 40, 60, 80, 100}.
In the testbed, up to 3 commodities are taken into account. The number of

commodities is indicated by M (M ∈ {2; 3}). Each commodity is required by a

customer with a probability p of 0.6 (on average each customer needs 2 out of 3

commodities) or with probability p equal to 1 (each customer requires all commodi-

ties). The quantity of each commodity required by a customer varies within the

intervals ∆ = [1, 100] or ∆ = [40, 60]. A last parameter α ∈ {1.1, 1.5, 2, 2.5} is used

to determine the vehicle capacity from the original one in Solomon instances. We

indicate by P = (I,M, p,∆, α) (where I ∈ {R101, C101}) the set of parameters used

by Archetti et al. (2014) to generate instances.

When n = 15, 64 instances are available, one for each combination of parameters

in set P. These are referred as small instances. When n ∈ {20, 40, 60, 80}, 80 mid-

size instances are available: 20 instances for each value of n. For the mid-size

instances, the combination of parameters in P is restricted to M = 3, α = 1.5 and

∆ = [1, 100]. Hence I and p can take two values each, leading four combinations of

parameters. For each combination, five instances have been generated, leading to

20 instances in total. When n = 100, 320 large instances are available, that means

five instances for each combination of parameters in set P.

In the following sections, we present the parameter setting for our algorithm and

the results obtained. We provide detailed results on each of the 464 instances in the

Appendix A. Due to the high number of instances, we only report average results.

In particular, we present results for each group of instances, where a group is defined

by a quartet (n, I,M, p). Results for a group are averaged on the values of α and ∆.

We summarize all the notations used to present the results in Table 3.1.

3.4.2 ALNS parameters

In this section, we present the values of the parameters set in our ALNS algorithm.

The probabilities to select the pairs of removal and insertion heuristics are updated

after a number of iterations called a segment. In our implementation, we define a

segment as 100 iterations.

To set the values of σ1, σ2, σ3, preliminary experiments were carried out on

instances with n = 80 customers for some combinations. The best results were

obtained when σ1 = 0.7, σ2 = 0.1, σ3 = 0.2. We set the reaction factor λ that
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Table 3.1: Notations for computational results

Symbol Meaning

C101/R101 Name of the original Solomon instance
n Number of customers
M Number of commodities
p Probability that a customer requires a commodity
id Instance id (5 mid and large sized instances are generated for each combination of parameters in P)
∆ Demand range of each customer for each commodity
α Value for generating the vehicle capacity (see Archetti et al. (2015))
CCm Total number of customers that require commodity m
ncc Total number of customer commodities

avg.ncc Average total number of customer commodities in each group of instances
nbIns Number of instances in each group
OPT Optimal solution value from literature (when available)
BKS Best known solution value from literature (when available)
Cost Best solution cost found by the proposed algorithm
∆O Percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost −OPT )/OPT )
∆B Percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost− BKS)/BKS)
∆O/B To indicate that the value is ∆O if an optimal value if available, and ∆B otherwise
avg.∆O Average percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost −OPT )/OPT )
avg.∆B Average percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost− BKS)/BKS)
min.∆O Minimum percentage of improvement between Cost and OPT (∆O = 100 ∗ (Cost− OPT )/OPT )
max.∆B Maximum percentage of improvement between Cost and BKS (∆B = 100 ∗ (Cost −BKS)/BKS)
t(s) CPU time in second
avg.t(s) Average CPU time in seconds
nbOPT Number of optimal solutions obtained
nbE Number of solution values obtained equal to the best known
nbNBK Number of new best known solutions obtained
nbR Number of routes
nbMPO Number of times that MPO is called for a instance
nbMPOimp Number of times that MPO improves the new best solution during the search
avg.nbMPO Average number of times that the MPO is called for each group of instances
avg.nbMPOimp Average number of times that the MPO improves the current best solution for each group of instances
* Indicates the solution value is optimal
nbSplit Number of split customers (that are delivered by more than one vehicle)
nb2-split Number of split customers delivered by exactly two vehicles
nb3-split Number of split customers delivered by exactly three vehicles
nbNearDepot Number of split customers that are close to the depot
nbLargeDemand Number of split customers with a large demand
nbCluster Number of split customers located inside a cluster of customers

appears in Equation (3.7) to 0.5 as proposed in Masson et al. (2013) (instead of

λ = 0.1 as in Ropke & Pisinger (2006)) to ensure higher reactivity when performing

fewer iterations. The determinism parameter pd in Shaw removal and worst removal

heuristics is equal to 6 as in Ropke & Pisinger (2006).

The acceptance of a new current solution is based on a simulated annealing

criterion. The initial value of the temperature T is set so that a solution that is w%

worse than the current solution is accepted with probability paccept with w = 0.35

and paccept = 0.7. In addition, we set the cooling factor γ to 0.999.

In order to destroy a solution, we need to determine the number ρ of cus-

tomers (or customer-commodities) to be removed. We follow the scheme proposed

by François et al. (2016): small moves are applied when a new solution has just been
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accepted, while large moves are applied when no new solution has been accepted

in the most recent iterations. The value of ρ evolves in the interval [ρmin, ρmax].

For small instances (n = 15), we set ρmin = N/2, ρmax = N , while for the other

instances, we set ρmin = N/10 and ρmax = N/4. When the removal heuristic is

customer-based, then N represents the number of customers (N = n). When the

removal heuristics are defined for customer-commodities, N represents the number

of customer-commodities (N = ncc).

To update the penalization rate for capacity violations, we consider the number

of infeasible and feasible solutions that are obtained consecutively. These values are

respectively set to Iinf = 50 and Ifeas = 5 after performing preliminary experiments.

3.4.3 Efficiency assessment for the removal and insertion heuris-

tics

In Sections 3.3.4 and 3.3.5, we propose several removal and insertion heuristics to

be used inside the ALNS framework. Before testing the proposed algorithm on the

set of instances, we use a subset of instances in order to determine the removal and

insertion heuristics that are used inside the ALNS framework. We also consider

configurations with only one removal and one insertion heuristic, which corresponds

to designing a Large Neighborhood Search (LNS). This permits to emphasize the

efficiency of individual insertion and removal heuristics, and also to point out the

benefit of the adaptive approach included in the design of the ALNS when choosing

the removal and insertion heuristics.

This analysis is performed to tune the proposed algorithm. We only use the 20

instances with n = 80 customers. A summary of these experiments is reported in

Table 3.2. The first column shows which configuration is considered (LNS or ALNS).

The second column enumerates the configurations that we tested. Columns 3 to 7

indicate which removal heuristics are used in a specific configuration. Among them,

‘RandC’ and ‘RandCC’ represent the random removal heuristic considering cus-

tomers and customer-commodities, respectively. Columns 8 to 11 indicate which

insertion heuristics are used. In columns 12 to 14 we report the following aver-

age statistics for each configuration: the gap with the best-known solutions, the

computational time in seconds, the number of new best-known solutions (see Table

3.1).
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Table 3.2: LNS configurations compared to ALNS configurations.

Removal heuristics Insertion heuristics Results

conf. S
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avg.∆B avg.t(s) nbNBK

LNS 1 × × -0.77 521.18 20

2 × × -0.72 438.34 19
3 × × -0.54 276.76 17
4 × × -0.23 714.33 13
5 × × 0.01 333.60 10
6 × × -0.61 533.30 20
7 × × -0.78 541.81 19

8 × × -0.07 1106.18 11
9 × × -0.10 1146.84 13

ALNS 10 × × × × × × × × × -0.71 562.29 20

11 × × × × -0.72 513.49 19
12 × × × × -0.77 500.97 19
13 × × × × × -0.79 511.00 20

14 × × × × × -0.68 467.99 20
15 × × × × × -0.63 555.34 20
16 × × × × × × -0.66 530.26 19
17 × × × × × × -0.79 477.49 19

In the first five configurations, we study the influence of the removal heuristic. To

this intent, the insertion heuristic is kept fixed. Using the Shaw removal heuristic,

the LNS is able to improve all the best-known solutions.

Configurations 6 to 8 point out the impact of the insertion heuristic. We fixed

the removal heuristic to the Shaw removal since it provided the best results in the

previous experiments. These tests show that all insertion heuristics perform well

except the random insertion. To further evaluate the behavior of the random inser-

tion heuristic we consider configuration 9 where we modify the removal heuristic. It

can be observed that the results do not improve. Among the LNS configurations,

combining the Shaw removal with the regret-3 insertion provides the best results.

In the second part of Table 3.2, we consider different configurations for the ALNS

framework, with several removal and insertion heuristics. Configuration 10 shows

the performance of the ALNS algorithm using all proposed heuristics. In other

configurations, only a subset of them is invoked in the ALNS. As we can see, using

all the proposed removal and insertion heuristics does not provide the best results.

The best configuration is configuration number 13: an ALNS with two removal

heuristics: Shaw and random removal of customers, and three insertion heuristics:

greedy, regret-2 and regret-3. In the following sections, all reported computational

experiments have been conducted using this configuration.
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3.4.4 Analysis with respect to the number of iterations

We examine the impact of the number of iterations for different instance sizes. Pre-

liminary computational experiments showed that the algorithm converges after a

certain number of iterations. Thus, we aim to determine the number of iterations

that would be a good compromise between the solution quality and the computa-

tional time.

For small instances and medium instances with 20 customers (mid-20), we run

our algorithm with the number of iteration iter limited to 100, 1000, 3000 and 5000.

We compare the results with those reported in Archetti et al. (2014) and Archetti

et al. (2015). In Table 3.3 and Table 3.4 we report average statistics for different

values of iter: the gap with respect to the optimal values, the computational time

in seconds, the number of optimal solutions obtained (see Table 3.1).

Results over the testbed are indicated in bold. Detailed results are provided in

Appendix A.

Table 3.3: Impact of the number of iterations on small instances.

instances ALNS (100 iterations) ALNS (1000 iterations)

n M p avg.ncc nbIns avg.∆O avg.t(s) nbOPT avg.∆O avg.t(s) nbOPT

C101 15 2 0.6 22 8 0.00 0.93 8 0.00 2.82 8
C101 15 2 1 30 8 0.01 1.64 7 0.00 4.45 8
C101 15 3 0.6 28 8 0.00 1.13 8 0.00 3.92 8
C101 15 3 1 45 8 0.47 3.72 4 0.33 9.81 7
R101 15 2 0.6 22 8 0.00 1.07 8 0.00 2.89 8
R101 15 2 1 30 8 0.00 2.10 8 0.00 4.75 8
R101 15 3 0.6 28 8 0.00 1.26 8 0.00 3.88 8
R101 15 3 1 45 8 0.35 3.36 6 0.00 8.63 8

total 64 0.10 1.90 57 0.04 5.14 63

instances ALNS (3000 iterations) ALNS (5000 iterations)

C101 15 2 0.6 22 8 0.00 7.24 8 0.00 11.65 8
C101 15 2 1 30 8 0.00 10.63 8 0.00 16.86 8
C101 15 3 0.6 28 8 0.00 10.40 8 0.00 17.12 8
C101 15 3 1 45 8 0.21 22.26 7 0.21 34.62 7
R101 15 2 0.6 22 8 0.00 7.02 8 0.00 11.05 8
R101 15 2 1 30 8 0.00 10.76 8 0.00 16.99 8
R101 15 3 0.6 28 8 0.00 9.65 8 0.00 15.59 8
R101 15 3 1 45 8 0.00 20.21 8 0.00 31.57 8

total 64 0.03 12.27 63 0.03 19.43 63

According to Table 3.3, the proposed algorithm solves to optimality 57 out of 64

small instances when 100 iterations are allowed, within an average computational

time of 2 seconds. When we increase the number of iterations to 3000, the number

of optimal solutions reaches 63 with an average computational time of 12 seconds.
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Table 3.4: Impact of the number of iterations on mid-20 instances.

instances ALNS (100 iterations) ALNS (1000 iterations)

n M p avg.ncc nbIns avg.∆O avg.t(s) nbOPT avg.∆O avg.t(s) nbOPT

C101 20 3 0.6 37.4 5 0.26 2.41 3 0.10 8.11 4
C101 20 3 1 60 5 0.66 5.75 1 0.11 21.13 2
R101 20 3 0.6 37.4 5 0.01 3.87 4 0.00 9.60 5
R101 20 3 1 60 5 0.82 10.68 1 0.16 25.66 2

total 20 0.44 5.68 9 0.09 16.12 13

instances ALNS (3000 iterations) ALNS (5000 iterations)

C101 20 3 0.6 37.4 5 0.10 20.66 4 0.00 33.38 5
C101 20 3 1 60 5 0.04 49.66 4 0.00 77.14 5
R101 20 3 0.6 37.4 5 0.00 22.09 5 0.00 34.87 5
R101 20 3 1 60 5 0.01 54.17 3 0.01 81.72 3

total 20 0.04 36.65 16 0.00 56.78 18

The average gap with optimal solutions obtained by Archetti et al. (2015) varies

from 0.10% to 0.03%. Increasing the number of iterations to 5000 does not improve

the quality of the results.

When n = 20, results reported in Table 3.4 indicate that our method identifies an

optimal solution in 5000 iterations for 18 out of the 19 instances for which Archetti

et al. (2015) provided optimal values. The average gap with the best-known values

is less than 0.01%. Over the whole set, the average CPU time is less than 1 minute.

Since large instances usually require more iterations to obtain high-quality re-

sults, we compare the ALNS algorithm behavior with 5000 and 10000 iterations on

mid-80 instances. In Table 3.5, we report average results and the gap with respect

to the best-known values. Detailed results are provided in Appendix A. ALNS can

provide best-known solutions for the 20 mid-80 instances in the benchmark. Within

5000 iterations, the best-known solutions can be improved by about 0.79% on aver-

age and the CPU times is less than 9 minutes. When 10000 iterations are executed,

the solutions are averagely 0.92% better than the best-known values. On the other

side, the average computational times are almost doubled.

3.4.5 Computational experiments on the whole testbed

In this section, we consider the results obtained on the whole set of instances for

the C-SDVRP with the designed ALNS algorithm. As determined in the previous

sections, the removal and insertion heuristics are the ones of configuration 13, and
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Table 3.5: Impact of the number of iterations on mid-80 instances.

instances ALNS (5000 iterations) ALNS (10000 iterations)

n M p avg.ncc nbIns avg.∆B avg.t(s) nbNBK avg.∆B avg.t(s) nbNBK

C101 80 3 0.6 150.4 5 -0.77 373.36 5 -0.88 690.87 5
C101 80 3 1 240 5 -0.75 704.20 5 -0.83 1339.55 5
R101 80 3 0.6 150.4 5 -0.84 319.83 5 -1.06 605.74 5
R101 80 3 1 240 5 -0.81 646.61 5 -0.93 1196.69 5

total 20 -0.79 511.00 20 -0.92 958.21 20

the number of iterations is equal to 3000 (resp. 5000) on small (resp. medium and

large) instances. The algorithm is run once on each instance.

The comparison is made with the results reported in Archetti et al. (2014)

and Archetti et al. (2015). Archetti et al. (2015) propose a branch-and-price al-

gorithm that can solve to optimality instances with up to 40 customers but that can

systematically close instances with up to 20 customers. When the optimal value is

not available we compare to the best known solution (BKS) given either by Archetti

et al. (2014) or Archetti et al. (2015).

For the 64 small instances, an optimal solution is known. Results reported in

Table 3.3 indicate that our algorithm finds an optimal solution for 63 out of 64

instances. The average optimality gap is 0.03%.

For the mid-20 instances (n = 20), 19 out of 20 instances have a known optimal

value. The proposed algorithm can find 18 out of 19 optimal values. On average,

the gap with respect to BKS (either optimal or feasible) is lower than 0.01%.

For the mid-40 instances (n = 40), average results are reported in Table 3.6.

Only 5 optimal values are known. On average, the proposed ALNS finds solutions

that are 0.26% better than the best-known solutions (either optimal or feasible).

Our algorithm finds 4 out of the 5 known optimal solution while 9 new best-known

solutions have been identified. The algorithm runs in less than 2 minutes on average.

Table 3.6: Summary of results on mid-40 sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆ min∆ max∆ avg.t(s) nbOPT nbE nbNBK

C101 40 3 0.6 76.2 5 -0.12 -0.42 0.15 78.14 2 - 2
C101 40 3 1 120 5 -0.76 -1.91 0.00 161.39 - - 4
R101 40 3 0.6 76.2 5 0.15 0.00 0.29 80.70 1 - -
R101 40 3 1 120 5 -0.32 -0.78 0.00 148.33 1 1 3

total 20 -0.26 -1.91 0.29 117.14 4 1 9
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For instances with n ≥ 60, no optimal solution is available. For the mid-60

instances (n = 60) (see Table 3.7), the ALNS finds solutions that are on average

0.49% better than the BKS. Among them, 15 new best-known values are obtained.

The CPU times are less than 5 minutes on average.

Table 3.7: Summary of results on mid-60 sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbE nbNBK

C101 60 3 0.6 110 5 -0.56 -1.40 0.00 193.12 1 4
C101 60 3 1 180 5 -0.38 -1.13 0.25 403.78 - 3
R101 60 3 0.6 110 5 -0.41 -0.83 0.00 177.20 1 3
R101 60 3 1 180 5 -0.61 -1.20 -0.14 353.24 - 5

total 20 -0.49 -1.40 0.25 281.83 2 15

As presented in Table 3.5 on mid-80 instances (n = 80), the ALNS identifies

solutions that are 0.79% better than the BKS, and new best-known values are

found for all instances.

Table 3.8 reports the results on the 320 large instances (n = 100). The ALNS

finds 300 new best-known values with an average improvement of 0.70%. The com-

putational time is around 10 minutes which is very reasonable when considering the

instance size.

Table 3.8: Summary of results on large sized instances.

instances ALNS results

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbNBK

C101 100 2 0.6 136.4 40 -0.66 -1.69 0.24 330.02 38
C101 100 2 1 200 40 -0.77 -1.64 0.03 569.11 39
C101 100 3 0.6 188.4 40 -0.77 -2.04 0.73 557.46 39
C101 100 3 1 300 40 -1.17 -2.88 0.32 1106.23 37
R101 100 2 0.6 136.4 40 -0.53 -1.50 1.05 323.48 36
R101 100 2 1 200 40 -0.55 -1.28 0.29 557.74 36
R101 100 3 0.6 188.4 40 -0.53 -1.23 0.02 548.02 39
R101 100 3 1 300 40 -0.62 -1.72 0.25 1078.70 36

total 320 -0.70 -2.88 1.05 633.85 300

3.4.6 Effectiveness of MPO operator in the ALNS algorithm

As described in Section 3.3.7 we developed a Mathematical Programming based Op-

erator (MPO) to re-assign commodities for one customer to the routes of a solution.

Due to the increase observed in computational time consumption, we decided to use
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it only to improve a new global best solution further. In this section, we analyze

the results on medium and large instances to prove the effectiveness of MPO in

our algorithm. In Table 3.9, we indicate the average number of times that MPO

is called for each group of instances as well as the average number of times that

MPO improves the new best solution for each group of instances. Detailed results

are reported in Appendix A (Table A2 and Table A3).

Table 3.9: Effectiveness of MPO in the ALNS algorithm.

instances results

n M p avg.ncc nbIns avg.nbMPO avg.nbMPOimp

C101 20 3 0.6 37.4 5 2.60 0.00
C101 20 3 1 60 5 7.00 0.20
R101 20 3 0.6 37.4 5 4.00 0.20
R101 20 3 1 60 5 9.80 0.20

C101 40 3 0.6 76.2 5 8.00 0.20
C101 40 3 1 120 5 16.40 2.00
R101 40 3 0.6 76.2 5 12.40 0.00
R101 40 3 1 120 5 18.60 1.80

C101 60 3 0.6 110 5 20.80 0.20
C101 60 3 1 180 5 30.80 1.60
R101 60 3 0.6 110 5 18.00 0.80
R101 60 3 1 180 5 24.60 1.60

C101 80 3 0.6 150.4 5 29.00 1.60
C101 80 3 1 240 5 32.00 6.40
R101 80 3 0.6 150.4 5 23.80 1.00
R101 80 3 1 240 5 29.60 2.40

C101 100 2 0.6 136.4 40 27.05 0.85
C101 100 2 1 200 40 29.65 2.00
C101 100 3 0.6 188.4 40 31.60 1.33
C101 100 3 1 300 40 37.28 3.33
R101 100 2 0.6 136.4 40 27.15 0.53
R101 100 2 1 200 40 30.15 2.10
R101 100 3 0.6 188.4 40 32.40 2.23
R101 100 3 1 300 40 34.48 3.58

For medium instances (namely for n = 20, 40, 60, 80), the impact of MPO on the

quality of the solution increases as the instance size increases. Especially, when p =

1, MPO has a greater impact than when p = 0.6. The main reason is that, when p =

1, all customers require all the commodities while a smaller number of commodities

are required when p = 0.6. As a consequence, for the same number of customers in

the instance, the number of customer-commodities is larger. Therefore, when p = 1,

the difficulty of solving the problem increases as well as the possibilities to reassign

commodities with MPO. For large instances (n = 100), the same conclusions on the

performance of MPO can be drawn.
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3.4.7 Evaluation of the LS in the ALNS algorithm

In this section, we evaluate the importance of the local search in our ALNS algo-

rithm. We run, on mid-80 instances, the ALNS algorithm without LS and MPO

with a limit of 400000 iterations. We then compare the results obtained by the

ALNS with LS and MPO on 5000 iterations. This choice is made to have a com-

parison fair: we remove two optimization components, but we allow a large number

of iterations.

We compare the results obtained by the proposed algorithm, indicated by ALNS+

LS+MPO, with the same algorithm when LS and MPO are deactivated. This last

version is indicated as ALNS-LS-MPO. The performance comparison of both vari-

ants is reported in Table 3.10 for mid-80 and large instances.

It is clear from Table 3.10 that after 400000 iterations the results obtained by

the ALNS without LS and MPO are of lower quality than those obtained by the

original ALNS. We only obtain 15 new best-known values for the 20 mid-80 instances.

Moreover, the average improvement (0.39%) does not compete with the improvement

obtained with the proposed algorithm (ALNS+LS+MPO) while the computational

times are similar. The same observations can be made from the results for large

instances. We then conclude on the importance of the LS and MPO in the proposed

ALNS algorithm.

3.4.8 Trend between instance size and computational time

Last, we examine how the CPU time required by the ALNS varies according to the

instance size. We consider the results obtained with 5000 iterations (even for the

small instances) to perform the analysis. We sort the 464 (small, medium and large)

instances according to the number of customer-commodities instead of the number

of customers. The variation of the computational time avg.t(s) according to the

number of customer-commodities avg.ncc is depicted on Figure 3.9.

When the size of the instances increases, the average computational time signifi-

cantly increases (not in a linear fashion). This behavior is not surprising since when

the size of the instances increases, it takes more time to operate the LS operators,

which computational complexity is O(n2
cc). Nevertheless, the average computational

time of our ALNS algorithm for the large instances (ncc = 300) remains reasonable

with less than 19 minutes.
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Table 3.10: Comparison between two ALNS variants on mid-80 and large instances.

instances ALNS+LS+MPO (5000 iterations) ALNS-LS-MPO (400000 iterations)

n M p avg.ncc nbIns avg.∆B min∆B max∆B avg.t(s) nbNBK avg.∆B min∆B max∆B avg.t(s) nbNBK

C101 80 3 0.6 150.4 5 -0.77 -1.48 -0.01 373.36 5 -0.70 -1.50 0.11 330.77 4
C101 80 3 1 240 5 -0.75 -1.36 -0.24 704.20 5 -0.49 -1.08 0.02 686.68 4
R101 80 3 0.6 150.4 5 -0.84 -1.24 -0.05 319.83 5 -0.49 -1.03 0.57 348.14 4
R101 80 3 1 240 5 -0.81 -1.39 -0.50 646.61 5 0.11 -0.83 1.71 712.20 3

total 20 -0.79 -1.48 -0.01 511.00 20 -0.39 -1.50 1.71 519.45 15

C101 100 2 0.6 136.4 40 -0.66 -1.69 0.24 330.02 38 -0.23 -1.52 1.21 360.30 28
C101 100 2 1 200 40 -0.77 -1.64 0.03 569.11 39 -0.30 -1.58 1.30 606.03 26
C101 100 3 0.6 188.4 40 -0.77 -2.04 0.73 557.46 39 -0.28 -1.66 1.66 576.18 25
C101 100 3 1 300 40 -1.17 -2.88 0.32 1106.23 37 -0.57 -2.47 1.20 1256.61 26
R101 100 2 0.6 136.4 40 -0.53 -1.50 1.05 323.48 36 0.00 -0.75 1.12 366.70 20
R101 100 2 1 200 40 -0.55 -1.28 0.29 557.74 36 -0.08 -1.24 1.83 614.35 25
R101 100 3 0.6 188.4 40 -0.53 -1.23 0.02 548.02 39 0.21 -0.94 1.61 576.27 16
R101 100 3 1 300 40 -0.62 -1.72 0.25 1078.70 36 0.10 -1.78 2.67 1211.77 21

total 320 -0.70 -2.88 1.05 633.85 300 -0.14 -2.47 2.67 696.03 187
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Fig. 3.9. The avg.t(s) of the ALNS with respect to avg.ncc

3.4.9 Characteristics of split customers

As mentioned above, considering customer-commodity makes the problem more com-

plex with equivalent solutions since several commodities are related to the same

customer and then have the same location. Identifying the customers who are good

candidates for being split into customer-commodities can be beneficial for decision-

makers. In this section, we propose to study the characteristics of customers who

are delivered by more than one vehicle. We name these customers split customers.

We provide detailed results on the 20 mid-80 instances with 5000 iterations for the

ALNS algorithm.

Table 3.11 reports these detailed results for several characteristics about the

split customers in the best solution obtained on each instance. The first three

columns report the characteristics of the instance, and the fourth column indicates

the identification number of the instance. Column nbSplit reports the number of

split customers (out of 80), and columns nb2-split and nb3-split indicate the number

of customers delivered by respectively 2 and 3 vehicles. Columns nbNearDepot and

nbLargeDemand report the number of split customers located near the depot and

the number of split customers with a large demand respectively. As Nagy et al.

(2015), we consider that a customer is located near the depot if he or she is one of

the 25% of customers closest to the depot; and we consider that a customer has a

large demand if he or she is one of the 25% of customers with the largest demand.

Note that the demand of a customer is the sum of the demands for the commodities

they need. Column nbCluster reports the number of split customers located inside
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a cluster of customers. As Nagy et al. (2015), we consider a customer to be in a

cluster if at least five other customers are inside its neighborhood. Two customers

are neighbors if the distance between these two customers is less than 30% of the

average distance between the depot and all the customers in the instance. Using

this definition, in clustered instances (C101) more than 70% of customers are in a

cluster, while in random instance (R101) less than 30% of customers are in a cluster.

Table 3.11: Characteristics of split customers in the best solutions of mid-80
instances (5000 iterations).

instances

n p id nbSplit nb2-split nb3-split nbNearDepot nbLargeDemand nbCluster

C101 80 0.6 1 7 7 0 2 3 7
2 5 5 0 3 1 5
3 7 7 0 4 2 5
4 9 8 1 3 5 7
5 10 10 0 1 7 6

1 1 20 19 1 5 5 18
2 14 14 0 4 4 14
3 18 18 0 6 4 13
4 14 14 0 4 4 14
5 18 18 0 6 2 16

R101 80 0.6 1 6 6 0 4 6 4
2 5 5 0 3 2 2
3 7 7 0 2 3 4
4 5 5 0 3 1 3
5 6 6 0 6 3 3

1 1 13 13 0 3 3 7
2 14 13 1 7 1 4
3 13 13 0 4 2 6
4 14 14 0 4 4 6
5 17 17 0 6 5 7

From the results in Table 3.11, it is clear that there are more split customers when

customers require more commodities. p denotes the probability that a customer

requires a commodity. When p = 0.6, the average number of split customers is 6.7,

while when p = 1, there are 15.5 split customers on average. Moreover, very few split

customers are delivered by three vehicles, i.e., one vehicle for each of the required

commodities. In the 20 instances, there are only three split customers in this case.

In addition, one important feature of split customers is to be inside a cluster. Indeed,

for C101 instances, 86% of split customers are inside a cluster. For R101 instances,

46% of split customers are inside a cluster, while less than 30% of customers are in

a cluster in these instances. Proximity to the depot is also an important feature for

split customers since 36% of split customers are near the depot. It is less obvious
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to link large demands to split customers since 30% of split customers have a large

demand.

3.5 Conclusions

In this paper, we presented a dedicated heuristic algorithm for the C-SDVRP. The

proposed algorithm is based on an Adaptive Large Neighborhood Search framework

introduced by Ropke & Pisinger (2006). This is the first heuristic specifically de-

signed with the aim to provide high-quality solutions for the medium and large size

instances. According to the main feature of the C-SDVRP, i.e. the requirement of

different commodities, we adapt some classical local search moves to consider either

with a customer (i.e., a customer and all its commodities) or a customer-commodity

(namely, a single commodity required by a customer). We developed a Mathemati-

cal Programming based Operator (MPO) to intensify the search and further improve

the best solutions. The results show that our ALNS algorithm is very effective in

finding high-quality solutions on large size instances. In particular, our method out-

performs the algorithms proposed in Archetti et al. (2014) and in Archetti et al.

(2015).

The proposed ALNS algorithm could then be adapted to tackle other variants

of routing problems with split deliveries. One of these variants is the case with

multiple depots and available quantities at each depot. In this case, because of the

limited quantities available for each commodity at each depot, it is worth considering

splitting deliveries to find feasible solutions. Another interesting variant of the

problem is the VRP with divisible deliveries and pickup (Gribkovskaia et al. (2007),

Nagy et al. (2015)): in this case, delivery and pickup naturally represent two different

commodities, but a pickup operation increases the use of the vehicle capacity, and

it could then be optimal to visit twice the same customer in one route.

This work is partially supported by the CSC (China Scholarship Council) and

by the ELSAT 2020 project. The authors thank C. Archetti and N. Bianchessi for

providing the benchmark instances. Thanks are also due to the referees for their

valuable comments.
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Abstract: We address a Multi-Commodity two-echelon Distribution Problem

(MC2DP) where three sets of stakeholders are involved: suppliers, distribution cen-

ters, and customers. Multiple commodities have to be sent from suppliers to cus-

tomers, using multiple distribution centers for consolidation purposes. Commodities

are collected from the suppliers and delivered to the distribution centers with direct

trips, while a fleet of homogeneous vehicles distributes commodities to customers.

Commodities are compatible, that is any vehicle can transport any set of com-

modities as long as its capacity is not exceeded. The goal is to minimize the total

transportation cost from suppliers to customers. We present two sequential solution

approaches based on the solution, in a different order, of a collection and a deliv-

ery subproblem. In both cases, the solution of the first subproblem determines the

quantity of each commodity at each distribution center. The second subproblem

takes this information as input. We also propose different strategies to guide the

solution of the first subproblem in order to take into account the impact of its solu-

tion on the second subproblem. The proposed sequential approaches are evaluated

and compared both on randomly generated instances and on a case study related to

a short and local fresh food supply chain. The results show the impact of problem

characteristics on solution strategies.

Keywords: multicommodity, routing problem, local fresh food supply chain,

sequential solution.

Introduction

In this paper we study a complex distribution problem in a two-echelon supply chain

where three sets of stakeholders are involved: suppliers, distribution centers and

customers. Multiple commodities are collected from the suppliers and delivered to

the customers through distribution centers for consolidation purposes. Each supplier

has a given available quantity for each commodity (possibly 0) and each customer has

a demand for each commodity (possibly 0). We consider a single decision maker who
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manages all distribution centers and organizes the collection and delivery operations.

The commodities are collected from suppliers and delivered to distribution centers

through direct trips, and distributed from the distribution centers to customers with

a fleet of vehicles performing routes. Direct deliveries from suppliers to customers

are not allowed. Commodities are compatible, that is any vehicle can transport

any set of commodities as long as its capacity is not exceeded. Multiple visits

to a customer are allowed to reduce transportation costs. However, for the sake

of customers convenience, a single commodity has to be delivered at once. The

problem is named Multi-Commodity two-echelon Distribution Problem (MC2DP).

The objective is to find a collection and delivery plan that minimizes the total

transportation cost, satisfying customer demands, and not exceeding the available

quantities at the suppliers and the vehicle capacities. The study of this problem is

motivated by a case study presented in Section 4.6 for the collection and delivery

of fresh agri-food products (fruits and vegetables) through a short and local supply

chain.

In the following, we detail the application on short and local fresh food supply

chain to motivate our work. The production and delivery of fresh food products

have undergone important changes in Europe since the 1950’s, especially through

the modernization of the tools and processes in order to meet the customer demand

with low production costs. Multinational companies have played a major role as in-

termediaries between farmers and consumers (Rucabado-Palomar & Cuéllar-Padilla,

2018). Nowadays, one of the major problems faced by farmers is the shortfall of their

incomes: over the last decades they have been encouraged to produce more, while

their unit selling price was decreasing. However, in many regions there coexist (1)

supplies with medium-sized farms where various products of high quality (freshness,

few pesticide) are cultivated and (2) customers with a strong desire for product

quality and traceability (King et al., 2015). Hence, the idea has emerged to locally

connect suppliers and customers (Berti & Mulligan, 2016), by means of a short

(and/or) local food supply chain. The main purpose of this kind of supply chain is

to capture more end-use value for the farmers.

Short food supply chains are defined as an opportunity for agricultural products

to reach the market either through direct sales or through indirect sales with only

one intermediary between producers and consumers. Local food supply chains may

involve several intermediaries with all the actors located on a limited area (e.g.
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considering geographical or political restrictions). The maximum distance between

actors is usually around 80 km (Blanquart et al., 2010). In this paper, we consider

short and local food supply chains with indirect sales to canteens, restaurants or

supermarkets.

Short and local supply chains involve few intermediaries. Hence, farmers have to

take charge of a large part of their products marketing and distribution, which is not

their core business. It is feasible for direct sales since the volumes are usually low,

and consequently farmers can spend time selling their products. For indirect sales

(canteen, restaurants or supermarket), volumes are more important and, therefore,

the supply chain has to rely on a set of distribution centers in order to organize

product flows and to minimize transportation costs, with the aim to be competitive

with conventional food supply chains. Farmers supply these distribution centers by

performing direct trips since the volumes are large. The distribution centers are

then in charge of consolidation and delivery of the products to customers. In a local

supply chain context, all the actors (farmers, distribution centers and customers)

are located in a restricted area. A single decision maker manages all the distribution

centers, and coordinates the transportation planning for both collection and delivery

operations. This decision maker can be an association of farmers, or a local political

authority. These distribution centers are considered as the only intermediary in the

supply chain.

The Multi-Commodity two-echelon Distribution Problem belongs to the broad

class of two-echelon routing problems, which are distribution problems where trans-

portation activities take place in two echelons of a supply chain. There exists a

wide literature on this class of problems. We refer to Cuda et al. (2015) for a recent

survey on two-echelon routing problems and to Guastaroba et al. (2016) for a more

general survey on transportation problems with intermediate facilities.

The problem we study here contributes to the literature on two-echelon routing

problems by explicitly considering multiple commodities that are required by final

customers. To the best of our knowledge, the multiple commodities aspect has not

been considered before in two-echelon distribution systems. On the other side, two-

echelon location problems that deal with multiple commodities have already been

tackled (see, for example, Hinojosa et al. (2000) and Sadjady & Davoudpour (2012)).

These problems do not involve routing decisions but evaluate the cost of assigning

final customers to a specific distribution center.
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The explicit consideration of different commodities is essential in the agri-food

supply chains since availability at the producer depends on the production of farmers

and requirements made by customers concern specific commodities.

There is a large literature on planning problems in agri-food supply chains. The

main focus is, in general, the integration of degradation and quality of products

inside the planning models. When focusing on short and local food supply chain,

the literature is very scarce. As pointed out by Flores & Villalobos (2018), there

is a lack of supply chain planning tools for local fresh food supply chains. Flores

& Villalobos (2018) develop an agricultural planning framework that determines

an optimal production planning of vegetables for local supply chains. Bosona &

Gebresenbet (2011) address a case study in Sweden. They first study the location

of distribution centers using the centre-of-gravity technique. Then, farmers are

assigned to one distribution center, and can bring their products to the distribution

center, or the latter can perform collection by grouping farmers into routes. Routes

are then optimized using a dedicated software (Route LogiX). Ogier et al. (2013)

propose a mixed integer linear programming model for service network design of a

short and local supply chain.

Even though the application presented in this paper deals with the agri-food

supply chain, the methods we propose can be applied to MC2DPs that consider

direct delivery trips in the first echelon and allow splitting the delivery of different

commodities in the second level.

In this paper, we present a solution approach to the MC2DP. Due to the com-

plexity of the problem, we propose a decomposition approach of the MC2DP in two

subproblems, associated with the collection and delivery phases, respectively, and

the sequential solution of the subproblems. Two sequential approaches to the solu-

tion of the MC2DP are presented, depending on which of the two subproblems is

solved first. In both cases, the solution of the first subproblem determines the quan-

tity of each commodity at each distribution center. The second subproblem takes

this information as input. We also propose different strategies to guide the solution

of the first subproblem in order to take into account the impact of its solution on

the second subproblem. It is worth noting that the subproblem associated with the

delivery phase is itself a new problem. It is a Vehicle Routing Problem (VRP) with

multiple commodities and multiple depots, with a maximum available quantity of

each commodity at the depots. VRP with multiple depots is a well-studied problem
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in the literature (Montoya-Torres et al., 2015). In this paper, the delivery subprob-

lem is an extension of the VRP with multiple depots where several commodities are

available at each depot with given quantities. A further contribution of this paper is

a solution method for the delivery subproblem, based on the Adaptive Large Neigh-

borhood Search (ALNS) algorithm proposed for the one depot case in Chapter 3.

The two proposed sequential approaches and the different strategies are evaluated

and compared both on randomly generated instances, with different characteristics

(supplier locations, customer locations, maximum supply quantities, number of dis-

tribution centers), and on a case study for the collection and delivery of fresh food

products (fruits and vegetables) through a short and local supply chain using a set

of distribution centers located in the French department of Isère. The size of the

instances for this case study is large, and two kinds of customers are considered:

school canteens and supermarkets. The computational results show the impact of

the instance characteristics on the solution approaches and strategies.

The remainder of this paper is organized as follows. A definition of the MC2DP

is given in Section 4.1. The decomposition approach and the collection and delivery

subproblems are presented in Section 4.2. Section 4.3 provides a theoretical analysis

of the benefits of distribution centers, on the complexity of the problem and on the

sequential solution approaches. Then, the sequential approaches are described in

Section 4.4. Section 4.5 provides the computational results. The case study on short

and local fresh food supply chains in the French department of Isère is discussed in

Section 4.6. Finally, conclusions and prospects are presented in Section 4.7.

4.1 Problem definition

The Multi-Commodity two-echelon Distribution Problem (MC2DP) is defined on a

directed graph G = (V,A), in which V is the set of vertices and A is the set of arcs.

More precisely, V is defined as VS

⋃

VD

⋃

VC where VS = {1, . . .NS} represents

the set of suppliers, VD = {NS + 1, . . . , NS +ND} is the set of distribution centers

and VC = {NS +ND + 1, . . . , NS +ND +NC} represents the set of customers. We

only consider direct trips from suppliers to distribution centers. Direct deliveries

from suppliers to customers are not allowed. Moreover, transfers of commodities

between distribution centers are not considered. Thus, A = {(i, j), (j, i)|i ∈ VS, j ∈
VD} ∪ {(i, j), (j, i)|i ∈ VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC} is the set of arcs.
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Suppliers provide a set of commodities M, which are transported to the distri-

bution centers by an unlimited fleet of homogeneous vehicles of capacity QS. Each

supplier s ∈ VS is associated with a maximum available quantity Osm (possibly equal

to zero) of commodity m ∈M. Each distribution center has its own unlimited fleet

of homogeneous vehicles of capacity QD that are used to deliver the commodities to

the customers. Customer i ∈ VC requires a quantity Dim (possibly equal to zero) of

each commodity m ∈M. Commodities are compatible, i.e., they can be transported

on the same vehicle. The demand of a customer can be split, that is the customer

can be served by several vehicles. However, for the sake of customer convenience,

the split policy is constrained: each commodity has to be delivered by one vehicle

only.

A cost cij is associated with each arc (i, j) ∈ A and represents the non-negative

cost of traversing arc (i, j). In the MC2DP, the decision maker is the logistic provider

who manages all the distribution centers, decides how to collect commodities from

the suppliers and how to distribute the commodities from the distribution centers

to the customers. The objective is to find a collection and delivery plan that mini-

mizes the total transportation cost, satisfying customer demands, not exceeding the

available quantities at the suppliers and the vehicle capacities.

In the following, we will call collection the transportation of commodities from

suppliers to distribution centers and delivery the distribution of commodities from

distribution centers to customers. The collection and delivery phases of the MC2DP

are connected through the quantities of commodities at the distribution centers. We

denote by Udm the unknown quantity of commodity m ∈M at distribution center d.

An example of an instance of the MC2DP is depicted in Figure 4.1. There

are two commodities, and the vehicle capacities are QS = 8 and QD = 10. A

feasible solution of this instance is shown in Figure 4.2. In the solution, five vehicles

are used to supply the distribution centers, each vehicle performing a direct trip.

The numbers on arcs representing direct trips report the quantities transported for

each commodity, where the number corresponding to the commodity is reported in

parentheses. Note that two vehicles are used from supplier 1 to distribution center

4. Quantities Udm are as follows: U41 = 4, U42 = 14, U51 = 5 and U52 = 3. For the

distribution to customers, two vehicles leave distribution center 4, while one vehicle

leaves distribution center 5. Note that customer 9 is visited twice: one vehicle

delivers commodity 1 while another vehicle delivers commodity 2.

83



4. A DECOMPOSITION APPROACH TO A MULTI-COMMODITY
TWO-ECHELON DISTRIBUTION PROBLEM

Fig. 4.1. An instance of the MC2DP.

Fig. 4.2. A feasible solution of the MC2DP instance.
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4.2 A decomposition approach

4.2 A decomposition approach

The MC2DP integrates two subproblems, one considering the collection of com-

modities, that is the transportation of the commodities from the suppliers to the

distribution centers, the other considering the delivery of commodities from the dis-

tribution centers to the customers. In this section, we present the decomposition

approach to the solution of the MC2DP and define the two subproblems: the SPC

(SubProblem Collection) and the SPD (SubProblem Delivery). The connection of

these two problems is made by quantities Udm that represent the available quantity

of commodity m at distribution center d. For the sake of clarity, when necessary,

we will denote by UD
dm the quantity of commodity m that is delivered from the dis-

tribution center d to customers, and by UC
dm the quantity of commodity m that is

collected at the suppliers and delivered to the distribution center d. We provide an

example of this decomposition approach in Figure 4.3. From the solution of MC2DP

in Figure 4.2, we provide the related solutions of the SPC and the SPD with the

associated Udm variables to link the two subproblems.
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(a) Solution of the SPC. (b) Solution of the SPD.

Fig. 4.3. Solutions of the two subproblems based on the solution of the MC2DP
in Figure 4.2.

We now provide a formal definition of SPC and SPD. Note that each subproblem

is concerned with the optimization of the related operations, i.e., SPC minimizes the

cost of collection operations only while SPD minimizes the cost of delivery operations

only.
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4.2.1 The Collection Subproblem (SPC)

The SPC is defined on a graph G1 = (V1,A1), where V1 = VS

⋃

VD and A1 =

{(i, j), (j, i)|i ∈ VS, j ∈ VD}. In the following, we will use the word truck to indicate

a vehicle used in the SPC. The SPC consists in determining a set of direct trips for

trucks between suppliers and distribution centers with the associated quantities for

each commodity. The objective is to minimize the transportation cost, defined as

the total cost for the direct trips, that is independent of the quantity transported on

each truck. For each commodity, the quantity transported to distribution centers

has to be sufficient to satisfy customer demands in the SPD. Moreover, the solution

of the SPC must satisfy the following constraints:

(1) the total quantity of commodities transported by each truck does not exceed

the truck capacity QS;

(2) for each supplier s, the quantity of each commodity m that is transported to

distribution centers must be at most equal to the available quantity Osm;

(3) the quantity of each commodity m transported to each distribution center d is

greater than the required quantity UD
dm.

When the SPC is solved first, the values UD
dm are not known and have to be set

to a valid lower bound. Next, the values UC
dm are computed from the solution of the

SPC and used as input to the SPD.

The SPC is related to the Multi-commodity Capacitated fixed-charge Network

Design problem (MCND) (Magnanti & Wong, 1984). The MCND problem is a

discrete optimization problem in which a set of commodities has to be routed through

a directed network. Each commodity has a demand to be transported from an origin

to a destination. Each arc has a limited capacity, a unit cost flow, and a fixed cost

if the arc is used (the flow is positive). The SPC differs from the MCND problem

because of the cost structure. In the SPC, the cost of an arc depends on the number

of trucks used: it is a step-wise cost function defined by a unitary cost associated

with each truck used. Thus, steps are defined as multiples of the truck capacity QS.
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4.2.2 The Delivery Subproblem (SPD)

The SPD is defined on a graph G2 = (V2,A2) where V2 = VD

⋃

VC and A2 =

{(i, j), (j, i)|i ∈ VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC}. In the following, we will use the

word vehicle to indicate a vehicle used in the SPD.

The SPD consists in assigning commodities to vehicles and in determining a

set of vehicle routes to meet all customer demands. The solution must satisfy the

following constraints:

(1) the total quantity of commodities delivered by each vehicle does not exceed the

vehicle capacity QD;

(2) each commodity requested by each customer is delivered by a single vehicle;

(3) the demand of all customers is satisfied;

(4) the quantity of each commodity m distributed from each distribution center d

does not exceed the available quantity UC
dm;

(5) each vehicle starts and ends its route at the same distribution center.

When the SPD is solved first, the values UC
dm are not known and have to be set

to a valid upper bound. Next, the values UD
dm are computed from the solution of

the SPD and used as input to the SPC.

An instance of the SPD with two distribution centers, six customers and two

commodities is illustrated in Figure 4.4. Each vehicle has a capacity QD of 10 units.

Figure 4.4 also shows a feasible solution.

The SPD is the multi-depot case of the Commodity constrained Split Delivery

Vehicle Routing Problem (C-SDVRP)(Archetti et al., 2014). The C-SDVRP is a

problem where customers require multiple commodities. Each customer can be

served by different vehicles, but each commodity has to be delivered at once by a

single vehicle. The C-SDVRP considers only one distribution center with sufficient

quantity for each commodity to satisfy all the customer demands.
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Fig. 4.4. An instance with feasible solution of the SPD.

4.3 Analysis of the MC2DP

This section provides an analysis of the properties of the MC2DP. In particular,

Section 4.3.1 focuses on the role of distribution centers on the structure of optimal

solutions. Section 4.3.2 presents an analysis of cases in which the sequential solution

of the SPC and SPD provides an optimal solution to MC2DP. Finally, Section 4.3.3

studies the complexity of special cases of the MC2DP.

4.3.1 On the benefit of distribution centers

The MC2DP consists in the collection of commodities from suppliers and in the

delivery to customers via consolidation at distribution centers. In order to illus-

trate the benefits of having one or several distribution centers, let us introduce the

following example:

Example 4.1 Consider the case with one commodity and one distribution center,

i.e., |M| = |VD| = 1. Suppose that VS is composed of two suppliers 1 and 2 that

offer 9 and 6 units of commodity, respectively, and VC contains three customers, 4, 5

and 6, that respectively require 4, 5 and 6 units of the commodity. The example is

illustrated in Figure 4.5. It provides locations of suppliers, the distribution center,

customers and distances. Let us now suppose that direct deliveries from suppliers

to customers, i.e., without passing through distribution centers, are allowed. The

best solution making direct deliveries from suppliers to customers is depicted in Fig-

ure 4.6 and has a cost of 4a + 6a
√
2. The best solution in which consolidation at
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distribution centers is mandatory, i.e., the optimal solution of the MC2DP, is de-

picted in Figure 4.7 and has a cost of 8a
√
2. Thus, the latter solution is cheaper

than the one performing direct deliveries.

2a 2a

a

a

1 4

2 5

6
aa

aa

2a2a

9

6

4 6

5

2a3

Fig. 4.5. Illustration of Example 4.1.

4 51 1

62 2

2a 2a 2 2a

2 2a 2 2a

Fig. 4.6. The best solution that does not consider consolidation at the distribution
center.
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Fig. 4.7. The optimal solution considers consolidation at the distribution center.

Example 4.1 aims at showing that consolidation at distribution centers might

be beneficial even in basic settings like the one considered in the example (|M| =
|VD| = 1).

In the MC2DP consolidation at distribution centers is mandatory. The following

proposition shows what happens in case one distribution center only is considered.
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Proposition 4.2 Let us consider the MC2DP with |VD| = 1. In this case, the

MC2DP can be decomposed in the SPC and the SPD, i.e. solving sequentially to

optimality the SPC and the SPD solves the MC2DP to optimality.

From Proposition 4.2 it follows that the interesting cases when studying the

MC2DP are those with |VD| > 1 and |M| ≥ 1. These are the cases on which we

focus our study.

4.3.2 Sequential solution of the MC2DP

The sequential solution of the SPC and the SPD provides a heuristic solution to the

MC2DP. The first solved subproblem determines the quantity of each commodity

at each distribution center. The second solved subproblem uses this information as

an input.

When the SPC and the SPD are sequentially solved in this order, we obtain a

solution s′ = s′SPC⊕s′SPD with cost c′SPC+c′SPD, where c′SPC and c′SPD are the costs

of each subproblem. Let UC′

dm be the quantity of commodity m ∈M brought to each

distribution center d ∈ VD.

When the SPD and the SPC are sequentially solved in this order we obtain a

solution s′′ = s′′SPC ⊕ s′′SPD with cost c′′SPC + c′′SPD, where c′′SPC and c′′SPD are the

costs of each subproblem. Let UD′′

dm be the quantity of commodity m ∈ M brought

to each distribution center d ∈ VD.

Proposition 4.3 If UC′

dm ≥ UD′′

dm , for all d ∈ VD and for all m ∈ M, then the

solution s = s′SPC ⊕ s′′SPD is optimal.

Proof 4.4 Suppose there exists a feasible solution s∗ associated with a cost c∗ such

that c∗ = c∗SPC+c∗SPD < c′SPC+c′′SPD. Since s = s′SPC⊕s′′SPD is feasible (UD′′

dm ≤ UC′

dm,

for each m ∈M and d ∈ VD) and s′SPC is optimal for the SPC while s′′SPD is optimal

for the SPD, then c′SPC ≤ c∗SPC for any solution of the SPC. Similarly, c′′SPD ≤ c∗SPD

for any solution of the SPD. Thus, c′SPC + c′′SPD ≤ c∗SPC + c∗SPD.

Proposition 4.5 Suppose that c′SPC + c′SPD = c′′SPC + c′′SPD. Then there is no

guarantee that s′ and s′′ are optimal.

Proof 4.6 Let us consider an instance with one commodity, two distribution cen-

ters, two suppliers, and two customers, as depicted in Figure 4.8. The demand of
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Fig. 4.8. Instance considered for the proof.

each customer is equal to the vehicle capacity QD, and the available quantity at each

supplier is equal to the truck capacity QS , with QD = QS.

When solving first the SPC and then the SPD, we obtain the solution depicted in

Figure 4.9. Both suppliers deliver to distribution center 3, and, as a consequence,

both customers are served by this distribution center. For SPC this solution costs

4a, and for SPD it costs 16a. Hence the total cost is 20a.

1 1
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3

3

3

3

3

3

a a

a a

3a 3a

5a 5a

Fig. 4.9. Solution when solving the SPC followed by the SPD.

When solving first the SPD and then the SPC, we obtain the solution depicted

in Figure 4.10. Both customers are served by distribution center 4. Hence both

suppliers deliver their commodities to distribution center 4. This solution has a cost

of 16a for the SPC and 4a for the SPD. The total cost is 20a, as for the previous

solution. The solution is illustrated in Figure 4.10.
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4
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Fig. 4.10. Solution when solving first the SPD then the SPC.

The optimal solution of the MC2DP is depicted in Figure 4.11. The cost is 8a

for the SPC and 8a for the SPD. So the total cost is 16a, that is lower than the cost

of the two solutions described above.

4.3.3 Complexity of special cases of the MC2DP

Proposition 4.7 The MC2DP is NP-hard when |M| = |VD| = 1 and the vehicle

capacity is unlimited (QD =∞).
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Fig. 4.11. Optimal solution for the instance depicted in Figure 4.8.

Proof 4.8 When |M| = |VD| = 1 and vehicles have unlimited capacity, the SPD

reduces to the Traveling Salesman Problem (TSP).

Let us suppose that customers in the SPD are served through direct trips.

Proposition 4.9 The MC2DP is NP-hard when |M| = |VS| = 1 and the truck and

vehicle capacities are unlimited (QS = QD =∞).

Proof 4.10 The problem reduces to the Uncapacitated Facility Location Problem

(UFLP) where the facilities correspond to the distribution centers, the fixed costs of

facilities are the direct trip costs between the supplier and the distribution center,

and the costs of assigning customers to facilities correspond to the direct trip costs

between the distribution centers and the customers. UFLP is shown to be NP-hard

by Mirchandani & Francis (1990).

4.4 Solution approach

In this section we describe the sequential solution approach for the MC2DP. We first

describe a solution method for the SPC based on the solution of a mathematical

programming model. Then, we propose a solution method for the SPD. It is an

Adaptive Large Neighborhood Search (ALNS) algorithm that extends the approach

described in Chapter 3. As the solution of the first subproblem solved, whatever it

is, has an impact on the solution of the second subproblem, we describe, in Section

4.4.3, different strategies for taking into account this impact when solving the first

subproblem.

We will make use of the concept of customer-commodity. A customer-commodity

represents the demand of a customer for a single commodity. A customer may be

seen as a union of customer-commodities.

92

MCTPP/chapter2figs/EPS/exNotOptimal_p.eps


4.4 Solution approach

4.4.1 Solution of the SPC

The SPC is modelled as a Mixed Integer linear Program (MIP). The formulation,

that will be solved to optimality, is based on the following decision variables:

• xsd ∈ N: the number of trucks sent from supplier s ∈ VS to distribution center

d ∈ VD;

• ymdi : is equal to 1 if the demand of commodity m ∈ M of customer i ∈ VC is

assigned to distribution center d ∈ VD, and 0 otherwise;

• qmsd ∈ R+: the quantity of commodity m ∈M that supplier s ∈ VS provides to

distribution center d ∈ VD.

In addition to the notation introduced in Section 4.1, we define as c̄sd = csd+ cds

the direct trip cost between supplier s ∈ VS and distribution center d ∈ VD.

The mathematical formulation that follows determines the quantities to trans-

port from suppliers to distribution centers in such a way that all commodities re-

quested by customers are shipped, and the availabilities at the suppliers and the

truck capacity are not violated:

min
∑

s∈VS

∑

d∈VD

c̄sdxsd (4.1)

s.t.
∑

d∈VD

ymdi = 1, ∀ i ∈ VC , m ∈M, (4.2)

∑

i∈VC

Dimy
m
di ≤

∑

s∈VS

qmsd, ∀ d ∈ VD, m ∈M, (4.3)

∑

s∈VS

qmsd ≥ UD
dm, ∀ d ∈ VD, m ∈M, (4.4)

∑

m∈M

qmsd ≤ QSxsd, ∀ s ∈ VS, d ∈ VD, (4.5)

∑

d∈VD

qmsd ≤ Osm, ∀ s ∈ VS, m ∈M, (4.6)

xsd ∈ N, ∀ s ∈ VS, d ∈ VD, (4.7)

ymdi ∈ {0, 1}, ∀ i ∈ VC , d ∈ VD, m ∈M, (4.8)

qmsd ≥ 0, ∀ s ∈ VS, d ∈ VD, m ∈M. (4.9)
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The objective function (4.1) minimizes the transportation cost, that is the cost

of the direct trips of the trucks used to supply the distribution centers. Con-

straints (4.2) impose that the demand of each commodity of each customer is as-

signed to one distribution center. Constraints (4.3) impose that the quantity of

each commodity delivered to each distribution center satisfies the demand of the cus-

tomers assigned to the same distribution center. Note that constraints (4.2) and (4.3)

ensure that any solution of the SPC is feasible for the SPD. Constraints (4.4) ensure

that the quantity transported to each distribution center is greater than the the

lower bound UD
dm. Constraints (4.5) impose that the total volume of all commodi-

ties transported from a supplier to a distribution center cannot exceed the capacity

of the trucks used on that arc. Constraints (4.6) impose not to exceed the avail-

able quantities of commodities at the suppliers. Constraints (4.7)–(4.9) define the

variables.

The above formulation may have several equivalent optimal solutions. To break

ties among solutions with the same cost but delivering different quantities, we con-

sider a small value ε and add to the objective function (4.1) the term:

ε
∑

d∈VD

∑

i∈VC

∑

m∈M

cdiy
m
di . (4.10)

With this term, solutions with different assignments of customer-commodities to

distribution centers are evaluated differently. This term favours solutions that min-

imize the total distance between customer-commodities and the distribution center

to which they are assigned.

We call FSPC the formulation (4.2)-(4.9) with objective function:

min
∑

s∈VS

∑

d∈VD

c̄sdxsd + ε
∑

d∈VD

∑

i∈VC

∑

m∈M

cdiy
m
di . (4.11)

An optimal solution to the formulation FSPC gives the available quantities UC
dm

of each commodity m at distribution center d as:

UC
dm =

∑

s∈VS

qmsd.

We will see in Section 4.4.3, how such quantities are used in a sequential approach

to the solution of the MC2DP where the SPC is solved first. When the SPD is solved
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first, the assignment of customer-commodities to distribution centers is known, that

is the values of the y variables are known. In this case, constraints (4.2) and (4.3)

can be removed from FSPC, and only constraints (4.4) are used to link the two

subproblems. It is noteworthy that when the SPC is solved first, the values UD
dm are

not set according to the solution of the SPD. Then, constraints (4.2) and (4.3) are

necessary to ensure that the solution of the SPC is feasible for the SPD.

4.4.2 Solution of the SPD

The SPD deals with the delivery of commodities from distribution centers to cus-

tomers. As already mentioned, when the SPD is solved after the SPC, the values

UC
dm are known. Instead, when the SPD is solved first, the values UC

dm have to be set.

Different strategies to determine these values are proposed in Section 4.4.3.2. In the

remaining of this section we assume that these quantities are given, either from the

solution of the SPC or from one of the strategies described in Section 4.4.3.1.

In the following, we describe the solution approach we propose for the SPD,

which is an Adaptive Large Neighborhood Search (ALNS). Section 4.4.2.1 describe

how we build an initial solution while the ALNS is described in Section 4.4.2.2.

4.4.2.1 Initial solution

To solve the SPD, we start by assigning customer-commodities to distribution cen-

ters. To this end, we solve a Generalized Assignment Problem (GAP) (Ross &

Soland (1975), Cattrysse & Van Wassenhove (1992)) which aims at finding the min-

imum cost assignment of customer-commodities to distribution centers so that each

customer-commodity is assigned to exactly one distribution center. The assignment

is subject to the availability of each commodity at the distribution centers. The

assignment cost of commodity m for customer i to distribution center d is cid that

represents the traveling cost from customer i to distribution center d.

We now present the formulation of the GAP. For each customer i ∈ VC , Mi =

{m ∈ M|Dim > 0} represents the set of commodities required by customer i. Let

xm
id be the binary variables equal to 1 if and only if commodity m ∈Mi required by

customer i ∈ VC is served from distribution center d ∈ VD, and 0 otherwise. The

GAP is formulated as follows:
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min
∑

i∈VC

∑

m∈Mi

∑

d∈VD

cidx
m
id (4.12)

s.t.
∑

i∈VC

Dimx
m
id ≤ UC

dm, ∀ m ∈M, d ∈ VD, (4.13)

∑

d∈VD

xm
id = 1, ∀ i ∈ VC , m ∈Mi, (4.14)

xm
id ∈ {0, 1}, ∀ i ∈ VC , m ∈Mi, d ∈ VD. (4.15)

The objective function (4.12) minimizes the total assignment cost of customer-

commodities to distribution centers. Constraints (4.13) impose not to exceed the

quantity of commodity available at each distribution center. Constraints (4.14)

ensure that each customer-commodity is assigned to exactly one distribution center.

Constraints (4.15) define decision variables.

Given the assignment of customer-commodities to distribution centers provided

by the solution of the GAP, the set of initial routes is obtained by applying the

split algorithm to each distribution center. The split algorithm (Beasley (1983),

Prins (2004)) starts from a giant-tour that visits all the customers associated with a

distribution center and decomposes the visiting sequence into a set of feasible routes.

The solution obtained is the initial solution for the ALNS.

4.4.2.2 The Adaptive Large Neighborhood Search

The basic idea of the ALNS is to improve the current solution by destroying and

rebuilding it. We adapt the ALNS algorithm described in Chapter 3 that was

designed to solve the Commodity constrained Split Delivery VRP with a single depot

(distribution center). The basic scheme of the algorithm is given in Algorithm 3,

where f(s) is the objective value of solution s.

The changes made in each of the procedures are described in the following. We

refer the reader to Chapter 3 for more details on the original algorithm. As done

in Chapter 3, violations of vehicle capacity are allowed and penalized in the cost

function when customer-commodities are inserted into existing routes. However, a

maximum capacity violation on each route is imposed. Hence, it is possible that a

customer-commodity cannot be inserted in any route of the current solution. In this

case, we select one distribution center from which serving this customer-commodity
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Algorithm 3 The ALNS algorithm.

1: s← initial solution
2: sbest ← initial solution
3: repeat
4: s←Destroy and Repair(s)

5: s←Local Search(s)

6: if f(s) < f(sbest) then
7: s←Intensification(s)

8: s← sbest
9: end if

10: until stopping criterion is met

is feasible with respect to the availability, and we create an additional route. If

several distribution centers may be chosen, the one that minimizes the delivery cost

is selected. In addition to what done in Chapter 3, we allow violations of the limited

quantities UC
dm of commodities available at each distribution center. This violation

is penalized in the objective function proportionally to the violation. The penalty

rate is indicated by γ. Hence, if a solution violates the available quantities UC
dm by

an amount v, then a term γv is added to the cost function. Initially, γ is set to a

minimum value γmin that is equal to the cost of the initial solution. The penalty

rate γ is then dynamically modified during the search as follows. We keep track of

the number of consecutive feasible and infeasible solutions visited during the ALNS

algorithm. If Einf infeasible solutions are obtained consecutively, the value of γ is

increased to 2γ. Similarly, if Efeas feasible solutions are generated consecutively, the

value of γ is decreased to max {γmin; γ/2}.

Destroy and Repair This procedure aims at diversifying the search. It relies

on a set of removal and insertion operators which iteratively destroy and repair

solutions. The removal and insertion operators are selected using a roulette wheel

mechanism. The probability of selecting an operator is dynamically influenced by

its performance in past iterations (Ropke & Pisinger, 2006). It uses two removal

operators (Shaw removal and random removal of customers), and three insertion

heuristics of customer-commodity based on greedy, regret-2 and regret-3 insertion

paradigms.

Local search The Local Search procedure (LS) considers classical operators:

insertion, swap and 2-opt for customers or customer-commodities. Note that when,
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a move is applied on a customer (and not on a customer-commodity), it means that

all commodities required by the customer are involved in the move. These operators

consider moves in the same route, moves between different routes assigned to the

same distribution centerand moves between routes assigned to different distribution

centers.

Intensification When a new best solution is found, we intensify the search by

applying a Mathematical Programming based Operator (MPO). The main goal is to

define a new assignment of the visits to a customer i by solving a capacitated facility

location problem. The MPO has been introduced in Chapter 3 and we modified it

for the solution of the MC2DP. For the sake of clarity, we provide in the following

the formulation of the MPO. We introduce the following notation:

• si: solution obtained from the current solution by removing all the visits to

customer i;

• Ri: set of routes in si;

• C i
r: cost for inserting customer i in route r ∈ Ri (cheapest insertion);

• Qi
r: remaining capacity in route r ∈ Ri.

The binary decision variables are the following:

xi
mr =

{

1 if the delivery of commodity m of customer i is assigned to route r ∈ Ri;
0 otherwise.

xi
r =

{

1 if customer i is visited in route r ∈ Ri;
0 otherwise.
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The formulation of MPO is the following:

(IPMPO)min
∑

r∈Ri

C i
rx

i
r (4.16)

s.t.
∑

r∈Ri

xi
mr = 1, ∀ m ∈Mi (4.17)

∑

m∈Mi

Dimx
i
mr ≤ Qi

rx
i
r, ∀ r ∈ Ri (4.18)

xi
mr ∈ {0, 1}, ∀ m ∈Mi, r ∈ Ri (4.19)

xi
r ∈ {0, 1}, ∀ r ∈ Ri (4.20)

The objective function (4.16) aims at minimizing the total insertion cost. Con-

straints (4.17) require that each commodity is assigned to one route. Constraints

(4.18) impose that the total quantity of commodities assigned to a selected vehicle

does not exceed its capacity. Constraints (4.19)-(4.20) define the decision variables.

(IPMPO) is solved for each i ∈ VC and only the reassignment of visits of customer i

associated with the largest cost reduction is implemented.

Formulation (4.16)–(4.20) corresponds to the one proposed in Chapter 3. In

order to solve the MC2DP, we add another constraint ensuring that the distribution

centers are not overloaded. Specifically, let Qi
dm represent the remaining quantity of

commodity m at depot d ∈ VD in si. Then, the following constraints are added:

Dimx
i
mr ≤ Qi

dm, ∀ m ∈Mi, r ∈ Ri, (4.21)

which ensure that the quantity of commodity assigned to each distribution center

does not exceed its remaining availability.

4.4.3 Sequential solution approaches

In the previous two sections, we presented how the two subproblems, SPC and

SPD, are solved. We now show how we combine the two approaches in order to

obtain a solution method for the MC2DP. Different strategies are proposed, all

based on the sequential solution of the two subproblems: the SPD and the SPC. In

particular, we propose strategies where the SPD is solved first and the SPC second

(indicated as SPD → SPC), or, vice-versa, first we solve the SPC and then we

solve the SPD (indicated as SPC → SPD). In both cases, the solution of the first
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subproblem determines the quantity of each commodity at each distribution center.

The second subproblem takes this information and deals with delivery or collection

accordingly. Note that when the first subproblem is solved, the solution is such

that the minimization of the transportation cost of that specific problem only is

considered, regardless of the other subproblem. This may lead to solutions of poor

quality for the MC2DP. As a consequence, we propose different strategies to guide

the solution of the first subproblem to obtain better solutions of the MC2DP.

4.4.3.1 Sequential solution: SPD → SPC

When the SPD is solved first, we consider three strategies to determine the values

of quantities UC
dm available at the distribution centers. The SPD is then solved

through the algorithm presented in Section 4.4.2. Note that a solution of the SPD

gives the required quantities UD
dm of each commodity m at each distribution center

d, computed as the sum of the demands of the customer-commodities assigned to

this distribution center. Afterward, SPC is solved by fixing the values of y variables

and the required quantities at the depots UD
dm in FSPC according to the solution of

SPD. The three strategies are as follows.

SPD infinite → SPC. In this strategy, the values UC
dm involved in the GAP for-

mulation (Section 4.4.2.1) and in the ALNS algorithm (Section 4.4.2.2) are set to a

valid upper bound as follows:

UC
dm =

∑

i∈VC

Dim, ∀d ∈ VD, m ∈M

and do not restrict the search.

SPD finite balanced → SPC. In this strategy, the values UC
dm are restrictive

and aim at balancing the quantity of commodities distributed from each distribu-

tion center. As a consequence, the quantity of each commodity available at each

distribution center is determined as:

UC
dm =

∑

i∈VC
Dim

|VD|
+max

i∈VC

{Dim}, ∀d ∈ VD, m ∈M.

Note that the second term involved in the computation of UC
dm guarantees that

the SPD has a feasible solution and it also allows some flexibility in the assignment
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of customer-commodities to distribution centers.

SPD finite supplier based → SPC. In this strategy, the values UC
dm are deter-

mined taking into account the location of the distribution centers and the suppliers.

The idea is to compute the available quantities UC
dm at distribution center d based

on the available quantities of the suppliers located near to d. First, we assign each

supplier to its k closest distribution centers. Then, the quantity UC
dm of commodity

m available at distribution center d is computed as the sum of the available quanti-

ties Osm for commodity m over all suppliers assigned to distribution center d. Note

that if there are few distribution centers, k will take value 1, but when there are

several distribution centers, k can be larger than 1 to consider larger values for UC
dm,

providing more flexibility for the solution of the SPD.

4.4.3.2 Sequential solution: SPC → SPD

When the SPC is solved first, we consider three strategies. Based on the strategy

chosen, we define different values for UD
dm, and then the formulation FSPC is solved

to obtain a solution for SPC. Then, in order to solve the SPD, the UC
dm values are

defined from the solution of FSPC as follows:

UC
dm =

∑

s∈VS

qmsd, ∀d ∈ VD, m ∈M. (4.22)

Finally, the SPD is solved. The three strategies considered when the SPC is

solved first are listed in the following.

SPC not full truck → SPD. In this strategy, the SPC is first solved using the

model FSPC presented in Section 4.4.1 with values UD
dm set to a non-binding value,

i.e.:

UD
dm = 0, ∀d ∈ VD, m ∈M.

SPC full truck → SPD. In this strategy, the SPC is first solved using the model

FSPC presented in Section 4.4.1 with values UD
dm set to 0 as in the former strategy.

Then, the solution of the SPC is updated by using the remaining capacity of the

trucks to increase the quantities qmsd brought to the distribution centers. This does

not modify the cost of the SPC, but offers more flexibility when solving the SPD
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due to larger availabilities (UC
dm) at distribution centers. More precisely, for each

supplier s and each distribution center d, we divide the remaining capacity of the

trucks traveling from s to d by the number of commodities available at supplier s.

This gives an equal maximum quantity qfill for each commodity in order to fill the

trucks. If the availability of some commodity is less than qfill, we fill the trucks

as much as we can and we possibly repeat the procedure. Details of the procedure

are given in Algorithm 10 in the Appendix. This procedure increases the values of

variables qmsd in formulation FSPC. Then, in order to solve the SPD, UC
dm values are

defined as in Equation (4.22).

SPC full truck customer based→ SPD. This strategy solves the model FSPC in

which quantities UD
dm are determined on the basis of the locations of the customers.

The idea is to compute the quantities UD
dm required at distribution center d based

on the demands of the customers located near to the distribution center d and far

from other distribution centers. Customers close to several distribution centers are

not included in the computation of UD
dm to ensure some flexibility.

Given two distribution centers d1 and d2 with a distance a between d1 and d2,

we say that a customer i is d1-d2 compatible if one of the following two conditions

is satisfied: (1) the distance between i and d1 is less than a/3; or (2) the distance

between i and d1 is less than a, and the distance between i and d2 is greater than

a. An example is given in Figure 4.12. For each distribution center d, we say that

a customer i is assigned to d if for all other distribution centers d′ ∈ VD \ {d},
i is d-d′ compatible. With the choice of a/3, customers at similar distance from

two distribution centers are not assigned to any distribution center, as illustrated in

Figure 4.12.

3

a

a

3

a

1
d

2
d

Fig. 4.12. All customers in the grey zone are d1-d2 compatible.
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Then, the quantity UD
dm is computed as the sum of the demands of commod-

ity m ∈ M of customers assigned to d ∈ VD. After solving FSPC, the strategy

SPC full truck → SPD is applied to increase the quantities qmsd. Finally, values UC
dm

are calculated as in (4.22).

4.5 Computational experiments

In this section, we compare the solution algorithms proposed in Section 4.4.3 to solve

the MC2DP sequentially. An algorithm is determined by the sequence in which the

two subproblems are solved and the strategy to solve the first subproblem.

In Section 4.5.1, we describe the generation of the sets of instances for the

MC2DP based on instances for the C-SDVRP. Then, in Section 4.5.2, we report

the results obtained when solving the instances with the different sequential algo-

rithms.

The algorithms have been implemented in C++ and run on an Intel (R) Core(TM)

i7-4600U, 2.10GHz, and 16GB of RAM. We summarize the notation used to present

the instances and the results in Table 4.1.

Table 4.1: Notation for computational results.

Symbol Meaning

nbIns Number of instances in each group
SPDcost Best solution cost for SPD
SPCcost Best solution cost for SPC
Cost Total cost for MC2DP
avg.t(s) Average CPU time for computing the MC2DP solution (in seconds)
avg.SPDt(s) Average CPU time for computing the SPD solution (in seconds)
avg.SPCt(s) Average CPU time for computing the SPC solution (in seconds)

4.5.1 Instances

We generate 9 sets of instances, all with 30 customers and 8 suppliers. First, we

create a base set of instances that is indicated as S. Then, the 8 other sets are

generated by modifying one of the characteristics of set S.

4.5.1.1 Generation of the base set of instances S

The delivery subproblem (SPD) of the MC2DP extends the C-SDVRP by consid-

ering multiple distribution centers. Hence, we build the base set of instances from
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instances of the C-SDVRP. More precisely, we consider the 64 small instances with

15 customers proposed by Archetti et al. (2014). These instances are built from

the customer locations of the R101 and C101 Solomon instances for the VRP with

Time Windows (Solomon, 1987). Each instance is characterized by five parameters

listed thereafter. I ∈ {R101, C101} indicates if the instance is based on R101 or

C101. Only the depot and the first 15 customer locations are considered from the

Solomon instances. The number of commodities, indicated by M , is equal to 2 or 3.

A customer requires a commodity with probability p equal to 0.6 or 1. The quantity

of each commodity required by a customer varies within the intervals ∆ = [1, 100] or

∆ = [40, 60]. Last, parameter α ∈ {1.1, 1.5, 2, 2.5} determines the vehicle capacity

by multiplying the vehicle capacity in the original Solomon instances. We indicate

by P = (I,M, p,∆, α) the set of parameters listed above.

For each instance I of the C-SDVRP, we create an instance IMC2DP for the

MC2DP as follows. Given the coordinates (xd, yd) of the distribution center in I,

one distribution center of IMC2DP is located in (xd, yd), while another one is located

in (xd + δ, yd + δ). Given the coordinates (x, y) of a customer in I, one customer

of IMC2DP is located in (x, y), while another customer is located in (−x + 2xd +

δ,−y+2yd+ δ). Both customers have the same demand as in I. Hence, the instance

IMC2DP contains one distribution center d1 and a set V1
C of 15 customers with the

same locations as instance I. It contains as well another distribution center d2 and

a second set V2
C of 15 customers. Customers in V2

C are transposed by (δ, δ) from the

original locations, and are also rotated by 180 degrees around the distribution center

d2. After some preliminary experiments detailed in Appendix B.2, we set δ = 30.

To locate the 8 suppliers we proceeded as follows. We consider a circle of radius

r centered at each distribution center. We randomly created inside each circle four

suppliers. Should the two circles intersect, the intersection is not considered as a

potential zone to locate suppliers. The value of the radius r has been fixed to 30.

Note that the cost cij associated with each arc (i, j) ∈ A is equal to the Euclidean

distance between i and j.

The quantity of commodity m ∈ M available at each supplier is calculated as

Osm = ⌈ζ ·
∑

i∈VC
Dim

|VS |
⌉, where ζ is a parameter that has been fixed to 1.2. Hence, all

suppliers produce all commodities with the same amount. Globally, the total supply

is 20% more than the total demand.
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The capacities QS and QD of the trucks and vehicles are equal to the capacity

of vehicles in I.

Figure 4.13 shows the locations of customers, distribution centers and suppliers

for C101 and R101 configurations.
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Fig. 4.13. Locations in instances in S.

In order to ensure the diversity of the instances to evaluate the proposed sequen-

tial approaches, we construct 8 additional sets of instances based on instances in S.

Each of the 8 sets differs from S by the modification of one characteristic.

4.5.1.2 Modification of the supplier locations

In set S, four suppliers are generated around each distribution center. We generate

two other sets of instances where we modify the location of suppliers by unbalancing

the number of suppliers generated around each distribution center. These two sets

of instances are named SS
1 and SS

2 . As for instance set S, we consider a circle of

radius r = 30 centered at each distribution center, and no supplier is located in the

intersection of the two circles. The characteristics of the new sets of instances are

the following.

SS
1 : Around distribution center d1 we randomly locate 6 suppliers. The other

two suppliers are randomly located around d2.
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SS
2 : Around distribution center d1 we randomly locate 8 suppliers. No supplier

is generated around d2.

Examples of the two configurations are presented in Figures 4.14 and 4.15.

0

20

40

60

80

100

0 20 40 60 80 100

distribution center customer supplier

0

20

40

60

80

100

0 20 40 60 80 100

distribution center customer supplier

(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Fig. 4.14. Locations in instances of SS
1 .
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Fig. 4.15. Locations in instances of SS
2 .

4.5.1.3 Modification of the customer locations

In set S, each distribution center is surrounded by 15 customers. This makes the

instances balanced from the point of view of the customer locations with respect
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to the distribution centers. We generate four sets of instances where we modified

the location of customers by unbalancing the number of customers around each

distribution center. These four sets of instances are named SC
1 , SC

2 , SC
3 and SC

4 . As

with instance set S, given the coordinates (x, y) of a customer in I, one customer of

IMC2DP is located in (x, y), while another customer is located in (−x+2xd+δ,−y+
2yd + δ). For instances in S, the value δ = 30 has been considered. For the new sets

of instances, the locations of the 15 duplicated customers are defined as follows.

SC
1 : For the first 5 customers in I, δ = −5; for the remaining 10 customers,

δ = 30.

SC
2 : For the first 5 customers in I, δ = 10; for the remaining 10 customers, δ = 30.

SC
3 : For the first 10 customers in I, δ = −5; for the remaining 5 customers,

δ = 30.

SC
4 : For the first 10 customers in I, δ = 10; for the remaining 5 customers, δ = 30.

An illustration of instances in SC
1 is given in Figure 4.16.
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Fig. 4.16. Locations in instances of SC
1 .

4.5.1.4 Modification of the available quantities at suppliers

In set S, given a commodity m ∈ M, all suppliers s ∈ VS have the same available

quantity Osm = ⌈ζ ·
∑

i∈VC
Dim

|VS |
⌉, with ζ = 1.2. We generate a set of instances SO
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where we unbalance the available quantities at suppliers. For this set of instances,

we only consider the 32 instances where the number of commodities is |M|=2. Half

of the suppliers, all located around the same distribution center, have Os1 = ⌈ζ ·
1.8

∑
i∈VC

Di1

|VS |
⌉ units of commodity 1 and Os2 = ⌈ζ ·

0.2
∑

i∈VC
Di2

|VS |
⌉ units of commodity

2. On the contrary, the other suppliers, all located around the other distribution

center, have Os1 = ⌈ζ ·
0.2

∑
i∈VC

Di1

|VS |
⌉ units of commodity 1 and Os2 = ⌈ζ ·

1.8
∑

i∈VC
Di2

|VS |
⌉

units of commodity 2. ζ is still fixed to 1.2.

4.5.1.5 Modification of the number of distribution centers

The instances in S contain two distribution centers. For each instance in S, we create

an instance in SD by adding a third distribution center located in the middle of the

segment joining the two distribution centers. More precisely, the two distribution

centers are located in (xd, yd) and (xd + δ, yd + δ). Hence, the third distribution

center is located in (xd + 0.5δ, yd + 0.5δ), as illustrated in Figure 4.17.
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Fig. 4.17. Locations in instances of SD

4.5.2 Comparison of the sequential approaches to solve the

MC2DP

The six algorithms presented in Section 4.4.3 for the solution of the MC2DP are

tested on the 9 instance sets presented in Section 4.5.1. The mathematical pro-

grams presented in Section 4.4.2 are solved using Cplex 12.6. The ALNS algorithm
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is run with a limit of 5000 iterations and the values of the parameters used in

Chapter 3. The additional parameters introduced in Section 4.4.2.2 are set to

Einf = 50 and Efeas = 50 after preliminary experiments. We recall that the

value of γmin equals the cost of the initial solution. Moreover, for the algorithm

SPD finite supplier based → SPC, we set k = 1 since the instances contain few

distribution centers.

In order to compare the algorithms, for each instance set we report:

• ∆avg.SPCcost: percentage difference between the average cost for collection

(avg.SPCcost) and the minimum average cost for collection (minavg.SPCcost),

i.e. avg.∆SPCcost = 100∗(avg.SPCcost−minavg.SPCcost)/minavg.SPCcost;

• ∆avg.SPDcost: percentage difference between the average cost for delivery

(avg.SPDcost) and the minimum average cost for delivery (minavg.SPDcost),

i.e. avg.∆SPDcost = 100∗(avg.SPDcost−minavg.SPDcost)/minavg.SPDcost;

• ∆avg.Cost: percentage difference between the average total cost (avg.Cost)

and the minimum average total cost (minavg.Cost), i.e. ∆avg.Cost = 100 ∗
(avg.Cost−minavg.Cost)/minavg.Cost.

We also report the minimum average results for the collection cost, the delivery

cost and the total cost in the last line of each table.

Table 4.2 reports the results for the instance set S. The best value obtained

for MC2DP, SPC and SPD are provided in bold. The table shows that the best

algorithm is SPD finite balanced → SPC. The other algorithms that solve first

SPD provide also good results, always better than the algorithms where SPC is

solved first. The worst algorithm is SPC not full truck → SPD, with an average

increase in total cost of 2.35%. We also note that, when solving SPD first, we have

an increase in the cost of SPC of more than 8%. Instead, when solving first SPC, the

increase on SPD cost goes from 4.49% to 7.54%. However, the algorithms solving

SPD first provide better values of total cost. This is due to the unbalance in the total

cost of SPC and SPD. Finally, it is interesting to note that the algorithm providing

the best total cost is not the best for none of the two subproblems. On average, the

CPU times are around 1 minute. Since computational times on the other sets of

instances are similar, we do not report them in the following Tables.
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Table 4.2: Average results on instance set S.

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite → SPC 8.60 0.01 0.02 0.15 46.84 46.99
SPD finite balanced → SPC 8.55 0.01 0.00 0.15 54.27 54.42
SPD finite supplier based → SPC 8.71 0.00 0.04 0.16 50.59 50.75
SPC not full truck → SPD 0.00 7.54 2.35 0.26 81.23 81.49
SPC full truck → SPD 0.00 4.74 0.49 0.27 73.21 73.47
SPC full truck customer based → SPD 0.00 4.49 0.33 0.27 74.96 75.23

minimum average costs 331.92 711.99 1072.34 - - -

Table 4.3: Average results on instance sets SS
1 and SS

2 .

Instance set SS1 SS2

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite → SPC 45.36 0.00 6.55 100.57 0.00 9.78
SPD finite balanced → SPC 45.05 0.00 6.45 98.33 0.00 9.15
SPD finite supplier based → SPC 3.94 9.01 0.00 0.00 34.86 0.00

SPC not full truck → SPD 0.00 17.57 4.27 0.00 34.86 0.00

SPC full truck → SPD 0.00 13.44 1.65 0.00 34.89 0.01
SPC full truck customer based → SPD 7.01 9.04 0.93 42.52 12.62 0.14

minimum average costs 331.92 712.04 1121.17 376.85 712.08 1337.16

Table 4.4: Average results on instance sets SC
1 and SC

2 .

Instance set SC1 SC2

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite → SPC 28.61 0.00 3.24 25.47 0.00 2.78
SPD finite balanced → SPC 11.75 2.85 0.00 11.77 2.30 0.04
SPD finite supplier based → SPC 14.78 1.48 0.03 13.64 1.35 0.00

SPC not full truck → SPD 0.00 14.62 4.05 0.00 12.82 3.15
SPC full truck → SPD 0.00 10.11 1.14 0.00 8.42 0.33
SPC full truck customer based → SPD 0.84 8.85 0.58 0.23 8.24 0.29

minimum average costs 331.92 710.99 1102.21 331.92 690.85 1077.35

Table 4.5: Average results on instance sets SC
3 and SC

4 .

Instance set SC3 SC4

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite → SPC 65.70 0.00 9.63 55.71 0.00 8.95
SPD finite balanced → SPC 12.46 9.85 0.46 11.87 6.84 0.00

SPD finite supplier based → SPC 15.79 7.56 0.00 15.30 5.22 0.03
SPC not full truck → SPD 0.00 23.99 5.67 0.00 18.89 3.90
SPC full truck → SPD 0.00 19.44 2.84 0.00 14.63 1.26
SPC full truck customer based → SPD 10.20 12.15 1.25 0.72 13.58 0.82

minimum average costs 331.92 717.99 1156.61 331.92 684.00 1102.15

110



4.5 Computational experiments

Results on instance sets SS
1 and SS

2 with modification of the supplier locations are

reported in Table 4.3. We note that, among the three algorithms where the SPD is

solved first, the algorithm SPD finite supplier based→ SPC provides the highest

cost for the SPD. However this is compensated by the lowest cost for the SPC result-

ing in the lowest cost for the whole problem. When supplier locations around the dis-

tribution centers are unbalanced, the algorithm SPD finite supplier based→ SPC

is very efficient in comparison with the other algorithms that solve first the SPD.

We also note that, for this set of instances, the sequence in which the subprob-

lems are solved has a significant impact with respect to the instances in set S,

providing a larger increase in the cost of the second subproblem, especially on in-

stances SS
2 . The best algorithm is SPD finite supplier based → SPC. On SS

2 ,

SPC not full truck → SPD has the same performance as SPD finite supplier based

→ SPC. However, we note that the remaining algorithms in which SPC is solved

first perform better than the remaining algorithms where SPD is solved first, espe-

cially on SS
2 .

Results on sets SC
1 , SC

2 , SC
3 , and SC

4 are reported in Tables 4.4 and 4.5. These

instances have unbalanced customer locations around the distribution centers. For

these four sets, the algorithms SPD finite balanced→ SPC and SPD supplier based

→ SPC provide the best results for the whole problem. The total costs achieved

with these two algorithms are very similar. It can be noticed that when applying

the algorithm SPD infinite→ SPC, the results are not competitive with the two

other algorithms where the SPD is solved first: the cost of the SPD is smaller but

the cost of the SPC increases a lot, leading to a high value of the total cost. More-

over, for the three algorithms where the SPC is solved first, we observe a similar

behaviour for these sets of instances and the base set S. The only difference is that

the algorithm SPC full truck customer based → SPD provides the best results

among the three algorithms where the SPC is solved first. Note that when the SPC

is solved first and the customer locations are not taken into account (algorithms

SPC not full truck → SPD and SPC full truck → SPD), the solutions that

are obtained for the SPC are always the same and have the lowest SPC cost for

all the considered instances. However, the overall solution is never the best. This

clearly shows the importance of taking into account the location of final customers

when bringing commodities to distribution centers.
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Table 4.6: Average results on instance set SO.

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite → SPC 112.24 0.00 9.06
SPD finite balanced → SPC 113.50 0.03 9.40
SPD finite supplier based → SPC 4.25 38.77 2.09
SPC not full truck → SPD 0.00 45.59 4.68
SPC full truck → SPD 0.00 43.39 3.49
SPC full truck customer based → SPD 40.16 17.74 0.00

minimum average costs 345.76 722.98 1335.83

Table 4.7: Average results on instance set SD.

Instance set SD Difference between SD and S (%)

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite → SPC 64.09 0.00 11.47 51.09 -8.43 11.57
SPD finite balanced → SPC 40.12 1.45 4.94 29.08 -7.09 5.06
SPD finite supplier based → SPC 8.93 9.19 0.00 0.20 0.00 0.07
SPC not full truck → SPD 0.00 20.00 3.81 0.00 2.20 1.53
SPC full truck → SPD 0.00 15.30 0.95 0.00 0.81 0.56
SPC full truck customer based → SPD 5.88 14.68 2.39 5.88 0.52 2.17

minimum average costs 331.92 652.05 1073.55 - - -

1 The last three columns represent the percentage of the corresponding difference between the instance set SD and

instance set S.

Table 4.6 presents the results obtained on set SO where the quantities available at

the suppliers are unbalanced. The results indicate that in this case, the algorithm

SPC full truck customer based → SPD provides the lowest total cost. Hence,

when the suppliers have unbalanced available quantities, starting by solving the

SPC in a sequential approach is the best choice.

The results on set SD are provided in Table 4.7. In these instances, a third

distribution center is added in between the other two distribution centers. In ad-

dition to the measures provided in previous tables, in Table 4.7 we report, in the

last three columns, the percentage difference between the cost of the solution with

three distribution centers with respect to the one with two distribution centers for

SPC, SPD and total cost, respectively. The lowest total cost is achieved with the

algorithm SPD finite supplier based → SPC. Note that, compared to the re-

sults on the base instance set S, adding a distribution center is beneficial to reduce

the cost of SPD. This is the case for the algorithms SPD infinite → SPC and

SPD finite balanced → SPC. However, for these algorithms, the cost of SPC

increases remarkably, which leads to higher total cost. As shown in Figure 4.17,

this is due to the distance of the third depot from all suppliers. Thus, when solving
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SPD first, the solution might assign some customers to the distribution center in

the middle, and this goes to the detriment of the solution cost of SPC. Thus, a

sequential solution approach shows, in this case, its limitations. We will further

comment about this issue in the conclusions.

Results on the different sets of randomly generated instances reveal that SPD finite

supplier based→ SPC and SPC full truck customer based→ SPD are the best

algorithms. As a rule, SPD finite supplier based → SPC identifies the best

solutions in most cases except when the quantities available at the suppliers are

unbalanced. In the latter case, SPD finite supplier based → SPC has a better

performance.

4.6 A case study

In this section, we present a study on instances generated from a real case applica-

tion. The aim is to show how the sequential solution approaches behave on real-case

applications.

4.6.1 Context

The case study was proposed by local authorities of the French department of Isère

(General Council and Chamber of Agriculture). The aim is to increase the volume

of fresh food products sold through short and local supply chains in the department

of Isère. The department of Isère is an interesting location for fresh food supply

chains since: i) there are many farmers producing a variety of fruits and vegetables,

ii) these farmers have very low revenues when selling their products through classical

distribution channels, iii) the inhabitants of the department are deeply interested in

buying local fruits and vegetables through short and local supply chains.

Local authorities of Isère identified two kinds of customers for short and local

supply chains: school canteens and supermarkets. For such customers, considering

direct deliveries from the farmers is not acceptable as farmers should devote a sig-

nificant part of their working time to carrying out deliveries. Hence, the idea is to

use a set of distribution centers which would be jointly managed by associations of

farmers.
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4.6.2 Description of the data sets

In this case study, the commodities are fresh fruits and vegetables: apple, pear,

kiwi, strawberry, carrot, lettuce, tomato, zucchini, cucumber, potato. Because of

the seasonality of these products, demand and supply are not constant over the year.

Hence, we consider a set of patterns for demand and supply.

Two sets of customers are considered: school canteens and supermarkets. A study

conducted with the General Council of Isère has permitted to collect and estimate

actual demands for school canteens. The demand associated with supermarkets has

instead been generated according to the following procedure. The selected super-

markets are the ones selling fresh food products with a sales area of at least 300m2.

Demands for each supermarket have been generated under the following hypotheses:

i) the demands for each product has the same proportion as for school canteens (i.e.

people have the same kind of food consumption at home and in school canteens), ii)

demands are proportional to the sales area of the supermarket, and iii) the global

demand of all commodities is proportional to the global revenue generated by the

sales of the considered fresh products through supermarkets, for which the data are

provided by a statistical study from the General Council of Isère. For school can-

teens, 8 patterns of demands and supply are considered, and for supermarkets 10

patterns are considered. Hence, there is a set of 18 instances for the case study.

The instances are divided in two sets: one considering canteens and one consid-

ering supermarkets.

In the school canteens instances, there are 103 customers and up to 61 suppliers.

For each pattern of supply and demand, the number of commodities ranges from 5

to 8, and the number of suppliers producing at least one commodity ranges from 54

to 61. In the supermarket instances, there are 188 customers and up to 61 suppliers.

For each pattern of supply and demand, the number of commodities ranges from 5

to 8, and the number of suppliers producing at least one commodity ranges from 45

to 61. In all instances, there are 5 distribution centers. Their locations have been

proposed by the General Council and the Chamber of Agriculture of Isère. The

sizes of the instances are reported in Tables 4.8 and 4.9. The locations of customers,

suppliers and distribution centers in the department of Isère are shown in Figure 4.18.

The capacity of the vehicles is set such that QD = 2QS, since farmers in short and

local supply chains generally do not have large capacity vehicles while distribution

centers may invest in vehicles with bigger capacity to visit several customers.
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instance id |VC | |VS| |VD| |M|
1 103 61 5 8
2 103 61 5 7
3 103 61 5 6
4 103 61 5 5
5 103 61 5 6
6 103 61 5 5
7 103 61 5 6
8 103 54 5 7

Table 4.8: School canteens instances.

instance id |VC | |VS| |VD| |M|
1 188 61 5 6
2 188 61 5 5
3 188 61 5 6
4 188 54 5 7
5 188 45 5 5
6 188 58 5 6
7 188 61 5 8
8 188 61 5 7
9 188 61 5 7
10 188 61 5 6

Table 4.9: Supermarkets instances.

Distribution
center

Customer
Supplier
(vegetables)

Supplier
(fruits)

(a) Locations in school canteens instances (b) Locations in supermarkets instances

Fig. 4.18. Locations in the case study instances.
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4.6.3 Analysis of the results

The instances are very large with respect to the ones described in Section 4.5.1 since

there are up to 1500 customer-commodities. The computational time of the ALNS

significantly increases with the size of the instances. Hence, when solving the SPD,

the ALNS algorithm is run with a limit of 100 iterations. Moreover, due to the

size of the instances, we set a time limit for solving Mixed Integer linear Programs.

More specifically, we set a 5 minutes time limit to solve the GAP model presented in

Section 4.4.2.1 to obtain an initial solution of the SPD, and a 10 minutes time limit

to solve the formulation FSPC. As there are 5 distribution centers, when applying

the algorithm SPD finite supplier based→ SPC, we set k = 2, i.e., each supplier

is assigned to its two nearest distribution centers.

The results obtained for each sequential approach are reported in Table 4.10 for

the school canteens and in Table 4.11 for the supermarkets. The columns nbT and

nbV indicate the numbers of trucks used for collection operations and the num-

ber of vehicles used for delivery operations, respectively. The columns ∆SPCcost,

∆SPDcost and ∆Cost report the percentage difference between the SPC cost and

the minimum SPC cost, the SPD cost and the minimum SPD cost, the total cost

and the minimum total cost, respectively.

When customers are school canteens, two algorithms outperform the others,

namely: SPC full truck → SPD and SPD finite supplier based → SPC. It is

interesting to note that SPC full truck → SPD provides the best results on aver-

age. However, this algorithm gives low collection costs and high delivery costs. This

is an interesting observation: in fact, local authorities might judge as inappropriate

a solution where the cost is highly unbalanced, even if it provides the best cost for

the overall system. On the contrary, the algorithm SPD finite supplier based →
SPC is a bit more costly on average, but has the advantage of balancing the

costs between collection and delivery. It can also be noticed that the algorithms

SPD finite balanced → SPC and SPC full truck customer based → SPD do

not provide good solutions. This could be explained by the fact that suppliers and

customers are not located homogeneously around the distribution centers.

For the instances with supermarkets, two algorithms outperform the others,

namely: SPD finite supplier based→ SPC and SPD infinite→ SPC. SPD finite

supplier based → SPC provides the best results on 7 instances out of 10, and has

the advantage of balancing the costs between collection and delivery operations. It

116



4
.6

A
c
a
se

stu
d
y

Table 4.10: Detailed results for school canteens instances.

instance id Strategy ∆SPCcost ∆SPDcost ∆Cost SPCt(s) SPDt(s) t(s) nbT nbV

1 SPD infinite → SPC 144.24 0.00 9.76 9.57 683.38 693.41 45 15
SPD finite balanced → SPC 144.73 6.62 11.96 219.67 677.39 898.69 45 16
SPD finite supplier based → SPC 78.58 38.27 0.40 4.94 1256.32 1262.17 44 15
SPC not full truck → SPD 0.00 174.72 17.23 7.42 4763.64 4771.05 41 15
SPC full truck → SPD 0.00 119.01 0.00 6.81 1981.80 1988.61 41 16
SPC full truck customer based → SPD 18.42 121.12 6.60 46.42 2463.34 2509.75 41 15

minimum costs 928.66 889.69 2877.15 - - - - -

2 SPD infinite → SPC 143.59 0.00 13.71 36.51 397.44 434.31 45 14
SPD finite balanced → SPC 155.49 8.91 20.54 118.95 490.81 611.13 45 14
SPD finite supplier based → SPC 73.51 41.52 3.24 4.23 844.34 849.31 42 14
SPC not full truck → SPD 0.00 188.16 24.87 7.30 2883.20 2890.50 41 16
SPC full truck → SPD 0.00 109.56 0.00 6.62 1576.24 1582.87 41 14
SPC full truck customer based → SPD 15.80 104.43 3.70 10.53 1562.47 1573.00 42 15

minimum costs 928.66 872.17 2756.37 - - - - -

3 SPD infinite → SPC 199.86 0.00 11.48 2.56 373.58 376.46 32 8
SPD finite balanced → SPC 245.65 1.43 23.07 3.57 270.39 275.09 35 9
SPD finite supplier based → SPC 108.46 26.80 0.00 1.80 671.94 674.45 33 9
SPC not full truck → SPD 0.00 166.24 28.66 3.03 2324.59 2327.62 30 11
SPC full truck → SPD 0.00 93.72 0.17 3.09 1518.40 1521.50 30 9
SPC full truck customer based → SPD 46.56 92.17 10.78 6.93 1575.55 1582.48 30 10

minimum costs 498.48 813.24 2070.29 - - - - -

4 SPD infinite → SPC 169.70 0.00 16.60 3.00 312.69 315.97 36 8
SPD finite balanced → SPC 199.26 2.33 26.31 4.44 192.39 197.71 38 9
SPD finite supplier based → SPC 98.44 29.40 5.66 2.52 471.45 474.94 37 8
SPC not full truck → SPD 0.00 153.19 20.14 3.19 1887.38 1890.56 35 8
SPC full truck → SPD 0.00 96.58 0.00 3.22 787.23 790.45 35 8
SPC full truck customer based → SPD 36.04 87.90 7.73 6.30 942.31 948.61 35 9

minimum costs 644.11 763.10 2144.25 - - - - -

5 SPD infinite → SPC 133.83 0.00 19.27 22.02 301.71 324.09 49 12
SPD finite balanced → SPC 126.99 6.84 18.50 6.87 380.67 388.94 50 12
SPD finite supplier based → SPC 61.94 37.71 1.70 6.93 596.74 604.61 49 13
SPC not full truck → SPD 0.00 189.16 19.75 3.86 2227.06 2230.91 46 12
SPC full truck → SPD 0.00 118.38 0.00 3.80 1272.64 1276.44 46 11
SPC full truck customer based → SPD 20.44 121.19 8.77 6.86 1327.52 1334.38 46 12

minimum costs 1135.42 810.68 2905.79 - - - - -

6 SPD infinite → SPC 168.15 0.00 28.23 4.58 262.93 267.80 41 9
SPD finite balanced → SPC 160.32 6.14 27.50 7.85 142.78 151.62 42 9
SPD finite supplier based → SPC 69.19 34.51 4.66 2.89 345.44 348.85 42 7
SPC not full truck → SPD 0.00 175.68 27.12 3.06 1520.67 1523.72 38 8
SPC full truck → SPD 0.00 94.15 0.00 3.11 931.38 934.48 38 8
SPC full truck customer based → SPD 24.68 103.07 11.71 5.31 738.85 744.16 38 9

minimum costs 790.98 742.95 2233.42 - - - - -

7 SPD infinite → SPC 164.61 0.00 21.63 1.70 447.42 449.44 40 9
SPD finite balanced → SPC 147.56 1.22 16.34 4.61 287.01 292.67 42 9
SPD finite supplier based → SPC 73.91 26.23 0.00 3.56 861.23 865.45 41 10
SPC not full truck → SPD 0.00 167.72 22.18 4.27 1938.72 1942.99 38 11
SPC full truck → SPD 0.00 112.05 3.73 4.37 1570.88 1575.25 38 9
SPC full truck customer based → SPD 32.95 89.43 7.25 9.25 1793.77 1803.02 38 8

minimum costs 790.98 784.04 2365.34 - - - - -

8 SPD infinite → SPC 101.10 0.00 11.30 16.75 552.88 569.94 37 11
SPD finite balanced → SPC 111.95 5.87 17.49 2.34 371.81 375.29 36 9
SPD finite supplier based → SPC 68.41 15.25 5.24 0.89 779.23 780.76 36 9
SPC not full truck → SPD 0.00 172.27 40.32 3.37 3942.81 3946.19 34 10
SPC full truck → SPD 0.00 66.68 0.00 3.34 1570.57 1573.91 34 9
SPC full truck customer based → SPD 19.16 77.19 10.98 5.91 1494.92 1500.83 34 11

minimum costs 727.33 763.74 2000.32 - - - - -
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Table 4.11: Detailed results for supermarkets instances.

instance id Strategy ∆SPCcost ∆SPDcost ∆Cost SPCt(s) SPDt(s) t(s) nbT nbV

1 SPD infinite → SPC 214.00 0.00 3.48 611.18 1820.26 2432.16 77 36
SPD finite balanced → SPC 245.69 20.25 16.42 606.65 2482.62 3091.35 76 36
SPD finite supplier based → SPC 108.98 93.16 0.00 51.29 2713.73 2767.41 76 35
SPC not full truck → SPD 0.00 265.70 15.04 6.97 8391.10 8398.06 77 36
SPC full truck → SPD 0.00 234.38 7.34 6.97 6459.01 6465.98 77 37
SPC full truck customer based → SPD 10.69 224.58 7.62 15.73 10286.01 10301.74 76 36

minimum costs 1620.35 1585.66 6449.01 - - - - -

2 SPD infinite → SPC 228.00 0.00 4.24 605.75 1277.51 1883.88 75 31
SPD finite balanced → SPC 268.59 24.63 20.04 605.28 2116.40 2723.28 73 32
SPD finite supplier based → SPC 125.48 88.55 0.00 40.10 2066.67 2108.86 73 31
SPC not full truck → SPD 0.00 250.33 7.44 4.89 5610.75 5615.64 71 33
SPC full truck → SPD 0.00 222.78 0.92 5.05 4205.70 4210.75 71 30
SPC full truck customer based → SPD 11.45 226.89 4.71 10.20 5946.75 5956.95 71 34

minimum costs 1519.26 1462.82 6183.81 - - - - -

3 SPD infinite → SPC 205.51 0.00 0.00 610.75 1931.09 2542.59 73 34
SPD finite balanced → SPC 252.42 23.57 17.42 612.11 2658.14 3272.19 73 35
SPD finite supplier based → SPC 116.08 90.33 0.76 33.61 2905.92 2940.85 72 34
SPC not full truck → SPD 0.00 242.07 10.40 6.78 8684.81 8691.59 71 36
SPC full truck → SPD 0.00 224.71 6.04 7.28 6999.63 7006.91 71 37
SPC full truck customer based → SPD 16.20 208.08 5.84 15.25 9249.36 9264.61 71 36

minimum costs 1512.12 1548.85 6168.55 - - - - -

4 SPD infinite → SPC 96.70 0.00 3.88 608.26 2972.43 3581.45 86 37
SPD finite balanced → SPC 116.11 22.50 18.04 603.28 4000.20 4605.78 85 38
SPD finite supplier based → SPC 48.34 45.47 0.00 155.32 3876.63 4033.38 84 37
SPC not full truck → SPD 0.00 231.68 39.65 8.27 14438.65 14446.91 84 38
SPC full truck → SPD 0.00 160.36 17.59 8.42 10476.51 10484.93 84 37
SPC full truck customer based → SPD 11.55 163.04 22.71 22.65 12376.38 12399.03 84 40

minimum costs 1985.06 1654.69 5351.62 - - - - -

5 SPD infinite → SPC 72.48 0.00 4.77 605.59 1257.91 1864.09 77 34
SPD finite balanced → SPC 110.85 21.16 27.70 604.33 1563.74 2169.92 77 34
SPD finite supplier based → SPC 47.10 16.78 0.00 604.88 1559.48 2165.50 77 33
SPC not full truck → SPD 0.00 178.09 35.17 7.99 5495.13 5503.12 74 34
SPC full truck → SPD 0.00 102.42 9.58 7.95 4345.60 4353.55 74 36
SPC full truck customer based → SPD 4.93 102.26 11.56 12.16 4415.38 4427.54 74 38

minimum costs 1816.33 1493.05 4415.45 - - - - -

6 SPD infinite → SPC 154.81 0.00 1.63 606.33 1554.77 2161.85 98 48
SPD finite balanced → SPC 193.37 22.16 18.83 606.05 2318.84 2927.02 98 44
SPD finite supplier based → SPC 85.71 72.96 0.00 175.93 2385.50 2562.88 95 43
SPC not full truck → SPD 0.00 238.19 17.34 10.68 8621.81 8632.49 96 45
SPC full truck → SPD 0.00 193.98 5.89 10.54 6007.16 6017.70 96 47
SPC full truck customer based → SPD 9.58 187.48 7.05 18.90 7724.43 7743.33 96 46

minimum costs 2091.43 1823.58 7037.98 - - - - -

7 SPD infinite → SPC 162.14 0.00 3.96 605.93 2970.73 3577.50 109 51
SPD finite balanced → SPC 199.68 22.26 20.81 605.41 6528.79 7136.93 109 50
SPD finite supplier based → SPC 80.68 83.98 0.00 610.58 6411.95 7024.80 108 49
SPC not full truck → SPD 0.00 258.95 18.69 14.14 16299.01 16313.14 107 49
SPC full truck → SPD 0.00 214.87 7.83 14.03 20570.22 20584.25 107 53
SPC full truck customer based → SPD 7.90 265.78 22.76 66.09 16548.57 16614.66 106 53

minimum costs 2374.80 1933.26 7847.62 - - - - -

8 SPD infinite → SPC 170.10 0.00 0.00 605.34 2497.02 3103.21 105 48
SPD finite balanced → SPC 206.99 25.41 16.43 607.10 5173.62 5783.09 107 46
SPD finite supplier based → SPC 104.89 81.77 0.84 604.99 4574.01 5181.14 105 46
SPC not full truck → SPD 0.00 258.53 12.85 17.90 10955.42 10973.32 102 48
SPC full truck → SPD 0.00 220.44 3.87 17.56 8705.85 8723.41 102 52
SPC full truck customer based → SPD 8.34 194.36 0.08 20.73 12724.18 12744.91 101 51

minimum costs 2250.39 1876.13 7954.41 - - - - -

9 SPD infinite → SPC 197.45 0.00 0.00 605.49 2294.35 2900.67 93 44
SPD finite balanced → SPC 235.90 27.01 16.25 606.94 3506.61 4115.86 91 45
SPD finite supplier based → SPC 126.24 83.97 1.48 605.33 3923.75 4534.08 93 41
SPC not full truck → SPD 0.00 265.42 11.78 9.30 12015.01 12024.31 87 42
SPC full truck → SPD 0.00 239.52 5.68 9.30 11836.48 11845.78 87 45
SPC full truck customer based → SPD 11.59 218.23 3.65 17.14 9850.93 9868.07 87 45

minimum costs 1911.03 1751.77 7436.06 - - - - -

10 SPD infinite → SPC 214.00 0.00 3.48 611.83 1812.64 2425.15 77 36
SPD finite balanced → SPC 246.19 20.25 16.55 606.66 2481.68 3090.51 76 36
SPD finite supplier based → SPC 108.98 93.16 0.00 55.61 2827.97 2887.82 76 35
SPC not full truck → SPD 0.00 245.62 10.11 6.88 8623.59 8630.47 77 36
SPC full truck → SPD 0.00 234.38 7.34 6.94 6372.42 6379.35 77 37
SPC full truck customer based → SPD 10.69 239.23 11.22 15.91 8250.89 8266.80 76 37

minimum costs 1620.35 1585.66 6449.01 - - - - -
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can be noticed that some sequential algorithms lead to a very high cost, namely

SPD finite balanced→ SPC and SPC not full truck → SPD.

We note that the algorithm SPD finite supplier based → SPC again pro-

vides very good results on these additional sets of instances. However, depending

on the instance setting, some approaches based on the SPC solution first can be

competitive.

From a computational point of view, solving the SPD first takes much less time

than solving the SPC first. Moreover, most of the time is spent on solving the SPD.

When solving the SPC first, the available quantities at the distribution centers are

very limited, which may generate a significant infeasibility when applying destroy

and repair moves in the ALNS algorithm. This makes it more difficult to obtain

good solutions with the local search.

When customers are school canteens, few trucks are used. Their number is less

than the number of suppliers. This means that some suppliers do not provide any

commodity since they are far from each distribution center. When customers are

supermarkets, the total supply is not very large compared to the total demand.

Hence, more trucks are used for the delivery and several suppliers perform more

than one trip to a distribution center.

4.7 Conclusion and future research

In this paper, we presented a new and complex problem which occurs in local agri-

food supply chains, the MC2DP. The problem concerns the collection of commodities

from suppliers to distribution centers and the delivery from distribution centers to

final customers. The objective is to jointly optimize the transportation plan for

the collection and delivery operations. In order to tackle this complex problem,

we proposed two sequential approaches based on the decomposition of the problem

in two subproblems: collection and delivery. For each sequential approach, three

strategies are considered in order to take into account, in the first subproblem solved,

the impact of its solution on the second subproblem solved.

The proposed algorithms have been compared on several sets of instances derived

from instances from the literature. The best algorithm usually does not provide

the lowest cost neither for the collection nor for the delivery subproblem. The

algorithms are also tested on a case study of a short and local fresh food supply chain.
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Large size instances are considered with two types of customers, school canteens and

supermarkets. We compared the different algorithms and provides some managerial

insights about cost balancing between collection and delivery. The strategy leading

to the lowest transportation cost provides very unbalanced collection and delivery

costs, while the second best strategy is slightly more costly but has a much better

balancing of costs between collection and delivery.

The MC2DP is a complex problem to solve. The proposed sequential approaches

have the advantage of being easy to design and to be understood by non-expert

decision makers. However, a sequential solution approach may provide largely sub-

optimal solutions in some cases. The main future research direction is to develop a

integrated solution approach solving the MC2DP as a whole instead of decomposing

it in subproblems.

The project presented in this paper is partially supported by the CSC (China

Scholarship Council). The authors thank Conseil Général de l’Isère and Chambre

d’Agriculture de l’Isère for providing the case study instances.
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5. AN INTEGRATED OPTIMIZATION APPROACH FOR A
MULTI-COMMODITY TWO-ECHELON DISTRIBUTION
PROBLEM

5.1 Introduction

The Multi-Commodity two-echelon Distribution Problem (MC2DP) is a complex

distribution problem in a two-echelon supply chain. The problem has been intro-

duced in Chapter 4 where a two-phase approach for the MC2DP is presented. In

this chapter, we propose an integrated heuristic approach to solve this problem.

In the MC2DP, three sets of stakeholders are involved: suppliers, distribution

centers, and customers. Multiple commodities are collected from the suppliers and

delivered to the customers through distribution centers for consolidation purposes.

Each supplier has a given available quantity for each commodity (possibly 0) and

each customer has a demand for each commodity (possibly 0). We consider a single

decision maker who manages all the distribution centers and organizes the collection

and delivery operations. The commodities are collected from suppliers and delivered

to distribution centers through direct trips and distributed from the distribution

centers to customers with a fleet of vehicles performing routes. Direct deliveries from

suppliers to customers are not allowed. Commodities are compatible, that is any

vehicle can transport any set of commodities as long as its capacity is not exceeded.

Multiple visits to a customer are allowed to reduce transportation costs. However,

for the sake of customer convenience, a single commodity has to be delivered at once.

The MC2DP consists in finding a collection and delivery plan that minimizes the

total transportation cost, satisfying customer demands, not exceeding the available

quantities at the suppliers and the vehicle capacities.

In Chapter 4, we proposed a decomposition of the MC2DP in two subproblems,

associated with the collection and delivery phases. In order to solve the problem,

we proposed to solve the subproblems sequentially. The collection subproblem is

modeled as a Mixed Integer linear Program. The delivery problem is the multi-

depot case of the Commodity constrained Split Delivery Vehicle Routing Problem

(C-SDVRP). Hence the Adaptive Large Neighborhood Search (ALNS) for the C-

SDVRP presented in Chapter 3 was extended to the multi-depot case for the delivery

subproblem.

The sequential approaches proposed in Chapter 4 have the advantage of being

easy to design and to be understood by non-expert decision makers. However,

a sequential solution approach may provide largely suboptimal solutions in some

cases. The goal of this chapter is to use a more sophisticated integrated solution

method to improve the results obtained by the sequential approaches.
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In this chapter, the ALNS proposed in Chapter 4 to solve the delivery subprob-

lem is improved by considering the modification of the solution of the collection

subproblem. More precisely, we add new operators able to modify both the collec-

tion and the delivery, by moving some quantities from one distribution center to

another. Some of these operators are based on mathematical programming in order

to change the current solution of the collection subproblem. This integrated ap-

proach is evaluated and compared to the best solutions obtained with the sequential

approaches.

This chapter is organized as follows. In Section 5.2, we give a description of the

MC2DP. The proposed integrated approach to solve the MC2DP is described in

Section 5.3. Section 5.4 reports the computational results. Section 5.5 concludes

the chapter and provides some perspectives in order to improve the proposed solving

approach.

5.2 Problem definition

In the following of this section, we define the MC2DP. A more detailed description

can be found in Chapter 4 (in Section 4.1 and 4.2). As described in Chapter 4, the

MC2DP can be decomposed into two subproblems, one that considers the collection

of commodities, that is the transportation of the commodities from the suppliers

to the distribution centers, the other that considers the delivery of commodities

from the distribution centers to the customers. In Section 5.2.1, we first describe

the whole problem MC2DP, and then we define the two subproblems: the SPC

(SubProblem Collection) and SPD (SubProblem Delivery) in Section 5.2.2.

5.2.1 The Multi-Commodity two-echelon Distribution Prob-

lem

The Multi-Commodity two-echelon Distribution Problem (MC2DP) is defined on a

directed graph G = (V,A), in which V is the set of vertices and A is the set of arcs.

More precisely, V is defined as VS

⋃

VD

⋃

VC where VS = {1, . . . NS} represents

the set of suppliers, VD = {NS + 1, . . . , NS +ND} is the set of distribution centers

and VC = {NS +ND + 1, . . . , NS +ND +NC} represents the set of customers. We

only consider direct trips from suppliers to distribution centers. Direct deliveries

from suppliers to customers are not allowed. Moreover, transfers of commodities
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between distribution centers are not considered. Thus, A = {(i, j), (j, i)|i ∈ VS, j ∈
VD} ∪ {(i, j), (j, i)|i ∈ VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC} is the arc set.

Suppliers provide a set M of commodities, which are transported to the distribu-

tion centers using an unlimited fleet of homogeneous vehicles of capacity QS. Each

supplier s ∈ VS is associated with a maximum available quantity Osm (possibly

equal to zero) of commodity m ∈M. Each distribution center has an unlimited fleet

of homogeneous vehicles of capacity QD that are used to deliver the commodities to

the customers. Customer i ∈ VC requires a quantity Dim (possibly equal to zero) of

each commodity m ∈M. Commodities are compatible, i.e., they can be transported

in the same vehicle. The demand of a customer can be split, that is, the customer

can be served by several vehicles. However, for the sake of customer convenience,

the split policy is constrained: each commodity has to be delivered to each customer

by one vehicle only. A cost cij is associated with each arc (i, j) ∈ A and represents

the non-negative cost of traversing arc (i, j).

5.2.2 Subproblems

In the following, we will call collection the transportation of commodities from

suppliers to distribution centers and delivery the distribution of commodities from

distribution centers to customers.

The collection and delivery phases of the MC2DP are connected through the

quantities of commodities brought to and delivered from the distribution centers.

We denote by Udm the quantity of commodity m ∈ M at distribution center d.

For the sake of clarity, when necessary, we will denote by UD
dm the quantity of

commodity m that is delivered from the distribution center d to customers, and by

UC
dm the quantity of commodity m that is collected at the suppliers and brought to

the distribution center d.

We now provide a formal definition of the SPC and the SPD. Note that each

subproblem is concerned with the optimization of the related operations, i.e., the

SPC minimizes the cost of collection operations while the SPD minimizes the cost

of delivery operations.

5.2.2.1 The Collection Subproblem (SPC)

The SPC is defined on a graph G1 = (V1,A1), where V1 = VS

⋃

VD and A1 =

{(i, j), (j, i)|i ∈ VS, j ∈ VD}. In the following, we will use the word truck to indicate
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a vehicle used in the SPC. The SPC consists in determining a set of direct trips for

trucks between suppliers and distribution centers with the associated quantities for

each commodity. The objective is to minimize the transportation cost, defined as

the total cost for the direct trips, that is independent of the quantity transported on

each truck. For each commodity, the quantity transported to distribution centers

has to be sufficient to satisfy the customer demands in the SPD. Moreover, the

solution of the SPC must satisfy the following constraints:

(1) the total quantity of commodities transported by each truck does not exceed

the truck capacity QS;

(2) the quantity of each commodity m that is transported from a supplier s to

distribution centers must be at most equal to the available quantity Osm;

(3) the quantity of each commodity m transported to each distribution center d is

greater than or equal to the required quantity UD
dm.

5.2.2.2 The Delivery Subproblem (SPD)

The SPD is defined on a graph G2 = (V2,A2) where V2 = VD

⋃

VC and A2 =

{(i, j), (j, i)|i ∈ VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC}. In the following, we will use the

word vehicle to indicate a vehicle used in the SPD.

The SPD consists in determining a set of vehicle routes such that all the customer

demands are satisfied in assigning commodities to vehicles. The solution must satisfy

the following constraints:

(1) the total quantity of commodities delivered by each vehicle does not exceed the

vehicle capacity QD;

(2) each commodity requested by each customer is delivered by a single vehicle;

(3) the demands of all customers are satisfied;

(4) the quantity of each commodity m distributed from each distribution center d

does not exceed the available quantity UC
dm;

(5) each vehicle starts and ends its route at the same distribution center.
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5.3 An integrated optimization algorithm

In Chapter 4, a solution method for the SPD has been developed, based on the

ALNS proposed for the one depot case in Chapter 3.

In this section, we propose to improve this ALNS in order to modify also the

current solution of the SPC. This is done by proposing dedicated optimization oper-

ators that modify both the delivery and the collection parts of the current solution.

This results in an integrated optimization algorithm to tackle the whole MC2DP.

As in previous chapters, we use the concept of customer-commodity that denotes

the demand of a customer for a single commodity. A customer may be treated as a

union of customer-commodities.

5.3.1 General framework

With the aim of developing an integrated solution approach, the main drawback of

the ALNS developed to solve the SPD is that it never modifies of the current SPC

solution, and is not able to update the available quantities UC
dm at the distribution

centers. Moreover, some moves defined for the SPD may not be feasible because

(1) they concern customers or customer-commodities in routes assigned to different

distribution centers, and (2) the available quantities UC
dm at these distribution centers

do not enable to implement the considered move (i.e., the quantity of commodity

m distributed from one distribution center d would exceed UC
dm). A modification of

the SPC would update the available quantities at the distribution centers UC
dm, and

then a move concerning the SPD could then become feasible.

Moreover, note that the SPC has a special cost structure: the collection cost

depends on the number of trucks from suppliers to distribution centers, and does

not depend on the transported quantities. This means that a modification of the

available quantities at the distribution centers UC
dm may even be performed by simply

modifying the transported quantities in the SPC, without modifying the collection

cost.

In the following, we present the general framework of the proposed ALNS to

solve the whole MC2DP. The framework is given in Algorithm 4. The ALNS relies

on a set of removal and insertion heuristics, which iteratively destroy and repair

solutions. The removal and insertion heuristics are selected using a roulette wheel

mechanism (see Chapter 3 of this document). The probability of selecting a heuristic
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is dynamically influenced by its performance in past iterations (Pisinger & Ropke,

2010). Moreover, an intensification procedure permits to improve the solutions

obtained after applying removal and insertion heuristics.

Note that in the following local operators will denote the operators that only

modify the SPD, and large operators will denote the operators that modify the

whole MC2DP, i.e. the SPC and the SPD.

The main changes from the ALNS developed to solve the SPD are the following:

• we consider the total cost for the MC2DP to compare solutions;

• the initial solution is a solution of the MC2DP;

• we do not consider infeasible solutions that would be produced by the applica-

tion of an insertion heuristic due to the limited availabilities of commodities at

the distribution centers. Instead, we consider the use of large operators that

modify the collection part of the current solution;

• the intensification phase considers both local and large operators.

Algorithm 4 Framework of the ALNS to solve the MC2DP.

1: Generate an initial solution for the MC2DP (see Section 5.3.2)
2: repeat

3: Roulette wheel to select destroy and removal heuristics
4: Destroy the SPD
5: Repair the SPD, with possible use of large operators (see Section 5.3.4)
6: Intensification with local and large operators (see Section 5.3.5)
7: if a new best know solution is obtained then

8: Intensification with MPO for the SPD (see Section 4.4.2.2 of Chapter 4)
9: end if

10: Acceptance criterion to update the current solution
11: until stopping criterion is met
12: return the best known solution

In the following, we detail the main components of the algorithm: the generation

of an initial solution for the MC2DP, the large operators that modify both the

SPC and the SPD, and their use in destroy and repair heuristics, as well as in the

intensification procedure.
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5.3.2 Initial solution

In order to provide an initial solution for the MC2DP, we apply the sequential ap-

proaches presented in Chapter 4 (see Section 4.4.3). They are based on the decom-

position of the problem in the two subproblems SPC and SPD. For each sequential

approach, three strategies have been proposed in order to take into account, in the

first subproblem solved, the impact of its solution on the second subproblem. We

recall here the six strategies:

• SPD infinite→ SPC: the SPD is solved first, then the SPC is solved;

• SPD finite balanced→ SPC: the SPD is solved first, balancing the available

quantities at the distribution centers , then the SPC is solved;

• SPD finite supplier based → SPC: the SPD is solved first, taking into

account the location of the suppliers to determine available quantities at the

distribution centers, then the SPC is solved;

• SPC not full truck → SPD: the SPC is solved first, then the SPD is solved;

• SPC full truck → SPD: the SPC is solved first, and the capacity of the

trucks is fully used, then the SPD is solved;

• SPC full truck customer based→ SPD: the SPC is solved first, taking into

account the location of the customers, then the SPD is solved.

In order to start with a good initial solution, all these six strategies are run,

so that we obtain six solutions of the MC2DP. The solution with the lowest total

cost is kept as the initial solution for the integrated algorithm. Based on the results

obtained in Chapter 4, it seems interesting to apply the six strategies and keep the

best solutions since, depending on the instance configuration, the best strategy is

not always the same.

Note that, each sequential strategy requires the execution of one ALNS call to

solve the SPD. The stopping criterion of the ALNS algorithm can be set such that

the computation time to get a feasible solution remains low.
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5.3.3 Large operators

Large operators Φ modify the current solution of the MC2DP on both the SPD and

the SPC. They are combination of one operator ΦSPD for the SPD and one operator

ΦSPC for the SPC. Φ is applied when the application of ΦSPD would result in an

infeasible solution due to the limited available quantities Udm at the distribution

centers. The role of ΦSPC is then to modify the current solution of the SPC (and thus

the available quantities Udm at the distribution centers) with the global objective to

make the application of ΦSPD feasible in the hope that the application of the large

operator Φ improves the current solution. A particular application of an operator

is also called move.

In the following, we assume that a nonfeasible application of an operator for the

SPD would require quantities UD
dm to be available at the distribution centers. We

first provide a Mixed Integer linear Programming (MIP) formulation for the SPC in

order to satisfy the required quantities UD
dm. Then, we propose three operators for

the SPC.

The cost structure of the SPC is such that a cost is incurred for each truck

between a supplier and a distribution center, but the cost does not depend on the

quantities transported on these trucks. Let us define as structure of the network

the decisions related to the number of trucks circulating between the suppliers and

the distribution centers, and flow the decisions related to the flow of commodities

circulating in the network. Hence, changing the flow without modifying the structure

of the network can be done at zero cost. The three operators are the following:

• heuristic flow: the flow of a single commodity m is modified, without mod-

ifying the structure of the network;

• multi-commodity flow: the flow of all the commodities can be modified,

without modifying the structure of the network;

• network: the structure of the network and the flow of the commodities are

modified.

5.3.3.1 A MIP formulation for the SPC

In this section we propose a MIP formulation for the SPC such that the optimal

solution minimizes the transportation cost to bring the quantities UD
dm required at
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the distribution centers. Moreover, it ensures the respect of the available quantities

at the suppliers and the truck capacities.

We recall that for the large operators, these quantities UD
dm provide from an

infeasible local move for the SPD, and this local move would become feasible if

quantities UD
dm can be available at the distribution centers. The formulation is based

on the MIP formulation for the SPC presented in Chapter 4 (see Section 4.4.1). We

define the following decision variables:

• xsd ∈ N: the number of trucks sent from supplier s ∈ VS to distribution center

d ∈ VD;

• qmsd ∈ R+: the quantity of commodity m ∈M that supplier s ∈ VS provides to

distribution center d ∈ VD.

In addition to the notation introduced in Section 5.2, we define as c̄sd = csd+ cds

the direct trip cost between supplier s ∈ VS and distribution center d ∈ VD.

The formulation is the following:

min
∑

s∈VS

∑

d∈VD

c̄sdxsd (5.1)

s.t.
∑

s∈VS

qmsd ≥ UD
dm, ∀ d ∈ VD, m ∈M, (5.2)

∑

m∈M

qmsd ≤ QSxsd, ∀ s ∈ VS, d ∈ VD, (5.3)

∑

d∈VD

qmsd ≤ Osm, ∀ s ∈ VS, m ∈M, (5.4)

xsd ∈ N, ∀ s ∈ VS, d ∈ VD, (5.5)

qmsd ≥ 0, ∀ s ∈ VS, d ∈ VD, m ∈M. (5.6)

The objective function (5.1) minimizes the transportation cost, which is the

cost of the direct trips of the trucks used to supply the distribution centers. Con-

straints (5.2) ensure that the quantity transported to each distribution center are

greater than or equal to the required quantities UD
dm. Constraints (5.3) impose that

the capacity of the truck is not exceeded. Constraints (5.4) impose to not exceed

the quantity of each commodities available at the suppliers. Constraints (5.5)–(5.6)

define the variables.
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It should be noticed that the variables xsd represent the decisions about the

structure of the network, while the variables qmsd are the decisions about the flow

circulating in the network.

5.3.3.2 The operators for the SPC

In the following, we describe the operators for the SPC. We use Udm to indicate the

values of the available quantities at the distribution centers in the current solution

of the MC2DP, while UD
dm indicate the values of the required quantities at the

distribution centers such that an application of an operator ΦSPD would become

feasible.

The network operator

In order to provide a solution of the SPC that satisfies the required quantities UD
dm

at the distribution centers, the network operator aims at optimizing the whole SPC,

by modifying the structure of the network, and in consequence the flow circulating

in the network. To apply this operator, we propose to solve the MIP formulation

(5.1)-(5.6).

Hence, the network operator is a very large operator that reoptimizes the SPC

in order to satisfy the required quantities UD
dm at the distribution centers. Note

that the network operator always finds a feasible solution, since all the suppliers are

able to serve all the distribution centers (with the assumption that suppliers provide

sufficient quantities to satisfy the demand of the customers. This assumption is not

restrictive since otherwise the problem is infeasible). The application of the network

operator adapts the structure of the network to the required quantities UD
dm. Since

these quantities differ from Udm, the application of network operator may change

the cost of the solution of the SPC.

The multi-commodity flow operator

The multi-commodity flow operator consists in solving the MIP formulation (5.1)-

(5.6) where the decisions variables xsd are fixed in order to represent the current SPC

network. Thus, only the values of variables qmsd need to be determined. Since qmsd are

continuous, the model becomes a Linear Program (LP) that is usually fast to solve.

Note that the application of the multi-commodity flow operator does not change the
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cost of the current solution of the SPC, and aims at finding a multi-commodity flow

that satisfies the required quantities UD
dm.

An example of an instance is given in Figure 5.1. Triangles represent the locations

of suppliers, and squares indicate the locations of distribution centers. Commodities

are in the dotted ellipses. To increase readability, a different colored ellipse represents

each commodity, and the same colored line indicates the flow of this commodity. For

example, blue ellipses and lines represent commodity m1 and its flow. The graph is

bipartite with suppliers on one side and distribution centers on the other side. For

each supplier, there is an incoming arc for each commodity with a capacity Osm.

For each distribution center, there is an outgoing arc for each commodity with a

capacity equal to the required quantities UD
dm. Between suppliers and distribution

centers, there are arcs with multiple commodities and a capacity equal to QSxsd. If

a maximum multi-commodity flow of value
∑

m∈M;d∈VD
UD
dm can be found then the

SPC has a feasible solution with the same cost as the current one and such that it

brings the required quantities at the distribution centers.

Fig. 5.1. An example of an instance for maximum multi-commodity flow.

5.3.3.3 The heuristic flow operator

The heuristic flow operators aim at heuristically find a solution for the SPC, by

modifying only the flow decisions. The idea of the heuristic flow operator is to

iteratively change the flow of the current solution for the SPC in order to get a

solution with the requested UD
dm quantities at the distribution centers. At each

iteration, the changes concern the flow of a single commodity. This operator only
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modifies the flow while maintaining the same network structure, so the cost of the

SPC solution does not change.

More precisely, for each commodity m and each distribution center d, we first

compute the value qmd = UD
dm − Udm. It represents the surplus of commodity m

that has to be delivered to the distribution center d. If qmd = 0, nothing has to

be changed. Otherwise, if qmd > 0 or qmd < 0, we have to respectively increase or

decrease the flow of commodity m that arrives at distribution center d. Let us denote

by F+ the set of flows to increase, and by F− the set of flows to decrease. The flow of

the current solution (values qmsd) is then updated by iteratively decreasing the value

for each flow in F−, and then by iteratively increasing the value for each flow in F+.

If increasing a flow in F+ has not been possible because of the constraints imposed

by the capacity of the trucks or the available quantities at the suppliers, then the

procedure stops, and the associated move is not feasible. Otherwise, if increasing

all the flows in F+ is feasible, then we obtain a new feasible solution for the SPC

with available quantities UD
dm at the distribution centers. A detailed description is

provided in Algorithm 5. Algorithms 6 and 7 present how the current solution is

updated, when we remove or add some units of flow.

It is note worthy that the algorithms used to modify the flows are heuristics.

However, they have the advantage to be very fast. The complexity of the whole

algorithm is O(|M| · |VD| · |VS|). Note that the operators that modify the SPD (see

Section 5.3.5.1) only change the required quantities for two distribution centers, and

some operators for the SPD change the required quantities for a single commodity.

In the latter case, the complexity reduces to O(|VS|).

5.3.4 Destroy and repair heuristics

This procedure is aimed at diversifying the search. It is based on a set of removal

and insertion operators which iteratively destroy and repair solutions of the SPD.

However, when applying the insertion operator for the SPD, it may be possible

that no feasible solution is found because of the quantities UC
dm supplied to the

distribution centers. In that case, we modify the SPC in order to get a feasible

solution.

The removal and insertion operators are chosen using a roulette wheel mech-

anism. The probability of selecting an operator is dynamically modified by its

performance in past iterations (Ropke & Pisinger, 2006). There are two removal
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Algorithm 5 Algorithm of the heuristic flow operator
Input: values Udm and UD

dm.

1: F+ ← ∅, F− ← ∅
2: for each commodity m ∈M do
3: for each distribution center d ∈ VD do
4: qdm = UD

dm − Udm

5: if qdm > 0 then
6: F+ ← F+ ∪ {(m, d, qdm)}
7: end if
8: if qdm < 0 then
9: F− ← F− ∪ {(m, d, qdm)}

10: end if
11: end for
12: end for
13: for each (m, d, q) ∈ F− do
14: From the current solution, remove q units of commodity m to distribution

center d
15: end for
16: for each (m, d, q) ∈ F+ do
17: From the current solution, add q units of commodity m to distribution center

d
18: if no feasible solution has been found then
19: return no feasible solution found
20: end if
21: end for
22: return the current feasible solution with available quantities UD

dm at the distri-
bution centers

operators (Shaw removal and random removal of customers), and three insertion

heuristics of customer-commodity based on greedy, regret-2 and regret-3 insertion

paradigms. More details are provided in Chapter 3.

In the ALNS algorithm, violations of vehicle capacity are allowed and penalized

in the cost function when customer-commodities are inserted into existing routes.

However, we impose a maximum capacity violation on each route. Hence, it may

happen that a customer-commodity cannot be inserted in any route of the current

SPD solution. In this case, we select one distribution center from which serving

this customer-commodity is feasible with respect to the availability of the involved

commodity and we create one additional route. If several distribution centers can

be considered, we select the one that minimizes the delivery cost.

134



5.3 An integrated optimization algorithm

Algorithm 6 Updating the current solution when removing qrem units of flow.
Input: a quantity qrem of commodity m1 to remove from distribution center d1

1: q ← qrem the remaining quantity to remove
2: for each supplier s ∈ VS do
3: if qm1

sd1
> 0 then

4: qs ← min {qm1
sd1

; q} the quantity that can be removed in a truck from
supplier s

5: q ← q − qs
6: qm1

sd1
← qm1

sd1
− qs update of the solution

7: end if
8: end for

Furthermore, since the problem considers multiple distribution centers, it may

happen that a customer-commodity cannot be assigned to any distribution centers

in the current solution. In order to face this situation, in Chapter 4 (see Section

4.4.2.2), we allow violations of the limited quantities UC
dm of commodities available at

each distribution center and penalize the violation in the objective function. In this

work, we consider large operators that permit to modify the SPC (see Section 5.3.3).

Thus, violations of the limited quantities UC
dm of commodities available at each

distribution center are not allowed anymore, and we use large operators to modify

the SPC. When a customer-commodity cannot be inserted in the solution of the

SPD due to the available quantities UC
dm, we insert this customer-commodity in a

route from the distribution center with the largest remaining quantity (calculated

as the available quantity minus the quantity delivered to the customers from the

distribution center). Then, in order to recover a feasible solution for the MC2DP,

we apply the large operators detailed in Section 5.3.3 to get a feasible solution

for the SPC. The required quantities UD
dm at the distribution centers are updated

based on the current solution of the SPD. Then, the large operators are called in

the following order: heuristic flow operator, multi-commodity flow operator, and

network operator. A first-improvement strategy is employed, namely whenever an

operator finds a feasible solution it is implemented, and the other operators are not

called. Note that the network operator always finds a feasible solution. However, it

may increase or decrease the cost of the SPC.

If the solution of the SPC has been modified by implementing a large operator,

then the full truck strategy proposed in the sequential approaches (see Algorithm

10 in Chapter 4) is applied on the updated solution of the SPC. The idea of the full
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Algorithm 7 Updating the current solution when adding qadd units of flow.
Input: a quantity qadd of commodity m1 to add to distribution center d1
Output: true if the feasible solution have been found, false otherwise.

1: q ← qadd the remaining quantity to add
2: for each supplier s ∈ VS do
3: if qm1

sd1
> 0 then

4: qs ← min {q;Q1xsd1 −
∑

m∈M qmsd1 ;Osm1 −
∑

d∈VD
qm1
sd } the quantity that

can be added in a truck from supplier s
5: q ← q − qs
6: qm1

sd1
← qm1

sd1
+ qs update of the solution

7: if q = 0 then
8: return true
9: end if

10: end if
11: end for
12: if q > 0 then return false
13: end if

truck strategy is to use the remaining capacity of the trucks in the SPC to bring

more products than required at the distribution centers. This does not modify the

cost of the SPC but allows more flexibility when applying operators on the SPD.

5.3.5 Intensification procedure for the MC2DP

The intensification procedure for the MC2DP considers local operators that only

modify delivery routes of the SPD and large operators that modify both the SPC

and the SPD. Figure 5.2 presents these operators from the more local ones (on the

left) to the more global ones (on the right).

The scheme of the intensification procedure is presented in Algorithm 8. It

consists in a local search procedure where local operators are applied until a local

minimum is reached. Then, in order to escape from this local minimum, a large

operator is applied.

When the application of an operator ΦSPD is infeasible, a large operator Φ that

composes an operator ΦSPC for the SPC and ΦSPD is applied.

The whole procedure (local search plus application of large operators) is repeated

until no improvement is obtained. In the following, we present the local search

procedure for the SPD and the method to select a large operator to improve the

MC2DP.
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Fig. 5.2. Large moves.

Algorithm 8 Intensification procedure.

1: repeat
2: repeat
3: Apply local operators to improve the SPD
4: until no local operator can improve the SPD
5: Apply a large operator to improve the MC2DP
6: until no improvement is obtained with a large operator

5.3.5.1 Local search to improve the SPD

The local search procedure for the SPD is as it is described in Chapter 4. We

recall here the main features of the local search procedure. It considers classical

routing operators as insertion, swap, and 2-opt for customers; insertion, and swap

for customer-commodities. These operators consider intra- and inter-route modifica-

tions as well as intra- and inter-distribution center modifications. The local search

implements the best-improvement strategy, namely, for each operator, all feasible

applications are evaluated, and the best one is implemented. The local search ends

when no operator is able to find an improving solution.

5.3.5.2 Large moves to improve the MC2DP

In the local search, we improve the SPD solution without considering any modifica-

tion on the SPC, which is limited for the improvement of the MC2DP solution.

The local search procedure is dedicated to improve the solution of the SPD

and does not modify the SPC. This is a limitation for the improvement of the
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whole solution for the MC2DP. Hence, the large operators presented in Section 5.3.3

are applied when the local search reaches a local optimum. The large operators

consider an operator for the SPD which application is not feasible due to the available

quantities at the distribution centers, and it tries to make it feasible by modifying

the SPC.

The outline of the algorithm to apply large moves is presented in Algorithm 9.

First, given the current solution, we collect all the applications of operators for the

SPD that are infeasible because of the available quantities at the distribution centers.

This means that all these moves concern customers or customer-commodities in two

different routes starting from two different distribution centers. All the other moves

are not involved in the application of large operators for the MC2DP. Note that

the moves that would require the creation of a new route are not considered as

well. Then, these local moves are sorted in increasing order with respect to the

improvement, indicated as δ-cost, they would generate on the SPD. The δ-cost of

a move is defined as the difference between the cost of the SPD solution after and

before the implementation of the move. Thus, a negative δ-cost means the solution

would be improved. Sorting the moves permits to first consider the most promising

moves.

Then, we apply the large operators in the following order: heuristic flow, multi-

commodity flow, and network, i.e. from the less time consuming to the most time

consuming. Once the application of a large operator together with an infeasible

local move is able to provide a feasible solution for the MC2DP, the large operator

move is implemented on the current solution and the algorithm stops. Thus, a first-

improvement strategy is applied when large operators are concerned. We propose

to use this strategy instead of a best-improvement strategy since the evaluation of

these large moves is not performed in constant time.

Note that infeasible local moves are ordered with respect to increasing values of

the δ-cost that would cause on the SPD, and heuristic flow and multi-commodity

flow operators do not modify the cost of the SPC. Thus, it is clear that the first

feasible combination of a local move with the heuristic flow or multi-commodity

flow operator provides the best possible improvement that their combination can

produce and only local moves associated with negative δ-cost are worth checking.

This reasoning can not be extended to the network operator since it may change the

cost of the SPC.
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Algorithm 9 Application of large operators to improve the MC2DP.

1: sSPC ⊕ sSPD is the current solution of the MC2DP
2: L is the set of infeasible moves from solution sSPC ⊕ sSPD for the local search

operators
3: Sort L by ascending order with respect to the δ-cost of the moves
4: for all the moves in L do
5: if the move has a negative δ-cost then
6: if the heuristic flow operator finds a feasible solution then
7: Obtain (sSPC ⊕ sSPD)

′ by implementing the heuristic flow operator
8: Update the s′SPC by applying the full truck strategy
9: return (sSPC ⊕ sSPD)

′

10: end if
11: end if
12: end for
13: for all the moves in L do
14: if the move has a negative δ-cost then
15: if the multi-commodity flow operator finds a feasible solution then
16: Obtain (sSPC ⊕ sSPD)

′ by implementing the multi-commodity flow
operator

17: Update the s′SPC by applying the full truck strategy
18: return (sSPC ⊕ sSPD)

′

19: end if
20: end if
21: end for
22: for all the moves in L do
23: if the move has a δ-cost lower than a threshold δmax then
24: if the network operator finds a feasible solution then
25: Obtain (sSPC ⊕ sSPD)

′ by implementing the network operator
26: Update the s′SPC by applying the full truck strategy
27: return (sSPC ⊕ sSPD)

′

28: end if
29: end if
30: end for
31: return no improvement has been found

Since the network operator requires the resolution of a MIP, it has a high chance

to be computationally expensive. Thus, only local moves associated with a δ-cost

that is lower than a fixed threshold δmax are tested coupled with the network oper-

ator.

If a large operator is implemented, before returning the new current solution,
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the full truck strategy proposed in the sequential approaches (see Algorithm 10

in Chapter 4) is applied to the updated solution of the SPC. This allows more

flexibility when applying local operators on the SPD, without modifying the cost of

the solution.

5.4 Experimental results

In this section, we present the results obtained by the proposed integrated algorithm.

The algorithm was implemented in C++ and ran on an Intel (R) Core(TM) i5-

2500K, 3.30GHz, and 4GB of RAM. Cplex 12.6 is used for the resolution of the

MIP presented in Section 5.3.3.1 and for the MIP and LP formulations on which

the network and multi-commodity flow operators are based.

Section 5.4.1 describes the test instances on which we evaluate our algorithm. In

Section 5.4.2, we study the sequential strategies that are applied to get the initial

solution. Then, four configurations of the proposed integrated algorithm are tested

and compared. These configuration differ in which large operators are used. In

Section 5.4.3, we report the results obtained and compare them with the best known

results given by the sequential approaches proposed in Chapter 4. Moreover, in

Section 5.4.4, we analyze the effectiveness of each large operator.

The notations used to present the results are summarized in Table 5.1.

5.4.1 Instances

In order to evaluate the efficiency of our algorithm, we perform computational ex-

periments on the instances proposed to evaluate the sequential approaches for the

MC2DP in Chapter 4. 9 sets of instances were generated, all with 30 customers

and 8 suppliers. From a base set of instances, other 8 sets were generated by mod-

ifying one of the characteristics of the base set. The base set S was built from the

instances of the C-SDVRP (Archetti et al., 2014). The creation of the instances for

the MC2DP are detailed in Chapter 4 (see Section 4.5.1). In the following, we list

the name and the main characteristics of each set of instances.

S: The base set of instances. In this set, 8 suppliers, 30 customers and 2 distribu-

tion centers are considered. The locations of customers and suppliers are balanced,

i.e., around each distribution center, 4 suppliers and 15 customers are located. More-

over, the quantity of a given commodity available at each supplier is the same. The
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Table 5.1: Notations for computational results.

Symbol Meaning

nbIns Number of instances in each set
BKS Best known solution cost when solving the MC2DP with sequential approaches (see Chapter 4)
CostInit Cost of the initial solution cost for the MC2DP
Cost Cost of the best solution of the MC2DP found by the proposed algorithm
avg.∆ Average percentage of improvement between Cost and BKS (∆ = 100 ∗ (Cost− BKS)/BKS)
min.∆ Minimum percentage of improvement between Cost and BKS (∆ = 100 ∗ (Cost−BKS)/BKS)
max.∆ Maximum percentage of improvement between Cost and BKS (∆ = 100 ∗ (Cost −BKS)/BKS)
avg.∆Init Average percentage of improvement between Cost and CostInit (∆ = 100 ∗ (Cost− CostInit)/CostInit)
nbNBK Number of new best known solutions obtained
nbE Number of solution values equal to the best known
nbW Number of solution values worse than the best known

nbIter Average number of ALNS iterations in each set of instances

nbHFO Average number of calls to a heuristic flow operator

nbMCFO Average number of calls to a multi-commodity flow operator

nbNO Average number of calls to a network operator

nbHFOimp Average number of imrpovements when calling the heuristic flow operator

nbMCFOimp Average number of imrpovements when calling the multi-commodity flow operator

nbNOimp Average number of imrpovements when calling the network operator

∆HFOimp Average percentage of improvement with the heuristic flow operator

(∆HFOimp = 100 ∗ nbHFOimp/nbHFO)

∆MCFOimp Average percentage of improvement with the multi-commodity flow operator

(∆MCFOimp = 100 ∗ nbMCFOimp/nbMCFO)

∆NOimp Average percentage of improvement with the network operator

(∆NOimp = 100 ∗ nbNOimp/nbNO)

other sets of instances are based on the instances in S, with the modification of one

characteristic.

SS
1 and SS

2 : contain instances that are created by unbalancing the number of

suppliers generated around each distribution center. In set SS
1 , 6 suppliers are located

around one of the distribution centers, while the other 2 suppliers are located around

the other distribution center. In set SS
2 , around one of the distribution center,

8 suppliers are located while no supplier is located around the other distribution

center.

SC
1 , SC

2 , SC
3 and SC

4 : contain instances that are created by unbalancing the number

of customers around each distribution center.

SO: contain instances that are created by modifying the available quantities at

suppliers. Unlike set S in which all suppliers have the same available quantity for a

given commodity, the available quantities at suppliers are unbalanced in set SO.

SD: contain instances that are created by modifying the number of distribution

centers. A third distribution center located in the middle of the segment joining the

other two distribution centers is added.

All the instance sets contain 64 instances except for set SO that contains 32
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instances.

5.4.2 Sequential strategies for the initial solution

In this section we are interested in the computation of an initial solution for the

integrated algorithm to solve the MC2DP. As mentioned in Section 5.3.2, six so-

lutions are provided by running different sequential strategies, and the best one is

kept as the initial solution. For each sequential strategy, the number of iterations of

the ALNS to solve the SPD has been set to 1000.

In Table 5.2 we report for each set of instances, the number of times each sequen-

tial strategy has provided the initial solution, i.e., it has provided the best solution.

The first column list the six sequential strategies. Then, there is one column for

each instance set, with the number of times each strategy has provided the best

solution. The last column reports the total over all the instance sets. The last row

reports the total for each instance set, i.e., the number of instances in the set.

Table 5.2: Information about initial solution obtained by sequential strategies.

Instance Set

nb Strategy S SS1 SS2 SC1 SC2 SC3 SC4 SO SD Total

nb SPD infinite → SPC 8 0 0 1 1 0 0 0 2 12
nb SPD finite balanced → SPC 17 0 1 20 18 14 20 1 0 91
nb SPD finite supplier based → SPC 8 39 23 24 17 31 25 9 37 213

nb SPC not full truck → SPD 5 0 14 0 2 0 0 0 5 26
nb SPC full truck → SPD 15 11 10 8 13 9 6 3 13 88
nb SPC full truck customer based → SPD 11 14 16 11 13 10 13 19 7 114

nbIns 64 64 64 64 64 64 64 32 64 544

From Table 5.2 it can be noticed that two sequential strategies that often provide

the best initial solution are SPD finite supplier based→ SPC and SPC full truck

customer based → SPD. However, the strategies SPD finite balanced → SPC

and SPC full truck → SPD are able to provide the best solution, especially for

some sets of instances. Hence, starting with different strategies and choosing the

best seems to be interesting since it permits us to have a good initial solution for

all the instance sets.

5.4.3 Evaluation of the proposed algorithm

The integrated ALNS algorithm is run with a time limit of 3 minutes after the

computation of an initial solution. There is no limit on the number of iterations.
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Note that the computation time to generate an initial solution is around 1 minute

for all the instances. We choose to use a time limit instead of a number of iterations

since the large operators, especially the network operator, may be time consuming.

From our point of view, imposing a time limit allows for a fair comparison.

In order to evaluate the performances of the proposed algorithm, and more specif-

ically the impact of the large operators, we test four configurations of the algorithm

on all the sets of instances. The results are compared with the best known results

obtained with the sequential approaches where 5000 iterations are allowed to the

ALNS to solve the SPD. The four configurations are the following:

• HFO : Only the heuristic flow operator is considered.

• HFO+MCFO : Heuristic flow and multi-commodity flow operators are

considered.

• ALL: All the operators are considered, and no threshold is used to apply the

network operator (δmax =∞).

• ALL+δmax: All the operators are considered, and in the intensification proce-

dure, a threshold is used to apply the network operator (see Section 5.3.5.2).

δmax is set to 1% of the maximum δ-cost of the infeasible moves for the local

search operators.

For each configuration of the algorithm, and each instance set, Table 5.3 re-

ports the results of the solution obtained with the integrated algorithm to solve

the MC2DP compared with the best known values provided by the sequential ap-

proaches. In Table 5.3, the first two columns describe the name of the instance

set and the configuration of the integrated algorithm. Then, the meaning of the

following columns is described in Table 5.1. Note that for avg.∆, min.∆, max.∆

and avg.∆Init, a negative value means that the integrated ALNS has been able to

improve the results. For each set of instances, the lowest avg.∆, min.∆ and max.∆,

and the highest nbNBK for the four configurations are provided in bold.

The results in Table 5.3 indicate that considering heuristic flow, multi-commodity

flow and network operators for the large moves is beneficial. Indeed, both configura-

tions ALL and ALL+δmax improve the average results from the best known solutions

(avg.∆) for all the sets of instances, while it is not the case for the configurations

HFO and HFO+MCFO that do not consider all the large operators.
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Table 5.3: Results on all instance sets.

Instance Set Configuration avg.∆ min.∆ max.∆ nbNBK nbE nbW avg.∆Init

S HFO 0.02 -1.02 0.67 2 52 10 -0.02
HFO+MCFO 0.02 -1.05 0.67 3 51 10 -0.02
ALL -0.05 -2.33 0.67 5 48 11 -0.09
ALL+δmax -0.23 -2.35 0.67 19 38 7 -0.27

SS1 HFO 0.04 -1.59 0.86 6 38 20 -0.07
HFO+MCFO -0.06 -1.86 0.86 13 36 15 -0.17
ALL -0.02 -2.95 1.86 10 34 20 -0.13
ALL+δmax -0.24 -3.08 0.85 19 29 16 -0.35

SS2 HFO -0.31 -3.62 0.70 22 37 5 -0.41
HFO+MCFO -0.48 -5.12 0.70 22 37 5 -0.58
ALL -0.04 -1.59 1.20 13 41 10 -0.13
ALL+δmax -0.65 -4.59 0.70 22 38 4 -0.75

SC1 HFO -0.12 -2.91 1.53 16 34 14 -0.10
HFO+MCFO -0.21 -2.91 1.53 20 32 12 -0.19
ALL -0.19 -2.91 1.53 19 32 13 -0.16
ALL+δmax -0.49 -2.91 0.71 33 28 3 -0.47

SC2 HFO -0.10 -1.30 2.39 18 33 13 -0.15
HFO+MCFO -0.14 -1.52 2.39 20 33 11 -0.20
ALL -0.08 -1.85 2.39 15 34 15 -0.14
ALL+δmax -0.56 -3.63 0.94 35 23 6 -0.62

SC3 HFO 0.08 -1.07 2.27 15 34 15 -0.10
HFO+MCFO 0.03 -1.08 2.02 18 33 13 -0.16
ALL -0.02 -3.64 2.15 18 32 14 -0.20
ALL+δmax -0.32 -3.03 1.36 31 26 7 -0.50

SC4 HFO -0.03 -1.88 1.35 13 37 14 -0.15
HFO+MCFO -0.06 -1.88 1.35 15 35 14 -0.18
ALL -0.11 -3.35 1.35 17 33 14 -0.23
ALL+δmax -0.51 -3.70 1.35 29 27 8 -0.63

SO HFO -0.32 -2.63 0.32 11 14 7 -0.35
HFO+MCFO -0.62 -3.32 0.32 13 13 6 -0.65
ALL -0.30 -2.77 0.63 11 12 9 -0.34
ALL+δmax -0.52 -3.42 0.37 12 12 8 -0.55

SD HFO -0.04 -2.21 1.51 8 46 10 -0.04
HFO+MCFO -0.06 -2.21 1.51 13 42 9 -0.07
ALL -0.12 -2.30 1.51 11 43 10 -0.13
ALL+δmax -0.35 -3.58 1.24 26 32 6 -0.36
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Moreover, it is beneficial to consider a threshold on the δ-cost of the moves for

the SPD to apply the network operator. The configuration ALL+δmax provides the

best average improvement (avg.∆) for all the sets of instances (except set SO). Note

that the configuration HFO+MCFO provides better average improvements (avg.∆)

for all the sets of instances. This indicates that the multi-commodity flow operator

is very beneficial.

The use of the network operator without threshold is not always beneficial. In

average it permits to improve the best known solutions for all the sets of instances,

but for some sets of instances, the average improvement is worse than the configu-

rations that do not consider the network operator. As an example, for the instance

sets SS
2 , SC

2 and SO, the value of avg.∆ is the lowest with the configuration ALL.

It is also interesting to point out that some configurations may be able to provide

better solutions, not on average, but for some instances, than the configuration

ALL+δmax. For example, for the instance sets SS
2 and SC

3 , the best improvement

(min.∆) is obtained with the configurations HFO or ALL. Moreover, for the instance

set SC
1 , all the four configurations provide the same best improvement (min.∆).

If we focus on the results provided by the configuration ALL+δmax, on the whole

set of instances, we obtain a new best known solution (nbNBK) for 42% of the

instances, a solution with the same cost than the best known (nbE) for 47% of the

instances, and a solution worse than the best known (nbW ) for 12% of the instances.

The best improvement (min.∆) goes up to 3.70% (for the set SC
4 ). In the worst case

(max.∆), we obtain a solution 1.24% worse than the best-known solution obtained

with a sequential approach (for the set SC
3 ).

For the instance set SC
1 , the values of avg.∆Init are greater than the values of

avg.∆, which means that, some initial solutions are better than the best known. This

is possible since the best-known solutions have been run with 5000 iterations of the

ALNS for the SPD, while the initial solutions are run with only 1000 iterations for

the SPD. If the best sequential strategy is a strategy where the SPD is solved first,

the ALNS with 5000 iterations will provide a better solution for the SPD. However,

the SPC is then solved based on the solution of the SPD. It is then possible to

obtain a worse solution for the SPC associated with the best solution of the SPD.

Hence, using a sequential strategy starting with the SPD, the best solution for the

MC2DP may be obtained from a solution of the SPD that is not the best. In fact,

the similar conclusion have been obtained in Chapter 4 (see Section 4.5.2). That
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is why the initial solution with less iterations of the ALNS may be better than the

best known solution.

5.4.4 Analysis of the large operators

In this section, we analyze the performance of the large operators for each configu-

ration of the integrated algorithm. The performance indicators are the number of

calls to these operators, and the percentage of calls that resulted in an improvement

of the current solution. In Table 5.4, the first two columns indicate the instance set

and the configuration. The following three columns indicate, for each instance set

and each configuration, the average number of calls to the heuristic flow, the multi-

commodity flow and the network operators during the 3 minutes of computation

of the ALNS. Then, the following three columns indicate the average percentage of

calls to the heuristic flow, the multi-commodity flow and the network operators that

succeeded to find an improved solution for the MC2DP. The last column reports

the average number of ALNS iterations during the 3 minutes of computation.

From the results in Table 5.4, we note that the heuristic flow operator has rather

low performances (usually between 2% and 6% of success). The multi-commodity

flow operator has very good performances (generally around 20% success), except

within the configuration ALL. The performances of the network operator are not

very good. In the configuration ALL+δmax, the success rate is around 2%.

The configuration ALL seems to be unsuitable for an ALNS framework. Indeed,

there are very few iterations (usually around 20) due to a lot of calls to the network

operator that is very time consuming. There are usually more than 10 000 calls to

the network operator, and very few calls to the other two operators since there are

few iterations. Finally, the performance of the network operator is poor since the

rate of success is 0.01%.

However, we can notice that using a threshold for the network operator is very

beneficial. Indeed, in the configuration ALL+δmax, the number of iterations and

number of calls to the network operator remain reasonable, and the rate of success

for the network operator reaches 2%. In that configuration, the number of calls to

each operator and the number of iterations have the same order of magnitude, which

seems to be reasonable. Please note that the heuristic flow and the multi-commodity

flow operators may be called less than the network operator since they only concern

local moves for the SPD with a negative δ-cost.
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Table 5.4: Effectiveness of the large operators.

Instance Set Configuration nbHFO nbMCFO nbNO ∆HFOimp ∆MCFOimp ∆NOimp nbIter

S HFO 2479 - - 3.90 - - 6379
HFO+MCFO 1833 819 - 6.09 20.80 - 5630
ALL 15 12 15686 2.12 5.26 0.00 30
ALL+δmax 1223 631 2104 5.49 16.52 2.17 4059

SS1 HFO 9662 - - 1.37 - - 7334
HFO+MCFO 4155 1999 - 2.82 20.20 - 6019
ALL 45 35 14002 1.15 5.12 0.01 25
ALL+δmax 2291 954 3468 2.77 23.76 1.27 3465

SS2 HFO 6422 - - 0.44 - - 23464
HFO+MCFO 1531 419 - 2.00 38.22 - 22116
ALL 3 1 1018 1.15 26.44 0.01 20863
ALL+δmax 578 163 376 2.49 40.30 2.20 22178

SC1 HFO 4356 - - 2.35 - - 6278
HFO+MCFO 2234 979 - 5.30 24.13 - 5624
ALL 24 18 15201 2.50 5.65 0.01 23
ALL+δmax 1496 771 3250 4.74 17.95 1.41 3530

SC2 HFO 3555 - - 2.46 - - 6104
HFO+MCFO 1703 809 - 6.77 22.32 - 5611
ALL 29 23 14999 2.41 5.76 0.01 25
ALL+δmax 1446 734 3241 5.77 17.59 1.59 3490

SC3 HFO 8380 - - 1.21 - - 6998
HFO+MCFO 4122 1960 - 3.90 20.53 - 5698
ALL 26 20 14568 2.19 5.78 0.01 22
ALL+δmax 2017 1008 4389 3.49 17.46 1.14 2755

SC4 HFO 7568 - - 1.49 - - 6751
HFO+MCFO 3591 1729 - 3.67 23.05 - 5593
ALL 29 22 14495 1.81 6.08 0.01 23
ALL+δmax 1944 1118 4275 3.43 13.83 1.10 2888

SO HFO 92881 - - 0.04 - - 5360
HFO+MCFO 45726 43693 - 0.15 0.46 - 4327
ALL 344 340 9115 0.00 0.16 0.00 13
ALL+δmax 3385 3159 6385 0.42 1.06 0.09 517

SD HFO 4129 - - 2.22 - - 5424
HFO+MCFO 1608 880 - 5.95 13.65 - 4723
ALL 13 10 14951 2.57 5.52 0.00 22
ALL+δmax 1202 602 2052 4.99 17.27 2.15 3326
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Last, we can provide some interesting observations from the results for some

specific instance sets. In the instance set SS
2 , 8 suppliers are located around one

distribution center while no supplier is located around the other distribution center.

For this instance set, the number of iterations increases significantly (around 20 000),

while the number of calls to the large operators is low. In fact, due to the specific

characteristic of these instances, it is likely to have a current solution with all the

flow of commodities passing through a single distribution center. In that case, there

are no inter-distribution center moves for the SPD.

In the instance set SO, the available quantities at the suppliers is unbalanced:

suppliers located around one distribution center have an availability of the first

commodity that is greater than the other, while for suppliers located around the

other distribution center it is the opposite. In that case, it is likely that the current

solution has a particular structure: many customers can be delivered by both dis-

tribution centers. Hence, there are a lot of inter-distribution center moves for the

SPD. Therefore the large operators are called more frequently. For these instances,

the multi-commodity flow operator has poor performances (usually less than 1%

of success). This may be due to the fact that it is difficult to modify the flow of

commodities when the limited available quantities at the suppliers are unbalanced.

5.5 Conclusions and future works

In this chapter, we developed an integrated solution approach for the MC2DP. Based

on the sequential approaches presented in Chapter 4, we improved the ALNS algo-

rithm developed for the delivery subproblem, so that it can modify both collection

and delivery decisions. We add new large operators able to modify the collection

decisions in order to make feasible a move between two distribution centers for

the delivery subproblem. Three large operators have been proposed: the heuristic

flow is a fast heuristic that modifies the collection subproblem at zero cost; the

multi-commodity flow operator uses a linear programming formulation to optimally

decide the flow of commodities at zero cost; and the network operator that consists

in solving a mixed integer program in order to take the decisions optimally for the

collection subproblem. This last operator is the most efficient but at the same time

the most expensive computationally. This integrated approach has been evaluated

and compared to the best solutions obtained with the sequential approaches. The
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results showed that the proposed operators are all necessary, and on average, the

integrated approach is able to outperform the sequential approaches.

In order to further improve the results of the integrated approach, we provide

some short term perspectives. From the results, it is clear that the network operator

should not be called for all potential moves for the delivery subproblem. The use

of a threshold on the cost of the moves is efficient, and we could consider providing

other criteria to reduce the calls to the network operator. Such criteria may be

based on the cost of the moves, but also on the quantity to move from a distribution

center to another.

Another perspective is to go further in the integrated algorithm. The idea is

to develop "destroy and repair" heuristics for the ALNS related to both collection

and delivery subproblems. For example, we could destroy and repair the collection

subproblem by removing and adding trips between suppliers and distribution centers.

The difficulty in this approach is to ensure the feasibility of the whole problem

after modifying both subproblems. As an example, in the collection subproblem,

moving one truck from a distribution center to another one would require a deeper

modification in the delivery subproblem: several customers should be delivered from

another distribution center.

Another perspective to improve the integrated approach for the MC2DP is to

develop a fast solving method for the network operator. Solving a mixed integer

program requires a lot of computation time, and would not be suitable for large

instances. Hence, we may propose to develop fast heuristic solving methods for the

underlying problem. This could allow to address large size instances, like the ones

proposed in the case study in Chapter 4.
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Chapter 6

Conclusions and perspectives

In this thesis, we studied vehicle routing problems considering multiple commodities,

with applications in the local fresh food supply chains. The studied supply chain

contains two echelons with three sets of actors: suppliers, distribution centers and

customers. Suppliers are farmers that produce some fresh foods. Distribution centers

are in charge of consolidation and delivery of the products to customers. Distribution

centers collect products from the suppliers that perform direct trips. Products are

delivered to the customers with a fleet of vehicles performing routes. Each customer

requires several commodities, and the farmers produce a limited quantity of these

commodities. For the minimization of the transportation cost, it is beneficial that

a single customer is delivered by several vehicles. However, for the convenience of

the customer, it is imposed that a single commodity is delivered at once by a single

vehicle. Hence, different commodities have been explicitly considered. The complete

problem is named Multi-Commodity two-echelon Distribution Problem (MC2DP).

The restricted problem that addresses only the delivery from a single distribution

center is named Commodity constrained Split Delivery Vehicle Routing Problem

(C-SDVRP).

The main contributions of this thesis are the following.

In Chapter 2, we classified the routing problems that explicitly consider multiple

commodities. The main results have been to understand why it is necessary to ex-

plicitly consider these multiple commodities, how they are considered in the models

and solving methods, and what are the main applications.

In Chapter 3, we focused on the delivery subproblem with a single distribution

center (C-SDVRP). We develop a dedicated heuristic algorithm based on an ALNS

151



6. CONCLUSIONS AND PERSPECTIVES

framework. This is the first heuristic specifically designed to provide high-quality

solutions for the medium and large size instances. The results showed that our ALNS

algorithm is very effective in finding high-quality solutions on large size instances.

In Chapter 4, we addressed the whole problem (MC2DP) with collection and

delivery operations and multiple distribution centers. In order to tackle this complex

problem, we proposed a decomposition approach in which the collection and delivery

problems are sequentially solved. For each sequential approach, three strategies have

been developed in order to take into account the impact of the solution of the first

subproblem on the second subproblem solution. The best algorithm usually does

not provide the lowest cost either for the collection or for the delivery subproblem.

The algorithms have been tested on a case study on a short and local fresh food

supply chain with two types of customers: school canteens and supermarkets.

In Chapter 5, we developed an integrated approach for the MC2DP. This ap-

proach improved the proposed ALNS for the delivery subproblem by adding more

global moves that also modify the collection subproblem. The computational re-

sults showed that this approach is able to outperform all the proposed sequential

approaches.

This thesis gives rise to several future research directions. On the methodological

point of view, the first perspective is to improve the integrated approach for the

MC2DP. Our main idea is to develop an ALNS for the whole problem, i.e. for

both collection and delivery operations. To do so, we propose to add destroy and

repair operators for the collection subproblem, for example to remove one direct trip

between a supplier and a distribution center. Hence, at each iteration of the ALNS

both collection and delivery subproblems would be destroyed and repaired. After

the repair, we have to ensure that the solutions of the subproblems are consistent,

i.e. each distribution center collects more products than what is delivered. Another

perspective to improve the integrated approach for the MC2DP is to develop a fast

solving method for the collection subproblem in order to be able to tackle large size

instances like the one addressed in the case study in Chapter 4.

Another research perspective of our work is to adapt the proposed ALNS al-

gorithm for the C-SDVRP to tackle other variants of routing problems with multi-

commodity constrained split deliveries. The solving methods for VRPs with multiple

commodities usually duplicate the customers for each required commodities, then

work with customer-commodities in the resolution algorithms. Like we did for the
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C-SDVRP, we may propose algorithms that use a double representation of the solu-

tion by aggregating or not the customer-commodities. For example, we could try to

adapt the proposed ALNS to solve some VRPs with muti-compartments vehicles.

Furthermore, we could adapt the proposed method to some extensions of the

problem. First, in this thesis, we do not consider the capacity of the distribution

centers. From a practical perspective, we could include capacity constraints at the

distribution centers. Second, in this thesis we considered that the commodities are

collected from suppliers and delivered to distribution centers through direct trips.

We considered that the suppliers provide large supply quantities and deliver their

products to distribution centers by performing one or more round trips. However,

further research could consider more suppliers with lower supply quantities. Then,

it would be interesting to perform routes to collect the products from the suppliers.

To solve this version of the problem, we could keep the same solving framework, but

the resolution of the collection subproblem to optimality would be more challenging.

Finally, from the application point of view, we could study the problem where

some direct deliveries from a supplier to some customers are allowed. Indeed, in the

context of short and local fresh food supply chain, it is interesting for the farmers to

have direct contact with customers located near their farm. Hence, we could consider

a logistics system that mixes direct deliveries with deliveries through distribution

centers.
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Appendix

A Detailed results on the benchmark instances for

the C-SDVRP

Table A1, Table A2 and Table A3 report the detailed results for the small, medium

and large instances respectively. We report values in bold whenever we improve (or

optimize or equal to) the respective instances.
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Table A1: Detailed computational results for the small sized instances (n = 15).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α OPT Cost ∆O t(s) nbR

C101 2 0.6 22 10 12 [1,100] 1.1 283.3404 283.3404 0.00 6.01 6
0.6 22 10 12 [40,60] 1.1 480.4342 480.4342 0.00 5.07 11
1 30 15 15 [1,100] 1.1 422.4965 422.4965 0.00 10.64 9
1 30 15 15 [40,60] 1.1 685.1662 685.1662 0.00 5.19 15

0.6 22 10 12 [1,100] 1.5 241.0386 241.0386 0.00 8.67 5
0.6 22 10 12 [40,60] 1.5 348.2731 348.2731 0.00 5.63 7
1 30 15 15 [1,100] 1.5 340.5474 340.5474 0.00 14.70 7
1 30 15 15 [40,60] 1.5 490.2973 490.2973 0.00 8.27 10

0.6 22 10 12 [1,100] 2 200.9092 200.9092 0.00 8.66 4
0.6 22 10 12 [40,60] 2 239.6829 239.6829 0.00 5.80 5
1 30 15 15 [1,100] 2 239.9424 239.9424 0.00 13.57 5
1 30 15 15 [40,60] 2 357.5929 357.5929 0.00 9.14 7

0.6 22 10 12 [1,100] 2.5 170.0453 170.0453 0.00 10.31 3
0.6 22 10 12 [40,60] 2.5 207.8259 207.8259 0.00 7.74 4
1 30 15 15 [1,100] 2.5 205.7830 205.7830 0.00 12.29 4
1 30 15 15 [40,60] 2.5 302.1813 302.1813 0.00 11.26 6

R101 2 0.6 22 10 12 [1,100] 1.1 408.8971 408.8971 0.00 7.43 7
0.6 22 10 12 [40,60] 1.1 565.3383 565.3383 0.00 4.12 11
1 30 15 15 [1,100] 1.1 537.2029 537.2029 0.00 9.75 9
1 30 15 15 [40,60] 1.1 679.0232 679.0232 0.00 5.26 15

0.6 22 10 12 [1,100] 1.5 353.0119 353.0119 0.00 6.77 5
0.6 22 10 12 [40,60] 1.5 455.9724 455.9724 0.00 6.88 8
1 30 15 15 [1,100] 1.5 443.0829 443.0829 0.00 12.31 7
1 30 15 15 [40,60] 1.5 558.9565 558.9565 0.00 8.03 10

0.6 22 10 12 [1,100] 2 301.4316 301.4316 0.00 8.50 4
0.6 22 10 12 [40,60] 2 379.2848 379.2848 0.00 7.69 6
1 30 15 15 [1,100] 2 370.5561 370.5561 0.00 14.73 5
1 30 15 15 [40,60] 2 444.1868 444.1868 0.00 9.27 8

0.6 22 10 12 [1,100] 2.5 280.7646 280.7646 0.00 7.50 3
0.6 22 10 12 [40,60] 2.5 342.6854 342.6854 0.00 7.27 5
1 30 15 15 [1,100] 2.5 323.5761 323.5761 0.00 13.68 4
1 30 15 15 [40,60] 2.5 401.6087 401.6087 0.00 13.03 6

C101 3 0.6 28 12 7 9 [1,100] 1.1 333.4709 333.4709 0.00 11.29 7
0.6 28 12 7 9 [40,60] 1.1 440.2241 440.2241 0.00 11.11 9
1 45 15 15 15 [1,100] 1.1 428.5164 435.7543 1.69 25.05 8
1 45 15 15 15 [40,60] 1.1 638.0919 638.0919 0.00 20.69 13

0.6 28 12 7 9 [1,100] 1.5 262.8069 262.8069 0.00 10.47 5
0.6 28 12 7 9 [40,60] 1.5 306.6363 306.6363 0.00 9.86 6
1 45 15 15 15 [1,100] 1.5 315.9600 315.96 0.00 25.38 6
1 45 15 15 15 [40,60] 1.5 457.9430 457.943 0.00 16.15 9

0.6 28 12 7 9 [1,100] 2 204.9380 204.938 0.00 10.83 4
0.6 28 12 7 9 [40,60] 2 263.2896 263.2896 0.00 9.34 5
1 45 15 15 15 [1,100] 2 265.0623 265.0623 0.00 23.37 5
1 45 15 15 15 [40,60] 2 347.3580 347.358 0.00 22.65 7

0.6 28 12 7 9 [1,100] 2.5 168.2958 168.2958 0.00 10.09 3
0.6 28 12 7 9 [40,60] 2.5 202.9044 202.9044 0.00 10.25 4
1 45 15 15 15 [1,100] 2.5 206.6970 206.697 0.00 20.36 4
1 45 15 15 15 [40,60] 2.5 310.7978 310.7978 0.00 24.45 6

R101 3 0.6 28 12 7 9 [1,100] 1.1 401.7502 401.7502 0.00 10.06 7
0.6 28 12 7 9 [40,60] 1.1 497.1385 497.1385 0.00 8.78 10
1 45 15 15 15 [1,100] 1.1 491.0411 491.0411 0.00 22.81 9
1 45 15 15 15 [40,60] 1.1 679.0232 679.0232 0.00 17.69 15

0.6 28 12 7 9 [1,100] 1.5 347.3693 347.3693 0.00 9.94 5
0.6 28 12 7 9 [40,60] 1.5 410.813 410.813 0.00 8.19 7
1 45 15 15 15 [1,100] 1.5 409.2905 409.2905 0.00 22.31 6
1 45 15 15 15 [40,60] 1.5 541.0336 541.0336 0.00 15.16 9

0.6 28 12 7 9 [1,100] 2 303.1439 303.1439 0.00 10.47 4
0.6 28 12 7 9 [40,60] 2 343.7159 343.7159 0.00 11.04 5
1 45 15 15 15 [1,100] 2 345.8351 345.8351 0.00 22.07 5
1 45 15 15 15 [40,60] 2 444.1868 444.1868 0.00 17.91 8

0.6 28 12 7 9 [1,100] 2.5 278.2234 278.2234 0.00 8.02 3
0.6 28 12 7 9 [40,60] 2.5 312.3100 312.31 0.00 10.69 4
1 45 15 15 15 [1,100] 2.5 320.3490 320.349 0.00 23.38 4
1 45 15 15 15 [40,60] 2.5 393.8357 393.8357 0.00 20.34 6
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Table A2: Detailed computational results for the mid sized instances (n ∈ {20; 40; 60; 80}).

instances ALNS results

n p ncc CC1 CC2 CC3 id OPT/BKS Cost ∆O/B t(s) nbMPO nbMPOimp nbR

C101 20 0.6 37 15 11 11 1 573.8617* 573.8617 0.00 31.67 2 0 6
39 13 10 16 2 592.0651* 592.0651 0.00 29.17 0 0 7
38 13 13 12 3 595.5289* 595.5289 0.00 36.29 4 0 7
40 9 14 17 4 617.8838* 617.8838 0.00 40.64 3 0 8
33 9 10 14 5 628.2804* 628.2804 0.00 29.14 4 0 8

1 60 20 20 20 1 750.6251* 750.6251 0.00 82.73 7 0 9
60 20 20 20 2 714.6453* 714.6453 0.00 78.86 9 1 9
60 20 20 20 3 626.1553* 626.1553 0.00 67.16 6 0 9
60 20 20 20 4 747.7008* 747.7008 0.00 84.32 9 0 10
60 20 20 20 5 768.5189* 768.5189 0.00 72.62 4 0 10

R101 20 0.6 37 15 11 11 1 457.8598* 457.8598 0.00 38.69 7 0 6
39 13 10 16 2 667.0131* 667.0131 0.00 38.14 2 0 7
38 13 13 12 3 455.0534* 455.0534 0.00 34.87 3 1 7
40 9 14 17 4 589.9082* 589.9082 0.00 37.92 6 0 8
33 9 10 14 5 663.2159* 663.2159 0.00 24.73 2 0 8

1 60 20 20 20 1 599.8380* 599.8380 0.00 70.50 7 0 9
60 20 20 20 2 863.8829* 864.1552 0.03 94.33 15 0 9
60 20 20 20 3 617.9120 617.9662 0.01 78.97 10 0 9
60 20 20 20 4 712.0175* 712.0175 0.00 83.18 7 1 10
60 20 20 20 5 794.4068* 794.4068 0.00 81.62 10 0 10

C101 40 0.6 72 19 24 29 1 844.5669 841.0159 -0.42 70.98 4 0 9
77 29 23 25 2 1005.8069 1002.4435 -0.33 80.82 17 0 12
78 24 26 28 3 879.2568* 879.2568 0.00 83.96 8 0 11
81 28 28 25 4 921.0554 922.4288 0.15 74.44 5 0 12
73 25 19 29 5 868.7426* 868.7426 0.00 80.50 6 1 11

1 120 40 40 40 1 1330.0617 1304.7180 -1.91 155.89 16 2 18
120 40 40 40 2 1357.7864 1357.7890 0.00 163.58 18 3 19
120 40 40 40 3 1309.3540 1299.4327 -0.76 149.76 12 0 16
120 40 40 40 4 1238.8599 1238.3923 -0.04 158.73 17 1 17
120 40 40 40 5 1287.4121 1273.2181 -1.10 178.96 19 4 16

R101 40 0.6 72 19 24 29 1 761.7828 764.0135 0.29 94.07 17 0 9
77 29 23 25 2 896.0147 896.8111 0.09 57.28 8 0 12
78 24 26 28 3 851.0276* 851.0276 0.00 98.89 20 0 11
81 28 28 25 4 973.9919 976.5911 0.27 78.62 6 0 12
73 25 19 29 5 854.3462* 855.1124 0.09 74.66 11 0 11

1 120 40 40 40 1 1246.4958 1242.8772 -0.29 157.76 21 2 18
120 40 40 40 2 1244.9154 1238.4378 -0.52 148.03 19 2 19
120 40 40 40 3 1056.1320* 1056.1320 0.00 131.46 15 2 16
120 40 40 40 4 1255.4495 1245.6884 -0.78 160.65 24 1 17
120 40 40 40 5 1101.1214 1101.1214 0.00 143.75 14 2 16
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Table A2 (continued).

instances ALNS results

n p ncc CC1 CC2 CC3 id OPT/BKS Cost ∆O/B t(s) nbMPO nbMPOimp nbR

C101 60 0.6 107 34 36 37 1 1241.1029 1228.7010 -1.00 182.54 20 0 15
112 40 33 39 2 1331.7718 1331.7718 0.00 204.25 33 1 17
110 39 34 37 3 1184.7776 1180.6147 -0.35 189.09 14 0 14
113 41 34 38 4 1303.1604 1284.9398 -1.40 195.14 19 0 16
108 32 30 46 5 1303.7277 1303.3246 -0.03 194.56 18 0 16

1 180 60 60 60 1 2003.0431 1996.6060 -0.32 332.53 26 0 27
180 60 60 60 2 1667.6461 1671.8163 0.25 402.08 19 0 24
180 60 60 60 3 1816.1236 1795.5325 -1.13 445.02 43 3 23
180 60 60 60 4 1906.5617 1909.0054 0.13 361.95 22 2 26
180 60 60 60 5 1650.5799 1637.1273 -0.82 477.33 44 3 22

R101 60 0.6 107 34 36 37 1 1293.2293 1286.0364 -0.56 181.69 19 1 15
112 40 33 39 2 1326.5733 1317.7203 -0.67 136.28 13 1 17
110 39 34 37 3 1028.5158 1028.5158 0.00 180.90 18 1 14
113 41 34 38 4 1235.5766 1225.3226 -0.83 218.23 29 1 17
108 32 30 46 5 1149.5550 1149.5673 0.00 168.89 11 0 16

1 180 60 60 60 1 2086.6870 2068.5355 -0.87 346.07 24 3 27
180 60 60 60 2 1662.5753 1660.3220 -0.14 328.54 33 0 23
180 60 60 60 3 1581.5715 1562.5867 -1.20 400.14 31 1 23
180 60 60 60 4 1732.8742 1723.4548 -0.54 328.65 17 1 26
180 60 60 60 5 1507.7615 1503.2634 -0.30 362.81 18 3 22

C101 80 0.6 142 44 51 47 1 1648.0955 1647.8619 -0.01 329.97 22 2 20
157 50 55 52 2 1616.9601 1603.4580 -0.84 355.95 24 1 21
148 50 47 51 3 1750.6889 1742.9882 -0.44 366.80 27 2 22
158 47 51 60 4 1468.4500 1446.7739 -1.48 413.62 33 2 19
147 45 42 60 5 1702.9460 1684.7620 -1.07 400.47 39 1 21

1 240 80 80 80 1 2277.9557 2255.8933 -0.97 668.31 23 6 30
240 80 80 80 2 2133.9879 2118.7056 -0.72 684.15 31 4 29
240 80 80 80 3 2623.9684 2588.2988 -1.36 720.92 35 5 35
240 80 80 80 4 2389.1831 2377.7662 -0.48 758.18 31 10 32
240 80 80 80 5 2410.9786 2405.0859 -0.24 689.43 40 7 33

R101 80 0.6 142 44 51 47 1 1467.6251 1449.3824 -1.24 319.10 26 1 20
157 50 55 52 2 1482.3639 1481.5891 -0.05 349.74 28 0 21
148 50 47 51 3 1618.6780 1606.2737 -0.77 278.83 21 1 22
158 47 51 60 4 1432.0982 1416.8707 -1.06 331.53 22 1 19
147 45 42 60 5 1482.7288 1466.4647 -1.10 319.93 22 2 20

1 240 80 80 80 1 2137.3158 2107.6678 -1.39 697.74 29 6 31
240 80 80 80 2 1955.9811 1938.9429 -0.87 710.27 40 2 29
240 80 80 80 3 2302.7431 2291.3231 -0.50 618.40 30 0 35
240 80 80 80 4 2123.9847 2113.1821 -0.51 685.71 30 3 32
240 80 80 80 5 2155.4925 2138.8196 -0.77 520.92 19 1 33
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Table A3: Detailed computational results for the large sized instances (n = 100).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 2 0.6 134 56 78 [1,100] 1.1 2035.3013 2016.5051 -0.92 260.68 18 0 30
140 60 80 2180.0203 2170.9690 -0.42 270.33 22 1 35
135 62 73 2082.1981 2076.9958 -0.25 236.59 21 1 32
140 68 72 2148.4188 2133.8412 -0.68 268.38 29 0 32
133 55 78 2041.9553 2016.1057 -1.27 270.64 31 2 31

C101 2 0.6 134 56 78 [1,100] 1.5 1573.6610 1571.8390 -0.12 325.56 22 9 23
140 60 80 1713.4453 1690.1594 -1.36 322.81 34 2 25
135 62 73 1594.5043 1579.4423 -0.94 326.38 42 3 23
140 68 72 1620.3658 1593.0295 -1.69 295.26 26 1 23
133 55 78 1544.2592 1542.7069 -0.10 327.96 32 0 23

C101 2 0.6 134 56 78 [1,100] 2 1484.4280 1484.8897 0.03 443.90 35 0 17
140 60 80 1601.5050 1594.3828 -0.44 390.17 25 3 19
135 62 73 1571.8295 1551.0808 -1.32 358.75 25 1 17
140 68 72 1539.4321 1532.8325 -0.43 409.17 32 1 18
133 55 78 1545.9487 1537.2621 -0.56 345.92 25 1 17

C101 2 0.6 134 56 78 [1,100] 2.5 1293.4366 1290.4392 -0.23 509.62 34 3 14
140 60 80 1386.2707 1378.6220 -0.55 407.99 25 1 15
135 62 73 1323.7604 1318.8051 -0.37 429.45 20 0 14
140 68 72 1337.2558 1319.5941 -1.32 475.72 36 0 14
133 55 78 1316.6055 1307.1230 -0.72 408.30 26 3 14

C101 2 0.6 134 56 78 [40,60] 1.1 3717.5992 3686.3063 -0.84 212.18 18 1 60
140 60 80 3943.6197 3923.7703 -0.50 211.63 13 0 65
135 62 73 3755.8823 3720.0138 -0.95 247.43 17 0 60
140 68 72 3840.6868 3815.5816 -0.65 271.71 37 0 63
133 55 78 3673.3203 3645.8466 -0.75 230.77 34 0 60

C101 2 0.6 134 56 78 [40,60] 1.5 2685.9916 2670.5453 -0.58 259.21 22 0 42
140 60 80 2824.0916 2780.6093 -1.54 269.90 31 0 44
135 62 73 2633.8403 2606.9999 -1.02 278.21 35 0 41
140 68 72 2738.3272 2703.7315 -1.26 306.65 35 0 43
133 55 78 2628.9645 2606.6952 -0.85 249.35 23 0 42

C101 2 0.6 134 56 78 [40,60] 2 2371.4171 2364.7218 -0.28 331.61 32 0 30
140 60 80 2509.9521 2489.1959 -0.83 358.79 26 0 32
135 62 73 2408.7012 2401.3033 -0.31 343.90 24 0 30
140 68 72 2443.4540 2437.5545 -0.24 353.23 30 0 31
133 55 78 2464.7661 2440.5193 -0.98 339.58 30 0 31

C101 2 0.6 134 56 78 [40,60] 2.5 1968.1149 1963.9711 -0.21 368.04 12 0 24
140 60 80 2031.8053 2027.4671 -0.21 367.94 22 0 25
135 62 73 1954.6604 1950.7756 -0.20 406.74 31 0 23
140 68 72 2002.5383 1987.3101 -0.76 343.06 30 1 24
133 55 78 1973.9611 1978.6316 0.24 367.40 20 0 24
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 2 1 200 100 100 [1,100] 1.1 3146.6597 3096.0220 -1.61 493.02 34 3 48
200 100 100 3081.7941 3047.0941 -1.13 459.72 24 2 50
200 100 100 3376.5593 3341.0044 -1.05 530.95 39 6 53
200 100 100 3336.4515 3293.8945 -1.28 508.36 35 8 52
200 100 100 3063.1397 3025.7796 -1.22 459.09 28 1 49

C101 2 1 200 100 100 [1,100] 1.5 2356.8893 2334.4763 -0.95 526.05 30 2 35
200 100 100 2326.5291 2301.5070 -1.08 566.56 41 2 36
200 100 100 2526.2982 2518.5285 -0.31 554.75 34 6 39
200 100 100 2500.0207 2479.4547 -0.82 534.61 34 0 38
200 100 100 2303.9564 2297.1414 -0.30 527.30 25 3 36

C101 2 1 200 100 100 [1,100] 2 2129.0342 2124.8932 -0.19 603.94 25 2 27
200 100 100 2169.8922 2170.6119 0.03 629.32 35 4 27
200 100 100 2256.4305 2245.4843 -0.49 617.32 31 2 29
200 100 100 2269.9257 2262.6622 -0.32 554.71 19 1 29
200 100 100 2160.1093 2156.8393 -0.15 523.47 19 0 27

C101 2 1 200 100 100 [1,100] 2.5 1760.6323 1753.7203 -0.39 693.48 36 3 21
200 100 100 1836.8031 1811.6854 -1.37 756.15 33 6 22
200 100 100 1882.7674 1871.8435 -0.58 637.95 29 4 23
200 100 100 1910.0314 1895.2543 -0.77 716.49 32 3 23
200 100 100 1810.3104 1808.1843 -0.12 738.02 48 5 21

C101 2 1 200 100 100 [40,60] 1.1 5603.0836 5536.0546 -1.20 433.77 19 0 93
200 100 100 5547.3519 5504.4821 -0.77 454.40 26 1 95
200 100 100 5749.2419 5679.6959 -1.21 424.29 17 0 96
200 100 100 5711.3460 5645.4455 -1.15 463.91 18 0 95
200 100 100 5535.6135 5479.9888 -1.00 469.36 23 0 92

C101 2 1 200 100 100 [40,60] 1.5 3913.4546 3849.0963 -1.64 507.87 29 1 62
200 100 100 3909.5761 3867.0017 -1.09 482.07 28 2 63
200 100 100 3976.2127 3959.2347 -0.43 502.91 27 1 64
200 100 100 3942.3417 3898.8312 -1.10 583.69 47 0 63
200 100 100 3867.9698 3839.8436 -0.73 598.34 44 1 62

C101 2 1 200 100 100 [40,60] 2 3343.1458 3328.8877 -0.43 613.39 30 0 45
200 100 100 3446.6946 3391.5541 -1.60 609.40 27 2 45
200 100 100 3402.9488 3402.1518 -0.02 593.52 25 1 47
200 100 100 3459.2005 3446.1003 -0.38 604.41 29 1 47
200 100 100 3400.1668 3384.4928 -0.46 628.07 30 1 45

C101 2 1 200 100 100 [40,60] 2.5 2734.4477 2717.2918 -0.63 680.71 33 2 35
200 100 100 2788.0824 2776.1339 -0.43 596.97 22 0 36
200 100 100 2780.4184 2761.2009 -0.69 616.17 23 3 36
200 100 100 2815.0422 2786.8485 -1.00 589.10 25 1 36
200 100 100 2767.8571 2751.4713 -0.59 680.74 33 0 35
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 3 0.6 179 65 50 64 [1,100] 1.1 2233.2625 2199.3967 -1.52 447.71 38 2 34
194 67 63 64 2406.5116 2357.4534 -2.04 509.65 32 3 36
186 62 58 66 2499.3959 2487.8220 -0.46 505.21 45 1 37
193 69 57 67 2266.5132 2283.0043 0.73 448.84 27 0 36
190 61 56 73 2529.7072 2509.7369 -0.79 471.85 39 4 37

C101 3 0.6 179 65 50 64 [1,100] 1.5 1724.7339 1698.9351 -1.50 449.14 32 7 25
194 67 63 64 1812.1988 1807.9754 -0.23 579.95 28 3 27
186 62 58 66 1908.2163 1893.4346 -0.77 521.23 38 2 27
193 69 57 67 1763.0602 1745.0116 -1.02 568.39 47 1 26
190 61 56 73 1938.0044 1930.7389 -0.37 576.69 26 4 28

C101 3 0.6 179 65 50 64 [1,100] 2 1651.6968 1626.3891 -1.53 633.94 38 1 19
194 67 63 64 1654.5853 1652.1369 -0.15 677.73 30 2 20
186 62 58 66 1712.4417 1684.7036 -1.62 648.54 40 2 20
193 69 57 67 1702.0681 1677.4419 -1.45 584.07 22 0 20
190 61 56 73 1719.8367 1714.1925 -0.33 600.65 25 1 21

C101 3 0.6 179 65 50 64 [1,100] 2.5 1413.2271 1411.6091 -0.11 681.11 34 0 15
194 67 63 64 1442.7602 1424.9209 -1.24 810.87 45 0 16
186 62 58 66 1452.9146 1428.4270 -1.69 712.86 42 2 16
193 69 57 67 1458.4966 1442.4131 -1.10 780.48 36 0 16
190 61 56 73 1446.4444 1444.4045 -0.14 756.13 31 1 17

C101 3 0.6 179 65 50 64 [40,60] 1.1 3318.3873 3257.0030 -1.85 401.09 32 0 53
194 67 63 64 3509.4788 3489.2080 -0.58 435.08 26 1 56
186 62 58 66 3603.3698 3582.1768 -0.59 399.24 25 0 55
193 69 57 67 3518.1872 3484.3878 -0.96 446.43 32 0 56
190 61 56 73 3649.5231 3615.4109 -0.93 496.11 48 0 57

C101 3 0.6 179 65 50 64 [40,60] 1.5 2424.2712 2407.4264 -0.69 419.67 21 0 37
194 67 63 64 2525.9423 2523.9967 -0.08 558.51 28 0 40
186 62 58 66 2610.6052 2600.9273 -0.37 452.04 26 2 39
193 69 57 67 2535.7810 2525.7262 -0.40 468.16 32 0 39
190 61 56 73 2673.1778 2640.8231 -1.21 479.02 25 0 40

C101 3 0.6 179 65 50 64 [40,60] 2 2270.3526 2265.3978 -0.22 482.40 25 1 28
194 67 63 64 2346.2918 2326.5017 -0.84 643.35 26 1 30
186 62 58 66 2316.4770 2313.2239 -0.14 540.93 21 0 29
193 69 57 67 2367.4327 2352.4767 -0.63 574.32 27 4 30
190 61 56 73 2339.7488 2321.6905 -0.77 560.01 38 3 30

C101 3 0.6 179 65 50 64 [40,60] 2.5 1875.4922 1857.8147 -0.94 501.48 23 1 22
194 67 63 64 1971.8409 1948.0161 -1.21 643.45 28 2 24
186 62 58 66 1927.4449 1917.8823 -0.50 606.26 40 1 23
193 69 57 67 1974.0424 1972.7209 -0.07 618.31 30 0 24
190 61 56 73 1929.9052 1918.9720 -0.57 607.40 16 1 24
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

C101 3 1 300 100 100 100 [1,100] 1.1 3458.3101 3378.7279 -2.30 952.16 50 5 53
300 100 100 100 3314.9537 3245.1446 -2.11 914.82 43 6 51
300 100 100 100 3294.7994 3265.0504 -0.90 865.51 33 8 52
300 100 100 100 3430.0465 3370.6534 -1.73 825.87 34 0 55
300 100 100 100 3214.8478 3162.0426 -1.64 900.59 39 7 51

C101 3 1 300 100 100 100 [1,100] 1.5 2610.2355 2561.2706 -1.88 972.71 30 6 39
300 100 100 100 2514.8470 2459.3592 -2.21 1024.42 35 3 38
300 100 100 100 2532.1347 2476.9681 -2.18 1083.84 38 6 38
300 100 100 100 2641.7530 2565.6834 -2.88 923.07 37 2 40
300 100 100 100 2455.7585 2404.8723 -2.07 968.00 28 5 37

C101 3 1 300 100 100 100 [1,100] 2 2300.4077 2280.2733 -0.88 1211.44 42 5 29
300 100 100 100 2192.9203 2193.6158 0.03 1153.59 43 3 28
300 100 100 100 2260.6841 2253.2807 -0.33 1142.33 28 3 28
300 100 100 100 2410.0967 2390.4263 -0.82 1099.96 28 5 30
300 100 100 100 2247.5337 2231.8800 -0.70 1240.23 26 4 28

C101 3 1 300 100 100 100 [1,100] 2.5 1929.7279 1914.9262 -0.77 1348.23 17 4 23
300 100 100 100 1871.0897 1856.8834 -0.76 1606.09 20 0 23
300 100 100 100 1867.4470 1873.4338 0.32 1519.55 26 3 23
300 100 100 100 2013.6222 1985.1207 -1.42 1396.51 41 0 24
300 100 100 100 1910.9060 1875.5780 -1.85 1625.37 56 8 22

C101 3 1 300 100 100 100 [40,60] 1.1 5239.6555 5196.4247 -0.83 906.42 34 1 86
300 100 100 100 5143.4560 5059.3108 -1.64 1016.59 51 4 84
300 100 100 100 5200.9560 5103.2213 -1.88 1054.92 36 3 83
300 100 100 100 5291.7632 5243.8349 -0.91 987.19 50 1 89
300 100 100 100 5174.4761 5114.0431 -1.17 978.28 41 0 85

C101 3 1 300 100 100 100 [40,60] 1.5 3789.0183 3755.7431 -0.88 829.41 32 1 60
300 100 100 100 3789.1122 3733.9771 -1.46 944.05 48 3 60
300 100 100 100 3752.1660 3732.6484 -0.52 971.90 53 2 60
300 100 100 100 3839.3184 3770.5935 -1.79 897.98 35 6 61
300 100 100 100 3825.3398 3740.0157 -2.23 1020.43 52 4 60

C101 3 1 300 100 100 100 [40,60] 2 3343.5307 3331.3655 -0.36 1145.10 38 1 45
300 100 100 100 3322.9033 3307.6401 -0.46 1081.25 25 1 44
300 100 100 100 3318.3125 3297.9859 -0.61 1044.56 27 2 44
300 100 100 100 3424.6490 3382.5992 -1.23 1254.62 39 0 45
300 100 100 100 3379.4211 3330.9490 -1.43 1240.97 50 4 45

C101 3 1 300 100 100 100 [40,60] 2.5 2807.4471 2785.0606 -0.80 1190.80 39 3 36
300 100 100 100 2746.6361 2735.8088 -0.39 1259.03 43 4 35
300 100 100 100 2754.3082 2760.9908 0.24 1255.07 24 7 35
300 100 100 100 2803.2445 2789.5742 -0.49 1251.01 56 3 36
300 100 100 100 2767.2392 2746.4348 -0.75 1145.49 24 0 36
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 2 0.6 134 56 78 [1,100] 1.1 1916.2385 1887.4950 -1.50 279.09 27 1 31
140 60 80 2153.6485 2152.5710 -0.05 300.47 31 1 35
135 62 73 1927.2419 1920.3454 -0.36 265.37 21 0 33
140 68 72 1971.0569 1956.0302 -0.76 302.81 31 3 32
133 55 78 1833.7028 1828.4456 -0.29 306.71 25 0 32

R101 2 0.6 134 56 78 [1,100] 1.5 1496.8719 1482.2547 -0.98 319.35 29 0 22
140 60 80 1685.8891 1670.7013 -0.90 307.37 39 1 25
135 62 73 1530.9401 1517.8384 -0.86 296.24 34 0 23
140 68 72 1549.2746 1541.2523 -0.52 307.34 17 0 24
133 55 78 1476.0508 1464.6001 -0.78 312.00 23 0 23

R101 2 0.6 134 56 78 [1,100] 2 1226.8612 1213.6448 -1.08 355.57 37 0 17
140 60 80 1363.4234 1351.5177 -0.87 378.88 35 0 19
135 62 73 1254.4877 1249.8766 -0.37 370.13 31 0 18
140 68 72 1268.1761 1260.8517 -0.58 418.11 33 2 17
133 55 78 1203.2001 1200.0221 -0.26 325.71 31 2 17

R101 2 0.6 134 56 78 [1,100] 2.5 1067.2709 1059.0853 -0.77 385.07 28 2 13
140 60 80 1178.0644 1169.7717 -0.70 453.09 43 0 15
135 62 73 1087.0068 1084.9342 -0.19 414.91 33 0 14
140 68 72 1102.6288 1104.8424 0.20 409.88 28 4 14
133 55 78 1050.7626 1061.7723 1.05 430.69 30 0 14

R101 2 0.6 134 56 78 [40,60] 1.1 3358.5111 3333.0578 -0.76 263.31 25 0 60
140 60 80 3575.0576 3553.3423 -0.61 250.22 19 0 65
135 62 73 3344.4207 3327.4991 -0.51 223.60 20 0 61
140 68 72 3406.2463 3386.6904 -0.57 275.68 25 0 63
133 55 78 3269.4765 3244.8496 -0.75 236.62 30 0 60

R101 2 0.6 134 56 78 [40,60] 1.5 2438.2268 2420.4671 -0.73 261.82 22 0 41
140 60 80 2610.9667 2598.2538 -0.49 293.50 24 0 44
135 62 73 2427.5931 2414.9036 -0.52 274.40 29 0 41
140 68 72 2503.2952 2481.8594 -0.86 274.12 17 1 43
133 55 78 2440.5711 2414.1367 -1.08 313.44 36 0 42

R101 2 0.6 134 56 78 [40,60] 2 1895.5429 1895.7308 0.01 326.88 26 0 30
140 60 80 1995.3201 1992.3865 -0.15 330.00 22 0 32
135 62 73 1896.6321 1881.4183 -0.80 326.29 22 0 30
140 68 72 1915.4443 1906.1707 -0.48 353.72 34 0 31
133 55 78 1852.4127 1861.0882 0.47 324.98 20 0 31

R101 2 0.6 134 56 78 [40,60] 2.5 1587.2595 1577.0403 -0.64 344.39 31 0 24
140 60 80 1668.3025 1659.9154 -0.50 330.66 21 1 25
135 62 73 1578.8911 1570.4920 -0.53 343.04 21 0 24
140 68 72 1608.9971 1591.3215 -1.10 348.60 24 2 24
133 55 78 1561.0713 1558.7095 -0.15 305.21 12 1 24
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 2 1 200 100 100 [1,100] 1.1 2771.6431 2756.7887 -0.54 531.18 38 6 49
200 100 100 2834.4928 2827.3512 -0.25 426.29 19 2 49
200 100 100 3016.8985 2985.2441 -1.05 507.52 35 3 53
200 100 100 3048.9983 3031.0145 -0.59 533.16 35 3 53
200 100 100 2800.6961 2784.0475 -0.59 496.69 29 4 49

R101 2 1 200 100 100 [1,100] 1.5 2128.3373 2122.9233 -0.25 530.35 29 2 35
200 100 100 2194.4059 2183.9167 -0.48 578.51 42 3 36
200 100 100 2299.5101 2295.0886 -0.19 501.07 25 3 39
200 100 100 2307.0220 2297.4593 -0.41 582.93 39 3 38
200 100 100 2149.6086 2137.8987 -0.54 507.42 24 1 36

R101 2 1 200 100 100 [1,100] 2 1715.9710 1698.3738 -1.03 551.73 25 1 27
200 100 100 1730.2647 1722.1094 -0.47 589.96 33 3 27
200 100 100 1813.5162 1816.3983 0.16 547.78 31 4 29
200 100 100 1827.3575 1832.7354 0.29 582.61 32 7 29
200 100 100 1717.4555 1704.9316 -0.73 512.40 16 1 27

R101 2 1 200 100 100 [1,100] 2.5 1461.4911 1452.8434 -0.59 682.70 32 2 21
200 100 100 1466.1825 1460.9983 -0.35 705.62 43 9 22
200 100 100 1533.0524 1534.9745 0.13 633.60 33 4 23
200 100 100 1545.9473 1541.2999 -0.30 702.58 34 4 23
200 100 100 1431.3942 1432.8548 0.10 631.85 38 0 21

R101 2 1 200 100 100 [40,60] 1.1 4878.3554 4815.8420 -1.28 477.78 28 1 93
200 100 100 4885.1949 4854.3103 -0.63 533.46 46 0 95
200 100 100 4954.1386 4928.0506 -0.53 396.24 18 0 97
200 100 100 4906.3430 4886.1829 -0.41 357.43 15 0 95
200 100 100 4812.6715 4778.5328 -0.71 390.36 16 0 93

R101 2 1 200 100 100 [40,60] 1.5 3515.9354 3489.7450 -0.74 602.15 39 3 62
200 100 100 3584.7753 3544.2844 -1.13 554.11 32 0 64
200 100 100 3592.7577 3551.5178 -1.15 609.51 45 0 64
200 100 100 3583.5791 3546.3662 -1.04 512.74 25 3 63
200 100 100 3495.4743 3472.3544 -0.66 586.66 41 3 62

R101 2 1 200 100 100 [40,60] 2 2640.2882 2622.6570 -0.67 636.79 37 2 45
200 100 100 2669.1453 2657.6846 -0.43 485.80 15 1 46
200 100 100 2690.6244 2665.3118 -0.94 578.84 29 1 46
200 100 100 2704.5457 2695.0898 -0.35 620.18 28 0 47
200 100 100 2655.6363 2641.4628 -0.53 550.42 24 1 46

R101 2 1 200 100 100 [40,60] 2.5 2153.4354 2141.4426 -0.56 644.84 25 0 35
200 100 100 2213.9592 2189.4736 -1.11 571.24 23 0 36
200 100 100 2222.5353 2202.7464 -0.89 675.78 38 1 36
200 100 100 2204.7443 2203.0546 -0.08 650.99 34 3 36
200 100 100 2159.9779 2149.3260 -0.49 538.39 16 0 35
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 3 0.6 179 65 50 64 [1,100] 1.1 2091.9773 2082.4706 -0.45 448.50 37 2 34
194 67 63 64 2248.9343 2221.3245 -1.23 534.88 43 2 36
186 62 58 66 2137.6592 2134.4081 -0.15 447.11 27 2 37
193 69 57 67 2131.7891 2131.5677 -0.01 458.80 24 1 36
190 61 56 73 2205.0653 2183.8628 -0.96 478.30 31 0 38

R101 3 0.6 179 65 50 64 [1,100] 1.5 1638.1808 1628.8003 -0.57 507.92 39 8 25
194 67 63 64 1735.8727 1726.5884 -0.53 564.75 38 5 26
186 62 58 66 1688.8930 1678.2108 -0.63 563.18 48 7 27
193 69 57 67 1695.4234 1683.4501 -0.71 502.74 27 3 26
190 61 56 73 1708.9017 1698.7518 -0.59 508.70 24 0 27

R101 3 0.6 179 65 50 64 [1,100] 2 1344.1715 1333.3018 -0.81 579.85 38 4 19
194 67 63 64 1417.4800 1409.0886 -0.59 638.09 33 4 20
186 62 58 66 1382.2839 1366.0804 -1.17 554.83 24 2 20
193 69 57 67 1385.4181 1380.4631 -0.36 628.49 23 3 20
190 61 56 73 1377.7779 1372.9908 -0.35 612.43 32 3 21

R101 3 0.6 179 65 50 64 [1,100] 2.5 1146.9121 1144.9686 -0.17 703.87 39 4 15
194 67 63 64 1214.4350 1211.4598 -0.24 739.74 37 7 16
186 62 58 66 1188.0089 1183.2168 -0.40 707.54 47 2 16
193 69 57 67 1190.1513 1188.4567 -0.14 750.52 30 0 16
190 61 56 73 1203.4458 1199.0058 -0.37 676.18 27 1 17

R101 3 0.6 179 65 50 64 [40,60] 1.1 3048.1305 3027.5465 -0.68 455.96 37 2 54
194 67 63 64 3278.5334 3244.0645 -1.05 444.34 25 2 57
186 62 58 66 3035.4818 3030.9153 -0.15 451.00 25 0 55
193 69 57 67 3126.1265 3115.1466 -0.35 432.35 24 1 56
190 61 56 73 3144.6563 3112.9713 -1.01 469.27 37 1 57

R101 3 0.6 179 65 50 64 [40,60] 1.5 2234.7360 2224.7829 -0.45 447.71 29 2 37
194 67 63 64 2376.7317 2368.8940 -0.33 531.41 31 1 39
186 62 58 66 2255.2386 2254.6679 -0.03 528.31 38 3 39
193 69 57 67 2315.3242 2313.7430 -0.07 459.05 18 1 39
190 61 56 73 2371.8751 2356.9995 -0.63 463.99 19 0 40

R101 3 0.6 179 65 50 64 [40,60] 2 1806.0300 1787.6283 -1.02 468.94 27 1 28
194 67 63 64 1915.8784 1898.5402 -0.90 573.18 25 1 30
186 62 58 66 1780.7996 1776.2130 -0.26 560.20 34 0 29
193 69 57 67 1844.3127 1832.6458 -0.63 615.95 33 2 30
190 61 56 73 1857.0664 1850.7579 -0.34 539.93 42 1 30

R101 3 0.6 179 65 50 64 [40,60] 2.5 1507.1235 1489.3193 -1.18 475.82 37 2 22
194 67 63 64 1603.4522 1587.9639 -0.97 639.35 39 0 24
186 62 58 66 1505.6898 1505.9298 0.02 489.36 26 3 23
193 69 57 67 1559.1172 1555.8633 -0.21 651.61 35 2 24
190 61 56 73 1563.5929 1554.1869 -0.60 616.64 47 4 24
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Table A3 (continued).

instances ALNS results

M p ncc CC1 CC2 CC3 ∆ α BKS Cost ∆B t(s) nbMPO nbMPOimp nbR

R101 3 1 300 100 100 100 [1,100] 1.1 3071.7439 3041.7396 -0.98 893.51 45 4 53
300 100 100 100 2946.0070 2934.6564 -0.39 837.63 29 6 52
300 100 100 100 2985.6872 2964.3072 -0.72 934.43 41 7 52
300 100 100 100 3105.7428 3079.8490 -0.83 813.04 31 5 55
300 100 100 100 2852.7976 2858.3302 0.19 944.08 32 4 51

R101 3 1 300 100 100 100 [1,100] 1.5 2345.1176 2325.9298 -0.82 930.92 31 7 39
300 100 100 100 2265.2202 2250.6250 -0.64 945.72 35 4 38
300 100 100 100 2296.8218 2300.1563 0.15 1068.96 37 5 38
300 100 100 100 2371.0709 2365.1241 -0.25 1020.65 37 3 40
300 100 100 100 2190.7829 2185.2957 -0.25 956.33 20 5 37

R101 3 1 300 100 100 100 [1,100] 2 1859.7774 1847.8667 -0.64 1070.10 31 3 29
300 100 100 100 1816.4798 1800.5916 -0.87 1023.86 34 1 28
300 100 100 100 1825.7908 1813.6036 -0.67 1117.82 40 5 28
300 100 100 100 1876.5282 1871.2735 -0.28 1052.49 26 3 30
300 100 100 100 1765.6787 1763.3915 -0.13 1277.70 27 7 28

R101 3 1 300 100 100 100 [1,100] 2.5 1578.8174 1561.1608 -1.12 1208.35 36 4 23
300 100 100 100 1539.1188 1522.9296 -1.05 1498.51 37 8 23
300 100 100 100 1550.6387 1527.6379 -1.48 1474.97 33 3 23
300 100 100 100 1597.1673 1584.9913 -0.76 1285.72 28 1 24
300 100 100 100 1510.7153 1494.2903 -1.09 1395.11 27 6 22

R101 3 1 300 100 100 100 [40,60] 1.1 4607.7839 4605.8439 -0.04 887.44 25 1 87
300 100 100 100 4540.1249 4510.2998 -0.66 820.83 23 1 85
300 100 100 100 4560.4271 4509.0150 -1.13 848.02 25 0 85
300 100 100 100 4678.0437 4643.9582 -0.73 821.14 23 1 89
300 100 100 100 4541.4038 4518.3114 -0.51 900.92 29 1 85

R101 3 1 300 100 100 100 [40,60] 1.5 3411.5788 3379.7642 -0.93 1001.82 47 2 60
300 100 100 100 3373.6096 3362.6067 -0.33 1095.28 56 3 60
300 100 100 100 3409.7802 3385.7239 -0.71 1056.57 54 3 60
300 100 100 100 3432.4292 3408.6962 -0.69 1021.90 43 5 61
300 100 100 100 3433.4163 3374.5175 -1.72 1022.52 49 3 60

R101 3 1 300 100 100 100 [40,60] 2 2639.2852 2626.6402 -0.48 1149.13 35 3 45
300 100 100 100 2609.9934 2604.937 -0.19 1033.69 20 1 44
300 100 100 100 2600.4690 2582.7011 -0.68 1123.78 40 4 44
300 100 100 100 2656.4737 2636.4516 -0.75 1344.94 41 4 46
300 100 100 100 2620.8533 2627.2844 0.25 1138.19 25 2 45

R101 3 1 300 100 100 100 [40,60] 2.5 2195.1808 2196.4906 0.06 1226.16 41 2 36
300 100 100 100 2186.6508 2170.1547 -0.75 1264.51 34 6 35
300 100 100 100 2192.0684 2179.0868 -0.59 1255.90 46 5 35
300 100 100 100 2241.4465 2220.6163 -0.93 1227.96 32 0 36
300 100 100 100 2179.4536 2167.7968 -0.53 1157.51 34 5 35
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B Algorithm and results

B Algorithm and results

B.1 Algorithm for the full truck strategy

Algorithm 10 Full truck strategy.

1: for each supplier s ∈ VS do
2: for each commodity m ∈M do
3: Compute the remaining quantity Rsm = Osm −

∑

∀d∈VD
qmsd

4: end for
5: Let nbRs be the number of commodities of supplier s such that Rsm > 0
6: end for
7: for each distribution center d ∈ VD do
8: for each supplier s ∈ VS do
9: Compute the remaining capacity in the trucks Rsd = xsd×QS−

∑

m∈M qmsd
10: while nbRs > 0 and Rsd > 0 do
11: Compute the average remaining capacity per commodity as avgRsd =

Rsd/nbRs

12: for each commodity m ∈M do
13: Determine the maximum quantity of commodity m that supplier

s can insert in the trucks sent to DC d as Qm
sd = min{avgRsd, Rsm}

14: Add Qm
sd to qmsd

15: Remove Qm
sd units from Rsd

16: Remove Qm
sd units from Rsm

17: end for
18: Update nbRs

19: end while
20: end for
21: end for
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Appendix

B.2 Detailed results for setting the value of δ

We discuss here how we set the value of δ that determines the location of duplicated

customers and distribution center. We solve the delivery subproblem (SPD) for each

instance IMC2DP in the base set S. The collection subproblem is not considered, and

the SPD is solved as discussed in Section 4.4.2. The ALNS is run with a limit of

5000 iterations. To evaluate the solutions, we compare the cost obtained for the SPD

(SPDcost) with twice the optimal value OPT for the corresponding instance of the

C-SDVRP, as reported in Archetti et al. (2014). By construction of the instances,

2OPT is a valid upper bound for the SPD. These tests are performed with values

of δ: 100, 50, 30, 20, 10, and 5.

The results are presented in Table B4. We present results for each group of

instances, where a group is defined by a triplet (I,M, p). Results for a group are

averaged on the values of α and ∆. Each instance contains 30 customers and 2

distribution centers. Table B4 reports the average number of customer-commodities

in each group of instances (avg.ncc), the number of instances in the group (nbIns),

the average deviation (avg.∆) of the cost obtained by solving the SPD and the upper

bound 2OPT , the average CPU time in seconds (avg.t(s)). Moreover, the last three

columns respectively report the number of solutions such that the cost obtained by

solving the SPD is higher than, equal to or lower than 2OPT .

We observe that when δ is large (i.e., equal to 100), the solution value equals

2OPT most of the time. In this case, by construction of the instances, this value

is most likely to be the optimal value. On the other side, when δ is smaller than

100, the value 2OPT is a valid upper bound that can be improved by running

the algorithm for the SPD. When δ equals 5 or 10, for all instances we obtain a

value lower than 2OPT since the distribution centers are then very close. We are

interested in generating a set of instances where the average deviation from 2OPT

is negative, but with some instances such that the cost of the SPD equals 2OPT .

Hence, we set δ = 30.
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Table B4: Results for SPD with different values of δ in the instances.

Case 1: δ=100

I M p avg.ncc nbIns avg.∆ avg.t(s) SPDcost > 2OPT SPDcost = 2OPT SPDcost < 2OPT

C101 2 0.6 44 8 0.00 33.21 0 8 0
C101 2 1 60 8 0.01 45.55 1 7 0
C101 3 0.6 56 8 0.00 52.80 0 8 0
C101 3 1 90 8 0.20 82.53 4 4 0
R101 2 0.6 44 8 0.00 32.53 0 8 0
R101 2 1 60 8 0.00 52.62 0 8 0
R101 3 0.6 56 8 0.00 49.43 0 8 0
R101 3 1 90 8 0.00 95.92 0 8 0

total 64 0.03 55.57 5 59 0

Case 2: δ=50

C101 2 0.6 44 8 0.00 32.70 0 8 0
C101 2 1 60 8 0.00 47.42 0 8 0
C101 3 0.6 56 8 0.00 48.98 0 8 0
C101 3 1 90 8 0.32 81.94 4 4 0
R101 2 0.6 44 8 -1.02 28.02 0 3 5
R101 2 1 60 8 -0.40 48.23 0 5 3
R101 3 0.6 56 8 -0.89 48.07 0 2 6
R101 3 1 90 8 -0.31 98.67 0 4 4

total 64 -0.29 54.25 4 42 18

Case 3: δ=30

C101 2 0.6 44 8 -0.04 30.87 0 7 1
C101 2 1 60 8 -0.15 46.21 0 7 1
C101 3 0.6 56 8 -0.13 50.06 0 6 2
C101 3 1 90 8 0.23 84.65 3 4 1
R101 2 0.6 44 8 -6.67 30.99 0 0 8
R101 2 1 60 8 -7.67 52.84 0 0 8
R101 3 0.6 56 8 -6.43 48.26 0 0 8
R101 3 1 90 8 -7.59 90.94 0 0 8

total 64 -3.56 54.35 3 24 37

Case 4: δ=20

C101 2 0.6 44 8 -4.32 30.41 0 0 8
C101 2 1 60 8 -3.44 41.52 0 0 8
C101 3 0.6 56 8 -3.80 43.25 0 0 8
C101 3 1 90 8 -2.76 80.34 0 0 8
R101 2 0.6 44 8 -14.94 28.73 0 0 8
R101 2 1 60 8 -14.98 40.78 0 0 8
R101 3 0.6 56 8 -14.90 43.97 0 0 8
R101 3 1 90 8 -14.10 88.89 0 0 8

total 64 -9.15 49.74 0 0 64

Case 5: δ=10

C101 2 0.6 44 8 -20.81 33.21 0 0 8
C101 2 1 60 8 -17.86 44.37 0 0 8
C101 3 0.6 56 8 -18.68 55.91 0 0 8
C101 3 1 90 8 -16.96 96.62 0 0 8
R101 2 0.6 44 8 -21.56 30.85 0 0 8
R101 2 1 60 8 -18.42 42.43 0 0 8
R101 3 0.6 56 8 -21.55 44.18 0 0 8
R101 3 1 90 8 -18.02 77.60 0 0 8

total 64 -19.23 53.15 0 0 64

Case 6: δ=5

C101 2 0.6 44 8 -15.40 30.55 0 0 8
C101 2 1 60 8 -14.01 44.46 0 0 8
C101 3 0.6 56 8 -14.35 53.59 0 0 8
C101 3 1 90 8 -13.00 96.31 0 0 8
R101 2 0.6 44 8 -20.46 31.24 0 0 8
R101 2 1 60 8 -15.97 41.87 0 0 8
R101 3 0.6 56 8 -20.54 47.92 0 0 8
R101 3 1 90 8 -16.92 74.95 0 0 8

total 64 -16.33 52.61 0 0 64
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La production et la livraison de produits alimentaires frais ont considérablement

évolué en Europe depuis les années 1950, notamment grâce à la modernisation des

outils et des processus permettant de répondre à la demande des clients et de réduire

les coûts de production. Les entreprises multinationales ont joué un rôle majeur

d’intermédiaire entre les producteurs et les consommateurs (Rucabado-Palomar &

Cuéllar-Padilla, 2018). De nos jours, l’un des problèmes majeurs que rencontrent

les producteurs est leurs faibles revenus : au cours des dernières décennies, ils ont

été encouragés à produire davantage, alors que leurs prix de vente unitaire étaient

en baisse. Cependant, dans de nombreuses régions, il existe (1) des exploitations

de taille moyenne où sont cultivés des produits variés de grande qualité (fraîcheur,

peu de pesticides) et (2) des clients qui recherchent des produits de qualité et de

une traçabilité (King et al., 2015). Par conséquent, l’idée est apparue de connecter

localement les producteurs et les clients (Berti & Mulligan, 2016), par le biais d’une

chaîne logistique en circuits courts (et/ou) de proximité. Le principal objectif de

ce type de chaîne logistique est d’améliorer la captation de valeur au bénéfice de la

production.

Les circuits courts sont officiellement définis par le ministère français de l’Agriculture

comme un mode de commercialisation des produits agricoles des producteurs aux

consommateurs, soit en vente directe, soit en vente indirecte avec un seul intermédi-

aire entre les producteurs et les consommateurs. Les circuits de proximité peuvent

impliquer plusieurs intermédiaires, mais tous les acteurs doivent être situés sur une

zone limitée (par exemple, en tenant compte des restrictions géographiques ou poli-

tiques). La distance maximale entre les acteurs correspond généralement à environ

80 km (Blanquart et al., 2010). Les chaînes logistiques classiques impliquent de

nombreuses opérations de manipulation des produits et des temps de stockage et

de transport importants. Il est alors crucial, dans ce type de chaîne logistique,
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d’éviter le gaspillage alimentaire et les pertes économiques dues à la périssabilité

des produits frais. En effet, selon un rapport de l’Organisation des Nations Unies

pour l’alimentation et l’agriculture (Gustavsson et al., 2012), environ un tiers des

aliments destinés à la consommation humaine est perdu ou gaspillé dans le monde.s

Lorsque l’on considère des circuits courts et de proximité, les acteurs sont situés

dans une zone restreinte et il y a peu d’intermédiaires. Ceci fournit naturellement

une meilleure garantie sur la traçabilité et la fraîcheur des produits. En effet, le

délai entre la collecte et la livraison est généralement au maximum de 24 heures et

les activités de manutention sont limitées car le nombre d’intermédiaires est limité.

Les circuits courts et de proximité impliquent peu d’intermédiaires. Les produc-

teurs doivent donc prendre en charge une grande partie de la commercialisation et

de la distribution de leurs produits, ce qui n’est pas leur activité principale. Cela

est faisable lorsque les producteurs vendent directement leurs produits aux clients,

car les volumes sont généralement faibles. Pour les ventes indirectes (via des can-

tines, restaurants ou supermarchés), les volumes sont plus importants. La chaîne

logistique doit donc être conçue de manière appropriée pour organiser les flux de

produits et minimiser les coûts de transport afin d’être compétitif par rapport aux

chaînes logistiques traditionnelles.

Les circuits courts et de proximité s’organisent généralement autour d’un ensem-

ble de plateformes de distribution. Comme le souligne Berti & Mulligan (2016), les

plateformes logistiques sont les infrastructures les plus utilisées pour répondre à la

demande croissante de produits locaux. Les producteurs approvisionnent générale-

ment ces plateformes logistiques en effectuant des livraisons directes car les volumes

sont importants. Les plateformes logistiques sont ensuite chargées de la consolida-

tion et de la livraison des produits aux clients. En outre, on suppose généralement

qu’un seul preneur de décision gère toutes les plateformes logistiques et coordonne la

planification du transport pour les opérations de collecte et de livraison. Ce preneur

de décision peut être une association de producteur ou une administration locale.

Les plateformes logistiques sont considérées comme le seul intermédiaire de la chaîne

logistique.

L’objectif de cette thèse est de concevoir et de mettre en œuvre des méthodes

de résolution efficaces pour les problèmes de routage qui se posent dans la livraison

de produits agricoles frais en circuits courts et locaux. L’une des principales car-

actéristiques de ces problèmes de routage est de prendre en compte explicitement
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plusieurs produits car: (1) tous les producteurs ne commercialisent pas les mêmes

produits, et (2) les produits peuvent être livrés aux clients par différents véhicules.

Dans cette thèse, notre objectif est d’étudier un problème complexe de distribu-

tion dans une chaîne logistique à deux échelons, dans laquelle trois groupes d’acteurs

sont impliqués: les producteurs, les plateformes logistiques et les clients. Plusieurs

produits sont collectés auprès des producteurs et livrés aux clients via des plate-

formes logistiques qui permettent de consolider les produits. Chaque producteur a

une quantité disponible donnée pour chaque produit (éventuellement 0) et chaque

client a une demande pour chaque produit (éventuellement 0). Les produits sont

collectés auprès des producteurs et acheminés aux plateformes logistiques via des

livraisons directes, puis distribués des plateformes logistiques aux clients par une

flotte de véhicules effectuant des tournées de livraison. Les livraisons directes des

producteurs aux clients ne sont pas considérées. Nous supposons que les produits

sont compatibles, c’est-à-dire que chaque véhicule peut transporter n’importe quel

sous-ensemble de produits tant que sa capacité est respectée. Plusieurs visites chez

un client sont autorisées afin de réduire les coûts de transport. Cependant, pour le

confort des clients, chaque produit demandé doit être livré en une seule fois.

Dans cette thèse, nous commençons par faire un état de l’art des problèmes de

tournées de véhicules qui prennent explicitement en compte plusieurs produits à

livrer. Classiquement, les problèmes de tournées de véhicules concernent implicite-

ment plusieurs produits, par exemple en agrégeant les produits demandés en fonction

du volume ou du poids pour former une demande unique ou en décomposant le prob-

lème pour chaque produit (par exemple s’ils sont livrés à partir de dépôts différents

ou si les véhicules sont dédiés à un seul produit). Dans cette état de l’art, pour

chaque problème, nous déterminons ce qui motive la prise en compte explicite de

plusieurs produits, la manière dont les produits sont considérés dans les formulations

et les méthodes de résolution, et quelles sont les applications principales.

Ensuite, nous abordons la livraison des clients à partir d’une seule plateforme

logistique, en considérant plusieurs produits. Plus précisément, le problème étudié

est appelé le Commodity constrained Split Delivery Vehicle Routing Problem (C-

SDVRP). Ce problème apparait lorsque les clients ont besoin de plusieurs pro-

duits et acceptent qu’ils soient livrés séparément. Tous les produits peuvent être

mélangés dans un même véhicule à condition que la capacité du véhicule soit satis-

faite. Plusieurs visites chez un client sont autorisées, mais chaque produit doit être
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livré en une seule fois. Nous proposons une heuristique basée sur un algorithme de

type ALNS (Adaptive Large Neighborhood Search) pour résoudre le C-SDVRP, dans

le but de traiter efficacement les instances de moyenne et grande taille. Nous prenons

en compte les caractéristiques spécifiques du C-SDVRP et adaptons plusieurs mou-

vements de recherche locale afin d’améliorer une solution. De plus, un opérateur

basé sur la programmation mathématique qui réaffecte les produits aux différentes

routes est utilisé pour améliorer une nouvelle meilleure solution globale. Des tests

ont été menés sur des instances de référence tirés de la littérature. Les résultats dé-

montrent l’efficacité de l’algorithme, qui peut fournir un grand nombre de nouvelles

solutions de meilleure qualité, dans des temps de calcul courts.

Pour résoudre le problème complet, à savoir le Multi-Commodity two-echelon

Distribution Problem (MC2DP), nous proposons des approches de résolution séquen-

tielles. Nous proposons une décomposition du MC2DP en deux sous-problèmes, à

savoir un problème de collecte dans lequel les producteurs fournissent leurs produits

aux plateformes logistiques qui effectuent des trajets allers-retours, et un problème

de livraison dans lequel les plateformes logistiques livrent les clients en utilisant une

flotte de véhicules homogènes qui effectuent des tournées. Le problème de collecte

est modélisé sous la forme d’un programme linéaire à variables mixtes (MIP). Le

problème de livraison est le cas multi-dépôts du C-SDVRP. Par conséquent, nous

étendons l’algorithme ALNS développé pour le C-SDVRP au cas avec plusieurs

dépôts pour les opérations de livraison. Ensuite, nous abordons les approches de ré-

solution séquentielles pour résoudre le MC2DP dan son ensemble. Dans le MC2DP,

les décisions de collecte (quelle quantité de chaque produit est livrée à quelle plate-

forme logistique) ont un impact sur les opérations de livraison. Ainsi, la collecte

et la livraison doivent être déterminées conjointement. Nous présentons deux ap-

proches de résolution séquentielles basées sur la résolution, dans un ordre différent,

des sous-problèmes de collecte et de livraison. Dans les deux cas, la solution du

premier sous-problème détermine la quantité de chaque produit dans chaque plate-

forme logistique. Le deuxième sous-problème prend cette information en entrée.

Nous proposons également différentes stratégies pour guider la solution du premier

sous-problème afin de prendre en compte l’impact de sa solution sur le second sous-

problème. Les approches séquentielles proposées sont évaluées et comparées à la

fois sur des instances générées de manière aléatoire et sur une étude de cas liée

aux circuits courts et de proximité pour la livraison de produits agricoles frais. Les
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résultats montrent l’impact des caractéristiques du problème sur les stratégies de

résolution séquentielle.

Les approches séquentielles proposées présentent l’avantage d’être faciles à con-

cevoir et à comprendre par des décideurs qui ne sont experts. Cependant, une ap-

proche de résolution séquentielle peut fournir des solutions largement sous-optimales

dans certains cas. Ainsi, nous continuons à développer une approche de résolution

intégrée plus sophistiquée pour le MC2DP afin d’améliorer les résultats obtenus par

les approches séquentielles. Sur la base des approches séquentielles, nous améliorons

l’algorithme ALNS. Nous ajoutons de nouveaux opérateurs capables de modifier

les opérations de collecte et de livraison en déplaçant certaines quantités de produit

d’une plateforme logistique à une autre. Certains de ces opérateurs reposent sur une

programmation mathématique afin de modifier la solution actuelle du sous-problème

de collecte. Cette approche intégrée est évaluée et comparée aux meilleures solutions

obtenues avec les approches séquentielles. Les résultats montrent que les opérateurs

proposés sont tous nécessaires et qu’en moyenne, l’approche intégrée est capable de

fournir de meilleurs résultats que toutes les approches séquentielles.

Cette thèse donne lieu à plusieurs axes de recherche futurs. Du point de vue

méthodologique, la première perspective consiste à améliorer l’approche intégrée

pour résoudre le MC2DP. L’idée principale est de développer un algorithme ALNS

pour le problème dans son ensemble, c’est-à-dire pour les opérations de collecte et

de livraison. Pour ce faire, nous proposons d’ajouter des opérateurs de destruction

et de réparation au sous-problème de collecte, par exemple pour supprimer un trajet

direct entre un producteur et une plateforme logistique. Par conséquent, à chaque

itération de l’algorithme ALNS, les sous-problèmes de collecte et de livraison seraient

détruits et réparés. Après la réparation, nous devons nous assurer que les solutions

des sous-problèmes sont cohérentes, c’est-à-dire que chaque plateforme logistique

collecte plus de produits que ce qu’elle livre. Une autre perspective pour améliorer

l’approche intégrée pour résoudre le MC2DP consiste à développer une méthode de

résolution rapide du sous-problème de collecte afin de pouvoir traiter des instances

de grande taille telles que celles abordées dans l’étude de cas pour les approches

séquentielles.

Une autre perspective de recherche de nos travaux consiste à adapter l’algorithme

ALNS proposé pour le C-SDVRP afin de traiter d’autres variantes de problèmes de

tournées de véhicules avec plusieurs produits et la possibilité de faire des livraisons
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multiples. Les méthodes de résolution des tournées de véhicules avec plusieurs pro-

duits dupliquent généralement les clients pour chaque produit demandé, puis fonc-

tionnent avec ces clients dupliqués dans les algorithmes de résolution. Comme nous

l’avons fait pour C-SDVRP, nous pouvons proposer des algorithmes utilisant une

double représentation de la solution en agrégeant ou non les clients dupliqués. Par

exemple, nous pourrions essayer d’adapter l’algorithme ALNS proposé pour résoudre

certains problèmes de tournées de véhicules avec des véhicules possédant plusieurs

compartiments.

De plus, nous pourrions adapter la méthode proposée à certaines extensions du

problème. Premièrement, dans cette thèse, nous ne considérons pas la capacité des

plateformes logistiques. D’un point de vue pratique, nous pourrions inclure des con-

traintes de capacité sur les plateformes logistiques. Deuxièmement, dans cette thèse,

nous avons considéré que les produits sont collectés auprès des producteurs et achem-

inés aux plateformes logistiques par des trajets directs. Nous avons considéré que

les producteurs fournissent des quantités importantes et livrent leurs produits aux

centres de distribution en effectuant un ou plusieurs allers-retours. Cependant, des

recherches futures pourraient envisager un plus grand nombre de producteurs avec

des quantités d’approvisionnement moins importantes. Il serait alors intéressant de

réaliser des tournées de véhicules afin de collecter les produits auprès des produc-

teurs. Pour résoudre cette version du problème, nous pourrions conserver le même

cadre de résolution, mais la résolution du sous-problème de collecte à l’optimalité

serait plus difficile.

Enfin, du point de vue de l’application, nous pourrions étudier le problème où il

est autorisé que certains producteurs livrent directement quelques clients sans passer

par les plateformes logistiques. En effet, dans le contexte de la livraison de produits

agricoles frais en circuits courts et de proximité en produits frais, il est intéressant

que les producteurs aient un contact direct avec des clients situés à proximité de

leur ferme. Par conséquent, nous pourrions envisager un système logistique associant

livraisons directes et livraisons via des plateformes logistiques.

190



Titre: Problèmes de tournées de véhicules avec plusieurs produits et applications à la livraison de produits frais en

circuits courts et locaux

Résumé: Dans cette thèse, nous étudions les problèmes de tournées de véhicules pour la livraison de plusieurs

produits, avec des applications dans les chaînes logistiques en circuit court et local. La chaîne logistique étudiée

comprend deux échelons, et est composée de trois groupes d’acteurs: les fournisseurs, les plateformes de distribution

et les clients. Les fournisseurs sont des agriculteurs qui produisent des produits alimentaires frais. Les plateformes

de distribution sont chargées de la consolidation et de la livraison des produits aux clients. Les plateformes de

distribution collectent les produits auprès des fournisseurs en faisant un ou plusieurs aller-retours. Les produits sont

livrés aux clients avec une flotte de véhicules effectuant des tournées. Chaque client demande plusieurs produits

et chaque agriculteur produit une quantité limitée de ces produits. Pour minimiser les coûts de transport, il est

avantageux qu’un même client soit livré par plusieurs véhicules. Mais pour le confort du client, il est imposé qu’un

produit soit livré en une seule fois par un seul véhicule. En conséquence, les différents produits sont explicitement

pris en compte dans les modèles et méthodes de résolution. Le problème complet est nommé Multi-Commodity

two-echelon Distribution Problem (MC2DP). Le problème restreint qui concerne uniquement la livraison à partir

d’une seule plateforme de distribution est nommé Commodity constrained Split Delivery Vehicle Routing Problem

(C-SDVRP). Nous proposons d’abord une heuristique basée sur un ALNS (Adaptive Large Neighborhood Search)

pour résoudre le C-SDVRP. Nous abordons ensuite le problème complet (MC2DP) avec des opérations de collecte

et de livraison et plusieurs plateformes de distribution. Afin de résoudre ce problème complexe, nous proposons de

décomposer le problème: la collecte et la livraison sont résolues de manière séquentielle. De plus, nous développons

une approche intégrée pour le MC2DP afin d’améliorer les solutions obtenues par l’approche de décomposition.

Mots-clés: problèmes de tournées de véhicules, livraison de plusieurs produits, recherche à voisinage large adaptatif,

recherche locale, livraison de produits frais en circuits courts et locaux.

Title: Multiple commodities routing problems with applications in the local fresh food supply chain

Abstract: In this thesis, we study vehicle routing problems considering multiple commodities, with applications in

the local fresh food supply chains. The studied supply chain contains two echelons with three sets of actors: suppliers,

distribution centers and customers. Suppliers are farmers that produce some fresh foods. Distribution centers are
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