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Introduction

Nowadays, e-commerce is a thriving market around the world. It is used on a daily basis
and allows customers to purchase online whenever and whatever they like. Customers
are no longer restricted to go to a specific store and to respect the opening hours.
An annual survey conducted by the analytics firm comScore and UPS revealed that
American consumers purchased more things online than in stores in 2016 (Farber,
2016). At the end of 2018, global e-commerce sales reached approximately $2.8 trillion
and are estimated to hit $4.5 trillion in 2021 (Wardini, 2018). This growing e-commerce
poses a huge challenge for the last mile delivery since the ordered items need to be
delivered to individual customers.

Currently, there exist several last mile delivery services to deliver packages to cus-
tomers. The most common delivery option is home/workplace delivery (Lowe & Rigby,
2014). Customers wait at home/workplace to get their packages. Besides, the delivery
can be made to pick-up points such as dedicated lockers or stores. In this case, cus-
tomers can retrieve their packages once the delivery has been made. To give an idea,
there are more than 2800 lockers located across the US (Holsenbeck, 2018). When
customers shop online, they can choose a nearby locker as their delivery location.
This reduces the fragmentation of deliveries in the last mile, thereby helping to reduce
the congestion and environmental pollution caused by urban freight trips (Morganti
et al., 2014), as well as reducing routing costs. In recent years, a new concept called
trunk/in-car delivery has been proposed. Here, customers’ packages can be delivered
to the trunks of cars. Volvo launched its world-first in-car delivery service in Sweden
in 2016 (Kirsten, 2016). The courier has a one-time digital code to get access to the
trunk of the car. In April 2018, Amazon launched the in-car service in partnership
with two major automakers General Motors and Volvo. This service is available in 37
cities in the US (Hawkins, 2018). Trunk delivery differs from home/workplace delivery

and pick-up points delivery since the car moves and can be in different locations dur-
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ing different periods of time, e.g., parked at the workplace in the morning and at the
commercial center in the afternoon. As a consequence, synchronization between the
car and the courier is required to make the delivery.

All these delivery services can be combined, and instead of choosing one delivery
location during the online purchase, the customer can propose a set of delivery locations
with the associated time constraints. To deliver a package to a specific customer, the
courier only needs to choose one of the locations provided by the customer.

In this thesis, we aim to model and develop efficient solution methods for rout-
ing problems that arise in the context of last mile delivery when multiple shipping
options are proposed: home/workplace, pick-up points, and car trunk. The last mile
delivery with multiple shipping options allows customers to choose multiple locations
to receive their packages. This provides customers more flexibility considering their
convenience. Moreover, it might increase the rate of successful first-time deliveries and
decrease the delivery costs. For example, in the United Kingdom, the cost of failed
deliveries is almost $1.1 billion for retailers and e-commerce companies in a $100 bil-
lion market (Honorato, 2016; Symonds, 2018). Offering more delivery options could be
profitable (BringgTeam, 2019).

We study both the single-vehicle and multi-vehicle routing problems in this context,
i.e., the Generalized Traveling Salesman Problem with Time Windows (GTSPTW) and
the Generalized Vehicle Routing Problem with Time Windows (GVRPTW), in which
there are clusters representing possible delivery locations associated with a customer.
It can be easily seen that in the problems we study, it is not necessary to visit all the
locations associated with a given customer, since the courier only needs to deliver the
package to one of the locations that the customer provides.

In the following, we outline the thesis.

e In Chapter 1, we survey non-Hamiltonian routing problems whose main charac-
teristic is that only a subset of vertices of the problem graph need to be visited.
For each of these problems, we give its definition and present a compact math-
ematical formulation. We also provide a literature review and give some of its

applications.

e In Chapter 2, we study the single-vehicle routing problem for last mile deliv-
ery with multiple shipping options, which is called the Generalized Traveling
Salesman Problem with Time Windows (GTSPTW). We present four integer
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linear programming formulations for the GTSPTW. The models differ in the
way we define the arc variables and time variables: based on vertices or clus-
ters. Dominance relations between the linear relaxations of these formulations
are theoretically established. Computational results on linear relaxations show
that on average formulation F1 (arc variables are defined between pairs of ver-
tices and time variables are defined for all the vertices) is the best, followed by
formulation F2 (arc variables are defined as in F1 while only one time variable
is defined for each cluster). However, when the GTSPTW is solved using the
branch-and-bound scheme in CPLEX, on average formulation 2 is the most ef-
ficient, followed by formulation F1. Therefore, we recommend using formulations
F1 and F2 for the solution of the GTSPTW. In addition, supervalid inequalities
for formulations F1 and F2 are proposed, and we experimentally show how they

strengthen these models.

In Chapter 3, we develop a branch-and-cut algorithm for the GTSPTW. Several
families of valid inequalities are proposed, which contain polynomial or exponen-
tial numbers of constraints. They are incorporated in a branch-and-cut frame-
work through dedicated separation procedures. A high quality initial solution is
constructed based on a heuristic and used as a warm start in the branch-and-
cut algorithm. We test the algorithm on three groups of instances with different
characteristics. The results clearly demonstrate the efficiency of the proposed
branch-and-cut algorithm and the quality of formulation F2. The proposed al-
gorithm based on formulation F2 can solve instances around 30 clusters within

one hour of computation time.

In Chapter 4, we study the multi-vehicle case, which is called the Generalized
Vehicle Routing Problem with Time Windows (GVRPTW). We propose an in-
teger linear programming formulation and a set covering formulation for the
GVRPTW. Based on the set covering formulation, we develop a column genera-
tion based heuristic to solve the GVRPTW. It combines several components in-
cluding construction heuristic, route optimization procedure, local search, and the
generation of negative reduced cost routes. Experimental results on benchmark
instances show that the proposed algorithm is very efficient, and high-quality
solutions can be obtained within very short computation times for instances with

up to 120 clusters.
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e Finally, we give some conclusions that we draw from the studied problems and

discuss some perspectives of future work.
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1.1 Introduction

Urban population grows with a constant trend, and nowadays half of the population
lives in urban areas. In particular, almost 75% of the European population lived in
urban areas in 2015. Higher shares were recorded in Latin America and the Caribbean
(79.8%) and North America (81.6%).

In 2014, the Netherlands, Belgium, and United Kingdom were the most concen-
trated urban regions of the European Union (EU) since 44.1%, 34.6% and 27.5% re-
spectively of their total area was classified as predominantly urban. On the other side,
nordic EU member States, Ireland and eastern EU member States such as Hungary,
Romania, Croatia, and Bulgaria account for at least 97.0 % of their total surface as
rural regions.

Moreover, in 2012, 53% of all gross domestic product (GDP) was generated in
urban zones. As a consequence, even if the area occupied by predominantly urban
regions across the EU was generally quite small, in light of the population that lives
in, it is easy to see the concentration of economic activities in these regions. Same
situation happens around the world, with more than 80% of global GDP generated in
cities (Wahba, 2019).

These activities produce economic growth, engender a wide range of problems
among those we can name traffic congestion, and pollution (Kotzeva, 2016) and rise a
number of challenges in the context of city logistics. The concept of city logistics was
defined by Taniguchi et al. (2001) as “the process for totally optimizing the logistics
and transport activities by private companies in urban areas while considering the traf-
fic environment, the traffic congestion and energy consumption within the framework
of a market economy’. The reader interested in city logistics is refereed to Cattaruzza
et al. (2017); Crainic et al. (2009); Taniguchi et al. (2001).
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Among the logistics solutions proposed to deliver parcels in the context of city
logistics, several consider multiple locations as delivery points for a specific parcel. For
example, a customer can choose to be delivered at home or at a nearby pick-up point.
Pick-up points may be shops that offer collection services or lockers installed by the
delivery company. Both lockers and pick-up points allow the transfer of the parcel from
the courier to the consignee without the simultaneous presence of both.

A recent technology proposed by Volvo introduces the possibility of making delivery
directly into the trunk of the customer’s car. Volvo launched its world-first in-car
delivery service in Sweden in 2016. The courier has a one-time digital code to get
access to the trunk of the car. Since the car moves along the day, the parcel can be
delivered in different locations and requires the simultaneous presence of the car and
courier.

Classical routing problems studied by scholars are defined on a graph G = (V, A)
that represent the delivery network. V = {0,..., N} is the set of vertices, and A is
the set of arcs connecting pairs of vertices. Vertex 0 represents the depot where the
fleet of vehicles is located, while nodes V \ {0} represent customers. Classical routing
problems assume that all the customers, namely all the vertices in the graph, have to
be visited once by a single vehicle (Toth & Vigo, 2014).

However, in the two aforementioned examples in the city logistics context, each
customer is associated with several possible delivery locations. To deliver the parcel,
only one of the possible delivery locations associated with the same customer has to
be selected to make the delivery. Then, a solution of such routing problems visits only
a subset of the vertices of the graph G = (V, A) representing the instance.

Routing problems that do not require to visit all the vertices of the graph are various
and are not limited to the fact that only one vertex need to be visited among a fixed
subset of vertices as in the aforementioned examples. When a profit is associated to
the visit of a vertex, some problems consider to only visit a subset of the vertices in
order to maximize the profit, or to take into account some resource constraints. Other
problems also consider that if a vertex is visited, some other vertices (e.g., the ones
close from this visited vertex) do not need to be visited anymore.

In all the problems mentioned, only a subset of vertices of the graph need to be
visited. We refer to this class of problems as non-Hamiltonian routing problems (non-
HRP) (Laporte & Martin, 2007). Laporte & Martin (2007) propose a related survey

that is limited to the single-vehicle case of the non-HRP and covers research works up
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to the year 2005. Fischetti et al. (2007) also give a non-exhaustive list of single-vehicle
non-HRP including works up to the year 2002. The aim of this paper is to survey
recent advances in both the single-vehicle and the multi-vehicle non-HRP.

The paper is organized as follows. In Section 1.2 we describe the organization of the
survey, the choices we made, the notations and the convention we use. Section 1.3 is
dedicated to the non-HRP where one vehicle is in charge of the delivery service, while
Section 1.4 considers non-HRP where a fleet of several vehicles is available. Finally,

Section 1.5 concludes the paper.

1.2 Survey organization and notations

1.2.1 Survey organization

The paper is organized in two main sections. The first deals with one vehicle problems
while the second section deals with the multi-vehicle case. Each section starts with
the introduction and the formulation of the classical related routing problem from
which the hamiltonian requirement has been removed, namely the Traveling Salesman
Problem (TSP) and the capacitated Vehicle Routing Problem (VRP).

This paper is not intended to provide a detailed survey on each non-HRP class
mainly because surveys dedicated to some specific classes of non-HRP are already
present in the literature and such work would simply end up in a repetition. The main
objective of this paper is to provide to the reader a complete list of non-HRP and to
redirect he/she towards dedicated recent research papers or towards dedicated surveys
when these are available.

For each problem, first we provide a mathematical formulation. The purpose of
the formulation is descriptive only. We provide compact formulations, namely that
are polynomial in the number of variables and constraints. This implies that subtour
elimination constraints are expressed in the Miller-Tucker-Zemlin (MTZ) form (Miller
et al., 1960). Then we review the literature on this problem. The articles are divided
into two categories according to the solving methodology proposed in the paper, i.e.,
exact methods and heuristic methods.

We limit the scope of this literature review to routing problems where the service
is accomplished on the nodes of the graph and not on the arcs. As a consequence, we

do not include problems that belong to the family of arc routing problems.
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1.2.2 Notations

All along the paper we take the convention of using uppercase letters in mathematical
calligraphy to represents sets. Uppercase letters represent data while lowercase letters
represent variables.

Routing problems may be defined on a digraph that represents the road network.
This digraph is denoted by G = (V, . A) where V is the vertex set and A is the arc set.
A specific vertex 0 represents a depot. The cardinality of the vertex set V is N + 1.
Vertices 1, ..., N represent locations that may require a visit or a service. There is a
fleet F,|F| = F of vehicles located at the depot 0.

With each arc (7, j) € A, we associate a traveling time T};, a traveling cost C;; and
possibly a distance D;;. If not differently specified, we suppose that traveling times,
traveling costs and distances are asymmetric (7;; # Tj;, Cy; # Cji, Dij # Dj; for some
i,j € V) and satisfy the triangle inequality (7;; < Tix + Tj;, Cij < Cix + Ck; and
Dip + Dy; < Dyj for all i, j, k € V).

When an undirected graph is considered, it is denoted by G = (V, ), where V is
the vertex set, while £ is the edge set. Then the problem is symmetric, i.e., Tj; = T};,
Cij = Cji, Dij = Dj; for all 4,57 € V. For ease of notation we indicate both the vertex
sets of a digraph and an undirected graph by V), while we distinguish the arc set of a
digraph A from the edge set of an undirected graph £.

To present mathematical models, there are some common variables used for different
problems. Based on a digraph G = (V, A), variables z;;, V(i, j) € A are binary variables
that represent the arc selection, equal to 1 if and only if arc (7, j) is used in the solution;
variables y;, Vi € V' are binary variables that represent vertex selection, equal to 1 if
and only if vertex ¢ is used in the solution; variables u;, i € V '\ {0} are real non-
negative variables; variables ¢;, ¢ € V are real non-negative variables that represent the
beginning time of service at a vertex.

If there are more than one vehicle available (F' > 1) at the depot, we might add one
more index corresponding to the vehicle in the variable definition, i.e., we use variables
zijr, V(i,5) € A, f € F and y;, Vi € V, f € F for arc selection and vertex selection
respectively to represent that a certain arc or vertex is used by a specific vehicle or
not.

There are some additional notations. Given a subset S of the vertex set V, § C
V,S # 0, we define 017(S) = {(4,7) € Ali € S,j € V\ S} and 6 (S) = {(4,)) € Ali €
V\S,j € S8}, namely the set of arcs exiting from and entering into S. When S = {i},
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we use the notation 67 (i) and 6~ (7) instead of 67 ({i}) and 6~ ({i}) respectively. Last,
we define v(S) = {(i,j) € Ali,j € S} as the set of the arcs with both endpoints in S.

1.3 One-vehicle case

This first part of the paper focuses on non-HRP where a single vehicle or person is in
charge of the service operation. Usually when only one resource is available to perform
operations, we refer to it as a traveling salesman rather than a vehicle. We begin the
section by introducing the Traveling Salesman Problem (TSP). Then, we present differ-
ent families of non-HRP derived from the TSP in which the Hamiltonian requirement
is removed. These problems include the Generalized Traveling Salesman Problem, TSP
with Profits, the Covering Tour Problem, the Covering Salesman Problem, the Median
Cycle Problem, the Ring Star Problem, and the Traveling Purchaser Problem.

1.3.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is defined on a graph G = (V,.A), where the
vertex set V represents the set of cities to be visited by the salesman. The TSP consists
in determining the minimum cost Hamiltonian cycle on G.

The TSP can be formulated using variables x;; and u; introduced in Section 1.2.2
as follows (Miller et al. (1960)):

(i,5)eA

sty my=1 VieVy, (1.2)
(i,)€6(3)
(J,1)€d~(2)
w —u;+ Nx; <N —1 Vi,j € V\ {0}, # j, (1.4)
Ti; € {O, 1} Vi,j €V, 1 # j, (15)
> 0 VieV\{0}.  (L6)

The objective function (1.1) minimizes the cost of the Hamiltonian cycle. Con-
straints (1.2) and Constraints (1.3) impose that each vertex is visited exactly once.

Constraints (1.4) are subtour elimination constraints in the Miller-Tucker-Zemlin (MTZ)
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form. Constraints (1.5) and (1.6) define the variables. The TSP is one of the most
studied combinatorial optimization problems. The interested reader is refereed to Ap-
plegate et al. (2006); Cook (2011); Gutin & Punnen (2007).

1.3.2 The Generalized Traveling Salesman Problem

The Generalized TSP (GTSP) is an extension of the TSP where the vertices of the
graph G = (V,A) are partitioned into clusters, i.e., Co = {0},Cy,...,Cx clusters.
ColJ..-UCx =V and C,NC, = O,Vh,k € K,h # k, where K = {0,1,..., K} de-
notes the cluster index set. The arc set A contains arcs that link vertices belonging to
different clusters, that is, A = {(i,j)|i € Cx,j € C,k # I, k,l € K}. The objective of
the GTSP is to find a minimum cost tour that visits each cluster exactly once.

The GTSP is formulated using variables z;;, y; and u; introduced in Section 1.2.2

as follows:

(1,5)€A
(i,4) €0t (i)

Z Tji = Yi VieV, (1.9)
(Ji)€6~ (4)
S yi=1 vk € K, (1.10)
1€Cy,
zij € {0,1} Vi,j € V,i # j, (1.12)
yi €{0,1} VieV, (1.13)
u; >0 Vi e V\ {0} (1.14)

The objective function (1.7) minimizes the traveling cost of the tour. Constraints (1.8)
and Constraints (1.9) are flow conservation constraints and impose that an arc enters
and exits each selected vertex. Constraints (1.10) impose that exactly one vertex is
visited per cluster. Constraints (1.11) are subtour elimination constraints in the MTZ
form. Constraints (1.12) — (1.14) define the variables.

As in the TSP formulation (1.1)-(1.6), x;; variables select the arcs used by the
salesman to perform the tour. With respect to the TSP formulation (1.1)—(1.6), vertex

11
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selection for each cluster is required. As a consequence, variables y; are introduced to
select the vertex that is visited for each cluster.

If all clusters C;, « = 1, ..., K are singletons, the GTSP reduces to the TSP. From
this observation it immediately follows, by reduction to the TSP, that the GTSP is
N P-hard.

Polyhedral results

The paper by Fischetti et al. (1995) is dedicated to the description of the polytope of
the symmetric GTSP (T;; = T}, C;; = Cj;). They prove that the dimension of the
polytope of the GTSP is || — K. Some families of inequalities are proved to be facet
defining. Moreover they provide a general lifting procedure that allows to extend facet

defining inequalities of the symmetric TSP polytope to a facet of the symmetric GTSP.

Transformation to the TSP

Several papers propose to solve the GTSP by transforming an instance of the GTSP
into an instance of the well-studied TSP, and then solve the latter by applying existing
exact or heuristic approaches for the TSP.

Noon & Bean (1993) propose a technique to transform any instance of the GTSP
to an instance of the asymmetric TSP. This technique first constructs an instance of
the clustered-TSP, as the GTSP admits a partition of the nodes in V into clusters.
However the clustered-TSP requires to visit all the nodes of V with the constraints
that the nodes in the same cluster must be visited consecutively. It introduces zero-
cost arcs to form a cycle among nodes inside each cluster. Then the clustered-TSP is
transformed into a standard asymmetric TSP by simply adding a large cost to all the
inter-cluster arcs. The proposed transformation creates an instance of the TSP with
[V| nodes and [A| + 37k ¢, =1 [Cr| arcs.

Dimitrijevi¢ & Sari¢ (1997) propose a transformation of an instance of the GTSP to
an instance of the asymmetric TSP based on the replication of all the nodes in V. They
connect all the nodes in the same cluster via a zero-cost cycle. Similarly, the replication
of nodes in the same cluster are connected via a zero-cost cycle. Arcs that start from
the original node and end at the replication node are introduced and associated with

a large cost. The resulting graph has 2|V| nodes and [A| +[V| +2 3, ¢, 1 [Ck| arcs.
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1.3 One-vehicle case

Laporte & Semet (1999) propose a transformation of an instance of the symmetric
GTSP into the symmetric TSP made on the replication of all the nodes in V. Nodes in
the same cluster are arbitrarily ordered as 1,1’,2,2',..., h, b/, placing a vertex next to
its copy. Edges {1,1'},{1",2},{2,2'},...,{h, W'}, {}, 1} are added. Edges connecting
copies of the same node has a cost of —M, while other edges a cost of —2M, where M
is a large enough value. The resulting graph has 2|V| nodes and (|€] + 231 (|Ck|))
edges.

Ben-Arieh et al. (2003) and Zia et al. (2018) discuss “non-exact” transformations
from the GTSP to TSP that provide heuristic solutions for the GTSP using existing
algorithms for the TSP.

Exact methods

The existing literature on exact methods for the GTSP is quite limited. The GTSP is
first introduced by Srivastava et al. (1969) and Saskena (1970a), and dynamic program-
ming is used to solve it. Laporte & Nobert (1983) propose an integer programming
formulation and a branch-and-bound approach for the symmetric GTSP. The largest
instance solved contains 50 nodes and 10 clusters. Laporte et al. (1987) study the
asymmetric case of the GTSP and propose a branch-and-bound algorithm. Instances
with up to 100 nodes and 8 clusters are solved to optimality. Noon & Bean (1991)
present a branch-and-bound approach for the asymmetric GTSP. They propose a La-
grangian relaxation to compute a lower bound and a heuristic to compute an upper
bound. Non-optimal arcs and nodes are identified and eliminated based on the re-
duced costs. This method is tested on a set of randomly generated instances. They
solve instances with up to 104 nodes and 8 clusters. Meanwhile, their algorithm is more
efficient compared to the approach proposed by Laporte et al. (1987). Fischetti et al.
(1997) study the symmetric GTSP. The authors propose an efficient branch-and-cut
algorithm to solve the GTSP. They develop exact and heuristic separation procedures
for some classes of facet-defining inequalities. They also generated a library of GTSP
instances called GTSP-LIB by taking TSP-LIB instances and performing a clustering
procedure on the nodes. Their algorithm could solve instances with up to 89 clusters
and 442 nodes.

13
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Heuristic methods

A different approach to tackle the GTSP is to develop heuristics. Heuristics include
genetic algorithms (Ardalan et al., 2015; Snyder & Daskin, 2006), particle swarm based
approach (Shi et al., 2007), and ant colony algorithms (Pintea et al., 2007; Yang et al.,
2008). Several memetic algorithms combining genetic and powerful local search algo-
rithms have also been proposed (Bontoux et al., 2010; Gutin & Karapetyan, 2010).
The memetic algorithm proposed by Gutin & Karapetyan (2010), called GK, obtains
excellent results on the GTSP-LIB instances, with computation times shorter than 1
minute and most of the solutions within 0.2% of the best-known values. It has been
shown in Drexl (2014) that GK performed well for instances with up to about 200
clusters. However, for instances with more than 500 clusters, the gaps to the optimal
solutions usually exceeded 10%. Helsgaun (2015) extends the Lin-Kernighan-Helsgaun
(LKH) TSP solver (Helsgaun, 2000, 2009) to the GTSP, called GLKH. He transforms
the GTSP instance to the standard asymmetric TSP using the transformation method
proposed by Noon & Bean (1993) and then solves the TSP using the LKH solver. The
resulting algorithm improves the solution quality on GTSP-LIB instances compared
with the GK proposed by Gutin & Karapetyan (2010), at the expense of more compu-
tation time. The GLKH is also tested on several other problem libraries. It could find
high-quality solutions for new generated large-scale GTSP instances with up to 17180
clusters and 85900 vertices. It also shows strong performances on transformed instances
of the arc routing problems (Corberan et al., 2012). Smith & Imeson (2017) presented
a solver called GLNS based on adaptive large neighborhood search. Their results show
that on the benchmark GTSP-LIB instances, the GLNS shows similar performance to
that of GK and GLKH. On several other problem libraries, given the same amount of
computation time, the GLNS finds higher quality solutions than existing approaches.

Application

Following Laporte et al. (1987), one application of the GTSP is proposed in Bovet
(1983) and consists in determining the locations of mailboxes in two phases. First
a set of possible location of each mailbox is built. Thus, each cluster contains the
potential locations of a mailbox. The exact locations of mailboxes are determined
while calculating the route of the postal van that consists of a single visit of each

cluster such that routing cost is minimized.
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Saskena (1970b) describe an application where a person needs to receive different
services and each service is provided by different agencies. Agencies are then clustered
with respect to the service they provide. The tour the clients perform consist in visiting
each cluster once while minimizing routing costs.

Laporte et al. (1996) mention the material flow system design problem. A pro-
duction plant is partitioned in several production zones. These zones are supposed to
be polygonal. The problem consists in designing a minimal length tour such that it
contains at least one vertex of each zone. Then, each cluster contains the vertices of

the zones and the problem can be modeled as a GTSP.

1.3.3 The TSP with Profits

The TSP with Profits (TSPPs) is a generalization of the TSP where in the graph
G = (V, A) each vertex i € V \ {0} is associated with a profit P;. The objective
is to optimize both the collected profit and the traveling cost. As such, the visit of
all the vertices is not mandatory. The collection of the profits and the traveling cost
optimization may be considered in the objective function or in the constraints. In

particular, based on the different case the TSPPs can be classified as follows:

e The Profitable Tour Problem (PTP) (Dell’Amico et al., 1995) where the objective

is to minimize the traveling cost minus the collected profit.

e The Orienteering Problem (OP) (Chao et al., 1996a) where the objective is to find
a tour that maximizes the profit under a constraint that imposes the maximum

cost Chaz Of the tour.

e The Prize-Collecting Traveling Salesman Problem (PCTSP) (Balas, 1989) where
the objective is to minimize the tour traveling cost under a constraint that im-

poses a minimum prize collection P,,;,.

The TSPPs can be formulated using variables z;;, y; and u,; introduced in Sec-

tion 1.2.2 as follows:

(I'SPPs) min f(z,y) (1.15)

(i.7)€5* (9)
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(7)€ (4)

g(z,y) 20, (1.19)
Zij € {07 1} Vi,j € Vi 7é Js (120)
y; €{0,1} Viey, (1.21)
u >0 Vi e v\ {0}. (1.22)

where f(x,y) and g(z,y) are as follows.

e for the PTP:

= f(@,y) = Xiea Ciais — Xiey Pivi
— g(z,y) = 0;

e for the OP:

— f(x,y) = = > icy Pivi
= 9(2,9) = Craz — 20 jyen Cigiss

e for the PCTSP:

- flz,y) = Z(m)eA Cijs
- g(ﬂ?,’y) = ZiEV szz - Pmln

The objective function (1.15) is to minimize the traveling cost minus the collected
profit in the case of the PTP, is to maximize the profit in the case of the OP and
is to minimize the traveling cost in the case of the PCTSP. Constraints (1.16) and
Constraints (1.17) are flow conservation constraints and impose that an arc enters and
exits each selected vertex. Constraints (1.18) are MTZ subtour elimination constraints.
Constraints (1.19) are inactive for the PTP, impose the maximum tour cost for the OP
and the minimum prize to collect for the PCTSP. Constraints (1.20) — (1.22) define
the variables.

The three versions of the TSPPs are N P-hard (Feillet et al. (2005)).

The interested reader is referred to the surveys by Feillet et al. (2005), Archetti et al.
(2014), Vansteenwegen et al. (2011) and Gunawan et al. (2016). Feillet et al. (2005)

reports polyhedral results on the TSPPs and its transformation into the TSP and covers
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works up to the year 2000. Archetti et al. (2014) is dedicated to the Vehicle Routing
Problem with Profits, but includes research works dedicated to both single-vehicle case
(TSPPs) as well as the multi-vehicle case, up to the year 2014. Vansteenwegen et al.
(2011) provide a comprehensive survey on the OP and its variants, including problem
descriptions, benchmark instances and solution approaches, covering works up to the
year 2009. Gunawan et al. (2016) also surveys on the OP extending new works and
new variants of the OP up to the year 2015.

In this section, in order to avoid the repetition, we focus on the related literature
on the PTP and PCTSP published since 2014 and on the OP since 2015, as well as
on papers that were not reported. Recent works on the PTP and its variants include
both exact and heuristic approaches, while all the recent works on the PCTSP, OP

and their variants propose heuristic approaches.

Exact methods: PTP

To the best of our knowledge, there is no specifically proposed exact approach for the
PTP. However, there exist some recent works on variants of the PTP, e.g., the capaci-
tated PTP (Jepsen et al., 2014), the time-dependent PTP (Lera-Romero & Miranda-
Bront, 2019; Sun et al., 2018), etc., as described in the following. Jepsen et al. (2014)
propose a branch-and-cut algorithm for the capacitated PTP. In the capacitated PTP,
each customer is associated with a profit and a demand, and a capacity is given for
the maximum load of the tour. The objective is to find a tour that minimizes the total
traveling cost minus the profits gained from the visited customers, with the demand
accumulated at the customers does not exceed the capacity. Sun et al. (2018) study
the time-dependent capacitated PTP with time windows and precedence constraints.
In this problem, a single vehicle with capacity limit is available. To deal with road
congestion, traveling times are considered to be time-dependent. They propose an ex-
act approach by developing a tailored labeling algorithm. A heuristic is also described
which could obtain high-quality solution in lower computation time than the proposed
labeling algorithm. Lera-Romero & Miranda-Bront (2019) study the time-dependent
PTP with resource constraints. These constraints can be related to time windows,
vehicle capacity, duration of the route, etc. The authors propose a mixed integer
programming formulation and four new families of valid inequalities for the problem.
They develop a branch-and-cut algorithm, and experimental results on four different

problems show that the proposed approach is effective and flexible.
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Heuristic methods: PTP

There exist two heuristic works on variants of the PTP. Lee et al. (2010) propose a
genetic algorithm for the PTP with pickup and delivery. Chentli et al. (2018) propose
an adaptive large neighborhood search for the PTP with simultaneous pickup and

delivery.

Heuristic methods: PCTSP

Archetti et al. (2014) cover most of the exact, heuristic, and approximation algorithms
for PCTSP up to the year 2014. In recent years, only a few works appeared on the
PCTSP. Pedro et al. (2013) propose a tabu search approach for the asymmetric version
of the PCTSP. da Silva Menezes et al. (2014) study the prize-collecting traveling car
renter problem. In the traveling car renter problem, several cars are available to be
used during the tour and a tourist wants to visit a set of cities with rented cars. The
objective is to determine a minimum cost tour that visits some cities with different
rented vehicles, at least reaching a pre-specified satisfaction. The authors proposed a

memetic algorithm to solve this problem.

Heuristic methods: OP

For the OP, there are several recent works. Kara et al. (2016) present two polynomial-
size formulations. Kobeaga et al. (2018) propose a population-based evolutionary algo-
rithm for the OP, whose main characteristic is to maintain unfeasible solutions during
the search and to use specific operators to recover feasibility when it is required. Ex-
perimental results show that the proposed algorithm is competitive for medium-size
instances with up to 400 nodes and is excellent for large-size instances with up to
7397 nodes in terms of quality and time. Santini (2019) proposes an adaptive large
neighborhood search algorithm for the OP. Computational results showed that it is
competitive with the genetic algorithm proposed by Kobeaga et al. (2018) and it finds
better solutions when given a long CPU time limit. Moreover, the two algorithms
seem to be complementary in the sense that for the sets of large instances whose best
solution is found by genetic algorithm and the proposed algorithm are disjoint.

The rest of recent papers work on the variants of the OP, e.g., OP with mandatory
visits and exclusionary constraints, multi-objective OP, time-dependent OP, stochastic

OP, probability OP, the set OP. These variants are reviewed hereafter.
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Palomo-Martinez et al. (2017) study a variant of the OP in which mandatory visits
for certain nodes and incompatibility between nodes are considered. They propose
a hybrid variable neighborhood search algorithm combining the greedy randomized
adaptive search procedure. Lu et al. (2018) propose a memetic algorithm for the
same problem. Experimental results on the benchmark instances proposed by Palomo-
Martinez et al. (2017) show that their algorithm is highly effective and outperforms
the hybrid variable neighborhood search algorithm.

Martin-Moreno & Vega-Rodriguez (2018) propose an evolutionary algorithm for the
bi-objective OP. Experimental results show that the proposed algorithm outperforms
the other two state-of-the-art algorithms for the bi-objective OP.

Mei et al. (2016) study the multi-objective time-dependent OP, in which the time-
dependent traveling time and multiple preferences are taken into account. They pro-
pose two metaheuristics, i.e., a multi-objective memetic algorithm and a multi-objective
ant colony algorithm to solve the problem.

Verbeeck et al. (2016) introduce the OP with time windows and time-dependent
stochastic traveling time. They design an ant colony algorithm to solve the problem.
In this variant, the traveling time between two locations is a stochastic function that
depends on the departure time at the first location.

Angelelli et al. (2017) study a variant of the OP called the probabilistic OP, in
which each node will be available for visit only with a certain probability. The au-
thors formulate the problem as a stochastic mixed integer programming problem and
propose a branch-and-cut approach and several metaheuristics. Computational results
prove the efficiency of the exact method, and the metaheuristics can find high quality
solutions in a few minutes.

Varakantham et al. (2018) study a variant of the stochastic OP, in which the trav-
eling time distribution for moving from one vertex to another depends on the arrival
time at the former vertex.

Dolinskaya et al. (2018) model the search and rescue operation in a post-disaster
as a variant of the OP, in which multiple paths with stochastic traveling times exist
between nodes.

Bian & Liu (2018) focus on the operational-level stochastic OP, in which the vehicle
can adjust the routing plan in real-time.

Freeman et al. (2018) study a variant of the OP called attractive OP for planning

entertainment events, specifically, the concert touring industry. The problem seeks to
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determine a maximum profit tour and event plan among a set of candidate locations
over a fixed time horizon. The profit from a particular event depends on attendance.

Pénicka et al. (2019) study the set OP. In the set OP, the customers are grouped into
clusters, and the profit associated with each cluster is collected by visiting at least one of
the customers in the respective cluster. The authors propose a variable neighborhood
search for this problem. Computational results show that the proposed algorithm
improves the solutions of SOP benchmark instances in significantly less computation
time than the existing approaches.

Yu et al. (2019) study the OP with service time dependent profits. In this variant,
the profit collected at each node is a non-linear function of service time. A metaheuristic
is proposed to decompose the problem into a routing subproblem and a scheduling

subproblem.

Applications

The OP is an important problem that has several real-world applications. The most
famous and the most studied is the tourist trip design problem. The interested reader is
referred to the survey on solving tourist trip design problem by Gavalas et al. (2014).
Tourists visiting a destination for one or several days must decide which points of
interest (POIs) would be more interesting to visit and to determine a route for each
trip day, i.e., which POIls to visit as well as the visiting order among them. The
objective is to maximize tourist satisfaction (profit) while respecting constraints such
as opening hours of POlIs, the traveling distances between POlIs, the daily time available

for sightseeing.

1.3.4 The Covering Tour Problem and the Covering Salesman
Problem

Gendreau et al. (1997) introduce the Covering Tour Problem (CTP). It is defined on
a graph G = (VWUW, A), where VUW is the vertex set, V is a set of vertices that can
be visited, 7 C V,0 € T is a set of vertices that must be visited and W is a set of
vertices that must be covered, i.e., that must lie within a prespecified distance D from
a visited vertex on the tour. The CTP consists of determining a minimum length tour
over a subset of V' in such a way that all vertices in 7 are visited, and every vertex in

W is covered.
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We say that a vertex j is covered by vertex i if D;; < D. Let S; = {i € V|D;; < D}
be the set of vertices that cover vertex 7 € W.
The CTP can be formulated as follows:

(CTP) min Y Dz (1.23)
(i,7)eA
(i,7)€67 ()
(7,1)€0~(4)
d yi>1 Vi e W, (1.26)
iESj
y; =1 VieT, (1.27)
u; —uj + Ny <N —1 Vi,j € V\ {0},i # 7, (1.28)
Zij € {07 1} Vi,j € Vi 7é Js (129>
yi € {0,1} Vie, (1.30)
u; >0 Vi e V\ {0}. (1.31)

The objective function (1.23) is to minimize the tour length. Constraints (1.24)
and Constraints (1.25) are flow conservation constraints and impose that an arc en-
ters and exits each selected vertex. Constraints (1.26) make sure that every vertex
in W is covered by the tour. Constraints (1.27) guarantee that every vertex in T
is visited by the tour. Constraints (1.28) are MTZ subtour elimination constraints.
Constraints (1.29) — (1.31) define the variables.

The CTP is NP-Hard as it reduces to the TSP when V =W, 7 =V and D =
0, Vi e V.

The CTP can be formulated as a GTSP. We define for each j € W, the set §; =
{i € V|D;; < D} as a cluster and for each ¢ € T, the set S; = {i} as a cluster. Note
that if a vertex is in several clusters, then we replicate it as many time as the clusters
it belongs to, in order to have a partition. Then solve a GTSP on these clusters solves
the CTP.

A special case of the CTP is obtained when W = V), i.e., all the vertices that must be
covered. The resulting problem is usually called the Covering Salesman Problem (CSP)
and was introduced by Current & Schilling (1989). Each vertex ¢ € V is associated

with a covering distance D;. We say that a vertex j is covered by vertex ¢ if D;; < D;.
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For all vertices j € V we define S; = {i € V|D;; < D;}. If vertex i is visited, then it is
covered by itself. To obtain a formulation for the CSP, in the model (1.23)—(1.31) we

remove Constraints (1.27) and replace Constraints (1.26) with

Yz 1LVieV. (1.32)

1€S;

which means that all the vertices are visited or covered.

The CSP is N P-hard since when D; < minjey j»; D;; for all i € V it reduces to the
TSP.

Collections of works on the CTP can be found in Fischetti et al. (2007) and Laporte
& Martin (2007). In the next sections, we report all the works that have been done for
the CTP and CSP.

Polyhedral results

Gendreau et al. (1997) propose several classes of valid inequalities for the CTP. They
investigate the polyhedral properties of a family of constraints and some constraints

are proved to be facet-defining.

Exact methods

The only exact method proposed for the CTP is a branch-and-cut algorithm presented
by Gendreau et al. (1997). The authors provide several valid inequalities for the CTP.
Their algorithm can solve randomly generated instances with up to 100 nodes.
Ozbaygin et al. (2016) study a variant of the CSP called the time constrained
maximal CSP. In this problem, every vertex is associated with a demand and the
objective is to maximize the amount of demand covered visiting a subset of vertices
within a limited time. The authors propose two formulations and valid inequalities for

this problem. A branch-and-cut algorithm is developed to solve this problem.

Heuristic methods

Concerning the CTP, Baldacci et al. (2005) propose a two-commodity flow formulation
and three scatter search methods for the CTP. Kubik (2007) proposes several heuristics
including ant colony algorithm for the CTP. Murakami (2018a) deals with the large-

scale CTP which contains tens of thousands of vertices. They propose a heuristic based

22



1.3 One-vehicle case

on ruin and recreate. Computational results show that their algorithm outperforms
the existing methods.

Some variants and generalizations of the CTP have also been studied in the litera-
ture. Motta et al. (2001) propose a greedy randomized adaptive search procedure for
a generalized CTP in which the vertices in W can also be visited. Jozefowiez et al.
(2007) study a bi-objective CTP where the two objectives are to minimize the tour
length and to minimize the greatest distance between the covered node and its nearest
visited node. The authors propose a multi-objective evolutionary algorithm to solve it.

Concerning the CSP, Salari & Naji-Azimi (2012) propose an integer linear pro-
gramming based heuristic. Salari et al. (2015) give a polynomial-size formulation for
the CSP and describe a hybrid heuristic algorithm combining ant colony optimization
and dynamic programming technique. Computational results indicate the efficiency of
the algorithm, especially for large size instances with more than 500 vertices.

Some generalizations of the CSP have also been studied in the literature. Current
& Schilling (1994) study two multi-objective variants of the CSP, i.e., the median tour
problem (MTP) and the maximal covering tour problem (MCTP). In both problems
the tour must visit a predetermined number of nodes. Each node is associated with a
demand. The first objective for both problems is to minimize the tour length. For the
MTP, the second objective is to minimize the total distance between each unvisited
node and the nearest visited node. For the MCTP, the second objective is to maximize
the total demand that is covered within some prespecified maximal travel distance from
a visited node.

Golden et al. (2012) study a variant of the CSP, in which nodes are associated
with an additional visiting cost and a demand that represents the minimum number of
times the node has to be covered. The objective is to minimize the total cost, which is
the sum of the tour length and the fixed costs associated with the visited nodes. The
authors develop two local search heuristics to solve this problem.

Another generalization of the CSP called the generalized covering TSP is studied
in Shaelaie et al. (2014) and Pandiri & Singh (2019). The objective of this problem is
to find a minimum length tour passing through a subset of facilities while covering at
least a predetermined number of customers. Shaelaie et al. (2014) propose node-based
and flow-based formulations for the problem, as well as two metaheuristic approaches,
i.e., the memetic algorithm and the variable neighborhood search algorithm. Pandiri

& Singh (2019) propose an artificial bee colony algorithm for this problem, and the
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experimental results show the efficiency of their approach compared with heuristics
proposed by Shaelaie et al. (2014).

The time constrained maximal CSP is studied in Naji-Azimi & Salari (2014). In
this problem, a set of vertices is given including a depot, customer and facility vertices
and the objective is to maximize the total number of covered customers by a tour over a
subset of facilities within a given time limit. Node-based and flow-based mathematical

models and a heuristic method are proposed for this problem.

Application

There are various applications of the CTP or CSP. For example, the construction of
routes for visiting health care teams in developing countries can be modeled as the CTP.
The health care team can only access a limited number of villages due to infrastructural
restrictions, but all the people must be within a walking distance of the visited villages.
The health care team’s goal is to minimize traveling cost to see as many patients as
possible (Current & Schilling, 1989; Hodgson et al., 1998).

Another example is to determine the locations of post boxes among a set of can-
didates. The post boxes must be located within a reasonable distance from every
household. Then, the aim of the post once is to minimize the cost of a collection route
through all post boxes (Labbé & Laporte (1986)).

A similar example is to locate a number of regional distribution centers among a
set of candidate sites in such a way that all customers are within a reasonable distance
from at least one regional distribution center and that the cost of delivery and pick-
up routes is minimized. This example is also applied to a decision of the location
of satellite distribution centers to provide humanitarian supplies (Naji-Azimi et al.,
2012a).

1.3.5 The Median Cycle Problem and the Ring Star Problem

The Median Cycle Problem (MCP) is defined on a graph G = (V,.A), and a non-
negative assignment cost A;; is associated with each arc (i,j) € A. These costs may
represent, for example, the amount to pay for serving location 4 from location j, or the
distance between two vertices. Vertex 0 represents the depot and must be part of the

solution. The MCP looks for a minimum cost tour that starts and ends at the depot
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and goes through a subset of vertices V' C V,0 € V'’ such that the assignment cost of
the tour does not exceed a given value A.

The assignment cost of a solution is defined as ZiEV\V’ minjeyr A;j, i.e., the sum of

ij>
the assignment costs between each vertex not on the tour and its closest vertex on the
tour.

Instead of using y; variables to represent whether vertex i € V is visited or not on
the tour, variables y;;,Vi,7 € V are introduced. y;; is a binary variable equal to 1 if
and only if vertex ¢ is assigned to vertex j on the tour. Notice that if a vertex ¢ is on
the tour, it is then assigned to itself, i.e., y;; = 1. Then, variables y;; are in charge
of determining visits (using variables y;; that play the role of variables y; in the other
problems) and assignments.

The MCP can be formulated as follows:

(MCP) min > Cjzy (1.33)
(1,5)€A
(1,7)€6% (4)
(J:1)€6~(4)
> Ty =1 Vie, (1.36)
JjeV
Yij < Yjj Vi,j €V, (1.37)
(i,7)€ASiF#]
z;; € {0,1} Vi,j € V,i# 7, (1.40)
Yij € {07 1} V'Laj ev, (141>
w; >0 vi e v\ {0}. (1.42)

The objective function (1.33) is to minimize the traveling cost. Constraints (1.34)
and Constraints (1.35) are flow conservation constraints imposing that an arc enters
and exits each visited vertex. Constraints (1.36) make sure that every vertex is on the
tour or assigned to a vertex on the tour. Constraints (1.37) impose that a vertex can

only be assigned to a visited vertex. Constraints (1.38) are MTZ subtour elimination
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constraints. Constraints (1.39) guarantee that the assignment cost of the tour does not
exceed the given value A. Constraints (1.40) — (1.42) define the variables.

The Ring Star Problem (RSP) is the problem where the assignment cost is min-
imized in the objective function instead of being taken into account in a constraint.
Thus, the RSP consists in determining a tour (called as well ring) that minimizes the
sum of the traveling and the assignment costs. The name ring comes from the applica-
tion of the problem in the telecommunication network design (Labbé et al., 2004). A
model for the RSP is obtained from the model (1.33)—(1.42) for the MCP by replacing
the objective function (1.33) by

(i,7)eA (1.4)€AiI#]

and by removing Constraint (1.39).

The problem is N P-hard since the special case in which the assignment costs are
very large compared to the traveling costs reduces to the TSP.

Note that the CTP and MCP/RSP are all problems related to the concept of
coverage. In comparing the RSP with CTP, the RSP considers assignment costs in the
objective function, and a nonvisited vertex is assigned to a single visited vertex, while
the CTP takes into account only the traveling costs and a nonvisited vertex is covered
by at least one visited vertex. When comparing the MCP with CTP, both problems
only consider the traveling costs in the objective function, but the MCP has an upper
bound for the assignment costs.

In the following, we survey all the works that have been done for the MCP and
RSP.

Polyhedral results

Labbé et al. (2004) propose several classes of valid inequalities for the RSP. Dimension
and facet-defining results are derived for the RSP. Kedad-Sidhoum & Nguyen (2010)
propose a new formulation for the RSP. New facet-defining inequalities are derived and

can improve the linear relaxation.

Exact methods

Labbé et al. (1999, 2005) are the first to study the MCP. They propose valid inequalities
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and embed them within a branch-and-cut algorithm through separation procedure.

Labbé et al. (2004) introduce the RSP when studying a generic telecommunication
network. They provide a mixed integer linear programming formulation and several
classes of facet-defining inequalities for the RSP. A branch-and-cut algorithm is pro-
posed which can solve instances with up to 300 nodes to optimality.

Kedad-Sidhoum & Nguyen (2010) propose a novel formulation and new facet defin-
ing inequalities for the RSP. They develop an efficient branch-and-cut algorithm whose
results improve those proposed in Labbé et al. (2004).

Simonetti et al. (2011) model the RSP as a minimum Steiner arborescence problem.
They develop a branch-and-cut algorithm, and a greedy randomized adaptive search
procedure is used to determine good upper bounds. Experimental results show the

superiority of the proposed method over the one by Labbé et al. (2004).

Heuristic methods

Pérez et al. (2003) propose a metaheuristic for the MCP combining variable neigh-
borhood and tabu search. Renaud et al. (2004) propose two heuristics for both the
MCP and RSP, i.e., the multistart greedy heuristic and a random keys evolutionary
algorithm. Dias et al. (2006) propose a hybrid heuristic for the RSP based on variable
neighborhood search and a greedy randomized adaptive search procedure, which most
of the time performs better than the heuristic proposed by Pérez et al. (2003). Calvete
et al. (2013) propose an evolutionary algorithm based on a new formulation of the
RSP as a binary bi-level programming problem with one leader and two followers. The
leader decides which vertices to include in the ring, one follower decides the connections
of the tour, and the other follower decides about the assignment of the vertices not vis-
ited on the tour. Computational results show that the proposed algorithm outperforms
the heuristics in the literature both in terms of the solution quality and computation
time.

There are several works dealing with the bi-objective RSP. The objectives in these
works are to minimize the ring cost and to minimize the assignment cost simultane-
ously (Calvete et al., 2016; Liefooghe et al., 2008a,b,c, 2010). Liefooghe et al. (2010)
provide a set of four population-based metaheuristics to approximate the efficient set
for the bi-objective RSP. Then, the authors propose two cooperative schemes between
the two algorithms. Computational results show the effectiveness of the hybrid ap-

proaches, especially in large size instances up to 1002 nodes. Calvete et al. (2016) pro-
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pose a hybrid metaheuristic which embeds a local search procedure in a multi-objective
evolutionary algorithm to approach the Pareto front. They use a new chromosome en-
coding method, i.e., the chromosome does not provide the ring, but the nodes in the

ring.

Applications

The RSP arises in the telecommunications networks design (Labbé et al., 2004). The
goal is to connect terminals to concentrators by point-to-point links, resulting in a
star topology, and the concentrators are interconnected through a ring structure. The
problem consists in selecting a subset of user locations where concentrators will be
installed and interconnected by a ring network, and the other user locations are assigned
to those concentrators. The objective is to minimize the total cost of all connections.
The RSP also models logistic problems where the retailers in the ring are served by
a single vehicle and are used as small depots from which the remaining retailers are
supplied (Calvete et al., 2013).

1.3.6 The Traveling Purchaser Problem

The Traveling Purchaser Problem (TPP) is defined on a directed graph G = (V, A),
where V includes the depot 0 and a set of markets that offer a set of products Q. For
each market ¢ € V' \ {0} and for each product ¢ € Q a product availability @, and a
price P, are given. Moreover, a demand (), for each product ¢ € Q has to be satisfied.
The TPP consists in determining a tour that visits a subset of the markets in order to
buy enough products to satisfy the demand and to minimize traveling and purchasing
costs. The interested reader is referred to Manerba et al. (2017) for a recent survey.

Variables z;,,Vi € V \ {0},¢q € Q are introduced to determine the quantity of a
product ¢ that is purchased at market i.

The TPP can be formulated using variables x;;, y;, u; introduced in Section 1.2.2

and z;, as follows:

(1,5)eA 1€V\{0},¢€Q
s.t. Z Tij = Y VieV, (1.45)
(i,4)€dt (i)
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Z Tji =Y VieV, (1.46)
(7,1)€6~(2)

> oz =0, Vg Q,  (1.47)
ieV\{0}
Zig < Qig¥i Vi e V\ {0}, (1.48)
u; —uj+ Ny < N — 1 Vi,j € V\ {0},i # j, (1.49)
zi; € {0,1} Vi, j € V,i#j, (1.50)
y; € {0,1} VieV, (1.51)
Zig > 0 Vie V\{0},q € Q, (1.52)
u; >0 Vi e V\ {0}. (1.53)

The objective function (1.44) is to minimize the traveling and purchasing costs.
Constraints (1.45) and Constraints (1.46) are flow conservation constraints and impose
that an arc enters and exits each selected vertex. Constraints (1.47) ensure that the
demands of all products are exactly satisfied. Constraints (1.48) impose that a market
has to be visited to be able to supply a product and the quantity of a product purchased
at a market is less than the available quantity at this market. Constraints (1.49) are
MTZ subtour elimination constraints. Constraints (1.50) — (1.53) define the variables.

The TPP is N P-hard since it generalizes the TSP. The reader interested in poly-
hedral results on the TPP is referred to Manerba et al. (2017). Since the survey on the
TPP and its variants by Manerba et al. (2017) covers works up to the year 2016, here

we only summarize several works that have been published afterwards.

Exact methods

There are several works related to the variants of the TPP. A bi-objective TPP, called
the green TPP, is proposed by Hamdan et al. (2017). One objective is to minimize
the traveling and purchasing costs, and the other is to minimize the C'Oy emissions.
The authors solve this problem using a branch-and-cut algorithm after transforming
the model into a single objective formulation by the weighted comprehensive criterion
method. Hamdan et al. (2018) propose a bi-objective integer linear programming
model for what they called the sustainable TPP. They associate with each supplier
a sustainability score and one of the objective is to maximize the total sustainability

score of purchasing.
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Heuristic methods

Bernardino & Paias (2018) present several metaheuristics combining genetic algorithms
and local search to solve the uncapacitated TPP. In uncapacitated TPP, if a product is
available in one market, then it is assumed that the quantity of this product is enough
to fulfill the demand. Their metaheuristics can provide the best-known results for the
high-dimensioned asymmetric instances, meanwhile provide better upper bounds for
some symmetric instances with unknown optimal values. Skinderowicz (2018) propose
an ant colony based algorithm for the uncapacitated TPP. Computational results show
that it is competitive to the current state-of-the-art metaheuristic (Goldbarg et al.,
2009) for the uncapacitated TPP.

Palomo-Martinez & Salazar-Aguilar (2019) study a variant of the bi-objective TPP
in which the purchased products must be delivered to a set of customers. The objectives
are to minimize the total cost and to minimize the waiting time of the customers. The

authors propose an efficient variable neighborhood search method.

Applications

The most common application of the TPP is in the procurement logistics, for example,
in some companies’ procurement operations. There is a commercial web application
called “le bon coté des choses” (https://www.leboncotedeschoses.fr/) in which a
purchaser selects his location, the list of products to purchase and a set of markets
that he is willing to visit, then he can receive the most convenient shopping plan. An-
other application arises in the school bus routing (Riera-Ledesma & Salazar-Gonzalez,
2012). The problem is to plan the tour for the school bus to pick up students from
different stops. Here suppliers correspond to bus stops and products to students. More

applications can be found in Manerba et al. (2017).

1.3.7 Discussion on the subtour elimination constraints

In the formulations proposed in the previous sections, subtour elimination constraints
are expressed in the MTZ form. This form allows to provide formulations that have a
polynomial number of variables and constraints with respect to the cardinality of V.

It is known that linear relaxations of such formulations usually provide poor bounds.
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Tighter formulations can be obtained by replacing the subtour elimination con-
straints in the MTZ form by exponential families of constraints. This provides formu-
lations that still have a polynomial number of variables with respect to the cardinality
of V, but are characterized by an exponential number of constraints. For the TSP, Con-
straints (1.4) are replaced by the so-called subtour elimination constraints expressed

in the outer form:

Yooay>1 VScv2<|sI <V -2 (1.54)
(4,5)€6%(S)

or by the equivalent inner form:

Y a<IS|—1, ¥SCV,2<|S|< V-2 (1.55)
(1.4 €(S)

Constraints (1.54) impose that at least one arc exiting each subset S C V is selected,
while Constraints (1.55) impose that not more than |S| — 1 arcs with both endpoints
in S are selected.

In non-HRP, a subtour elimination constraint has to be imposed on a subset S C V
only if the subset is visited, namely only if at least one vertex in & is selected. As a
consequence, Constraints (1.54) are not valid for non-HRP and need to be replaced by

the following constraints

Yoy zyn, VSCV.2<S[<|V[-2,hES. (1.56)
(1.5)€6+ (S)

On the other side, Constraints (1.55) are still valid for non-HRP but may be strength-
ened by taking advantage of the variables y; as follows (Feillet et al. (2005)). We have

that
Zyi: Z xi; + Z (1.57)

1€S (4,7)€7(S) (4,7)€6(S)

Using Equation (1.56) we obtain:

dow< ) oy VSCV2<IS|< V[ -2,h€ES. (1.58)
(i.1)€7(S) ves\{n}

These constraints are valid for all the non-HRP presented in this section and can be

separated in polynomial time by solving a max-flow problem.
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1.3.8 Single-vehicle non-HRP with time windows

A classical constraint in the routing problems imposes that the visit of 7 € V takes place
during a time interval, called time window (TW). As a consequence, a TW expressed
as [E;, L;] is associated with each location ¢ € V. Arriving at the location before Ej; is
feasible, but impose to wait until E; to start the service. On the other side, arriving
after L; is not allowed. The previous models may slightly be modified to take these

constraints into account by adding
and by replacing the subtour elimination constraints in the MTZ form by

ui — uj + Tyjwig < M(1 — ;) Vi, j €V,j# 0,14, (1.60)
u; + Tioxio < Lo Vi e V\ {0} (1.61)

where M is a large enough value. Here the variables u; determine the time at which

the service at location i € V starts rather than the position on the tour.

1.4 Multi-vehicle case

This second part of the paper focuses on non-HRP where a fleet F of F' vehicles (a
group of people, multiple rings, etc.) is in charge of the servicing operation, F =
{1,2,..., F}. A capacity @ is associated with each of the vehicles that are supposed
to be identical. As in the previous section, we begin this section by introducing the
Capacitated Vehicle Routing Problem (CVRP). Then we present different families of
non-HRP that derive from the CVRP in which the Hamiltonian requirement is removed.
These problems include the Generalized Vehicle Routing Problem, the Generalized
Vehicle Routing Problem with Time Windows, VRP with Profits, the Multi-vehicle
CTP, the Capacitated Multiple RSP, and the Multi-vehicle TPP.

1.4.1 The Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one family of problems well-studied in oper-
ations research. The most classical version is the Capacitated VRP (CVRP) which

consists in finding at most F' routes to visit all customer locations such that routing
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costs are minimized and capacity constraints are respected. Each customer i € V' \ {0}
has a demand @);.

It can be formulated using variables x;; and u; introduced in Section 1.2.2 as follows:

(i,5)eA
st Y ay =1 Vi e v\ {0}, (1.63)
(4,5)€67(3)

dooau=1 Vie v\ {0}, (1.64)

(J,1)€d~(4)

up — uj + Quij < Q — Q; Vi, j € V\{0},i #j, (1.65)
> g <F (1.66)

(0.§)€5+(0)

z;; € {0,1} Vi, j € V,i# j, (1.67)

Qi <u; <Q vi e Y\ {0}. (1.68)

The objective function (1.62) minimizes the total routing cost of the at most F
routes. Constraints (1.63) and Constraints (1.64) are flow conservation constraints and
impose that each vertex is visited exactly once. Constraints (1.65) ensure that the ca-
pacities of the vehicles are respected and are subtour elimination constraints in the MTZ
form. Constraints (1.66) impose that at most F arcs leave the depot, namely at most
F routes are allowed to accomplish service. Constraints (1.67) and Constraints (1.68)
define the variables. In particular, Constraints (1.68) are capacity constraints as well.
The interested reader is refereed to Golden et al. (2008); Laporte (2009); Toth & Vigo
(2014).

1.4.2 The Generalized Vehicle Routing Problem

The multi-vehicle case of GTSP is the Generalized Vehicle Routing Problem (GVRP)
and was introduced by Ghiani & Improta (2000). In the GVRP, the vertices of the
graph G = (V, A) are partitioned into clusters, i.e., Co = {0},Cy,...,Cx clusters.
ColJ.-UCxk =V and C,NC, = O,Vh,k € K,h # k, where K = {0,1,..., K} de-
notes the cluster index set. Cluster C; = {0} contains only the depot 0 where the
fleet of vehicles is located. Each vehicle has a capacity of ) to perform deliveries.
Each cluster is associated with a demand @Q)x. At the depot the demand is )y = 0.

33



1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

The arc set A contains arcs that link vertices belonging to different clusters, that is,
A={(i,7)]i € Ck,j € Cl,k # 1k, 1l € K}.

The GVRP consists of finding a set of at most F' vehicle routes on G such that
the traveling cost is minimized and: (i) every route starts and ends at the depot; (ii)
exactly one vertex from each cluster is visited by a single vehicle; (iii) the sum of the
demands of customers served by the same vehicle does not exceed Q).

Before presenting the mixed integer linear programming formulation for the GVRP,
let us introduce the following notation. [Id(i) denotes the index of the cluster that
contains vertex 4, thus i € Cy, < 1d(i) = k.

The GVRP can be formulated using variables z;;, y; and u; introduced in Sec-

tion 1.2.2 as follows:

(i,5)eA
(i,5)€6% (4)

Z Tji = Z Tij Vi € V, (171)
(7:1)€6~(4) (i,)€6% (4)
d =1 Vk € K, (1.72)
1€Cy

Yz <F, (1.74)

jeV\{o}
yi €{0,1} ViV, (1.75)
zi; € {0,1} V(i,7) € A, (1.76)
Qraey <ui < Q Vi e Y\ {0}. (1.77)

The objective function (1.69) minimizes the total routing cost. Constraints (1.70)
and Constraints (1.71) are flow conservation constraints. Constraints (1.72) impose
that exactly one vertex is visited per cluster. Constraints (1.73) ensure that the ca-
pacities of the vehicles are respected and are subtour elimination constraints in the
MTZ form. Constraints (1.74) impose that at most F' arcs leave the depot, namely at
most F' routes are allowed to accomplish service. Constraints (1.75)— (1.77) define the

variables. Moreover, Constraints (1.77) are capacity constraints.
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If all clusters C;, i = 1,..., K are singletons, the GVRP reduces to the VRP. From
this observation it immediately follows, by reduction to the VRP, that the GVRP is
N P-hard.

In the following, we summarize all the works that have been done for the GVRP.

Transformation to capacitated arc routing problem

Ghiani & Improta (2000) are the first to study the GVRP and propose a transformation
of the GVRP into the capacitated arc routing problem (CARP), which allows the
algorithms available for the latter to be used to solve the former. All the vertices in
the same cluster are connected by a loop with edges having very large costs M and
these edges are required edges in the corresponding CARP. If a cluster only has one
vertex ¢ inside, then a required edge (7,7) is introduced. The cost of each inter-cluster
edge is increased by M/2 if an endpoint coincides with the depot, otherwise by M. By
solving a CARP on the transformed graph, a solution for the GVRP can be obtained.

Exact methods

Kara & Bektas (2003) propose a compact integer linear programming formulation for
the GVRP, adapting the well-known MTZ subtour elimination constraints for the TSP
to the GVRP. Pop et al. (2012) provide two new compact formulations for the GVRP.

Bektag et al. (2011) propose four integer linear programming formulations for the
GVRP and develop an efficient branch-and-cut algorithm to solve it. They also apply
an adaptive large neighborhood search heuristic to determine the upper bounds. A
new data set for the GVRP containing 158 instances is generated, and is used as
the benchmark for the GVRP hereafter. The results show that their branch-and-cut
algorithm based on the best of the four formulations can solve instances with up to
121 nodes and 51 clusters. Reihaneh & Ghoniem (2018) developed a branch-cut-and-
price algorithm for the GVRP. Their computational study indicated that the proposed
algorithm is competitive with respect to the branch-and-cut algorithm proposed by
Bektas et al. (2011). Moreover it solved eight benchmark instances to optimality that
were previously unsolved.

Ha et al. (2014) and Afsar et al. (2014) study a variant of the GVRP where the size
of the fleet is flexible. Ha et al. (2014) propose a two-commodity flow formulation and
a branch-and-cut method for the GVRP. Based on the results obtained on benchmark

35



1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

instances, it can be stated that the branch-and-cut proposed by Ha et al. (2014) is
more effective than the method described by Bektas et al. (2011). Afsar et al. (2014)
develop an exact method based on column generation for the GVRP with flexible fleet
size.

Biesinger et al. (2016) study a variant of the GVRP, in which customers have
stochastic demands. They propose an integer L-shaped method based on decomposi-
tion and branch-and-cut. Results show that this method is efficient in solving small

instances up to about 40 vertices and 13 clusters.

Heuristic methods

Bautista et al. (2008) address a special case of the GVRP derived from an urban waste
collection problem, in which each cluster contains at most two vertices. The authors
propose two heuristics based on ant colonies and the results of the practical instances
using the proposed heuristics obtained significant improvements. Pop et al. (2011)
present constructive heuristics and local search algorithms for solving the GVRP, but
without any computational experiments. Pop et al. (2013) present a hybrid algorithm
combining a genetic algorithm and a local search procedure, and results show that
it was competitive with the adaptive large neighborhood search proposed by Bektas
et al. (2011). Ha et al. (2014) propose a hybrid metaheuristic combining a greedy
randomized adaptive search procedure with an evolutionary local search. Afsar et al.
(2014) propose two metaheuristics based on a route-first cluster-second approach, in
which the split procedure is executed using an iterated local search. Computational
results show that their metaheuristics are very efficient, finding solutions with small
optimality gap in a few seconds. The largest instances tackled by all these methods
contains 262 vertices and 131 clusters.

There are several works studying the variants of the GVRP. For the GVRP with
stochastic demands, Biesinger et al. (2015) propose a variable neighborhood search
approach. It can identify optimal or near-optimal solutions for small instances in much
shorter time than the exact method proposed by Biesinger et al. (2016), while it obtains
large optimality gaps for medium and large instances. Biesinger et al. (2018) present
a genetic algorithm combined with a variable neighborhood search. According to the
computational results, it is superior to the algorithm described by Biesinger et al.
(2015).
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Zhou et al. (2018) introduce a city logistics problem called the multi-depot two-
echelon VRP with delivery options. In the second level of the distribution network,
customers are provided with different delivery options, allowing them to retrieve their
packages at pick-up points. Thus, the second level can be formulated as a GVRP, in
which the different delivery options of a customer forms a cluster.

Moccia et al. (2012) study what they called the Generalized VRPTW. They define
a TW for each cluster. The authors present an incremental tabu search heuristic for the
problem and assess the efficiency of the method by testing it on the GVRP instances
and multi-depot VRPTW instances.

Applications

The GVRP has many applications, such as urban waste collection problem (Bautista
et al., 2008), the vessels routing in maritime transportation, healthcare logistics, the
survivable telecommunication network design, etc. (Bektag et al., 2011). For example,
in the routing of vessels in maritime transportation, a number of regions is given, each
with several ports where the cargo can be delivered. If ships only need to deliver the
cargo to one single port in each region, then the corresponding routing problem can
be modeled as a GVRP, where the regions correspond to the clusters and the fleet of
vessels corresponds to the fleet of vehicle (Bektas et al., 2011). Baldacci et al. (2010)
also mention that problems like the TSP with profits, the VRP with selective backhauls,
the covering VRP, the windy routing problem, etc., can be modeled as GVRPs.

1.4.3 The GVRP with Time Windows

The GVRP can be extended to the GVRP with Time Windows (GVRPTW) if we
associate a time window (TW) [E;, L;] with each vertex Vi € V. The TW associated
with the depot, i.e., [Ey, Lo] = [0, 7] represents the overall time horizon. A visit can
only be made to a vertex during its TW, and an early arrival leads to a waiting time
while a late arrival causes infeasibility. The objective of the GVRPTW consists of
finding a set of at most F' vehicle routes on G such that the traveling cost is minimized
and: (i) every route starts and ends at the depot during [0, T7; (ii) exactly one vertex
from each cluster is visited by a single vehicle; (iii) the sum of the demands of customers

served by the same vehicle does not exceed @Q; (iv) the service at vertex i starts during
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When the TWs associated with the locations of the same cluster do not overlap
the problem is called VRP with roaming delivery locations (VRPRDL). The VRPRDL
was introduced by Reyes et al. (2017). It is inspired by the trunk/in-car delivery, i.e.,
customers’ packages can be delivered to the trunks of their cars.

Besides variables x;;, y; and u; used for the GVRP, variables t; € R, are introduced
to represent the service time at vertex ¢ € V. Then, the formulation for the GVRPTW
can be obtained by adding the following constraints to the formulation of the GVRP
defined by (1.69) — (1.77).

ti —tj + Tijryy < M(1 — x5) V(i,j) € A, j#0, (1.78)
By <t; < Ly, Viey, (1.79)
t+ Toows < Lo Vi e v\ {0}, (1.80)

Constraints (1.78) and (1.79) determine the starting time of service at each vertex
and ensure that the TW are respected on the visited location. Constraints (1.79) also
eliminate subtours since they generalize the subtour elimination constraints of Miller,
Tucker and Zemlin for the TSP (Miller et al., 1960). Constraints (1.80) ensure that all
the vehicles return to the depot before the end of its TW.

The GVRPTW is N P-hard since it reduces to the GVRP when all the TW are set
to [0, +oc]. In the following, we summarize all the works that have been done for the
VRPRDL.

Exact methods

Ozbaygin et al. (2017) develop a branch-and-price algorithm for the VRPRDL. Com-
putational results on benchmark instances show that the proposed algorithm is able to
solve to optimality instances with up to 60 clusters in a few minutes. For most of the
large instances with 120 clusters, the algorithm is not able to prove optimality on a 6
hours time computation budget. Moreover, they also provide another set of instances
for a hybrid delivery strategy combining trunk delivery and home delivery. In these
instances, in each cluster the TW associated with the home location corresponds to the
planning horizon and overlaps all other TWs, while the other TW associated with the
trunk locations are non-overlapping. This instance set also has a specific TW structure.

The results revealed that using this combined strategy led to an average cost savings

38



1.4 Multi-vehicle case

of nearly 20% compared to the classical delivery system when only home delivery is
available.

Following this work, Ozbaygin & Savelsbergh (2018) introduce a dynamic variant
of the VRPRDL, in which customer itineraries may change during the execution of
a planned delivery schedule. The branch-and-price algorithm proposed in Ozbaygin
et al. (2017) is used to obtain the planned delivery schedule based on initial customer
itineraries, as well as the reoptimization solutions whenever a customer itinerary change
is revealed. To ensure computational efficiency when solving reoptimization problems,
they reuse and suitably modify the columns generated during previous branch-and-

price runs.

Heuristic methods

The work of Reyes et al. (2017) is the first to study the VRPRDL and proposes a
construction heuristic based on a greedy randomized adaptive search procedure, and
an improvement heuristic. The results show the economic advantages for the delivery
companies to consider trunk deliveries instead of the traditional home delivery.
Lombard et al. (2018) study a variant of the VRPRDL with stochastic travel times.
Instead of using deterministic travel times, the authors use a matrix of probability
distribution, which indicates the distribution of travel times between two locations.
They use a combination of a Monte-Carlo method and a greedy randomized adaptive

search procedure. This approach can obtain delivery solutions for small-sized instances.

Applications

The GVRPTW models the situation where a customer is associated with several deliv-
ery locations. He/she specifies the time intervals at which he/she is available to receive
the parcel. The VRPRDL arises in the last mile delivery with trunk/in-car delivery
option (Ozbaygin et al., 2017; Reyes et al., 2017). Volvo launched its world-first in-car
delivery service in Sweden in 2016 (Kirsten, 2016). It is a service for delivering goods
directly to one customer’s Volvo car. This is achieved by electronically delegating one-
time access to an authorized delivery company to the customer’s car. This enables the
customer to select his/her Volvo as the delivery location and to track the delivery when

it happens. In April 2018, Amazon also launched the in-car service in partnership with

39



1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

two major automakers General Motors and Volvo. This service is available in 37 cities

across the US (Hawkins, 2018).

1.4.4 The VRP with Profits

The multi-vehicle case of TSPPs is the VRP with Profits (VRPPs), where in the graph
G = (V, A) each vertex i € V \ {0} is associated with a profit P,. The objective is to
optimize the collected profit and the traveling cost, thus not all the vertices need to
be visited. The goal of the VRPPs is to find a set of routes starting and ending at a
depot which visit a subset of vertices such that an objective function is optimized. As
in the TSPPs, the objective function of the VRPPs can be expressed in different ways
given hereafter. To be consistent with the definitions of the TSPPs, in this survey we
straightforwardly extend the classification of the TSPPs to VRPPs as follows:

e The Profitable VRP where the objective is to find a set of tours that minimize

the traveling cost minus the collected profit.

e The Team Orienteering Problem (TOP, Chao et al. (1996b)) where the objective
is to find a set of tours that maximizes the profit under a constraint that imposes

the maximum duration 7,,,, of a tour.

e The Prize-Collecting Vehicle Routing Problem (PCVRP) where the objective is
to find a set of tours that minimizes the traveling cost under a constraint that

imposes a minimum prize collection P,,;, of a tour.

Let z;;; be a binary variable that equals 1 if and only if arc (7, j) is traversed by
vehicle f in the solution. Let y;¢ be a binary variable that equals 1 if and only if vertex
1 € V is visited by vehicle f in the solution.

The VRPPs can be formulated as follows:

(VRPPs) min f(x,y) (1.81)
s.t. Z Z Tijf = Zylf VieV, (1.82)
fEF (i,5)€6T(3) fer
FEF (j.i)es— (i) feF
Dy <1 ieV\ {0}, (1.84)
fer
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wi—u+ N Y w <N -1 Vi, j € V\{0},i#7j,  (1.85)

fer
Y wyp<F (1.86)
fEF jeV\{0}
g(z,y) >0 VfeF, (1.87)
zijr €{0,1} Vi,jeVi#jfeF, (1.88)
yir € {0,1} VieVv,feF, (1.89)
w; >0 vie v\ {0}.  (1.90)

where f(z,y) and g(z,y) are as follows.

e for the Profitable VRP:

- flz,y) = Zfe]—' Z(i,j)eA Cijiijg — Zfef Zz’eV\{O} FPiyig

— g(z,y) = 0;

e for the TOP:

- flz,y) =— Efe]—' ZieV\{O} Piyiy
= 9(2,Y) = Tnae — (i 5yen Lijijss

e for the PCVRP:

= J(@9) = 2 per 2o pea Ciatis
- 9(5177?/) = ZiEV Pyi — Prin-

The objective function (1.81) is to minimize the traveling cost minus the collected
profit in the case of the profitable VRP, is to maximize the profit in the case of the
TOP and is to minimize the traveling cost in the case of the PCVRP. Constraints (1.82)
and (1.83) are flow conservation constraints and ensure that an arc enters and exits
each selected vertex. Constraints (1.84) guarantee that each vertex is visited at most
once. Constraints (1.85) are MTZ type of the subtour elimination constraints. Con-
straints (1.86) impose that the number of routes cannot exceed the number of available
vehicles. Constraints (1.87) are inactive for the Profitable VRP, impose the maximum
tour duration for the TOP and the minimum prize to collect for the PCVRP. Con-
straints (1.88) — (1.90) are variable definitions.

The VRPPs are N P-hard since the TSPPs are N P-hard.
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Note that in the well-known TOP, there is a maximum duration constraint for each
route. It was first introduced by Butt & Cavalier (1994) under the name multiple tour
maximum collection problem while it is named as the TOP by Chao et al. (1996b).
However, even though some variants of the profitable VRP and PCVRP have been
studied, there is no fixed and commonly used definitions for both problems. Moreover,
notice that in the literature, the use of names Profitable VRP and PCVRP can be
mixed. Thus, in this paper, the works are classified according to the objective function
of the studied problem as mentioned above.

The interested reader is referred to the following survey papers. The article of
Archetti et al. (2014) is dedicated to the VRPPs, including research works on the
single-vehicle as well as the multi-vehicle case, up to the year 2014. For the multi-
vehicle case, the authors mainly focus on the TOP and its variants and on the VRP
with private fleet and common carrier. They mention two works on the profitable VRP
and no work on the PCVRP.

Vansteenwegen et al. (2011) provide a comprehensive survey on the OP and its
variants, also covering works for the TOP and its variants up to the year 2009. Gunawan
et al. (2016) review the literature on the OP including new works and new variants up
to 2015. They also consider works on the TOP and its variants.

Compared with the TOP, much fewer studies can be found on the profitable VRP
and PCVRP. Therefore, for these two problems, we summarize all the works that have
been published in the literature. For the TOP, in order to avoid the repetition with the
survey mentioned above, we focus on the related literature and its variants published
after 2015.

Exact methods: Profitable VRP

All the works in the following study variants of the profitable VRP. Archetti et al.
(2009) introduce the capacitated versions of the profitable VRP (which they call as the
capacitated PTP) and the TOP where a fleet of capacitated vehicles is available. They
propose exact methods based on column generation that can solve small size instances.
They also propose two variants of tabu search algorithm and a variable neighborhood
search algorithm, which can obtain very good results for both problems.Archetti et al.
(2013) propose a branch-and-price algorithm for the capacitated profitable VRP and
the capacitated TOP. A heuristic is embedded in the exact approach to find good
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feasible solutions quickly. Computational results show that several unsolved benchmark
instances are solved to optimality.

Archetti et al. (2017) introduce and study the undirected capacitated general rout-
ing problem with profits. It is defined on an undirected graph in which customer profit
can be collected from some of the vertices as well as from some of the edges. The
authors develop a branch-and-cut algorithm for this problem.

Orlis et al. (2019) study the capacitated VRP with profits and service level require-
ments arising in a cash supply chain in the Netherlands. The service level requirement
of a customer is the minimum-accepted percentage of fulfilled requests over their total
number. When the requirement is not met, a predefined penalty is applied. The authors
propose a branch-and-cut algorithm by adapting several valid inequalities proposed in

the literature.

Heuristic methods: Profitable VRP

All the works in the following study variants of the profitable VRP. Tang & Wang
(2006) consider a problem arising in the hot rolling production in the steel industry,
which is modeled as a capacitated profitable VRP with an additional constraint. Each
vertex is associated with a demand and each vehicle with a capacity. The additional
constraint is on the total demand of the visited vertices which must not be less than
a predefined amount. The objective is a linear combination of three objectives, i.e.,
the minimization of total traveled distance, the minimization of the number of vehicles
used, and the maximization of the profit that is collected. An iterated local search
algorithm based on a large-scale neighborhood is proposed. Li & Tian (2016) study
the same problem but with a different objective, which consists in the minimization of
the transportation cost minus the profit. A self-adaptive variable neighborhood search
algorithm is proposed. Zhang et al. (2009) consider the same problem but consider
each objective separately. Thus they study the multi-objective version. A particle
swarm optimization algorithm is developed.

Aras et al. (2011) study a problem where a firm collects cores from its dealers, and
each visit to a dealer is associated with a gross profit and an acquisition price to be
paid to take the cores back. This is a multi-depot profitable VRP. The objective is the
maximization of the revenue from the cores minus the total cost of purchasing cores
and operating the vehicles. Two mixed integer linear programming formulations are

proposed and a tabu search based heuristic is developed.
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Chbichib et al. (2012) consider a profitable VRP with multiple trips. Each vehicle
is allowed to perform several routes under a workday duration limit. They propose four
formulations for this problem that are compared using CPLEX on small-size instances.
They also propose construction and improvement heuristics in order to solve large-size
instances.

Lahyani et al. (2013) address a problem where customer requests include several
products and multi-compartment vehicles are used. A profit is associated with each
product and the customer can be delivered with only part of his request. It is a variant
of the capacitated profitable VRP with time windows and incompatibility constraints.
The authors propose a variable neighborhood search algorithm for this problem.

Vidal et al. (2015) propose new large neighborhoods for the profitable VRP as
well as for TOP and these neighborhoods contribute to finding solutions of higher
quality compared with the previous state-of-the-art methods. Fifty-two new best-
known solutions have been found.

Gansterer et al. (2017) study the multi-vehicle profitable pickup and delivery prob-
lem, where multiple carriers transport goods from a selection of pickup customers to
the corresponding delivery customers within given travel time limits. Two variable
neighborhood search heuristics are developed.

Stavropoulou et al. (2019) study the profitable VRP with consistency constraints.
It takes into account the fact that customers service should be provided in a consistent
manner in order to increase brand loyalty and customer satisfaction. The authors

propose an adaptive tabu search algorithm to solve this problem.

Exact methods: TOP

El-Hajj et al. (2016) present a cutting plane algorithm to solve the TOP. Several
types of cuts are proposed. Computational results show that the proposed approach is
competitive and is able to prove the optimality for 12 instances previously unsolved.
Gedik et al. (2017) use constraint programming to formulate and solve the TOP
with time windows (TOPTW) by applying interval variables. This approach identifies
one new best-known solution for TOPTW benchmark instances and solves two more

instances to optimality.

44



1.4 Multi-vehicle case

Heuristic methods: TOP

Tsakirakis et al. (2019) propose a harmony search for the TOP which is inspired from
the composition of music harmonies. The proposed algorithm with dynamic adjustment
of the parameters is superior to the static version using predefined values of parameters.
Results show that the proposed algorithms are competitive with the other efficient
algorithms described in the literature.

Ben-Said et al. (2019) study the capacitated TOP. Their algorithm alternates be-
tween two search spaces, i.e., the giant tour and routes search spaces, under the frame-
work of a hybrid heuristic combining greedy randomized adaptive search procedure and
evolutionary local search. Computational results show the efficiency of the algorithm.

There are several works dealing with the TOPTW and its variants. Lin & Vin-
cent (2017) study the TOPTW with mandatory visits: some customers considered as
important must be visited. The authors propose a multi-start simulated annealing
heuristic to solve it. Vincent et al. (2017) address the multi-modal TOPTW which
is motivated by a tourist trip design application where multiple transportation modes
are available for tourists. A two-level particle swarm optimization algorithm with two
solution representations and decoding methods are proposed.

Hu et al. (2018) study a multi-objective TOPTW in which multiple profits are as-
sociated with one node. A multi-objective evolutionary algorithm based on decomposi-
tion and constraint programming is proposed. Computational results show that many
new non-dominated solutions are found. Hapsari et al. (2019) study a multi-objective
TOPTW in which one objective is to maximize the profit and the other is to minimize
the time needed for the tourist’s itinerary. The authors propose a metaheuristic based
on iterated local search.

Gavalas et al. (2019) point out the weakness of the state-of-the-art metaheuristic
for the TOPTW, i.e., the iterated local search (Vansteenwegen et al., 2009). The
authors propose two cluster-based extensions to ILS by grouping nodes on separate
clusters based on geographical criteria. Computational results show that the proposed
algorithms outperform ILS in terms of solution quality and computation time.

Vincent et al. (2019) study the TOPTW with time-dependent scores where the
score of visiting a node is different depending on the time of visit. A hybrid artificial
bee colony algorithm is proposed, which embeds the acceptance criterion of simulated

annealing.
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Heuristic methods: PCVRP

Stenger et al. (2013) consider the PCVRP with non-linear cost in its one and multi-
depot variants, which integrates the option of outsourcing customers to subcontractors
instead of serving them with the private fleet. The objective is to minimize the total

cost. An adaptive variable neighborhood search algorithm is proposed.

Applications

VRPPs have been well studied and model a variety of applications. One application
of VRPPs arises in the context of the small packaging shipping (SPS) industry. Large
companies outsource last-mile deliveries of unprofitable areas to subcontractors and
pay subcontractors per parcel delivered, which is independent from routing decisions
of subcontractors. Therefore, for SPS companies, not all parcels must be delivered by
themselves. They can select a subset of parcels to deliver to minimize the overall cost.
It is called the VRP with private fleet and common carrier (Archetti et al., 2014).

Another well-known application is the tourist trip design problem which aims to
maximize tourist satisfaction (profit) of the visited attractions in a limited period while
satisfying some practical constraints. The interested reader is referred to the survey
on the tourist trip design problem by Gavalas et al. (2014).

Some problems arising in the hot rolling production of the steel industry can also
be modeled as VRPPs (Li & Tian, 2016; Tang & Wang, 2006).

1.4.5 The Multi-vehicle Covering Tour Problem

The multi-vehicle case of the CTP (mCTP) is first introduced by Hachicha et al. (2000)
considering the routing of mobile health care delivery teams in developing countries.
As in the CTP, it is defined on a graph G = (VU W, A), where V U W is the vertex
set, V is a set of vertices that can be visited, 7 C V is a set of vertices that must be
visited and W is a set of vertices that must be covered, i.e., that must lie within a
prespecified distance D from a visited vertex on the tour. Vertex 0 € T is the depot
at which are based a fleet F of F' homogeneous vehicles, F = {1,2, ..., F'}.

The mCTP consists of determining a set of at most F' routes of minimum total
length over a subset of V such that (i) every route starts and ends at the depot; (ii)
each vertex in 7 belongs to exactly one route, while each vertex in ¥V must be covered

by a vertex visited on one of the routes; (iii) the number of vertices on any route
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(excluding the depot) cannot exceed a preset value P,, and the length of any route
cannot exceed a preset value L,. They are referred as capacity constraints. Compared
with the CTP, for each route, the mCTP have upper bounds for its length and the
number of vertices visited respectively.

For arc (i,j) € A and vehicle f € F, let x;;7 be a binary variable equal to 1 if and
only if arc (7,7) is traversed by vehicle f in the solution. For i € V and f € F, let
yif be a binary variable equal to 1 if and only if vertex ¢ € V is visited by vehicle f in
the solution. S; = {i € V\ {0}|D;; < D} C V is the set of vertices that cover vertex
JEW.

The mCTP can be formulated as follows:

fEF (1,5)eA

s.t. Z Z Tijf = Zyif VieV, (192)
fEF (i,5)es+ (4) feF
FEF (j,i)es—(4) fer
Yy =1 View,  (1.94)
fEJ:iGSj
>y =1 VieT, (1.95)
feF
>y < ie v\ {0},  (1.96)
feF
wi—uj+NY z; <N -1 Vi,j € V\ {0},i # j, (1.97)

feF
> Y wyr<F (1.98)
feF jev\{o}
> yy<Ph VfeF,  (199)

1€V\{0}
(i,7)eA
x5 € {0,1} Vi,jeV,i#j feF, (1101
yir € {0,1} VieV, feF, (1.102)
u; >0 vie v\ {0}.  (1.103)

The objective function (1.91) is to minimize the total traveled length. Constraints (1.92)
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and (1.93) are flow conservation constraints and impose that an arc enters and exits
each selected vertex. Constraints (1.94) make sure that every vertex in W is covered by
the routes. Constraints (1.95) guarantee that every vertex in 7 is visited by the routes.
Constraints (1.96) guarantee that each vertex in V belongs to at most one route. Con-
straints (1.97) are subtour elimination constraints. Constraints (1.98) ensure that at
most F' vehicles enter and leave the depot. Constraints (1.99) impose that the number
of vertices visited in each route should not exceed P.. Constraints (1.100) impose that
the length of each route should not exceed L,. Constraints (1.101) — (1.103) define the
variables.

The mCTP is N P-hard since it reduces to a VRP with unit demands when 7 =V
and W = (), or to a CTP when the capacity constraints are relaxed (Ha et al., 2013).
In the following, we summarize all the articles that have been published on the mCTP
and its variants. To the best of our knowledge, there is no work dedicated to the
multi-vehicle case of the CSP.

Exact methods

The first exact method for the mCTP is proposed by Lopes et al. (2013). They develop
a branch-and-price algorithm, and specific dominance and pruning rules are introduced
to accelerate the resolution of pricing problems. A column generation based heuristic
is also described to determine upper bounds. Jozefowiez (2014) present a branch-
and-price algorithm for the mCTP and provided computational results for randomly
generated instances with up to |V| = 100 and |W| = 150. The Constraints (1.99)
and (1.100) are considered in the subproblem, which is modeled as a RSP and solved
by a branch-and-cut method.

Ha et al. (2013) study a variant of the mCTP where only the upper bounds on
the number of vertices visited by a route are considered, and the constraints on the
route length are relaxed, i.e., L, = +00. The authors propose a two-commodity flow
formulation and a branch-and-cut algorithm. A metaheuristic combining the greedy
randomized adaptive search procedure and evolutionary local search is also developed.

Besides, Tricoire et al. (2012) study a variant of the mCTP, the bi-objective CTP
with stochastic demands, in which demands are random variables with a known joint
distribution. One of the objectives is to minimize the costs including routing costs

for a fleet of vehicles and opening costs for distribution centers (the visited vertices).
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The second objective is to minimize the uncovered demand. The authors proposed an
epsilon-constraint algorithm involving branch-and-cut technique.

Karaoglan et al. (2018) study the probabilistic mCTP. Its objective is to determine
a set of distance-constrained routes maximizing the expected demand covered through
visiting a subset of facilities, where a vehicle visiting a facility covers the demand of
a customer with a probability in [0,1). A branch-and-cut algorithm is developed as
well as a local search heuristic based on variable neighborhood search to obtain upper

bounds.

Heuristic methods

Hachicha et al. (2000) introduce the mCTP, and propose an integer linear programming
formulation and three heuristic algorithms. Kammoun et al. (2017) study the mCTP
without the constraints on the route length and propose a variable neighborhood search
heuristic, which outperforms the metaheuristic proposed by Ha et al. (2013).

Some works are devoted to variants of the mCTP. Naji-Azimi et al. (2012a) tackle
the location of satellite distribution centers to provide humanitarian aid to the victims
in a disaster area. They consider multiple commodities, heterogeneous capacitated
fleet and split deliveries. A multi-start heuristic is proposed to solve the problem and
it obtains high-quality solutions in reasonable computation times.

Oliveira et al. (2015) model the multi-vehicle urban patrolling problem as a mCTP,
where there is no vehicle capacity constraint but a balance requirement among the
vehicles. The authors propose several heuristics.

Allahyari et al. (2015) consider the multi-depot capacitated mCTP. The authors
present two mixed integer programming formulations and a hybrid metaheuristic com-
bining greedy randomized adaptive search procedure, iterated local search and simu-
lated annealing.

Flores-Garza et al. (2017) introduce the cumulative mCTP, whose objective is to
minimize the sum of arrival times (latency) at each visited location. There is a time
limit on the duration of each tour. The authors propose a mixed integer linear pro-
gramming formulation and a greedy randomized adaptive search procedure for the
problem.

Pham et al. (2017) study a variant called the multi-vehicle multi-covering tour
problem, in which a vertex must be covered several times rather than once. An integer

linear programming formulation is presented for a special case of the problem, and a
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branch-and-cut algorithm is proposed. The authors develop a genetic algorithm and
computational results show that it outperforms the current best metaheuristics for
several mCTP problems.

Murakami (2018b) study the mCTP in which a demand is assigned to each vertex,
and each vehicle has a capacity. The sum of demands of any route should not exceed

the vehicle capacity. The authors propose a column generation based heuristic.

Applications

One application of this problem arises in the VRP in Humanitarian Relief (Balcik et al.,
2008; Kovacs & Spens, 2007; Luis et al., 2012; Shaelaie et al., 2014; Toth & Vigo, 2014),
as goods and services are often delivered to central locations visited by beneficiaries.
For example, in the disaster relief problem in Doerner & Hartl (2008), after a disaster
the relief vehicles stop at several locations and the populations (the set W) must visit
one of the vehicle stops. The appropriate stops among |V| potential locations need
to be chosen so that all populations can reach one of these stops within acceptable
time. 7 can be considered as the set of stops covering the populations that cannot
be covered by other stops. Another example is to supply the humanitarian aid to the
affected people through several satellite distribution centers located within a predefined
distance from their domiciles (Naji-Azimi et al., 2012a). Another application arises in
bi-level transportation networks, for example the postbox location problem (Labbé &
Laporte, 1986). Last, in the routine patrol routing planning (Oliveira et al., 2015),
routes need to guarantee visibility which has an influence on the community safety,
providing surveillance and allowing quick emergency responses. Vehicles available for
the patrol are limited and strive to achieve balanced routes. This problem is modeled
as a mCTP, in which a subset of locations must be visited, whereas the other locations

should be close enough to the planned routes.

1.4.6 The Capacitated Multiple Ring Star Problem

The Capacitated Multiple RSP (CmRSP) was introduced by Baldacci et al. (2007). It
is defined on a graph G = (V, A). The set of vertices V = {0} UV, where 0 is the
depot, V' = U UW, U is the set of customers and W is the set of transition points
(also called Steiner nodes). The arc set A = {(4,7) : 4,j € V,i # j}. Each customer
i € U can be directly assigned (connected) to a subset of nodes S; C Y UW. The arc
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set A'={(i,j):ieU,jeS}, A C Ais the set of all possible connections and each
arc in A’ has a non-negative assignment/connection cost A;;. Two input parameters
F and @) are given, representing the number of rings and the capacity of each ring
respectively.

A ring R corresponds to a route visiting a subset of vertices in V including the
depot. There may be a number of customers ¢ ¢ R that are connected to vertices
j € R by arc (i,j) € A’. The objective of the CmRSP is to find a set of F' rings
starting and ending at the depot, such that each customer is assigned to exactly one
ring, each Steiner node is visited at most once and the number of customers assigned
to each ring does not exceed the ring capacity ). The objective is to minimize the
total routing and assignment costs.

For each arc (i,5) € A and f € F, let z;;5 be a binary variable equal to 1 if and
only if (4, 7) belongs to a ring f in the solution. For each arc (i,7) € A" and f € F, let
y;;f be a binary variable equal to 1 if and only if customer ¢ € U is assigned to vertex
7 on ring f. If a customer ¢ is visited by a ring f, then it is assigned to itself, i.e.,
Yiif = L.

The CmRSP can be formulated as follows:

JFEF (i,j)eA fer (i,]‘;efA'
i#£]

FEF (i,j)€6+(3) feF
fEF (ji)es— (4) feF
DY wr=1 VieU, (1.107)
fEF jES;
D Ty <1 Vie v\ {0}, (1.108)
feF
Yiif < Yjjs V(i,j) e A, f € F, (1.109)

> wir <@ VfeF (1.110)
(1,5)e A
wi—uj+NY z <N -1 Vi,j € V\{0},i #j, (1.111)

feFr

S Y agp=F (1.112)
JEF jev\{0}

51



1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

xi;r € {0,1} V(i,j) € A, f € F, (1.113)
vijr € {0,1} V(i,5) e A, feF, (1.114)
u; > 0 Vie v\ {0}. (1.115)

The objective function (1.104) is to minimize routing and assignment costs. Con-
straints (1.105) and (1.106) are flow conservation constraints. Constraints (1.107)
guarantee that a customer is either on a ring or is assigned to a vertex on a ring.
Constraints (1.108) impose that each vertex is visited by at most one ring. Con-
straints (1.109) impose that a customer can only be assigned to a vertex visited on
the ring. Constraints (1.110) ensure that the number of customers assigned to each
ring does not exceed the ring capacity ). Constraints (1.111) are subtour elimina-
tion constraints. Constraints (1.112) ensure that F' rings enter and leave the depot.
Constraints (1.113) — (1.115) define the variables.

The CmRSP is N P-hard because when W = (), Q = |V|, F' = 1 and the assignment
costs are very high compared to the routing costs, it reduces to the TSP (Baldacci
et al., 2007). In the following, we summarize all the papers devoted to the CmRSP

and its variants.

Exact methods

Baldacci et al. (2007) introduce the CmRSP and present two integer programming
formulations for it. Valid inequalities are proposed and used as cutting planes in a
branch-and-cut method. Hoshino & de Souza (2008) propose a set covering model
for the CmRSP and develop a branch-and-price algorithm, which is competitive with
the branch-and-cut approach proposed by Baldacci et al. (2007). Then Hoshino &
De Souza (2012) extend their branch-and-price algorithm to a branch-cut-and-price
algorithm by adding a subset of cuts proposed by Baldacci et al. (2007). The proposed
algorithm provides a better bound at the root node than the branch-and-cut method,
and outperforms the latter in several classes of instances. Some instances with up
to 102 nodes are solved to optimality by both branch-and-cut (Baldacci et al., 2007)
and branch-cut-and-price (Hoshino & De Souza, 2012). Baldacci et al. (2017) propose
pricing strategies based on dynamic programming algorithms for the CmRSP. Five
different pricing strategies based on three different ring-star relaxations are presented.

Computational results show that tight lower bounds can be computed for the CmRSP
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instances with up to 431 nodes and for multi-depot RSP instances with up to 203 nodes
and 3 depots.

Sundar & Rathinam (2017) study the multi-depot RSP. The objective is to find a
set of routes (rings) minimizing the routing costs and assignment costs, such that each
route passes through a set of vertices and exactly one depot, meanwhile each non-visited
vertex is assigned to a visited vertex or a depot. A mixed integer linear programming
formulation and some valid inequalities are proposed. The authors present a polyhedral
analysis and derive facet-defining inequalities for the multi-depot RSP. A branch-and-
cut algorithm is developed and evaluated on several classes of benchmark instances,

with the largest solved instance involving 101 vertices.

Heuristic methods

Mauttone et al. (2007) propose a metaheuristic for the CmRSP, which is a hybrid al-
gorithm combining a greedy randomized adaptive search procedure and a tabu search
method. Naji-Azimi et al. (2010) propose a heuristic including a construction proce-
dure and an improvement procedure. A series of different local search operations are
applied iteratively in the improvement procedure. Naji-Azimi et al. (2012b) propose a
variable neighborhood search that incorporates an integer linear programming based
improvement method whenever the local searches are not able to improve the quality of
the current solution. Zhang et al. (2014) propose a memetic algorithm for the CmRSP,
which does not require the underlying graph satisfying the triangle inequality as in
all previous works. The proposed approach obtains almost all best-known solutions
for several benchmark instances with up to 431 nodes, making it the state-of-the-art
heuristic for the CmRSP.

Several works address the multi-depot RSP through heuristics. Baldacci & Dell’Amico
(2010) propose two construction heuristics, and use a tabu search algorithm to improve
the solutions. Hill & Vof (2016) present a mataheuristic that iteratively refines a so-
lution. In this approach, the subproblems are modeled as smaller instances of the
global problem MDRSP, and a branch-and-cut method is used to solve them to opti-
mality. Computational results show that 90% of the existing results are improved by

the proposed approach for instances with up to 1000 nodes.
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Applications

The CmRSP arises in the design of an urban optical telecommunication network for the
city of Reggio Emilia, Italy (Baldacci et al., 2007). In many fiber optical communication
networks, in order to ensure the reliability, the ring topology is used since it prevents
the loss of connection due to a single edge or a single-node failure. On the other hand,
to reduce the excavation costs, if a customer is near to a ring, then it is allowed to
connect this customer to the ring by a single edge. The new network topology is called
ring-star structure. Xu et al. (1999) address a particular digital data service network
design problem, which aims to interconnect a set of customer locations through a ring
of end offices so as to minimize the total tariff cost and provide reliability (the RSP

application).

1.4.7 The Multi-vehicle Traveling Purchaser Problem

The multi-vehicle TPP (mTPP) is first introduced by Choi & Lee (2010). It is defined
on a graph G = (V, A) and V\ {0} represents a set of markets. A fleet F of homogeneous
vehicles with a limited capacity @) is available at the depot 0 for a set of purchasers
collaborating to satisfy the products demand. The problem aims to minimize the
purchasing and traveling costs deciding the purchasing plan and the corresponding
visiting route for each vehicle.

For arc (i,j) € A and vehicle f € F, let x;;; be a binary variable equal to 1 if and
only if vehicle f visit vertex j immediately after <. For i € V and f € F, let y;r be a
binary variable equal to 1 if and only if vehicle f visits vertex i. Fori € V\{0}, f € F
and g € Q, let z;, be the quantity of product ¢ purchased by vehicle f at vertex «.

The mTPP can be formulated as follows:

(mTPP) mlnz Z C’”xchrZ Z Z 0Zifq (1.116)

feF (i,j)eA feF 1eV\{0} qeQ

s.t. Z Z Tijf = Zy,f Viey, (1.117)

fEF (i,5)€dt(4) feF

ST wmir=> i VieV, (1.118)
fEF (4,i)ed—(3) feF

Dy <1 Vie V\ {0}, (1.119)
feF
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YDz =0 Vg e Q, (1.120)

feFieV\{0}

Zifg < QigYiy Vie V\{0},qc€ Q, f € F, (1.121)
S <@ Vf e F, (1.122)

i€V\{0} ¢€Q

wi—uj+ N Y w <N -1 Vi, j € V\ {0},i # j, (1.123)

feF

zijy € {0,1} Vi,j €V,i#j, fEF, (1.124)

yir €{0,1} VieV, feF, (1.125)

Zifg > 0 Vie V\{0},q€ Q, f € F, (1.126)

u; >0 Vie V\ {0} (1.127)

The objective function (1.116) is to minimize the traveling and purchasing costs.
Constraints (1.117) and Constraints (1.118) are flow conservation constraints and im-
pose that an arc enters and exits each selected vertex. Constraints (1.119) ensure that
every market can be visited at most by one vehicle. Constraints (1.120) ensure that
exactly the quantity of products required shall be purchased. Constraints (1.121) im-
pose that the quantity of a product purchased by a vehicle at a market is less than
the available quantity at this market. Constraints (1.122) guarantee that the capacity
of the vehicle is respected. Constraints (1.123) are subtour elimination constraints.
Constraints (1.124) — (1.127) define the variables.

The interested reader is referred to the survey on the TPP and its variants by
Manerba et al. (2017) that to the best of our knowledge covers the entire literature up

to now.

1.5 Conclusions and perspectives

Routing problems are usually defined on a directed graph G = (V, A) where V is the
set of vertices. Classical routing problems require to visit every vertex of the graph.
Several articles and books survey the literature extensively (see for example Laporte
(2009); Toth & Vigo (2014)). On the other side, when not all the vertices are required
to visit, only one paper by Laporte & Martin (2007) presents a wide overview. However,

this paper focuses on works where a single resource is available to perform deliveries.
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