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Introduction

Nowadays, e-commerce is a thriving market around the world. It is used on a daily basis
and allows customers to purchase online whenever and whatever they like. Customers
are no longer restricted to go to a specific store and to respect the opening hours.
An annual survey conducted by the analytics firm comScore and UPS revealed that
American consumers purchased more things online than in stores in 2016 (Farber,
2016). At the end of 2018, global e-commerce sales reached approximately $2.8 trillion
and are estimated to hit $4.5 trillion in 2021 (Wardini, 2018). This growing e-commerce
poses a huge challenge for the last mile delivery since the ordered items need to be
delivered to individual customers.

Currently, there exist several last mile delivery services to deliver packages to cus-
tomers. The most common delivery option is home/workplace delivery (Lowe & Rigby,
2014). Customers wait at home/workplace to get their packages. Besides, the delivery
can be made to pick-up points such as dedicated lockers or stores. In this case, cus-
tomers can retrieve their packages once the delivery has been made. To give an idea,
there are more than 2800 lockers located across the US (Holsenbeck, 2018). When
customers shop online, they can choose a nearby locker as their delivery location.
This reduces the fragmentation of deliveries in the last mile, thereby helping to reduce
the congestion and environmental pollution caused by urban freight trips (Morganti
et al., 2014), as well as reducing routing costs. In recent years, a new concept called
trunk/in-car delivery has been proposed. Here, customers’ packages can be delivered
to the trunks of cars. Volvo launched its world-first in-car delivery service in Sweden
in 2016 (Kirsten, 2016). The courier has a one-time digital code to get access to the
trunk of the car. In April 2018, Amazon launched the in-car service in partnership
with two major automakers General Motors and Volvo. This service is available in 37
cities in the US (Hawkins, 2018). Trunk delivery differs from home/workplace delivery
and pick-up points delivery since the car moves and can be in different locations dur-
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INTRODUCTION

ing different periods of time, e.g., parked at the workplace in the morning and at the
commercial center in the afternoon. As a consequence, synchronization between the
car and the courier is required to make the delivery.

All these delivery services can be combined, and instead of choosing one delivery
location during the online purchase, the customer can propose a set of delivery locations
with the associated time constraints. To deliver a package to a specific customer, the
courier only needs to choose one of the locations provided by the customer.

In this thesis, we aim to model and develop efficient solution methods for rout-
ing problems that arise in the context of last mile delivery when multiple shipping
options are proposed: home/workplace, pick-up points, and car trunk. The last mile
delivery with multiple shipping options allows customers to choose multiple locations
to receive their packages. This provides customers more flexibility considering their
convenience. Moreover, it might increase the rate of successful first-time deliveries and
decrease the delivery costs. For example, in the United Kingdom, the cost of failed
deliveries is almost $1.1 billion for retailers and e-commerce companies in a $100 bil-
lion market (Honorato, 2016; Symonds, 2018). Offering more delivery options could be
profitable (BringgTeam, 2019).

We study both the single-vehicle and multi-vehicle routing problems in this context,
i.e., the Generalized Traveling Salesman Problem with Time Windows (GTSPTW) and
the Generalized Vehicle Routing Problem with Time Windows (GVRPTW), in which
there are clusters representing possible delivery locations associated with a customer.
It can be easily seen that in the problems we study, it is not necessary to visit all the
locations associated with a given customer, since the courier only needs to deliver the
package to one of the locations that the customer provides.

In the following, we outline the thesis.

• In Chapter 1, we survey non-Hamiltonian routing problems whose main charac-
teristic is that only a subset of vertices of the problem graph need to be visited.
For each of these problems, we give its definition and present a compact math-
ematical formulation. We also provide a literature review and give some of its
applications.

• In Chapter 2, we study the single-vehicle routing problem for last mile deliv-
ery with multiple shipping options, which is called the Generalized Traveling
Salesman Problem with Time Windows (GTSPTW). We present four integer
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INTRODUCTION

linear programming formulations for the GTSPTW. The models differ in the
way we define the arc variables and time variables: based on vertices or clus-
ters. Dominance relations between the linear relaxations of these formulations
are theoretically established. Computational results on linear relaxations show
that on average formulation F1 (arc variables are defined between pairs of ver-
tices and time variables are defined for all the vertices) is the best, followed by
formulation F2 (arc variables are defined as in F1 while only one time variable
is defined for each cluster). However, when the GTSPTW is solved using the
branch-and-bound scheme in CPLEX, on average formulation F2 is the most ef-
ficient, followed by formulation F1. Therefore, we recommend using formulations
F1 and F2 for the solution of the GTSPTW. In addition, supervalid inequalities
for formulations F1 and F2 are proposed, and we experimentally show how they
strengthen these models.

• In Chapter 3, we develop a branch-and-cut algorithm for the GTSPTW. Several
families of valid inequalities are proposed, which contain polynomial or exponen-
tial numbers of constraints. They are incorporated in a branch-and-cut frame-
work through dedicated separation procedures. A high quality initial solution is
constructed based on a heuristic and used as a warm start in the branch-and-
cut algorithm. We test the algorithm on three groups of instances with different
characteristics. The results clearly demonstrate the efficiency of the proposed
branch-and-cut algorithm and the quality of formulation F2. The proposed al-
gorithm based on formulation F2 can solve instances around 30 clusters within
one hour of computation time.

• In Chapter 4, we study the multi-vehicle case, which is called the Generalized
Vehicle Routing Problem with Time Windows (GVRPTW). We propose an in-
teger linear programming formulation and a set covering formulation for the
GVRPTW. Based on the set covering formulation, we develop a column genera-
tion based heuristic to solve the GVRPTW. It combines several components in-
cluding construction heuristic, route optimization procedure, local search, and the
generation of negative reduced cost routes. Experimental results on benchmark
instances show that the proposed algorithm is very efficient, and high-quality
solutions can be obtained within very short computation times for instances with
up to 120 clusters.

3
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• Finally, we give some conclusions that we draw from the studied problems and
discuss some perspectives of future work.
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1.1 Introduction

Urban population grows with a constant trend, and nowadays half of the population
lives in urban areas. In particular, almost 75% of the European population lived in
urban areas in 2015. Higher shares were recorded in Latin America and the Caribbean
(79.8%) and North America (81.6%).

In 2014, the Netherlands, Belgium, and United Kingdom were the most concen-
trated urban regions of the European Union (EU) since 44.1%, 34.6% and 27.5% re-
spectively of their total area was classified as predominantly urban. On the other side,
nordic EU member States, Ireland and eastern EU member States such as Hungary,
Romania, Croatia, and Bulgaria account for at least 97.0 % of their total surface as
rural regions.

Moreover, in 2012, 53% of all gross domestic product (GDP) was generated in
urban zones. As a consequence, even if the area occupied by predominantly urban
regions across the EU was generally quite small, in light of the population that lives
in, it is easy to see the concentration of economic activities in these regions. Same
situation happens around the world, with more than 80% of global GDP generated in
cities (Wahba, 2019).

These activities produce economic growth, engender a wide range of problems
among those we can name traffic congestion, and pollution (Kotzeva, 2016) and rise a
number of challenges in the context of city logistics. The concept of city logistics was
defined by Taniguchi et al. (2001) as “the process for totally optimizing the logistics
and transport activities by private companies in urban areas while considering the traf-
fic environment, the traffic congestion and energy consumption within the framework
of a market economy”. The reader interested in city logistics is refereed to Cattaruzza
et al. (2017); Crainic et al. (2009); Taniguchi et al. (2001).
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1.1 Introduction

Among the logistics solutions proposed to deliver parcels in the context of city
logistics, several consider multiple locations as delivery points for a specific parcel. For
example, a customer can choose to be delivered at home or at a nearby pick-up point.
Pick-up points may be shops that offer collection services or lockers installed by the
delivery company. Both lockers and pick-up points allow the transfer of the parcel from
the courier to the consignee without the simultaneous presence of both.

A recent technology proposed by Volvo introduces the possibility of making delivery
directly into the trunk of the customer’s car. Volvo launched its world-first in-car
delivery service in Sweden in 2016. The courier has a one-time digital code to get
access to the trunk of the car. Since the car moves along the day, the parcel can be
delivered in different locations and requires the simultaneous presence of the car and
courier.

Classical routing problems studied by scholars are defined on a graph G = (V ,A)

that represent the delivery network. V = {0, . . . , N} is the set of vertices, and A is
the set of arcs connecting pairs of vertices. Vertex 0 represents the depot where the
fleet of vehicles is located, while nodes V \ {0} represent customers. Classical routing
problems assume that all the customers, namely all the vertices in the graph, have to
be visited once by a single vehicle (Toth & Vigo, 2014).

However, in the two aforementioned examples in the city logistics context, each
customer is associated with several possible delivery locations. To deliver the parcel,
only one of the possible delivery locations associated with the same customer has to
be selected to make the delivery. Then, a solution of such routing problems visits only
a subset of the vertices of the graph G = (V ,A) representing the instance.

Routing problems that do not require to visit all the vertices of the graph are various
and are not limited to the fact that only one vertex need to be visited among a fixed
subset of vertices as in the aforementioned examples. When a profit is associated to
the visit of a vertex, some problems consider to only visit a subset of the vertices in
order to maximize the profit, or to take into account some resource constraints. Other
problems also consider that if a vertex is visited, some other vertices (e.g., the ones
close from this visited vertex) do not need to be visited anymore.

In all the problems mentioned, only a subset of vertices of the graph need to be
visited. We refer to this class of problems as non-Hamiltonian routing problems (non-
HRP) (Laporte & Martín, 2007). Laporte & Martín (2007) propose a related survey
that is limited to the single-vehicle case of the non-HRP and covers research works up
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1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

to the year 2005. Fischetti et al. (2007) also give a non-exhaustive list of single-vehicle
non-HRP including works up to the year 2002. The aim of this paper is to survey
recent advances in both the single-vehicle and the multi-vehicle non-HRP.

The paper is organized as follows. In Section 1.2 we describe the organization of the
survey, the choices we made, the notations and the convention we use. Section 1.3 is
dedicated to the non-HRP where one vehicle is in charge of the delivery service, while
Section 1.4 considers non-HRP where a fleet of several vehicles is available. Finally,
Section 1.5 concludes the paper.

1.2 Survey organization and notations

1.2.1 Survey organization

The paper is organized in two main sections. The first deals with one vehicle problems
while the second section deals with the multi-vehicle case. Each section starts with
the introduction and the formulation of the classical related routing problem from
which the hamiltonian requirement has been removed, namely the Traveling Salesman
Problem (TSP) and the capacitated Vehicle Routing Problem (VRP).

This paper is not intended to provide a detailed survey on each non-HRP class
mainly because surveys dedicated to some specific classes of non-HRP are already
present in the literature and such work would simply end up in a repetition. The main
objective of this paper is to provide to the reader a complete list of non-HRP and to
redirect he/she towards dedicated recent research papers or towards dedicated surveys
when these are available.

For each problem, first we provide a mathematical formulation. The purpose of
the formulation is descriptive only. We provide compact formulations, namely that
are polynomial in the number of variables and constraints. This implies that subtour
elimination constraints are expressed in the Miller-Tucker-Zemlin (MTZ) form (Miller
et al., 1960). Then we review the literature on this problem. The articles are divided
into two categories according to the solving methodology proposed in the paper, i.e.,
exact methods and heuristic methods.

We limit the scope of this literature review to routing problems where the service
is accomplished on the nodes of the graph and not on the arcs. As a consequence, we
do not include problems that belong to the family of arc routing problems.
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1.2 Survey organization and notations

1.2.2 Notations

All along the paper we take the convention of using uppercase letters in mathematical
calligraphy to represents sets. Uppercase letters represent data while lowercase letters
represent variables.

Routing problems may be defined on a digraph that represents the road network.
This digraph is denoted by G = (V ,A) where V is the vertex set and A is the arc set.
A specific vertex 0 represents a depot. The cardinality of the vertex set V is N + 1.
Vertices 1, . . . , N represent locations that may require a visit or a service. There is a
fleet F , |F| = F of vehicles located at the depot 0.

With each arc (i, j) ∈ A, we associate a traveling time Tij, a traveling cost Cij and
possibly a distance Dij. If not differently specified, we suppose that traveling times,
traveling costs and distances are asymmetric (Tij 6= Tji, Cij 6= Cji, Dij 6= Dji for some
i, j ∈ V) and satisfy the triangle inequality (Tij ≤ Tik + Tkj, Cij ≤ Cik + Ckj and
Dik +Dkj ≤ Dij for all i, j, k ∈ V).

When an undirected graph is considered, it is denoted by G = (V , E), where V is
the vertex set, while E is the edge set. Then the problem is symmetric, i.e., Tij = Tji,
Cij = Cji, Dij = Dji for all i, j ∈ V . For ease of notation we indicate both the vertex
sets of a digraph and an undirected graph by V , while we distinguish the arc set of a
digraph A from the edge set of an undirected graph E .

To present mathematical models, there are some common variables used for different
problems. Based on a digraph G = (V ,A), variables xij, ∀(i, j) ∈ A are binary variables
that represent the arc selection, equal to 1 if and only if arc (i, j) is used in the solution;
variables yi, ∀i ∈ V are binary variables that represent vertex selection, equal to 1 if
and only if vertex i is used in the solution; variables ui, i ∈ V \ {0} are real non-
negative variables; variables ti, i ∈ V are real non-negative variables that represent the
beginning time of service at a vertex.

If there are more than one vehicle available (F > 1) at the depot, we might add one
more index corresponding to the vehicle in the variable definition, i.e., we use variables
xijf , ∀(i, j) ∈ A, f ∈ F and yif , ∀i ∈ V , f ∈ F for arc selection and vertex selection
respectively to represent that a certain arc or vertex is used by a specific vehicle or
not.

There are some additional notations. Given a subset S of the vertex set V , S ⊂
V ,S 6= ∅, we define δ+(S) = {(i, j) ∈ A|i ∈ S, j ∈ V \ S} and δ−(S) = {(i, j) ∈ A|i ∈
V \ S, j ∈ S}, namely the set of arcs exiting from and entering into S. When S = {i},
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1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

we use the notation δ+(i) and δ−(i) instead of δ+({i}) and δ−({i}) respectively. Last,
we define γ(S) = {(i, j) ∈ A|i, j ∈ S} as the set of the arcs with both endpoints in S.

1.3 One-vehicle case

This first part of the paper focuses on non-HRP where a single vehicle or person is in
charge of the service operation. Usually when only one resource is available to perform
operations, we refer to it as a traveling salesman rather than a vehicle. We begin the
section by introducing the Traveling Salesman Problem (TSP). Then, we present differ-
ent families of non-HRP derived from the TSP in which the Hamiltonian requirement
is removed. These problems include the Generalized Traveling Salesman Problem, TSP
with Profits, the Covering Tour Problem, the Covering Salesman Problem, the Median
Cycle Problem, the Ring Star Problem, and the Traveling Purchaser Problem.

1.3.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is defined on a graph G = (V ,A), where the
vertex set V represents the set of cities to be visited by the salesman. The TSP consists
in determining the minimum cost Hamiltonian cycle on G.

The TSP can be formulated using variables xij and ui introduced in Section 1.2.2
as follows (Miller et al. (1960)):

(TSP ) min
∑

(i,j)∈A

Cijxij (1.1)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ V , (1.2)

∑
(j,i)∈δ−(i)

xji = 1 ∀i ∈ V , (1.3)

ui − uj +Nxij ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.4)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.5)

ui ≥ 0 ∀i ∈ V \ {0}. (1.6)

The objective function (1.1) minimizes the cost of the Hamiltonian cycle. Con-
straints (1.2) and Constraints (1.3) impose that each vertex is visited exactly once.
Constraints (1.4) are subtour elimination constraints in the Miller-Tucker-Zemlin (MTZ)
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form. Constraints (1.5) and (1.6) define the variables. The TSP is one of the most
studied combinatorial optimization problems. The interested reader is refereed to Ap-
plegate et al. (2006); Cook (2011); Gutin & Punnen (2007).

1.3.2 The Generalized Traveling Salesman Problem

The Generalized TSP (GTSP) is an extension of the TSP where the vertices of the
graph G = (V ,A) are partitioned into clusters, i.e., C0 = {0}, C1, ..., CK clusters.
C0

⋃
...
⋃
CK = V and Ch ∩ Ck = ∅,∀h, k ∈ K, h 6= k, where K = {0, 1, ..., K} de-

notes the cluster index set. The arc set A contains arcs that link vertices belonging to
different clusters, that is, A = {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. The objective of
the GTSP is to find a minimum cost tour that visits each cluster exactly once.

The GTSP is formulated using variables xij, yi and ui introduced in Section 1.2.2
as follows:

(GTSP ) min
∑

(i,j)∈A

Cijxij (1.7)

s.t.
∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (1.8)

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (1.9)

∑
i∈Ck

yi = 1 ∀k ∈ K, (1.10)

ui − uj +Kxij ≤ K − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.11)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.12)

yi ∈ {0, 1} ∀i ∈ V , (1.13)

ui ≥ 0 ∀i ∈ V \ {0}. (1.14)

The objective function (1.7) minimizes the traveling cost of the tour. Constraints (1.8)
and Constraints (1.9) are flow conservation constraints and impose that an arc enters
and exits each selected vertex. Constraints (1.10) impose that exactly one vertex is
visited per cluster. Constraints (1.11) are subtour elimination constraints in the MTZ
form. Constraints (1.12) – (1.14) define the variables.

As in the TSP formulation (1.1)–(1.6), xij variables select the arcs used by the
salesman to perform the tour. With respect to the TSP formulation (1.1)–(1.6), vertex
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1. A SURVEY ON NON-HAMILTONIAN ROUTING PROBLEMS

selection for each cluster is required. As a consequence, variables yi are introduced to
select the vertex that is visited for each cluster.

If all clusters Ci, i = 1, . . . , K are singletons, the GTSP reduces to the TSP. From
this observation it immediately follows, by reduction to the TSP, that the GTSP is
NP -hard.

Polyhedral results

The paper by Fischetti et al. (1995) is dedicated to the description of the polytope of
the symmetric GTSP (Tij = Tji, Cij = Cji). They prove that the dimension of the
polytope of the GTSP is |E| −K. Some families of inequalities are proved to be facet
defining. Moreover they provide a general lifting procedure that allows to extend facet
defining inequalities of the symmetric TSP polytope to a facet of the symmetric GTSP.

Transformation to the TSP

Several papers propose to solve the GTSP by transforming an instance of the GTSP
into an instance of the well-studied TSP, and then solve the latter by applying existing
exact or heuristic approaches for the TSP.

Noon & Bean (1993) propose a technique to transform any instance of the GTSP
to an instance of the asymmetric TSP. This technique first constructs an instance of
the clustered-TSP, as the GTSP admits a partition of the nodes in V into clusters.
However the clustered-TSP requires to visit all the nodes of V with the constraints
that the nodes in the same cluster must be visited consecutively. It introduces zero-
cost arcs to form a cycle among nodes inside each cluster. Then the clustered-TSP is
transformed into a standard asymmetric TSP by simply adding a large cost to all the
inter-cluster arcs. The proposed transformation creates an instance of the TSP with
|V| nodes and |A|+

∑
k∈K,|Ck|>1 |Ck| arcs.

Dimitrijević & Šarić (1997) propose a transformation of an instance of the GTSP to
an instance of the asymmetric TSP based on the replication of all the nodes in V . They
connect all the nodes in the same cluster via a zero-cost cycle. Similarly, the replication
of nodes in the same cluster are connected via a zero-cost cycle. Arcs that start from
the original node and end at the replication node are introduced and associated with
a large cost. The resulting graph has 2|V| nodes and |A|+ |V|+ 2

∑
k∈K,|Ck|>1 |Ck| arcs.
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1.3 One-vehicle case

Laporte & Semet (1999) propose a transformation of an instance of the symmetric

GTSP into the symmetric TSP made on the replication of all the nodes in V . Nodes in
the same cluster are arbitrarily ordered as 1, 1′, 2, 2′, . . . , h, h′, placing a vertex next to

its copy. Edges {1, 1′}, {1′, 2}, {2, 2′}, . . . , {h, h′}, {h′, 1} are added. Edges connecting

copies of the same node has a cost of −M , while other edges a cost of −2M , where M

is a large enough value. The resulting graph has 2|V| nodes and (|E| + 2
∑K

k=1(|Ck|))
edges.

Ben-Arieh et al. (2003) and Zia et al. (2018) discuss “non-exact” transformations

from the GTSP to TSP that provide heuristic solutions for the GTSP using existing

algorithms for the TSP.

Exact methods

The existing literature on exact methods for the GTSP is quite limited. The GTSP is

first introduced by Srivastava et al. (1969) and Saskena (1970a), and dynamic program-

ming is used to solve it. Laporte & Nobert (1983) propose an integer programming

formulation and a branch-and-bound approach for the symmetric GTSP. The largest

instance solved contains 50 nodes and 10 clusters. Laporte et al. (1987) study the

asymmetric case of the GTSP and propose a branch-and-bound algorithm. Instances

with up to 100 nodes and 8 clusters are solved to optimality. Noon & Bean (1991)

present a branch-and-bound approach for the asymmetric GTSP. They propose a La-

grangian relaxation to compute a lower bound and a heuristic to compute an upper

bound. Non-optimal arcs and nodes are identified and eliminated based on the re-

duced costs. This method is tested on a set of randomly generated instances. They

solve instances with up to 104 nodes and 8 clusters. Meanwhile, their algorithm is more

efficient compared to the approach proposed by Laporte et al. (1987). Fischetti et al.

(1997) study the symmetric GTSP. The authors propose an efficient branch-and-cut

algorithm to solve the GTSP. They develop exact and heuristic separation procedures

for some classes of facet-defining inequalities. They also generated a library of GTSP

instances called GTSP-LIB by taking TSP-LIB instances and performing a clustering

procedure on the nodes. Their algorithm could solve instances with up to 89 clusters

and 442 nodes.
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Heuristic methods

A different approach to tackle the GTSP is to develop heuristics. Heuristics include
genetic algorithms (Ardalan et al., 2015; Snyder & Daskin, 2006), particle swarm based
approach (Shi et al., 2007), and ant colony algorithms (Pintea et al., 2007; Yang et al.,
2008). Several memetic algorithms combining genetic and powerful local search algo-
rithms have also been proposed (Bontoux et al., 2010; Gutin & Karapetyan, 2010).
The memetic algorithm proposed by Gutin & Karapetyan (2010), called GK, obtains
excellent results on the GTSP-LIB instances, with computation times shorter than 1
minute and most of the solutions within 0.2% of the best-known values. It has been
shown in Drexl (2014) that GK performed well for instances with up to about 200
clusters. However, for instances with more than 500 clusters, the gaps to the optimal
solutions usually exceeded 10%. Helsgaun (2015) extends the Lin-Kernighan-Helsgaun
(LKH) TSP solver (Helsgaun, 2000, 2009) to the GTSP, called GLKH. He transforms
the GTSP instance to the standard asymmetric TSP using the transformation method
proposed by Noon & Bean (1993) and then solves the TSP using the LKH solver. The
resulting algorithm improves the solution quality on GTSP-LIB instances compared
with the GK proposed by Gutin & Karapetyan (2010), at the expense of more compu-
tation time. The GLKH is also tested on several other problem libraries. It could find
high-quality solutions for new generated large-scale GTSP instances with up to 17180
clusters and 85900 vertices. It also shows strong performances on transformed instances
of the arc routing problems (Corberán et al., 2012). Smith & Imeson (2017) presented
a solver called GLNS based on adaptive large neighborhood search. Their results show
that on the benchmark GTSP-LIB instances, the GLNS shows similar performance to
that of GK and GLKH. On several other problem libraries, given the same amount of
computation time, the GLNS finds higher quality solutions than existing approaches.

Application

Following Laporte et al. (1987), one application of the GTSP is proposed in Bovet
(1983) and consists in determining the locations of mailboxes in two phases. First
a set of possible location of each mailbox is built. Thus, each cluster contains the
potential locations of a mailbox. The exact locations of mailboxes are determined
while calculating the route of the postal van that consists of a single visit of each
cluster such that routing cost is minimized.
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1.3 One-vehicle case

Saskena (1970b) describe an application where a person needs to receive different
services and each service is provided by different agencies. Agencies are then clustered
with respect to the service they provide. The tour the clients perform consist in visiting
each cluster once while minimizing routing costs.

Laporte et al. (1996) mention the material flow system design problem. A pro-
duction plant is partitioned in several production zones. These zones are supposed to
be polygonal. The problem consists in designing a minimal length tour such that it
contains at least one vertex of each zone. Then, each cluster contains the vertices of
the zones and the problem can be modeled as a GTSP.

1.3.3 The TSP with Profits

The TSP with Profits (TSPPs) is a generalization of the TSP where in the graph
G = (V ,A) each vertex i ∈ V \ {0} is associated with a profit Pi. The objective
is to optimize both the collected profit and the traveling cost. As such, the visit of
all the vertices is not mandatory. The collection of the profits and the traveling cost
optimization may be considered in the objective function or in the constraints. In
particular, based on the different case the TSPPs can be classified as follows:

• The Profitable Tour Problem (PTP) (Dell’Amico et al., 1995) where the objective
is to minimize the traveling cost minus the collected profit.

• The Orienteering Problem (OP) (Chao et al., 1996a) where the objective is to find
a tour that maximizes the profit under a constraint that imposes the maximum
cost Cmax of the tour.

• The Prize-Collecting Traveling Salesman Problem (PCTSP) (Balas, 1989) where
the objective is to minimize the tour traveling cost under a constraint that im-
poses a minimum prize collection Pmin.

The TSPPs can be formulated using variables xij, yi and ui introduced in Sec-
tion 1.2.2 as follows:

(TSPPs) min f(x, y) (1.15)

s.t.
∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (1.16)
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∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (1.17)

ui − uj +Nxij ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.18)

g(x, y) ≥ 0, (1.19)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.20)

yi ∈ {0, 1} ∀i ∈ V , (1.21)

ui ≥ 0 ∀i ∈ V \ {0}. (1.22)

where f(x, y) and g(x, y) are as follows.

• for the PTP:

– f(x, y) =
∑

(i,j)∈ACijxij −
∑

i∈V Piyi

– g(x, y) = 0;

• for the OP:

– f(x, y) = −
∑

i∈V Piyi

– g(x, y) = Cmax −
∑

(i,j)∈ACijxij;

• for the PCTSP:

– f(x, y) =
∑

(i,j)∈ACijxij

– g(x, y) =
∑

i∈V Piyi − Pmin.

The objective function (1.15) is to minimize the traveling cost minus the collected
profit in the case of the PTP, is to maximize the profit in the case of the OP and
is to minimize the traveling cost in the case of the PCTSP. Constraints (1.16) and
Constraints (1.17) are flow conservation constraints and impose that an arc enters and
exits each selected vertex. Constraints (1.18) are MTZ subtour elimination constraints.
Constraints (1.19) are inactive for the PTP, impose the maximum tour cost for the OP
and the minimum prize to collect for the PCTSP. Constraints (1.20) – (1.22) define
the variables.

The three versions of the TSPPs are NP -hard (Feillet et al. (2005)).
The interested reader is referred to the surveys by Feillet et al. (2005), Archetti et al.

(2014), Vansteenwegen et al. (2011) and Gunawan et al. (2016). Feillet et al. (2005)
reports polyhedral results on the TSPPs and its transformation into the TSP and covers
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works up to the year 2000. Archetti et al. (2014) is dedicated to the Vehicle Routing
Problem with Profits, but includes research works dedicated to both single-vehicle case
(TSPPs) as well as the multi-vehicle case, up to the year 2014. Vansteenwegen et al.
(2011) provide a comprehensive survey on the OP and its variants, including problem
descriptions, benchmark instances and solution approaches, covering works up to the
year 2009. Gunawan et al. (2016) also surveys on the OP extending new works and
new variants of the OP up to the year 2015.

In this section, in order to avoid the repetition, we focus on the related literature
on the PTP and PCTSP published since 2014 and on the OP since 2015, as well as
on papers that were not reported. Recent works on the PTP and its variants include
both exact and heuristic approaches, while all the recent works on the PCTSP, OP
and their variants propose heuristic approaches.

Exact methods: PTP

To the best of our knowledge, there is no specifically proposed exact approach for the
PTP. However, there exist some recent works on variants of the PTP, e.g., the capaci-
tated PTP (Jepsen et al., 2014), the time-dependent PTP (Lera-Romero & Miranda-
Bront, 2019; Sun et al., 2018), etc., as described in the following. Jepsen et al. (2014)
propose a branch-and-cut algorithm for the capacitated PTP. In the capacitated PTP,
each customer is associated with a profit and a demand, and a capacity is given for
the maximum load of the tour. The objective is to find a tour that minimizes the total
traveling cost minus the profits gained from the visited customers, with the demand
accumulated at the customers does not exceed the capacity. Sun et al. (2018) study
the time-dependent capacitated PTP with time windows and precedence constraints.
In this problem, a single vehicle with capacity limit is available. To deal with road
congestion, traveling times are considered to be time-dependent. They propose an ex-
act approach by developing a tailored labeling algorithm. A heuristic is also described
which could obtain high-quality solution in lower computation time than the proposed
labeling algorithm. Lera-Romero & Miranda-Bront (2019) study the time-dependent
PTP with resource constraints. These constraints can be related to time windows,
vehicle capacity, duration of the route, etc. The authors propose a mixed integer
programming formulation and four new families of valid inequalities for the problem.
They develop a branch-and-cut algorithm, and experimental results on four different
problems show that the proposed approach is effective and flexible.
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Heuristic methods: PTP

There exist two heuristic works on variants of the PTP. Lee et al. (2010) propose a
genetic algorithm for the PTP with pickup and delivery. Chentli et al. (2018) propose
an adaptive large neighborhood search for the PTP with simultaneous pickup and
delivery.

Heuristic methods: PCTSP

Archetti et al. (2014) cover most of the exact, heuristic, and approximation algorithms
for PCTSP up to the year 2014. In recent years, only a few works appeared on the
PCTSP. Pedro et al. (2013) propose a tabu search approach for the asymmetric version
of the PCTSP. da Silva Menezes et al. (2014) study the prize-collecting traveling car
renter problem. In the traveling car renter problem, several cars are available to be
used during the tour and a tourist wants to visit a set of cities with rented cars. The
objective is to determine a minimum cost tour that visits some cities with different
rented vehicles, at least reaching a pre-specified satisfaction. The authors proposed a
memetic algorithm to solve this problem.

Heuristic methods: OP

For the OP, there are several recent works. Kara et al. (2016) present two polynomial-
size formulations. Kobeaga et al. (2018) propose a population-based evolutionary algo-
rithm for the OP, whose main characteristic is to maintain unfeasible solutions during
the search and to use specific operators to recover feasibility when it is required. Ex-
perimental results show that the proposed algorithm is competitive for medium-size
instances with up to 400 nodes and is excellent for large-size instances with up to
7397 nodes in terms of quality and time. Santini (2019) proposes an adaptive large
neighborhood search algorithm for the OP. Computational results showed that it is
competitive with the genetic algorithm proposed by Kobeaga et al. (2018) and it finds
better solutions when given a long CPU time limit. Moreover, the two algorithms
seem to be complementary in the sense that for the sets of large instances whose best
solution is found by genetic algorithm and the proposed algorithm are disjoint.

The rest of recent papers work on the variants of the OP, e.g., OP with mandatory
visits and exclusionary constraints, multi-objective OP, time-dependent OP, stochastic
OP, probability OP, the set OP. These variants are reviewed hereafter.
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Palomo-Martínez et al. (2017) study a variant of the OP in which mandatory visits
for certain nodes and incompatibility between nodes are considered. They propose
a hybrid variable neighborhood search algorithm combining the greedy randomized
adaptive search procedure. Lu et al. (2018) propose a memetic algorithm for the
same problem. Experimental results on the benchmark instances proposed by Palomo-
Martínez et al. (2017) show that their algorithm is highly effective and outperforms
the hybrid variable neighborhood search algorithm.

Martín-Moreno & Vega-Rodríguez (2018) propose an evolutionary algorithm for the
bi-objective OP. Experimental results show that the proposed algorithm outperforms
the other two state-of-the-art algorithms for the bi-objective OP.

Mei et al. (2016) study the multi-objective time-dependent OP, in which the time-
dependent traveling time and multiple preferences are taken into account. They pro-
pose two metaheuristics, i.e., a multi-objective memetic algorithm and a multi-objective
ant colony algorithm to solve the problem.

Verbeeck et al. (2016) introduce the OP with time windows and time-dependent
stochastic traveling time. They design an ant colony algorithm to solve the problem.
In this variant, the traveling time between two locations is a stochastic function that
depends on the departure time at the first location.

Angelelli et al. (2017) study a variant of the OP called the probabilistic OP, in
which each node will be available for visit only with a certain probability. The au-
thors formulate the problem as a stochastic mixed integer programming problem and
propose a branch-and-cut approach and several metaheuristics. Computational results
prove the efficiency of the exact method, and the metaheuristics can find high quality
solutions in a few minutes.

Varakantham et al. (2018) study a variant of the stochastic OP, in which the trav-
eling time distribution for moving from one vertex to another depends on the arrival
time at the former vertex.

Dolinskaya et al. (2018) model the search and rescue operation in a post-disaster
as a variant of the OP, in which multiple paths with stochastic traveling times exist
between nodes.

Bian & Liu (2018) focus on the operational-level stochastic OP, in which the vehicle
can adjust the routing plan in real-time.

Freeman et al. (2018) study a variant of the OP called attractive OP for planning
entertainment events, specifically, the concert touring industry. The problem seeks to
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determine a maximum profit tour and event plan among a set of candidate locations
over a fixed time horizon. The profit from a particular event depends on attendance.

Pěnička et al. (2019) study the set OP. In the set OP, the customers are grouped into
clusters, and the profit associated with each cluster is collected by visiting at least one of
the customers in the respective cluster. The authors propose a variable neighborhood
search for this problem. Computational results show that the proposed algorithm
improves the solutions of SOP benchmark instances in significantly less computation
time than the existing approaches.

Yu et al. (2019) study the OP with service time dependent profits. In this variant,
the profit collected at each node is a non-linear function of service time. A metaheuristic
is proposed to decompose the problem into a routing subproblem and a scheduling
subproblem.

Applications

The OP is an important problem that has several real-world applications. The most
famous and the most studied is the tourist trip design problem. The interested reader is
referred to the survey on solving tourist trip design problem by Gavalas et al. (2014).
Tourists visiting a destination for one or several days must decide which points of
interest (POIs) would be more interesting to visit and to determine a route for each
trip day, i.e., which POIs to visit as well as the visiting order among them. The
objective is to maximize tourist satisfaction (profit) while respecting constraints such
as opening hours of POIs, the traveling distances between POIs, the daily time available
for sightseeing.

1.3.4 The Covering Tour Problem and the Covering Salesman
Problem

Gendreau et al. (1997) introduce the Covering Tour Problem (CTP). It is defined on
a graph G = (V ∪W ,A), where V ∪W is the vertex set, V is a set of vertices that can
be visited, T ⊆ V , 0 ∈ T is a set of vertices that must be visited and W is a set of
vertices that must be covered, i.e., that must lie within a prespecified distance D from
a visited vertex on the tour. The CTP consists of determining a minimum length tour
over a subset of V in such a way that all vertices in T are visited, and every vertex in
W is covered.
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We say that a vertex j is covered by vertex i if Dij ≤ D. Let Sj = {i ∈ V|Dij ≤ D}
be the set of vertices that cover vertex j ∈ W .

The CTP can be formulated as follows:

(CTP ) min
∑

(i,j)∈A

Dijxij (1.23)

s.t.
∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (1.24)

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (1.25)

∑
i∈Sj

yi ≥ 1 ∀j ∈ W , (1.26)

yi = 1 ∀i ∈ T , (1.27)

ui − uj +Nxij ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.28)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.29)

yi ∈ {0, 1} ∀i ∈ V , (1.30)

ui ≥ 0 ∀i ∈ V \ {0}. (1.31)

The objective function (1.23) is to minimize the tour length. Constraints (1.24)
and Constraints (1.25) are flow conservation constraints and impose that an arc en-
ters and exits each selected vertex. Constraints (1.26) make sure that every vertex
in W is covered by the tour. Constraints (1.27) guarantee that every vertex in T
is visited by the tour. Constraints (1.28) are MTZ subtour elimination constraints.
Constraints (1.29) – (1.31) define the variables.

The CTP is NP -Hard as it reduces to the TSP when V = W , T = V and D =

0, ∀i ∈ V .
The CTP can be formulated as a GTSP. We define for each j ∈ W , the set Sj =

{i ∈ V|Dij ≤ D} as a cluster and for each i ∈ T , the set Si = {i} as a cluster. Note
that if a vertex is in several clusters, then we replicate it as many time as the clusters
it belongs to, in order to have a partition. Then solve a GTSP on these clusters solves
the CTP.

A special case of the CTP is obtained whenW = V , i.e., all the vertices that must be
covered. The resulting problem is usually called the Covering Salesman Problem (CSP)
and was introduced by Current & Schilling (1989). Each vertex i ∈ V is associated
with a covering distance Di. We say that a vertex j is covered by vertex i if Dij ≤ Di.
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For all vertices j ∈ V we define Sj = {i ∈ V|Dij ≤ Di}. If vertex i is visited, then it is
covered by itself. To obtain a formulation for the CSP, in the model (1.23)–(1.31) we
remove Constraints (1.27) and replace Constraints (1.26) with∑

i∈Sj

yi ≥ 1,∀j ∈ V . (1.32)

which means that all the vertices are visited or covered.
The CSP is NP -hard since when Di < minj∈V,j 6=iDij for all i ∈ V it reduces to the

TSP.
Collections of works on the CTP can be found in Fischetti et al. (2007) and Laporte

& Martín (2007). In the next sections, we report all the works that have been done for
the CTP and CSP.

Polyhedral results

Gendreau et al. (1997) propose several classes of valid inequalities for the CTP. They
investigate the polyhedral properties of a family of constraints and some constraints
are proved to be facet-defining.

Exact methods

The only exact method proposed for the CTP is a branch-and-cut algorithm presented
by Gendreau et al. (1997). The authors provide several valid inequalities for the CTP.
Their algorithm can solve randomly generated instances with up to 100 nodes.

Ozbaygin et al. (2016) study a variant of the CSP called the time constrained
maximal CSP. In this problem, every vertex is associated with a demand and the
objective is to maximize the amount of demand covered visiting a subset of vertices
within a limited time. The authors propose two formulations and valid inequalities for
this problem. A branch-and-cut algorithm is developed to solve this problem.

Heuristic methods

Concerning the CTP, Baldacci et al. (2005) propose a two-commodity flow formulation
and three scatter search methods for the CTP. Kubik (2007) proposes several heuristics
including ant colony algorithm for the CTP. Murakami (2018a) deals with the large-
scale CTP which contains tens of thousands of vertices. They propose a heuristic based

22



1.3 One-vehicle case

on ruin and recreate. Computational results show that their algorithm outperforms
the existing methods.

Some variants and generalizations of the CTP have also been studied in the litera-
ture. Motta et al. (2001) propose a greedy randomized adaptive search procedure for
a generalized CTP in which the vertices in W can also be visited. Jozefowiez et al.
(2007) study a bi-objective CTP where the two objectives are to minimize the tour
length and to minimize the greatest distance between the covered node and its nearest
visited node. The authors propose a multi-objective evolutionary algorithm to solve it.

Concerning the CSP, Salari & Naji-Azimi (2012) propose an integer linear pro-
gramming based heuristic. Salari et al. (2015) give a polynomial-size formulation for
the CSP and describe a hybrid heuristic algorithm combining ant colony optimization
and dynamic programming technique. Computational results indicate the efficiency of
the algorithm, especially for large size instances with more than 500 vertices.

Some generalizations of the CSP have also been studied in the literature. Current
& Schilling (1994) study two multi-objective variants of the CSP, i.e., the median tour
problem (MTP) and the maximal covering tour problem (MCTP). In both problems
the tour must visit a predetermined number of nodes. Each node is associated with a
demand. The first objective for both problems is to minimize the tour length. For the
MTP, the second objective is to minimize the total distance between each unvisited
node and the nearest visited node. For the MCTP, the second objective is to maximize
the total demand that is covered within some prespecified maximal travel distance from
a visited node.

Golden et al. (2012) study a variant of the CSP, in which nodes are associated
with an additional visiting cost and a demand that represents the minimum number of
times the node has to be covered. The objective is to minimize the total cost, which is
the sum of the tour length and the fixed costs associated with the visited nodes. The
authors develop two local search heuristics to solve this problem.

Another generalization of the CSP called the generalized covering TSP is studied
in Shaelaie et al. (2014) and Pandiri & Singh (2019). The objective of this problem is
to find a minimum length tour passing through a subset of facilities while covering at
least a predetermined number of customers. Shaelaie et al. (2014) propose node-based
and flow-based formulations for the problem, as well as two metaheuristic approaches,
i.e., the memetic algorithm and the variable neighborhood search algorithm. Pandiri
& Singh (2019) propose an artificial bee colony algorithm for this problem, and the
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experimental results show the efficiency of their approach compared with heuristics
proposed by Shaelaie et al. (2014).

The time constrained maximal CSP is studied in Naji-Azimi & Salari (2014). In
this problem, a set of vertices is given including a depot, customer and facility vertices
and the objective is to maximize the total number of covered customers by a tour over a
subset of facilities within a given time limit. Node-based and flow-based mathematical
models and a heuristic method are proposed for this problem.

Application

There are various applications of the CTP or CSP. For example, the construction of
routes for visiting health care teams in developing countries can be modeled as the CTP.
The health care team can only access a limited number of villages due to infrastructural
restrictions, but all the people must be within a walking distance of the visited villages.
The health care team’s goal is to minimize traveling cost to see as many patients as
possible (Current & Schilling, 1989; Hodgson et al., 1998).

Another example is to determine the locations of post boxes among a set of can-
didates. The post boxes must be located within a reasonable distance from every
household. Then, the aim of the post once is to minimize the cost of a collection route
through all post boxes (Labbé & Laporte (1986)).

A similar example is to locate a number of regional distribution centers among a
set of candidate sites in such a way that all customers are within a reasonable distance
from at least one regional distribution center and that the cost of delivery and pick-
up routes is minimized. This example is also applied to a decision of the location
of satellite distribution centers to provide humanitarian supplies (Naji-Azimi et al.,
2012a).

1.3.5 The Median Cycle Problem and the Ring Star Problem

The Median Cycle Problem (MCP) is defined on a graph G = (V ,A), and a non-
negative assignment cost Aij is associated with each arc (i, j) ∈ A. These costs may
represent, for example, the amount to pay for serving location i from location j, or the
distance between two vertices. Vertex 0 represents the depot and must be part of the
solution. The MCP looks for a minimum cost tour that starts and ends at the depot
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and goes through a subset of vertices V ′ ⊆ V , 0 ∈ V ′ such that the assignment cost of

the tour does not exceed a given value A.

The assignment cost of a solution is defined as
∑

i∈V\V ′ minj∈V ′ Aij, i.e., the sum of

the assignment costs between each vertex not on the tour and its closest vertex on the

tour.

Instead of using yi variables to represent whether vertex i ∈ V is visited or not on

the tour, variables yij,∀i, j ∈ V are introduced. yij is a binary variable equal to 1 if

and only if vertex i is assigned to vertex j on the tour. Notice that if a vertex i is on

the tour, it is then assigned to itself, i.e., yii = 1. Then, variables yij are in charge

of determining visits (using variables yii that play the role of variables yi in the other

problems) and assignments.

The MCP can be formulated as follows:

(MCP ) min
∑

(i,j)∈A

Cijxij (1.33)

s.t.
∑

(i,j)∈δ+(i)

xij = yii ∀i ∈ V , (1.34)

∑
(j,i)∈δ−(i)

xji = yii ∀i ∈ V , (1.35)

∑
j∈V

yij = 1 ∀i ∈ V , (1.36)

yij ≤ yjj ∀i, j ∈ V , (1.37)

ui − uj +Nxij ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.38)∑
(i,j)∈A,i 6=j

Aijyij ≤ A, (1.39)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.40)

yij ∈ {0, 1} ∀i, j ∈ V , (1.41)

ui ≥ 0 ∀i ∈ V \ {0}. (1.42)

The objective function (1.33) is to minimize the traveling cost. Constraints (1.34)

and Constraints (1.35) are flow conservation constraints imposing that an arc enters

and exits each visited vertex. Constraints (1.36) make sure that every vertex is on the

tour or assigned to a vertex on the tour. Constraints (1.37) impose that a vertex can

only be assigned to a visited vertex. Constraints (1.38) are MTZ subtour elimination
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constraints. Constraints (1.39) guarantee that the assignment cost of the tour does not
exceed the given value A. Constraints (1.40) – (1.42) define the variables.

The Ring Star Problem (RSP) is the problem where the assignment cost is min-
imized in the objective function instead of being taken into account in a constraint.
Thus, the RSP consists in determining a tour (called as well ring) that minimizes the
sum of the traveling and the assignment costs. The name ring comes from the applica-
tion of the problem in the telecommunication network design (Labbé et al., 2004). A
model for the RSP is obtained from the model (1.33)–(1.42) for the MCP by replacing
the objective function (1.33) by

(RSP ) min (
∑

(i,j)∈A

Cijxij +
∑

(i,j)∈A,i 6=j

Aijyij) (1.43)

and by removing Constraint (1.39).
The problem is NP -hard since the special case in which the assignment costs are

very large compared to the traveling costs reduces to the TSP.
Note that the CTP and MCP/RSP are all problems related to the concept of

coverage. In comparing the RSP with CTP, the RSP considers assignment costs in the
objective function, and a nonvisited vertex is assigned to a single visited vertex, while
the CTP takes into account only the traveling costs and a nonvisited vertex is covered
by at least one visited vertex. When comparing the MCP with CTP, both problems
only consider the traveling costs in the objective function, but the MCP has an upper
bound for the assignment costs.

In the following, we survey all the works that have been done for the MCP and
RSP.

Polyhedral results

Labbé et al. (2004) propose several classes of valid inequalities for the RSP. Dimension
and facet-defining results are derived for the RSP. Kedad-Sidhoum & Nguyen (2010)
propose a new formulation for the RSP. New facet-defining inequalities are derived and
can improve the linear relaxation.

Exact methods

Labbé et al. (1999, 2005) are the first to study the MCP. They propose valid inequalities
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and embed them within a branch-and-cut algorithm through separation procedure.
Labbé et al. (2004) introduce the RSP when studying a generic telecommunication

network. They provide a mixed integer linear programming formulation and several
classes of facet-defining inequalities for the RSP. A branch-and-cut algorithm is pro-
posed which can solve instances with up to 300 nodes to optimality.

Kedad-Sidhoum & Nguyen (2010) propose a novel formulation and new facet defin-
ing inequalities for the RSP. They develop an efficient branch-and-cut algorithm whose
results improve those proposed in Labbé et al. (2004).

Simonetti et al. (2011) model the RSP as a minimum Steiner arborescence problem.
They develop a branch-and-cut algorithm, and a greedy randomized adaptive search
procedure is used to determine good upper bounds. Experimental results show the
superiority of the proposed method over the one by Labbé et al. (2004).

Heuristic methods

Pérez et al. (2003) propose a metaheuristic for the MCP combining variable neigh-
borhood and tabu search. Renaud et al. (2004) propose two heuristics for both the
MCP and RSP, i.e., the multistart greedy heuristic and a random keys evolutionary
algorithm. Dias et al. (2006) propose a hybrid heuristic for the RSP based on variable
neighborhood search and a greedy randomized adaptive search procedure, which most
of the time performs better than the heuristic proposed by Pérez et al. (2003). Calvete
et al. (2013) propose an evolutionary algorithm based on a new formulation of the
RSP as a binary bi-level programming problem with one leader and two followers. The
leader decides which vertices to include in the ring, one follower decides the connections
of the tour, and the other follower decides about the assignment of the vertices not vis-
ited on the tour. Computational results show that the proposed algorithm outperforms
the heuristics in the literature both in terms of the solution quality and computation
time.

There are several works dealing with the bi-objective RSP. The objectives in these
works are to minimize the ring cost and to minimize the assignment cost simultane-
ously (Calvete et al., 2016; Liefooghe et al., 2008a,b,c, 2010). Liefooghe et al. (2010)
provide a set of four population-based metaheuristics to approximate the efficient set
for the bi-objective RSP. Then, the authors propose two cooperative schemes between
the two algorithms. Computational results show the effectiveness of the hybrid ap-
proaches, especially in large size instances up to 1002 nodes. Calvete et al. (2016) pro-
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pose a hybrid metaheuristic which embeds a local search procedure in a multi-objective
evolutionary algorithm to approach the Pareto front. They use a new chromosome en-
coding method, i.e., the chromosome does not provide the ring, but the nodes in the
ring.

Applications

The RSP arises in the telecommunications networks design (Labbé et al., 2004). The
goal is to connect terminals to concentrators by point-to-point links, resulting in a
star topology, and the concentrators are interconnected through a ring structure. The
problem consists in selecting a subset of user locations where concentrators will be
installed and interconnected by a ring network, and the other user locations are assigned
to those concentrators. The objective is to minimize the total cost of all connections.
The RSP also models logistic problems where the retailers in the ring are served by
a single vehicle and are used as small depots from which the remaining retailers are
supplied (Calvete et al., 2013).

1.3.6 The Traveling Purchaser Problem

The Traveling Purchaser Problem (TPP) is defined on a directed graph G = (V ,A),
where V includes the depot 0 and a set of markets that offer a set of products Q. For
each market i ∈ V \ {0} and for each product q ∈ Q a product availability Qiq and a
price Piq are given. Moreover, a demand Qq for each product q ∈ Q has to be satisfied.
The TPP consists in determining a tour that visits a subset of the markets in order to
buy enough products to satisfy the demand and to minimize traveling and purchasing
costs. The interested reader is referred to Manerba et al. (2017) for a recent survey.

Variables ziq, ∀i ∈ V \ {0}, q ∈ Q are introduced to determine the quantity of a
product q that is purchased at market i.

The TPP can be formulated using variables xij, yi, ui introduced in Section 1.2.2
and ziq as follows:

(TPP ) min
∑

(i,j)∈A

Cijxij +
∑

i∈V\{0},q∈Q

Piqziq (1.44)

s.t.
∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (1.45)

28



1.3 One-vehicle case

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (1.46)

∑
i∈V \{0}

ziq = Qq ∀q ∈ Q, (1.47)

ziq ≤ Qiqyi ∀i ∈ V \ {0}, (1.48)

ui − uj +Nxij ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.49)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.50)

yi ∈ {0, 1} ∀i ∈ V , (1.51)

ziq ≥ 0 ∀i ∈ V \ {0}, q ∈ Q, (1.52)

ui ≥ 0 ∀i ∈ V \ {0}. (1.53)

The objective function (1.44) is to minimize the traveling and purchasing costs.
Constraints (1.45) and Constraints (1.46) are flow conservation constraints and impose
that an arc enters and exits each selected vertex. Constraints (1.47) ensure that the
demands of all products are exactly satisfied. Constraints (1.48) impose that a market
has to be visited to be able to supply a product and the quantity of a product purchased
at a market is less than the available quantity at this market. Constraints (1.49) are
MTZ subtour elimination constraints. Constraints (1.50) – (1.53) define the variables.

The TPP is NP -hard since it generalizes the TSP. The reader interested in poly-
hedral results on the TPP is referred to Manerba et al. (2017). Since the survey on the
TPP and its variants by Manerba et al. (2017) covers works up to the year 2016, here
we only summarize several works that have been published afterwards.

Exact methods

There are several works related to the variants of the TPP. A bi-objective TPP, called
the green TPP, is proposed by Hamdan et al. (2017). One objective is to minimize
the traveling and purchasing costs, and the other is to minimize the CO2 emissions.
The authors solve this problem using a branch-and-cut algorithm after transforming
the model into a single objective formulation by the weighted comprehensive criterion
method. Hamdan et al. (2018) propose a bi-objective integer linear programming
model for what they called the sustainable TPP. They associate with each supplier
a sustainability score and one of the objective is to maximize the total sustainability
score of purchasing.
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Heuristic methods

Bernardino & Paias (2018) present several metaheuristics combining genetic algorithms
and local search to solve the uncapacitated TPP. In uncapacitated TPP, if a product is
available in one market, then it is assumed that the quantity of this product is enough
to fulfill the demand. Their metaheuristics can provide the best-known results for the
high-dimensioned asymmetric instances, meanwhile provide better upper bounds for
some symmetric instances with unknown optimal values. Skinderowicz (2018) propose
an ant colony based algorithm for the uncapacitated TPP. Computational results show
that it is competitive to the current state-of-the-art metaheuristic (Goldbarg et al.,
2009) for the uncapacitated TPP.

Palomo-Martínez & Salazar-Aguilar (2019) study a variant of the bi-objective TPP
in which the purchased products must be delivered to a set of customers. The objectives
are to minimize the total cost and to minimize the waiting time of the customers. The
authors propose an efficient variable neighborhood search method.

Applications

The most common application of the TPP is in the procurement logistics, for example,
in some companies’ procurement operations. There is a commercial web application
called “le bon côté des choses” (https://www.leboncotedeschoses.fr/) in which a
purchaser selects his location, the list of products to purchase and a set of markets
that he is willing to visit, then he can receive the most convenient shopping plan. An-
other application arises in the school bus routing (Riera-Ledesma & Salazar-González,
2012). The problem is to plan the tour for the school bus to pick up students from
different stops. Here suppliers correspond to bus stops and products to students. More
applications can be found in Manerba et al. (2017).

1.3.7 Discussion on the subtour elimination constraints

In the formulations proposed in the previous sections, subtour elimination constraints
are expressed in the MTZ form. This form allows to provide formulations that have a
polynomial number of variables and constraints with respect to the cardinality of V .
It is known that linear relaxations of such formulations usually provide poor bounds.
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Tighter formulations can be obtained by replacing the subtour elimination con-
straints in the MTZ form by exponential families of constraints. This provides formu-
lations that still have a polynomial number of variables with respect to the cardinality
of V , but are characterized by an exponential number of constraints. For the TSP, Con-
straints (1.4) are replaced by the so-called subtour elimination constraints expressed
in the outer form: ∑

(i,j)∈δ+(S)

xij ≥ 1, ∀S ⊂ V , 2 ≤ |S| ≤ |V| − 2. (1.54)

or by the equivalent inner form:∑
(i,j)∈γ(S)

xij ≤ |S| − 1, ∀S ⊂ V , 2 ≤ |S| ≤ |V| − 2. (1.55)

Constraints (1.54) impose that at least one arc exiting each subset S ( V is selected,
while Constraints (1.55) impose that not more than |S| − 1 arcs with both endpoints
in S are selected.

In non-HRP, a subtour elimination constraint has to be imposed on a subset S ⊆ V
only if the subset is visited, namely only if at least one vertex in S is selected. As a
consequence, Constraints (1.54) are not valid for non-HRP and need to be replaced by
the following constraints

∑
(i,j)∈δ+(S)

xij ≥ yh, ∀S ⊂ V , 2 ≤ |S| ≤ |V| − 2, h ∈ S. (1.56)

On the other side, Constraints (1.55) are still valid for non-HRP but may be strength-
ened by taking advantage of the variables yi as follows (Feillet et al. (2005)). We have
that ∑

i∈S

yi =
∑

(i,j)∈γ(S)

xij +
∑

(i,j)∈δ+(S)

xij. (1.57)

Using Equation (1.56) we obtain:∑
(i,j)∈γ(S)

xij ≤
∑

v∈S\{h}

yv, ∀S ⊂ V , 2 ≤ |S| ≤ |V| − 2, h ∈ S. (1.58)

These constraints are valid for all the non-HRP presented in this section and can be
separated in polynomial time by solving a max-flow problem.
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1.3.8 Single-vehicle non-HRP with time windows

A classical constraint in the routing problems imposes that the visit of i ∈ V takes place
during a time interval, called time window (TW). As a consequence, a TW expressed
as [Ei, Li] is associated with each location i ∈ V . Arriving at the location before Ei is
feasible, but impose to wait until Ei to start the service. On the other side, arriving
after Li is not allowed. The previous models may slightly be modified to take these
constraints into account by adding

Eiyi ≤ ui ≤ Liyi, ∀i ∈ V . (1.59)

and by replacing the subtour elimination constraints in the MTZ form by

ui − uj + Tijxij ≤M(1− xij), ∀i, j ∈ V , j 6= 0, i 6= j, (1.60)

ui + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}. (1.61)

where M is a large enough value. Here the variables ui determine the time at which
the service at location i ∈ V starts rather than the position on the tour.

1.4 Multi-vehicle case

This second part of the paper focuses on non-HRP where a fleet F of F vehicles (a
group of people, multiple rings, etc.) is in charge of the servicing operation, F =

{1, 2, ..., F}. A capacity Q is associated with each of the vehicles that are supposed
to be identical. As in the previous section, we begin this section by introducing the
Capacitated Vehicle Routing Problem (CVRP). Then we present different families of
non-HRP that derive from the CVRP in which the Hamiltonian requirement is removed.
These problems include the Generalized Vehicle Routing Problem, the Generalized
Vehicle Routing Problem with Time Windows, VRP with Profits, the Multi-vehicle
CTP, the Capacitated Multiple RSP, and the Multi-vehicle TPP.

1.4.1 The Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one family of problems well-studied in oper-
ations research. The most classical version is the Capacitated VRP (CVRP) which
consists in finding at most F routes to visit all customer locations such that routing
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costs are minimized and capacity constraints are respected. Each customer i ∈ V \{0}
has a demand Qi.

It can be formulated using variables xij and ui introduced in Section 1.2.2 as follows:

(V RP ) min
∑

(i,j)∈A

Cijxij (1.62)

s.t.
∑

(i,j)∈δ+(i)

xij = 1 ∀i ∈ V \ {0}, (1.63)

∑
(j,i)∈δ−(i)

xji = 1 ∀i ∈ V \ {0}, (1.64)

ui − uj +Qxij ≤ Q−Qj ∀i, j ∈ V \ {0}, i 6= j, (1.65)∑
(0,j)∈δ+(0)

x0j ≤ F, (1.66)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (1.67)

Qi ≤ ui ≤ Q ∀i ∈ V \ {0}. (1.68)

The objective function (1.62) minimizes the total routing cost of the at most F
routes. Constraints (1.63) and Constraints (1.64) are flow conservation constraints and
impose that each vertex is visited exactly once. Constraints (1.65) ensure that the ca-
pacities of the vehicles are respected and are subtour elimination constraints in the MTZ
form. Constraints (1.66) impose that at most F arcs leave the depot, namely at most
F routes are allowed to accomplish service. Constraints (1.67) and Constraints (1.68)
define the variables. In particular, Constraints (1.68) are capacity constraints as well.
The interested reader is refereed to Golden et al. (2008); Laporte (2009); Toth & Vigo
(2014).

1.4.2 The Generalized Vehicle Routing Problem

The multi-vehicle case of GTSP is the Generalized Vehicle Routing Problem (GVRP)
and was introduced by Ghiani & Improta (2000). In the GVRP, the vertices of the
graph G = (V ,A) are partitioned into clusters, i.e., C0 = {0}, C1, ..., CK clusters.
C0

⋃
...
⋃
CK = V and Ch ∩ Ck = ∅,∀h, k ∈ K, h 6= k, where K = {0, 1, ..., K} de-

notes the cluster index set. Cluster C0 = {0} contains only the depot 0 where the
fleet of vehicles is located. Each vehicle has a capacity of Q to perform deliveries.
Each cluster is associated with a demand Qk. At the depot the demand is Q0 = 0.
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The arc set A contains arcs that link vertices belonging to different clusters, that is,

A = {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}.
The GVRP consists of finding a set of at most F vehicle routes on G such that

the traveling cost is minimized and: (i) every route starts and ends at the depot; (ii)

exactly one vertex from each cluster is visited by a single vehicle; (iii) the sum of the

demands of customers served by the same vehicle does not exceed Q.

Before presenting the mixed integer linear programming formulation for the GVRP,

let us introduce the following notation. Id(i) denotes the index of the cluster that

contains vertex i, thus i ∈ Ck ⇔ Id(i) = k.

The GVRP can be formulated using variables xij, yi and ui introduced in Sec-

tion 1.2.2 as follows:

(GV RP ) min
∑

(i,j)∈A

Cijxij (1.69)

s.t.
∑

(i,j)∈δ+(i)

xij = yi ∀i ∈ V \ {0}, (1.70)

∑
(j,i)∈δ−(i)

xji =
∑

(i,j)∈δ+(i)

xij ∀i ∈ V , (1.71)

∑
i∈Ck

yi = 1 ∀k ∈ K, (1.72)

ui − uj +Qxij ≤ Q−QId(j) ∀i, j ∈ V \ {0}, i 6= j, (1.73)∑
j∈V\{0}

x0j ≤ F, (1.74)

yi ∈ {0, 1} ∀i ∈ V , (1.75)

xij ∈ {0, 1} ∀(i, j) ∈ A, (1.76)

QId(i) ≤ ui ≤ Q ∀i ∈ V \ {0}. (1.77)

The objective function (1.69) minimizes the total routing cost. Constraints (1.70)

and Constraints (1.71) are flow conservation constraints. Constraints (1.72) impose

that exactly one vertex is visited per cluster. Constraints (1.73) ensure that the ca-

pacities of the vehicles are respected and are subtour elimination constraints in the

MTZ form. Constraints (1.74) impose that at most F arcs leave the depot, namely at

most F routes are allowed to accomplish service. Constraints (1.75)– (1.77) define the

variables. Moreover, Constraints (1.77) are capacity constraints.
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If all clusters Ci, i = 1, . . . , K are singletons, the GVRP reduces to the VRP. From
this observation it immediately follows, by reduction to the VRP, that the GVRP is
NP -hard.

In the following, we summarize all the works that have been done for the GVRP.

Transformation to capacitated arc routing problem

Ghiani & Improta (2000) are the first to study the GVRP and propose a transformation
of the GVRP into the capacitated arc routing problem (CARP), which allows the
algorithms available for the latter to be used to solve the former. All the vertices in
the same cluster are connected by a loop with edges having very large costs M and
these edges are required edges in the corresponding CARP. If a cluster only has one
vertex i inside, then a required edge (i, i) is introduced. The cost of each inter-cluster
edge is increased by M/2 if an endpoint coincides with the depot, otherwise by M . By
solving a CARP on the transformed graph, a solution for the GVRP can be obtained.

Exact methods

Kara & Bektas (2003) propose a compact integer linear programming formulation for
the GVRP, adapting the well-known MTZ subtour elimination constraints for the TSP
to the GVRP. Pop et al. (2012) provide two new compact formulations for the GVRP.

Bektaş et al. (2011) propose four integer linear programming formulations for the
GVRP and develop an efficient branch-and-cut algorithm to solve it. They also apply
an adaptive large neighborhood search heuristic to determine the upper bounds. A
new data set for the GVRP containing 158 instances is generated, and is used as
the benchmark for the GVRP hereafter. The results show that their branch-and-cut
algorithm based on the best of the four formulations can solve instances with up to
121 nodes and 51 clusters. Reihaneh & Ghoniem (2018) developed a branch-cut-and-
price algorithm for the GVRP. Their computational study indicated that the proposed
algorithm is competitive with respect to the branch-and-cut algorithm proposed by
Bektaş et al. (2011). Moreover it solved eight benchmark instances to optimality that
were previously unsolved.

Ha et al. (2014) and Afsar et al. (2014) study a variant of the GVRP where the size
of the fleet is flexible. Ha et al. (2014) propose a two-commodity flow formulation and
a branch-and-cut method for the GVRP. Based on the results obtained on benchmark
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instances, it can be stated that the branch-and-cut proposed by Ha et al. (2014) is
more effective than the method described by Bektaş et al. (2011). Afsar et al. (2014)
develop an exact method based on column generation for the GVRP with flexible fleet
size.

Biesinger et al. (2016) study a variant of the GVRP, in which customers have
stochastic demands. They propose an integer L-shaped method based on decomposi-
tion and branch-and-cut. Results show that this method is efficient in solving small
instances up to about 40 vertices and 13 clusters.

Heuristic methods

Bautista et al. (2008) address a special case of the GVRP derived from an urban waste
collection problem, in which each cluster contains at most two vertices. The authors
propose two heuristics based on ant colonies and the results of the practical instances
using the proposed heuristics obtained significant improvements. Pop et al. (2011)
present constructive heuristics and local search algorithms for solving the GVRP, but
without any computational experiments. Pop et al. (2013) present a hybrid algorithm
combining a genetic algorithm and a local search procedure, and results show that
it was competitive with the adaptive large neighborhood search proposed by Bektaş
et al. (2011). Ha et al. (2014) propose a hybrid metaheuristic combining a greedy
randomized adaptive search procedure with an evolutionary local search. Afsar et al.
(2014) propose two metaheuristics based on a route-first cluster-second approach, in
which the split procedure is executed using an iterated local search. Computational
results show that their metaheuristics are very efficient, finding solutions with small
optimality gap in a few seconds. The largest instances tackled by all these methods
contains 262 vertices and 131 clusters.

There are several works studying the variants of the GVRP. For the GVRP with
stochastic demands, Biesinger et al. (2015) propose a variable neighborhood search
approach. It can identify optimal or near-optimal solutions for small instances in much
shorter time than the exact method proposed by Biesinger et al. (2016), while it obtains
large optimality gaps for medium and large instances. Biesinger et al. (2018) present
a genetic algorithm combined with a variable neighborhood search. According to the
computational results, it is superior to the algorithm described by Biesinger et al.
(2015).
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Zhou et al. (2018) introduce a city logistics problem called the multi-depot two-
echelon VRP with delivery options. In the second level of the distribution network,
customers are provided with different delivery options, allowing them to retrieve their
packages at pick-up points. Thus, the second level can be formulated as a GVRP, in
which the different delivery options of a customer forms a cluster.

Moccia et al. (2012) study what they called the Generalized VRPTW. They define
a TW for each cluster. The authors present an incremental tabu search heuristic for the
problem and assess the efficiency of the method by testing it on the GVRP instances
and multi-depot VRPTW instances.

Applications

The GVRP has many applications, such as urban waste collection problem (Bautista
et al., 2008), the vessels routing in maritime transportation, healthcare logistics, the
survivable telecommunication network design, etc. (Bektaş et al., 2011). For example,
in the routing of vessels in maritime transportation, a number of regions is given, each
with several ports where the cargo can be delivered. If ships only need to deliver the
cargo to one single port in each region, then the corresponding routing problem can
be modeled as a GVRP, where the regions correspond to the clusters and the fleet of
vessels corresponds to the fleet of vehicle (Bektaş et al., 2011). Baldacci et al. (2010)
also mention that problems like the TSP with profits, the VRP with selective backhauls,
the covering VRP, the windy routing problem, etc., can be modeled as GVRPs.

1.4.3 The GVRP with Time Windows

The GVRP can be extended to the GVRP with Time Windows (GVRPTW) if we
associate a time window (TW) [Ei, Li] with each vertex ∀i ∈ V . The TW associated
with the depot, i.e., [E0, L0] = [0, T ] represents the overall time horizon. A visit can
only be made to a vertex during its TW, and an early arrival leads to a waiting time
while a late arrival causes infeasibility. The objective of the GVRPTW consists of
finding a set of at most F vehicle routes on G such that the traveling cost is minimized
and: (i) every route starts and ends at the depot during [0, T ]; (ii) exactly one vertex
from each cluster is visited by a single vehicle; (iii) the sum of the demands of customers
served by the same vehicle does not exceed Q; (iv) the service at vertex i starts during
its TW [Ei, Li].
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When the TWs associated with the locations of the same cluster do not overlap
the problem is called VRP with roaming delivery locations (VRPRDL). The VRPRDL
was introduced by Reyes et al. (2017). It is inspired by the trunk/in-car delivery, i.e.,
customers’ packages can be delivered to the trunks of their cars.

Besides variables xij, yi and ui used for the GVRP, variables ti ∈ R+ are introduced
to represent the service time at vertex i ∈ V . Then, the formulation for the GVRPTW
can be obtained by adding the following constraints to the formulation of the GVRP
defined by (1.69) – (1.77).

ti − tj + Tijxij ≤M(1− xij) ∀(i, j) ∈ A, j 6= 0, (1.78)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V , (1.79)

ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}. (1.80)

Constraints (1.78) and (1.79) determine the starting time of service at each vertex
and ensure that the TW are respected on the visited location. Constraints (1.79) also
eliminate subtours since they generalize the subtour elimination constraints of Miller,
Tucker and Zemlin for the TSP (Miller et al., 1960). Constraints (1.80) ensure that all
the vehicles return to the depot before the end of its TW.

The GVRPTW is NP -hard since it reduces to the GVRP when all the TW are set
to [0,+∞]. In the following, we summarize all the works that have been done for the
VRPRDL.

Exact methods

Ozbaygin et al. (2017) develop a branch-and-price algorithm for the VRPRDL. Com-
putational results on benchmark instances show that the proposed algorithm is able to
solve to optimality instances with up to 60 clusters in a few minutes. For most of the
large instances with 120 clusters, the algorithm is not able to prove optimality on a 6
hours time computation budget. Moreover, they also provide another set of instances
for a hybrid delivery strategy combining trunk delivery and home delivery. In these
instances, in each cluster the TW associated with the home location corresponds to the
planning horizon and overlaps all other TWs, while the other TW associated with the
trunk locations are non-overlapping. This instance set also has a specific TW structure.
The results revealed that using this combined strategy led to an average cost savings
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of nearly 20% compared to the classical delivery system when only home delivery is
available.

Following this work, Ozbaygin & Savelsbergh (2018) introduce a dynamic variant
of the VRPRDL, in which customer itineraries may change during the execution of
a planned delivery schedule. The branch-and-price algorithm proposed in Ozbaygin
et al. (2017) is used to obtain the planned delivery schedule based on initial customer
itineraries, as well as the reoptimization solutions whenever a customer itinerary change
is revealed. To ensure computational efficiency when solving reoptimization problems,
they reuse and suitably modify the columns generated during previous branch-and-
price runs.

Heuristic methods

The work of Reyes et al. (2017) is the first to study the VRPRDL and proposes a
construction heuristic based on a greedy randomized adaptive search procedure, and
an improvement heuristic. The results show the economic advantages for the delivery
companies to consider trunk deliveries instead of the traditional home delivery.

Lombard et al. (2018) study a variant of the VRPRDL with stochastic travel times.
Instead of using deterministic travel times, the authors use a matrix of probability
distribution, which indicates the distribution of travel times between two locations.
They use a combination of a Monte-Carlo method and a greedy randomized adaptive
search procedure. This approach can obtain delivery solutions for small-sized instances.

Applications

The GVRPTW models the situation where a customer is associated with several deliv-
ery locations. He/she specifies the time intervals at which he/she is available to receive
the parcel. The VRPRDL arises in the last mile delivery with trunk/in-car delivery
option (Ozbaygin et al., 2017; Reyes et al., 2017). Volvo launched its world-first in-car
delivery service in Sweden in 2016 (Kirsten, 2016). It is a service for delivering goods
directly to one customer’s Volvo car. This is achieved by electronically delegating one-
time access to an authorized delivery company to the customer’s car. This enables the
customer to select his/her Volvo as the delivery location and to track the delivery when
it happens. In April 2018, Amazon also launched the in-car service in partnership with
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two major automakers General Motors and Volvo. This service is available in 37 cities
across the US (Hawkins, 2018).

1.4.4 The VRP with Profits

The multi-vehicle case of TSPPs is the VRP with Profits (VRPPs), where in the graph
G = (V ,A) each vertex i ∈ V \ {0} is associated with a profit Pi. The objective is to
optimize the collected profit and the traveling cost, thus not all the vertices need to
be visited. The goal of the VRPPs is to find a set of routes starting and ending at a
depot which visit a subset of vertices such that an objective function is optimized. As
in the TSPPs, the objective function of the VRPPs can be expressed in different ways
given hereafter. To be consistent with the definitions of the TSPPs, in this survey we
straightforwardly extend the classification of the TSPPs to VRPPs as follows:

• The Profitable VRP where the objective is to find a set of tours that minimize
the traveling cost minus the collected profit.

• The Team Orienteering Problem (TOP, Chao et al. (1996b)) where the objective
is to find a set of tours that maximizes the profit under a constraint that imposes
the maximum duration Tmax of a tour.

• The Prize-Collecting Vehicle Routing Problem (PCVRP) where the objective is
to find a set of tours that minimizes the traveling cost under a constraint that
imposes a minimum prize collection Pmin of a tour.

Let xijf be a binary variable that equals 1 if and only if arc (i, j) is traversed by
vehicle f in the solution. Let yif be a binary variable that equals 1 if and only if vertex
i ∈ V is visited by vehicle f in the solution.

The VRPPs can be formulated as follows:

(V RPPs) min f(x, y) (1.81)

s.t.
∑
f∈F

∑
(i,j)∈δ+(i)

xijf =
∑
f∈F

yif ∀i ∈ V , (1.82)

∑
f∈F

∑
(j,i)∈δ−(i)

xjif =
∑
f∈F

yif ∀i ∈ V , (1.83)

∑
f∈F

yif ≤ 1 i ∈ V \ {0}, (1.84)
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ui − uj +N
∑
f∈F

xijf ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.85)∑
f∈F

∑
j∈V\{0}

x0jf ≤ F, (1.86)

g(x, y) ≥ 0 ∀f ∈ F , (1.87)

xijf ∈ {0, 1} ∀i, j ∈ V , i 6= j, f ∈ F , (1.88)

yif ∈ {0, 1} ∀i ∈ V , f ∈ F , (1.89)

ui ≥ 0 ∀i ∈ V \ {0}. (1.90)

where f(x, y) and g(x, y) are as follows.

• for the Profitable VRP:

– f(x, y) =
∑

f∈F
∑

(i,j)∈ACijxijf −
∑

f∈F
∑

i∈V\{0} Piyif

– g(x, y) = 0;

• for the TOP:

– f(x, y) = −
∑

f∈F
∑

i∈V\{0} Piyif

– g(x, y) = Tmax −
∑

(i,j)∈A Tijxijf ;

• for the PCVRP:

– f(x, y) =
∑

f∈F
∑

(i,j)∈ACijxijf

– g(x, y) =
∑

i∈V Piyi − Pmin.

The objective function (1.81) is to minimize the traveling cost minus the collected
profit in the case of the profitable VRP, is to maximize the profit in the case of the
TOP and is to minimize the traveling cost in the case of the PCVRP. Constraints (1.82)
and (1.83) are flow conservation constraints and ensure that an arc enters and exits
each selected vertex. Constraints (1.84) guarantee that each vertex is visited at most
once. Constraints (1.85) are MTZ type of the subtour elimination constraints. Con-
straints (1.86) impose that the number of routes cannot exceed the number of available
vehicles. Constraints (1.87) are inactive for the Profitable VRP, impose the maximum
tour duration for the TOP and the minimum prize to collect for the PCVRP. Con-
straints (1.88) – (1.90) are variable definitions.

The VRPPs are NP -hard since the TSPPs are NP -hard.
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Note that in the well-known TOP, there is a maximum duration constraint for each
route. It was first introduced by Butt & Cavalier (1994) under the name multiple tour
maximum collection problem while it is named as the TOP by Chao et al. (1996b).
However, even though some variants of the profitable VRP and PCVRP have been
studied, there is no fixed and commonly used definitions for both problems. Moreover,
notice that in the literature, the use of names Profitable VRP and PCVRP can be
mixed. Thus, in this paper, the works are classified according to the objective function
of the studied problem as mentioned above.

The interested reader is referred to the following survey papers. The article of
Archetti et al. (2014) is dedicated to the VRPPs, including research works on the
single-vehicle as well as the multi-vehicle case, up to the year 2014. For the multi-
vehicle case, the authors mainly focus on the TOP and its variants and on the VRP
with private fleet and common carrier. They mention two works on the profitable VRP
and no work on the PCVRP.

Vansteenwegen et al. (2011) provide a comprehensive survey on the OP and its
variants, also covering works for the TOP and its variants up to the year 2009. Gunawan
et al. (2016) review the literature on the OP including new works and new variants up
to 2015. They also consider works on the TOP and its variants.

Compared with the TOP, much fewer studies can be found on the profitable VRP
and PCVRP. Therefore, for these two problems, we summarize all the works that have
been published in the literature. For the TOP, in order to avoid the repetition with the
survey mentioned above, we focus on the related literature and its variants published
after 2015.

Exact methods: Profitable VRP

All the works in the following study variants of the profitable VRP. Archetti et al.
(2009) introduce the capacitated versions of the profitable VRP (which they call as the
capacitated PTP) and the TOP where a fleet of capacitated vehicles is available. They
propose exact methods based on column generation that can solve small size instances.
They also propose two variants of tabu search algorithm and a variable neighborhood
search algorithm, which can obtain very good results for both problems.Archetti et al.
(2013) propose a branch-and-price algorithm for the capacitated profitable VRP and
the capacitated TOP. A heuristic is embedded in the exact approach to find good
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feasible solutions quickly. Computational results show that several unsolved benchmark
instances are solved to optimality.

Archetti et al. (2017) introduce and study the undirected capacitated general rout-
ing problem with profits. It is defined on an undirected graph in which customer profit
can be collected from some of the vertices as well as from some of the edges. The
authors develop a branch-and-cut algorithm for this problem.

Orlis et al. (2019) study the capacitated VRP with profits and service level require-
ments arising in a cash supply chain in the Netherlands. The service level requirement
of a customer is the minimum-accepted percentage of fulfilled requests over their total
number. When the requirement is not met, a predefined penalty is applied. The authors
propose a branch-and-cut algorithm by adapting several valid inequalities proposed in
the literature.

Heuristic methods: Profitable VRP

All the works in the following study variants of the profitable VRP. Tang & Wang
(2006) consider a problem arising in the hot rolling production in the steel industry,
which is modeled as a capacitated profitable VRP with an additional constraint. Each
vertex is associated with a demand and each vehicle with a capacity. The additional
constraint is on the total demand of the visited vertices which must not be less than
a predefined amount. The objective is a linear combination of three objectives, i.e.,
the minimization of total traveled distance, the minimization of the number of vehicles
used, and the maximization of the profit that is collected. An iterated local search
algorithm based on a large-scale neighborhood is proposed. Li & Tian (2016) study
the same problem but with a different objective, which consists in the minimization of
the transportation cost minus the profit. A self-adaptive variable neighborhood search
algorithm is proposed. Zhang et al. (2009) consider the same problem but consider
each objective separately. Thus they study the multi-objective version. A particle
swarm optimization algorithm is developed.

Aras et al. (2011) study a problem where a firm collects cores from its dealers, and
each visit to a dealer is associated with a gross profit and an acquisition price to be
paid to take the cores back. This is a multi-depot profitable VRP. The objective is the
maximization of the revenue from the cores minus the total cost of purchasing cores
and operating the vehicles. Two mixed integer linear programming formulations are
proposed and a tabu search based heuristic is developed.
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Chbichib et al. (2012) consider a profitable VRP with multiple trips. Each vehicle

is allowed to perform several routes under a workday duration limit. They propose four

formulations for this problem that are compared using CPLEX on small-size instances.

They also propose construction and improvement heuristics in order to solve large-size

instances.

Lahyani et al. (2013) address a problem where customer requests include several

products and multi-compartment vehicles are used. A profit is associated with each

product and the customer can be delivered with only part of his request. It is a variant

of the capacitated profitable VRP with time windows and incompatibility constraints.

The authors propose a variable neighborhood search algorithm for this problem.

Vidal et al. (2015) propose new large neighborhoods for the profitable VRP as

well as for TOP and these neighborhoods contribute to finding solutions of higher

quality compared with the previous state-of-the-art methods. Fifty-two new best-

known solutions have been found.

Gansterer et al. (2017) study the multi-vehicle profitable pickup and delivery prob-

lem, where multiple carriers transport goods from a selection of pickup customers to

the corresponding delivery customers within given travel time limits. Two variable

neighborhood search heuristics are developed.

Stavropoulou et al. (2019) study the profitable VRP with consistency constraints.

It takes into account the fact that customers service should be provided in a consistent

manner in order to increase brand loyalty and customer satisfaction. The authors

propose an adaptive tabu search algorithm to solve this problem.

Exact methods: TOP

El-Hajj et al. (2016) present a cutting plane algorithm to solve the TOP. Several

types of cuts are proposed. Computational results show that the proposed approach is

competitive and is able to prove the optimality for 12 instances previously unsolved.

Gedik et al. (2017) use constraint programming to formulate and solve the TOP

with time windows (TOPTW) by applying interval variables. This approach identifies

one new best-known solution for TOPTW benchmark instances and solves two more

instances to optimality.
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Heuristic methods: TOP

Tsakirakis et al. (2019) propose a harmony search for the TOP which is inspired from
the composition of music harmonies. The proposed algorithm with dynamic adjustment
of the parameters is superior to the static version using predefined values of parameters.
Results show that the proposed algorithms are competitive with the other efficient
algorithms described in the literature.

Ben-Said et al. (2019) study the capacitated TOP. Their algorithm alternates be-
tween two search spaces, i.e., the giant tour and routes search spaces, under the frame-
work of a hybrid heuristic combining greedy randomized adaptive search procedure and
evolutionary local search. Computational results show the efficiency of the algorithm.

There are several works dealing with the TOPTW and its variants. Lin & Vin-
cent (2017) study the TOPTW with mandatory visits: some customers considered as
important must be visited. The authors propose a multi-start simulated annealing
heuristic to solve it. Vincent et al. (2017) address the multi-modal TOPTW which
is motivated by a tourist trip design application where multiple transportation modes
are available for tourists. A two-level particle swarm optimization algorithm with two
solution representations and decoding methods are proposed.

Hu et al. (2018) study a multi-objective TOPTW in which multiple profits are as-
sociated with one node. A multi-objective evolutionary algorithm based on decomposi-
tion and constraint programming is proposed. Computational results show that many
new non-dominated solutions are found. Hapsari et al. (2019) study a multi-objective
TOPTW in which one objective is to maximize the profit and the other is to minimize
the time needed for the tourist’s itinerary. The authors propose a metaheuristic based
on iterated local search.

Gavalas et al. (2019) point out the weakness of the state-of-the-art metaheuristic
for the TOPTW, i.e., the iterated local search (Vansteenwegen et al., 2009). The
authors propose two cluster-based extensions to ILS by grouping nodes on separate
clusters based on geographical criteria. Computational results show that the proposed
algorithms outperform ILS in terms of solution quality and computation time.

Vincent et al. (2019) study the TOPTW with time-dependent scores where the
score of visiting a node is different depending on the time of visit. A hybrid artificial
bee colony algorithm is proposed, which embeds the acceptance criterion of simulated
annealing.
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Heuristic methods: PCVRP

Stenger et al. (2013) consider the PCVRP with non-linear cost in its one and multi-
depot variants, which integrates the option of outsourcing customers to subcontractors
instead of serving them with the private fleet. The objective is to minimize the total
cost. An adaptive variable neighborhood search algorithm is proposed.

Applications

VRPPs have been well studied and model a variety of applications. One application
of VRPPs arises in the context of the small packaging shipping (SPS) industry. Large
companies outsource last-mile deliveries of unprofitable areas to subcontractors and
pay subcontractors per parcel delivered, which is independent from routing decisions
of subcontractors. Therefore, for SPS companies, not all parcels must be delivered by
themselves. They can select a subset of parcels to deliver to minimize the overall cost.
It is called the VRP with private fleet and common carrier (Archetti et al., 2014).

Another well-known application is the tourist trip design problem which aims to
maximize tourist satisfaction (profit) of the visited attractions in a limited period while
satisfying some practical constraints. The interested reader is referred to the survey
on the tourist trip design problem by Gavalas et al. (2014).

Some problems arising in the hot rolling production of the steel industry can also
be modeled as VRPPs (Li & Tian, 2016; Tang & Wang, 2006).

1.4.5 The Multi-vehicle Covering Tour Problem

The multi-vehicle case of the CTP (mCTP) is first introduced by Hachicha et al. (2000)
considering the routing of mobile health care delivery teams in developing countries.
As in the CTP, it is defined on a graph G = (V ∪ W ,A), where V ∪ W is the vertex
set, V is a set of vertices that can be visited, T ⊆ V is a set of vertices that must be
visited and W is a set of vertices that must be covered, i.e., that must lie within a
prespecified distance D from a visited vertex on the tour. Vertex 0 ∈ T is the depot
at which are based a fleet F of F homogeneous vehicles, F = {1, 2, ..., F}.

The mCTP consists of determining a set of at most F routes of minimum total
length over a subset of V such that (i) every route starts and ends at the depot; (ii)
each vertex in T belongs to exactly one route, while each vertex inW must be covered
by a vertex visited on one of the routes; (iii) the number of vertices on any route
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(excluding the depot) cannot exceed a preset value Pr, and the length of any route
cannot exceed a preset value Lr. They are referred as capacity constraints. Compared
with the CTP, for each route, the mCTP have upper bounds for its length and the
number of vertices visited respectively.

For arc (i, j) ∈ A and vehicle f ∈ F , let xijf be a binary variable equal to 1 if and
only if arc (i, j) is traversed by vehicle f in the solution. For i ∈ V and f ∈ F , let
yif be a binary variable equal to 1 if and only if vertex i ∈ V is visited by vehicle f in
the solution. Sj = {i ∈ V \ {0}|Dij ≤ D} ⊂ V is the set of vertices that cover vertex
j ∈ W .

The mCTP can be formulated as follows:

(mCTP ) min
∑
f∈F

∑
(i,j)∈A

Dijxijf (1.91)

s.t.
∑
f∈F

∑
(i,j)∈δ+(i)

xijf =
∑
f∈F

yif ∀i ∈ V , (1.92)

∑
f∈F

∑
(j,i)∈δ−(i)

xjif =
∑
f∈F

yif ∀i ∈ V , (1.93)

∑
f∈F

∑
i∈Sj

yif ≥ 1 ∀j ∈ W , (1.94)

∑
f∈F

yif = 1 ∀i ∈ T , (1.95)∑
f∈F

yif ≤ 1 i ∈ V \ {0}, (1.96)

ui − uj +N
∑
f∈F

xijf ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.97)∑
f∈F

∑
j∈V\{0}

x0jf ≤ F, (1.98)

∑
i∈V\{0}

yif ≤ Pr ∀f ∈ F , (1.99)

∑
(i,j)∈A

Dijxijf ≤ Lr ∀f ∈ F , (1.100)

xijf ∈ {0, 1} ∀i, j ∈ V , i 6= j, f ∈ F , (1.101)

yif ∈ {0, 1} ∀i ∈ V , f ∈ F , (1.102)

ui ≥ 0 ∀i ∈ V \ {0}. (1.103)

The objective function (1.91) is to minimize the total traveled length. Constraints (1.92)
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and (1.93) are flow conservation constraints and impose that an arc enters and exits
each selected vertex. Constraints (1.94) make sure that every vertex inW is covered by
the routes. Constraints (1.95) guarantee that every vertex in T is visited by the routes.
Constraints (1.96) guarantee that each vertex in V belongs to at most one route. Con-
straints (1.97) are subtour elimination constraints. Constraints (1.98) ensure that at
most F vehicles enter and leave the depot. Constraints (1.99) impose that the number
of vertices visited in each route should not exceed Pr. Constraints (1.100) impose that
the length of each route should not exceed Lr. Constraints (1.101) – (1.103) define the
variables.

The mCTP is NP -hard since it reduces to a VRP with unit demands when T = V
and W = ∅, or to a CTP when the capacity constraints are relaxed (Ha et al., 2013).
In the following, we summarize all the articles that have been published on the mCTP
and its variants. To the best of our knowledge, there is no work dedicated to the
multi-vehicle case of the CSP.

Exact methods

The first exact method for the mCTP is proposed by Lopes et al. (2013). They develop
a branch-and-price algorithm, and specific dominance and pruning rules are introduced
to accelerate the resolution of pricing problems. A column generation based heuristic
is also described to determine upper bounds. Jozefowiez (2014) present a branch-
and-price algorithm for the mCTP and provided computational results for randomly
generated instances with up to |V| = 100 and |W| = 150. The Constraints (1.99)
and (1.100) are considered in the subproblem, which is modeled as a RSP and solved
by a branch-and-cut method.

Ha et al. (2013) study a variant of the mCTP where only the upper bounds on
the number of vertices visited by a route are considered, and the constraints on the
route length are relaxed, i.e., Lr = +∞. The authors propose a two-commodity flow
formulation and a branch-and-cut algorithm. A metaheuristic combining the greedy
randomized adaptive search procedure and evolutionary local search is also developed.

Besides, Tricoire et al. (2012) study a variant of the mCTP, the bi-objective CTP
with stochastic demands, in which demands are random variables with a known joint
distribution. One of the objectives is to minimize the costs including routing costs
for a fleet of vehicles and opening costs for distribution centers (the visited vertices).
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The second objective is to minimize the uncovered demand. The authors proposed an
epsilon-constraint algorithm involving branch-and-cut technique.

Karaoğlan et al. (2018) study the probabilistic mCTP. Its objective is to determine
a set of distance-constrained routes maximizing the expected demand covered through
visiting a subset of facilities, where a vehicle visiting a facility covers the demand of
a customer with a probability in [0, 1). A branch-and-cut algorithm is developed as
well as a local search heuristic based on variable neighborhood search to obtain upper
bounds.

Heuristic methods

Hachicha et al. (2000) introduce the mCTP, and propose an integer linear programming
formulation and three heuristic algorithms. Kammoun et al. (2017) study the mCTP
without the constraints on the route length and propose a variable neighborhood search
heuristic, which outperforms the metaheuristic proposed by Ha et al. (2013).

Some works are devoted to variants of the mCTP. Naji-Azimi et al. (2012a) tackle
the location of satellite distribution centers to provide humanitarian aid to the victims
in a disaster area. They consider multiple commodities, heterogeneous capacitated
fleet and split deliveries. A multi-start heuristic is proposed to solve the problem and
it obtains high-quality solutions in reasonable computation times.

Oliveira et al. (2015) model the multi-vehicle urban patrolling problem as a mCTP,
where there is no vehicle capacity constraint but a balance requirement among the
vehicles. The authors propose several heuristics.

Allahyari et al. (2015) consider the multi-depot capacitated mCTP. The authors
present two mixed integer programming formulations and a hybrid metaheuristic com-
bining greedy randomized adaptive search procedure, iterated local search and simu-
lated annealing.

Flores-Garza et al. (2017) introduce the cumulative mCTP, whose objective is to
minimize the sum of arrival times (latency) at each visited location. There is a time
limit on the duration of each tour. The authors propose a mixed integer linear pro-
gramming formulation and a greedy randomized adaptive search procedure for the
problem.

Pham et al. (2017) study a variant called the multi-vehicle multi-covering tour
problem, in which a vertex must be covered several times rather than once. An integer
linear programming formulation is presented for a special case of the problem, and a
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branch-and-cut algorithm is proposed. The authors develop a genetic algorithm and
computational results show that it outperforms the current best metaheuristics for
several mCTP problems.

Murakami (2018b) study the mCTP in which a demand is assigned to each vertex,
and each vehicle has a capacity. The sum of demands of any route should not exceed
the vehicle capacity. The authors propose a column generation based heuristic.

Applications

One application of this problem arises in the VRP in Humanitarian Relief (Balcik et al.,
2008; Kovács & Spens, 2007; Luis et al., 2012; Shaelaie et al., 2014; Toth & Vigo, 2014),
as goods and services are often delivered to central locations visited by beneficiaries.
For example, in the disaster relief problem in Doerner & Hartl (2008), after a disaster
the relief vehicles stop at several locations and the populations (the set W) must visit
one of the vehicle stops. The appropriate stops among |V| potential locations need
to be chosen so that all populations can reach one of these stops within acceptable
time. T can be considered as the set of stops covering the populations that cannot
be covered by other stops. Another example is to supply the humanitarian aid to the
affected people through several satellite distribution centers located within a predefined
distance from their domiciles (Naji-Azimi et al., 2012a). Another application arises in
bi-level transportation networks, for example the postbox location problem (Labbé &
Laporte, 1986). Last, in the routine patrol routing planning (Oliveira et al., 2015),
routes need to guarantee visibility which has an influence on the community safety,
providing surveillance and allowing quick emergency responses. Vehicles available for
the patrol are limited and strive to achieve balanced routes. This problem is modeled
as a mCTP, in which a subset of locations must be visited, whereas the other locations
should be close enough to the planned routes.

1.4.6 The Capacitated Multiple Ring Star Problem

The Capacitated Multiple RSP (CmRSP) was introduced by Baldacci et al. (2007). It
is defined on a graph G = (V ,A). The set of vertices V = {0} ∪ V ′, where 0 is the
depot, V ′ = U ∪ W , U is the set of customers and W is the set of transition points
(also called Steiner nodes). The arc set A = {(i, j) : i, j ∈ V , i 6= j}. Each customer
i ∈ U can be directly assigned (connected) to a subset of nodes Si ⊂ U ∪W . The arc
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set A′ = {(i, j) : i ∈ U , j ∈ Si},A′ ⊂ A is the set of all possible connections and each
arc in A′ has a non-negative assignment/connection cost Aij. Two input parameters
F and Q are given, representing the number of rings and the capacity of each ring
respectively.

A ring R corresponds to a route visiting a subset of vertices in V including the
depot. There may be a number of customers i /∈ R that are connected to vertices
j ∈ R by arc (i, j) ∈ A′. The objective of the CmRSP is to find a set of F rings
starting and ending at the depot, such that each customer is assigned to exactly one
ring, each Steiner node is visited at most once and the number of customers assigned
to each ring does not exceed the ring capacity Q. The objective is to minimize the
total routing and assignment costs.

For each arc (i, j) ∈ A and f ∈ F , let xijf be a binary variable equal to 1 if and
only if (i, j) belongs to a ring f in the solution. For each arc (i, j) ∈ A′ and f ∈ F , let
yijf be a binary variable equal to 1 if and only if customer i ∈ U is assigned to vertex
j on ring f . If a customer i is visited by a ring f , then it is assigned to itself, i.e.,
yiif = 1.

The CmRSP can be formulated as follows:

(CmRSP ) min
∑
f∈F

∑
(i,j)∈A

Cijxijf +
∑
f∈F

∑
(i,j)∈A′
i 6=j

Aijyijf (1.104)

s.t.
∑
f∈F

∑
(i,j)∈δ+(i)

xijf =
∑
f∈F

yiif ∀i ∈ V , (1.105)

∑
f∈F

∑
(j,i)∈δ−(i)

xjif =
∑
f∈F

yiif ∀i ∈ V , (1.106)

∑
f∈F

∑
j∈Si

yijf = 1 ∀i ∈ U , (1.107)∑
f∈F

yiif ≤ 1 ∀i ∈ V \ {0}, (1.108)

yijf ≤ yjjf ∀(i, j) ∈ A′, f ∈ F , (1.109)∑
(i,j)∈A′

yijf ≤ Q ∀f ∈ F (1.110)

ui − uj +N
∑
f∈F

xijf ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.111)∑
f∈F

∑
j∈V\{0}

x0jf = F, (1.112)
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xijf ∈ {0, 1} ∀(i, j) ∈ A, f ∈ F , (1.113)

yijf ∈ {0, 1} ∀(i, j) ∈ A′, f ∈ F , (1.114)

ui ≥ 0 ∀i ∈ V \ {0}. (1.115)

The objective function (1.104) is to minimize routing and assignment costs. Con-
straints (1.105) and (1.106) are flow conservation constraints. Constraints (1.107)
guarantee that a customer is either on a ring or is assigned to a vertex on a ring.
Constraints (1.108) impose that each vertex is visited by at most one ring. Con-
straints (1.109) impose that a customer can only be assigned to a vertex visited on
the ring. Constraints (1.110) ensure that the number of customers assigned to each
ring does not exceed the ring capacity Q. Constraints (1.111) are subtour elimina-
tion constraints. Constraints (1.112) ensure that F rings enter and leave the depot.
Constraints (1.113) – (1.115) define the variables.

The CmRSP is NP -hard because whenW = ∅, Q = |V|, F = 1 and the assignment
costs are very high compared to the routing costs, it reduces to the TSP (Baldacci
et al., 2007). In the following, we summarize all the papers devoted to the CmRSP
and its variants.

Exact methods

Baldacci et al. (2007) introduce the CmRSP and present two integer programming
formulations for it. Valid inequalities are proposed and used as cutting planes in a
branch-and-cut method. Hoshino & de Souza (2008) propose a set covering model
for the CmRSP and develop a branch-and-price algorithm, which is competitive with
the branch-and-cut approach proposed by Baldacci et al. (2007). Then Hoshino &
De Souza (2012) extend their branch-and-price algorithm to a branch-cut-and-price
algorithm by adding a subset of cuts proposed by Baldacci et al. (2007). The proposed
algorithm provides a better bound at the root node than the branch-and-cut method,
and outperforms the latter in several classes of instances. Some instances with up
to 102 nodes are solved to optimality by both branch-and-cut (Baldacci et al., 2007)
and branch-cut-and-price (Hoshino & De Souza, 2012). Baldacci et al. (2017) propose
pricing strategies based on dynamic programming algorithms for the CmRSP. Five
different pricing strategies based on three different ring-star relaxations are presented.
Computational results show that tight lower bounds can be computed for the CmRSP
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instances with up to 431 nodes and for multi-depot RSP instances with up to 203 nodes

and 3 depots.

Sundar & Rathinam (2017) study the multi-depot RSP. The objective is to find a

set of routes (rings) minimizing the routing costs and assignment costs, such that each

route passes through a set of vertices and exactly one depot, meanwhile each non-visited

vertex is assigned to a visited vertex or a depot. A mixed integer linear programming

formulation and some valid inequalities are proposed. The authors present a polyhedral

analysis and derive facet-defining inequalities for the multi-depot RSP. A branch-and-

cut algorithm is developed and evaluated on several classes of benchmark instances,

with the largest solved instance involving 101 vertices.

Heuristic methods

Mauttone et al. (2007) propose a metaheuristic for the CmRSP, which is a hybrid al-

gorithm combining a greedy randomized adaptive search procedure and a tabu search

method. Naji-Azimi et al. (2010) propose a heuristic including a construction proce-

dure and an improvement procedure. A series of different local search operations are

applied iteratively in the improvement procedure. Naji-Azimi et al. (2012b) propose a

variable neighborhood search that incorporates an integer linear programming based

improvement method whenever the local searches are not able to improve the quality of

the current solution. Zhang et al. (2014) propose a memetic algorithm for the CmRSP,

which does not require the underlying graph satisfying the triangle inequality as in

all previous works. The proposed approach obtains almost all best-known solutions

for several benchmark instances with up to 431 nodes, making it the state-of-the-art

heuristic for the CmRSP.

Several works address the multi-depot RSP through heuristics. Baldacci & Dell’Amico

(2010) propose two construction heuristics, and use a tabu search algorithm to improve

the solutions. Hill & Voß (2016) present a mataheuristic that iteratively refines a so-

lution. In this approach, the subproblems are modeled as smaller instances of the

global problem MDRSP, and a branch-and-cut method is used to solve them to opti-

mality. Computational results show that 90% of the existing results are improved by

the proposed approach for instances with up to 1000 nodes.
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Applications

The CmRSP arises in the design of an urban optical telecommunication network for the
city of Reggio Emilia, Italy (Baldacci et al., 2007). In many fiber optical communication
networks, in order to ensure the reliability, the ring topology is used since it prevents
the loss of connection due to a single edge or a single-node failure. On the other hand,
to reduce the excavation costs, if a customer is near to a ring, then it is allowed to
connect this customer to the ring by a single edge. The new network topology is called
ring-star structure. Xu et al. (1999) address a particular digital data service network
design problem, which aims to interconnect a set of customer locations through a ring
of end offices so as to minimize the total tariff cost and provide reliability (the RSP
application).

1.4.7 The Multi-vehicle Traveling Purchaser Problem

The multi-vehicle TPP (mTPP) is first introduced by Choi & Lee (2010). It is defined
on a graph G = (V ,A) and V\{0} represents a set of markets. A fleet F of homogeneous
vehicles with a limited capacity Q is available at the depot 0 for a set of purchasers
collaborating to satisfy the products demand. The problem aims to minimize the
purchasing and traveling costs deciding the purchasing plan and the corresponding
visiting route for each vehicle.

For arc (i, j) ∈ A and vehicle f ∈ F , let xijf be a binary variable equal to 1 if and
only if vehicle f visit vertex j immediately after i. For i ∈ V and f ∈ F , let yif be a
binary variable equal to 1 if and only if vehicle f visits vertex i. For i ∈ V \{0}, f ∈ F
and q ∈ Q, let zifq be the quantity of product q purchased by vehicle f at vertex i.

The mTPP can be formulated as follows:

(mTPP ) min
∑
f∈F

∑
(i,j)∈A

Cijxijf +
∑
f∈F

∑
i∈V\{0}

∑
q∈Q

Piqzifq (1.116)

s.t.
∑
f∈F

∑
(i,j)∈δ+(i)

xijf =
∑
f∈F

yif ∀i ∈ V , (1.117)

∑
f∈F

∑
(j,i)∈δ−(i)

xjif =
∑
f∈F

yif ∀i ∈ V , (1.118)

∑
f∈F

yif ≤ 1 ∀i ∈ V \ {0}, (1.119)
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∑
f∈F

∑
i∈V \{0}

zifq = Qq ∀q ∈ Q, (1.120)

zifq ≤ Qiqyif ∀i ∈ V \ {0}, q ∈ Q, f ∈ F , (1.121)∑
i∈V \{0}

∑
q∈Q

zifq ≤ Q ∀f ∈ F , (1.122)

ui − uj +N
∑
f∈F

xijf ≤ N − 1 ∀i, j ∈ V \ {0}, i 6= j, (1.123)

xijf ∈ {0, 1} ∀i, j ∈ V , i 6= j, f ∈ F , (1.124)

yif ∈ {0, 1} ∀i ∈ V , f ∈ F , (1.125)

zifq ≥ 0 ∀i ∈ V \ {0}, q ∈ Q, f ∈ F , (1.126)

ui ≥ 0 ∀i ∈ V \ {0}. (1.127)

The objective function (1.116) is to minimize the traveling and purchasing costs.

Constraints (1.117) and Constraints (1.118) are flow conservation constraints and im-

pose that an arc enters and exits each selected vertex. Constraints (1.119) ensure that

every market can be visited at most by one vehicle. Constraints (1.120) ensure that

exactly the quantity of products required shall be purchased. Constraints (1.121) im-

pose that the quantity of a product purchased by a vehicle at a market is less than

the available quantity at this market. Constraints (1.122) guarantee that the capacity

of the vehicle is respected. Constraints (1.123) are subtour elimination constraints.

Constraints (1.124) – (1.127) define the variables.

The interested reader is referred to the survey on the TPP and its variants by

Manerba et al. (2017) that to the best of our knowledge covers the entire literature up

to now.

1.5 Conclusions and perspectives

Routing problems are usually defined on a directed graph G = (V ,A) where V is the

set of vertices. Classical routing problems require to visit every vertex of the graph.

Several articles and books survey the literature extensively (see for example Laporte

(2009); Toth & Vigo (2014)). On the other side, when not all the vertices are required

to visit, only one paper by Laporte & Martín (2007) presents a wide overview. However,

this paper focuses on works where a single resource is available to perform deliveries.
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In this survey, we have presented several non-HRP problems including both the
single-vehicle case and the multi-vehicle case. Throughout the survey, for each of
these problems, we presented its definition, a compact mathematical formulation, we
provided a literature review and gave some of its applications.

Among the problems presented in this paper, those that have been largely studied
and still draw a lot of attention by scholars are the TSPPs, the VRPPs and their
variants, especially the OP, TOP and their variants. Most of the works on the CTP
and mCTP deal with variants instead of the basic problems. The RSP and CmRSP are
more popular compared with the MCP and, in recent years, researchers got interested
in the bi-objective variants of the RSP and the multi-depot version of the CmRSP. The
GTSP and GVRP start to gain more and more attention in recent years, and there is
still considerable room for research on the variants of these problems.

With regard to the solution approaches, in general, the most efficient exact solu-
tion methodology seems to be branch-and-cut algorithms for the single-vehicle case
and branch-and-price methods for the multi-vehicle case. Efficient heuristics are often
metaheuristics with hybrid strategies combining several heuristics, e.g., variable neigh-
borhood search, large neighborhood search, iterated local search, greedy randomized
adaptive search procedure, genetic algorithm, simulated annealing.

The non-HRP problems have a wide and variety of applications in transportation
and telecommunications, for example, the tourist trip design problem, humanitarian
relief, and city telecommunication network design.

A particular mention is given to new delivery systems. Due to the quick develop-
ment of the e-commerce and the popularity of online shopping, more and more packages
need to be delivered to customers, mainly located in urban areas. Delivery companies
are seeking creative and innovative ways to efficiently make the delivery. In recent
years, some new delivery services appear, such as, delivering a customer’s package to
his/her home, a pick-up point like a locker, or to the customer’s car. If all these de-
livery services are combined together, customers are able to provide several different
locations to receive packages. The courier only needs to deliver the package to one of
these locations. Such logistics problems are non-HRP since they do not require visits
of all the customer locations. They are of interest because they might increase the rate
of successful first-time deliveries and decrease the delivery costs.
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2. MIXED INTEGER PROGRAMMING FORMULATIONS FOR THE
GTSPTW

Abstract: The generalized traveling salesman problem with time windows (GT-
SPTW) is defined on a directed graph where the vertex set is partitioned into clusters.
One cluster contains only the depot. Each vertex is associated with a time window,
during which the visit must take place if the vertex is visited. The objective is to find
a minimum cost tour starting and ending at the depot such that each cluster is visited
exactly once and time constraints are respected, i.e., for each cluster, a single vertex
is visited during its time window. In this paper, four mixed integer linear program-
ming formulations for the GTSPTW are proposed and compared. They are based on
different definitions of variables. All the formulations are compact, which means the
number of decision variables and constraints is polynomial with respect to the size of
the instance. We establish theoretically the dominance relations between their linear
relaxations. We also conduct experimental results to compare the linear relaxations
and branch-and-bound performances for the four formulations. The results show that
two formulations are better than the other ones.

2.1 Introduction

The problem addressed in this paper is the generalized traveling salesman problem
with time windows (GTSPTW), where clusters represent possible delivery locations
associated with a customer. In this paper, we propose and compare four mixed integer
programming (MIP) formulations for this problem, based on different definitions of
variables.

The GTSPTW can be formally defined as follows: given a directed graph G =

(V ,A), the set of vertices V = {0, 1, ..., N} is partitioned into C0 = {0}, C1, ..., CK
clusters. K = {0, 1, ..., K} denotes the cluster index set. Cluster C0 contains only the
depot. Ck, k > 0, k ∈ K represents the set of alternative locations on which customer
k can be delivered. Each vertex is associated with a TW [Ei, Li], i ∈ {0, 1, ..., N} with
[E0, L0] = [0, T ] representing the optimization time horizon. If a vertex is visited,
the visit occurs during its TW. An early arrival leads to waiting time while a late
arrival causes infeasibility. Arcs are only defined between vertices belonging to different
clusters, that is, A = {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. Each arc (i, j) ∈ A
is associated with a traveling cost Cij and a positive traveling time Tij ≥ 0. The
objective of the GTSPTW is to find a minimum cost tour starting and ending at the
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depot such that each cluster is visited exactly once and time constraints are respected,

i.e., one vertex of each cluster is visited during its time window.

A straightforward application for the GTSPTW is the routing problem in the con-

text of last mile delivery including multiple delivery services. The most common de-

livery option is home/workplace delivery. Customers wait at home/workplace to get

their packages. Besides, the delivery can be made to pick-up points such as dedicated

lockers or stores. In this case, customers can retrieve their packages after delivery has

been performed. Moreover, in recent years, a new concept called trunk/in-car deliv-

ery, has been proposed. Here, customers’ packages can be delivered to the trunks of

cars (Hawkins, 2018; Kirsten, 2016). All these delivery services can be combined, and

instead of choosing one delivery location during the online purchase, a customer can

propose a set of delivery locations (home/workplace, pick-up points, and car trunk)

with the associated timing constraints. The last mile delivery system with multiple

delivery services provides customers more options and flexibility considering their own

convenience. Moreover, it might increase the rate of successful first-time deliveries and

decrease delivery costs. In this work, the GTSPTW is the problem encountered for the

one vehicle case: clusters represent possible delivery locations associated with a cus-

tomer, and it is assumed that a single vehicle is able to deliver all the customers on the

same tour. In Figure 2.1, we provide an example of the routing problem considered in

the context of the last mile delivery with multiple delivery services. Four customers are

represented with their associated locations grouped into a dotted circle, representing

the different clusters. Every possible delivery location is associated with a time window

(TW) during which delivery should occur. In the case of a home or trunk delivery, the

TW represents the period when the customer or the customer’s car is present at that

location. In the case of a pick-up point, the TW represents the period during which the

courier can deliver the package before the customer arrives at the location and picks it

up. One solution consists in selecting one location for each customer and the sequence

of visits such that the delivery at each selected location takes place during its TW.

The GTSPTW is related to other routing problems. When TWs are not considered,

the GTSPTW reduces to the generalized traveling salesman problem (GTSP) (Fischetti

et al., 1997; Kara et al., 2012; Pop, 2007). Fischetti et al. (1997) proposed an efficient

branch-and-cut algorithm to solve the symmetric version of the GTSP. They developed

exact and heuristic separation procedures for some classes of facet-defining inequalities.
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Figure 2.1: An example of GTSPTW instance.

Kara et al. (2012) proposed two formulations for the GTSP with polynomial size with
respect to the number of nodes.

When all clusters contain only one vertex, the GTSPTW reduces to the trav-
eling salesman problem with time windows (TSPTW) (Ascheuer et al., 2001; Dash
et al., 2012). Ascheuer et al. (2001) proposed several formulations for the asymmet-
ric TSPTW and compared them within a branch-and-cut scheme. Dash et al. (2012)
presented a formulation for the TSPTW based on the partitioning of the TW into
sub-windows.

To the best of our knowledge, there is no work that has been done for the GTSPTW.
There are some works related to the multi-vehicle case. The special case where TWs
of locations associated with the same customer do not overlap is called the vehicle
routing problem with roaming delivery locations (VRPRDL) (Ozbaygin et al., 2017;
Reyes et al., 2017), inspired by the trunk delivery. The VRPRDL consists of finding
a minimum-cost set of routes for a fleet of capacitated vehicles in which the order of
a customer has to be delivered to the trunk of the customer’s car when the car is
parked. The TWs of locations within a cluster have a specific structure since they are

60



2.2 Lifting MTZ subtour elimination constraints for routing problems with
time windows

non-overlapping. Reyes et al. (2017) developed a construction heuristic based on a
greedy randomized adaptive search procedure, and an improvement heuristic based on
an ALNS. Ozbaygin et al. (2017) developed a branch-and-price algorithm.

The contributions of this paper are the following. First, we provide four mixed
integer programming formulations for the GTSPTW, based on decisions variables re-
lated to vertices or clusters. Second, we provide theoretical results on the dominance
of the linear programming (LP) relaxations of the proposed formulations. Finally, the
formulations are experimentally compared with two sets of instances derived from the
GTSP.

The remainder of this paper is organized as follows. Since the proposed four for-
mulations use the Miller-Tucker-Zemlin (MTZ) (Miller et al., 1960) form of subtour
elimination constraints, before presenting the formulations, lifted MTZ constraints for
the routing problems with time windows are proposed in Section 2.2. The four math-
ematical formulations are provided in Section 2.3. Section 2.4 presents the theoretical
dominance between the LP relaxations of the formulations. Section 2.5 reports the
computational results. Finally, conclusions are drawn in Section 2.6.

2.2 Lifting MTZ subtour elimination constraints for
routing problems with time windows

The traveling salesman problem with time windows (TSPTW) is defined on a graph
G = (V ,A), where V = {0, 1, ..., N} is the vertex set and A = {(i, j) : i, j ∈ V , i 6= j} is
the arc set. 0 is the depot, from where the salesman starts and ends the visiting tour.
Each vertex i ∈ V \ {0} must be visited within a specified time window [ai, bi] and
waiting time is allowed, i.e., the salesman can arrive at i before ai and wait until ai to
visit vertex i. The time window of the depot is [a0, b0]: the salesman leaves the depot
after a0 and returns to the depot before b0. Each arc (i, j) is associated with a travel
cost cij ≥ 0 and a travel time tij ≥ 0. The TSPTW consists of determining a tour such
that the total travel cost is minimized and every vertex i ∈ V is visited exactly once
within its time window [ai, bi] (Dumas et al. (1995), Gendreau et al. (1998)).

The TSPTW can be formulated using two types of variables. xij is a binary variable
that equals to 1 if and only if arc (i, j) ∈ A is used in the solution. ui specifies the
service start time at vertex i ∈ V \ {0}, and u0 is the departure time from the depot.
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The TSPTW can be formulated as follows:

minimize
∑
i∈V

∑
j∈V
j 6=i

cijxij (2.1)

s.t.
∑
j∈V
j 6=i

xij = 1 ∀i ∈ V , (2.2)

∑
i∈V
j 6=i

xij = 1 ∀j ∈ V , (2.3)

ui − uj +Mxij ≤M − tij ∀i ∈ V , j ∈ V \ {0}, i 6= j, (2.4)

ai ≤ ui ≤ bi ∀i ∈ V , (2.5)

ui + ti0xi0 ≤ b0 ∀i ∈ V \ {0}, (2.6)

xij ∈ {0, 1} ∀i, j ∈ V , i 6= j, (2.7)

ui ≥ 0 ∀i ∈ V . (2.8)

The formulation adapts the formulation proposed by Dantzig et al. (1954) for the
traveling salesman problem where the subtour elimination constraints are written in a
MTZ fashion. The objective function (2.1) minimizes the total cost. Constraints (2.2)
ensure that each vertex is visited exactly once. Constraints (2.3) are flow conservation
constraints. Constraints (2.4) guarantee the feasibility of the tour with respect to time
constraints. These constraints are also known as MTZ subtour elimination constraints
since they ensure that the solution does not contain subtours disconnected from the
depot. M is a large constant such that M ≥ maxi,j∈V {bi − aj + tij}. Constraints (2.5)
ensure that each vertex is visited during its time window, and the salesman leaves the
depot during its time window. Constraints (2.6) ensure that the salesman is back at
the depot before b0. Constraints (2.7) and (2.8) define the variables.

Here we discuss on the lifting of the Constraints (2.4) for the TSPTW. In the
paper by Desrochers & Laporte (1991), the authors proposed a lifted version of these
constraints. Because of time window constraints, some arcs (i, j) are infeasible. Indeed,
if bj < ai + tij , then it is not possible to visit vertex j right after visiting vertex i.
According to Desrochers & Laporte (1991), if arcs (i, j) and (j, i) are both feasible, by
taking into account the inverse arcs (j, i), Constraints (2.4) can be strengthened as:

ui − uj +Mxij + (M − tij + min{−tji, bj − ai})xji ≤M − tij
∀i ∈ V , j ∈ V \ {0}, i 6= j. (2.9)
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However, we find that these valid inequalities are incorrectly written since they can
eliminate feasible or optimal solutions.

0 [0,60] 1 [20,25]

3 [40,50] 2 [10,45]

5

5

5

5

u1 = 20

u2 = 25u3 = 40

u0 = 15

Figure 2.2: Example where the optimal solution is cut off by Constraints (2.9).

First, we provide an example, depicted in Figure 2.2, to illustrate the situation.
Let us consider an instance with four vertices 0, 1, 2, and 3 in the graph and ver-
tex 0 represents the depot. Vertices 0, 1, 2, and 3 are associated with time windows
[0, 60], [20, 25], [10, 45], and [40, 50] respectively. Vertices 0, 1, 2, and 3 are located at
coordinates (0, 0), (5, 0), (5, 5) and (0, 5) respectively. For each arc (i, j), we consider
that cij and tij are equal to the Euclidean distance between i and j. It is clear that
the tour 0 − 1 − 2 − 3 − 0 is feasible and optimal. Feasible values for u variables are:
u0 = 15, u1 = 20, u2 = 25, u3 = 40.

When i = 2 and j = 1, Constraints (2.9) are:

u2 − u1 +Mx21 + (M − t21 + min {−t12, b1 − a2})x12 ≤M − t21.

Thus, when Constraints (2.9) for i = 2 and j = 1 are applied to this solution they
will provide the following equation:

u2 − u1 + 0 + (M − 5 + min {−5, 25− 10}) ≤M − 5;

u2 ≤ u1 + 5.

Thus, the constraint u2 ≤ u1 + 5 is imposed. Similarly, when i = 3 and j = 2,
Constraints (2.9) are u3 ≤ u2 +5. These two constraints lead to u3 ≤ u1 +10. However,
u1 ≤ 25 and u3 ≥ 40. Hence, route 0− 1− 2− 3− 0 is not feasible when considering
Constraints (2.9).
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Therefore, we correct the Constraints (2.9) as follows.

Proposition 2.1. The constraints

ui − uj +Mxij + (M − tij + aj − bi)xji ≤M − tij ∀i ∈ V , j ∈ V \ {0}, i 6= j (2.10)

are valid inequalities for the TSPTW.

Proof. Consider the general constraints:

ui − uj +Mxij + (M − tij + αji)xji ≤M − tij ∀i ∈ V , j ∈ V \ {0}, i 6= j. (2.11)

Given i ∈ V , j ∈ V \ {0}, i 6= j, we seek for the largest value of αji such that the
corresponding Constraint (2.11) is valid.

If xji = 0, these constraints are obviously satisfied for any value of αji. If xji = 1,
(vertex i is visited right after visiting vertex j), then xij = 0, and we obtain the
following constraints:

ui − uj + αji ≤ 0. (2.12)

i.e.,

αji ≤ uj − ui. (2.13)

We are thus seeking for the largest possible value of αji such that Constraint (2.13)
is valid for any feasible values of decision variables uj and ui. From Constraints (2.5),
we have: ui ≤ bi and uj ≥ aj. Thus, we obtain:

aj − bi ≤ uj − ui. (2.14)

This means that αji cannot be bigger than aj − bi. Otherwise Constraint (2.13) is
violated when uj = aj and ui = bi. Hence, we set αji = aj − bi.

Let us continue to consider the example discussed above in Figure 2.2. When
i = 2 and j = 1, Constraints (2.10) impose u2 ≤ u1 + 25. When i = 3 and j = 2,
Constraints (2.10) impose u3 ≤ u2 + 40. These two constraints lead to u3 ≤ u1 + 65,
which means route 0− 1− 2− 3− 0 is feasible.

Moreover, it can be noticed that when the optimal solution contains waiting times,
the formulation (2.1)∼(2.8) may have multiple optimal solutions because of the timing
variables ui. Indeed, given optimal values for the xij variables, there may be several
values for the ui variables that satisfy Constraints (2.4) and (2.5). Moreover, given
optimal values for the xij variables, there are always feasible values for the ui vari-
ables such that each vertex (except the depot) is visited as early as possible, namely
minimizing waiting times (see for example the solution in Figure 2.2).
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Thus, in the following, we propose supervalid inequalities for the TSPTW. An
inequality is supervalid if it does not cut off all optimal solutions. This concept is a
generalization of the concept of valid inequalities and has been introduced by Israeli &
Wood (2002).

Proposition 2.2. The constraints

ui − uj +Mxij + (M − tij + min{−tji, aj − ai})xji ≤M − tij
∀i ∈ V , j ∈ V \ {0}, i 6= j (2.15)

are supervalid inequalities for the TSPTW.

Proof. We seek for a value of αji such that Constraints (2.11) are supervalid, i.e., they
are valid for at least one optimal solution. If xji = 0, these constraints are satisfied
for any value of αji. If xji = 1(vertex i is visited right after visiting vertex j), then
xij = 0, and we obtain Constraints (2.13). Thus, we seek for a value of αji such that
Constraints (2.13) are valid for the values of the decision variables uj and ui for at
least one optimal solution.

In order to provide such a value, we consider an optimal solution where each vertex
is visited as soon as possible.

Two cases may be considered. In the first case, aj + tji ≥ ai. This means that
vertex i can be visited right after vertex j without any waiting time. Hence, we have
ui = uj + tji. We then obtain:

− tji = uj − ui (2.16)

Hence, αji = −tji is valid for this first case.
In the second case, aj + tji < ai. This means that a waiting time may be required

before visiting vertex i. Let us suppose that the value of uj has been fixed. The value
of ui will then be chosen such that vertex i is visited as soon as possible. If uj+tji ≥ ai,
then i can be visited right after j without waiting time. Then, similarly to the first
case, αji = −tji is valid. If uj + tji < ai, then a waiting time is required, and vertex
i is visited as soon as possible, i.e. ui = ai. From Constraints (2.5), we have uj ≥ aj.
We then obtain:

aj − ai ≤ uj − ui (2.17)

Hence, when αji = aj − ai, Constraints (2.13) are valid in this case.
In all cases, we can set αji = min {−tji, aj − ai}.
Using the example introduced previously and depicted in Figure 2.2, it can be ob-

served that Constraints (2.15) do not cut the solution proposed in Figure 2.2. However,
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other optimal solutions are eliminated. Let us consider another solution s′ with the
same values for xij variables and u0 = 15, u1 = 20, u2 = 35, and u3 = 40. This solution
is valid and optimal with respect to the formulation of the TSPTW. However, Con-
straints (2.15) applied to i = 2 and j = 1 give u2−u1+0+(M−5+min {−5, 20− 10}) ≤
M − 5. Thus the constraint is u2 ≤ u1 + 5, and the solution s′ would be cut off by
Constraints (2.15).

Thus, Constraints (2.15) are supervalid inequalities for the TSPTW.

Note that this result can be extended to routing problems with time windows such
as the Generalized TSPTW (Yuan et al. (2019a)), the Vehicle Routing Problem with
TW (VRPTW) (Pecin et al. (2017)), the Generalized VRPTW (Yuan et al. (2019c)).

2.3 Four compact formulations for the GTSPTW

In order to provide compact formulations for the GTSPTW, we use some additional
notations. Let Ac = {(h, k)|h, k ∈ K, h 6= k} be the set of ordered pairs of clusters. For
any node i ∈ V , we define δ+(i) = {(i, j) ∈ A|j ∈ V} the set of arcs leaving vertex i, and
δ−(i) = {(j, i) ∈ A|j ∈ V} the set of arcs entering vertex i. Similarly, for any cluster
h ∈ K, we define δ+

c (h) = {(h, k) ∈ Ac|k ∈ K}, and δ−c (h) = {(k, h) ∈ Ac|k ∈ K}.
The first model is based on the classical variables used to model the GTSP and the

TSPTW. We define three sets of variables:

• xij =

{
1 if arc (i, j) belongs to the tour,
0 otherwise, ∀(i, j) ∈ A;

• yi =

{
1 if vertex i is visited in the tour,
0 otherwise, ∀i ∈ V ;

• ti ≥ 0 is the service time at vertex i, ∀i ∈ V .

Note that, for the depot, the service time t0 represents the departure time, and if
a vertex i ∈ V is not visited, the corresponding variable ti will be 0.

Using these variables, a first mathematical programming formulation F1 is:

(F1) minimize
∑

(i,j)∈A

Cijxij (2.18)

s.t.
∑
i∈Ck

yi = 1 ∀k ∈ K, (2.19)∑
(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (2.20)
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∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (2.21)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V , (2.22)

ti − tj + Tijxij ≤ Liyi − Ejyj − (Li − Ej)xij ∀(i, j) ∈ A, j 6= 0, (2.23)

ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}, (2.24)

yi ∈ {0, 1} ∀i ∈ V , (2.25)

xij ∈ {0, 1} ∀(i, j) ∈ A, (2.26)

ti ≥ 0 ∀i ∈ V . (2.27)

The objective function (2.18) minimizes the overall traveling cost. Constraints (2.19)
ensure that exactly one vertex from each cluster is visited. Constraints (2.20) and (2.21)
ensure flow conservation between the visited vertices, and that no flow is passing
through the unvisited vertices. Constraints (2.22) ensure that a vertex is visited during
its TW. Constraints (2.23) ensure that the service times are consistent, i.e., if vertex
j is visited just after vertex i, then (2.23) will ensure tj ≥ ti + Tij. These constraints
are MTZ form of subtour elimination constraints. Constraints (2.24) make sure that
the return to the depot occurs before the end of its TW. Constraints (2.25)∼(2.27) are
variable definitions.

Moreover, we can extend the supervalid inequalities proposed in Section 2.2 for
the MTZ constraints (2.23). Because of time window constraints, some arcs (i, j) are
infeasible. Indeed, if Ei + Tij > Lj, then it is not possible to visit vertex j right after
visiting vertex i. If arcs (i, j) and (j, i) are both feasible, by taking into account the
inverse arcs (j, i), the MTZ constraints (2.23) in F1 can be replaced by the following
supervalid inequalities:

ti − tj + Tijxij +min{−Tji, Ej − Ei}xji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji). (2.28)

A second formulation is based on the following observation. Since only one vertex
is selected in each cluster, we can define a single time variable per cluster instead of
defining a time variable for every vertex as proposed in formulation F1. Hence, instead
of using variables ti,∀i ∈ V , we define a new set of time variables:

• τk ≥ 0 is the service time at cluster k, ∀k ∈ K.

Using these time variables, we have a second formulation F2. The objective func-
tion and constraints (2.19)∼(2.21), (2.25)∼(2.26) are the same as in F1. Constraints
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(2.22)∼(2.24) are replaced by (2.29)∼(2.31) respectively.

(F2) minimize (2.18)

s.t. (2.19) ∼ (2.21)∑
i∈Ck

Eiyi ≤ τk ≤
∑
i∈Ck

Liyi ∀k ∈ K, (2.29)

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij ≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj

−
∑
i∈Ch
j∈Ck

(Li − Ej)xij ∀h ∈ K, k ∈ K \ {0}, h 6= k, (2.30)

τk +
∑
i∈Ck

Ti0xi0 ≤ L0 ∀k ∈ K \ {0}, (2.31)

(2.25) ∼ (2.26)

τk ≥ 0 ∀k ∈ K. (2.32)

Constraints (2.29) ensure that each cluster is visited during the TW of its cor-
responding visited vertex. Constraints (2.30) ensure that the service times between
clusters are consistent. They are MTZ type of constraints and can eliminate subtours.
Constraints (2.31) make sure that the return to the depot occurs before its TW closes.
Constraints (2.32) are variable definitions.

For this second formulation, it is also possible to replace the MTZ constraints (2.30)
in F2 by the following supervalid inequalities:

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij +
∑
i∈Ch
j∈Ck

min{−Tji, Ej − Ei}xji

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)(xij + xji). (2.33)

A third formulation is proposed based on the next observation. At most one arc
between two clusters is chosen to connect two clusters. Thus, instead of defining arc
variables between two vertices belonging to two different clusters as in F1 and F2, we
can define an arc variable between two clusters. In this case, we also need variables
to represent the time and the cost to travel from a cluster h ∈ K to another cluster
k ∈ K. Instead of using variables xij,∀(i, j) ∈ A, we define new sets of variables:

• χhk =

{
1 if the tour visits cluster h just before cluster k,
0 otherwise, ∀(h, k) ∈ Ac;

• τhk ≥ 0 is the traveling time from cluster h to cluster k, ∀(h, k) ∈ Ac;
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• ςhk ≥ 0 is the traveling cost from cluster h to cluster k, ∀(h, k) ∈ Ac.

Note that if the tour does not visit cluster h just before cluster k (χhk = 0), then
the corresponding variables τhk and ςhk will be 0.

Using these new sets of variables in addition to binary variables yi and time variables
ti as in F1, a third formulation F3 can be defined as follows:

(F3) minimize
∑

(h,k)∈Ac

ςhk (2.34)

s.t. (2.19)∑
(h,k)∈δ+c (h)

χhk = 1 ∀h ∈ K, (2.35)

∑
(k,h)∈δ−c (h)

χkh = 1 ∀h ∈ K, (2.36)

(χhk + yi + yj − 2)Cij ≤ ςhk ∀(h, k) ∈ Ac, i ∈ Ch, j ∈ Ck, (2.37)

Cmin
hk χhk ≤ ςhk ≤ Cmax

hk χhk ∀(h, k) ∈ Ac, (2.38)

(χhk + yi + yj − 2)Tij ≤ τhk ∀(h, k) ∈ Ac, i ∈ Ch, j ∈ Ck, (2.39)

Tminhk χhk ≤ τhk ≤ Tmaxhk χhk ∀(h, k) ∈ Ac, (2.40)

(2.22)∑
i∈Ch

ti −
∑
j∈Ck

tj + τhk ≤Mhk(1− χhk) ∀(h, k) ∈ Ac, k 6= 0, (2.41)∑
i∈Ck

ti + τk0 ≤ L0 ∀k ∈ K \ {0}, (2.42)

(2.25), (2.27)

χhk ∈ {0, 1} ∀(h, k) ∈ Ac, (2.43)

τhk ≥ 0 ∀(h, k) ∈ Ac, (2.44)

ςhk ≥ 0 ∀(h, k) ∈ Ac; (2.45)

where Cmin
hk = mini∈Ch,j∈Ck{Cij}, Cmax

hk = maxi∈Ch,j∈Ck{Cij}, Tminhk = mini∈Ch,j∈Ck{Tij},
Tmaxhk = maxi∈Ch,j∈Ck{Tij}, Mhk = Lmaxh −Emin

k , with Lmaxh = maxi∈Ch{Li}, and Emin
k =

minj∈Ck{Ej}.
The objective function (2.34) minimizes the overall traveling cost. Constraints (2.35)

and (2.36) are flow conservation constraints. Constraints (2.37) and (2.38) provide
bounds on variables ςhk, while constraints (2.39) and (2.40) provide bounds on vari-
ables τhk. Constraints (2.41) ensure that the service times are consistent, i.e., if vertex
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j ∈ Ck is visited just after vertex i ∈ Ch, then (2.41) will ensure tj ≥ ti + τhk. Con-

straints (2.42) ensure that the return to the depot occurs before the end of its TW.

Constraints (2.43)∼(2.45) are variable definitions.

Note that if for every arc (i, j) ∈ A, the traveling time Tij equals the traveling cost

Cij, then Constraints (2.37)∼(2.38) on one hand, and Constraints (2.39)∼(2.40) on the

other hand are the same.

Finally, the observation made to propose formulation F2 is still valid: only one

vertex is selected in each cluster, so we can define a single time variable per cluster

instead of defining a time variable for every vertex. We propose a formulation F4,

derived from formulation F3 using time variables τk,∀k ∈ K instead of time variables

ti,∀i ∈ V .

(F4) minimize (2.34)

s.t. (2.19)

(2.35) ∼ (2.40)

(2.29)

τh − τk + τhk ≤Mhk(1− χhk) ∀(h, k) ∈ Ac, k 6= 0, (2.46)

τk + τk0 ≤ L0 ∀k ∈ K \ {0}. (2.47)

(2.25), (2.32), (2.43) ∼ (2.45)

Constraints (2.46) ensure that the service times between clusters are consistent,

and Constraints (2.47) ensure that the return to the depot occurs before the end of its

TW.

Notice that all the proposed formulations use MTZ type of constraints to eliminate

subtours. If an instance contains two vertices i, j ∈ V such that Tij = Tji = 0 and their

TWs intersect ([Ei, Li] ∩ [Ej, Lj] 6= ∅), then the MTZ constraints cannot eliminate the

subtour between vertices i and j since they can be visited at the same time. In such a

case, the MTZ constraints can be replaced by classical subtour elimination constraints

for the subsets of vertices that can be visited at the same time. In the remainder of

this paper, we assume that any two vertices i, j cannot be visited at the same time,

i.e., [Ei, Li] ∩ [Ej, Lj] 6= ∅ and Tij = Tji = 0 cannot be simultaneously true. We focus

on the proposed formulations using only MTZ subtour elimination constraints.
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2.4 Dominance between formulations

Let LR(F1), LR(F2), LR(F3) and LR(F4) denote the LP relaxations of F1, F2, F3

and F4 respectively. This mean that Constraints (2.25), (2.26) and (2.43) are respec-
tively replaced by:

0 ≤ yi ≤ 1 ∀i ∈ V , (2.48)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A, (2.49)

0 ≤ χhk ≤ 1 ∀(h, k) ∈ Ac. (2.50)

In this section, we provide some theoretical dominance relationships on the LP
relaxations of the proposed formulations.

Proposition 2.3. Formulations LR(F3) and LR(F4) are equivalent.

Proof. 1) First, we demonstrate that a feasible solution of LR(F3) is feasible for
LR(F4).

Let us consider a feasible solution of LR(F3). In order to show that this solution is
feasible for LR(F4), we need to verify that it respects all the constraints of LR(F4).
By comparing LR(F3) and LR(F4), we see that only Constraints (2.29), (2.46) and
(2.47) in LR(F4) have to be verified.

For LR(F4), we define the time variables τk as follows:

τk =
∑
i∈Ck

ti ∀k ∈ K. (2.51)

Given a cluster k ∈ K, by summing up Constraints (2.22): Eiyi ≤ ti ≤ Liyi,∀i ∈ V
in LR(F3) over all vertices in Ck, we have

∑
i∈Ck Eiyi ≤

∑
i∈Ck ti ≤

∑
i∈Ck Liyi,∀k ∈

K. Then, according to the definition of variable τk in Equation (2.51), we obtain∑
i∈Ck Eiyi ≤ τk ≤

∑
i∈Ck Liyi,∀k ∈ K, which are Constraints (2.29) in LR(F4).

Moreover, according to the definition of variable τk in Equation (2.51), Constraints
(2.46) and (2.47) in LR(F4) are straightforwardly obtained from Constraints (2.41)
and (2.42) in LR(F3) respectively.

Therefore, a feasible solution of LR(F3) is feasible for LR(F4).
2) Second, we demonstrate that a feasible solution of LR(F4) is feasible for LR(F3).
Let us consider a feasible solution of LR(F4). In order to show that this solution is

feasible for LR(F3), we have to verify that it respects all the constraints of LR(F3).
By comparing LR(F4) and LR(F3), we see that only Constraints (2.22), (2.41) and
(2.42) in LR(F3) have to be verified.
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Given a cluster k ∈ K, Constraints (2.29) in LR(F4) is:
∑

i∈Ck Eiyi ≤ τk ≤∑
i∈Ck Liyi. Hence,

∃αk ∈ [0, 1], τk = αk
∑
i∈Ck

Eiyi + (1− αk)
∑
i∈Ck

Liyi. (2.52)

Then, for LR(F3), we define the time variables ti as follows:

ti = αkEiyi + (1− αk)Liyi ∀k ∈ K, i ∈ Ck. (2.53)

It is then clear that Eiyi ≤ ti ≤ Liyi,∀i ∈ V , which mean that Constraints (2.22)
in LR(F3) are satisfied.

Moreover, according to the definition of time variables ti in Equation (2.53), we
have: ∑

i∈Ck

ti = αk
∑
i∈Ck

Eiyi + (1− αk)
∑
i∈Ck

Liyi = τk ∀k ∈ K. (2.54)

Then, by using Equation (2.54), Constraints (2.41) and (2.42) in LR(F3) are
straightforwardly obtained from Constraints (2.46) and (2.47) in LR(F4) respectively.

Thus, a feasible solution of LR(F4) is feasible for LR(F3).
In conclusion, formulations LR(F3) and LR(F4) are equivalent.

To establish the dominance relation between LR(F2) and LR(F4), we need to
prove the following Lemma first.

Lemma 2.4. Given a feasible solution of LR(F2), the following constraints are valid:∑
u∈Ch,v∈Ck

xuv + yi + yj − 2 ≤ xij ∀(h, k) ∈ Ac, i ∈ Ch, j ∈ Ck. (2.55)

A1

A2A3

A4 = {(i, j)}

A5

A6

A7

A8

i j

Ch Ck

Figure 2.3: Illustration of the arc sets used in the proof of Lemma 2.4.
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Proof. Let us consider two cluster h and k such that (h, k) ∈ Ac, and two vertices
i and j such that i ∈ Ch, j ∈ Ck. An illustration to ease the understating of the
proof is provided in Figure 2.3. In this figure, the vertices in Ch \ {i} and Ck \ {j} are
grouped in a dotted circle. In order to make the proof easy to understand, we divide
the arcs leaving cluster Ch and the arcs entering cluster Ck into several sets defined
as follows. A1 = {(u, v)|u ∈ Ch \ {i}, v ∈ Ck \ {j}}. A2 = {(u, j)|u ∈ Ch \ {i}}.
A3 = {(i, v)|v ∈ Ck \ {j}}. A4 = {(i, j)}. A5 = {(u, v)|u ∈ Ch \ {i}, v ∈ V \ Ck}.
A6 = {(i, v)|v ∈ V\Ck}. A7 = {(u, v)|u ∈ V\Ch, v ∈ Ck\{j}}. A8 = {(u, j)|u ∈ V\Ch}.
Let Ã be the set of all arcs going from Ch to Ck, that is, Ã = A1 ∪ A2 ∪ A3 ∪ A4.

Using Constraints (2.20)∼(2.21), and the aforementioned definition of the arc sets,
we can write the left hand side of Constraints (2.55) as follows:∑

u∈Ch,v∈Ck

xuv + yi + yj − 2

=
∑

u∈Ch,v∈Ck

xuv +
∑

(i,j′)∈δ+(i)

xij′ +
∑

(i′,j)∈δ−(j)

xi′j − 2

=
∑

(u,v)∈Ã

xuv +
∑

(u,v)∈A3∪A4∪A6

xuv +
∑

(u,v)∈A2∪A4∪A8

xuv − 2

=
∑

(u,v)∈Ã

xuv +
∑

(u,v)∈A2∪A3∪A4

xuv +
∑

(u,v)∈A4

xuv +
∑

(u,v)∈A6∪A8

xuv − 2 (2.56)

Then, using Constraints (2.19)∼(2.21), and the definition of the arc sets, the value
2 in Equation (2.56) can be replaced as follows:

2 = 1 + 1

=
∑
i′∈Ch

yi′ +
∑
j′∈Ck

yj′

=
∑
i′∈Ch

∑
(i′,j′)∈δ+(i′)

xi′j′ +
∑
j′∈Ck

∑
(i′,j′)∈δ−(j′)

xi′j′

=
∑

(u,v)∈Ã∪A5∪A6

xuv +
∑

(u,v)∈Ã∪A7∪A8

xuv

= 2
∑

(u,v)∈Ã

xuv +
∑

(u,v)∈A6∪A8

xuv +
∑

(u,v)∈A5∪A7

xuv (2.57)

Finally, using Equations (2.56) and (2.57), we have:∑
u∈Ch,v∈Ck

xuv + yi + yj − 2 =
∑

(u,v)∈A2∪A3∪A4

xuv +
∑

(u,v)∈A4

xuv −
∑

(u,v)∈Ã

xuv −
∑

(u,v)∈A5∪A7

xuv

=
∑

(u,v)∈A4

xuv −
∑

(u,v)∈A1∪A5∪A7

xuv
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= xij −
∑

(u,v)∈A1∪A5∪A7

xuv

≤ xij (2.58)

We can now prove the following dominance result.

Proposition 2.5. Formulation LR(F2) is stronger than LR(F4).

Proof. 1) First, we demonstrate that a feasible solution of LR(F2) is feasible for
LR(F4).

Let us consider a feasible solution of LR(F2). In order to show that this solution is
feasible for LR(F4), we need to verify that it respects all the constraints of LR(F4).
By comparing LR(F2) and LR(F4), we see that only Constraints (2.35)∼(2.40), (2.46)
and (2.47) in F4 have to be verified.

For LR(F4), we define variables χhk, τhk and ςhk as follows:

χhk =
∑

i∈Ch,j∈Ck

xij ∀(h, k) ∈ Ac, (2.59)

τhk =
∑

i∈Ch,j∈Ck

Tijxij ∀(h, k) ∈ Ac, (2.60)

ςhk =
∑

i∈Ch,j∈Ck

Cijxij ∀(h, k) ∈ Ac. (2.61)

By summing up Constraints (2.20) of F2:
∑

(i,j)∈δ+(i) xij = yi, ∀i ∈ V , over all the
vertices in Ch, we have:

left hand:
∑
i∈Ch

∑
(i,j)∈δ+(i)

xij =
∑

k∈K\{h}

∑
i∈Ch
j∈Ck

xij =
∑

k∈K\{h}

χhk =
∑

(h,k)∈δ+c (h)

χhk (2.62)

right hand:
∑
i∈Ch

yi = 1 (2.63)

Thus, Constraints (2.35) of LR(F4) are satisfied. Similarly, we can obtain Constraints
(2.36) of LR(F4) by summing up Constraints (2.21) of LR(F2) over all the vertices in
Ck.

Then, using Lemma 2.4, we demonstrate that Constraints (2.39) of LR(F4) are
satisfied. We consider two clusters h and k such that (h, k) ∈ Ac, and two vertices i
and j such that i ∈ Ch, j ∈ Ck. By multiplying Constraints (2.55) by Tij, we have:( ∑

u∈Ch,v∈Ck

xuv + yi + yj − 2

)
Tij ≤ xijTij
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≤ xijTij +
∑

u∈Ch,v∈Ck,(u,v) 6=(i,j)

Tuvxuv

≤
∑

u∈Ch,v∈Ck

Tuvxuv (2.64)

Using the variable definitions (2.59) and (2.60), Equation (2.64) leads to Constraints
(2.39) of LR(F4): (χhk + yi + yj − 2)Tij ≤ τhk, ∀(h, k) ∈ Ac, i ∈ Ch, j ∈ Ck.

Using variable definitions (2.59) and (2.60), it is easy to see that Constraints (2.40)
of LR(F4) are satisfied.

The arguments used to prove that Constraints (2.39) and (2.40) are satisfied can
be easily adapted by replacing Tij by Cij, and τhk by ςhk. This permits to prove that
Constraints (2.37) and (2.38) of LR(F4) are satisfied.

Using Constraints (2.30) of LR(F2), and the variable definitions (2.59) and (2.60),
we have:

left hand: τh − τk +
∑

i∈Ch,j∈Ck

Tijxij =
∑
i∈Ch

ti −
∑
j∈Ck

tj + τhk (2.65)

right hand:
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑

i∈Ch,j∈Ck

(Li − Ej)xij

=
∑
i∈Ch

Li ∑
(i,j)∈δ+(i)

xij

−∑
j∈Ck

Ej ∑
(i,j)∈δ−(j)

xij

− ∑
i∈Ch,j∈Ck

(Li − Ej)xij

=
∑

i∈Ch,j /∈Ck

Lixij +
∑

i∈Ch,j∈Ck

Lixij −
∑

i/∈Ch,j∈Ck

Ejxij −
∑

i∈Ch,j∈Ck

Ejxij −
∑

i∈Ch,j∈Ck

(Li − Ej)xij

=
∑

i∈Ch,j /∈Ck

Lixij −
∑

i/∈Ch,j∈Ck

Ejxij

≤ Lmaxh

∑
i∈Ch,j /∈Ck

xij − Emin
k

∑
i/∈Ch,j∈Ck

xij

= Lmaxh

(
1−

∑
i∈Ch,j∈Ck

xij

)
− Emin

k

(
1−

∑
i∈Ch,j∈Ck

xij

)

= (Lmaxh − Emin
k )

(
1−

∑
i∈Ch,j∈Ck

xij

)
= (Lmaxh − Emin

k ) (1− χhk)
= Mhk(1− τhk) (2.66)

This proves that Constraints (2.41) of LR(F4):
∑

i∈Ch ti−
∑

j∈Ck tj+τhk ≤Mhk(1−χhk)
are satisfied.

Thus, all the Constraints of LR(F4) are satisfied, therefore a feasible solution of
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LR(F2) is feasible for LR(F4).
2) Second, we show that a feasible solution of LR(F4) may not be feasible for

LR(F2). Table 2.1 in Section 2.5.3 presents the gap in percentage of the linear relax-
ation of the four formulations, with respect to the optimal solution of the mixed integer
formulations. For example, we consider the instance TW_3burma14. The optimal in-
teger solution is 908. Formulation LR(F2) has a gap of 52.7%, i.e. the optimal value
of LR(F2) is 908× (1− 0.527) = 429.53. Formulation LR(F4) has a gap of 59.3%, i.e.
the optimal value of LR(F4) is 908 × (1 − 0.593) = 369.11. This proves that it does
not exist a solution of LR(F2) with the same value of the optimal solution of LR(F4),
since the optimal value of LR(F2) is greater than 369.11. Thus, from the optimal
solution of LR(F4) an equivalent feasible solution for LR(F2) cannot be obtained.

In summary, every feasible solution of LR(F2) is feasible for LR(F4), but the
opposite is not true. It means that LR(F2) is stronger than LR(F4).

Note that, due to the equivalence between LR(F3) and LR(F4), LR(F2) is stronger
that LR(F3) as well.

Proposition 2.6. There is no dominance relation between LR(F1) and LR(F2).

Proof. 1) First, we show that a feasible solution of LR(F1) may not be feasible for
LR(F2). Table 2.1 in Section 2.5.3 presents the gap in percentage of the linear relax-
ation of the four formulations, with respect to the optimal solution of the mixed integer
formulations. For example, we consider the instance TW_3burma14. The optimal in-
teger solution is 908. Formulation LR(F2) has a gap of 52.7%, i.e. the optimal value
of LR(F2) is 908× (1− 0.527) = 429.53. Formulation LR(F1) has a gap of 53.1%, i.e.
the optimal value of LR(F1) is 908 × (1 − 0.531) = 426.23. This proves that it does
not exist a solution of LR(F2) with the same value of the optimal solution of LR(F1),
since the optimal value of LR(F2) is greater than 426.23. Thus, from the optimal
solution of LR(F1) an equivalent feasible solution for LR(F2) cannot be obtained.

2) Second, we show that a feasible solution of LR(F2) may not be feasible for
LR(F1). From Table 2.1, we consider for example the instance TW_5gr24. The
optimal integer solution is 263. Formulation LR(F1) has a gap of 15.3%, i.e. the
optimal value of LR(F1) is 263 × (1 − 0.153) = 222.70. Formulation LR(F2) has a
gap of 22.0%, i.e. the optimal value of LR(F2) is 263 × (1 − 0.22) = 205.24. This
proves that it does not exist a solution of LR(F1) with the same value of the optimal
solution of LR(F2), since the optimal value of LR(F1) is greater than 205.24. Thus,
from the optimal solution of LR(F2) an equivalent feasible solution for LR(F1) cannot
be obtained.
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Note that, by comparing formulations LR(F1) and LR(F2), Constraints (2.23) in
LR(F1) cannot be straightforwardly transformed into Constraints (2.30) in LR(F2).
Constraints (2.23) in LR(F1) are: ti− tj +Tijxij ≤ Liyi−Ejyj− (Li−Ej)xij,∀(i, j) ∈
A, j 6= 0. Let us consider i ∈ Ch, j ∈ Ck. By summing up Constraints (2.23) over all
the arcs between Ch and Ck, we obtain:

|Ck|
∑
i∈Ch

ti − |Ch|
∑
j∈Ck

tj +
∑
i∈Ch
j∈Ck

Tijxij

= |Ck|τh − |Ch|τk +
∑
i∈Ch
j∈Ck

Tijxij

≤ |Ck|
∑
i∈Ch

Liyi − |Ch|
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)xij

∀h ∈ K, k ∈ K \ {0}, h 6= k. (2.67)

These inequalities are different from Constraints (2.30) in LR(F2).

2.5 Experimental results

In this section, we conduct computational experiments to compare the four formu-
lations, and to assess the quality of the supervalid inequalities (2.28) and (2.33) in
formulations F1 and F2 respectively. We report two types of computational results:
the comparison of the LP relaxations and the performance of a branch-and-bound al-
gorithm to solve the MIPs. To solve the LPs and MIPs, we use CPLEX 12.6.3. on a
PC Intel(R) Core(TM) i5-6200U CPU 2.20GHz and 64G RAM.

2.5.1 Testbed

We use the instances created by Yuan et al. (2019a) (detailed in Chapter 3.6.1) for
the GTSPTW. The first group of instances, denoted as G1, is created by performing
suitable modifications to the existing benchmark for the generalized traveling sales-
man problem (Karapetyan, 2012). The second group of instances, denoted as G2, is
generated as G1, except the maximum number of vertices per cluster is fixed to 5.
From these sets of instances, we exclude instance that were not solved to optimality by
the branch-and-cut developed by Yuan et al. (2019a). We also exclude two instances
where the MTZ constraints cannot eliminate some subtours (see the last paragraph of
Section 2.3). Hence, we consider 39 instances in set G1, and 33 instances in set G2.
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To test the branch-and-bound performances of the MIP formulations, we only conduct

experiments on the instances of G1 and G2 with no more than 20 clusters.

2.5.2 Preprocessing

Before solving the problem, we perform a preprocessing step. It consists in tightening

the TWs and eliminating vertices and arcs that cannot be part of a feasible solution.

The TW width can be reduced by taking into account the earliest and the latest

arrival and departure times at each vertex of the graph from or to another vertex. In

particular, we consider the following conditions proposed by Desrochers et al. (1992):

• earliest arrival time from predecessors: Ei = max
{
Ei,min

{
Li,min(j,i)∈A {Ej + Tji}

}}
;

• earliest departure time to successors: Ei = max
{
Ei,min

{
Li,min(i,j)∈A {Ej − Tij}

}}
;

• latest arrival time from predecessors: Li = min
{
Li,max

{
Ei,max(j,i)∈A {Li + Tji}

}}
;

• latest departure time to successors: Li = min
{
Li,max

{
Ei,max(i,j)∈A {Lj − Tij}

}}
.

These conditions are applied iteratively to all vertices until no TW can be reduced.

After applying the TW reduction, we sparsify the graph by eliminating the vertices and

arcs that cannot be part of a feasible solution. Let SPij denote the shortest traveling

time between vertices i and j. When the triangle inequality is not satisfied for traveling

times, the shortest traveling time SPij going from vertex i to vertex j can include the

visit of other vertices and can be lower than Tij. We remove:

• a vertex i ∈ V if a round trip from the depot to the vertex leads to a time window

violation, i.e. E0 + T0i > Li or max {E0 + T0i, Ei}+ Ti0 > L0;

• an arc (i, j) ∈ A if Ei + Tij > Lj or if the route that starts from the depot, visits

vertex i, then vertex j then goes back to the depot violates at least one TW, i.e.,

max {E0 + SP0i, Ei}+Tij > Lj or max {max {E0 + SP0i, Ei}+ Tij, Ej}+SPj0 >

L0.
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2.5.3 Comparison of the LP relaxations

In this section, we discuss the results obtained by solving the LP relaxations of the four
formulations. The results of instances in sets G1 and G2 are reported in Tables 2.1
and 2.2 respectively.

First, we describe the column headings used in Tables 2.1 and 2.2. The first column
Instance indicates the instance name. The number in the middle of the name represents
the number of clusters, and the number at the end represents the number of vertices,
both excluding the depot. The second column OptValue indicates the optimal value of
an integer solution for the corresponding instance. The next columns show the optimal-
ity gap in percentage between the optimal value and the lower bound obtained by solv-
ing an LP relaxation, which is calculated as (OptV alue−lower bound)/OptV alue∗100.
These gaps are presented for the LP relaxations of the four formulations in columns
LR(F1), LR(F2), LR(F3), and LR(F4). In the last two columns LR(F1) + SV I

and LR(F2) + SV I, we report the optimality gaps when solving LR(F1) with super-
valid inequalities (2.28), and LR(F2) with supervalid inequalities (2.33) respectively.
In each row, we mark in bold the best result obtained from the LP relaxations of the
four basic formulations. Note that the strongest formulation, with the highest lower
bound, is the one with the smallest optimality gap. In each row, we also mark in bold
the best result obtained from all the LP relaxations including the ones with supervalid
inequalities. In the last row of the tables, we indicate the average results over all the
instances. Note that we do not report computation times since the LP relaxations are
fast to solve. The computation times are always less than 3 seconds.

From Tables 2.1 and 2.2, it can be seen that the lower bounds obtained from LR(F3)

and LR(F4) are always the same. The lower bounds obtained from LR(F2) are always
better than those obtained from LR(F3) and LR(F4) since the optimality gaps are
lower. For some instances, the lower bounds obtained from LR(F1) are better than
those obtained from LR(F2), e.g., TW_5gr21 in G1 and TW_7gr24 in G2, while for
some instances, the reverse is true, e.g., TW_3burma14 in G1 and TW_8ulysses22 in
G2. The above observations are in accordance with the theoretical results presented
in Section 2.4. From the average results in the last row of Table 2.1 and 2.2, we can
see that in average LR(F1) and LR(F2) are stronger than LR(F3) and LR(F4). On
average, LR(F1) is slightly stronger than LR(F2). The best lower bounds are obtained
with LR(F1) for 62 instances, and they are obtained with LR(F2) for 15 instances.
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Table 2.1: Optimality gaps obtained for LP relaxations on instances in G1.

Instance OptValue
GAP(%)

LR(F1) LR(F2) LR(F3) LR(F4) LR(F1) + SV I LR(F2) + SV I

TW_3burma14 908 53.06 52.69 59.35 59.35 42.24 44.44
TW_4gr17 962 34.99 35.08 46.78 46.78 33.26 34.69
TW_4ulysses16 2392 59.41 59.41 61.57 61.57 59.41 59.41
TW_5gr21 1165 32.02 34.12 47.67 47.67 27.60 32.96
TW_5gr24 263 15.32 21.96 34.24 34.24 8.06 16.48
TW_5ulysses22 3287 35.25 34.69 35.08 35.08 31.11 30.32
TW_6bayg29 476 31.86 31.95 40.56 40.56 29.69 30.26
TW_6bays29 628 37.77 38.30 44.02 44.02 32.07 35.98
TW_6fri26 354 28.45 30.50 31.56 31.56 20.83 28.78
TW_7ftv33 416 26.91 27.42 41.09 41.09 18.35 21.92
TW_8ftv36 538 44.18 43.75 56.14 56.14 36.42 31.72
TW_8ftv38 384 29.35 30.59 50.62 50.62 26.34 28.24
TW_9dantzig42 322 37.43 37.94 44.74 44.74 32.80 32.54
TW_10att48 4113 41.60 42.65 45.80 45.80 33.67 37.90
TW_10gr48 1437 41.95 42.50 43.51 43.51 34.85 39.62
TW_10hk48 5268 43.06 43.46 49.62 49.62 36.94 39.20
TW_11berlin52 3632 35.36 36.07 42.40 42.40 32.40 32.71
TW_11eil51 151 40.51 41.55 47.57 47.57 33.51 40.21
TW_12brazil58 13503 51.54 51.08 52.92 52.92 48.50 40.59
TW_14st70 289 50.54 50.73 53.91 53.91 44.53 48.75
TW_16eil76 205 39.19 39.23 50.64 50.64 35.92 37.98
TW_16pr76 57164 38.98 39.08 43.12 43.12 33.27 29.41
TW_20gr96 33128 44.72 45.50 51.87 51.87 38.58 42.85
TW_20kroA100 10209 41.37 41.69 54.09 54.09 39.48 40.81
TW_20kroB100 9862 45.03 45.33 50.73 50.73 32.82 35.06
TW_20kroC100 9728 43.81 44.16 51.52 51.52 38.12 39.78
TW_20kroD100 9210 53.94 54.23 60.37 60.37 45.45 45.42
TW_20kroE100 9514 36.42 37.29 43.64 43.64 30.29 35.68
TW_20rat99 478 49.06 49.41 54.95 54.95 40.81 45.91
TW_20rd100 3446 41.75 41.78 44.71 44.71 34.64 34.70
TW_21eil101 247 40.02 39.97 44.45 44.45 36.48 36.70
TW_21lin105 7582 37.97 37.92 38.62 38.62 32.59 30.25
TW_22pr107 21352 52.23 52.49 53.62 53.62 46.81 49.46
TW_24gr120 2811 51.60 51.41 55.60 55.60 46.55 47.45
TW_25pr124 36520 56.11 56.20 63.44 63.44 49.38 46.62
TW_26ch130 2891 38.55 38.90 44.65 44.65 33.30 34.89
TW_28gr137 34123 47.06 47.31 52.46 52.46 34.94 35.73
TW_29pr144 43639 29.35 29.34 31.79 31.79 26.13 25.90
TW_30kroA150 11475 45.66 45.90 51.71 51.71 40.83 41.70

Average 41.11 41.63 47.98 47.98 35.36 37.00
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Table 2.2: Optimality gaps obtained for LP relaxations on instances in G2.

Instance OptValue
GAP(%)

LR(F1) LR(F2) LR(F3) LR(F4) LR(F1) + SV I LR(F2) + SV I

TW_4burma14 957 26.75 26.75 45.62 45.62 23.99 26.56
TW_5gr17 766 19.23 19.23 20.10 20.10 18.47 18.37
TW_6ulysses16 2521 53.59 53.59 63.66 63.66 53.53 53.53
TW_7gr21 1475 26.68 27.56 33.42 33.42 22.90 26.59
TW_7gr24 365 24.07 25.32 36.55 36.55 16.83 21.72
TW_8ulysses22 3461 43.96 43.08 50.58 50.58 43.12 36.08
TW_8bayg29 515 25.20 26.64 35.37 35.37 17.69 22.12
TW_8bays29 595 18.90 19.34 22.29 22.29 15.29 16.99
TW_9fri26 498 30.98 31.61 36.34 36.34 22.80 21.85
TW_10ftv33 467 22.68 23.46 42.15 42.15 18.70 19.25
TW_10ftv36 500 31.67 32.75 47.25 47.25 27.68 27.36
TW_10ftv38 469 37.49 38.35 50.26 50.26 34.46 35.51
TW_12dantzig42 364 29.22 29.14 37.18 37.18 26.62 25.37
TW_13gr48 2010 39.12 39.63 47.31 47.31 36.54 37.75
TW_14att48 5415 46.38 47.98 49.65 49.65 39.00 44.68
TW_14hk48 5989 42.54 42.73 48.27 48.27 37.19 39.51
TW_15eil51 172 33.86 34.14 43.21 43.21 25.16 29.03
TW_16berlin52 3821 30.86 30.94 36.34 36.34 28.60 28.40
TW_17brazil58 12665 42.16 42.19 47.53 47.53 33.27 34.11
TW_20st70 329 40.01 40.23 45.21 45.21 33.54 34.65
TW_21eil76 245 46.80 47.19 51.80 51.80 40.50 44.33
TW_22pr76 71098 40.16 40.33 47.71 47.71 33.84 31.55
TW_24kroC100 9932 50.39 50.49 53.44 53.44 41.11 42.80
TW_26kroA100 10515 51.57 51.79 55.22 55.22 38.92 42.65
TW_28rat99 618 47.20 47.44 52.03 52.03 38.65 41.84
TW_28kroB100 11937 44.84 45.19 50.47 50.47 35.43 39.00
TW_28kroD100 10720 54.69 55.17 57.59 57.59 47.90 46.41
TW_29gr96 35064 45.78 45.78 47.41 47.41 40.43 39.86
TW_29kroE100 11275 42.31 42.54 47.64 47.64 33.12 35.62
TW_29rd100 4380 40.88 40.99 46.91 46.91 33.46 34.88
TW_30eil101 292 35.74 35.84 40.72 40.72 31.09 32.54
TW_36ch130 3309 35.93 36.03 39.84 39.84 30.64 29.83
TW_38ch150 3175 39.68 40.14 48.43 48.43 32.01 35.48

Average 37.62 37.99 44.77 44.77 31.89 33.22
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In Tables 2.1 and 2.2, we also report the results when solving LR(F1) and LR(F2)

with supervalid inequalities (2.28) and (2.33) respectively. We observe that using the
supervalid inequalities clearly improve the quality of the lower bounds. The average
optimality gaps obtained from LR(F1) with supervalid inequalities are a bit better
than those obtained from LR(F2) with supervalid inequalities.

2.5.4 Branch-and-bound performance

The experimental comparison of lower bounds indicates that formulations F1 and F2

are stronger than formulations F3 and F4 for the GTSPTW. In this section, we conduct
additional experiments to compare the efficiency of the four MIP formulations and the
use of supervalid inequalities when using them to solve the problem with CPLEX’s
branch-and-bound scheme. The tests are performed on instances with no more than
20 clusters. CPLEX is used with default parameters, and we set a computational time
limit (TL) of 30 minutes.

The results of instances in G1 and G2 are shown in Tables 2.3 and 2.4 respectively.
The column headings are the followings. The first two columns, as in Tables 2.1 and
2.2, are the instance name and the optimal value. Then, we report the optimality
gap in percentage and the computation time in seconds for each formulation. If the
computation time is lower than the time limit, the optimality gap is 0. If the time
limit has been reached, this is indicated by TL, and the optimality gap is calculated as
(OptV alue − lower bound)/OptV alue ∗ 100. We first provide results for formulations
F1, F2, F3 and F4. Then we provide results for formulations F1 with supervalid
inequalities (2.28), and F2 with supervalid inequalities (2.33) respectively. When the
time limit has been reached for an instance, we mark in bold the best optimality gap
obtained by the four basic formulations. We also mark in bold the best optimality gap
obtained by all the formulations including the ones with supervalid inequalities. In the
last row of the tables, we indicate the average results over all the instances.

From Tables 2.3 and 2.4, by comparing the results obtained with F3 and F4, we
can see that they can solve the same instances to optimality, both solving 32 out of 46
instances in total. For instances that are not solved to optimality with formulations
F3 and F4, formulation F4 can always provide a slightly better optimality gap. From
the average results in the last row, formulation F4 provides, on average, a smaller
optimality gap than formulation F3, and requires shorter computation times.
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Table 2.3: Optimality gaps and computation times to solve MIP formulations for in-
stances in G1.

Instance OptValue

F1 F2 F3 F4 F1 + SV I F2 + SV I

GAP time GAP time GAP time GAP time GAP time GAP time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

TW_3burma14 908 0 0.15 0 0.14 0 0.17 0 0.17 0 0.15 0 0.11
TW_4gr17 962 0 0.29 0 0.21 0 0.23 0 0.19 0 0.32 0 0.22
TW_4ulysses16 2392 0 0.22 0 0.16 0 0.25 0 0.19 0 0.26 0 0.22
TW_5gr21 1165 0 0.27 0 0.17 0 0.23 0 0.27 0 0.18 0 0.20
TW_5gr24 263 0 0.17 0 0.19 0 0.40 0 0.26 0 0.19 0 0.17
TW_5ulysses22 3287 0 0.32 0 0.46 0 0.39 0 0.28 0 0.43 0 0.36
TW_6bayg29 476 0 0.54 0 0.42 0 0.69 0 0.63 0 0.54 0 0.35
TW_6bays29 628 0 0.52 0 0.39 0 1.50 0 1.21 0 0.68 0 0.42
TW_6fri26 354 0 0.41 0 0.30 0 0.55 0 0.41 0 0.57 0 0.43
TW_7ftv33 416 0 0.73 0 0.45 0 3.05 0 2.49 0 0.75 0 0.35
TW_8ftv36 538 0 1.29 0 0.71 0 7.73 0 7.13 0 1.35 0 0.60
TW_8ftv38 384 0 0.82 0 0.47 0 4.46 0 3.88 0 0.85 0 0.43
TW_9dantzig42 322 0 6.73 0 4.30 0 34.17 0 22.80 0 3.47 0 2.07
TW_10att48 4113 0 12.93 0 9.83 0 37.62 0 27.99 0 8.07 0 2.65
TW_10gr48 1437 0 16.88 0 27.73 0 189.43 0 229.43 0 7.18 0 2.38
TW_10hk48 5268 0 19.99 0 8.77 0 299.94 0 201.17 0 9.63 0 7.16
TW_11berlin52 3632 0 81.65 0 38.70 0 153.95 0 145.75 0 74.07 0 31.54
TW_11eil51 151 0 9.77 0 11.44 0 1025.92 0 862.97 0 8.26 0 6.09
TW_12brazil58 13503 0 246.18 0 212.55 0 66.07 0 56.73 0 95.29 0 110.37
TW_14st70 289 30.69 TL 19.90 TL 44.01 TL 40.93 TL 19.61 TL 8.21 TL
TW_16eil76 205 19.28 TL 0 1044.80 40.20 TL 33.74 TL 0 437.33 0 631.78
TW_16pr76 57164 19.50 TL 15.11 TL 26.10 TL 25.52 TL 0 691.50 0 185.22
TW_20gr96 33128 27.30 TL 26.05 TL 43.46 TL 38.61 TL 20.95 TL 21.11 TL
TW_20kroA100 10209 28.27 TL 25.34 TL 47.62 TL 45.86 TL 23.28 TL 24.19 TL
TW_20kroB100 9862 25.57 TL 26.47 TL 43.24 TL 39.27 TL 17.97 TL 17.79 TL
TW_20kroC100 9728 28.94 TL 31.46 TL 41.99 TL 39.89 TL 17.42 TL 16.64 TL

Average 6.91 500.00 5.55 467.78 11.02 554.88 10.15 544.77 3.82 397.73 3.38 383.97

By comparing results of formulations F1 and F2, we can see that formulation F2

can solve to optimality one instance more in set G1 (TW_16eil76). From the average
results in the last row, formulation F2 is able to obtain, on average, smaller optimality
gap than formulation F1, and requires shorter computation times.

From Tables 2.3 and 2.4, we can see that formulations F1 and F2 can solve more
instances to optimality than formulations F3 and F4. The optimality gaps obtained
with formulations F1 and F2 are always better than those obtained with formulations
F3 and F4. The average computation times with formulations F1 and F2 are really
shorter than the ones for formulations F3 and F4. In conclusion, with regard to the
branch-and-bound performance to solve the GTSPTW, formulation F2 is a bit better
than formulation F1, and formulations F1 and F2 are clearly better than formulations
F3 and F4.

In Tables 2.3 and 2.4, we also report the results when solving the problem using F1

and F2 with supervalid inequalities (2.28) and (2.33) respectively. Compared with the
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results for F1 and F2, it can be seen that F1 and F2 with supervalid inequalities can
respectively solve two (TW_16eil76, TW_16pr76) and one (TW_16pr76) instances
more to optimality. Using valid inequalities reduces the optimality gaps for instances
not solved to optimality with formulations F1 and F2. The average optimality gaps are
improved for both F1 and F2, and the average computation times strongly decrease.
It can be concluded that the proposed supervalid inequalities strengthen formulations
F1 and F2.

Table 2.4: Optimality gaps and computation times to solve MIP formulations for in-
stances in G2.

Instance OptValue

F1 F2 F3 F4 F1 + SV I F2 + SV I

GAP time GAP time GAP time GAP time GAP time GAP time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

TW_4burma14 957 0 0.11 0 0.09 0 0.25 0 0.16 0 0.13 0 0.12
TW_5gr17 766 0 0.18 0 0.19 0 0.26 0 0.24 0 0.17 0 0.13
TW_6ulysses16 2521 0 0.19 0 0.28 0 0.26 0 0.20 0 0.22 0 0.26
TW_7gr21 1475 0 0.44 0 0.24 0 0.52 0 0.40 0 0.36 0 0.30
TW_7gr24 365 0 0.45 0 0.50 0 0.56 0 0.49 0 0.38 0 0.34
TW_8ulysses22 3461 0 0.52 0 0.41 0 0.60 0 0.63 0 0.45 0 0.44
TW_8bayg29 515 0 0.54 0 0.45 0 1.91 0 1.10 0 0.57 0 0.45
TW_8bays29 595 0 0.63 0 0.58 0 0.86 0 1.45 0 0.61 0 0.47
TW_9fri26 498 0 0.91 0 0.32 0 0.99 0 0.80 0 0.78 0 0.47
TW_10ftv33 467 0 1.36 0 0.64 0 9.34 0 5.63 0 1.52 0 1.10
TW_10ftv36 500 0 1.41 0 1.04 0 16.47 0 13.10 0 2.23 0 0.90
TW_10ftv38 469 0 2.36 0 1.20 0 84.20 0 62.81 0 1.59 0 0.88
TW_12dantzig42 364 0 8.34 0 7.30 0 174.74 0 123.12 0 4.36 0 3.81
TW_13gr48 2010 0 68.03 0 37.61 13.86 TL 11.96 TL 0 27.74 0 33.46
TW_14att48 5415 0 1404.77 0 643.87 27.40 TL 22.19 TL 0 913.73 0 365.66
TW_14hk48 5989 0 841.26 0 407.86 24.95 TL 23.47 TL 0 363.93 0 111.68
TW_15eil51 172 0 244.00 0 54.94 15.65 TL 14.63 TL 0 12.09 0 6.80
TW_16berlin52 3821 0 532.38 0 192.36 8.63 TL 5.23 TL 0 139.32 0 66.87
TW_17brazil58 12665 0 1022.76 0 710.93 20.78 TL 20.19 TL 0 257.60 0 133.90
TW_20st70 329 23.23 TL 19.93 TL 31.66 TL 29.44 TL 12.20 TL 15.33 TL

Average 1.16 296.53 1.00 193.04 7.15 644.55 6.36 640.51 0.61 176.39 0.77 126.40

2.6 Conclusions

In this paper, we present four integer linear programming formulations for the Gen-
eralized Traveling Salesman Problem with Time Windows (GTSPTW) arising in the
last mile delivery context. The models differ in the way they define the arc variables
and time variables: based on vertices or clusters. Dominance relations between the LP
relaxations of these formulations are established theoretically. Computational results
on LP relaxations show that on average formulation F1 is the best, followed by formu-
lation F2. However, when solving the GTSPTW with the branch-and-bound scheme
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implemented in CPLEX, on average formulation F2 is the most efficient, followed by
formulation F1. Therefore, we recommend using formulations F1 and F2 for the so-
lution of the GTSPTW. Moreover, supervalid inequalities for formulations F1 and F2

are proposed and can strengthen them significantly.
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This chapter corresponds to the paper “A branch-and-cut algorithm for the gener-
alized traveling salesman problem with time windows”, submitted to European Journal
of Operational Research on 4 April, 2019 and received major revision on 10 August,
2019.

Abstract: The generalized traveling salesman problem with time windows (GT-
SPTW) is defined on a directed graph where the vertex set is partitioned into clusters.
One cluster contains only the depot. Each vertex is associated with a time interval, the
time window, during which the visit must take place if the vertex is visited. The ob-
jective is to find a minimum cost tour starting and ending at the depot such that each
cluster is visited exactly once and time constraints are respected, i.e., for each cluster,
one vertex is visited during its time window. In this paper, two integer linear pro-
gramming formulations for GTSPTW are provided as well as several problem-specific
valid inequalities. A branch-and-cut algorithm is developed in which the inequalities
are separated dynamically. To reduce the computation times, an initial upper bound is
provided by a simple and fast heuristic. We propose different sets of instances charac-
terized by their time window structures. Experimental results show that our algorithm
is effective and instances including up to 30 clusters can be solved to optimality within
one hour.

3.1 Introduction

E-commerce is a thriving market around the world and is very well suited to the
busy lifestyle of today’s customers. An annual survey conducted by the analytics firm
comScore and UPS revealed that American consumers purchased more things online
than in stores in 2016 (Farber, 2016). eMarketer estimated that e-commerce sales
would reach $4 trillion in 2020 (eMarketer, 2018). It is clear that this growing e-
commerce poses a major challenge to transportation companies, especially with regard
to last mile delivery. Nowadays, the most common delivery service is home/workplace
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delivery (Lowe & Rigby, 2014). Customers wait at home or at work to get their online
orders. Besides, companies like Amazon and FedEx are developing locker delivery.
When customers shop online, they can choose a nearby locker as their pick-up location.
In the past two years, a new concept called trunk delivery has been introduced. Here,
customers’ orders can be delivered to the trunks of their cars. Volvo launched its world-
first in-car delivery service in Sweden in 2016. The courier has a one-time digital code
to get access to the trunk of the car. Trunk delivery is different from home delivery and
locker delivery since the car moves during the day and may be in different locations
during different periods of time. As a consequence, synchronization between the car
and the courier is required to perform the delivery. In this article, we provide two
mathematical programming models, and we develop an efficient exact method for the
last mile delivery problem that combines all these delivery services: home/workplace,
locker, and car trunk. We focus on the one vehicle case, i.e., we assume that a single
vehicle can deliver all the customers on the same route. In Figure 3.1, we give an
example of the real-life case. Four customers are represented with their associated
locations into a dotted circle. Every possible delivery location has a time interval that
represents the time window (TW). In the case of a home or trunk delivery, the TW
represents when the customer or his/her car would be present at that location. In
the case of a locker, the TW represents the period the courier can deliver the parcel
before the customer picks it up. The problem consists in determining jointly the
location visited for each customer and the sequence of visits while satisfying the TW
restrictions.

The problem addressed in this paper is the generalized traveling salesman prob-
lem with time windows (GTSPTW). To the best of our knowledge, this problem
has not been studied yet. It is related to the generalized traveling salesman prob-
lem (GTSP) (Fischetti et al., 1997) where TWs are not present, and to the traveling
salesman problem with time windows (TSPTW) where all clusters contain a single
vertex. It is also related to the generalized vehicle routing problem with time windows
(GVRPTW), which is the multi-vehicle case of the problem studied in this paper.

This article aims to provide an efficient exact solution method for the GTSPTW.
The main contributions of the paper are as follows: 1) we study a new problem and
present two formulations for the GTSPTW. This problem is of great interest in the
context of last mile delivery, 2) we propose several valid inequalities for GTSPTW, 3)
we develop procedures to separate these inequalities within a branch-and-cut algorithm,
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Figure 3.1: An example of GTSPTW instance.

4) we present a simple and fast heuristic for GTSPTW to get an initial solution, 5) we
assess the efficiency of our algorithm on different sets of instances that we generated
for the GTSPTW.

The remainder of this paper is organized as follows. A formal description of the
problem and two mathematical models are provided in Section 3.3. Section 3.2 presents
the related literature. Section 3.4 describes some valid inequalities for the GTSPTW.
A general framework of the branch-and-cut algorithm is given in Section 3.5, including
preprocessing, an initial heuristic to compute an upper bound, and separation proce-
dures for the proposed valid inequalities. Section 3.6 gives details about the generation
of three groups of instances and reports the computational results. Finally, conclusions
are drawn in Section 3.7.

3.2 Literature review

To the best of our knowledge, there is no existing literature on the GTSPTW. However,
there exist works addressing the GTSP. The GTSP introduced by Srivastava et al.
(1969) is defined on a graph where the vertex set is partitioned into clusters. The
problem consists in finding a minimum cost tour which visits exactly one vertex of
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each cluster. In the GTSP, TWs are not present. In the literature, there are various

approaches to solve the GTSP.

One approach is to transform an instance of the GTSP into an instance of the well-

studied Traveling Salesman Problem (TSP), and then solve it by applying algorithms

for the TSP (Dimitrijević & Šarić, 1997; Laporte & Semet, 1999; Noon & Bean, 1993).

At first glance, this approach seems promising. However, the resulting instances are

difficult to solve for the existing TSP solvers since the produced instances have a rather

unusual structure, and a near-optimal solution for the TSP instance may correspond

to an infeasible solution for the related GTSP instance (Karapetyan & Gutin, 2012).

Another approach consists in developing exact algorithms. However, the existing

literature is quite limited. Srivastava et al. (1969) proposed a dynamic programming

approach. Noon & Bean (1991) presented a branch-and-bound approach for the asym-

metric GTSP (AGTSP). They proposed a Lagrangian relaxation to compute a lower

bound and a heuristic to compute an upper bound. Non-optimal arcs and nodes were

identified and eliminated based on the reduced costs. This method was tested on a set

of randomly generated instances, and the results showed that they could solve instances

with up to 104 nodes and 8 clusters. Fischetti et al. (1997) proposed an efficient branch-

and-cut algorithm to solve the AGTSP. They developed exact and heuristic separation

procedures for some classes of facet-defining inequalities. They also generated a library

of GTSP instances called GTSP-LIB by taking TSP-LIB instances and performing a

clustering procedure on the nodes. Their algorithm could solve instances with up to

89 clusters and 442 nodes.

A different approach to solve the GTSP is to develop heuristics. Gutin & Kara-

petyan (2010) proposed a memetic algorithm combining genetic and powerful local

search algorithms. They reported excellent results on the GTSP-LIB instances, with

computation times less than 60 seconds and most of the solutions within 0.2% of

the best-known values. Helsgaun (2015) extended the Lin-Kernighan-Helsgaun TSP

heuristic (Helsgaun, 2000, 2009) to the GTSP. The resulting algorithm improved the

solution quality on GTSP-LIB instances compared with the memetic algorithm pro-

posed in Gutin & Karapetyan (2010), at the expense of more computation time. Smith

& Imeson (2017) developed an algorithm based on adaptive large neighborhood search.

Their results showed that given the same amount of computation time, their algorithm

was competitive on instances from the GTSP-LIB and other libraries.
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The GTSPTW is also related to the TSPTW. When all the clusters of the GT-

SPTW are singletons, i.e., they contain only one vertex, the problem reduces to the

TSPTW. Ascheuer et al. (2001) proposed several formulations for the asymmetric

TSPTW and compared them within a branch-and-cut scheme. They incorporated

techniques such as data pre-processing, primal heuristics, local search and variable fix-

ing, in addition to separation algorithms. Dash et al. (2012) presented an extended

formulation for the TSPTW based on the partitioning of the TW into sub-windows,

which they called buckets. The LP relaxation of this formulation provided strong

lower bounds. Strong valid inequalities (bucket sequential ordering polytope inequal-

ities) were generated and incorporated in a branch-and-cut framework. Their results

showed that the proposed formulation was effective and solved several previously un-

solved benchmark instances. The state-of-the-art exact algorithm for the TSPTW is

the dynamic programming algorithm proposed by Baldacci et al. (2012). Three differ-

ent state space relaxations were used to obtain tight lower bounds and were combined

with a dynamic programming algorithm. This method can solve all but one instance

from the literature to optimality.

Although there is no article related to the GTSPTW, one can find related papers

in the multi-vehicle case. Ghiani & Improta (2000) extended the GTSP to the gener-

alized vehicle routing problem (GVRP) by introducing quantities to be delivered to

customers and considering vehicles with limited capacity. Only a few works address

the multi-vehicle case with TWs, but with some restrictions on the TWs. Moccia et al.

(2012) proposed a tabu search method for what they called the Generalized-VRPTW.

However, they define a TW for each cluster while a TW is associated with every vertex

in the GTSPTW. They proved the effectiveness of the method by testing it on GVRP

instances and multi-depot VRPTW instances. Recently, Reyes et al. (2017) examined

the special case where TWs within the same cluster do not overlap. They were inspired

by the trunk delivery system we mentioned in Section 1 and considered what they called

the VRP with Roaming Delivery Locations (VRPRDL). The authors developed con-

struction and improvement heuristics for the problem, and their results illustrated the

advantage of applying the trunk delivery over the traditional home delivery. Following

this work, Ozbaygin et al. (2017) formulated VRPRDL as a set-partitioning problem

and proposed a branch-and-price algorithm. Moreover, they came up with a hybrid

delivery strategy combining trunk delivery and home delivery, in which case the TWs

92



3.3 Problem definition and mathematical modeling

within a cluster are no longer non-overlapping. Their results revealed that employ-
ing this strategy led to an average savings of nearly 20% compared with the standard
delivery system when only home delivery is used.

3.3 Problem definition and mathematical modeling

The GTSPTW can be formally defined as follows: given a directed graph G = (V ,A),
the set of vertices V = {0, 1, ..., N} is partitioned into C0 = {0}, C1, ..., CK clusters.
K = {0, 1, ..., K} denotes the cluster index set. Cluster C0 contains only the starting
and ending vertex, i.e. the depot. A TW [Ei, Li], is associated with each vertex i ∈
{0, 1, ..., N} with [E0, L0] = [0, T ] representing the optimization time horizon. A visit
can only be made to a vertex during its TW, and an early arrival leads to waiting time
while a late arrival causes infeasibility. There is no assumption on the TWs for a given
cluster, i.e., TWs can overlap or be disjointed. Arcs are only defined between vertices
belonging to different clusters, that is, A ⊆ {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. A
traveling cost Cij and a traveling time Tij are associated with each arc (i, j) ∈ A. We
call an arc (i, j) feasible if Ei + Tij ≤ Lj, which means that vertex j can be reached
from vertex i through arc (i, j). A is defined as the set of feasible arcs, which is a
subset of {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}.

The objective of the GTSPTW is to find a minimum cost tour starting and ending
at the depot such that each cluster is visited exactly once and the TW constraints are
respected, i.e., one vertex of each cluster is visited during its time window.

Let us introduce the following notation. For any set S ⊂ V , δ+(S) = {(i, j) ∈ A|i ∈
S, j /∈ S}, δ−(S) = {(i, j) ∈ A|i /∈ S, j ∈ S}. For simplicity, when S = {i}, we use
δ+(i) and δ−(i) as opposed to δ+({i}) and δ−({i}).

To model the GTSPTW, we define three set of variables. For all (i, j) ∈ A, let xij
be a binary variable equal to one if and only if arc (i, j) ∈ A belongs to the tour. For
all i ∈ V , let yi be a binary variable equal to one if i ∈ V belongs to the tour, and ti be
the service time at vertex i ∈ V . For the depot, the service time actually corresponds
to the departure time. A first compact mathematical programming formulation F1 is
as follows:

(F1) minimize
∑

(i,j)∈A

Cijxij (3.1)

s.t.
∑
i∈Ck

yi = 1 ∀k ∈ K, (3.2)
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∑
(i,j)∈δ+(i)

xij = yi ∀i ∈ V , (3.3)

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V , (3.4)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V , (3.5)

ti − tj + Tijxij ≤ Liyi − Ejyj − (Li − Ej)xij ∀(i, j) ∈ A, j 6= 0, (3.6)

ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}, (3.7)

yi ∈ {0, 1} ∀i ∈ V , (3.8)

xij ∈ {0, 1} ∀(i, j) ∈ A, (3.9)

ti ≥ 0 ∀i ∈ V . (3.10)

The objective function (3.1) minimizes the total traveling cost. Constraints (3.2)

ensure that exactly one vertex from each cluster is visited. Constraints (3.3) and (3.4)

are flow conservation constraints. Constraints (3.5) ensure that each vertex is visited

during its TW. Constraints (3.6) ensure that the service times are consistent. If vertex

j is visited just after vertex i, then constraint (3.6) will ensure tj ≥ ti + Tij. In addi-

tion, constraints (3.6) eliminate subtours since they generalize the subtour elimination

constraints of Miller-Tucker-Zemlin for the traveling salesman problem (Miller et al.,

1960). Constraints (3.7) ensure that the tour ends at the depot before its TW closes.

Constraints (3.8)∼(3.10) are related to variable definitions.

The second formulation is based on the following observation. Since only one vertex

is selected in each cluster, we can define one time variable per cluster instead of defining

a time variable for every vertex as above. Let τk ≥ 0, k ∈ K be the service time at

cluster k.

In the second formulation F2, the objective function and constraints (3.2)∼(3.4),
(3.8)∼(3.9) are as in F1. Constraints (3.5)∼(3.7) and (3.10) are replaced by (3.11)∼(3.13)
and (3.14) respectively. We obtain the following compact model:

(F2) minimize (3.1)

s.t. (3.2) ∼ (3.4)∑
i∈Ck

Eiyi ≤ τk ≤
∑
i∈Ck

Liyi ∀k ∈ K, (3.11)

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij ≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj
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−
∑
i∈Ch
j∈Ck

(Li − Ej)xij ∀h ∈ K, k ∈ K \ {0}, h 6= k, (3.12)

τk +
∑
i∈Ck

Ti0xi0 ≤ L0 ∀k ∈ K \ {0}, (3.13)

(3.8) ∼ (3.9)

τk ≥ 0 ∀k ∈ K. (3.14)

Note that using constraints (3.3) or constraints (3.4) the y variables can be sub-
stituted by

∑
(i,j)∈δ+(i) xij or by

∑
(j,i)∈δ−(i) xji. Thus, they may be omitted in both

formulations F1 and F2.

3.4 Valid inequalities for the GTSPTW

In this section, we present some inequalities we developed for GTSPTW, mainly
adapted from valid inequalities for the Steiner tree problem, the GTSP or the TSPTW.
Some of these inequalities are defined on x variables only, other inequalities also involve
y variables. We also present lifted versions of some valid inequalities. Section 3.4.1
proposes a lifted version of the Miller-Tucker-Zemlin (MTZ) inequalities provided in
formulations F1 and F2. Sections 3.4.2 and 3.4.3 propose polynomial-size families of
valid inequalities while sections 3.4.4 to 3.4.7 provide exponential-size families of valid
inequalities.

3.4.1 Supervalid MTZ inequalities

Desrochers & Laporte (1991) observed that the subtour elimination constraints pre-
sented in the MTZ version as in (3.6) can be lifted by taking the reverse arcs (j, i) ∈
A into account. Moreover, it can be noticed that since waiting times are allowed,
formulation F1 may have multiple optimal solutions, i.e., given optimal values for
the xij variables, there may be several values for the ti variables that satisfy con-
straints (3.5)∼(3.7). In addition, given optimal values for xij variables, there are
always feasible values for the ti variables such that each vertex is visited as early as
possible, namely minimizing waiting times. For routing problems with time windows,
Yuan et al. (2019b) proposed the so-called supervalid MTZ inequalities, taking the
reverse arcs into consideration and ensuring vertices are visited as soon as possible. An
inequality is supervalid if it does not cut off all optimal solutions. This concept is a
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generalization of the concept of valid inequalities and has been introduced by Israeli
& Wood (2002). We adapt the supervalid MTZ inequalities proposed by Yuan et al.
(2019b) for the GTSPTW as follows.

Proposition 3.1. For i, j ∈ V \{0} suppose that arcs (i, j) and (j, i) ∈ A are feasible,
then

ti − tj + Tijxij +min{−Tji, Ej − Ei}xji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji) (3.15)

are supervalid inequalities for formulation F1.

Proof. See Appendix A.

Similarly, for formulation F2 in which the time variables are defined for clusters,
we can adapt the supervalid MTZ constraints as follows.

Proposition 3.2. For h, k ∈ K\{0}, h 6= k suppose that there exists i ∈ Ch and j ∈ Ck
such that the arcs (i, j) and (j, i) are both feasible. Then

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij +
∑
i∈Ch
j∈Ck

min{−Tji, Ej − Ei}xji

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)(xij + xji)
(3.16)

are supervalid inequalities for formulation F2.

Proof. See Appendix A.

3.4.2 Arc selection inequalities

It is obvious that in any feasible solution at most one arc (i, j) or (j, i) is selected.
Therefore, we have:

xij + xji ≤ yi ∀i, j ∈ V such that (i, j), (j, i) ∈ A. (3.17)

Since only one vertex is selected from each cluster, we can lift inequalities (3.17)
and obtain:

Proposition 3.3. The following constraints are valid inequalities for the GTSPTW:∑
j∈Ck

xij +
∑
j∈Ck

xji ≤ yi ∀i ∈ V , k ∈ K, i /∈ Ck and ∃j ∈ Ck such that (i, j), (j, i) ∈ A.

(3.18)
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3.4.3 Arc-or-vertex inequalities

In a feasible solution, a vertex and an arc may not be simultaneously present due to
TW constraints. We introduce arc-or-vertex inequalities to exploit this property and
these inequalities impose that at most one of the vertex or the arc is chosen. Let Cijk
be the subset of Ck containing vertices that cannot be visited before or after arc (i, j).
A vertex h ∈ Ck belongs to Cijk if there is no feasible path going from h to j including
(i, j) and there is no feasible path going from i to h traversing (i, j). Figure 3.2 depicts
this situation. Formally, a vertex h belongs to Cijk if and only if:

1. h ∈ Ck,

2. Eh + SPhi > Li, or Eh + SPhi + Tij > Lj,

3. Ej + SPjh > Lh, or Ei + Tij + SPjh > Lh.

where SPij is the shortest traveling time between vertices i and j. When the triangle
inequality is not satisfied for the traveling time matrix (i.e., Til + Tlj < Tij for at least
a triplet i, j, l ∈ V), the shortest traveling time SPij going from vertex i to vertex j
can include the visit of other vertices and can be lower than Tij.

Proposition 3.4. The following constraints are valid inequalities for the GTSPTW:

xij +
∑
h∈Cijk

yh ≤ 1 ∀(i, j) ∈ A, i, j 6= 0, ∀k ∈ K, i, j /∈ Ck. (3.19)

Cijk

h Ck

i j

infeasible path hij
infeasible path ijh

Figure 3.2: Arc-or-vertex inequalities example.

We can lift the arc-or-vertex inequalities in two different ways as depicted in Fig-
ure 3.3. First, given an arc (i, j) ∈ A and a cluster k ∈ K with a set of incompat-
ible vertices Cijk , other arcs (i, j′) may lead to the same set of incompatible vertices:
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Cij
′

k = Cijk . In this case, constraints (3.19) can be lifted by summing up over such vari-
ables xi,j′ since at most one of these arcs can be present in a feasible solution. Thus,
inequalities (3.19) can be strengthened as follows:

Proposition 3.5. For all (i, j) ∈ A, i, j 6= 0 and for all k ∈ K such that i, j /∈ Ck,
consider V ijk = {j′ ∈ V \ Ck | Cij

′

k = Cijk }, then constraints (3.19) can be lifted as:∑
j′∈Vij

k

xij′ +
∑
h∈Cijk

yh ≤ 1 (3.20)

...
j

j′

i

h Ck
Cijk

(a) Lift 1

... ...

Ck

C(i) C(j)

h

Cijk

i j

i′ j′

(b) Lift 2

Figure 3.3: Lifting of arc-or-vertex inequalities.

Second, given an arc (i, j) ∈ A and a cluster k ∈ K with a set of incompatible
vertices Cijk , other arcs (i′, j′) may lead to the exactly same set of incompatible vertices:
Ci
′j′

k = Cijk . When i and i′ belong to the same cluster, respectively j and j′ belong to the
same cluster, then constraints (3.19) can be lifted by summing up over such variables
xi′,j′ since such arcs are defined between the same pair of clusters and at most one
appears in any feasible solution.

Proposition 3.6. Let C(i) be the cluster containing vertex i. For all (i, j) ∈ A, i, j 6= 0

and for all k ∈ K such that i, j /∈ Ck, consider Aijk = {(i′, j′) ∈ A | i′ ∈ C(i), j
′ ∈

C(j), Ci
′j′

k = Cijk }, then inequalities (3.19) can be strengthened as:∑
(i′,j′)∈Aij

k

xi′j′ +
∑
h∈Cijk

yh ≤ 1 (3.21)

3.4.4 Generalized subtour elimination constraints

Although constraints (3.6) eliminate tours not including the depot in any feasible in-
teger solution, subtours may be present when the integer requirement on variables x
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and y is relaxed. Thus, the subtour elimination constraints (SEC) defined by Dantzig
et al. (1954) for the TSP can increase the linear relaxation value. These constraints
can be generalized to take into account the presence of clusters (Fischetti et al., 1997).
For subsets of clusters, they can be expressed as follows:

Proposition 3.7. The constraints∑
(i,j)∈δ+(S)

xij ≥ 1 ∀S = ∪h∈HCh, H ⊂ K, 2 ≤ |H| ≤ K − 1. (3.22)

are valid for the GTSPTW.

Note that if we consider constraints (3.18) defined for i ∈ Cl, k ∈ K and we sum
these constraints over all i ∈ Cl, we obtain:∑

i∈Cl

(
∑
j∈Ck

xij +
∑
j∈Ck

xji) ≤ 1 (3.23)

which prevents subtours of length two between vertices of different clusters.

3.4.5 SOP inequalities

SOP inequalities are based on the notion of precedence between pairs of vertices and
were introduced by Balas et al. (1995) in the context of the precedence-constrained
Asymmetric Traveling Salesman Problem (ATSP), also known as the Sequential Order-
ing Problem (SOP). These inequalities are also effective for TSPTW where precedences
between nodes are inferred based on the TW restrictions (Ascheuer et al., 2001; Dash
et al., 2012). Here we extend the SOP inequalities to the GTSPTW.

Recall that C(i) denotes the cluster containing vertex i. We say that a vertex i ∈ V
precedes vertex j ∈ V \ C(i) if i has to be visited before j in any feasible solution. We
denote this relation as i ≺ j. When the triangle inequality for the traveling time matrix
is satisfied, the precedence between two vertices i and j is defined as:

i ≺ j if Ei + Tij ≤ Lj and Ej + Tji > Li. (3.24)

The relation (3.24) can be extended to the case where the triangle inequality is not
satisfied. Then, we consider SPij the shortest traveling time from vertex i to vertex j.
The path with the shortest traveling time may include other vertices since the triangle
inequality is not satisfied. Thus, the precedence relation becomes:

i ≺ j if Ei + SPij ≤ Lj and Ej + SPji > Li. (3.25)

If the triangle inequality is satisfied, both relations (3.25) and (3.24) are equivalent
since SPij = Tij.
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For any given i ∈ V \ {0}, we define π(i) = {j ∈ V \ C(i) : j ≺ i} the set of vertices
that precede vertex i, and σ(i) = {j ∈ V \ C(i) : i ≺ j} the set of vertices that succeed
vertex i. In the following, we summarize the classes of SOP inequalities we used in
our implementation. For the ease of explanation, we introduce the following notations.
For any two vertex sets U ,W ⊆ V , let (U : W) = {(i, j) ∈ A|i ∈ U , j ∈ W}. This set
correspond to the cut between the two vertex sets U and W . Let us use x(U : W) to
indicate

∑
i∈U ,j∈W xij. For any set of vertices S ⊆ V , we note S̄ = V\S its complement.

Proposition 3.8. For S ⊆ V \ {0}, i ∈ S such that π(i) 6= ∅, the predecessor inequal-
ities (π-inequalities):

x((S \ π(i)) : (S̄ \ π(i))) ≥ yi (3.26)

are valid for GTSPTW. The π-inequalities (3.26) can be strengthened as:

x((S \ Pi) : (S̄ \ Pi)) ≥ yi (3.27)

where Pi = π(i) ∪ C(i) \ {i}.

Proof. If yi = 0, then the inequality is obviously verified. When yi = 1, vertex i is
visited in tour T representing a feasible solution. Let ŝ be the last vertex of S visited
by T . Since i ∈ S, ŝ /∈ π(i), so ŝ ∈ S \ π(i). Moreover, the successor t̂ of ŝ in tour T
cannot be in π(i), so t̂ ∈ S̄ \π(i). Clearly, any feasible tour T contains at least one arc
going from S \π(i) to S̄ \π(i). The strengthening can be deduced from the observation
that only one vertex per cluster is visited in any feasible solution of the GTSPTW.

Similarly, we can straightforwardly establish the successor inequalities (σ-inequalities)
for the GTSPTW and strengthen them as follows.

Proposition 3.9. For S ⊆ V \ {0}, j ∈ S such that σ(j) 6= ∅, the σ-inequalities:

x((S̄ \ σ(j)) : (S \ σ(j))) ≥ yj. (3.28)

are valid for GTSPTW. The σ-inequalities (3.28) can be strengthened as:

x((S̄ \ Qj) : (S \ Qj)) ≥ yj (3.29)

where Qj = σ(j) ∪ C(j) \ {j}.

For vertices i ∈ V \ {0}, j ∈ V such that i ≺ j, we can establish the predecessor-
successor inequalities ((π, σ)-inequalities) and strengthen them as follows.

Proposition 3.10. For S ⊆ V \ {0}, i ∈ S, j ∈ S̄ such that i ≺ j, π(i) 6= ∅ and
σ(j) 6= ∅, the (π, σ)-inequalities:

x((S \ (π(i) ∪ σ(j))) : (S̄ \ (π(i) ∪ σ(j)))) ≥ yi + yj − 1. (3.30)
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are valid for GTSPTW. The (π, σ)-inequalities (3.30) can be strengthened as:

x((S \Wij) : (S̄ \ Wij)) ≥ yi + yj − 1 (3.31)

where Wij = π(i) ∪ σ(j) ∪ C(i) ∪ C(j) \ {i, j}.

Proof. If yi+yj ≤ 1, then the inequality is obviously verified. When yi = yj = 1, vertex
i and j are present in tour T representing a feasible solution. Since i ≺ j, i ∈ S, j ∈ S̄,
then i ∈ S \ (π(i) ∪ σ(j)) and j ∈ S̄ \ (π(i) ∪ σ(j)). Since i ≺ j, it is obvious
that any feasible tour T contains at least one arc going from S \ (π(i) ∪ σ(j)) to
S̄ \ (π(i) ∪ σ(j)).

3.4.6 SOP inequalities defined on clusters

In Section 3.4.5 we presented the SOP inequalities based on the precedence relationship
between vertices. We can also define the precedence between a vertex and a cluster.

Let us denote by i ≺ Ck (resp. Ck ≺ i) the precedence relation between a vertex
and a cluster, i.e., i ≺ Ck if and only if i ≺ j,∀j ∈ Ck (resp. Ck ≺ i if and only if
j ≺ i,∀j ∈ Ck). It follows that, if vertex i belongs to a solution, then it has to be visited
before (resp. after) any vertex of cluster Ck. Let us indicate by Ch ≺ Ck the precedence
relation between two clusters, i.e., Ch ≺ Ck if and only i i ≺ j,∀i ∈ Ch, j ∈ Ck. We
define π(Ck) = {i ∈ V \Ck : i ≺ Ck}, σ(Ck) = {i ∈ V \Ck : Ck ≺ i}. Then we can extend
the SOP inequalities as follows.

Proposition 3.11. Let S ⊆ V \ {0}, Ck ⊆ S, π(Ck) 6= ∅, the πCk-inequalities:

x((S \ π(Ck)) : (S̄ \ π(Ck))) ≥ 1. (3.32)

are valid for the GTSPTW.
Let S ⊆ V \ {0}, Ck ⊆ S, σ(Ck) 6= ∅, the σCk-inequalities:

x((S̄ \ σ(Ck)) : (S \ σ(Ck))) ≥ 1. (3.33)

are valid for the GTSPTW.
Let S ⊆ V \ {0}, Ch ≺ Ck, Ch ⊆ S, Ck ⊆ S̄, π(Ch) 6= ∅, σ(Ck) 6= ∅, the (πCh , σCk)-
inequalities:

x((S \ (π(Ch) ∪ σ(Ck))) : (S̄ \ (π(Ch) ∪ σ(Ck)))) ≥ 1. (3.34)

are valid for the GTSPTW.

Proof. See Appendix A.
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3.4.7 Clique inequalities

Let S ⊂ V be a subset of vertices. Due to the presence of TWs, there may not exist
a feasible path visiting all vertices of S. In this case we say that S is infeasible. Then
the number of visited vertices in such S in any feasible solution must be strictly less
than |S| (Padberg, 1973). The clique inequalities can be expressed as follows:∑

i∈S

yi ≤ |S| − 1. (3.35)

These inequalities can also be lifted.

Proposition 3.12. Let us consider S ⊂ V such that S is infeasible and |S ∩ Ck| ≤
1,∀k ∈ K. For j ∈ S, let us define S(j) = {i ∈ C(j) \ {j}|S ′ = (S \ {j}) ∪
{i} is infeasible}. If |S(j)| 6= 0, the clique inequalities (3.35) can be strengthened
as: ∑

i∈S

yi +
∑
i∈S(j)

yi ≤ |S| − 1 ∀j ∈ S. (3.36)

For h ∈ S\{j}, let us define Sj(h) = {i ∈ C(h)\{h}|(S∪{j∗, i})\{j, h} is infeasible,
∀j∗ ∈ S(j) ∪ {j}}. If |Sj(h)| 6= 0, inequalities (3.36) can be lifted as:∑

i∈S

yi +
∑
i∈S(j)

yi +
∑

i∈Sj(h)

yi ≤ |S| − 1 ∀j, h ∈ S. (3.37)

Proof. See Appendix A.

3.5 The branch-and-cut algorithm

In this section, we describe the branch-and-cut algorithm we propose to solve the
GTSPTW. The algorithm consists of three main phases. The first phase is the prepro-
cessing step that is invoked before starting the optimization procedure. It is presented
in Section 3.5.1. Then we apply a quick heuristic to obtain a feasible solution and
to provide an upper bound of the optimal value. Details are given in Section 3.5.2.
Finally, the main phase consists in solving the problem by using a branch-and-cut al-
gorithm, based on the standard branch-and-cut scheme provided by the commercial
solver CPLEX 12.6.3. The initial model is built based on the mixed integer linear pro-
gramming formulations F1 or F2 with the strengthened MTZ-inequalities proposed in
Section 3.4.1. The initial solution obtained by the heuristic is used as a warm start
for the branch-and-cut procedure. Inside the branch-and-bound tree, each time a frac-
tional solution is obtained, valid inequalities proposed in Section 3.4 are checked, and
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the ones violated by the current solution are added to the model. Details are given
in Section 3.5.3. For valid inequalities with a polynomial number of constraints, we
memorize all of them and scan the entire set to seek for those that are violated (see
Section 3.5.3.3). For exponential-size families of constraints (GSEC and SOP inequal-
ities), separation algorithms are applied to efficiently detect the violated inequalities
(see Sections 3.5.3.1 and 3.5.3.2), and the number of the inequalities we choose to
separate is limited (see Section 3.5.3.4).

3.5.1 Data preprocessing

As with many other combinatorial optimization problems, preprocessing is an impor-
tant feature to enhance the resolution of the problem. In our case, preprocessing step
consists in tightening the TWs and eliminating arcs that cannot be part of a feasible
solution.

The TW width can be reduced by taking into account the earliest and the latest
arrival and departure times at each vertex of the graph from or to another vertex. In
particular, we consider the following conditions proposed by Desrochers et al. (1992):

• earliest arrival time from predecessors: Ei = max{Ei,min{Li,min(j,i)∈A(Ej + Tji)}};

• earliest departure time to successors: Ei = max{Ei,min{Li,min(i,j)∈A(Ej − Tij)}};

• latest arrival time from predecessors: Li = min{Li,max{Ei,max(j,i)∈A(Li + Tji)}};

• latest departure time to successors: Li = min{Li,max{Ei,max(i,j)∈A(Lj − Tij)}}.

These conditions are applied iteratively to all vertices until no TW can be reduced.
After applying the TW reduction, we sparsify the graph by eliminating the arcs that
cannot be part of a feasible solution. In particular, we remove:

• arcs (i, j) ∈ A such that Ei + Tij > Lj;

• arcs (i, j) ∈ A, i, j 6= 0 such that ∃ k ∈ K, ∀h ∈ Ck, both Eh + SPhi + Tij > Lj

and Ei + Tij + SPjh > Lh hold, i.e., arc (i, j) can be traversed neither before nor
after visiting one cluster Ck.

This results in the elimination of the corresponding x variables in the formulation.
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3.5.2 Initial heuristic

We develop a simple and fast heuristic to identify a feasible solution for the GTSPTW.
The solution obtained is used as a warm start in the branch-and-cut procedure.

First, we extend the refinement procedure for GTSP proposed by Fischetti et al.
(1997) to GTSPTW case. Suppose we have a visiting sequence (h1, . . . , hp) of p different
clusters in K \ {0}. Based on this sequence we construct a layered network (LN)
as depicted in Figure 4.2. This network has p + 2 layers corresponding to clusters
Ch0 = C0, Ch1 , . . . , Chp , Chp+1 = C0, with their respective vertices. Clusters Ch0 and Chp+1

both represent the depot. The LN contains arcs (i, j) ∈ A such that i ∈ Chf , j ∈
Chf+1

, f = 0, . . . , p. The objective is to find a path in the LN that starts at Ch0 and
ends at Chp+1 visiting exactly one vertex of each layer, that is, one vertex from each
cluster. The solution can be found by determining the shortest path with TWs from
Ch0 to Chp+1 . If p = K, the resulting path (if it exists) provides a feasible GTSPTW
solution.

. . . ...

Ch0

Ch1 Chp

Chp+1

C0 C0

Figure 3.4: The layered network.

A labeling algorithm is applied to determine the shortest path with TWs on the LN.
A label Li associated with a vertex i consists of a pair (Ci, Ti) representing respectively
the cost and service time of a feasible partial path that starts at Ch0 and arrives at
vertex i. Let L(i) be the set containing all the labels associated with vertex i. Suppose
that Ccur is the current cluster and Cpre is the previous one. First we compute the label
set L(i), for all i ∈ Ccur by extending labels in L(j), for all j ∈ Cpre. Extending a label
Lj ∈ L(j) towards a vertex i ∈ Ccur consists in creating another label Li ∈ L(i) such
that:

Ci = Cj + Cij; (3.38)

Ti = max{Ei, Tj + Tji}. (3.39)
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If Ti > Li, the partial path associated with the label is infeasible and this label is
disregarded.

To make the algorithm efficient, we only keep non-dominated labels. A label L1
i

dominates a label L2
i if and only if C1

i ≤ C2
i and T 1

i ≤ T 2
i . It is easy to see that

extending L1
i on the same arcs to the last vertex of the LN would always produce a

better solution than extending L2
i in the same way.

To generate good sequences of clusters, we develop the following constructive pro-
cedure. The initial sequence of clusters is empty, hence the corresponding LN contains
two layers: Ch0 = Ch1 = C0. Then, at each step, we randomly select a cluster from
those that are not yet inserted into the sequence. Suppose that the current sequence is
(h1, . . . , hp), and cluster Chl is chosen to be inserted next. It is obvious that there are
p+1 possible insertion positions for index hl into the sequence. The labeling algorithm
described above is invoked p+ 1 times, one for each candidate insertion, to determine
the best insertion position. We record the sequence that provides the shortest path
with TWs if such a sequence exists. If this is not the case, the sequence construction
procedure is stopped. The cluster insertion procedure is repeated until p = K to obtain
a feasible solution for GTSPTW.

Algorithm 1 Heuristic to provide an initial solution.
1: R← 2500
2: bestSol: best solution found
3: for h = 1 to R do
4: H ← K \ {0} (the set of cluster index)
5: feas← true
6: S ← ∅ (the sequence of clusters)
7: while feas = true and H is not empty do
8: l← an index randomly chosen in set H
9: Remove l from H
10: Try to insert l at its best position in sequence S
11: if the insertion of l is not feasible then
12: feas← false
13: if feas = true then
14: Update bestSol if S provides a better solution than the current bestSol
15: return bestSol

The sequence construction procedure is repeated R times, and the best solution is
recorded. After preliminary experiments, we set R = 2500. A general description of
the initial heuristic is provided in Algorithm 1. Note that when K < 7, there are only
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720 possible cluster sequences. It is more efficient to enumerate all the sequences and
to compute the shortest path with TWs for all of them. Since the labeling procedure is
an exact procedure (given a sequence it finds the optimal path for that sequence), the
optimal solution for the instance is found without calling the Branch-and-cut procedure.
Therefore, the branch-and-cut algorithm is only applied for instances with K ≥ 7 when
applying the labeling procedure on all the sequences of size K becomes ineffective.

3.5.3 Separation techniques

At each node of the branch-and-cut tree, a relaxation of the model F1 or F2 is solved.
Let us denote by RF1 and RF2 these relaxations. When solving a relaxed model,
the binary requirement on the variables x and y is relaxed. Therefore, a fractional
solution can be obtained where some values of the x or y variables are in the interval
]0, 1[. Then, a separation algorithm is used to detect violated inequalities Since F1

and F2 are compact formulations of the GTSPTW, the valid inequalities proposed
in Section 3.4 are not needed to define the problem but can help to strengthen the
relaxed model. In the subsequent sections, we describe the separation algorithms that
we implemented for the different families of valid inequalities. We indicate by (x∗, y∗)

the current fractional solution.

3.5.3.1 Separation of the GSEC inequalities

It is well known that the separation of the SEC for the ATSP can be done by computing
the maximum flow between the depot and each node j in the support graph G∗ which
corresponds to the undirected version of the original graph G where the capacity ce of
edge e = {i, j} is equal to x∗ij + x∗ji. If each maximum flow is greater or equal than 2,
the associated SEC is not violated by x∗. Otherwise, the minimum (0− j) cut induces
a violated SEC inequality (Nemhauser & Wolsey, 1999).

To separate the GSEC (3.22), we consider a capacitated graph G∗ = (V∗, E∗) where
V∗ = K∗ = {0, 1, . . . , K}, and E∗ = {{k, l}|k, l ∈ V∗, k 6= l}. A capacity ce is associated
with each edge e = {k, l} ∈ E∗, and defined as ce =

∑
i∈Ck,j∈Cl (x∗ij + x∗ji). If the maxi-

mum flows in this graph G∗ have a value lower than 2, then some of the GSEC (3.22)
are violated, and the corresponding constraints are added into the model. To compute
the maximum flow in G∗ and detect all violated inequalities, the Gomory-Hu algorithm
is applied, with a O(K4) time complexity (Gomory & Hu, 1961). By using Gomory-Hu
algorithm, we obtain the maximum flow and the corresponding minimum cut between
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each pair of distinct vertices in V∗. Thus, all the minimum cuts in G∗ with a value
lower than 2 are detected, and the related GSEC (3.22) are added into the model.

3.5.3.2 Separation of the SOP inequalities

π-inequalities

We adapt the procedure used by Balas et al. (1995) to separate this family of inequal-
ities. For any vertex i with π(i) 6= ∅ and y∗i > 0, we consider a graph G∗ = (V∗,A∗),
such that V∗ = V\{π(i)∪{C(i)\{i}}} and A∗ = {(i, j)|i, j ∈ V∗, x∗ij > 0}. We associate
with each arc in A∗ a capacity equal to the corresponding x∗ values and we compute
the maximum flow from vertex i to the depot 0 in G∗. If this flow is less than yi, then
the minimum (i, 0) cut identifies a violated π-inequality.

σ-inequalities

To detect violated σ-inequalities we apply a procedure similar to the one described
for the π-inequalities except that V∗ = V \ {σ(i) ∪ {C(i) \ {i}}} and we compute the
maximum from the depot 0 to vertex i in the graph G∗. If this flow is lower than yi,
the corresponding minimum cut identifies a violated σ-inequality.

(π, σ)-inequalities

To detect violated (π, σ)-inequalities we consider each pair of vertices i, j such that
i ≺ j, π(i) 6= ∅, σ(j) 6= ∅ and y∗i + y∗j − 1 > 0. We then apply a procedure similar
to the one described for the π-inequalities except that V∗ = V \ Wij where Wij =

{0}
⋃
π(i)

⋃
σ(j)

⋃
C(i)

⋃
C(j) \ {i, j} and we compute the maximum from vertex i to

vertex j in the graph G∗. If this flow is lower than (yi + yj − 1), the corresponding
minimum cut identifies a violated (π, σ)-inequality.

Note that the graph G∗ can be sparsified by deleting: i) all vertices k such that
path (i, k, j) is infeasible, i.e., Ei + SPik + SPkj > Lj; ii) all arcs (u, v) such that path
(i, u, v, j) is infeasible, e.g., Ei + SPiu + Tuv + SPvj > Lj.

πCk-inequalities

To separate πCk-inequalities, we consider any cluster Ck such that π(Ck) 6= ∅, |Ck| > 1.
G∗ = (V∗,A∗) is such that V∗ = {sk} ∪ V \ π(Ck) where sk is an additional vertex and
A∗ = A∗1∪A∗2 = {(i, j)|i, j ∈ V∗, x∗ij > 0}∪{(sk, j)|j ∈ Ck}. We associate with each arc
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in A∗1 a capacity equal to the corresponding x∗ value and with each arc in A∗2 a very
large capacity. In the resulting graph G∗, we compute the maximum flow from vertex
sk to the depot 0. If it is strictly less than 1, a violated πCk inequality is identified.

σCk-inequalities

These inequalities are detected by adapting the explained procedure to identify violated
πCk-inequalities.

(πCk , σCk)-inequalities

To detect violated (πCh , σCk)-inequalities we consider each pair of clusters Ch, Ck such
that Ch ≺ Ck, |Ch| > 1, |Ck| > 1. G∗ = (V∗,A∗) is such that V∗ = {sh, sk} ∪ V \
{π(Ch)∪ σ(Ck)} where sh and sk are two additional vertices and A∗ = A∗1 ∪A∗2 ∪A∗3 =

{(i, j)|i, j ∈ V∗, x∗ij > 0} ∪ {(sh, j)|j ∈ Ch} ∪ {(j, sk)|j ∈ Ck}. We associate with each
arc in A∗1 a capacity equal to the corresponding x∗ value and with each arc in A∗2 and
A∗3 a very large capacity. In the resulting graph G∗, we compute the maximum flow
from vertex sh to vertex sk. If it is strictly less than 1, a violated (πCh , σCk)-inequality
is identified.

3.5.3.3 Separation of the arc selection inequalities, arc-or-vertex inequali-
ties and clique inequalities

Arc selection inequalities (3.18), arc-or-vertex inequalities (3.19) and their lifted ver-
sions (3.20) and (3.21) are polynomial in the size of the input. The clique inequal-
ities (3.35) and their lifted versions (3.36) and (3.37), we consider, are restricted to
S ⊂ V , |S ∩ Ck| ≤ 1 for all k ∈ K with |S| = 2, 3. Therefore, whenever a fractional
solution is obtained, we scan the entire set of these inequalities to seek for those that
are violated.

3.5.3.4 Separation strategy

During the branch-and-cut procedure, at each time a fractional solution is obtained,
the separation procedures for GSEC, SOP, clique, arc orientation and arc-or-vertex
inequalities is called. GSEC (3.22) are separated using Gomory-Hu algorithm. One
call to the algorithm provides all the violated cuts. However, SOP cuts and SOP
cuts on clusters require repeated calls to maximum flow algorithm: O(N) times for π
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and σ-inequalities, O(N2) times for (π, σ)-inequalities, O(K) times for πCk and σCk-
inequalities, and O(K2) times for (πCh , σCk)-inequalities.

Solving these maximum flow problems would be time-consuming. Therefore, we
introduce a parameter α to control the percentage of SOP inequalities that we choose
to separate. For each class of SOP inequalities, we first determine the eligible vertices
or clusters (for example for π-inequalities, all the vertices i such that π(i) 6= ∅ and
y∗i > 0), and then α percent are randomly chosen to be separated.

In addition, to improve the influence of the cuts added to the relaxed model, they
should be significantly violated. Thus, we introduce a parameter ε to control the
lowest violation of the cuts we add. For each family of inequalities, after the call to
the separation algorithm, only the cuts having a violation of at least ε are added into
the model.

Detailed results on the setting of these parameters α and ε are presented in sec-
tion 3.6.2.

Note that all the separation algorithms are exact. This means that each time a
specific separation algorithm is called it provides the corresponding violated cuts if
any. However, due to the introduction of the parameter α, the number of calls to the
SOP separation is limited and some violated cuts may be missed. Moreover, only the
cuts with a least violation ε are added. As a consequence, when α and ε are introduced,
the global separation strategy becomes heuristic even if all the separation procedures
are exact.

3.6 Computational experiments

The algorithms were implemented in C++ in Visual Studio environment and uses
CPLEX 12.6.3 and the Concert framework. Experiments were performed on a PC
Intel(R) Core(TM) i5-6200U CPU 2.20GHz and 64G RAM. The computation time
limit (TL) was set to 3600 seconds.

3.6.1 Problem instances

Since no testbed is available for GTSPTW in the literature, we created three groups
of instances to test the proposed algorithm.

The first group indicated by G1 includes 47 instances. G1 is generated by per-
forming suitable modifications to the existing benchmark for the GTSP proposed by
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Karapetyan (2012). The GTSP does not take time into account, so for each arc of the
graph, the traveling time is set equal to the traveling cost. The GTSP instances do
not necessarily contain a cluster with a unique vertex that could be the depot. Hence,
based on a GTSP instance, a depot is added. As coordinates are not always available
in GTSP instances, the traveling time from the depot to other vertices is fixed to be 0.
The TW of the depot is [0, T ], where T initially equals twice the best objective value
of the original GTSP instance. Then, the TW [Ei, Li] for each vertex i ∈ V \ {0} is
generated according to the method described by Solomon (1987). The center of the
TW, denoted as ci, is randomly generated from a uniform distribution in the interval
[0, T ]. For the width wi of the TW, a number ri is randomly generated from the stan-
dard normal distribution, then wi = |ri|min {ci, T − ci}. Thus the TW [Ei, Li] can be
obtained as Ei = ci − wi, Li = ci + wi. Once the above procedure has been applied,
we impose a modification procedure to ensure that a feasible solution exists for the
instance created. First, a sequence of clusters is randomly generated. Then, for each
cluster, one vertex is randomly selected in order to get a tour. Starting at time 0 from
the depot, we compute the service time at each vertex from its previous vertex in this
tour. If the service time at vertex i exceeds the upper bound Li, Li is then updated
with the service time value. At the end of the tour, if the arrival time at the depot is
greater than T , then T is updated to the arrival time value. In this way, we ensure that
a feasible solution exists for the instance generated. The instance name is obtained by
adding TW_ before its original GTSP name, e.g., we create TW_3burma14 based on
3burma14. The number in the middle of the name represents the number of clusters,
and the number at the end represents the number of vertices, both excluding the depot.

In GTSP instances, some clusters contain a large number of vertices. This does
not correspond to the last mile delivery application. Therefore, we generated a second
group indicated by G2 which includes 40 instances. G2 is obtained in a similar way to
the set G1, except that the maximum number of vertices per cluster Nmax is fixed. In
our experiments, we set Nmax = 5 which is reasonable in the case of last mile delivery.
Based on a GTSP instance, when the number of vertices in a cluster Ck is greater than
Nmax, we divide the corresponding cluster into M ′ clusters, where M ′

= d|Ck|/Nmaxe.
The first Nmax vertices in Ck constitute the first cluster, and so on. The following steps
are as described above to create instances in G1. The instance name is similar to G1,
while the number in the middle of the name changes to the number of clusters in the
instance excluding the depot, e.g., TW_4burma14 is created based on 3burma14.
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The third group with 72 instances, indicated by G3 is obtained from the instances
proposed by Reyes et al. (2017) for the VRPRDL. As mentioned above, the TWs in
these instances have a particular structure, i.e., the TWs associated with vertices in
a same cluster do not overlap. Since the VRPRDL instances are for the multi-vehicle
case, we use only part of the instance information. Given one VRPRDL instance, we
consider the best corresponding solution, and define an instance for the GTSPTW
by the clusters visited along the longest route in the solution. The data about the
distances, the traveling times and TWs are not modified.

Step 1 Step 2Original 2 routes

Cr1,1
Cr1,2
Cr2,1
Cr2,2

S1

S2 r2

r1

r r

ir1,1

ir1,2ir2,1

ir2,2

Figure 3.5: Create G3 instances from 2 routes.

To create larger instances, we combine several routes belonging to a solution of one
VRPRDL instance. In this case, TWs need to be modified to obtain a set of customers
that can be visited in a single route. Notice that the vertices within the same cluster
are ordered based on the earliest visit times. An example is given in Figure 3.5 for the
case with two routes. Suppose that S1 and S2 are the cluster sets which include all the
clusters visited in the routes r1 and r2, respectively. We note (Cr1,1, Cr1,2, . . . , Cr1,|S1|)
the sequence of clusters visited by route r1, and (ir1,1, ir1,2, . . . , ir1,|S1|) the sequence of
vertices visited in route r1. Obviously, ir1,k ∈ Cr1,k, ∀k = 1, . . . , |S1|. The same notation
is used for route r2. The time horizon of the original VRPRDL instances lasts ∆ = 12
hours. We then move forward the TWs of all the vertices belonging to the clusters in
S2 by ∆ plus the traveling time from ir1,|S1| the last visited vertex in r1 to ir2,1 the first
visited vertex in r2. Then for each cluster Cr1,k in S1, the TWs of vertices which are
before ir1,k the vertex visited in this cluster by r1 are moved forward by ∆ + δ(Cr1,k).
δ(Cr1,k) corresponds to the traveling time from the last vertex of Cr1,k to the first vertex
of Cr1,k, where vertices are ordered based on the earliest visit times. In the same way,
for each cluster Cr2,k in S2, the TWs of vertices which are after ir2,k the vertex visited
in this cluster by r2 are moved backward by ∆ + δ(Cr2,k). In this way, we inherit the
property of non-overlapping TWs within a cluster and ensure that there is a feasible
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solution r = [r1, r2] in the created instance. Similarly, we can use more than two routes
of a solution to create instances.

We use sequences a-b-c-d to name instances in G3, where a and b indicate the
number of clusters and vertices in the instance respectively, similar to G1 and G2,
excluding the depot. c and d indicate that the instance is created based on the dth
VRPRDL instance using its c longest routes in the solution, e.g., 14-41-2-6 means that
using the two longest routes in the solution of the sixth VRPRDL instance, we create
a G3 instance with 14 clusters and 41 vertices.

3.6.2 Parameter tuning results

In the separation procedure described in Section 3.5.3.4 we introduced two parameters,
α and ε, which respectively control the percentage of SOP inequalities that we randomly
choose to separate and the least violation of all the cuts that we add. We limit the
impact of α to the SOP inequalities due to their large cardinality. Here we discuss the
tuning phase of α and ε.

Based on some preliminary computational results, if we use CPLEX branch-and-
bound scheme to solve the instances without any of the proposed valid inequalities,
formulation F2 performs slightly better than formulation F1 in terms of resolution
time and final optimality gap. Due to the fact that the difference is small, we conduct
the tuning on both formulations.

To observe significant differences between results obtained from different parameter
settings, we choose instances of comparatively medium and large size in sets G1 and
G2. We do not consider instances of G3 since preliminary results showed that they are
the easiest to solve.

We choose 7 instances: 4 in G1 (TW_20kroA100, TW_25pr124, TW_26ch130,
TW_35si175) and 3 in G2 (TW_28rat99, TW_30eil101, TW_32gr120). We consider
values of α in {40; 60; 80; 100} and values of ε in {0.05; 0.1; 0.15} and perform experi-
ments for all possible pairs (α, ε). The average optimality gaps for the two formulations
F1 and F2 are reported in Table 3.1. Computation time is limited to one hour per
execution.

Our results in Table 3.1 show that the average optimality gaps obtained from F2

are always smaller than those obtained from F1. This indicates that formulation F2

turns to be superior to formulation F1. It is also clear that the best parameter setting
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for F2 is (α, ε) = (40, 0.15) with the smallest average gap of 0.37%. Therefore, we
conduct the following experiments using formulation F2 with (α, ε) = (40, 0.15).

Table 3.1: Tuning results on α, ε, F1 and F2.

ε α Average gap F1 Average gap F2

0.05

40 2.02% 0.64%
60 1.53% 1.15%
80 2.07% 0.99%
100 1.91% 1.41%

0.10

40 2.33% 0.58%
60 2.37% 0.85%
80 2.51% 1.07%
100 1.62% 1.32%

0.15

40 1.81% 0.37%
60 1.70% 0.75%
80 2.02% 1.19%
100 1.62% 0.76%

3.6.3 Effectiveness of families of valid inequalities

In order to assess the effectiveness of each family of the proposed valid inequalities, i.e.,
to know which are important and which provide marginal improvements, we compute
the lower bounds at the root node (after applying the preprocessing steps) when only
one of the families of inequalities is part of the branch-and-cut algorithm, as well as
when only one family is excluded. We conduct the computations on instances in G1
with at least 7 clusters. The average results are shown in Table 3.2. We divide the
results into two parts, i.e., with one family and without one family.

Columns with one family correspond to the results obtained when applying a single
family of inequalities. There are eight configurations. Row LP reports results of the
linear relaxation. Row CPLEX shows the results when activating the automatic cut
generation of CPLEX (but not the generation of user cuts). The rows Arc selection,
Arc-or-Vertex, Clique, GSEC and SOP report the results obtained by including the
automatic cut generation of CPLEX and the corresponding family of inequalities. Fi-
nally, row Full reports the results obtained when applying the automatic cut generation
of CPLEX and the separation algorithms for all families of valid inequalites.

Columns without one family correspond to the results obtained when one of the
families of inequalities is excluded. There are five configurations. Rows Arc selection,
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Table 3.2: Average lower bound results at the root node obtained with/without one
family of inequalities.

Configuration
with one family without one family

Impr(%) time(s) nbCuts Impr(%) time(s) nbCuts

LP 0 0.18
CPLEX 13.53 2.44
Arc selection 30.13 3.29 85.49 -0.60 45.69 1096.62
Arc-or-vertex 13.71 3.23 163.92 -0.21 32.56 828.24
Clique 13.65 3.34 37.30 -0.13 33.76 942.22
GSEC 18.38 2.49 21.97 -0.02 37.04 1055.62
SOP 53.77 49.62 1029.84 -10.40 3.08 318.76
Full 55.12 33.50 990.86 0 33.50 990.86

Arc-or-Vertex, Clique, GSEC and SOP report the results obtained by including the
automatic cut generation of CPLEX and generating violated inequalities without the
family indicated by the row name.

Three average statistics are reported in Table 3.2. Column Impr(%) of with one family
represents the average improvement in percentage of lower bounds obtained using one
configuration compared with the bounds obtained by solving linear relaxations. The
value Impr(%) for a single instance is calculated by Impr% = (LBconfig − LB)/LB ∗
100%, where LBconfig is the lower bound obtained at the root node under the corre-
sponding configuration and LB the bound obtained by solving the linear relaxation of
the problem. Column Impr(%) of without one family represents the average improve-
ment of lower bounds obtained under the configuration compared with those obtained
by separating all families of inequalities. The value Impr(%) for a single instance is
calculated as Impr% = (LBconfig − LBfull)/LBfull ∗ 100% where LBfull denotes the
lower bound obtained at the root node when all families of valid inequalities are consid-
ered. Columns time(s) represent the average computation times in seconds. Columns
nbCuts indicate the average numbers of violated cuts added under a configuration.
Note that we marked the comparison baselines in bold, i.e., results of LP and Full for
with one family and without one family respectively.

From the average results of with one family, we can order the five families of valid
inequalities according to their effectiveness as follows: SOP > Arc selection > GSEC
> Arc-or-Vertex > Clique. The largest improvement is obtained with the SOP, fol-
lowed by Arc Selection. Compared with the other families of valid inequalities, the
separation of the SOP requires more computational time and identifies more violated
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cuts. From the results of column Full, it can be seen that separating all families of
valid inequalities consumes less time than separating only the SOP, meanwhile this
configuration improves the lower bound. When all the valid inequalities are separated,
the lower bound at the root node improves by 55.12% on average, compared with the
bound obtained by solving the linear relaxation.

From the average results of without one family, we can order the valid inequalities
according to their effectiveness as follows: SOP > Arc selection > Arc-or-Vertex >

Clique > GSEC. It can be seen that without either family, the lower bound quality
decreases. The most significant decrease in both the lower bound quality and compu-
tation time is obtained when the SOP inequalities are excluded.

In general, the SOP inequalities are crucial for the efficiency of the branch-and-cut
algorithm, while other inequalities bring smaller improvements. However, the separa-
tion of all families of valid inequalities allows to obtain overall good performances in
terms of lower bound and computation time.

3.6.4 Computational results

We now present the results obtained with the branch-and-cut algorithm presented in
this paper. The algorithm was tested on the 158 instances in G1, G2 and G3 and, due
to the results presented in Section 3.6.2, experiments were carried out with formulation
F2. Table 3.3 provides the column headings used in the following tables. Detailed
results on G1, G2 and G3 are presented in Table 3.4, 3.5 and 3.6 respectively.

Table 3.3: Column headings.

Column heading Description

Instance name of the problem instance
Obj value of the best solution obtained
initS value of initial heuristic solution
rLB lower bound at the root node
fLB lower bound at the termination/at the time limit
rGAP gap at the root node: rGAP = rUB−rLB

rUB , rUB is the upper bound at the root node
fGAP gap at the termination/at the time limit: fGAP = Obj−fLB

Obj
nbNode number of nodes in the branch-and-cut tree
nbCuts number of generated cuts
sep-time time spent in separation procedure in seconds
time total computation time in seconds (equals to 1 hour if optimality is not achieved)

As mentioned in Section 3.5.2, the labeling algorithm can be executed on all se-
quences with less than seven clusters within reasonable computation times. In this case,
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instead of searching for an initial solution, we just enumerate all feasible sequences to
get an optimal solution without calling the branch-and-cut algorithm. For this rea-
son, we report only the objective values and computation times for the first ten lines
of Table 3.4, the first four lines of Table 3.5 and the first twelve lines of Table 3.6.
Rows Average in three tables report the average results for instances with more than
6 clusters.

In Table 3.4, we report results on instances in G1. Our results indicate that our
algorithm is able to solve most instances up to 30 clusters and 150 vertices within one
hour. However, one instance with 26 clusters (TW_26bier127), one instance with 28
clusters (TW_28pr136) and two instances with 30 (TW_30ch150, TW_30kroB150)
clusters remain unsolved. Moreover, all instances with up to 24 clusters and 124 vertices
are systematically solved in less than three minutes. For all the instances (K ≥ 7)
solved to optimality, we calculate the average gap between their initial solution obtained
from the heuristic initS and the final optimal solution Obj using (initS −Obj)/Obj ∗
100%, which equals to 0.78%. This proves the efficiency of the heuristic.

When we consider instances in G2 (see Table 3.5), we can observe that the largest
solved instance within the given time frame involves 38 clusters and 150 vertices. In-
stances with up to 30 clusters and 101 vertices are systematically solved to optimality
in one hour of computation time. Initial heuristic is also very efficient on instance set
G2. For all the instances (K ≥ 7) solved to optimality, the average gap between their
initial solution obtained from the heuristic initS and the final optimal solution Obj

equals to 0.23%.

Table 3.6 reports results on instances in G3 (see Table 3.6). All the instances are
solved to optimality in very short computation times. Most instances are solved at the
root node. The largest instance with 32 clusters and 125 vertices is solved to optimality
in less than one minute. For most of the instances, the initial solutions obtained from
the heuristic turn out to be the optimal solutions. From the results, we can see that
instances in G3 are easier to solve than instances in G1 and G2. One of the possible
reasons may be due to the special non-overlapping TW structure for vertices in the
same cluster.

The computational results on the three groups of instances show that the proposed
branch-and-cut algorithm is very efficient and is able to solve instances with 30 clusters.
This size is near to the number of deliveries that a courier might make during a day in
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an urban context. Moreover, the initial solutions provided by the heuristic are of high
quality with respect to the best solutions obtained.

Table 3.4: Results on G1 (F2).

Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time(s) time(s)

TW_3burma14 908 908 0.01
TW_4br17 19 19 0.01
TW_4gr17 962 962 0.01
TW_4ulysses16 2392 2392 0.01
TW_5gr21 1165 1165 0.01
TW_5gr24 263 263 0.01
TW_5ulysses22 3287 3287 0.01
TW_6bayg29 476 476 0.02
TW_6bays29 628 628 0.02
TW_6fri26 354 354 0.02
TW_7ftv33 416 416 0.00 416.0 0.00 416.0 0 53 0.02 1.49
TW_8ftv36 538 554 6.10 520.2 0.00 538.0 11 162 0.28 3.09
TW_8ftv38 384 410 0.00 384.0 0.00 384.0 0 104 0.03 2.20
TW_9dantzig42 322 322 5.55 304.1 0.00 322.0 105 575 2.01 7.24
TW_10att48 4113 4113 0.00 4113.0 0.00 4113.0 0 166 0.06 5.93
TW_10gr48 1437 1515 2.49 1429.5 0.00 1437.0 3 190 0.31 7.13
TW_10hk48 5268 5268 4.10 5052.1 0.00 5268.0 52 484 1.24 7.27
TW_11berlin52 3632 3632 9.69 3280.1 0.00 3632.0 346 891 5.84 14.16
TW_11eil51 151 157 0.00 151.0 0.00 151.0 0 262 0.61 6.52
TW_12brazil58 13503 13503 2.79 13126.5 0.00 13503.0 69 607 1.92 10.33
TW_14st70 289 289 5.67 272.6 0.00 289.0 1137 1852 44.89 75.37
TW_16eil76 205 205 3.78 197.3 0.00 205.0 70 2015 6.05 28.39
TW_16pr76 57164 57164 0.96 56614.5 0.00 57164.0 9 724 2.77 22.11
TW_20gr96 33128 33128 3.71 31898.0 0.00 33128.0 86 1515 24.48 78.34
TW_20kroA100 10209 10209 7.95 9397.7 0.00 10209.0 139 4132 66.72 158.07
TW_20kroB100 9862 9975 3.12 9598.0 0.00 9862.0 111 3724 37.13 103.99
TW_20kroC100 9728 9728 3.13 9423.7 0.00 9728.0 117 3031 29.70 81.46
TW_20kroD100 9210 9210 3.29 8906.5 0.00 9210.0 20 1343 18.32 66.06
TW_20kroE100 9514 9514 3.18 9211.3 0.00 9514.0 130 3737 21.77 71.42
TW_20rat99 478 478 6.60 446.4 0.00 478.0 138 2734 33.62 91.42
TW_20rd100 3446 3505 3.99 3365.3 0.00 3446.0 316 2802 37.87 99.85
TW_21eil101 247 247 5.43 233.6 0.00 247.0 322 3654 51.34 130.44
TW_21lin105 7582 7582 2.27 7410.2 0.00 7582.0 53 3484 22.01 79.92
TW_22pr107 21352 21481 0.76 21190.5 0.00 21352.0 6 1540 10.80 63.11
TW_24gr120 2811 2825 4.95 2685.0 0.00 2811.0 100 3584 55.29 174.82
TW_25pr124 36520 36520 6.90 34001.2 0.00 36520.8 16115 11990 1568.63 3286.21
TW_26bier127 86761 86761 16.88 72115.0 15.30 73485.5 4608 12752 1374.56 3600.00
TW_26ch130 2891 2896 5.17 2746.2 0.00 2891.0 5027 10137 1230.36 2346.46
TW_28gr137 34123 34201 4.59 32631.2 0.00 34123.0 2223 6696 347.50 712.83
TW_28pr136 45998 45998 7.49 42554.8 2.99 44622.5 2823 17470 1925.40 3600.00
TW_29pr144 43639 43639 1.12 43149.6 0.00 43639.0 107 4185 135.03 301.12
TW_30ch150 2895 2895 6.94 2694.1 2.02 2836.5 4838 12829 1957.07 3600.00
TW_30kroA150 11475 11475 4.35 10975.7 0.00 11475.0 251 6627 204.27 476.97
TW_30kroB150 12802 12869 6.93 11977.0 3.94 12297.7 2575 13882 2010.46 3600.00
TW_31pr152 55128 55128 17.32 45580.4 16.22 46185.5 4170 16404 1361.59 3600.00
TW_32u159 22846 22846 7.05 21235.9 2.57 22259.8 1682 11944 1787.29 3600.00
TW_35si175 5521 5561 2.38 5428.6 0.92 5470.2 1149 11657 1892.65 3600.00

Average 15286.2 15303.2 4.77 14181.5 1.19 14616.1 1321.8 4863.2 439.73 911.18
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Table 3.5: Results on G2 (F2).

Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time(s) time(s)

TW_4burma14 957 957 0.01
TW_5br17 19 19 0.01
TW_5gr17 766 766 0.01
TW_6ulysses16 2521 2521 0.01
TW_7gr21 1475 1475 0.00 1475.0 0.00 1475.0 0 41 0.01 0.87
TW_7gr24 365 365 0.00 365.0 0.00 365.0 0 25 0.01 0.99
TW_8ulysses22 3461 3461 0.00 3461.0 0.00 3461.0 0 63 0.01 1.24
TW_8bayg29 515 515 0.00 515.0 0.00 515.0 0 74 0.02 1.36
TW_8bays29 595 595 0.00 595.0 0.00 595.0 0 32 0.01 1.73
TW_9fri26 498 498 0.00 498.0 0.00 498.0 0 49 0.00 1.57
TW_10ftv33 467 467 0.00 467.0 0.00 467.0 0 121 0.16 2.97
TW_10ftv36 500 500 0.00 500.0 0.00 500.0 0 126 0.25 3.36
TW_10ftv38 469 469 8.60 428.7 0.00 469.0 51 439 1.02 4.69
TW_12dantzig42 364 364 0.00 364.0 0.00 364.0 0 214 0.61 5.48
TW_13gr48 2010 2010 1.78 1974.1 0.00 2010.0 8 615 0.39 5.64
TW_14att48 5415 5415 6.98 5037.2 0.00 5415.0 238 946 8.28 20.22
TW_14hk48 5989 5989 6.28 5612.7 0.00 5989.0 191 883 5.16 14.92
TW_15eil51 172 172 3.20 166.5 0.00 172.0 5 354 1.06 10.95
TW_16berlin52 3821 3821 3.79 3676.2 0.00 3821.0 307 947 6.10 19.28
TW_17brazil58 12665 12665 3.70 12196.4 0.00 12665.0 107 1051 9.49 27.12
TW_20st70 329 329 5.13 312.1 0.00 329.0 113 1299 10.54 36.50
TW_21eil76 245 245 9.59 221.5 0.00 245.0 6299 3081 320.90 486.03
TW_22pr76 71098 71098 6.61 66401.1 0.00 71098.0 132 2188 33.64 79.20
TW_24kroC100 9932 9932 3.39 9595.5 0.00 9932.0 22 1754 20.57 89.79
TW_26kroA100 10515 10541 3.58 10139.0 0.00 10515.0 64 2555 20.97 83.92
TW_28rat99 618 628 10.91 559.5 0.00 618.0 4043 8664 955.48 1815.03
TW_28kroB100 11937 11976 5.64 11301.1 0.00 11937.0 485 4695 75.53 163.44
TW_28kroD100 10720 10720 8.85 9771.0 0.00 10720.0 162 3716 112.92 251.70
TW_29gr96 35064 35064 7.86 32309.3 0.00 35064.0 2178 6008 427.12 718.39
TW_29kroE100 11275 11275 5.59 10645.1 0.00 11275.0 11531 5605 677.56 1113.05
TW_29rd100 4380 4380 10.12 3936.8 0.00 4380.0 5586 8227 898.58 1854.56
TW_30eil101 292 292 6.30 273.6 0.00 292.0 810 3946 205.87 350.24
TW_32lin105 9852 9965 10.17 8951.6 2.67 9588.9 8515 9258 1848.66 3600.00
TW_32gr120 3307 3307 9.20 3002.9 1.66 3252.0 5938 12849 1779.74 3600.00
TW_32pr124 37655 37655 7.14 34967.9 2.94 36549.8 5110 13172 1974.32 3600.00
TW_34pr107 34349 34349 19.27 27728.5 14.20 29471.8 7063 12334 1382.09 3600.00
TW_36ch130 3309 3345 3.88 3215.2 0.00 3309.0 3242 5399 560.62 922.58
TW_37pr144 50912 51377 8.71 46901.5 7.29 47200.5 765 13594 1527.02 3600.00
TW_38ch150 3175 3288 7.38 3016.5 0.00 3175.0 2890 11307 1533.51 2807.53
TW_39gr137 41177 41177 7.70 38006.0 5.28 39004.0 3209 9428 2556.84 3600.03

Average 10803.4 10825.7 5.32 9960.8 0.95 10464.9 1918.4 4029.4 470.97 902.62
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Table 3.6: Results on G3 (F2).

Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time(s) time(s)

5-10-1-3 326 326 0.01
5-13-1-1 329 329 0.01
5-14-1-2 186 186 0.01
5-25-1-15 231 231 0.01
6-15-1-9 201 201 0.01
6-16-1-5 292 292 0.01
6-19-1-22 301 301 0.01
6-22-1-4 344 344 0.01
6-24-1-0 227 227 0.01
6-25-1-7 312 312 0.01
6-25-1-17 315 315 0.01
6-29-1-11 283 283 0.01
7-21-1-18 271 271 0.00 271.0 0.00 271.0 0 0 0.00 0.49
7-26-1-27 299 299 0.00 299.0 0.00 299.0 0 0 0.00 0.57
7-27-1-13 267 267 0.00 267.0 0.00 267.0 0 0 0.00 0.68
7-27-1-14 312 312 0.00 312.0 0.00 312.0 0 17 0.01 0.63
7-30-1-29 354 354 0.00 354.0 0.00 354.0 0 44 0.01 0.55
7-31-1-20 245 245 0.00 245.0 0.00 245.0 0 0 0.00 0.65
8-14-1-19 318 318 0.00 318.0 0.00 318.0 0 18 0.01 0.49
8-24-1-10 281 281 0.00 281.0 0.00 281.0 0 103 0.02 0.83
8-24-1-12 273 273 0.00 273.0 0.00 273.0 0 37 0.03 0.91
8-27-1-28 306 306 0.00 306.0 0.00 306.0 0 0 0.00 0.73
8-28-1-8 213 213 0.00 213.0 0.00 213.0 0 19 0.00 0.70
8-29-1-38 229 229 0.00 229.0 0.00 229.0 0 41 0.00 0.84
8-30-1-25 272 272 0.00 272.0 0.00 272.0 0 24 0.00 0.80
8-36-1-23 278 279 0.00 278.0 0.00 278.0 0 73 0.02 0.87
9-26-1-35 347 347 0.00 347.0 0.00 347.0 0 59 0.02 0.77
9-27-1-21 341 341 0.00 341.0 0.00 341.0 0 141 0.02 0.64
9-34-1-16 333 333 0.00 333.0 0.00 333.0 0 36 0.02 1.00
9-34-1-26 232 232 0.00 232.0 0.00 232.0 0 109 0.02 1.22
10-29-1-6 281 281 0.00 281.0 0.00 281.0 0 34 0.02 1.02
10-32-1-31 350 350 0.00 350.0 0.00 350.0 0 270 0.05 1.28
10-40-1-36 324 324 0.00 324.0 0.00 324.0 0 75 0.03 1.48
10-41-1-30 196 196 0.00 196.0 0.00 196.0 0 156 0.02 1.75
10-42-1-24 258 258 0.00 258.0 0.00 258.0 0 170 0.03 2.02
11-27-1-37 333 333 0.00 333.0 0.00 333.0 0 48 0.02 1.22
11-33-1-39 312 312 0.00 312.0 0.00 312.0 0 118 0.03 1.62
11-43-1-32 347 347 0.00 347.0 0.00 347.0 0 195 0.02 1.31
12-45-1-34 260 260 0.00 260.0 0.00 260.0 0 81 0.03 2.20
13-41-1-33 347 347 0.00 347.0 0.00 347.0 0 327 0.10 2.34
14-34-2-19 478 478 0.00 478.0 0.00 478.0 0 127 0.06 2.08
14-41-2-6 514 514 0.00 514.0 0.00 514.0 0 260 0.02 2.67
14-44-2-27 575 575 0.00 575.0 0.00 575.0 0 258 0.11 3.41
14-44-2-28 500 500 0.00 500.0 0.00 500.0 0 76 0.03 3.48
14-52-2-12 622 622 0.00 622.0 0.00 622.0 0 199 0.08 2.80
15-56-2-23 531 531 0.00 531.0 0.00 531.0 0 312 0.05 4.47
16-51-2-38 429 431 0.00 429.0 0.00 429.0 0 384 0.16 5.45
16-60-2-25 589 589 0.00 589.0 0.00 589.0 0 762 0.06 3.58
16-60-2-26 498 498 0.00 498.0 0.00 498.0 0 324 0.06 4.94
16-69-2-24 415 415 0.00 415.0 0.00 415.0 0 1038 0.06 5.53
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Instance Obj initS rGAP(%) rLB fGAP(%) fLB nbNodes nbCuts sep-time(s) time(s)

17-48-2-35 606 606 9.28 549.7 0.00 606.0 13 961 0.95 5.05
17-50-2-21 563 563 0.00 563.0 0.00 563.0 0 244 0.06 2.64
19-61-2-31 564 564 6.85 525.4 0.00 564.0 19 1451 3.33 12.30
19-72-2-30 510 510 0.00 510.0 0.00 510.0 0 279 0.08 8.73
20-60-2-37 600 600 0.00 600.0 0.00 600.0 0 1235 0.36 5.56
20-82-2-36 643 643 0.00 643.0 0.00 643.0 0 677 0.14 7.06
21-71-2-39 554 554 0.00 554.0 0.00 554.0 0 497 0.41 9.47
21-78-2-32 662 662 0.00 662.0 0.00 662.0 0 844 0.28 10.64
23-83-2-34 448 448 0.00 448.0 0.00 448.0 0 448 0.23 12.70
23-91-2-33 532 532 0.00 532.0 0.00 532.0 0 635 0.34 12.50
24-76-3-21 835 835 0.00 835.0 0.00 835.0 0 1131 1.39 10.72
24-78-3-38 677 677 1.61 666.1 0.00 677.0 8 4912 1.87 12.91
24-86-3-25 850 850 0.00 850.0 0.00 850.0 0 630 0.41 15.39
25-76-3-35 830 830 0.00 830.0 0.00 830.0 0 1621 1.26 9.53
28-99-3-31 844 850 2.46 823.2 0.00 844.0 7 5475 11.45 34.00
28-110-3-30 720 720 0.00 720.0 0.00 720.0 0 1734 1.17 28.70
29-95-3-37 850 850 3.27 822.2 0.00 850.0 5 6896 6.29 25.50
29-95-3-39 850 850 0.00 850.0 0.00 850.0 0 1654 0.75 20.95
30-114-3-36 929 929 0.00 929.0 0.00 929.0 0 1758 0.49 24.01
31-118-3-32 921 921 0.00 921.0 0.00 921.0 0 3100 0.72 22.05
31-128-3-33 856 856 0.00 856.0 0.00 856.0 0 8642 1.38 32.29
32-125-3-34 721 721 0.00 721.0 0.00 721.0 0 2913 0.72 40.51

Average 447.8 447.9 0.39 479.0 0.00 481.6 0.9 894.5 0.59 5.99

The instances in G1 and G2 are derived from the same GTSP instances. Instances
in G2 have the maximum number of vertices per cluster set to Nmax = 5. This feature
does not seem to make instance resolution in G2 any easier than in G1. At first
glance, one could say that larger instances can be solved in G2 than in G1 (38 clusters
versus 30 clusters). On the other hand, a more in-depth analysis shows that instances
with the same number of vertices are solved faster when they belong to G1 rather
than to G2. This can be seen by comparing the average results of 26 instances in G2
with no less than 48 vertices and their corresponding instances in G1. The average
computation time is 447.03 seconds for instances in G1 while it increases to 1248.85

seconds for instances in G2. Note that if an instance is not solved to optimality, we
consider the computation time as one hour. Therefore, it seems that instances with
the same number of vertices but a larger number of clusters are more difficult to solve.

3.7 Conclusions

In this paper, we have presented two formulations F1 and F2 for the Generalized
Traveling Salesman Problem with Time Windows, a new generalization of the classical
TSPTW and GTSP. We proposed several families of valid inequalities, which contain

120



3.8 Acknowledgment

polynomial or exponential numbers of constraints. They were incorporated in a branch-
and-cut framework through dedicated separation procedures. A high quality initial
solution was constructed based on a heuristic and used as a warm start in the branch-
and-cut algorithm. We tested the algorithm on three groups of instances with different
characteristics. The results clearly demonstrate the efficiency of the proposed branch-
and-cut algorithm and the quality of formulation F2. The proposed branch-and-cut
algorithm based on formulation F2 can solve instances around 30 clusters within one
hour of computation time.
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This chapter corresponds to the paper “A column generation based heuristic for the
generalized vehicle routing problem with time windows”, to be submitted shortly. This is
a collaborative project with Professor Daniele Vigo from University of Bologna, Italy.

Abstract: The generalized vehicle routing problem with time windows (GVRPTW)
is defined on a directed graph G = (V ,A) where the vertex set V is partitioned into
clusters. One cluster contains only the depot, where is located a homogeneous fleet of
vehicles, each with a limited capacity. The other clusters represent customers. Each
cluster is associated with a demand. Inside a cluster, the vertices represent the possi-
ble locations of the customer. Each vertex is associated with a time window, during
which the visit must take place if the vertex is visited. The objective is to find a set of
routes such that the total traveling cost is minimized, exactly one vertex per cluster is
visited, and all the capacity and time constraints are respected. This paper presents a
compact integer linear programming formulation of the GVRPTW. An extended for-
mulation based on a set covering model is used to provide a column generation based
heuristic to solve the GVRPTW. The proposed solving method combines several com-
ponents including a construction heuristic, a route optimization procedure, local search
operators and the generation of negative reduced cost routes. Experimental results on
benchmark instances show that the proposed algorithm is efficient and high-quality
solutions for instances with up to 120 clusters are obtained within short computation
times.

4.1 Introduction

Nowadays, e-commerce is used on a daily basis and allows customers to purchase
online whenever and whatever they like. Customers are no longer restricted to go
to a specific store and to respect the opening hours. At the end of 2018, global e-
commerce sales reached approximately $2.8 trillion and are estimated to hit $4.5 trillion
in 2021 (Wardini, 2018). This growing e-commerce poses a huge challenge for the last
mile delivery since the ordered items need to be delivered to individual customers.

Currently, there exist several last mile delivery services to deliver packages to cus-
tomers. The most common delivery option is home/workplace delivery. Customers
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wait at home/workplace to get their packages. Besides, the delivery can be made to
pick-up points such as dedicated lockers or stores. In this case, customers can retrieve
their packages after delivery has been accomplished. To give an idea, there are more
than 2800 lockers located across the US (Holsenbeck, 2018). When customers shop
online, they can choose a nearby locker as a delivery location. This reduces the frag-
mentation of the deliveries in the last mile, thereby helping to reduce the congestion
and environmental pollution caused by urban freight trips (Morganti et al., 2014), as
well as reducing routing costs. In recent years, a new concept called trunk/in-car de-
livery, has been proposed. Here, customers’ packages can be delivered to the trunks of
cars. Volvo launched its world-first in-car delivery service in Sweden in 2016 (Kirsten,
2016). In April 2018, Amazon launched the in-car service in partnership with two
major automakers General Motors and Volvo. This service is available in 37 cities in
the US (Hawkins, 2018). Trunk delivery is different from home/workplace delivery and
pick-up points delivery since the car moves and can be in different locations during
different periods of time, e.g., parked at the workplace during the morning and at the
commercial center during the afternoon. As a consequence, synchronization between
the car and the courier is required to accomplish the delivery.

All these delivery services can be combined, and instead of selecting one delivery
location during the online purchase, a customer can propose a set of delivery locations
with the associated time constraints. To deliver a package to a specific customer, the
courier only needs to choose one of the locations provided by the customer.

In this paper, we aim to develop an efficient solution method for the routing problem
in the context of last mile delivery including multiple delivery services: home/workplace,
pick-up points and car trunk. The last mile delivery with multiple delivery options al-
lows customers to choose several locations to receive their packages. This provides
customers more flexibility considering their own convenience. In addition, it could
increase the rate of successful first-time deliveries and decrease delivery costs.

In Figure 4.1, we provide an example of the routing problem considered in this
context. Six customers are represented with their associated locations grouped into
a dotted circle, representing the different clusters. Every possible delivery location
is associated with a time window (TW) during which delivery should occur. In the
case of home or trunk delivery, the TW represents the period when the customer or
the customer’s car is present at that location. In the case of a pick-up point, the
TW represents the period during which the courier can deliver the package before the
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customer arrives at the location and picks it up. The problem is to jointly determine the
exact location visited for each customer, and for each vehicle, the customers delivered
and the sequence of visits while satisfying TW and capacity restrictions. The feasible
solution given in the example in Figure 4.1 involves two vehicles, each of them serving
three customers.
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Figure 4.1: An example of the routing problem in the context of last mile delivery with
multiple delivery services.

The underlying problem of this practical application is the Generalized Vehicle
Routing Problem with Time Windows (GVRPTW), where clusters represent possible
delivery locations associated with a customer. When TWs are not considered, the
GVRPTW reduces to the Generalized Vehicle Routing Problem (GVRP)(Bektaş et al.,
2011). The special case of the GVRPTW where TWs of the locations associated with
the same customer do not overlap is called the Vehicle Routing Problem with Roaming
Delivery locations (VRPRDL)(Reyes et al., 2017).

This paper introduces the generalized vehicle routing problem with time windows
that to the best of our knowledge has not been studied before. Based on a set covering
formulation, we propose an efficient column generation based heuristic to solve the
GVRPTW. This heuristic solving method relies on a construction heuristic, a route
optimization procedure, local search operators, and a heuristic procedure to provide
negative reduced cost routes. All the procedures mentioned above take into account the
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main characteristic of the GVRPTW: given a customer in a route, we can choose the
location to visit. The proposed solution method is tested on different sets of instances
from the literature. Results proved the efficiency of the solving method.

The remainder of this paper is organized as follows. A formal description of the
problem and an integer programming formulation for the GVRPTW are provided in
Section 4.2. Section 4.3 presents the related literature. The description of the heuristic
is given in Section 4.4, including the set covering model, the construction heuristic,
the route optimization, the local search operators, and the negative reduced cost route
generation. Section 4.5 provides details about the experiments and reports the com-
putational results. Finally, conclusions are drawn in Section 4.6.

4.2 Problem description and formulations

The GVRPTW can be formally defined as follows. Given a directed graph G = (V ,A),
the set of vertices V = {0, 1, ..., N} is partitioned into C0 = {0}, C1, ..., CK clusters,
where K = {0, 1, ..., K} denotes the cluster index set. Hence, we have

⋃K
k=0 Ck = V

and Ck
⋂
Ck′ = ∅, ∀k, k′ ∈ K. Cluster C0 contains only the depot 0 where a fleet of

M homogeneous vehicles is located. Each vehicle has a capacity Q. Cluster Ck, k ∈
K\{0} represents the set of alternative locations in which customer k can be delivered.
Moreover, each customer is associated with a demand Qk, k > 0. We suppose that the
demand at the depot Q0 is 0. Each vertex is associated with a time window (TW)
[Ei, Li], i ∈ V with [E0, L0] = [0, T ] representing the overall time horizon. A visit can
only be made to a vertex during its TW, and an early arrival leads to a waiting time
while a late arrival causes infeasibility. Without loss of generality we suppose that the
loading and service times are equal to zero. The arc set contains arcs that link vertices
belonging to different clusters, that is, A = {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. Each
arc (i, j) ∈ A is associated with a traveling cost Cij and a traveling time Tij.

The GVRPTW consists of finding a set of M vehicle routes on G such that the
traveling cost is minimized and: (i) every route starts and ends at the depot; (ii)
exactly one vertex from each cluster is visited by a single vehicle; (iii) the sum of the
customer demands served by the same vehicle does not exceed Q; (iv) the service at
vertex i starts during its TW [Ei, Li], and (v) every vehicle leaves and returns to the
depot during [0, T ].

127



4. A COLUMN GENERATION BASED HEURISTIC FOR THE
GVRPTW

4.2.1 A compact formulation for the GVRPTW

The GVRPTW can be described with a mixed integer linear programming formulation
that uses four sets of variables:

• xij ∈ {0, 1}: equal to one if and only if arc (i, j) ∈ A belongs to the solution;

• yi ∈ {0, 1}: equal to one if and only if vertex i ∈ V is selected to be visited in
the solution;

• ti ∈ R+: the service time at vertex i ∈ V ;

• qi ∈ R+: the cumulative quantity delivered by the vehicle that serves vertex i ∈ V
when it is leaving it.

Note that, for the depot, t0 corresponds to the departure time from the depot.
Before presenting the mixed integer linear programming formulation for the GVRPTW,

let us introduce the following notation. Id(i) denotes the index of the cluster that con-
tains vertex i, thus i ∈ Ck ⇔ Id(i) = k. Given a vertex i ∈ V , δ+(i) = {(i, j) ∈ A|j ∈
V \ {i}} is the set of arcs leaving vertex i, and δ−(i) = {(j, i) ∈ A|j ∈ V \ {i}} is the
set of arcs entering vertex i.

The mathematical programming formulation is as follows:

minimize
∑

(i,j)∈A

Cijxij (4.1)

s.t.
∑
i∈Ck

yi = 1 ∀k ∈ K, (4.2)∑
(i,j)∈δ+(i)

xij = yi ∀i ∈ V \ {0}, (4.3)

∑
(0,j)∈δ+(0)

x0j ≤M (4.4)

∑
(i,j)∈δ+(i)

xij =
∑

(j,i)∈δ−(i)

xji ∀i ∈ V , (4.5)

ti − tj + Tijxij ≤ Liyi − Ejyj − (Li − Ej)xij ∀(i, j) ∈ A, j 6= 0, (4.6)

Eiyi ≤ ti ≤ Liyi ∀i ∈ V , (4.7)

ti + Ti0xi0 ≤ L0 ∀i ∈ V \ {0}, (4.8)

qi − qj +QId(j)xij ≤ Q(1− xij) ∀(i, j) ∈ A, j 6= 0, (4.9)

QId(i) ≤ qi ≤ Q ∀i ∈ V , (4.10)
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yi ∈ {0, 1} ∀i ∈ V , (4.11)

xij ∈ {0, 1} ∀(i, j) ∈ A. (4.12)

The objective function (4.1) is to minimize the total cost. Constraints (4.2) ensure
that each cluster is visited at one of its vertices exactly. Constraints (4.3) impose
that one arc leaves a vertex if and only if the vertex has been selected for delivery.
Constraint (4.4) guarantees that the number of routes does not exceed the size of
the fleet. Constraints (4.5) are the flow conservation constraints. Constraints (4.6)
and (4.7) determine the service time at each vertex and ensure that the service time
respects the TW of the vertex. Constraints (4.6) also eliminate subtours since they
generalize the subtour elimination constraints of Miller-Tucker-Zemlin for the traveling
salesman problem (Miller et al., 1960). Constraints (4.8) ensure that all the vehicles
return to the depot before the end of its TW. Constraints (4.9) and (4.10) ensure that
the capacities of the vehicles are respected. Constraints (4.11) and (4.12) are related
to the variable definitions.

The compact formulation above is introduced here to better explain the problem
and clarify the constraints. However, this model can be used to solve only very small
instances. Therefore, in this paper we present a heuristic column generation approach.
It is based on the set covering formulation for the GVRPTW presented in the next
section.

4.2.2 A set covering formulation for the GVRPTW

Let Ω denote the set of all feasible routes, i.e., all the routes respecting capacity and
time constraints. Let Wr be the cost of route r ∈ Ω and let Akr,∀k ∈ K \ {0}, r ∈ Ω

indicate whether cluster k is visited on route r (Akr = 1) or not (Akr = 0). This
formulation makes use of binary variables zr,∀r ∈ Ω, that indicate whether route r is
selected or not in the solution. The set covering formulation of the GVRPTW is as
follows:

minimize
∑
r∈Ω

Wrzr (4.13)

s.t.
∑
r∈Ω

Akrzr ≥ 1 ∀k ∈ K \ {0}, (4.14)∑
r∈Ω

zr ≤M, (4.15)

zr ∈ N ∀r ∈ Ω. (4.16)
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The objective function (4.13) minimizes the overall delivery costs. Constraints (4.14)
ensure that each cluster is visited at least once. Constraints (4.15) ensure that the
number of routes in the solution is smaller than the size of the vehicle fleet. Con-
straints (4.16) are variable definitions. Note that variables are defined as integer to
avoid adding constraints zr ≤ 1, ∀r ∈ Ω in the linear relaxation. It is clear that all
optimal solutions are such that zr ≤ 1, ∀r ∈ Ω.

Moreover, note that the definition of the problem requires that each cluster is visited
exactly once, while Constraints (4.14) require that each cluster is visited at least once.
On one hand, if the cost structure satisfies the triangle inequality, it is never optimal
to visit a cluster twice. On the other hand, in the LP relaxation of the set covering
model, the dual variables associated with Constraints (4.14) are non-negative, which
typically leads to a faster convergence of the column generation procedure.

The main drawback of the set covering formulation of the GVRPTW is that it is
defined on the complete route set Ω. This set grows exponentially with the number
of clusters K. As a consequence, we maintain a subset Ω1 of Ω that is iteratively
populated and on which we solve the set covering formulation.

4.3 Related literature

To the best of our knowledge, there is no existing literature on the GVRPTW. However,
there exist works addressing related problems as the generalized VRP (GVRP) and the
VRP with roaming delivery locations (VRPRDL). The GVRP is a special case of the
GVRPTW where the TWs are not considered. In the VRPRDL, TWs of locations
within the same cluster have a specific structure since they do not overlap in time.

The GVRP was introduced by Ghiani & Improta (2000). Customers are associated
with multiple service locations and a given demand. The GVRP consists of deter-
mining a set of routes for a given number of vehicles with limited capacity such that
exactly one service location of each customer is visited. The objective is to minimize
the total traveling cost. The GVRP has many applications, such as, urban waste col-
lection problem (Bautista et al., 2008), the vessels routing in maritime transportation,
healthcare logistics (Bektaş et al., 2011). Moreover, Baldacci et al. (2010) showed that
several problems like the traveling salesman problem (TSP) with profits, the VRP with
selective backhauls, the covering VRP, and the windy routing problem can be modeled
as GVRPs.
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Kara & Bektas (2003) proposed a compact integer linear programming formulation
for the GVRP, adapting the well-known Miller-Tucker-Zemlin (MTZ) constraints for
the TSP to the GVRP. Bektaş et al. (2011) proposed four integer linear programming
formulations for the GVRP and developed an efficient branch-and-cut algorithm to
solve it to optimality. They also developed an adaptive large neighborhood search
(ALNS) heuristic to compute upper bounds.

Ha et al. (2014) and Afsar et al. (2014) studied a variant of the GVRP where the
size of the fleet is not fixed. Ha et al. (2014) proposed a branch-and-cut algorithm,
that provides better results than the one presented by Bektaş et al. (2011). Afsar et al.
(2014) developed a very efficient iterated local search (ILS) which is able to find near
optimal solutions in a few seconds.

Zhou et al. (2018) introduced a city logistics problem called the multi-depot two-
echelon VRP with delivery options. In the second level of the distribution network,
two delivery options are considered: customer location and pick-up points. Thus, the
second level can be formulated as a GVRP.

Moccia et al. (2012) studied what they called the Generalized-VRPTW. This prob-
lem differs from the GVRPTW introduced in Section 4.2, since a TW is defined for
each cluster while TWs are associated with delivery locations in our case.

The VRPRDL has been introduced by Reyes et al. (2017), inspired by the trunk
delivery. The objective is to find a minimum-cost set of routes for a fleet of capacitated
vehicles in which the order of a customer has to be delivered to the trunk of the
customer’s car. Deliveries have to take place when the car is parked at one of the
locations visited on the customer’s travel itinerary. The VRPRDL is a special case of
the GVRPTW in which one cluster contains all possible car locations for one customer.
The TWs of the locations within a cluster have a specific structure since they are
non-overlapping. The authors developed a construction heuristic based on a greedy
randomized adaptive search procedure, and an improvement heuristic based on an
ALNS. The results highlighted the economic benefits for delivery companies to consider
trunk deliveries instead of the traditional home delivery.

Ozbaygin et al. (2017) developed a branch-and-price algorithm for the VRPRDL.
This algorithm was able to solve to optimality instances with up to 60 clusters in few
minutes. For most of the large instances with 120 clusters, the algorithm ended with
an optimality gap after 6 hours of computation. Ozbaygin et al. (2017) also provided
another set of instances for a hybrid delivery strategy combining trunk delivery and
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home delivery. In these instances, in each cluster the TW associated with the home
location corresponds to the planning horizon and overlaps all other TWs, while the
other TW associated with trunk locations are non-overlapping. This instance set also
have a specific TW structure. The results revealed that employing this combined
strategy led to an average cost savings of nearly 20% with respect to classical delivery
system when only home delivery is available.

When the size of the fleet is reduced to a single vehicle, the GVRP and the
GVRPTW respectively reduce to the Generalized TSP (GTSP) and the GTSP with
TW (GTSPTW). Fischetti et al. (1997) proposed an efficient branch-and-cut algorithm
to solve the asymmetric version of the GTSP. They developed exact and heuristic sep-
aration procedures for some classes of facet-defining inequalities. Yuan et al. (2019a)
developed a branch-and-cut algorithm for the GTSPTW and proposed several valid
inequalities. Their results showed that instances with up to 30 clusters could be solved
to optimality within one hour of computation time.

4.4 A column generation based heuristic

In this section we present the algorithm we developed to tackle the GVRPTW. The
matheuristic is based on the set covering formulation for the GVRPTW (Section 4.2.2).
This formulation relies on an exponential number of variables that represent all the
feasible routes. Since generating all routes is not tractable, we use a route pool that
is populated along the algorithm. A restricted version of the set covering model is
solved considering the routes of the pool only. All the routes inserted into the pool are
optimized by applying a procedure described in Section 4.4.1. Given a set of clusters
to be visited, the route optimization procedure seeks for the best sequence of clusters,
and the best location to visit in each cluster, in order to minimize the cost of the route.
The management of the route pool is detailed in Section 4.4.7.

The algorithm is divided in two phases. Phase 1 aims: 1) to construct feasible
solutions, and 2) to initialize the pool with promising routes. Phase 1 relies on a
construction heuristic (Section 4.4.3) that embeds the route optimization procedure. If
the construction heuristic finds a feasible solution, the set covering model is solved in
the hope of finding a good combination of the routes generated so far and to improve
the current best solution. The solution obtained after solving the set covering model
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is improved by applying local search moves (see Section 4.4.5). The above procedure
is repeated until the stopping criterion of Phase 1 is reached.

Phase 2 exploits dual information of the linear programming (LP) relaxation of the
set covering model to generate additional routes. In particular, the LP relaxation is
solved on the current pool of routes. Based on the dual variables, negative reduced
cost routes are generated and added to the pool. Then, the set covering model and the
local search method are applied, as in Phase 1, in order to improve the current best
solution. This procedure is repeated until the stopping criterion of Phase 2 is reached.

In the following, we introduce the main components of the proposed heuristic,
i.e., the route optimization procedure in Section 4.4.1, the construction heuristic in
Section 4.4.3, the local search procedure in Section 4.4.5 and the negative reduced cost
route generation in Section 4.4.6.

4.4.1 The route optimization procedure

In the following, we explain how the route optimization procedure works to optimize a
route visiting a set of clusters. This procedure is adapted from the method proposed
in Yuan et al. (2019a) to obtain an initial solution for the branch-and-cut algorithm
that is proposed for the GTSPTW. This procedure can also be viewed as an exten-
sion, by taking into account time windows, of the refinement procedure RP2 proposed
in Fischetti et al. (1997) for the GTSP.

The route optimization procedure works as follows. Let K̃ ⊂ K \ {0} be the set
of n = |K̃| different clusters to be visited. We are seeking for a feasible route with
a minimum cost that visits all these n clusters. A procedure to generate sequences
of clusters is repeated Nseq times. Starting from an empty sequence, the sequence of
clusters is iteratively generated based on the best insertion concept. Given a sequence
(h1, · · · , hp) of p (p ≤ n) different clusters of K̃ to visit, a labeling algorithm is ap-
plied to determine the optimal locations to be visited for each cluster of the sequence
(h1, · · · , hp).

Let us first describe the labeling algorithm. Given a sequence (h1, · · · , hp) of p
different clusters of K̃ to visit, a layered network (LN) is constructed as depicted
in Figure 4.2. This network has p + 2 layers corresponding to clusters Ch0 = C0,
Ch1 , . . . , Chp , Chp+1 = C0, with their respective vertices. Clusters Ch0 and Chp+1 both
represent the depot. The LN contains all arcs (i, j) such that Ei + Tij ≤ Lj, i ∈
Chf , j ∈ Chf+1

, f = 0, · · · , p. The objective is to find a path in the LN that starts at Ch0
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and arrives at Chp+1 visiting exactly one vertex in each layer, i.e., one vertex from each
cluster. If a vertex is visited, the visit must take place during its TW. The solution
can be obtained by determining the shortest path with TWs from Ch0 to Chp+1 .

. . . ...

Ch0

Ch1 Chp

Chp+1

C0 C0

Figure 4.2: The layered network.

To compute the shortest path with TWs on the LN, a labeling algorithm is applied.
A label Li associated with a vertex i consists of a pair (ci, ti) representing respectively
the cost and service time of a feasible partial path that starts at Ch0 and arrives at
vertex i. Let L(i) be the set containing all the labels associated with vertex i. Suppose
that Ccur is the current cluster and Cpre is the previous one. First, we calculate the
label set L(i), for all i ∈ Ccur by extending labels in L(j), for all j ∈ Cpre. Extending a
label Lj ∈ L(j) towards a vertex i ∈ Ccur consists in creating another label Li ∈ L(i)

such that:

ci = cj + Cij, (4.17)

ti = max{Ei, tj + Tji}. (4.18)

If ti > Li, the partial path associated with the label is infeasible and this label is then
discarded. In order to make the algorithm efficient, we only keep non-dominated labels.
We say that a label L1

i dominates a label L2
i if and only if c1

i ≤ c2
i and t1i ≤ t2i . It is

easy to see that extending L1
i across the same arcs toward the last vertex of the LN

would always produce a better solution than extending L2
i in the same way.

Hence, given a fixed visiting sequence of clusters (h1, . . . , hp) of cluster set K̃, by
applying the labeling algorithm, we can get its corresponding optimal solution. Then,
in order to generate good visiting sequences of clusters, we develop a cluster sequence
construction procedure based on the best insertion concept. The initial sequence is
empty, hence the corresponding LN contains two layers: Ch0 = Ch1 = C0. Then, at each
step, we randomly pick a cluster from K̃ that is not yet inserted into the sequence.
Suppose the current sequence is (h1, · · · , hp), p < n, and cluster Chi is chosen to be
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inserted next. It is obvious that there are p + 1 possible insertion positions for index
hi into the sequence. To determine the best insertion position, the labeling algorithm
described above is applied p + 1 times, one for each possible insertion. The sequence
that is kept is the one that provides the lowest cost, if such sequence exists. If not,
the sequence construction procedure is stopped. The cluster insertion procedure is
repeated until p = n to obtain a feasible solution visiting all the clusters in K̃. In this
process, the labeling algorithm is applied at most n(n+ 1)/2 times.

The sequence construction procedure is repeated Nseq times and the best solution
is recorded. Note that we always keep the current best solution during the process.
During the labeling algorithm, if a label Li has a cost greater than the cost of the
current best solution, then label Li is discarded. Moreover, note that if we provide
an initial feasible sequence of clusters to the route optimization procedure, the current
best solution is then initialized with this sequence.

Preliminary experiments lead us to set parameter Nseq = 30. Note that our al-
gorithm, in the worst case, calls n(n + 1)Nseq/2 times the labeling algorithm. When
n = |K̃| = 5, the number of all possible cluster sequences is 120, which is less than
6(6 + 1)30/2 = 630. It is then more efficient to enumerate all the sequences and to
compute the shortest path with TWs on each of them. In this case, the route op-
timization procedure provides an optimal route that visits the clusters in K̃. When
|K̃| = 6, the number of all possible sequences is 720, which is just a little greater than
6(6 + 1)30/2 = 630. Therefore, when |K̃| < 7, we choose to proceed with complete
enumeration, otherwise we apply the algorithm described above.

4.4.2 Speed-up the route optimization procedure

Since the route optimization procedure need to be called many times through the
heuristic, we use dedicated data structure to speed-up computation. In particular, in
order to avoid to repeat computations we maintain two pools of cluster sets:

• CSopt that contains all the cluster sets on which the route optimization procedure
has already found a feasible route;

• CS infea that contains all the cluster sets on which the route optimization proce-
dure has failed to find a feasible solution.
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Note that for every route r in the route pool Ω1, the corresponding cluster set Kr is in
CSopt.

During the construction heuristic (see Section 4.4.3), every time before calling the
route optimization procedure for a cluster set Kr, we first detect if the computation
has been already performed in the previous iterations. Thus, we check if: 1) Kr is in
CSopt, 2) Kr is in CS infea, 3) one of the cluster set in CS infea is the subset of Kr. If
condition 1) is true, the best route visiting the clusters in Kr is already in Ω1, and we
can retrieve the corresponding route. If condition 2) or 3) is true, we know that the
route optimization procedure did not find a feasible route that can visit this cluster set.
If none of the three conditions is true, then we apply the route optimization procedure
to determine the best route visiting the cluster set Kr. Note that in order to be efficient,
we use hashing techniques for this implementation.

For the calls to the route optimization procedure outside the construction heuristic,
we just detect if the cluster set is already in CSopt. If yes, we just get the corresponding
route; otherwise, the route optimization procedure is called.

4.4.3 The construction heuristic

The construction heuristic we developed falls into the category of the parallel insertion
heuristics. The number of available vehicles at the depot is denoted as M . The
proposed heuristic iteratively construct a set of at most M feasible routes that serve
all the customers. Let us denote by R = {r1, r2, ..., rM} the potentially partial routes
that we are iteratively constructing. Let Kr be the index set of customers/clusters
served by each route r ∈ R. Hence, at any step of the construction heuristic, we have⋃
r∈RKr ⊆ K, and Kr ∩ Kr′ = ∅, for all r, r′ ∈ R. At the end of the algorithm, if⋃
r∈RKr = K, we found a feasible solution for the GVRPTW.
First, we choose at most M customers relatively difficult to serve. These customers

are called pivot customers. The different criteria to select pivot customers are described
in Section 4.4.3.1. For each pivot customer k, the route optimization procedure (Sec-
tion 4.4.1) is called to determine the best route r that visits only customer k. This
route r is added to the set of partial routes R. If necessary, empty routes are added
to R so that R contains M partial routes.

Then, an unrouted customers (which is not yet assigned to a route) is selected, as
explained hereafter, to be inserted next. For each unrouted customer k ∈ K\(

⋃
r∈RKr),

we try to insert it into all the partial routes of R. The insertion cost of customer k
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into a route r is evaluated using the route optimization procedure. This means that
the route may deeply change when inserting a customer. Then we have a precise
evaluation of the new cost of the route. The advantage of using the route insertion
procedure is detailed in Section 4.4.3.2. The choice of the unrouted customer to insert
is performed with a regret strategy. For an unrouted customer k, the regret is defined
as the difference between the best and the second best insertion. Note that if for a
customer, there exists only one feasible insertion in all the partial routes ofR, its regret
equals to infinity. Then, the unrouted customer k∗ with the maximum regret is chosen
to be inserted in the route r ∈ R with the minimum insertion cost.

The procedure is repeated until all customers are inserted or insertions are not
possible anymore due to time and/or vehicle capacity constraints.

4.4.3.1 Choice of pivot customers

The construction heuristic starts with the choice of pivot customers. These customers
may be identified with different criteria. Here we present the three criteria we use in
this work. The construction heuristic is called several times during Phase 1. In the
first call, Criterion 1 is chosen, while Criterion 2 or Criterion 3 are chosen for the next
calls of the construction heuristic. At each call, the choice between Criterion 2 and
Criterion 3 is done randomly.

Criterion 1. Due to TWs, some customers cannot be visited on the same route. If
customers h and k cannot be served on the same route, we call this pair of customers
〈h, k〉 an incompatible pair. Formally, h and k are incompatible if Ei + Tij > Lj and
Ej + Tji > Li, for all i ∈ Ch, j ∈ Ck.

Based on all the incompatible pairs, we build a graph Ḡ = (V̄ , Ē), where the vertex
set V̄ contains K vertices, one per customer and (h, k) ∈ Ē if and only if 〈h, k〉 is an
incompatible pair. We then look for a maximum clique in Ḡ = (V̄ , Ē). By construction
of Ḡ, a clique represents a set of customers such that none of them be visited in the
same route since they are all incompatible. Hence, all the customers represented by
a clique in Ḡ have to be served in different routes. Therefore, we can choose the
customers belonging to a maximum clique in Ḡ as pivots. Here we use a recursive
backtracking algorithm (Carraghan & Pardalos, 1990) that searches for all maximal
cliques in graph Ḡ. It is an enumeration algorithm that backtracks when the size of
the current clique plus the size of the set of potential nodes to add is lower than the
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size of the current maximum clique. Since the algorithm returns all maximal cliques,
one of them is randomly chosen to initialize the pivots customers.

Note that the size of a maximum clique in Ḡ can be smaller than M , the number of
available vehicles at the depot. In this case, the remaining routes of R are initialized
with empty routes.

Criterion 2. For each vertex i ∈ V , we determine a vertex set Bi = {j1, j2} which
includes two vertices compatible with i, and such that j1 and j2 do not belong to the
same cluster. j1 is the nearest vertex from which i can be reached (i.e., it satisfies
Ej1 +Tj1i ≤ Li) and j2 is the nearest vertex that can be reached from i (i.e., it satisfies
Ei + Tij2 ≤ Lj2). Then, we calculate the average cost Ci between vertex i and the

vertices in Bi, Ci =
1

2

∑
j∈Bi Cij.

We then define a score wk for each customer k ∈ K \ {0} as follows:

wk =
1

|Ck|
∑
i∈Ck

(C0i + Ci). (4.19)

By using this score, we select the customers with the highest value of wk, i.e., cus-
tomers that are either far away from the depot and/or far away from other customers.
However, using only this score has the disadvantage of selecting as pivots some nearby
customers which are relatively far from the depot, but that could be served on the
same route. Therefore, it is appropriate to spread the pivots so that they belong to
different spatial regions. To this end, we define Ahk = {(i, j) ∈ A|i ∈ Ch, j ∈ Ck} as
the set of arcs from Ch to Ck, and Chk as the average traveling cost from cluster Ch to
cluster Ck. Chk is calculated as:

Chk =
1

|Ahk|
∑

(i,j)∈Ahk

Cij ∀h, k ∈ K \ {0}. (4.20)

Let us denote by P the set of selected pivots. At the beginning, this set P is empty,
and pivots are added one by one. To this end, we define a score w′k for each customer
k ∈ K \ {P ∪ {0}} as follows:

w′k = wk + min
h∈P
{min{Chk, Ckh}}. (4.21)

The selection of the pivots customers is performed as follows. At first, set P is
empty and we sort all the customers in k ∈ K \ {P ∪ {0}} by descending values of
w′k and store them in a list I. Then, we random select a number θ in the interval
[0, 1) and calculate θρ. The customer in position θρ|I| is chosen as a pivot, and added
to P . Then, the scores w′k of the other customers are updated, and the procedure is
repeated until M pivots are selected. Here, we choose ρ = 6 as in Ropke & Pisinger
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(2006). Note that when ρ = 1, the selection becomes purely random. When ρ = ∞,
the customer associated with the the best score w′k is selected.

Criterion 3. As with Criterion 2, this criterion computes the scores for each cluster
in order to iteratively select the clusters with the highest scores. This criterion is based
on a score related to the compactness of the clusters. Suppose that vertex i ∈ V has
coordinates (ai, bi). Here, we consider the barycenter (ack, b

c
k) of a cluster k ∈ K \ {0}:

ack =
1

|Ck|
∑
i∈Ck

ai, (4.22)

bck =
1

|Ck|
∑
i∈Ck

bi. (4.23)

Then, for each cluster k ∈ K \ {0} we define CinCk as the average traveling distance of
the vertices in Ck to its barycenter (ack, b

c
k):

CinCk =
1

|Ck|
∑
i∈Ck

√
(ai − ack)2 + (bi − bck)2. (4.24)

The score wk of cluster k ∈ K \ {0} is then defined as:

wk =
√

(ack − a0)2 + (bck − b0)2 − CinCk . (4.25)

By using this score, we favor compact clusters far from the depot.
Similarly with Criterion 2, we try to spread the pivots. We denote by P the

set of pivots already selected, and we use an updated score w′k for each cluster k ∈
K \ {P ∪ {0}}:

w
′

k = wk + min
h∈P
{min{Chk, Ckh}}. (4.26)

Based on w′k, the selection of pivot customers is performed as described for Criterion
2.

4.4.3.2 Interest in using the route optimization procedure

As mentioned at the beginning of Section 4.4.3, each time we need to compute the inser-
tion cost of a customer in a route, we apply the route optimization procedure described
in Section 4.4.1. In the following, we illustrate the advantage of using this optimization
procedure instead of a classical best insertion in the context of the GVRPTW.

An illustrative example is provided in Figure 4.3. Let us suppose that during the
construction heuristic there is a partial route r = (0, 2, 4, 7, 0) depicted in Figure 4.3(a),
visiting a set of clusters Kr = {1, 2, 3}. When trying to insert an unrouted cluster C4,
the route optimization method can obtain a best route visiting all the clusters in the

139



4. A COLUMN GENERATION BASED HEURISTIC FOR THE
GVRPTW

C1 C2 C3

0 0
1

2
3

4

5

6

7
8

(a)

C2 C1 C4

0 0

C3

4
5

1
2

3

6
7

8

9
10
11
12

(b)

Figure 4.3: Example of route optimization during the construction heuristic.

new set Kr′ = Kr ∪ {4} = {1, 2, 3, 4} as r′ = (0, 4, 1, 9, 6, 0), depicted in Figure 4.3(b).
By comparing Figure 4.3(a) and Figure 4.3(b), we can see that the visiting sequence of
clusters changes from (1, 2, 3) to (2, 1, 4, 3), meanwhile the vertex of each cluster visited
in the route r′ may be different from the vertices visited in the previous route r, e.g.,
the vertices visited in clusters C1, C3 change from vertices 2, 7 (in green) to 1, 6 (in red)
respectively.

In general, in the process of the construction heuristic, when trying to insert an
unrouted cluster Ck into an incumbent route r, the route optimization is used to identify
the new best route r′ visiting clusters in Kr∪{k}. Then, the cost change when inserting
Ck into r is 4C = Wr′ − Wr, where Wr′ and Wr are the costs of route r′ and r

respectively.

4.4.4 Recovering infeasibility

When the set covering model is solved on the set of routes Ω1, the solution that is
obtained may visit some clusters more than once. This may occur since if a route r
visiting a set of clusters Kr is added to the route pool Ω1, there is no guarantee that
all the routes visiting subsets of Kr are also in Ω1. However, a solution where a cluster
is visited more than once is not a feasible solution according to the definition of the
GVRPTW given in Section 4.2.
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When this occurs, we eliminate the repeated visits of clusters. Let us note ΩSC the
set of routes in the solution of the set covering model solved with the route set Ω1. Let
K′ be the set of clusters served in more than one route in set ΩSC . Let us note ΩSP

a set of routes generated from the routes in ΩSC as follows. First, ΩSP is initialized
with all the routes in ΩSC . For each route r in ΩSC , let us indicate by Kr the set of
clusters visited in r, and by K̃r = Kr ∩ K′ the set that contains the repeated clusters.
Then, for each subset of clusters S ⊆ K̃r, we consider the cluster set Kr \S. The route
optimization procedure is applied to this cluster set Kr \ S, and the route obtained is
stored in ΩSP . Note that, by only keeping vertices in r belonging to clusters in Kr \ S,
we may obtain a feasible route r̃ visiting cluster set Kr \ S. This route r̃ can be used
as an initial solution for the route optimization procedure.

To obtain a feasible solution for the GVRPTW, we solve the set covering model
where we replace Constraints (4.14) by

∑
r∈ΩAkrzr = 1,∀k ∈ K \ {0}. This makes the

set covering model a set partitioning model. The new model is then solved on ΩSP .
By construction of ΩSP , we have the guarantee to obtain a feasible solution for the
GVRPTW.

4.4.5 Local search

A local search method is applied to improve the current best solution obtained af-
ter solving the set partitioning model and recovering infeasibility if necessary (Sec-
tion 4.4.4). The GVRPTW differs from classical vehicle routing problems, since one
customer has multiple locations that can be chosen to be visited. In order to improve
the flexibility of the local search moves for the GVRPTW, we adopt the so-called en-
hanced insertion and deletion concept proposed by Reyes et al. (2017), and extend it
to the swap move.

Figure 4.4 gives an example of the enhanced insertion. A part of an original route is
depicted in Figure 4.4(a). The vertices visited on the route are colored in green. When
we try to insert a new cluster Cu between two consecutive clusters Chk and Chk+1

, a new
route can be obtained using the enhanced insertion, as depicted in Figure 4.4(b). The
dotted line in Figure 4.4(b) indicates the new route if the classical insertion is used.
By comparison, we can see that the enhanced insertion allows the predecessor cluster
Chk and the successor cluster Chk+1

to change their visited vertices (from green vertices
to red vertices).

141



4. A COLUMN GENERATION BASED HEURISTIC FOR THE
GVRPTW

Chk Chk+1

ik ik+1

ik−1 ik+2

(a)

Chk Cu Chk+1

ik−1

ik

i′k iu

ik+1

i′k+1 ik+2

(b)

Figure 4.4: An example of enhanced insertion.

The enhanced moves are based on the concept of effective time window. Assume

that we have a feasible fixed sequence of clusters (h1, · · · , hp) and a corresponding in-

cumbent feasible route r = (i0, i1, · · · , ip, ip+1), where i0 = 0, ik ∈ Chk , ∀k ∈ {1, · · · , p},
and ip+1 = 0 is a duplication of the depot. For each ik in r, we compute its effective

TW, [ξrik , ζ
r
ik

], specifying the earliest and latest times that the vertex ik can be feasibly

visited on this route. Given a route r, these effective TWs are computed using the

following recursion rules:

ξri0 = Ei0 , ξ
r
ik

= max{Eik , ξrik−1
+ Tik−1ik} ∀k ∈ {1, · · · , p+ 1}, (4.27)

ζrip+1
= Lip+1 , ζ

r
ik

= min{Lik , ζrik+1
− Tikik+1

} ∀k ∈ {0, · · · , p}. (4.28)

In addition, for each cluster we also keep similar TWs for every vertex i ∈ Chk \ {ik}:

ξri = max{Ei, ξrik−1
+ Tik−1i}, (4.29)

ζri = min{Li, ζrik+1
− Tiik+1

}. (4.30)

Assuming ξri ≤ ζri , this TW represents the earliest and latest times to visit Chk if the

visit happens at the alternate vertex i instead of ik, with the other vertices of the route

unchanged.

With these effective TWs available, we can check whether a new customer u can be

inserted on route r at location iu ∈ Cu between customers hk and hk+1 while simultane-

ously switching customer hk to delivery location i ∈ Chk and customer hk+1 to delivery
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location j ∈ Chk+1
if

max{Eiu , ξri + Tiiu} ≤ min{Liu , ζrj − Tiuj}. (4.31)

Accordingly, the cost increase of the enhanced insertion 4C(hk, iu, hk+1) are com-
puted as follows. Given the incumbent route r = (0, i1, · · · , ik, ik+1, · · · , ip, 0), suppose
i′k ∈ Chk \ {ik}, i′k+1 ∈ Chk+1

\ {ik+1}. The reader can refer to Figure 4.4 for easy under-
standing of the computation. When a feasible insertion is obtained without changing
the predecessor or successor,

4C(hk, iu, hk+1) = Cikiu + Ciuik+1
− Cikik+1

. (4.32)

When a feasible insertion is obtained by only changing the predecessor ik to i′k,

4C(hk, iu, hk+1) = Cik−1i
′
k

+ Ci′kiu + Ciuik+1
− Cik−1ik − Cikik+1

. (4.33)

When a feasible insertion is obtained by only changing the successor ik+1 to i′k+1,

4C(hk, iu, hk+1) = Cikiu + Ciui′k+1
+ Ci′k+1ik+2

− Cikik+1
− Cik+1ik+2

. (4.34)

When a feasible insertion is obtained by changing both the predecessor ik to i′k and the
successor ik+1 to i′k+1,

4C(hk, iu, hk+1) = Cik−1i
′
k

+ Ci′kiu + Ciui′k+1
+ Ci′k+1ik+2

− Cik−1ik − Cikik+1
− Cik+1ik+2

. (4.35)

The enhanced deletion is illustrated in Figure 4.5. It consists in removing a cluster
from the current route allowing to change the vertices visited in the predecessor and
successor clusters. The cost variation is computed as previously.

Chk−1
Chk Chk+1

(a)

Chk−1
Chk+1

(b)

Figure 4.5: An example of enhanced deletion.
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Combining the enhanced insertion and deletion, an enhanced relocation is obtained.
Moreover, when the relocations of 1) cluster Cu in the current position of cluster Cv
and 2) cluster Cv in the current position of cluster Cu are simultaneously considered,
the enhanced swap move is obtained.

In our local search we consider two types of moves: inter-route relocations and
swaps. They are sequentially applied to the current best solution. The neighborhoods
are completely explored and the best improvement strategy is applied.

Let us indicate by r1 and r2 the routes involved in the move, and r′1 and r′2 the
routes obtained once the move has been applied. Moreover, let us indicate by Kr1 , Kr2 ,
Kr′1 , Kr′2 the cluster sets associated with routes r1, r2, r′1 and r′2 respectively.

Before computing the cost increase due to the implementation of a move, we first
check if Kr′1 or Kr′2 are present in CSopt. If so, we know the best route that can be
obtained from the corresponding cluster set. Then, we just consider the cost of this best
route. If the cluster sets Kr′1 or Kr′2 are not present in CSopt, the enhanced local search
move is conducted and the cost increase is calculated accordingly. If the total cost
increase is negative (the move improves the current solution), then each new route, r′1
and r′2, is improved by applying the route optimization procedure if the corresponding
cluster set was not present in CSopt.

4.4.6 Negative reduced cost route generation

Let us first introduce some definitions and notations that will be used in this section.
The linear relaxation of the set covering model defined by (4.13)∼(4.16) (Section 4.2)
is called the master problem (MP). As the size of the set Ω grows exponentially with
the number of customers K, the set covering model is usually solved on a subset Ω1

of Ω and the linear relaxation of the resulting model is called the restricted master
problem and denoted as RMP (Ω1).

Let λk be the nonnegative dual variable associated with the visit of cluster Ck
(Constraints (4.14)), and let λ0 be the nonpositive dual variable associated with the
fleet size constraint (Constraint (4.15)). The dual program D(Ω) of MP is as follows:

maximize
∑

k∈K\{0}

λk + Uλ0 (4.36)

s.t.
∑

k∈K\{0}

Akrλk + λ0 ≤ Wr ∀r ∈ Ω, (4.37)

λk ≥ 0 ∀k ∈ K \ {0}, (4.38)

144



4.4 A column generation based heuristic

λ0 ≤ 0. (4.39)

The reduced cost of a route r ∈ Ω as a value

Wr −
∑

k∈K\{0}

Akrλk − λ0. (4.40)

A route associated with a negative reduced cost may reduce the value of the ob-
jective function of the RMP (Ω1). It is then potentially beneficial to introduce such a
route in Ω1. To generate routes with negative reduced costs, we proceed as follows.

Step 1. For all routes in the route pool Ω1, we compute their corresponding reduced
costs. The routes with reduced costs equal to 0 are collected in a set Ωrc0

1 .
Step 2. We apply the deletion, insertion and relocation moves on every route

in Ωrc0
1 . These moves are based on the enhanced insertion and deletion presented in

Section 4.4.5. The routes obtained by applying a move that decreases the reduced cost
are stored in a set Γneg. Let us consider a route r ∈ Ωrc0

1 and its corresponding cluster
set Kr.

• Deletion. For each cluster k visited in r, we check if the cluster set Kr \{k} is in
CSopt. If not, we apply the enhanced deletion of cluster k from Kr. If we obtain
a new route r′ which decreases the reduced cost of r, we add r′ to set Γneg.

• Insertion. For each cluster k not visited by route r, that is, k ∈ K\ {Kr ∪{0}},
we first check if Kr ∪ {k} is in CSopt. If not, we apply the enhanced insertion
of cluster k into all the possible positions in r. If a new route r′ decreases the
reduced cost of r, we put r′ in Γneg, and we stop trying to insert cluster k in the
remaining positions of route r.

• Relocation. For each cluster k that is not visited by route r, i.e., k ∈ K \ {Kr ∪
{0}}, and for each cluster k′ visited by route r, i.e., k′ ∈ Kr we first check if
Kr ∪ {k} \ {k′} is in CSopt. If not, we apply the enhanced relocation of cluster
Ck′ in the current position of cluster Ck. If a new route r′ decreases the reduced
cost of r, we add r′ to Γneg.

Step 3. First, we rank all the routes in set Γneg in ascendant order with respect
to their reduced costs. Moreover, all routes in Γneg are optimized using the route
optimization procedure with the original routes as initial solutions. Then, Ωrc0

1 is
emptied. The first N best

neg routes in Γneg are included in Ωrc0
1 , and Γneg is then emptied.

Step 4. We repeat Step 2 and Step 3 for IterRC iterations.
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4.4.7 Management of the route pool Ω1

The route pool Ω1 is a subset of the whole route set Ω. It is populated in the course of

the procedure. More specifically, each time the route optimization procedure (explained

in Section 4.4.1) finds a feasible route, the route is inserted in Ω1. This means that,

in the construction heuristic, even routes obtained during the evaluation of potential

cluster insertions are added to Ω1 (after a call to the route optimization procedure),

even if the insertion is not implemented. Similarly, in the local search method and

in the generation of negative reduced cost routes, whenever a move has a negative

cost increase, the new routes are added in Ω1 (after a call to the route optimization

procedure), even if the move is not implemented on the current solution.

4.4.8 Overall procedure

Here we explain the overall procedure of the algorithm, and provide some details about

the stopping criteria for each phase. In Phase 1, we use the construction heuristic

(Section 4.4.3) to build a feasible solution. If a feasible solution is obtained, based

on the route pool Ω1 built so far, we solve the set covering model (Section 4.2.2) to

improve the current best solution. A time limit of 30 seconds is set to solve the set

covering problem. If the solution visits some clusters more than once, we eliminate the

repeated visits to the same cluster (Section 4.4.4). Then, we apply local search moves

(Section 4.4.5) to improve the current best solution. If the stopping criteria are not

reached, the above procedure is repeated. The stopping criterion of Phase 1 depends

on two parameters Iter1 and nbFeaS. Phase 1 stops after Iter1 iterations, or when

nbFeaS feasible solutions have been obtained from the construction heuristic.

In Phase 2, the LP relaxation of the set covering model based on the route pool Ω1

(the restricted master problem RMP (Ω1)) is solved. Based on the dual information,

routes with negative reduced cost are generated (Section 4.4.6). Then, the set covering

model and the local search moves are applied as described in Phase 1 trying to improve

the current best solution. If the stopping criterion of Phase 2 is not reached, the

above procedure is repeated. Phase 2 stops after Iter2 iterations, or if the current

best solution has not changed in the last nbNonImprS iterations, or if no route with

negative reduced cost has been found.
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4.5 Computational experiments

In this section, we report the results we obtained with the column generation based
heuristic presented in Section 4.4. The algorithm is implemented in C++ and CPLEX
12.6.3 is used to solve linear programs through Concert Technology. All experiments
are performed on a machine with Intel(R) Core(TM) i5-6200U CPU, 2.30GHz, 8G
RAM.

4.5.1 Instances

In our computational experiments, we consider three sets of instances used by Ozbaygin
et al. (2017), with 100 instances in total. The first set of instances S1 consists of 40
VRPRDL instances. For these instances, the number of customers ranges from 15 to
120 and the number of vertices from 50 to 471. Note that due to the presence of TW
some vertices cannot be reached. Thus, the number of vertices in the instances can
be reduced, ranging from 28 to 293. Each customer has at most 5 delivery locations,
with the first and last being home location. The TWs associated with these locations
are non-overlapping. The second set of instances S2 consists of 40 VRPHRDL (VRP
with home and roaming delivery locations) instances. Each instance in S2 is generated
from an instance in S1 by keeping one home location for each customer and replacing
its TW with the overall time horizon [0, T ]. The third set of instances S3 contains two
groups of 10 medium-size VRPRDL instances, all with 40 customers. The number of
vertices ranges from 142 to 174, and it can be reduced due to the presence of TW from
90 to 117. The second group consists in locating the delivery locations (except home)
closer to the depot of each instance but with shorter TWs.

To test the influence of the route length on the solution, i.e., the number of cus-
tomers that a vehicle can deliver, on the performance of the proposed algorithm, we
modify instances in S1 and S2, i.e., VRPRDL-variant and VRPHRDL-variant. For an
instance of VRPRDL, we first reduce the size of the fleet, the demand of every cus-
tomer and the traveling time between every two locations by 2 respectively. Whenever
the value is not integer, we round it to the smallest integer. Then we modify the TWs
of the locations for each customer. The TW of the first location does not change, as
well as the upper bounds of the TWs of all the other locations. The lower bound of a
location is set to the upper bound of the previous location in the customer’s itinerary
plus the traveling time to it. The VRPHRDL-variant is generated similarly as the
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VRPRDL-variant. For these two sets of instances, the number of vertices ranges from
50 to 471 and it can be reduced due to the presence of TW, from 39 to 392.

4.5.2 Parameters

From the description of the algorithm in Section 4.4, there are six parameters to set.
For the stop criterion of Phase 1, there are: Iter1 the maximal number of iterations,
and nbFeaS the minimal number of feasible solutions to obtain from the construction
heuristic. For the stop criterion of Phase 2, there are: Iter2 the maximal number
of iterations, and nbNonImprS the maximal number of consecutively non-improved
solutions. In the negative reduced cost routes generation, there are: N best

neg the number
of negative reduced cost routes used to iterate the procedure, and IterRC the number of
iterations of the procedure. We conduct the experiments using Iter1 = 100, nbFeaS =

10, Iter2 = 10, nbNonImprS = 5, N best
neg = 50, IterRC = 3.

4.5.3 Preprocessing

The TW width can be reduced by taking into account the earliest and the latest
arrival and departure times at each vertex of the graph from or to another vertex. In
particular, we consider the following conditions proposed by Desrochers et al. (1992):

• earliest arrival time from predecessors: Ei = max{Ei,min{Li,min(j,i)∈A(Ej + Tji)}};

• earliest departure time to successors: Ei = max{Ei,min{Li,min(i,j)∈A(Ej − Tij)}};

• latest arrival time from predecessors: Li = min{Li,max{Ei,max(j,i)∈A(Li + Tji)}};

• latest departure time to successors: Li = min{Li,max{Ei,max(i,j)∈A(Lj − Tij)}}.

These conditions are applied iteratively to all vertices until no TW can be reduced.

Moreover, we eliminate from graph G vertices and arcs that cannot be part of any
feasible solution. To this end, we:

• eliminate a vertex i ∈ V if a round trip from the depot to the vertex, i.e., route
0− i−0 leads to a time window violation: E0 +T0i > Li, or max {E0 + T0i, Ei}+

Ti0 > L0;
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• eliminate an arc (i, j) ∈ A if it is not possible to go from i to j: Ei + Tij > Lj,
or if the route that starts from the depot, visits location i, then location j then
goes back to the depot (i.e., route 0 − i − j − 0) violates at least one TW:
max {E0 + T0i, Ei}+ Tij > Lj, or max {max {E0 + T0i, Ei}+ Tij, Ej}+ Tj0 > L0.

4.5.4 Computational results

The results on instances in S1, S2 and S3 are reported in Tables 4.1, 4.2 and 4.3
respectively. We compare the results of the branch-and-price (BP) algorithm presented
in Ozbaygin et al. (2017) and the column generation based heuristic (CGBH) proposed
in this paper. Instances with 15 to 20 customers are called small instances, instances
with 30 to 60 customers are called medium-size instances, while instances with 120
customers are large instances.

In Tables 4.1, 4.2 and 4.3, column instance represents the name of the instance,
column K is the number of customers, and column M is the number of available
vehicles at the depot. The next two columns labeled BP present the results obtained
by the branch-and-price algorithm of Ozbaygin et al. (2017). Column best-known is
the value of the best solution obtained from different parameter settings of the BP.
Column time/s is the computation time in seconds to obtain the best solution. Note
that it does not include the time for the heuristic of Reyes et al. (2017) to find an
initial solution. The time limit has been set to 2 hours for small and medium-size
instances and 6 hours for large instances. If the computation time for one instance
is less than the time limit, then it means that the instance was solved to optimality
by the BP algorithm. The next columns labeled CGBH show the results obtained
using the CGBH proposed in this work. Column obj represents the objective value
obtained, and time/s is the computation time in seconds. In the column GAP/% we
provide the relative gap in percentage between the results obtained from the CGBH
and the best-known results provided by the BP algorithm of Ozbaygin et al. (2017).
It is calculated as GAP/% = 100 × (obj − best-known)/best-known. Column nbR
represents the number of routes in the best solution obtained by the CGBH. Columns
minL and maxL represent the length of the shortest and longest route in the best
solution respectively. Column averL is the average length of all the routes in the best
solution. Note that in the last row of Tables 4.1 and 4.2, we show the average results
restricted to the 10 large instances. In the last row of Table 4.3, we show the average
results for all the 20 instances in set S3.
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Table 4.1: Results on VRPRDL instances in set S1.

instance K M
BP CGBH

best-known time/s obj time/s GAP/% nbR minL maxL averL

0

15

5 901 0.26 901 0.18 0 4 2 6 3.8
1 6 1286 0.04 1286 0.13 0 5 2 4 3.0
2 5 991 0.07 991 0.16 0 4 3 4 3.8
3 6 1062 0.04 1062 0.11 0 5 1 4 3.0
4 7 1832 0.02 1832 0.14 0 6 1 6 2.5

5

20

6 1294 1.08 1294 0.42 0 5 2 6 4.0
6 5 1155 2.87 1155 1.04 0 4 3 9 5.0
7 7 1455 0.07 1455 0.20 0 6 2 5 3.3
8 6 1260 0.52 1260 0.32 0 5 1 7 4.0
9 8 1684 0.03 1684 0.18 0 7 1 5 2.9

10

30

8 1922 1.13 1922 1.03 0 7 3 7 4.3
11 9 2324 14.61 2324 0.86 0 8 2 6 3.8
12 8 1747 0.68 1747 0.95 0 6 2 10 5.0
13 7 1273 0.64 1273 1.28 0 6 2 6 5.0
14 7 1694 0.50 1694 0.78 0 6 3 7 5.0
15 8 1938 0.75 1938 0.69 0 7 1 7 4.3
16 9 1965 0.73 1965 1.86 0 8 1 11 3.8
17 8 1827 0.23 1827 0.43 0 7 2 6 4.3
18 9 2083 11.13 2083 0.83 0 7 2 7 4.3
19 8 1822 1.53 1822 1.09 0 6 1 8 5.0

20

60

14 3761 4.13 3761 3.87 0 13 2 7 4.6
21 11 2828 10.74 2828 5.82 0 10 3 8 6.0
22 17 4440 1.10 4440 1.78 0 16 2 5 3.8
23 13 3378 11.62 3378 4.81 0 11 2 8 5.5
24 13 3161 643.79 3161 7.46 0 11 2 9 5.5
25 17 4536 1.87 4536 3.03 0 16 1 8 3.8
26 11 2865 7.08 2865 6.05 0 10 2 8 6.0
27 15 4173 43.90 4173 6.19 0 14 1 8 4.3
28 16 3964 38.25 3964 3.42 0 14 2 7 4.3
29 15 4107 1.80 4107 2.11 0 14 2 7 4.3

30

120

19 4935 1629.82 4935 53.79 0 17 2 13 7.1
31 21 5278 21600.00 5267 130.64 -0.21 18 3 13 6.7
32 19 5083 21600.00 5061 69.09 -0.43 18 1 11 6.7
33 20 5218 8547.16 5218 43.43 0 17 5 11 7.1
34 22 5519 21600.00 5500 62.62 -0.34 20 1 14 6.0
35 25 6498 168.13 6498 36.31 0 22 1 9 5.5
36 20 4845 21600.00 4830 38.94 -0.31 17 2 11 7.1
37 21 5608 21600.00 5605 51.76 -0.05 21 1 12 5.7
38 24 5849 21600.00 5848 61.27 -0.02 20 2 9 6.0
39 21 5048 21600.00 5006 73.31 -0.83 18 2 11 6.7

Average 5388.1 16154.51 5376.8 62.11 -0.22 18.8 2.0 11.4 6.4
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Table 4.2: Results on VRPHRDL instances in set S2.

instance K M
BP CGBH

best-known time/s obj time/s GAP/% nbR minL maxL averL

0

15

5 773 0.62 773 0.34 0 3 2 7 5.0
1 6 1065 0.08 1065 0.15 0 4 2 6 3.8
2 5 988 0.11 988 0.33 0 3 3 8 5.0
3 6 914 0.17 914 0.33 0 3 4 6 5.0
4 7 1710 0.04 1710 0.09 0 6 1 5 2.5

5

20

6 1099 2.84 1099 0.95 0 4 2 7 5.0
6 5 996 11.02 996 1.47 0 3 4 12 6.7
7 7 1346 0.33 1346 0.29 0 5 1 6 4.0
8 6 997 0.56 997 0.65 0 4 1 7 5.0
9 8 1166 0.18 1166 0.30 0 4 2 8 5.0

10

30

8 1587 8.54 1587 1.76 0 5 5 9 6.0
11 9 1808 4.7 1808 1.35 0 6 3 9 5.0
12 8 1563 3.38 1563 1.92 0 6 1 10 5.0
13 7 1058 3.26 1058 2.21 0 4 6 9 7.5
14 7 1347 155.93 1347 3.49 0 5 3 8 6.0
15 8 1517 7200.00 1517 2.43 0 5 1 9 6.0
16 9 1445 2.14 1445 2.06 0 5 4 10 6.0
17 8 1627 26.67 1627 2.15 0 5 5 7 6.0
18 9 1461 1.59 1461 1.27 0 5 1 11 6.0
19 8 1715 2.09 1715 1.78 0 6 1 8 5.0

20

60

14 2580 396.47 2580 12.48 0 8 4 9 7.5
21 11 2213 7200.00 2207 35.37 -0.27 7 5 14 8.6
22 17 3363 194.98 3363 5.16 0 10 3 8 6.0
23 13 2569 7200.00 2569 17.72 0 8 4 14 7.5
24 13 2400 7200.00 2378 22.45 -0.92 8 1 13 7.5
25 17 2845 7200.00 2845 10.91 0 9 3 10 6.7
26 11 2518 33.85 2518 10.33 0 8 4 11 7.5
27 15 2758 3392.94 2758 26.33 0 8 3 15 7.5
28 16 2892 7200.00 2892 15.53 0 9 4 10 6.7
29 15 2691 41.77 2691 6.91 0 8 5 11 7.5

30

120

19 3984 21600.00 3666 123.60 -7.98 12 1 16 10.0
31 21 3958 21600.00 3897 308.24 -1.54 14 1 15 8.6
32 19 3630 21600.00 3554 319.05 -2.09 12 1 15 10.0
33 20 3891 21600.00 3701 194.26 -4.88 12 1 18 10.0
34 22 3255 21600.00 3174 277.10 -2.49 10 3 16 12.0
35 25 4525 21600.00 4254 287.16 -5.99 13 1 14 9.2
36 20 3395 21600.00 3218 153.57 -5.21 10 10 16 12.0
37 21 3976 21600.00 3935 241.12 -1.03 14 1 13 8.6
38 24 4316 21600.00 4313 132.94 -0.07 17 1 15 7.1
39 21 3680 21600.00 3584 408.80 -2.61 11 5 17 10.9

Average 3861.00 21600.00 3729.60 244.58 -3.39 12.5 2.5 15.5 9.8
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Table 4.1 shows that the proposed CGBH is able to obtain the optimal values for
all the small and medium-size instances in less than 10 seconds. For the large instances
that were solved to optimality by the BP algorithm (instance 30, 33 and 35), the CGBH
gets the optimal values in less than 1 minute. For the large instances that were not
solved to optimality, the CGBH always improve the best-known values. For the ten
large instances, the CGBH is able to improve by 0.22% the solutions found by the BP
algorithm, using around one minute of computation time.

Table 4.2 shows that the CGBH can get the optimal values or even improve the
best-known results for all the instances. In some cases (instance 30, 35 and 36), the
CGBH improves the best-known values by 7.98%, 5.99% and 5.21% respectively. For
the ten large instances, the CGBH averagely improves the best-known results by 3.39%
using less than 5 minutes of computation time.

Table 4.3 shows that the CGBH gets the best-known values for all the instances in
less than 10 seconds.

Table 4.3: Results on instances in set S3.

instance K M
BP CGBH

best-known time/s obj time/s GAP/% nbR minL maxL averL

41_v1

40

11 3203 1249.35 3203 2.34 0 10 2 9 4.0
42_v1 10 2799 3.00 2799 1.35 0 9 1 8 4.4
43_v1 9 2607 7200.00 2607 3.86 0 8 2 12 5.0
44_v1 8 2261 98.52 2261 2.39 0 7 3 7 5.7
45_v1 11 3217 1.63 3217 1.44 0 10 2 7 4.0
46_v1 10 2805 3.81 2805 1.48 0 9 3 7 4.4
47_v1 12 3339 3710.35 3339 2.36 0 10 2 7 4.0
48_v1 11 3325 1.15 3325 1.39 0 10 1 8 4.0
49_v1 12 3534 104.26 3534 1.21 0 11 2 5 3.6
50_v1 10 2752 8.74 2752 4.24 0 10 1 9 4.0
41_v2 8 2133 854.47 2133 7.07 0 7 3 8 5.7
42_v2 8 1946 1005.36 1946 4.11 0 7 1 8 5.7
43_v2 9 1966 270.72 1966 5.29 0 8 2 9 5.0
44_v2 7 1610 41.59 1610 4.91 0 6 1 9 6.7
45_v2 9 2478 9.76 2478 5.83 0 8 2 10 5.0
46_v2 10 2469 27.37 2469 2.39 0 8 3 7 5.0
47_v2 9 1946 68.96 1946 4.55 0 7 2 8 5.7
48_v2 9 2380 477.83 2380 3.01 0 8 3 7 5.0
49_v2 10 2492 13.62 2492 2.41 0 8 2 7 5.0
50_v2 10 2443 164.37 2443 3.69 0 8 3 10 5.0

Average 2585.25 765.74 2585.25 3.27 0 8.5 2.1 8.1 4.9

In conclusion, the proposed CGBH is very efficient. It is able to obtain very high-

152



4.5 Computational experiments

quality solutions within short computation times.

The last four columns of each table, i.e., columns nbR, minL, maxL, averL, report
average statistics on the lengths of the routes in the best solutions. From column maxL

in Table 4.1 and 4.2, it can be seen that the maximum number of customers that a
vehicle serves are 14 and 18 for VRPRDL and VRPHRDL instances respectively. By
comparing the average results for the large instances, it can be seen that the average
length of routes in the best solution is 6.4 and 9.8 for VRPRDL and VRPHRDL
instances respectively. In general, the number of customers that one vehicle serves is
not large enough compared with real-life cases. In real life, one courier could make
around 30 deliveries per day. In order to be more consistent with real-life cases and
enable one vehicle to deliver more customers, we test the CGBH algorithm on the
VRPRDL-variant and VRPHRDL-variant instances generated in Section 4.5.1 and the
results are reported in Table 4.4.

In Table 4.4, the average results for the medium-size instances are also given. From
the average results, for VRPRDL-variant and VRPHRDL-variant instances with 30
customers, the CGBH procedure takes less than half a minute and 1 minute respec-
tively to terminate. For VRPRDL-variant and VRPHRDL-variant instances with 60
customers, it takes around 3 minutes and 6 minutes to terminate respectively. It can
be concluded that the CGBH is still very efficient for solving medium-size VRPRDL-
variant and VRPHRDL-variant instances. However, for large VRPRDL-variant and
VRPHRDL-variant instances with 120 customers, CGBH takes more than 20 minutes
and 40 minutes respectively.

However, the length of the routes in the best solution increases compared with the
VRPRDL and VRPHRDL instances. For the medium size instances, the maximum
number of customers that a vehicle delivers is 24 and 26 for VRPRDL-variant and
VRPHRDL-variant respectively. For the large instances, the maximum number of
customers that a vehicle serves is 30 and 32 for VRPRDL-variant and VRPHRDL-
variant respectively, while the average number becomes 15.9 and 20.0 for VRPRDL-
variant and VRPHRDL-variant respectively.

We can conclude that if the number of customers that a vehicle serves becomes
large on average, the problem becomes, as expected, more difficult to solve. This is
because the route optimization method, which is frequently invoked in the course of
the algorithm, becomes more time consuming when the routes are longer.
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Table 4.4: Results on variants of VRPRDL and VRPHRDL instances.

instance K M
CGBH VRPRDL-variant CGBH VRPHRDL-variant

obj time/s nbR minL maxL averL obj time/s nbR minL maxL averL

0

15

3 736 2.90 2 7 8 7.5 675 4.21 2 1 14 7.5
1 3 798 1.98 3 1 10 5.0 745 3.06 2 5 10 7.5
2 3 802 1.94 2 7 8 7.5 796 1.46 2 7 8 7.5
3 3 726 1.20 2 4 11 7.5 708 3.75 2 1 14 7.5
4 4 1125 0.90 2 6 9 7.5 1083 1.70 2 6 9 7.5

5

20

3 951 3.45 3 6 8 6.7 869 6.31 2 6 14 10.0
6 3 831 9.40 2 6 14 10.0 792 11.96 2 7 13 10.0
7 4 869 5.97 2 4 16 10.0 858 9.21 2 6 14 10.0
8 3 893 5.82 2 7 13 10.0 839 8.62 2 8 12 10.0
9 4 929 2.95 2 9 11 10.0 863 5.58 3 1 11 6.7

10

30

4 1129 18.58 2 15 15 15.0 1035 41.96 2 15 15 15.0
11 5 1175 22.17 3 4 13 10.0 1129 30.15 3 4 15 10.0
12 4 1176 17.30 3 7 13 10.0 1121 33.48 3 9 11 10.0
13 4 975 28.45 3 9 12 10.0 953 37.43 3 7 14 10.0
14 4 1079 25.27 2 15 15 15.0 989 45.22 2 14 16 15.0
15 4 1144 23.70 2 13 17 15.0 1023 47.70 2 13 17 15.0
16 5 1224 17.39 3 7 15 10.0 1138 41.21 3 2 18 10.0
17 4 1315 16.26 3 6 12 10.0 1182 44.17 2 12 18 15.0
18 5 1178 21.27 3 8 13 10.0 1021 26.81 2 9 21 15.0
19 4 1181 30.83 2 9 21 15.0 1181 34.68 2 9 21 15.0

Average 1157.60 22.12 2.6 9.3 14.6 12.0 1077.20 38.28 2.4 9.4 16.6 13.0

20

60

7 1874 173.74 4 11 18 15.0 1747 371.10 3 15 23 20.0
21 6 1724 152.21 5 2 20 12.0 1471 343.70 4 1 23 15.0
22 9 1892 106.60 4 14 18 15.0 1717 234.85 4 6 24 15.0
23 7 1976 132.04 5 9 14 12.0 1674 311.15 3 16 22 20.0
24 7 1720 190.23 4 12 18 15.0 1587 457.07 4 2 23 15.0
25 9 1852 192.28 4 13 19 15.0 1632 547.83 3 13 26 20.0
26 6 1749 156.16 4 5 24 15.0 1604 247.60 3 16 24 20.0
27 8 1779 275.09 4 9 22 15.0 1504 437.36 3 18 22 20.0
28 8 1913 121.34 5 1 18 12.0 1742 365.97 4 2 24 15.0
29 8 2017 111.38 4 12 20 15.0 1806 305.60 3 14 25 20.0

Average 1849.60 161.11 4.3 8.8 19.1 14.1 1648.40 362.22 3.4 10.3 23.6 18.0

30

120

10 2471 1243.55 8 1 27 15.0 2244 3016.68 7 1 31 17.1
31 11 2554 1280.57 8 1 23 15.0 2352 2077.37 5 22 29 24.0
32 10 2362 1624.80 7 1 27 17.1 2150 2715.41 6 1 29 20.0
33 10 2702 1340.18 6 14 27 20.0 2468 2798.17 5 16 28 24.0
34 11 2364 1125.76 7 8 24 17.1 2073 2753.88 6 4 29 20.0
35 13 2772 1166.24 7 1 29 17.1 2518 2615.98 6 1 29 20.0
36 10 2535 1123.38 7 6 27 17.1 2250 2739.07 5 14 30 24.0
37 11 2644 1304.54 8 1 24 15.0 2271 2190.87 7 1 31 17.1
38 12 2649 1071.00 12 1 22 10.0 2336 1778.69 9 1 28 13.3
39 11 2529 1305.95 8 1 30 15.0 2255 3085.74 6 1 32 20.0

Average 2558.20 1258.60 7.8 3.5 26.0 15.9 2291.70 2577.19 6.2 6.2 29.6 20.0
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4.6 Conclusions

E-commerce is used daily and allows customers to purchase their products online. New
last mile delivery services do not require customers to be at a specific location to receive
the products they purchase online. Goods can be delivered at home, but as well into
lockers, pick-up points or in the trunk of the cars. As a result, and unlike classical
vehicle routing problems, several delivery locations are associated with a customer.
This new family of delivery problems can be modeled as generalized vehicle routing
problems.

In this paper, we have presented the Generalized Vehicle Routing Problem with
Time Windows (GVRPTW), and we propose an integer linear programming formula-
tion and a set covering formulation. Based on the set covering formulation, we have
developed a column generation based heuristic for the GVRPTW. It combines sev-
eral components including a construction heuristic, a route optimization procedure, a
local search method and a procedure to generate negative reduced cost routes. Com-
putational results on benchmark instances show that the proposed algorithm is very
efficient and high-quality solutions can be obtained within very short computation
times for instances with up to 120 clusters.

The main perspective of this work is to investigate the dynamic version of routing
problem for the last mile delivery services. When some locations or time windows
change, a new solution has to be computed again. We believe that the proposed
column generation based heuristic could be used in such cases since there are several
components to build or optimize solutions, and computation times are short.
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Conclusions and perspectives

In this thesis, we studied routing problems arising in the context of the last mile deliv-
ery with customers providing multiple shipping locations. The new last mile delivery
services do not require customers to go to a specific location to receive the items they
purchase online. Packages can be delivered at home, but as well to pick-up points,
lockers or in the trunk of the cars. Customers can specify an available time period for
each delivery location. As a consequence, and unlike classical vehicle routing problems,
several delivery locations are associated with a customer and only one of them needs
to be visited during its given time interval to make the delivery. The single-vehicle
and multi-vehicle cases of this new family of delivery problems can be modeled as the
Generalized Traveling Salesman Problem with Time Windows (GTSPTW) and the
Generalized Vehicle Routing Problem with Time Windows (GVRPTW) respectively.
The main contributions are as follows.

In Chapter 2, we presented a classification of non-Hamiltonian routing problems
including both the single-vehicle case and multi-vehicle case. These problems are char-
acterized by the fact that not all the vertices present in the network need to be visited
in the solution.

In Chapter 3, we studied the GTSPTW and proposed four mixed integer linear
programming formulations. The dominance relations between the relaxations of these
models were established. Two formulations were proved to be superior to the other
ones theoretically and experimentally.

In Chapter 4, we proposed a branch-and-cut algorithm to solve the GTSPTW. We
presented several problem-specific valid inequalities, which were separated dynamically
inside the branch-and-cut algorithm. An initial upper bound was provided by a simple
and fast heuristic. Experimental results on different sets of instances showed that the
proposed algorithm is effective. Based on the best formulation, instances with up to
30 clusters could be solved to optimality within one hour of computation time.
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In Chapter 5, we studied the GVRPTW. A set covering formulation was used to de-
velop a column generation based heuristic to solve this problem. The heuristic combines
several components including construction heuristic, route optimization procedure, lo-
cal search, and the generation of negative reduced cost routes. Experimental results
on benchmark instances showed that the proposed algorithm is very efficient and high-
quality solutions could be obtained within short computation times for instances with
up to 120 clusters.

The topics covered in this thesis provide some management insights for this new
last mile delivery service with multiple shipping locations. However, there is still room
for new research developments. In the following, we list several research directions that
we believe are of interest.

The first perspective is from the methodological point of view. For the GTSPTW,
the procedure we have developed to obtain an initial solution is already efficient but
could be improved to obtain very high quality solutions. Local search moves or state-
of-the art metaheuristics could be adapted for the GTSPTW. For the GVRPTW, in
the column generation based heuristic we proposed for the GVRPTW, local search op-
erators are limited. They could be improved by proposing more sophisticated operators
dedicated to the GVRPTW. The column generation is applied in a heuristic way, and
provides very good upper bounds. It seems interesting to work on the subproblem and
the computation of a lower bound.

In this thesis, we assumed that customers provide several possible delivery locations
with equal desire to receive the package. Customers do not have preference for a specific
location or time period. However in reality, customers might have different preferences
for the delivery locations or the delivery time periods they provide. To capture this
feature, we could associate each delivery location with a satisfaction factor (profit).
Then the new problem could be modeled as a variant of the VRP with profits where
customers are associated with several locations or, similarly, as a variant of the GVRP
where locations are associated with a profit. The satisfaction/profit factor can appear
in the objective function or in the constraints. This problem is of interest because an
increasing number of companies are focusing on customer satisfaction to increase the
lifetime value of each customer (Kovacs et al., 2014).

In this thesis, customers are associated with several delivery locations that may
represent parcel lockers. A locker has a limited capacity that we did not take into
account. Due to this fact, it is interesting to work on routing problems with capacity
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management associated with delivery locations. In addition, the packages delivered to
a locker might not be retrieved by the customer during the same working period. Then
the capacity of the locker will be reduced as long as the parcel is not collected by the
customer. Therefore, additional constraints have to be considered in the models and
algorithms when considering lockers.

Another perspective of this work is to investigate the dynamic version of routing
problems in the same context of the last mile delivery with multiple shipping options.
When some locations or time windows associated with a customer change during the
planning horizon, a new solution has to be recomputed. The column generation based
heuristic that we propose for the GVRPTW could be used in such cases since it involves
several components to construct or optimize solutions, and the computation times are
short.
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Appendix A

Proofs for propositions in Chapter 3

Proposition 4.1 For i, j ∈ V \ {0} suppose that arcs (i, j) and (j, i) are feasible, then

ti − tj + Tijxij +min{−Tji, Ej − Ei}xji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji) (3.15)

are supervalid inequalities for formulation F1.

Proof. Consider the following constraints

ti − tj + Tijxij + αjixji ≤ Liyi − Ejyj − (Li − Ej)(xij + xji). (A.1)

We seek for a value of αji such that the constraints (A.1) are supervalid, i.e., they
are valid for at least one optimal solution.

If xji = 0, these constraints are satisfied for any value of αji. If xji = 1 (vertex
i is visited right after visiting vertex j), then xij = 0, and we obtain constraints
ti − tj + αji ≤ 0, i.e.,

αji ≤ tj − ti. (A.2)

Thus, we seek for a value of αji such that constraints (A.2) are valid for the values of
the decision variables tj and ti for at least one optimal solution.

In order to provide such a value, we consider an optimal solution where each vertex
is visited as soon as possible. Two cases may be considered.

Case 1: Ej + Tji ≥ Ei. This means that vertex i can be visited right after vertex j
without any waiting time. Hence, we have ti = tj + Tji. We then obtain:

− Tji = tj − ti. (A.3)

Hence, αji = −Tji is valid for this first case.
Case 2: Ej + Tji < Ei. This means that a waiting time may be required before

visiting vertex i. Let us suppose that the value of tj has been fixed. The value of ti
will then be chosen such that vertex i is visited as soon as possible. If tj + Tji ≥ Ei,
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then i can be visited right after j without waiting time. Then, similarly to Case 1,
αji = −Tji is valid. If tj + Tji < Ei, then a waiting time is required, and vertex i is
visited as soon as possible when ti = Ei. From constraints (3.5), we have tj ≥ Ej. We
then obtain:

Ej − Ei ≤ tj − ti. (A.4)

Hence, when αji = Ej − Ei, constraints (A.2) are valid in this case.
In all cases, we can set αji = min {−tji, Ej − Ei}.

Proposition 4.2 For h, k ∈ K \ {0}, suppose that there exists i ∈ Ch and j ∈ Ck such
that the arcs (i, j) and (j, i) are both feasible. Then

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij +
∑
i∈Ch
j∈Ck

min{−Tji, Ej − Ei}xji

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)(xij + xji).
(3.16)

are supervalid inequalities for formulation F2.

Proof. Consider the following constraints

τh − τk +
∑
i∈Ch
j∈Ck

Tijxij +
∑
i∈Ch
j∈Ck

αjixji

≤
∑
i∈Ch

Liyi −
∑
j∈Ck

Ejyj −
∑
i∈Ch
j∈Ck

(Li − Ej)(xij + xji).
(A.5)

We seek for a value of αji such that the constraints (A.5) above are supervalid, i.e.,
they are valid for at least one optimal solution. If xj′i′ = 0, ∀i′ ∈ Ch, j′ ∈ Ck, these
constraints are obviously satisfied for any value of αj′i′ . Otherwise, we have xji = 1

(vertex i is visited right after visiting vertex j). In this case it follows that:

1. xij = 0, ∀i ∈ Ch,∀j ∈ Ck;

2. xj′i′ = 0, ∀i′ ∈ Ch \ {i},∀j′ ∈ Ck \ {j};

3. yi = yj = 1;

4. yl = 0,∀l ∈ Ch ∪ Ck \ {i, j}

Hence, we obtain the constraint τh − τk + αji ≤ 0, i.e.,

αji ≤ τk − τh. (A.6)
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Thus, we seek for a value of αji such that constraints (A.6) are valid for the values of
the decision variables τk and τh for at least one optimal solution.

In order to provide such a value, we consider an optimal solution where each vertex
is visited as soon as possible. Two cases may be considered.

Case 1: Ej + Tji ≥ Ei. This means that vertex i can be visited right after vertex j
without any waiting time. Hence we have τh = τk + Tji. We then obtain

− Tji = τk − τh. (A.7)

Hence, αji = −Tji is valid for Case 1.
Case 2: Ej + Tji < Ei. This means that a waiting time may be required before

visiting vertex i. Let us suppose that the value of τk has been fixed. The value of τh will
then be chosen such that vertex i is visited as soon as possible. If τk + Tji ≥ Ei, then
vertex i can be visited right after j without waiting time. Then, similarly to Case 1,
αji = −Tji is valid. If τk + Tji < Ei, then a waiting time is required, and vertex i is
visited as soon as possible, i.e., τh = Ei. From constraints (3.11), we have τk ≥ Ej. We
then obtain:

Ej − Ei ≤ τk − τh. (A.8)

Hence, αji = Ej − Ei is valid in this case.
In all cases, we can set αji = min{−Tji, Ej − Ei}.

Proposition 4.11 Let S ⊆ V \ {0}, Ck ⊆ S, π(Ck) 6= ∅, the πCk-inequalities:

x((S \ π(Ck)) : (S̄ \ π(Ck))) ≥ 1 (3.32)

are valid for the GTSPTW.
Let S ⊆ V \ {0}, Ck ⊆ S, σ(Ck) 6= ∅, the σCk-inequalities:

x((S̄ \ σ(Ck)) : (S \ σ(Ck))) ≥ 1 (3.33)

are valid for the GTSPTW.
Let S ⊆ V \ {0}, Ch ≺ Ck, Ch ⊆ S, Ck ⊆ S̄, π(Ch) 6= ∅, σ(Ck) 6= ∅, the (πCh , σCk)-
inequalities:

x((S \ (π(Ch) ∪ σ(Ck))) : (S̄ \ (π(Ch) ∪ σ(Ck)))) ≥ 1 (3.34)

are valid for the GTSPTW.

Proof. (1) Proof for πCk-inequalities. Let tour T represent a feasible solution. Let ŝ be
the last vertex of S visited by T . Since Ck ⊆ S, ŝ /∈ π(Ck), so ŝ ∈ S \ π(Ck). Moreover,
the successor t̂ of ŝ in tour T cannot be in π(Ck), so t̂ ∈ S̄ \ π(Ck). Since one vertex
in Ck has to be visited, it is clear that any feasible tour T contains at least one arc
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going from S \ π(Ck) to S̄ \ π(Ck). Thus, πCk-inequalities are valid for the GTSPTW.
Similarly, σCk-inequalities can be obtained.

(2) Proof for (πCh , σCk)-inequalities. Let tour T represent a feasible solution. Let
ŝ be the last vertex of S visited by T and t̂ be the first vertex of S̄ visited by T .
Since Ch ⊆ S, Ch ≺ Ck, then ŝ ∈ S \ (π(Ch) ∪ σ(Ck)). Since Ck ⊆ S̄, Ch ≺ Ck, then
t̂ ∈ S̄ \ (π(Ch) ∪ σ(Ck)). Since Ch ≺ Ck, Ch ⊆ S, Ck ⊆ S̄, it is obvious that any feasible
tour T contains at least one arc going from S \ (π(Ch) ∪ σ(Ck)) to S̄ \ (π(Ch) ∪ σ(Ck)).
Thus, (πCh , σCk)-inequalities are valid for the GTSPTW.

Proposition 4.12 Let us consider S ⊂ V such that S is infeasible and |S ∩ Ck| ≤
1,∀k ∈ K. For j ∈ S, let us define S(j) = {i ∈ C(j) \ {j}|S ′ = (S \ {j}) ∪
{i} is infeasible}. If |S(j)| 6= 0, the clique inequalities (3.35) can be strengthened
as: ∑

i∈S

yi +
∑
i∈S(j)

yi ≤ |S| − 1 ∀j ∈ S. (3.36)

For h ∈ S\{j}, let us define Sj(h) = {i ∈ C(h)\{h}|(S∪{j∗, i})\{j, h} is infeasible,∀j∗ ∈
S(j) ∪ {j}}. If |Sj(h)| 6= 0, inequalities above can be lifted as:∑

i∈S

yi +
∑
i∈S(j)

yi +
∑

i∈Sj(h)

yi ≤ |S| − 1 ∀j, h ∈ S. (3.37)

Proof. We proof by contradiction. Suppose that ∀ j ∈ S,∑
i∈S

yi +
∑
i∈S(j)

yi ≥ |S|. (A.9)

=⇒
∑

i∈S\{j}

yi + yj +
∑
i∈S(j)

yi ≥ |S|. (A.10)

=⇒ −
∑

i∈S\{j}

yi ≤ yj +
∑
i∈S(j)

yi − |S|. (A.11)

On the other hand by definition of S(j), we have∑
i∈S\{j}

yi + yl ≤ |S| − 1 ∀ l ∈ S(j). (A.12)

By summing up (A.11) and (A.12), we obtain

yl ≤ yj +
∑
i∈S(j)

yi − 1 ∀ l ∈ S(j). (A.13)

Since S is infeasible,
∑

i∈S yi ≤ |S| − 1. According to (A.9), we obtain∑
i∈S(j)

yi ≥ 1. (A.14)
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Since S(j) ⊂ C(j) and only one vertex in C(j) is visited, constraint (A.14) means
that

∑
i∈S(j) yi = 1, i.e.,

1. yj = 0;

2. ∃ l∗ ∈ S(j), yl∗ = 1;

3. yi = 0, ∀ i ∈ S(j) \ {l∗}.

On the other hand, according to (A.13), we have

yl∗ ≤ 0 (A.15)

which is inconsistent with yl∗ = 1.
Therefore, constraints (3.36) are valid. Similarly, constraints (3.37) can be proved

by contradiction.
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Appendix B

Detailed results of Section 3.6.3

We compute the lower bounds at the root node (after applying the preprocessing steps)
when just applying one of the families of inequalities. The detailed results for instances
in G1 with at least 7 clusters are provided in Table B.1. We also compute the lower
bounds at the root node when only one of the families of inequalities is excluded. The
detailed results are reported in Table B.2.

In Table B.1, we give the results under eight different configurations. Columns of
LP indicate the results obtained by solving the linear relaxation. Columns of CPLEX
report the results obtained when activating the automatic cut generation of CPLEX
(but not the generation of user cuts). The next columns indicate the results obtained by
including the automatic cut generation of CPLEX and generating violated inequalities
of one of the following families: Arc Selection, Arc-or-Vertex, Clique, GSEC and SOP.
Finally, columns of Full indicate the results obtained when applying the automatic cut
generation of CPLEX and generating the violated inequalities for all families of valid
inequalities.

In Table B.2, we report the results under six different configurations. Columns
under Full indicate the results obtained by including the automatic cut generation of
CPLEX and generating violated inequalities of all families. The next columns show the
results obtained by including the automatic cut generation of CPLEX and generating
violated inequalities with the exception of one of the following families: Arc Selection,
Arc-or-Vertex, Clique, GSEC and SOP.
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B. DETAILED RESULTS OF SECTION 3.6.3
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Résumé étendu en Français

De nos jours, le commerce électronique est un marché florissant dans le monde entier.
Il est utilisé quotidiennement et permet aux clients de faire leurs achats en ligne,
quand ils le veulent. Les clients ne sont plus obligés de se rendre dans un magasin
spécifique et de respecter les heures d’ouverture. Un sondage annuel mené par la société
d’analyse comScore et UPS a révélé que les consommateurs américains achetaient plus
d’articles en ligne qu’en magasin en 2016 (Farber, 2016). À la fin de l’année 2018,
les ventes mondiales du commerce électronique atteignaient environ 2,8 milliards de
dollars et devraient atteindre 4,5 milliards de dollars en 2021 (Wardini, 2018). La
croissance très importante des ventes par le commerce électronique pose un énorme
défi pour la livraison du dernier kilomètre, car les articles commandés doivent être
livrés individuellement à chaque client.

Il existe actuellement plusieurs services de livraison du dernier kilomètre permettant
de livrer des colis aux clients. L’option de livraison la plus courante est la livraison à
domicile ou au travail (Lowe & Rigby, 2014). Les clients attendent chez eux ou sur
leur lieu de travail pour recevoir leurs colis. En outre, la livraison peut être effectuée
à des points de collecte tels que des consignes (lockers) ou des magasins. Dans ce
cas, les clients peuvent récupérer leurs colis après la livraison. Pour donner une idée,
il existe plus de 2800 consignes Amazon situées aux États-Unis (Holsenbeck, 2018).
Lorsque les clients achètent en ligne, ils peuvent choisir une consigne à proximité comme
lieu de livraison. Cela réduit la fragmentation des livraisons sur le dernier kilomètre,
contribuant ainsi à réduire les encombrements et la pollution de l’environnement causés
par le transport de marchandise en milieu urbain (Morganti et al., 2014), ainsi que les
coûts de livraison. Ces dernières années, un nouveau concept appelé livraison dans
le coffre / dans la voiture a été proposé. Ici, les colis des clients peuvent être livrés
directement dans les coffres des voitures. Volvo a lancé le premier service au monde
de livraison dans les voitures en Suède en 2016 (Kirsten, 2016). Le livreur a un code
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numérique unique pour accéder au coffre de la voiture. En avril 2018, Amazon a lancé
le service en partenariat avec deux grands constructeurs, General Motors et Volvo. Ce
service est disponible dans 37 villes aux États-Unis (Hawkins, 2018). La livraison dans
le coffre diffère de la livraison à domicile ou au travail et des points de collecte, car la
voiture se déplace et peut se trouver à différents endroits pendant différentes périodes.
Par exemple, elle reste garée sur le lieu de travail le matin et sur le parking d’un centre
commercial en fin d’après-midi. En conséquence, la synchronisation entre la voiture et
le livreur est nécessaire pour effectuer la livraison.

Tous ces services de livraison peuvent être combinés et, au lieu de choisir un seul
lieu de livraison lors d’un achat en ligne, le client peut proposer un ensemble de lieux
de livraison avec les contraintes de temps associées. Pour livrer un colis à un client
donné, le livreur dit alors choisir l’un des emplacements fourni par le client.

Dans cette thèse, notre objectif est de modéliser et de développer des méthodes
de résolution efficaces des problèmes de tournées de véhicules dans le contexte de la
livraison du dernier kilomètre offrant plusieurs options de livraison: à domicile , sur le
lieu de travail, en points de collecte et dans le coffre de la voiture. La livraison du dernier
kilomètre avec plusieurs options d’expédition permet aux clients de choisir plusieurs
emplacements pour recevoir leurs colis. Cela offre aux clients plus de flexibilité en
tenant compte de leur convenance. En outre, cela peut augmenter le taux de première
livraison réussie et ainsi permettre de réduire les coûts de livraison. Au Royaume-Uni,
par exemple, le coût des livraisons ayant échoué s’élève à près de 1,1 milliard de dollars
pour les détaillants et les entreprises de commerce électronique sur un marché de 100
milliards de dollars (Honorato, 2016; Symonds, 2018). Offrir plus d’options de livraison
peut être rentable (BringgTeam, 2019).

Nous étudions les problèmes de livraison avec une flotte composée d’un seul véhicule,
et avec une flotte composée de plusieurs véhicules, c’est-à-dire le problème du voyageur
de commerce généralisé avec fenêtres de temps (GTSPTW) et le problème de tournées
de véhicules généralisé avec fenêtres de temps (GVRPTW). Dans ces problèmes, les
différents emplacements de livraison possibles associés à un même client sont regroupés
au sein d’un cluster. Il est facile de constater que, dans les problèmes étudiés, il n’est
pas nécessaire de visiter tous les lieux associés à un client, car le livreur n’a besoin de
livrer le colis qu’à un seul des emplacements fournis par le client.

Dans ce qui suit, nous résumons les travaux réalisés dans cette thèse.
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Dans le chapitre 1, nous présentons une classification des problèmes de routage non
hamiltoniens (non-HRP), caractérisés par le fait que tous les sommets présents dans le
graphe ne doivent pas nécessairement être visités pour qu’une solution soit réalisable.
Laporte & Martín (2007) proposent une revue de la littérature sur cette thématique,
limitée aux problèmes où la flotte est composée d’un seul véhicule, et couvrant les
travaux publiés jusqu’en 2005. Nous proposons une revue de la littérature sur les
progrès récents dans les non-HRPs avec un seul véhicule et avec plusieurs véhicules.
Les problèmes concernant un seul véhicule incluent le Generalized Traveling Salesman
Problem (GTSP), le Traveling Salesman Problem with Profits (TSPPs), le Covering
Tour Problem (CTP), le Covering Salesman Problem (CSP), le Median Cycle Problem
(MCP), le Ring Star Problem (RSP) et le Traveling Purchaser Problem (TPP). Les
problèmes avec plusieurs véhicules incluent le Generalized Vehicle Routing Problem
(GVRP), le Generalized Vehicle Routing Problem with Time Windows (GVRPTW),
le Vehicle Routing Problem with Profits (VRPPs), le multi-vehicle CTP (mCTP), le
capacitated multiple RSP (CmRSP) et le multi-vehicle TPP (mTPP). Pour chacun de
ces problèmes, nous présentons sa définition, une formulation mathématique compacte,
une revue de la littérature et certaines de leurs applications.

Dans le chapitre 2, nous étudions le problème de la livraison du dernier kilomètre
avec de multiples options de livraison dans le cas avec un seul véhicule. Ce problème
est modélisé comme le problème du voyageur de commerce généralisé avec fenêtres de
temps (GTSPTW). Le GTSPTW est défini sur un graphe orienté dans lequel l’ensemble
des sommets est partitionné en clusters. Un des clusters ne contient que le dépôt.
Chaque sommet est associé à une fenêtre de temps pendant laquelle la livraison doit
avoir lieu si le sommet est visité. L’objectif est de trouver un circuit à coût minimum
commençant et se terminant au dépôt, de sorte que chaque cluster soit visité une seule
fois et que les contraintes de temps soient respectées, c’est-à-dire que, pour chaque clus-
ter, un seul sommet est visité pendant sa fenêtre de temps. Dans ce chapitre, quatre
programmes linéaires à variables mixtes pour le GTSPTW sont proposés et comparés.
Les modèles diffèrent par la manière dont sont définies les variables de sélection des
arcs et les variables temporelles: basées sur des sommets ou des clusters. Toutes les
formulations sont compactes, ce qui signifie que le nombre de variables et de contraintes
est polynomial par rapport à la taille de l’instance. Les relations de dominance entre
les relaxations linéaires de ces formulations sont théoriquement établies. Nous avons
également mené une étude expérimentale pour comparer la relaxation linéaire et les
performances d’un algorithme de branch-and-bound pour les quatre formulations. Les
résultats sur les relaxations linéaires montrent qu’en moyenne la formulation F1 est la

195



RÉSUMÉ ÉTENDU EN FRANÇAIS

meilleure, suivie de la formulation F2. Toutefois, lors de la résolution du GTSPTW
avec l’algorithme de branch-and-bound de CPLEX, la formulation F2 est la plus effi-
cace, en moyenne, suivie par la formulation F1. Par conséquent, nous recommandons
d’utiliser les formulations F1 et F2 pour la résolution du GTSPTW. De plus, des
inégalités super-valides sont proposées pour les formulations F1 et F2, ce qui permet
d’améliorer les performances.

Dans le chapitre 3, nous développons un algorithme de branch-and-cut pour le
GTSPTW. Plusieurs familles d’inégalités valides sont proposées. Ces familles peu-
vent contenir un nombres de contraintes polynomial ou exponentiel. Ces familles de
contraintes sont intégrées dans un algorithme de branch-and-cut via des procédures
de séparation dédiées. L’algorithme de branch-and-cut comprend trois phases princi-
pales. La première phase est l’étape de pré-traitement visant à resserrer les fenêtres
de temps de l’instance et à éliminer les arcs qui ne peuvent pas faire partie d’une so-
lution réalisable. Ensuite, nous appliquons une heuristique efficace pour obtenir une
solution réalisable et pour fournir une borne supérieure de la valeur optimale. En-
fin, la phase principale consiste à résoudre le problème en utilisant un algorithme de
branch-and-cut, basé sur le schéma standard de branch-and-cut fourni par le solveur
commercial CPLEX 12.6.3. Le modèle initial est construit à partir du programme
linéaire à variables mixtes F1 ou F2. La solution initiale obtenue par l’heuristique sert
pour initialiser la procédure de branch-and-cut. Dans l’arbre de branch-and-bound,
chaque fois qu’une solution fractionnaire est obtenue, les inégalités valides proposées
sont vérifiées et celles violées par la solution courante sont ajoutées au modèle. Pour
les inégalités valides avec un nombre polynomial de contraintes, nous les mémorisons
toutes et parcourons l’ensemble pour rechercher toutes celles qui sont violées. Pour
les familles de contraintes de taille exponentielle, des algorithmes de séparation sont
appliqués pour détecter efficacement les inégalités violées et le nombre d’inégalités que
nous avons choisi de séparer est limité. Nous testons l’algorithme sur trois groupes
d’instances ayant des caractéristiques différentes. Les résultats démontrent clairement
l’efficacité de l’algorithme de branch-and-cut proposé et la qualité de la formulation F2.
L’algorithme de branch-and-cut basé sur la formulation F2 peut résoudre à l’optimum
des instances d’environ 30 clusters en moins d’une heure de temps de calcul.

Enfin, dans le chapitre 4, nous étudions le cas avec plusieurs véhicules, appelé
problème de tournées de véhicules généralisé avec fenêtres de temps (GVRPTW). Le
GVRPTW est défini sur un graphe orienté G = (V ,A) où l’ensemble des sommets
V est partitionné en clusters. Un des clusters ne contient que le dépôt, où se trouve
une flotte homogène de véhicules, chacun avec une capacité limitée. Les autres clusters
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représentent les clients. Chaque cluster est associé à une demande. Dans un cluster, les
sommets représentent les localisations possibles du client. Chaque sommet est associé
à une fenêtre de temps pendant laquelle la visite doit avoir lieu si le sommet est visité.
L’objectif est de trouver un ensemble de routes telles que le coût total de routage soit
minimal, exactement un sommet par cluster soit visité, et toutes les contraintes de
capacité et de temps soient respectées. Nous proposons une formulation en programme
linéaire à variables mixtes et une formulation basée sur un problème de set covering
pour le GVRPTW. Sur la base de la formulation de set covering, nous développons une
heuristique basée sur la génération de colonnes pour le GVRPTW. Cette heuristique
combine plusieurs composants, notamment une heuristique de construction, une procé-
dure d’optimisation d’une route, un algorithme de recherche locale, et la génération
de routes de coût réduit négatif. Les résultats expérimentaux sur des instances de la
littérature montrent que l’algorithme proposé est très efficace et que des solutions sont
de très bonne qualité et peuvent être obtenues dans des temps de calcul très courts
pour des instances comprenant jusqu’à 120 clusters.

Les sujets abordés dans cette thèse permettent de fournir quelques remarques quant
à la gestion de ces nouveaux services de livraison du dernier kilomètre avec plusieurs
options d’expédition. Cependant, plusieurs pistes de recherche restent ouvertes. Nous
listons ci-dessous celles qui, à notre avis, peuvent être intéressantes à développer.

La première perspective est du point de vue méthodologique. Pour le GTSPTW,
la procédure que nous avons développée pour obtenir une solution initiale est déjà ef-
ficace mais pourrait être améliorée pour obtenir des solutions de très grande qualité.
Les mouvements de recherche locale ou les méta-heuristiques classiques pour les prob-
lèmes de routage pourraient être adaptés au GTSPTW. Pour l’heuristique basée sur
la génération de colonnes que nous avons proposée pour GVRPTW, les opérateurs de
recherche locale sont limités. Des opérateurs plus sophistiqués dédiés au GVRPTW
pourraient être proposés. La génération de colonne est appliquée de manière heuris-
tique et fournit de très bonnes bornes supérieures. Il semble intéressant de travailler
sur le sous-problème et le calcul d’une borne inférieure.

Dans cette thèse, nous avons supposé que les clients fournissaient plusieurs lieux
de livraison possibles avec le même désir de recevoir le colis : les clients n’ont pas de
préférence pour un lieu ou une période spécifique. Cependant, en réalité, les clients
peuvent avoir des préférences différentes en ce qui concerne les lieux de livraison ou
les périodes de livraison qu’ils indiquent. Pour prendre en compte cet aspect, nous
pourrions associer chaque lieu de livraison à un facteur de satisfaction (profit). Ensuite,
le nouveau problème pourrait être modélisé comme une variante du VRP avec profits
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lorsque les clients sont associés à plusieurs localisation ou, de la même manière, comme
une variante du GVRP où les localisations sont associées à un profit. Le facteur de
satisfaction (profit) peut apparaître dans la fonction objectif ou dans les contraintes.
Ce problème est intéressant car de plus en plus d’entreprises se concentrent sur la
satisfaction des clients afin de pouvoir les fidéliser.

Dans cette thèse, les clients sont associés à plusieurs lieux de livraison pouvant
représenter des consignes. Une consigne possède une capacité limitée que nous n’avons
pas prise en compte. De ce fait, il est intéressant de travailler sur des problèmes de
tournées de véhicules qui intègrent la gestion de la capacité associée aux emplacements
de livraison. De plus, les colis livrés dans une consigne pourraient ne pas être récupérés
par le client au cours de la même période de planification. Alors, la capacité de la
consigne sera réduite tant que le colis n’aura pas été récupérés par le client. Par
conséquent, des contraintes supplémentaires doivent être prises en compte dans les
modèles et algorithmes lorsque la livraison dans des consignes est considérée.

Une autre perspective de ce travail consiste à examiner la version dynamique des
problèmes de tournées de véhicules dans le contexte que la livraison du dernier kilomètre
avec plusieurs options d’expédition. Lorsque certains lieux ou certaines fenêtres de
temps associées à un client changent au cours de l’horizon de planification, une nouvelle
solution doit être recalculée. L’heuristique basée sur la génération de colonnes que nous
proposons pour le GVRPTW pourrait être utilisée dans de tels cas, car elle implique
plusieurs composants pour construire ou optimiser des solutions, et les temps de calcul
sont courts.
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Models and Algorithms for Last Mile Delivery Problems
with Multiple Shipping Options

Abstract

In this thesis, we study routing problems that arise in the context of last mile delivery when
multiple delivery options are proposed to the customers. The most common option to deliver
packages is home/workplace delivery. Besides, the delivery can be made to pick-up points such
as dedicated lockers or stores. In recent years, a new concept called trunk/in-car delivery has
been proposed. Here, customers’ packages can be delivered to the trunks of cars. Our goal
is to model and develop efficient solution approaches for routing problems in this context, in
which each customer can have multiple shipping locations. First, we survey non-Hamiltonian
routing problems. Then, we study the single-vehicle case in the considered context, which is
modeled as a Generalized Traveling Salesman Problem with Time Windows (GTSPTW). Four
mixed integer linear programming formulations and an efficient branch-and-cut algorithm are
proposed. Finally, we study the multi-vehicle case which is denoted Generalized Vehicle Routing
Problem with Time Windows (GVRPTW). An efficient column generation based heuristic is
proposed to solve it.
Keywords: last mile delivery; trunk/in-car delivery; generalized traveling salesman problem;
generalized vehicle routing problem; time windows; branch-and-cut.

Résumé

Dans cette thèse, nous étudions les problèmes de tournées de véhicules dans le contexte de la
livraison du dernier kilomètre lorsque plusieurs options de livraisons sont proposées aux clients.
Le mode de livraison le plus commun est la livraison à domicile ou au travail. La livraison peut
également être effectuée dans des points de collecte tels que des consignes ou des magasins.
Ces dernières années, un nouveau concept appelé livraison dans le coffre / dans la voiture a
été proposé. Avec ce mode de livraison, les colis des clients peuvent être livrés directement
dans les coffres des voitures. Notre objectif est de modéliser et de développer des approches de
résolution efficaces pour les problèmes de routage dans ce contexte, dans lequel chaque client
peut disposer de plusieurs lieux potentiels de livraison. Premièrement, nous proposons un état
de l’art sur les problèmes de routage non-Hamiltoniens. Ensuite, nous étudions le cas avec
un seul véhicule, qui est modélisé comme un problème du voyageur de commerce généralisé
avec fenêtres de temps (GTSPTW). Quatre formulations en programme linéaire à variables
mixtes et un algorithme efficace de branch-and-cut sont proposés. Enfin, nous étudions le cas
multi-véhicules, dénommé problème de tournées de véhicules généralisé avec fenêtres de temps
(GVRPTW). Une heuristique efficace basée sur la génération de colonnes est proposée pour le
résoudre.
Mots clés : livraison du dernier kilomètre; livraison dans le coffre / dans la voiture; problème
du voyageur de commerce généralisé; problème de tournées de véhicules généralisé; fenêtres de
temps; branch-and-cut.
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