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1  

GENERAL INTRODUCTION 

 
In the shade of the population growth and construction practices evolution since the early ages, 

different techniques have been developed and adopted to properly serve the growing needs for 

habitats. Hence, the construction sector has been one of the most challenging sectors facing the 

growing economics across the globe. Indeed, there was an urgent need to further improve this 

field, especially on the environmental and socio-economical levels. Accordingly, an outstanding 

shift has been done towards the automation in construction, for all the benefits that it could bring 

to the field. Some of these benefits displays a higher and faster supply of housing, a reduction in 

the construction cost, and most importantly a higher resource efficiency by reducing the number 

of workers, and amount of wastage produced. 

Nowadays, the latest automated construction technique is known as Additive Manufacturing or 3D 

printing. Though, this technique is still under development, and it brought attention in both 

academic and industrial applications. However, the most important challenges that encounters 3D 

printing are the fresh and hardened state properties of the cementitious material used for printing; 

and the reinforcement strategy to provide ductility and tensile capacity for structural elements. 

Hence, these issues must be fully addressed, and continuously developed in order to keep up the 

success earned by this technology. 

Concerning the challenges imposed by the material used for 3D printing applications when still in 

its fresh state, it must present two prime characteristics in order to be considered printable. These 

characteristics are extrudability and buildability. Extrudability is the ability of the material to 

circulate inside the system and get out of the nozzle without blocking it, or exhibiting segregation 

problems. Meanwhile, buildability refers to the ability of the material to preserve its shape after 

being printed, in addition to being capable of withstanding the imposed loads coming from 

superposed layers. In this regard, printable materials require a better understanding of their 

rheological properties, especially those related to the buildability characteristic. This is said 

because buildability is the most fundamental aspect that makes a successful printing process. 

Consequently, it should be accurately monitored in order to avoid any deformation or failure 

during printing. Technically, the corresponding rheological phenomenon that describes 
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buildability is referred to by thixotropic behavior, which accounts for the material’s shear stress 

evolution with time, responsible of its hardening and early strength. 

Another issue that has to be investigated is the reinforcement of 3D Printed elements used for 

structural applications. This issue can no longer be omitted, and it has to be extensively 

investigated. This is said because the lack of reinforcement makes it harder for this technology to 

locate itself among conventional construction methods. Therefore, many approaches have been 

developed, and different reinforcing techniques were exploited to determine the most convenient 

method that suits more the constraints imposed by 3D printing. However, conventional 

reinforcement using steel bars can never be surrendered. Though, despite the procedure used to 

incorporate reinforcing steel inside the elements, a proper interaction between the reinforcement 

and printed layers should be provided. In this context, a strong link between both materials (steel 

and mortar) should be ensured in order to achieve a coherent and monolithic response against 

externally imposed structural loads. 

Apart from the material’s rheology and reinforcing adequacy, the durability performance of 3D 

printed concrete elements must be taken into consideration as well. Owing to the exponential 

increase of 3D printing applications, printed elements became more subjected to aggressive 

environments due to their field of applications, such as for underground and infrastructure 

constructions, in addition to many other uses. Thus far, the concept of layers stacking, and the fact 

of creating interfaces between successive layers might create weak planes, giving rise to additional 

paths for the intrusion of substances from the surrounding environment. Certainly in such cases, 

the degradation of concrete and corrosion of reinforcement might be further accelerated, leading 

to the whole deterioration of the printed element. Therefore, the durability behavior of printed 

elements, exposed to aggressive environments must be carefully assessed. 

This thesis covers certain topics related to the fresh and hardened state properties of 3D printed 

elements. Precisely, it deals with the fresh state properties of the material and their effects on the 

hardened state and mechanical response of 3D printed elements. Thus, as a first step, the 

rheological characteristics of different printable mixes was assessed, and the effect of some 

chemical and mineral additives was considered. The rheological parameter studied in this research 

corresponded to the yield stress of the material, and it has been measured using the Fall-Cone test 
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over a specific period of time. Then after, the equivalent structuration rates were derived, and the 

proper thixotropic model was fitted to each category of mixes. 

Afterwards, a research campaign was performed to study the influence of the material’s fresh state 

properties on the structural capacity of 3D printed elements. On this subject, an initial study has 

been performed concerning the effect of the material’s workability on the link developed with 

printed mortar. A series of pull-out tests has been conducted first over manually printed concrete 

elements. In the same perspective, a different set of samples printed using an automated 3-axis 

gantry printer were tested similarly. In this context, the effect of the printing method and the layers 

direction with respect to steel bar were thoroughly investigated. 

On top of that, this research targeted the effect of the material’s fresh properties on the durability 

performance of 3D printed elements. Hence, a proper experimental campaign has been established 

to characterize the ability of printed elements to resist chemical attacks. Therefore, samples having 

different compositions were exposed to sulfuric acid environments. Later on, all samples were 

characterized on a macro and micro scale levels. 
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CHAPTER 1 : LITERATURE REVIEW 
 

1.1- Evolution of the Construction Field 

Thousand years ago, people roamed from place to place looking for animals to hunt and plants to 

feed on. They did not build houses or shelters since they were always moving. They slept under 

the stars, got wet under the rain, sweated under the sun and cooked their meals over open wood 

fires [1]. Much later on, the early humans began to put up shelters, tents made of animal skins, and 

tried to protect themselves from the weather. A few more thousand years, humankind had 

discovered agriculture, and people slowly began to learn a new way of getting food. Once they 

found ways letting them stay in one place, they started thinking about building shelters that were 

larger, stronger and more comfortable [2]. In this context, building materials and construction 

methods started to develop consecutively [3]. 

“Technology is rooted in the past, dominates the present and extends to the future” [4]. Until now, 

the continuous evolution of all construction techniques in terms of technical and technological 

developments, implicitly includes the knowledge and experience inherited from early humans as 

the ancestors passed them down to descendants for the future [2]. In other words, the development 

of all modern construction techniques and new materials are always related to the traditional ones 

(Fig. 1). Thus, building technology will constantly develop, and it will never stop or disappear [5]. 

Previously, all construction procedures were naturally acquired by experience and the lessons 

learned from practice. By that time, craftsmen had inborn ways to solve engineering problems [6]. 

However, meanwhile the only driving forces behind the development of construction techniques 

are science and technology. Many new possibilities are found to enhance the conceptual design of 

concrete structures, as well as their detailing and production. On top of that, the implementation 

of digital technologies in the construction field allowed overcoming most of the typical constraints 

imposed by traditional processes. However, digital construction for large-scale application and 

mass-market production is still a persisting challenge [7][8]. The arising obstacles are analogous 

to those previously found after each invention of a new concept. Though, it is expected that before 

putting into service any newly developed technique, and before the concept reaches maturity, 

several decades of research and small scale applications must elapse [9]. 
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Figure 1: Evolution of the Construction Field 

 

1.2- Future of Construction 

The construction sector is currently taking advantage of the digitalization and automation of 

different building techniques. The major benefits of bringing automation to the field are to reduce 

the construction time, labors work, environmental impact and energy consumption, and improve 

the quality of the product. In addition, it eliminates all geometrical constraints imposed by 

traditional construction practices [10]. In light of that, a new concept has been introduced based 

on the principle of Additive Manufacturing (AM). This principle also known as 3-Dimentional 

Printing (3DP) is defined as the process of adding materials to make objects from 3D model data 

by laying down successive layers on top of each other [11]. Though, 3DP became a revolution by 

itself, not only for its manufacturing concept, but for its endless production conditions that can 

be only limited by imagination [12][13]. More specifically, a new chapter in building technology 

has started since 2014 as the first house was completely printed [14]. 

Normally, the printing process involves several steps. These steps start by converting the 3D-CAD 

model showing the object to be created into a Standard Triangulation Language (STL) format, in 

a process known as slicing. The STL file contains all the information needed to represent the digital 
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model in 2D Cartesian coordinate layers. Then after, a list of commands that the printer can 

understand is established, and fed to the printer through a proper data system to lunch the printing 

process. At the end, a physical model is produced [15] (Fig. 2). 

 

 

 

Figure 2: 3D Printing Process and Model Translation [16] 

 
While 3DP is growing rapidly, there are many concerns about the properties of the printed object, 

because the manufacturing process is completely different from other conventional methods. In 

conventional construction techniques, concrete is poured inside a customized mold in order to give 

it the desired shape. Whereas, 3DP do not require any formwork to support concrete layers. This 

fact disclosed endless possibilities for architects, which makes them totally free of any typical 

geometrical design constraints. 3DP opened a new realm of design by offering the ability to use 

curvilinear forms, rather than being restricted to rectilinear forms due to several limitations 

[17][18][19]. Apart from aesthetics, it is commonly known that straight edge forms are one of the 

weakest structural forms. However, curvilinear shapes are the strongest. For example, the humble 

egg having a simple and consistent curve is one of the most efficient structures in nature [18]. Put 

differently, 3D printing provides optimization in the design which can further help designing 

efficient structures, and therefore saves materials. One method is the topology optimization which 

results in a complex geometrical form (Fig. 3). Accordingly, 3D printing is the most suitable 
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technique to implement the corresponding design. It is used to distribute a limited amount of the 

material in a predetermined design space. Precisely, the material is deposited is a way that the 

resulting structure complies with the boundary conditions, such as the acting loads and the 

resulting load bearing capacity. Thus, 3DP allows the use of less material in a smarter approach, 

only where it is needed [20][21][22][23]. 

 
 

 
Figure 3: Topology Optimization [24] 

 
As a matter of principle, a successful 3D printing application in the construction field would lead 

to more sustainable structures, as well as notably decrease the total cost of the project. This is said 

because 3DP does not use neither formworks, nor too many labors, which makes worth 50% of 

the total cost, apart from the reduction in waste material and energy consumption [25]. In addition, 

time is money as well, thus 3DP is an extremely fast process that takes only several hours/days 

due to the continuous work of the printer. 

1.3- 3D Printing Techniques in Construction 

Different printing technologies have been developed to print concrete elements and structures 

having different sizes, and under different conditions [26]. Different robotic technologies are used 

depending on the size and function of the element to be printed [27]. The size of a printed object 

might vary between small elements inside a building, moving to a fully functional construction 

such as a small family home, straight up to a large-scale multi-level building. For the case of 

printing independent elements or small houses, the most commonly used technologies are multi- 

axis robotic arm, gantry frame, or overhead bridge, involving external pumping system having a 

maximum capacity of several cubic meters [28]. For example, the Dutch company CyBe 

Construction, and the French company XtreeE are able to print small concrete structures using a 

6-axis robotic arm (Fig. 4). Besides, the Danish-based 3D printing company COBOD, and the 

Spanish company Be More 3D, use a gantry frame and overhead bridge to make their printings 

(Fig. 5). 
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Figure 4: (Left) CyBe Construction (Right) XteeE Printers [29] 

 

 
Figure 5: (Left) COBOD (Right) Be More 3D Printers [29] 

 
Yet, scaling-up towards printing multi-story buildings still needs development. Such volume of 

constructions requires adaptation of equipment. Even so, several alternative solutions are being 

developed, such as the use of fixed cranes or crane trucks [30], and robot with cables [31][32]. For 

example, the Russian company Apis Cor developed a 3D printer that could build a house in just 

24 hours, and in extreme weather conditions. The printer covers initially a printing surface of 132 

m2 and it can be easily transported on a mobile crane. Apis Core was able to print a building located 

in Dubai of 640 m2, reaching a height of almost 10 m, in 17 days. Similarly, the French company 

Construction 3D, uses the concrete crane printer to print large structures (Fig. 6). In the same 



10 
 

context, the Italian manufacturer WASP has developed one of the largest 3D printers called the 

Crane WASP that is 12 m tall and 7 m wide. On the other hand, German researches displayed a 

show-case cable-driven robot that moves over long distances across four cables (Fig. 7). 

 

 
Figure 6: (Left) Apis Core (Right) Construction 3D Printers [29] 

 

 
Figure 7: (Left) WASP [29] (Right) Cable Robot Printers [33] 

 
Currently, there are two major additive manufacturing processes using concrete materials, applied 

in the construction and architectural industry. These approaches are the Extrusion-Based 

Technique known as Fused Deposition Modelling (FDM), and the Powder-Bed / D-Shape printing 

(Fig. 8). The common feature between both of them is the production of 3D objects additively 

[34][35]. However, each method has been developed for distinct application purposes. These 

processes print objects either through pumping and extrusion of concrete, or by powder deposition 

and selective binding. Precisely, the Extrusion-Based technique consists of extruding concrete 

material out of a nozzle mounted on a gantry frame. The printing process is done by continuously 
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depositing mortar filaments, one on top of other. Whereas, Powder-Bed printing consists of jetting 

a liquid binder selectively on an existing powder layer [36][37]. 

 
 

 

Figure 8: Difference Between (Left) Extrusion-Based [38] and (Right) D-Shape [39] AM aproaches 

 
In the year 2012, the development of 3D printing of concrete elements in the construction field has 

turned from being a linear progression to a quasi-exponential one [40][41]. Many showcases have 

been presented all over the world on a regular basis. Some noteworthy examples include: the office 

building in Dubai, measuring 250 m2, the two-storey house measuring 400 m2, the Five-Storey 

apartment building, and 1100 m2 Villa, all in china, the Landscape house and Canal House in the 

Netherlands, the ProtoHouse in the United Kingdom, and much more [14][42]. 

1.4- Current Situation of 3D Printing Applications 

Most of the Additive Manufacturing methods used for construction applications are still 

considered relatively new to the field. Though, a constant research effort is always in the process 

to illuminate the fundamental understanding of the new technology, and reach its maximum 

potentials [42]. Unsurprisingly, different techniques have been developed during the past years. 

Yet, 3D concrete printing cannot be considered as an isolated solution for conventional 

construction strategies [43][44]. Looking at the current state of 3D printing, there is still not enough 

understanding of all performance properties related first, to the rheological behavior of the 

printable material used; and second, to the mechanical and structural efficiency of a printed 

element [45][46][47]. For the time being, there is still a lack of normative regulations and 

performance testing protocols for the digital production of printable mixes, and printed structures 

[27][48]. Though, the current standards and regulations must be revised and further adapted to be 
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applied to 3D printing applications. Up to now, all construction codes consider that concrete 

elements are homogeneous [49]. However, this fact cannot be applicable for 3D printed concrete 

elements, due to their anisotropic behavior [50][51]. The layering concept affects the performance 

of a printed concrete element significantly. The interfaces between successive layers influence the 

mechanical performance, bond behavior, durability, and bearing capacity of the element used for 

structural applications. 

1.5- Materials Properties and Requirements 

1.5.1- Fresh properties of Cementitious Materials 

The fresh state properties of mortars are the most essential parameters used to control the quality 

of the mixes. These fresh properties help in defining the purpose and mode of application of each 

mix [52]. Accordingly, each mix design has to meet certain requirements and specifications 

when still being in its fresh state, depending on its intended application. These characteristics are 

known as rheological properties. In its turn, rheology refers to the physics that studies the 

deformation and flow of matters. Though, rheology is paramount for all highly engineered 

cementitious materials, especially for those used in additive manufacturing and 3D printing 

applications [52][53][54][55]. 

The term rheology was found by Bingham in 1920, and it was considered one of the most important 

tools used to characterize the cement-based materials [56]. Mainly, the rheology of all cementitious 

materials entails different parameters, namely viscosity, plasticity, and elasticity, derived from the 

applied shear stresses [57]. In this regard, rheology has been considered as the most effective tool 

to characterize the workability and stability of the material, and to predict its flow behavior [57]. 

Besides, one of the principle rheological phenomenon for all cement-based materials is known as 

thixotropic behavior, which corresponds to the ability of the material to build-up an internal 

structure when being at rest [58]. Precisely, thixotropy is a time dependent process that accounts 

for the change in the microstructure of a colloidal suspension and particle agglomeration, whether 

at a constant or increasing shear stress [52][59]. 

1.5.1.1- Description of The Material’s Physical Origin 

In general, the mostly used techniques to evaluate the rheology of a material are based on the 

couette rheometry, to describe the relation between the shear stress(𝜏) and shear rate (𝛾̇ ) (the shear 

rate is the derivative of the shear deformation (𝛾̇) in function of time (𝑡), 𝛾̇ (𝑥,𝑡) =
𝑑𝛾̇(𝑥,𝑡)

𝑑𝑥
 ) [60]. 
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Mainly, the couette flow describes the flow behavior of a viscous fluid being sheared between 

two surfaces of infinite extent, separated by a distance (ℎ), one of which is stationary and the 

other is moving at a constant velocity (𝑉). Herein, the velocity distribution follows a plane 

laminar movement, resulting in a linear law (Fig. 11). Theoretically, two particles infinitely 

adjacent, located at a distance (𝑥) and vertically separated by a distance (𝑑𝑥) at a given time (𝑡), 

will have a displacement of 𝑢(𝑥,𝑡) and 𝑢(𝑥,𝑡) + 𝑑𝑢(𝑥,𝑡) respectively after a certain period of 

time equal to (𝑡 + 𝑑𝑡). The induced shear deformation (𝛾̇) of the material at time (𝑡 + 𝑑𝑡), is 

calculated following Eq. 3: 

𝛾̇(𝑥,𝑡) =
𝑑𝑢(𝑥,𝑡)

𝑑𝑥
  (Eq. 3) [61] 

On the other hand, the resulting shear rate (𝛾̇ ) is a function of the material’s velocity (𝑉), derived 

using Eq. 4: 

𝛾̇ (𝑥,𝑡) =
𝑑𝑉(𝑥,𝑡)

𝑑𝑥
 (Eq. 4) [61] 
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Figure 9: Scheme of Couette flow [61] 
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1.5.1.2- Common Flow Behaviors and Rheological Models of Cementitious Materials 

As mentioned earlier, rheology is also concerned by the flow behavior of the matters. However, 

the numerical description and prediction of the flow behavior of cement-based materials is 

complicated, due to the complexity of the material’s composition. This is said because mortars 

contain not only particles having different sizes (ranging between μm to mm), but also experience 

chemical reactions, known as cement hydration, causing behavioral variations with time [57]. 

In fact, these materials are generally non-Newtonian fluids, and can exert different behavioral 

aspects (Fig. 9). Typically, non-Newtonian fluids do not present a linear variation of stresses with 

respect to the applied shear rates, and sometimes do not start from the origin (𝜏0 = 0 , 𝛾̇ 
0
= 0) 

[62]. Precisely, in a Newtonian fluid, the viscosity is always constant across all shear rates, 

starting from the origin, but in a non-Newtonian fluid, the relation between the shear stress and 

the shear rate is different. Therefore, a constant coefficient of viscosity cannot be defined 

[63][64]. Hence, in order to make things easier, the corresponding flow behavior of any cement-

based material can be estimated using different models approach [65]. 

 

 
Figure 10: Rheological Behavior of Non-Newtonian Fluids [66] 

 
Precisely, cement pastes are colloidal suspensions inside which the particles interactions form 

various microstructures. Different types of macroscopic flow behavior occur, depending on how 

such microstructures respond to an applied shear stress or strain rate [67][68][69]. There are  
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different ways of describing the steady state flow of fresh cement pastes, such as Bingham, 

Herschel–Bulkley, Ellis, Casson or Eyring rheological models [70][71]. However, it is 

demonstrated that the classical yield stress models (Bingham and Herschel–Bulkley) are the most 

adapted models [72] (Fig. 10). Though, the Bingham model is the most used one, and it was 

commonly agreed that the fresh mortar can be classified as a Bingham fluid in terms of their 

rheological properties [73][74]. With this assumption, the rheological performance of such 

materials is correlated to the yield stress and plastic viscosity uniquely, and they are the only 

parameters to characterize the flow curve within a range of shear rates [63].  

However, apart from the Bingham model, the Herschel–Bulkley fluid model is characterized by 

three parameters: yield stress (𝜏0), consistency factor (𝑘), and an exponent (𝑛) relating the 

shear stress to the corresponding shear rate [76]. This model is described in Eq. 2, and compared 

to the Bingham model in Fig. 10. Though, it is worth noting that the Herschel–Bulkley model can 

resume to the Bingham model, when the exponent (𝑛) is equal to 1 [77][78]. 

 

{
𝛾̇ = 0                         𝑖𝑓  𝜏 ˂ 𝜏0 

𝜏 = 𝜏0 + 𝑘𝛾̇ 𝑛           𝑖𝑓 𝜏 ≥  𝜏0
     (Eq. 2) [76]



16 
 

 
 

Figure 11: Bingham vs Herschel–Bulkley Models [79] 

 
Apart from that, the yield stress prescribing the performance of the fresh materials is dictated by 

the static yield stress, dynamic yield stress and plastic viscosity. When the shear stress reaches the 

static yield stress, the material flows. Then after, when the material flows, the static yield stress 

decreases to the level of dynamic yield stress in order to preserve a constant flow rate (Fig, 12) 

[80]. Besides, plastic viscosity is the resistance against the flow of the material. Normally, the 

described response to the applied stresses applies over the material’s flow behavior initially at rest. 

 

 
Figure 12: Variation of Shear Stress With Time [57] 
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Indeed, many factors affect the overall rheology of a material and its flow, mainly the interaction 

forces between colloidal particles, particles separation and effects such as jamming, spacing, 

surface area and roughness [57][81][82]. As well, the properties of fresh concrete are attributed to 

the inter-particle forces such as the van der Waals and electrostatic repulsive forces [83][84]. 

1.5.2- Rheometry 

As previously describes, the rheological behavior of the Newtonian materials totally differs from 

that of non-Newtonian materials. It is more complicated for non-Newtonian materials to be 

characterized, and it is widely acknowledged to be far from straightforward. Nonetheless, the 

rheological measurements of cement-based materials are even more complicated due to their 

variations across time [66]. 

Rheological measurements are most commonly performed using rotational shear rheometers. 

Though, conventional rheometers have different geometries, but in all cases, the material gets 

sheared between two surfaces [85]. Several examples of these rheometers are the simple rotational 

viscometer Brookfield type, the parallel plate rheometer, the cone and plate rheometer, the 

capillary rheometer, and the concentric cylinders rheometer. 

In general, rheometers are the most accurate devices used to measure the rheology of cement-based 

materials. However, they are not popular outside the laboratory. They are subject to many 

drawbacks, which are the cost, immobility (size and weight), and time consuming. In addition, 

rheometers are difficult to use, they need skilled operators. What is even more important is that 

rheometers are mostly designed for homogeneous materials, containing no particles [63]. They are 

not adapted for materials containing large aggregates, such as mortar and concrete [74]. In fact, 

there are still different methods that are much easier and practical to be performed over mortars 

and concrete, on-site, and without the need of skilled operators. Some of these methods are the 

slump slump-flow test [86] [87], and the inclined plane [88]. Though, in practice, these methods 

show certain shortcomings especially that they are not capable of directly measuring the intrinsic 

rheological parameters of the material. 

1.6- General Properties of 3D Printable Materials 

In general, all cementitious materials have a very sensitive physico-chemical behavior [27][89]. 

The evolution of the material’s strength starts by the hydration reactions between anhydrous 

cement particles and water. This reaction generates C-S-H bridges between cement particles. 
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However, the physical aspect of the material’s strength evolution refers to the setting of the 

material, which corresponds to the hardening and acceleration of the hydrates formation [89]. 

Particularly, when the material is used for 3D printing applications, this behavior has a major 

importance on the overall performance of a printed object [52]. 

The material used in 3D printing must provide a balance between different fresh properties, and 

therefore comply with very basic requirements in order to be considered printable [80][90]. The 

key properties for a printable mortar are extrudability, and buildability. Extrudability, is defined 

as the ability of the material to be workable and flowable enough to get out of a nozzle without 

blocking it or the conduits. It should maintain a smooth flow rate during the pumping process to 

allow a constant layer’s printing [91]. Whereas, buildablity is the ability of a printed layer to retain 

its shape after being printed, and to withstand the load coming from superposed layers without 

showing any deformation [91]. Buildability is considered as the first stiffening stage of the 

material, where it must present a fast setting rate, yet still be suitable to provide good bond between 

successive layers to form a homogeneous component without the risk of forming cold-joints 

between layers [27]. 

Over and above, the evolution rate of the material’s stiffness over time makes a critical parameter 

as well. Indeed, it must be perfectly controlled in order to guaranty a smooth development of the 

printed structure [52]. Thus, the overall phenomenon involves not only the control of the material’s 

behavior in its fresh state (printability), but also following up the changes over time, after being 

placed. 

1.7- Fresh State Requirements of 3D Printable Mortars 

As previously explained, 3D printing is considered as the most widely used digital construction 

method of concrete structures [92]. Precisely, this construction technique is divided into two major 

steps. The first step consists of pumping and extruding the material, whereas the second step 

depends on its deposition. Accordingly, in order to ensure a good flow of the material during the 

first step, and a strong stability during the second step, the material must have complete control 

over its rheological properties, and it must remain homogeneous all over the process. On one hand, 

the printable material must have sufficient fluidity during the first step to be pumped properly. On 

the other hand, it must be stiff and firm enough to allow its shape stability once deposited. These 
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contradictions in the behavior of the material require particular rheological properties in order to 

carry out a proper printing process [80]. 

Physically speaking, a transition must take place between the first and the second step of the 

printing process. The material must undergo a state transition from liquid-like behavior (during 

pumping) to solid-like behavior (after deposition). This transition is the core aspect that printable 

concrete must present [93][94]. Therefore, for an adequate understanding of the material’s 

paradigm, it is necessary to provide a clear mechanical description of its fresh state directly after 

mixing, up-until a certain time after being printed. 

1.7.1- Flow Behaviour of 3D Printable Mortars 

Generally, this type of material displays an apparent viscosity that decreases with increasing shear 

rate [62]. Still, when it is at rest, it behaves as a plastic solid [95]. Alternatively stated, such 

material deforms elastically, and flows like a stiff body when the external stresses are smaller than 

the static yield stress. Threrfore, the flow curve are most likely to be non-linear. As a consequence, 

such material do not level out (change its shape) under gravity. Even more, it was confirmed that 

when the material is at rest, it consists of three-dimensional structures of sufficient rigidity to resist 

certain externally applied load [62][96]. 

1.7.2- Rheological Requirements and States Transition of 3D printable Mortars 

Unlike polymer printable material, the transition from plastic to solid behavior of cementitious 

mortars is not achieved by a sudden change of temperature [97][93]. Indeed, this state-transition 

completely relies on the kinetics of the mechanical structural build-up of the material, resulting 

from the chemical reactions and activity of cement in water. 

The internal structure of cement-based materials goes through different modifications over 

different levels. Effectively, fresh mortars undergo a progressive change in their physical, 

rheological, and chemical characteristics [27]. In addition, the rheology of cement pastes is derived 

initially from the cement particles that flocculate and form a network of interacting particles. This 

phenomenon, so-called flocculation, allows for the material to display an initial yield stress, 

enabling it to resist external stresses just after being deposited [59]. At that instant, the material 

keeps on developing and organizing its internal structure for several tens/hundreds of seconds, 

before reaching its final configuration [59]. Simultaneously, when the material is still in its 

dormant phase, the nucleation of the hydrates occurs. This phenomenon corresponds to the 
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formation of more solid hydrate bridges. As a matter of fact, the structuration phase of the material 

takes place, coming from the increase of the size and numbers of hydrates bridges between 

percolated cement particles. 

Particularly, in the case of 3D printing, when the layer has been deposited, an adequate yield stress 

must be reached. This stress must sustain first the gravity stresses, then after the additional stresses 

coming from subsequent layers. Though, by successively depositing layers, these stresses 

progressively increase. Accordingly, in order to prevent the collapse of the printed element, the 

yield stress of the material shall proportionally increase as well, during a critical timeframe. 

Therefore, in order to monitor the gravity-induced stresses over the most loaded layer (bottom 

layers), the yield stress must be correlated to the density of the mix used (𝜌), the gravity constant 

(𝑔), and to the current / final height of the printed element (ℎ “ongoing height”, H “total 

height”), as described in Eq. 5. 

 

𝜏0,0 =
𝜌𝑔𝐻

√3
  (Eq. 5) [98] 

The overall phenomenon, since the deposition of the layer until the completion of the whole 

structure is further represented in Fig. 13: 
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Figure 13: Yield Stress Evolution Over Time [99] 

 
1.7.3- Thixotropic Models and Characteristics of 3D Printable Mortars 

The controlling rheological phenomenon for printable mortars is their thixotropic behavior. When 

the material is deposited, it exhibits an initial yield stress, and a critical yield strain. However, at 

rest, the yield stress increases whereas the shear strain decreases. This fact makes the material 

stronger and more rigid with the increasing time, and it is attributed to the material’s thixotropic 

behavior (Fig. 14) [100][101]. 
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Figure 14: Example of the yield stress evolution with time [102] 

 

The mechanical behavior of a freshly printed element is dictated by the structuration rate, 

corresponding to the increasing static yield stress of the material over time, after the layer’s 

deposition, and it is designated by (𝐴𝑡ℎ𝑖𝑥) [52]. However, there are two prime models used to 

describe and predict the structuration rate of the material (Fig. 14). Roussel [103] explains that 

during the first hour, the increase is often considered to be linear, and can be written as shown in 

Eq. 6. Though, at 𝑡 = 0 𝑠𝑒𝑐, the initial stress 𝜏0,0 is negligible (𝜏0,0 ≃ 0 𝑃𝑎) when compared to 

the shear stress developed when the mix is at rest [59][103][104]. Therefore, the static yield 

stress can be presented in a simplified form, as shown in Eq. 7. 

𝜏0(𝑡) = 𝜏0,0 + 𝐴𝑡ℎ𝑖𝑥𝑡  (Eq. 6) [103] 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡  (Eq. 7) [103] 
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However, Perrot et al. [105] offered a more elaborated model showing that beyond that period 

(first hour), the increase of the yield stress accelerates, and the kinetics of the structural build-up 

changes from linear to exponential (Fig. 15), as shown in Eq. 8. It is worth to mention that, Perrot’s 

model tends to be linear over a short period of time as well (for 𝑡 = 0 𝑠𝑒𝑐). Though it further 

includes a critical time characteristic (𝑡𝑐) used to describe the static yield stress evolution over 

longer periods. Physically, this change is attributed to the beginning of the setting process of the 

material, causing an increase in the solid volume fraction [93][105][106]. 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡𝑐 (𝑒
𝑡
𝑡𝑐⁄ − 1) + 𝜏0,0  (Eq. 8) [105]  

Indeed, these models can be used to set the optimal printing time (𝑡𝐻) and speed (𝑉) to guarantee 

the stability of the structure, as in Eq. 9 and Eq. 10 respectively [97].  

𝐴𝑡ℎ𝑖𝑥 =
𝜌𝑔𝐻

√3  𝑡𝐻
   (Eq. 9) [97]  

𝑉 <
√3 𝐿 𝐴𝑡ℎ𝑖𝑥

𝜌𝑔ℎ
   (Eq. 10) [97] 

 

 

 

Figure 15: Yield Stress Evolution With Time: Perrot's Model Vs Roussel's Model [93] 
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1.7.4- Measuring and Qualification of Mortars Early Age Properties and Printability 

In section 1.5.2, it was mentioned that despite the attractiveness of most rheometers, there is many 

drawbacks that cease their application for the characterization of mortars. Indeed, to assess the 

printability of cementitious materials, it is mandatory to follow up the material’s stiffness and 

strength evolution with time, after the layers deposition [107], in order to estimate the adequate 

building rate [108]. In this regard, several attempts were made to monitor inline the evolution of 

the material’s properties. For example, Leal Da Silva et al. [109] used the oscillatory rheometry 

and ultrasound test measurements to estimate the material’s elastic modulus evolution over time. 

However, this technique requires expensive and very sensitive devices that are not easy to 

implement in 3D printing. On the other hand, to relieve this situation, instantaneous and continuous 

method are being developed in order to meet these needs. For example, the penetration test or 

gravity induced flow tests are being further adapted to be compatible with printable mortars [107]. 

Most importantly, these methods use simple tools, and they are fast enough to be used in line with 

the printing process. As an example of the penetration test, the cone plunger was used by Rubio et 

al [110], to investigate the effect of different mix composition on fresh and rheological properties 

of printable mortar. Whereas, Khalil et al. [84] used a Vicat plunger for standard consistency 

having a diameter of 10mm, to study the effect of Calcium Sulfo-Aluminate cement on the 

printability of pastes and mortars. 

Notwithstanding, straightforward methods were used to assess the quality of printable mortars. For 

example, Zhang et al. [111] assessed the buildability of the material by visual inspections. They, 

simply noted the deformations of printed layers, or the collapse of the whole element. Le et al. [91] 

referred to the workability, extrudability, buildability and setting time of the material, as the 

essential parameters to qualify the material used. Herein, the workability, and the open time of the 

material were derived from the vane shear apparatus measurements. As for the extrudability and 

buildability, they were checked by visualizing the ability of the material to get out of a 9mm 

circular nozzle without any blockage of the nozzle, or discontinuity in the layer. Another example 

is attributed to Kazemian et al. [112] who considered that a good print quality corresponds to a 

good surface quality, square edges of the layers, dimensional consistency, and conformity to the 

CAD model. 
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1.7.5- Rheological Problems and Object Failure During Manufacturing 

As previously discussed, the printability of a mortar is dictated by its extrudability and buildability 

properties. Herein, the extrudability characteristics of a material mostly affect the pumping and 

extrusion stages in the manufacturing of concrete elements. It should be always ensured that the 

material flows inside the system without excessive friction, because if happened, the material 

begins to scrape causing more defects to the surface and discontinuity of the printed layer. Even 

worst, this might causes interstitial fluid drainage within the material inside the conduits, mostly 

leading to a blockage [113][77][114][115] (Fig. 16). Nevertheless, it has been reported in earlier 

studies that material heterogeneities could appear during the flow of firm mortars [77][116][117]. 

In addition, it has been observed as well, that very concentrated suspensions are more subjected to 

liquid filtration and drainage during their extrusion [117][118][119]. 

 

 

Figure 16: (Left) Layers Discontinuity and Surface Defects [120] (Right) Nozzle Blockage 

 
On the other hand, Printed structures are subjected to different buildability problems, after the 

layers deposition (Fig. 17). Two mechanisms were recognized as the major causes of collapse in 

3D printed elements during the manufacturing process, which are the material failure, and loss of 

stability [107]. Each layer slightly deforms when a certain load is applied to it. Therefore, it is 

necessary to account for this deformation in order to perceive the exact number of layers that must 

be printed to construct a structure with the exact targeted height [93][100]. However, more serious 

events could happen leading to a total collapse of the structure [121]. For example, a plastic 

collapse might occur, corresponding to the breakage of the base layer (the most heavily loaded
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layer). This type of failure is caused by the excessive stress exerted on the layer, overcoming its 

actual static yield stress, arising from the weight of the superposed layer. The mostly affected 

structures by this mode of failure are the non-slender ones [122]. Whereas, in the case of slender 

elements, an elastic buckling (structural buckling) is most likely to occur. In general, buckling 

failure is caused either by making cantilevers, or due to an incorrect alignment of the printed layers 

causing eccentricities [100][121]. Over and above, during the printing of a curved element, the 

layer is being bent. As a fact, the inner part of the curved layer gets compressed, while the outer 

part gets stretched. This elongation creates different cracks all over the curvature boundary which 

cause not only aesthetic problems to the element, but a strength and durability weakness in its 

hardened state [27]. 

 

 
Figure 17: (Left) Plastic Collapse (Right) Elastic Buckling [121] 

 
1.7.6- Methods to Control the Rheological Properties 

Generally, the fresh properties of cement-based materials are highly affected by the mix 

composition, such as the use of admixtures, minerals, and the overall material proportions 

[123][124]. The rheological behavior depends on the quality of each constituent, their proportions 

in the mix, and their interactions [57]. Besides, an effective mixing procedure must be followed in 

order to have full control over these properties [27]. For example, it is possible to control the 
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rheological properties of the mix by delaying the addition of High Range Water Reducer 

admixtures. This can better increase the workability and decrease the viscosity of the mix [125]. 

Furthermore, using higher shear mixing could improve the material’s workability by decreasing it 

viscosity [125]. On top of that, the yield stress of the material could be further decreased to about 

the half (for a short period of time) if vibrated [126]. 

1.7.7- Effect of the Mix Composition on the Rheological Behavior of Printable Mortars 

Concerning the material’s composition and proportions in the mix, initially, the volume of paste 

is an essential parameter that plays a key role in changing the material’s rheology. A higher volume 

of paste, provides a better flowability [57]. Koehler [127] confirmed that any increase of the paste 

volume would result in an increase of slump, and a reduction of yield stress and plastic viscosity. 

Similarly, Banfill [128] found that a higher volume of paste decreases the yield stress of the 

mixture. Gołaszewski [129] found that the volume of paste would affect more the plastic viscosity 

of the material rather than its yield stress. 

Besides, concerning the water to cement ratio, an increase of the water content, decreases 

dramatically the yield stress and plastic viscosity of the material [126]. Banfill [128] assured that 

a higher water content would decrease the yield stress of the mix (Fig. 18), and similarly did 

Hernández et al. [130]. 

 
 

 
Figure 18: Effect of W/C on the Yield Stress and Plastic Viscosity of Fresh Mixes [128] 
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As for the addition of minerals such as silica fume and limestone powder, it is commonly known 

that silica fume is an extremely fine powder having a higher specific surface area than cement [57]. 

Therefore, silica fume particles can easily fill the voids between other particles, and improve the 

gradation and packing density [57]. Besides, silica fume increases significantly the flocculation 

rate of the material [131][132]. As a results, it can be added in mortars to provide better uniformity 

and cohesiveness of the material, as an inorganic viscosity modifying agent [57]. In this regard, 

Ahari et al. [132][133] found that silica fume increases the yield stress and plastic viscosity of the 

material, and therefore its overall thixotropic values. Similarly did Dengwun et al. [57] (Fig. 19). 

Furthermore, many studies found that the workability of the material increases when used at low 

replacement rates, and decreases if used at higher replacement rates [127]. Accordingly, Tattersal 

[134] stated that an addition of 2% to 3% of the cement’s weight could be used as a pumping aid. 

 

 
Figure 19: Effect of of Silica Fume on The Material’s Rheology [57] 

 
Concerning the use of limestone powder as a mineral admixture, it increases the adhesion and 

friction between cement particles, mainly due to the irregular shape and roughness of the particles 

[135][136]. Limestone particles reduce the spacing between other particles and increase the inter 

particle contacts. In addition, limestone filler have high adsorption capacity of High Range Water 

Reducers, which helps in further dispersing the cement particles [57][137]. Some researchers 

found that limestone filler would increase the yield stress of the material, as well as its plastic 

viscosity. For example, Rahman et al. [131] stated that increasing the limestone portion in the mix 

leads to an increase of the flocculation rate. Koehler et al. [127] concluded that limestone addition 

contributes to an increase of the mix’s yield stress and plastic viscosity with time (Fig. 20). 
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Besides, BonavettiIrassar et al. [138], and Tsivilis et al. [139] showed that limestone filler 

increases the structuration rate of the mix with the increasing time. 

 

 
Figure 20: Effect of Limestone on The Material's Rheology [127] 

 
Regarding the use of some chemical admixtures such as Polycarboxylate based High Range Water 

Reducers and Viscosity Modifying Agents, it is commonly known that HRWR are mostly used to 

decrease the yield stress and viscosity of cementitious materials. They have an extreme potential 

to disperse cement particles [140]. The effect of HRWR on the material’s properties has been 

clearly shown by Koehler et al. [127] (Fig. 21). Furthermore, Khalil el al. [84] showed in their 

study that HRWR decreases linearly the yield stress of mortars, and their structuration rates as 

well. As well, Qian et al. [140] concluded that an addition of HRWR decreases the thixotropy. 
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Figure 21: Effect of HRWR on The Material's Rheology [127] 

 
Apropos the Viscosity Modifying Agents, their essential role is to improve the rheology of 

cementitious material by enhancing the uniformity and cohesiveness of the mix [141]. Though, 

few researches investigated its effect on the thixotropy of cement pastes [142].VMA is often used 

in combination with the appropriate HRWR [143]. In general, the shear stress of the fresh mix 

including VMA is mostly affected [141][144]. This was confirmed by DauKsys et al. [145] who 

showed that VMA moderately increase the structuration rate of cementitious materials (Fig. 22). 

In addition, other researchers found that they do not evidently influence the yield stress of the 

materials, but its viscosity in particular [146]. Therefore, it can be pointed out that they do not have 

a considerable effect on the structuration rate increase. 
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Figure 22: Effect of VMA on The Material's Rheology [145] 

 

1.8- Hardened State Properties of 3D Printed Elements 

1.8.1- Mechanical Properties of 3D Printed Elements 

The layering process enabling the additive manufacturing concept, as well as the fresh properties 

of the material used, affects greatly the behavior and quality of the printed element in its hardened 

state (compressive strength, flexural strength, etc…). Indeed, a good bond between superposed 

layers is a key factor for providing a monolithic action of a printed element. Over and above, the 

mechanical properties of printed elements define the structural performance of the overall 

structure. Therefore, apart from the conformity to the designed geometry, it is the hardened state 

properties that give for the manufactured object its value [147]. 

The fabrication mode that do not use formworks, and the curing conditions influence the 

mechanical strength of the printed element. Practically, the continuous exposure to the surrounding 

environment increases the cracking resulting from the drying shrinkage [147][148][149]. 

Likewise, because of the layering concept, 3D printed elements exhibit anisotropic characteristics 

[50][51][150]. This happens because, the microstructure of the material inside the layer differs 

somewhat from its microstructure at the boundaries between layers, and because of the formation 

of unwanted voids between layers in contact [151]. As a matter of fact, the loading direction of the 

specimen with respect to the printed layers influences its mechanical properties (Fig. 23). Having 
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said that, it is possible to adjust the orientation of the printed layers for each element based on the 

applied loads when in service [147]. In other words, the bond generated between successive layers, 

corresponding to the interlayer strength, imposes a new parameter that must be taken into 

consideration. 

 
 

 
Figure 23: Applied Load With Respect to the Layers Orientation 

 
Technically, the creation of the bond can be explained by the surface forces acting at the interface, 

controlled by three major adhesion characteristics which are mechanical interaction, chemical 

bonding, and thermodynamic linkage [152][153]. Implicitly, the adhesion between successive 

layers can be described as their interaction on a micro-scale, corresponding to the chemical 

reactions and cement hydration; and macro-scale corresponding to the interlocking and surface 

roughness of the layers [154][155]. Practically, the interfacial bond strength is determined by the 

material’s rheology and printing parameters such as, printing speed and time gap between 

successive layers, nozzle standoff distance, contact area between layers, pumping pressure [156] 

(Fig. 24). For example, large time gap between layers deposition results in a cold-joint formation 

[97][157][158]. To avoid such incident, the optimum time gap between layers should be 

determined. Accordingly, the printing speed must be properly controlled. As for the other printing 

parameters, a balance should be always maintained based on the rheological properties of the 

material used. For example, a low printing quality induces a higher surface roughness. 

Correspondingly, a lower printing pressure amplifies the presence of voids by entrapping air 

bubbles between successive layers, instead of pushing the material being printed into these voids 

[37][159]. As well, these parameters might result in under-filling problems, caused by the 
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reduction of the effective density of each layer, causing a formation of additional voids [147]. On 

the contrary, a high printing pressure might enforce existing air bubbles inside the layer to escape 

and stay entrapped between layers [160]. Meanwhile, there is no predefined practice or approach 

to monitor these parameters altogether, they can be only determined instantaneously, for each 

situation separately [107]. 

 

 
Figure 24: Correspondence of All Printing and Material Parameters [156] 

 
Many researchers working on the development of additive manufacturing assessed the quality of 

the bond generated between printed layers, based on different variables and parameters. For 

example, Paul et al. [161], Feng et al. [162], and Nerella et al. [90] investigated the effect of the 

layers direction with respect to the applied load, on the bearing capacity of printed elements. In 

fact, they all found that the compressive and flexural strengths of 3D printed specimens are 

governed by the layers direction (Fig 25). Though, Koker et al. [163] found that in some cases, 

and depending on the printing parameters, the mechanical strength of printed elements is greater 

than for casted elements. This fact is attributed to the extra pressure exerted on the material during 

the printing process which reduces the voids inside the layer and at the interface making a denser 

matrix. 
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Figure 25: Effect of the Layers Direction on The Compressive Strength of 3D Printed Elements [164] 

 
Wolfs et al. [165] investigated the effect of time interval between layers deposition, nozzle’s 

height, and surface dehydration on the compressive and tensile strength of printed elements. 

Herein, they found a minor influence of the layers orientation with respect to the applied loads. 

However, the bond strength between layers decreases as the time interval between layers 

deposition increases. The negative effect of time delay was also confirmed by FalCon et al. [9] 

and Tay et al. [157] (Fig. 26). However, this time gap lead the layers surfaces to dry out, causing 

a further decrease in the bond strength. These results were in accordance with Sanjayan et al. [17] 

when studying the effect of surface moisture on the inter-layer strength of 3D printed concrete. 

These studies showed that for short time gaps, the bond generated between layers decreases due 

to the surface water evaporation. Yet, this bond regains strength at higher time gaps (up to a certain 

limit) due to the material’s bleeding, moisturizing the surfaces. Here as well, Marchement et al. 

[166] were able to prove the exact same fact (Fig. 27). Yet, wolfs et al. [165] could not obtain a 

clear relation between the height of the nozzle and the interlayer strength. 
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Figure 26: Effect of Time Gap on The Interlayers Strength [157] 

 

 

 
Figure 27: Effect of Surface Moisture on The Strength Between Layers [166] 

 
Besides, Zareiyan et al. [154] studied the effect of the extrusion rate, aggregate size, and layer’s 

thickness on the interlayer strength of printed elements. They found that when the aggregates size 

increased, the printed element became more subjected to cold-joint effect. This happened because 

large aggregates lead to less homogeneous layered structures. However, as the layer’s thickness 

decreased, the compressive strength of the element increased. On the other hand, Lee et al. [167] 
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investigated the existing relation between pores and tensile bond strength of additively 

manufactured mortars, using X-Ray and computed tomography analysis. As a fact, they found that 

the voids were majorly positioned at the interface level, which caused a strength reduction. 

1.8.2- Durability Properties of 3D Printed Elements 

Recently, 3D printing of concrete objects became even more widespread and popular. 3D printing 

is gaining interest in the infrastructure industry and many other critical field of applications, such 

as water collectors, river revetment walls, and the reproduction of natural coral reefs 

[168][169][170][171] (Fig. 28). In such cases, 3D printed elements are continuously exposed to 

aggressive environments. Again, the same printing parameters and rheological properties affecting 

the mechanical strength of printed concrete elements, affect their durability characteristics. This is 

all attributed to the weak interfaces between successive layers. Indeed, these weaknesses threaten 

the overall durability of the concrete elements due to the formation of additional preferential 

ingress paths for aggressive substances and chemical from the surrounding environment. This is 

said because chemicals intrusion through weak interfaces would be much faster than in bulk 

material. 

In the literature, most studies are concerned only by the early and long-term strength of mortars, 

mainly their rheological and physical behaviors [42][172]. However, they are rarely studied for 

their durability properties [10][173]. Therefore, some mechanical and physical properties are 

poorly observed [43]. 

 

 
Figure 28: (Left) River Revetment Wall [170] (Right) Coral Reef [171] 
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1.9- Reinforcement Approaches of 3D Printed Elements 

In general, the tensile strength of concrete is 10 times weaker than its compressive strength, which 

is relatively low [37][48][174]. Therefore, when designing a structural element, it is commonly 

known to neglect the tensile strength of concrete itself. Hence, the use of reinforcement is essential 

to provide sufficient tensile capacity and ductility to the structural element. Apart from strength, a 

minimum reinforcement must be provided to fulfill several essential functions such as, avoiding 

brittle failures at cracking, ensure sufficient ductile behavior to equally redistribute stresses all 

over the element, and most importantly to limit the deformations and crack widths [9][48][175]. 

Alongside, exclusively for the case of 3D printed elements presenting weak interface strengths 

from the extrusion process, the interface itself can be considered as an artificial crack initiator used 

to have control over the cracks spacing and widths across the whole element [9]. 

The incorporation of reinforcements in 3D printed elements is still in its infancy stage. Though, if 

3D printing technology wants to be considered as a competing construction method for 

conventional practices, it must be able to provide proper reinforcement. In other words, 3D printed 

elements must be able to tolerate the stresses imposed during their service life as integral structural 

parts of a building. Therefore, tensile strength beyond the mortar’s capacity is mandatory. 

Particularly, the distinctive characteristic of 3D printing is its ability to produce random shapes 

without geometrical constraints. It is a formwork-free method, enabling the construction of 

complex architectural and creative concrete structures [97]. However, as previously explained, 3D 

printed concrete exhibits tensile weakness that necessitates the addition of steel reinforcement, 

similar to conventional concrete [48]. Therefore, despite its attractiveness, when it comes to 

integrating reinforcement, 3D printing imposes specific challenges that can never be omitted if 

printed elements are used for structural applications [40][176][177]. The identity of this 

construction technique based on the superposition of layers, eliminates external vibration, 

undermining the link generated between steel reinforcement and printed concrete, and thereby the 

structural capacity and overall performance of the element. Apart from that, the layering process 

increases the risk of external fluid migration through the layer interfaces, causing reinforcement 

corrosion [40][43][178]. As a consequence, developing a comprehensive and appropriate 

reinforcing approach makes 3D printing technology more and more challenging. 
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Many academic and industrial institutions are currently developing several approaches to find the 

most appropriate reinforcing method of 3D printed concrete elements. Technically, these methods 

consist of either in-mixed fibers reinforcement or continuous steel bars. For the case of using 

traditional steel bars as in conventional concrete, this matter can be done manually by adding 

reinforcing bars during the printing process, or through the use of a robotic tool alongside. For 

example, reinforcement can be done by placing reinforcing bars between printed layers, at the 

interface level [176], or by extruding a metal cable simultaneously with the deposition of concrete 

layers [179]. This can also be done by printing an integrated formwork, and placing inside of it a 

structural steel cage, then after filling it using conventional concrete [34][176]. Over and above, 

pre-stressing tendons placed inside existing conduits, can be used [181]. Besides, reinforcement 

can be done by printing over a standing steel cage using a fork shaped printing nozzle that extrudes 

mortar on both sides of the cage [182]. Apart from all previously mentioned approaches, there is 

still several methods for reinforcement into service, but less circulated. These methods are the 

Mesh-Molding, the Sparce Concrete Reinforcement In Meshwork, and the Smart Dynamic 

Casting. The Mesh-Molding method is done by robotically printing and assembling the whole 

system including the steel mesh, which plays the role of a mold and reinforcing medium 

simultaneously [183], whereas the Sparse Concrete Reinforcement In Meshworks (SCRIM) is 

done by joining printed concrete to a textile reinforcing mesh to produce a reinforced element 

[184]. Though, the Smart Dynamic Casting (SDC) is done by shaping concrete using a flexible 

actuated formwork, over vertically placed reinforcing meshes [185]. 

1.9.1- Reinforced 3D Printed Elements 

Different reinforcing methods were presented in the context of 3D printing of concrete elements. 

Certain approaches consist of adding fibers to the printed material, whereas others use 

conventional steel bars. Both methods have potentials, but for most applications rebars are 

required, since fiber reinforced elements are limited in strength and ductility [40] [48]. 

Additionally, the presence of fibers might generate a weakness between superposed layers, 

because they might not cross the horizontal joints properly, leaving extra voids at the interface 

level [40]. Farina et al. [186] found that the mechanical behavior of fiber reinforced 3D printed 

elements (shear capacity, flexural strength, and fracture toughness) greatly depends on the design 

and the material of the fibers used. Accordingly, they found that fibers having rough surfaces 

exhibit high interfacial bond strength, while smooth fibers induce limited interfacial strength. 



39  

Despite the fact, Panda et al. [50] studied the anisotropic mechanical performance of 3D printed 

fiber reinforced sustainable construction material, using different contents and lengths of glass 

fibers. As a matter of fact, they found that the mechanical performance of the fiber reinforced 

elements can be improved with the increase in the fiber content up to 1%. Yet, the results showed 

an obvious directional dependency caused by the layers directions (Fig. 29). Similarly, Bos et al. 

[187] studied the effect of steel fibers inclusion in a printed element. Herein, they found that fibers 

improve the flexural strength of printed elements, and eliminated the strength difference between 

casted and printed elements, which normally exists in the case of unreinforced elements. 

 

 
Figure 29: Flexural Strength of Fiber Reinforced 3D Printed Elements [50] 

 
Concerning the use of continuous reinforcement, and regardless of the incorporation method of 

the reinforcing element (such as rebar, steel cables, filaments, and wires), many 3D printing 

variables come into play, and must be carefully addressed. In such cases, the diameter of the bar 

and the corresponding layer’s geometry influence the structural capacity of the element. Over and 

above, the absence of vibration imposes further challenges regarding the bond between printed 

concrete and the bar. Besides, the influence of the anisotropic characteristics of a printed element 

affects the level of interaction between the bar and the layer. As for the material used for printing, 

it is evident that its rheological properties could sometimes affect the quality of the bond. In this 

context, Bos et al. [179] performed an experimental exploration on the ability of metal cables 
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having different diameters, to be used as reinforcements in 3D printed elements. Therefore, they 

conducted a series of pull-out and bending tests over casted and printed specimens. In their study, 

they found that in printed concrete, the bond strength of the cable with the layers is considerably 

lower than in cast concrete (Fig. 30). Moreover, they found that 3D printed reinforced beams exert 

a good flexural capacity and significant post-cracking resistance. In addition, this study showed 

that the cable’s diameter influences the failure mode and capacity of the element, though a clear 

relation was not found. It is worth to mention that in this study, Bos et al. [179] did not take into 

consideration the effect of the layer’s direction with respect to the cable, thus all printed layers 

were parallel to the cables. 

 

 
Figure 30: Bond Strength in Cast and Printed Concrete [179] 

 
Similarly, Lim et al. [188] used different steel cables as well to reinforce 3D printed elements, and 

compared their performance based on 4-point bending test. Hereby, Lim et al. found that steel 

cables improve the flexural strength of 3D printed elements (Fig. 31). 
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Figure 31: Maximum Bearing and Deflection Capacity of 3D Printed Elements [188] 

 
From a different perspective, Asprone et al. [189] adopted a novel approach of reinforcement, 

based on printing separate segments, which are then assembled into a unique 3 m long beam 

element using an external steel system. The flexural strength of the beam is tested by 3-point 

bending test, and the results were comparable to that of an equivalent full solid reinforced beam. 

However, the deflection results of the printed beam were not credible because of the new 

manufacturing approach, therefore a remarkable difference was found (Fig. 32). 

 

 
Figure 32: Comparision Between Printed and Full Solid Reinforced Concrete Beams [189] 
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1.10- Sustainability and Life Cycle Assessment of 3D Printed Structures 

In general, the construction sector is an essential contributor to the world’s economy, but in 

contrast, it has a significant impact on the environment. It is one of the largest users of energy, and 

material resources [190]. Though, the building industry is considered as one of the major 

contributors to the environmental pollution, and in particular for the CO2 emissions 

[191][192][193], as well as a major consumer of raw materials with 40% of the global use 

[194][195]. 

Other way around, previous researches highlighted that the integration of AM in the construction 

field, have high sustainable benefits and potentials, such as Kohtala [196], and Ford et al. [197]. 

Similarly did Kreigner et al. [198] who argued that 3D printing has potentially fewer 

environmental impacts and lower energy demand when compared to the conventional construction 

techniques using molds and formworks. Additionally, Faludi et al. [199] stated that 3D printing 

reduces the amount of waste and it is an energy saving process. However, all these studies focused 

on small-scale processes and showcase structures. They were based on optimized theories and 

approaches. Yet, very few were quantitative. Therefore in their turn, Agusti-Juan et al. [200] 

conducted a detailed life cycle assessment over different sets of walls, to explicitly illustrate the 

difference between the conventional construction method and 3D printing. Both sets included 

straight, single curved, and double curved walls. The first set was conventionally casted and the 

second set was printed using the Mesh-Mold approach. Though, they found that the concrete used 

for 3D printing is much more demanding to meet the specific properties needed, and contributes 

to approximately 40% more CO2 emissions than the conventional concrete due to the increased 

amount of Portland cement (Fig. 33). As for the reinforcement, Agusti-Juan et al. [200] did not 

found a remarkable difference in the reinforcement amount needed between Mesh-Molding and 

the conventional technique. Accordingly, they indicated that the environmental performance of 

digital fabrication depends majorly on the use of concrete materials. 
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Figure 33: Comparision of CO2 Emission Between Printable and COnventional Concrete [200] 

 
In spite of that, the eco-toxicity and negative environmental effect induced by 3D printing, can be 

rectified with the increasing structural complexity, making a positive feedback loop. More 

precisely, 3D printing offers a better structural optimization which thereby can decrease the 

amount of materials used. In addition, it generates less wastes, especially in terms of material’s 

utilization and formworks employment for conventional construction practices. 

1.11- Research Significance and Objectives 

After all the challenges imposed by 3D Printing in terms of fresh and hardened state properties of 

printable materials, and the structural behavior of printed elements; several subjects must be 

continuously addressed and developed in order to further promote its application in the 

construction field. In particular, two major problematic were identified, the first one related to 

the development of a practical formulation method of printable mortars that comply with the 

buildability requirements of the material, and second, corresponds to the performance 

characterization of 3D printed elements in terms of the quality and adequacy of the interaction 

between printed concrete layers and reinforcing bars, and the durability of the printed elements. 

However, knowing that there are my methods adopted for the formulation of printable mortars, 

for example by using accelerators or some other chemical admixtures, it was decided to develop 

a different approach that can be systematically implemented using some predefined graphs based 

on the structuration rate of the material needed for its good buildability. As for the structural 

reinforcement of 3D printed elements, all what has been presented in the literature show the 

strategies used for the incorporation of reinforcement in a 3D printed element. However, it is not 
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the reinforcement approach that only matters. Indeed, the structural behavior of the reinforced 

elements and the interaction between printed layers and the reinforcement is what mostly counts. 

Hence, it was of our interest to cover both fields through relevant experimental campaigns. 

Accordingly, this research covered the whole production process, starting by the mix design and 

formulation up until the product’s delivery and evaluation. In this regard, the common thread of 

this thesis was to understand the effect of the material’s rheology and fresh state properties on 

the hardened state quality and structural performance of 3D printed elements. Particularly, the 

aims and objectives were the following: 

 Understanding the effect of several mostly used chemical and mineral additives in the mix 

design, on the rheological and thixotropic behavior of fresh printable mortars, and 

correspondingly, their effect on the printability characteristics of the material used. 

Subsequently, the outcomes were correlated to the performance of 3D printed elements, in order 

to answer three major questions concerning the effect of the material’s fresh state properties and 

rheology on the hardened state properties of printed objects, which are: 

 How could the material’s fresh state properties affect the bond generated between steel 

reinforcement and printed concrete layers? 

 How could the layers direction with respect to the steel bar affect the quality of the bond 

developed with printed concrete layers? 

 How could the material’s fresh state properties affect the durability performance of 

printed elements exposed to difference chemical environments? 

A purely experimental program has been associated to this thesis, following the methodology chart 

below. A series of rheological, mechanical, and durability tests have been conducted to 

characterize the fresh and hardened state properties of printable materials. Respectively, each of 

the following chapters describes the proper experimental protocol adopted, as well as the resulting 

outcomes. 
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Chapter 2 addresses the rheological characterization of newly developed printable mixes having 

different compositions. In particular, this study exploits the influence of certain chemical and 

mineral additives on the material’s thixotropy, such as high range water reducer (HRWR), 

viscosity modifying agent (VMA), limestone filler, and water content. Accordingly, the 

rheological measurements associated to the yield stress, were estimated along a certain period of 

time using the Fall-Cone test. The results were then correlated to the material’s structuration rate 
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evolution (Athix). Further and beyond, a comprehensive understanding of the trend and mode of 

variation of the Athix was provided for each category of mixes. 

Chapter 3 deals with the effect of the material’s rheology and fresh state properties on the 

mechanical behavior of 3D printed elements. Herein, a preliminary study has been done to 

characterize the effect of the material’s workability on the link generated between the 

reinforcement and the printed layers. Therefore, a series of pull-out tests has been conducted over 

manually printed concrete elements under different printing conditions. Besides, a second study 

has been carried out in the same context. However, for this case, the samples were printed using 

an automated 3-axis gantry printer. In both studies, the effect of the printing method and layers 

direction, whether parallel or perpendicular to the steel bar, on the bond generated with steel bars 

have been broadly investigated. 

Chapter 4 focuses on the durability assessment of three different mixes having different 

compositions, selected based on the findings of chapter 2 and 3. This chapter presents an opening 

study of the performance of 3D printed concrete elements when subjected to chemical attacks. It 

is ahead of most research topics concerning 3D printing of concrete elements. It was done to 

better understand the effect of the material’s fresh state properties on the performance of 3D 

printed elements when exposed to severe environments, and in particullar, the quality of the link 

generated between superposed layers. In this study, the samples were submerged in two different 

sulfuric acid solutions having concentrations of 1% and 3%. Herein, it was decided to use 

sulfuric acid attack as an accelerated process for the samples degradation, because of its strong 

impact against concrete. Mainly, a mechanical, macroscopic and microscopic characterizations 

have been addressed for the inspections of the corroded samples. 
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CHAPTER 2 : RHEOLOGICAL 

CHARACTERIZATION OF 3D PRINTABLE 

MORTARS 

 
After understanding the fresh state properties of the developed printable mixes, and determining 

the effect of certain chemical and mineral additives on the thixotropic behavior of printable 

materials; the next two chapters present various experimental studies showing the effect of the 

material’s rheology and thixotropy on the mechanical properties of 3D printed elements when in 

their hardened states, namely their structural and durability performances. 

Chapter 1 went over a detailed literature review of 3D printing technology of cementitious 

materials, and its application in the construction field. Here in chapter 2, a detailed characterization 

of different printable mixes, when still in their fresh state, was done through penetration tests. The 

material’s properties and rheology influence the quality of the printed elements in terms of 

structural stability, mechanical and durability performance. Thus, such sensitive materials must be 

highly engineered. Their rheological properties must be tailored to satisfy conflicting printability 

requirements, such as extrudability and buildability [201][202][203]. Particularly, 3D printable 

materials majorly exhibit several complex phenomena such as thixotropy [161]. On top of that, 

any minimal change in the formulation of such mixes leads to flow instabilities, product defects 

and functional disruption [204]. 

This chapter not only goes over the influence of the mix composition on rheology of the material 

in terms of shear stress variation with time, but also the trend and mode of variation of the 

structuration rate (Athix) in function of the mix composition. This is actually done because the Athix 

provides a crucial indication of the material’s buildability. It reveals the stiffness of the printed 

material, which is directly related to the ability of the printed layers to withstand the loads coming 

from the subsequent ones. Thus, it provides an indication about the printing speed and building 

rate that should be adopted for each printable mix design independently. However, as mentioned 

before, developing 3D printable mixes requires precision and accuracy of the mix composition and 

material’s proportions. Thus, in order to insure good printability of the developed mixes, 

laboratory testing must be carried out on a smaller scale, before producing large batches in order 

to ensure a high printing quality. In this context, four variable materials were considered for this 
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research, which are high range water reducer (HRWR), viscosity modifying agent (VMA), 

limestone filler, and water. These materials were chosen in particular because it is well known that 

HRWR and VMA make the most basic and practical combination to adjust the rheological 

properties of cement-based mixes. In addition Limestone powder has been included in this study 

because it counts as one of most pragmatic substitute of cement. Eventually, water content has 

been systematically considered because of its fundamental importance in any mix design. 

Therefore, the aim of this chapter is to understand the effect of these chemical and mineral 

constituents on the rheological characteristics of 3D printable concrete mixtures. In particular, how 

the thixotropy of the material could be affected by varying independently the content of HRWR, 

VMA, limestone filler, and water in the developed mix? 

Herein, the experiments were carried out over sets of newly developed 3D printable mixes, which 

were classified in four different categories, according to their compositions. The first category 

contained mixes having different HRWR concentrations. The second category contained mixes 

having different VMA concentrations. The third category included mixes with different limestone 

filler contents. The fourth category enclosed mixes having different water to cement ratios. Herein, 

the rheological measurements were done using the fall-cone test. This penetration approach was 

adopted due to its simplicity and practicality, in spite of most other rheometry. Technically, the 

penetration depth of the cone inside the material was related to the dynamic yield stress. These 

measurements were taken every 150 sec (2.5 min) over the course of 1320 sec (22 min) to follow 

up the variation of the static yield stress over the given period of time. The multiple measurements 

recorded for each mix independently were brought together within each category. Thus, the effect 

of the constituent variables on the structural build-up rates (Athix) and thixotropic behavior of the 

materials were identified. 

A representative methodology chart of the workflow is shown below. 
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The results of this work were accepted for publication in Magazine of Concrete Research as a 

journal article, entitled “Influence of the mix composition on the thixotropy of 3D printable 

mortars”, by Bilal BAZ, Sébastien REMOND, Georges AOUAD, and it is under edition. 

The outcomes of this research showed that the variation of the static yield stress of 3D printable 

mortars can be considered linear during the first 22 min. Thus, in most cases, a linear relationship 

can be adopted in order to represent the structuration rate and predict the thixotropic behavior of 

the mixture. In particular, the structuration rate in function of the material’s variable shows a 

reasonable linearity for the mixes having different contents of HRWR, limestone, and water, 

except for the mixes having different VMA concentrations. 
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Abstract 

Digital fabrication of concrete elements requires a better understanding of the rheological 

behavior of the cementitious material used. Fresh concrete is known to be a thixotropic material 

having time dependent characteristics. Moreover, fresh mortars used in 3D printing should 

maintain a sufficient shear stress to avoid any deformation or failure during printing. This paper 

concentrates on the experimental investigation of the buildability properties of different 

printable materials, on the bases of shear stress, measured using the Fall-cone test. The effect 

of different constituents such as high range water reducer (HRWR), viscosity modifying agent 

(VMA), limestone filler and water content on the evolution of the yield stress in mortars, 

derived from the shear stress, are studied experimentally and discussed in details. Accordingly, 

the change of variables induces quasi linear relationship with the growth of the structuration 

rate and structural build-up (Athix) of mortars, which corresponds to the variation of the yield 

stress with time. These findings enable the use of the Athix concept and the proposed curves for 
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designing new printable mixes for what suits more the buildability properties of large scale 3D 

printed structures. 

Key words: Mortar - Rheological properties - Admixtures 

1- Introduction 

In the last few years a lot of efforts have been carried out in the field of 3D printing of 

cementitious materials for buildings and construction. A lot of work is being done to develop 

adequate printing systems like extrusion based techniques, such as contour crafting 

(Khoshnevis, 2004; Khoshnevis et al., 2006), powder based techniques known as D-shape 

printing (Le et al, 2012a, 2012b; Nematollahi et al, 2017) and the Mesh Molding systems 

(Hack et al, 2015). Concrete is the most commonly used structural material worldwide, which 

has developed to a high level of engineering sophistication (Banfill, 2011). In highly 

engineered concrete applications such as 3D printing, rheology is paramount. The fresh state 

properties of printable mortars can be used as parameters to control the quality of the mixes 

and to define the purpose and mode of application of each mix. More specifically, the 

material used for printing has to meet certain rheological requirements and specifications, 

namely extrudability and buildability (Bos et al, 2016; El Cheikh et al, 2017; Khalil et al, 

2017). This means that the ink (printable concrete) used must be fluid enough while inside 

the printer to be pumped and extruded, but once it gets deposited it must undergo a fast state 

transition to a material with enough strength to resist deformations. For example, in the case 

of Polylactic acid “PLA” printing, this transition is achieved by a sudden change of 

temperature. The polymer filament is heated inside the nozzle to above its melting point 

making it in a plastic state so it can be extruded. When printed, the rapid cooling causes a 

state transition of the material from plastic to solid behavior (Kirchmajer et al, 2015). This 

form of physical transformation is not the case of printing mortars. The state transition 

required for mortar after being printed imposes a new challenge. The challenge here is that 

mortar should preserve a yield stress higher than the stress caused by its self-weight, to 

overcome any deformation due to the imposed load. Further, the yield stress of the printed 

layer has to increase significantly with time to withstand the additional loads coming from 

superposed layers (Weng et al, 2016). Meanwhile, a balance has to be maintained between all 

rheological properties of printable mortar to enhance the printability characteristics. In 

general, pumpability and extrudability of mortars are monitored by the viscosity and dynamic 

yield stress of the material. Whereas, the performance of the fresh ink in terms of buildability 

properties is dictated by the static yield stress, which is the yield stress needed to initiate the 

flow/deformation of the material (Weng et al, 2016). Thus, the basics of developing a strong
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and efficient print process depends on the ability to understand the material’s technology and 

rheological signature. 

Different methods were proposed to assess the quality of printable mortars. Generally, 

researches are either based on practical measurements or on theoretical calculations. For 

example, Le et al. (Le, Austin, Lim, Buswell, Gibb, et al, 2012) considered that workability, 

extrudability, buildability and setting time are the essential parameters for characterization. 

Where, extrudability is tested through the ability of the material to get out of a 9 mm circular 

nozzle and visually checking for any blockage or discontinuity. In addition, the workability is 

checked by measuring the shear strength of the mix using the vane shear apparatus, and the 

open time was determined accordingly. Kazemian et al. (Kazemian et al, 2017) considered the 

print quality in terms of surface quality, squared edges, dimensional consistency and 

conformity as the main parameters to evaluate the mix design. Consequently two test methods 

were adopted, the layer’s settlement and the cylinder stability tests. Zhang et al. (Zhang et al, 

2018) assessed buildability based on the visible deformation of printed layers or the collapse 

of the whole structure. Indeed, it is not sufficient to visually characterize buildability properties 

for 3D printing applications due to its substantial considerations that must be taken into 

consideration through physical measurements and calculations. Alternatively, in this paper, 

pumpability, workability and extrudability properties are visually evaluated based on extruded 

layers using a lab gun device, simulating the mechanism of an actual printer. Whereas, 

buildability properties of these mortars were further assessed, because of their crucial 

importance, by analyzing their thixotropic behavior. 

Thixotropic behavior is a major rheological phenomenon that accounts for the change in the 

microstructure of a colloidal suspension and particle agglomeration at either a constant or 

increasing shear rate (Marchon and Flatt, 2015; Singh, Singh and Kumar, 2019) It also 

accounts for the recovery of the material when it goes back to rest. More specifically, when 

testing the rheology of cement-based materials, thixotropy is generally associated with the 

flocculation of particles and ongoing hydration reaction which is a time dependent process. 

Though, when the material is sheared, the links generated between particles are broken which 

leads to a decrease in the yield stress of the material (Roussel and Ovarlez, 2012; Roussel, 

2018b). In addition, thixotropy is a reversible process that comes into dominance over a short 

timescale (Jarny et al, 2005), it occurs within several  minutes  up  to  2h  which  is  the  

typical time span of a printing process (Panda et al., 2019a, 2019b). 
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Likewise, according to Roussel, when the material is at rest, the static yield stress starts to 

increase gradually, and it is known as structural build-up phase (Roussel, 2018a). This phase 

starts after the material rests for several tenth of seconds (Roussel and Ovarlez, 2012), and 

lasts for several tenths of minutes (Lootens et al, 2009; Perrot et al, 2015; Subramaniam 

Wang, 2010). The structural build-up is related to the formation of hydrates (e.g. C-S-H) 

bridges between cement grains (Wangler et al, 2016). Roussel et al. (Roussel and Ovarlez, 

2012) proposed a linear model for the description of the structural build-up phase according 

to the structuration rate (Athix), and it can be derived as in Eq. 1: 

𝐴𝑡ℎ𝑖𝑥 =
𝜏0

𝑡
 

(Eq. 1). 

 

Where: 

 
𝜏 = Yield Stress (Pa) t = time at rest (sec) 

 

 
In 3D printing applications, a higher Athix index provides an important indication of the stiffness 

of the ink used, and it is related to the ability of the layers to withstand subsequent ones. 

Following on, the yield stress of mortar must evolve faster than the weight application of 

superposed layers. This relation can be described by Eq. 2: 

𝑉 <
√3 𝐿 𝐴𝑡ℎ𝑖𝑥

𝜌𝑔ℎ
 

Where: 

 
V = Maximum printing velocity (m/sec) L = Contour length (m) 

𝜌 = Density of the mix (Kg/m3) 𝑔 = Gravity constant (m/sec2) 

h = Layer’s height (m)  

 
Further, a recent study introduced a specific process requirement for the evolution of the 

material’s stiffness for a slender printed element (Suiker, 2018; Wolfs, Bos and Salet, 2018). 

This study demonstrated that a linear increase in the shear stress is more needed when the 

slenderness of the element increases. After all, it can be said that the optimization of concrete 

production can be easily predicted using the structural build-up properties of cement based 

material (Perrot et al, 2016). 
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Several rheometers have been developed to quantify the rheological behavior of cementitious 

materials, including their thixotropic behavior as a major characteristic. Beaupré et al. 

(Beaupré et al., 2003) compared the results taken from different rheometers and measuring 

techniques and found a constant correlation between all results, but the absolute values 

differed significantly (Beaupré et al, 2003; Banfill et al, 2017). For example, rotational 

rheometers (Qian and Kawashima, 2016) and plate rheometers (Mahmoodzadeh and Chidiac, 

2013; Vance et al, 2015) are mostly used to test the thixotropy of cement pastes and quantify 

structural build-up, but they are not perfectly adapted for mortars or concrete, and this can be 

clearly found in the literature where most studies are conducted over mixes that do not 

contain aggregates. Nevertheless, rheometers are not widely used in spite of their 

attractiveness and accuracy. This is because they are less adapted for mortars, expensive, time 

consuming and need skilled operators. 

Though, simpler and faster measuring techniques of the shear stress would be more adapted 

for 3D printing, because it is better to follow-up progressively and on site the variation of 

Athix during the printing process. This has to be done in order to estimate the rate of 

buildability and layers deposition (Panda et al, 2019). As an example, the Fall-Cone test 

previously used by Estellé et al. (Estellé et al, 2012) when comparing the yield stress of the 

same paste material using different measuring techniques can be implemented for such 

measurements. The slump, slump flow and the flow time of the material can be also used to 

calculate the corresponding yield stress (Wallevik, 2006; Omran and Khayat, 2014), and the 

inclined plate approach can be used as well (Omran, Khayat and Elaguab, 2012). Until now, 

there is still no standard testing method to measure the structuration rate of fresh mortars 

(Chidiac, Habibbeigi and Chan, 2016; Nerella et al, 2019), especially for evaluating 

buildability properties for 3D printing applications (Tay, Qian and Tan, 2019). Knowing that, 

to date, the work done on quantifying structural build up and thixotropic evolution has been 

almost limited to normal / non-printable concrete mixes (Nerella et al, 2019). 

Over and above, the yield stress of the fresh mix is majorly affected by the use of admixtures 

mainly HRWR and VMA, in addition to other mix components (Li, 2013). These additives 

are known for their ability to modify the rheological behavior of cementitious materials, and 

they are highly recommended for designing printable inks. Accordingly, the aim of this study 

is to give a better understanding of the early age physical properties of thixotropic printable 

mixes, for what suits more large-scale printing, and to demonstrate how critical are the mix 

proportions in the development of concrete systems for additive manufacturing in terms of 

structural build-up, using the Fall-Cone test. 



55  

In the literature, several researches focus on the influence of the mix compositions on the shear 

stress variation with respect to time, such as in (Huang et al, 2019). Whereas, in this paper we 

were more concerned by going beyond these limits, and understand the trend and mode        

of variation of the Athix in relation to the mix compositions. Accordingly, the objectives of 

this paper are: 

 Characterizing the effect of different constituents on the yield stress evolution of fresh 

printable mortars with time such as high range water reducer, viscosity modifying 

agent, limestone filler and water content independently. 

 Establishing appropriate curves of the Athix variation in relation to the material 

variables, which will help in formulating sustainable mortar mixes suitable for 

laboratory and large scale 3D printing application, based on the needed structuration 

rate. 

 

2- Materials and Methods 

2.1- Raw Materials 

All developed mixes consist of an Ordinary Portland Cement Type 1 (CEM I 52.5 N), having 

a density of 3.1 g/cm3 and 8.2 μm median particle diameter “D50”, CBCALC 80 μm limestone 

filler with a density of 2.7 g/cm3 and 5.7 μm D50, CHRYSO®Fluid Optima 100 HRWR having 

a phosphonate base with 31% ± 1.5% dry content, commercially used BELITEX® 

ADDICHAP VMA powder, and a crushed limestone sand having a particle size distribution of 

0 to 2 mm including 19% smaller than 63 μm and a density of 2.7 g/cm3. 

Fig. 1 shows the particle size distributions (PSD) of powder materials used. These distributions 

were determined using an LS 13 320 Laser Diffraction Particle Size Analyzer. PSDs of cement 

and limestone are compared to that of the sand used. It can be seen that the particle size of the 

cement and limestone filler are close. 
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Figure 1 Particle Size Distributions for Sand, Cement, and Limestione Filler 

 

2.2- Mix Design 

In order to obtain the desired quality and performance of the printable mix, all constituents and 

their proportions have to be carefully determined (Klovas, 2018). In this paper, all mixes are 

designed so that all of them are printable (as discussed later on in section 2.3.2). Mixes are 

classified under four main categories according to their compositions. Table 1 shows all the 

mixes constituents by mass (grams). Category 1 includes mixes with different HRWR 

concentrations starting by a dry content concentration of 0.126% of the cement’s mass which 

is equivalent to a liquid mass of 2 g, straight up to 0.25% that is equal to 4 g. An increment of 

0.5 g (0.031% dry content) is maintained between all mixes. Category 2 includes mixes with 

different VMA concentrations with respect to the cement’s mass. An initial mass of 1 g (0.2%) 

is adopted and it keeps on increasing by 0.5 g (0.1%) until a total mass of 3 g (0.6%). All the 

admixture concentrations that were adopted in these mixes fall within the allowable range 

specified by the manufacturer to overcome any adverse effect such as excessive retardation of 

the very early age hydration reactions. Category 3 contains mixes with different limestone filler 

contents, knowing that the total volume of the paste is maintained constant. The initial mix 

contains 100 g (15%) limestone filler of the total powder content. This fraction keeps on 

increasing by 32 g (5%) in each mix until it reaches 227 g (35%). Category 4 mainly contains 

a variation in the water to cement ratio (W/C) that starts by 0.41 with an increment of 0.02 up 

to 0.47. In order to simplify the design of printable materials of category 4, mixes are adapted 

by only increasing their water content, without keeping a constant volume of paste. Thus, a 

second but less influencing parameter comes into play which is the volumetric proportion of 

the paste that increased from 0.274 to 0.303 due to the addition of 10 cm3 of water in each mix. 
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Table 1 Mixes compositions (mass in grams) 
 

 Sand OPC Filler Water (W/C) HRWR VMA 

Category 1 

Mix1 850 493 164 251 2 1 

Mix2 850 493 164 251 2.5 1 

Mix3 850 493 164 251 3 1 

Mix4 850 493 164 251 3.5 1 

Mix5 850 493 164 251 4 1 

 Category 2 

Mix5 850 493 164 251 4 1 

Mix6 850 493 164 251 4 1.5 

Mix7 850 493 164 251 4 2 

Mix8 850 493 164 251 4 2.5 

Mix9 850 493 164 251 4 3 

 Category 3 

Mix10 850 567 100 251 4 2 

Mix11 850 530 132 251 4 2 

Mix7 850 493 164 251 4 2 

Mix12 850 457 196 251 4 2 

Mix13 850 421 227 251 4 2 

 Category 4 

Mix14 850 493 164 202 (0.41) 7.5 2 

Mix15 850 493 164 212 (0.43) 7.5 2 

Mix16 850 493 164 222 (0.45) 7.5 2 

Mix17 850 493 164 232 (0.47) 7.5 2 

 

2.3- Methods 

2.3.1- Mixing Procedure 

A mixing procedure was adopted and always done at room temperature (≈22  ͦ C) to minimize 

the difference between batches. A Hobart mixer N50CE was used. Firstly, all solid ingredients 

were dry mixed for 2 minutes at low speed (60 RPM). Then, water and HRWR were added 

within 30 seconds while keeping on mixing at low speed. The mixing process continued for 90 

seconds at high speed (124 RPM), followed by 60 seconds of rest. At the end, 120 seconds of 

mixing at high speed were carried out before collecting the material. 

2.3.2- Printability Test 

All mixes are tested for printability by printing straight layers on top of each other using first a 

lab gun device having a circular nozzle of 1 cm diameter similar to the one previously used by 

El-Cheikh et al. (El Cheikh et al, 2017), Khalil et al. (Khalil et al, 2017) and Baz et al. (Baz et 
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al, 2020; Baz et al, 2020), and then using a gantry printer having a circular nozzle of 1.9 cm 

diameter (Fig. 4a). 

2.3.3- Fall-Cone Test 

In this study we adopted the Fall-Cone test as per the European standard “NF EN ISO 17892-

6” (CEN, 2017) to quantify the thixotropic behavior of cement mortars. This test consists of 

measuring the penetration depth of a cone under an imposed load (Estellé et al, 2012). From a 

rheological perspective, the contact between the surface of the cone and mortar will increase as 

it penetrates more, thus the resisting forces induced by the shear stress will keep on increasing 

to reach an equilibrium point with the applied mass. In our case, in order to insure a significant 

penetration of the cone in the material, we used a cone having a 30  ͦ angle and we added 100 

g to the initial mass of the system (80 g), so we ended up having a total mass of 180 g. After 

mixing, the material is collected and placed in a circular steel container having a depth of 5 cm 

and a diameter of 30 cm. The container is then placed over a jolting table for 30 jolts to ensure 

a uniform distribution and leveling of the material inside the bucket. The surface of the bucket 

is gently sawn to cut off the excessive material. The sample is left 120 seconds first at rest after 

finishing, because the vibration of the mortar has the potential to decrease its yield stress to 

about the half (Hu and Larrard, 1996). The cone is positioned so that its tip just touches the 

surface of the sample. Then after, the cone is released for around 5 seconds so that it has 

enough time to penetrate the material. A minimum distance of 5 cm is left between successive 

penetrations (Fig. 2). At the end, the penetration depth is recorded and thecorresponding yield 

stress is calculated using Eq. 3: 

𝜏 =
F Cos Ɵ2

Πℎ2𝑡𝑎𝑛Ɵ
  

    

Where: 

 
𝜏 = Yield Stress (Pa) 

F = Force generated by the mass of Cone (180 g) 

Ɵ = Angle of the Cone used (30 ͦ) 

h = Penetration depth of the Cone (mm)  

 

 
This procedure is repeated each 150 seconds (2.5 minutes) over the course of 1320 seconds (22 

minutes) for all mixes, because for a longer duration the cone would no longer penetrate in 

most of the mixes, and the measurements would not be accurate anymore. Each mix is tested 
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three times, each on a different batch, and the final result of every mix corresponds to the 

average of all trials. 

 

 

 

2.3.4 – Mechanical Performance 

Figure 2 Fall-Cone Test 

As previously explained, the core findings of this research are based on the fresh state 

properties of the developed mixes, in particular their thixotropic behavior. However, the 

varying parameters do also affect the hardened state properties, which are equally important as 

much as their fresh properties from a mix design standpoint. 

In consequence, the mechanical performance of all prepared mixes was systematically 

evaluated by measuring their compressive strengths at 2 and 28 days. Tests are conducted over 

a set of 4×4×16 cm beams. Each mold is filled by 2 layers and each one is struck 60 times 

using a jolting table, according to the European standard placing method NF EN 196-1 

(AFNOR, 2006). The samples are kept for 24h in the molds then they are de-molded and put 

to cure in 100% RH and 23°C until the testing date. After then, all samples are tested under 

compression at a load rate of 144 KN/min according to the European standard testing method 

NF EN 196-1 (AFNOR, 2006). 

 

3- Results and Discussion 

3.1- 3D Printing performance 

Fig. 3 shows how a printed element looks like when produced using the laboratory (Lab.) gun 

device to assess for the printability properties. It also reveals the ability of using this device in 

anticipating the aspect of the material to be used for 3D printing. Thus, all developed mixes 

showed the ability to be used for 3D printing applications. As well, mix7 (from table 1) was 

randomly selected to be printed using the actual printer shown in Fig. 4 (a). Fig. 4 (b) shows 

an arbitrary shape being printed to ensure the performance of the developed mix. Then after, a 

cut was taken from the printed element to visualize closely the superposed layers Fig. 4      

(c). The printed element consisted of 10 superposed layers, each 1 cm deep. The layers were 

able to keep on their predefined geometry without showing any deformation or shape 

instability due to the fact of superposition. 
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Any variable’s concentration falling outside the specified ranges in the developed mixes 

would result in a non-printable material, either due an early collapse of the first deposited 

layer, or due to blockage and un-extrudability issues. In other words, if an HRWR 

concentration, W/C or limestone filler content is above 0.8%, 0.47 and 35% respectively, the 

material would be too fluid to carry on superposed layers. Whereas, a concentration of 

HRWR below 0.4% or a W/C and limestone filler content below 0.41 and 15% would result 

in a stiff material unable to be extruded. Oppositely, a VMA concentration below 0.2% gives 

an extremely fluid material, while a concentration above 0.6% makes it unprintable. Note 

that, these ranges apply only over the mixes developed for this study. 

 
 

Figure 3 Printed element using the Lab. Gun 
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(a) 
 

(b) (c) 

Figure 4 Printed element (b, c) using the actual printer (a) 

 

3.2- Effect of High Range Water Reducer (HRWR) 

Fig. 5 shows the variation of the yield stress with respect to time for all mortars with different 

HRWR dosages. It can first be seen that the yield stress increases with time, whatever the 

HRWR content is. Moreover, an increase of HRWR concentration in the mix, leads to a 

decrease in the thixotropy of the mortar (decrease in the slope of the curve). Besides, the mode 

of variation of the yield stress with respect to time can be reasonably described using a linear 

model with an acceptable correlation factor (R2) varying between 0.89 and 0.97. 
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All over this study, we adopted the linear model proposed by Roussel et al. (Roussel and 

Ovarlez, 2012) because it is based on a single variable. This model is described as a function 

of the structuration rate (Athix), defined in Eq. 4: 

 

𝜏0(𝑡) = 𝜏0,0 + 𝐴𝑡ℎ𝑖𝑥𝑡  (Eq. 4) 

 
The corresponding Athix is equal to the slope of the resulting curve. However, the initial shear 

stress at time t = 0 (𝜏 0,0) is neglected, because it is very small in comparison to the shear 

stresses developed when the mix is at rest. Thus, the results of this study are presented 

according to Eq. 5: 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡 (Eq. 5) 

 
However, Perrot et al. (Perrot, Pierre and Picandet, 2015) proposed an exponential model that 

implements  a  critical  time  characteristic (𝑡𝑐) corresponding  to  the  adjusted  time  needed  to 

obtain the best exponential fit curve, in addition to the Athix. This relation is described in Eq. 6: 

 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡𝑐 (𝑒
𝑡𝑟𝑒𝑠𝑡

𝑡𝑐
⁄

− 1) + 𝜏0,0  (Eq. 6) 

This model describes a smooth transition from a linear increase of shear stress at early age to 

an exponential evolution after a period of time. Still, all the results in this study were also 

examined using the exponential growth model, but most cases did not gave better correlations 

than the linear one. For example, in this case the exponential model gave lower correlations 

varying between 0.85 and 0.95. Thus, for coherence with the objectives of our study aiming to 

characterize the buildability properties of different printable mixes, the Athix is chosen as a 

simplified physical parameter representing the material’s behavior. 

Fig. 6 shows the variation of Athix as a function of HRWR content for the mixes of category 

1. The structuration rate of the mortar decreases linearly with the increase of HRWR 

concentration in the mix. The increase of HRWR content from 0.126% to 0.25% decreased the 

Athix from about 6.9 Pa/sec to 2.93 Pa/sec (2.35 times) (R2=0.9474). These results and mode of 

variation are in agreement with the study done by Khalil (Khalil, 2018) about the formulation 

and rheological characterization of mortars with Ordinary Portland Cement and Sulfoaluminate 

Cements. In her Study, Khalil found that the yield stress of pastes decreases linearly during the 

first 1500 seconds (25 minutes) as the dosage of HRWR in the mix increases. As well, Qian et 

al. (Qian et al, 2018) concluded that an increase of HRWR decreases thixotropy through a 

corresponding relation between the yield stress and the steady-state equilibrium value at 
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constant shear rates. Precisely, this relation accounts for the initial peak value of the measured 

stress followed by a decay until reaching the steady state. 

An increase in the HRWR concentration decreases the Athix, because in general as the 

concentration of HRWR increases in the mix, the de-flocculation and dispersion of cement 

grains will also increase making it harder for the C-S-H bridges to be produced during the same 

period of time as for mixes having a lower dosage. 

 

 
Figure 5 yield stress variation for different HRWR concentrations 

 

Figure 6 Effect of HRWR on the Structuration Rate
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3.3- Effect of Viscosity Modifying Admixture (VMA) 

Fig. 7 shows the yield stress variation for mixes having different VMA concentrations in 

function of time. An increase of yield stress is always maintained with time. Same as for the 

case of HRWR, a linear model is adopted to describe the variation of the yield stress with time. 

Accordingly, a reasonable correlation factor (R2) is shown for all mixes varying between 0.93 

and 0.97, knowing that the exponential model was not better since a lower correlation between 

the results was found ranging between 0.88 and 0.96. 

Fig. 8 describes the variation of the structuration rate of all corresponding mixes. The results 

show that Athix increases from 3.5 Pa/sec to 6 Pa/sec (1.7 times). An increase in the rate of 

structural build-up due to the thixotropy of the mixes follows the augmentation of VMA 

concentration until a certain limit. However, a concentration higher than 0.3% does not lead to 

a considerable increase in the structuration rate of the mortar, thus it is considered as a turning 

point. Hence, the variation cannot be presented as a linear increase. The same effect of VMA 

on the yield stress was found in the study done by Daukšys et al. (Daukšys and Klovas, 2018). 

It is commonly known that VMAs play a key function in modifying the rheology of the cement 

paste, they increase the macroscopic yield stress to a certain extent (Nguyen, Remond and 

Gallias, 2011; Helnan-Moussa, Vanhove and Wirquin, 2013; Chen et al, 2019). There are few 

researches in the literature that studied the effect of VMA on the thixotropy of cement pastes 

but from a different perspective, such as in Rahul et al. (Rahul et al, 2019). They tested the 

setting time and rate of hydration of cement in the presence of a constant VMA concentration, 

and concluded its effect on the thixotropic variation. Even though, they found a similar 

conclusion, where the VMA increases the thixotropy. 
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Figure 7 yield stress variation for different VMA concentrations 
 

Figure 8 Effect of VMA on the Structuration Rate 

 

3.4- Effect of Limestone Filler 

Fig. 9 and Fig. 10 show respectively the yield stress evolution and the Athix variation of mixes 

having different limestone filler proportions in the mix. The yield stresses induced in the 

material increase continuously with time. This variation is well represented by the linear model 

(R2 varying between 0.93 and 0.97). However, the thixotropy decreases as the proportion of 

the limestone filler increases in the mix (Fig. 9), and this was also reported by Rahman et al. 

(Rahman et al., 2014)  when  studying  the  thixotropic  behavior  of  self-compacting 

concrete with different mineral admixtures. Here also, Perrot’s model cannot be considered 
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better because it showed an approximately similar correlation between results (R2 ranging 

between 0.93 to 0.96). Although, the decrease in the thixotropy of the material shown in Fig. 9 

can be expressed by a linear decrease in the Athix (Fig. 10). A replacement of 20% of the cement 

powder by limestone filler decreases the Athix 1.83 times (R2=0.9202). This decrease happened 

because limestone powder do not generate C-S-H, it only plays the role of a nucleation site. 

Thus, the total production of C-S-H fraction would relatively decrease as well as the 

structuration rate, due to the reduced amount of cement particles enabling the formation of 

effective colloidal bridges between grains. 

As mentioned previously in the literature, the structural build-up evolution is derived from the 

C-S-H formation between cement grains. In general, limestone is considered as an inert filler 

material that improves the hydration rate of cement at early age (Camiletti, Soliman and Nehdi, 

2014), thus it increases the total volume of the hydration products. In the literature, some 

researches investigating the effect of limestone powder on the build-up rate of cementations 

material cared more to preserve a certain level of workability or flowability. For example 

Rahman et al. (Rahman, Baluch and Malik, 2014) managed to control the flowability of the 

developed mixes to a certain value by changing the dosage of Superplasticizer and the 

limestone content simultaneously. In that way, Rahman et al. (Rahman, Baluch and Malik, 

2014) were able to conclude that the addition of limestone filler resulted in an increase of the 

structuration rate using the ICAR rheometer. 

Contrarily, this is not the case of the study in hand, since we are keeping on the same effective 

water volume for all mixes, and the addition of limestone is done by a volumetric substitution 

of cement powder. The total volume of the mix is always maintained constant. In other words, 

we are preserving the same Water to Binder ratio (W/B). Limestone filler is the only increasing 

element in this category. Thus, this action gives a higher water to cement ratio (W/C) for each 

mix, contributing also to this decrease. In the same context, a relevant study done by El- 

Moussaoui et al. (El-Moussaoui, Dhir and Hewlett, 2019) went over the effect of partial 

substitution of cement by limestone and water to cement ratio (W/C), combined, on the strength 

development of the mix design. 
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Figure 9 yield stress variation for different filler concentrations 
 

 

Figure 10 Effect of Limestone Filler on the Structuration Rate 

 

3.5- Effect of Water Content 

Fig. 11 shows the evolution of the yield stress for mixes having different water contents in 

function of time. The increase in the water content decreases considerably the thixotropy of the 

mix. 

At first, it was noticed that the variation of the yield stress was more likely to be exponential 

rather than linear when going through the entire time scale (1320 seconds). Thus, the 

exponential growth rate model proposed by Perrot et al. (Perrot, Pierre and Picandet, 2015) was 

more representative, and it gave an R2 ranging between 0.94 and 0.98, whereas, the linear 
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model gave an R2 varying between 0.74 and 0.91. Thus, the growth rate of the shear stress can 

be divided into two stages. In the first stage defined between 120 seconds and 870 seconds, the 

shear stress variation was linear and quite slow. Then after, a fast development of the shear 

stress happened until the end of the testing time (1320 seconds), and this can be clearly 

observed in Fig. 11 for the mix having a W/C of 0.41. That is why, in order to keep on the 

same analysis method adopted for all previous measurements, we kept on Roussel’s model but 

the results were limited to the first part of the variation (up to 870 secconds), in order to have 

a more relevant sequence with better correlations. In this case, the range of variation of R2 with 

the linear model improved to an interval of 0.93 and 0.95. 

Fig. 12 shows the effect of the water content on the structuration rate (Athix) measured only for 

the first 870 seconds. It can be observed in both figures how severe the addition of water to the 

mix is. The results of our study showed that an increase in the W/C from 0.41 to 0.47 would 

dramatically decrease the Athix 12.5 times in a linear fashion (R2=0.9003). These results 

occurred because when the water content increases, the packing density decreases and a weaker 

internal friction is generated. Consequently, the excessive water separate further the cement 

grains from each other making it harder for C-S-H bonds to be formed, and therefore decrease 

the yield stress and Athix. The results of our research are also coherent with those of Banfill 

(Banfill, 2011) when testing the additivity effects in the rheology of fresh concrete containing 

water reducing admixtures, and Khalil (Khalil, 2018). 

 

 
Figure 11 yield stress variation for different W/C 
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Figure 12 Effect Of W/C on the Structuration Rate 

 

3.6- Mechanical Performance 

The compressive strength of all mixes at 2 and 28 days are summarized in Table 5. Indeed, it 

is well known that the fresh state properties of cement-based mixtures influence the hardened 

state properties and mechanical performance of the material (Grazia et al, 2020). Herein, the 

results show that the compressive strength of mixes having different HRWR concentrations 

but a constant W/C were almost the same for all samples. These results comply with the 

literature, such as in Boudchicha et al. (Boudchicha, Zouaoui and Gallias, 2012) when studying 

the Influence of the formulation parameters on the compressive strengths of mortars with 

admixtures, as well as in Dhir et al. (Dhir and Andrew W. F. Yap†, 1983). As for the mixes 

having different VMA concentrations and a constant W/C, they approximately gave similar 

compressive strengths, which is also in alignment with studies on the mode of action and 

application guidelines for Viscosity Modifying Agents in concrete mixes (EFNARC, 2006). 

Thus, it can be said that these admixtures influence mainly the fresh properties of concrete, 

and they do not have any significant effect on the strength development when properly used. 

They physically affect the rheological properties of cement-based materials. Hence, for a 

successful development of 3D printable mixtures it would be more apposite to control their 

rheology through the use of the suitable combination of admixtures. On the contrary, 

replacing a portion of cement by limestone filler decreased the compressive strength of the 

mixes as the proportion of cement decreases due to its dilution effect. Similarly, increasing 

the water content decreased the compressive strength of the mixes. This happens due to the 

creation of additional pores that weakened the hardened material. 
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Table 2 Compressive Strength of All Mixes 
 

Category 1 (MPa) Category 2 (MPa) 

 2 days 28 days  2 days 28 days 

 

0% HRWR (Ref.) 

(std. dev.) 

 

33.14 

(2.07) 

 

47.05 

(2.25) 

 

0% VMA (Ref.) 

(std. dev.) 

 

31.9 

(1.87) 

 

53.34 

(3.41) 

 

0.4% HRWR 

(std. dev.) 

 

36.84 

(1.33) 

 

54.5 

(3.94) 

 

0.2% VMA 

(std. dev.) 

 

39.44 

(1.03) 

 

55.32 

(3.8) 

 

0.5% HRWR 

(std. dev.) 

 

38.52 

(1.74) 

 

55.57 

(3.14) 

 

0.3% VMA 

(std. dev.) 

 

38.6 

(2.55) 

 

55.87 

(3.6) 

 

0.6% HRWR 

(std. dev.) 

 

38.81 

(0.26) 

 

52.13 

(2.94) 

 

0.4% VMA 

(std. dev.) 

 

38.19 

(1.87) 

 

60.19 

(2.6) 

 

0.7% HRWR 

(std. dev.) 

 

40.47 

(1.15) 

 

55.95 

(3.04) 

 

0.5% VMA 

(std. dev.) 

 

40.43 

(2.49) 

 

56.85 

(3.16) 

 

0.8% HRWR 

(std. dev.) 

 

39.44 

(1.03) 

 

55.32 

(3.8) 

 

0.6% VMA 

(std. dev.) 

 

41.69 

(2.73) 

 

54.55 

(3.34) 

Category 3 (MPa) Category 4 (MPa) 

 2 days 28 days  2 days 28 days 

 

0% Filler (Ref.) 

(std. dev.) 

 

50.22 

(2.29) 

 

67.7 

(4.5) 

 

0.41 (W/C) 

(std. dev.) 

 

48.55 

(3.5) 

 

73.12 

(3.76) 

 

15% Filler 

(std. dev.) 

 

43.22 

(2.18) 

 

62.8 

(4.32) 

 

0.43 (W/C) 

(std. dev.) 

 

47.54 

(1.86) 

 

66.23 

(4.21) 

 

20% Filler 

(std. dev.) 

 

41.24 

(2.2) 

 

60.08 

(2.92) 

 

0.45 (W/C) 

(std. dev.) 

 

43.25 

(2.08) 

 

63.87 

(4.21) 

 

25% Filler 

(std. dev.) 

 

38.19 

(1.87) 

 

60.19 

(2.6) 

 

0.47 (W/C) 

(std. dev.) 

 

42.23 

(1.45) 

 

61.99 

(3.96) 

30% Filler 

(std. dev.) 

35.86 

(1.44) 

54.09 

(4.22) 

 

35% Filler 

(std. dev.) 

32.48 

(1.00) 

50.17 

(2.94) 
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4- Conclusion 

The results presented in this paper showed the efficiency of the Fall-Cone test for measuring 

the thixotropic behavior of mortars. This method helps in improving the buildability of mortars, 

and preventing the deformation and collapse of fresh concrete during printing in case of any 

perturbation that could happen in real situations. Going further beyond, this rapid method of 

testing the fresh behavior of concrete would consequently help in identifying the size of 

concrete batches that should be prepared, and the exact building rate that should be adopted in 

order to avoid weak layer interface or cold-joints effect. 

More technically, the results of this research show that the linear model applied over the 

experimental measurements taken from the Fall-Cone test is capable of simulating and 

depicting the actual thixotropic behavior of mortars, during a period of time close to 1320 

seconds. Further, it can be seen that a reasonable linear relationship is found between the 

structuration rates (Athix) and the variable’s concentration in the mix except for the case of 

VMA. Consequently, the formulation of new mixes based on a predefined Athix value became 

easier by using the appropriate proposed curves. However, the material variables influence the 

Athix variation in a different order of magnitude. 

Last of all, controlling the thixotropy of mortars should be done by adapting the concentration 

of the appropriate admixtures and chemicals, such as the HRWR and VMA because they do 

not influence its compressive strength. On the other hand, limestone filler and water content 

should be used only to modify the hardened state properties of the material. 

For future work, the overall mix design should be tailored according to the element to be printed 

in terms of shape and time, and it would be highly interesting to investigate the failure mode 

of the freshly printed material. 
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CHAPTER 3 : STRUCTURAL PERFORMANCE OF 

3D PRINTED ELEMENTS IN FUNCTION OF THE 

MATERIAL’S RHEOLOGY AND PRINTING 

CONDITIONS 

 
Reinforced concrete is considered by far the most widely used composite material in the 

construction field [205]. However, as extensively discussed in the literature, there is still a lack of 

viable strategies for the structural reinforcement of 3D printed concrete elements, as well as 

standardized regulations [27][45][46][47][48]. Indeed, not only the production technique of 

reinforced 3D printed elements ceases the progress of this approach, but also the fresh state 

properties of the printable material used impose further challenges. The rheological characteristics 

of the material influence the structural integrity of the printed element. They determine the ability 

of a composite element to behave homogeneously, as a monolithic conventional reinforced 

element. In principle, the rheological properties of the printable material affect the quality of the 

bond generated with the steel bars, which in turn affects the structural capacity and performance 

of the element when subjected to externally applied loads. 

This chapter deals with the previously mentioned challenges, exhibited by the material’s fresh state 

properties and printing techniques. It presents an initial attempt towards the effective 

implementation of reinforcement in a 3D printed concrete element, through examining the quality 

of the bond generated between printed concrete layers and the steel bars. Herein, the qualification 

process has been made based on a series of pull-out tests, performed over printed elements and 

compared to conventionally casted ones. In the same context, two different printing techniques 

were adopted to produce the printed elements, either using a manual technique or an automated 3- 

axis gantry printer. For both cases, the varying parameters were the material’s composition, 

rheological and thixotropic properties and layers direction with respect to the steel bar, whether 

parallel or perpendicular to it. 

Regarding the case of manually printed elements, the aims of this experimental investigation were 

to study first, the influence of the material’s workability and second, the effect of the printing 

method, on the quality of the bond generated with steel bars. Thus, four different printable mixes 
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were developed, having each a distinct flowability and workability. Here, the manual printing 

process was done using a laboratory gun device, simulating the work performed by an actual 

printer. Besides, five different printing conditions were executed in total. Initially, two methods 

for each printing direction (parallel and perpendicular) were done by directly printing over the 

steel bar. Whereas, the fifth condition consisted of inserting the steel bar inside the element directly 

after being printed (when the material is still in its fresh state). 

The proper methodology chart of the workflow is shown below. 
 

 

The results of this work were published as a journal article in Construction and Building Materials, 

under the reference of: 

B. BAZ, G. AOUAD, and S. REMOND, “Effect of the Printing Method and Mortar’s 

Workability on Pull-Out Strength of 3D Printed Elements,” Conctruction and Building Materials, 

vol. 230, 117002, 2020. 



79  

As for the printed elements produced by using an automated 3-axis gantry printer, the same 

framework and methodology have been applied, as in the earlier experimental program. The first 

objective here was to particularly investigate the ultimate consequences that a thixotropic material 

may lead to, on the quality of the bond generated with steel bars. Whereas, the second objective 

was to identify the effect of the layers direction with respect to the steel bar on the developed bond. 

Though, only one mix design was used to produce the pull-out samples, especially because of the 

complexity and toughness of the elements production. The mix was chosen out of the ones 

previously developed in chapter 2. It had a very high thixotropic behavior, but it was intentionally 

selected on this basis in order to cover the most detrimental outcomes that might grow out of. 

The results of this work were published as a journal article in Construction and Building Materials, 

under the reference of: 

B. Baz, G. Aouad, P. Leblond, O. Al-mansouri, D. Melody, and S. Remond, “Mechanical 

assessment of concrete – Steel bonding in 3D printed elements,” Construction and Building 

Materials, vol. 256, 119457, 2020. 

In consequence, the results of this research showed that the implementation of conventional 

reinforcing steel bars, at the interface level between successive layers, is an efficient and practical 

method for the structural reinforcement of 3D printed concrete elements. In addition, it was 

confirmed that the installation of reinforcement is able to improve the overall strength of 3D 

printed components for better load bearing regimes. Therefore, they can be used as integral 

structural elements. More specifically, the outcomes showed that neither the rheological properties 

of the printable material used, nor the layers direction with respect to the steel bars, largely affect 

the quality of the bond generated between printed concrete layers and steel bars. However, despite 

the printing method whether manually or using the 3-axis gantry printer, the bond in 

conventionally mold casted samples mostly dominate. It gives better resistance against pull-out 

forces than printed samples. This happens because of the externally applied vibration, which is not 

practiced in printed elements due to their production approach. Nonetheless, for the particular case 

of printed elements using the actual printer, the variation of the bonding quality caused by layers 

direction was better exposed. Herein, the parallel printed samples outperformed the perpendicular 

printed ones. Though, the manual printing approach can still be used as a representative printing 

method for preliminary studies. 
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The current chapter presented the most relevant factors that affect the quality of the bond generated 

between printed concrete layers and steel bars, namely, the material’s rheology and layers direction 

with respect to the bar. Though, the effect of the material’s fresh state properties on the mechanical 

and hardened state of a printed body is also concerned by its durability performance, when exposed 

to harsh environments. Therefore, the next chapter will particularly assess the durability of certain 

3D printed concrete elements when subjected to diverse chemical environments. 
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Abstract 

3D  Printing  of  Concrete  is  gaining  more  attention  with  time  as  an  alternative  method   

for construction for its high degree of freedom. Until now, most of 3D printed elements are pre- 

printed then moved to their designated locations. The most practical method for moving printed 

elements is lifting them by means of implemented anchors. However, due to the nature of this 

construction method, it does not allow for any type of vibration, also due to the use of a special 

type of concrete mix, that do not flow by itself, there are still a lot of queries concerning the 

adherence of concrete with steel bars. The objective of this paper is to characterize the bond 

between steel and printed mortars as a function of mortar’s workability and printing method. 

Pull-out tests of an 8mm steel bar embedded in either printed or non-printed mortars of varying 

workability have been performed after 3 days of casting. It is found that the workability of the 

ink does not affect the pull-out strength, neither the printing method nor layers direction affect 

the pull-out strength in respect to the steel bar. 

1- Introduction 

3D printing (3DP) is an additive manufacturing process (AM) defined by the ASTM for being 

‘‘the process of joining materials to make objects from 3D model data, usually layer upon   

layer” [1]. 3D printing has become one of the fastest growing technologies, and it took place     

in the everyday life. It was introduced to all kinds of manufacturing industries [2], medical 

applications [3], and food preparation [4]. It is a sophisticated computer modeling technology, 

where physical objects are created using an automated process based on CAD models [2]. 

 
Since its emergence, 3D printing of concrete materials imposed a lot of challenges and 

opportunities to the construction sector [5][6]. Different additive manufacturing methods have 

been developed, and they rely on different systems [7]. The most commonly used methods are 

the Extrusion-Based systems, Powder-Based, or D-Shape techniques [8][9][10]. First, the 

Extrusion- Based systems consist of extruding a cementitious material from a nozzle mounted on 
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a robot or a gantry frame, and it prints the structure by depositing concrete filaments, having a 

constant cross section, on top of each other [9][10]. Whereas, the Powder-Based technique is 

capable of making complex shapes or structures by jetting selectively a liquid binder through a 

nozzle on an existing layer of printable powder to bind the particles together. Then, the 

remaining non-bonded particles are removed by means of a de-powdering process [11][12]. The 

Powder-Based technique is mostly used as an off-site process and that suits small scale building 

components [9][10]. For this research, the Extrusion-Based technique is adopted. 

With all the techniques mentioned earlier, the incorporation of steel bars is hard to be done properly 

in a 3D printed element. This concern represents an evident obstacle for the maturity of 3D printing 

in the construction field [13][14]. Many alternative attempts have been performed to provide 

sufficient ductility for 3D printed elements. For example, fibers can be used in the 3D printing of 

concrete elements as a reinforcing agent [15][16][17][18][19]. However, fibers cannot be always 

used as a replacement for the structural steel because it is limited in terms of strength and ductility 

[14]. In most cases, to obtain the optimal structural performance, steel reinforcement has to be 

incorporated in order to improve the physical and mechanical properties of the 3D printed 

components [20]. Therefore, structural steel will improve the overall strength of the component 

and its integrity [21]. Several attempts have been taken by different companies and research 

institutes. For example, HuaShang Tengdam started by reinforcing 3D Printed structures by 

printing over an actual structural steel cage, where the printer has a fork shaped nozzle that eject 

concrete simultaneously on both sides of the steel cage [9][22]. Apis Cor and Win Sun introduced 

the reinforcement to their printed elements by producing a permanent 3D printed formwork and 

then placing inside of it the Rebar. Then after, the printed formwork is filled by conventional casted 

concrete [23]. Other novel methods of reinforcement are also applied such as the Mesh-Molding 

method, where the whole system is robotically printed and assembled, including the steel mesh 

[24], and the Sparse Concrete Reinforcement In Meshworks (SCRIM) that joins concrete printing 

and textile reinforcement meshes to produce a 3D printed reinforced element [25]. 

Besides, whatever the method used is, an important issue concerns the link developed between 

concrete and steel, because the ink used for printing is a particular material. This concrete material 

is different than any other one since it is allowed neither to flow by itself, nor to be vibrated. Thus, 

the performance of the link between steel and printed concrete has to be verified, especially when 
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working with materials that have different workabilities. A stiff printable material could end-up 

with a bad wrapping of the steel bar, while a more workable material would help in a better 

covering of all the surface of the bar leading to a better link by eliminating the chance of unintended 

voids. For the moment, regardless of the lack of ductility in 3D printed elements and its 

consequences on the structural behavior, the issue of putting reinforcement bars into printed 

concrete is certainly not mature enough to be fully addressed [26][27]. However, lifting printed 

elements and transporting them need an immediate solution, since until now most of the 3D printed 

elements are pre-fabricated then transported to their final destination, and eventually linked to an 

existing structural element. This paper deals with this specific question, by studying the effect of 

incorporating a steel bar inside the element during the printing process on the pull-out capacity at 

early age. This paper particularly investigates the bond strength generated between printed mortar 

and steel based on the workability of the used mortar. So the main objectives are: 

-First, develop a conceptual method for measuring the bond between steel and printed mortar. 

-Second, understand how the printing method and the layers direction with respect to the steel bar 

affect the pull-out strength at early age. 

-Third, understand the effect of workability of the mortar on the bond developed with steel bars. 

 
 

Section 2 first introduces the mixes used, in addition to the appropriate protocols for the evaluation 

of the fresh and hardened properties of the materials. Then after, a detailed description of the pull- 

out test used for evaluating the bond generated between concrete and steel is presented. Section 3 

presents all the experimental results for both material properties and pull-out test. 

2- Materials and Methods 

2.1-Material Properties 

There are two prime specifications for a mortar to be considered printable. Precisely, these 

characteristics are extrudabuility and buildability. Extrudability is the ability of a material to be 

workable and flowable enough to be pumped and printed without blocking the nozzle or the 

conduits. Buildability requires a fast setting and stiff material that can preserve its shape after 

being printed, and withstand the load coming from superposed layers. These requirements lead to 

a completely opposite performance when compared to the commonly used material that has the 

tendency to flow by itself when pumped, such as self-leveling concrete. The contradiction 

appears when a Zero slump material has to be flowable enough to be used for concrete printing. 

That is why the material’s properties influence the link between steel and concrete. In this study, 
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four different printable mixes have been manufactured. 

The developed mixes consist of ordinary Portland cement CEM I (PA L 42.5) from Holcim- 

Lebanon, Silica Fume from HOLDERCHEM-Lebanon and a high range water reducer poly 

carboxylate (PCE) based Super-Plasticizer. The sand used consists of crushed limestone with a 

particle size ranging between 0 and 1.5mm (Table. 1). In order to vary the mortar’s workability, 

the super plasticizer contents were changed, except for mix4 where the water to binder ratio (W/B) 

was also increased. The mixing process and testing method of the mixes are done according to 

Khalil et al. [28]. In order to test the workability, a flow test is done for all mixes as per the Standard 

Test Method for Flow of Hydraulic Cement Mortar (ASTM C1437-15). In this standard, the 

spreading of a material is measured after 25 chocks on the flow table. In addition, the extrudability 

and buildability properties are tested by printing manually the largest number of superposed layers 

having a straight wall shape for each mix using a lab gun device having a circular nozzle of 1cm 

diameter previously used by El-Cheikh et al. [29] and Khalil et al. [28]. 

Table 1 Mixes compositions 

 

  
OPC (g) 

 
SF (g) 

 
Sand (g) 

 
W/B 

 
SP (%) 

Mix1 614.47 68.28 850 0.4 0.26 

Mix2 614.47 68.28 850 0.4 0.36 

Mix3 614.47 68.28 850 0.4 0.4 

Mix4 614.47 68.28 850 0.45 0.4 

 

The compressive strength of all mixes has been measured at 3 and 28 days. This is done to 

determine whether the workability of the ink used has a major influence on the strength of the 

material when printed or not. Tests are conducted over a set of 4x4x16cm beams. Two sample 

categories are tested for each mix design. The first category consists of specimens simply poured 

in the appropriate molds in 2 layers. According to the standard placing method (ASTM C348), 

each layer is struck 60 times using a jolting table. The next set of samples consists of elements 

printed manually inside the same molds. In this case specifically, the molds are used only to 

produce perfectly plane surfaces so the compressive strength test can be performed accurately. 

Each printed beam is made out of 4 layers, 1cm thick each (Fig. 1), using a lab gun device having 

a rectangular nozzle of 1cmx3cm cross section similar to the device used by Sanjayan et al. [30] 
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to study the effect of surface moisture on inter-layer strength of 3D printed concrete and 

Marchment et al. [31] when studying the effect of delay time on the mechanical properties of 

extrusion-based 3D printed concrete. The layers are printed successively without any time gap, in 

order to avoid the formation of cold joints that affect the mechanical properties of the printed 

samples. The samples are kept for 24h in the molds, then they are de-molded and put to cure in a 

fully humid environment (RH=100%, 23°C) until the testing day. After then, all samples are tested 

under compression at a load rate of 2.5kN/sec according to ASTM C349. However, the printed 

beams are tested in two directions. The applied load is either parallel or perpendicular to the printed 

layers (Fig. 1). 

 

 

Figure 1 (top) printed beam (bottom left) Perpendicular loading (bottom rigth) Parallel loading 

 

2.2-Pull-Out test 

The pull-out test is generally applied to study the bond between steel and concrete. This research 

aims to specifically study the bond between a steel bar and the newly developed printable mixes. 

The reinforcing steel bars used in the pull-out experiments are T8 bars with 8.15mm nominal 

diameter, a yield strength “Fy” equal to 501Mpa and an ultimate tensile strength capacity “Fu” of 

583Mpa. 

It is well known that the bond strength developed between steel and concrete is directly related to 

the compressive strength of the material [26]. However, the failure mode of a sample differs 

between confined and unconfined boundary conditions. In the case of an unconfined sample, a 

concrete splitting failure occurs resulting from the longitudinal propagated cracks coming from 

the bar’s wedging action over the surrounding concrete. In confined condition, the failure 
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mechanism is generally governed by a de-bonding, resulting from the shearing action of the bar’s 

ribs over the concrete, and therefore a slipping failure of the steel bar happens [27] [32]. For the 

purpose of this study, a bar slipping failure concerns us the most. In addition, there are many other 

factors that affect the failure mechanism such as the volume of concrete around the bar, the surface 

condition of the bar and its geometry [33]. 

In general, there are three major mechanisms that are resisting the pull-out of a conventional ribbed 

bar. These are mainly adhesion, dilatancy and friction. The combination between adhesion and 

dilatancy creates the bond resistance occurring before failure, and friction produces the resistance 

after failure [34]. 

 

2.2.1-Specimens preparation 

The pull-out samples consisted of 16x16x20cm concrete cubes with an effective embedment depth 

of 8cm for the steel bar. The adopted sample’s dimensions satisfy our aim for having a slipping 

failure of the bar, not a splitting failure of concrete cube nor a steel rupture. Two different types of 

samples are presented. The first set of samples consists of conventionally casted elements, and the 

second set consists of printed elements over a steel bar with different printing methods, both to be 

presented after. In order to cast the samples, a prismatic mold is made of wood with an open top. 

Because of the downward protruding reinforcing bar, the bottom cap is drilled at the middle to let 

the bar pass through (Fig. 2). In addition, an adhesive tape is applied on the free part of the anchor, 

for a depth of 1cm in order to break the adhesion, to set the exact embedment length and to decrease 

the stress concentration at the top of the anchor. Moreover, a stability support is added to the mold 

at its bottom to ensure that the bar remains rigid and vertical at all times, letting the applied forces 

be purely tensile. 24h after casting, the specimens are de-molded and placed in a 100% humid 

environment at 23°C until the day of testing. 
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Figure 2 Casting molds for Pull-Out samples 
 

To proceed with the pull-out test of the printed elements, the same volume was adopted 

(16x16x20cm). For the printed specimens, the main variables that have to be defined are the layer’s 

printing method and orientation with respect to the steel bar. This means that whether the layers 

are parallel or perpendicular to the steel bar, and if it is feasible to insert the reinforcing steel bar 

after printing and before the material’s setting. 

In this paper it was decided to print directly over the steel bar, which can serve the objectives 

more, knowing that there are different methods for incorporating steel bars in 3D printed elements, 

for example, printing steel bars simultaneously with concrete [35], printing over an actual steel 

cage, applying an external steel system after printing, and many other methods [36]. 

In this paper, printing is done using a lab gun device having a circular nozzle of 1cm diameter 

similar to the device used by El-Cheikh et al. [29] and Khalil et al. [28], simulating the printer’s 

work. Each layer has a 1cm thickness. To print parallel layers to the steel bar, two different 

methods were adopted, and to print perpendicular layers, two other different techniques were also 

used. Fig. 3 shows a schematic description of the printing methods. The first perpendicular method 

(PerpM1) consists of printing layers in a circular manner all around the bar using a single gun, 

while the other method (PerpM2) is done by printing 2 adjacent layers at once surrounding the bar 

using 2 guns simultaneously. As for the parallel layers, also two different methods were used. The 

first method (ParaM1) consists of using two guns simultaneously in line along the steel bar. The 

bar is placed between the two devices so the printed layers can cover the whole perimeter. The 

second method (ParaM2) is made by first, printing the bed layer, then, simply placing the steel bar 
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on top of it. The bar is slightly pushed down in a way that half of its diameter is merged in the 

layer below, after that, a second layer is printed over it. 

Regarding the reversed scenario where the printing takes place first, the layers are printed similarly 

to PerpM1, and then the steel bar is inserted directly after printing without any time gap. The 

insertion of the bar is done manually and very delicately with the help of a stabilization support to 

ensure a vertical penetration without perturbing the surrounding concrete. 

The standoff distance of the nozzle is approximately 0.5cm apart of the bar, and the printed part 

exceeds the bar by 6cm to ensure a full and strong coverage. Thus, the overall printed part is 15cm 

long including the adhesive tape. 

 
 

Figure 3 Different printing methods 
 

For all samples and conditions, each printed element is placed inside a 16x16x20cm mold after 

24h and a different mortar mix is used to fill up the remaining volume and ensure a strong 

encapsulation of the printed segment. It is not mandatory to use the printable mix to fill the mold 

since this research is only concerned by the link between the steel bar and the printed material, 

knowing that any failure at the joint between the two types of material would never happen. Fig. 

4 shows an example of how the printed sample looks like before and after being wrapped by the 

filling mortar. 

As for the non-printed samples, they are produced by pouring and vibrating printable concrete 

around the steel bar, inside a small mold. After de-molding, the smooth surfaces of the elements 

are scraped to ensure a better link with the filling material providing confinement (Fig. 5). 
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Figure 4 Printed Pull-Out sample before (left) and after (right) being confined 
 

Figure 5 Non-printed sample with scraped surfaces before (left) and after (right) being confined 

 

 

2.2.2-Test Set Up Preparation 

The machine used to perform the pull-out test is a UTM machine. A customized steel setup is 

developed to serve the pull-out test (Fig. 6). This setup aims to hold the pull-out specimens inside. 

First, the system is made out of two large steel plates with 3cm thickness and 32x32cm surface 

area. Both plates are connected by means of bolts so the space between them can be fixed according 

to the specimen’s size. The system forms a box with open sides. The top plate is grooved straight 

to the middle so it allows the steel bar coming out of the specimen to slide in. The bottom plate is 

drilled at its center and connected to a steel bar that is held by the testing machine. After that, the 
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sample is placed inside the setup and the steel bar that has to be pulled out is held by the UTM 

clamps. A rubber pad is placed between the specimen and the top plate of the setup in order to 

transfer a uniform stress distribution over the surface of the specimen in case of any making 

defects. The loading rate is set to be 1KN/sec, falling within the allowable range defined by the 

ASTM C234 standard. 

 

 

 
3- Results 

Figure 6 Pull-Out test set up 

 

3.1-Material Results 

All mixes satisfy the Printability characteristics, even for different workabilities. All freshly 

printed elements failed by buckling, but the obtained results showed a good correlation between 

the maximum number of layers and the material’s workability (Table. 2). 

Fig. 7 and Fig. 8 show the compressive strength at 3 and 28 days respectively for all samples 

whether printed or not. The results for the non-printed samples showed approximately the same 

resistance for mix1, mix2 and mix3 at 28 days since they have almost the same compositions, 

while mix4 gave a lower resistance due to its higher W/B ratio. But when talking about 3D printing, 

an additional factor comes into play and influences the compressive strength of the elements, 

which is the direction of the printed layers whether parallel or perpendicular to the load imposed 

[37]. Indeed, the results of this research confirm that the 3D printed specimens are anisotropic 

elements. 
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The results showed that at 28 days the non-printed samples dominated, followed by the parallel 

samples that gave better results than the perpendicular ones. This happened because non-printed 

samples contain less voids than the printed ones due to the external vibration. However, printed 

samples contain voids mostly located between layers, this justifies the fact of having lower 

compressive strength than non-printed samples. But then, the voids found between layers are more 

vulnerable when the printed samples are loaded perpendicularly to the layers. This is said because 

these voids show up in a series form of weak points causing failure as soon as the chain breaks 

down. This results in having a lower resistance when compared to the samples loaded parallel to 

the layers. As stated earlier, the compressive strength of non-printed samples were almost the same 

for the first three mixes while being lower for mix4. In general, the variation between printed and 

non-printed elements diminishes as the workability of the mix increases, since the printed layers 

have higher tendency to merge together, decreasing the effect of superposition and voids 

formation. Concerning the case of perpendicular samples, all results were identical even for mix4. 

These results were in agreement with the results obtained by Feng et al. [38] and Nerella et al. 

[39]. Even though, based on the research done by Koker [40], it was found that the mechanical 

strength of extruded materials could be greater than the simply casted elements, and this is certainly 

due to the extra pressure exerted on the material in its fresh state reducing the voids inside the 

extruded layer itself which will end-up having a denser matrix. However, this is not always the 

case for 3D printed elements since many other factors come into play, mainly the nozzle shape, 

nozzle standoff distance and printing speed [37][41]. 

Regarding the compressive strength of the elements tested at 3 days, all results were almost the 

same for all mixes and loading directions. The variation between results cannot be clearly seen, 

thus a significant conclusion could not be drawn. 

Table 2 Workability Characteristics 

 

  
Spreading (cm) 

Maximum number of 

Superposed layers 

Mix1 14.5 22 

Mix2 16 16 

Mix3 18 12 

Mix4 20 9 
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Figure 7 Compressive Strength at 28 Days 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Compressive Strength at 3 Days 
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3.2-Pull-Out Results 
 

Table 3 presents the pull-out test results for all mixes and conditions. All numbers show the bond 

stress corresponding to the actual force applied, calculated using the following equation: 

τ =  
F 

π.db.le 

Where: 

(Eq. 1) 

 

τ = experimental bond stress (MPa) F = ultimate axial tension force (N) 

db = nominal rebar diameter (mm)  le = embedment length (mm) 

 

 
In addition, Table 3 includes the average bond stress and standard deviation for each condition 

individually. Although, Fig. 9 shows how the relative pull-out strength (compared to non-printed 

sample) varies according to the printing method and the variation of workability for each mix. 

Based on these results, it can be clearly seen that the pull-out strengths of most printed samples 

are close enough to the results of the non-printed ones relative to each mix. This is true except for 

the case where the bar is inserted after the printing takes place. It can be said that all mixes with 

different workabilities gave more or less the same pull-out results for all printing methods and 

conditions. This can be clearly indicated by the standard deviation bars shown on the curves of 

Fig. 9. 

All standard deviations for pull-out results corresponding to either printed or vibrated samples are 

almost equivalent, altering in the same extent. Namely, all results fall in the same array, thus they 

also confirm that the manual printing technique adopted for this research is a reliable and consistent 

method. 

Concerning the case of a steel bar inserted after printing, this method is neither practical nor 

efficient. Even though, as the workability of the material increases, the bond with the steel bar 

increases, because a more flowable material would fill more voids caused by the insertion of the 

bar. However, the relative pull-out strength of a steel bar that is inserted after printing is still behind 

when compared to any other method adopted in this study. In other words, whatever the mix 

properties were, the irregularities (voids, entrapped air, etc.) created around the inserted bar are 

more severe than any other case (Fig. 10). 
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Besides, according to the compressive strength results of printed samples, perpendicular samples 

showed the lowest bearing capacity for all mixes. Even though, this weakness did not affect the 

resistance of the perpendicular printed layer against the stresses generated by the pull-out forces 

when the layers are perpendicular to the steel bar. 

In this study, all printing methods reflect different approaches for 3D printing. Yet, PerpM1 and 

ParaM2 are considered as the most suitable printing methods because they are the most practical, 

therefore reducing any chance for manufacturing defects such as voids formation. 

However, from a global point of view, the manual printing method adopted in this paper is 

relatively different than what can be done using an automated 3D printer. But stills, even when 

using a robotized 3D printer, a large scatter between samples coming from different sources will 

always shows up, because all the developed 3D printing techniques until now have not been 

standardized and do not follow a predefined procedure for reproducibility. They majorly depends 

on the piloting of the operator and the material properties. In other words, 3D printing technology 

in all its aspects and applications is still a subjective technique until being standardized. 

 
Table 3 Pull-Out results 

 

 

Mix1 Mix2 Mix3 Mix4 

T(MPa) Av. (S.D.) T(MPa ) Av. (S.D.) T(MPa) Av. (S.D.) T(MPa) Av. (S.D.) 

 
 

Non- 

Printed 

15.1  

 
15.23 

(0.27) 

15.5  

 
15.33 

(0.52) 

14.9  

 
14.91 

(0.54) 

14  

 
13.6 

(0.57) 

15.2 15.8 15.8 12.8 

14.9 14.6 14.8 13.6 

15.6 15.5 14.8 14 

15.4 X 14.3 X 

 
 

PerpM 1 

14.1  

 
14.37 

(0.73) 

15  

 
14.98 

(0.3) 

14.3  

 
14.87 

(0.68) 

11.7  

 
12.19 

(0.45) 

15.5 15.4 15.2 12.3 

13.5 15.1 14.5 12.1 

14.3 14.8 15.9 12.9 

14.5 14.6 14.4 12 

 
 

PerpM 2 

11.8  

 
11.98 

(1.09) 

14.6  

 
14.29 

(0.41) 

14.8  

 
14.32 

(0.73) 

15  

 
14.34 

(0.47) 

12.9 14.3 14.2 14.6 

10.2 13.8 15.1 13.9 

12.2 14 14.3 13.9 

12.8 14.8 13.2 14.3 

 13.8 13.49 14.2  12.4  11.2  
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ParaM 1 

14.8 (1.26) 14.8  
14.57 

(0.58) 

12.3  
12.34 

(0.15) 

11.3  
10.95 

(1.51) 

12.5 14.6 12.5 13.2 

14.5 15.4 12.4 9.5 

11.9 13.9 12.1 9.6 

 
 

ParaM 2 

14.6  

 
15.0 

(0.4) 

14.2  

 
13.69 

(0.78) 

15.2  

 
15.35 

(0.29) 

15.1  

 
15.13 

(0.34) 

15.4 12.5 15.5 15.6 

15.4 13.3 15.6 14.8 

15 14.2 14.9 14.8 

14.6 14.3 15.5 15.3 

 
 

Bar 

After 

1.9  

 
3.68 

(1.21) 

2.6  

 
3.68 

(1.39) 

3.6  

 
5.01 

(1.01) 

9.8  

 
8.2 

(1.0) 

3.4 5.9 5.8 7.5 

5.2 2.4 5 7.3 

4.2 3.7 6.1 7.9 

3.6 3.7 4.5 8.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 Pull-Out strength variation for all mixes 
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Figure 10 Bond profile when printing over the bar (left) and when inserting the bar after printing (right) 

 

4- Conclusion 

A pull-out test has been conducted on conventionally mold-cast and printed samples under 

different conditions. The factors that were studied in this research are the effect of workability on 

the link developed between steel and concrete, and the effect of the printing method and layers 

direction on the pull-out strength of a steel anchor. In addition, the compressive strengths of the 

different mortars used were tested for printed and conventionally mold-cast conditions under 

different loading directions (parallel and perpendicular to the printed layers). Basically, this study 

figured out four different mixes with different workabilities and five different printing methods. 

So, the following conclusions are drawn: 

 Non printed samples dominated when tested at 28 days in regards to the printed ones. 

However, perpendicular samples always showed the lowest compressive strengths. 

 Printed samples act more homogeneously when increasing the workability of the mortar 

used. In other words, the compressive strength of parallel printed samples converge toward 

those of non-printed elements as the workability increases. 

 The concept of printing over an actual steel bar has been shown to be feasible and effective. 

 3D printed elements gave more or less the same pull-out strength as for non-printed 

elements, except for the case where the steel bar is inserted after printing. 

 The printing direction did not majorly affect the capability of the element to withstand 

tensile loads applied over the steel bar. 

 PerpM1 and ParaM2 were the most qualified printing methods because of their 

practicalities. Undeniably, all other methods were also acceptable. 

https://www.google.com/search?q=homogeneously%2Bsynonym&amp;spell=1&amp;sa=X&amp;ved=0ahUKEwju5fbToqfgAhVE6uAKHV6iBJwQkeECCCkoAA&amp;cshid=1549461726487352
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 Based on the results of this research, as long as the material is considered printable and 

independently of the mix’s workability, a strong link between concrete and steel will still 

be developed, and the pull-out strength would still be significant. 

At the end, all the results and conclusions are based on tests done over manually printed 

samples. In a next step, the same study will be conducted over samples fabricated using an 

automated printer to validate more these results and conclusions. Simultaneously, different 

variables are going to be introduced and different parameters will be tested apart of the link 

between steel and concrete. Certainly, one of the targeted subjects to be investigated is the 

effect of the layer’s geometry on the failing mode of pull-out specimens. 
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Abstract: 

Digital construction of concrete elements using 3D printing technology has been undergoing an 

exponential growth in terms of research activities and demonstration projects. Though, most 

researches focused on the behavior of the cementitious materials used in 3D printing, without 

deeply immersing in the reinforcement of printed elements. In this paper, a detailed experimental 

program is presented to characterize the quality of the bond developed between concrete and steel 

bars through a series of pull-out tests. These tests are performed over printed and non-printed 

samples as well. When printed, the layers orientation, whether parallel or perpendicular to the steel 

bar is taken into consideration. Hence, it was found that a highly thixotropic material did not 

undermine the developed bond between printed concrete and rebar. In addition, vibrated concrete 

(non-printed) gave better resistance to pull-out stresses succeeded by the parallel then the 

perpendicular samples. Yet, the overall performance of 3D printed concrete in terms of the bond 

generated with steel could be rated as satisfactory. 

 

1- Introduction 
3D printing is a novel production method defined by the ASTM as being “the process of joining 

materials to make parts from 3D model data, usually layer upon layer” [1]. Lately, the application 

of 3D printing in the construction field has been widely developed, and it brought attention in both 

academic and industrial applications [2]. This new technique presents significant benefits in terms 

of higher quality products, faster production, higher geometrical freedom, and lower cost [3]-[6]. 

Practically, mortar layers are successively deposited in order to produce the intended element or 
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structure. However, the mortar used makes a challenging subject [7]. It has to be sufficiently 

workable to be pumped, and stiff enough to resist the imposed loads once the layer gets deposited 

[8]. In addition. It must gain sufficient strength to withstand the loads coming from subsequent 

layers, within a short period of time. In fact, the ability of the material to behave properly is linked 

to its rheology [9]. Herein, a balance should be always maintained between the structural build-up 

rate of the cement-based material and the increasing loads [10]. Indeed, the most important 

rheological factor affecting the material’s behavior is its static yield stress. It must be high enough 

to ensure the stability of the printed element [11]. Hence, the strength gain corresponds to the 

structural build-up of the material, causing a continuous increase of the static yield stress over 

time [12]. This time dependent phenomenon represents a rheological characteristic termed 

thixotropy [12]. Roussel et al. [11] proposed a linear model based on the structuration rate "Athix" 

of the material, to describe the static yield stress "𝜏0" evolution with time "𝑡" (Eq. 1). Whereas 

Perrot et al. [13] offered an exponential model that implements a critical characteristic time "𝑡𝑐" 

alongside (Eq. 2). 

𝜏0(𝑡) = 𝜏0,0 + 𝐴𝑡ℎ𝑖𝑥𝑡  [11] (Eq. 1) 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡𝑐 (𝑒
𝑡𝑟𝑒𝑠𝑡

𝑡𝑐
⁄

− 1) + 𝜏0,0  [13] (Eq. 2) 

Usually, the measurements of the yield stress are carried using either rotational, or plate rheometers 

[14]. Though, despite their attractiveness, most rheomters are not adapted for materials containing 

aggregates such as mortar [15]. In fact, the yield stress of mortars is commonly measured using 

easier methods, such as the slump-flow test [16], the inclined plate test [17], and different 

penetration tests [18] [19] (cone plunger, Vicat plunger, etc.). 

Apart from the material’s rheology and requirements, most of the printing techniques focus on the 

placement of concrete regardless of the incorporation of reinforcement. Therefore, the application 

of 3D printed elements in concrete structures was almost limited for partitioning works and 

unreinforced masonry [20]-[22]. Over and above, the lack of reinforcement prevents the 

production of concrete elements having sufficient ductility and tensile capacity. Hence, in order 

for this technique to reach maturity, reinforcement has to be also integrated in the fabrication 

process itself. Accordingly, different reinforcing approaches were developed by several companies 
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and research institutes such as, Swinburne University of Technology, ETH Zurich, TU/e 

University, WinSun , ApisCore and many others [23]-[34]. 

Currently, most of the existing 3D printing techniques are neither feasible nor practical to be 

adopted for mass production, but if so, there is a lot of limitations that cease their progress and 

limit their potentials. For example, in the case of fiber reinforcing methods, the presence of fibers 

might generate a weakness between superposed layers, because they might not cross the horizontal 

joints properly, leaving extra voids [20]. Eventually, fibers are not capable of totally replacing 

continuous bars in terms of load bearing capacity in most of the structural requirements, because 

fiber reinforced elements are limited in strength and ductility [35]. In this paper a simpler 

reinforcing method has been adopted, described by integrating conventional steel bars between 

layers, during the printing process. However, the particular rheological properties of the printable 

material, as well as the nature of this technology that do not allow any type of external vibration 

impose many queries concerning the bond between concrete and the reinforcement. In addition, 

unlike conventional concrete elements, a more specific factor that would certainly influence the 

behavior of a printed section, is the layer direction with respect to the steel bar and acting loads. 

This is of high importance and should never be neglected because previous researches showed that 

these elements have anisotropic properties that should be considered [32], [36]-[38]. 

Typically, the pull-out test is a method used to determine the bond strength between steel bars and 

the surrounding material. Many factors affect the failing mechanism of the pull-out samples, 

mainly the volume of the surrounding concrete and confining conditions [39]. In unconfined 

condition a concrete splitting is more likely to occur resulting from the longitudinal proliferating 

cracks caused by the wedging action of the bar ribs. However, in confined conditions, the pull-out 

failure is generally governed by a de-bonding of the bar and concrete due to the fact of preventing 

the cracks propagation by the surrounding material [40], [41]. The resistance against pull-out 

forces is majorly dictated by the concrete quality, level of confinement, and most importantly the 

degree of compaction and the quality of the bond around the reinforcement [42], [43]. Indeed, the 

distinctive key parameter affecting the bond quality in printed concrete, is the fact of eliminating 

external vibration due to the absence of molds in 3D printing. 

In this context, the aims of this research are first, to investigate the effect of a highly thixotropic 

material on the bond generated between 3D printed concrete and the steel bar, and second, 

understand the effect of the printing direction with respect to the bar on the developed bond. A 

proper comparison between the behavior of printed and conventionally casted samples is held to 
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demonstrate the potential of 3D printing technology. 

 

2- Materials and methods 

2.1- Mix design and material characterization 

2.1.1- Mortar’s composition 

The mix used in this research has an average 28 days compressive strength of 60 MPa and flexural 

tensile strength of 13 MPa according to the European standard placing method NF EN 196-1 [44]. 

It is made of an Ordinary Portland Cement Type 1 (CEM I 52.5 N), with a water to cement ratio 

of 0.51. A limestone filler is used (Filler/Cement = 0.33). As well, this mix contains crushed 

limestone sand having a particle size distribution comprised between 0 and 2 mm including 19% 

smaller than 63 μm (Sand/Cement = 1.72). A High Range Water Reducer having a phosphonate 

base is utilized, with 31% ± 1.5% dry content being 0.81% of the cement weight. In addition, a 

commercially used Viscosity Modifying Agent powder is added to the mix and it is equal to 0.4% 

of the cement weight. 

2.1.2- Mixing procedure 

The material’s mixing has been done using a 5 litter mixer. The mixing procedure adopted 

consisted of dry mixing all solid ingredients first for 120 sec at a speed of 60 RPM. Then after, 

water and HRWR were gradually added within 30sec while keeping on the same mixing speed. 

Directly after pouring all the liquids, the speed was increase to 124 RPM for the next 90 sec. The 

mix was then left at rest for 60 sec. At the end, the mixing was launched again for 120 sec at high 

speed (124 RPM). It should be noted that all mixes have been done at room temperature (≃ 22 ͦ C 

± 2 ͦ C) to minimize the difference between batches. 

 
2.1.3- Printability assessment 

The preliminary evaluation of the material’s printability has been systematically carried out based 

on visual inspections, when initially developing the mix. The printing was done manually, using a 

laboratory gun device, having a circular nozzle of 1 cm diameter, similar to the one used in [18], 

[45], [46]. The extrudability has been assessed by the ability of the material to get smoothly out of 

the nozzle without showing any discontinuity in the layer or nozzle’s blockage. As for the
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buildability of the mix, it has been primarily qualified by printing the largest number of superposed 

layers in a straight wall shape of 20 cm. 

2.1.4- Flow table test 

The workability of the developed mix has been measured as per the standard test method for flow 

of hydraulic cement mortar (ASTM C1437-15) [47]. The testing procedure consisted of filling half 

of the conical mold first, placed at the center of the flow table. The mold was uniformly tamped 

20 times to insure a proper filling, with limited entrapped air voids. Then after, the remaining half 

was filled and the mold was tamped again. The excessive material was cut off to provide a plane 

surface. At the end, the mold was carefully lifted away, and the table was dropped 25 times within 

15 sec, then the spread diameter of the material was measured. 

2.1.5- Fall cone test 

In this research, it was decided to use the Fall cone penetrometer to measure the static yield stress 

evolution of the mix, as per the European standard “NF EN ISO 17892-6” [48]. A steel alloy 30 ͦ 

cone weighting 80 g and having a smooth surface has been used. An additional 100 g was further 

added to the system to ensure a significant penetration in the material. The sample’s preparation 

consisted of placing the mix inside a circular steel container having a diameter of 30 cm and 5 cm 

deep. The container was then placed on a jolting table for 30 shocks. This was done to properly 

fill the container and remove the entrapped air bubbles. After finishing, the surface of the container 

has been gently sawn to cut off excessive material. The material was left at rest to settle for 120 

sec. After then, the tip of the cone was positioned at the surface of the material. Afterwards, the 

cone was released for 5 sec ± 1 sec to penetrate well, and the penetration depth “h” was recorded. 

This procedure has been repeated every 150 sec over the course of 1320 sec (22 min), and a 5 cm 

distance was left between successive penetrations. The measurements were replicated three times, 

each on a different batch. 

The static yiled stress was derived from the penetration depth of the cone using Eq. 3, where: " 𝜏 " 

is the calculated yield stress (Pa), "F" is the force generated by the mass of the cone (N), "ℎ" is 

the penetration depth (mm), and "Ɵ" is the angle of the cone used (degrees). 

 

𝜏 =
F Cos Ɵ2

Πℎ2𝑡𝑎𝑛Ɵ
 
 
[49] (Eq. 3) 
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In this research the linear model proposed by Roussel et al. [11] was adopted. However, the initial 

yield stress " 𝜏 0,0" at t = 0 was neglected because its magnitude is insignificant when compared 

to the shear stress developed when the mix is at rest. Therefore, the static yield stress was 

presented in a simplified form, as shown in Eq. 4. 

𝜏0(𝑡) = 𝐴𝑡ℎ𝑖𝑥𝑡 [11] (Eq. 4) 

2.2- Specimen preparation for the pull-out test 

2.2.1- Bar’s geometry 

The steel bars used have an indented surface geometry, and a representative nominal diameter (db) 

of 8 mm. The nominal design yield strength is equal to 500 N/mm2, and the actual yield strength 

is equal to 626 N/mm2, conforming to the European Standard requirements of indented steel bars 

EN 10080 [50]. Precisely, the surface geometry of the bars has three equally distributed rows of 

indentations as shown in Fig. 1. The corresponding variable are summarized in table 1. 

Table 1: Surface geometry specifications of the indented bars 

 

Inclination Spacing Width Depth Sum of gaps 

“β” “c” “b” “t” “Σe” 

35° 3.2 mm 1.6 mm 0.8 mm 6 mm 

 

 

 

 

 
2.2.2- Mixing procedure 

 
Figure 1: Illustration of an indented bar [50] 

A uniform mixing procedure was adopted and always done at room temperature (≃ 22 ͦ C) to 

minimize the difference between batches. An 80 litter mixer was used. All solid ingredients were 

dry mixed gently for around 2 min at a speed of 20 RPM. Then, water and High Range Water 
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Reducer were added gradually. The mixing process takes around 10 min with an increase in the 

mixing speed up to 100 RPM. During mixing, the walls of the mixer’s bowl were scrapped using 

a large spatula to ensure that all materials are properly mixed. After finishing, the material was 

collected and directly placed inside the printer’s pump. 

2.2.3- Samples manufacturing 

Two different sample categories were manufactured for the pull-out tests. The first category 

consists of conventionally mold-cast (non-printed) samples, taken as references. The second 

category includes printed samples with two different layer orientations, either parallel or 

perpendicular to the steel bar. Six samples are made for each condition. 

First of all, an effective embedment depth of 5db equal to 4 cm is adopted for all samples of both 

categories. This is in accordance with the principle of the standard pull-out test proposed by the 

European Standard EN 10080 - Annex D [50]. Besides, an adhesive tape was wrapped at both 

sides of the bar (0.5 cm from each side) to break its adhesion with concrete, set the exact 

embedment depth needed and overcome the stress concentrations generated at the limits of the 

embedment depth. The non-printed samples were made by placing and vibrating mortar inside 

small polystyrene molds of 4×4×5 cm with the bar passing through. On the other hand, the samples 

of the second category were printed using an automated 3-axis gantry printer having a circular 

nozzle of 1.9 cm diameter (Fig. 2). The standoff distance of the nozzle, corresponding to its vertical 

position above the printing surface was fixed to 1 cm, thus each printed layer has a height of 1cm. 

Moreover, the printing speed was equal to 6.4 cm/sec, and it was adjusted in a way to produce a 

layer’s width ranging between 5 and 5.5 cm. The printing path was traced in a way to produce 

parallel and perpendicular samples in a single run. The followed path and steel bars layout are 

shown in Fig. 3 and Fig. 4. Three layers were printed first, then the bars were placed in their proper 

locations, depending on the layers direction (Fig. 4). Each bar was slightly pushed down in a way 

that half of its diameter is merged in the layer below. Both ends (extremities) of the bar rely on 

supports to insure its stability and keep it strictly horizontal all over the layer’s surface, without 

further drowning when depositing the next layers on top (Fig. 4). Then after, three more layers 

were printed on top of the bars, to end up having a total number of six layers. 
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Figure 2: 3-axis gantry printer 

 

Figure 3: Conceptual printing path and bars layout 
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Figure 4: 3D printed Pull-out samples 
 

It should be noted that the layers were printed successively with an actual time gap equal to 57 sec 

imposed by the corresponding printing speed. No intended delay was additionally introduced, in 

order to avoid any possibility of having cold-joint effect leading to a weakness in the adhesion 

between consecutive layers. Furthermore, the placing of the bars was done directly after the 

deposition of the 3rd layer to insure that both layers covering the bars have the same rheological 

characteristics when they come in contact with the bar’s surface. The continuity in depositing 

superposed layers is of major importance since the mortar used is highly thixotropic. At the end, 

the samples were cut down properly and the redundant material was removed directly after printing 

(when the material is still fresh) as it can be seen in Fig. 5. This was done so the material can 

rebuild its internal structure in case of any disturbance while cutting the samples. Otherwise did, 

if the samples were cut after the material hardens, the cutting action may create micro-cracks, and 

hence, the bond between steel and concrete will be negatively affected. Over and above, the 

distance between bars was left large enough to avoid damaging the core samples, and to keep the 

curved edges and “modified” areas far from the steel bars. Afterwards, the samples were left to 

cure in ambient conditions. 
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Figure 5: Parallel and Perpendicular printed samples after being Cut 
 

After 7 days of curing, the steel bars were cut from one side, and the printed and non-printed 

elements were top centered in polystyrene cube molds of 15×15×15 cm dimensions. The molds 

were then filled with a different mortar mix to insure a good confinement of the printed segment 

(Fig. 6). Indeed, the confined conditions favors pull-out failure of the bar to exclusively quantify 

the bond generated between steel and concrete. Alternatively stated, the degree of confinement 

and surrounding of the bar is one of the most important parameters that dictate the failure mode. 

Thus, a strong confinement of the samples has to be provided in order to avoid the splitting of the 

concrete cube, and insure a pull-out failure. 

 

Figure 6: Confined Pull-out samples 
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2.3- Mechanical characterization of the bond strength and testing procedure 

The applied load rate was equal to 0.05 mm/sec. This load rate has been chosen in a way that the 

failure occurs between the first and the third minutes of the test, as specified by the European 

Organization for Technical Assessment (EOTA) Technical Report 048 for the testing details of 

post-installed fasteners in concrete [51]. However, a customized setup system was developed for 

this research exclusively (Fig. 7). This system allowed to overcome the imperfections and 

deformity of the samples surface caused by the casting process by filling the voids with a fine 

sand, and therefore to provide a uniform load distribution. In practice, the sand was used as an 

alternative method for the neoprene pad caps, which are not able to cover such large defects. 

 
 

 
Figure 7: Setup illustration 

 

Fig. 8 shows the actual pull-out sample with the assembled setup. Wood curbs were fixed all 

around the surface edges of the cube, creating a formwork of 5 mm depth to hold the sand particles. 

A steel plate having a thickness of 1 cm was grooved at the middle to allow for the steel bar to 

pass through. This was done to secure additional confinement for the concrete surrounding the bar 

when being pulled to avoid concrete cone failure, and ensure a definitive slipping failure mode. 

The drilled hole has a diameter of 12 mm corresponding to the bar’s diameter (db) plus 4 mm 

(db+4) as specified by the EOTA TR 048 [51]. At the end, the whole system was fixed to the base 

of the testing machine using threaded rods and connectors, and the steel bar was gripped by the 

machine’s clamp. 
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All results were calculated using the following equation: 

 

𝜏 =
𝐹

𝜋𝑑𝑏𝑙𝑒
 (Eq. 5) 

 

Where: 

𝜏 = experimental bond strength (MPa) 𝐹 = ultimate axial tension force (N) 

𝑑𝑏  = nominal rebar diameter (mm)    𝑙𝑒  = embedment length (mm) 

 

 
3- Results and discussion 

Figure 8: Pull-out testing system 

 

3.1- Flow table and fall cone results 

First of all, the spreading diameter of the mix measured using the flow table was equal to 14.5 cm. 

Fig. 9 shows the evolution of the material’s yield stress in function of time for all three trials and 

their average. It highlights that the increase of the yield stress is almost linear during the first 22 

min. In this period, Roussel’s model predicted the structural build-up of the material, and this was 

confirmed by the corresponding correlation factor (R2) equal to 0.934. The yield stress linearly 

increased from 620 Pa straight up to 6828 Pa. The corresponding thixotropic index Athix describing 

the slope of the resulting curve was equal to 5.17, which indicated that the material is highly 

thixotropic. This was determined based on the ranges defined by Roussel [11] to classify self- 

compacting concrete (SCC) according to their proper Athix values. Roussel figured out that any 

mix showing an Athix value strictly above 0.5 Pa/sec (Athix > 0.5 Pa/sec) is considered highly 

thixotropic. In the literature, it can be found that most of the materials used for 3D printing are 

highly thixotropic. For example, Perrot et al. [8] developed a mix having a structuration rate of 

0.9 
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Pa/sec. Kruger et al. [52], [53] developed  different  printable  mixes  having  an  𝐴thix  ranging 

between 0.6 Pa/sec and 1.08 Pa/sec. Panda et al. [54] developed several mixes with an average 

𝐴thix  value of 1.65 Pa/sec and 2.54 Pa/sec. Besides, Wangler et al. [3] point out that a material 

having an 𝐴thix of 2 Pa/sec would result in a good printability performance. Here, it should be 

noted that the material used in this study has been designed to develop a significantly high 

structuration rate, compared to what has been presented in the literature. This was done to 

investigate the ultimate consequences on the bond quality between concrete and the steel bar, 

which an extremely thixotropic material may lead to. Eventually, a lower thixotropic material 

would systematically result in a reduced impact and better bonding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.2- Pull-out results 

Figure 9: Yield stress variation in function of time 

Table 2 shows the actual pull-out stress (MPa) of each sample in all conditions (Non-printed, 

Parallel and Perpendicular). Fig. 10 shows the average result of the pull-out test of each sample 

corresponding to all conditions, in terms of actual stress and relative strength (%) with respect to 

the reference elements. The results showed a reasonable standard deviation for each case, 

indicating the reproducibility and consistency of the adopted method. 
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It can be clearly seen that the conventionally casted samples dominated, followed by the parallel 

then the perpendicular printed samples, generating a resistance against pull-out stresses of 18.7 

MPa, 16.2 MPa and 14.5 MPa respectively. Accordingly, it was found that when the printed layers 

are parallel to the steel bar, a strength reduction of 13% in the pull-out capacity occurs, whereas, 

when the printed layers are perpendicular to the steel bar, a reduction up to 22% takes place. 

Despite this variance, it can be approved that even when a highly thixotropic mortar mix is used 

for printing, the material is still able to fill the spaces between the indentations of the bar, due to 

the pressure exerted when printing, and therefore ensure a good covering and provide a strong 

bond with the bar’s surface. 

Table 2: Detailed pull-out results 
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Figure 10: Graphical presentation of the average and relative pull-out strength 

 

Fig. 11-13 represent the load-displacement curves of the steel bars for non-printed, parallel, and 

perpendicular samples respectively. In general, the resistance against pull-out forces is provided 

by three major mechanisms: chemical adhesion, friction, and mechanical interlocking. During the 

first stage, just before reaching the peak load, the bonding forces are provided by the chemical 

adhesion occurring at the interface between concrete and the bar, due to the hardening of cement. 

However, after failure, the bond forces between concrete and the bar correspond to the frictional 

and mechanical interactions. Herein, as it can be relatively seen in all load-displacement graphs, 

the same mode of failure occurred whether for printed or conventionally casted samples. Initially, 

a linear response took place short before reaching the peak load (the slope of the increasing load 

remains constant). Hereafter, the load kept on increasing but in a slower rate for a short period, 

and the curve exhibited a non-linear response until reaching the peak load. At that instant, the 

curve showed a plateau during which the slip kept on increasing for a constant bond strength. 

Finally, a constant decrease of the load began with a remarkable increase in the bar’s slippage. At 

this stage, the acting load corresponded to the residual bond strength caused by the frictional and 

mechanical interactions between the bar and surrounding concrete. 
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Despite the mode of variation of the resulting curves, the highest average load was attained by the 

non-printed samples, followed by the parallel then the perpendicular printed ones (as shown earlier 

in Table 2 and Fig. 10). Besides, Fig. 12 representing the non-printed samples showed that the 

slopes of the increasing loads were the highest. The corresponding displacements of the bars before 

reaching the peak loads were way below 0.5 mm, which is the lowest displacement attained (until 

failure) in comparison with printed samples. Whereas in the case of printed elements, the 

corresponding displacements of the bars when the peak loads were reached floated around 0.5 mm. 

Alongside, the decreasing rates of the loads after failure (slopes of the curves) were slower than 

for parallel and perpendicular printed samples. These facts indicated that the bond developed 

between non-printed concrete and steel bars exhibit a stiffer behavior when compared to printed 

samples. As for the case of both printing conditions (Fig. 12, 13), the overall areas below the curves 

in the case of parallel samples were greater than for perpendicular samples. Indeed, the residual 

strength is mainly dictated by the confining forces acting over the bar being pulled. These 

differences imply that the parallel samples display stiffer behavior than perpendicular samples, as 

well as a stronger confinement of the bars. Hence, these findings confirm and further explain the 

variations between non-printed, parallel, and perpendicular samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Load-displacement relationship for non-printed samples 
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Figure 12: Load-displacement relationship for parallel samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Load-displacement relationship for perpendicular samples 
 

Fig. 14 shows an example of a broken printed sample. This figure allows a visual inspection of the 

bond generated between the steel bar and concrete. However, the presence of macroscopic voids 

can be clearly observed at the interface level, between printed layers. Fig. 15 schematically 

illustrates how these voids are produced. Precisely, they were created at the instant when the layer 
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nozzle passes over the bar. Besides, other voids arose as well because of the absence of external 

vibration. All these irregularities induced a smaller contact surface between concrete and steel. 

Though, this fact explains and clarifies the difference in the pull-out results between 

conventionally casted and printed samples. 

 

Figure 14: Broken printed element showing macroscopic voids 

 

 

 

 

Figure 15: Schematic illustration of the voids creation 
 

The difference between parallel and perpendicular samples can be attributed to the formation of 

larger voids in the case of perpendicular samples, caused by the splitting action of layers across 

the steel bar (as explained in the section 3.2 § 5). The volume of the material extruded out of a 1.9 

cm nozzle fixed to a height of 1cm above the printing surface (standoff distance) is always constant 

along the printing path. Though, when the nozzle passes over the bar, an instantaneous change of 

the local nozzle’s height occurs. Herein, the actual standoff distance is suddenly reduced to 0.6 
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cm, which is equal to the actual standoff distance (1 cm) minus half of the bar’s diameter (0.4 cm) 

(Fig. 16). At this level, while the volume of the extruded material is maintained constant, the area 

designated to initially accommodate for the material is reduced. This reduction causes a higher 

squeezing of the material against the surface of the bar below, right before the material overflows. 

Hence, a higher printing pressure is excreted over the surface of the bar due to the temporary 

decrease of the nozzle’s standoff distance. 

 

 
Figure 16: Nozzle's standoff distance variation 

 

Particularly, the resulting printing pressure exerted over the bar largely differs between parallel 

and perpendicular samples, which therefore affects the degree and strength of confinement of the 

bar itself. Fig. 17 shows an illustration of the resulting pressure gradient over the bars for parallel 

and perpendicular samples respectively. It can be clearly observed that for the case of parallel 

sample, all the embedment depth of the bar is under maximum printing pressure. Herein, the 

maximum pressure zone, highlighted in red, represents the bar’s surface area directly below the 

printer’s nozzle, corresponding to a standoff distance of 0.6 cm. However, as the material spreads 

away, the resulting pressure starts to decrease gradually until it reaches the minimum at the layer 

extremities. The orange zone describes the area below the nozzle, at a standoff distance equal to 1 

cm, and the yellow zone depict the spread material outside the nozzle’s projection. 

Correspondingly, a lower pressure results in a less dense material, and weaker internal structure. 

In contrast, the pressure variation largely influences the bond strength generated in the case of 

perpendicular sample. In this case, only 1.9 cm of the bar’s embedment depth is subjected to the 

maximum pressure, corresponding to the nozzle’s opening diameter, whereas, the rest carries a 

lower charge. As a matter of fact, the mortar’s confinement in parallel samples is stronger than for 
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perpendicular ones. Therefore, it can be confirmed that the bonding conditions of a steel bar with 

the printed layer is affected by the printing direction. 

 

Figure 17: Pressure gradient over steel bars 
 

As previously mentioned, this research was a continuation of a preceding project, where BAZ et 

al. [46] adopted a similar methodology for testing the bond generated between steel and concrete 

for mold casted and printed objects, based on a series of pull-out tests. In the former study, BAZ 

et al. used a lab gun device simulating the printer’s work to produce the samples, and it was 

considered as a first step in this context. In addition, different printing methods and mortar 

workabilities were investigated. They defined four printing approaches, two parallel (ParaM1 & 

ParaM2) and two perpendicular (PerpM1 & PerpM2). The closest parallel method previously used 

to the current one was ParaM2, which was made by printing a bed layer first, then placing the bar 

at the center of it. On the other hand, the closest perpendicular method to the currently adopted 

approach was PerpM2. This method was done by printing simultaneously two adjacent layers, with 

the bar positioned perpendicularly in between. As for the printable material used in the current 

work, the mix was designed to have a spreading identical to Mix1 of the previous study to provide 

a proper comparison between results. Specifically, ParaM2 showed almost the same pull-out 

capacity of a non-printed element, equivalent to a 98%. Besides, PerpM2 gave a lower resistance 

against pull-out stresses making only 79% of the resistance achieved by the non-printed samples. 
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Though, in the present case, the same sequence of printing conditions is manifested, but with more 

explicit results. Namely, in both studies, non-printed samples dominated, followed by the parallel 

and perpendicular ones respectively. Hence, despite the printing method, the parallel printed layers 

always develop a better bond with steel bars. In addition, it is worth mentioning that the lab gun 

device can be used as a representative printing method for preliminary studies. 

 

4- Conclusion: 
The article at hand has presented an experimental research aiming to characterize the quality of 

the bond generated between concrete and a steel bar, based on the mechanical behavior of 3D 

printed elements under different printing conditions. First, a rheological characterization of the 

printable material has been carried out using the fall-cone penetrometer to track its structuration 

rate over time, showing that the used mortar is a highly thixotropic material. Second, a series of 

pull-out tests was done over printed and non-printed concrete samples to assess the bond generated 

between steel bars and concrete, and to further understand the effect of the printed layer’s direction 

with respect to the steel bar on the pull-out capacity. 

The variance in the bond strength between mold-casted, 3D printed parallel, and 3D printed 

perpendicular samples is primarily attributed to the casting method and layers direction with 

respect to the steel bar. It can be clearly observed that the resistance against pull-out forces 

dominated in mold casted elements. A better bond is always generated with the bar because of the 

externally applied vibration, eliminating most of the voids inside the bulk material. Besides, 

samples made of layers that are printed parallel to the steel bar outperformed those made of layers 

perpendicular to the bar (87% and 78% of the strength of vibrated samples respectively). Indeed, 

non-printed samples exhibited a stiffer and more rigid behavior compared to printed samples. 

Similarly, parallel printed samples showed a stiffer response when compared to the perpendicular 

printed ones. Despite the fact, these findings assure that a good bond is generated between concrete 

and steel even in printed elements. Yet, the major contributor of this difference is the variation of 

the resulting stresses applied over the mortar when being printed, caused by the printing process 

and parameters. These variations lead to a better confinement and stronger bond with the bar when 

the layers are printed parallel. Herein, this variation depends on the pumping pressure, and the 

layer’s width with respect to the printer’s nozzle. Therefore, convenient reduction/safety factors 
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still need to be applied to the printing method adopted in order to counterbalance the shortage of 

the bond strength. 

Finally, the results of this work establish a wider research framework to optimize the conventional 

reinforcing techniques in the field of 3D concrete printing. Hence, it would be interesting to 

reconsider the same research project, but by focusing on the appropriate dimensions (geometry) of 

the printed layer. 
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CHAPTER 4 : DURABILITY ASSASSMENT OF 3D 

PRINTED ELEMENTS IN FUNCTION OF THE 

MATERIAL’S RHEOLOGY AND EXPOSED 

ENVIRONMENTS 

 
The application of 3D printing technology has become even more popular in the construction field. 

However, 3D printed elements were introduced to a developed field of applications, where they 

are continuously exposed to aggressive environments, especially in the infrastructure industry 

[169] [168]. In particular, the production technique that is based on layers staking threatens the 

durability of the printed element. Alternatively stated, the fact of layers superposition might induce 

weaknesses in the bond generated between successive layers. These weaknesses might arise from 

the rheological and thixotropic properties of the printable mix, caused by the material’s 

composition. Thus, this fact can generate a weak plane creating preferential pathways for 

chemicals intrusion [206]. 

The present chapter is an extent of the anticipated research plan and objectives set at the 

beginning of the thesis. It provides a comparative experimental investigation of the material’s 

microstructure between printed and non-printed concrete samples, as well as the behavior of 3D 

printed elements when subjected to different concentrations of sulfuric acids and the consequences 

on its internal structure; in particular, the inter-layer bond quality between superposed layers. 

Alternatively stated, this preliminary study aims to investigate the overall effect of 3D printing 

technique on the quality of the link between successive layers through an accelerated process. 

Herein, three different mixes were selected out of the ones previously developed in chapter 2. It is 

referred to these mixes by Mix A, Mix B, and Mix C, and they represents respectively Mix 7, Mix 

13 and Mix 14 of chapter 2. These mixes have different compositions and thixotropic behaviors. 

Precisely, Mix A is considered as the reference mix, Mix B has a higher content of limestone filler, 

and Mix C has a lower W/C ratio. These material variables, in particular the water content, 

influence the microstructure of the mix itself, and therefore its rheological properties. In its turn, 

the material’s rheology affects the quality of the bond between successive layers. Indeed, in the 

case of a printed element, the durability would not be only affected by the internal structure of the 

bulk material, but by the inter-layer conditions as well. Besides, the tested elements were subjected 

to different concentrations of sulfuric acid (H2SO4) environments, mainly 1% and 3%, for an 

exposure duration of 56 days. This assessment has been done over a macroscopic and microscopic 
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scale. The macroscopic analysis was limited to the naked eye visual inspections and mass loss 

measurements, whilst the microscopic exploration consisted of mercury intrusion porosimetry 

(MIP) and scanning electron microscopy (SEM) analyses. 

The simplified methodology chart of the work carried out in this chapter is shown below. 

 

 
 

The results of this work were submitted for publication as a journal article in Construction and 

Building Materials, entitled “Durability assessment and microstructural analysis of 3D Printed 

concrete exposed to sulfuric acid environments”, by Bilal BAZ, Georges AOUAD, Joelle  

KLEIB, David BULTEEL, and Sébastien REMOND. 
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Abstract 
Additive manufacturing techniques are being more adopted in the construction field, and they are 

rapidly developing. However, it is expected that layers superposition imposes several limitations 

on the performance of 3D printed structures. In this regard, an efficient concrete structure should 

not only present reliable mechanical performances, but also appropriate durability performance 

against weathering. This paper presents an experimental study aiming to compare 3D printed 

elements to casted ones on a macro and micro scale, as well as their resistance against sulfuric acid 

attacks. Herein, three different mortar mixes having different thixotropic properties were used, and 

two solution concentrations were employed, one containing 1% sulfuric acid and the other 

containing 3%. At first, a visual observation of the degraded samples and their mass loss were 

held. Then, a microstructural characterization was performed through mercury intrusion 

porosemetry (MIP) and scanning electron microscopy (SEM) analyses. Still, not any printed 

element has cracked at the inter-layer level. Moreover, on a microscopic level, the MIP results 

showed that all samples of different compositions have an equal total porosity. However, the pore 

size distribution and their morphology largely differs between printed and non-printed specimens. 

The pore sizes are more spread in printed specimens. As for the SEM results, it can be clearly seen 

that no interface have revealed the formation of a weak plane that might even threaten the 

durability of the printed elements. Yet, a strong link between superposed layers has been 

developed, even when using materials having different rheological properties; and the overall 

specimen acted as a monolithic body without showing any signs of discontinuity or superposition 

effects. 

Keywords: 3D printing – Durability – Mortar – Rheology – Thixotropy – Microstructural 

analysis – Porosity – Sulfuric acid. 
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1- Introduction 

Nowadays, 3D printing is experiencing an exponential increase in terms of research and 

application activities, and it is continuously advancing [1][2][3][4][5]. Above all, 3D printing has 

been widely developed in the construction field [6], where it presented significant benefits in terms 

of higher geometrical freedom of concrete products, as well as faster production and lower cost 

[7][8][9][10]. 

Additive manufacturing has a remarkable impact on concrete manufacturing. Its application has 

evolved from printing prototypes and laboratory scale objects to the manufacturing of fully 

functional concrete elements [11][12]. Recently, 3D printing of concrete elements has been applied 

in the infrastructure construction industry, which could bring in significant improvements to the 

field [13][14]. Over and above, 3D printing was introduced to a more critical field of applications, 

where printed structures are continuously exposed to aggressive environments. For example, 

Winsun released the very first 3D printed river revetment wall, over 500 meters long [15]. 

Similarly, XtreeE has used 3D printing technology to reproduce natural coral reefs, using normal 

concrete material, as well as water collectors for drainage systems [16]. 

Despite that, daily applications still seem far away because of the conservative practices in this 

field [3]. They are persisting challenges in penetrating the market due to the lack of compliance 

with building codes [17]. In addition, some technical challenges need to be overcome to trigger all 

the opportunities offered by 3D printing techniques in the building sector, such as reinforcement 

incorporation to provide sufficient tensile capacity and ductility for the intended applications 

[18][19][20][21]. Though, in order to consider 3D printing as a successful construction practice, 

high quality properties of the final product have to be targeted. In other words, the design of 

concrete elements should be based on different requirements [22], mainly specified by the 

structural stability and ability to bear and transfer loads [23], the durability against environmental 

effects [24], and the aesthetic needs [25]. Indeed, for a broader field of applications, not just the 

physical and mechanical properties of printable materials need to be assessed, but the durability 

needs to be addressed as well. This is said because the life cycle assessment of constructions is 

majorly affected by the materials production [26], enabling them to reach a reasonable service live 

in natural or industrial exposure conditions [3]. 
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The lack of performance testing protocols of 3D printed elements makes the analogy between 

printed and casted concrete elements obscure. All structural and durability design standards 

consider concrete as a homogeneous material [27], which might not be always applicable for 3D 

printed elements. In fact, these elements have anisotropic behavior due their particular production 

identity [28][29][30]. Thus, the current standards need to be revised and adapted for structures 

having anisotropic properties. 

The properties of hardened cement paste are majorly influenced by its microstructure, and the way 

in which the material is casted [31]. The induced heterogeneities and interfaces caused by the 

process represent a major challenge [32].The effect of weak interfaces between successive layers 

on the mechanical properties of 3D printed elements has been widely reported in the literature 

[33][34][35][36][37]. This weakness is due to the layered concept creating extra voids between 

successive layers, with more porous properties of the layers themselves, in addition to the 

anisotropic characteristics [3]. Having said that, the quality of the bond generated between 

superposed layers is mostly influenced by the rheological and thixotropic properties of the material 

used [38][39]. Alongside, the same printing parameters affecting the mechanical and rheological 

properties of concrete in its fresh and hardened states, affect the durability properties. These 

parameters are mainly the printing speed and pumping pressure [34]. For example, a higher print- 

time interval decrease the adhesion between successive layers due to the water evaporation causing 

a lower surface moisture content and possibly a weaker bond between layers [39]. In addition, an 

increase in the printing speed introduces bigger pores [40]. Alongside, a lower printing pressure 

induces a higher surface roughness due to the kinetic energy of the sand particles causing more 

voids formation [41]. In some cases, air bubbles present inside the layer itself might escape due to 

the pressure exerted by subsequent layers and stay entrapped at the interface level. Therefore, a 

weak link between successive layers would threaten the durability of printed elements, due to the 

creation of another preferential ingress path for aggressive substances from the surrounding 

environment. Alternatively stated, the chemical diffusion through interfaces can be faster than that 

in bulk concrete, which may jeopardize the durability of the structure. In addition, this matter 

would increase the corrosion rate of the reinforcing steel bars placed between layers. However, the 

current focus on the material properties concerning the durability aspect is still limited [27]. 
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Durability characteristics correspond to the ability of the material to resist different environmental 

exposures for a long period of time, without significant deterioration [42]. Concerning the 

durability of concrete material, it depends on many factors, mainly cement type and content, water 

to cement (W/C) ratio [43], curing conditions and compaction [44]. Indeed, some of these aspects 

are not relevant for 3D printed elements, especially those related to compaction, which is not 

applicable in the field of additive manufacturing. 

Typically, it is known that ordinary Portland cement has little resistance to acid attacks, because 

of its high alkalinity [45][46]. Therefore, acids can easily deteriorate concrete in various ways. 

Notably, sulfuric acid (H2SO4) is one of the most harmful acids to act on concrete materials due to 

its combined effect of acid and sulphate attack [47]. It reacts with the calcium hydroxide (CH) of 

the hydrated cement paste, and produces gypsum. Yet, the decomposition of concrete under acid 

attack depends mainly on concrete porosity and acid concentration [48]. 

This study is based on an experimental analysis of concrete samples exposed to sulfuric acid 

environments. Though, it is less common for a 3D printed structure to be subjected to high 

concentrations of acid attacks; however, the reason behind using it is because of being very 

corrosive, and thus, it would considerably accelerate the corrosion rate of concrete samples. 

However, the objective of this research is to investigate the microstructural properties of 3D 

printed concrete elements and their resistance against sulfuric acid attacks, in comparison to non- 

printed samples. In particular, it aims to qualify the interfaces and bonding efficiency between 

successive layers. Hence, it aims to draw a better perception regarding whether a printed element 

acts homogeneously as a casted object, or as a stack of concrete layers. Herein, three mixes 

compositions having different thixotropic properties were used, and all specimens whether printed 

or not, were studied on a macroscopic and microscopic scale. 

 

2- Materials and Methods 

The experimental program presented in this research covers two phases. The first phase 

corresponds to the materials development and rheological characterizations, whereas the second 

one describes the production and preparation of the specimens used for the durability assessment. 
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2.1- Mix design and material characterization 

2.1.1- Raw Materials 

All developed mixes consist of an Ordinary Portland Cement Type 1 (CEM I 52.5 N), having a 

density of 3.1g/cm3 and 8.2 μm median particle diameter “D50”, (The chemical and mineralogical 

composition is shown in table 1.), CBCALC 80 μm limestone filler with a density of 2.7g/cm3 and 

5.7 μm D50, CHRYSO®Fluid Optima 100 high range water reducer (HRWR) having a 

phosphonate base with 31% ± 1.5% dry content, commercially used BELITEX® ADDICHAP 

viscosity modifying agent (VMA) powder, and a crushed limestone sand having a particle size 

distribution of 0 to 2 mm including 19% smaller than 63 μm and a density of 2.7 g/cm3. 

Table 1: Chemical and mineralogical composition of cement 

 

Compounds Concentration (%) 

CaO 63.8 

SiO2 20.0 

Al2O3 5.3 

Fe2O3 3.0 

SO3 3.0 

MgO 0.9 

K2O 0.9 

Na2O 0.5 

P2O5 0.3 

TiO2 0.3 

MnO < 0.1 

NiO < 0.1 

CuO < 0.1 

ZnO 0.1 

SrO 0.1 

ZrO2 < 0.1 
 

 

2.1.2- Mortar compositions 

Three mixes having different thixitropic characteristics were used in this study. The aim of testing 

more than one composition was to exclusively investigate the overall effect of 3D printing 

techniques on the quality of the link between successive layers, which is majorly affected by the 

material’s rheological properties. 
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These mixes compositions are shown in table 2. Mix A is considered as reference, Mix B contains 

a higher amount of limestone filler, and Mix C has a lower water to cement ratio (W/C). 

Table 2: Relative mixes compositions 

 

 Sand 

(S/C) 

Filler 

(F/C) 

Water 

(W/C) 

VMA % 

(VMA/C) 

HRWR % 

(HRWR/C) 

Mix A 1.72 0.33 0.51 0.40 0.81 

Mix B 2.02 0.54 0.60 0.47 0.95 

Mix C 1.72 0.33 0.41 0.40 1.52 
 

 

2.1.3- Mixing procedure 

For the development of the mixes used, a 5 liters mixer was used, and the mixing procedure was 

done at room temperature (≃ 22 ͦ C ± 2 ͦ C) to minimize the difference between batches. 

The same mixing procedure adopted by Baz et al. [49] was followed, and it consisted first of dry 

mixing all solid ingredients for 120 sec at a speed of 60 RPM. Water and HRWR were added 

gradually afterwards, during 30 sec, while keeping on the same mixing speed. Then after, the 

mixing speed was increased to 124 RPM for 90 sec. Once finished, the mix is left at rest for 60 

sec. At the end, the material’s mixing was resumed for 120 sec at 124 RPM. 

2.1.4- Printability assessment 

The printability of the developed mixes has been systematically assessed, based on visual 

inspections. Initially, the printing has been done manually using a laboratory gun device equipped 

by a circular nozzle of a 1 cm diameter, as in El Cheikh et al. [50]. Herein, the extrudability of the 

mortar was evaluated based on its ability to get out of the nozzle smoothly, without any 

discontinuity in the layer or blockage of the nozzle. 

2.1.5- Mechanical performance of mortars 

The mechanical performance of the newly developed mixes was systematically evaluated by 

measuring the compressive strength of casted (non-printed) samples at 38 days (the age when the 

samples were submerged in the sulfuric acid solutions for the first time). Three trials of each mix 

were tested at a load rate of 144 KN/min. 

2.1.6- Rheological characterization using the fall-cone test 

The fall-cone penetrometer has been used to measure the evolution of the static yield stress over a 

certain period of time, as per the European standard “NF EN ISO 17892-6” [51]. Hereby, a 30° 
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steel cone having a smooth surface and weighting 80 g has been used. 100 g were further added to 

the system to ensure a significant penetration of the cone in the material [49]. 

The material was put in a circular steel container having a diameter of 30 cm and a depth of 5 cm. 

The container was then put over a jolting table for 30 shocks to insure a proper filling, and to 

remove any entrapped air bubbles. Then after, the surface of the container was gently sawn, and 

the excessive materials were cut off. The material was then left at rest for 120 sec. Once done, the 

tip of the cone was placed at the surface of the material, then it was released to fall under its own 

weight for 5 sec ± 1 sec, and the penetration depth “ℎ” was recorded. This procedure was repeated 

every 150 sec over a time span of 1320 sec (22 min). 5 cm were left between a penetration and 

another. Besides, the measurements were repeated three times, each on a different batch. 

The static yield stress was derived from the penetration depth of the cone, and it was calculated 

using Eq. 1. In this equation, " 𝜏 " corresponds to the calculated yield stress (Pa), "𝐹" represents 

the force generated by the mass of the cone (N), "ℎ" is the penetration depth (mm), and "Ɵ" is 

the angle of the cone used (degrees). 

𝜏 =
F Cos Ɵ2

Πℎ2𝑡𝑎𝑛Ɵ
 [52] (Eq. 1) 

The linear model proposed by Roussel et al. [53] was adopted. However for this research, the 

initial  yield  stress  " 𝜏 0,0" at  t =  0  sec  was  neglected  because  it  has  an  insignificant  

magnitude relative to that developed when the mix is at rest. In fact, the total yield stress was 

presented in a simplified form following Eq. 2. 

𝜏0 (t) = Athix t [53] (Eq. 4) 

2.2- Specimens preparation for the submersion in sulfuric acid solutions 

2.2.1- Mixing procedure 

A uniform mixing procedure was adopted for the production of all samples from different mixes. 

It was always done at room temperature (≈ 23 ͦ C) to minimize the difference between batches. A 

DITO-SAMA 80 litters BMXE80 mixer was used. First, all solid ingredients were dry mixed for 

about 2 min at a low speed (20 RPM). Then after, water and HRWR were added gradually. After 

adding all liquids, the mixing speed was progressively increased to 100 RPM. The overall mixing 
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process took around 10 min. During the mixing time, the walls of the mixer’s bowl were scrapped 

using a large spatula to ensure that all materials were properly mixed. After finishing, the material 

was collected and directly placed inside the printer’s pump. 

2.2.2-Samples manufacturing 

Two different sample categories were made for each mix composition. The first category included 

casted samples, taken as references. The second category included printed samples. First, the 

reference samples were casted inside 4×4×16 cm molds, in a single pour, without external 

vibration. This is to simulate the bulk material of each printed layer which can never be vibrated. 

Second, printed samples were done using an automated 3-axis gantry printer having a circular 

nozzle of 1.9 cm diameter (Fig. 1). Hence, the difference in the production of reference samples is 

the absence of multiple layers and pumping pressure. 

 

Figure 1: 3-axis gantry printer 
 

The standoff distance of the nozzle was fixed to 1 cm, in order to obtain a 1 cm thick layers. 

Moreover, the printing speed was set to 6.4 cm/sec, and it was adjusted in a way to print a layer 

having a width ranging between 5 and 5.5 cm. Fig. 2 shows a printed sample of each mix. All 

samples made out of the same mix have the same number of superposed layers. It must be 

mentioned that, the layers were printed successively with a time gap of 15 sec, corresponding to 

the applied printing speed (No additional time gap has been intentionally added). After finishing, 
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the samples were directly cut down (when the material is still in its fresh state). All samples were 

left to cure in ambient conditions during the first 24 h. 

 

Figure 2: Printed sample of each mix 
 

After 24 h, non-printed samples were de-molded and kept at 100% RH at a temperature ≈ 20 ± 2 ͦ 

C for 38 days. Then after, all printed and non-printed samples were cut down properly to make 

4×4×2 cm specimens (Fig. 3). At the end, all samples were placed inside the oven for 6 days at 50 

C to cease the hydration process. 

 

Figure 3: Testing sample 
 

It should be noted here that printed samples were initially cut down, and only the core samples 

were subjected to acidic environment, to qualify exclusively the interface properties resulting from 

the layers superposition. In other words, this is done to eliminate first the vulnerable interfaces 

between consecutive layers generating concentration ports for acid ingress. Second, to guarantee 

that micro-cracks no longer exist at the surfaces. This issue must be taken seriously, because in 3D 
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printing, concrete elements are more susceptible to micro-cracks caused by the plastic shrinkage 

and temperature strains, due to the absence of formworks. 

2.3- Sulfuric acid exposure 

The Sulfuric acid (H2SO4) used has an initial concentration of 98%. Tow samples of each 

production method and mix design were submerged in a bath of 1% and 3% sulfuric acid solution 

separately (the choice of these concentrations was based on the literature [45][54]). The volume 

of the solution was equal to four times the volume of submerged solid, as suggested by the standard 

test method for mortars exposed to sulfate attack (ASTM C1012/C1012M – 18b) [55]. The 

specimens were laid on plastic supports, inside hermetic plastic containers to prevent any 

evaporation (Fig. 4). The storage temperature was maintained at 22 ± 2 ͦ C, and the solution was 

renewed at 3, 7, 14, 21, 28, and 42 days. 

 

Figure 4: Specimens of the same mix placed inside a plastic container 

 

2.4- Macroscopic characterization 

All samples were gently cleaned using a brush and dried using paper towels before each solution 

renewal. This process was done to remove poorly adhered corroded material. Then after, a visual 

assessment of the corroded samples caused by the damage progression on the concrete elements 

surfaces was carried out, and the mass loss of each sample was recorded, during each solution 

renewal. 



139  

2.5- Microscopic characterization 

2.5.1- Mercury Intrusion Porosimetry (MIP) 

The description of the pore structure and their distribution play an important role when studying 

the durability of cementitious materials. In general, these pores are classified into macro-pores, 

capillary pores, and gel pores. However, there is no common agreement on the ranges describing 

the boundaries of each pore size [56]. In addition, until now there is no test or method that could 

measure the entire pore structure at once [41]. However, in this study it was decided to measure 

the pore size distribution using the Mercury Intrusion Porosimetry (MIP) for all non-degraded 

samples. 

To study the porosity of all samples, printed and non-printed specimens having the dimensions of 

1×1×1 cm were obtained from the core of the original ones. It should be mentioned that for the 

printed samples, the specimens were carefully taken in a way to insure the presence of an inter- 

layer inside of it. The masses of the tested samples ranged between 2.5 g and 3 g. 

2.5.2- Scanning Electron Microscopy (SEM) 

The Scanning Electron Microscopy (SEM) was used to characterize and visualize the inside of the 

degraded and non-degraded samples, and to explore the microstructural characteristics of all 

specimens. Herein, only degraded samples that were submerged in a solution of 1% acidic 

concentration were analyzed, because those who were attacked by a solution containing 3% acid 

were severely deteriorated. 

The tested samples were cut off from the original ones. The size of each sample to be visualized 

was equal to 1.5×1.5 cm×“thickness of the sample” (the thickness of non-degraded samples is 

equal to 2 cm, whereas the thickness of degraded samples ranges between 1.7 cm and 1.9 cm 

depending on the degree of corrosion). Then after, these samples were impregnated with a low 

viscosity epoxy resin under vacuum, and cured for 24 h until the resin is fully hardened. 

Afterwards, the impregnated specimens were polished and coated with a carbon coating. 

Fig. 5(a) shows the tested specimen extracted out of the original sample, and Fig. 5(b) shows a 

front view of one cut side, as well as the observation directions. All observations were conducted 

over the cut surfaces to visualize the inside of the element and not the degraded surfaces. For the 

non-printed samples (whether degraded or not), a random cut side was observed by the SEM since 
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there is no layers to be perceived. However in this study, special care was taken to visualize the 

internal structure of the printed samples in order to locate the inter-layer, if any is still existing 

after the complete setting and hardening of the material. For the non-degraded printed samples, 

the layers direction was known, and the SEM observation was carried over the correct cut side. 

Though, because of the complete surface deterioration of the degraded printed samples subject to 

sulfuric acid attack, all signs indicating the layers direction were ruined. Therefore, horizontal and 

vertical observations were done over both cut sides of the same sample. 

 

(a) (b) 

Figure 5: Schematic illustration of SEM samples 

 

3- Results and discussion 

3.1- Mechanical performance of mortars 

Mix A, Mix B, and Mix C gave a compressive strength equal to 48 MPa, 57 MPa, and 73 MPa 

respectively. Herein, the resistance attained by Mix C was the highest among other mixes, because 

it has the lowest water to cement ratio. However, it was anticipated that Mix A yields a higher 

strength than Mix B because it has a lower limestone filler content. This is further detailed by Baz 

et al. [49]. 



141  

3.2- Fall-cone and thixotropy results 

Fig. 6, Fig. 7 and Fig. 8 show the yield stress evolution in function of time for Mix A, Mix B, and 

Mix C with their standard deviations respectively. These results pointed out that for all mixes the 

yield stress is almost linear during the first 1320 sec. For that given period, Roussel’s model 

predicted a reasonable structural build-up rate of the material, and this was further confirmed by 

the corresponding correlation factors (R2) for each mix. Though, the equivalent thixotropic index 

“Athix” describing the slope of the curves was equal to 2.85, 5.17, and 17.23 for Mix A, Mix B, and 

Mix C respectively. Hence, these mixes representing different Athix values cover a wide range of 

materials having various rheological properties used for 3D printing applications. Therefore, the 

findings of this research could be applied over a broader range of printable material. 

 

Figure 6: Yield stress variation in function of time for Mix A 
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Figure 7: Yield stress variation in function of time for Mix B 
 

 

Figure 8: Yield stress variation in function of time for Mix C 
 

3.3- Macroscopic analysis and results 

3.3.1- Shape deterioration and visual assessment 

Fig. 9 and Fig. 10 visually show the progression of damage on the surface of concrete samples 

exposed to a 3% and 1% acidic solution at different ages respectively. It can be clearly seen that 

after 3 days of continuous immersion, printed and non-printed concrete samples from all mixes 

started to show a mild corrosion, characterized by a slight spoiling of the cement paste. However, 
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as the immersion period increases, the material’s loss became greater and more significant, 

especially with the higher concentration of sulfuric acid in the solution. Thus, after 56 days of 

immersion the samples presented a very porous surface structures, in addition to a more significant 

corrosion and spoiling of the paste leading to an irregular shape and smaller size of the specimens. 

Over and above, it can be noticed that the printed and non-printed samples of all mixes were in 

general equally deteriorated for each submersion condition. Herein, the printed and non-printed 

samples showed a thinner section with much more exposed aggregates when compared to shorter 

immersion periods. Though, it must be mentioned that for the case of all printed samples of all 

mixes, no inter-layer was observed and no cracks appeared at that level. 

 

Figure 9: Progressive damage of printed and non-printed samples in 1% acidic solution 

 

Figure 10: Progressive damage of printed and non-printed samples in 3% acidic solution 
 

3.3.2- Mass Loss 

Fig. 11 (a) and Fig. 11 (b) show the change in mass relative to the initial weight of the specimens 

measured after 3 days of immersion for all samples when subjected to 1% and 3% acidic solutions 
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respectively. A continuous decrease of mass in all samples in different conditions is always 

observed for all mixes. However, the mass loss of the samples submerged in sulfuric acid having 

a concentration of 1% was much lower than the samples put in a solution having a concentration 

of 3%. Yet, the rate of decrease in non-printed samples was systematically higher than that of the 

printed ones. 

In particular, Mix C showed the highest mass loss among other mixes. Though, it is not a matter 

of higher Athix value, instead, it is majorly related to the water to cement ratio. Thus, as a matter of 

fact, this variance was not obvious between Mix A and Mix B because they both have the same 

water content, but only different limestone filler content. Particularly, previous studies found that 

a decrease in the water to cement ratio results in an increase of mass loss [43]. This happens even 

if a mix having a lower water to cement ratio is relatively denser and has fewer pores. However, 

knowing that a denser structure better prevents the absorption of sulfuric acid toward the inside of 

the sample, but still it presents an abundant amount of hydrates. Thus, as time progress the acid 

reacts with the cement paste over a larger concrete surface causing much more significant 

deterioration [43]. 

As for the current study, it can be said that 3D printed elements were strong enough to resist further 

deterioration and mass loss. Hence, this gives an indication that the inter-layers did not allow the 

solution to further penetrate inside the element, and therefore to react and ruin a larger surface of 

the specimen. 
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(a) 
 

(b)  

Figure 11: Mass loss of printed and non-printed concrete samples exposed to a solution containing (a) 1% and (b) 3% 

sulfuric acid 
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3.4- Microscopic analysis and results 

3.4.1- Mercury Intrusion Porosimetry results 

Table 3 shows the total porosity for all mixes and conditions. The total porosities of printed and 

non-printed samples, for all mixes were comparable. The non-printed samples made of Mix A, 

Mix B, and Mix C, had a porosity equal to 13.58%, 13.74%, and 11.23% respectively. Alongside, 

the total porosity of the printed samples of, Mix A was equal to 13.11%, Mix B equal to 12.89%, 

and Mix C equal to 11.67%. However, the distribution of pores differed largely between printed 

and non-printed specimens, as can be observed in Fig. 12-14. Figures 12(a), 13(a), 14(a) show the 

cumulative pores volume between 1 µm and 0.01 µm, whereas Figures 12(b), 13(b), 14(b) show 

the total amount of pores between 1 µm and 0.1 µm, and less than 0.1 µm independently. 

Table 3: Total Porosity 
 

 Mix A Mix B Mix C 

Non-printed Printed Non-printed Printed Non-printed Printed 

Total 

Porosity (%) 
13.58 13.11 13.74 12.89 11.23 11.67 

 

 

Despite the variance in the pore size distribution found among mixes between non-printed and 

printed samples, the target of this particular study is to provide a comparison between both types 

of samples within each mix individually. Hence, when comparing the results of the non-printed 

specimens to those of the printed ones in all mixes, it can be clearly seen that the non-printed 

samples show a much higher concentration of pores having diameters less than 0.1 μm. On the 

other hand, the results of printed samples of all mixes indicated the presence of a larger 

concentration of pores ranging between 1 μm and 0.1 μm, which are negligible in the non-printed 

ones. 

Based on the results of the MIP analysis, exposing the differences in the pore size distribution 

between printed or non-printed samples while having almost the same total porosity; this 

difference can be attributed to the external pressure exerted over the material when being printed 

[57]. As previously mentioned in section 2.2.2, non-printed samples were not vibrated on purpose, 

to get closer as much as possible of the material’s internal structure inside of each printed layer 

that is not subject to any type of vibration. Thus, the only difference between the two production 

methods is the pumping pressure put over the deposited layers. Yet, the extruded material is subject 
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to high shearing stresses, causing a deflocculation of the material’s internal structure, leading to a 

better rearrangement of the small particles including cement grains. Hence, this fact decreases the 

concentration of pores having a diameter smaller than 0.1 µm. 

Few studies concerning the durability aspects and the effect of the pore size distribution were 

found in the literature, still no one provided a comparison between the different production 

methods (printed and non-printed). Schrofl et al. [58] discussed the increasing capillary water 

intake with respect to the increasing time gap between layers deposition. They found that a time 

gap up to 13 min was short enough to avoid preferential capillary suction at the inter-layer level. 

However, a time gap of 24 h would certainly give rise to quick capillary suction through the inter- 

faces because of the formation of more accessible pores. Similarly, Van der Putten et al. [59] found 

that no additional porosity is induced while not having additional time gap between layers 

deposition. However, a much denser matrix is formed due to the low porosity found in samples 

with no time gap, which in its turn is caused by the material’s compaction performed by the layer 

being printed over the one underneath. Bran-Anleu et al. [60] investigated the chloride penetration 

in 3D printed specimens for different interval times, and found that the penetration rate is 

significantly higher for longer time gaps due to the formation of additional voids between 

superposed layers. Hence, these previous findings support the results of this research. 
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(a) 
 

 

 

 
(b) 

Figure 12: Pore size distribution of printed and non-printed elements Mix A 
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(a) 

 

 
(b) 

Figure 13: Pore size distribution of printed and non-printed elements Mix B 
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(a) 

 

 
(b) 

Figure 14: Pore size distribution of printed and non-printed elements Mix C 
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3.4.2- Scanning Electron Microscopy results 

Based on the external appearance and shape of the printed elements shown in Fig. 2, it was decided 

to start by visualizing the specimens of Mix A. The printed layers are much more exposed than 

those of Mix B and Mix C. Therefore, it was presumed that if any inter-layer is to be identified, it 

has to be more visible in Mix A rather than other mixes. 

Herein it should be noted that all presented figures are a collection of 38 independent SEM pictures 

that were organized and rearranged altogether to render a full image of the cut surface under 

display. 

Fig. 15 shows the microstructure of a non-degraded and non-printed sample using Mix A, whereas 

Fig. 16 shows the microstructure of a non-degraded printed sample, at the cut side where the inter- 

layer must be located. It can be seen from Fig. 16 the presence of spherical pores of different 

volumes. This indicates that the larger pores are entrapped air bubbles, only caused by the 

production method, which did not use any vibration in this case. On the other hand, the majority 

of the pores in a printed sample (Fig. 16) have an irregular and deformed shape, unlike those found 

in the non-printed sample (Fig. 15). In fact, the void deformations in printed samples are caused 

by the external pressure applied on the material when being extruded. Besides, it can be also seen 

that the concentration of medium pores (1μm > Pore size > 0.1 μm) is higher than in the non- 

printed sample, and this is previously confirmed by the MIP results in section 3.4.1. 

Above all, if we take a deeper look over Fig. 16, no inter-layers can be identified. The pores do 

not present a continuous pattern over the cut surface, neither in the horizontal nor the vertical 

directions. As well, no crack lines were recognized that can provide any information about a weak 

plane. Even more, it is worth mentioning that the printing direction did not dictated a certain 

orientation of the sand grains. In addition, there cannot be seen any thin strip of continuous cement 

paste which could unveil the contact plane between the subsequent layer and the upper one. This 

fact gives an indication that the superposed layers merged well, and the sand grain crossed the 

inter-layers. Hence, this might be due to the kinetic energy of the suspended sand particles owing 

to the pumping pressure. 
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Figure 15: Microstructure of the non-degraded / non-printed sample Mix A 
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Figure 16: Microstructure of the non-degraded / printed sample Mix A 
 

Concerning the degraded samples, Fig. 17 shows the microstructure of the non-printed sample of 

Mix A after 56 days of acid exposure. The same interpretation reported on the non-degraded 

sample of Fig. 15 applies over the degraded one. Except that, in the case of degraded sample, the 

outer surface in contact with the solution has been damaged, as well as the smallest pores located 

near the surfaces in contact with the surrounding environment and reached by the acid solution 

ingress, were closed due to the precipitation of gypsum (small white dots) caused by the sulfate 

contained in the sulfuric acid (Fig. 18). 
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Fig. 19 and Fig. 20 show the microstructure of cut side 1 and cut side 2 respectively of the tested 

specimen extracted from the degraded printed element after 56 days of acid exposure (the two 

sides were observed for the reason previously explained in section 2.5.1). Still, even in a degraded 

printed sample, the inter-layers are not spotted neither at cut side 1, nor at cut side 2. This fact 

confirms that the inter-layer are not weak planes that create a preferential path for the solution’s 

ingress into the concrete element. Herein, it can be said that the printed element acted like a 

monolithic body, and had a homogeneous microstructure. 
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Figure 17: Microstructure of the degraded / non-printed sample after 56 days of exposure Mix A 
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Figure 18: Closer view of the zone attained by the acid and the gypsum precipitation Mix A 
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Figure 19: Microstructure of the degraded / printed sample Cut side 1 after 56 days of exposure Mix A 
 

 

Figure 20: Microstructure of the degraded / printed sample Cut side 2 after 56 days of exposure Mix A 
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The findings of the SEM observations performed over all sample conditions (degraded / non- 

degraded, printed / non-printed) of Mix A were sufficient to figure out that no layers are going to 

appear in the rest mixes. 

Overall, all these results including those of the MIP analysis confirmed the argument presented by 

De Koker [57] that in a printed concrete element, the concrete matrix could be denser than in a 

non-printed one, because of the external pressure exerted over the material when being extruded. 

Hence, this fact results in a stronger resistance against the degradation of the paste. 

 

4- Conclusion and perspectives 

This article presents an experimental research aiming to characterize the microstructural properties 

of 3D printed concrete elements in regard to non-printed ones. In particular, a durability 

assessment has been carried out over three printable mortar mixes having different thixotropic 

properties. Herein, these samples were subjected to two sulfuric acid solutions of 1% and 3% 

concentrations for 56 days continuously. 

First, a rheological characterization of the mortars used was carried out using the fall-cone 

penetrometer. The measurements revealed that the mixes under investigation covered a wide range 

of materials with different thixotropic properties. 

Second on a macroscopic scale, a visual assessment was carried out for all samples of both 

exposures. It was found that the printed and non-printed samples were equally deteriorated. 

However, those submerged in a 3% acid solution were much more degraded. Alongside, the mass 

loss of all samples caused by the acid attack was recorded. The rate of mass loss between printed 

and non-printed samples of all mixes was almost the same, but still, the non-printed ones degrades 

slightly faster in most cases. This happened because of the presence of a larger number of 

accessible pores (for the same total volume of porosity) exposing a lager surface of paste. 

Nevertheless, printed samples did not fail at the inter-layer level or showed any cracks over that 

plane. 

Third on a microscopic scale, only the samples of all mixes that were submerged in a solution of 

1% acid concentration were analyzed. This is done because the samples subject to 3% acid 

concentration were almost totally degraded. The porosity of all non-degraded samples, whether 

printed or not, were measured by the mercury intrusion porosimetry (MIP). The total porosity of 
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printed and non-printed samples of each mix separately was almost the same, however the pores 

size distribution varied a lot between printed and non-printed conditions. Generally, printed 

samples of all mixes presented a higher volume of pores having a diameter ranging between 1 μm 

and 0.1 μm. Despite that, non-printed samples showed the highest content of pores smaller than 

0.1 μm. Besides, a scanning electron microscopy (SEM) visualization has been done over the 

degraded and non-degraded samples, in particular for Mix A that shows the highest level of surface 

roughness among all other mixes. The SEM images confirmed the previous findings, and it 

clarified the pores size distribution triggered by the MIP. In addition, despite of the material’s 

thixotropic behavior, superposed layers are still able to merge together without showing any sign 

of layer stacking. Moreover, even when the printed samples were subjected to sulfuric acid attack, 

the inter-layers did not form weak planes for the solution ingress. Thus, the printed elements 

behaved as a monolithic body without showing any discontinuity in its internal structure that could 

threaten its durability. 

Finally, it was perceived that the printing pressure applied over the material when being extruded 

has a fundamental effect of the material’s internal structure. Hence it would be interesting to 

reconsider the same research context but by focusing on the effect of the printing parameters on 

the pore size distribution of a printed element, as well as their consequences on its durability 

against aggressive environments. 
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GENERAL CONCLUSION 

 
This research concentrates on linking the fresh state properties of 3D printable materials to the 

hardened state properties of 3D printed elements. Initially, the experimental program goes over the 

formulation of printable concrete mixes and their rheological characterization. In particular, the 

rheological representation of the newly developed mixes was mostly concerned by their 

thixotropic behavior over a certain period of time, which is the principal aspect to be assessed for 

a 3D printable material. Afterwards, the outcomes of the rheological characterization were 

correlated to the hardened state properties of 3D printed concrete elements, namely their 

mechanical performance and structural capacity. Therefore, the methodical objectives of this work 

were first, to understand the effect of some chemical and mineral admixtures on the thixotropic 

behavior of 3D printable mortars. The second objective was to investigate how the rheological 

properties of the fresh material would affect the bond generated between reinforcing steel bars and 

the printed layers; and subsequently, the influence of the layers direction with respect to the bar 

on the quality of the developed bond. The third objective was to characterize the microstructure of 

a printed material and study the durability performance of 3D printed concrete elements when 

subjected sulfuric acid attack. 

At first, four different categories of 3D printable mixes were developed, each having a specific 

material variable. These variables were the high range water reducer (HRWR) concentration, the 

viscosity modifying agent (VMA) concentration, the limestone filler content, and the water 

content. Primarily, all mixes were manually tested for printability (extrudability and buildability) 

using a laboratory device, simulating the work of an actual 3D printer. Later on, their rheological 

properties were carried out using the fall-cone penetrometer, which provides the actual yield stress 

of the mix, calculated based on the penetration depth of the cone. Herein, the yield stress 

measurements were recorded every 2.5 min over the course of 22 min. The linear model proposed 

by Roussel to describe the structuration rate of the material has been adopted, and the results were 

properly associated to the structuration rate (Athix) and thixotropic behavior of each category of 

mixes independently. Indeed, this model was capable of simulating and predicting the actual 

thixotropic behavior of the materials, except for the category having different VMA 

concentrations. In addition, the results of this research showed that all of the material variables 
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influence the structuration rate of the mixes, but in a different order of magnitude. The HRWR, 

limestone filler and water, decreases the structuration rate of the material as their proportions 

increase in the mix, whereas, the VMA does not, it slightly increases it. 

Concerning the effect induced by the material’s fresh state properties on the hardened state 

properties of 3D printed elements, mechanical tests have been performed over 3D printed elements 

in order to qualify the bond generated between printed concrete layers and steel bars. This was 

done to investigate the effect of the material’s rheology on the mechanical and structural 

performance of a printed element. With this in view, a series of pull-out tests has been performed 

over 3D printed elements under different printing conditions. At first, a preliminary study has been 

performed over manually printed concrete elements using a laboratory device. For this case, four 

mixes were used, having each a different workability. In addition, different printing methods were 

considered to produce the samples. Two different methods were adopted to print layers parallel to 

the steel bar (ParaM1 and ParaM2), and two other methods to print perpendicular layers to the bar 

(PerpM1 and PerpM2), as well as a separate method consisting of inserting the bar inside of a 

previously printed element (when the material is still fresh). Besides, conventionally mold casted 

samples were also tested, and they represented the reference model. The strategy undertaken in 

this project showed that 3D printed concrete samples gave a significant pull-out strength, but still 

slightly lower than the non-printed ones. In other words, the concrete layers in printed elements, 

whether parallel or perpendicular, are capable of developing a strong bond with the bar, close 

enough to the reference case. Taking ParaM1 as a representative sample of the parallel condition, 

it was found that the relative bond strength with respect to the non-printed elements varied between 

0.8 and 0.95 following the mortar’s workability. As for the perpendicular samples condition, taking 

the case of PerpM1, the relative bond strength ranged between 0.9 and 1 depending on the mortar’s 

workability. Therefore, the printing direction did not majorly affect the quality of the bond. 

Conversely, a marginal and very weak bond strength was developed between printed concrete 

layers and the inserted bar after the layers have been printed. At the same time, the results showed 

that the material’s workability does not majorly influence the quality and strength of the bond 

generated between concrete and steel bars. 

In the same context, a more viable approach has been realized to produce 3D printed concrete 

samples, and qualify the bond between printed layers and steel bars. Accordingly, parallel and 
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perpendicular samples were printed using an automated 3-axis gantry printer. However, only one 

material has been used, having a high thixotropic behavior. The results of these samples exposed 

better the difference in the bond found between printed and mold casted samples in general, and 

parallel and perpendicular printed samples in particular. Consequently, the non-printed samples 

always dominated. Besides, the parallel samples outperformed the perpendicular ones. Hence, 

reduction factors of 0.87 and 0.78 need to be applied over parallel and perpendicular samples 

respectively. Though, even with the presence of these differences between samples, the developed 

bond can be always considered acceptable for all cases. As for the effect of the material’s rheology, 

it can be confirmed that even a thixotropic material can still provide good confinement of the bar, 

thus, a printable material having a lower thixotropy would eventually result in a better bonding. 

Overall, this experimental research showed that the manual printing technique can be used as a 

representative printing method for preliminary studies. Additionally, the results confirmed that the 

implementation of 3D printed reinforced concrete elements for structural application is a 

promising approach in the construction field, yet, it still requires further investigation and 

optimization in order to be fully acknowledged. 

Last but not least, based on the findings of the microstructural characterization of 3D printed 

concrete elements, and their durability performance against sulfuric acid attacks, it is believed that 

the total porosity do not vary between printed and non-printed conditions. However, the pore size 

distribution and their morphology largely differs. It is more spread in printed samples. These facts 

are all attributed to the pumping pressure exerted over the material when being printed. Over and 

above, a strong inter-layer bonding is always found as long as a good combination between printing 

parameters is maintained (pumping pressure vs printing speed). Hence, the printed elements act as 

monolithic bodies without showing any weakness due to the layers superposition. Yet, printed 

specimens have the same ability to resist chemical attacks as non-printed ones. The inter-layers 

are strong enough to prohibit the creation of preferential pathways for chemical ingress to the 

inside of the element. 
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PERSPECTIVES 
Despite the importance of all what has been done in this thesis, and the valuable outcomes that it 

brought to the field of construction and 3D printing in particular, there is still much more topics 

and issues to be investigated in order to provide a comprehensive understanding of this new 

construction technique. 

In this study, the thixotropic properties of printable mortars were initially investigated. Though, it 

would be even more advantageous if the failure mode of a freshly printed elements is correlated 

to the rheological and thixotropic properties of the material used. Hence, the findings can be then 

associated to the execution aspect to anticipate the best method that has to be adopted for the 

production of 3D printed reinforced concrete elements. 

As from a structural point of view, there is still a lot of basic testing protocols and parameters that 

should be assessed, starting by those prescribed for conventional reinforced concrete, such as the 

flexural strength, shear and bending moment capacity, and deflection of beams. It would be also 

relevant to study the adequacy of hybrid reinforcement of 3D printed elements, for example, by 

combining the best out of FRP sheets, in-mixed fibers, and conventional reinforcing bars. 

Alongside, convenient reduction / safety factors still need to be drafted and applied to all printed 

structures, depending on the printing method adopted, in order to counterbalance the shortage of 

the overall process (layers superposition, interface weaknesses, layers directions, etc.). Meanwhile, 

substantial effort must be put in to adapt the existing standards and codes to the newly developed 

construction technique. By that far, it can be started by focusing on the most effective combination 

(ratio) between the layer’s geometry and bar size, to reach out the best mechanical capacity and 

structural integrity of the printed element, as well as the best protection of the reinforcing bars for 

a better durability. 

Referring to the durability and microstructural assessment of 3D printed elements, and after 

studying the resistance of different printable mixes not having the same rheological properties 

against sulfuric acid attacks, it is needed to further expand the research frame in the field of 

durability. Chapter 4 was an extent of the anticipated research plan. However, because of time 

constraints, the study has been limited to the previously mentioned experimentations. Still and all, 

a protracted experimental program is still to be followed in a later time, and it will include a 

thermogravimetric analysis (TGA) and Micro-Computed Tomography (micro-CT). 
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Besides, even if no inter-layers were found in the current study, there will be always other cases 

where 3D printed elements are going to be subjected to weaknesses caused by the layers 

superposition. These weaknesses would certainly arise either due to the implementation of 

inadequate printing parameters, or other material compositions and rheological properties. 

Thereby, this fact threatens the embedded reinforcement, especially those located at the interface 

levels. Consequently, it would be essential to relate the fact of layers superposition and durability 

of 3D printed concrete elements to the corrosion of steel bars embedded in printed elements. This 

is fundamentally recommended in order to monitor the overall deterioration and performance 

degradation of 3D printed reinforced concrete, which is one of the major causes of failure in 

concrete structures. Apart from that, regarding the overall microstructure of concrete within a 

printed element in comparison to non-printed ones, a better understanding of the pore size 

distribution and their shape configurations must be carried out. In particular, the effect of the 

pumping pressure over these extents, since it is one of the most influencing printing parameters 

over a wide range of macro and micro properties. 

For last, the accelerated drying and hardening rate of 3D printable mortars required for its 

buildability properties, is the initial contributor to the shrinkage of 3D printed concrete. In fact, 

this matter leads to the creation of micro-cracks and deformations in the printed element. Indeed, 

such issues negatively affect the overall performance of the printed element, on both mechanical 

and durability levels. Therefore, it would be essential to find a proper method to give the printed 

element a higher ability to resist all types of shrinkage. 
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Résumé Français: 
 

La technique de construction la plus récente est basée sur une méthode automatisée pour produire 

des éléments en béton, connue sous le nom de fabrication additive ou impression 3D. Cette 

technique émergente devrait permettre à la construction de produire un approvisionnement plus 

rapide en logements, une réduction du coût de construction et, surtout, une meilleure efficacité des 

ressources en réduisant le nombre de travailleurs et la quantité de gaspillage produite. Cependant, 

cette technique est encore en phase de développement et elle a attiré l'attention dans les 

applications académiques et industrielles. Cependant, il existe encore de nombreuses limitations 

qui ne permettent pas la mise en œuvre efficace de cette technique dans le domaine de la 

construction. 

L'impression 3D et son application réelle sont confrontées à de nombreux défis. Ces défis 

correspondent aux propriétés à l'état frais et durci du matériau cimentaire utilisé pour l'impression 

3D, ainsi qu'aux stratégies de renforcement structurel nécessaires pour fournir une performance 

structurelle efficace en termes de ductilité et de capacité de traction. 

Tout d'abord, concernant les enjeux imposés par le matériau utilisé pour l'impression 3D, il doit 

présenter deux caractéristiques primordiales, mais opposées, pour être considéré comme 

imprimable. Ces caractéristiques sont l'extrudabilité et la constructibilité. L'extrudabilité décrit la 

capacité du matériau à circuler dans les conduits du système et à sortir en continu de la buse sans 

la bloquer, ni présenter des problèmes de ségrégation. La constructibilité fait référence à la capacité 

de la couche imprimée à résister aux charges imposées provenant des couches suivantes sans se 

déformer. À cet égard, une compréhension du comportement rhéologique précoce du matériau doit 

être acquise, en particulier celui liés aux propriétés de constructibilité. La constructibilité est en 

effet l'aspect le plus fondamental d'un processus d'impression réussi. Parallèlement, elle a les 

conséquences les plus pénalisantes en cas de non-contrôle adéquat car il pourrait provoquer 

l'effondrement de tout l'élément. Techniquement, le phénomène rhéologique déterminant 

correspondant à la constructibilité est le comportement thixotrope, responsable du raidissement du 

matériau. Précisément, la thixotropie explique l’évolution du seuil de cisaillement du matériau 

avec le temps. 

Un autre problème difficile qui ne peut jamais être omis est la stratégie de renforcement à utiliser 

pour les éléments imprimés en 3D pour une mise en œuvre efficace en tant qu'éléments structurels. 



 

Pourtant, jusqu'à présent, le manque de ductilité et de capacité de traction causé par l'absence de 

renforcement, empêche ce mode de production de se situer parmi d'autres techniques de 

construction conventionnelles. En effet, de nombreuses approches ont été développées et 

différentes techniques de renforcement ont été exploitées pour déterminer la méthode de 

renforcement la plus adaptée qui réponde à toutes les contraintes imposées. Pourtant, les 

techniques de renforcement conventionnelles utilisant des barres d'armature ne peuvent jamais être 

abandonnées. Par conséquent, une bonne liaison entre l’acier et le béton doit toujours être assurée, 

malgré la technique ou l'approche utilisée pour son incorporation à l'intérieur de l'élément imprimé. 

Outre tous les défis mentionnés précédemment, les performances de durabilité des éléments en 

béton imprimés en 3D doivent également être prises en compte. Ceci est également d'une grande 

importance car la technique d'impression 3D est introduite dans des domaines d'applications plus 

développés où les éléments imprimés peuvent être continuellement exposés à des environnements 

agressifs. Jusqu'ici, le concept de superposition de couches et l’existence d'interfaces entre couches 

successives pourraient créer des plans faibles au sein de l'élément imprimé. Ces faiblesses 

potentielles pourraient former des voies préférentielles pour l'entrée de produits chimiques à 

l'intérieur de l'élément à partir de son environnement. Ainsi, si cela se produisait, la dégradation 

du béton et la corrosion des armatures seraient certainement plus accélérées conduisant à toute la 

détérioration de l'élément imprimé. 

Cette thèse traite en particulier de l'effet des propriétés du matériau à l'état frais sur l'état durci et 

les performances mécaniques des éléments imprimés en 3D. En d'autres termes, il vise à établir un 

lien entre les propriétés à l'état frais des matériaux imprimables 3D et les propriétés à l'état durci 

des objets imprimés en 3D. La première étape dans ce contexte a été de formuler de nouveaux 

mélanges imprimables et de tester leurs propriétés rhéologiques. En particulier, cette partie de 

l'étude examine l'influence de la composition du mélange sur la rhéologie du matériau en termes 

de variation du seuil de cisaillement dans le temps. La tendance et le mode de variation du taux de 

structuration (Athix) en fonction de la composition du mélange est décrite. En fait, le taux de 

structuration fournit une indication cruciale sur la constructibilité du matériau, car il évoque sa 

rigidification sur une certaine période de temps. Afin d'assurer une bonne qualité d'impression, 

l'imprimabilité du matériau doit être soigneusement évaluée à une plus petite échelle avant de 

produire des lots plus importants. Par conséquent, dans cette recherche, quatre catégories de 



 

mélanges, représentant chacune une variable matérielle, ont été étudiées. Ces variables sont les 

dosages en superplastifiant, en agent de viscosité, la teneur en filler calcaire et la teneur en eau. 

Ces facteurs ont été choisis parce qu'il est connu que le superplastifiant et l’agent de viscosité sont 

les adjuvants chimiques typiques à utiliser pour le contrôle rhéologique des matériaux à base de 

ciment; tandis que le calcaire est l'un des substituants les plus utilisés du ciment. Le dosage en eau 

a été systématiquement considéré en raison de son importance fondamentale dans toute conception 

de mélange. Ici, les mesures rhéologiques ont été effectuées à l'aide du pénétromètre à chute libre, 

et la profondeur de pénétration est corrélée au seuil de cisaillement. Les mesures ont été effectuées 

toutes les 150 secondes sur une durée de 1320 secondes. 

Ici, les résultats ont montré que le modèle linéaire proposé par Roussel pour percevoir l'évolution 

du seuil de cisaillement avec le temps, décrit correctement le comportement thixotrope réel des 

mortiers mesurés à l'aide du pénétromètre à chute libre. Par ailleurs, une relation linéaire 

raisonnable est trouvée entre les taux de structuration et les variables matérielles. Cependant, toutes 

les variables n'ont pas la même influence et le même ordre de grandeur sur le taux de structuration 

du mélange. Précisément, le superplastifiant, le filler calcaire et la teneur en eau, diminuent la 

structuration à mesure que leur concentration augmente dans le mélange, alors que l’agent de 

viscosité l'augmente. 

En dehors de cela, le comportement rhéologique des matériaux imprimables influence 

principalement l'intégrité structurelle de l'élément imprimé, en particulier la liaison entre l’acier et 

le béton. Cette liaison détermine la capacité d'un élément composite à se comporter de manière 

homogène comme un élément armé conventionnel monolithique. En principe, les propriétés 

rhéologiques du matériau imprimable affectent la qualité de la liaison générée entre les couches 

imprimées et les barres d'acier, ce qui à son tour affecte la capacité structurelle et les performances 

de l'élément lorsqu'il est soumis à des charges appliquées de l'extérieur. Ainsi, la seconde partie de 

cette thèse traite notamment la qualité de la liaison générée avec l'armature, à travers une série de 

tests d'arrachement réalisés sur élément imprimé et par rapport à ceux coulés de manière classique. 

Pour cela, deux techniques d'impression différentes sont adoptées pour produire les éléments 

imprimés, soit en utilisant une technique manuelle ou une imprimante à portique automatisée à 3 

axes. Dans les deux cas, les paramètres variables sont la composition du matériau, les propriétés 

rhéologiques et thixotropes et la direction des couches par rapport à la barre d’acier, qu’elle soit 



 

parallèle ou perpendiculaire à celle-ci. Précisément, dans le cas d’éléments imprimés 

manuellement, les objectifs sont d’étudier d’abord l’influence de la maniabilité du matériau et 

d’autre part, l’effet de la méthode d’impression sur la qualité de la liaison générée avec les barres 

d’acier. Ainsi, quatre mélanges imprimables différents sont développés, ayant chacun une 

maniabilité distincte. Ici, le processus d'impression manuel est effectué à l'aide d'un pistolet de 

laboratoire, simulant le travail effectué par une imprimante réelle. En outre, cinq conditions 

d'impression différentes sont étudiées au total. Au départ, deux méthodes pour chaque direction 

d'impression (deux parallèles et deux perpendiculaires) sont effectuées en imprimant directement 

sur la barre d'acier. Alors que la cinquième condition consiste à insérer la barre d'acier à l'intérieur 

de l'élément directement après son impression. En ce qui concerne les éléments imprimés produits 

à l'aide d'une imprimante à portique automatisée à 3 axes, le même cadre de travail est appliqué. 

Le premier objectif ici est d'étudier en particulier les conséquences qu'entraîne un matériau 

thixotrope sur la qualité de la liaison générée avec les barres d'acier. Alors que le deuxième objectif 

est d'identifier l'effet de la direction des couches par rapport à la barre d'acier sur la liaison 

développée. Cependant, un seul mélange est utilisé pour produire les échantillons imprimés. Le 

mélange est choisi parmi ceux initialement développés pour l'évaluation rhéologique et 

thixotropique des mortiers imprimables. Il a un comportement thixotrope très élevé, et il est 

délibérément sélectionné sur cette base afin de couvrir les résultats les plus néfastes qui pourraient 

survenir. 

Les résultats de cette recherche montrent que la mise en œuvre de barres d'armature classiques, au 

niveau de l'interface entre les couches successives, est une méthode efficace et pratique pour le 

renforcement structurel d'éléments en béton imprimés en 3D. De plus, cela confirme que 

l'incorporation de renfort est capable d'améliorer la résistance globale des composants imprimés 

en 3D. Par conséquent, ils peuvent être utilisés comme éléments structurels intégraux. Plus 

précisément, les résultats ont montré que ni les propriétés rhéologiques du matériau imprimable 

utilisé, ni la direction des couches par rapport aux barres d'acier, n'affectent largement la qualité 

de la liaison générée entre les couches de béton imprimées et les barres d'acier. Cependant, malgré 

la méthode d'impression, que ce soit manuellement ou en utilisant l'imprimante à portique à 3 axes, 

la liaison dans les échantillons moulés de manière conventionnelle domine principalement. Les 

échantillons moulés offrent une meilleure résistance aux forces d'arrachement que les échantillons 

imprimés. Cela se produit en raison de la vibration appliquée de l'extérieur, qui n'est pas pratiquée 



 

dans les éléments imprimés. Néanmoins, pour le cas particulier des éléments imprimés utilisant 

l'imprimante proprement dite, la variation de la qualité de liaison causée par la direction des 

couches était mieux provoquée. Ici, les échantillons imprimés en parallèle ont surpassé les 

échantillons imprimés perpendiculairement. Cependant, l'approche d'impression manuelle peut 

toujours être utilisée comme méthode d'impression représentative pour les études préliminaires. 

Enfin, la troisième partie de cette thèse propose une étude expérimentale comparative de la 

microstructure du matériau entre des échantillons de béton imprimés et non imprimés, ainsi que 

du comportement des éléments imprimés en 3D lorsqu'ils sont soumis à différentes concentrations 

d'acide sulfurique. Cette étude montre les conséquences de l'attaque acide sur la structure interne 

d'un élément imprimé, en particulier la qualité de liaison inter-couches. Ici, trois mélanges 

différents sont sélectionnés parmi ceux développés au début de cette thèse, et ils ont des 

compositions et des comportements thixotropes différents. Par ailleurs, les éléments testés sont 

soumis à différentes concentrations d'acide sulfurique (H2SO4), principalement 1% et 3%, pendant 

56 jours. Cette évaluation se fait à une échelle macroscopique et microscopique. L'analyse 

macroscopique est limitée aux inspections à l'œil nu et aux mesures de perte de masse, tandis que 

l'exploration microscopique consiste en des analyses de porosimétrie par intrusion de mercure 

(MIP) et de microscopie électronique à balayage (SEM). 

Les résultats montrent que la porosité totale ne varie pas entre les conditions imprimées et non 

imprimées. Cependant, la distribution de la taille des pores et leur morphologie diffèrent 

largement, elle est plus étendue dans les échantillons imprimés. Ces faits peuvent être attribués à 

la pression de pompage exercée sur le matériau lors de l'impression. En plus, une forte liaison 

inter-couches est toujours trouvée tant qu'une bonne combinaison entre les paramètres 

d'impression est maintenue (pression de pompage vs vitesse d'impression). Ainsi, les éléments 

imprimés agissent comme des corps monolithiques sans montrer aucune faiblesse due à la 

superposition des couches. Les spécimens imprimés ont ainsi la même capacité à résister aux 

attaques chimiques que les spécimens non imprimés. Les couches intermédiaires sont 

suffisamment résistantes pour interdire la création de voies préférentielles pour l'entrée de produits 

chimiques à l'intérieur de l'élément. 



 

 



 

Influence of the fresh state properties of 3D printable concrete on the steel-concrete bonding and durability 

 
Summary: Currently, the latest technique being introduced to the construction field is known as Additive Manufacturing or 3D printing. Many 

challenges encounter this technique, notably the fresh and hardened state properties of the cementitious material used for 3D printing; and the 
reinforcement strategy to provide ductility and tensile capacity for structural elements. 

This thesis deals with the effect of the material’s fresh state properties on the hardened state and mechanical response of 3D printed elements. Initially, 

the work has started by formulating new printable mixes and testing their rheological properties; in particular their thixotropic behavior, depending on 

the material’s yield stress variation over a certain period of time. After then, the results were linked to the mechanical and hardened state performance 

of 3D printed elements. Thus, a better understanding of the effect of certain chemical and mineral admixtures on the thixotropic behavior of the mix 

was carried out. Then, the relation between the material’s rheology and thixotropic behavior with the bond developed between printed layers and 

reinforcing bars has been exposed, and the effect of the layers direction with respect to the steel bar on the quality of the bond was further assessed. At 

last, this research includes a microstructural characterization of 3D printed materials, as well as a durability assessment of the printed elements 

performance when subjected to sulfuric acid attacks. 

More precisely, the yield stress evolution so-called thixitropic behavior was measured for different printable mixes over a certain period of time using 

the fall-cone penetrometer; and the effect of some chemical and mineral additives was considered. Herein, it was found that the material variables 

influence the structuration rate of the mix, but in different magnitudes. In particular, the addition of HRWR, Limestone filler and water content decrease 

the structuration rate of the material, whereas VMA increases it. Afterwards, the effect of the material’s rheology, printing method and layers direction 

with respect to steel bar, on the developed link have been studied through a series of pull-out tests done over printed elements made either manually 

using a laboratory device or using an automated printer. Herein, different mixes with different workabilities and thixotropic behaviors were used. 

Alongside, concrete layers were printed either parallel or perpendicular to the steel bar. The overall results showed that printed samples were able to 

develop an acceptable bond strength in comparison with the mold casted specimens. Implicitly, these results indicated first that the manual printing 

can be considered as a preliminary testing method to simulate the work of an actual printer; second, the material’s rheology did not majorly affect the 

bond with steel bars; third, parallel printed layers to the steel bar can still provide better bonding with it in comparison to that attained by the samples 

having perpendicular printed layers. As for the microstructural and durability assessment of 3D printed samples, different mixes were used to cover a 

wider range of material properties. Here, 3D printed samples were exposed to different concentrations of sulfuric acid, and the microstructure of the 

degraded and non-degraded samples was assessed. The results showed that concrete samples whether printed or not have the same performance when 

subjected to acid attack. In particular, printed samples did not show any sign of inter-layer weaknesses, neither at a micro nor macro scales. However, 

the only difference between a printed specimen and a non-printed one is that printed samples have a more spread pore size distribution and morphology, 

which is caused by printing parameters used. 

 
Influence des propriétés à l’état frais des bétons imprimables sur la liaison acier-béton et sur la durabilité 

 

Résumé: La fabrication additive ou impression 3D est la technique la plus récente introduite dans le secteur de la construction. De nombreuses 

questions restent posées, notamment la maîtrise des propriétés à l'état frais et durci du matériau utilisé; et la stratégie de renforcement pour fournir la 
ductilité et les capacités structurelles des éléments. 

Cette thèse traite de l’effet des propriétés à l’état frais du matériau sur l’état durci et sur la réponse mécanique des éléments imprimés. Le travail a 

commencé par la formulation et la caractérisation rhéologique de nouveaux mélanges imprimables. La thixotropie des mortiers, c’est à dire de la 

variation du seuil de cisaillement au cours du temps, a été particulièrement étudiée et permet une meilleure compréhension de l'effet de certains 

adjuvants chimiques et minéraux sur la vitesse de structuration du mélange. Ensuite, la relation entre la rhéologie du matériau et la liaison développée 

avec les armatures a été explorée, en tenant compte de la direction des couches par rapport à la barre sur la qualité de la liaison. Enfin, cette recherche 

comprend une caractérisation microstructurale des matériaux imprimés, ainsi qu'une évaluation de la durabilité des éléments imprimés lorsqu'ils sont 

soumis à des attaques d'acide sulfurique. 

Plus précisément, l'évolution du seuil de cisaillement a été mesurée pour différents mélanges imprimables sur une certaine période de temps à l'aide du 

pénétromètre à chute libre; et l'effet de certains additifs chimiques et minéraux a été examiné. Ici, il a été constaté que les paramètres de formulation 

influencent le taux de structuration du mélange, mais dans des amplitudes différentes. En particulier, l'ajout de superplastifiant, de filler calcaire et 

l’augmentation du dosage en eau diminuent le taux de structuration du matériau, alors que l’agent de viscosité l'augmente. Ensuite, l'effet de la rhéologie 

du matériau, de la méthode d'impression et de la direction des couches par rapport à la barre, sur la qualité de la liaison acier/béton imprimé a été étudié 

à travers des tests d'arrachement sur des éléments imprimés réalisés manuellement ou à l'aide d'une imprimante automatisée. Ici, différents mélanges 

avec des ouvrabilités et des comportements thixotropes différents ont été utilisés. Des couches parallèles et perpendiculaires à la barre ont été imprimées. 

Les résultats ont montré que les échantillons imprimés étaient capables de développer une contrainte d’adhérence acceptable par rapport aux 

échantillons moulés. Ces résultats indiquent également que l'impression manuelle peut être considérée comme une méthode d'essai préliminaire pour 

simuler le travail d'une imprimante; et que la rhéologie du matériau n’a pas eu d’effet majeur sur la liaison avec les barres. De plus des couches 

imprimées parallèlement à la barre présentent une meilleure liaison par rapport à celle obtenue pour les échantillons ayant des couches imprimées 

perpendiculairement. Concernant l'évaluation de la microstructure et de la durabilité des échantillons imprimés, différents mélanges ont été utilisés 

pour couvrir une large gamme de propriétés des matériaux. Ici, des échantillons imprimés ont été exposés à différentes concentrations d'acide sulfurique 

et la microstructure des échantillons dégradés et non dégradés a été évaluée. Les résultats ont montré que les échantillons qu'ils soient imprimés ou 

non, ont les mêmes performances contre une attaque acide. En particulier, les échantillons imprimés n'ont montré aucun signe de faiblesse entre les 

couches, ni à une échelle micro ni à une échelle macro. La différence majeure entre un échantillon imprimé et un échantillon coulé est que les 

échantillons imprimés ont une distribution et une morphologie de la taille des pores plus étalées, ce qui est causé par les paramètres d'impression 

utilisés. 


