Maverick Chardet

Hélène Coullon

Christian Pérez

Dimitri Pertin

Keywords: Provisioning computing resources, 2, 1, 3 Accessing remote computing resources

Les systèmes informatiques distribués, qui fonctionnent sur plusieurs ordinateurs, sont désormais courants et même utilisés dans des services critiques, tels que les hôpitaux, le contrôle aérien ou ferroviaire, les réseaux de télécommunication et désormais les voitures autonomes. Cependant, ces systèmes deviennent de plus en plus complexes, en terme d'échelle, de dynamicité et de qualité de service attendue.

La reconguration de systèmes distribués consiste à modier leur état durant leur exécution. Les systèmes distribués peuvent être recongurés pour plusieurs raison, parmi lesquelles la mise à jour de certaines de leurs parties, leur adaptation pour obéir à de nouvelles contraintes (en termes de capacité utilisateurs, d'ecacité énergétique, de abilité, de coûts, etc.) ou même changer leurs fonctionnalités. Du fait de la complexité croissante de ces systèmes, de plus en plus d'acteurs interagissent avec eux (développeurs spéciques à des parties précises du système, architectes de logiciels distribués, développeurs de recongurations, gérants d'infrastructures, etc.). Ainsi, il y a un besoin d'outils d'automatisation pour aider ces acteurs à déployer et recongurer les systèmes distribués. Lors de la reconguration d'un système, les changements à eectuer (le plan de reconguration) doivent être spéciés, que ce soit par un développeur humain ou par un outil d'automatisation, et ensuite exécutés. Cependant, les systèmes distribués sont composés de diérents modules qui interagissent entre eux, et ces interactions dièrent en fonction de l'état de ces modules. Cela induit des contraintes sur l'ordre dans lequel les actions de reconguration qui composent le plan de reconguration doivent être exécutées. L'objectif de cette thèse est de fournir un système pour que des développeurs ou des outils puissent exprimer des plans de reconguration ecaces pour les systèmes distribués tout en prenant en compte les interactions variables entre leurs modules. Il est attendu qu'il respecte les compétences de chaque type d'acteur, sans pour autant faire de compromis sur l'ecacité. De plus, il est déni formellement, ce qui rend possible le fait de fournir des garanties à ses utilisateurs telles que la terminaison d'un plan de reconguration ou la préservation d'un invariant pendant la reconguration, ce qui augmente la sûreté de la reconguration. Les contributions suivantes sont faites dans ce travail. Premièrement, un modèle de déploiement formel, Madeus (le déploiement est un type spécique de reconguration qui consiste à rendre un service opérationnel à partir de rien). Deuxièmement, Concerto, un modèle formel qui étend Madeus pour supporter la reconguration de manière générale. Troisièmement, un modèle de performance, à la fois pour Madeus et Concerto, ce qui rend possible d'estimer les performances attendues d'un plan de reconguration. Quatrièmement, une implantation des deux modèles en Python.

Enn, une évaluation théorique et expérimentale de ces modèles est présentée en termes de performance, de séparation des préoccupations, de sûreté et de précision des modèles de performance.

The focus of this thesis is to provide a framework for developers or tools to express ecient reconguration plans for distributed systems while taking into account the varying interactions between their modules. It is intended to respect the skills of each kind of actor, while not compromising on the eciency. Additionally, it is dened formally, making it possible to provide guarantees to its users such as the termination of a reconguration plan or the preservation of an invariant during reconguration, which increases the safety of reconguration.

The following contributions are made in this work. First, a formal deployment model, Madeus (deployment is a specic type of reconguration which consists in setting the service up and running from scratch). Second, Concerto, a formal model which extends Madeus to support general reconguration. Third, a performance models for both Madeus and Concerto to be able to estimate the expected performance of a reconguration plan. Fourth, an implementation of both models in Python. Finally, theoretical and experimental evaluations of these models are presented in terms of performance, separation of concerns, safety and precision of the performance models. Depuis quelques dizaines d'années, les systèmes informatiques fonctionnant sur plusieurs ordinateurs, appelés systèmes distribués, sont devenus de plus en plus couramment utilisés. Aujourd'hui, ils sont même utilisés dans des systèmes critiques, tels que des hôpitaux, le contrôle ferroviaire ou aérien, des réseaux de télécommunication ou des voitures autonomes. La gestion de ces systèmes est une tâche complexe : on ne doit pas seulement considérer un seul logiciel fonctionnant sur une seule machine, mais plusieurs logiciels interagissant entre eux et fonctionnant sur plusieurs machines. Cela devient de plus en plus vrai à mesure que les systèmes deviennent plus grands (assemblant plus de logiciels tournant sur plusieurs machines), plus dynamiques (ayant la possibilité d'évoluer et de réagir à des changements externes au cours du temps), s'exécutent sur des infrastructures plus hétérogènes (par exemple l'informatique dans le brouillard ou en périphérie de réseau) et sont utilisés dans des systèmes critiques.

Une tâche de gestion essentielle des systèmes distribués dynamiques est leur déploiement. Déployer un système distribué consiste à le mettre dans un état fonctionnel en exécutant un ensemble d'actions telles que des transférer des chiers, installer des logiciels, modier des chiers de congurations ou exécuter des commandes shell.

De nos jours, ces systèmes fonctionnent généralement dans un environnement hautement dynamique : ils doivent prendre en compte un nombre d'utilisateurs changeant, des changements de prix de services en arrière-plan ou de fournisseurs d'énergie, des contraintes géographiques pour les serveurs du fait de la législation de certains pays ou des exigences de latence, entre autres. De plus, les développeurs ou les gestionnaires d'applications peuvent vouloir ajouter de nouvelles fonctionnalités ou mettre à jour les fonctionnalités existantes sans avoir à interrompre le système entier.

Modier un système durant son exécution est appelé reconguration, et, comme le déploiement, consiste à exécuter un ensemble d'actions pour eectuer le changement souhaité. Du fait de cette similarité, dans le reste de cette thèse nous considérons le déploiement comme un cas particulier de reconguration.

La reconguration de systèmes distribués est complexe du fait des interactions entre tous les modules qui composent ces systèmes. Eectuer des changements sur un module impacte aussi, en général, d'autres modules : par exemple, si la base de données utilisée par un serveur web est suspendue, le serveur web est lui aussi impacté, et les services qu'il peut fournir à ses clients est dégradé. Tout cela doit être pris en compte lors de la reconguration de systèmes distribués.

En outre, de nombreux types d'acteurs diérents interagissent avec les systèmes distribués et leur reconguration. En pratique, les modules qui composent un système distribué déni viennent souvent de fournisseurs diérents, et encore un autre acteur les utilise comme des briques à assembler pour mettre au point le système complet. Il peut aussi arriver qu'encore un autre acteur ait besoin de recongurer le système à un temps ultérieur. Tous ces acteurs ont des capacités et des connaissances spéciques, qui doivent être prises en compte quand on considère le problème de la reconguration de systèmes distribués.

En plus de concerner un grand nombre d'acteurs, eectuer de la reconguration nécessite d'exécuter plusieurs opérations. L'informatique autonome est un champ qui étudie les capacités d'auto-gestion de systèmes. Bien qu'elle ne soit pas restreinte à ce scénario, la reconguration peut être modélisée en utilisant une boucle classique d'informatique autonome : MAPE-K. Dans ce modèle, l'adaptation (ou la reconguration) d'un système est découpée en quatre étapes : observation (monitor), analyse (analysis), planication, exécution. L'étape d'observation consiste à rassembler des données à propos du système telles que le nombre actuel d'utilisateurs, la consommation énergétique, les journaux d'événements, etc. L'étape d'analyse consiste à décider, en utilisant les données rassemblées dans l'étape précédente, si une reconguration doit être appliquée ou non, c'est-à-dire si des changements doivent être appliqués au système. L'étape de planication consiste, si une reconguration doit être appliquée, à déterminer l'ensemble d'actions qui doit être eectuée pour obtenir le résultat souhaité. Enn, l'étape d'exécution consiste à eectuer ces actions. Toutes ces étapes partagent une connaissance (knowledge) commune à propos du système et des modèles utilisés pour le décrire.

Dans ce travail, nous nous concentrons sur l'étape d'exécution ainsi que sur les modèles dans la connaissance commune qui ont rapport à l'exécution de la reconguration (en particulier, une manière de décrire l'ensemble d'actions de reconguration à eectuer doit être fournier à l'étape de planication). Des solutions répondant à cette partie du processus de reconguration existent pour aider les diérents acteurs à gérer la complexité liée à la reconguration de systèmes distribués. Elles peuvent être plus ou moins génériques en termes de types d'actions de reconguration pouvant être décrites. Elles peuvent aussi fournir plus ou moins d'expressivité en termes de parallélisme entre ces actions (pour augmenter les performances en reconguration et limiter le temps pendant lequel le système est inopérant ou opère avec des fonctionnalités limités). Enn, elles peuvent fournir de la séparation des préoccupations entre les acteurs de la reconguration à diérents degrés.

Objectifs de recherche

Alors que beaucoup de solutions existent pour l'exécution de la reconguration, la plupart d'entre elles ne fournissement pas à la fois des hauts niveaux de (a) généric- À noter que le modèle Madeus était déjà en cours d'étude quand l'auteur a rejoint l'équipe de recherche et a principalement été mis au point par Dimitri Pertin qui est un ancien post-doctorant. Cependant, l'auteur de ce manuscrit a entièrement créé le modèle formel de Madeus ainsi que son modèle de performances. En outre, l'auteur a codé la version la plus récente de l'implantation de Madeus en tant qu'abstraction de Concerto. Cette version est celle qui est utilisée dans les expériences réalisées sur Madeus, y-compris pour les articles auxquels l'auteur n'a pas directement contribué.

Publications

Les contributions ci-avant ont fait l'objet de trois publications, une à une conférence nationale, une à un workshop international et une à une conférence internationale.

De plus, deux articles de journaux ont été soumis, un en cours de révision mineure et un en cours de révision majeure. Chapter 1

Conférences internationales

Introduction (English)

Over the past few decades, computer systems which run on multiple computers, called distributed systems, have become more and more common and relied on. Today, they are used even in critical systems, such as hospitals, train or air trac control, telecommunication networks or autonomous cars. The management of these systems is a complex task: one needs not only to consider a single piece of software running on a single machine, but multiple pieces of software interacting with each other running on multiple machines. This is becoming even more true as distributed systems become larger (putting together more pieces of software running on more machines), more dynamic (having the ability to evolve and react to external changes over time), run on more heterogeneous infrastructures (e.g., fog computing, edge computing) and are relied upon in critical systems.

An essential management task of dynamic distributed systems is their deployment. Deploying a distributed system consists in putting it in a functioning state by executing a set of actions such as transferring les, installing software, changing conguration les or executing shell commands.

Nowadays, these systems usually function in a highly dynamic environment: they must deal with a constantly changing number of users, changes in the price of backend services or energy providers, geographical constraints for servers due to laws in certain countries or latency requirements, among others. Additionally, the developers or managers of the applications may want to add new features or update existing ones without having to interrupt the whole system. Modifying a system at run-time is called reconguration, and, like deployment, consists in executing a set of actions to perform the desired change. Because of this similarity, in the rest of this thesis we consider deployment as a special case of reconguration. Reconguration of distributed systems is complex because of the interactions between all the modules that compose these systems. Performing changes on one module usually impacts other modules too: for example, if the database used by a web server is suspended, the web server itself is impacted, and the service that it can provide to its clients is degraded. All this has to be taken into consideration when reconguring distributed systems.

Additionally, many dierent kinds of actors interact with distributed systems and their reconguration. In practice, the modules which compose a given distributed system often come from distinct providers, and yet another actor uses them as building blocks to design the full system. It may even happen that yet another actor needs to recongure the system at a later time. All of these actors have specic skills and knowledge, which must be acknowledged when addressing the reconguration of distributed systems.

In addition to involving a large number of actors, performing reconguration also requires several operations to be performed. Autonomic computing is a eld that studies the self-management capabilities of systems. While not restricted to this setting, reconguration can be modeled using a the common loop of autonomic computing: MAPE-K. In this model, the adaptation (or reconguration) of a system is broken down to four steps: monitor, analyze, plan and execute. The monitor step consists in gathering data about the system such as the current number of users, energy consumption, event logs, etc. The analyze step consists in deciding, using the data gathered in the previous step, whether reconguration should be performed, i.e., if changes should be made to the system. The plan step consists in, if reconguration should occur, determining the set of actions that should be performed to obtain the desired result. Finally, the execute step consists in performing these actions. All these steps share a common knowledge about the system and the models used to describe it.

In this work, we focus on the execute step, as well as the models in the common knowledge which are related to the execution of reconguration (in particular, a way of describing the set of reconguration actions to be performed needs to be provided to the plan step). Solutions addressing this part of the reconguration process exist to assist the dierent actors to cope with the complexity that comes with reconguring distributed systems. They may be more or less generic in terms of types of reconguration actions that can be described. They may also provide more or less expressivity in terms of parallelism between these actions (to increase performance in reconguration and limit the time during which the system is down or operates with reduced capabilities). Finally, they may provide separation of concerns between the actors of reconguration to various degrees.

Research Objectives

While many solution exist for the execution of reconguration, most of them do not provide at the same time high levels of (a) genericity, (b) parallelism expressivity and (c) separation of concerns between the dierent types of actors of reconguration.

Usually, two of them come together: (a) and (c) by generic solutions which do not provide optimal performance in terms of time of reconguration, (b) and (c) by solution specic to a given type of reconguration and, nally, (a) and (b) by low-level solutions which are impractical to use in the general case.

In this work, we argue that it is possible to reconcile these three properties. We hence aim at dening a generic framework for the execution of reconguration which at the same time allows to express a high degree of parallelism and provides a good separation of concerns between the actors of reconguration. This framework should also be dened formally and the level of parallelism precisely dened, so that it can be analyzed, evaluated and provide safety guarantees.

Contributions

In this work, we rst consider the specic case of deployment (recall that we consider deployment a special case of reconguration), which lays the foundations for a more general solution on reconguration. Then, we consider reconguration in general. In this spirit, the contributions of this thesis are the following: Note that the Madeus model was already under study when the author joined the team and has mainly been designed by Dimitri Pertin who is a former post-doctoral researcher. However, the author of this dissertation has created the formal model of Madeus entirely as well as its performance model. Furthermore, the author has coded the most recent version of the implementation of Madeus as an abstraction of Concerto. This version is the one used in experiments performed on Madeus, including for papers in which the author did not directly contribute to.

Publications

The above contributions have been the subject of three publications, one in a national conference, one in an international workshop, and one in an international conference.

Moreover two journal papers have been submitted, one currently undergoing minor revision and one currently undergoing major revision.

International conferences

Maverick Chardet, Hélène Coullon, Christian Pérez. Predictable Eciency for Reconguration of Service-Oriented Systems with Concerto. In CCGrid 2020 -20th International Symposium on Cluster, Cloud and Internet Computing, Melbourne, Australia, 2020.

Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin. Madeus: A formal deployment model. In 4PAD 2018 -5th International Symposium on decisions are discussed and examples are provided. This chapter then evaluates both models in terms of parallelism expressivity and separation of concerns through a real production use-case as well as synthetic use-cases. Finally, Chapter 7 discusses the contents of this thesis, concludes and provides ideas of future works. types of computing resources that they provide and how to access them. In Section 2.2, we give a denition for distributed applications, provide a way to represent them using the concept of component and introduce the concept of life-cycle of a software module. In Section 2.3, we explain what it means to recongure a distributed application, present typical types of reconguration and position reconguration in the context of autonomic computing. Finally, in Section 2.4, we explain how parallelism can occur during reconguration, how this parallelism can be modeled and classied.

Distributed Infrastructures

Types of resources

Distributed infrastructures are sets of computing resources interconnected by one or several networks, which can also be considered as resources. In this document, we focus on computing resources and consider physical networks to be the medium in which they live and virtual networks, which are software-dened, to be pieces of software like any other.

We break down computing resources into the following categories.

Physical machine A physical machine is a physical computer with hardware resources like CPUs, RAM, storage and other peripherals such as sensors, imaging devices, etc. An operating system (OS) is in charge of handling these resources which are shared among the programs and users of the machine.

Physical machines can be assembled into larger structures. For example, a cluster of machines usually refers to a set of machines which have similar specications and are interconnected by a local network. According to the type of hardware that equips a cluster (high speed network, GPUs, many-cores etc.) and to the level of abstractions that hides the hardware and administration aspects from the end-user, a cluster may be given a more specic name, such as supercomputer or cloud infrastructure. Distinct (and possibly distant) clusters may also be organized as a cluster of clusters (e.g., grids, clouds).

Virtual machine (VM) A virtual machine is a virtual computer which does not use physical hardware resources directly but emulated ones instead. An hypervisor is in charge of running one or multiple virtual machines and emulating their CPU, RAM, storage, etc. using another machine's (usually physical) resources. An operating system (OS) also runs on a virtual machine and allows to access the emulated resources with software running on the machine itself.

Virtual machines are usually used to co-locate multiple distinct OSs using the same physical hardware while ensuring a strong isolation between them. Multiple users can therefore share the same physical machine without compromising security.

Cloud providers, which will be introduced later, make heavy use of this.

Examples of virtualization solutions are Linux KVM 1 , VMware 2 or Microsoft Hyper-V 3 .

Container A container is an isolation layer running on an OS. Containers co-located on the same OS share their access to the kernel but have distinct software, storage, libraries, conguration les, etc. Containers are more lightweight than virtual machines (they all share the same OS). A container management system, like Docker, is in charge of running these containers. Container management systems usually provide advanced management functionalities such as replicas (running multiples of the same container).

Examples of container solutions are Docker 4 , Linux containers 5 (LXC, LXD, LX- CFS) or rkt 6 .

Provisioning computing resources

Computing resources are made available in dierent ways.

Direct access

Sometimes, there is no need to reserve computing resources because they are directly available. For example, private servers that run uninterrupted, workstations, etc.

Clusters and grids

Recall that clusters and grids are groups of physical computing resources. While they are shared among multiple users, most of the time the users require that they be the only user using the subset of resources they use to avoid interference. Reservations therefore need to be made (on a subset of the cluster or grid). Batch schedulers such as oar 7 or slurm 8 are used to manage these infrastructures and reservations. A user typically submits a reservation for a subset of nodes in the cluster or grid (possibly all the nodes) and for a given period of time. When this period starts, the user is given access to the resources, and when it stops, access is withdrawn. Examples of grids with this type of access are the Computing Center for Research and Technology 9 and the Barcelona Supercomputing Center 10 . Experimental platforms for research such as Grid'5000 11 and Chameleon 12 also provide this kind of access.

Cloud computing

The American National Institute of Standards and Technology 13 denes cloud com- puting [START_REF] Mell | the nist denition of cloud computing[END_REF] as follows: Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of congurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management eort or service provider interaction.

Cloud infrastructures can be public or private. Large public cloud actors include Amazon Web Services Cloud infrastructures use virtualization technology [2] (in particular virtual machines) to provision and release computing resources rapidly. They provide languages or APIs (e.g., Amazon CloudFormation [START_REF]AWS CloudFormation[END_REF] or OpenStack Heat [4]) to let the users specify their needs. Three main kinds of services are usually available. First, IaaS (Infrastructure as a Service) allows users to request the creation (or the deletion) of new virtual machines, which is usually done in a matter of seconds or minutes. The user is then granted access to each of them. The other two, PaaS (Platform as a Service) and SaaS (Software as a Service) allow users to create or destroy instances of ready-to-use services or software, but they do not have to handle virtual machines directly. The user is then provided with a way to use the services (access point, credentials, etc.).

The virtual machines can give access to dierent kinds of hardware (number of CPU cores, GPU, capacity of storage, type of storage, etc.) and be hosted on machines physically located in a given location (which can be desirable to have low latency or for legal/privacy/security reasons). A recent trend is the development of fog computing [START_REF] Hu | Survey on fog computing[END_REF]6,[START_REF] Mahmud | Fog Computing: A Taxonomy, Survey and Future Directions, in: Internet of Everything[END_REF] which consists in providing computing resources very close to the end users (to allow very low latency or high-volume communication without network congestion). Edge computing [START_REF] Yu | A survey on the edge computing for the internet of things[END_REF] is also developing and consists in using the (usually small) computing resources at the very edge of the network (e.g., sensors, chips) to pre-process the data, and therefore lowering the quantity of data to be sent to cloud or fog computing resources for processing. A typical example is video analytics [START_REF] Ananthanarayanan | Real-time video analytics: The killer app for edge computing[END_REF], in which hundreds or thousands of surveillance cameras in a smart city process the information locally before sending only the relevant information to the cloud, instead of streaming the whole video feed.

Accessing remote computing resources

Once computing resources are provisioned, one needs to be given access to them.

Depending on their intended usage, this access can have dierent forms.

Direct shell access

In some cases, it is benecial for the users to have direct shell access to the computing resources they use. This access can have dierent levels of privilege, from read-only to root. This kind of access, with a high-enough level of privilege, gives the most control to the user who is able to install anything on the machine, start and stop services, run any kind of software task at any time.

In the case of physical or virtual machines, this access is usually given through the SSH (Secure SHell) protocol. In the case of containers, the virtualized OS directly provides a shell accessible from the hosting machine.

Batch access

Sometimes, giving direct access to the machines to users is not desirable, either for security purposes or to maximize the utilization of the computing resources, for example to force releasing the machines when the computing task requested by the user is nished. Batch access to a machine or group of machines allows users to submit a job to be executed (e.g., a Bash script). This job can have metadata attached to it, such as a priority or hardware requirements (e.g., number of CPU cores, RAM and storage capacity). A scheduler then uses this information to decide the order in which the tasks are executed and on which computing resources. This kind of access gives less freedom to the user compared to direct shell access as there is no way to control when the task will be executed, and everything needs to be planned in advance. Note that the level of privilege on the machine can also vary. This kind of access is usually provided by computing-oriented platforms such as clusters, grids or super-computers. It is also common in the case of federations (infrastructures made in part of user hardware which they can add and remove to the federation at any time). Examples of federations are Folding@home 19 or Rosetta@home 20 .

In these cases the only objective of the task is to compute a result using input data, and not to provide services to other systems. For example, batch access is unsuitable to run web services. 19 https://foldingathome.org/ 20 https://boinc.bakerlab.org/ Note that batch access and direct shell access are not incompatible, and sometimes both can be used depending on the use-case.

Distributed Software

Architecture of distributed applications

Distributed software can be dened as software which runs on distributed infrastructures. In distributed software, multiple software modules interact with each other.

Each module is located on a single compute resource, but a given compute resource may be the host of multiple modules.

A distributed application is a piece of distributed software which is dened to achieve a specic goal. Examples of distributed applications are web services [START_REF] Thomson | Proxy servers and databases for managing web-based information[END_REF], composed of one or multiple web servers, proxies to distribute the user load over these servers, databases to store persistent data and other back-end web services (le storage, image processing, etc.). A typical example would be a social networking service. This application may be static, in which case its set of modules is dened ahead of use and remains the same during the life-time of the application, or dynamic, in which case its set of modules and their interactions may evolve over time, and in particular at run-time. Example of such evolutions are the increase of the number of web servers in case of high user load, the update of modules of the application or a change in how the modules interact.

In order to fulll its purpose, a distributed application must be deployed to a distributed infrastructure. Deployment is the process which consists in installing, conguring and running each module of the application so that they all work together as intended. This process is complex because modules need to run on appropriate hardware, have proper network connectivity depending on their requirements, and dependencies between modules need to be taken into account. These dependencies can be of many types, such as for instance: temporal or functional when a service cannot start before another service of another module has started, information-related when a module needs information from another module, such as an IP address, to congure itself.

For example, let us consider a web server and a MySQL database which it needs to function properly. To deploy this application, compute resources rst have to be provisioned for both modules. Then, both of them have to be installed on these resources, and congured. Note that the web server needs the IP address of the database as a part of its conguration, information which is not known prior to the provisioning process. Then, the server cannot run before the database is operational.

Notice that the complexity grows with the number of modules and their diversity in a distributed application. A large research community exists to solve problems related to deployment of distributed software. In this work, we focus on one possible cause for complexity (dependencies between modules) and assume that the placement problem (choosing where to deploy each module) has already been solved.

Many kinds of distributed applications exist. Server-client applications consist in a set of modules (called the clients) interacting with a single module (called the server) to get information they need to function. Master-worker applications are the opposite: a module called the master provides other modules called workers with some tasks to perform. Data-oriented applications sometimes use more complex topologies such as map-reduce (often abstracted to the user by dedicated frameworks such as Hadoop 21) where the application is split into layers of modules (splitting, mapping, shuing, reducing), each layer sending tasks to modules of the next layer.

A recent trend is the development of micro-services applications, where each module can provide a well-dened service and denes an interface for other modules to use this service. Web services are often structured this way. Peer-to-peer applications consist in a set of similar modules, usually each deployed on a dierent compute resource, which can communicate with any other module if need be (for example to exchange data).

We can classify the modules of distributed applications into two categories. They can be stateless, which means that they do not store data other than their conguration les and possibly cache, or stateful, which means that their behavior depends on data which depends from the previous interactions it had with other modules. A typical example of stateful module is a database.

In this work we focus on distributed applications with the following characteristics: each module may provide one or more services; each module has a set of dependencies to a given set of services provided by other modules; each module may be stateful or stateless; the mapping between the modules providing the services and those which use them can be known at any given time, in particular by the system managing the distributed application.

Component-based representation

The component paradigm is used both as a representation method (e.g., in UML 22 - Unied Modeling Language) and a software development method (e.g., Component-Based Software Engineering [START_REF] Szyperski | Component Software: Beyond Object-Oriented Programming[END_REF][START_REF] Lau | Software component models[END_REF]). It consists in describing applications as sets of components with clearly-dened interfaces. These interfaces are represented by ports (each port corresponding, for example, to a service that is provided or a requirement to a given service), and the ports of dierent components are connected when they interact (for example, when a component that requires a service uses the one provided by another component). A set of inter-connected components is usually called an assembly.

Database

Web server Component-based models (or component models) are particularly well-suited to model service-oriented distributed systems, as each module can be represented by a component, the dependencies of the module can be represented by use ports and the services that it provides by provide ports. Figure 2.1 shows an example of a distributed application composed of a web server and a database, the web server using the service provided by the database.

Component models usually come with an Assembly Description Language (ADL) which allows its users (among other things) to dene assemblies by listing its list of components and connections.

Life-cycle of distributed applications

Life-cycle

The life-cycle of a piece of software corresponds to the set of congurations in which it can be, as well as how and when it can go from one conguration to another. A conguration designates everything that determines how the piece of software behaves internally and consequently how it interacts with the outside world, directly (e.g., through an API) or indirectly (e.g., through what actions must be performed to put it in a given conguration).

For example, let us consider the MySQL database in our previous example. Two main congurations rst come to mind: running (when one can use its MySQL API) and not running (otherwise). Both of these can be rened, however. When the database is running, there are plenty of settings for a MySQL database, which can aect whether some SQL requests are allowed, the speed at which requests will be treated, etc. Likewise, when the database is not running, it may be because: the service has not been started on the machine hosting the database, it is in an error state, it has not yet been congured, some dependencies of MySQL are missing, the database is not currently existing, etc. Given any two congurations, one can provide a set of actions to go from one to the other (such as starting the MySQL service or installing dependencies) or a set of alternatives in case of errors.

One might notice that it is possible to consider a very large number of states to take into consideration everything that might aect the interface of a piece of software to a slight degree. For example, in the case of a database, we could consider that a write requests eectively changes the interface of the database because its responses to the following requests will be dierent. However, the life-cycles of software are usually considered through models which abstract away the parts which are not relevant or practical. The most common models used to represent life-cycles are state-machines, which are detailed later in this section.

Extension to distributed applications

Distributed applications are composed of multiple interacting modules, which each has its own life-cycle. For example, if we consider a web server using a database, the web server has its own life-cycle, as well as the database. Notice that these lifecycles are not independent: the life-cycle of the web server depends on the one of the database. This is because the web server may not provide some of its services when the database is not running.

Representation using state-machines

Life-cycles are usually modeled using state machines or their derivatives. In the following, three of them are introduced: basic state machines, Petri nets and UML state-charts.

Basic state machines State machines [START_REF] Kleene | Representation of events in nerve nets and nite automata[END_REF][START_REF] Rabin | Finite automata and their decision problems[END_REF] are dened by a set of states, and a set of transitions between those states, each labeled with a symbol from a given alphabet. In the following, we only consider deterministic state machines, meaning that given a state and a symbol, there is always at most one transition labeled with this symbol leaving this state. One state is declared to be the initial state. By considering transitions consuming a single token per source place and consuming a single token per destination place, it is possible to represent parallel actions. Figure 2.3 shows how the life-cycle of a database might be modeled using a Petri net, with parallel actions. Note that more complex scenarios may be modeled by Petri nets, but they are not relevant to our denition of a life-cycle.

UML state charts UML state charts [START_REF] Varró | A formal semantics of uml statecharts by model transition systems[END_REF][START_REF] Der Beeck | A structured operational semantics for uml-statecharts[END_REF] are an extension to basic state machines, with additional features to improve their expressivity (in particular to model parallelism like Petri nets), but also to reduce the explosion in number of states and transitions as the system to model grows in size. The two main additions are nested states and orthogonal regions. First, states can themselves be UML state charts (in which case they are called composite, as opposed to simple). When receiving an input symbol, the deepest state chart in the hierarchy attempts to process it, and if no suitable transition exists, the state chart above it in the hierarchy makes an attempt, etc.

Second, a composite state can be composed of multiple state charts instead of one, in which case they are considered to be orthogonal regions. When inputs are treated at this level of the hierarchy, they are processed by both state charts in parallel. from state not running leads to a composite state (i.e., state which contains its own state-machine), composed of two parallel regions. In practice, after leaving the not running state, both the unconfigured1 and unconfigured2 states become active.

The two regions then progress independently from each other. When both states configured1 and configured2 are active, the transition to go to state running may be used.

Reconguration of Distributed Applications

Overview

Reconguring distributed applications consists in changing their conguration, i.e., interacting with their life-cycles. Recall that the life-cycle of a distributed application is made of the life-cycles of all of its modules, and that these life-cycles are, in the general case, not independent from each other.

Typical types of reconguration

While an innite number of recongurations can be imagined, some reconguration problems are faced very often by users, which leads to some typical types of reconguration being addressed by many solutions in the literature. Here we present the most common ones.

Deployment

The deployment of an application consists in moving it from a non-existing state to a functional state, i.e., a state in which it operated properly. A deployment could also be called a commissioning procedure. In the case of distributed software: each module must be deployed, respecting its dependencies to other modules.

The typical way to do this is to choose a host on which to deploy each module (placement) and then to deploy each module when the modules it depends on have already been deployed. A deployment procedure is thus highly correlated to the type of resources targeted, the provisioning of resources, and their access, all of which are described in Section 2.1. Many academic contributions, production tools and languages have been proposed to automate and ease the conception of deployment procedures.

A large part of these solutions is described and classied in Chapter 3. Recall that in this document, we consider deployment as a specic case of reconguration.

Scaling

Let us consider a distributed application which includes a number of replicas of the same module (for example compute nodes or instances of a web server). The scaling of this distributed application consists in increasing or decreasing the number of replicas of this module. This is usually done to maintain a good balance between costs and quality of service, for example in the case of an application with a number of users which varies over time.

Typically, rules are given by the user to trigger an increase or decrease in scale depending on given metrics such as user load, CPU load of given machines, energy consumption, etc. [START_REF] Chieu | Dynamic scaling of web applications in a virtualized cloud computing environment[END_REF][START_REF] Nuaimi | A survey of load balancing in cloud computing: Challenges and algorithms[END_REF][START_REF] Sotiriadis | Elastic load balancing for dynamic virtual machine reconguration based on vertical and horizontal scaling[END_REF].

Update

Updating an application consists in replacing its code and conguration with a new version. In the case of distributed applications, each module may be updated individually. However, while a module is being updated, the other modules that depend on it have to stop using it during the update process. This is typically done by suspending them or putting in a state in which they do not use the module currently being updated [START_REF] Wermelinger | Specication of software architecture reconguration[END_REF][START_REF] Taentzer | Dynamic change management by distributed graph transformation: Towards congurable distributed systems[END_REF][START_REF] Gomaa | Dynamic software reconguration in software product families[END_REF][START_REF] Bannò | Handling consistent dynamic updates on distributed systems[END_REF][START_REF] Bannò | Tackling consistency issues for runtime updating distributed systems[END_REF][START_REF] Panzica | Local dynamic update for component-based distributed systems[END_REF].

The challenges that comes with updating distributed applications are rst to minimize the propagation of the service interruption, and then to minimize the downtime of the application, i.e., the time during which the services it provides are unavailable or limited. Some techniques exist to address this. In particular, rolling software update consists in, when updating replicas of a same module, updating only a part of them while the other ones continue serving requests. This is done for example in OpenStack 23 .

Migration

Migration consists in moving one or more modules from their compute resources to other ones. Sometimes, in a cloud computing context, this can be done by migrating the virtual machines themselves [START_REF] Ye | Live migration of multiple virtual machines with resource reservation in cloud computing environments[END_REF], but other times the software modules themselves are moved [START_REF] Carrasco | Live migration of trans-cloud applications[END_REF]. Sometimes, migration also refers to moving data handled by a module to another module, possibly needing a conversion [START_REF] Meier | Hierarchical to relational database migration[END_REF][START_REF] Maatuk | Relational database migration: A perspective[END_REF]. This is usually done when the hardware capabilities of the compute resources currently used do not match the current workload (if the latter is too high, more compute power is required; if it is too low, money and/or energy can be saved by using less powerful machines), to reduce latency or to use another system (for example another type of database).

The main challenge with migration is to minimize the downtime, which is more dicult when the modules are stateful (e.g., it is not possible to run another copy on the new resource and stop the old one once the new one is already functional).

Autonomic computing

Autonomic computing consists in giving any software system (distributed or not) the capability to autonomously adapt (or self-adapt) to its evolving environment. This process includes the monitoring of the system to control, decision-making to decide whether changes are required, which ones, when to apply them and how, and the execution of these changes itself. There exist several models for autonomic computing.

The one that is usually adopted in computer science and distributed systems is the MAPE-K model introduced by IBM in 2003 [START_REF] Kephart | The vision of autonomic computing[END_REF]. MAPE-K models the autonomic process as a loop comprised of four steps: Monitor, Analyze, Plan and Execute, all sharing a common Knowledge.

The Monitor step consists in gathering metrics on the system, such as the CPU load of the machines in the distributed infrastructure, the number of current users, the energy consumption, logs, etc. The Analyze step consists in, given the metrics collected, deciding whether or not a change should occur in the application. The Plan phase consists in generating a reconguration plan to achieve the change decided in the Analyze phase. The Execute step consists in applying the reconguration plan to the application. The common Knowledge is made of all the models, languages and information about the application shared between the four steps.

While all the steps of MAPE-K are related to reconguration, in this document we address specically the execution of reconguration (which takes place in step (E) of MAPE-K), as well as the models used for the execution itself and its interface with the other steps (K).

Parallelism in Reconguration

Overview

Executing a reconguration plan consists in performing multiple reconguration actions. These actions usually have dependencies so that one action must have to be executed after some other actions, but before others.

The traditional way of scheduling these actions is to pick any total order that satises these dependencies, and execute them sequentially in that order. However, this is not optimal in terms of performance. Intuitively, executing tasks in parallel makes the total execution time shorter. This is for example mentioned in the conclusion of [START_REF] Di Cosmo | Automatic deployment of services in the cloud with aeolus blender[END_REF]. While this claim has to be put in perspective (for example, a task may take longer to execute if it is done in parallel with another task), increasing parallelism is one way in which the performance of reconguration can be improved.

Increasing parallelism can be done in two ways: executing tasks in parallel if they are known to be independent and increasing the number of tasks which are known to be independent. Intuitively, more detailed models of the life-cycles of the modules leads to more information about the dependencies between reconguration actions. This claim will be explored further in Chapter 3.

In the following, we discuss a way to model dependencies between reconguration actions, and then introduce a classication of the dierent types of parallelism in reconguration of distributed applications.

Modeling sets of reconguration actions with dependency graphs

When trying to model in particular the set of actions to perform to go from one conguration to another, a tool at our disposal are dependency graphs. In particular, they can be used to model the partial order of actions to perform. In the following, we consider a particular type of dependency graphs: connected weighted directed acyclic graph in which each arc corresponds to an action (i.e., a task), and the weight of this arc is the time it takes for the task to complete. There are always at least two vertices in a dependency graph: the source vertex, which is an ancestor of all the other vertices, and the sink vertex, which is a descendant of all the other vertices. A task t depends on another task t if there exists a path from the source vertex to the sink vertex going through t and t in this order. A task cannot be executed before a task it depends on is over, so that the vertices in the graph act as synchronization points for tasks. Two tasks which do not depend on each other can be executed in parallel. can be executed in parallel because they do not depend on each other. However, task 10 depends on tasks 1, 5, 6, 7, 8 and 9 and has to wait for those to be completed before it can execute. By denition, a task can execute after a duration equal to the maximum weight of the paths from the source to the parent of its corresponding arc.

In this example, task 10 can execute after a duration equal to max(2+5+3, 1+1+3) = max(10, 5) = 10. The path or paths with the largest weight (in this case the path going through tasks 1, 5 and 6) is/are called critical path(s). By denition, the critical paths of a vertex v are the longest paths between the source vertex and v. The critical paths of the graph are dened to be the critical path(s) of the sink vertex, i.e., the longest paths between the source vertex and the sink vertex. In our example, the critical path of the graph is the one going through tasks 1, 5, 6 and 10. The time complexity to nd the critical path in a dependency graph (V, E) is O (|V | + |E|).

Types of parallelism in reconguration of distributed systems

We introduce below three types of parallelism which may occur during reconguration.

Note that these are not mutually exclusive. They serve as a basis for the classication of parallelism we introduce in Chapter 3.

At the host level

Distributed systems consist in software running on multiple compute resources, called hosts. Parallelism at the host level consists in multiple hosts executing reconguration actions at the same time. These actions may be identical or dierent across hosts.

At the module level

While parallelism at the host level depends on the infrastructure, parallelism at the module level depends on the software architecture, and in particular how the distributed system is split into modules. It consists in reconguration actions concerning distinct modules being executed at the same time.

Within modules

The model of the life-cycle of a module includes which reconguration actions may be executed and lead from one state to another. If the life-cycle is precise enough, it may include information about which reconguration actions can be executed in parallel. Parallelism within modules refers to reconguration actions aecting the same module being executed in parallel.

Conclusion

In this chapter we have dened several concepts, in particular distributed infrastructures (and how they can be interacted with), distributed software and applications, deployment and reconguration of distributed applications, parallelism in reconguration as well as autonomic loops (and how the execution of reconguration is related to other steps of autonomic behavior). We have seen that distributed applications are made of modules interacting with each other, each module having its own life-cycle.

We have also introduced ways to represent these modules (component models), their life-cycles (state machines and their derivatives) and parallelism of reconguration actions (dependency graph). We have also suggested that parallelism of reconguration actions is not independent from the life-cycles of the modules being recongured.

This will be studied in details in the following chapter, which covers the state of the art for this document. ter, we analyze works at the intersection of these areas, i.e., works that address the reconguration of distributed systems. We compare these works in there current state as of the publication of this thesis and do not consider their history. In Section 3.1 we dene the scope of this state of the art. In Section 3.2 we list and dene the criteria that we use to analyze each contribution. In Sections 3.3 and 3.4 we list and present the contributions in our scope, grouped into two dierent categories: conguration management tools and control component models. Finally, in Section 3.5 we discuss the overall picture and draw some conclusions.

Scope

While many types of reconguration exist, this work focuses on distributed systems, and mostly on service-oriented systems. Moreover, we focus on two particular aspects of reconguration: the execution of a given reconguration plan and the models used to express the elements involved, the reconguration plan, the reconguration tasks and their dependencies. In the context of a MAPE-K loop, this would correspond to E (execute) and the part of K (knowledge) which concerns E or its interface to P (plan). Finally, we aim at providing a general and generic reconguration solution for the targeted systems, i.e., which is not specic to a particular technology, language or scenario.

Exclusions

Following these guidelines leads us to exclude the following categories of work from this state of the art.

Software package managers Software package managers, like apt, yum or nix [START_REF] Dolstra | The nix build farm: A declarative approach to continuous integration[END_REF][START_REF] Dolstra | Nixos: A purely functional linux distribution[END_REF], manage the set of packages installed on a given machine. Because package managers consider the problem of package dependencies and package updates they can be considered as reconguration systems. However, they do not handle distributed elements and remote dependencies. We hence do not consider them to perform reconguration of distributed systems. Instead, we consider them as a tool which can be used by a reconguration framework to apply some change on a given machine.

Continuous integration, deployment and delivery DevOps is a recent trend in software development. In [START_REF] Bass | DevOps: A software architect's perspective[END_REF] it is dened as a set of practices intended to reduce the time between committing a change to a system and the change being placed into normal production, while ensuring high quality. Among these practices are continuous integration, deployment and delivery. Continuous integration consists in sharing the code of an application in a common repository using a version control system, and keep it updated with the changes made by developers on a daily basis.

Continuous deployment consists in testing, after any change has been made, if the application still works as intended by automatically deploying the application and running a set of tests. When all the tests pass, the changes may be pushed to a production environment through continuous delivery, eectively publishing a new version of the software. This software may then be deployed in its most recent version, or updated if already deployed.

While these practices may be part of a larger system to automatically update software modules, or even add or remove resources and software modules (e.g., by using paradigms such as infrastructure as code), they do not address the actual execution of such a reconguration and are therefore out of our scope. However, the work presented in this document may be integrated to DevOps practices to enhance the deployment and update processes.

Dynamic Software Update (DSU) frameworks DSU frameworks, like Ginseng [START_REF] Neamtiu | Practical dynamic software updating for c[END_REF], [START_REF] Hicks | Dynamic software updating[END_REF] or Coqcots/Pycots [START_REF] Buisson | Safe reconguration of Coqcots and Pycots components[END_REF] allow to update the code of a running application written in a specic coding language. Most of the time, the dependencies they take into consideration are those in the call stack, because in most cases updating a function which is currently executing is problematic. However, external work is required most of the time to handle dependencies between distinct executables running on distinct machines. In any case, each of these frameworks target applications written in a specic language (e.g., C for Ginseng, Python for Coqcots/Pycots). Indeed, because of the techniques used in DSU, it is not possible to write a light wrapper to encapsulate something written in another language. This makes any DSU framework specic to a technology. Again, DSU may be used by the frameworks we do consider as a way to apply some change to a given piece of software.

Standard APIs Over time, standards have been created to unify the APIs of multiple services such as cloud providers, virtual machines or containers. For example, OCCI [START_REF] Edmonds | Toward an open cloud standard[END_REF] (Open Cloud Computing Interface) is a common interface for cloud providers. Similarly, OVF [START_REF] Crosby | Open virtualization format specication[END_REF] (Open Virtualization Format) is a common interface for virtual machines and containers. These contributions may be used by reconguration frameworks, but in themselves they do not address the execution of reconguration.

Autonomic frameworks addressing specic needs Some autonomic frameworks dene a full MAPE-K workow to achieve specic goals. For example MuS-cADeL [START_REF] Boujbel | Muscadel: A deployment dsl based on a multiscale characterization framework[END_REF] allows to express constraints over a large-scale system by dening multiple scales on which the constraints can apply. These constraints consist in specifying the system requirements of the devices where software modules must be deployed, their required geographical location, etc. The whole system can then autonomously adapt to changes, in particular to new users entering the system, users disconnecting from the system, devices changing location, etc. However, the complexity of MuScADeL is mainly located in the monitoring, analysis and planning steps of the MAPE-K loop, not in the execution step. Similarly, Calvin [START_REF] Persson | Calvin merging cloud and iot[END_REF] (and its extension Calvin Constrained [START_REF] Mehta | Calvin constrained a framework for iot applications in heterogeneous environments[END_REF] to support resource-constrained devices) provides a framework for the automatic management of data-driven distributed IOT applications, but does not address specic issues in the execution of reconguration.

Solutions addressing other parts of the MAPE-K loop As previously stated, this work focuses on the execute step of the MAPE-K loop. While it has many connections with the other steps, in particular the plan step, all the work consisting in deciding which reconguration should occur is out of the cope of this state of the art. For example, Ctrl-F [START_REF] Alvares | High-level language support for reconguration control in component-based architectures[END_REF][START_REF] Alvares | A Domain-specic Language for The Control of Self-adaptive Component-based Architecture[END_REF] models the life-cycle of software components and the policies of a given distributed system as a way to avoid executing reconguration actions that would lead the system in an inconsistent or undesirable state. It does not address the execution of the reconguration actions themselves, however, which makes it complementary to the work presented in this document. In [START_REF] Hewson | A declarative approach to automated conguration[END_REF], the authors provide a declarative language to express the desired congurations for the analyze step to know when to perform reconguration. Another example is the approach taken in [START_REF] Beugnard | Towards context-aware components[END_REF], [START_REF] Costa-Soria | Handling the dynamic reconguration of software architectures using aspects[END_REF] or in Safran [START_REF] David | An aspect-oriented approach for developing self-adaptive fractal components[END_REF], which consists in using the aspect-oriented approach to decouple the concern of writing functional code and writing reconguration rules (analyze/plan) and the concern of writing functional code.

Software component models

We call software component model a model in which the functional parts of the software modules are dened inside components, following the principles of CBSE [START_REF] Szyperski | Component Software: Beyond Object-Oriented Programming[END_REF]. This category includes CCA [START_REF] Bernholdt | A component architecture for high-performance scientic computing[END_REF], CCM [START_REF]CORBA Component Model[END_REF],

Fractal [START_REF] Bruneton | The fractal component model and its support in java[END_REF], SCA [START_REF] Beisiegel | Service component architecture, Building systems using a Service Oriented Architecture[END_REF], DirectMOD [START_REF] Lanore | A recongurable component model for hpc[END_REF] or BIP [START_REF] Basu | Modeling heterogeneous real-time components in bip[END_REF]. They provide a way to implement software in a modular and maintainable way. They include at least an abstract model, i.e., a list of concepts which can be used to dene the software modules (such as components, ports, connectors, membranes or states).

However, this abstract model does not account for practical concerns such as how to deploy components on an infrastructure, run them or making components communicate, either on the same computer or remotely. The core of the components model therefore does not dene how to execute reconguration. In this document, we hence consider reconguration frameworks which are based on component models, but not the component models themselves.

Analysis criteria

In this section, we introduce six criteria that are used in the rest of this chapter to analyze the literature.

Recongurable elements

Given a reconguration framework, the recongurable elements are the objects that can be manipulated during a reconguration. The more types of elements can be recongured, the more expressivity the solution has.

In this document, we focus on software reconguration. When any command, script or program can be executed by a reconguration framework, any softwarerelated reconguration can be expressed. In this case, we say that general software is recongurable.

Some frameworks provide dedicated abstractions for more specic categories of software reconguration (e.g., management of containers). This dedicated support improves convenience and safety. This support may be provided in addition to general software reconguration, or instead of it (in which case the expressivity is lower).

We observe that the following elements may have dedicated support:

Containers -Dedicated support for containers takes the form of an abstraction of a container service. It may support operations such as creation of containers or groups of replicas of containers, container image management, etc.

Virtual machines -Dedicated support for virtual machines takes the form of an abstraction of an hypervisor. Changing the number of virtual machines used in a distributed system or their locations are a common tasks and one of the main arguments for the cloud paradigm.

Custom elements -Some frameworks can be extended with additional types of elements by the community (e.g., storage systems, database).

In the following, any natively supported element considered as an entity that can be managed by a reconguration framework is called a module.

Types of reconguration operations supported

A reconguration may range from deploying a couple of distributed software modules to completely changing the architecture of a running stateful distributed system. Reconguration frameworks may support only a subset of these types of reconguration operations. While it is always possible to manually perform reconguration tasks with custom code, we only consider the recongurations which are natively supported by each solution. Note that for the moment we consider the reconguration operations on the modules that can be manipulated (presented in the previous section), and not how the dependencies between these modules are handled. We classify the types of reconguration operations as follows:

Deploy modules -Given the description of an application, ability to put in service the modules that constitute it.

Add modules -Given an already existing application, ability to add additional modules to this application.

Remove modules -Given an already existing application, ability to remove modules.

Custom module operations -Ability to execute operations dened by the developer of this modules. These operations are usually made to change the conguration of the module or how it interacts with the other modules.

Terminate the application -Ability to terminate gracefully a distributed application. This is a subset of Remove modules without the ability to keep part of the application alive.

Note that we consider here the capabilities at the execution level, meaning that any planning-related feature, such as scaling (increasing or decreasing the number of instances of a module, most likely a VM) or rolling updates (updating a set of instances of a module in two or more steps in order to continue providing a service)

are designated by what is actually executed when they are performed (adding or removing modules in the case of scaling, and custom module operations performing updates in the case of rolling updates).

Life-cycle handling

The life-cycle of modules may be modeled and taken advantage of to dierent extents.

In Subsection 2.2.3, we stated that life-cycles can be modeled using various kinds of automata. We therefore use the concepts of automata to classify the dierent types of life-cycle models observed in the literature:

On/o -This is when an module is either deployed or not deployed. The life-cycle consists of two states, on and o. An action (or transition) may be executed to deploy the module or delete it.

Fixed-n -This is when an module has n possible states, but all of them are identical for all modules. An action may be executed to go from one state to another. Note that on/o is the particular case xed-2.

Custom-seq -This is when developers may customize the life-cycle of each module: each module can have any nite number of states, and an action may be executed to go from one state to another.

Custom-par -Similar to custom-seq, except that a module may be in multiple states and/or execute multiple actions to change states at the same time.

Additionally, as soon as there are at least three possible states, the life-cycle model is:

Single-path -If there is never more than one path to go from a state to another (not counting cycles).

Multi-path -Otherwise. This eectively allows for choices to be taken at runtime on which path to choose to go from one state to another.

On/off Fixed-3 Custom-seq single-path Custom-seq multi-path Custom-par multi-path Custom-par single-path = state = transition = choice = parallel fork = parallel join

Parallelism of reconguration tasks

One way to improve the performance of reconguration, i.e., to decrease the time it takes to execute a reconguration plan, is to perform reconguration tasks in parallel.

Recall that in Section 2.4.3, we have identied three main types of parallelism during reconguration: at the host level, at the module level and within modules (which are not mutually exclusive). In this section we introduce dierent levels of parallelism, i.e., combinations of the three types of parallelism, that we can observe in the literature. to be executed, and the vertical axis represents time in each of the sub-gures. We consider that the red and yellow actions of the component on the left, as well as the green action of the component on the right have a dependency to the blue action of the component on the left. Note that inter-host same-action is the only level dened in terms of hosts instead of modules. This is equivalent if each module of the system is deployed on its own host, but in the general case it is less expressive.

In distributed software reconguration framework, parallelism at the host level exists in two forms. It can be same-action, in which case reconguration actions can be performed in parallel on multiple hosts only if they are identical. This is for example the type of parallelism given by a multi-ssh connection as oered by clusterssh. This is our rst level of parallelism: inter-host same-action. In Figure 3.2, we can see that the actions in red and yellow are performed at the same time on both hosts, as they are identical. The second type of host-based parallelism is when which action each host execute does not matter. In this case, the level of parallelism is determined by how the dependencies between modules are handled.

One strategy is to not handle dependencies at all, performing all actions at the same time, and relying on an error occurring when a dependency is missing. When the dependency of a module is missing, the reconguration actions are attempted again until no error is raised, i.e., until all the dependencies are satised. This is our second level of parallelism: fail and retry. In Figure 3.2, we can see that the green reconguration action of the module on the right and the red and yellow actions of the module on the left are attempted three times, the two rst of which failed because the blue action of the module on the left had not yet completed.

Another strategy is to use information about dependencies to coordinate the reconguration actions. Depending on the precision of the modeling of the life-cycles of the modules and how dependencies are dened, we can observe three levels of parallelism.

First, when dependencies are only dened at the module level, we have the modulebased level: modules execute their reconguration actions in parallel only if they have no dependency to one another. In Figure 3.2, we see that because the module on the right depends on the module on the left, the former's actions are executed only once all the latter's ones have nished executing.

Second, when dependencies between modules are dened in a ne-grained way, i.e., at the action level, we have the inter-module level: reconguration actions of two distinct modules can be performed in parallel even when a dependency exists between these modules, as long as the dependencies between actions are respected.

In Figure 3.2, we see that contrary to in the module-based case the red and yellow actions of the module on the right can be executed directly, because they do not have dependencies. The green action can be executed just after because its only dependency, the blue action of the other component, has already nished executing.

Third, when dependencies between the actions of a single module are declared, parallelism can occur within that module. In this case, we have the intra-module level. In Figure 3.2, we can see that the red an yellow actions of both modules are executed in parallel when intra-module parallelism is provided in addition to intermodule parallelism.

Separation of concerns

We dene three categories of actors which may interact with a reconguration framework for distributed applications (recall that deployment is a kind of reconguration):

Module developers -They are experts in a type of module used in distributed software (e.g., databases). They develop and package the module to conform to the requirements of the reconguration framework, and they provide documentation to use the module.

Reconguration developers -They are experts in making modules work together to form a distributed application. They write recongurations to deploy the system, but also to make it evolve depending on new specications. They provide the recongurations (possibly parametric) with documentation. Generally such a role is carried out in a company by a DevOps engineer.

System administrators -They make distributed systems work over an infrastructure they own. Harold Ossher and Peri Tarr dene separation of concerns in [START_REF] Ossher | Using multidimensional separation of concerns to (re)shape evolving software[END_REF] to be the ability to identify, encapsulate and manipulate only those parts of software that are relevant to a particular concept, goal or purpose. We argue that in distributed systems, which involve many types of human actors with distinct elds of expertise, each type of actor should manipulate only elements of a reconguration solution which are directly relevant to the goals and purposes specic to their areas of expertise.

Ideally, in our case, reconguration developers should not have to look at the modules' implementation, and the documentation provided by the module developers should have minimal information about the modules' internals. Similarly, system administrators should not have to look at the details of the recongurations provided by the reconguration developers.

Formal modeling

Formal modeling allows to dene properties on the reconguration process in a formal way and prove them without having to execute it. This make it possible to provide guarantees to the reconguration developers or system administrators, such as the termination of a reconguration or the conformity of the system to some invariants when performing reconguration. We consider here the modeling of the reconguration framework itself, not the modeling of the code of the modules provided by the module developers.

We distinguish three levels of modeling in the literature:

No modeling -The users are free to perform basically anything, so that it is not possible for the framework to provide any guarantees.

Abstraction -The users manipulate documented concepts such as nodes, components and pre-dened reconguration actions. While this is not enough to provide formal guarantees, the possible outcomes are limited and easier to envision.

Formal model -The users manipulate concepts which are formally dened and obey a formally dened semantics so that it is possible to precisely predict the outcome of executing a reconguration on a system. Note that this is at the framework level and does not need to predict, for instance, hardware faults.

Conguration management tools

Conguration management (CM) tools are widely used in the industry and are an essential part of the DevOps [START_REF] Bass | DevOps: A software architect's perspective[END_REF] techniques. They allow system administrators to deploy and congure virtual infrastructures or software on physical infrastructures or in the cloud. We categorize CM tools using two criteria. The rst is one of our analysis criteria: which types of elements can be recongured. The following options exist in the literature: Software only: In this case, they are called Software Conguration Management (SCM) tools and do not have built-in support for containers or VMs. However, one could argue that it is possible to encapsulate infrastructure management with code.

Containers only: Everything that is manipulated is encapsulated into containers which are run using a container service.

VMs only: These are usually the services provided with hypervisors by cloud providers to allow infrastructure managers to dene their infrastructure as code.

A combination of the above.

The second criteria to categorize CM tools is their declarative or imperative nature. Most of them are declarative, meaning that the users dene their target system, and the reconguration is inferred from the dierence between this target system and the currently existing system. However, some SCM tools are imperative, meaning that the users declare the set of reconguration actions to be performed directly.

Because they work in a substantially dierent way compared to the other CM tools, we start by presenting imperative SCM tools. Then, we introduce declarative CM tools (including declarative SCM tools).

Imperative SCM tools

Ansible Ansible [58] is an imperative SCM which is built on top of SSH. An Ansible reconguration consists in a sequence of instructions to be executed on one or more hosts. Such a sequence is called a playbook. Each instruction represents a reconguration action and states a type of instruction (called module in Ansible, but this notion is distinct from what we call module in this document), parameters and the name of the group hosts on which it should be executed. The groups of hosts are dened by the system administrator prior to the execution of a playbook. Sequences of instructions can be packaged into roles, which is the Ansible equivalent of modules.

Instruction types are used to abstract away the underlying operating system and oer idempotent instructions for the most common conguration operations. For example, the mount instruction type takes as parameter which directory should be mounted to which path, but the actual mounting operation will not be applied if the directory is already mounted. Instruction types can be added by the user, or the shell instruction type can be used to perform operations using shell commands directly. When an instruction must be executed on multiple hosts, it is done in parallel. However, two distinct instructions are always executed sequentially.

Ansible can be seen as an abstraction of SSH with syntactic sugar for the most common commands. It therefore recongures software. Even though dedicated instruction types exist to start or manage Docker containers, containers or virtual machines are not treated as rst class elements. Because there is no restriction on the commands that can be executed, all types of reconguration operations are possible.

The life-cycle of the modules are equivalent to custom-seq multi-path. The parallelism is inter-host same-action. Because any code may be executed when performing reconguration actions, the separation of concerns is limited. This is because Ansible playbooks do not have information about the current state of the system, and because the instructions may be low-level system instructions, the system administrator must ensure that executing the playbook will actually do what is expected. Ansible's idempotent instructions help in certain cases, but using only idempotent instructions reduces greatly the expressive power of Ansible. To the best of our knowledge, no formal operational semantics exists for Ansible, and because any instruction can be performed by the playbooks there are no abstractions to reason about besides the playbooks themselves.

Chef Chef [59] is another imperative SCM tool, with a more complex architecture than Ansible. It has a server-client architecture, and uses recipes, the Chef equivalent of Ansible playbooks. Recipes are submitted to a central server after being tested by an additional element, the workstation. The clients can then retrieve the recipes from the server when they need to apply them, and the execution is performed locally instead of remotely. Chef allows to dene dependencies (to other recipes) inside recipes, which is not the case of Ansible (in Ansible all the reconguration actions must be declared in the same playbook). When a recipe B which depends on a recipe A is executed by a client, it can retrieve the recipe A directly from the server and execute it before B.

Similarly to Ansible, any kind of reconguration action which can be dened by code may be used, and therefore there is not restriction on the types of reconguration operations. In terms of life-cycle handling, it is also equivalent to custom-seq multipath. When it comes to parallelism, the execution of the reconguration tasks by distinct hosts are independent, because they each have their own client. However, if a dependency exists between recipes (which can be considered as modules), one must wait for the recipe that is depended on to be fully executed before the other recipe's execution. We therefore have module-based parallelism. When it comes to separation of concerns, one might argue that it is better than Ansible's because of the dependencies between playbooks. However, the main issue of low-level reconguration actions that are not aware of the context remains. There is no formal model nor abstractions to reason about besides recipes.

Declarative CM tools

We start by introducing the TOSCA standard, which denes many concepts which are also used by most of the declarative CM tools with small variations. We then introduce the other solutions, comparing them to TOSCA when it makes sense.

TOSCA TOSCA [START_REF]Topology and Orchestration Specication for Cloud Applications V1.0[END_REF] (Topology and Orchestration Specication for Cloud Applications) is an OASIS standard for the deployment and reconguration of cloud applications and has multiple implementations, such as OpenTOSCA [START_REF] Binz | Opentosca a runtime for tosca-based cloud applications[END_REF] or Cloudify [START_REF]Cloudify[END_REF]. The system administrator describes the target architecture in a graph where each node represents an element, which may be virtual machines, containers, software or other things depending on the implementation. Note that in the following, a node refers to a TOSCA node, corresponding to a software module. Each edge between nodes represents a relationship (e.g., a node representing a VM contains a node representing an OS). The nodes and the relationships are typed, and each type of node comes with a set of artifacts describing its deployment and destruction processes, and possibly other operations that can be performed on the node.

The TOSCA standard does not restrict what elements may be represented as nodes. Cloudify, for example, can represent VMs on popular public and private cloud infrastructures, containers and software. It is also extensible so that custom node types can be created. TOSCA supports the addition and removal of elements and oers the possibility to dene custom node operations, i.e., reconguration actions to perform on a node in addition to deployment and removal. By default, TOSCA denes a xed-10 life-cycle with the following states for each node: initial, creating, created, conguring, congured, starting, started, stopping, deleting and error. Also, by default, dependencies may only be precise up to the node level, which means that this life-cycle is not used to increase the parallelism between reconguration tasks by default. TOSCA does not specify precisely how these life-cycles should be orchestrated and leave it to the implementation. Cloudify for example denes a default workow (i.e., orchestration of reconguration actions) for node startup and termination, which executes the dierent steps sequentially for each node in parallel, unless a dependency exists, in which case the node that is depended on must nish its execution before the other one can start its own. This corresponds to node-based parallelism. Custom workows may be dened by the users, but they must use information which is not provided in TOSCA to improve the parallelism, i.e., information contained in the implementation of the node. In this case, this corresponds to inter-module parallelism.

When performing reconguration, the description of the target infrastructure is made by system administrators using nodes provided by module developers. They can use templates written by reconguration developers to simplify the process. The separa-tion of concerns in TOSCA is therefore very high between these actors when using the default workows. When using custom workows, the reconguration developer (or system administrator) must know the details of the nodes' implementation, resulting in a low separation of concerns. When it comes to formalism, TOSCA denes abstractions which can be used to reason about the reconguration process like nodes and relationships. But TOSCA does not come with an operational semantics, which must be dened by its implementations. However, external work has been done to model formally the TOSCA standard [START_REF] Yoshida | Formalization and verication of declarative cloud orchestration[END_REF][START_REF] Chareonsuk | Formal verication of cloud orchestration design with tosca and bpel[END_REF], which can give guarantees if the users take the time to formalize the implementation of each TOSCA node used.

Brooklyn Brooklyn [65] is a declarative CM tool developed by Apache. While it is not an implementation of TOSCA, it is very similar to it and uses the same concepts as TOSCA, including user-dened workows with their advantages in terms of parallelism but disadvantages in terms of separation of concerns. By default, the life-cycles are on/o, however. Other than that, the analysis is the same as TOSCA's.

Juju Juju [66,[START_REF] Juju | [END_REF] is a declarative CM tool developed by Canonical. Similarly to Brooklyn, Juju is not an implementation of TOSCA but uses similar concepts, without user-dened workows and with an on/o life-cycle. The analysis is therefore the same as Brooklyn's with the default workows.

Terraform Terraform [START_REF]Terraform by HashiCorp[END_REF] is an open-source CM tool which focuses on virtual infrastructure (VMs and containers). A graph similar to what is done using TOSCA is dened by the infrastructure manager using a DSL (eectively implementing the infrastructure as code paradigm). It does not come with software support, but it is extensible so that custom nodes can be dened. MySQL is supported out of the box however. Additionally, it does not support custom node operations but only addition and deletion. Other than this, the analysis is the same as TOSCA's with the default workows.

PaaSage PaaSage [START_REF] Rossini | Cloud application modelling and execution language (camel) and the paasage workow[END_REF]70] is an academic project which led to the development of a platform for the deployment and the management of cloud applications. It essentially works in a similar way to Terraform, except that its DSL, CAMEL [START_REF] Rossini | The cloud application modelling and execution language (camel)[END_REF], allows for additional steps in the development process to increase separation of concerns when it comes to cloud providers. The nodes representing virtual machines may correspond to abstract specications, which can then be replaced automatically by matching virtual machines oered by the chosen cloud provider. Other than this, the analysis is the same as Terraform's. [START_REF]AWS CloudFormation[END_REF] is a CM tool specic to AWS and allows to dene an infrastructure running on Amazon's cloud. This infrastructure is dened as a graph, similarly to TOSCA, using a DSL.

AWS CloudFormation Amazon Web Services (AWS) CloudFormation

However, the elements that can be recongured are only AWS VMs, and they may only be added or removed. It oers support for autonomic policies such as autoscaling or rolling updates which can be dened by using specic node types provided by AWS, however this is not in the scope of this state of the art. Other than this, the analysis is the same as TOSCA's with the default workows.

OpenStack Heat OpenStack Heat [4] is similar to AWS CloudFormation, but targets infrastructures provided by an instance of OpenStack instead of AWS. It uses its own DSL called HOT (Heat Orchestration Template) to dene the expected infrastructure and dene autonomic behavior. The analysis is the same as AWS CloudFormation's.

Kubernetes Kubernetes [72] is an open-source container orchestration service maintained by Google. It allows to dene container-based infrastructures in a declarative way using its DSL, similarly to TOSCA. However, only containers are supported as recongurable elements. Custom node operations are implemented using container access points, or simply execution of arbitrary commands inside the containers. The xed-5 life-cycle of each container is managed by a pod, which can be in the following states: pending, running, succeeded, failed, unknown. Kubernetes uses the fail-andretry strategy when it comes to parallelism. Separation of concerns is limited when performing custom node operations, because this is done by executing arbitrary code inside the VMs. Finally, Kubernetes provides abstractions like pods, resources and controllers to reason about reconguration, but no formal semantics is provided. [START_REF] Swarm | [END_REF] is Docker's own container orchestrator. When it comes to our analysis criteria, Docker Swarm behaves similarly to Kubernetes and therefore the analysis is the same as Kubernetes'.

Docker Swarm Docker Swarm

MoDEMO MoDEMO [START_REF] Al-Dhuraibi | Model-driven elasticity management with occi[END_REF] is a reconguration framework for cloud computing. It focuses on elasticity management (i.e., scaling) of virtual machines and containers while being agnostic to the cloud provider thanks to the use of OCCI [START_REF] Edmonds | Toward an open cloud standard[END_REF].

MoDEMO can recongure containers and virtual machines. It supports addition, removal (and from a planning viewpoint, scaling, which in terms of execution comes down to adding and removing modules). The life-cycle handling is the one of OCCI, i.e., on/o. The parallelism is module-based. In terms of separation of concerns, because only scaling is permitted, reconguration developers and infrastructure managers do not need to know implementation details, so there is a high separation of concerns. MoDEMO has been formalized in UML, which corresponds to documented abstractions, as to the best of our knowledge there is no formalization of the execution semantics.

Puppet Puppet [START_REF]Puppet[END_REF] is a platform-independent SCM tool (the elements that can be recongured are only software). It has a similar architecture to the one of Chef, i.e., a master/worker architecture. Users describe the expected status of the software as a manifest, which is similar to a TOSCA graph, written in Puppet's own DSL. Modules, similar to TOSCA node types, are available for the system administrator to use. The manifest is then sent to a server, and each node in the system to congure downloads it and applies the necessary changes. This is done by the Puppet agent which must be installed on all the nodes. Puppet agents are similar to Chef agents, but work in a declarative way instead of an imperative one. It is possible to execute custom shell commands however if necessary, eectively guaranteeing that all reconguration types can be performed. Puppet has an on/o life-cycle for the software elements. Similarly to Chef, it has module-based parallelism. It has good separation of concerns when not using custom shell commands (if used, it is not only about reaching a declared state but executing custom code). It has not been formalized and provides only abstractions.

SaltStack SaltStack [START_REF] Saltstack | [END_REF] is similar to Puppet, the main dierence being the language used to describe an architecture (YAML and Python instead of Ruby), and the persistent TCP connection kept between the Master node and the Worker nodes.

The analysis is therefore the same as Puppet's.

Jolie Redeployment Optimiser Jolie Redeployment Optimiser [START_REF] Gabbrielli | Self-Reconguring Microservices[END_REF] (JRO) is a tool to deploy and re-deploy modules described in the Jolie language [START_REF] Montesi | Composing services with jolie[END_REF][START_REF] Montesi | Service-Oriented Programming with Jolie[END_REF]. JRO's major contribution is to provide an optimal deployment (adding modules) or redeployment plan (adding or removing modules) given some metrics.

In terms of execution, it handles software modules described in Jolie. It is able to add and remove modules. The modules have an on/o life-cycle and the parallelism is module-based (dependencies can be declared between modules). The separation of concerns is high as reconguration developers and software administrators do not need to know the implementation details of the modules. While Jolie has been formalized, the JRO provides abstraction but not a formalism of its execution semantics.

Control component models

An other approach taken in the literature is to detail the life-cycle of the modules, possibly using them to improve on parallelism. We observed that this is done using component-based approaches, which leads to good properties such as composability, reusability and separation of concerns. The components are not used to describe the functional parts of the modules but focus on their control, i.e., modeling and handling their life-cycles. In the following, we call these components control components.

Jade Jade [START_REF] Bouchenak | Autonomic management of clustered applications[END_REF] is a middleware to manage distributed applications. It requires each piece of software to be wrapped in a Fractal component so that they all have a uniform interface. A module developer is in charge of wrapping legacy code with a Fractal component to implement the common interface. This way, that piece of software can be managed, and in particular started and stopped. Introspection and reconguration can be performed thanks to Fractal's reconguration capabilities.

The elements that can be recongured in Jade are the pieces of software that have been wrapped inside Fractal components. Thanks to Fractal's reconguration capabilities, components may be added or removed. Custom operations may be dened by exposing additional interfaces compared to just those required by Jade. The life-cycle of Jade components is on/o. It is possible to manually encode a more complex life-cycle inside the membrane of a Fractal component, i.e., an area of the component dedicated to non-functional concerns, but this is not taken advantage of by the framework. This on/o life-cycle induces module-based parallelism. In terms of separation of concerns, Jade brings to legacy software some good properties of component-based software engineering. By increasing composability and reusability, reconguration developers do not have to worry about individual module's business code. However, module and reconguration developers are required to learn Fractal to be able to respectively produce a wrapper for the modules and write recongurations. Finally, work has been done to write formal specications for Fractal [START_REF] Merle | A formal specication of the Fractal component model in Alloy[END_REF].

Additionally, while vanilla Fractal exposes low-level APIs for reconguration, which is error-prone and dicult to check as they are called from user code, one can benet from contributions to the Fractal ecosystem like FScript [START_REF] David | Safe Dynamic Recongurations of Fractal Architectures with FScript[END_REF], a DSL which allows to express Fractal recongurations while providing some guarantees such as termination.

Tune Tune [START_REF] Broto | Autonomic management policy specication in tune[END_REF] is an evolution of Jade and addresses the complexity for component developers to wrap legacy code into Fractal components. This is done by providing a DSL called wrapping description language (WDL) to describe the wrappers, as well as a UML prole to describe recongurations. Even though the WDL concepts are ultimately translated to Fractal, the user does not have to know and understand Fractal.

Tune makes the work of component developers easier and improves separation of concerns compared to Jade by not requiring module nor reconguration developers to know Fractal. Other than this, the analysis is the same as Jade's.

DeployWare DeployWare [START_REF] Flissi | Deploying on the Grid with Deployware[END_REF] is another wrapping-based middleware. Similarly to Tune, a DSL allows software experts to dene the wrapper for a piece of software.

However, DeployWare manages the life-cycle of the modules by allowing developers to write procedures for each component. These procedures must be sequential (there is only one sequence of procedures to go from the undeployed state to the running state and conversely) and symmetric (if a procedure leads from a state A to a state B, a procedure leading from state B to state A must exist, e.g., install/uninstall). A DeployWare assembly can then be dened by a user, which is automatically transformed to a Fractal assembly handling all of the orchestration of the procedures to deploy the full assembly.

According to our analysis criteria, DeployWare is similar to Tune. Two dierences exist though. First, the DeployWare framework hides the actual Fractal components.

DeployWare itself only allows for deployment and termination of the application, it is not possible to remove only one part of it. Second, the granularity of the lifecycle of the control components, which is custom-seq single-path. However, this does not aect the parallelism, as two components may only be deployed sequentially (if there is a dependency) or in parallel (if not), which corresponds to module-based parallelism. Separation of concerns is high. No formal semantics is provided, but there are abstractions.

Adage Adage [85,[START_REF] Adage | [END_REF] is a deployment framework for applications on computation grids. It features a DSL called GADe, allowing users to describe their grid application to be deployed (directly in GADe, or by using another DSL specic to a programming model, like MPI, which is then translated to GADe). Taking as input the description of the application in GADe, the description of the available resources and control parameters, it generates a deployment plan and executes this deployment. Even though Adage was developed for grids, it could be adapted for more general use.

Adage can deploy general software described in GADe. It also supports plugins to provide technology-specic support, i.e., custom elements. It supports the deployment and addition of modules. Each module has a xed sequential deployment life-cycle (single-path). In terms of parallelism, the rst part of the deployment (sending les) is done in inter-host same-action fashion, while the execution of processes is done in a module-based fashion. The separation of concerns is high as the declaration of the available resources, the creation of a plugin for a specic technology and description of an application are completely distinct. Finally, Adage has not been formally, but abstractions are provided thanks to GADe.

SmartFrog SmartFrog [START_REF] Goldsack | Smartfrog: Conguration and automatic ignition of distributed applications[END_REF][START_REF] Goldsack | The smartfrog conguration management framework[END_REF]89] (Smart Framework for Object Groups), created by HP and later open-sourced, is a framework in which software components include a functional part called managed entity, some conguration data and a life-cycle manager, which corresponds to our notion of control component. A life-cycle manager is a Java class which represents a state-machine and exposes methods corresponding to transitions in this state-machine. These methods can then be called by a scheduler which manages the life-cycles of a set of components. Data dependencies between components are handled through lazy bindings, which can be resolved at run-time.

SmartFrog is able to recongure software elements provided with a life-cycle manager. The creation and deletion of elements as well as performing custom operations is done by instantiating Java classes and calling their methods. SmartFrog provides custom-seq multi-path life-cycles under the form of state-machines. SmartFrog does not come with schedulers which must be implemented by the user. In that sense, the user is responsible for handling the ne-grained life-cycle dependencies between the components. The lazy bindings mechanism, if used correctly by the programmer, allows a component to wait until some information is available. Because of this, we can consider SmartFrog to feature inter-module parallelism. Separation of concerns is quite high as what is exposed to the reconguration developer are the state-machines of the life-cycle managers produced by the module developers, provided appropriate documentation comes with the Java classes. However, this state-machine still exposes some of the internals of the modules, and unless every time-dependency is encoded as a lazy binding, which is not necessarily the case, the reconguration developer needs to know the time-dependencies between the modules' life-cycles to write an appropriate scheduler. Finally, some work has been done to formalize the core of SmartFrog [START_REF] Anderson | A formal semantics for the smartfrog conguration language[END_REF].

Engage Engage [START_REF] Fischer | Engage: a deployment management system[END_REF] is an academic framework which has similar concepts to Smart-Frog's. In particular, the modules are associated with a state-machine to manage their life-cycles called driver. Drivers contain at least three special states: uninstalled, inactive and active. The component developer is then free to add addition states, as long as there always exists a single path going from either one of these special states to another. The modules are put together to from an application in a hierarchical way. The transitions correspond to actions described with code to change the state of the modules and can be guarded by a requirement of the form: all upstream/downstream modules must be in this special state. Engage also has mechanisms to increase separation of concerns by deriving full specications of an application from partial ones, but this is part of the planning phase and not the execution phase of the autonomic loop, so it is out of our scope.

What dierentiates Engage from SmartFrog is the nature of the life-cycles (customseq single-path instead of custom-seq multi-path) and how dependencies are handled: some dependencies are declared between modules themselves, resulting in modulebased parallelism, and some dependencies are declared using the three special states of the life-cycles of the modules in the same branch as the module considered, resulting in a restricted form of inter-module parallelism. Note that using the latter reduces the separation of concerns as the module developers needs to think about how the modules will be composed with other modules when declaring their life-cycles.

Finally, the semantics of Engage has been formally dened.

Aeolus Aeolus [START_REF] Di Cosmo | Aeolus: a component model for the Cloud[END_REF] is another framework with similar concepts to SmartFrog's. The life-cycle of each module is modeled by a state-machine inside a control component.

Each state of the life-cycle corresponds to an action being performed by the module.

One major dierence with Engage though is that dependencies are represented by ports of the component, which are themselves associated with states of the life-cycle. This allows to declare in the model the part of the module's life-cycle in which the dependency is used. Recongurations are then performed using a DSL allowing to add and remove components, and change the current state of the component following a transition declared by the module developer.

Each control component models the life-cycle of a software module. The reconguration DSL allows to add and remove modules, and also to change the current state of existing modules. This allows in particular to perform custom module operations. The life-cycle handling is custom-seq multi-path. Because ports represent dependencies between parts of the life-cycles, Aeolus features inter-module parallelism.

However, the scheduler which applies reconguration actions using the DSL needs to take advantage of this. Similarly to SmartFrog, the separation of concerns is pretty high given that the reconguration developers are provided with a state-machine for each module and their dependencies. However, this state-machine still exposes some internals of the module. Aeolus has been fully dened in a formal way.

Analysis

We have presented two main types of contributions in the literature. First, in Section 3.3 we have introduced conguration management (CM) tools, which we can split into two groups: imperative CM tools and declarative CM tools. Second, in Section 3.4, we studied what we designate by control component models, i.e., models which provide functional modules with life-cycle managers which we call control components. In this section, we discuss the state of the art as a whole to try and identify trends and weaknesses. Table 3.1 summarizes the analysis presented before according to the criteria given in Section 3.2.

The special case of imperative SCM tools

Imperative software conguration management tools stand out because the life-cycles they dene are composed of sequences of operations to apply, either on one or multiple hosts. They simply execute sequences of reconguration commands, called playbooks in the case of Ansible and recipes in the case of Chef. Because these commands execute concrete actions on real machines, separation of concerns is low as reconguration developers need to check that the code applying to dierent modules will not interfere with each other, and system administrators need to ensure that the code will actually perform the intended actions. These tools can be considered to be at a lower level compared to other solutions, meaning that they could be used by these other solutions as a mean to execute commands on actual machines.

Finally, among the selected solutions, we can notice the uniqueness of Ansible in terms of parallelism, because it is the only one to have inter-host same-action

Correlations between analysis criteria

We can observe connections between the dierent analysis criteria presented in Section 3.2 in Table 3.1. In the following, we exclude imperative SCM tools which have been covered previously.

Life-cycles and separation of concerns We notice that there is a strong correlation between how life-cycles are handled and separation of concerns. All the solutions with very high separation of concerns feature on/o or xed-n life-cycles. This can be explained by the simplicity introduced by a xed-n life-cycle for the software modules: they all have the same interface. Moreover, when the life-cycle is not on/o, we observe that the parallelism is either module-based or fail-and-retry, meaning that it is actually treated as on/o when it comes to dependencies between modules. Because the dependencies clearly refer to when the module is on, the startup procedure can be hidden to the reconguration developer, resulting in a high separation of concerns.

Life-cycles and parallelism Because inter-module parallelism requires by denition for software modules to have at least 3-state life-cycles, all the solutions with inter-module parallelism need to have xed-n or custom-seq life-cycle models. In practice, they all have custom-seq multi-path life-cycles. Note that the more precise and custom the life-cycles can be for each module, the more precise the dependencies can be between their life-cycles, and therefore the more opportunities for parallelism there are. We can notice however that not all that have these kinds of life-cycle models feature inter-module parallelism, such as Deployware for instance. We can also notice that none of the solutions presented, and to the best of our knowledge no solution in the literature, features intra-module parallelism, which requires custom-par life-cycles (in which reconguration actions of a single module can be executed in parallel).

Problem: how to reconcile separation of concerns and performance?

We can observe that in the literature, separation of concerns and performance seem to be incompatible. Declarative CM tools in general seem to favor separation of concerns by providing simple and mostly unied interfaces for software modules, which abstracts away their complexity and the one of their life-cycles. This results in more separation of concerns and less things to worry about to execute recongurations.

This simplicity is important for declarative CM tools, which in addition to the execution of reconguration also handle the monitoring, analysis and planning phases of the autonomic loop to oer features such as auto-scaling, auto-recovery or rolling updates.

In the case of control component models, multiple compromises have been made.

While Jade, Tune and Deployware only provide module-based parallelism, SmartFrog, Engage and Aeolus provide dierent degrees of inter-module parallelism, introducing better performance at the cost of more complex module interfaces and lower separation of concerns.

In this thesis, we address the problem of providing a framework for the execution of reconguration which shows good separation of concerns between the dierent actors while improving performance over the state of the art by providing parallelism of reconguration tasks inside modules, in addition to between modules. Formal specications and semantics are also targeted in this thesis.

Conclusion

In this chapter, we have rst set the scope of the thesis and excluded some works addressing other aspects of reconguration. We then have presented a set of analysis criteria, and used them to analyze the related work.

We have seen that a high level of parallelism expressivity in reconguration is never associated with a high level of separation of concerns. This is due to the complexity introduced by custom per-module life-cycles. Additionally, we have noticed that none of the solutions achieve the maximum level of parallelism expressivity that we have identied, when reconguration actions can be performed in parallel both between and inside modules, using ne-grained life-cycle dependencies to perform actions in parallel even if one module depends from the other. In conclusion, we have observed the lack of a general solution for reconguration which provides both this high level of parallelism expressivity, and a high level of separation of concerns between module developers, reconguration developers and infrastructure administrators.

Chapter 4

The Madeus Deployment Model The third objective of is to have a high separation of concerns between the module developer and the deployment process developers. Finally, Madeus' concepts and semantics are dened formally.

In the rst section we give an overview of Madeus based on a simple example.

Then, in the second section we dene all the concepts of Madeus formally. Finally, in the third section we present a performance model for Madeus.

Work context

Component

In Madeus, each module is managed by a component, with its deployment life-cycle encoded by a Petri-net like structure called internal-net. An internal-net is composed of places, representing milestones in the deployment process, and transitions representing actions that must be executed to go from one place to another. The component's places which have no incoming transitions are called initial places. They correspond to the state in which the module is not deployed nor being so. It is important to realize that while in many component models components contain operational code, i.e., address the functional aspects of the modules they represent, in Madeus the components only contain code that controls their life-cycles. Madeus is therefore agnostic to the technology used to implement the modules themselves, as long as they provide an API to interact with their life-cycle.

Let us analyze the example pictured in Figure 4.1. There are two components representing respectively a database (db) and a server (server). The db component has three places (undeployed, allocated and running) and two transitions (allocate and run). The server component has ve places (uninstalled, installed, configured, running and providing) and ve transitions (ins, conf1, conf2, run and wait). Notice that transition conf1 on the one hand, and transitions ins and conf2 on the other hand can be executed in parallel. In this example, the transitions may be associated with scripts performing deployment tasks of the database and the server. For example, in the db component, the allocate transition may be associated with a script allocating a virtual machine to host the database (and boot it with a disk image with the database already installed), while run would start the service. In the server component, ins would be associated with a script installing packages such as Apache, conf1 with a script performing conguration steps which do not need for the packages to be installed, conf2 with a script nishing the conguration, etc.

In Madeus, dependencies to other deployment life-cycles are represented by coordination ports (in the following: ports), which dier from the usual notion of port in component models by the fact that they are used for coordination instead of data transfers or remote calls. Use ports are associated with transitions and correspond to a requirement that must be fullled by another Madeus component before these transitions can execute. Usually, this requirement corresponds to the other component being able to provide some piece of information (e.g., an IP address) or to some kind of service being served by the software module it represents (e.g., a MySQL server accepting connections). Provide ports correspond to a signal that a component has reached a given milestone in its deployment process, and is therefore capable of fullling some kind of requirements, such as providing an IP address or ensuring that some service is running. Coming back to the example of Figure 4.1, component db has two provide ports ip and service, respectively associated with places allocated and running. Component server has two use ports database_ip and database, respectively associated with transitions conf2 and wait, and one provide port service associated with place providing.

Assembly

A Madeus assembly is a set of components for which each provide port may be connected to one or more use ports. A connection between a use port and a provide port associates the dependency (represented by the use port) to the signal ensuring it has been fullled (represented by the provide port). An assembly eectively models the deployment of distributed software.

In Figure 4.1, components server and db are connected to form an assembly. Two couples of ports are connected, indicating that transition conf2 in component server may only be executed once place allocated has been reached in component db. Similarly, transition wait in component server may only be executed once place running has been reached in component db.

Notice that Madeus ports are represented using arrows and not circles (which is the UML standard to represent use/provide ports) because active provide ports in Madeus can never be deactivated, and merely correspond to a signal.

Execution

A Madeus assembly can be executed: this corresponds to performing the deployment process of some distributed software, i.e., coordinating all individual deployment tasks (represented by the components' transitions) to make it operational. At each step of the execution, the current progress in the deployment process of a Madeus component is encoded by a set of tokens. At each moment, a component has one or more tokens (multiple tokens correspond to parallel actions within a component). These tokens are located on specic objects of the internal-net. For this purpose, we consider the transitions to be complex objects, composed of three parts: beginning, in progress and end.

A token may be on: a place, which means that the corresponding milestone has been reached and the next deployment actions may be executed; the beginning part of a transition, which means that the action encoded by the transition is about to start its execution; the in progress part of a transition, which means that the action is being executed; the end part of a transition, which means that the action has nished its execution. Each red circle is a token, and the number inside it corresponds to which snapshot it belongs to. Two adjacent circles with two numbers separated with a dash represent a token corresponding to multiple snapshots (from the rst number to the second). Graphically, the tokens represented at the border of a place and a transition are either on the beginning part of the transition (if the place is the origin) or on the end part (of the place is the destination). The tokens represented in the middle of a transition are on the in progress part of that transition.

Intuitively, these tokens evolve in a similar way to those of Petri nets, but taking into account the specicities of Madeus. The complete operational semantics of Madeus is given in Section 4.2, however we now present it informally through the example presented in Figure 4.2. This gure shows a series of 10 snapshots of a possible execution of the deployment process of the assembly presented in Figure 4.1: 0. At the start, one token is put in the initial place of each component.

1. When a token is in a place, it can be removed in favor of one token at the beginning of each transition going out of that place. In this snapshot, tokens have been removed from the undeployed and uninstalled places and some have been put at the beginning of their outgoing transitions.

2. When a token is at the start of a transition, it may be moved to the in progress part of the transition (starting the corresponding deployment action) if nothing prevents the transitions from executing. In this snapshot, transitions allocate, ins and conf1 have started their executions.

3. When the action corresponding to a transition has nished its execution, the token on the in progress part of the transition may be moved to its end. In this snapshot, transition ins was nished and its corresponding token was moved.

4. When there is a token at the end of all the incoming transitions of a place, they may be removed, in which case a token is put on the place. This corresponds to a synchronization point for parallel actions. In this snapshot, there was only one incoming transition for place installed which had a token at its end, so it was moved to the place. [START_REF] Hu | Survey on fog computing[END_REF]. In this snapshot, component server has two tokens: one at the beginning of transition conf2 and one at the end of transition conf1. None of them can be moved at the moment. The rst one cannot be moved because transition conf2 is bound to use port database_ip, which is connected to component db's ip port which is itself bound to the allocated place. This means that as long as this place has not been reached by a token, transition conf2 cannot be executed. The second cannot be moved because transition conf2 should have a token at its end for both tokens to be removed and one put in place configured.

6. In this snapshot, place allocated in component db has been reached, which makes transition conf2 in component server legal to execute.

7. In this snapshot, both transitions conf1 and conf2 have nished their execution and have a token at their end.

8. Because both incoming transitions to place configured had a token at their end, they were removed and one was put in the place.

9. This snapshot represents the end of the deployment process: no further actions can be executed because only places with no outgoing transitions have a token.

Formal Model

In the previous section, Madeus was presented informally with the help of an example.

In this section, we dene all the concepts used by Madeus formally and present the operational semantics used to perform a Madeus deployment. These concepts as well as the notations we use to refer to them in this chapter are gathered in Table 4.1 for convenience.

Component

A Madeus control component can be seen as an internal-net (comprised of places and transitions) and an interface (comprised of use and provide coordination ports).

The ports are bound to places and transitions, connecting these two parts. Formally, a component is dened as a couple (N, I) where N = (Π, Θ) is an internal-net and I = (P u , P p , u , p) is the interface and its bindings.

Internal-net

We consider a set A of deployment actions that users can dene using a given implementation of Madeus. This set is common to all components and may correspond, for example, to the set of functions that can be written in a given programming language.

We dene the internal-net N as a directed acyclic graph (DAG) (Π, Θ), in which each vertex is called a place (Π is a set of places) and each arc is tagged with a deployment action and is called a transition (Θ ⊆ Π × A × Π is a set of transitions). The set of incoming (respectively outgoing) transitions of a given place π ∈ Π are denoted Θ in (π) and Θ out (π). Formally:

Θ in (π) = {(π source , α, π dest) ∈ Θ | π = π dest } Θ out (π) = {(π source , α, π dest) ∈ Θ | π = π source }
A place π such that Θ in (π) = ∅ is said to be initial, while if Θ out (π) = ∅, the place is called nal.

Interface and bindings

The interface of a component is comprised of a set P u of use ports and a set P p of provide ports. Use ports may be bound to one or more transitions, indicating that these transitions have a dependency to another module's life-cycle. The binding relation u ⊆ P u × Θ is such that p u u θ if and only if p u is bound to θ.

Assembly

A Madeus assembly is a tuple (C, L) comprised of a set C of components and a set L of connections between ports. We remind that each element of C is a tuple ((Π, Θ) , (P u , P p , u , p)). We denote Π c the set of places of component c ∈ C, Θ c its set of transitions, etc. We dene:

Π * = {Π c | c ∈ C} Θ * = {Θ c | c ∈ C} . . .
A connection is comprised of a use port of a component and a provide port of another component. We hence have L ⊆ P u * × P p * . In particular, a provide port can be connected to one or multiple use ports, and a use port can be connected to one or multiple provide ports.

A Madeus assembly is well-formed if all the use ports in its components are connected to provide ports.

Operational semantics

Given a Madeus assembly A, we now dene how the deployment procedure is performed. First, we introduce the notion of conguration of an assembly which corresponds to the state of the deployment it represents. Then, we describe the execution of the deployment as a sequence of congurations, representing the evolution of the state of the deployment over time which obeys a set of semantic rules.

Conguration

At each moment in the execution of a Madeus deployment assembly (C, L), the conguration of this assembly is dened by a set of tokens, the set of reached places and which actions are currently executing. A token can be on a place or on the beginning, in progress or end parts of a transition. Formally, a conguration is a tuple M, R, E

where:

M ⊆ Π * ∪(Θ * × {beg, inp, end}) is the marking, i.e., the set of elements holding a token;

R ⊆ Π * is the set of places that have been reached;

E ⊆ A is the set of actions that are being executed.

Note that R can be deduced from M, but we make it part of the conguration for the sake of simplicity.

The initial conguration of an assembly is given by the tuple I, I, ∅ , where I = c∈C {π ∈ Π c | Θ in (π) = ∅} (i.e., the set of initial places).

Execution

The execution of a Madeus assembly corresponds to performing the underlying deployment procedure. It is described as a nite sequence of congurations:

I, I, ∅ M 1 , R 1 , E 1 M 2 , R 2 , E 2 . . . M n , R n ,
M , R , E such that M n , R n , E n M , R , E .

Semantic rules

Five rules dene the binary relation , i.e., state when the direct evolution from one conguration to another is legal. Each rules has a set of hypotheses which, if they hold, imply that the conclusion holds. The conclusion is always that one conguration can directly evolve to another. In the following, we describe the conclusion by stating the changes that are applied to the rst conguration to obtain the second. Reaching place The rule Reach π describes a token reaching a place π. It requires that all the incoming transitions of π have a token at their end. In the conclusion, those tokens are removed and one token is placed on π, as illustrated in Figure 4.3.

The place is also added to the set R of reached places.

Leaving place The rule Leave π describes how a token can leave a place π. There are no other requirements than π holding a token. The token is removed from π and a token added on the beginning of each of π's outgoing transitions. This rule is illustrated in Figure 4.4.

Firing transition

The rule Fire θ corresponds to the ring of a transition θ = (π source , α, π dest). The beginning of the transition must hold a token, and any use port bound to θ must be provided. A use port is provided if it is connected to at least one active provide port of another component. A provide port is active if at least one place bound to that port has been reached. If this is the case, then the token is moved from the beginning of the transition to its in progress part, and the action α starts its execution, as illustrated in Figure 4.5.

Terminating action The rule Termin α corresponds to the termination of an action α. It requires that α be in the set E of executing actions. In practice, this rule is used by an implementation of Madeus when the action has actually nished executing.

Ending transition The rule End θ formally describes the end of a transition θ = (π source , α, π dest). It requires that the in progress part of θ holds a token and that the action α has terminated. If that is the case, the token is moved from the in progress part of θ to its end.

Discussion

An execution of a Madeus assembly consists in a sequence of congurations. One can also see this as applying semantic rules to a starting conguration to make it evolve, until no rule can be applied, meaning that the deployment has nished. These rules are applied sequentially. One may therefore wonder whether or not this impacts the parallel execution of deployment actions. It is important to distinguish the execution of the deployment actions from the application of the semantic rules. The deployment actions associated with each transition are being executed while a token is on the in progress part of the transitions. Even though the application of the semantic rules is sequential, it is possible to have tokens on the in progress part of multiple transitions.

Moreover, the execution of a semantic rule is considered to be atomic, or at least extremely fast compared to the execution of deployment actions. The sequential nature of the Madeus semantics does not limit the parallelism of deployment actions.

Performance Model

In the previous section we have presented Madeus in a formal way. In this section, we provide a model to express the total duration of a Madeus deployment as a function of the duration of the transitions of each component of an assembly. The duration of a transition is dened as the time it takes for its associated deployment action to complete. The formula that we obtain can be used for two purposes. First, to study how Madeus handles parallelism during deployment. Second, provided we can obtain a reasonably precise estimation (respectively a lower/upper bound) of the duration of the transitions, we can obtain an estimation (respectively a lower/upper bound) of the full Madeus deployment procedure. These estimations or bounds can be useful for a system administrator or, in the case of an automated deployment, for the algorithm that decides if the deployment time is reasonable before executing the process, in particular for critical systems and services.

π ∈ Π * Θ in (π) = ∅ T ⊆ M Reach π M, R, E (M \ T) ∪ {π} , R ∪ {π} , E where T = {(θ, end) | θ ∈ Θ in (π)} π ∈ Π * Θ out (π) = ∅ π ∈ M Leave π M, R, E (M \ {π}) ∪ {(θ, beg) | θ ∈ Θ out (π)} , R, E θ ∈ Θ * (θ, beg) ∈ M ∀p u : p u u * θ =⇒ provided(p u) Fire θ M, R, E (M \ {(θ, beg)}) ∪ {(θ, inp)} , R, E ∪ {α} where provided(p u) ≡ ∃p p , (p u , p p) ∈ L : (∀Π b , p p p * π b : π b ∈ R) α ∈ E Termin α M, R, E M, R, E \ {α} θ = (π source , α, π dest) ∈ Θ * (θ, inp) ∈ M α ∈ E End θ M, R, E (M \ {(θ, inp)}) ∪ {(θ, end)} , R, E

Dependency graph

Our goal is to obtain a formula expressing the duration of the deployment process as a function of the duration of the deployment actions as variables. To that end, we use the formal semantics of Madeus to encode the execution ow of a Madeus assembly into a dependency graph. This problem can be divided in two: rst, encoding the execution ow of each component within the assembly in their respective dependency graph, and second, connect them together to form the dependency graph of the whole assembly.

The general idea to obtain a dependency graph for a Madeus assembly is to generate a dependency graph for each component of the assembly in which the tasks comprise the execution of the transitions (in which case their weight is equal to the duration of the given transition) and other dependencies (in which case their weight is equal to 0). Then, we merge them together to form the dependency graph of the whole assembly, adding some vertices and transitions to encode the dependencies between the components. Once we have the dependency graph for the whole assembly, we can dene the time it takes for the deployment process to complete as the length of the critical path of this graph.

Assumptions

The performance model given here is valid only for assemblies such that any set of places bound to a provide port contains exactly one place. This is because if a provide port is bound to a set containing multiple places, the requirement imposed by this binding is satised as soon as one of the places is reached. The total duration then depends on the earliest time at which one of these places is reached, which cannot be encoded in a dependency graph. In practice this is not a severe restriction, as ports requirements very rarely include disjunctions. However, we still consider the possibility of having multiple sets (of one place) bound to a port. In this case, the port is enabled when all the places have been reached, which can be encoded in the dependency graph.

Dependency graph of a component

Given a component c = ((Π, Θ) , (P u , P p , u , p)), we dene the dependency graph (V c , E c) corresponding to its execution ow. We dene the set of vertices V c and the set of weighted arcs E c in the following.

Vertices

In the dependency graph, vertices represent events related to places, transitions or ports. We dene V c as the union of several sets of vertices dened next, plus one source and one sink vertices.

V c = V Π ∪ V Θ ∪ V Pu ∪ V Pp ∪ v source c , v sink c
Places For each place π ∈ Π, we introduce one vertex that represents the event of the place being reached.

V Π = π∈Π v reach π
Transitions For each transition, we introduce one vertex that represents its ring.

V Θ = θ∈Θ v re θ
Use ports For each use port we introduce one vertex representing the instant when it starts being provided.

V Pu = pu∈Pu v provided pu Provide ports For each provide port we introduce one vertex representing the instant when it starts providing.

V Pp = pp∈Pp v providing pp 4.3.3.

Arcs

In the dependency graph, arcs represent the tasks that Madeus must perform. In practice, the arcs corresponding to the execution of deployment actions are weighted with the corresponding duration, while the other arcs have a weight of 0 and merely represent dependencies between the application of the rules of the semantics. For example, a token may enter a place only after all its incoming transitions have nished executing, i.e., have a token at their end. We dene E c as the union of several sets of arcs dened next.

E c = E Θ ∪ E Pu ∪ E Pp ∪ E I ∪ E F
Transitions For each transition θ = (π source , α, π dest), we introduce two arcs. The rst, from v reach πsource to v re θ , represents the fact that θ may only be red after π source has been reached. Its weight is 0. The second, from v re θ to v reach π dest represents the fact that place π dest may be reached only after the action α has nished executing. Supposing this requires a time d α , the weight of the arc is set to d α . E Θ is therefore dened as follows. Use ports For each use port p u and each transition θ such that p u u θ (i.e., p u is bound to θ), we introduce one arc from v provided pu to v re θ with weight 0. This represents the fact that θ may only start once p u is provided. E Pu is therefore dened as follows.

E Θ = θ=(πsource,α,π dest)∈Θ v reach πsource , 0, v re θ , v re θ , d α , v reach π dest
E Pu = (pu,θ)∈ u v provided pu , 0, v re θ Figure 4
.9 illustrates how a section of Madeus internal-net with two use ports u1 and u2 (associated to transition t1 and transitions t1 and t2 respectively) is transformed to a part (i.e., sub-graph) of dependency graph.

Provide ports For each provide port p p and each place π such that p p p π (i.e., p p is bound to the place π), we introduce one arc from v reach 0. This represents the fact that p p starts providing once all the places bound to it have been reached. E Pp is therefore dened as follows.

E Pp = (pp,π)∈ p v reach π , 0, v providing pp

Dependency graph of an assembly

We have seen in the previous section how to generate a dependency graph for a given component. In this subsection, we describe how to combine them to generate a dependency graph (V, E) for a whole assembly.

Recall that an assembly is a tuple A = (C, L). In the following, we consider that C = {c 1 , c 2 , . . . c n }.

Vertices

Given the n dependency graphs (V c i , E c i), we add a global source vertex v SOURCE and a global sink vertex v SINK .

V S = v SOURCE , v SINK This gives us the set V of vertices for the dependency graph of the whole assembly.

V = V S ∪ n i=1 V c i

Arcs

We then add arcs between the global source vertex and the source vertices of the dependency graphs of the components. Similarly, we add arcs between their sink vertices and the global sink vertex. These arcs all have weight 0.

E S = n i=1 v SOURCE , 0, v source c i , v sink c i , 0, v SINK
Finally, for each connection (p u , p p) in L, we add one arc from the vertex representing the fact that the p p provide port starts providing to the vertex representing the fact that the p u use port starts being provided.

E P = (pu,pp)∈L v providing pp , 0, v provided pu
This gives us the set E of arcs for the dependency graph of the whole assembly.

E = E S ∪ E P ∪ n i=1 E c i

Duration of the deployment process

We have seen in the previous subsection how to obtain the dependency graph corresponding to a Madeus assembly. We now detail how to express the total duration of the deployment process as a function of the duration of the individual deployment actions.

Because the dependency graph is weighted with the duration of the actions, intuitively the duration of the deployment process corresponds to the length of one of its critical paths, i.e., one of its longest paths from vertex v SOURCE to vertex v SINK . If the edges are weighted with values, then the duration of the deployment process can be computed in polynomial time (relative to the size of the graph), e.g., by nding a topological order, because (V, E) is acyclic. Note that the size of the graph is linear to the sum of numbers of places, transitions, ports and connections in the assembly.

However, if the edges are weighted with variables, we can express the duration of the deployment process as a function of these variables in the following way. We dene LCP (v) to be the length of a critical path from vertex v SOURCE to vertex v. We can express LCP recursively in the following way: The duration of the deployment process is equal to LCP (v SINK), which is welldened because (V, E) is acyclic and v SOURCE is an ancestor of all the other vertices.

LCP (v) = 0 if v = v SOURCE max (vparent,w,v)∈E (w + LCP (v parent)) otherwise v SINK v sink
Using the dependency graph of Figure 4.11, we obtain the following formula for the server-database assembly shown in Figure 4

Discussion

Madeus is a deployment model conceived from the ground up to have as much parallelism expressivity as possible. Each module of a distributed application has its life-cycle modeled by the internal-net of a Madeus component. This internal-net is a Petri-net-like structure which allows to express parallelism of deployment actions within the module's own life-cycle. Using the classication criteria introduced in Chapter 3, Madeus has the custom-par multi-path level of life-cycle modeling.

The coordination between deployment actions of distinct modules is made thanks to Madeus assemblies. Connections between the ports of components are used to model dependencies between deployment actions of these distinct modules. Because the ports of the components are bound to precise parts of the life-cycle, these dependencies are extremely ne-grained. This, in addition to the possibility to express parallelism within modules, results in a state-based intra-module level of parallelism.

The performance model of Madeus allows to get a formula expressing the total deployment time as a function of the duration of the individual deployment actions.

This allows to precisely dene the gain introduced by this high level of parallelism.

In terms of separation of concerns, module developers are intended to develop Madeus components, reconguration developers are intended to assemble them as an assembly, and nally system administrators are intended to execute these assemblies.

While the precise evaluation of the separation of concerns is discussed in Chapter 6, we argue that the distinction between the internal-net and the interface (made of ports) of the components has important benets in this regard.

Madeus is modeled formally and in particular has a formally dened operational semantics. This opens the door to the use of formal methods to provide some guarantees, such as what was done in [START_REF] Coullon | Integrated model-checking for the design of safe and ecient distributed software commissioning[END_REF].

However, Madeus comes with some limitations. First, it is strictly restricted to deployment and does not handle general reconguration. This will be addressed by our second contribution introduced in Chapter 5. Madeus also assumes a single coherent representation of the assembly, which entails a centralized execution.

Conclusion

In this chapter has been presented Madeus, a formal model for the deployment of distributed software with a high degree of parallelism. The deployment life-cycle of each module as well as its external dependencies are described in a component. The lifecycle is dened as a parallel state-machine called internal-net, and the dependencies are dened as a set of use and provide ports. Madeus components can be connected together by their ports to form an assembly, describing the complete deployment process for a (possibly complex) distributed system.

The assembly can be executed to perform the associated deployment process.

The complete operational semantics of Madeus has been introduced. This semantics leads to a state-based intra-module level or parallelism (i.e., parallel actions within the deployment of a module as well as across modules).

Finally, a performance model has been presented to express the total deployment time of a Madeus assembly as a function of the duration of each individual deployment action. In the experiments presented in Chapter 6, this will be used to predict thanks to historical data, which can be useful to system administrators or automated systems to make better decisions.

Chapter 5

The Concerto Reconguration Model The rst objective of Concerto is to allow module developers to dene detailed life-cycles for the modules, not only during their deployment but also during the rest of their lifespans. The second objective is to let reconguration developers dene ne-grained dependencies between the reconguration actions of distinct modules.

The third objective is to show a high level of separation of concerns between module developers, reconguration developers and system administrators. Finally, Concerto's concepts and semantics are dened formally.

In the rst section we give an overview of Concerto based on a simple example.

In the second section we dene all the concepts and the semantics of Concerto in a formal way. In the third section we present a performance model for Concerto. Then, in the fourth section we present an addition to Concerto called behavioral interfaces, which aim at improving separation of concerns for users. Finally, in the fth section we discuss the benets and limits of Concerto.

Overview

Concerto extends the Madeus deployment model to support reconguration. Concerto and Madeus hence share many concepts like internal-nets, places or transitions, sometimes altered to support reconguration. In particular, Concerto also uses the control component approach. When dierences exist, these concepts are explained again for Concerto, while the main changes from Madeus to Concerto are outlined at the end of this section (in Sub-section 5.1.4).

Component type

In Concerto, each kind of module is represented by a component type. Each component type has its life-cycle encoded by an internal-net and its dependencies encoded by ports, similarly to Madeus components.

Internal-net

Concerto's internal-nets are similar to Madeus', in that they are composed of places and transitions. Additionally, each transition is associated to a behavior. Behaviors intuitively correspond to a set of actions (i.e., transitions) to go from one state of the life-cycle of the module to another (like deploy, suspend, update, etc.). One transition is associated to a single behavior, but a behavior may be associated to any number of transitions. Transitions with multiple endings, called switches, exist to model multiple possible evolutions during the life-cycle of a components. One place in the internalnet is designated as initial place and corresponds to the starting conguration of the module. Unlike Madeus, this place must be explicitly stated by the module developer. (uninstalled, installed, nothing, read-write, leaving1, read and leaving2) and eight transitions. The transitions ins, conf1, conf2 and rw are associated with the behavior install, the transitions ro1 and ro2 are associated with the behavior read-only, and the transitions nt1 and nt2 are associated with the behavior no-service. Notice that transition conf1 on the one hand, and transitions ins and conf2 on the other hand can be executed in parallel as in Madeus. The Db component type has a switch (transition with multiple endings) sw, going from place configured to either place sw1 or place sw2.

Ports

In Concerto, and similarly to Madeus, dependencies to other life-cycles are represented by ports. While provide ports in Madeus could only be activated, in Concerto they can also be deactivated. For this reason, we need to specify which part of the life-cycle corresponds to when the service related to the port is used or provided (depending on the type of port). A group is a part of internal-net and corresponds to a part of the module's life-cycle.

In Concerto, use and provide ports are bound to a group. A use port of a component c hence represents a requirement that must be fullled by another Concerto component so that c can be in the part of its life-cycle designated by the group it is bound to. A provide port of c represents the fact that c fullls some requirements while it is in the part of its life-cycle designated by the group it is bound to.

For example, in Figure 5.1, component type Proxy has two use ports (sql_write and sql_read) and one provide port (sql). In particular, it requires some components to provide the sql_write service to be in places read-write or leaving1 (or in the transition between them). It also provides the sql service while it is in places read-write, leaving1, read, leaving2 or nothing, or any transition between them.

Notice that ports are represented with discs for provide ports and semi-circles for use ports in Concerto, instead of arrows and inverse arrows like in Madeus. This is to signify that these ports may be deactivated unlike in Madeus.

Assembly

A Concerto assembly is made of a set of component instances and a set of connections between the ports of the instances.

Component instance

A component instance (referred in the following as just instance) is made of a component type and a state for this component type. Intuitively, an instance corresponds to the life-cycle of an actual piece of software, while a component type is merely a blueprint. This entails that multiple instances can have the same component type but dierent states. The state of an instance is determined by a marking (a set of tokens located on places, transitions or transition endings of the component type) and a behavior queue (a list of behaviors of the component type). Intuitively, the marking designates in which part of its life-cycle a piece of software is, while the behavior queue designates the set of transitions that are to be executed by the instance (those associated with the behaviors in the queue). The rst behavior in the queue is the active behavior, which designates which transitions in the internal-net of the component type can be executed. transitions conf1 and conf2 and has one behavior in its queue: install. Because it is its active behavior, the green transitions can be executed. Instance proxy has one token on transition nt2. It has two behaviors in its queue: no-service and install. Because no-service is its active behavior, only the red transitions can be executed.

Connections

Concerto's connections are similar to Madeus': a connection may exist between any use port of a component instance and any provide port of another instance. They represent a dependency between these two instances.

Execution semantics

A Concerto assembly can evolve on its own by following a set of rules governing the location of the tokens and the evolution of the behavior queue. These tokens evolve in a similar way to those of Madeus. However, Concerto features more complex interaction between the components through their ports. The complete operational semantics of Concerto is given in Section 5.2, however we present it informally through the example presented in Figure 5.3 (Table 5.1 denes some notions used in the following example). In the following, each step corresponds to one of the snapshots presented in 1. When a token is in a place, it can be removed and one put on each outgoing transition of the place associated with the current behavior. In this snapshot, tokens have been removed from the two uninstalled places and put in the allocate, ins and conf1 transitions which are all associated to the active behavior (install) of their respective component instances.

2. When the action corresponding to a transition has nished its execution, the token may be moved from the transition to its ending (or one of its endings in the case of a switch). In this snapshot, the transition allocate has nished its execution and the token it had was moved to its only transition ending.

3. When all the transition endings coming to a given place and associated to a given behavior hold a token, i.e., when the associated reconguration actions have nished their execution, these tokens can be removed and one token assigned to the place. In this snapshot, the token was removed from the transition ending between transition allocate and place allocated of instance db and put in this last place.

4. Skipping a few steps, in this snapshot transition conf of instance db is holding a token. In instance proxy, transitions inf and conf2 have nished executing. However, place nothing cannot yet have a token because transition conf1 has not nished executing.

5. In this snapshot, transition conf1 has nished its execution.

6. In this snapshot, because both conf1 and conf2 of instance proxy have tokens in their transition endings, these can be removed and one token put on place nothing.

7. Skipping a few steps, transition rw of instance proxy has nished its execution but it is not possible to put a token in place read-write because it is in a two-place group bound to use port sql_write and in a four-place group bound to use port sql_read, meaning that these two ports must be provided before a token can be put on one of its places. In this case, provide ports sql_write and sql_read of instance db must become active.

8. Skipping a few steps, transition sw of instance db is holding a token. Notice that sw is a particular type of transition with multiple endings called a switch.

Switches are used to decide at run-time which path in it life-cycle a component instance should take. The decision is made by code provided by the module developer.

9. In this snapshot, the token was moved from sw to one of its endings, the one going to place sw1. Only one ending receives a token, which in practice is decided by the code written by the module developer.

10. Skipping a few steps, in this snapshot the transition ending of transition run is holding a token. In this case, both transition endings going to place running do not have to hold a token to put a token in the place. This is because this is not possible due to switch sw. This is symbolized by the notion of station explained in details later in this chapter, and graphically represented by a small black circle to which the transition ending is connected.

11. In this snapshot, the token was moved from the transition ending of transiting run to place running. Note that because running is in the single-place group connected to provide port sql_write and the two-place group connected to provide port sql_read, both ports are now active. Also, because transitions of the install behavior can no longer be triggered in instance db (place running is the only element holding a token and has no outgoing transitions associated to that behavior), install is removed from the queue of behaviors which is now empty.

12. In this snapshot, because both use ports of instance proxy are provided, the token was moved from the transition ending of transition rw to place read-write.

Because no transition associated to behavior install can be executed, it is removed from the behavior queue of instance proxy which is now empty.

13. So far, the execution of a Concerto assembly has been similar to the one of a Madeus assembly because only deployment was performed. However, the fact that each component has multiple possible behaviors makes it so that Concerto models the whole life-cycle of the software modules, possibly including their deployment. Behaviors can be added to the behavior queue of component instances by using a dedicated language, which is presented after this example.

For now, we suppose that behaviors backup, change-config and install on the one hand, and read-only, no-service and install on the other hand were added respectively to instances db and proxy. Behaviors backup and read-only (in blue) are now the active behaviors. In this situation, transition bak of instance db cannot start because this would mean removing the token from place running, which is the only place in the group bound to provide port sql_write, which is currently being used.

14. Skipping a few steps, because the active behavior of instance proxy is read-only, the token on place read-write has moved to transition ro2. Notice that now the group bound to use port sql_write does not contain tokens.

15. Because provide port sql_write is not used anymore, the token from place running of instance db can be moved to transition bak.

This example illustrates the semantics of Concerto with a given static assembly.

However, Concerto's assemblies are dynamic and can be changed with a reconguration program.

Reconguration Program

Concerto comes with a language with six types of instructions which can be used wait(id) : pauses the execution of the reconguration program until the component instance with identier id has no more behaviors in its behavior queue.

Notice that most of the instructions are not blocking (only the wait and dcon, in some scenarios, may be blocking). For example, pushB simply adds a behavior to the queue of a component, which is not the same as actively executing this behavior. It follows that even though the reconguration program is a sequence of instructions, two component instances can execute their behaviors in parallel. Behaviors In Madeus, the components' internal-nets are basically acyclic directed graphs of deployment tasks with a starting point: there is only one direction in which the execution can go. In Concerto, the internal-nets model the whole life-cycle of the modules, possibly including deployment. The transitions of each component must be dierentiated depending on their objective (usually, the deployment of a module is one possible objective). This is represented by behaviors in Concerto, each behavior corresponding to one objective. Deactivation of ports Usually, ports represent services or information that the software module modeled by the component is able to provide. While deployment usually only involves providing additional services or information as the process goes on (e.g., IP address, conguration information, API, etc.), reconguration often leads to services being suspended or information becoming invalid. Consequently, while Madeus' provide ports are merely signals that some data or services are now available, Concerto's provide ports can both be activated, signaling availability, but also deactivated, signaling unavailability. Concerto introduces the notion of groups to designate the part of the life-cycle of a component during which a provide port is active or a use port is actually used. In terms of semantics, this implies that in addition to waiting for a provide port to be active before entering a part of the life-cycle, the opposite also exists: waiting for a use port to be inactive so that a provide port may be deactivated.

Transitions In Madeus, a transition is going from one place to another, and tokens can be in three locations of the transition, meaning either that the transition is ready to be executed, executing or has nished executing. In Concerto, the introduction of switches lead to a transition going from one place to one or more places (using transition endings). The destination of the transition is decided at run-time when its corresponding action is executed. Note that switches could also be integrated to Madeus without diculties. Also, in Concerto, only two locations exist for tokens: the transition itself, meaning that it is executing, and transitions endings, meaning that it has nished executing. The other location used by Madeus (ready to be executed) is not needed in Concerto because transitions can always start their execution right away, as use ports are connected to groups (instead of transitions themselves in Madeus). This means that if a token has entered the origin place of the transition, then all the use ports it uses are provided.

Formal Model

While the previous section gave an overview of the concepts used in Concerto, this section presents them and in a formal way. Table 5.2 lists all the notations for easy reference. After that, the operational semantics of the model is also detailed.

Component Type

Recall that a component type is a template used to create component instances. It includes an internal-net that describes the life-cycle of the components and ports that corresponds to its external interface, along with its list of behaviors. Formally, a component type is a tuple (Π, π init , ∆, P l, Θ, B, P u , P p , Gr).

Π is the set of places in the internal-net, with a distinguished element π init which is the initial place. To handle synchronization of parallel transitions, places are equipped with stations, each attached to a place. ∆ is the set stations, and the place to which a station δ is attached is denoted P l(δ). B is the set of behaviors of the component type. Θ is the set of transitions in the internal-net, where each element of Θ is a tuple (π, b, D) with π ∈ Π the source place from which the transition originates, b ∈ B is its associated behavior and D ⊆ ∆ the non-empty set of destination stations of the transition. Note that a transition has a single source but one or more destinations, because it can operate as a switch, modeling an action with various possible outcomes.

In order to distinguish these possible outcomes during the execution, we use the notion of transition ending, i.e., a pair comprised of a transition and a station contained in its set of destination stations. P p is the set of provide ports and P u the set of use Θ ⊆ Π × B × (P (∆) \ ∅)

Set of transitions (switch if multiple stations).

P u

Set of use ports.

P p

Set of provide ports.

Gr : (P u ∪ P p) → P (Π)

Function associating a group to each port.

Component instance id

Instance identier.

c

Component type of the instance.

X c

For a notation X: element corresponding to X in the tuple c.

Q ∈ L(B c) FIFO queue of behaviors in B c (L: list). M ⊆ Π c ∪ Θ c ∪ (Θ c × ∆)
Set of active places, transitions and transition endings.

Assembly I Finite set of component instances.

X i

For a notation X: element corresponding to X in the tuple c of instance i ∈ I.

L ⊆ i 1 , i 2 ∈ I i 1 = i 2 P u i 1 × P p i 2
Set of connections between use and provide ports of distinct instances in I. ports of the component type. Finally, Gr : (P u ∪ P p) → P (Π) is the function that associates each port (use or provide) to a group, represented as a set of places (i.e., a subset of Π).

The transitions in a single behavior are not allowed to form a cycle in the internalnet: behaviors are meant to represent a set of operations that will terminate if the necessary use ports are eventually provided.

Notation When we need to distinguish the elements of various component types, we use a superscript notation, e.g., Π c to refer to the places of the type c.

Component Instance

A component instance is dened as a tuple (id, c, Q, M), where id is a unique identier, c is a component type, Q is a sequence of elements of B c , and M a subset of

Π c ∪ Θ c ∪ (Θ c × ∆ c
). This tuple describes the state of the instance at some point in the execution. In particular, Q represents a queue of behaviors to be successively executed, and M is the set of places, transitions and transition endings that hold tokens. Tokens are central in the semantics, where they denote a current state (tokens on places), an ongoing action (tokens on transitions) or the result of an action (tokens on transition endings).

Assembly and Reconguration Program

An assembly is a set of component instances and links between their ports. Formally, it is dened as a pair (I, L), where I is a nite set of component instances, and L is a set of tuples (i 1 , p u , i 2 , p p), where i

1 ∈ I is a component of type c 1 , i 1 ∈ I is a distinct component of type c 2 , p u ∈ P u c 1 and p p ∈ P p c 2 .
A reconguration program is a sequence of reconguration instructions targeting an assembly. For some element e and some sequence of elements S, we denote e • S (respectively S •e) the sequence constructed by adding e at the beginning (respectively the end) of S. The empty sequence is denoted [].

The available instructions are add(id, c) and del(id) (creation and deletion of component), con(id 1 , p u , id 2 , p p) and dcon(id 1 , p u , id 2 , p p) (connection and disconnection), pushB(id, b) (request to execute a behavior), and wait(id) (synchronization), where id must be an instance identier, c a component type, p u a use port, p p a provide port and b a behavior. The semantics of these instruction is detailed below.

Operational Semantics

We now dene the rules that describe how a Concerto assembly evolves and how a reconguration program aects it. To that end, we introduce the notion of conguration. A conguration is a tuple (I, L), R where (I, L) is an assembly and R is a reconguration program. The semantics are given by a relation over congurations.

Statuses of ports

We rst give some denitions related to ports, that will later be needed to dene the synchronization conditions in the semantic rules.

The status of a port is decided by the group (set of places) which it is bound to.

A group is active if at least one of its places holds a token, or if at least one transition (or transition ending) located between two of its places holds a token. Formally, we not used active behavior: dene the elements of a group G to be

elements(G) ≡    G ∈ Π c {(π source , b, D) ∈ Θ | π source ∈ G ∧ ∀δ ∈ D, P l(δ) ∈ G} {((π source , b, D), δ) ∈ Θ × ∆ | δ ∈ D ∧ s ∈ G ∧ ∀δ ∈ D, P l(δ) ∈ G} A use or provide port p in an instance i = (c, id, Q, M) is active if the group bound to it is active. active(i, p) ≡ elements(Gr (p)) ∩ M = ∅
For an active provide port p p in an instance i = (c, id, b • Q, M), we also need to consider the special case where the component is ready to re transitions that will lead to the de-activation of the port. In this case, the port only provides to the use ports that are already using it, and refuses new usage. This state is dened by: refusing(i, p p) ≡ ∀e ∈ elements(Gr(p p)), e ∈ M =⇒ exit(e, Gr(p p))

where exit(e, G) holds when e is a place and has outgoing transitions in the current behavior b of the instance that leave the group G, and no transitions that do not leave G

exit(e, G) ≡ e ∈ Π c ∧ ∃D, (e, b, D) ∈ Θ ∧ ∀D∀δ, (e, b, D) ∈ Θ∧δ ∈ D =⇒ P l(δ) / ∈ G)

Evolution of component instances

We now present the rules that describe the evolution of component instances, independent of any reconguration instruction. Each of of these rules aects exactly one component instance in the assembly, but some of them consider the state of the provide and use ports linked to the instance, and therefore depend on the state of the whole assembly. Firing transitions

π ∈ Π c ∩ M ∀(j, p u , i, p p) ∈ L, active(j, p u) =⇒ active(i , p p) Fire b π (I ∪ {i}, L), R (I ∪ {i }, L), R where i = (id, c, b • Q, M) i = (id, c, b • Q, M ∪ {(π , b , D) ∈ Θ | π = π ∧ b = b} \ {π})
Intuitively, when a place holds a token, its outgoing transitions in the current behavior of the component may be red simultaneously. This is represented by removing the token on the place, and placing tokens on each of these transitions instead. The second condition prevents the rule from being applied in situations where it would de-activate a provide port (in particular, one bound to a group containing π) that is being used by another component. This rule is illustrated by Figure 5.4.

Ending transition Entering place

θ = (π, b, D) ∈ Θ c ∩ M δ ∈ D End δ θ (I ∪ {i}, L), R (I ∪ {i }, L), R where i = (id, c, Q, M) i = (id, c, Q, M ∪ {(θ, δ)} \ {θ})
δ ∈ ∆ E δ ⊆ M ∀p u , P l(δ) ∈ Gr(p u) =⇒ provided (i, p u) ∧ allowed (i, p u) Reach δ (I ∪ {i}, L), R (I ∪ {i }, L), R
where

E δ = { (π source , b, D), δ | (π source , b, D) ∈ Θ c ∧δ ∈ D}, i.e.
, the set of transitions ending that reach the station δ

i = (id, c, Q, M) i = (id, c, Q, M ∪ {P l(δ)} \ E δ)
and provided (i, p u) ≡ ∃(i, p u , j, p p) ∈ L, active(j, p p), indicating that the requirement of the use port p u is satised, allowed (i, p u) ≡ ∀(i, p u , j, p p) ∈ L, refusing(j, p p)∧¬ active(i, p u) =⇒ ¬ active(i , p u),

ensuring that the change does not initiate usage to a port that is currently refusing it.

If all the transition endings that reach a station hold a token, and if the use port conditions are satised, the tokens can be removed from the transition endings and a token added to the place to which the station is attached. Intuitively, this represents a synchronization point between multiple transitions before reaching a place. This rule is illustrated by Figure 5.6.

Finishing behavior

M ⊆ Π c ∀(π, b , D) ∈ Θ, b = b : π ∈ M Finish b (I ∪ {i}, L), R (I ∪ {i }, L), R where i = (id, c, b • Q, M) i = (id, c, Q, M)
If a component has tokens only on places that have no outgoing transitions active in the current behavior, then this behavior is discarded. This leads to a modication of the current behavior, and therefore of the active transitions of the component.

Reconguration instructions

Lastly, we present the semantic rules describing the instructions of the reconguration language. Each of these rules depends on the rst instruction in the reconguration program, and describes how the instances of the assembly or their links are modied as a result.

Add component instance

ι = add(id, c) ¬∃(id, c , Q, M) ∈ I Add (I, L), ι • R (I ∪ {(id, c, [], {π init c })}, L), R
The instruction add(id, c) creates a component instance of type c, provided that the identier is not already attached to another instance in the assembly. The created instance has an empty behavior queue, and its initial place holds a token.

Delete component instance

ι = del(id) i = (id, c, Q, M) ∈ I ¬∃(i 1 , p u , i 2 , p p) ∈ L, i = i 1 ∨ i = i 2 Del (I, L), ι • R (I \ {i}, L), R
The instruction del(id) deletes a component identied by id from the assembly, provided that the component is not connected to any other.

Connect ports

ι = con(id 1 , p u , id 2 , p p) {i 1 , i 2 } ⊆ I i 1 = i 2 ¬∃(i 1 , p u , i , p p) ∈ L Con (I, L), ι • R (I, L ∪ {(i 1 , p u , i 2 , p p)}), R
where i 1 is an instance of type c 1 identied by id 1 , and i 2 is an instance of type c 2 identied by id 2 , such that p u ∈ P u c 1 and p p ∈ P p c 2 .

The instruction con(id 1 , p u , id 2 , p p) adds a connection between the use port p u and provide port p p of two distinct instances identied by id 1 and id 2 . Use ports can be connected to at most one provide port, therefore the instruction is executed only if the port p u is not already connected.

Disconnect ports

ι = dcon(id 1 , p u , id 2 , p p) ¬ active(i 1 , p u) Dcon (I, L), ι • R (I, L \ {(i 1 , p u , i 2 , p p)), R
where i 1 is an instance of type c 1 identied by id 1 , and i 2 is an instance of type c 2 identied by id 2 , such that p u ∈ P u c 1 and p p ∈ P p

c 2 .
The instruction dcon(id 1 , p u , id 2 , p p) removes the connection between the ports p u and p p of the components identied by id 1 and id 2 . This can only happen when the use port p u is inactive.

Pushing behavior

ι = pushB(id, b) b ∈ B c PushB (I ∪ {i}, L), ι • R (I ∪ {i }, L), R where i = (id, c, Q, M) i = (id, c, Q • b, M)
The instruction pushB(id, b) corresponds to an asynchronous behavior request directed at the component identied by id. That request is added to the behavior queue of the component.

Waiting

ι = wait(id) (id, c, [], M) ∈ I Wait (I, L), ι • R (I, L), R

Performance Model

This section describes a performance model for Concerto recongurations. It relies on the formal semantics of Concerto presented in Section 5.2. Its goal is to estimate the total execution time of a reconguration given (i) the reconguration program, (ii) the initial assembly, and (iii) the duration of the transitions in each instance.

The computed result is the time required to execute the critical path in the reconguration, i.e., the longest sequence of events that has to be performed to complete the reconguration. This corresponds to the execution time of the reconguration in the optimal case where all transitions are red as early as possible, and there is no restriction on the number of transitions that can be executed in parallel.

The main element of the performance model is a weighted oriented dependency graph (V, A) with A a multi-set over V ×R + 0 ×V . Intuitively, the vertices of the graph represent events occurring during the execution (e.g., the activation of a port, the execution of an instruction) and the arcs represent the dependencies between events, e.g., the fact that the execution of a behavior may only start after the corresponding pushB instruction has been executed. Arcs that correspond to the execution of a transition are weighted with a positive value encoding the duration of the transition.

All other arcs have a weight of 0. The critical path corresponds to the longest (in terms of weights) path between the vertex representing the beginning of the reconguration and the vertex representing its end.

Cycles in the dependency graph correspond to deadlocks in the reconguration.

In this case, the performance analysis correctly indicates that the reconguration will not end, as the longest path in the graph has innite length. However, some other types of non-progressing states (e.g., where a use port has become deactivated before being needed) are not captured: a nite critical path only indicates that there exists a terminating execution of the reconguration, but it does not guarantee termination of all executions.

Assumptions

For the purpose of performance estimation, the outcome and execution time of actions must be known, therefore we assume that:

all transitions have exactly one ending (no switches); transition durations are given as values of R + 0 by a function time(id, θ).

Transition durations depend on an instance identier, so that the execution of a similar transition may require dierent times in various instances (as a result of hardware discrepancies or data locality, for example). In practice, these durations are often estimations provided by system administrators.

This performance model is applicable to many commonly occurring reconguration scenarios, however it is not meant to be a complete analysis tool. In particular, it is restricted to:

assemblies such that all groups have at most one entrance and one exit (i.e., places connected by a transition to another place outside of the group) in each behavior;

recongurations that may lead to at most one activation and one deactivation of a given port.

The rst condition implies that the activation of a port matches the activation of a single place (the entrance to the group of the port) and the deactivation of that port matches the deactivation of the exit to the same group. In the following, we refer to the entrance and exit places of a group G respectively in(G) and out(G).

The second condition ensures that the port provision condition required to enter places can be mapped to an event in the dependency graph. For more complex reconguration scenarios, where ports have multiple periods of activation, it is possible to split the reconguration script in multiple parts and analyze them separately, however this may require the insertion of global synchronization points, with an eect on performance.

In practice these assumptions are compatible with many real cases of reconguration, such as those presented in the evaluation of this work (Chapter 6).

Reconguration dependency graph

The dependency graph is constructed by Algorithm 1, which considers each instruction of the reconguration program iteratively and extends the graph accordingly.

Besides the graph D = (V, A) being constructed, the algorithm maintains the following auxiliary variables: a vertex v sync ∈ V that corresponds to the latest synchronization barrier (beginning of the program or last blocking instruction wait or dcon);

a function tokens Π that maps identiers id to the places that will hold tokens when the last behavior of the instance identied by id has been executed; a function end v that maps identiers id to the vertex in the graph that represents the end of the execution of the last behavior of the instance identied by id.

We denote by f ⊥ the function that is undened everywhere, and by f [y := v] the functional update of f , i.e., the function that maps y to v, and all other values x to f (x).

The construction of the graph, as described in Algorithm 1, begins with a vertex v source that represents the beginning of the execution of the reconguration program.

Data: assembly (I, L),

reconguration ι 1 • ι 2 • . . . • ι n Result: graph (V, A) 1 V ← {v source } ; 2 A ← ∅ ; 3 tokens Π , end v ← f ⊥ ; 4 for (id, c, Q, M) ∈ I do 5 tokens Π ← tokens Π [id := M] ; 6 end v ← end v [id := v source] ; 7 for p ∈ P u c ∪ P p c do 8 V ← V ∪
V ← V ∪ {v wait i } ; 19 A ← A ∪ {(v sync , 0, v wait i), (end v (id), 0, v wait i)} ; 20 v sync ← v wait i ; 21 case con(id 1 , p u , id 2 , p p) do 22 A ← A ∪ {(v sync , 0, v act id 1 ,pu),(v act id 2 ,pp , 0, v act id 1 ,pu),(v deact id 1 ,pu , 0, v deact id 2 ,pp)} ; 23 case dcon(id 1 , p u , id 2 , p p) do 24 V ← V ∪ {v dcon i } ; 25 A ← A ∪ {(v sync , 0, v dcon i), (v deact id 1 ,
V ← V ∪ {v sink } ; 33 for (id, c, Q, M) ∈ I do 34 A ← A ∪ {(end v (id), 0, v sink)} ; 35 end 36 A ← A ∪ {(v sync , 0, v sink)} ; 37 return (V, A) ;
Algorithm 1: The construction of the dependency graph.

The auxiliary function end v initially maps each component identier to v source , while the function tokens Π initially maps each identier to the marked places M of the corresponding instance, in the initial state of the assembly I. Vertices representing the activation and deactivation of each port are also added to the graph. The graph is then extended, by considering instructions in the order in which they occur.

1 Procedure extendGraph(id, b) is 2 let c be the type of the instance identied by id Wait Given an instruction wait(id), the graph is extended with a unique vertex v wait , representing the synchronization event. An arc is added from the vertex v sync to v wait (synchronization occurs after the previous synchronization barrier) and another from end v (id) to v sync (synchronization occurs after the component identied by id has executed all its behavior requests). The auxiliary variable v sync , which represents the last synchronization point, is updated.

V ← V ∪ {v source id,b , v sink id,b } ; 3 A ← A ∪ {(end(id), 0, v source id,b), (v sync , 0, v source id,b)} ; 4 for π ∈ Π c do 5 V ← V ∪ {v enter π , v leave π } ; 6 A ← A ∪ {(v enter π , 0, v leave π)} ; 7 if π ∈ tokens Π (id) then 8 A ← A ∪ {(v source id,b , 0, v enter π)} ; 9 end 10 end 11 for θ = (π, b , {δ}) ∈ Θ such that b = b do 12 V ← V ∪ {v re θ } ; 13 A ← A ∪ {(v leave π , 0, v re θ), (v re θ , time(id, b), v enter P l(δ))} ;
Connection Given an instruction con(id 1 , p u , id 2 , p p), edges are added to represent the order in which the connected ports can be (de)activated, as well as an edge to represent the fact that the activation of the use port cannot occur before the connection, i.e., the last synchronization point represented by v sync .

Disconnection An instruction dcon(id 1 , p u , id 2 , p p) is a synchronization point, and is therefore treated similarly to wait, except that the synchronization condition is the deactivation of the port p u represented by v deact id 1 ,pu .

Creation and deletion of components The creation or deletion of a control component does not measurably contribute to the execution time. Indeed, any action to perform on a given control component is achieved through behaviors in Concerto, and the creation and the deletion only refer to instances of control components. Furthermore, these are not blocking operations: deletion requires the component to be disconnected, but this is a well-formedness condition that can be checked statically.

Therefore these two instructions are not taken into account during the construction of the dependency graph (the list of components in the assembly should also include those created during the reconguration).

Push behavior The case for the instruction pushB(id, b) is handled in the procedure extendGraph (Algorithm 2). Given a component identier id and a behavior b, extendGraph extends the graph with vertices representing the events occurring during the execution of that behavior. The construction of this sub-graph depends on the component instance identied by id and the behavior b, but also the set of places tokens Π (id), i.e., the places that hold tokens at the beginning of this execution of b.

Two vertices v source id,b and v sink id,b are added to represent the beginning and end of the behavior. The former is connected to end v (id) to ensure that behaviors are executed in the order in which they are requested, and to v sync to ensure that the last synchronization point is taken into account.

For each place π in the component type, a vertex v enter Note that the sub-graph that was just constructed to describe the event of the behavior b may not be connected if some places and transitions are not reachable in a given behavior and starting conguration. For this reason, the vertices and arcs that are not reachable from v source id,b are removed. It is then easy to determine the nal places of the behavior and update tokens Π accordingly. The vertices corresponding to the nal places are connected to v sink id,b , denoting the end of the behaviors when all nal places are reached.

Example

Behavioral Interfaces

Concerto component types expose detailed information about the life-cycle of a software module. However, from the perspective of the reconguration developer, a part of this information is irrelevant and is detrimental to good separation of concerns.

Denition

Given a Concerto component type, its behavioral interface contains the following information: its ports, its behaviors, and a state-machine composed of a set of stable states as states and a set of behavior executions as transitions. Intuitively, stable states correspond to a state that can be reached by an instance of the component type by executing a given sequence of behaviors, starting from the initial place. They are characterized by which use or provide ports are active and which behaviors can be executed after reaching them. Behavior executions correspond to the execution of a given behavior, which leads from a stable state to another stable state. They are dened by the origin and destination stable states, the associated behavior and the set of partially ordered port-related events (activation or deactivation of a port) which occur during the execution of the behavior. Note that the order is partial because if there are parallel transitions within the component, the order in which port-related event occur might depend on the execution time of the transitions. 5.1 (on page 87). Octagons represent stable states while colored arrows represent behavior executions. Stable states are tagged with their active ports, while behavior executions are tagged with a partial order for their port events. Two events on consecutive lines are considered to happen at the same time, while a < indicates that all events above happen before all events below. Note that in this example, the orders happens to be total. A act (resp. dea) event corresponds to the activation (resp. deactivation) of a use or provide port. Numbers in circles are only for referencing states in the text and do not bear any meaning. For example, Figure 5.9 shows behavioral interfaces for the component types of Figure 5.1 (on page 87). In Db, stable state 1 is the initial state, which in practice corresponds to having one token in place uninstalled. Note that it is possible to go back to this state by executing behaviors install, backup and uninstall any number of times in this order. In this state, no ports are active. Stable state 2 is reached by executing install from the initial state. In this state, ports sql_write and sql_read are active. In practice, it corresponds to a token being in place running. A behavior execution of behavior install allows to go from stable state 1 to stable state 2. During this execution, four events happen: rst, use port backup_in starts to be used, then it stops to be used, and then provide ports sql_write is activated at the same time as provide port sql_read.

Formal description Formally, a behavioral interface is dened by a tuple of 6 elements (Σ, B, P u , P p , , E). Σ is a set of stable states, B is a set of behaviors, P u is a set of use ports and P p is a set of provide ports. Note that B, P u and P p are exactly identical to the elements of the same name in the tuple of a component type.

⊆ Σ × (P u ∪ P p) is a binding relation between stable states and ports, dening which ports are active in each state. Finally, E ⊆ Σ × B × Ev × Σ is a set of behavior executions corresponding of a source state, a behavior, a set of ordered events and a destination state. A set of ordered events in Ev is dened as a tuple (Ω ,) where Ω ⊆ {act, dea} × (P u ∪ P p) is a set of events and ⊆ Ω × Ω is a partial order over these events.

Generating a behavioral interface

In this section, we present an algorithm to generate the behavioral interface of a Concerto component type. This algorithm is a proof of concept and it is conceived with clarity in mind, as opposed to optimization in terms of complexity. It is also restricted to component types which do not have parallel exit or entry points in groups (i.e.,, for each group and each behavior, there is only one place which when receiving a token causes the group to become active and only one place which when losing a token causes the group to become inactive). Algorithm 3 contains the main function GetInterface as well as two auxiliary functions, ExploreState and ExploreBehavior. Other auxiliary functions are given in Algorithms 4 and 5. We describe the algorithm in a top-down fashion, starting with function GetInterface. Notation In the following, tuples usually denoted (e 1 , . . . , e n) in mathematics are denoted e 1 , . . . , e n to disambiguate with function calls.

Description of the algorithm GetInterface

The main function, GetInterface, takes as input a component type c and returns a tuple Σ, E where Σ is the set of stable states of its behavioral interface and E is its set of behavior executions. The main idea of the algorithm is to explore the possible behavior executions starting from known stable states to discover new stable states, until no more stable states can be discovered. We start with the one stable state common to all component types: the one corresponding to a token being in the initial place of the internal-net. Line 2 initializes the explored states to an empty set, the discovered behavior executions to an empty set, and the set of states to explore as containing the single set {π init }. Remind that stable states correspond to places holding tokens in the original component type. In this algorithm, stable states are encoded by the set of places holding a token they correspond to. Line 3 is the main loop of the algorithm and consists in exploring stable states (i.e., nding the behavior executions starting from that state) as long as the set of states to explore is not empty. Function ExploreState does that exploration of a state. ExploreState (σ, c) returns a tuple containing the set of newly discovered stable states and the set of newly Function GetInterface(c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr):

Σ ← ∅ ; E ← ∅ ; Σ to_explore ← {{π init }} while Σ to_explore is not empty do extract σ from Σ to_explore Σ discovered , E discovered ← ExploreState (σ, c) Σ ← Σ ∪ {σ} Σ to_explore ← Σ to_explore ∪ Σ discovered \ Σ E ← E ∪ E discovered end return Σ, E
AuxFunction ExploreState(σ,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr): that this algorithm returns the set of stable states and the set of behavior executions, but, for the sake of conciseness, not the binding relation between stable states and ports. Because stable states are encoded by the set of places holding a token they represent, this is easy to deduce from Σ itself and is left as exercise to the reader.

Σ discovered ← ∅ ; E discovered ← ∅ explored_behaviors ← ∅ for π source , b, D in Θ do if π source ∈ σ and b is not in explored_behaviors then 16 results ← ExploreBehavior (b, σ, c) 17 for f inal_places, events in results do 18 Σ discovered ← Σ discovered ∪ {f inal_places} 19 E discovered ← E discovered ∪ { σ, b, events, f inal_places }
(0) (1) (2) (3) (4)
ExploreState Recall that ExploreState is a function that takes as input a stable state σ and the description of a component type c and returns a tuple containing the set of newly discovered stable states and the set of newly discovered behavior executions while exploring state σ. This is done by exploring each behavior which has at least one transition outgoing from one place in stable state σ. To do this, line 14 loops over the transitions in Θ and if its source place is in σ and the behavior has not yet been explored (line 15), a call is made to function ExploreBehavior (line 16) which, given a behavior, a starting state and a component type returns the set of possible executions of this behavior (there can be multiple executions when there are switches: the events caused by the execution of a behavior might not be the same depending on which branch of a switch is taken). Each behavior execution in the returned set is encoded as a tuple containing the stable state reached after the execution (encoded as a set of places) and a partially ordered set of events. The loop from line 17 to line 20 updates the sets of discovered stable states and behavior executions and the behavior just explored is marked as such line 21.

ExploreBehavior Recall that ExploreBehavior takes as input a behavior, a starting state and a component type and returns the set of possible executions of this behavior encoded as a tuple containing the stable state reached after the execution and a partially ordered set of events. This function only iterates through the possible combination of choices that can be made in switches (i.e., which output station the token goes to when leaving the transition). An example of choice mapping is illustrated by Figure 5.11. The list of possible choice mappings is computed by function InitSwitchChoices (dened in Algorithm 5) on line 26, and the loop from line 28 to line 30 goes through each of them. For each choice possibility, function ExploreBehaviorChoice (dened in Algorithm 4) is used to compute the behavior execution (encoded as a tuple containing the stable state reached after the execution and a partially ordered set of events). This behavior is added to the list results which is returned at the end of the loop.

Partially ordered event sets Before dening the ExploreBehaviorChoice function, we dene a few primitives to be used to construct partially ordered event sets.

We dene an event as an element of {act, dea} × P u ∪ P p (where act corresponds to the activation of a port and dea to the deactivation of a port).

Recall that a set of ordered events is dened as a tuple Ω, where Ω ⊆ {act, dea} × P u ∪ P p is a set of events and ⊆ Ω × Ω is a partial order over these (on page 87), with initial stable state {uninstalled} and behavior install. In this mapping, transition allocate maps to the station of its only transition ending. The same goes for transitions conf1, conf2, run and restore. In the case of transition sw, among two possible stations, it is mapped to the one of place sw1.

events.

We dene:

Nothing := ∅, ∅
as the empty partially ordered events set.

Given an event ω ∈ Ω, we dene:

Ev (ω) := {ω} , ∅
which gives a partially ordered events set containing this single event.

Given n events ω 1 . . . ω n in Ω, we dene:

Sim {ω 1 , . . . , ω n } := {ω 1 , . . . , ω n } , n i=1 n j=i+1 {(ω i , ω j), (ω j , ω i)}
which gives a partially ordered events set containing events ω 1 . . . ω n with all of them considered as happening at the same time (they are all equal for).

Given two partially ordered sets s 1 = Ω 1 , 1 and s 2 = Ω 2 , 2 , we dene:

Seq (s 1 , s 2) := Ω 1 ∪ Ω 2 , 1 ∪ 2 ∪ ω 1 ,ω 2 ∈Ω 1 ×Ω 2 ω 1 , ω 2
which gives a partially ordered events set corresponding to the union of s 1 and s 2 with, in addition, all events of s 1 being ordered before all events of s 2 . Finally, given n partially ordered sets s 1 = Ω 1 , 1 , . . . , s n = Ω n , n , we dene:

Par {s 1 , . . . , s n } := Ω 1 ∪ Ω 2 , 1 ∪ 2
which gives a partially ordered events set corresponding to the union of s 1 and s 2 with no additional ordering (allowing events of s 1 and s n to occur in parallel).

ExploreBehaviorChoice The ExploreBehaviorChoice function is dened in Algorithm 4. It takes as input a choice map choice (associating each transition to one output station of this transition), a behavior b, a starting stable state σ and a component type c, and returns the behavior execution (encoded as a tuple containing the stable state reached after the execution and a partially ordered set of events). This function simulates the execution of the behavior in a component instance of type c with tokens starting in each place contained in σ while remembering at each step when use and provide ports were activated or deactivated. However, unlike an actual execution of Concerto's semantics, it does not make any assumption on the order in which semantic rules are applied. In order to keep track of the events during the execution, when a place is reached during the simulation, the partially ordered set of events that happened during the execution so far is associated to the place.

Lines 2 to 10 consist in initializing variables. act_places is the set of active places in the simulation and is initialized to contain the places contained in σ. act_stations is the set of active stations, corresponding to when there is a token in the transition ending associated to this station of all the incoming transitions of the station for a given behavior. f inal_places is the set of place holding a token which have no outgoing transitions of the given behavior. At the end of the simulation, this set corresponds to the destination stable state of the behavior execution. station_sources is a dictionary associating to each station the set of origin places of the transitions leading to this station. Originally, each station is associated to an empty set (lines 5 to 7) and the mapping is updated during the simulation. event_logs is a dictionary associating each place to the partially ordered set of events that happened before arriving to that place. Originally, each place is associated to Nothing, i.e., the empty partially ordered events set (lines 8 to 10), and the mapping is updated during the simulation. station_counts is a dictionary used to keep track of how many more tokens a station needs to receive before tokens can be moved from transition endings 1 AuxFunction ExploreBehaviorChoice(choice,b,σ,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr): and 4 to initialize variables. InitStationCounts returns a dictionary associating to each station the number of incoming transitions of a given behavior, i.e., the number of tokens needed to enter a place through this station.

← { π source , b , D | b = b ∧ π source = π} if out_trans is empty then f inal_places ← f inal_places ∪ {π} else deact_ports ← PlacePorts (π, c) for θ in out_trans do δ ← choice [θ] deact_ports ← deact_ports \ PlacePorts (P l (δ) , c) station_counts [δ] ← station_counts [δ] -1 station_sources ← station_sources ∪ {π} if station_counts [δ] = 0 then
for θ = π source , b , D in Θ do if b = b then new_choices ← [] for δ in D do for choice in choices do new_choice ← choice new_choice [θ] ← δ new_choices ← new_choices + [new_choice]
InitSwitchChoices returns a list of all possible choices for switches of a given behavior, encoded by dictionaries which each associate one output station to each transition of a given behavior. PlacePorts returns the list of ports associated to a group containing a given place. to a place. It is initialized by using function InitStationCounts dened in Algorithm 5. Originally, each station is associated to its number of incoming transitions, and this number is decreased during the simulation when a token is put in a relevant transition ending. When it reaches 0, there are enough tokens.

Lines 11 to 42 consist of a loop simulating the semantic rules of Concerto in a simplied way. Lines 12 to 30 treat the case of active places, and lines 31 to 41 treat the case of active stations.

If an active place exists, it is extracted from the set of active places (line 13).

If it has no outgoing transitions for the given behavior, it is added to the set of nal places (lines 14 to 16). Otherwise, the execution of the semantic rules allowing the token to go from the place to the transition endings of its outgoing transitions is simulated. Line 18, variable deact_ports is initialized with the set of ports containing the current place in their group. This set is ltered in the following instructions to end up being the set of ports which are deactivated when a token leaves the place. Lines 19 to 27, for each transition, the ports which are still active in the destination place are removed from deact_ports, the current place is added to the set of station sources of the destination station (according to the choice mapping), the count of that station is decremented, and if it reaches 0 the station is added to the set of active stations. Finally, line 28, the set of deactivated ports is known, so the simultaneous deactivation of these ports is added to the partially ordered events set memorized for the current place.

If an active station exists, it is extracted from the set of active stations (line 32).

Then, the set of activated ports when entering the place this station is attached to, act_ports, is determined by listing all the ports with the given place in their group (line 34) and removing the ports which had at least one of the source places of the station in their group (lines 35 to 37). Finally, the partially ordered events set of this place is dened as the sequence of two sets of events: the parallel execution of the sets of events of the origin places and the simultaneous execution of the activation of the ports in the act_ports set.

Finally, a tuple is returned, consisting of the set of nal places (corresponding to the stable state reached by the simulated behavior execution) and of the partially ordered events set consisting of the events occurring while reach each of the places, in parallel.

Discussion

This algorithm is a proof of concept conceived for clarity, and it could be improved.

In terms of complexity for example, some computations are done multiple times like the calls to PlacePorts, which could be pre-computed, or the iteration over all edges to nd the outgoing transitions of a place, which could be made more ecient by using appropriate data structures. However, this algorithm is polynomial in the size of all the sets composing component type c, with one exception: ExploreBehavior makes an exponential number of calls to ExploreBehaviorChoice with respect to the number of switches in the considered behavior. However, we argue that the number of switches in a component type is meant to remain low.

Discussion

Expressivity Concerto is a strict super-set of Madeus, in the sense that any Madeus assembly can be created in Concerto. To that end, a Concerto component type is created for each Madeus component in the assembly. Each component has a single behavior deploy, and the internal-nets would be similar, with some additional dummy places or transitions to account for the fact that in Madeus, use ports are bound to transitions and not places or groups of places. Then, a reconguration program can be generated to create one instance of each component type, connect the ports like they are connected in the Madeus assembly and push the deploy behavior in each component instance.

However, Concerto has a much broader expressiveness compared to Madeus. First, a paradigm change allows not to forget the modules once deployed, but to keep tracking their current state in their life-cycle and recongure them. In each component, behaviors correspond to dierent local recongurations that can be applied to a given module, depending on its current state. In order to perform reconguration, a reconguration language is provided by Concerto to dynamically update the assembly of components, i.e., the architecture of the overall distributed system, as well as trigger the reconguration of individual software modules.

Performance of reconguration Concerto supports a high level of parallelism during reconguration, both at the module level with parallel transitions and at the assembly level with mostly asynchronous execution of behaviors. The performance model provided with Concerto allows, with some restrictions on the component types, to express the total execution time of a reconguration program as a function of the execution time of each transition, i.e., of each reconguration action they are associated to. In practice, the restrictions on the component types are not problematic because they either align with usage (e.g., restrictions on groups) or can be easily worked around if necessary (e.g., by replacing a switch with a single transition going to the intended place).

Separation of concerns In Concerto, component types are created by module developers. They are specialists who know the life-cycles of their modules and translating them to a Concerto component type is quite straightforward. Reconguration programs are created by reconguration developers. They need to understand how each module of a distributed system can be interacted with, and how modules interact with each other. This is made easier by behavioral interfaces, which expose only the information necessary to use the component types in a reconguration (which behavior can be executed, in which state the component will be after its execution and which ports are aected). Finally, reconguration programs are executed by system administrators. Each reconguration program can be simulated (performing the changes on the assembly without actually executing the actions associated to the transitions) to ensure that the resulting assembly corresponds to the expectations prior to the execution of the program. Also, the expected execution time of a reconguration program can be broken down to the execution time of individual reconguration actions. This can help estimating or bounding it, helping the system administrator or the autonomic tools to decide whether to execute the reconguration or not.

Limitations In terms of expressivity, Concerto is designed as a low-level framework which can be used by reconguration planning systems to write and execute a reconguration plan. As such, specic functionalities such as error handling or cardinality are not addressed with specic features. However, solutions dedicated to these issues can be built on top of Concerto by generating component types and reconguration programs, making use of Concerto features such as switches to model alternative reconguration actions in case of error for example.

In terms of performance, the main limitation that we can identify is the wait instruction of the reconguration language, which is global to the whole reconguration program. In the case of very large assemblies, one might need for optimal performance to keep executing reconguration instructions on a part of the assembly, while the other part keeps on executing reconguration instructions. This could be overcome by changing the language to support multiple independent threads of execution, or allowing the execution of concurrent recongurations.

In terms of separation of concerns, a Concerto component type cannot be provided as-is without documentation. For example, ports are not typed, and no guarantee is provided that all dependencies are represented by ports of the component type. This design allows greater exibility, but can be detrimental to good separation of concerns. However, tools with higher-level concepts like typed ports can be made to generate Concerto component types.

Conclusion

In this chapter we have presented Concerto, a model for the reconguration of distributed systems. Component types are used to model the life-cycles of each module of distributed systems. Each component type has a set of behaviors, which correspond to local recongurations which can be performed on instances of this component. Using a reconguration language, one can write a reconguration program which creates or changes an existing assembly by triggering local reconguration actions for the modules asynchronously (through their behaviors) while ensuring the coordination between the life-cycles of inter-dependent modules.

A full formalization of the model is provided, covering the denitions of component types, assemblies, reconguration programs as well as the complete operational semantics. A performance model is also provided to express the total execution time of a reconguration program as a function of the execution time of individual transitions, i.e., reconguration actions local to modules. This will be used in Chapter 6 to bound and estimate the total running time thanks to historical data.

Finally, Concerto provides behavioral interfaces, i.e., views of the component types exposing only the information required by reconguration developers. They fulll two objectives: rst, they increase separation of concerns by relieving the reconguration developers from having to understand the internals of a component type, and second they act as a sort of contract, ensuring that replacing a component type with another sharing the same behavioral interface will not change how it must be handled by reconguration programs.

In the previous chapters, the Madeus deployment model and the Concerto reconguration model were presented. Both models provide mechanisms for parallelism of deployment and reconguration actions, while providing performance models to dene the expected level of parallelism precisely. They also target their concepts to dierent actors: module developers, reconguration developers and system administrators.

In Chapter 3 we have identied that one challenge in reconguration is to reconcile separation of concerns and performance, in particular because a high parallelism expressivity is usually detrimental to separation of concerns. This evaluation therefore focuses on these two points, parallelism and separation of concerns. Two solutions from the literature are used as comparison points. First, the Aeolus model, for its state-of-the-art performance and general similarity in terms of component-based approach. No other solution with the same level of parallelism expressivity oers better separation of concerns in the literature. Second, the Ansible software conguration management tool for its wide-spread use in the industry and its unique approach to parallelism.

Because Concerto is a super-set of Madeus and both models oer the same levels of parallelism expressivity, in this chapter we focus on evaluating Concerto. The examples used throughout the chapter include deployment cases, so everything that is stated about Concerto also apply to Madeus in these cases. When Madeus has to be analyzed specically, we mention it explicitly.

In Section 6.1, we introduce an implementation of Madeus and Concerto which have been used for the experiments which this chapter is based on. In Section 6.2, we present the synthetic and production use-cases that are used in the rest of the chapter to perform the evaluation. Then, in Section 6.3, we provide a performance model for our comparison points, Ansible and Aeolus, and evaluate the performance model of Madeus and Concerto. Then, we evaluate Madeus and Concerto in terms of parallelism expressivity (Section 6.4) and separation of concerns (Section 6.5), based on the previously introduced use-cases. Precise comparisons are drawn with Aeolus and Ansible. All the experiments presented here are reproducible and links to access the code used are provided.

Implementation

In this section, we present the Python implementation that we developed in order to evaluate Madeus and Concerto. In practice, this is an implementation of Concerto, on top of which was developed a Madeus abstraction layer. Consequently, in the following we focus on the Concerto implementation itself. First, we detail the architecture of the implementation, outlining some design choices. Then, we showcase how it can be used from the point of view of a developer. Note that the full source code is available online 1 under the GNU GPLv3 license.

6.1.1 Architecture of the implementation and design choices 6.1.1.1 Programming language Concerto recongurations, from a system administrator's perspective, essentially consists in coordinating the execution of commands on multiple hosts. This means that Concerto itself is never doing heavy computation, for example. Therefore, there is no need for a highly optimized language with a compiler. On the other hand, it is very important for the language used to describe Concerto actions (what is executed by the transitions of a component) to accessible, if not familiar, to the actors involved (module developers, reconguration developers, system administrators). Also, because Concerto may be used in multiple environments, and in particular on multiple OSs, the portability of the code is important.

With these considerations in mind, Python was chosen as the language for our implementation. In addition to fullling the requirements listed before, Python is widely used in the eld of system conguration and reconguration. This ensures that extensive tooling and libraries are available to be used by module developers.

The battery included approach of Python also makes it one of the most accessible general-purpose programming languages. The class Component represents a Concerto control component type. A new component type is created by declaring a new class that inherits Component. The class must override the abstract method create, in particular, the following attributes must be initialized: places, initial_place, groups, transitions and dependencies (which correspond to ports). Each Transition contains an element action, which is expected to be a Python function, and will be called when the transition is executed, possibly with arguments.

An instance of the class Assembly corresponds to an environment in which to execute reconguration programs. It keeps track of unique component identiers and connections, and also manages the Python threads dedicated to executing recongurations. The user (typically, a system administrator) denes an Assembly object and can then call its method run_reconfiguration. thread until the reconguration has been fully executed, then the method terminate can be used to destroy the thread.

A Reconfiguration object stores a list of reconguration instructions (instances of InternalInstruction). Instructions can be appended to the list with dedicated methods, one for each instruction type. Note two additional instructions compared to the formal model: wait_all prevents further instructions to be executed until all existing component instances have nished executing their behaviors (this is equivalent to a sequence of wait instructions), while call provides a way to compose recongurations: it takes a Reconfiguration object as argument and adds all its instructions to the internal list of the current object. are executed in other threads, the semantic rules are applied independently of these user-dened actions. Note that Python threads do not take advantage of hardware parallelism capabilities, but because the actions usually run other (possibly remote) processes to do the heavy work, this is not an issue.

Execution

Describing component types

In this section, we see how a component developer can dene a component type by looking at the implementation (given in Listing 6.1) of the component type Db from Figure 5.1 on page 87. Line 1, we see that a Db class is declared and extends class Component. Lines 2 to 56, the create method is dened as required by the implementation, dening the behaviors, the places, the initial place, the switches, the transitions, the groups and the dependencies (i.e., ports) of the component type. Lines Lines 30 to 44, a list of transitions is given in the form of a dictionary associating a name to a tuple containing: the name of the source place, the name of the destination place, the name of the behavior associated to the transition, a station identier for the destination place and the Python function to execute as transition action. Most of the time, the station identier is 0, but when two transitions associated with the same behavior must be connected to distinct stations, each one must have a distinct for reconguration to be executed. For example, on line 12, the rprog reconguration is executed. This execution occurs in another thread, so the print instruction on line 13 is executed immediately (i.e., the call to run_reconfiguration is not blocking). On line 14, the call to synchronize eectively waits actively for the execution of all the reconguration instructions queued in the assembly to be nished. In this case, the last instruction being a wait to ensure the completion of the reconguration, the print instruction on line 15 is executed after the completion of rprog.

Madeus abstraction layer

Concerto comes with many additional concepts compared to Madeus in order to support reconguration. In our Python implementation, when only the deployment part of the life-cycles need to be modeled, this leads to unnecessarily long component type descriptions and to the declaration of a reconguration which is essentially always the same in this case: create component instances, connect them and push their only behavior to their queue.

Because Concerto is a super-set of Madeus, we were able to provide an abstraction layer on top of Concerto which allows users to manipulate Madeus concepts directly. This layer consists in two classes exposed to the user, MadeusComponent and MadeusAssembly. For practical reasons, even if component types and component instances are the same in Madeus, we still consider these to be distinct in the implementation, similarly to Concerto. Finally, on line 45, an instance of this assembly is created, and run on line 46 (eectively starting the deployment process). The run function is non-blocking, so the print instruction on line 47 is executed immediately. Similarly to Concerto, the execution of the assembly can be synchronized (line 48), eectively blocking until the deployment has completed. The print instruction on line 49 therefore executed after the completion of the deployment.

Use-cases

To evaluate Concerto, we use two main scenarios, each composed of multiple recongurations. One of these scenarios is a real production use-case, while the other is a synthetic use-case. In this section, we introduce both of these use-cases and how they were implemented in a reproducible fashion. OpenStack is a software solution to operate private clouds. It acts as an operating system for a cloud service and manages its infrastructure. In a multi-region deployment of OpenStack, the infrastructure is split into regions, and some OpenStack control modules are replicated to make each region partially autonomous.

We focus on the database module used within OpenStack. In our scenario, we consider one initial conguration that corresponds to the initial deployment (DeployInit) and two recongurations: Decentralization and Scaling. During the initial deployment (DeployInit), dependencies are installed on all the hosts and a single database instance is deployed on one host called initial host. During the Decentralization, the database is recongured so that multiple hosts (each representing a dierent region) have a local instance of the database. The hosts other than the initial host are called additional hosts. These instances are congured as a Galera cluster in order to synchronize their content. During the Scaling, additional database instances are deployed on other additional hosts, eectively increasing the size of the cluster.

Modules

The main module is the database module MariaDB. We use a containerized version of the MariaDB software which can be booted in three modes. The standalone mode corresponds to a standard instance of MariaDB. The cluster-init mode makes it possible to initiate a new Galera cluster so that other instances of MariaDB can join it. Finally, the cluster-join mode allows the instance to join an already existing Galera cluster. Its life-cycle is as follows. To deploy MariaDB, a dedicated directory must be mounted (transition m and place mounted of the green behavior install), in which a hierarchy of directories must be created (transition c and place dir_created).

The conguration les, which state among other things in which mode MariaDB will be run, must be placed at the appropriate location (transition sc). In parallel to this, the MariaDB docker image may be downloaded once Docker is available on the host (transition p and place r_t_pull). Then, the Docker image may be started (transition st and place started). Once the database service is operational, a previously created backup present on the host may be restored, hence populating the database (transition rr of the yellow behavior restore_run). After possibly restoring this backup, the database can be used by other modules (mariadb provide port). When running, the MariaDB service may be stopped, after possibly saving a backup of the content of the database on the host (transition b of the purple behavior backup). The directories containing the conguration of MariaDB and its data can then be unmounted (transition u of the red behavior uninstall), eectively resetting the database. Note that many other operations could be performed on this module, but these are the ones which we use in this chapter. A database developer may build a much more complex and complete control component for MariaDB. conguration. This Concerto program will not be evaluated as being considered as an initial conguration in our scenario.

The rst reconguration, namely Decentralization, start from the initial conguration obtained after Listing 6.4. It replaces the standalone database by a distributed, or decentralized, database with n + 1 instances (one on the initial host and one on each of the n additional hosts). The reconguration eectively performs a backup of the content of the database on the initial host, restarts the database container in cluster-init mode and restores the backup once the database is running. In addition, it deploys one instance of the database on each of the n additional hosts in clusterjoin mode. Listing In Ansible, each reconguration is coded as a playbook to execute. Some reconguration actions can be gathered under the same Ansible task, in particular all the deployment actions of the modules other than the database that are deployed on multiple hosts. When it comes to the database, when there are multiple database modules (migration and scaling recongurations), the deployment actions of the databases of the additional DB nodes can respectively be gathered under the same Ansible task. However, the non-deployment actions (backup, stopping the container, restoring backup) and the action to start the Docker container of the database of the initial DB node have to execute in a separate task.

Synthetic use-cases

The goal of our synthetic use-cases is to test the dierent possible situations in terms of parallelism that can be encountered during reconguration. This diversity allows us to ensure that the implementation behaves in conformity with what the performance model predicts and to analyze how performance is aected by scale or dierent types of parallelism.

Despite their synthetic nature, these use-cases are inspired by common problems:

modules having dependencies to several other modules. While no system is actually recongured, the component types and recongurations have been implemented and the only dierence between this and a real use-case is that the transition actions wait for a given amount of time to simulate something happening instead of actually executing commands on remote hosts. In the following, we therefore explain the use-cases using the same vocabulary as we would if the scenario were real.

3 https://gitlab.inria.fr/VeRDi-project/galera-experiment

Modules

We consider a server module, the goal of which is to provide a service, e.g., a web service, to users external to the assembly. This server relies on number n of other modules called dependencies, which may be databases, other web services, libraries, etc. Each module runs on a distinct host machine. For the sake of simplicity, we assume that all the dependencies have similar lifecycles. Their deployment is done in two steps. First install the dependency, second start the service. After installation (green behavior), we consider that any conguration information required by the server to use this dependency is available (through config and service ports). After starting the service, it can be used by the server through its service port. When it is running, each dependency may be updated, and the service can not be provided during this process. It is done in two phases:

rst perform the update itself, and then restart the service. The update process is distinct among the dependencies.

The server's life-cycle is as follows. Its deployment (green behavior of Figure 6.4) starts by allocating some resources to be used (transition sa of the green behavior deploy). Then, multiple conguration actions are performed in parallel, one for each dependency (transitions sc1 and sc2). Each of these actions can only be performed once the conguration information of the corresponding dependency is available. Finally, once each conguration action has been performed, the server may start its own service. When it comes to reconguration, the server may be suspended (red behavior of Figure 6.4), which causes it to stop using the services provided by the dependencies. The actions performed to stop using these services are done in parallel.

Recongurations

We consider four reconguration use cases, each featuring dierent kinds of parallelism. Concerto implementations of these recongurations are given in Listings 6.7 to 6.10. Note that in each of them, a loop is used to express parametric reconguration programs, but this can be unrolled as the loop parameter is known prior to execution. The rst reconguration, namely DeployDeps, deploys n dependencies and features inter-module parallelism when all reconguration actions are identical on all components. The second, namely UpdateNoServer, updates these n dependencies and features inter-module parallelism when all reconguration actions are not all identical on all components. The third, namely DeployServer, deploys the server (with its dependencies already deployed) and features intra-module parallelism. Finally, A Concerto assembly with two components Dependency i and one component Server 2 . In the server component, the two groups containing either place sconf1 or place sconf2 also contain all the places represented above them (configured, running, s1 and s2). In the dependency components, the transitions di i and di r (marked with *) are considered to be associated respectively to the same actions.

the fourth, namely UpdateWithServer, updates the n dependencies, which requires the suspension of the server. It features both inter-module and intra-module parallelisms.

they will be used separately to check performance models for each solution.

Performance models

In this section, we present performance models for our main comparison points, Ansible and Aeolus. These, in addition to the performance model of Concerto (and Madeus), are meant to allow us to analyze how much parallelism is achieved by each solution on a given reconguration scenario, to predict the execution time of each of them as a function of the durations of the reconguration actions, and to compare these results.

First, we present the performance model for Ansible and validate it. Second, we explain how a performance model for Aeolus can be obtained by a simple transformation from the one of Concerto. Then, we explain why the analysis made using

Concerto's performance model also apply to Madeus deployments. Finally, we validate the performance model of Concerto using the synthetic use-cases introduced in the previous section.

A performance model for Ansible

In Ansible, a reconguration consists in a sequence of tasks, each task being composed of a reconguration action and metadata, indicating in particular the hosts on which the action should be executed. Tasks are executed sequentially, but one task may execute the same action in parallel on multiple hosts. The task is complete only when the actions have terminated on all hosts, thus introducing a synchronization barrier before the next task can be executed. Therefore, given a sequence of reconguration tasks t 1 , t 2 , . . . , t n , where t i executes action a i on a set of hosts H i , the total reconguration time is n i=1

max h∈H i (d (h, a i))
where d (h, a i) is the duration of action a i on host h.

To validate this model, we executed an Ansible reconguration composed of two tasks, each executing the Bash command sleep for a randomly determined time between 0 and 10 seconds (with a potentially dierent time across hosts). The facts gathering feature of Ansible was disabled to minimize overhead during the execution.

We performed this experiment 1500 times both for n = 2 and n = 5. For n = 2, the dierence between predicted and measured execution time ranged from 0.8s to 5.1s with a mean of 1.0s and a median of 1.0s also. Note that only two measurements had a dierence of more than 1.3s. For n = 5 it ranged from 0.9s to 7.2s with a mean of 1.2s and a median of 1.2s also. Note that only two measurements had a dierence of more than 1.6s. One can note from these experiments that a small overhead is observed when executing Ansible.

This shows that our execution and performance modeling for Ansible matches what happens in reality, and is even a bit optimistic, not taking into account the slight overhead. The code to reproduce these experiments is available online 5 .

A performance model for Aeolus

Aeolus is no longer under active development, and we could not run it in our experiments. However, its execution model is similar to Concerto, except that transitions cannot be executed in parallel inside a component. For this reason, we emulate the execution of Aeolus by replacing the Concerto component types by versions that do not have parallel transitions (i.e., we sequentially order the reconguration actions).

Thus, we use the performance model of Concerto to estimate the performance of Aeolus.

Validation of Concerto's performance model

For Madeus and Concerto, we use their respective performance models presented in the previous chapters. Note that when it comes to deployment, Madeus and

Concerto have the same level of parallelism expressivity: parallel transitions in the internal-nets of the components and port-based parallelism between components. For example, Figure 6.5 shows the Madeus assembly equivalent to deploying the Concerto assembly shown in Figure 6.4. Therefore, in the following, we only evaluate Concerto while everything which does not have to do with the dynamicity of the assembly also applies to Madeus.

In order to ensure that Concerto's performance model matches the experimental results, the execution time of our four synthetic recongurations presented in Section 6.2.2 were measured using our Python implementation of Concerto. Recall that the Concerto reconguration programs that we analyze are given in Listings 6.7 to 6.10.

Each transition calls the Python function time.sleep to simulate the time required by an arbitrary reconguration action. Given a reconguration, we randomly selected a duration for each transition (continuous uniform distribution between 0 and 10 seconds), and compared the execution time of the implementation to the predicted time given by the performance model. The durations in this experiment do not need to be realistic, as the aim is to test the accuracy of the performance model in a variety of situations.

We ran this experiment 250 times for each reconguration, for 1, 5 and 10 dependencies, for a total of 3000 executions. Table 6.1 summarizes the results obtained.

The full results as well as the code to reproduce these experiments are available online The dierence between the estimated time and the measured time is at most 0.05 seconds, or 5.7% above the estimated time (in this instance the total execution time was 0.37 seconds, which explains the relatively high percentage). The median execution times were, depending on the use cases, included between 10.9 seconds and 24.21 seconds, while the average execution times were included between 10.15 seconds and 23.89 seconds, which is large compared to the maximum dierence between the estimated time and the measured time. Note that the measured time was always slightly larger than the estimated time. This is explained by the small overhead introduced by the Concerto implementation. The performance model therefore matches what is observed in reality.

Parallelism

In this section, we evaluate the parallelism introduced by Madeus and Concerto, which corresponds to their capacity to execute deployment and reconguration actions in parallel while respecting the dependencies between these actions. The expected consequence of increasing such parallelism is the reduction of the total execution time of a given deployment or reconguration.

We rst use the production use-case presented in Section 6.2.1 to show that the predictions in terms of parallelism expressivity provided by the performance models match what happens in reality when using our implementation of Concerto.

Then, we use the performance models presented in Section 6.3 to analyze how much parallelism Concerto, Aeolus and Ansible express in the synthetic use-case presented in Section 6.2.2 and compare the resulting total execution times.

Accuracy of the performance model and execution times on a production use case

In this section, we make use of the production use case presented in Section 6.2 to evaluate: rst, to which extent the performance models allow one to predict the total reconguration time for Madeus and Concerto; second, the gains of Concerto compared to Ansible and Aeolus.

We consider the two recongurations previously presented in Listings 6.5 and 6.6.

First, the decentralization from a MariaDB instance to a Galera cluster of size 3, 5, 10 and 20. Second, the scaling of a cluster of size 3, with the number of nodes added equal to 1, 5, 10 and 20. This can for example be part of a multi-region deployment of OpenStack, as discussed at the 2018 Vancouver OpenStack summit 7 : originally all regions use the same centralized database; then OpenStack is recongured so that multiple regions have a local instance of the database synced in a Galera cluster;

and nodes are added when increasing the number of regions having their own local instances.

Evaluations have been carried out on the Uvb cluster of the experimental platform Grid'5000 (www.grid5000.fr). Uvb is composed of 43 nodes equipped with two 6core Intel Xeon X5670 CPUs, 96 GB RAM, 250 GB HDD and a 1 Gbps Ethernet network card and a 40 Gbps InniBand network card (the Ethernet network was used in our experiments).

The use case has been implemented in Concerto and Ansible. Moreover, Aeolus is emulated by transforming the Concerto components so that there is no intra-module 7 https://www.openstack.org/videos/summits/vancouver-2018/ highly-resilient-multi-region-keystone-deployments For each solution and each parameter, the experiment was repeated 15 times. The total execution time as well as the durations of the individual transitions for Concerto and Aeolus were recorded (Ansible does not allow to measure this for each individual host). The transition durations measured for Aeolus were used as input of the performance models to estimate the running time of the recongurations for Aeolus and Concerto. Figure 6.6 shows these estimations as well as the measured running times.

We observe that the performance model gives a slightly lower execution time for Concerto compared to Aeolus, which is conrmed by the actual execution times. These are comprised in the ranges of possible execution times for both Concerto and Aeolus. In terms of pure performance, Concerto's gains compared to Aeolus range from -0.6% (scaling, 10 nodes) to 8.5% (decentralization, 5 nodes), and from 5.4% (scaling, 1 node) to 32.1% (decentralization, 3 nodes) compared to Ansible. In terms of precision of the time estimation using the average duration for each transition, the maximum error is 10.8% (3.8s) for the scaling with 10 additional nodes with Concerto. This error is explained by the fact that taking the average durations of the transitions leads to underestimating the inuence that a single transition can have on the total execution time. When using respectively the minimum and maximum durations instead, the measured execution time is always between the min/max estimations.

Overall, the performance gain is, as expected very high compared to Ansible which is one of the most used production tool to handle recongurations. However, the performance gain appears to be low compared to Aeolus in this real use-case. This result was however predicted by the performance model and is due to a lack of exploitable intra-module parallelism. We believe that inserting this use-case within the complete OpenStack multi-region reconguration case would oer a much more convincing gain as introducing more components to recongure. We did not get enough time to perform this integration, but we have conducted experiments on the deployment of OpenStack with Madeus (under minor revision to the Journal of Systems and Software (JSS) 8) that have shown a performance gain up to 30% compared to Aeolus. That work used the implementation of Madeus presented in Section 6.1.4, however we do not detail this experiment in this document as the author did not take part in this work other than providing the Madeus implementation.

Analysis of parallelism expressivity

In order to evaluate the potential gain of Concerto, we use its performance model, along with those of Aeolus and Ansible to compare their parallelism in the synthetic use cases presented in Section 6.2. We do this by using the performance models presented before to express the total execution time of each of the four recongurations as a function of the duration of their individual reconguration actions. The resulting formulas are listed in Table 6. (1) DeployDeps: We consider the deployment of n instances of n component types Dependency 1 , . . . , Dependency n . The reconguration is given in Listing 6.7 and the formulas given by the performance models of Concerto, Aeolus and Ansible are given in Table 6.2 In this use-case the behavior install is the only one considered. As all Dependency i component types are supposed to perform the same actions within this behavior (denoted with a star on Figure 6.4), Ansible is able to perform the same action simultaneously on all instances. As a result, the transitions di i can be executed in parallel across the instances dep i , then the transitions dr i . The formulas are identical for Aeolus and Concerto, because there are no parallel transitions in the components, i.e., there is only inter-module parallelism. The gain for Concerto and Aeolus compared to Ansible depends on the dierence of duration of similar transitions across instances. One the one hand, Figure 6 On the other hand, when running the same actions on similar hardware, we expect a normal distribution N (µ, σ 2) (of mean µ and standard deviation σ) for the durations of the transitions di i and dr i respectively. As a result, Table 6 n = 2000, a tenfold increase compared to the case with σ = 10. Thus, the absolute gain in time of Concerto and Aeolus compared to Ansible seems to be proportional to the considered standard deviation of transitions durations σ.

(2) UpdateNoServer: Given n dependencies in place running, we consider the update of these dependencies. The reconguration is given in Listing 6.8 and the formulas are given in Table 6.2 (2). Recall here that unlike the previous case, the transitions du i of the behavior update are not assumed to be the same among the dependencies (dierent types of components), therefore Ansible cannot execute them in parallel (transitions di, as before, can be executed in parallel). In this case, assuming that max i {d dr i } is small compared to i {d di i }, the expected gain of Concerto and Aeolus compared to Ansible is proportional to the number of dependencies, showing the better scalability resulting from inter-module parallelism.

(3) DeployServer: Given n dependencies in place running, we consider the deployment of an instance of Server that uses these dependencies. The reconguration is given in Listing 6.9 and the formulas are given in Table 6.2 (3). Here, the formulas are similar for Ansible and Aeolus, as the transitions sc i cannot be performed in parallel by Ansible (because they are dierent), nor by Aeolus (because they are part of the same component). In this case, assuming that d sa +d sr is small compared to i {d sc i }, the expected gain of Concerto compared to Aeolus and Ansible is proportional to the number of parallel transitions.

(4) UpdateWithServer: Given n dependencies and a server in place running, we consider the update of all the dependencies, which requires a suspension of the server.

The reconguration is given in Listing 6.10 and the formulas are given in Table 6.2 (4). In Ansible, the transitions are executed sequentially, except for the transitions dr i that can be executed in parallel (same action for all component types in the behavior install). In Aeolus, thanks to inter-module parallelism, the reconguration time is the longest time required by any component to execute its behaviors. The rst part of the outer max corresponds to the execution of the dependencies. The execution time of instance dep i is du i + dr i plus the time required before the port service may be de-activated. There is no intra-module parallelism in Aeolus, so the ss i transitions execute sequentially. Therefore, the time for use port service i to be deactivated is j≤i d ss j , which hence is the time it takes for the port service to be able to be deactivated. The second part of the outer max corresponds to the execution of the server in which all the transitions have been sequentialized, hence giving the sum of all the transition durations. In Concerto, the transitions ss i and sp i can be executed in parallel. Compared to Aeolus, this signicantly decreases the time required before the dependencies may leave the place running (for the i th dependency module, it roughly divides it by i), and divides by roughly n the execution time of the ss i and sp i transitions. For instance, if we set the duration of all transitions to 5 seconds, this reconguration with 10 dependencies would take 160 seconds for Ansible, 105 seconds for Aeolus and 15 seconds for Concerto. With 100 dependencies, the time would increase to 1510 seconds for Ansible and 1005 seconds for Aeolus, while remaining at 15 seconds for Concerto.

Overall, we saw that inter-module parallelism (which Aeolus, Madeus and Concerto have) improves performance as the number of components having to perform actions at the same time increases, which improves the scalability in terms of performance (DeployDeps, UpdateNoServer, UpdateWithServer). Even when Ansible can execute reconguration actions in parallel on multiple hosts, the dierence in duration of reconguration actions on each host generates a loss of performance (DeployDeps).

We also saw that intra-module parallelism (which only Madeus and Concerto have) improves performance as the number of actions that can be done in parallel in a component increases (DeployServer and UpdateWithServer). Finally, we saw that a combination of inter-module and intra-module parallelism as oered by Concerto (and Madeus) can have a very high impact on the overall reconguration execution time. A good example of this is the use-case UpdateWithServer, as the number of Dependency_i components increases.

Separation of concerns

In this section, we evaluate the separation of concerns of Madeus and Concerto. As presented in Chapter 3, we consider three types of actors which are commonly involved in distributed software during their existence: module developers, reconguration developers and system administrators. Recall that module developers are experts in a piece of software, i.e., in what it does, how it works, its life-cycle and its dependencies (e.g., expert in databases); reconguration developers are experts at assembling components into a functional application (e.g., expert in web applications) and know how to properly recongure a given application to ensure continued functionality, integrity of data, minimal downtime, etc.; and system administrators are in charge of a system, usually the infrastructure (physical or virtual machines, network, etc.) as well as the software running on it. They are the ones who trigger manual recongurations or set up autonomic reconguration rules.

To evaluate separation of concerns, we rst list for each actor what they need to be provided in order to properly do their job. For each element, we check whether this piece of information is provided directly to them (by other actors or by the reconguration framework), or if they need to obtain it by looking at information (code, documentation, etc.) which is not addressed to them, possibly requiring skills which are not part of their area of expertise.

Module developers

Module developers' main purpose is to create and maintain a piece of software's source code. Additionally, they need to provide documentation explaining how to use their piece of software.

Because we focus on modular development of distributed systems, the specicity of module developers is that they do not need information from other actors as they are at the start of the chain. However, they need to specify the requirements of their modules, what they provide and how to operate them. For example, they at least need to provide a way to deploy, start and/or run them.

If the reconguration solution is capable of handling non-trivial life-cycles, module developers also have to provide ways to control this life-cycle. For instance, in Aeolus, Madeus and Concerto, they need to express their life-cycle as an object close to state machine, indicate the set of services used and provided by the piece of software during its life-cycle, and associate them to the corresponding part of their life-cycle statemachines.

In solutions that support more than deployment, such as Aeolus and Concerto, but also TOSCA-based approaches among others, they need to dene additional parts of their life-cycles such as removal, update, suspended states, etc.

In Madeus and Concerto, they also have to precisely dene the dependencies between deployment/reconguration actions so that intra-module parallelism can occur.

While technically representing extra work, we argue that this is similar to writing precise documentation or good deployment scripts, which is good practice, and is in the area of expertise of the module developer. The main purpose of reconguration developers is to list and congure individual pieces of software (already existing or yet to be deployed) so that they can work together as a functional application. They also dene operations that can be applied to this application (e.g., changes in scale, updates, changes in functionality, etc.).

They need to know the requirements of each of the modules they want to manipulate and what these provide. They also need to have information about the life-cycles of the modules, their dierent possible congurations and how to make them go from one conguration to the other.

In Ansible, unless extensive documentation is provided, the requirements of the roles (which are the most appropriate unit in Ansible to dene a module), what they provide and how to change their conguration is not explicitly provided to the reconguration developer. The order in which roles have to be executed in a playbook is therefore not straightforward to determine. To do so, they need to check the code written by the module developers. For instance, in the production use-case presented in Section 6.2, if the deployment playbook was modied to deploy the database (which uses a Docker container) before Docker, the error would only be detected at run-time, and the error message would not clearly state that a dependency was not respected.

Instead, the application reconguration would have to explore the database role, realize that the task responsible for the error tries to boot a Docker container and deduce that Docker must be deployed before this happens.

Concerto's behavioral interfaces hide the complexity of the life-cycle dened by the module developer, while providing for each possible conguration of the module (stable states) information about how to go to the other congurations of the module (behavior executions), as well as information necessary to coordinate its life-cycle with other life-cycles (partial order in which use and provide ports are activated and deactivated). For example, Figure 6.8 shows the assembly of Figure 6.4 with behavioral interfaces, which corresponds to the information that a reconguration developer needs.

For deployment, the equivalent of reconguration developers are deployment process developers. In Madeus, while behavioral interfaces could also be applied, we argue that because there is only one action to be performed on each module (i.e., deployment), the deployment process developer already knows the two possible congurations and how to go from one to the other. When it comes to the orchestration with other life-cycles, we argue that, because the transitions in Madeus only go in one direction, the partial order can be easily deduced from the internal-net, which is much more simple than in Concerto.

System administrators

The main purpose of system administrators is to host distributed software and use deployment and reconguration programs or mechanisms developed by deployment/reconguration developers to deploy them, manage them and apply changes to them.

System administrators should not have to deeply understand these programs or mechanisms or understand how they work, but rather should only have to focus on the result they want to achieve on their system. Some reconguration solutions dene their recongurations by the expected state of the system (in this case the reconguration operations are deduced by comput-ing the dierence with its current state). In this case the separation of concerns is guaranteed by design.

In other cases, including Madeus and Concerto, a reconguration is dened by a set of operations to perform. When no abstraction is provided over the current structure of the application, such as in Ansible, it is impossible to automatically get a representation of the resulting system if a reconguration were to be performed. However, graph-based and component-based solutions (e.g., TOSCA-based approaches, Aeolus, Madeus, Concerto) represent the state of the system using a graph or an assembly, and their reconguration language acts on this graph or assembly. It is therefore possible to know what the graph or assembly will be like after executing a dry-run of a reconguration.

Conclusion

In this chapter we have evaluated Madeus and Concerto in terms of parallelism expressivity and separation of concerns. To this end, we presented both a production scenario and a synthetic one, the latter allowing us to test dierent scenarios of parallelism in isolated and combined fashion. We then have shown that these performance models conform with real-life scenarios using a production use-case. We have also shown that the parallelism expressivity of Madeus and Concerto is superior to the state of the art, by rst realizing that these of Madeus and Concerto are equivalent, and then comparing Concerto to Aeolus, which has the best level of parallelism expressivity in the state of the art, and Ansible which is widely used in the industry.

This comparison was done thanks to performance models for each solution.

In terms of separation of concerns, we have shown that despite the increased parallelism expressivity, Madeus and Concerto both maintain a high level of separation of concerns between three types of actors: module developers, reconguration developers and system administrators. This is achieved thanks to the various kinds of interfaces that they provide (components, behavioral interfaces, assemblies). In this thesis, we have rst presented existing solutions to assist in the execution of reconguration. The analysis of these solutions have led us to notice that they all fall short of providing at the same time genericity, parallelism expressivity and separation of concerns. More precisely, generic reconguration frameworks make a trade-o between parallelism expressivity and separation of concerns using abstractions over the life-cycle of the modules of distributed systems.

Our rst contribution, Madeus, addresses this issue in the specic case of deployment. It is a formal component model in which each module of a distributed system is represented as a component. The interface of these components, i.e., their requirements and what it provides, are clearly dened using ports. At the same time, the deployment life-cycle of each module can be dened with a high degree of parallelism.

Parallelism between distinct modules is also possible thanks to ne-grained dependencies between them made possible by the fact that the ports are linked to the life-cycles.

A formal semantics is provided, as well as a performance model which allows to dene the total execution time of a deployment as a function of the atomic deployment actions that it executes. Overall, parallelism expressivity is obtained thanks to the high level of parallelism inside each component and among components, while separation of concerns is obtained thanks to the clear interface made of ports.

Our second contribution, Concerto, extends Madeus for general reconguration.

It does so in two ways. First, by introducing the concept of behaviors, which correspond to high-level actions one might want to perform on each module. Second, by providing a reconguration language which allows to add or delete components, change the connections between their ports and triggering the execution of behaviors inside components asynchronously. A formal semantics is also provided, as well as a We introduced implementations of Madeus and Concerto, which we used to evaluate our work. We then presented two use-cases. First, a production use-case consisting in deploying a centralized database, reconguring it to become a decentralized database, and then reconguring it again to change its number of nodes. Second, synthetic use-cases showcasing dierent types of parallelism. We used the production use-case to prove the feasibility of our solution and evaluate the precision of the performance model in a real scenario. We then used the synthetic use-cases to determine precisely the gain in parallelism expressivity. Finally, we have discussed the separation of concerns of Madeus and Concerto. Overall, we have shown that Madeus and

Concerto have a higher level of parallelism expressivity than their counterparts while being generic and conserving a good level of separation of concerns between module developers, reconguration developers and system administrators. Formal guarantees Both Madeus and Concerto are formally dened, and in particular their operational semantics are formally dened. This makes it possible to perform static analysis on the components and assemblies. This could be used to make sure that models are consistent, and to make sure that for a given assembly or a given reconguration program deadlocks are not introduced. In the case of Madeus, some work has already been done in this direction [START_REF] Coullon | Integrated model-checking for the design of safe and ecient distributed software commissioning[END_REF].

Given a reconguration program, a valuable guarantee to have is that it will terminate. Also, it could be interesting in some situations to ensure that two events (for example reaching a place in two dierent components) always happen in the same order to make sure that a reconguration designer did not introduce unwilling errors.

It could also be interesting to ensure that a given property is an invariant during the execution of the reconguration, in particular when executing a reconguration program designed by someone else. For instance, one could check that some component will not be aected by the reconguration, or that some transitions will never be executed etc.

These checks could be performed at multiple stages: when designing components, when designing Madeus assemblies or Concerto reconguration programs and right before executing one (at run-time). This would increase the safety of these procedures that are not risk-free when they aect critical systems or services. Furthermore risks are greater by introducing separation of concerns, thus needing to ensure that thirdparty assemblies or programs comply with our expectations.

Automatic correct-by-design inference of reconguration programs In Concerto, reconguration programs are imperative in the sense that they are a sequence of operations to perform on an existing assembly. While this approach makes sense, this is often not how reconguration developers approach the design of a reconguration program. When an assembly needs to be changed by adding or removing components, one intuitively thinks of the desired result, not of the sequence of steps to get there. In other cases, one might want to perform a given operation on an existing component by executing a sequence of behaviors. However, executing these behaviors may only be possible by executing other behaviors in other components (for example when a provide port currently in use would become inactive).

Because Concerto is formally dened, it could be possible to generate reconguration programs which satisfy a set of requirements, such as producing an assembly B starting from an assembly A, or coming back to the original assembly after having executed a given behavior. A selection among the possible programs could then be done either automatically (e.g., those which execute less transitions) and/or manually. This would greatly simplify the process of designing complex reconguration programs, while ensuring that they are correct by construction.

Concurrent execution of reconguration programs

In large systems which use autonomic computing to adapt to their environment, the need to perform a given between components. If each execution node is responsible for a part of the assembly, the only information required to know if another execution node is aected would be the list of connections between local ports and ports from other parts of the assembly (existing or to be created by a reconguration program). When this is the case, the two execution nodes could collaborate and would not need to inform other nodes. A way to address this problem would be to provide the ability to dene composite components in Madeus and Concerto. Composite components are a well-known feature of some components models and designate components which are made of other components (we can see them as sub-assemblies). In our case, the Map-Reduce expert could assemble components into a map-reduce composite component, which could then be used directly by reconguration developers.

Additional abstractions

Composite components could also be parametric. While Concerto's reconguration language can already be parametric by adding simple conditional and loop constructs, having the ability to directly use parametric components would increase separation of concerns.

Life-cycle patterns specic to common use-cases would also increase separation of concerns and ease the use of Concerto. For example, life-cycle patterns could be provided for virtual machine provisioning or containers commissioning.

Fault-tolerance Finally, Madeus and Concerto do not provide dedicated mechanisms for fault-tolerance. If the action associated with a transition fails and the component developer did not plan for this to happen, the execution will either be stuck (if the action does not terminate) or attempt to continue as if nothing happened (if the action does terminate), most likely producing an inconsistent state for the system being deployed or recongured.

Concerto has the concept of switch, which allows to choose one path or another for a behavior depending on what happened during the execution of the action (in particular the occurrence of errors). However, ensuring that the application can recover or goes into an error state, as well as reporting that an error occurred is the responsibility of the component developer. Abstract : Distributed computer systems, which run on multiple computers, are now commonplace and used even in critical systems. However, these systems are becoming more and more complex, in terms of scale, dynamicity and expected quality of service.

Reconfiguration of distributed systems consists in changing their state at runtime. Distributed systems may be reconfigured for many reasons, including deploying them, updating them, adapting them to fulfill new requirements (in terms of user capacity, energy efficiency, reliability, costs, etc.) or even changing their capabilities.

Existing reconfiguration frameworks fall short of providing at the same time parallelism expressivity and separation of concerns between the different actors interacting with the system. The focus of this thesis is to prove that these properties can be reconciled by modelling precisely the life-cycle of each module of distributed systems, while providing appropriate interfaces between the different levels of conception. Two formal models implementing this idea are provided, one for the specific case of deployment and one for reconfiguration. Evaluation is performed on both synthetic and real use-cases and show that these models have a higher level of parallelism expressivity than their counterparts while conserving a good level of separation of concerns.

5 . 7

 57 Concerto assembly composed of one instance of each component type of Figure 5.1 . 109 5.8 Dependency graph corresponding to the reconguration program in Listing 5.2 applied to the assembly in Figure 5.7 110 5.9 Behavioral interfaces corresponding to the component types presented in Figure 5.1 . 112 5.10 Execution of the main loop of function GetInterface of Algorithm 3 on component type Db presented in Figure 5.1 115 5.11 Illustration of a choice mapping as produced by function InitSwitchChoices on component type Db (from Figure 5.1) 117 6.1 UML class diagram of our implementation of Concerto 128 6.2 Two possible Concerto component type for MariaDB 135 6.3 Overview of the Concerto assembly of a Galera distributed database . 136 6.4 A Concerto assembly with two components Dependency i and one com- ponent Server 2 . 140 6.5 Madeus assembly corresponding to deploying the Concerto assembly shown in Figure 6.4 . 145 6.6 Measured running times and estimated times for the execution of the recongurations . 147 6.7 Gantt chart representing the dierence in parallelism between the considered solutions . 150 6.8 Concerto assembly with behavioral interfaces corresponding to the Concerto assembly shown in Figure 6.4 154 List of Tables 3.1 Comparison of the solutions of the literature 4.1 Elements used by Madeus and their notations 5.1 Possible statuses of Concerto elements 5.2 Notations used in Concerto . 6.1 Summary of the results obtained with the implementation of Concerto on the synthetic use cases . 6.2 Theoretical total execution time for each reconguration of the synthetic use-case . 6.3 Distributions of the total execution time when the transitions follow a normal distribution . List of Algorithms 1 The construction of the dependency graph 2 The construction of the dependency sub-graph for each instruction . . 3 Behavioral interface algorithm functions (1) 4 Behavioral interface algorithm functions (2) 5 Behavioral interface algorithm functions (3)

 ité, (b) expressivité du parallélisme, et (c) séparation des préoccupations entre les diérents types d'acteurs de la reconguration. En général, deux d'entre elles viennent ensemble : (a) et (c) par des solutions génériques qui ne fournissent pas des performances optimales en termes de temps de reconguration, (b) et (c) par des solutions spéciques à un certain type de reconguration et, enn, (a) et (b) par des solutions de bas niveau qui ne sont pas pratiques à utiliser ou pas réalistes dans le cas général. Dans ces travaux, nous soutenons qu'il est possible de concilier ces trois propriétés. Nous avons par conséquent pour but de dénir un cadre générique pour l'exécution de la reconguration qui à la fois permet d'exprimer un haut degré de parallélisme et fournit une bonne séparation des préoccupations entre les acteurs de la reconguration. Ce cadre doit aussi être déni formellement et le niveau de parallélisme déni précisément, de sorte qu'il puisse être analysé, évalué et qu'il fournisse des garanties de sûreté. Contributions Dans ces travaux, nous abordons en premier le cas spécique du déploiement (pour rappel, nous considérons le déploiement comme un cas particulier de reconguration), qui établit les fondements d'une solution plus générale de reconguration. Ensuite, nous abordons la reconguration de manière générale. Dans cet esprit, les contributions de cette thèse sont les suivantes : un modèle à composants formel appelé Madeus qui concilie généricité, expressivité du parallélisme et séparation des préoccupations dans le cas précis du déploiement ; un modèle à composants formel appelé Concerto qui étend Madeus pour supporter la reconguration de manière générale tout en conservant ces bonnes propriétés ; des modèles de performances pour Madeus et Concerto, qui dénissent le niveau exact de parallélisme qui peut être atteint ; une implantation de Madeus ainsi que Concerto en Python ; une évaluation complète de Madeus et Concerto en termes d'expressivité du parallélisme et de séparation des préoccupations.

 Chardet, Hélène Coullon, Christian Pérez. Predictable Eciency for Reconguration of Service-Oriented Systems with Concerto. In CCGrid 2020 -20th International Symposium on Cluster, Cloud and Internet Computing, Melbourne, Australia, 2020. Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin. Madeus: A formal deployment model. In 4PAD 2018 -5th International Symposium on Formal Approaches to Parallel and Distributed Systems (hosted at HPCS 2018), Jul 2018, Orléans, France. Conférence nationale Maverick Chardet, Hélène Coullon, Christian Pérez. Interfaces comportementales pour la reconguration de modèles à composants. In ComPas 2018, Toulouse, France. Soumissions à des journaux Maverick Chardet, Hélène Coullon, Christian Pérez, Dimitri Pertin, Charlène Servantie, Simon Robillard. Enhancing Separation of Concerns, Parallelism, and Formalism in Distributed Software Deployment with Madeus. In Journal of Systems and Software (JSS) [Under minor revision]. Maverick Chardet, Hélène Coullon, Simon Robillard. Toward Safe and Efcient Reconguration with Concerto. In Science of Computer Programming (SCP), special issue FOCLASA 2019 Coordination and Self-Adaptiveness of Software Applications [Accepted]. Organisation du manuscrit Ce document est organisé en six chapitres après cette introduction. Le chapitre 2 dénit plusieurs concepts liés aux systèmes distribués qui seront utilisés dans le reste du document. Le chapitre 3 étudie l'état de l'art du déploiement et de la reconguration, extrait les propriétés non-présentes dans les travaux connexes et présente les objectifs de la thèse. Le chapitre 4 présente notre première contribution, le modèle de déploiement Madeus. Après une présentation de ses concepts généraux, nous donnons une dénition formelle du modèle, suivie de la dénition d'un modèle de performances et d'une discussion. Le chapitre 5 présente notre deuxième contribution, le modèle de reconguration Concerto,en utilisant un plan similaire à celui du chapitre 4. Des informations supplémentaires sont aussi fournies sur un nouveau concept introduit pour maintenir une haute séparation des préoccupations : les interfaces comportementales. Le chapitre 6 présente d'abord notre implantation Python de Madeus et Concerto, celle de Madeus étant programmée comme une abstraction par-dessus celle de Concerto. Des choix de conception sont abordés et des exemples sont fournis. Ce chapitre évalue ensuite les deux modèles en termes d'expressivité du parallélisme et de séparation des préoccupations en utilisant un vrai cas d'usage de production ainsi que des cas d'usage synthétiques. Enn, le chapitre 7 discute du contenu de cette thèse, conclut et fournit des idées de travaux futurs.

 a formal component model called Madeus which reconciles genericity, parallelism expressivity and separation of concerns in the case of deployment; a formal component model called Concerto which extends Madeus to support reconguration in general while conserving these good properties; performance models for Madeus and Concerto, which dene the exact level of parallelism that can be achieved; an implementation of both Madeus and Concerto in Python; a comprehensive evaluation of Madeus and Concerto in terms of parallelism expressivity and separation of concerns.

Figure 2 . 1 :

 21 Figure 2.1: Example of a component assembly with two components: a web server and a database. The database provides a service through its provide port and the web server uses this service through its use port, while itself providing a service through a provide port.

Figure 2 . 3 :

 23 Figure 2.3: Example of a life-cycle dened with a Petri net.

Figure 2 . 4 :

 24 Figure 2.4: Example of a life-cycle dened with an UML state-chart. It is composed of two basic states (not running and running) and one composite state, itself composed of two orthogonal regions: one containing states unconfigured1 and configured1, and the other containing states unconfigured2 and configured2.

Figure 2 .

 2 Figure 2.4 shows how the life-cycle of a database might be modeled using an UML state chart, with parallel actions and nested states. The transition leaving

Figure 2 . 5 :

 25 Figure 2.5: An example of dependency graph.

Figure 2 .

 2 Figure 2.5 shows an example of dependency graph. In this graph, tasks 1 and 7

Figure 3 . 1 :

 31 Figure 3.1: Dierent types of life-cycle modeling. Each type is exemplied by a statemachine-like representation of the life-cycles of two modules.

Figure 3 .

 3 Figure 3.1 shows dierent ways in which the life-cycle of a server and a database may be modeled.

Figure 3 .Figure 3 . 2 :

 332 Figure 3.2 illustrates these levels of parallelism through an example where the green action depends on the blue action of another module.

 At the beginning of my PhD, an informal prototype of Madeus had already been developed by the team, along with a basic implementation. My contribution was to dene a formal model for Madeus, along with a performance model (presented in sections 4.2 and 4.3 respectively). This led to some signicant changes, and ultimately I also wrote a new implementation.4.1 OverviewMadeus is a control component model, in the sense introduced in Chapter 3. The deployment life-cycle of each software module is managed by a control component (component in the following). Considering a distributed application to be deployed, Madeus coordinates the deployment life-cycles of its modules by executing an assembly made of the components managing these modules. In this section, we introduce the concepts used by Madeus in an informal way, based on an example. This example consists in deploying a database and a server which uses this database and is illustrated by Figure 4.1.

Figure 4 . 1 :

 41 Figure 4.1: Madeus assembly describing the deployment procedure of a server and the database used by the server. Components are represented by rectangles. Inside components, places are represented by circles, initial places being lled with gray, and transitions are represented by arrows between places. Outside components, provide ports are represented by arrows and use ports are represented by inverse arrows.

Figure 4 . 2 :

 42 Figure 4.2: Ten snapshots of the execution of the deployment of the Madeus assembly of Figure 4.1. Each red circle is a token, and the number inside it corresponds to which

 Provide ports may be bound to one or more places. The binding relation p ⊆ P p × Π is such that p p p π if and only if p p is bound to the place π. The detailed semantics is given later but intuitively, a provide port becomes active when at least one of its bound places has been reached. Internal-net Π set of places of a component Θ ⊆ Π × A × Π set of transitions Interface and bindings P u set of use ports P p set of provide ports u ⊆ P u × Θ binding relation between use ports and transitions p ⊆ P p × Π binding relation between provide ports and places Assembly C set of components of an assembly L set of use-provide connections of an assembly Operational semantics M subset of elements holding a token R subset of places that have been reached E set of ongoing actions

Figure 4 . 3 :

 43 Figure 4.3: Illustration of the rule Reach π .

Figure 4 . 4 :

 44 Figure 4.4: Illustration of the rule Leave π .

 Figure 4.6 illustrates this rule.

Figure 4 . 5 :

 45 Figure 4.5: Illustration of the rule Fire θ .

Figure 4 . 6 :

 46 Figure 4.6: Illustration of the rule End θ .

Figure 4 . 7 :

 47 Figure 4.7: The operational semantics of Madeus.

Figure 4 . 8 Figure 4 . 8 :

 4848 Figure 4.8 illustrates how a section of Madeus internal-net with three places p1, p2 and p3 and three transitions t1, t2 and t3 (associated to actions act1, act2 and act3 respectively) is transformed to a part of a dependency graph.

Figure 4 . 9 :

 49 Figure 4.9: Transformation of use ports and their bindings to a dependency graph.

Figure 4 .

 4 Figure 4.10 illustrates how a section of Madeus internal-net with two provide ports pr1 and pr2 (associated to places p2 and places p2 and p4 respectively) is transformed to a section of dependency graph.

Figure 4 .

 4 Figure 4.11 depicts the dependency graph corresponding to the server-database assembly of Figure 4.1.We notice the sub-graph of component db on the left, and the one of component server on the right. In the latter, notice in particular the arcs corresponding to the execution of transition conf1 parallel to those corresponding to the execution of transitions ins and conf2. Notice also that these two sub-graphs are connected by the global source and global sink vertices, and by the arcs between the vertices corresponding to their connected ports.

Figure 4 . 11 :

 411 Figure 4.11: Dependency graph corresponding to the assembly of Figure 4.1.

Contents 5 . 1

 51 Overview . 5.1.1 Component type . 5.1.2 Assembly . 5.1.3 Reconguration Program 5.1.4 Changes from Madeus to Concerto 5.2 Formal Model . 5.2.1 Component Type . 5.2.2 Component Instance . 5.2.3 Assembly and Reconguration Program 5.2.4 Operational Semantics . 5.3 Performance Model . 5.3.1 Assumptions . 5.3.2 Reconguration dependency graph 5.3.3 Example . 5.4 Behavioral Interfaces . 5.4.1 Denition . 5.4.2 Generating a behavioral interface 5.5 Discussion . 5.6 Conclusion . This chapter presents our second contribution: the Concerto reconguration model. Concerto extends the Madeus deployment model (presented in Chapter 4) for reconguration.

For example, Figure 5 . 1 Figure 5 . 1 :

 5151 Figure 5.1: Two Concerto component types describing the life-cycle of a database and a proxy (which can be seen as a client). Components are represented by rectangles. Inside components, places are represented by circles, initial places being lled with gray, and transitions are represented by colored arrows between places. The color of an arrow indicates to which behavior the transition it represents is associated (the matching between color and name of behavior is made on the right of the component type). Switches are represented like transitions with multiple endings. Groups are represented by gray rounded rectangles. Outside components, provide ports are represented by semi-circles and use ports are represented by discs. Bindings between ports and groups are represented by a thing gray line. When the line is connected to a place instead of a group, it designates a group containing only this place.

Figure 5 .

 5 Figure 5.2 is an example of assembly containing two instances, an instance db of type Db, and an instance proxy of type Proxy. Instance db has two tokens on

Figure 5 . 2 :Figure 5 . 1 .

 5251 Figure 5.2: Concerto assembly composed of one instance of each component type of Figure 5.1. The tokens of the marking are represented by black discs. The behavior queue is represented by an area at the top-right corner of each component instance where the behaviors in the queue are listed from left to right with their respective colors. The names of each behavior is associated to their color thanks to a list on the right of each component instance.

Figure 5 Figure 5 . 3 :

 553 Figure 5.3: Sixteen snapshots of the execution of a Concerto assembly. Each red circle is a token, and the number inside it corresponds to which snapshot it belongs to. Two adjacent circles with two numbers separated with a dash represent a token corresponding to multiple snapshots (from the rst number to the second). The numbers in red on the right of the behavior queues at the top-right of each component instance have a similar meaning: each queue represented corresponds to a set of snapshots.

Listing 5 . 1 :

 51 Reconguration program leading to the deployment scenario presented in Figure 5.3 (snapshots 0 to 12) add (db , Db) add (proxy , Proxy) con (proxy , sql_write , db , sql_write) con (proxy , sql_read , db , sql_read) con (db , backup_in , other_comp , other_port) # Not shown in the figure pushB (db , install) pushB (proxy , install) wait (proxy) An example of program is presented in Listing 5.1. This program creates the assembly of which we have studied the execution presented in Figure 5.3. This program leads to snapshot 0, and the operational semantics of Concerto then leads to snapshot 12. To go from snapshot 12 to snapshot 13, one can execute the program presented in Listing 5.2. Listing 5.2: Reconguration program leading to the cong change scenario presented in Figure 5.3 (starting from snapshot 13) pushB (db , backup) pushB (db , change -config) pushB (db , install) pushB (proxy , read -only) pushB (proxy , no -service) pushB (proxy , install) wait (proxy) 5.1.4 Changes from Madeus to Concerto Madeus and Concerto share many concepts like internal-nets an ports, and have similarities in their execution semantics. However, some key points dierentiate them so that, at the cost of more complexity (in the sense of featuring more concepts), Concerto is strictly more expressive than Madeus. Dynamic assemblies In Madeus, assemblies are static and cannot evolve over time. This is not a problem when considering only the deployment part of the lifecycle of distributed systems. However, Concerto allows to model their whole life-cycle, which can include structural changes through reconguration. Therefore, Concerto provides a reconguration language to create assemblies of components or change existing ones. Adding new components at run-time implies that one has a library of blueprints which can be used as a model for the new component. This leads to the separation of two notions in Concerto: component type and component instance. A component type is a blueprint, while a component instance is the actual model of the life-cycle of a distributed system module.

Figure 5 . 4 :

 54 Figure 5.4: Illustration of the rule Fire b π .

Figure 5 . 5 :

 55 Figure 5.5: Illustration of the rule End δ θ .

Figure 5 . 6 :

 56 Figure 5.6: Illustration of the rule Reach δ .

14 end 15 for p p ∈ P p c do 16 A 18 for p u ∈ P u c do 19 A 25 A 2 :

 1415161819252 ← A ∪ {(v enter in(Gr(pp),b) , 0, v act id,pp), (v deact id,pp , 0, v leave out(Gr(pp),b))} ; 17 end ← A ∪ {(v act id,pu , 0, v enter in(Gr(pu),b)), (v leave out(Gr(pu),b) , 0, v deact id,pu)} ; 20 end 21 remove elements of V and A that are not reachable from v source id,b ; 22 tokens Π ← tokens Π [id := {π | v enter π ∈ V ∧ ¬∃(π, b , D), b = b}] ; 23 end v ← end v [id := v sink id,b] ; 24 for π ∈ tokens Π (id) do ← A ∪ {(v enter π , 0, v sink id,b } ; The construction of the dependency sub-graph for each instruction.

π

 representing the place being entered is added to the graph. If the place holds a token at the beginning of the behavior b, this vertex is connected to v source id,b . Another vertex v leave π is also added, representing the point at which the outgoing transitions are ready to be red, after the place has been reached and any provide port bound to that place has been deactivated. For each transition θ = (π, b , {δ}) such that b = b, one vertex v re θ is added, connected to v leave π to encode the fact that the transition may only start after a token leaves its source place, and to v enter

 P l(δ) to represent its outcome. The latter connection is weighted time(i, θ) to represent the time taken by the execution of the action associated to θ.For each provide port p p , we consider the group Gr(p p), and in particular the entrance place in(Gr(p p), b) and exit place out(Gr(p p), b) of that group, under the behavior b. Two arcs are added. The rst, from v enter in(Gr(pp),b) to v act pp , represents the fact that p p becomes active after a token has been added to the entrance of the group. The second arc, from v deact pp to v leave out(G) , represents the fact that the group may be deactivated only after p p is not in use anymore. Conversely, for each use port p u , two arcs are added, one from v act pu to v enter in(Gr(pu),b) , and another from v leave out(Gr(pu),b) to v deact pu .

Figure 5 . 7 :Figure 5 . 1 .

 5751 Figure 5.7: Concerto assembly composed of one instance of each component type of Figure 5.1. The two instances are in their deployed state.

Figure 5 . 8 :

 58 Figure 5.8: Dependency graph corresponding to the reconguration program in Listing 5.2 (on page 94) applied to the assembly in Figure 5.7. Each sub-graph is repre-sented with the color corresponding to its behavior. Note that the use port backup_in of instance db is assumed to be provided.

Figure 5 .

 5 Figure 5.8 shows the dependency graph corresponding to the reconguration presented in Listing 5.2 (on page 94) applied to the assembly in Figure 5.7. Each color of the colored vertices correspond to the sub-graph generated by a call to extendGraph(pushB(id, b)) for some identier id and behavior b. The color of the sub-graphs matches the representation of the behavior b in Figure 5.7. The graph also contains a vertex v wait generated by extendGraph(wait(proxy)), and vertices v source and v sink generated in the initial phase of the graph construction. For vertices corresponding to transitions, the weight is indicated. All other vertices have a weight of 0.

 For instance, parallelism within the component, or the detailed set of transitions executing is irrelevant. What is important however are the set of behaviors which can be executed at any given time, which use or provide ports are aected by the execution of a behavior (and in which order) and which use or provide ports are active when the component is stable, i.e., not executing any behavior. Behavioral interfaces are a view generated for a Concerto component type which expose only this useful information to the reconguration developer. It can also be viewed as a contract/interface, which component types can implement (distinct component types can have the same behavioral interface). Two component types implementing the same interface are guaranteed to behave in the same way from the point of view of the reconguration developer.

Figure 5 . 9 :

 59 Figure 5.9: Behavioral interfaces corresponding to the component types presented in Figure 5.1 (on page 87). Octagons represent stable states while colored arrows represent behavior executions. Stable states are tagged with their active ports, while

20 end 21 explored_behaviors

 2021 ← explored_behaviors ∪ {b} end end return Σ discovered , E discovered AuxFunction ExploreBehavior(b,σ,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr): choices ← InitSwitchChoices (b, c) results ← ∅ for choice in choices do results ← results ∪ {ExploreBehaviorChoice (choice, b, σ, c)} end return results Algorithm 3: Main function GetInterface to get a behavioral interface from a component type along with auxiliary functions ExploreState which nds possible behavior executions from a given state, and ExploreBehavior which computes the execution of a given behavior from a given state.

Figure 5 . 10 :

 510 Figure 5.10: Execution of the main loop of function GetInterface of Algorithm 3 on component type Db presented in Figure 5.1 (on page 87), eventually obtaining the behavioral interface shown in Figure 5.9. The number below each sub-gure corresponds to the number of iterations of the loop which have been performed.

Figure 5 .

 5 Figure 5.10 illustrates how the behavioral interface of component type Db presented in Figure 5.1 (on page 87) is constructed by showing the state machine de-

Figure 5 . 11 :

 511 Figure 5.11: Illustration of a choice mapping as produced by function InitSwitchChoices of Algorithm 4 on component type Db presented in Figure 5.1(on page 87), with initial stable state {uninstalled} and behavior install. In this mapping, transition allocate maps to the station of its only transition ending. The same goes for transitions conf1, conf2, run and restore. In the case of transition sw, among two possible stations, it is mapped to the one of place sw1.

2 act_places 5 for δ in ∆ do 6 station_sources 11 while

 25611 ← σ ; act_stations ← ∅ ; f inal_places ← ∅ 3 station_sources ← EmptyDictionary ; event_logs ← EmptyDictionary 4 station_counts ← InitStationCounts (b, c) act_places is not empty or act_stations is not empty do 12 if act_places is not empty then π ← extract one from act_places out_trans

25 act_stations 30 end 31 if 7 if b = b then 8 for δ in D do 9 station_counts

 253031789 ← act_stations ∪ {δ} end end event_logs [π] ← Suc event_logs [π] , Sim { dea, p | p ∈ deact_ports} end act_stations is not empty then δ ← extract one from act_stations π ← P l (δ) act_ports ← PlacePorts (π, c) for π source in station_sources [δ] do act_ports ← act_ports \ PlacePorts (π source , c) end trans_events ← Par {event_logs [π source] | π source ∈ station_sources [δ]} act_events ← Sim { act, p | p ∈ act_ports} event_logs [π] ← Suc (trans_events, act_events) , Par {event_logs [π] | π ∈ f inal_places} Algorithm 4: Auxiliary function ExploreBehaviorChoice which computes the execution of a behavior given a starting state and a choice of output station for each transition (used in the case of a switch). 1 AuxFunction InitStationCounts(b,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr): source , b , D in Θ do [δ] ← station_counts [δ] + 1 end end end return station_counts 14 AuxFunction InitSwitchChoices(b,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr): choices ← [EmptyDictionary]

 (π,c = Π, π init , ∆, P l, Θ, B, P u , P p , Gr):ports ← ∅ for p in P u ∪ P p do if π is in Gr (p) then ports ← ports ∪ {p}end end return ports Algorithm 5: Auxiliary functions which are used by functions in Algorithms 3

6. 1 . 1 . 2

 112 General architecture Object-oriented programming was used extensively to expose the major Concerto concepts to the users (component types, assemblies, reconguration programs). Figure 6.1 shows the Python types and classes that are available in our implementation of Concerto.

Figure 6 . 1 :

 61 Figure 6.1: UML class diagram of our implementation of Concerto.

 When a reconguration is executed over an instance of Assembly, a new Python thread is started to perform the following actions in a loop:1. try to apply the rst instruction in the reconguration program (if successful, discard the instruction); 2. for each instance with at least one behavior in its queue: (a) check if any place has been reached, (b) check if the nal places of the current behavior have been reached, update the behavior accordingly, (c) check transitions conditions, and if satised, start the corresponding action in a new thread, (d) check if any of the previously started actions has terminated. This loop eectively attempts to execute the semantic rules dened in the formal model of Concerto in a particular order. While other orders could be chosen, this one has the advantage of ensuring that the reconguration program and each component instance have a chance to move forward in their execution at regular intervals of time. Also, because the actions associated to transitions (i.e., Python functions)

59 to 63

 63 hint at a possible implementation of a reconguration action for transition allocate. The declaration of the behaviors, places and initial place of the component type (lines 3 to 21) are straightforward. Lines 26 to 28, the switch of the internal-net of the component type is declared. It is called sw_choice and references a function declared just before, switch_choice_f (lines 23 and 24). This function is a user-dened choice function for which branch of the switch to choose, which corresponds in the formal model to which transition ending to choose. The implementation allows connected components to communicate Python values through their ports. This is used line 24 to choose a transition ending depending on which value is provided by another component to the input port backup_in.

Listing 6 .

 6 3 demonstrates how the example of Figure 4.1 on page 66 can be implemented with this Madeus abstraction layer. Lines 1 to 26 are the declaration of the Db component type for the db Madeus component of Figure 4.1. Notice that unlike in a Concerto component type, there are no behaviors, no groups and no switches declared. Also, notice that the declaration of the transitions (lines 11 to 14) only associates a starting place, a destination place and an action function to each transition name. Finally, the declaration of dependencies (i.e., ports) does not associate names to groups but names to places, as is expected in Madeus. Lines 31 to 43 are the declaration of a type of assembly MyAssembly. It must implement the create function. This function denes its set of components (lines 33 to 36) with a dictionary associating component identiers with one component instance each. It also denes its set of dependencies (i.e., connections between ports) between component instances (lines 38 to 43).

6. 2 . 1

 21 Production use-case Our production use use-case is used to ensure that Madeus and Concerto are functional, evaluate to which extent the performance model allows to predict the execution time of a reconguration program and separation of concerns. This use-case is a restriction of a scenario which was presented in the context of a multi-region deployment of OpenStack at the 2018 Vancouver OpenStack summit 2 .

Figure 6 .Figure 6 . 2 :

 662 Figure 6.2 shows a possible implementation of this module by two Concerto control component types, one to work in standalone mode or cluster-init mode (MariaDB-Master) and one to work in cluster-join mode (MariaDBWorker).

Figure 6 . 3 :

 63 Figure 6.3: Overview of the Concerto assembly of a Galera distributed database with one initial and one additional host. The content of the blue rectangle represented for the initial host is hidden in the additional host for the sake of readability.

Figure 6 .

 6 Figure 6.3 shows an overview of a Concerto assembly corresponding to the deployed state of two instances of a MariaDB database in a Galera cluster, one the initial host and one on an additional host. Other modules are used to support directly or indirectly the database. Docker must be installed on each host running the database (component Docker of Figure 6.3), as well as appropriate Python libraries (component PipLibs). In turn, these require software packages to be installed through the package manager of the host OS (component Apt). The life-cycle of these modules is entirely sequential. Finally, the Sysbench benchmarking software (Sysbench component) is used to act as a client of the distributed database in our scenario. It can be installed and run, and then suspended and restarted when necessary.

 } _mariadb , install)

Figure 6 .

 6 Figure 6.4 shows a Concerto assembly implementing this scenario in the deployed state. A server with n dependencies is modeled by the component type Server n . The dependencies are modeled by the component types Dependency i , where i is an identier for the type of dependency component. The assembly of Figure 6.4 is composed of three instances of three dierent component types: Server 2 , Dependency 1 and Dependency 2 .

 Figure 6.4: A Concerto assembly with two components Dependency i and one

Figure 6 . 5 :

 65 Figure 6.5: Madeus assembly corresponding to deploying the Concerto assembly shown in Figure 6.4.

Figure 6 . 6 :

 66 Figure 6.6: Measured running times for Ansible, Aeolus and Concerto and estimated times of Aeolus and Concerto for execution of the decentralization and scaling recongurations (error bars: standard deviation).

 2 and allow us to understand the consequences of each model's parallelism expressivity. We do this by discussing each reconguration one by one, discussing what happens in Ansible, Aeolus and Concerto depending on the number of dependencies (scalability) and on the relative duration of the dierent reconguration actions.

Finally,Figure 6 . 8 :

 68 Figure 6.8: Concerto assembly with behavioral interfaces corresponding to the Concerto assembly shown in Figure 6.4 (on page 140).

 Distributed computer systems are now commonplace and, for some of them, have become critical. Deployment and reconguration of distributed systems are complex tasks because of the complexity of the software and infrastructures involved, especially with the advent of infrastructures such as fog and edge computing. For this reason, many solutions assist in the deployment and reconguration of distributed systems, and in particular in the execution step of the MAPE-K loop.

 performance model which allows to dene the total execution time of a reconguration program as a function of the atomic reconguration actions that it executes. Finally, behavioral interfaces are views of Concerto components which contain all and only the information (contained in the model) required to perform reconguration with a given component. An algorithm is presented to generate the behavioral interface of any Concerto component. Overall, parallelism expressivity is obtained thanks to the high level of parallelism inside each component and among components and to the asynchronicity of the reconguration language, while separation of concerns is obtained thanks to the clear interface made of ports and behavioral interfaces, which abstract away details which are of no use to the reconguration developer.

7. 2

 2 PerspectivesThis work can be extended in multiple directions. First, Madeus and Concerto are formally dened, which can be used with formal methods to provide additional guarantees, perform automatic inference of reconguration programs, etc. Second, Madeus and Concerto were conceived with parallelism in mind, which could be used to allows concurrent recongurations to occur or decentralize their execution. Third, behavioral interfaces are a big step for separation of concerns of Concerto. This separation of concerns could be extended further by adding more abstractions on top of both Madeus and Concerto, such as composite components. Finally, we do not address fault-tolerance in this work, and even though the users can implement faulttolerance mechanisms using Concerto's switches for example, dedicated mechanisms would make fault-tolerance in Madeus and Concerto more practical.

 This could be overcome by having a dedicated part of the life-cycle of each component recognized as an error state, and take this into account at the assembly level Titre : Concilier expressivité du parallélisme et séparation des préoccupations lors de la reconfiguration de systèmes distribués Mots clés : déploiement ; reconfiguration ; modèles à composants ; coordination ; parallélisme ; systèmes distribués Résumé : Les systèmes informatiques distribués, qui fonctionnent sur plusieurs ordinateurs, sont désormais courants et même utilisés dans des services critiques. Cependant, ces systèmes deviennent de plus en plus complexes, en termes d'échelle, de dynamicité et de qualité de service attendue. La reconfiguration de systèmes distribués consiste à modifier leur état durant leur exécution. Les systèmes distribués peuvent être reconfigurés pour plusieurs raison, parmi lesquelles leur déploiement, leur mise à jour, leur adaptation pour obéir à de nouvelles contraintes (en termes de capacité utilisateurs, d'efficacité énergétique, de fiabilité, de coûts, etc.) ou même le changement de leurs fonctionnalités. Les systèmes de reconfiguration existants ne parviennent pas à fournir en même temps une bonne expressivité du parallélisme dans les actions de reconfiguration et la séparation des préoccupations entre les différents acteurs qui interagissent avec le système. L'objectif de cette thèse est de prouver que ces propriétés peuvent être conciliées en modélisant précisément le cycle de vie de chaque module des systèmes distribués, tout en fournissant des interfaces appropriées entre différents niveaux de conception. Deux modèles formels implantant cette idée sont fournis, un pour le cas particulier du déploiement et un pour la reconfiguration. Une évaluation est réalisée à la fois sur des cas d'usage synthétiques et réels et montre que ces modèles ont un plus haut niveau d'expressivité du parallélisme que leurs homologues tout en conservant un bon niveau de séparation des préoccupations. Title : Reconciling Parallelism Expressivity and Separation of Concerns in Reconfiguration of Distributed Systems Keywords : deployment; reconfiguration; component models; coordination; parallelism; distributed systems

 14 , Microsoft Azure 15 , Google Cloud 16 , and OVH 17 .When it comes to private clouds, OpenStack 18 is the de-facto open-source standard to operate the underlying resources.

Table 3 .

 3

	parallelism.

1: Comparison of the solutions of the literature.

Table 4 .

 4 1: Elements used by Madeus and their notations.

 E n where is a binary relation which states that the direct evolution from one conguration to another is legal. The semantic rules describing this relation are explained right after this paragraph and are formally dened in Figure 4.7. An execution is complete

if there exists no conguration

 Which can be simplied, because the second element of the most outer max is necessary larger than its rst element, the proof of which is left to the reader. The

	.1:
	max(d db run + d db allocate ,
	d server wait + max(d db run + d db allocate ,
	d server run + max(d server conf1 ,
	d server conf2 + max(d db allocate ,
	d server ins))))
	nal formula is:
	d server wait + max(d db run + d db allocate ,
	d server run + max(d server conf1 ,
	d server conf2 + max(d db allocate ,
	d server ins)))

Table 5 .

 5

	At each moment, a

1: Possible statuses of Concerto elements.

component has one or more tokens, like in Madeus. In Concerto, a token may be on: a place, which means that the corresponding milestone has been reached; a transition, which means that the corresponding reconguration action is being executed; a transition ending, which means that the action has nished its execution (in the case of a switch, a transition may have multiple endings, in which case only one can have a token).

 : adds a new component instance of type t with identier id to the assembly; del(id) : removes the component instance with identier id to the assembly; con(idu, pu, idp, pp) : adds a connection in the assembly between the use port pu of the component instance with identier idu and the provide port pp of the component instance with identier idp;

	add(id, t) dcon(idu, pu, idp, pp) : similar to con, but removed the connection instead of
	adding it, if the connection is being used (i.e., if the use port is currently active),
	the execution of the reconguration program is paused until the deactivation of
	the use port;
	to write reconguration programs. A reconguration program can be applied to an
	existing (possibly empty) assembly. The types of instructions are the following:

pushB(id, b) : push a behavior b to the queue of behaviors of the component instance with identier id;

Table 5 .

 5

2: Notations used in Concerto.

 (i, p u , j, p p) ∈ L do 12 A ← A ∪ {(v act id j ,pp , 0, v act id i ,pu), (v deact id i ,pu , 0, v deact id j ,pp)} ;

	9	end	{v act id,p , v deact id,p } ;
	10 end 11 for 13 end	

14 v sync ← v source ; 15 for i from 1 to n do 16 match ι i with 17 case wait(id) do 18

 This asynchronously starts the reconguration in a new Python thread. The method synchronize stops the calling

	Component +groups: Map[String,List[String]] +behaviors: List[String] +places: List[String] +initial_place: String +switches: List[Tuple[String,Function]]	name: String name: String	1 +transitions 1 1	<<tuple>> Transition +origin_place: String +destination_place: String +behavior: String +destination_station: Integer
	#create()				+dependencies	+action: Function +args: Optional[Tuple]
	<<enumeration>>				1
	DependencyType USE	+type		<<tuple>> Dependency
	PROVIDE			+groups: List[String]
	Assembly			Reconfiguration
	+run_reconfiguration(reconf:Reconfiguration)	+add(instance:String,type:Type->Component,
	+synchronize()				args:Optional[List])
	+terminate()			+delete(instance:String)
				+connect(instance1:String,dep1:String,instance2:String,
	WAIT CONNECT PUSH_BEHAVIOR DISCONNECT DELETE ADD <<enumeration>> InstructionType	InternalInstruction * -instructions 1 +type	dep2:String) +disconnect(instance1:String,dep1:String, +wait_all() +call(reconf:Reconfiguration) +wait(instance:String) +push_behavior(instance:String,behavior:String) instance2:String,dep2:String)
	WAIT_ALL	+args: Tuple		

 6.5 gives a Concerto program for this reconguration. Component types ClusterInitConfig and ClusterJoinConfig are used to provide conguration information to put MariaDB respectively in cluster-init mode and cluster-join mode.The second reconguration, namely Scaling, scales up the distributed database by increasing the number of additional hosts (from n to m).

	Listing 6.6 gives one
	possible Concerto program for this reconguration.
	6.2.1.3 Implementation details
	This scenario was coded in a reproducible fashion using Concerto and Ansible. The
	code is accessible on a public repository 3 .
	In Concerto, the reconguration programs presented in Listings 6.4 to 6.6 are
	used. The MariaDBMaster and MariaDBWorker component types correspond to what
	is shown in Figure 6.2.

Table 6 . 1 :

 61 Summary of the results obtained with the implementation of Concerto on the synthetic use cases, with either 1, 5 or 10 dependencies. Each row of the table corresponds to 250 runs. For each one, the median and average over all the runs are given. Then, the maximum relative time dierence between the time predicted by the performance model and the actual measured time in both percentage and seconds is given. Similarly, the maximum absolute time dierence is given.

	6 .

 {d di i } + max i {d dr i } Aeolus max i {d di i + d dr i } Concerto max i {d di i + d dr i } (2) UpdateNoServer Ansible i {d du i } + max i {d dr i } Aeolus max i {d du i + d dr i } Concerto max i {d du i + d dr i } sa + i {d sc i } +d sr Aeolus d sa + i {d sc i } + d sr Concerto d sa + max i {d sc i } + d sr (4) UpdateWithServer Ansible i {d du i + d ss i + d sp i } + max i {d dr i } + d sr Aeolus max max i d du i + j≤i d ss j + d dr i , d sr + i {d ss i + d sp i })

	Framework	Formula (1) DeployDeps
		(3) DeployServer
		.7 illustrates what happens
	8 https://hal.inria.fr/hal-02737859

Ansible max i Ansible d Concerto max(max i {d du i + d ss i + d dr i }, d sr + max i {d ss i + d sp i })

Table 6 .

 6 For instance, with d di 1 = 5, d di 2 = 50, d dr 1 = 50, d dr 2 = 5, the execution time for Ansible is 50 + 50 = 100, whereas it is max(55, 55) = 55 for Aeolus and Concerto.

2: Theoretical total execution time for each reconguration of the synthetic use-case in Concerto, Aeolus and Ansible as a function of the duration of each reconguration action.

when this dierence is large, which may happen because of hosts having dierent hardware, dierences in network bandwidth, etc.

 .3 shows the distribution of the total execution time for dierent values of the number of dependencies n and σ. Without loss of generality, the mean duration for each transition is set to µ = 60. With a standard deviation σ = 10 and n = 2 dependencies, there is a small dierence in mean execution time of 3.3 seconds between Ansible and Concerto/Aeolus. For n = 2000 however, Concerto/Aeolus is 20.1 seconds faster. This shows that intermodule parallelism helps the scalability of Concerto and Aeolus on bigger assemblies. If we choose σ = 20, the dierence in mean execution time is 6.7 seconds for n = 2 and 40.2 seconds for n = 2000, twice as much as a similar case with σ = 10. With σ = 100, the dierence in mean execution time is 32.3 for n = 2 and 201.2 seconds for Figure 6.7: Gantt chart representing the dierence in parallelism between Ansible on the one hand and Concerto and Aeolus in the other hand.

	Ansible
	di 1
	dr 1
	di 2
	dr 2
	Concerto /Aeolus
	di 1
	dr 1
	di 2
	dr 2

 In Madeus and Concerto, there exist two levels of reasoning: component and assembly. Component developers reason about the life-cycles of the components they develop, while reconguration developers design assemblies or reconguration programs to generate or modify assemblies. However, one could argue that intermediate levels should exist. For example, if we consider a Map-Reduce system, it can be part of a larger assembly while still being composed of multiple components. The Map-Reduce expert is neither a component developer nor a reconguration developer for the distributed system that uses a Map-Reduce architecture among other elements.

https://www.linux-kvm.org/

https://www.vmware.com/

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/

https://www.docker.com/

https://linuxcontainers.org/

https://coreos.com/rkt/

https://oar.imag.fr/

https://slurm.schedmd.com/

http://www-hpc.cea.fr/en/complexe/ccrt.htm

https://www.bsc.es/

https://www.grid5000.fr/

https://www.chameleoncloud.org/

https://www.nist.gov/

https://aws.amazon.com/

https://azure.microsoft.com/

https://cloud.google.com/

https://us.ovhcloud.com/

https://www.openstack.org/

https://hadoop.apache.org/

https://www.uml.org/

-14 13 -12 15 4 5 -13-15 (*) 4 7 -

The instruction wait(id) acts as a synchronization barrier until the component identied by id has executed all the behavior requests submitted to it.

https://gitlab.inria.fr/VeRDi-project/concerto

https://www.openstack.org/videos/summits/vancouver-2018/ highly-resilient-multi-region-keystone-deployments

https://gitlab.inria.fr/VeRDi-project/concerto-evaluation (directory ansibleperf)

https://gitlab.inria.fr/VeRDi-project/concerto-evaluation (directory synthetic)

rprog . add (" proxy " , Proxy) rprog . con (" proxy " , " sql_write " , " db " , " sql_write ") rprog . con (" proxy " , " sql_read " , " db " , " sql_read ") rprog . con (" db " , " backup_in " , " other_comp " , " other_port ") rprog . pushB (" db " , " install ") rprog . pushB (" proxy " , " install ") rprog . wait (" proxy ") assembly = Assembly () assembly . run_reconfiguration (rprog) print (" Reconfiguration in progress ") assembly . synchronize () print (" Reconfiguration completed ") number. This is the case for the run and restore transitions (lines 37 and 38), which each are in a dierent branch of the switch, and therefore must be connected to distinct stations of place running.

Lines 51 to 56, the dependencies of the component type (its ports in the formal model) are dened as a dictionary associating each name of dependency to a tuple containing the type of dependency (use or provide) and the name of the group it is associated to. The groups reference the dictionary of groups (here declared lines 46 to 49 which associates each name of group to its list of places), or names of places directly (in which case it corresponds to a group containing only this place).

Describing reconguration programs

In this section, we see how a reconguration developer can dene a reconguration

program by looking at the implementation (given in Listing 6. Because it is a synthetic use-case, the reconguration actions only consist in waiting for a given time, which is a parameter of the experiment (for each action). The component types of Figure 6.4 are implemented as is, with all transition actions executing Python's time.sleep function locally (on the machine executing Concerto) to wait for the time given as parameter. The reconguration programs presented in Listings 6.7 to 6.10 are used.

In Ansible, each reconguration is coded as a playbook to execute, i.e., a sequence of tasks. Each task is composed of a reconguration action and metadata, in particular on which set of hosts this action must be executed. These tasks are executed sequentially, but when a task's action is executed on multiple hosts, it is done in parallel, as explained by the case Inter-host action-based of Figure 3.2 of Chapter 3. The install and start service actions of the dependencies are respectively considered to be executable by the same command, allowing us to write it as a single task to be executed on each of the dependencies' hosts. The update action is however dierent on each dependency and they have to be encoded by distinct tasks. Each reconguration action is actually a bash sleep command to be executed on the remote host. The time to wait is determined by text les sent to the remote host prior to execution, which are generated from the parameters of the experiment.

One could notice that the Concerto implementation uses a local function to wait for a given amount of time in the actions, while the Ansible one uses a remote one (over SSH). This dierence is due to design dierences between the two systems and is not problematic here as they will not be compared directly for performance. (with µ = 60). Each histogram was obtained by simulation over 100,000 samples. Histograms were omitted for σ = 100 for the sake of readability.

change is not always anticipated. In a traditional autonomic loop (modeled as a MAPE-K loop), only one reconguration can be executed at any given time, and if any even occurs after the analysis phase, it will only be taken into consideration after the current cycle has ended. However, alternative approaches exist (e.g., multiple parallel MAPE-K loops, event-based methods) in which multiple recongurations may occur at the same time.

Concerto currently does not support this approach. Its semantics only allows the execution of a single reconguration program, and once one is executing it cannot be canceled. There are multiple ways in which this could be overcome. First, Concerto could support the execution of multiple recongurations out of the box, which should not be dicult to do given the asynchronous nature of its reconguration language.

However, it would be quite hard to provide safety guarantees in this case. A second, perhaps more practical approach, would be to provide the ability to automatically Decentralization of the execution In large distributed systems, it is well-known that single points of failure are to be avoided. Currently, the execution of Madeus and Concerto are centralized, which creates a single point of failure. This could be overcome by replicating the current state of the system on multiple machines, with one of them active (actually executing deployment or reconguration) and the other ones passive, ready to take over in case of failure of the rst machine. However, this is not the only problem introduced by a centralized execution. First, in large system if all actions must be triggered from one node this could lead to network congestion, in particular when managing thousands or millions of nodes. Second, in emerging infrastructures such as fog or edge computing, the inability for two nodes to communicate is not necessarily considered as an exceptional error but is rather to be expected.

To overcome these problems, Madeus and Concerto would need to drop the central and exact representation of the whole system, and instead rely on a partial representation. This would allow to have multiple Madeus or Concerto execution nodes, each with an exact representation of a part of the system and a partial representation of the rest of the system. By ensuring that one execution node exists in each area of the network that might become isolated, local recongurations could always be performed.

When executing recongurations which span over multiple areas, the execution nodes would have to collaborate.

We believe that this approach is feasible because of the port-based interactions (either by automatically performing recovery actions, such as replacing the component with another one, or by reporting the error). Other (possibly complementary) approaches include requiring components to have inverse transitions for each transition, which would allow to roll back the reconguration program in case of error.