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Abstract

Complex systems are omnipresent in our lives, but subject to failures that it is important to detect or
predict. Discrete event system (DES) modeling is a natural way to represent and study such systems
formally. Thus a system can be described by a set of states such that its current state is obtained after
firing a sequence of events. These events are predefined in a finite set and can be fired spontaneously
in the system. Not all these events are observable (measurable) and some of them are considered
faulty, thus they model an abnormal change between two system states.

The diagnosis process in DES aims at determining with certainty if the system is currently in a
faulty state or in a normal one, i.e., if an abnormal change of a system state has occurred or not. To
this end, a system observer has only the sequence of observable events to decide the current status of
the system state. However this state might be currently ambiguous (normal or faulty) according to the
available observations. Moreover it can be permanently ambiguous! The possibility to disambiguate
it using a finite number of observations is called the diagnosability of a faulty event occurrence. The
fault is diagnosable if all its occurrences are diagnosable and the system is diagnosable if all its
faults are diagnosable. Similarly, the possibility to predict a future occurrence of a fault using its
preceding observable events is called the predictability of a faulty event occurrence. Both problems of
diagnosability and predictability can be generalized to study the diagnosability or the predictability of
a pattern of events, i.e., an extension-closed language represented by a finite state machine.

This thesis considers in its first part the problems of checking event diagnosability, event pre-
dictability and pattern diagnosability in centralized and distributed (with observable or unobservable
synchronous communication events) discrete event systems, using SAT solvers. Thus we have encoded
them as SAT problems, studied incremental SAT variants and provided experimental results that prove
the scalability and flexibility of this approach. In the second part, we have introduced the diagnos-
ability planning problem. This problem consists in finding a plan of actions (intentional/designful
predefined events) that ensures, when applied on a set of potential current system states (called a
current belief state), to drive the system in a diagnosable belief state from which it can be left to run
freely (without control actions). This problem can arise after an external intervention on the system,
like the application of a repair plan after a fault detection.Thus this approach can ensure the possibility
to detect the system further faults. We analyzed this problem, proved its PSpace-completeness and
proposed three methods to find the intended plan that we compared on a benchmark created for this
purpose.
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Chapter 1

General Introduction

“If you want new ideas, read old books!"— Ivan Petrovitch Pavlov

This thesis is about diagnosability and predictability analysis in Distributed Discrete
Event Systems using a propositional logic approach, in particular using SAT solver. So, what
is this? Even if you try to look for the word diagnosability in an Oxford dictionary, you will
not get any answer and it may take you, in an any online dictionary, to the word diagnosis,
which means “the identification of the nature of an illness or other problem by examination
of the symptoms”, which is usually used in a medical context. Translating the word in French
will return, if it returns something, the word "diagnosticabilité" not a more meaningful one
even for native French speaker!! If you move to predictability maybe you will get more
results but most of them will be irrelevant to our predictability meaning here. If you search
for diagnosability or predictability analysis in Distributed Discrete Event Systems you will
get tens of the scientific articles that we will browse in the next section and chapters and will
relate them to our work in this thesis. Finally adding the SAT solver to it in the google search
will often give you the work in [Rintanen & Grastien 2007], which is our starting point in
this thesis. However, before getting on our work, you may want to see our compilation of
some historical points which gives you the intuition or the message of the work from our
point of view. This compilation contains mostly historical events taken from Wikipedia
pages! connected to show our intuition why the SAT-based approach may work, even if the
usage and the formalism used to get the experimental results are not yet discussed. It is only
an intuition and you may even re-read this introduction as a conclusion! Last point here, if
you are familiar with all the keywords, you may want to proceed directly to the contributions
section and come back to this compilation later.



2 General Introduction

1.1 The Origin of the Story: about Logic, Control, Infor-
mation and Diagnosability

Since the beginnings of humanity on earth, human beings did not stop the interactions with
the surrounding nature, firstly, each human being was empowered only by his five senses
to do this interaction. He measured the different threats around him to be able to take the
decision that keeps him safe to survive. Motivated by his innate curiosity/desire to interact, he
developed his tools till creating languages, which allow him to communicate and constructed
communities that guaranteed his domination against other species on the planet. After
inventing writing, his experiences became more available, endurable (accumulative) and
reinforced again his power. Although after the invention of languages humans were crowned
on the throne of organisms, however some pioneers from this species continued, and are
still continuing, giving the humanity its big cultural strides, through studying the natural
phenomena affecting this mankind. They were always guided by their imagination and forte
desire to understand and to control this surroundings for the benefits of mankind, especially
that they realized how insignificant human beings are, in terms of energetic resources, in
comparison to other species, not really recognizing the power of the amazing tool they created,
i.e., the languages. For this purpose they have developed different measures continuously to
understand this surroundings before controlling it with the less possible effort. Their new
ideas started by reading the very old book given by the nature; through it trying then to
emulate beings from their surroundings by developing models, lows and rules to describe
and simulate these beings and even the natural phenomena.

Hereafter some examples that are related historically to our story are mentioned. Thus,
in order to study dynamics of moving objects Isaac Newton invented the laws of physics.
Then the laws of thermodynamics were set and the first realization of the so-called system
was done by Nicolas Léonard Sadi Carnot in 1824; through organizing some interconnected
components such that each component has a functionality that serves to achieve a global
mission of the system. Actually it was a body of water vapor that works when heat is applied
to it and it was named the working substance in steam engines, thus it can work for a neighbor
by pushing it. Rudolf Clausius generalized the picture in 1850 of the working substance by
considering the surroundings of the working substance thus it became the system with known
limits so we can define its input and output.

In 1854, George Boole introduced Boolean algebra in his book The Laws of Thought
which has been fundamental in the development of digital electronics, and is provided in all
modern programming languages. It is also used in set theory and statistics. Boolean logic is
credited with laying the foundations for the information age.
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Actually at that time laws of thermodynamics were not taken directly for granted and prov-
ing them was not devoid of adventure and skepticism. Thus solving the famous Maxwell’s
daemon paradox, that tried to contradict the second law, took many years. This law implies
the existence of a quantity called the entropy of a thermodynamic system. Which is used to
measure the disorder of a system.

Thus the daemon appeared able to do the job of filtering/classifying gas particles into
two classes at free cost. Falsifying this view was in 1929, when Leo Szilard proposed that
doing the job by measuring the gas particles cannot be done at free cost which means that
the daemon should have negative entropy from the act of acquiring information which would
require an expenditure of energy. This negative entropy can be seen as information. In other
words, Maxwell’s daemon gets the entropy from the collected information and uses it to
decrease the entropy of the “observed” gas. In fact Szilard did not just “save” the second law
of thermodynamics but also explained to all humanity how the information can be considered
as a form of energy that justifies this kind ability to hold the leadership over this planet!

Later, the work of Szilard was the starting point for Claude Shannon to state the basics
of information theory and to Alan Turing to state the computation theory. Thus, Shannon
assumed correct computation (encoding, decoding) to get reliable communication and storage
over a noisy communication channel, while Turing assumed the correctness of storage and
communication to get the computation which is realized using Von Neumann architecture
of an electronic digital computer and opened the way for the emergence of computability,
functionalism and artificial intelligence.

Algorithmic information theory was introduced in the 1960s by Ray Solomonoff and
later was developed independently by Andrey Kolmogorov in 1965 and Gregory Chaitin
around 1966 as the subfield of information theory and computer science. It is the information
theory of individual objects, using computer science, and concerns itself with the relationship
between computation, information, and randomness. The information content or complexity
of an object can be measured by the length of its shortest description.

Nowadays humans are controlling systems that they have created everywhere and from
all sizes. Thus, the origin of the story is that we want to check if we can control a system at a
given price (represented by observations cost) and the cost of resources to do the checking
process (represented by the efficiency of our method). In other words, to identify a system
situation (or diagnosis). Actually a system is much more than a diagnosis, but diagnosing
aims at answering a specific question about the system, it is like projecting all the acquired
information about the system on one of two classes. Diagnosability, which as we said above
can be seen as the ability to diagnose, is the problem of ensuring that there is at most two
classes of diagnoses. It is classifying possibilities into two classes. The ambiguity is always
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the third class that raises difficulty and observations are the way to organize the picture for a
clearer vision about the system.

Discrete Event System (DES) model is a natural projection of the normal human thinking
of the dynamics of a system. Thus we tend to differentiate several stations of a system
behavior, let us call them states, and some spontaneously events that take the system’s state
to its successor state. In discrete event systems, the output of the diagnosis can be the set of
behaviors that explain the observations, where faulty events will be discovered in the results.
Diagnosability is the ability to have a precise diagnosis, i.e., given a set of observations paths,
have exactly one label of diagnosis, either faulty or correct, consistent with them.

Nowadays systems are omnipresent and they are more and more complex and distributed,
the need to control these systems is essential as they are always subject to faults. Thus one
wants to know if a system is doing its intended mission (so it is in a normal state otherwise in
a faulty one). In order to represent such states in the system, many formalisms can be adopted
to model the system like discrete, continuous or hybrid. We adopt here the one which is the
closest to the human way of thinking, as we mentioned above, i.e., the discrete one. However,
the size of these systems and their distributed nature do not allow them to be fully observable,
as such assumption would require very high costs of sensors and measurement process. For
this, an abstraction over the system view is applied. However, this lack of information can
prevent or complicate diagnosing a fault, i.e., identifying the current system status after
having acquired some observation. The problem of the diagnosability of faults means here
the ability to detect them after a finite number of observations that proceed their occurrence.

The first introduction to the notion of diagnosability in discrete event systems was
by [Sampath et al. 1995]. The authors introduced an approach to test this property by
constructing a deterministic diagnoser. However, in the general case, this approach is
exponential in the number of states of the system, which makes it impractical.

In order to overcome this limitation the work in [Jiang et al. 2001] introduced the Twin
Plant approach, which uses a special structure called Twin Plant. This approach turns the
diagnosability problem into a search for a path with a cycle in a finite automaton, and this
reduces its complexity to be polynomial of degree 4 in the number of states (and exponential
in the number of faults, but processing each fault separately makes its linear in the number of
faults).

Let us mention here that the two previous works were interested in centralized systems
with simple faults modeled as distinguished events. The first studies about (surveillance or
supervision) patterns were introduced in [Jéron et al. 2006] and [Genc & Lafortune 2006a]
which generalize the simple fault event in a centralized DES to handle sequences of events
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considered together as a fault, or multiple occurrences of the same fault or of different faults,
or more generally any given behavior to be monitored.

The first work that addressed diagnosability analysis in Distributed DES (DDES) was
[Pencolé 2004]. A DDES is modeled as a set of communicating Finite State Machines
(FSM). Each FSM has its own events set, synchronous communication events being the
only ones shared by at least two different FSM. Thus it also depends on the construction
of local Twin Plants then synchronizing them incrementally and using some abstraction to
avoid constructing the global Twin Plant of the system. The work by [Ye & Dague 2010] has
optimized the construction of local Twin Plants. The generalization to patterns in DDES was
introduced by [Ye et al. 2010].

After the reduction of diagnosability problem to a path finding problem by [Jiang et al. 2001],
it became transferable to a satisfiability problem like it is the case for planning problems
[Kautz & Selman 1992]. This was done by [Rintanen & Grastien 2007] which formulated
the diagnosability problem (in its Twin Plant version) into a SAT problem, assuming a cen-
tralized DES with simple fault events. The authors represented the studied transition system
by a succinct representation (cf. section 2.4.2). In fact, the main difficulty in diagnosability
algorithms is how to reduce the amount of information that must be acquired to retrieve the
diagnosability decision which in turn is related to the difficulty of states number explosion.
SAT solvers, which are very powerful tools for checking efficiently the satisfiability of propo-
sitional/Boolean logical formulas, are now ubiquitous in artificial intelligence and they can
deal with such problems. Such propositional formulas consist of n different Boolean variables
participating partially or totally in each of m different clauses, each clause being a disjunction
of its participating variables. They help to break the diagnosability question into smaller
questions to check if the system description is not violating specific constraints. SAT solvers
exploit the statistical approaches and the logical reasoning powers. Their heuristics allow
them to compile the tested formula into a simpler description and to introduce randomness in
its browsing which can reduce the complexity of deciding if it is satisfiable or not.

Actually the results presented in [Rintanen & Grastien 2007] show a good scalability in
comparison with the Twin Plant approaches which the authors said to be impractical for
systems with number of states larger than 10000 (actually, the literature contains almost
no benchmark or experimental results of the Twin Plant approach and does not propose
code availability, so real comparison is difficult). And as we mentioned above this approach
considered only centralized DES. This motivated us to consider this approach our starting
point, and try to add communication events to consider the distributed DES case and to study
the effect of employing incremental SAT mode in both centralized and distributed cases
through providing the experimental results of our study, which will be presented in Chapter 3.
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From another side, we noticed that many similar problems like predictability analysis which
consists in verifying the existence of an observable sequence that reveals with certainty that
the fault will occur (see Chapter 4) and pattern diagnosability (see Chapter 5) can be encoded
using similar techniques without passing by sophisticated structures used in the literature to
deal with such cases.

Our contribution can be informally summarized by saying that we can answer efficiently
each of these “ability to know” problems about large systems by “speaking logically” with a
SAT Solver, which will intelligently summarize our language into a “small” number of well
ordered dependent questions to deduce the answer. This is instead of building a sophisticated
structure which requires a larger amount of information to be constructed and then checking
a necessary and sufficient condition to decide the problem.

1.2 Contributions

The first part of this thesis is based on an existing approach to check diagnosability in
centralized discrete event systems using SAT solvers; this approach is recalled in chapter
2 and our contributions in this part are presented in chapters 3,4,5. Thus, we reviewed
the following problems in the literature and provided for each one a propositional logic
formalism that is implemented and tested using the SAT solvers technology:

• Diagnosability of simple faulty events in distributed discrete event systems. We extend
in chapter 3 the existing formalism in order to consider the synchronous communication
events and we show how our encoding is smooth enough such that changes in this
encoding are just by adding synchronization formulas without changing the internal
encoding of each component. This encoding pushes the synchronization cost to the SAT
solver and can consider observable and unobservable communications simultaneously.
The flexibility will be exploited for dealing with other similar problems. We show how
scalable this approach is through experimental results, which show clearly in particular
the efficiency to prove non-diagnosability. However, proving diagnosability in SAT has
not the same efficiency, the same concern (SAT vs. UNSAT result) appears in many
problems that are reduced to SAT. We propose an approach that mitigates this problem
using the incremental mode of SAT solvers, hence we modify the problem encoding to
adopt this mode then we test this encoding on an artificial benchmark in centralized
and distributed DES and we show its benefits on performance and scalability.

• Predictability of event occurrence in centralized and distributed DES. We exploit in
chapter 4 the flexibility of adding and removing constraints in order to model the
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predictability problem as a SAT one. This property is stronger than diagnosability
and it consists in verifying the existence of a prefix that precedes the event f under
consideration such that it reveals with certainty that f will occur each time after it has
been seen. We test our encoding and show the scalability of this approach. Then we
propose an encoding making use of incremental SAT to exploit the learned constraints
about the system behavior, this can help in a more efficient verification which is also
automated.

• Pattern Diagnosability. We propose in chapter 5 an encoding for the problem of pattern
diagnosability, which generalizes the diagnosability of a specific event to consider any
formal extension-closed rational language of events. Actually we have implemented
this part but not yet tested it.

The second part of this thesis is presented in Chapter 6 where we introduce the problem
of diagnosability planning in controllable DES. This problem, not yet considered in the
literature to the best of our knowledge, consists in finding a plan of actions (taken from
given elementary control actions) that, when applied on a given belief state (a set of potential
current states), drives the system into a diagnosable belief state in order to be able to let
the system run from its new initial belief state freely, i.e., without any control but however
with guaranteed diagnosability. This problem may appear after a repair plan which leaves
the system in a set of potential states from where the diagnosability of the system has not
been yet ensured. It is also interesting, when possible, to replace the active diagnosability by
diagnosability planning as a monitoring approach in order to reduce the diagnosis interactions
with a running system that may add potential cost and affect the availability of the awaited
services from the system, e.g., in monitoring power networks. In this part our contributions
are the following:

• Formalizing the diagnosability planning problem.

• Analyzing and proving its complexity class.

• Proposing three methods to solve the problem efficiently.

• Implementing and testing these methods on an artificial benchmark that we created for
this purpose.

1.3 Thesis Organization

This thesis consists of seven chapters; five main chapters in addition to this introduction
chapter and the conclusion and future works chapter. The second chapter reviews the state
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of the art mainly about the diagnosability problem in centralized and distributed DES, in
particular it reviews the Labeled Transition System formalism used in the literature to study
this problem showing the main approaches. Then we recall in some detail the starting point
of this thesis which is the work of [Rintanen & Grastien 2007] which introduced the succinct
transition systems that we used to encode the different cases studied here. The third chapter
presents our first contribution which is the extension of the existing approach to consider
communication events in the formalism then to adopt the encoding to be processed by an
incremental SAT solver. In the fourth chapter we consider the predictability property and
we encode it using the succinct transition systems into a SAT problem in both centralized
and distributed structures. The fifth chapter is devoted to present our encoding of the pattern
diagnosability problem as a SAT problem. The second part of the thesis is presented in the
sixth chapter where we introduce the problem of diagnosability planning in controllable DES,
this part is not strictly disjoint from the first part as we will use the Twin Plant structure
recalled in chapter 2, however we do not use SAT technology in this part even if it is
mentioned in the future work sections in the last chapter where we conclude.



Chapter 2

Preliminaries

In this chapter we provide the preliminaries required to follow this thesis, that will be cited
in the next chapters whenever needed. It contains the formal definitions for the system model
that we adapted in our study, like labeled transitions systems in centralized and distributed
versions. We recall also the diagnosability problem definition and review how it is addressed
in the literature. The basics to understand Satisfiability problem will follow, then we recall
the succinct transitions systems in their centralized version and show how they have been
used to encode the diagnosability problem in SAT.

2.1 Introduction to Fault Diagnosis

Diagnosis task is mainly using the available observations to explain the difference between
the expected behavior of a system and its real behavior which may contain some faults.
Systems are around us everywhere in our life, and as they are always subject to faults,
therefore fault diagnosis is an important domain that will be always needed to ensure the safe
availability of these systems. Examples of diagnosis application can be found in domains such
as transportation from vehicles to spacecrafts, infrastructure like water or power networks
and in software and hardware testing in addition to many complex systems. This wide
appearance motivated from many years a lot of works to study the automatic approaches to do
system fault diagnosis [Bavishi & Chong 1994, Sampath et al. 1996, Sampath et al. 1998,
Ushio et al. 1998, Debouk et al. 2000, Grastien et al. 2007]. They all try to deal with the
main problem which is the compromise between the number of possible diagnoses to the
faulty system and the number of observations which must be given to make the decision. The
diagnosis problem is NP-hard and one always needs to cope with an explosion in the number
of system model states.
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In general faults can be classified according to their lasting time in transient, intermittent
or permanent faults. A transient fault occurs accidentally usually after an external interference
then disappears before detecting it leaving some effects on the system. An intermittent fault
leaves the system in an alternating state between normal and abnormal; like a malfunctioning
device in a situation that does not respect its operating conditions of temperature and voltage,
or because of the interaction among not fully compatible devices. A permanent fault leaves
the system in a faulty state until its reparation, this can be an effect of a physical damage that
needs to be repaired. We are interested in this thesis in permanent faults.
In model based diagnosis, faults could be modeled by states, so the diagnosis question would
be whether the system is currently, using the current observation, in a faulty or a normal state.
They can be also modeled as faulty events assigned to some transitions of the system, and so
the diagnosis question will be whether a faulty event occurred or not, after regarding the set
of available observation coming from the system’s sensors. We are interested here in faults
represented as faulty events.

The problem is that the diagnosis question must be answered precisely in order to take
the appropriate action; for example in case of an affirmative answer, i.e. the fault has oc-
curred, one can proceed to isolate the faulty components of the system and later repair them.
However, in a definitive negative answer the system is ensured to be running correctly which
is the normal purpose of a system. Otherwise, one can wait to acquire more observation if the
current state is undetermined, i.e., can be reached with either a faulty behavior or a normal
one. However, the diagnosis decision maybe always uncertain, and thus running a diagnosis
algorithm may not be accurate. For example, two sets of observations provided by different
sets of sensors or at different times may lead to different diagnoses, one faulty and the other
normal. This uncertainty raises the problem of diagnosability which is an essential property
to be ensured while designing the system model. It simply means the ability to get a precise
diagnosis. After that, the model based diagnosis will be used in applications to explain any
anomaly, with a guarantee of correctness and precision at least for each anticipated fault in
the model.

2.2 Modeling Formalism

First of all, we define what is a system, following the IEEE definition “A system is a
combination of components that act together to perform a function not possible with any of
the individual parts”. To this end the system is represented by a model, which represents the
evolution from one state to a successive one through transitions. A state of the system, or
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simply a state, describes the system current status, usually using a vector of state variables
which are identified to this purpose. Transitions can be synchronized to a time clock and
so each state will represent the system status at a specific time-step, or can be assigned to
some event, from an asynchronous set of events, in this case a state will hold the required
information to represent the last event’s effects which led to the current state. Transitions can
also be modeled using a combination of the event and a time tag to represent the event’s time
occurrence or some temporal condition related to this event.

In this thesis we use timeless model, so transitions are assigned only to a set of events
which are asynchronous in the centralized case and will have some synchronous events that
connect the different components in the distributed case.

In the fault diagnosis domain, three types of systems are considered, the continuous
systems, the discrete systems and the hybrid systems. We are interested in discrete systems
and in particular in Discrete Event Systems (DES) which are discrete-states, events-driven
systems, that is, their states evolution depends entirely on the occurrence of asynchronous
discrete events over time in the centralized case and on both synchronous and asynchronous
discrete events in the distributed case.

The discretization of states and events is widely used to represent dynamics of a system
in an abstract manner due to its direct reflection to the human way of thinking and visualizing.
Even continuous systems can be qualitatively abstracted to discrete ones in some ways.
Actually this discretization facilitates modeling, analyzing and designing systems in order to
do further steps like synthesizing, controlling these systems and evaluating their performance
or optimizing them. The most popular computation models used to study the diagnosis
problem are the Petri Nets (PN) and the Finite State Machines (FSM), or more generally
the Labeled Transition Systems (LTS), which we will adopt as an input model due to its
simplicity, However this model will be translated into a succinct representation in order to
use SAT Solvers in this thesis.

2.2.1 Labeled Transition Systems

Labeled transition systems are formal models that are widely used to design and to represent
real systems through abstracting their behaviors by sequences of transitions; thus they reflect
how the system progresses between its different states respecting the design rules. In other
words, the behavior of the system is represented by the language generated by the finite state
machine. In their graphical representation, usually we denote states by circles and transitions
by arrows that connect these circles, events appear as labels over the arrows.
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Fig. 2.1 An LTS example.

Example 1 (LTS example). The figure 2.1 represents an LTS system with 7 states, two main
types of events: observable like {O1,O2} and unobservable like { f 1,c1} with f 1 a faulty
event.

We adopt the labeled transition system as a modeling formalism and we define it here
following [Sampath et al. 1995] .

Definition 1. @ A Labeled Transition System (LTS) is a tuple T = ⟨Q,Σ,δ ,q0⟩ where:

• Q is a finite set of states,

• Σ = Σo∪Σu∪Σ f is a finite set of events,

• δ ⊆ Q×Σ×Q is the transition relation,

• q0 is the initial state.

with Σo the set of observable correct events, Σu the set of unobservable correct events and Σ f

the set of unobservable faulty events.

Demanding only one initial state q0 is actually not a limitation: if there are several ones,
one creates a unique new one and connects it by unobservable transitions to each of the
previous ones. δ is trivially extended recursively to words in Σ⋆ (the Kleene closure of Σ):
δ ⊆Q×Σ⋆×Q. Formally speaking, we denote by L(T ) the prefix-closed language generated
by T , which is a subset of Σ⋆. Thus the system behaviors are represented by the set of words
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of this language: L(T ) = {σ ∈ Σ⋆|∃qs ∈ Q,(q0,σ ,qs) ∈ δ}. We call a path ρs in the system,
any alternating sequence of states and events obtained from the initial state q0 and ending
with a state qs ∈ Q: ρs = q0

e1→ q1
e2→ ··· en→ qs, with e1, . . . ,en ∈ Σ, q0,q1, . . . ,qs ∈ Q and

∀i ∈ {0, . . . ,n−1},(qi,ei+1,qi+1) ∈ δ . We denote the length of a path ρs by |ρs|.
A path ρs defines a (part of) system behavior σs, that can be viewed as a possible run and is
called a trajectory of the system: σs is the abstraction of ρs on its sequence of events between
the initial state q0 and the last state qs, i.e., σs = e1 . . .en ∈ Σ⋆ is the trajectory corresponding
to ρs . Clearly this abstraction is not one-to-one in a non-deterministic system, thus the same
sequence of events, or trajectory, can be assigned, in general, to more than one path. We call
the projection of such a sequence on its observable events an observable sequence σo; it can
be obtained by applying the instance Po of the general projection operator, Pa(.) : Σ⋆→ Σ⋆

a,
where Σa is the intended subset of events to retain, i.e., on which to abstract. Pa(.) is defined
as follows:

Pa(.) =


Pa(ε) = ε, ε is the empty event,

Pa(e) = ε, if e /∈ Σa,

Pa(e) = e, if e ∈ Σa,

Pa(eσ) = Pa(e)Pa(σ), where e ∈ Σ and σ ∈ Σ⋆.

(2.2.1)

As a result, the set of possible system runs that can be related back to an observable
sequence σo is defined like this: P−1

o (σo) = {σ ∈ Σ⋆|Po(σ) = σo}. One can notice that
differentiating from each other the sets of faulty and non-faulty paths in a system, based on
its observations, is highly related to the sizes of these sets of possible trajectories, which in
their turn depend on the degree of non-determinism in the system that can be reduced each
time a new observations arrives.
We denote the post-language of L(T ) after the trajectory σ by L(T )/σ , it represents the
possible continuation of σ in the transition system T . L(T )/σ = {t ∈ Σ⋆|σ .t ∈ L(T )}.

Operations on Labeled Transition Systems

In order to study the diagnosability problem we will need to define formally some operations
on the LTS, like synchronizing two LTS and performing a delay closure on a LTS.

Definition 2. (Synchronization) Given two LTS, T1 = ⟨Q1,Σ1,δ1,q0
1⟩ and T2 = ⟨Q2,Σ2,δ2,q0

2⟩,
we define their synchronization T1||ΣsT2, on a predefined synchronization set of events
Σs ⊆ Σ1∩Σ2, as a new LTS T1||ΣsT2 = ⟨Q1×Q2,Σ1∪Σ2,δ1||2,(q0

1,q
0
2)⟩ with δ1||2 defined as

follows:

• ((q1,q2),σ ,(q′1,q
′
2)) ∈ δ1||2 if σ ∈ Σs and (q1,σ ,q′1) ∈ δ1 and (q2,σ ,q′2) ∈ δ2.
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• ((q1,q2),σ ,(q′1,q2)) ∈ δ1||2 if σ ∈ Σ1 \Σs and (q1,σ ,q′1) ∈ δ1.

• ((q1,q2),σ ,(q1,q′2)) ∈ δ1||2 if σ ∈ Σ2 \Σs and (q2,σ ,q′2) ∈ δ2.

If we restrict the transition relation δ1||2 only to the first item, i.e., we accept only the
synchronization set of events Σs in the result, then the operation is called a product. This
simply can happen when we synchronize two copies of the same system on their common
vocabulary.

Definition 3. (Delay Closure) Given an LTS T = ⟨Q,Σ,δ ,q0⟩, its delay closure with respect
to Σd , where Σd ⊆ Σ, is ∁Σd(T ) = (Qd,Σd,δd,q0), where:

• (q,σ ,q′) ∈ δd if σ ∈ Σd and ∃s ∈ (Σ\Σd)
∗,(q,sσ ,q′) ∈ δ .

• Qd = {q0}∪{q ∈ Q | ∃q′ ∈ Qd,∃σ ∈ Σd,(q′,σ ,q) ∈ δd}.

Thus, this operation eliminates transitions labeled by events not in Σd and is identical to
the classical silent transitions elimination in asynchronous automata.

2.3 Diagnosability

Diagnosability of the considered systems is a property defined to verify the possibility to
distinguish any possible faulty behavior in the system from any other behavior without this
fault (i.e., correct or with a different fault) within a finite time after the occurrence of the fault.
A fault is diagnosable if it can be surely identified from the partial observation available in a
finite delay after its occurrence. The first introduction to the notion of diagnosability was
by [Sampath et al. 1995]. The authors studied diagnosability of LTS, which is defined in
definition 1. They formally defined diagnosability like the following:

Definition 4. (Diagnosability) A fault f is diagnosable in a system T iff (if and only if)

∃k ∈ N,∀s f ∈ L(T ),∀t ∈ L(T )/s f , |t| ≥ k⇒
∀p ∈ L(T ),(Po(p) = Po(s f .t)⇒ f ∈ p.

In this formula, s f denotes any word in Σ⋆ f . The above definition states that for each
trajectory s f ending with fault f in T , for each t that is an extension of s f in T with enough
events, every trajectory p in T that is equivalent to s f .t in terms of observation should contain
in it f .
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In other words, the fault f is non-diagnosable iff it exists a pair of observation-equivalent
infinite trajectories, one with f and the other without f . We call such a pair a critical pair.
The absence of such a pair will provide information about fault signature. Finding such a
pair will help in positioning the sensors to manage the observations requirements in order to
increase diagnosability and ensure robust fault detection and identification.

2.3.1 General Assumptions

Following other studies about diagnosability we adopt the following set of assumptions to be
hold in all this thesis.

Assumption 1. (Liveness) The language L(T ) of the trajectories of the studied transition
system is live.

This means that for any state, there is at least one transition issued from this state. This
assumption ensures that the post-language of L(T ) after any trajectory is never empty, so
contains arbitrarily long sequences.

Assumption 2. (Convergence) The language L(T ) of the trajectories of the studied transition
system is convergent.

This means that there is no cycle made up only of unobservable events. As studying
diagnosability relies on the observations, so accepting infinite behaviors of the system without
getting any observation makes the study meaningless.

A system T is said to be diagnosable iff any fault f ∈ Σ f is diagnosable in T . In order
to avoid exponential complexity in the number of faults processed during diagnosability
analysis, only one fault at a time is considered to check its diagnosability.

Assumption 3. (Fault uniqueness) There exists only one fault event f (Σ f = { f}), without
restriction on the number of its occurrences.

This is actually not a restriction. It just means that each fault will be processed separately
and successively for checking its diagnosability. During this process, other faults are con-
sidered as unobservable correct events, allowing to get linear complexity in the number of
faults.

Assumption 4. (Fault permanence) We assume that the studied faults are permanent.
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This assumption is actually not necessary if one is interested only in detecting without
ambiguity in finite time after its occurrence any fault that happened. But in general, the
purpose of this detection is to trigger repair or reconfiguration actions because the fault is
assumed to be still present, i.e., to be permanent. We will see later that diagnosability can
be extended from the detection of simple events to the detection of complex surveillance
patterns, and that it is easy to model intermittent faults with such patterns.

Other assumptions about system and fault modeling will be added when needed in the
other chapters.

Next we review the main works done to check diagnosability in centralized and distributed
DES. Other works can be seen as variations or optimization on these works and we will
mention them in the next chapters in their appropriate places in this thesis.

2.3.2 Diagnosability Checking in Centralized DES

The main difficulty in diagnosability checking algorithms is related to the states number
explosion since [Sampath et al. 1995] introduced an approach to test the diagnosability
property by constructing a deterministic diagnoser (hence the potential exponential number
of states), starting from a non-deterministic pre-diagnoser, and searching for a critical pair
of paths, i.e., two arbitrarily long paths which are equivalent from an observation point of
view and only one of them contains the fault. The existence of a critical pair witnesses the
non-diagnosability while its absence proves the diagnosability of the studied fault. In the
following, we recall the definition of these two structures and how such a critical pair can be
found.

The pre-diagnoser is a structure that can be obtained by abstracting a system by its
observations, while keeping in its states the trace of the fault occurrence. Formally it is
defined like the following:

Definition 5. (Pre-Diagnoser) The pre-diagnoser of the system T = ⟨Q,Σ,δ ,q0⟩ is an
observable LTS, denoted by D = (QD,ΣD,δD,q0

D), where:

• QD ⊆ Q×2Σ f is the set of states (q, ℓ) with q ∈ Q and l ⊆ Σ f that are reachable by δD

from q0
D (see below);

• ΣD = Σo is the set of observable events;

• δD ⊆ QD×ΣD×QD is the set of transitions defined by: δD = {((q, ℓ),e,(q′, ℓ′))
∈ QD×ΣD×QD|∃ a path ρ = (q

u1−→ q1...
um−→ qm

e−→ q′) in T , with uk ∈ Σu∪Σ f ,∀k ∈
{1, ...,m}, e ∈ Σo and ℓ′ = ℓ∪ ({u1, . . . ,um}∩Σ f );
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• q0
D = (q0, /0) is the initial state.

In the pre-diagnoser, we only keep the observable events and attach the fault information
to each retained state as a fault label. Precisely, for a unique fault event f , if f has occurred
from the initial state up to a given state, then the fault label for this state is { f}. Otherwise, it
is empty. And as we consider only permanent faults, all reachable states from a state with a
fault label { f} will hold the same label. Figure 2.2 shows the pre-diagnoser of the system in
Figure 2.1.

Fig. 2.2 The pre-diagnoser of the LTS in figure 2.1

After having built the pre-diagnoser, the deterministic diagnoser can be obtained by
determinizing this structure, which consists in gathering all states that are reachable from a
state by the same observable event in one state, while keeping the fault information in each
state of the grouped state. We define the deterministic diagnoser as follows:

Definition 6. (Deterministic Diagnoser) Let T = ⟨Q,Σ,δ ,q0⟩ be an LTS and D = (QD,ΣD,

δD,q0
D) its pre-diagnoser, we denote its deterministic diagnoser by Dd = (QDd ,ΣDd ,δDd ,q

0
Dd
),

where:

• QDd ⊆ 2QD is the set of states that are reachable by δDd from q0
Dd

(see below);

• ΣDd = ΣD = Σo is the set of observable events;

• δDd : QDd ×ΣDd → QDd is the transition function defined by:
δDd(qd,σ) =

⋃
qD∈qd∧(qD,σ ,q′D)∈δD

{q′D};
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• q0
Dd

= q0
D = (q0, /0) is the initial state.

Since each state in this deterministic diagnoser is an aggregation of states from the states
of the pre-diagnoser, which in their turn hold a unique fault label { f} or empty, then a state
q1 ∈ QDd could hold different fault labels. Actually we have, in a general abstraction, three
possible cases:

• F-certain state: in which all grouped (pre-diagnoser) states are with a fault label { f}.
This means it can be reached only by passing by a fault occurrence.

• N-certain state: where all grouped (pre-diagnoser) states are with an empty fault label.
This means it cannot be reached by passing by a fault occurrence.

• F-uncertain state: where only a sub-part of the grouped (pre-diagnoser) states has the
fault label { f} while the other part has the empty fault label.

We recall that a critical pair consists of two infinite paths (in the meaning of cycle), only
one of them has the faulty event and they are equivalent in terms of observation. We call a
cycle in Dd , an F-undetermined cycle iff:

• all its states are F-uncertain states;

• it has a corresponding cycle in the pre-diagnoser made up of only states with fault
label { f};

• it has a corresponding cycle in the pre-diagnoser made up of only states with fault
label empty.

In order to search for a critical pair of trajectories in the deterministic diagnoser structure,
we can restrict the search for a cycle which is F-undetermined since the determinism of the
structure ensures the synchronization of the observations.

It is worth to notice that not each cycle of F-uncertain states in this structure is surely an
F-undetermined cycle, while the second and third conditions together imply the first one.

However, in the general case, this approach is exponential in the number of states of
the system, which makes it impractical for large systems. A polynomial algorithm to
check diagnosability is proposed in [Jiang et al. 2001, Yoo & Lafortune 2002]. The authors
introduced a new structure which is called Twin Plant. In order to build this structure we start
from the pre-diagnoser for a given system, then we synchronize the pre-diagnoser with itself
based on the observable events, i.e., each observable event should be synchronized, to obtain
all pairs of trajectories issued from the initial state with the same observations.
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Definition 7. The Twin Plant of the system T is the observable LTS T P = D ∥Σo D, where
D is the pre-diagnoser of T .

As we said before, a synchronization process between two copies of the system on its
set of events, is equal to a product operation. Each state of the Twin Plant is a pair of
pre-diagnoser states that provide two possible diagnoses with the same observations. Given a
Twin Plant state, if the fault f is contained in exactly one of the two associated pre-diagnoser
states, which means that the occurrence of f is not certain up to this Twin Plant state with
the same observations, it is called an ambiguous state with respect to f . An ambiguous state
cycle is a cycle containing only ambiguous states. We define a critical path as a path in the
Twin Plant issued from the initial state and made up of a prefix followed by an ambiguous
state cycle. It corresponds exactly to a critical pair. So, after that, we verify the diagnosability
by searching for such a critical path.

Lemma 1 ([Jiang et al. 2001, Yoo & Lafortune 2002]). A system is non-diagnosable iff its
Twin Plant contains a critical path.

This result is illustrated on the figure 2.3 where the presence of the critical path ((x1,{});
(x1,{})) O1−→ ((x4,{ f 1});(x5,{})) O2−→ ((x7,{ f 1});(x7,{})) O2−→ ((x7,{ f 1});(x7,{})) in
the Twin Plant of the LTS example of the figure 2.1 proves that this system is not diag-
nosable.

2.3.3 Diagnosability Checking in Distributed DES

A distributed Discrete Event System, or DDES, is a system with a set of communicating
components, each one of them can be represented as an LTS and they share a set of events
among each other. Under the assumption of a global observation of the system, the author of
[Pencolé 2004] proposed the first approach to check diagnosability of Distributed Discrete
Event Systems. He considered communications to be correct events that are not observable.
Formally speaking, he defined a DDES as a set of m local models Ti,1 ≤ i ≤ m, sharing
synchronous communication events, where a local model is defined as follows:

Definition 8. A local Labeled Transition System (lLTS) is a tuple Ti = ⟨Qi,Σi,δi,q0
i ⟩

where:

• Qi is a finite set of states,

• Σi = Σio ∪Σiu ∪Σi f ∪Σic is a finite set of events occurring in Ti,

• δi ⊆ Qi×Σi×Qi is the transition relation,
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Fig. 2.3 Part of the Twin Plant built on synchronizing the pre-diagnoser in figure 2.2 with
itself. In red the ambiguous state cycle witnessing non-diagnosability.

• q0
i is the initial state.

with Σio a finite set of observable correct local events, Σiu a finite set of unobservable
correct local events, Σi f a finite set of unobservable faulty local events and Σic a finite set
of communication events, the only ones to be shared by at least another local model of a
neighboring component of Ti.

Figure 2.4 depicts a system with three components, that share only the communication
events {c1,c2}.

Assumption 5. (Global observation) The system is globally observed.

This means that the observations in the system are globally ordered among the different
components of a distributed system.

Assumption 6. (Synchronous communication) The communication events between the
different components are synchronous.

In fact, studying asynchronous communication is out of the scope of this thesis.



2.3 Diagnosability 21

x1

x5

x2

x4

x3

x6x7

y1

y2

y3

y4y5

y6

z1

z2 z3

f1

O1

c1

O1

c1
c1

c1

O2

c1 O3

c2

f2

c1

O3

O3

c1

c1 c2

O4 O5

Fig. 2.4 Distributed DES with three components, that share only the events {c1,c2}

Assumption 7. (Communication correctness) The communication events between the
different components are correct.

Notice that assuming communication events correct is not a restriction but a matter of
modeling: if some communication event may be faulty, then the communication channel
involved has just to be modeled as a new component by itself, containing at least one faulty
local event.

Under the above assumptions, the problem of diagnosability in DDES is the one defined
following the definition 4. Thus, it is to verify if the studied faults are diagnosable in
the global system model (or a sub-part of it), which is the product of the local models
synchronized on the communication events and on which delay closure with respect to these
communication events is then applied: T = ∁Σc(||ΣcTi), where Σc = ∪iΣic and Σo = ∪iΣio ,
Σu = ∪iΣiu , Σ f = ∪iΣi f . But one wants this verification to be achieved incrementally, starting
at the level of the components without prior building of the global model.

The author of [Pencolé 2004] introduced an incremental diagnosability test which avoids
building the Twin Plant for the whole global system if not needed. For this one starts by
building a local Twin Plant for the faulty component to test the existence of a local critical
path. If such a path does not exist, we know the system is diagnosable. But, if such a path
exists, one should build local Twin Checkers of the neighboring components, i.e., those
components which share communication events with the faulty one. The local Twin Checker
is a structure similar to the local Twin Plant, i.e., where each path in it represents a pair of
behaviors with the same observations, except that there is no fault information in it since it
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is constructed from non-faulty components. After constructing local Twin Checkers, one
tries to solve the ambiguity resulting from the existence of a critical path in the local Twin
Plant, by synchronizing this local Twin Plant with the local Twin Checker of one neighbor
on their communication events. In other words, one is trying to distinguish the faulty path
from the correct one by exploiting the observable events in the neighboring components.
Thus, the occurrences of observable events that are consistent with the occurrences of
the communication events could solve the ambiguity. The process is repeated until the
diagnosability is answered, which necessarily happens in the worst case when the whole
system is visited. Another important contribution in this work was to delete the unambiguous
parts after each synchronization on the communication events, in order to reduce the amount
of information transferred to the next check (if needed).
The figure 2.5 depicts the local pre-diagnoser of the first component (on the left) of the
system depicted in the figure 2.4 and the figure 2.6 part of its local Twin Plant. This one
displays a local critical path, proving that the fault f1 is not locally diagnosable in the first
component.

Fig. 2.5 The local pre-diagnoser of the first component (on the left) of the system depicted in
the figure 2.4

The sizes of the considered parts of each local Twin Plant (or Twin Checker), also called
local verifier, is reduced in the work of [Schumann & Pencolé 2007], where the authors
describe the diagnosability problem as a distributed search problem. Thus, the global
behavior is determined based on the local Twin Plants without computing any part of the
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Fig. 2.6 Part of the local Twin Plant based on the local pre-diagnoser depicted in the figure
2.5

global Twin Plant. They propagate the fault information from the faulty component to other
components by passing through a computable set of possibly non-diagnosable states in
the different local Twin Plants of the different components depending on the connectivity
between them and the faulty component. As a result, every state that is not possibly non-
diagnosable is certainly diagnosable and so is deleted from the local Twin Plant, which leads
to a reduced local Twin Plant. After that, the diagnosability of a fault is decided based on
the set of distributed Twin Plants. Thus the fault is diagnosable iff none of the reduced Twin
Plants contains an observable possibly non-diagnosable cycle (OPNC). A reduced Twin
Plant is firstly obtained from the Twin Plant of each component in the system, then reduced
Twin Plants are pairwise incrementally synchronized in order to remove remaining OPNCs
to prove the diagnosability if possible, otherwise the approach gives a synthetic view of
the non-diagnosability by returning all indistinguishable behaviors in the system. Thus one
can deduce from the non-diagnosable states all possible critical pairs in the system. This
approach is also adaptable to the available resources, thus it can stop when it runs out of
memory and returns the current set of Twin Plants with OPNCs which contains all possible
reasons for a potential non-diagnosability and which tells also that any set of the original
components of the system which participated in any of the current reduced Twin Plants is not
sufficient to diagnose the fault.
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The work by [Ye & Dague 2010] has optimized the construction of local Twin Plants,
by exploiting the fact that one distinguishes two behaviors (faulty and normal) and one
synchronizes at two levels (observations first and communications later). The authors
improved the construction of the Twin Plants proposed by [Pencolé 2004] by exploiting
the different origin of the communication events (left and right copies) at the observation
synchronization level to assign them directly to the two behaviors studied (left copy to the
faulty behavior and right copy to the normal one). This helped in deleting the redundant
information, then in abstracting the amount of information to be transferred later to next
steps if the diagnosability is not answered.

Online/Offline Diagnosability Checking and Complexity

As we said before, the main problem while verifying diagnosability is to deal with states
number explosion. This verification is usually done in an offline mode, in that the Twin
Plant is first constructed, then a critical path is searched in it. Some recent approaches are
proposed using Petri nets [Liu et al. 2014] to do the verification on-the-fly while construct-
ing the Twin Plant and later by building a hybrid diagnoser for verifying diagnosability
[Boussif et al. 2015] by combining enumerative and symbolic representations, passing by
a symbolic observer graph [Haddad et al. 2004], in order to build a deterministic diagnoser
where on-the-fly technique can be used to reduce the required time and memory resources in
diagnosability verification. However, approaches that use the non-deterministic pre-diagnoser
are still, to the best of our knowledge, to be done in an offline mode.

The complexity of the Twin Plant approach proposed in [Jiang et al. 2001] is polynomial
of the 4th degree, in terms of states number. This can be seen easily, from its definition,
where the number of states in the pre-diagnoser is bounded by (|Q|×2|Σ f |), then the number
of states in the Twin Plant is bounded by (|Q|2× 22|Σ f |), which allows a search space of
(|Q|4× 24|Σ f |× |Σo|). Thus finding a critical path in the Twin Plant is polynomial in the
number of system states and exponential in the number of faults. Therefore, we consider one
fault at a time while checking diagnosability of the system, as we mentioned in assumption 3.
The worst case while checking diagnosability appears when the studied system is actually
diagnosable. It implies proving the nonexistence of a counter-example witnessing non-
diagnosability, i.e., all possibilities need to be tested as for proving the nonexistence of a
plan in a planning problem, and usually in this case some approximations are used to avoid
exploring all the search space, but we do not consider such approximations in this thesis.
Testing diagnosability was proved to be NLOGSPACE-hard for enumerative representations,
and PSPACE-hard for succinct (symbolic) representations [Rintanen 2007]. However, when
using succinct representations, one can apply more abstract reasoning through using modern
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efficient tools like BDD (Binary Decision Diagram) tools or model checkers and SAT
solvers. Actually the reduction of the diagnosability problem to a path finding problem by
[Jiang et al. 2001] made the problem transferable to a satisfiability problem like what is done
in planning problems [Kautz & Selman 1992]. The authors in [Rintanen & Grastien 2007]
formulated the diagnosability problem (in its Twin Plant version) into a SAT problem
assuming a centralized DES with simple fault events. The work in this thesis can be
considered as extensions and improvements over what they have done. We will review
succinct transition systems used by their work in subsection 2.4.2.

2.4 SAT Problem

The satisfiability problem, or simply SAT problem, is a central theoretical problem in com-
puter science, actually it is the canonical NP-problem [Cook 1971] in this field, It consists
in answering the following question: given Boolean variables and a conjunction of a set of
clauses from these variables, which forms a propositional formula in the so called Conjunc-
tive Normal Form, denoted by CNF, is there a possible assignment of all these variables (or
some of them), such that the logical formula takes the value True for this assignment.

Let us first define some of the terms in the last sentence. First, a Boolean variable, also
called a propositional variable, is a symbol of 0-ary predicate which takes its values in the
set {True,False} or simply {1,0} of logical truth values. An assignment (resp. partial
assignment) is a valuation of the variables (resp. of some of them). An assignment satisfying
the given formula is called a model for this formula. A formula that owns a model is said to
be satisfiable. A formula is built over a set of propositional variables by using the following
logical operators or connectives:

• the binary conjunction operator AND, denoted by ∧,

• the binary disjunction operator OR, denoted by ∨,

• the unary negation operator, denoted by ¬,

• the binary implication operator, denoted by→,

• the binary equivalence operator, denoted by↔.

Actually, the operators above are not independent and we can restrict these operators to, e.g.,
only the disjunction and the negation operators, the other connectives being easily expressible
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using these two operators like the following. Let Φ and Ψ be two logical formulas, these
equivalences (denoted by ≡) hold:

• Φ∧Ψ≡ ¬(¬Φ∨¬Ψ),

• Φ→Ψ≡ ¬Φ∨Ψ,

• Φ↔Ψ≡ (Φ→Ψ)∧ (Ψ→Φ)

For satisfiability studying, it is more convenient to keep the negation, disjunction and con-
junction operators, as this allows one to push the negation operators against the propositional
variables. We call a literal a propositional variable or its negation. A clause is a disjunction
of literals, thus it is satisfied by an assignment if at least one of its literals is set to True by
this assignment. A CNF formula is a conjunction of clauses, thus to satisfy a CNF formula
we must satisfy all its clauses, thus one unsatisfiable clause is sufficient to make the whole
CNF formula unsatisfiable. Any logical formula can be polynomially translated into a CNF
formula [Tseitin 1970] while keeping its satisfiability possibilities unchanged. Thus starting
from a logical formula, we put it first in a Negation Normal Form (NNF), by simply pushing
every negation operator applied on a subformula to its literals using the De Morgan laws, then
we introduce new variables incrementally in order to substitute each one by each subformula
in the NNF formula, starting from its deepest subformulas, without forgetting to ensure
equivalent satisfiability property of the new formula by adding the equivalence between each
introduced variable and the corresponding substituted subformula. This process is repeated
incrementally until the whole formula is a conjunction of clauses, i.e., a CNF formula.

Example 2 (Tseitin transformation). Let Φ = ((a∧b)∨ (c∧¬d))∨ ((c∨b)∨¬a). In order
to transform it into a CNF, we will introduce x,y,z,w as auxiliary variables:

Φ≡ (x↔ (a∧b))∧ ((x∨ (c∧¬d))∨ ((c∨b)∨¬a))

≡ (y↔ (c∧¬d))∧ (x↔ (a∧b))∧ ((x∨ y)∨ ((c∨b)∨¬a))

≡ (z↔ (c∨b))∧ (y↔ (c∧¬d))∧ (x↔ (a∧b))∧ ((x∨ y)∨ (z∨¬a))

≡ (w↔ (z∨¬a))∧ (z↔ (c∨b))∧ (y↔ (c∧¬d))∧ (x↔ (a∧b))∧ ((x∨ y)∨w)

≡ (w↔ (z∨¬a))∧ (z↔ (c∨b))∧ (y↔ (c∧¬d))∧ (x↔ (a∧b))∧ (x∨ y∨w)

Each one of the added equivalences can be transformed using the above relations between
the logical operators, like this:
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f ↔ (g∨h)≡ (¬ f ∨g∨h)∧ ( f ∨¬g)∧ ( f ∨¬h)
f ↔ (g∧h)≡ (¬ f ∨g)∧ (¬ f ∨h)∧ ( f ∨¬g∨¬h)

Then, we obtain the following CNF formula that is satisfiability-equivalent to Φ:

Φ≡(¬w∨ z∨¬a)∧ (w∨¬z)∧ (w∨a)

∧ (¬z∨ c∨b)∧ (z∨¬c)∧ (z∨¬b)

∧ (¬y∨ c)∧ (¬y∨¬d)∧ (y∨¬c∨d)

∧ (¬x∨a)∧ (¬x∨b)∧ (x∨¬a∨¬b)

∧ (x∨ y∨w)

We give here some simple illustrative example of a SAT problem:

Example 3 (SAT Instance). Let x,y,z be propositional variables and Φ = (¬x∨ y)∧ (¬y∨ z)
a CNF formula. Then, verifying the possibility to satisfy Φ, denoted by Sat(Φ)?, is the SAT
problem.
A solution to this problem is an assignment returned by the solver so that all the clauses of Φ

are satisfied. Here, the assignment x = 0,y = 1,z = 1 is a possible solution. In such case the
solver answers Yes, we say Φ is SAT.
Otherwise, if no assignment satisfies Φ, the solver returns No. We say in this case that Φ is
UNSAT.

Many mathematical and computer science problems can be reduced to a SAT problem.
Many industrial problems can be reduced to it also, the motivation of this reduction being
twofold. First, many of these problems can be abstracted naturally to constraints problems that
consist in satisfying a set of requirements where each requirement can be satisfied in several
ways and where the ways for different requirements may contradict each other; therefore they
can be easily mapped to a CNF formula. Second, a revolution occurred in the performances
of modern SAT solvers in the last decade, in particular the Conflict Driven Clause Learning
(CDCL) Solvers. The CDCL solvers were introduced in [Silva & Sakallah 1997], then an effi-
cient SAT solver was introduced in [Moskewicz et al. 2001], which inspired the development
of many very efficient solvers that became later reference solvers in the SAT competition like
[Eén & Sörensson 2005, Audemard & Simon 2009]. Nowadays, CDCL solvers can handle
problems with millions of clauses and hundreds of thousands of propositional variables. That
is why we find SAT applications nowadays in many domains like:

• Formal methods, such as Bounded Model Checking [Biere et al. 1999], Test genera-
tion, etc.
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• AI, as in Planning [Kautz & Selman 1992], Knowledge representation, Games.

• Design Automation, as in fault diagnosis [Grastien et al. 2007, Bjesse et al. 2001,
Velev & Bryant 2003].

• Other applications in security, bio-informatics, mathematical problems and in the core
of other constraints solvers: SMT, MAXSAT, #SAT, etc.

Moreover, SAT solvers can be indirectly used in our daily life like in the verification tasks in
operating systems and in hardware design of processors. This success of the SAT technology
is due to the effort of an active community of researchers that led to the aggregation of
many well designed algorithms and heuristics that are engineered together to answer very
efficiently a SAT problem.
Our work in this thesis does not contribute to the SAT research but uses this technology
to deal with the studied problem, which may be seen as an additional application to this
successful technology! Therefore, we will recall here its basics principles and only what we
think is useful for the reader to understand our contributions.

2.4.1 SAT Algorithms and Heuristics

Let us first recall the principal rule of logical reasoning which is the resolution rule, also
exploited in the SAT algorithms.

Resolution Rule

It consists in eliminating from each two clauses every branching variable, i.e., a variable that
appears positively in one clause and negatively in the other one. Thus, picking up in a set of
clauses two clauses x∨C and ¬x∨C′ and adding to the set their so-called resolvant C∨C′

does not change the satisfiability of the set of clauses:
x∨C ¬x∨C′

C∨C′
Example 4.

¬x∨ y ¬y∨ z
¬x∨ z

Using the relations cited above between the logical connectives, we can read this example as:
if x implies y and y implies z, then x implies z.

Then we have the following fundamental result: a set (conjunction) of clauses is unsatis-
fiable iff the empty clause can be produced from it by a repeated application a finite number
of times of the resolution rule.
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Unit Propagation

A special case of application of the resolution rule is when one of the two parent clauses is a
unit clause, i.e., contains only one variable (either because already present like this in the
input formula or as a result of previous steps of resolution rule application). This can help in
shortening other clauses or even producing an empty clause that proves the unsatisfiability.
Inspecting such unit clauses to exploit them when they appear is called unit propagation.

Davis and Putnam algorithm (1960) and DPLL (1962)

The first algorithm proposed to solve a SAT problem was by [Davis & Putnam 1960], de-
noted by DP60. It is simply an iterative application of the resolution rule, and waiting
until either the formula is empty i.e. it is satisfiable or one clause becomes empty i.e. the
formula is unsatisfiable. This algorithm requires a lot of memory, even with some elementary
improvements like deleting pure literals (i.e. those who appear only in one sign in the
formula) and shrinking clauses with unit propagation, thus DP60 was still impractical for
large instances.

After that, a more scalable backtracking algorithm was introduced by [Davis et al. 1962],
denoted by DPLL. It consists in ordering the set of variables and applying an iterative division
of the search space through guessing the current variable’s value: if the current guess leads to
an empty clause the algorithm backtracks to the previous level and flips the guess in order to
continue the search for a potential model. Thanks to the backtracking strategy this algorithm
is complete. One can choose the ordering to be based on the variables frequencies in the
formula, or simply adopt the lexicographical or anti-lexicographical orders. Moreover, this
ordering can be different according to the branches. This approach can exploit in a better
way pure literal deletion: as it chooses what to satisfy, the considered variables and so their
clauses are deleted from the formula, and in the same way unit propagation is oriented to
satisfy the remaining literal in each unit clause. As the corresponding variable can be found
also in other clauses in the formula, this makes propagating its assigned value in all its
occurrences in the formula a fruitful process; thus it could lead to satisfy other clauses in the
formula or generate a conflict when the problem is unsatisfiable.
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Example 5. (DPLL). Let the formula Φ be the conjunction of the following clauses:

φ1 = ¬x1∨¬x5∨ x2

φ2 = ¬x3∨¬x4

φ3 = x1∨¬x4∨ x3

φ4 = ¬x4∨¬x2

φ5 = x3∨¬x5

φ6 = x1∨ x5∨ x4∨ x2

If we adopt the lexicographical ordering, x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5, we get the following search
tree:

1 x1 = 0⇒ {φ1 satisfied}
2 x2 = 0⇒{φ4 satisfied}
3 x3 = 0⇒ {φ2 satisfied}
4 x4 = 0⇒{φ3 satisfied}
5 x5 = 0⇒ { conflict}
6 x5 = 1⇒ { conflict}
7 x4 = 1⇒{ conflict}
8 x3 = 1⇒ {φ3,φ5 satisfied}
9 x4 = 0⇒{φ2 satisfied}

10 x5 = 0⇒ { conflict}
11 x5 = 1⇒ {φ6 satisfied}

Notice that the algorithm backtracks after steps 5,6,7 and 10, then in step 11 returns the
assignment {x1 = 0,x2 = 0,x3 = 1,x4 = 0,x5 = 1} as a model of the formula Φ.

Although DPLL is more scalable than DP60, it is still impractical for real world instances.

Main components of a modern SAT Solver

The SAT solvers knew their current revolution after introducing learning techniques over
the DPLL algorithm [Silva & Sakallah 1997] and adding many other intelligent heuristics
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and data structures that improved their performance and scalability [Moskewicz et al. 2001,
Eén & Sörensson 2005]. The paradigm of a modern SAT solver can be seen as a backtracking
algorithm that tries systematically to assign values to the propositional variables in the input
formula, preceded by an important step of preprocessing and empowered by four main
components, briefly explained in the following, which are:

• Branching component: which variable to assign now?

• Learning component: in case of conflict, what should be learned as a “new” constraint
about the problem?

• Clause Management component: after having failed a lot of time and learned a lot of
conflicts, which clauses are the more informative to maintain in the memory and how
to store them?

• Restarting component: restarting the search is not a disruptive process, as many
important pieces of learned information are stored in the new setting of the problem
and this can help to get shorter proofs, but when to restart the search?

The answers to the questions posed by these components can help in reducing significantly
the search space. Actually, these questions are answered in the SAT community in many
different ways. These ways are filtered and they are more and more stable, due to the active
research community of satisfiability problems.

Let us start by the Learning component. The purpose of this module is to exploit the
solver failed tries while searching for a potential valuation that satisfies the formula. In other
words, each variable assignment of a variable is either a part of a model or not. After a
series of successive assignments (a series of decisions), we get a partial assignment of the
variables, and in the same way it is either "correct" and then leads to a model or incorrect due
to a discovered conflict. The CDCL solvers, as the name indicates, are based on analyzing
such conflicts in order to correct previously made decisions. Thus they learn new constraints
about the problem, which were implicitly encoded in the input CNF formula. The following
example and the associated figure 2.7 illustrate how the CDCL algorithm analyses a conflict.

Example 6. (CDCL example) Let the CNF formula Φ consisting of the following clauses:

φ1 = ¬a∨b φ2 = ¬b∨ l φ3 = ¬b∨ c∨d φ4 = ¬b∨¬d∨¬h

φ5 = ¬ f ∨ e φ6 = ¬d∨ f ∨g φ7 = ¬g∨h∨¬ j∨ i φ8 = ¬i∨ f ∨ k

φ9 = ¬l∨m∨¬i φ10 = ¬k∨¬n φ11 = n∨ p φ12 = ¬m∨¬p
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Fig. 2.7 Implication graph of an application of the CDCL example 6.

After a series of decisions, a@1,¬c@2,¬e@3, j@4, the solver will detect the empty
clause from the conflict p∧¬p, which indicates that a∧¬c∧¬e∧ j is a conflict, i.e., cannot
be satisfied. The algorithm can learn this conflict by adding the clause ¬a∨ c∨ e∨¬ j to
the original formula. However, this empty clause can be reproduced by many ways through
decisions of variables participating in its generation and which are closer to it than our
decided variables, and so faster in deriving it. Which means that many conflict clauses
can represent what we intend to learn, i.e., excluding an assignment that leads to the same
empty clause. These different representations can be obtained from the different possible
bi-partitions (cuts) of the implication graph into a conflict side and a decision or reason side.
We aim at making acquired knowledge as relevant as possible to the conflict. For this, we
search the Unique Implication Points (UIPs, i.e. any node at the current decision level such
that any path from the decision variable to the conflict node must pass through it) in the
implication graph and we choose the first one (FUIP), here i. In other words we add to the
clauses data base the new clause whose literals are the negation of all the variables reachable
by paths from the reason side and having edges towards the conflict side crossing the FUIP
cut. In our example the learned conflict clause is C = f ∨¬i∨¬l.
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Actually, the FUIP cuts can help also in improving the backtracking in the CDCL algo-
rithm. Thus instead of just flipping the last decision variable, we can jump to the maximum
decision level of the learned conflict literals which are different from the FUIP variable.
In our example the FUIP variable is i, then in this case we can backtrack to the level
max(f@3,l@0)= 3, and flip the value of its decision variable, i.e., set e = 1, instead of back-
tracking to j = 0. This method is called back-jumping or non-chronological backtracking
[Moskewicz et al. 2001].

In the Branching component, most of the modern solvers adapt the Variable State In-
dependent Decaying Sum (VSIDS) heuristic [Moskewicz et al. 2001] to choose the next
variable to branch the formula on it. In this heuristic, a score is assigned to each variable
and the most frequent variables in the last conflict clauses are rewarded, by increasing their
scores, by an analysis done in a predefined slot of time. This slot has an order of 1/30s,
actually it corresponds to the application domain of the SAT instance.

In the Clause Management component, the lazy two watched literals (2WL) data structure
answers the question how to store the clauses. Actually, the VSIDS heuristic was introduced
in a package of the well engineered solver Chaff, in order to guide the search and compensate
the 2WL structure, which drops monitoring all literals in each clause and thus makes the
search blind! From another side the 2WL structure saves a lot of memory. It depends on
the fact that any N-literals clause is not “useful” before it becomes a unit clause. Therefore
watching only two of its literals is enough to know when it will become a unit clause. In
fact, the unit propagation is triggered only if one of the watched literals is set to False and
there is not any left non-falsified literal to watch in the clause. Even though keeping the
learned clauses is important to ensure completeness of the solver, however they add additional
memory overhead because of their huge number. It is important to handle this problem in
the Clauses Management component. To this end, the authors in [Audemard & Simon 2009]
observed that not all learned clauses have the same quality and they defined a measure of
clauses quality, called Literals Blocks Distance (LBD), which depends on the number of
blocks which a learned clause’s literals are partitioned in. A block is defined by the decision
level. In other words, a learned clause whose literals are separated in two blocks is more
important to save than another clause whose literals are separated in more than two blocks.
In fact, they use a fixed value of LBD = 2 in their solver Glucose which won the SAT
competition in 2009, when they introduced this idea.
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In the Restarting component, many strategies appeared to serve the fact that restarting
helps in finding shorter proofs through exploitation of the new learned conflicts [Haim & Heule 2014,
Gomes et al. 2000, Huang 2007]. Restarts slots usually grow slowly until being large enough
to ensure completeness and they can make huge different on different benchmarks. One
keeps track of the phase or the sign of assigned literals and one branches first on the recorded
phase when taking a decision in the new restart. Adaptive restart strategies are adopted since
the 2009 SAT competition, like being reviewed in the light of the quality of the learned clause
[Audemard & Simon 2009] and many other strategies.

As a result of these components, the modern SAT solvers can be seen as clauses gen-
erators that can compromise between learning good new constraints about the problem
and keeping the clauses data structure agile, free from an exhaustive overhead of storage
and management of a huge number of learned clauses. Actually, one may accept relaxing
the completeness insurance if one is sure that the problem is well encoded and so that
all needed information is implicitly in the encoding, in such a way that the solver will dis-
cover this hidden information, which is usually the case of well described industrial instances.

We should say that preprocessing the formula before feeding it to the solver can sig-
nificantly reduce its complexity and the SatELite preprocessor is the de facto standard
preprocessor since 2005 used in most solvers. It consists in variables and clauses elimination
process [Fourdrinoy et al. 2007, Eén & Biere 2005].

Incremental SAT

In many applications, the logical formula Φ may contain a set of hypotheses (in terms of
literals) H that should be taken into account during satisfiability testing, thus the testing
process consists in doing a set of similar tests of the form {SAT (Φ∧hi)|hi ∈H }. In other
words the SAT solver is supposed to handle some of the problem constraints, especially
those which are independent of the current hi, in each call and re-learn their corresponding
conflicts again and again, which makes recycling the previous learned conflicts a good idea
to improve the performance and save time.

In order to make the conflict learned during the test under an assumption hi usable in
further tests, where hi may hold or not, every learned conflict must keep the trace of all
assumptions involved in its deduction. To this end, we add the hypotheses to each clause of
the original formula Φ, then when the solver gets a new input formula to test of the form
SAT (Φ∧

⋂
hi), it will first apply the assumptions in the first level of decision to filter the
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learned clauses and keep only those which are consistent with the current assumptions, then
it will proceed to classical test. In this way, we can ensure the soundness of the test and save
the time that would be needed to discover what is already known from previous calls. The
next example shows in detail how this process can be done.

Example 7. (Incremental SAT) Let us consider the formula Φ of the example 6. Suppose
that we want, for some reason, to test the satisfiability of the first four clauses under the
assumption x and similarly the second four clauses under the assumption y, and the last four
clauses under the disjunction of the assumptions x and z: Φ′ = (

∧
1≤i≤4 φi∧x)∧ (

∧
5≤i≤8 φi∧

y)∧ (
∧

9≤i≤12 φi ∧ (x∨ z)). Thus, in this way each learned clause will hold the trace of
assumptions used while testing the formula.

2.4.2 Succinct Transition Systems

Succinct Transition Systems were introduced in [Rintanen & Grastien 2007] in order to
compress the representation of the system states and allow a maximum amount of non-
interfering events to be fired simultaneously. Thus, the system states are represented by
the valuations of a set of Boolean state variables (n states need ⌈log(n)⌉ state variables).
The events are represented by their occurrences as a pair of preconditions and effects for
each occurrence. The interference relation between two events is represented depending
on the consistency between the events effects or between the effects of one event and the
preconditions of the other one.

Definition 9. A Succinct Transition System (SLTS) is described by a tuple T = ⟨A,Σo,Σu,Σ f ,

δ ,s0⟩ where:

• A is a finite set of propositional state variables,

• Σo is a finite set of observable correct events,

• Σu is a finite set of unobservable correct events,

• Σ f is a finite set of unobservable faulty events,

• δ : Σ = Σo∪Σu∪Σ f → 2L×2L
assigns to each event a set of pairs ⟨φ ,c⟩, where each

pair represents an occurrence of the event such that precondition φ is given by a
formula in L , the propositional language built on A, that has to be satisfied by the
source state of the transition and effects c are given by a set of elements in L, the
literals built from A, expressing the positive and negative changes of the valuation of
the destination state of the transition w.r.t. the valuation of its source state,
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• s0 is the initial state (a valuation of A).

It is straightforward to show that any LTS can be represented as an SLTS: one takes
⌈log(|Q|)⌉ Boolean variables and represents states by different valuations of these variables;
one assigns to each occurrence of an event e labeling a transition (x,e,y) a pair ⟨φ ,c⟩, with
φ expressing the valuation of x and c the valuation changes between x and y. And recipro-
cally, any SLTS can be mapped to an LTS (see Definition 2.4 in [Rintanen & Grastien 2007]).

2.4.3 SAT-based Diagnosability Encoding

Back to our studied property, an immediate rephrasing of the definition 4 shows that T is
non-diagnosable iff it exists a pair of trajectories corresponding to cycles (and thus to infinite
paths), a faulty one and a correct one (due to the fault uniqueness assumption 3), sharing the
same observable events. Which is equivalent to the existence of an ambiguous (i.e. made
up of pairs of states respectively reachable by a faulty path and a correct path) cycle in the
product of T by itself, synchronized on observable events, which is at the origin of the so
called Twin Plant structure introduced in [Jiang et al. 2001].
This non-diagnosability test was formulated in [Rintanen & Grastien 2007] as a satisfiability
problem in propositional logic. For this, the authors distinguished between an occurrence
of an event in the faulty sequence and in the normal sequence by introducing two copies of
it (faulty and normal) which the same idea that in [Jiang et al. 2001]. The difference is that
this approach constructs the logical formula and the solver has the task to find a model if any,
in other words the (progressive and not complete in general) construction of the Twin Plant
is due to the solver and only the search space is given to it, provided with diagnosability
property encoding. Thus, for each possible step in the system it may contain simultaneous
events that belong to faulty and normal sequences but must synchronize the occurrences of
observable events whenever they take place. After that, the authors consider n steps by doing
the conjunct of their formulas, then add to the result the logical formula that represents the
occurrence of a cycle in both sequences (normal and faulty) after the occurrence of the fault in
the faulty sequence. At last they feed the resulted formula to a SAT Solver. The satisfiability
of this formula is equivalent to finding a critical path, i.e., to the non-diagnosability of the
fault.

We recall below this encoding with the variables and the formulas used, where superscripts
t refer to time points and (et

o) and (êt
o) refer respectively to the faulty and correct events

occurrences sequences (corresponding states being described by valuations of (at) and (ât))
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of a pair of trajectories witnessing non-diagnosability (so sharing the same observable events
represented by (et) and forming a cycle). The increasing of the time step corresponds to the
triggering of at least one transition and the extension by an event of at least one of the two
trajectories. T = ⟨A,Σo,Σu,Σ f ,δ ,s0⟩ being an SLTS, the propositional variables are thus:

• at and ât for all a ∈ A and t ∈ {0, . . . ,n},

• et
o for all e ∈ Σo∪Σu∪Σ f , o ∈ δ (e) and t ∈ {0, . . . , n−1},

• êt
o for all e ∈ Σo∪Σu, o ∈ δ (e) and t ∈ {0, . . . , n−1},

• et for all e ∈ Σo and t ∈ {0, . . . ,n−1}.

The following formulas express the constraints that must be applied at each time step t or
between t and t +1.

1. The event occurrence et
o must be possible in the current state:

et
o→ φ

t for o = ⟨φ ,c⟩ ∈ δ (e) (2.4.1)

and its effects must hold at the next time step:

et
o→

∧
l∈c

lt+1 for o = ⟨φ ,c⟩ ∈ δ (e) (2.4.2)

We have the same formulas with êt
o.

2. The present value (True or False) of a state variable changes to a new value (False or
True, respectively) only if there is a reason for this change, i.e., because of an event
that has the new value in its effects (so, change without reason is prohibited). Here is
the change from True to False (the change from False to True is defined similarly by
interchanging a and ¬a):

(at ∧¬at+1)→ (et
i1o j1
∨·· ·∨ et

iko jk
) (2.4.3)

where the o jl = ⟨φ jl ,c jl⟩ ∈ δ (eil) are all the occurrences of events eil with ¬a ∈ c ji .
We have the same formulas with ât and êt

il o jl
.

3. At most one occurrence of a given event can occur at a time and the occurrences of
two different events cannot be simultaneous if they interfere (i.e., if they have two
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contradicting effects or if the precondition of one contradicts the effect of the other):

¬(et
o∧ et

o′) ∀e ∈ Σ,∀{o,o′} ⊆ δ (e),o ̸= o′ (2.4.4)

¬(et
o∧ e′to′) ∀{e,e′} ⊆ Σ,e ̸= e′,∀o ∈ δ (e),∀o′ ∈ δ (e′),o and o′ interfere (2.4.5)

We have the same formulas with êt
o.

4. The formulas that connect the two events sequences require that observable events take
place in both sequences whenever they take place (use of et for synchronization):

∨
o∈δ (e)

et
o↔ et and

∨
o∈δ (e)

êt
o↔ et ∀e ∈ Σo (2.4.6)

5. To avoid trivial cycles (silent loops with no state change) we require that at every time
point at least one event takes place:

∨
e∈Σo

et ∨
∨

e∈Σu∪Σ f ,o∈δ (e)

et
o ∨

∨
e∈Σu,o∈δ (e)

êt
o (2.4.7)

The conjunction of all the above formulas for a given t is denoted by T (t, t +1).
A formula for the initial state s0 is:

I0 =
∧

a∈A,s0(a)=1

(a0∧ â0) ∧
∧

a∈A,s0(a)=0

(¬a0∧¬â0) (2.4.8)

At last, the following formula can be defined to encode the fact that a pair of trajectories
is found with the same observable events and no fault in one trajectory (first line (2.4.9)), but
the fault f (recall that Σ f = { f}) in the other (second line (2.4.10)), which are infinite (in the
form of cycles at step n, necessarily non-trivial from (2.4.7) and thus containing at least one
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observable event from assumption 2; third line (2.4.11)), witnessing non-diagnosability:

Φ
T
n = I0∧T (0,1)∧·· ·∧T (n−1,n) ∧ (2.4.9)

n−1∨
t=0

∨
o∈δ ( f )

f t
o ∧ (2.4.10)

n−1∨
m=0

(
∧
a∈A

((an↔ am)∧ (ân↔ âm))) (2.4.11)

From this encoding in propositional logic, follows the result (theorem 3.2 of [Rintanen & Grastien 2007])
that an SLTS T is not diagnosable if and only if ∃n≥ 1,ΦT

n is satisfiable. It is also equivalent
to ΦT

22|A| being satisfiable, as the Twin Plant states number is an obvious upper bound for n,
but often impractically high. However the authors notice that one is not forced to test all reach-
able states in many cases where an approximation for the reachable states can be applied, but
without explaining how such approximation can be found (see in [Rintanen & Grastien 2007]
some ways to deal with this problem).

Actually the results presented in this work show a good scalability in comparison with
the twin plant approaches which they said to be impractical for system with number of
states larger than m = 10000. And as we see above this approach considered the centralized
DES as there is no communication events in their model. This motivated us to consider this
approach our starting point, and try to add communication events to consider the distributed
DES case and to study the effect of employing incremental SAT mode in both centralized
and distributed cases through providing the experimental results of our study, which will
be presented in Chapter 3. From another side, we noticed that many similar problems like
predictability (see Chapter 4) and pattern diagnosability (see Chapter5) can be encoded using
similar techniques without passing by sophisticated structure used in the literature to treat
such cases. Especially that, the results presented in [Ye 2011] manifest a rapid explosion
of their methods even for small systems and patterns sizes. Although, in our personal
communication with author she justified this explosion by an inefficient implementation, but
we still think that the SAT-based approaches can improve the scalability and facilitate the
properties analysis.





Chapter 3

SAT-Based Diagnosability Analysis in
Distributed DES

In this chapter, we will present our first and second contributions. The first one is the
extension of the existing SAT encoding in [Rintanen & Grastien 2007], which concerns the
centralized DES, in order to deal with the Distributed DES (DDES), where we consider a
set of communicating components using a set of synchronous communication events. We
handle in our encoding the case where the communication events set is not purely observable
or purely unobservable, thus it can be a mixture of both types. The second contribution
is adapting the encoding to use incremental SAT solver mode, which can help to reuse a
previously founded knowledge while checking the diagnosability property. We will discuss
our experimental results before ending this chapter by suggesting some improvements over
the original encoding .

3.1 Motivation/Introduction

Nowadays, systems are getting more and more complex and one way to reduce their com-
plexity is by breaking them down into many communicating components. Another need to
distribute a system into different components could be the nature of the provided service
by this system. However, this distribution implies additional difficulties in modeling the
communication among components without making the management process more com-
plicated. In particular, the fault diagnosis process should be precise in order to ensure the
design requirements and functionalities. For example, in a distributed structure, the fault
may occur in one component, but very often cannot be precisely identified using only the
available observations in this faulty component. However, in the case of a synchronous
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communication between this faulty component with its neighbors, the communication events
have the role of a relay that connect components, therefore getting access to new observations
is used to help in monitoring the system. If we consider a global observer of the system, it
would be waiting for additional observations from other components to be able to identify
the fault occurrence precisely. One question to be considered here is, how to know if such
discriminating observation will be available in a finite time after the fault occurrence. In
fact, such question needs to be answered since the design stage of a system. Another related
question is, if the previous question has a negative answer, i.e., a discriminating observa-
tion may not arrive, a designer should be informed why it might happen. Actually these
questions concern the diagnosability analysis of faults in DDES, which has been already
studied [Pencolé 2004, Schumann & Pencolé 2007, Ye & Dague 2010] and some answers
were provided that we presented as we reviewed these works in section 2.3.3.

One issue that could be always improved is the scalability of an approach, i.e., the size
of systems that can be processed using a specific approach. In this context, we explore
here the usage of a generic approach based on the propositional logic; in particular we
aim at exploiting the big success of the SAT solving technology, as we showed in section
2.4, especially as this technology has been studied in [Rintanen & Grastien 2007] but only
considering centralized DES. We aim also at exploiting the flexibility of altering (modifying,
adding) constraints in the encoding, then letting the SAT solvers handle them in order to a
more efficient diagnosability analysis. This way could be easier than altering an algorithm
to take into account some specific considerations. For example, in all the above studies
about diagnosability in DDES, the authors considered a purely unobservable set of com-
munications; actually they should add additional processing to handle the case of a mixed
input set of both observable and unobservable communications, like for example, that only
unobservable communications should be differentiated between the two copies of the local
pre-diagnoser while synchronizing them on their observations. Such a technical detail can
reduce an important amount of new states which are built in the different twin structures, by
differentiating the communications of the faulty system copy from those related to the correct
system copy. Things can be more complex when communication and observation features
of events have different implications on the studied property as we will see an example in
predictability analysis in chapter 4. We will show how we can simply add some constraints
to treat such details by using the succinct representation of the system and encoding them
into SAT.



3.2 Distributed Succinct Transition Systems 43

In order to model DDES with SLTS, we need to extend these ones by adding communica-
tion events to each component.

3.2 Distributed Succinct Transition Systems

3.2.1 Modeling

Firstly, we define a communication event as a shared event between at least two different
components. As we mentioned before, we are interested in synchronous communication
events. Thus, we assume that firing such event in one component requires doing the same in
all the components having this event in their events sets. In other words, from an enumerative
representation point of view, communication events are synchronized such that they all
occur simultaneously in all components where they appear. More precisely, a transition by a
communication event c may occur in a component iff a simultaneous transition by c occurs
in all the other components where c appears (has at least one occurrence). In particular, all
events before c in trajectories in all these components necessarily occur before all events
after c in these trajectories. The implicit global model of the system is thus nothing else that
the synchronization, on the communication events, of the models of the components, where
these communication events are then eliminated by delay closure.

From a constraints programming point of view, to be able to bring out a communication
event in one component, exactly one occurrence of this event, in each other owner component,
must have its required preconditions held to allow the firing of this event. Therefore, the
definition of such communication events would be dependent of the whole system state.
Thus, for each communication event, all its owners would participate in its definition. As
we have recalled in section 2.4.3, the succinct representation of the system, as introduced
in [Rintanen & Grastien 2007], defines, for each event, a set of occurrences and, for each
occurrence, its relation with all other occurrences in the system. Therefore, it implies many
constraints to ensure a relation consistent with the system design. Thus, it requires that
every event has some preconditions and must have some effects and also that at most one
occurrence of a given event can occur at a time. After that, it defines the interference between
two events, in order to prevent it, when their effects contradict or when the effects of one
contradict the precondition of the other (i.e., they share one variable but with two opposite
signs). By introducing the communication events, one may add them directly to the system
and handle all these constraints for each one. As a result, one can ensure the synchronization
of communication events but this will complicate designing the communication events in
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many ways, especially in considering all involved components for each constraint and each
communication event and also in adding or removing some of these components. From a
SAT point of view, encoding the corresponding constraints will generate long clauses, which
is not recommended for SAT solvers.

We propose pushing the potential complexity of communication events modeling to the
SAT solvers. Thus we will deal with these events like any other event in the system and
we will encode synchronization separately (such technical detail would not be as easy to
deal with in an enumerative representation of the system). Therefore, we define a distributed
SLTS with k different components (sites) as:

Definition 10. A Distributed Succinct Transition System (DSLTS) with k components is
described by a tuple T = ⟨A,Σo,Σu,Σ f ,Σc,δ ,s0⟩ where (subscripts i refer to component i):

• A is a union of disjoint finite sets (Ai)1≤i≤k of component own state variables, A =

∪k
i=1Ai,

• Σo is a union of disjoint finite sets of component own observable correct events,
Σo = ∪k

i=1Σoi,

• Σu is a union of disjoint finite sets of component own unobservable correct events,
Σu = ∪k

i=1Σui,

• Σ f is a union of disjoint finite sets of component own unobservable faulty events,
Σ f = ∪k

i=1Σ f i,

• Σc is a union of finite sets of (observable or unobservable) correct communication
events, Σc = ∪k

i=1Σci, which are the only events shared by at least two different
components (i.e., ∀i,∀c ∈ Σci,∃ j ̸= i,c ∈ Σc j),

• δ = (δi), where δi : Σi = Σoi∪Σui∪Σ f i∪Σci→ 2Li×2Li , assigns to each event a set of
pairs ⟨φ ,c⟩ in the propositional language of the component i where it occurs (so, for
communication events, in each component separately where it occurs), i.e. each pair
represents an occurrence of the event such that precondition φ is given by a formula in
Li, the propositional language built on Ai, and effects c are given by a set of elements
in Li, the literals built from Ai,

• s0 = (s0i) is the initial state (a valuation of each Ai).

Notice that we allow in whole generality communication events to be, partially or
totally, unobservable, so one has in general to wait further observations to know that some
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communication event occurred between two or more components. On the other side, as
already commented with assumption 7, we do not consider assuming these communications
to be faultless as a limitation. Thus, if a communication process or protocol may be faulty, it
has just to be modeled as a proper component with its own correct and faulty behaviors (the
same that, e.g., for a wire in an electrical circuit). In this sense, communications between
components are just a modeling concept, not subject to diagnosis. The assumption 5 will
also be adopted here: the observable information is global, i.e., centralized, allowing to keep
definition 4 for diagnosability. In fact, when observable information is only local to each
component, distributed diagnosability checking has been proved to be undecidable in general
[Ye & Dague 2013].

3.2.2 Encoding DSLTS Diagnosability as Satisfiability Problem

Let T be a DSLTS made up of k components denoted by indexes i, 1 ≤ i ≤ k. In order to
express the diagnosability analysis of T as a satisfiability problem, we have to extend the
formulas of subsection 2.4.3 to deal with communication events between components.
Let Σc = Σco∪Σcu be the communication events, with Σco = ∪k

i=1Σcoi the observable ones
and Σcu = ∪k

i=1Σcui the unobservable ones.
The idea is to consider each communication event as any other event in each of its

owners and, as it has been done with events et for e ∈ Σo for synchronizing observable
events occurrences in the two trajectories, to introduce in a similar way a global reference
variable for each communication event at each time step, in charge of synchronizing any
communication event occurrence in any of its owners with occurrences of it in all its other
owners. We use one such reference variable for each trajectory, et and êt , for unobservable
events e ∈ Σcu, and only one for both trajectories, et , for observable events e ∈ Σco as it
will also in addition play the role of synchronizing observable events between trajectories
exactly as the et for e ∈ Σo. So, we add to the previous set of propositional variables the new
following ones:

• et
o, êt

o for all e ∈ Σc, o ∈ δ (e) = ∪iδi(e) and t ∈ {0, . . . ,n−1},

• et for all e ∈ Σc and t ∈ {0, . . . ,n−1},

• êt for all e ∈ Σcu and t ∈ {0, . . . ,n−1}.

Formulas in T (t, t +1) are extended as follows.

1. Formulas (2.4.1), (2.4.2), (2.4.3) and (2.4.5) extend to be applied unchanged to any
event in each component i, in particular to et

o and êt
o ∀e ∈ Σc, expressing that a



46 SAT-Based Diagnosability Analysis in Distributed DES

communication event must be possible, has effects in each of its owner components
and that two such different events in this component i cannot be simultaneous if they
interfere (notice that interference is not possible between two different components).

2. Formulas (2.4.4) extend to prevent two simultaneous occurrences of any event in each
component i, in particular a given communication event in such component:

¬(et
oi
∧ et

o′i
) ∀e ∈ Σ,∀i,∀{oi,o′i} ⊆ δi(e),oi ̸= o′i (3.2.1)

and the same with ê. Obviously these constraints do not extend to different owner
components of a communication event, by the very definition of communication events.

3. Finally, the new following formulas express the communication process itself, i.e.,
the synchronization of the occurrences of any communication event e in all its owner
components. Let S(e) be the set of indexes of the owner components of e, then formulas
(2.4.6) extend to communication events as follows:

∨
oi∈δi(e)

et
oi
↔ et and

∨
oi∈δi(e)

êt
oi
↔ êt ∀e ∈ Σcu ∀i ∈ S(e) (3.2.2)

∨
oi∈δi(e)

et
oi
↔ et and

∨
oi∈δi(e)

êt
oi
↔ et ∀e ∈ Σco ∀i ∈ S(e) (3.2.3)

The formula defining ΦT
n is unchanged. However the verification that the found cycles (third

line (2.4.11)) contain at least one observable event can be made explicit, instead of relying
as in [Rintanen & Grastien 2007] on formula (2.4.7) together with assumption 2. Following
this new encoding, the formula (2.4.7) can be safely suppressed and the third line (2.4.11) in
the definition of ΦT

n should be replaced by:

n−1∨
m=0

(
∧
a∈A

((an↔ am)∧ (ân↔ âm))∧ (
n−1∨
t=m

∨
e∈Σo∪Σco

et)) (3.2.4)

where the final disjunction of events et along the time steps of the cycles can exploit any
observable event e ∈ Σo∪Σco.

We have thus the result that a DSLTS T is not diagnosable if and only if ∃n≥ 1,ΦT
n is

satisfiable, which is also equivalent to ΦT

22∑
k
i=1 |Ai|

being satisfiable.
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3.2.3 Implementation and Experimental Testing

Despite the fact that diagnosability problem was introduced twenty years ago and that many
works have considered it in centralized and distributed structures, there is no standard bench-
mark available for testing purposes. However, many works considered specific benchmarks
or toy examples to proof the new concepts or ideas. We have started our tests on the sys-
tem in figure (3.1) (already presented in figure (2.4)), which was the running example in
[Pencolé 2004], as it has some interesting variants (e.g., considering only a subset of the
components; studying diagnosability either of fault f1 or of fault f2, the other one being thus
considered as an unobservable correct event) to test different cases in our encoding. Thus,
it contains several communication events with multiple occurrences (three communicating
components) with either global communication (all three components share the same commu-
nication event c1) or partial communication (only two components share the communication
event c2).
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Fig. 3.1 A DDES made up of 3 components C1, C2 and C3 from left to right. ci,1≤i≤2 are
unobservable communication events, Oi,1≤i≤5 are observable events and fi,1≤i≤2 are faulty
events.

We have implemented our encoding in Java. We used the well designed API of the SAT
solver Sat4j [Le Berre & Parrain 2010]. More efficient solvers could have been chosen but
we took this one because it is compatible with our clauses generator written also in Java and
only a limited speed up could be awaited from C++ solvers (a speed up of 4, i.e., reduction
of 75% of the runtime is often observed).
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The total number of propositional variables, denoted by |V |, in the generated formula ΦT
n

after n steps is given by:

|V |= n× (2|A|+3
|Σo|

∑
i=1
|eio |+

|Σ f |

∑
i=1
|eio |+2

|Σu|

∑
i=1
|eio |) (3.2.5)

where |A| is the total number of state variables, |Σo| the total number of observable events,
|Σ f | the total number of faults (one in our case, from assumption 3), |Σu| the total number
of unobservable correct events, |eio| the total number of occurrences of the event ei which
appears respectively in Σo, Σ f and Σu.

We take a distributed LTS model T and a steps number n as input and then we build both
the succinct representation of T and its diagnosability checking formulation up to step n by
generating all variables for n steps from the beginning. This has two opposite consequences.
From one side, it provides a verbose system description even without unfolding it. From
another side, one can exploit the fact that now new variables will be introduced as the system
description is complete and only proceed to unfolding along the time, as this allows the
ordering of these variables by their time step. Actually, the DIMACS format represents
variables by integers and, as we can see in equation 3.2.5, there is a fixed number of variables
generated for each time step. And, concerning constraints generation, one would do it only
once for one time step, then get next steps constraints by just shifting the integers.

The results are in Table 3.1, where the columns show the considered (sub)system and
the considered fault (in 3 cases), the steps number n, the satisfiability result, the numbers of
variables and clauses and the runtime in milliseconds.

These results mean that f2 is not diagnosable in C2 alone while it becomes diagnosable
when synchronizing C2 and C3. For this last result, we have increased the steps number until
reaching 22|A| (i.e., 210 for the subsystem {C2,C3}), which is the theoretical upper bound
of the Twin Plant states represented in the logical formula. As, in general, it is not always
possible to reach this bound in practice, we propose in section 3.3 to use incremental SAT to
improve the management of the steps number increasing. While f1 is not diagnosable even
after synchronizing all three components together. Actually, the numbers of variables and
clauses generated in these tests are small in comparison to what SAT solvers can handle (up
to hundred thousands propositional variables and millions of clauses). The first three cases of
the table are mentioned as a proof of concept. However, to test the tool on larger systems and
because of the absence of benchmark in the literature, we have multiplied these components
as shown in the last rows of the table.
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System Fault |Steps| SAT? |Variables| |Clauses| runtime(ms)
C2 f2 4 No 106 628 27
C2 f2 5 Yes 131 783 15
C2,C3 f2 5 No 205 1017 5
C2,C3 f2 32 No 1258 6444 32
C2,C3 f2 64 No 2506 12876 43
C2,C3 f2 128 No 5002 25740 139
C2,C3 f2 256 No 9994 51468 118
C2,C3 f2 512 No 19978 102924 166
C2,C3 f2 1024 No 39946 205836 7791
C1,C2,C3 f1 8 No 576 3546 91
C1,C2,C3 f1 9 Yes 646 3987 110
C1,10×C2,10×C3 f1 9 Yes 3851 22,879 402
C1,20×C2,20×C3 f1 9 Yes 7101 42,059 515
C1,50×C2,50×C3 f1 9 Yes 16,851 99,599 4417
C1,100×C2,100×C3 f1 9 Yes 33,101 195,499 15,412

Table 3.1 Diagnosability Testing Results on the example of Figure 3.1.

We should mention here that our representation of the communication events can reduce
the number of clauses over the direct representation mentioned before and this reduction is
proportional to the number of occurrences of the communication events.

3.2.4 Discussion

The results in Table 3.1 show the efficiency of this approach in proving the non-diagnosability.
The number of states in the last line is very large and it is obvious that proving the non-
diagnosability of such a system using the Twin Plant following the approach in [Pencolé 2004,
Schumann & Pencolé 2007, Ye & Dague 2010] is not practical. Thus, the fault f1 is not
diagnosable in the whole system, which means that the critical path will always exist. Even
when we try to disconfirm it incrementally, by exploiting the communications with the
neighboring components, we will be forced to continue the synchronization until covering
all the system and, for each step, we have to build the twining structures and search for
a critical path into them, then eliminate their non-ambiguous parts, a task that will be
always difficult in such huge systems. However, by using SAT solvers, the system will be
unfolded only when the previous fold does not contain the pair of infinite faulty and correct
trajectories that coincide on their observations, i.e., when a witness of non-diagnosability is
not found. Another difference is that, even in the unfolded part of the system, a SAT solver
will not construct the Twin Plant explicitly, it will rather concentrate on constructing only the
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critical pair parts, moreover the non-participating parts can help in pruning further failures
through the new constraints learned during the search. This difference makes interesting the
exploitation of the power of modern SAT solvers that allows us to encode the whole system
and discover earlier such cases.

Here we have some global communications (which are shared by all components) and,
where they participate in both trajectories in the same order, they cannot serve to distinguish
them. However, having different communications in the critical pair leaves the door open
to disambiguate the pair by exploiting neighbors information coming through communica-
tions. Actually, this is an idea present in the traditional approaches which can also return a
diagnosable subsystem that can be very valuable during a diagnosis process.

Unfortunately, the on-the-fly construction of the Twin Plant in our SAT-based approach
and the fact that only the first critical pair found is returned by the SAT solver make the incre-
mental management of the components and returning a diagnosable subsystem more difficult.
In fact it requires updating with each added component the constraints (3.2.2) and (3.2.3) to
consider the new embedded communication events. This could imply restarting the search
from scratch in some cases. Another similar limitation for the SAT-based approach could be
the length of the critical path. Despite the fact that this approach allows diagnosability testing
in very large systems, it cannot dynamically increase the steps number to ensure testing all
reachable states while searching for the cycles witnessing non-diagnosability (which could
be very far from the search starting point or very long). The worst case for these limitations
is when considering diagnosable systems. Thus, from a search point of view, it requires
exploring the whole possible search space to prove the non-existence of the indented witness
of non-diagnosability.

In order to relax or tame these potential limitations, we propose in the next section an
approach to ensure the knowledge about the system known during one call of the solver to be
recycled in the later calls. To this end we exploit the incremental search mode in SAT solvers
explained in subsection 2.4.1.

3.3 Diagnosability Checking using Incremental SAT

We adapt satisfiability algorithms for checking diagnosability of both centralized (subsection
2.4.3) and distributed (subsection 3.2.2) DES in order to incrementally process the maximum
length of paths with cycles searched for witnessing non-diagnosability and we provide
experimental results.
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3.3.1 Diagnosability as Incremental Satisfiability

We distinguish two cases while testing diagnosability using SAT solvers in order to verify the
satisfiability of the logical formula ΦT

n for a given n as described in [Rintanen & Grastien 2007].
The first case is when we find a model for ΦT

n , which definitely indicates the non-diagnosability
of the studied fault. The second case is when we do not find such a model, which indicates
that the non-diagnosability of the studied fault cannot be proved until n steps. In other words,
after testing all the possible first n steps, we did not find a pair of trajectories of length at
most n such that each exactly one of them contains the fault, they are equivalent in terms of
observations and each one contains a cycle making them potentially infinite. However, in
order to guarantee that the fault is actually diagnosable we have to unfold the system to cover
all reachable states. This is impractical in large systems as the theoretical upper bound for n
is 22|A|. Thus our intended pair might appear for a greater value of n than the one given as
input. Actually the artificial benchmark that we will present in subsection 3.3.2 contains such
a case, where the very last possible event is required to show the non-diagnosability of the
studied fault. However, this is also possible in real systems where such large bounds can be
a reason behind keeping the system not diagnosable, the diagnosability property becoming
irrelevant in practice if it requires so many time steps to be verified. Testing such cases
includes recalling the SAT solver after having increased n and rebuilt the logical formula
ΦT

n . This is repeated several times before getting a definitive answer about the diagnosability
problem.

Instead of that, we propose altering the formula ΦT
n in order to be testable in an incre-

mental SAT mode through multiple calls to a CDCL solver. As we mentioned earlier, the
incremental mode in a SAT solver consists in testing a formula under a set of assumptions
after embedding them in the clauses to be controlled in the formula. Thus, these clauses
can be activated or dis-activated corresponding respectively to imposing or relaxing an
assumption. In fact using CDCL solvers in a specialized, incremental, mode is relatively new
[Nadel & Ryvchin 2012] but already widely used in many applications. In this operation
mode, the solver can be called many times with different formulas. However, solvers are
designed to work with similar formulas, where clauses are removed and added from calls
to calls. Learned clauses can be kept as soon as the solver can ensure that clauses used to
derive them are not removed. This is generally done by adding specialized variables, called
assumptions, to each clause that can be removed, as a disjunction of the negated variables.
By assuming the variable to be True, the clause is activated and by assuming the variable to
be False, the clause is trivially satisfied and no longer used by the solver. What is interesting
for our purpose is that the CDCL solvers can save clauses learned during the previous calls
and test multiple assumptions in each new call. This means that after n steps we hope that
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the solver will have learned some constraints about the behavior of the system. Although we
are interested in testing the diagnosability property on a defined system, this framework is
general as the system behavior which can be learned by the solver from the previous calls is
independent from this property.

Modeling in incremental SAT

In order to extend to the incremental testing mode the clauses representation given in
subsections 2.4.3 and 3.2.2, we propose to divide the formula ΦT

n in two parts. The first
part Tn describes the first n steps of the behavior of both trajectories, synchronized on the
observations. It corresponds to (2.4.9) and is expressed by the conjunction of the formula
I0 representing the initial state and the formulas T (t, t +1), 0≤ t ≤ n−1, representing the
(t +1)th step. The second part Dn describes the diagnosability property status at step n, i.e.,
firstly the occurrence of the fault f in the n previous steps of the faulty trajectory (given by
the formula Fn corresponding to (2.4.10)) and secondly the detection of an observable cycle
at step n (given by the formula Cn corresponding to (3.2.4)). So we obtain, for n≥ 1:

Φ
T
n = Tn∧Dn

Tn = I0∧
n−1∧
t=0

T (t, t +1) Dn = Fn∧Cn

Fn =
n−1∨
t=0

∨
o∈δ ( f )

f t
o

Cn =
n−1∨
m=0

(
∧
a∈A

((an↔ am)∧ (ân↔ âm))∧ (
n−1∨
t=m

∨
e∈Σo

et))

Add now at each step j a control variable h j allowing to disable (when its truth value is
False) or activate (when its truth value is True) the formulas F j and C j and keep at step n
all these controlled formulas for 1 ≤ j ≤ n. We obtain the following Φ

T
n formula, for n≥ 1:

Φ
T
n = Tn∧

n∧
j=1

D ′j D ′j = F ′
j ∧C ′j 1≤ j ≤ n

F ′
j = ¬h j∨F j C ′j = ¬h j∨C j 1≤ j ≤ n
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We have thus the equivalence, for all n≥ 1:

Φ
T
n ≡Φ

T
n [Hn]

where Hn = {¬h1, . . . ,¬hn−1,hn} is a setting of the control variables and F [Hn] the applica-
tion of the valuation given by this setting to the formula F .

This allows one, for all n≥ 1, to replace the SAT call on ΦT
n by a SAT call on Φ

T
n under

the control variables setting Hn (indicated in a second argument of the call):

SAT (ΦT
n ) = SAT (ΦT

n ,Hn)

The idea is now to consider the control variables h j as assumptions and use incremental
SAT calls IncSATj under varying assumptions, for 1≤ j ≤ n. For this, we use the following
recurrence relationships for both formulas Φ

T
j and assumptions sets H j:

Φ
T
0 = I0 Φ

T
j+1 = Φ

T
j ∧T ( j, j+1)∧D ′j+1 j ≥ 0

H0 = {h0} H j+1 = H j[{¬h j,h j+1}] j ≥ 0

where the notation H j[{assi}] means updating in H j assumptions hi by their new settings
assi, i.e., in the formula above, replacing the truth value of h j, which was True, by False,
and adding the new assumption h j+1 with truth value True. From these relationships, the
unique call to SAT under given assumptions SAT (ΦT

n ,Hn) can be replaced, starting with the
set of clauses I0 and assumption h0, by multiple calls, 0≤ j ≤ n−1, to an incremental SAT
under varying assumptions:

IncSATj+1(NewClauses j+1,NewAssumptions j+1)

= IncSATj+1(T ( j, j+1)∧D ′j+1,{¬h j,h j+1}) (3.3.1)

If IncSATj answers SAT, the search is stopped as non-diagnosability is proved; if it answers
UNSAT, then IncSATj+1 is called.

Notice that we used a unique assumption h j for controlling both F j and C j as non-
diagnosability checking requires the presence of both a fault occurrence in the faulty trajectory
and of a cycle. But the same framework allows the independent control of formulas by
separate assumptions. For sake of simplicity, we also assumed we called IncSAT at each time
step, but this is not mandatory and indexes j for the successive calls can be decoupled from
indexes t for time steps. We should also say that, even if IncSAT allows us to reactivate an
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already disabled clause, we are sure in our case to never use this function (when hk has been
set to False, it always remains so) and we can thus force the solver to do a hard simplification
process that removes the forgotten clauses permanently. As a result of our adaptation, we
will be able to manage incrementally the scaling up of the size of the tested system and of
the distance from initial state and length of a cycle witnessing non-diagnosability.

3.3.2 Experimental Results

We show in this subsection a comparison between our adapted version of SAT-based
diagnosability checking described in the previous subsection 3.3.1, that uses incremen-
tal SAT, and the previous versions, for centralized systems (subsection 2.4.3 following
[Rintanen & Grastien 2007]) and for distributed systems (subsection 3.2.2). We have created
a scalable example represented in Figure 3.2 which contains 2k+1 components: one faulty
component and two sets of k neighboring correct components. The faulty component has
two separated paths, each one containing k different successive unobservable correct events
ci and ending with the same observable cycle of length 1, but only one of them contains the
fault f . The centralized model will be limited to this faulty component alone and thus in this
case the events ci, 1≤ i≤ 2k, are just unobservable correct events as is u.

In the distributed model, these events ci are communication events and the faulty compo-
nent is considered with the other two sets of correct components, where each component in
both sets shares one event ci with the faulty component to ensure a number 2k of commu-
nications before arriving to the cycles that will witness the non-diagnosability of the fault.
Each set of components will be synchronized with only one path, either the faulty path or the
correct one. This allows us to study the effect of the cycle distance in both models.

The results are in Table 3.2 for the centralized model (for k = 18, 28, 38, 48, 58 and
98) and in Table 3.3 for the distributed model (for k = 3, 13, 23, 33, 43 and 63). The
length of a pair of trajectories with cycles witnessing the non-diagnosability of f in each
example is k+2 and we consider the satisfiability of the formula ΦT

k+2, so the number of
steps required for SAT to provide the answer Yes is: |Steps] = k+ 2. In order to obtain
a fair comparison between IncSAT , which manages internally by handling assumptions
the successive satisfiability checks of increasing formulas for j = 1, . . . , k+ 2, and SAT ,
for which k+ 2 successive calls are made to the solver with respective formulas ΦT

n for
n = 1, . . . ,k+2, the sum of the k+2 runtimes of the SAT solver calls are considered in this
case (last column in the tables).

Although these examples remain relatively simple and do not reflect any potential con-
straint that could be summarized by some learned clauses (e.g., no interfering events), we can
already notice the difference in runtime in favor of our incremental version in the centralized
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Fig. 3.2 One faulty component that communicates with two sets of k components. Each set
communicates with one path (resp. faulty and correct) in the faulty component.

case and for the two largest values of k in the distributed case. This was expected because
keeping the solver hot allows it to exploit its acquired knowledge for any potential need
during the next calls. In other words, the fact that we generate from the beginning all time
steps constraints that concern all variables imply many meaningless clauses that add a load
on the solver in the version in [Rintanen & Grastien 2007]. However, this load is avoided
in our incremental version because of the clauses learned by the CDCL SAT solver. More
precisely, if the model, that represents the critical path, is found in k steps, the difference
between the two approaches is the following. In the non-incremental version, the time spent
for all calls on ΦT

i such that i < k will be lost and a new fresh formula about the system
unfolded on k steps will be considered to search for the intended model. However, in the
incremental version, some knowledge could be acquired from the calls on ΦT

i such that
i < k and the formula that represents the system unfolded on k steps will be enriched by the
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|Steps| |Clauses| Inc. SAT(s) SAT(s)
20 42,614 1.5 1.3
30 131,714 10.3 13.1
40 303,736 49.3 77.8
50 576,466 106 223
60 970,156 320 699
100 4,334,018 9410 13,040

Table 3.2 Results on the faulty component of Figure 3.2.

|Steps| |Comps| |Clauses| Inc. SAT(s) SAT(s)
5 7 1,962 0.04 0.06
15 27 30,313 0.8 0.5
25 47 113,906 6.5 4.8
35 67 277,873 33.8 33.7
45 87 542,033 111 132
65 127 1,490,590 967 1090

Table 3.3 Results on the whole system of Figure 3.2.

compiled knowledge learned from previous calls, which could facilitate the mission for the
solver to find the model.

3.4 Conclusion

In this chapter we have extended to DDES the state of the art work done on SAT-based
diagnosability testing for centralized DES. Thus we have expressed diagnosability analysis
of DDES as a satisfiability problem through introducing distributed succinct transition sys-
tems, then building a propositional formula whose satisfiability, checked by SAT solvers,
witnesses the non-diagnosability of the studied fault. We allowed both observable and
unobservable communication events to be handled simultaneously in our modeling. Our
expression of these communication events avoids merging all their owner components and
helps in reducing the number of clauses used to represent them; this reduction is proportional
to the number of their occurrences. The SAT-based approaches are efficient in proving the
non-diagnosability of a fault even in large systems, not testable by traditional Twin Plant
approaches. However, they are not practical in proving diagnosability of the faults. In
order to tame this weakness, we have proposed an adaptation of the logical formula in order
to use incremental SAT calls that helps in managing the scaling up of the distance of the



3.4 Conclusion 57

searched fault and of the cycles (together with their lengths) required in witnessing non-
diagnosability, and thus the size of the tested system. Thus we exploited the clauses learned
about the system behavior in the previous calls. This approach is more practical and more
efficient for complex systems than existing ones, as it avoids starting from scratch at each call.





Chapter 4

SAT-Based Predictability Analysis in
Centralized and Distributed DES

In this chapter we study the verification of another important property related to fault analysis
in model-based systems, which is the predictability of an event occurrence, in particular a
faulty event occurrence. We recall the definition of this property and how it is dealt with in
the literature. After that we present our encoding of this problem as a SAT problem in both
centralized and distributed structures. Therefore, we use the same approach we used to handle
the diagnosability problem, i.e., through passing by the succinct transition representation.
We will show how the flexibility and the generality of SAT-based approach help in adapting
the formalism to handle the studied property.

4.1 Motivation/Introduction

We explained in the previous chapter the importance of ensuring the diagnosability of a fault
in order to get a precise diagnosis. A fault occurrence detection is usually followed by a
repair plan. In other words, the fault has already occurred in such case and the operator of
the system will fix the potential damages caused by the fault. Although that guaranteeing
diagnosability of a system since its design stage can save potential high costs of adding new
sensors during the diagnosis process, this might be insufficient in critical systems. Thus, in
such systems, a fault occurrence may be very expensive and repairing such systems may
not be possible, therefore such faulty events must be predicted to allow the system operator
to take some required actions that avoid their occurrences. Clearly, the task of predicting
a fault occurrence is harder than detecting it, simply because the latter can analyze the
fault effects while the former has to analyze only its premises. Thus the ability to discover
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the fault premises implies discovering its effects. Then predictability of a fault reveals its
diagnosability.

Recently, the problem of event occurrence predictability was introduced in [Genc & Lafortune 2006b]
to generalize the fault diagnosability problem. Thus it extends the observation explanation
from a reactive mode in case of diagnosability analysis into a proactive one in the predictabil-
ity case, through observations analysis only before the fault occurrence. More precisely,
it considers the observation equivalence relation before the fault occurrence between two
potential behaviors in the system: a first faulty finite trajectory from the initial state until
the first occurrence of the fault and a second correct (without fault) infinite trajectory which
might exist. Thus, if such two behaviors exist and are observation-equivalent before the
fault occurrence, then the fault non-predictability is proven; however this fault could still be
diagnosable.

Similarly to diagnosability case, the main difficulty in predictability checking is related
to the states number explosion problem. In general, symbolic methods are used to cope
with this problem that scale well with the size of the studied system, as we have shown in
Chapters 2 and 3. However, for the best of our knowledge, this is not yet applied in the case
of predictability analysis. Thus, since its introduction, different works tried to imitate the
diagnosability checking approaches, i.e., Twin Plant based methods which suffer from the
same problem of scalability and from the fact that they are obliged to pass by the automata
synchronization process to build the appropriate data structure and then search a witness for
non-predictability. In addition they do not exploit well the differences between predictability
and diagnosability cases.

For these reasons, we propose in this chapter an encoding to handle the predictability
problem in centralized and distributed structures using a SAT-based approach. To this end,
we exploit the flexibility of the existing diagnosability encoding in SAT presented in Chapters
2 and 3 and we adapt it to encode predictability problem as a satisfiability one in both
centralized and distributed structures.

4.2 Predictability Problem

The notion of predictability has been used in many works like in [Buss et al. 1990, Cao 1989,
Fadel & Holloway 1999, Jiang & Kumar 2004]; however the one we are interested in is
related to diagnosis in discrete event systems and inspired from the studies of diagnosability
problem. In fact, works on the predictability property for DES are fewer and more recent
than those about diagnosability. The event occurrence predictability property considers the
problem of finding a prefix trajectory of the event occurrence such that, whenever we observe
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its projection on observable events, we are sure that the studied event will occur in any future
continuation of this observable sequence. Notice that unlike diagnosability which reasons
about the potential histories of some observable run in the system, predictability argues
about the potential futures of an observable run and thus considering either an observable or
non-observable event occurrence can be interesting here while it was meaningless to analyze
the diagnosability of an observable event. From another side, the event occurrence whose
predictability is analyzed can be faulty or not, which applied also to diagnosability analysis.
However, for the sake of consistency with the context of this thesis, we will be interested
in fault occurrence predictability, in particular first occurrence predictability (as it implies
predictability of possible ulterior occurrences), and so our notations and vocabulary will
reflect this hereafter.

The formal definition of predictability of a fault f in a centralized system modeled by an
LTS or SLTS T was proposed by [Genc & Lafortune 2006b] as follows.

Definition 11. (Predictability) A fault f is predictable in a system T iff

∃k ∈ N, ∀s f ∈ L(T ), ∃η ∈ s f , ∀p ∈ L(T ), ∀p′ ∈ L(T )/p

(P(p) = P(η)∧ f /∈ p∧|p′| ≥ k⇒ f ∈ p′)

The above definition, where t denotes the set of strict prefixes of t, states that a fault f
is predictable iff for any trajectory s f ending with f , there exists at least one strict prefix of
s f , denoted by η , such that for every correct (i.e., not containing f ) trajectory p with the
same observations as η , all the long enough (depending only on f ) continuations of p should
contain f . It is obviously sufficient to study predictability of first occurrences of f , i.e., when
s f ∈ (Σ\ { f})∗ f , in which case η does not contain f .

In an equivalent meaning, the non-predictability of f is equivalent to the existence of a
finite faulty sequence that ends with a first occurrence of f and of an infinite (i.e., ending
by a cycle) correct sequence that is synchronized with the faulty sequence on observable
events before the occurrence of f . It is thus clear that non-diagnosability of f implies
non-predictability of f , which means that predictability is stronger than diagnosability (if f
is predictable, then f is diagnosable).

4.2.1 Traditional Predictability Checking in Centralized and Distributed
DES

In order to verify the predictability property introduced in [Genc & Lafortune 2006b] in
a centralized system, the authors proposed a deterministic diagnoser approach, just like
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the one used in [Sampath et al. 1995] which we recalled in section 2.3.2. The diagnoser
has an exponential size in terms of the number of system states. This approach consists
in determining the set S f of boundary N-certain states before the first fault occurrence in
this diagnoser. Thus, for each member q in this set, q possesses an immediate successor
which is not an N-certain state, i.e., a F-certain or F-uncertain state. Then one can verify
that every reachable cycle in the diagnoser from such q is actually a F-certain cycle. In fact,
this verification provides a necessary and sufficient condition to ensure the predictability
of a studied event occurrence in the system. Verifying the continuations of only original
states in this boundary set is sufficient, where a state in S f is said not original if it can be
reached by another state in the same set. Actually an important amount of verification cases
can be abstracted using this technique. Another benefit of the diagnoser is that whenever it
is constructed, it can be used for predicting on-line a predictable event occurrence through
inspecting the original states in S f that reveal with certainty its occurrence in all the possible
futures.

Later, the same authors proposed in [Genc & Lafortune 2009] a polynomial method, that
checks predictability directly on a verifier structure which is a Twin Plant like structure. They
search for a set of boundary states between normal and not normal states in this verifier,
which is similar to the set S f used in their diagnoser approach. Remember that transitions
in the verifier are of the form (x,x′) σ→ (y,y′), where x,x′,y,y′ are states in the system, σ is
an event and the transitions (x) σ→ (y), (x′) σ→ (y′) are both defined in the system transition
relation if σ is observable and at least one of them is defined if σ is unobservable. However
as the set S f is to be searched on a structure that represents pairs of behaviors, it is calculated
in two steps. Firstly by determining the change from normal to faulty or ambiguous states
in the verifier, let it be the set S ′

f . Then this set is saturated by adding any potential states
that correspond to sequences which will not have the studied event occurrence in any of
their future continuations but however do share their prefix with other states that will have
at least one occurrence of the studied event in one of their future continuations. Actually
the existence of such added states, i.e., S ′

f ̸= S f , plus the liveness of the language L(T )
defined by the system, witness the non-predictability of the studied event. The authors
stated the following necessary and sufficient condition for an event to be predictable: every
reachable cycle in the verifier from states in this set S f is a faulty cycle. In other words,
this method checks a pair of trajectories violating predictability, i.e., such that only one of
them contains the fault, this faulty one can be finite while the second one is infinite and
both coincide on their observable events before the fault occurrence. The problem in this
method is that the intended pair could lie in two different paths of the Twin Plant structure,
which is not suitable for the distributed case. The work in [Ye et al. 2013] proposed a Twin
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Plant like structure and handled the predictability problem in centralized systems in such
a way it facilitates passing to the distributed DES case. For this case, it imitates works
that dealt with distributed diagnosability, i.e., through use of local diagnosers that will be
synchronized to get the pairs of behaviors representation in order to differentiate, if possible,
the conformity between observations in the two behaviors by exploiting the information of
the communication events. To this end, the original predictability information is gathered
from the faulty component, then its global consistency in the whole system is checked
incrementally to decide fault predictability. Thus the construction of the global structure
is avoided to reduce the search space. However, in the worst case, this approach has the
same search space as constructing a global Twin Plant. This was solved recently by the
same authors who presented a better algorithm in [Ye et al. 2015] that tries to exploit the
differences between predictability and diagnosability checking in order to build a more
scalable structure that prunes some unnecessary tests. We will use similar type of information
to prune the search space in our SAT encoding of the problem, however we will delegate to
the solver the labor of handling such pruning.

Similarly to the diagnosability problem, all the above approaches have firstly to build
the data structure that represents the relevant pairs of behaviors and then search inside this
structure for those verifying given properties. Actually, the data structure construction can be
avoided by using the succinct system model and by encoding the problem as a SAT problem,
just like what we presented while checking diagnosability. Although we do not know exactly
how the SAT solver will find the counter-example witnessing the violation of the property,
we are sure that, even if it does some failed tries before finding the solution, it will exploit
these failures to recover its tries on the road to the intended solution.

We adapt our diagnosability analysis framework to define SAT-based predictability
analysis for both centralized and distributed systems and provide experimental results.

4.2.2 SLTS Predictability as Satisfiability

Unlike diagnosability, predictability checking process has two different phases, before and
after the fault occurrence. The synchronization on observable events between the two
trajectories is required only up to this fault occurrence and, after it, only the correct trajectory
has to be extended and searched for the presence of a cycle in it.

In order to represent the occurrence of the fault f and differently from the original
diagnosability encoding in [Rintanen & Grastien 2007], which does not exploit any relation
between the fault occurrences at the different time steps, we add the variables f t to the set
of variables defined in the diagnosability problem encoding. The truth value f t is True
iff f has occurred before the time step t. This will help to propagate the fault information
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automatically and guide the solver to search for this specific information about the fault
occurrence which is essential to decide the predictability test.

Let T = ⟨A,Σo,Σu,Σ f ,δ ,s0⟩ be an SLTS, the propositional variables required for the
encoding are:

• at and ât for all a ∈ A and 0≤ t ≤ n,

• et
o for all e ∈ Σo∪Σu∪Σ f , o ∈ δ (e) and 0≤ t ≤ n−1,

• êt
o for all e ∈ Σo∪Σu, o ∈ δ (e) and 0≤ t ≤ n−1,

• et for all e ∈ Σo and 0≤ t ≤ n−1,

• f t for all 0≤ t ≤ n.

We provide here the full set of constraints required to encode the predictability problem
as a SAT problem. Although most of them are copied from the diagnosability SAT formula,
we recall them here for the sake of clarity and completeness of the encoding. The following
formulas express the constraints that must be applied at each t or between t and t +1.

1. The event occurrence et
o must be possible in the current state:

et
o→ φ

t for o = ⟨φ ,c⟩ ∈ δ (e) (4.2.1)

and its effects must hold at the next time step:

et
o→

∧
l∈c

lt+1 for o = ⟨φ ,c⟩ ∈ δ (e) (4.2.2)

We have the same formulas with êt
o.

2. The present value (True or False) of a state variable changes to a new value (False or
True, respectively) only if there is a reason for this change, i.e., because of an event
that has the new value in its effects (so, change without reason is prohibited). Here is
the change from True to False (the change from False to True is defined similarly by
interchanging a and ¬a):

(at ∧¬at+1)→ (et
i1o j1
∨·· ·∨ et

iko jk
) (4.2.3)

where the o jl = ⟨φ jl ,c jl⟩ ∈ δ (eil) are all the occurrences of events eil with ¬a ∈ c ji .
We have the same formulas with ât and êt

il o jl
.
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3. At most one occurrence of a given event can occur at a time and the occurrences of two
different events cannot be simultaneous if they interfere (i.e., if they have two contradicting
effects or if the precondition of one contradicts the effect of the other):

¬(et
o∧ et

o′) ∀e ∈ Σ,∀{o,o′} ⊆ δ (e),o ̸= o′ (4.2.4)

¬(et
o∧ e′to′) ∀{e,e′} ⊆ Σ,e ̸= e′,∀o ∈ δ (e),∀o′ ∈ δ (e′),o and o′ interfere (4.2.5)

We have the same formulas with êt
o.

4. The information about f occurrence is propagated by expressing that f has occurred
before t +1 (t ≤ n−1) iff it has occurred either before t or between t and t +1.

f t+1↔ f t ∨
∨

o∈δ ( f )

f t
o (4.2.6)

5. The synchronization of observable events between the two sequences holds only up to the
fault occurrence:

f t ∨ (
∨

o∈δ (e)

et
o↔ et) ∀e ∈ Σo

f t ∨ (
∨

o∈δ (e)

êt
o↔ et) ∀e ∈ Σo

(4.2.7)

6. The formula requiring that at every time point at least one event takes place in either one
or the other sequence, remains valid up to the fault occurrence; after it, we require that at
least one event takes place in the correct sequence:

f t ∨
∨

e∈Σo

et ∨
∨

e∈Σu∪Σ f ,o∈δ (e)

et
o ∨

∨
e∈Σu,o∈δ (e)

êt
o

¬ f t ∨
∨

e∈Σo∪Σu,o∈δ (e)

êt
o (4.2.8)

The conjunction of the above formulas for a given t is denoted by S (t, t +1).
A formula for the initial state s0 should take into account the initialization of the fault

reference variables:

I0 = ¬ f 0 ∧
∧

a∈A,s0(a)=1

(a0∧ â0) ∧
∧

a∈A,s0(a)=0

(¬a0∧¬â0) (4.2.9)
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Finally, the formula to encode the non predictability property is obtained as ΨT
n , where

the presence of a cycle at step n is required only in the correct sequence:

Ψ
T
n = I0∧S (0,1)∧·· ·∧S (n−1,n)∧ f n

∧
n−1∨
m=0

(
∧
a∈A

(ân↔ âm))

It follows that an SLTS T is not predictable iff ∃n≥ 1,ΨT
n is satisfiable, which is also

equivalent to ΨT
22|A| being satisfiable (proof analog to that for diagnosability in [Rintanen & Grastien 2007]).

4.2.3 DSLTS Predictability as Satisfiability

Let T be now a DSLTS. The extension of predictability analysis to distributed systems
adapts what we presented for diagnosability analysis, with just a few changes concerning
the synchronization of observable communication events and the occurrence of at least one
event at each step. As the synchronization of observable events holds only before the fault
occurrence, we will decouple it from the synchronization of communication events. So, the
only change concerning the variables is that we use now one reference variable for each
sequence for observable communication events, as for unobservable ones, i.e., we have:

• et , êt for all e ∈ Σc and 0≤ t ≤ n−1.

Formulas in S (t, t + 1) are extended as those in T (t, t + 1) were extended, except the
following.

1. The synchronization of the occurrences of any communication event e in all its owner
components in S(e) is expressed in each sequence and in the same way for both observable
and unobservable events:

∨
oi∈δi(e)

et
oi
↔ et and

∨
oi∈δi(e)

êt
oi
↔ êt ∀e ∈ Σc ∀i ∈ S(e)

while the synchronization of the occurrences of any observable event in the two sequences
before the fault occurrence, expressed in the centralized case by formulas (4.2.7), is
extended to any observable communication event:

f t ∨ (et ↔ êt) ∀e ∈ Σco
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2. The clauses (4.2.8) are extended to take into account communication events:

f t ∨
∨

e∈Σo∪Σc

et ∨
∨

e∈Σcu

êt ∨
∨

e∈Σu∪Σ f ,o∈δ (e)

et
o ∨

∨
e∈Σu,o∈δ (e)

êt
o

¬ f t ∨
∨

e∈Σc

êt ∨
∨

e∈Σo∪Σu,o∈δ (e)

êt
o

We have thus the result that a DSLTS T is not predictable iff ∃n≥ 1,ΨT
n is satisfiable,

which is also equivalent to ΨT

22∑
k
i=1 |Ai|

being satisfiable (proof analog to that for diagnosability).

4.2.4 Experimental Results
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Fig. 4.1 Modified Distributed DES with three components, that share only the events {c1,c2}

We used the system in Figure 4.1, slightly modified from the one in Figure 3.1 that we
used for diagnosability tests. The modifications are done to get more cases that help to study
the predictability of the faulty events f1 and f2 in centralized and distributed structures. We
repeated the diagnosability tests on these events in the modified system as shown in Table
4.1. The predictability results are given in Table 4.2. It is found that f2 is not predictable in
C2 alone, which was expected as it is not diagnosable in C2.

However it became diagnosable in the system composed of C1 and C2 and we find that
it is actually even predictable in this system, by obtaining the UNSAT answer up to the
theoretical upper bound of 4096 steps. On the contrary, although we saw it became also
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diagnosable in the system composed of C2 and C3, we find that it remains not predictable in
this system.

And here again, we extend this test to bigger systems by duplicating component C3.
This shows the efficiency of the method (less than one second for 101 components). Notice
that here the steps number remains unchanged as occurrences of non-interfering events
are processed simultaneously in the same step, thanks to the succinct encoding in this
representation. Concerning the fault f1, it is found not predictable in the whole system made
up of the three components, which was expected as it has been shown not diagnosable in this
system.

We verify, as for diagnosability, that proving non-predictability is in general much easier
than proving predictability. We verify also that, in case of non-diagnosability (and thus of non-
predictability), proving non-predictability is in general easier than proving non-diagnosability
(because there are more models of non-predictability than of non-diagnosability, as the second
ones are included in the first ones). In the same way, in case of predictability (and thus of
diagnosability), proving diagnosability is in general easier than proving predictability.

4.3 Predictability Checking Encoding in Incremental SAT

Similarly to what we did for diagnosability, we extend the clauses representation given in
subsections 4.2.2 and 4.2.3 to an incremental mode of operation. We propose to divide the
formula ΨT

n in two parts. The first part Sn describes the first n steps, expresses the behavior
of the faulty and correct trajectories, synchronized on the observations up to the occurrence
of the fault in the faulty trajectory. This is represented by the conjunction of the initial state
and the formulas S (t, t +1), 0≤ t ≤ n−1, representing the (t +1)th step. The second part
Pn describes the predictability property at step n, i.e., the occurrence of a fault in the n
previous steps of the faulty trajectory (given by f n) and the detection of a cycle at step n
(given by the formula Cn). So we obtain, for n≥ 1:

Ψ
T
n = Sn∧Pn

Sn = I0∧
n−1∧
t=0

S (t, t +1) Pn = f n∧Cn

Cn =
n−1∨
m=0

(
∧
a∈A

(ân↔ âm))

Add now at each step j a control variable h j allowing to disable (when its truth value is
False) or activate (when its truth value is True) the formulas f j and C j and keep at step n all
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System Fault |Steps| SAT? |Variables| |Clauses| Time(ms)
C2 f2 4 No 112 561 6
C2 f2 5 No 138 699 11
C2 f2 6 Yes 164 837 15
C1,C2 f2 6 No 356 356 25
C1,C2 f2 32 No 1838 12751 94
C1,C2 f2 64 No 3662 25487 225
C1,C2 f2 128 No 7310 50959 112
C1,C2 f2 256 No 14606 101903 180
C1,C2 f2 512 No 29198 203791 1855
C1,C2 f2 1024 No 58382 407567 784
C1,C2 f2 4096 No 233486 1630223 23453
C2,C3 f2 6 No 252 1237 15
C2,C3 f2 32 No 1292 6541 46
C2,C3 f2 64 No 2572 13069 71
C2,C3 f2 128 No 5132 26125 61
C2,C3 f2 256 No 10252 52237 216
C2,C3 f2 512 No 20492 104461 143
C2,C3 f2 1024 No 40972 208909 381
C1,C2,C3 f1 8 No 586 3723 40
C1,C2,C3 f1 9 Yes 657 4186 45
C1,10×C2,10×C3 f1 9 Yes 3862 22907 342
C1,20×C2,20×C3 f1 9 Yes 7112 42087 592
C1,50×C2,50×C3 f1 9 Yes 16862 99627 3141
C1,100×C2,100×C3 f1 9 Yes 33372 196723 26930

Table 4.1 Diagnosability Testing Results on the example of Figure 4.1.

these controled formulas for 1 ≤ j ≤ n. We obtain the following Ψ
T
n formula, for n≥ 1:

Ψ
T
n = Sn∧

n∧
j=1

P ′
j P ′

j = F ′
j ∧C ′j 1≤ j ≤ n

F ′
j = ¬h j∨ f j C ′j = ¬h j∨C j 1≤ j ≤ n

We have thus the equivalence, for all n≥ 1:

Ψ
T
n ≡Ψ

T
n [Hn]

where Hn = {¬h1, . . . ,¬hn−1,hn} is a setting of the control variables and F [Hn] the applica-
tion of the valuation given by this setting to the formula F .
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System Fault |Steps| SAT? |Variables| |Clauses| Time (ms)
C2 f2 3 No 92 414 7
C2 f2 4 Yes 120 549 12
C1,C2 f2 1024 No 66574 404495 10109
C1,C2 f2 4096 No 266254 1617935 91299
C2,C3 f2 4 No 196 817 14
C2,C3 f2 5 No 242 1018 21
C2,C3 f2 6 Yes 288 1219 27
C1,C2,C3 f1 3 No 267 1399 29
C1,C2,C3 f1 4 Yes 350 1859 40
C2,10×C3 f2 6 Yes 1408 5219 24
C2,20×C3 f2 6 Yes 2528 9219 50
C2,50×C3 f2 6 Yes 5888 21219 125
C2,100×C3 f2 6 Yes 11488 41219 277

Table 4.2 Predictability Testing Results on the example of Figure 4.1.

This allows one, for all n≥ 1, to replace the SAT call on ΨT
n by a SAT call on Ψ

T
n under

the control variables setting Hn (indicated in a second argument of the call):

SAT (ΨT
n ) = SAT (ΨT

n ,Hn)

The idea is now to consider the control variables h j as assumptions and use incremental
SAT calls IncSATj under varying assumptions, for 1≤ j ≤ n. For this, we use the following
recurrence relationships for both formulas Ψ

T
j and assumptions H j:

Ψ
T
0 = I0 Ψ

T
j+1 = Ψ

T
j ∧S ( j, j+1)∧P ′

j+1 j ≥ 0

H0 = {h0} H j+1 = H j[{¬h j,h j+1}] j ≥ 0

where the notation H j[{assi}] means updating in H j assumptions hi by their new settings
assi, i.e., in the formula above, replacing the truth value of h j, which was True, by False,
and adding the new assumption h j+1 with truth value True. From these relationships, the
unique call to SAT under given assumptions SAT (ΨT

n ,Hn) can be replaced, starting with the
set of clauses I0, by n calls, 0≤ j≤ n−1, to an incremental SAT under varying assumptions:

IncSATj+1(NewClauses j+1,NewAssumptions j+1)

= IncSATj+1(S ( j, j+1)∧P ′
j+1,{¬h j,h j+1}) (4.3.1)
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If IncSATj answers SAT, the search is stopped as non-predictability is proved; if it answers
UNSAT, then IncSATj+1 is called.

Notice that we used a unique assumption h j for controling both f j and C j as non-
predictability checking requires the presence of both a fault occurrence in the faulty trajectory
and a cycle in the correct trajectory. But the same framework allows the independent control
of formulas by separate assumptions.

For sake of simplicity, we also assumed we called IncSAT at each step, but this is not
mandatory and indexes j for the successive calls can be decoupled from indexes t for steps.

We have not implemented this encoding but we expect results similar to those we
presented when using incremental SAT to test diagnosability in centralized and distributed
systems.

4.4 Discussion and Conclusion

We have adapted the diagnosability test formalism presented in Chapter 3 to express pre-
dictability analysis as a SAT problem, both for centralized DES and for DDES. In each case,
we have provided experimental results.

The results show that this approach is scalable to system sizes that are not possible to
cover by the Twin Plant approaches used in the literature. Our approach is very efficient to
decide the non-predictability in centralized and distributed systems and better than traditional
approaches in this latter case. We used in our experiments an example that contains different
cases of study like a fault that is predictable in subsystems but is not in other subsystems
and another fault that is non-predictable even in the global distributed system. For this latter
case our approach provides a witness of the non-predictability in a few steps, while even a
component-incremental approach like the one in [Ye et al. 2015] has to build the global model
that synchronizes all components to get this answer. Actually in our encoding of the DSLTS
we encode components with disjoint sets of state variables which allow all local transitions
in these components to be fired simultaneously. We showed how elegant is this approach
and how it allows smooth derivation of the predictability test from the diagnosability test, in
comparison to the non-direct algorithms adopted in the literature to pass from diagnosability
to predictability. Another important point to notice in our predictability testing approach is
the facility of handling both observable and non-observable communications in the same
system; synchronizing an observable communication event can indeed give rise to different
processes during the test, thus it is a fault dependent synchronization. However, this case is
not considered in the literature, although it is harder than the case of checking diagnosability
with such settings. We have also provided an adaptation to use incremental SAT mode to
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increase the efficiency and scalability of the approach to test predictable faults and here
also we showed how flexible is this formalism. In fact this flexibility in adding or removing
constraints to encode different features can be used for testing other similar properties in
the fault diagnosis domain and could be always simpler and more scalable than classical
algorithms like the Twin Plant one. After encoding the problem in propositional logic the
SAT solver will use its generic algorithms to answer such problems and then one can translate
the answer to the appropriate semantics depending on the property under consideration.

From another point of view, our approach does not build structures which would be
useful in an online test to serve as a predictor and cannot return a predictable subsystem
automatically, which also can be very useful in operation mode. However we can impose a
strategy to add and test components incrementally to the faulty one to check if they represent
together a predictable subsystem. But to this end one may repeat the test from scratch after
each addition of a component, which is not the case in the Twin Plant based methods that
propagate only required information from one test to the next one resulting in an important
reduction of the constructed parts of the global synchronization structure. Another way
which could be better to overcome this limitation is to exploit the relationships between
satisfiability and bounded or unbounded model checking methods to encode and analyze
fault diagnosability and predictability. Research of invariants by full-proof methods like
temporal induction should avoid unrolling up to a theoretical bound, as it is the case here
when the system is diagnosable or predictable.



Chapter 5

SAT-based Encoding of Pattern
Diagnosability in DES

This chapter addresses the problem of pattern diagnosability using SAT solvers. We introduce
the problem, then we review how this problem is handled in the literature where the main
difficulties are inherited again from the idea of building the whole data structure before
searching for a counter-example in it, which can be avoided using a SAT based approach. We
provide an encoding in SAT for this problem in the centralized case, without experimental
results for the moment, showing that it is possible to adapt the formalism to handle such
general patterns. We give some insights about the extension to the distributed case and to
pattern predictability analysis.

5.1 Motivation/Introduction

We studied in the previous chapters the problems of faulty event diagnosability and pre-
dictability in centralized and distributed systems. Actually in some applications, one may be
interested in detecting and isolating or even predicting the occurrence of a specific sequence
of events. Thus the occurrence of only one or some of these events is considered normal
w.r.t. the acceptable behavior of the system. However the occurrence of all these events
together in a predefined order may form a threaten, a fault or just an important phenomenon
in the system whom its operator (or designer) wants to be able to investigate or to ensure its
detection.

This problem is referred to in the DES diagnosis community as pattern diagnosis. A
pattern can represent a faulty situation, as multiple faults, cascading faults, intermittent faults
or a specific behavior that it is important to detect and identify, this why it is generally
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called surveillance pattern or supervision pattern. In full generality a pattern is a complete
deterministic finite state machine (automaton) with the same events vocabulary as the system
model. Actually assuming determinism and completeness is to facilitate its synchronization
with the system in order to check its recognition. This is not a limitation as an automaton can
always be determinized and completed; moreover our encoding in SAT remains unchanged
if the pattern is not deterministic. It represents thus a (possibly infinite) set of predefined
finite sequences of events. A trajectory of the system "contains" the pattern if it is a word
recognized by the automaton, i.e., corresponding to a path in the pattern from its initial state
to a final state. Obviously any extension of this trajectory has to contain the pattern, thus to
be also recognized. So, the only requirement on the pattern is that its set of final states is
stable. It means that a pattern may represent any rational events language that is closed by
extension i.e., any extension of a word of the language belongs also to the language.

An example of application can be found when studying anomalies in sequences of inter-
actions with a security system. Thus some successive interactions may represent intrusion
attempts to get access to unauthorized situation. However if the system model is not designed
to evolve (through changing its states and producing observations) such threats may not be
detectable. A simple example of this is a multiple attempt to access an email account, thus a
simple one or two attempts to enter a password can be considered a normal behavior while
a greater number of them can be seen as an anomaly1. Let the system that represents such
email account have two states Q = {q0,q1} such that q0 =Closed and q1 = Open; let it have
three events Σ = {t,s,b} where t = Try, s = Success and b = Browse and let Σo = {s,b}.
Consider the pattern P = {ttt} which represents three failed tries. Let the system modeled by
transitions δ = {(q0, t,q0),(q0,s,q1),(q1,b,q1)}, then we can see that the sequence defined
by P cannot be detected. In order to handle correctly such situation, the system has to be
modeled in a diagnosable way to distinguish the occurrence of such suspicious sequence.

Actually, the need for such diagnosis can be required in centralized systems as well as in
distributed systems. This makes ensuring the diagnosability or predictability of patterns an
essential issue since the design stage to get a precise diagnosis or prediction of the studied
pattern. In fact, one would be interested in detecting or predicting the occurrence of a
sequence of successive events with or without (other) interleaving events. From another point
of view, detecting the occurrence of a sequence made up of only observable events is less
challenging than detecting the occurrence of a sequence composed of both observable and
non-observable events or even of only non-observable events. Actually, in the first case, it
is sufficient to synchronize the pattern’s observation sequence with the system’s observable
behavior.

1 More details about intrusion detection can be found in the bibliography [Mé & Michel 2001]
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The problem of pattern diagnosability 2 was first introduced by [Genc & Lafortune 2006a,
Jéron et al. 2006] for centralized DES, then extended in [Ye et al. 2010, Ye & Dague 2012]
to distributed DES. The main weakness of these approaches is that the bigger the size of
the pattern, the more possible the risk of state explosion happen. This is due to the fact that
building a data structure and then verifying in it the diagnosability is the backbone of such
approaches. The problem may get worse when the pattern is distributed over a large number
of components in a distributed system, i.e., contains events that belong to these components.
In order to scale the pattern size, we propose to encode it in a succinct system representation
and to simply synchronize it with the system’s component(s) just like if it was a new added
component. We also propose an improvement in order to exploit the precise information
given by its structure, namely to limit the explicit synchronization to the only significant
events of the pattern, i.e., those events that change a state of the pattern.

5.2 Definitions

Let the system T be an LTS given by the tuple T = ⟨Q,Σ,δ ,q0⟩ as defined in Chapter 2 (see
Definition 1), except that Σ f = /0 as there is no more fault events. We define a pattern Ω over
T as a complete deterministic LTS with a stable set FΩ of final states, formally defined as
follows.

Definition 12. A Pattern Ω is defined by a tuple Ω = ⟨QΩ,Σ,δΩ,q0
Ω
,FΩ⟩ where

• QΩ is a new finite set of states (disjoint from Q),

• Σ is a finite set of events (the same as for G),

• δΩ : QΩ × Σ → QΩ is a total function representing a deterministic and complete
transition relation (∀q ∈ QΩ,∀e ∈ Σ,∃!q′ ∈ QΩ,δΩ(q,e) = q′),

• q0
Ω

is the initial state,

• FΩ is the stable set of final states (∀q ∈ FΩ,∀e ∈ Σ,δΩ(q,e) ∈ FΩ).

The fact that the set of final states is stable allows us w.l.o.g. to merge all of them into
one single absorbing final state. We denote by Lm(Ω) the marked language of Ω, i.e., the set
of words recognized by Ω.

We call an event in the pattern a significant event [Ye & Dague 2012] if it has at least one
occurrence that makes the pattern pass from one state to another state. We denote by SΩ(Σ)

the set of all significant events in the pattern Ω: SΩ(Σ) = {e ∈ Σ|∃q ∈ QΩ,δΩ(q,e) ̸= q}.
2Encoding and checking methods are similar for pattern predictability in DES and DDES



76 SAT-based Encoding of Pattern Diagnosability in DES

The definition of pattern diagnosability follows and generalizes the definition of fault
event diagnosability in Chapter 2 (see Definition 4).

Definition 13. (Pattern Diagnosability) A pattern Ω is diagnosable in a system T (we say
that T is Ω-diagnosable) iff

∃k ∈ N,∀s ∈ L(T )∩Lm(Ω),∀t ∈ L(T )/s, |t| ≥ k⇒
∀p ∈ L(T ),(Po(p) = Po(s.t)⇒ p ∈ Lm(Ω).

The above definition states that for any trajectory s in T recognizing the pattern Ω, for
any extension t of s in T with enough events, any trajectory p in T that is equivalent to
s.t in terms of observation should also recognize Ω. Following the same reasoning as for
fault event non-diagnosability made in Chapter 2, non-Ω-diagnosability is equivalent to the
existence of a pair of observation-equivalent infinite trajectories in T , one recognizing Ω (the
“faulty” one) and the other not (the “correct” one), that we will continue to call a critical pair
[Genc & Lafortune 2006a].

The difference with simple fault recognition is that a simple fault is recognized simply by
the fault event occurrence, while recognizing a pattern means following one of its internal
paths from its initial state until one of its final states is reached.

5.3 Related Works

As we mentioned above the seminal works that introduced the pattern diagnosability are
[Genc & Lafortune 2006a, Jéron et al. 2006], where they studied the centralized system case.
Thus they build a global pattern verifier by first synchronizing on all events the pattern with
the system (this synchronization, which is actually a product, is always possible and unique
in the pattern as this one is deterministic and complete) then building an observer structure
like the one defined in [Cassandras & Lafortune 2009] which can be simply obtained by
the application of the projection operator on observable events on each trajectory and the
synchronization on those observable events of the structure obtained with itself. The idea in
these works is to generalize the simple fault event diagnosability by also checking if there
exists a critical path in the global pattern verifier. If a path in it has an ambiguous state cycle
(where a state is ambiguous if it is made up of a pair of states where exactly one is reached
by a trajectory having recognized the pattern) that contains at least one observable event, the
non-diagnosability of the pattern is witnessed. Later in [Ye et al. 2010, Ye & Dague 2012],
the method was extended to distributed systems and, in order to avoid the construction of
the global pattern verifier, the authors propose to compute an abstracted pattern verifier for
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the subsystem where the pattern recognition is completed to search for partial critical paths;
which are paths in the verifier containing an ambiguous state cycle with at least one observable
event for all involved components of the considered subsystem. Then they demonstrate how
to decide whether a partial critical path in this subsystem can be generalized to a global
critical path after checking global consistency using the communication information. In this
distributed way, the verifier structure finally obtained and used for diagnosability checking is
usually a quite small subpart of the global pattern verifier. Especially if the pattern size is
small and that only some components are concerned in its events. But what if it is not the
case, i.e., if the size of the pattern is large and it covers most or even all components? We
think that such cases are also important and for this we think that employing SAT solvers can
be interesting/useful to overcome these limitations, in the light of the size of systems whom
we showed they can be dealt with using such approach.

One can imagine a distributed system with a large number of components such that each
component has to load and verify some configuration and some input data before proceeding
to process them. Let a global observer of the system want to know with certainty that
all components have been initialized then have loaded the configuration and then read the
input data. If the system model provides the observer by some observation for events about
initialization and data processing but not about loading configuration or reading input data,
then the ability to answer with certainty the query of the observer can be reduced to the
diagnosability checking of the pattern that consists of one sequence of events of the form
initialize then load then read. In such cases all components are needed to answer the query
and the synchronization approaches may be not practical, however SAT solvers can answer
such query even for large systems. We can see how patterns can be employed to answer
interesting queries which can be given by assigning semantics to a formal representation as a
finite state machine.

We provide here two examples of patterns in figures 5.2 and 5.3 to analyze if they are
diagnosable in the system depicted in figure 5.1. The first pattern in figure 5.2 that represents
an occurrence of c1 preceded by f1 is not diagnosable because we can find two infinite
trajectories with only one of them recognizing the pattern like ρ1 = f1O1c1(O2c1)

∗ and
ρ2 = c1O1c1(O2c1)

∗ where we observe for both of them Po(ρ1) = Po(ρ2) = O1O∗2 without
knowing if the pattern occurred or not. However the second pattern in figure 5.3 that
represents an occurrence of c1 not preceded by c2 is diagnosable as we cannot find a counter-
example, in fact it is because any occurrence of c2 is revealed by the observable event O0

which does not appear in any sequence that contains c1 not preceded by c2, in other words
O0 is well placed to reveal c2.
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Fig. 5.1 A system to study its diagnosability w.r.t. patterns in Figures 5.2 and 5.3.
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Fig. 5.2 A pattern that represents a sequence with event f 1 preceding c1.
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Fig. 5.3 A pattern that represents an occurrence of c1 not preceded by c2.

5.4 SAT Encoding of Pattern Diagnosability in SLTS

Let a system modeled by an LTS, we know that we can represent it by a succinct transition
system, let it be T = ⟨A,Σu,Σo,δ ,s0⟩ with the same definition as introduced in simple fault
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diagnosability analysis (see Definition 9) but without the fault events and let Σ = Σo∪Σu.
Let Ω be the pattern whose occurrence diagnosability will be studied, we can also represent it
by a succinct system Ω = ⟨B,Σ,δΩ,sΩ0,FΩ⟩ with the addition of a finite stable set FΩ of final
states. As already noticed, we can always merge together all final states without changing
the language recognized by Ω. Therefore we will consider the pattern with only one final
state given by the variables assignment sΩF . As we mentioned above, the only interesting
events to inspect while recognizing the pattern are the significant events, i.e., those events in
Σ whose at least one occurrence changes one state of Ω, thus they are the only events which
hold useful information to tell if the pattern is recognized or not. We denote by SΩ(Σ) the set
of significant events in Ω.

The propositional formulas used to test the pattern diagnosability in the transition system
use the following propositional variables:

• at and ât for all a ∈ A and t ∈ {0, . . . ,n}.

• bt and b̂t for all b ∈ B and t ∈ {0, . . . ,n}.

• et
o and êt

o for all e ∈ Σ and o ∈ δ (e) and t ∈ {0, . . . ,n−1}.

• et for all e ∈ Σo and t ∈ {0, . . . ,n−1}.

• et
Ωo

and êt
Ωo

for all e ∈ SΩ(Σ) and o ∈ δΩ(e) and t ∈ {0, . . . ,n−1}.

• et
Ω

and êt
Ω

for all e ∈ SΩ(Σ) and t ∈ {0, . . . ,n−1}.

The propositional variables with a hat are in the sequence that does not recognize the pattern,
the variables without a hat are in the sequence that recognizes the pattern. For the sake
of simplicity and the consistency with terms we used in this thesis, we will use the term
correct sequence for the first type and the term faulty sequence for the second type. The
two sequences with an Ω subscript represent trajectories in the pattern Ω, the two sequences
without it represent trajectories in the system T.

Each propositional variable et
o (resp. êt

o) indicates an event e ∈ Σ occurring in the faulty
(resp. correct) sequence in the system T at timestep t with occurrence o∈ δ (e). Propositional
variables et , for e ∈ Σo an observable event, have the role to synchronize the faulty and
correct sequences in T , i.e., et

o and êt
o, on observable events at the timestep t.

In a similar way, each propositional variable et
Ωo

(resp. êt
Ωo

) indicates a significant event
e ∈ SΩ(Σ) occurring in the faulty (resp. correct) sequence in the pattern Ω at timestep t with
occurrence o ∈ δΩ(e). Propositional variables et

Ω
(resp. êt

Ω
), for e ∈ SΩ(Σ) a significant

event, have the role to synchronize the faulty (resp. correct) sequences in T and Ω, i.e., et
o

and et
Ωo

(resp. êt
o and êt

Ωo
). Thus et

Ω
and êt

Ω
follow the state changes in the pattern to check
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that the faulty sequence will arrive to the final state of Ω and the correct sequence will never
reach it.

In order to simulate each step in the system with synchronization on observable events
between the faulty and correct trajectories in T and synchronization on significant events of
each one with corresponding trajectories in Ω, the following constraints must be applied.

1. The event occurrence et
o must be possible in the current state of T :

et
o→ φ

t ∀o = ⟨φ ,c⟩ ∈ δ (e) (5.4.1)

And the same for êt
o.

Note that, as Ω is complete, any event is always possible in the current state of Ω, so
no constraint is necessary.

2. The event occurrence effects must hold at the next time step in T :

et
o→

∧
l∈c

lt+1 ∀o = ⟨φ ,c⟩ ∈ δ (e) (5.4.2)

where l is a literal that represents a state variable in the change c at timestep t, and lt+1

is another literal that represents the same state variable at timestep t +1. And the same
for êt

o.
The effects of an event occurrence are dealt with similarly in Ω:

et
Ωo
→

∧
l∈cΩ

lt+1 ∀o = ⟨φΩ,cΩ⟩ ∈ δΩ(e) (5.4.3)

And the same for êt
Ωo

.

3. The present value (True or False) of a state variable changes to a new value (False or
True, respectively) only if there is a reason for this change, i.e., because of an event
that has the new value in its effects. So, when there is no reason to change the value,
this change must be prohibited. Here is the change from True to False for the system
state variables (the change from False to True is defined similarly by interchanging a
and ¬a:

(at ∧¬at+1)→ (et
i1o j1
∨·· ·∨ et

iko jk
) (5.4.4)

where the o jl = ⟨φ jl ,c jl⟩ ∈ δ (eil) are all the occurrences of events eil with ¬a ∈ c ji .
And the same with ât and êt

il o jl
.
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The same condition must be applied for the pattern state variables and events e∈ SΩ(Σ):

(bt ∧¬bt+1)→ (et
i1Ωo j1

∨·· ·∨ et
ikΩo jk

) (5.4.5)

where the o jl = ⟨φΩ jl
,cΩ jl
⟩ ∈ δΩ(eil) are all the occurrences of events eil with¬b∈ cΩ ji

.
And the same with b̂t and êt

ilΩo jl
.

4. At most one occurrence of a given event in T can occur at a time and the occurrences
of two different events cannot be simultaneous if they interfere (i.e., if they have two
contradicting effects or if the precondition of one contradicts the effect of the other):

¬(et
o∧ et

o′) ∀e ∈ Σ,∀{o,o′} ⊆ δ (e),o ̸= o′ (5.4.6)

¬(et
o∧ e′to′) ∀{e,e′} ⊆ Σ,e ̸= e′,∀o ∈ δ (e),∀o′ ∈ δ (e′),o and o′ interfere (5.4.7)

We have the same formulas with êt
o.

The same condition must be applied to the events in Ω by replacing each et
o with et

Ωo
.

And the same for êt
Ωo

.

5. Observable events have to be synchronized in the faulty and correct sequences in T :

∨
o∈δ (e)

et
o↔ et and

∨
o∈δ (e)

êt
o↔ et ∀e ∈ Σo (5.4.8)

In the same way, faulty sequences in T and Ω have to be synchronized on all events,
and the same for correct sequences (formulas are unchanged if Ω is not deterministic):∨

o∈δ (e)

et
o↔ et

Ω and
∨

o∈δΩ(e)

et
Ωo
↔ et

Ω ∀e ∈ SΩ(Σ)

∨
o∈δ (e)

êt
o↔ êt

Ω and
∨

o∈δΩ(e)

êt
Ωo
↔ êt

Ω ∀e ∈ SΩ(Σ)
(5.4.9)

One can notice that when a significant event e is observable one can replace the lefthand
sides of the left equivalences in (5.4.9) by the reference variable et used in the equations
(5.4.8). This will generate shorter clauses which is preferred by the SAT solvers.

6. To avoid trivial cycles we require that at every time point at least one event takes place
in T : ∨

e∈Σo

et ∨
∨

e∈Σu,o∈δ (e)

et
o ∨

∨
e∈Σu,o∈δ (e)

êt
o (5.4.10)
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There is no need of this condition in Ω as each significant event in it is synchronized
with a system event and we do not care about non significant events.

The conjunction of all the above formulas for a given t is denoted by T (t, t +1).
A formula for the initial state (s0,sΩ0) is:

I0 =
∧

a∈A,s0(a)=1

(a0∧ â0) ∧
∧

a∈A,s0(a)=0

(¬a0∧¬â0)

∧
∧

b∈B,sΩ0(b)=1

(b0∧ b̂0) ∧
∧

b∈B,sΩ0(b)=0

(¬b0∧¬b̂0)
(5.4.11)

Formulas expressing that the final state assignment sΩF in the pattern is satisfied in the
faulty sequence, resp. not satisfied in the correct one, at timestep t are given by:

F t
Ω =

∧
b∈B,sΩF (b)=1

bt ∧
∧

b∈B,sΩF (b)=0

¬bt

F̂ t
Ω =

∨
b∈B,sΩF (b)=0

b̂t ∨
∨

b∈B,sΩF (b)=1

¬b̂t
(5.4.12)

At last, the following formula can be defined to encode the fact that a pair of trajectories in
T from the initial state is found with the same observable events (first line (5.4.13)), whose
exactly one of them recognizes the pattern Ω (second line (5.4.14)) and which are infinite (in
the form of cycles at step n, third line (5.4.15)), witnessing non-Ω-diagnosability:

Φ
T
n (Ω) = I0 ∧ T (0,1)∧·· ·∧T (n−1,n) ∧ (5.4.13)

F n
Ω ∧ F̂ n

Ω ∧ (5.4.14)
n−1∨
m=0

(
∧
a∈A

((an↔ am)∧ (ân↔ âm))) (5.4.15)

From this propositional encoding follows the result that an SLTS T is not Ω-diagnosable
iff ∃n ≥ 1,ΦT

n (Ω) is satisfiable, which is also equivalent to ΦT
22(|A|+|B|)(Ω) being satisfiable

(actually the upper bound 22|A| is enough if we suppose Ω deterministic).
Actually, if ΦT

n (Ω) is satisfiable then one can translate directly the valuation of the
variables in a model of it into two infinite trajectories in T that coincide on their observations
and exactly one of them recognizes Ω. Reciprocally if T is not Ω-diagnosable, hence there
exists two infinite trajectories in T that are synchronized on the observable events and only
one of them recognizes Ω; then we can construct from these trajectories a valuation of all
propositional variables which ensures the satisfiability of ΦT

n (Ω).
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5.5 SAT Encoding of Pattern Diagnosability in DSLTS

Considering the distributed DES means including a system of more than one component and
also that significant events in the pattern may contain events from more than one component
of the system (if communication events are allowed in the pattern). One can easily see that
adding more than one component to the previous formalism can be done smoothly just by
synchronizing each significant event in the pattern with its owner component(s) in the system.
Thus, if it is a private event in one component then we just adopt the above formulas to do
the synchronization, else if it is a communication event, thus shared between two or more
components, we have just to add a synchronization formula between the reference variable,
already used in simple fault DSLTS diagnosability encoding to synchronize its occurrences
in all its owner components, and the corresponding event in the pattern. Notice that having
both observable and unobservable communication events can be also handled in a similar
way to what we have done in simple fault diagnosability case. In other words, lefthand
sides in the left equivalences in (5.4.9) can be replaced with the unique reference variable in
case of observable communication events to be synchronized with the pattern (cf. formula
(3.2.3)). Similarly, for unobservable communication events, replacement is done with the
two reference variables of communication events, one in each trajectory (cf. formula (3.2.2)).
It worth to say that in [Ye et al. 2010] the communication events were excluded from the
pattern, which facilitated the synchronization process in their Twin Plant based algorithm;
however we can see here that we can smoothly extend our encoding from the simple fault
diagnosability to the pattern diagnosability in DDES, without restriction on the pattern events.
Also we believe that including the communication events in the pattern can be interesting to
study the communications behavior of the system, which can be useful to decide some their
features at the design stage, like making them observable or not.

5.6 Conclusion

We reviewed in this chapter the pattern diagnosability problem, how it generalizes the fault
event diagnosability problem and how it can be used to answer complicated queries about the
behaviors of the system. Thus any extension-closed rational language can represent a pattern
to study its diagnosability in the system. Then we presented an encoding in SAT for this
problem in the centralized case and showed how to extend it to the distributed case, allowing
in full generality observable or unobservable communication events to occur in the pattern,
which was not dealt with in the literature. We did not yet test this encoding and thus have no
experimental results for the moment, however we expect a scalability improvement that helps
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in overcoming the limitations in the literature such as supposing a small pattern in centralized
systems or moreover, in a distributed structure, considering usually only some components
of the system to be concerned by the pattern. The encoding of pattern predictability problem
can be also done in a similar way by using our fault event predictability encoding and the
approach we adopted here by considering the pattern as a new added component to the
system. We look for testing these encodings for both diagnosability and predictability in
centralized and distributed systems on some real examples.



Chapter 6

Diagnosability Planning for Controllable
DES

We introduce in this chapter a new problem which we called diagnosability planning in
controllable discrete event systems. It consists in calculating, from a set of given elementary
control actions, an optimal plan that drives the system from a set of potential current states to
a surely diagnosable set of states. We first present our motivations and the potential interests
intended from studying such problem. Then we describe the controllable DES, we analyze
the problem and prove its complexity class. After that, we provide three methods to solve the
problem and we test them, according to two cost functions, on an artificial benchmark that
we created for this purpose.

6.1 Motivation/Introduction

We have studied in the first part of this thesis the problems of diagnosability and predictability
checking. We mentioned that such properties are ensured since the design stage in order to get
their benefits during the operation stage. Otherwise adding sensors afterwards to be able to
diagnose a running system can be much more expensive. To this end, each counter-example
that proves the violation of a property during a design model test is usually followed by some
sensors modification. The process is incrementally repeated until proving the property before
delivering it to be operated. During this process many criteria can be adopted to get an optimal
sensor placement and many works have considered this problem of “restoring diagnosability”
of a system model under some conditions [Briones et al. 2008, Ribot et al. 2007, Yan 2004].
However these approaches are considered at the design stage, i.e., all modifications are done
before putting the system in operation.
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Moreover, diagnosability is usually ensured regarding to some limited number of prede-
fined initial states, i.e., no critical path can be constructed starting from them. Although in the
operation mode diagnosable faults will be detected, the natural reaction after this detection
is to apply a sequence of actions in order to repair the system. In many cases these actions
will drive the system into “new initial” states where diagnosability has not been yet ensured.
Similarly, when a fault is predictable, some actions will be applied to prevent its occurrence
since foreseeing it. Therefore, we need actions to be applicable in such reparation or to make
intentional changes of the system states. Hence controllable systems are defined to provide
two layers of modeling. The first one represents a model of spontaneous and autonomous
correct and faulty behaviors of a partially observed discrete event system. The second layer
provides a set of elementary actions, by the means of simple binary transitions, that can be
fired or prevented intentionally by a controller to force or prevent specific changes of the
system state. This set of exogeneous actions is usually in correspondence with a subset of the
system events set, as pairs of output/input communication events modeling the interaction of
the environment with the system.

In order to control each potential situation and ensure the diagnosability of a running
system, the problem of active diagnosis has been introduced in [Sampath et al. 1998]. It
consists in synthesizing a controller that limits the system possible behaviors in order to
keep it diagnosable. However, this may affect the main mission of the system like in an
autonomous system where all capabilities may be required to achieve its mission. The
work [Chanthery & Pencolé 2009] proposed a solution that does not restrict directly the
number of actions, by building a complete active diagnoser, simulating all possible runs of
the system, then use planning to get rid of its ambiguous states. The initial states in this
planning process are the ambiguous states in the active diagnoser and the goal states are the
non-ambiguous states.1 However their planning algorithm is naive and consists in iterating
on each ambiguous state in the active diagnoser and choosing a plan among all its admissible
plans, according to an optimization criterion. Moreover it is not implemented. Actually
their on-line planning may contradict the mission of the system simulated over the active
diagnoser and this is still a problem with this approach. Another problem is that enumerating
all possible plans from each ambiguous state could be impractical. In fact the decision
problem of active diagnosability is proven to be EXPTIME-complete in [Haar et al. 2013]
and the size of a minimal synthesis, over the exponential sized active diagnoser, still has an
exponential size.

1Multiple faults are considered in the active diagnoser, but plans are searched one by one then filtered to
satisfy all goals if possible.
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In order to mitigate the above problems, we introduce in this chapter the concept of
diagnosability planning which can be seen as a “light” version of active diagnosability.
Thus it reduces the interactions with a running system. It replaces the strict controlling
of each system step, achieved with the active diagnoser, by the construction of a plan that
ensures/restores the diagnosability of the system whenever it is lost. This plan, called
diagnosability plan, derives a given input belief state (several potential current states) into a
diagnosable belief state. After its application the system is then left to run freely. Differently
from the approach in [Chanthery & Pencolé 2009] the active diagnoser is not constructed
and the plan is calculated in an intelligent way. Thus in our approach the control phase,
through planning, is called only on demand and thanks to its output the system is allowed
to run freely with guaranteed diagnosability. These two successive stages of our approach
keep the diagnosability planning problem, including its diagnosability tests, in PSPACE in
comparison to the EXPTIME complexity for the more complex active diagnosability used
usually in such cases.

An application of this approach would be interesting after an accidental disruption of the
system because of a repair plan or an external intervention on the system. Thus after such
cases the system would be described by a set of potential states from where its diagnosability
is not guaranteed. This approach is also interesting to reduce the diagnostic interaction with
running systems, like power networks where these interactions have an important cost in
both materials and their effects on the service availability.

From a planning point of view, our problem differs from the classical planning problems
and also from the conformant planning ones (dealing with uncertainty, so with belief states)
in that there is no explicit final goal states as input of the problem. Our goal states are those
from where the diagnosability property holds, which are unknown at the beginning. We
get around this by using diagnosability test, through its auxiliary Twin Plant structure, to
characterize such goal states. And we reuse along the plan search diagnosability information
found from previously built parts of the Twin Plant structure by tagging the unambiguous
Twin Plant states according to this test with one of two tags: good or bad. As we know, a
Twin Plant state represents a pair of system states with fault occurrence information. Only
the good states of the Twin Plant will serve to define our goal states. The pairs that are
considered are members of the power set of the current belief state whose diagnosability
is being checked. Actually, all possible pairs in the power set of the belief state must be
good to get a diagnosable belief state. Nevertheless, this intended belief state may have
been preceded during the plan search by several non-diagnosable belief states resulting from
failed candidate plans. They include thus some partial tagging (at least one bad pair) that
can be recycled to prune the further searches. In fact we will exploit these tags in two ways,
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firstly to prune the construction of Twin Plants used to verify the diagnosability of the current
intended goal belief state, secondly to prune the test of specific plan candidates during the
search. More details will follow.

This chapter is organized as follows. Section 6.2 introduces the concepts needed: our
model of controllable DES, the definition of diagnosability regarding a belief state and its
analysis by using the Twin Plant structure, the conformant planning problem; and then defines
the problem of diagnosability planning. Section 6.3 provides complexity results. Section 6.4
proposes an algorithm for computing a diagnosability plan, where information about already
constructed parts of the Twin Plant is exploited for pruning the search and the diagnosability
checking, and illustrates it on an example. Section 6.5 presents the construction of a scalable
benchmark and experimental results of the algorithm on several of its instances. Section 6.6
presents related works. Section 6.7 concludes and draws perspectives of future research.

6.2 Diagnosability Planning Problem for Controllable DES

6.2.1 Controllable Discrete Event Systems

As mentioned above, this work is done in the context of controllable DES. We assume
that the system runs in two distinct modes that do not intertwine: the active one when the
system runs freely, i.e., its states are changed autonomously through partially observable
transitions without any controlled exogenous event, and the reactive one in which only
feasible exogenous actions are applied to change the system state through reactive transitions.

Definition 14. A Controllable Labeled Transition System (CLTS) is a tuple G= ⟨Q,Σ,δ , I⟩
with Σ = A ∪E where:

• Q is a finite set of states,

• E is a finite set of events,

• A is a finite set of actions,

• δ ⊆Q×Σ×Q is the (active for labels in E , reactive for labels in A ) transition relation,

• I ⊆ Q is the initial belief state.

E is partitioned into {Σo,Σu,Σ f }, where Σo is a finite set of observable correct events,
Σu is a finite set of unobservable correct events, Σ f is a finite set of unobservable faulty
events. We suppose that every state in Q is actively reachable from a state in I. We assume
that the system is complete in terms of actions, i.e., every action is applicable in every
state. This assumption can be easily made by modeling every action missing in a state q
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as a loop transition in q (so leaving q unchanged). We do not suppose that the actions are
deterministic.
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Fig. 6.1 Illustrative Example of a CLTS

Figure 6.1 shows a CLTS that comprises 9 states with I = {1n,2n,3n,4n,5n}, A =

{α,β ,γ}, Σ f = { f}, Σo = {a,b,d} and Σu = {u}. In this diagram, any action that is missing
in a state is assumed to leave the state unchanged (for instance, applying β in 1n leads to
state 1n: (1n, β , 1n)∈ δ ). Notice that actions, here, do not affect the possibility of the fault
occurrence, i.e., no actions sequence may lead to a fault-free behavior, otherwise the problem
would be trivial boiling down to take such an actions sequence.

6.2.2 Diagnosability in Controllable DES

We keep the definitions and notations of the subsection 2.2. Paths and language are w.rt.
active transitions, i.e., events in E and initial belief state I.

Definition 15. An active path (or simply a path) is a sequence of active transitions ρ =

q0
e1→·· · en→ qn, with e1, . . . ,en ∈ E , q0, . . . ,qn ∈Q and ∀i∈ {0, . . . ,n−1},(qi,ei+1,qi+1)∈ δ .

We call e1 . . .en ∈ E ∗ the trajectory of ρ .

LI(G) will denote the prefix-closed language of G from the initial belief state I, i.e., the
set of words from E ∗ that are the trajectories of some active paths in G that start from a state
in I. Elements of LI(G) are called I-trajectories. The definition of diagnosability from an
initial belief state I follows immediately from Definition 4.
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Definition 16. A fault f ∈ Σ f is diagnosable in a system G with initial belief state I iff

∃k ∈ N,∀s f ∈ LI(G),∀t ∈ LI(G)/s f , |t| ≥ k⇒
∀ρ ∈ LI(G),(Po(ρ) = Po(s f .t)⇒ f ∈ ρ).

Notice that this definition boils down to Definition 4 with a single initial state by adding
to G such a state q0 and transitions from q0 to each state in I, labeled by an unobservable
correct event. Assumptions 1, 2 and 3 are kept unchanged in this chapter.

In our example, the initial belief state is not diagnosable as it exists for example, from its
initial states 1n and 2n, an arbitrary long observable sequence of the event a (a+) that might
represent faulty (moving to 2 f then looping there) or normal (looping in 1n) I-trajectory in
the system.

Diagnosability checking of LTS is known to be polynomial in the number |Q| of states
[Jiang et al. 2001] as we reviewed in the chapter 2. We will restate here some useful infor-
mation about this approach for the sake of readability. The polynomial algorithm to check
diagnosability is based on the Twin Plant method [Jiang et al. 2001, Yoo & Lafortune 2002].
The first step in this method is the construction, from the original system model G, of
a non-deterministic automaton, called pre-diagnoser, designed to preserve all observable
information from G and to append to every state an estimate of failure information. In the
pre-diagnoser, we only keep the observable events and attach the fault information (in the
form of a fault label equal to { f} if the fault has occurred on the path followed from a sate in
I to the given state and to /0 otherwise) to each retained state. For the example in Figure 6.1,
in its pre-diagnoser, the fault label for all states 1n, 2n, 3n, 4n, 5n in the initial belief state is
/0 since there is no fault occurrence up to them. The fault label for all other states is { f}.

The second step is to build the Twin Plant by synchronizing the pre-diagnoser with itself
based on the observable events, in order to obtain all pairs of system I-trajectories with the
same observations as Twin Plant trajectories. Each state of the Twin Plant is thus a pair of
pre-diagnoser states that provide two possible diagnoses with the same observations. Given
a Twin Plant state, if the fault label { f} is attached to exactly one of its two associated
pre-diagnoser states, i.e., the occurrence of f is not certain with the given observations, it
is called an ambiguous state (w.r.t. f ). An ambiguous state cycle is a cycle containing only
ambiguous states. A critical path is a path in the Twin Plant issued from a pair of initial
states with a prefix followed by an ambiguous state cycle. A system is non-diagnosable iff its
Twin Plant contains a critical path.

Now consider our illustrative example. In its Twin Plant, we have the path ((1n, /0)(2n, /0)) a−→
((1n, /0)(2 f ,{ f})) a−→ ((1n, /0)(2 f ,{ f})). This is actually a critical path since it is issued
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from a pair of initial states 1n, 2n and contains a self cycle with an ambiguous state
((1n, /0)(2 f ,{ f})) associated with an observable event a. Thus, the system correspond-
ing to this example is not diagnosable since one can never be sure about the fault occurrence
with an arbitrary number of a observed.

6.2.3 Planning

Definition 17. A plan π for a CLTS G is a sequence of actions ai ∈A .

Applying the plan π = a1 . . .am from a current belief state S ⊆ Q leads to the belief
state π(S) defined recursively by π(S) = S if m = 0 and π(S) = π ′(S′) if m > 0, where
S′ = {q′|∃q ∈ S (q,a1,q′) ∈ δ} and π ′ = a2 . . .am. Suppose now π = αβ , for our example,
π(I) = π ′(I′), where π ′ = β and I′ = {3n,4n,5n}, thus π(I) = {1n,3n,4n}.

In planning, the objective is generally to find a plan that leads the system into a belief
state that is included in one among a given set of “acceptable” states (e.g., states where the
system is safe or where the system provides the service that we expect from it): π(I)⊆ B
for some B⊆ Q, B acceptable. Here the definition of the objective is not at the level of an
individual state but at the level of a belief state (set of states).

Definition 18. A planning problem is a pair ⟨G,O⟩ where G = ⟨Q,Σ,δ , I⟩ is a CLTS and
O⊆ 2Q is a collection of belief states. The solution to the planning problem is a plan π such
that π(I)⊆ B with B ∈ O.

6.2.4 Problem Definition

In our problem, the objective of planning is to find a plan that leads the system to a diagnosable
belief state.

Definition 19. Given a CLTS G = ⟨Q,Σ,δ , I⟩, diagnosability planning is the problem of
finding a plan π such that ⟨Q,Σ,δ ,π(I)⟩ is diagnosable.

Diagnosability planning can be equivalently phrased as the problem of solving the
planning problem ⟨G,O⟩ where O is the set of maximal belief states from where G is
diagnosable: O = {I′ ⊆ Q|⟨Q,Σ,δ , I′⟩ is diagnosable and I′ maximal}. The difficulty here
is that, unlike usual planning problems, this set O is not explicitly given as an input but
implicitly specified by a property and we will show how we can characterize it. A plan is
correct iff it satisfies the objective, here we will call it a diagnosability plan.

Our goal is to find an optimal diagnosability plan for given criterion (or set of criteria).
First of all, the criterion will be the length of the plan (number of actions in the sequence) that
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we want to minimize. We denote π⋆ an optimal plan. In our example, the plan π⋆ = αββ is
an optimal diagnosability plan that leads the system to the belief state π⋆(I) = {1n,3n} from
where no critical path can be constructed.

6.3 Complexity

In this section, we compute the complexity of the decision problem associated with diagnos-
ability planning. We demonstrate the following result:

Theorem 6.3.1. Diagnosability planning is PSPACE-COMPLETE.

Hardness can be shown by reducing classical propositional planning to Conformant
Planning (i.e., with undeterminism of initial state and/or actions, thus belief-state planning as
defined in Definition 18) with eXplicit States (CPXS), and then CPXS to diagnosability plan-
ning. Classical propositional planning is known to be PSPACE-COMPLETE [Bylander 1994],
which will give the result. As we did not find the first reduction in the literature, we provide
a proof sketch below.

A classical propositional planning is defined in a succinct way by a set of propositional
variables and a set of actions. Each action has a precondition (subset of variables that must be
True for the action to be applicable) and two sets of positive/negative effects (variables that
become True/False upon the application of the action). Furthermore the problem specifies
the list of variables True in the initial state and the list of variables True in the goal states.
The goal is to find a sequence that leads from the initial state to one goal state.

For each variable v we create two states v0 and v1 in the CPXS problem that represent
respectively the fact that the variable v has False or True assignment in the classical planning
problem. A state in the classical planning problem is therefore represented by a belief state
(that never contains both states v0 and v1 for a same v) in the CPXS problem. The initial
belief state and the final objective belief states are set accordingly, corresponding to the initial
state and the goal states. For any action a and any variable v we create in the CPXS problem
a transition labeled by a from vi to v j that models the effect of a from the perspective of
variable v, so according to the precondition/effects of a and the semantics of v0/v1 described
above (transition to the same state if action a is not applicable). It is easy to see that the
solutions for the reduced CPXS problem are thus the same as the solutions for the original
classical planning problem. The second reduction can be done by adding active transitions
labeled by events, in such a way that no ambiguous state cycle can be reached from any
CPXS objective belief state while any other belief state gives birth to an ambiguous state
cycle. A solution plan to the CPXS problem corresponds thus to a diagnosability plan for the
controllable DES obtained.
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Membership to PSPACE can be shown by a proof similar to membership of classical
propositional planning. We iterate over all the possible belief states (PSPACE), verify that
this belief state is diagnosable (PTIME), and search for a conformant plan from the initial
belief state to this belief state (PSPACE).

6.4 Solving the Diagnosability Planning Problem

6.4.1 Analyzing the Problem

Solving the Diagnosability Planning problem requires finding a plan that leads the system
from a given belief state into a diagnosable belief state, called a goal belief state. This consists
in alternating the generation of candidate plans and the diagnosability test of the belief state
reached by each candidate plan. Thus, one must ensure the absence of any critical path that
could be constructed from this final belief state. The traditional way to do diagnosability test
is just applying from scratch the Twin Plant approach: we call this approach Normal method.
Regarding the planning steps, we have to generate the candidate plan by browsing the search
space of these candidates with a browsing algorithm, like Breadth First Search (BFS) for
example, which ensures plan size minimality. The search space size can vary depending on
the initial belief state and the type of available actions. For example, theoretically, if we have
only one state in the initial belief state with deterministic actions, then the worst case of the
solution plan size, if it exists, is |Q|. If the initial belief state contains more than one state or
the actions are not deterministic, the plan size is bounded by 2|Q|, therefore in the worst case
the plan can be encoded with |Q| bits. We consider here multiple states initial belief state
and non-deterministic actions.

From another hand, during the search of the intended plan, the different Twin Plants
constructed starting from different belief states will generally share some states with each
other. This makes interesting the idea of recycling previously built parts of these Twin Plants
(which can be seen as included in the implicit global Twin Plant of the system that would
correspond to I = Q). In particular, if we find any critical path during the test of a candidate
plan, we know that each time we will meet again its starting state, which is the root of this
constructed Twin Plant, we will be sure to recover a critical path. This state represents a pair
of states in the source belief state. Hence the idea is to tag such a pair as a bad pair after
each test in order to avoid re-testing it later if it occurs in another planned belief state. But
more interestingly, these pairs can be used to prune the next Twin Plants construction and
even to guide the search of a diagnosability plan.
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Definition 20. We call {q1,q2} ∈ Q×Q a bad pair iff ((q1, /0),(q2, /0)) is the starting state
of a critical path in the Twin Plant of G. If q1 = q2, then it is called a bad unit. We denote the
set of all currently known bad pairs as B.

Actually, when a critical path is discovered, not only its starting state but all its non-
ambiguous states (i.e., before the fault occurrence) give rise to bad pairs. Notice that the
system G = ⟨Q,Σ,δ , I⟩ is not diagnosable iff I× I contains a bad pair. So, for a current state
of knowledge, a sufficient condition for the non-diagnosability of G is (I× I)∩B ̸= /0.

In a similar way if the diagnosability test failed to find any critical path issued from a
non-ambiguous pair of states we can call this pair a good pair.

Definition 21. We call {q1,q2} ∈ Q×Q a good pair iff there is no critical path in the Twin
Plant of G issued from ((q1, /0),(q2, /0)). If q1 = q2, then it is called a good unit. We denote
the set of all currently known good pairs as G .

Actually, when no critical path exists, not only the starting state of the Twin Plant but
all its non-ambiguous states give rise to good pairs. Notice that the system G = ⟨Q,Σ,δ , I⟩
is diagnosable iff I× I contains only good pairs. So, for a current state of knowledge, a
sufficient condition for the diagnosability of G is I× I ⊆ G .

In our example, the pair {1n,2n} is a bad pair since from it a critical path can be
constructed, as shown before. {1n,3n} is a good pair because there is no critical path issued
from it.

One natural way to build the Twin Plant for any belief state S is to process S globally by
reducing it to only one virtual initial state {qS} related by unobservable transitions to any
state in S and to take into account learned tagged pairs while constructing the traditional Twin
Plant from ((qS, /0),(qS, /0)). We call this approach Lazy Learning method, as it will learn
only bad pairs and so will not exploit the good pairs; actually it will not discover them until
the diagnosability plan is found with no more needs to recycle them. However, this approach
may lead to small size constructed Twin Plants by concentrating only on bad pairs. Another
way to a better exploitation of the tagged pairs is to construct the Twin Plants for each pair of
states in the belief state, i.e. for each element of S×S. Thus we stop the process immediately
if we meet any known bad pair and, before this, we prune developing any branch of the Twin
Plants each time we meet a known good pair. We call this approach, allowing learning both
good and bad pairs and a useful recycling of both, Eager Learning method.
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6.4.2 Learning and Exploiting Bad and Good pairs

In Diagnosability Test

As we said above, meeting a known bad pair during a Twin Plant construction predicts
the existence of a critical path. This allows us to completely stop the construction of
the current Twin Plant and learn at least one new bad pair (the one corresponding to the
starting state of the Twin Plant). In our example, assuming that the bad unit {5n} has been
previously discovered and learned, testing {2n} can be stopped just after the construction
in the Twin Plant of ((2n, /0),(2n, /0)) b→ ((5n, /0),(5n, /0)) and the new bad unit {2n} be
learned. Many other bad pairs can actually be learned in general, corresponding to all
non-ambiguous states in the critical path discovered. Moreover, we can avoid testing any
candidate plan π that leads to a belief state that contains a known bad pair, i.e. such that
(π(I)× π(I))∩B ̸= /0. In our example, knowing that {1n,2n} ∈B, it is useless to test
π = β and π = γ as β (I) = {1n,2n,3n,4n} and γ(I) = {1n,2n,4n,5n}.

The Lazy Learning method concentrates only on exploiting those bad pairs, however
the Eager Learning method exploits also the good pairs generated after each Twin Plant
construction to guide the plan generation and also to prune the further parts of Twin Plants
construction. Thus, discovering a good pair means that the Twin Plant constructed starting
from this pair, and using all possible output edges from each state in this pair, does not
contain any critical path. This can be exploited in two ways. The first is that each state in
the constructed Twin Plant represents a good pair, that can be learned. The second is that in
any next Twin Plant, meeting a good pair allows pruning the construction of branches from
this state (construction in other branches has to be continued). Moreover, for a candidate
plan π , we can avoid testing all known good pairs in the belief state reached by π , i.e., all
{q1,q2} ∈ (π(I)×π(I))∩G . In our example, suppose that when testing diagnosability from
I, i.e. for π = /0, and before finding the bad pair {1n,2n}, the good pairs {1n,1n}, {3n,3n}
and {1n,3n} have been found and thus learned. Then, when later considering the candidate
plan π = αββ , as π(I) = {1n,3n}, it is useless to test it to conclude it is a diagnosability
plan.

In Planning

We can use all discovered pairs in guiding a greedy algorithm for the plan generation. Let
call g(π) the cost of plan π , which is the sum of its elementary actions costs (e.g., its length
if all actions have cost 1). We want to order the possible plans according not only to their cost
in terms of actions but also to the chance of reaching a diagnosable belief state, heuristically
evaluated by the ratio of good pairs in this belief state. For this, we classify the candidate
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plans π (those obtained by adding one action to a previous failed candidate plan, but more
generally one could consider extending failed candidate plans by actions up to a temporary
maximal length) by partitioning π(I)×π(I) into three classes ⟨Bπ ,Gπ ,Uπ⟩, which represent
respectively known bad, known good and non-tagged pairs. We keep those π with Bπ = /0.
The estimated cost function for the good pairs ratio is denoted by h(π). Then, the best
candidate plan, i.e. the one that optimizes the global cost function (combination of g(π)
and h(π) minimizing the first and maximizing the second) is chosen (so, the best action for
local optimization when extending plans by only one action). Then we test for diagnosability
Uπ for the plan π chosen, by the same previous iterative Twin Plant construction. The new
bad and good pairs discovered at this occasion are used to update or compute the classes
⟨Bπ ,Gπ ,Uπ⟩ for the next candidate plans π considered in order to proceed to their ranking.
The process is repeated until finding a diagnosability plan or proving its absence. The tagged
pairs (good and bad) are propagated into all the classes, so any pair is never tested more than
once with the Eager Learning method, and will be used to prune or stop the construction of
the further Twin Plants.

One can learn three things by observing this structure after each failed plan; the first is
the existence of diagnosability plans π that can be directly deduced if (Bπ = /0 ∧ Uπ = /0)
in any open belief state, the second is the absence of a diagnosability plan deduced if no
more candidate plans exist and all classes are of the form (Bπ ̸= /0) and the third is that, if
none of the two stopping conditions is satisfied, the next possible test is the one on the top of
the priority queue.

6.4.3 General Algorithm

We propose the algorithm 1 which contains the general procedure that learns bad and good
pairs and uses them to prune the search space, i.e., the Eager Learning method. This pruning
is twofold: pruning the search space of the candidate plans and pruning the construction of
the Twin Plants. Other procedures that add strategies for special exploitation of the bad units
are also possible here.

The algorithm starts by generating a set of candidate plans by enriching the previous
candidate plans not yet tested (none at the beginning) by the new ones obtained by extending
in any way by one action the last chosen best plan candidate that just failed (so, at the
beginning, this set is made up of the plans of length one), which is done by the procedure
genCandidatePlan. This procedure prunes tests of candidate plans that lead to a belief state
which is a superset of the belief state of a previously explored plan or of another candidate
plan generated with a lower cost. The candidate plan with this superset belief state is then
closed. Therefore no candidate plan will be generated if all nodes are closed, which is
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Algorithm 1 General algorithm
1: procedure FINDDIAGNOSABILITYPLAN(G, I,g,h)
2: π ← /0; Π← /0; EBS←{I}; B← knownBad; G ← knownGood
3: ▷ Initialization of the last candidate explored, the set of current candidates, the belief

states explored, the bad and good pairs known from testing the diagnosability of GI
4: Π← genCandidatePlan(Π,π,EBS,G, I,g)
5: while Π ̸= /0 do
6: π ← getBestCandidate(Π,B,G ,g,h)
7: EBS← EBS∪{π(I)}
8: Pairs← getAllPossiblePairs(π(I))
9: while (Pairs∩B = /0)∧ (Pairs\G ̸= /0) do

10: {q1,q2}← chooseOne(Pairs\G )
11: DGπ

(q1,q2)
← getPreDiag(G{q1,q2})

12: T Pπ

(q1,q2)
← getT P(DGπ

(q1,q2)
,Σo,B,G )

13: ▷ B and G are used to prune TP building
14: newBad←CPPairs(T Pπ

(q1,q2)
)

15: if newBad ̸= /0 then
16: B←B∪newBad
17: ▷ unambiguous states of the found critical path give bad pairs
18: else
19: G ← G ∪StatesO f (T Pπ

(q1,q2)
)

20: ▷ all TP states give good pairs
21: if Pairs\G = /0 then
22: return π

23: ▷ π is a diagnosability plan
24: else
25: Π← genCandidatePlan(Π,π,EBS,G, I,g)
26: return /0
27: ▷ there is no diagnosability plan
28: procedure GETBESTCANDIDATE(Π,B,G ,g,h)
29: Π← sortByCostandGoodness(Π,B,G ,g,h)
30: ▷ those ρ ∈Π with (ρ(I)×ρ(I))∩B ̸= /0 are the last in the sort; others are sorted

in first according to cost function g and goodness-based heuristics h that uses G
31: ρ ← removeTop(Π)
32: return ρ

33: procedure GENCANDIDATEPLAN(Π,π,EBS,G, I,g)
34: CurrentActions← Actions(G); newΠ← /0
35: while CurrentActions ̸= /0 do
36: a← removeOne(CurrentActions)
37: ρ ← πa
38: if ̸ ∃BS ∈ EBS | BS⊆ ρ(I) then
39: ▷ if ρ(I) contains an already explored belief state, the node ρ is closed
40: newΠ← newΠ∪{ρ}
41: while newΠ ̸= /0 do
42: ρ ← removeOne(newΠ)
43: if ̸ ∃ρ ′ ∈ newΠ | ρ ′(I)⊆ ρ(I)∧g(ρ ′)≤ g(ρ) then
44: ▷ if a plan candidate ρ ′ is better than the plan candidate ρ , then ρ is closed
45: Π←Π∪{ρ}
46: return Π
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the stopping criterion for the algorithm, meaning the nonexistence of a diagnosability plan.
Then, the procedure getBestCandidate ranks the candidate plans according to their costs
(i.e., Breadth First Search for example if all elementary actions have the same cost) and
optionally favoring also other heuristic criteria, like here the goodness (ratio of good pairs in
the belief state), and ranking in last those whose belief space contains a bad pair. It returns
the best candidate plan π for this ranking, which gives the current belief state π(I) to be
tested for diagnosability. Then if π(I) does not contain any known bad pair and contains
at least one non-tagged pair, iteration is done on these non-tagged pairs of states in π(I) in
order to check their goodness. That is, a pair {q1,q2} is chosen and (part of, in the light of
known tagged pairs) the Twin Plant T Pπ

(q1,q2)
of the subsystem G{q1,q2} (having q1 and q2 as

initial states) is built. If a critical path (which may be predicted just by meeting a bad pair)
is found in T Pπ

(q1,q2)
, all the pairs of states corresponding to the new non-ambiguous states

of this critical path (so, at least {q1,q2}) are added to the bad pairs list. In case T Pπ

(q1,q2)

does not contain any critical path, all pairs represented by its states are learned as good pairs
and the iteration continues. The iteration stops either because all pairs of π(I)×π(I) are
found to be good, and then π is a diagnosability plan (necessarily optimal for the cost if
no heuristics has been used), which ends the algorithm, or because a bad pair is found in
π(I). In this last case, the plan π is failed and its candidate successors are generated by the
procedure genCandidatePlan and the next best candidate plan is chosen by the procedure
getBestCandidate. So the algorithm always terminates and returns a diagnosability plan
(guaranteed optimal if h is not used) if it exists.

6.4.4 Illustrative Example

We search an applicable sequence of actions that leads the system depicted in figure 6.1
to a diagnosable belief state. When we apply the algorithm 1 (Eager Learning method
with equal elementary actions costs and without heuristics h, thus in BFS), we get the
Figure 6.2 that shows the evolution of the candidate plans and their corresponding belief
states before reaching the intended plan (π = αββ ) that leads the system to the diagnosable
state π(I) = {1n,3n} (red node N9). In this figure, the blue node N5 represents a closed
node as its belief state is equal to that of the previously explored node N2. Other explored
nodes are not diagnosable, moreover the diagnosability test is not called for any node that
contains at least one known bad pair and not called on the known good pairs of the belief
state of any node. This is why the orange nodes N3,N4,N6,N8 and the red node N9 do not
need to be tested according to the following scenario illustrated by the figure 6.1. We assume
that, when testing N1 (i.e., the empty plan), the good pairs {1n,1n}, {3n,3n} and {1n,3n}
are found first before discovering the bad pair {1n,2n}. And that, when testing N2, the bad
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pair {3n,4n} is found. Then, N3 and N4 fail without having to be tested as their belief spaces
contain {1n,2n}. Later, it is the same for N6 whose belief space contains {3n,4n}. When
testing N7, the bad pair {4n,5n} is found. Again, N8 fails without having to be tested as its
belief space contains {3n,4n}. Finally N9 succeeds and provides the optimal diagnosability
plan αββ without having to be tested as the three possible pairs of states issued from its
belief state are all good pairs from the result of N1 test. Using the heuristics h based on the
ratio of known good pairs in a belief state would allow in general better pruning of the plan
search space (for example here, from the knowledge of the good pairs found in N1 to go
directly to the solution node N9 via N2 and N6), even if the diagnosability plan found is not
guaranteed to be optimal.

N1 : {1n,2n,3n,4n,5n}

N4 : {1n,2n,4n,5n}N3 : {1n,2n,3n,4n}N2 : {3n,4n,5n}

N7 : {4n,5n}N6 : {1n,3n,4n}

N9 : {1n,3n}N8 : {3n,4n}

α β

N5 : {3n,4n,5n}

α
β

γ

α
β

γ

Fig. 6.2 Plan search space, with N9 diagnosable, N5 closed and other nodes not diagnosable.

6.5 Experimental Results

In order to test our proposed approaches on a benchmark, we created a rectangular grid of
components by repeating the active model (i.e., without its actions) of our running example
in figure 6.1 and we reconfigured the actions in all components and added global actions
between components. We defined two actions models that are applied to a component
according to its position in the grid (given by line index i and column index j, with the origin
at the left top corner). The first one is adopted for all top and bottom border components
and allows the planner, for an initial belief state chosen in one of these components, to find
a short plan, of length two or three, made up of local actions inside this component. The
second one is adopted for all other (internal) components and does not allow reaching a
diagnosable belief state inside this component, but allows moving from this component to
the one just below or above it by using global actions that connect the actions models of any
internal component and those of its two neighbors on the same column. We designed the
diagnosability plan to be, starting from any internal component belief state, the one obtained
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by moving to its below neighbors until reaching the bottom line of the grid. Moving upward
is also always an option for the planner but will not give a diagnosable plan. The tested
benchmark does not contain any horizontal action between components in different columns.
In order to connect actively by event transitions each component with its existing (at most
four) neighbors, we have added an observable communication event c that connects each
state 3n (resp. 1n) at the position (i, j) in the grid to the corresponding state 2n (resp. 4n) at
the position (i+1, j). Similarly, we connect faulty state 3 f (resp. 4 f ) at the position (i, j) to
1 f (resp. 2 f ) at the position (i, j+1), and faulty state 1 f (resp. 2 f ) at the position (i, j) to
3 f (resp. 4 f ) at the position (i, j−1).

We have tested three search algorithms of the intended diagnosability plan. The first
algorithm uses the Normal method, i.e. without any recycling. The second algorithm uses
the Lazy Learning method which concentrates on learning only the bad pairs while not being
able to exploit any good pair. The difference with the first algorithm is that this one learns
about bad pairs and later uses them to prune another plan test or to stop another Twin Plant
construction if it meets such a pair again. The third algorithm uses the Eager Learning
method and is the one described in Algorithm 1.

Fig. 6.3 I contains the normal states of one central component.

Concerning the search strategy, firstly we applied to the planner Breadth First Search
strategy (i.e., without h and with equal elementary actions costs in g) which guarantees
optimal length of the plan, and tested the three methods. Secondly we applied our greedy
strategy, limited here to the use of the heuristic function h (without g), computed from the
learned pairs and aiming at maximizing the percentage of “goodness” of a belief state reached
by each candidate plan. This approach is applicable to the third method, the only one to
have the information about good pairs; we adapt it to the second method by minimizing the
number of non-tagged pairs, i.e. the size of the belief space.
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Test Id Matrix |B | |G | |TPs | |tested π | |π | Time

1N 3x3 0 0 898 38 5 0s
1L 3x3 22 3 204 18 5 0s
1E 3x3 8 6 59 17 5 0s
2N 5x3 0 0 1980 99 8 1s
2L 5x3 36 3 231 29 8 0s
2E 5x3 12 6 128 20 8 0s
3N 10x3 0 0 6127 335 14 3s
3L 10x3 113 3 444 101 14 1s
3E 10x3 33 24 612 95 14 1s
4N 20x3 0 0 51846 2350 29 27s
4L 20x3 994 3 3093 950 29 12s
4E 20x3 89 60 1227 554 29 8s
5N 50x3 0 0 1046545 38259 74 2h2m26s
5L 50x3 11336 3 108466 11252 74 17m17s
5E 50x3 219 156 9207 4320 74 8m45s

Table 6.1 The three methods tested on different grid heights (with width 3) using BFS, where
I is made up of the normal states of the central component.

Test Id Matrix |B | |G | |TPs | |tested π | |π | Time

1N 3x5 0 0 7385 148 6 2s
1L 3x5 64 9 1619 56 6 1s
1E 3x5 9 12 148 24 6 0s
2N 5x5 0 0 40207 806 11 10s
2L 5x5 214 6 4429 199 11 4s
2E 5x5 25 15 529 133 11 1s
3N 10x5 0 0 325385 7118 20 1m57s
3L 10x5 2048 6 32820 2019 20 56s
3E 10x5 63 57 7518 947 20 55s
4N 15x5 0 0 3238594 43570 29 2h9m26s
4L 15x5 12087 6 4653 12051 29 20m6s
4E 15x5 105 96 56323 4260 29 10m6s
5L 17x5 34597 6 13449 34533 35 4h45m20s
5E 17x5 119 108 165193 13691 35 1h21m1s

Table 6.2 The three methods tested on different grid heights (with width 5) using BFS, where
I is made up of the normal states of the components at (|lines|/3,1) and (2|lines|/3,3).
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Test Id Matrix |B | |G | |TPs | |tested π | |π | Time

1L 3x3 17 3 93 14 5 0s
1E 3x3 5 3 35 6 5 0s
2L 5x3 22 3 119 16 8 0s
2E 5x3 10 6 101 12 9 0s
3L 10x3 63 3 277 50 14 1s
3E 10x3 25 21 362 39 16 1s
4L 20x3 390 3 617 353 29 5s
4E 20x3 57 48 453 149 36 3s
5L 50x3 2406 3 2255 2309 74 1m3s
5E 50x3 146 141 1119 661 96 22s

Table 6.3 The two learning methods tested on different grid heights (with width 3) using the
greedy heuristics, where I is made up of the normal states of the central component.

Test Id Matrix |B | |G | |TPs | |tested π | |π | Time

1L 3x5 18 6 300 12 6 0s
1E 3x5 4 6 47 7 6 0s
2L 5x5 44 6 743 33 12 1s
2E 5x5 14 9 189 24 13 0s
3L 10x5 151 6 1166 133 21 3s
3E 10x5 47 54 1678 228 24 6s
4L 15x5 285 6 1634 257 30 7s
4E 15x5 52 66 1156 112 35 3s
5L 17x5 689 6 2039 653 36 18s
5E 17x5 57 75 2381 205 40 5s
6L 20x5 1005 6 2045 951 42 25s
6E 20x5 84 87 1784 215 46 5s
7L 50x5 10725 6 26226 10558 102 49m6s
7E 50x5 160 258 13413 1613 116 54s
8E 100x5 488 498 87236 15413 243 1h35m58s

Table 6.4 The two learning methods tested on different grid heights (with width 5) using the
greedy heuristics, where I is made up of the normal states of the components at (|lines|/3,1)
and (2|lines|/3,3).
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Test Id |Comps. of belief | |B | |G | |TPs | |tested π | |π | Time

1N 2 0 0 153473 4904 23 1m5s
1L 2 1500 12 15916 1463 23 37s
1E 2 44 49 1384 562 23 12s
2N 3 0 0 423034 6652 27 2m14s
2L 3 1446 14 36424 1400 27 52s
2E 3 60 81 6121 750 35 36s
3N 4 0 0 594293 6254 28 2m47s
3L 4 1230 17 48385 1177 28 52s
3E 4 75 113 18524 1332 35 64s
3N 5 0 0 774272 6174 29 3m52s
3L 5 1470 20 62346 1413 29 1m1s
3E 5 74 134 15015 833 35 46s
3N 6 0 0 692229 5181 28 3m36s
3L 6 1212 23 55982 1156 28 54s
3E 6 73 139 7721 414 35 23s
4N 7 0 0 821782 5601 28 5m26s
4L 7 967 26 49440 909 28 1m
4E 7 74 144 4788 358 30 21s
5N 8 0 0 1002066 6333 28 8m1s
5L 8 1344 29 46194 1289 28 1m21s
5E 8 67 130 2795 267 29 17s
9N 9 0 0 1331933 8263 28 14m50s
9L 9 1612 32 62676 1554 28 2m6s
9E 9 56 115 3023 245 29 12s
10E 100 21 121 6340 113 35 18s

Table 6.5 The Normal method and the two learning methods with the greedy heuristics tested
on a fixed 10×10 grid, where I is made up of the normal states of an increasing number of
components on the diagonal of the grid (and for the last line all components).
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Fig. 6.4 I contains the normal states of two scattered internal components.

Fig. 6.5 Changing initial belief state size in a fixed system of (10×10) components.

Successive columns in the tables show the test number along with the letter (N, L or E)
identifying the method used, the grid size (except for Table 6.5 where it is the number of
components on which the initial belief state spreads), the number of learned bad pairs, the
number of learned good pairs, the states number of the Twin Plants constructed, the number
of tested plans, the size of the diagnosability plan computed and the CPU time.

We have first tested the 5 different methods on increasing grid heights (with width 3)
with the initial belief state made up of the five normal states in the central component of the
grid. Using a Breadth First Search algorithm for the planner, Table 6.1 shows that the Eager
Learning method is promising and is 15 times faster for a grid of height 50 (the length of the
optimal diagnosability plan being 74) than the classical approach that tests diagnosability
without any learning. This shows the efficiency of recycling learned pairs even if they are
not exploited in guiding the planning step to solve the problem. But the benefit of this
exploitation by the greedy heuristics in the two learning methods appears clearly in Table 6.3,
even if the Eager Learning method does not give an optimal diagnosability plan (actually it
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scales well up to a 180×3 grid with a plan of length 355). Figure 6.3 shows all the five tests
on this bench graphically.

The tests shown in Tables 6.2 and 6.4 are more challenging as we suppose an initial belief
state composed of the normal states of two scattered internal components. The largest the
height of the grid (with width 5), the farthest they are. The search space of the plan is much
bigger, but still, even without guiding the plan search by learned pairs, the performances
of the two learning methods are better than the performance of the Normal method which
explodes for the height 17 (see Table 6.2). However, results improve dramatically when
exploiting the learned pairs in guiding the planning search as shown in Table 6.4, where the
Eager Learning method scales well up to a 100×5 grid. However the greedy heuristics used
here does not return an optimal length of the intended plan as does BFS strategy. But we can
notice that it is very close to the optimal one for the Lazy Learning method (which is not the
case for the Eager Learning method, although a better heuristics could be used according to
the studied system structure). Figure 6.4 shows all the five tests on this bench graphically.

In order to show how changing the size of the initial belief state can affect the results,
we fixed the size of the system to a 10×10 grid and incrementally increased the size of the
initial belief state by adding at each increment i the five normal states of the component at
the position (i, i), so up to 45 states. Table 6.5 shows the interest of using learned good pairs
during the search for the diagnosability plan, especially in the last lines (belief state spread
on 9 components). Then, the Normal method explodes and we continued adding randomly
normal states from other components to the initial belief state to compare the Eager and
Lazy Learning methods. The first one scales up to the maximum of 500 states (i.e., the
normal states of all the 100 components of the grid, representing complete uncertainty on the
belief state). These results are clear in figure 6.5 that shows all the three tests on this bench
graphically. Another point concerning tests on this bench is that it does not construct long
critical paths in terms of states, so learning bad pairs may be faster in other systems.

Although the motivation of our approach is to avoid possibly intrusive active diagnosabil-
ity test in running systems, this approach is also useful at the design stage. For example, if
after the search of a diagnosability plan, either one is found but with an expensive cost and
thus not favored, or no one exists, the actions should be reconfigured to achieve it. Therefore
in both cases the information about the sets of good and bad pairs can be used to reconfigure
the actions in order to get a plan or improve an existing one. This information can be also
used as initialization for the sets of bad and good pairs to plan diagnosability of the system
in the operation stage.
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6.6 Related Works

Traditional approaches of diagnosability analysis return only the information about whether
the systems are diagnosable or not, and can do nothing for non-diagnosable systems, except
providing a counter-example. Moreover, diagnosability is a quite strong property that is often
not satisfied in real systems, which complicates the diagnosis process. As we mentioned
in the beginning of this chapter the active diagnosability problem is a more strict version
than our diagnosability planning problem and can affect the plan of production of the system,
in addition to the difference with our approach that constructs on the demand parts of the
Twin Plants and recycle learned knowledge to prune the search of the plan and the next Twin
Plants constructions.

On the other hand, planning techniques have been developed over the last several
decades, whose idea is to find a plan satisfying the desired goals (e.g. given properties).
In [Barbeau et al. 1998], a synthesis method was presented that automatically generates
controllers on timed transition graphs, where the specification of control requirements is
expressed by metric temporal logic (MTL) formulas. Precisely, during searching the space of
all possible paths, MTL formulas are verified over these paths to determine points at which
controllable actions should be disabled in order to get a conditional plan. However, the
authors assumed the full observability, i.e., every state variable can be observed at each step.
Considering that planning domains are often partially observable and non-deterministic, new
approaches for planning under partial observability, dealing with uncertainty about the state in
which the actions will be executed, were proposed in [Bertoli et al. 2001, Bertoli et al. 2006].
The search space is no longer the set of states of the domain, but its power-set. The problem
is addressed by using BDDs, which can be used to represent and efficiently manipulate
the power-set of states. However, BDDs are limited to propositional representations. A
close work was presented in [Ciré & Botea 2008], where a goal state represented in LTL
is calculated and verified on the fly. In their proposed planning model, all transitions are
deterministic. However, in our case, the transitions are non-deterministic. Furthermore,
their online learning component has, for each step, to construct a Boolean formula that can
explain the violation of the considered property, which could be quite complex since different
rules have to be applied at the atomic level. While in our case it suffices to check whether
the current explored path is a critical path. The work in [Grastien 2015] addressed the self
healing as a combination between conformant planning and diagnosis steps to repair the
system state without explicitly computing the system belief state. Given the goal states, an
optimal plan is computed for a sample of the belief state that leads to a goal state, then the
plan is refined depending on the result of a special diagnoser that tries to find a behavior of
the system which contradicts the current plan. Once a behavior is found, this can enrich the
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sample to recompute a better plan. The process is repeated until the failure of the diagnoser
in its mission, which means that the computed plan is correct for all the belief state members.
Our work can be seen as a continuation of this work, where the goal states are described by
the diagnosability property.

6.7 Conclusion and Future Work

In this chapter, we formally defined the problem of Diagnosability Planning before demon-
strating that it is PSPACE-COMPLETE. Then an algorithm was provided to search for an
optimal diagnosability plan. This is done by incrementally constructing the Twin Plants for
the belief states produced by the candidate plans, during which the set of learned bad and
good pairs is updated that helps in pruning next Twin Plants construction and in defining an
heuristic function to guide the plan search. Experimental results demonstrate the efficiency
of this approach by exploiting the different learning strategies. Considering more informative
heuristic functions is our current work. Similar approaches are also possible for planning
other properties that use the Twin Plant structure in their verification, like predictability for
example. In a further step, a probabilistic version of this problem will be studied. Another
line of research, which has already been started, is to encode the Diagnosability Planning
problem into SAT and compare the new experimental results with the current ones.





Chapter 7

Conclusion

7.1 Thesis overview

We have presented in the first part of this thesis our study of the diagnosability and predictabil-
ity properties in the centralized and distributed discrete event systems using the SAT solver
technology. One can informally reduce these properties to asking questions of the form:
given a sufficient set of observations, can we tell with certainty that a specific unobservable
event has occurred (so it is diagnosable)? or will occur later (so it is predictable)?

7.1.1 Diagnosability

We showed that when diagnosability property is violated, our SAT-based approach can answer
such question efficiently, i.e., with a NO answer even for systems with very large number
of states. Actually it is equivalent to satisfying the proposed SAT formula and it returns
a possible satisfying assignment, i.e. a counter-example to diagnosability property. This
assignment can be translated into a pair of infinite trajectories in the system, synchronized on
their observations and with only one of them containing the fault. Such information can be
used by the system designer to update the sensors placement and re-test the SAT formula
until it is UNSAT in all the reachable space, proving thus diagnosability. This performance of
the SAT solver is due to the fact that, contrary to the traditional approaches, it avoids building
a Twin Plant structure to answer the question. Thus it exploits its freedom to start assigning
randomly the different variables aiming at satisfying the formula. In fact its choices are not
really random as many heuristics are employed to choose the best branching variable during
the search. The important virtue of the modern SAT solvers is that they learn from their
“bad” choices! Actually they can do more and even learn form some partial assignments
so they are caching their “good” choices as well. Indeed, they are powered with several
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heuristics and data structures that allow them to learn new constraints efficiently. Another
very important factor to this efficiency is the succinct transition system modeling which
allows firing simultaneously non interfering events, an obvious example is between two sets
of local events in two different components, thus the counter-example search is reduced to
searching in each component separately and only synchronizing their shared events.

From another side, answering this diagnosability question with YES is more difficult
using our approach. It is equivalent to returning an UNSAT answer of the SAT formula after
browsing all possibilities of satisfying assignments in all the search space. Especially that we
are not adding currently any heuristic on how to search this space to check the satisfiability of
the formula, i.e., we are using a brute force SAT solving. Actually we can observe a similar
effect even if the answer is NO (SAT) but with a long counter-example. This weakness is
already known about SAT-based approaches, e.g., in model checking. We proposed the usage
of incremental SAT mode to mitigate this problem. Thus it allows exploiting the learned
knowledge about the system behavior in one call during its next calls, so we adopted our
encoding to this mode. Our incremental SAT-based approach improved the CPU time by
more than 25% in the centralized structure in comparison with non-incremental approach
and by more than 10% in the distributed case. These improvements are despite the fact that
we have done the tests on an artificial benchmark, which we created on purpose to have a
simple and sparse behavior of the system, i.e., that there are not much constraints describing
the behavior; so less constraints can be learned and exploited in the incremental mode than
for a denser example. From another side, the communication events in this benchmark are
designed only to increase the overhead of communications, thus the critical pair does not
contain any other transitions from these neighbors than communication ones. This means
also that during the incremental SAT calls there will be a few amount of new information to
learn about the behaviors in the global system. In other words we expect larger gain on a real
benchmark. We present in the future works section two propositions that would improve this
incremental SAT-based approach.

Concerning the communication events, we exploited the flexibility of the propositional
logic formalism to handle a mixed set of observable and unobservable communication events
simultaneously. Our encoding of these events allows one to push the synchronization process
overhead to the SAT solver which facilitates encoding the components separately.

7.1.2 Predictability

Regarding the predictability property, which is a stronger property than diagnosability,
we have encoded its verification as a SAT problem using the same formalism of succinct
transition systems. The main difference with the diagnosability verification is the way to



7.1 Thesis overview 111

synchronize the observations. Thus predictability test requires observations synchronization
only before the fault occurrence and checking the non-finiteness only for the correct trajectory.
In order to test this property we encoded the fault occurrence in an incremental way allowing
us to determine symbolically when a fault occurrence takes place in order to control the
synchronization of observations. Here also we got results similar to the diagnosability tests,
i.e., scalability of the size of non-predictable systems and lower efficiency if the fault is
predictable. In comparison with non-diagnosability tests we can notice that non-predictability
is faster, in terms of needed number of steps, to be proven. This is because any model that
proves non-diagnosability of a fault can be cast to represent a witness of non-predictability,
which is consistent with the fact that predictability is stronger than diagnosability. Another
observation from our results is that the incremental encoding of the fault occurrence improved
dramatically the efficiency for large formulas. Finally, the flexibility of our communication
events encoding allowed us to handle the case of observable communication events by adding
some logical constraints, when the traditional approaches do not deal with this case. Thus,
an observable communication event must be synchronized before the fault qua observable
and communication event while only qua communication event after the fault occurrence.
This would not be so straightforward to handle in the predictor structure and would require
special adaptation for such cases.

7.1.3 Pattern Diagnosability

We generalized our formalism to handle diagnosability of pattern of events. This pattern
may represent a faulty sequence or just important sequences of events which we want to
be able to detect with certainty in a finite number of system’s steps after its occurrence.
This pattern is represented by a complete deterministic finite state machine with a stable
set of final states. Thus we can study the diagnosability of any formal extension-closed
rational language of events. We proposed to encode it as a succinct transition system just like
any other component of the system and to synchronize it with the concerned components.
We introduced the encoding in SAT but we have not yet tested on examples what we also
implemented. The motivation to handle this problem in SAT is similar to above cases where
we seek the scalability and we expect a similar result also. Thus this problem was issued in
the literature because of the cost of building the whole diagnoser structure before testing the
property which contains an important overhead of synchronization. In order to reduce the
size of our encoding, we restricted the synchronization between the concerned component
events and the pattern events by considering only significant events in the pattern for this
synchronization, i.e., those events that change at least one of the pattern states.
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7.1.4 Diagnosability Planning

In a controllable discrete event system where the system is equipped with a set of elementary
actions, we studied the problem of restoring the diagnosability of the system through reducing
it to a planning problem. Thus we introduced formally the diagnosability planning problem
which consists in finding a plan (a sequence of these actions) that, when applied from a given
uncertain belief state of the system, guarantees that the system is surely in a diagnosable state
and can be left to run freely. We introduced this problem motivated by several needs like
ensuring diagnosability from a potential current belief state of the system (after an accidental
intervention or a repair plan), reducing the diagnostic interaction with a running system
(for costs or quality reasons), mitigating the high complexity (EXPTIME) of building an
active diagnoser. Then we analyzed the problem and proved that its decision problem is
PSPACE-COMPLETE. Then we have used a similar spirit that exists in the SAT solvers, i.e.,
building on-the-demand structure and exploiting previous tries, by proposing three methods
which exploit these ideas differently. Actually the first method does not use any of them at
all so it always builds blindly a complete diagnosis structure and does not learn from this
construction, the second one learns from conflicts so just like the SAT solvers, the third one
exploits not only its failed tries but also its partially successful tries to construct the intended
diagnosable belief state, thus it recycles the constructed parts of the Twin Plants from the
different possible states.

Roughly speaking, we have studied the event diagnosability, event predictability, pattern
diagnosability in centralized and distributed discrete event systems and introduced the
diagnosability planning problem using on-the-fly structures and we provided experimental
results about all of them which is not common when studying these properties.

7.2 Future Works

Several extensions to our work presented in this thesis are still under development, some of
them are formally encoded in SAT but not yet implemented and others are implemented but
not yet tested, and many others have not yet been investigated. We will mention them here.

• Testing the implemented encoding of pattern diagnosability on a benchmark.

• Implementing our incremental SAT encoding for the predictability checking.

• Implementing a general benchmark generator. We have designed a general algorithm
to generate benchmarks with several parameters in order to test our encoding and also
make it available for the research community, as it happens that, 20 years after the
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introduction of the diagnosability problem, there is still no general benchmark available
for comparing scientific results experimentally. The parameters that we want to pass to
the algorithm contain: number of states, maximum output degree, observability ratio,
density of transitions, faulty sequences ratio, distance of the first fault from the initial
state, whether the fault is diagnosable or not, cycle length in a critical path in case of
non-diagnosability, ratio of communication events, their observability ratio, number
of components in the system. We have constructed a first draft of the algorithm and
started its implementation but we faced some problems in managing the observable
cycles in diagnosable instances.

• Taking into account the specificity of our problem by adding heuristics that favor
decision firstly on the most informative variables related to our problem should improve
the results. Such variables here are the fault occurrences and the reference variables
that are responsible of the synchronization of observable events and of communication
events.

• Testing other SAT solvers can be also interesting, in particular circuit-based SAT
solvers as they can be more efficient in verifying the synchronization formulas.

• Using more efficiently control hypotheses to guide the SAT-based search. We know
that in both diagnosability and predictability analyses the fault occurrence is essential
to do the verification, thus a cycle detection is not important before the fault, so we
think searching the cycles can be “delayed” until the fault is detected. However, in
our encoding of the incremental SAT approach we adopted only one hypothesis to
control the two constraints. We think that using two control hypotheses would allow
us to deactivate the cycle detection search until the first fault occurrence is found then
start the search for the cycle detection. Maybe we can tell the solver to test at each
step firstly the fault occurrence and continue (without stopping the search) in case of
positive answer else stop. It could be something just like, when all clauses are satisfied,
adding a new set of clauses to be satisfied rather than answering SAT directly.

• Exploring bounded versions of diagnosability and predictability, which we have not
done in this thesis but that can also be dealt with SAT solvers. Those properties
are stronger than the unbounded version discussed here, and they very important in
an industrial context. Thus in diagnosability analysis one would want to know how
many observable events should have to be waited for in order to decide if the fault
has occurred or not. Similarly, in predictability analysis the time interval where the
fault will occur can be interesting to know, thus the interval predictability versions can
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answer this need (a recent work has been done about this but without using SAT in the
verification).

• Solving the diagnosability planning problem with SAT solvers. Actually, planning
problems have been translated to SAT problems since [Kautz & Selman 1992] but only
when they are defined with a set of explicit goal states. Thus producing a partial or full
SAT-based version of diagnosability planning is one of our short term future works
as we have already encoded the recycling of bad pairs in SAT, although this is not
presented in this thesis.

• Searching a diagnosability plan under additional constraints like being of length smaller
than K, introducing probabilities on the fault occurrences, favoring special goal belief
states in this light can be also other interesting work to do.

• Studying planning of other properties is also an interesting future work, in particular
those based on Twin Plant like structures like predictability, as in general planning
problems are proposed regarding to explicit goal states and not regarding to a formal
property.

• Studying such properties planning for Distributed DES.

• Dealing with distributed observations. We look forward to investigate the case of
distributed observations among autonomous components. Although our representation
can be easily extended to deal with local observations (i.e., observable events in one
component are observed only by this component), we know that in general diagnos-
ability checking becomes then undecidable, e.g., when communication events are
unobservable (obviously it remains decidable when communication events are observ-
able in all their owners) [Ye & Dague 2013]. A future work will be to study decidable
cases of diagnosability checking in DDES with local observations, e.g., assuming some
well chosen communication events being observable or at least diagnosable in some
context!

• Studying an optimal sensor placement as a MAXSAT problem is also in our todo list,
this is an important problem that consists in arranging observation in the system so
the system is diagnosable with the minimum number of observations being measured
from it.

• Studying diagnosability as an information problem, using the logical entropy, can give
us ideas on how systems can be diagnosable and maybe give optimal ways to test this
diagnosability and can be also useful to build our random benchmark generator.
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All these above extensions and many others are interesting to be explored. However
being always a human I tend to control my work, discretize it and do these extensions
incrementally, so I will stop here, hoping that humans will always hold the control!
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Appendix A

Synthèse

Les systèmes complexes sont omniprésents dans nos vies, mais sujet à des pannes qu’il est
important de détecter ou de prédire. Leur modélisation comme des systèmes à événements
discrets (SED) est un moyen naturel de les représenter pour les étudier formellement. Ainsi,
un système peut être décrit par un ensemble d’états tels que son état actuel est obtenu
après avoir déclenché une séquence d’événements. Ces événements sont prédéfinis dans un
ensemble fini et peuvent être déclenchés spontanément dans le système. Tous ces événements
ne sont pas observables /mesurables et certains d’entre eux sont considérés comme fautifs,
donc ils modélisent un changement anormal entre deux états du système. Le processus de
diagnostic de SED a pour but de déterminer avec certitude si le système est actuellement
dans un état défectueux ou dans un état normal, c’est-à-dire si un changement anormal d’un
état du système s’est produit ou non. À cette fin, un observateur de système ne dispose
que de la séquence d’événements observables pour décider le diagnostic de l’état actuel
du système. Cependant, cet état peut être ambigu (normal ou défectueux) en fonction des
observations disponibles. En outre, il peut être définitivement ambigu ! La possibilité de
le désambiguïser en utilisant un nombre fini d’observations est appelée la diagnosticabilité
d’une occurrence d’événement fautif. La faute est diagnosticable si toutes ses occurrences
le sont et le système est diagnosticable si toutes ses fautes le sont. De même, la possibilité
de prédire une occurrence future d’une faute en utilisant les événements observables la
précédant est appelée la prédictabilité d’un événement fautif. Les deux problèmes de la
diagnosticabilité et de la prédictabilité d’un événement peuvent être généralisés pour étudier
celles d’un motif d’événements, soit un langage clos par extension représenté par une machine
à états finis. Cette thèse considère dans sa première partie les problèmes de vérification de
la diagnosticabilité et de la prédictabilité d’un événements fautif et de la diagnosticabilité
d’un motif d’événements dans les systèmes à événements discrets centralisés et distribués
(avec des événements de communication synchrone observables ou non), à l’aide de solveurs
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SAT. Ainsi, nous les avons encodés comme des problèmes SAT, avons étudié des variantes
incrémentales et fourni des résultats expérimentaux qui prouvent le passage à l’échelle et
la flexibilité de cette approche. Dans la deuxième partie, nous avons introduit le problème
de la planification de la diagnosticabilité. Ce problème consiste à trouver un plan d’actions
(une séquence d’événements intentionnels prédéfinis à la conception) qui garantit, lorsqu’il
est appliqué à un ensemble donné d’états potentiels du système actuel appelé état courant
de croyances, de conduire le système dans un état de croyances diagnosticable d’où on peut
le laisser s’exécuter librement (sans les actions de contrôle). Ce problème peut survenir
après une intervention externe sur le système, comme par exemple l’application d’un plan de
réparation après la détection d’une faute. Ainsi, cette approche peut garantir la possibilité
de détecter d’autres futures fautes du système. Nous avons analysé ce problème et prouvé
qu’il est PSpace-complet puis nous avons proposé trois méthodes pour engendrer un plan
diagnosticable, que nous avons comparées sur un banc d’essais créé à cette fin. Nous
finissons cette thèse en rappelant de nos contributions principaux suivi par une liste riche
des extensions possibles de nos travaux qui contient l’exploration des versions bornées de la
diagnosticabilité et la prédictabilité, l’adaptation des solveur afin de profiter des spécialités
des ces propriétés ou l’utilisation des solveurs plus adapté au genre des contraintes imposé
par la synchronisation utilisé pour représenter ces propriétés en logique propositionnelle,
le traitement du problème de la planification de la diagnosabilité en utilisant les solveurs
SAT est aussi une extension intéressante, plus l’implémentation d’un banchmark général
contrôlable pour la vérification du problème de la diagnosticabilité, un travail que nous avons
déjà commencé.
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Abstract : Complex systems are omnipresent in our lives, but
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by a set of states such that its current state is obtained after �-
ring a sequence of events. These events are prede�ned in a �nite
set and can be �red spontaneously in the system. Not all these
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if an abnormal change of a system state has occurred or not. To
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the predictability of a faulty event occurrence. Both problems of
diagnosability and predictability can be generalized to study the
diagnosability or the predictability of a pattern of events, i.e., an
extension-closed language represented by a �nite state machine.
This thesis considers in its �rst part the problems of checking
event diagnosability, event predictability and pattern diagnosa-
bility in centralized and distributed (with observable or unobser-
vable synchronous communication events) discrete event systems,
using SAT solvers. Thus we have encoded them as SAT problems,
studied incremental SAT variants and provided experimental re-
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on a set of potential current system states (called a current belief
state), to drive the system in a diagnosable belief state from which
it can be left to run freely (without control actions). This pro-
blem can arise after an external intervention on the system, like
the application of a repair plan after a fault detection.Thus this
approach can ensure the possibility to detect the system further
faults. We analyzed this problem, proved its PSpace-completeness
and proposed three methods to �nd the intended plan that we
compared on a benchmark created for this purpose.
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