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Summary

Databases, and in particular relational databases, are a common paradigm for storing and

querying data. Data is stored in relations which are linked with each other. Users may

interrogate the database by issuing queries via a declarative query language. One of the

challenges for a relational database management system (RDBMS) is to evaluate each query

as quickly possible. However, as it turns out, there are many ways in which a query can be

executed. The RDBMS delegates the choice of the query execution plan to a query opti-

miser. In turn, the query optimiser tasks a cost model with the responsibility of estimating

the cost of each execution plan considered by the optimiser. The cost estimation therefore

has a large influence on the quality of the execution plans, which in turns affects the running

time that the user perceives.

The most important input in the cost model is the selectivity, which is the amount of

data that is expected to flow in and out of each operator in a plan. From a statistical point of

view, this is a case of density estimation, where the goal is to determine the amount of data

that verifies certain conditions. It is common practice to use density estimation models that

make strong simplifying assumptions, in large part for efficiency reasons. For instance, it is

usually assumed that attributes are independent with each other. Alas, in practice, these

assumptions are more often that not unverified, which leads to large estimation errors. The

goal of this PhD is thus to propose models that offer a better compromise between selectivity

estimation accuracy and computational cost. First of all, we propose a methodology based

on Bayesian networks, where we constrain each network to have a tree topology, therefore

allowing a linear computational complexity. Secondly, we train online machine learning

models to correct an existing selectivity estimation model, whilst adapting to concept drift.

Our experimental results, which are based on the TPC-DS and JOB benchmarks, are very

encouraging with respect to both of our lines of work.
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Résumé

Les bases de données relationnelles sont couramment utilisées pour stocker et interroger

des données. Les données y sont stockées dans des relations qui sont liées entre elles. Un

utilisateur interroge ces données via des requêtes exprimées dans un langage déclaratif. Un

des défis pour le Système de Gestion de Bases de Données Relationnelles (SGBDR) est

d’évaluer les requêtes le plus rapidement possible. Pour cette évaluation, il existe un large

choix de plans d’exécution associé à une requête donnée. Le SGBDR délègue le choix du plan

d’exécution le plus efficace à un optimiseur. Dans ce processus, le modèle de coûts, quand à

lui, a la responsabilité d’estimer le temps de calcul de chaque plan d’exécution considéré par

l’optimiseur. Par conséquent, le modèle de coûts influe sur la qualité des plans d’exécution

produit par l’optimiseur, et donc sur le temps de réponse perçu par l’utilisateur.

Le paramètre le plus influant dans le modèle de coûts est la sélectivité, qui permet

d’estimer la quantité de données qui transite entre chaque opérateur d’un plan d’exécution.

D’un point de vue statistique, ceci correspond à de l’estimation de densité, qui consiste

à déterminer la quantité de données qui vérifie un ensemble de conditions. Il est d’usage

courant d’utiliser des modèles avec des hypothèses simplificatrices pour des raisons de perfor-

mances. Par exemple, il est souvent supposés qu’il n’existe pas de dépendances de valeurs

entre différents attributs de relations. Dans la majeure partie des applications cette hy-

pothèse se révèle non vérifiée et conduit à de grandes erreurs d’estimation. Le but de cette

thèse est donc de proposer des modèles plus réalistes qui offrent un meilleur compromis

entre la précision des estimations et la complexité calculatoire requise. Premièrement, nous

proposons une méthode s’appuyant sur les réseaux Bayésiens dont la représentation sous

forme d’arbre nous permet d’améliorer la précision des estimations avec une complexité

linéaire. Par la suite, nous explorons l’usage de modèles d’apprentissage en ligne pour cor-

riger un modèle d’estimation existant tout en s’adaptant à l’évolution des données. Nos
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résultats expérimentaux basés sur les bechmaks JOB et TPC-DS montrent des résultats

très encourageants.
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Chapter 1

Introduction

1.1 Problem statement

In a relational database management system (RDBMS) – which we equivalently refer to as

“database” in this manuscript – data is scattered across relations that are themselves linked

with each other. From a user’s point of view, querying a RDBMS is easy. Indeed, queries to

the latter can be expressed via interrogation languages, such as structured query language

(SQL), or via object-relational mapping (ORM) frameworks. Users express what they want,

whilst the RDBMS is in charge of determining how to retrieve what the users want. In this

sense, SQL is a declarative language rather than a procedural language. This abstraction

allows users and applications to delegate the gritty details to the RDBMS. However, as is

often the case in computer science, abstractions come at a cost. In this case, by only telling

the RDBMS what she wants, a user is expecting the RDBMS to figure out the details of

how to perform the query. In fact, relational databases usually have a dedicated module to

deal with this: the query optimiser.

The query optimiser is in charge of translating a logical execution plan into an optimised

physical execution plan. Typically, the logical execution plan is produced by a query parser,

which is an earlier step of the query execution pipeline. The query optimiser’s output is

commonly referred to as a query execution plan (QEP). A QEP is usually represented as

an inverted tree. The leaves of the tree represent the relations that are part of the query,

whilst the root is the final output. Each node of the tree represents an algebraic operator,

such as a filter or a join. For any given user query, there exists many possible QEPs. Once

executed, each of these QEPs will produce the same result. This stems from the relational
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model and the mathematical properties of the operators used in a QEP. For instance, join

operators are commutative. That is, joining a relation 𝐴 with a relation 𝐵 will produce the

same result as joining 𝐵 with 𝐴. Likewise, filtering a relation is transitive with respect to

the join operator. In other words, the same result will be obtained by filtering a relation

before a join or filtering the output of the join.

Although there are many QEPs that may answer a user query, not all of them have the

same cost. In fact, they can vary wildly. The goal of the query optimiser is thus to pick the

QEP with the least expected cost. However, the only way to know for certain the cost of a

QEP is to execute it and measure it’s running time. Alas, doing so over a set of candidates

execution plans defeats the purpose of selecting one in the first place. Therefore, the query

optimiser has to estimate the cost of a QEP without executing it. This is a difficult task in

itself, and is the responsibility of the cost model. The cost model estimates the running time

of a QEP through an equation which attempts to model the steps taken by said QEP. This

equation may vary from one RDBMS implementation to another, but in general it always

captures the same idea. It is essentially a sum of the costs of each of it’s operator. The cost

of an operator is in turn a function of the number of tuples that it needs to process. In the

case of a distributed RDBMS, the equation also incorporates some from of communication

cost. When multiple processors are available, the cost of moving objects back and forth

has to be considered as well. There are also some parameters that depend on the specific

hardware that the RDBMS is being run on – for instance, the CPU speed. Finally, the

query optimiser has to consider system specifications, such as memory page sizes and the

amount of available rapid access memory.

The cost of each operator in a QEP is directly tied to the number of tuples that will

transit through it. For example, the cost of a WHERE statement on a relation scales linearly

with the length of said relation – which is also referred to as it’s cardinality. It is thus

crucial to accurately estimate the amount of tuples that will flow through a particular

operator in a given QEP. In fact, these amounts are mostly sufficient in order to perform a

successful query optimisation. However, the issue is again that we do not have the luxury

to execute parts of the QEP in order to determine these quantities. Instead, we can use

the statistical properties of the attribute values to estimate these quantities. For instance,

consider a join between a cars relation and a passages relation. The cost of the join

between both relations is a function of the cardinality of both relations – the details of said
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function depend on the join algorithm that is being used, here we are instead interested in

the general idea. The cardinality of each relation can assumed to be known as it is simply

the number of tuples that each relation contains. However, consider the case where we

only want to consider electric cars. Without explicitly filtering and counting the number of

electric cars, it is extremely difficult to determine the cost of the join. A potential solution

is to store statistics which summarise a relation’s attributes. For instance, the percentage

of electric cars can be precomputed and stored aside prior to the query optimisation phase.

This leads to a flurry of questions, such as how to update statistics when new data is

inserted, or how to deal with multiple statements. In general, the fraction of tuples that

flow through part of a QEP is called the selectivity. The selectivity can be seen as the

percentage of input tuples that satisfy a query statement, the latter being implemented

with a physical operator.

There is little doubt that selectivity is by far the most important input to the cost model

[Gu et al., 2012, Lohman, 2014, Leis et al., 2018]. Selectivity estimation, which is the task of

estimating the selectivity of a sequence of operators, is thus the most important task a cost

model has to perform. It is also a difficult task. It is in fact an entire research topic by itself,

even though it is a sub-task of query optimisation, which is itself a sub-field of database

research. Fundamentally, the goal of selectivity estimation is to determine the amount

of tuples that satisfy a query statement. In other words, it boils down to determining

the amount of tuples that flow out from each operator in the QEP. From a statistician’s

perspective, this is nothing more than a case of density estimation. In this regard, the goal

is to estimate the underlying probability density function of the database’s attribute values.

This is a well-known statistical problem, which may be attested by the many honed solutions

that are available. However, there are a few specific points that make selectivity estimation

a more difficult beast to tame. First of all, density estimation algorithms are traditionally

tailored to work with a single entity, for which the equivalent in our case is a relation.

More often than not, we are mostly interested in estimating selectivities over multiple

relations, a problem towards which much less work has been poured into. Additionally, a

relation’s attributes can be both discrete and continuous, which goes against the settings

of many density estimation algorithms. Meanwhile, attributes are regularly updated with

new values, as a result of new information flowing towards the database. Therefore, it is

important to develop methods that are able to efficiently detect changes and adapt when
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new data is inserted into the database. Finally, and probably most importantly, selectivity

estimation is a critical task that needs to be performed as quickly as possible. Indeed,

the total query time, as perceived by the user, is the sum of the query optimisation and

the query execution time. Therefore, finding a good QEP is useless if it takes longer than

running a less efficient QEP that takes less time to find. The selectivity estimation module,

which is part of cost model, is called many times for each candidate QEP considered by the

query optimiser, and consequently has to be extremely efficient.

Selectivity estimation has traditionally been performed with simplistic methods. The

reason why is because keeping track of the distribution of each attribute’s values can quickly

become an unwieldy task. Indeed, the naive way to go about selectivity estimation is to

store the frequency of the values of each attribute, as well as for each combination of

said values. For a single relation, with 10 attributes each with an average cardinality of

50, this would require storing 119,042,423,827,613,000 values, which is typically more than

the total number of values in the relation. Therefore, simplifying assumptions have been

proposed to offer alternative methods. For instance, the System R database used in the

seminal Selinger paper [Selinger et al., 1979] assumed a default selectivity of 10% for each

attribute condition. In other words it assumed that every WHERE statement reduces the

relation’s cardinality by 90%, regardless of the particular attribute and value that are used.

This is based on the assumption that all the values of an attribute occur at the same

frequency, which is obviously wrong. Thankfully, this assumption is easy to relax. Indeed,

the distribution of a numerical attribute can be approximated with a histogram. In case

of a categorical attribute, a common solution is to store the exact frequencies of the most

common values, and assume that the rest of the values appear at the same frequency. A lot

of methods have since been proposed to improve the accuracy of estimating selectivities for

predicates that involve a single attribute. However, the crux of the selectivity estimation

problem lies in estimating selectivities where multiple attributes are involved, often across

relations.

Estimating selectivities when multiple attributes are involved is difficult because there

are many possible combinations of attributes. This is a prime example of the well-known

curse of dimensionality [Bellman, 2015]. Nonetheless, many approaches have been pro-

posed. A first approach has been to extend histograms to multiple dimensions. One of the

earliest methods of such a kind was proposed in [Poosala and Ioannidis, 1997]. Another
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seminal proposal was made in [Bruno et al., 2001]. The issue at this point, however, is to

determine on which attributes to build the histogram. Indeed, relations usually possess hun-

dreds of attributes, and therefore building a histogram for every combination of attributes

is unfeasible. The problem becomes increasingly difficult considering the fact that the most

crucial attribute dependencies that need to be captured are those that span multiple rela-

tions. Indeed, such a paradigm has not received a lot from statistical communities, who

mostly work in the context of single entities. Therefore, many methods have been proposed

to capture dependencies between attributes, within and between relations, at as little a cost

as possible by making compromises and simplifying assumptions. For instance, methods

have been proposed to identify small groups of dependent attributes and build histograms

on said groups [Deshpande et al., 2001, Ilyas et al., 2004]. A related method is to use the

dependencies to build a graphical model which encodes attribute dependencies in a network

structure. These are called probabilistic relational models, which are extension of the well-

known probabilistic graphical models. The most prominent methods in this category are

Bayesian networks, which have been proposed in [Getoor et al., 2001] as well as [Tzoumas

et al., 2011]. The two latter proposals are important because they paved the way towards

using Bayesian networks for the purpose of selectivity estimation. However, the methods

they proposed were not particularly efficient, as they are yet to see widespread adoption in

practice.

1.2 Contributions and outline

The contributions of this work can be separated into two parts. The first is concerned with

using Bayesian networks for the purpose of selectivity estimation. We begin by reviewing

fundamental concepts and discuss that are to be made. We then present our methodology,

which aims at capturing attributes dependencies within separate relations. Importantly,

we carefully design our method so that it remains efficient. In particular, we restrict our

networks to have a tree structure, therefore allowing to compute selectivity estimates in lin-

ear time. This is a much a simpler paradigm than what can be found in existing Bayesian

network proposals [Getoor et al., 2001, Tzoumas et al., 2011]. We justify this step back

because it offers a different compromise between selectivity estimation accuracy and effi-

ciency. Indeed, even though we know our method is less accurate from the get-go, it is also
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ensured to be much faster. We believe that it is important to offer such a compromise,

as clearly efficiency is of primordial importance in database cost models. Secondly, we ex-

tend our methodology to capture dependencies across multiple relations. To this end, we

introduce the dependency preservation assumption, which states that attributes preserve

their dependencies across joins. This allows us to reuse the dependencies found within each

relation when estimating selectivities for queries that contain joins involving said relations.

By exploiting the tree topology of our Bayesian networks, we are able to estimate the distri-

bution of attributes across joins by only having to compute the new distribution of the root

attribute. We validate our methodology by benchmarking it against the method described

in [Tzoumas et al., 2011], as well as other recent proposals, including methods based on deep

learning. Our benchmarks validate the fact that our method is well-behaved and is a robust

selectivity estimation. Although it is not as accurate as more sophisticated, it is immensely

more efficient, and is guaranteed to perform better than the simplistic yet efficient methods

used in current query optimisers.

In the second part, we look downstream and attempt to learn to correct an existing

selectivity estimation model. Instead of building a model from scratch, we learn to predict

the mistakes the cost model will make for a given query execution plan. In other words,

we frame selectivity estimation as a supervised learning problem, whereby the goal is to

improve the accuracy of a base model that is known to be weak, thereby using the latter

as a bootstrap. Although this has already been proposed in the past, we propose an online

methodology. Therefore, instead of training a model on a historical dataset in a batch

manner, we train our model in an incremental fashion. This is well suited to selectivity

estimation because new queries are constantly flowing in, which offers the chance to con-

tinuously update our model. Our method is therefore able to compete with batch methods,

including deep learning models, and in fact outperforms them when the querying patterns

drift through time. From a larger perspective, we believe that training models this way is

particularly well suited to computer systems tasks in general. Indeed, in many computer

systems, information is endlessly flowing in, thereby justifying the use of models that can

keep learning without having to start from scratch. This has been observed by others, and

has been named as a field machine learning for systems.

The first chapter of this manuscript enumerates existing related work. We discuss the

different approaches and the methods that pertain to each method. We also attempt to
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sketch the difficulties that selectivity estimation involves, and explain why various methods

are not usable in practice. The second chapter encompasses our work on Bayesian networks.

The first part describes how to use Bayesian networks to capture dependencies within a

relation. We describe a methodology for building Bayesian networks in an efficient manner,

and also show how this leads to an efficient inference procedure. The second part extends

the work of the first part. We discuss a newly introduced simplifying assumptions, which

allows us to reuse existing knowledge within each relation and apply across joins. We provide

some benchmarks that exemplify the trade-offs that our method involves. The third chapter

concerns our work on online supervised learning. We discuss in further depth some related

work, and justify the merits of online learning. We then describe an implementation of our

proposal and shows how it fairs against other methods. Finally, we conclude by taking a

step back and reviewing our work, before hinting at some further directions.
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Chapter 2

Related work

2.1 Concepts

2.1.1 Preliminaries

Before delving into existing methods, it is important to understand where we stand cur-

rently. From a statistician’s perspective, selectivity estimation is nothing more than a

density estimation problem. Therefore, a lot of the work in that field can be applied. How-

ever, this completely ignores the point that query optimisation is a critical application, and

therefore any method that is employed has to be blazing fast. In fact, as of writing this

manuscript, selectivity estimation is still considered to be an unsolved problem [Barbar’a

et al., 1997, Hellerstein and Stonebraker, 2005, Wu et al., 2013, Lohman, 2014]. First of all,

it is a difficult task that requires making very hard compromises between accuracy, speed,

and memory consumption. Many methods have been proposed, but very few of them have

made the cut. Instead, the simple methods that were proposed decades ago [Selinger et al.,

1979, Chaudhuri, 1998] are still being used. Secondly, query optimisers are still extremely

fast overall, even though they use simplistic cost models. Indeed, querying times are long-

tailed, and on average are considered fast enough to justify using said simplistic models.

To justify their choices, existing cost models all make simplifying assumptions which we

discuss in the next subsection. This is true for established battle-tested query optimisers

such as that of PostgreSQL [Stonebraker and Rowe, 1986], as well as new ones such Apache

Calcite [Armbrust et al., 2015, Begoli et al., 2018] and Presto [Traverso, 2013, Sethi et al.,

2019]. A lot of query optimisers also make use of “tricks”, which are complementary to
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other methods. Some of these are documented in the literature, but many or not. For

instance, the exponential backoff trick, which is used by some commercial query optimisers,

is only briefly mentioned in research papers such as [Müller et al., 2018], and is discussed on

various database forums 1. We mention this to highlight the fact that there is a gap between

research and is what actually used in database systems. Most of the methods discussed in

this chapter have in fact never seen the light of day.

2.1.2 Simplifying assumptions

Selectivity estimation is fundamentally a density estimation task. The attributes of each

relation can be seen as statistical variables with an unknown underlying probability dis-

tribution which we want to estimate. Formally, given a query 𝒬(ℛ,𝒥 ,𝒜) over a set of

relations ℛ, a set of join predicates 𝒥 and a set of attribute predicates 𝒜, the cardinality

of the query 𝒬 is determined as follows:

|𝒬(ℛ,𝒥 ,𝒜)| = 𝑃 (𝒥 ,𝒜)×
∏︁

𝑅∈ℛ
|𝑅| (2.1)

where 𝑃 (𝒥 ,𝒜) is the selectivity of the query and
∏︀

𝑅∈ℛ |𝑅| is the number of tuples

in the Cartesian product of the involved relations. The problem is that 𝑃 (𝒥 ,𝒜) is not

available. Moreover estimating it quickly leads to a combinatorial explosion. The difficulty

is that there are many attributes which are scattered across relations. Therefore, simplifying

assumptions have to be made in order to make the computations tractable. Essentially, the

goal is to break down the previous formula into simpler parts that are easier to compute.

It is important to discuss these assumptions, as the goal of selectivity estimation research

is to relax them at as little a cost as possible.

Join uniformity

The join uniformity assumption states that attributes preserve their distributions after

joins. This allows the following simplification:

𝑃 (𝒥 ,𝒜) ≃ 𝑃 (𝒥 )× 𝑃 (𝒜) (2.2)
1https://sqlperformance.com/2014/01/sql-plan/cardinality-estimation-for-multiple-predicates
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𝑃 (𝐽) is the number of tuples resulting from a join, divided by the size of the Cartesian

product of the concerned relations. 𝑃 (𝐴) is then the percentage of remaining tuples that

satisfy the query statement. In other words, making this assumption means that the overall

statistical distribution can be estimated locally within each relation. Indeed, if we have

an estimate of the distribution of a particular attribute, then with this assumption we can

use the same distribution when the relation to which said attribute belongs is joined with

another relation. As we will discuss throughout this manuscript, this is an extremely high

source of error. Indeed, the distribution of attribute value tend to change by a significant

amount whenever relations are joined with each other.

Attribute value independence

Another assumption that is commonly made is that attributes are independent within and

between each relation. This is the so-called attribute value independence (AVI) assumption.

It allows to simplify the computation as follows:

𝑃 (𝒜) ≃
∏︁

𝐴𝑅∈𝒜
𝑃 (𝐴𝑅) ≃

∏︁
𝐴𝑅∈𝒜

∏︁
𝑎𝑖∈𝐴𝑅

𝑃 (𝑎𝑖) (2.3)

where 𝑃 (𝐴𝑅) refers to the selectivity concerning relation 𝑅 whilst 𝑃 (𝑎𝑖) stands for the

selectivity of a predicate on attribute 𝑎𝑖. In practice the AVI assumption is very error-prone

because attributes often exhibit correlations. However it is extremely practical because each

distribution 𝑃 (𝑎𝑖) can be condensed into a one-dimensional distribution ̃︀𝑃 (𝑎𝑖). The AVI

assumption is very strong, and cases that violate it are regularly encountered in practice.

First of all, many attributes within a relation have strong dependencies. For instances, a

relation of customers might contain attributes that describe nationalities, living locations,

incomes, names that are all highly susceptible to exhibit correlations. Therefore, by making

the AVI assumption, the selectivity of queries that involve two or more of these attributes

would systematically be underestimated. This even more so a problem for normalised

databases where the attributes are scattered across relations. Indeed, in this case the AVI

assumption compounds with the join uniformity assumption, which leads to huge estimation

errors.
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Join predicate independence assumption

Next, the join predicate independence assumption implies that join selectivities can be

computed independently, which leads to the following approximation:

𝑃 (𝒥 ) ≃
∏︁

𝐽𝑖∈𝒥
𝑃 (𝐽𝑖) (2.4)

Assume we are given two relations 𝑅 and 𝑆. We want to join both relations on their

respective attributes 𝑅.𝐾 and 𝑆.𝐹 . In this case the selectivity of the join (denoted 𝐽) can

be computed exactly [Selinger et al., 1979]:

𝑃 (𝐽) = 𝑚𝑖𝑛( 1
|𝐽.𝑅.𝐾|

,
1

|𝐽.𝑆.𝐹 |
) (2.5)

This assumption doesn’t usually hold if multiple foreign keys are included in a join

[Ioannidis and Christodoulakis, 1991].

Most relational databases – even modern ones [Traverso, 2013, Armbrust et al., 2015]

– make all the previous assumptions in conjunction. This leads to the following estimation

formula:

𝑃 (𝒥 ,𝒜) ≃
∏︁

𝐽𝑖∈𝒥
𝑚𝑖𝑛( 1

|𝐽𝑖.𝑅.𝐾|
,

1
|𝐽𝑖.𝑆.𝐹 |

)×
∏︁

𝐴𝑅∈𝒜

∏︁
𝑎𝑖∈𝒜ℛ

̃︀𝑃 (𝑎𝑖) (2.6)

In practice this approximation is much too coarse and is frequently wrong by several

orders of magnitude. However, it only requires storage space that grows linearly with the

number of attributes and doesn’t involve any prohibitive computation. In other words,

accurate selectivity estimation is traded in exchange for a low computational complexity.

The natural question is if a better trade-off is possible. That is, one that relaxes any of

the previous assumptions. In this regard, the existing work we will now discuss can be

grouped into three categories. First of all, there are methods that attempt to provide a bet-

ter estimate of the distribution of a single attribute’s values, which are called attribute-level

synopsis. Histograms are a prime example. Secondly, relation-level synopsis aim at cap-

turing the distribution of attribute values within a relation. Finally, schema-level synopsis

are designed to approximate the entire distribution across all the relations. However, there

are different ways to skin a cat, and in the rest of this chapter we categorise each method
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according to the approach to which it belongs. In fact, we go through each method from

the perspective of a statistician rather than that of a database researcher.

2.2 Sampling

Sampling is a natural way to perform selectivity estimation, especially from the point of view

of a statistician. The underlying principle is straightforward: execute a logical predicate on

a sample of the database and extrapolate. The main advantage is that the underlying data

does not have to be summarised because the sample exhibits the same properties as the

whole data [Piatetsky-Shapiro and Connell, 1984] – provided the sample is representative

and large enough. Given a relation 𝑅 of size 𝑁 and a sample 𝑟 of size 𝑛, the cardinality of

the output of a predicate 𝑃 (𝑅) can be estimated as 𝑃 (𝑅) = 𝑁
𝑛 × 𝑃 (𝑟) + 𝛿. 𝛿 is the error

that is related to ratio 𝑁
𝑛 . Indeed as 𝑛 grows larger we expect the sample 𝑟 to become more

representative of 𝑅.

2.2.1 Online vs. offline sampling

From a practical point of view, there a few challenging points that need to be addressed in

order to make sampling feasible. First of all, sampling the database every time a selectivity

estimate has to be produced is extremely wasteful and too burdensome. Sampling can be

done with both online and offline. The obvious advantage of offline sampling is that it

doesn’t require sampling in real-time, which is extremely helpful in a distributed setting.

However offline sampling implies storing a sample of the database. Moreover online sampling

can be tailored to each query, whereas an offline sample has to be constructed in such a way

that it will be efficient for unknown queries. For offline sampling to work well, it is thus

necessary to have an efficient sampling method. Therefore, a sample of the database has to

be constructed offline and used at runtime. This brings it’s own set of challenges. Indeed,

the question is now how much data needs to be sampled in order to answer future selectivity

estimates within a desired error interval. The offline sample also has to be refreshed every

so often to account for distribution changes and modifications in the database schema [El-

Helw et al., 2007]. Finally, the biggest challenging concerns joins. Indeed, if one samples

relations independently, then the join of these samples has a high probability of being. This

is often coined the empty join problem and is presented in detail in [Chaudhuri et al., 1999].
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Therefore, specialised sampling methods have been designed for relational data. A thorough

review of sampling over joins and joining over samples is given in [Huang et al., 2019].

2.2.2 Sampling sizes

Sampling methods can be either be fixed-stepped or fixed-precision. In a fixed-step proce-

dure, the sampling size is determined in advance. Whereas in a fixed-precision procedure,

the desired precision of the sampling procedure is fixed in advance and the size of the sam-

pling is adjusted to meet the desired precision. [Lipton and Naughton, 1990] were the first

to propose a systematic approach of sampling for estimating selectivities for both single and

multiple relations. They derived loose bounds for the number of required samples in order

to reach a given accuracy. An interesting analysis is also given in [Riondato et al., 2011].

It is based on the Vapnik-Chervonenkis dimension and provides theoretical guarantees to

correctly estimate the selectivity of a given workload of queries. However, in both cases

the required number of samples are quite pessimistic because they are based on random

Bernoulli sampling, which samples relations independently.

2.2.3 Sampling relations independently

The simplest method is to sample each relation 𝑅𝑖 with a probability 𝑝𝑖. Each resulting

sample 𝑟𝑖 will then be of size |𝑅𝑖|×𝑝𝑖. To estimate the size of the output of a filter condition

on 𝑅𝑖 one may apply the filter to the sample 𝑟𝑖 and multiple the cardinality of the output

by 1
𝑝 . As for join predicates, the cardinality of the output of 𝐽(𝑅1, 𝑅2) can be estimated

as 𝐽(𝑟1,𝑟2)
𝑝1𝑝2

. These estimates can be proven to be without bias and to have a variance with

depends on each 𝑝𝑖. The key issue with sampling relations independently is that it ignores

the join relationships between relations. In other words, the Cartesian product of uniform

samples of a number of tables is different from a uniform sample of the Cartesian product of

those tables [Chaudhuri et al., 1999]. A potential solution is to use cross-sampling [Olken,

1993], whereby relations are joined before being sampled. This is also discussed in detail

in [Haas et al., 1996] and has been applied to the AQUA system [Acharya et al., 1999].

[Ganguly et al., 1996] introduced bifocal sampling, which is a method for sampling two

relations that is resistant to skew in the key attributes of both relations.
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2.2.4 Sampling across relations

The issue with methods that join relations before sampling, such as cross-sampling, is

that joins are very expensive. An altogether different approach is to apply hash functions

to the foreign keys and primary keys that pertain to the joins. Indeed, by constructing

deterministic hash functions, it is possible to sample relations independently whilst avoiding

the empty-join problem. [Estan and Naughton, 2006] were the first to take this approach in

the context of selectivity estimation; they named their proposal end-biased sampling. They

use a hash function which is biased towards records who’s primary key appears frequently

in the foreign key attribute of a related attribute, thus reducing the impact of the empty

join problem. [Vengerov et al., 2015] pushed into this direction and introduced correlated

sampling, which improves end-biased sampling by eliminating the need for knowing the

frequencies of values in key attributes. Their method uses a random hash function ℎ(𝑎)→

[0, 1]. Say 𝑅1 has an attribute 𝐴1 which is a foreign key to an attribute 𝐴2 of a relation

𝑅2. By applying the same hash function ℎ(𝑎) to both attributes, one may obtain samples

which preserve join relationships by keeping all the tuples where ℎ(𝑎) < 𝑝. This way

each both tuples that satisfy ℎ(𝑎) < 𝑝 will be included in the sample. The unbiased

estimator for the size of the result of the join is 𝐽(𝑅1, 𝑅2) is 𝐽(𝑟1,𝑟2)
𝑝 . [Leis et al., 2017]

proposed a complementary method for speeding up the scan of the key attributes by using

existing indexes when available, but their proposal is limited to in-memory databases, which

is a niche topic. [Chen and Yi, 2017] introduced two-level sampling, which improves on

correlated sampling by identifying the frequent items – called heavy-hitters – via a initial

offline pass through the relations. These ideas are somewhat revisited and discussed in

[Zhao et al., 2018]. Correlated sampling has also been implemented within the map-reduce

paradigm in [Wilson et al., 2019].

2.3 Supervised learning

2.3.1 Motivation

Another way to frame selectivity estimation is to formulate it as a supervised learning

problem. Hereby, the goal is to predict the selectivity of a query given properties that

can be derived from it’s raw representation. More precisely, the goal of supervised is to

learn a function which maps from a set of inputs – called features – to some output(s) –
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called target(s). This function can be linear as well as non-linear, and can be defined for

either continuous or discrete inputs, or both. In any case, the function typically contains

parameters that need to be tuned in order to function adequately. The goal is to learn these

parameters by scanning through a training set of examples, whilst keeping in mind that the

true goal is to generalise to future examples that are yet unseen. Therefore, the goal is not

to overfit by finding parameters that perfectly map the inputs and outputs in the training

set but break down for unseen data. This can be controlled by so-called regularisation,

which boils down to limiting the capacity of the function to learn patterns that are too

specific and cannot be generalised.

The supervised learning framework is immensely popular in other fields. It has received

a considerable amount of attention from the query optimisation community in recent times.

In particular, this attention is in large part to the due to the recent trend of revisiting

old problems by applying deep learning – or simply neural networks. [Wang et al., 2016]

gives a wide-ranging overview of the opportunities and challenges of applying deep learning

to databases. Meanwhile, some criticism of this trend has been formulated in [Hilprecht

et al., 2020]. An empirical analysis of deep learning for cardinality estimation is given in

[Ortiz et al., 2019]. One of the main downsides of deep learning, and supervised learning in

general, is that it requires a costly training phase.

2.3.2 Early days

Before going forward, it is interesting to mention LEO [Stillger et al., 2001], which is query

optimiser used by the DB2 database system. The novelty of LEO was to remember the

selectivities of query execution plans in order not to have to estimate their selectivities if

ever they showed up again. This can be seen as the most basic form of learning: memoris-

ing. Indeed, in theory it is possible to never make any mistake twice by simply storing the

selectivity of every observed query plan. However, such an approach does not allow to gen-

eralise to unseen queries, and therefore isn’t in fact learning. One of the earliest attempts to

perform actual supervised learning for the purpose of selectivity estimation can be retraced

back to [Chen and Roussopoulos, 1994]. They proposed a method based on recursive least

squares for learning the distribution of a single attribute on a continuous domain. In par-

ticular, they are able to refine their estimate of the distribution every time a new record is

inserted into a relation. However, this method is quite limited because histograms already
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do a very good job at approximating the distribution of single attributes, therefore it never

picked up in practice. A similar approach for tuning a one-dimensional histogram was also

proposed in [Aboulnaga and Chaudhuri, 1999]. Meanwhile, an early attempt at applying

off-the-shelf supervised learning can be found in [Malik et al., 2007]. In their so-called

“black-box approach”, the authors present a methodology for grouping queries by syntax

similarity into buckets. Then, they project the queries into a Cartesian coordinate system

by extracting features derived from the queries. They fitted a linear model in order to map

the features to the query selectivities. Although novel, their methodology was most des-

tined to helping in scheduling workloads, and was not designed to be part of database’s cost

model. [Akdere et al., 2012] explored a similar method, but provided a more in-depth dis-

cussion of practical details, such as offline training and materialisation. Indeed, their work

was one of the first to provide a concrete implementation in a query optimiser and expose

the ensuing challenges that this incurs, even though they used a simple linear model. More

recently, [Ivanov and Bartunov, 2017] proposed a similar methodology, but benchmarked a

wider range of common supervised learning algorithms, such as random forests and gradient

boosted decision trees. They also used simple features such as how many joins are present,

and how many WHERE clauses there are. They also used boolean value indicating whether

or not a particular attribute, relation, condition is present in a given QEP. This is often

called a one-hot encoding scheme and is at the core of many of the deep learning methods

which we will discuss further on. Indeed, many of the ideas proposed in recent papers based

on deep learning have already been discussed in the above papers. They are simply being

rediscovered and better understood. Even the idea of using neural networks for selectivity

estimation was first introduced in [Boulos et al., 2014] as well as in [Liu et al., 2015], slightly

before they were mainstream.

2.3.3 The rise of deep learning

One of the most prominent papers that advocates the use of deep learning for selectivity

estimation can be found in [Kipf et al., 2018], as well as in a subsequent work [Kipf et al.,

2019b]. They proposed a neural network architecture, which they dubbed MSCN for multi-

set convolutional network. Their work is in turn inspire from deep sets [Zaheer et al., 2017],

which is a deep learning framework for handling item sets. For the purpose of selectivity

estimation, MSCN featurises a plan with a one-hot encoding scheme. They then group the

33



different boolean values into sets. Therefore one group pertains to the relations, another to

the joins, another to the attributes, etc. A fully-connected neural network is then stacked

on top of each set. These sub-networks are then concatenated and a final layer is appended

to the overall network. The neural network is then trained by looking at pairs of plans

and associated selectivities. The weights of the neural network are obtained via stochastic

gradient descent. From the point of deep learning, the neural network architecture from

[Kipf et al., 2018] is very standard. The innovation comes from their attention to detail

and the detailed description of every step that is taken. Moreover, they describe a way to

generate random queries from a database schema, which can be used to warm-up the model

before actual queries are seen. Their model is therefore trained on a set of queries which is

workload-agnostic, which is not necessarily optimal. Like many selectivity estimation meth-

ods, the original MSCN implementation is limited to simple SELECT-FROM-WHERE queries

that do not involve complex clauses. However, the same authors also proposed an extension

to support GROUP BY statements, which can be found in [Kipf et al., 2019a]. A plethora of

other deep learning based methods have been proposed, some of them being very similar to

MSCN, such as [Marcus and Papaemmanouil, 2019], whilst others are complementary. For

example [Dutt et al., 2019] proposed a technique for handling RANGE queries, while [Hayek

and Shmueli, 2019] explored the use of neural networks for predicting the selectivity of

containment queries. There also have been methods that attempt to estimate selectivities

for similarity queries, such as with LIKE statements [Wang et al., 2020]. Recently, [Hayek

and Shmueli, 2020] have provided a method for extending MSCN to union queries that

contain OR statements. Many of these proposals are not necessarily novel, and are rather

applications of existing work on boolean algebra to neural networks. Meanwhile, neural

networks have also been used in different manners. For instance, in [Wu et al., 2018], a

neural network is used to adjust the selectivities estimated by a classical cost model with

similar results to MSCN. In [Sun and Li, 2019], the whole cost model is modeled with a

deep learning model, not just the selectivity estimation module. Meanwhile, the authors

of [Woltmann et al., 2019] have proposed an alternative method which consists in building

smaller neural networks that cover specific parts of the schema. According to them, these

networks are better able to capture local dependencies and patterns than a single large net-

work. In their experimental results, they are able to improve their accuracy by two orders

of magnitude compared to global approaches.
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2.3.4 Learning a query optimiser from scratch

It is also worth mentioning that some proposals have been made to design neural networks

that can replace a whole query optimiser, not just the selectivity estimation module. For

instance, the authors of [Marcus and Papaemmanouil, 2018] describe a hypothetical “hand-

free query optimiser" which can learn and perfect all the steps required to optimise a query.

They argue that deep learning, and in particular deep reinforcement learning [François-

Lavet et al., 2018] can be used to perform such a feat. Essentially, they make the case that

relational query optimisation boils down to constructing a query plan by making choices.

These choices are based on the current state of the plan, a context which pertains to the

query at hand, and past experience. In such a scenario, a reinforcement learning algorithm

is able to leverage this information in order to make informed decisions and pick the correct

relational operators at each stage of the plan. This proposal is in part inspired by a technical

report [Tzoumas et al., 2008] that covers the links between adaptive query processing and

reinforcement learning. The authors of [Marcus and Papaemmanouil, 2018] then applied

their ideas and introduced “Neo” [Marcus et al., 2019]. The query optimiser is able to learn

from the mistakes of an existing optimiser, such as the one from PostgreSQL, with promising

results. Similar methods, also based on deep reinforcement learning, have been proposed

and can be found in [Ortiz et al., 2018] and [Krishnan et al., 2018]. We mention these

contributions because, even though they are not pure supervised learning methods, they are

based on the assumption that the network is somewhat able to predict the selectivity/cost

of a query execution plan. However, historically this has not been the prevalent approach

to selectivity estimation. Instead, most methods attempt to understand the distribution

of the database’s values, without explicitly learning a mapping between the queries and

the selectivities. In other words, many methods instead fall under the umbrella of density

estimation, which is a form of unsupervised learning.

2.4 Unsupervised learning

One of the downsides of supervised learning is that the training data has to resemble

the data that will be seen in the future. This is fundamental assumption that drives the

workings of many supervised learning algorithms, but alas isn’t always verified in practice.

A consequent issue is that a sufficient amount of pairs of queries and selectivities has to be
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gathered in order for the learning algorithm to get a clear picture. Things become difficult

when the data distribution and the query typology are constantly evolving. Indeed, in this

case a learning algorithm will constantly be playing a cat and mouse game by catching up

with the current state of things.

An alternative approach is to perform unsupervised learning. In this paradigm, there

is no learning task per se. Instead, the goal is to learn to understand the underlying data

generating process. In particular, the sub-field of unsupervised learning which is especially

applicable to selectivity estimation is density estimation. The goal of density estimation is

to build a function which determines the amount of data that satisfies a predicate. These

frequencies can then act as direct proxy for selectivities. This is a natural consequence of

the fact that selectivity estimation is essentially a density estimation task, albeit with some

twists. In this regard, it has a lot of resemblance with the supervised learning approach

to selectivity estimation. This is because methods that pertain to the latter approach are

essentially trying to do density estimation. The difference is that, with supervised learning,

the goal is to explicitly learn to estimate selectivities. With unsupervised learning, this is

more of an afterthought, and accurate selectivity estimation is a consequence of being able

to correctly summarise the data via a density function.

It is interesting to dwell on the differences between supervised and unsupervised learning

approaches. On the one hand, with supervised learning, the goal is to learn to predict the

selectivities of queries. The issue is that we don’t know in advance what kind of queries are

going to be formulated. Therefore, we need to gather a dataset as large as possible to cover

all possible cases. On the other hand, with unsupervised learning, the goal is to understand

the distribution of the data, and use the acquired knowledge to estimate selectivities. A

thorough discussion of the differences between both approaches is given in [Hilprecht et al.,

2019]. The advantage of taking a data-driven approach the distribution of the data can be

assumed to be stable. Indeed, there is no uncertainty as to what kind of attributes and values

will be present in query execution plans. In other words, the database is a closed world.

In philosophical logic, this is also referred to as domain closure. It is therefore possible,

ignoring memory constraints, to perfectly estimate selectivities by simply memorising the

frequency of every combination of attributes values across all relations. Obviously this is

unfeasible, as already discussed. However, this does shed some light on the problem and

justifies the use of unsupervised learning. In short, if we cannot predict the queries that
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will be thrown at the query optimiser, we can rely on the fact there is no mystery regarding

the underlying attribute values. A related consequence of the closed world assumption is

that it is impossible to overfit by memorising too much. This is particularly interesting,

because it means we can build density estimation models without having to worry about

regularising them. Again, this is only possible in the case of using a data-centric approach,

not one based on issued queries. In general, this is not the case, as we have to build models

that generalise well.

2.4.1 Histograms

One of simplest forms of density estimation, and therefore unsupervised learning, is a his-

togram. A histogram separates a distribution into 𝑛 buckets – also called bins – denoted 𝑏𝑖.

A bucket is defined by it’s lower bound 𝑏−
𝑖 and upper bound 𝑏+

𝑖 . For convenience we can

define 𝑑𝑖 as the distance 𝑏+
𝑖 − 𝑏−

𝑖 . Each bucket contains values that are comprised in the

range [𝑏−
𝑖 , 𝑏+

𝑖 ]. We can denote 𝑐𝑖 as the number of values that are contained in bucket 𝑏𝑖.

Only 𝑏−
𝑖 , 𝑏+

𝑖 , and 𝑐𝑖 are known. Thus for practical reasons optimisers usually assume that

values are uniformly distributed inside each bucket. To obtain the selectivity of a single-

attribute predicate one simply has to linearly interpolate within the appropriate bucket 𝑏𝑖

– found through binary search – and sum up the previous buckets.

𝑠(𝐴 < 𝑣) = (
𝑖−1∑︁
𝑗=1

𝑐𝑗) + (𝑣 −𝐴)× 𝑐𝑖 (2.7)

Of course, the next buckets should be summed up in case the range predicate is the

other way round.

𝑠(𝐴 > 𝑣) = 1− 𝑠(𝐴 < 𝑣) = ((𝐴− 𝑣)× 𝑐𝑖) +
𝑛∑︁

𝑗=𝑖+1
𝑐𝑗 (2.8)

If the number of distinct values 𝑢𝑖 per bucket 𝑏𝑖 is known, then selectivities for equality

predicates can be computed as so:

𝑠(𝐴 = 𝑣) = 𝑐𝑖

𝑢𝑖
(2.9)

Histograms are usually built with buckets of the same width (equi-width) or of the same

height (equi-height/equi-depth). Using equi-width histograms for selectivity estimation was
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first introduced in [Kooi, 1980]. The number of buckets 𝑛 determines the width of each

bucket which is 𝑚𝑎𝑥(𝐴)−𝑚𝑖𝑛(𝐴)
𝑛 . The height of each bucket depends on 𝐴’s distribution.

[Piatetsky-Shapiro and Connell, 1984] formalised the use of equi-height histograms. They

also showed that equi-height histograms have a much lower worst-case and average error

for a variety of predicates compared to equi-width histograms. Opposite to equi-width

histograms, the number of buckets 𝑛 determines the height of each bucket, which is 1
𝑛 .

With equi-height histograms, the error bound can be lowered by controlling the bucket

height – and a fortiori the number of buckets. The number of buckets 𝑛 exemplifies the

compromise that has to made in practice. On the one hand, if 𝑛 is equal to the number of

distinct values in a distribution then the frequency for each particular value will be stored,

which implies a large storage cost. On the other hand, if 𝑛 = 1 then a uniform distribution

is assumed whilst the storage cost is close to nil – in this case the histogram is called trivial.

Note that a bucket that contains a single value perfectly captures the frequency of the value,

in this case the bucket is said to be uni-valued. A bucket that contains more than one value

is called multi-valued.

Histograms are popular because they are simple and deliver reliable computation guar-

antees. For instance, insertion and querying operations can both be done in logarithmic

time. Histograms also allow a great amount of leeway and can be adapted as necessary. For

example, a popular trick is to use uni-valued buckets for the 𝑘 most frequent values, and

store the rest of the values in multi-valued buckets wherein uniformity is assumed. This

offers a good compromise between accuracy and storage cost. Many other of such tricks

have been proposed throughout the literature. These tricks involve optimising both the

width and the height of each bucket in order to minimise the overall selectivity error. For

instance, [Ioannidis and Christodoulakis, 1993] showed that histograms that minimise the

average selectivity estimation error are ones that minimise the weighted variance:

𝑉 =
𝑛∑︁

𝑖=1
𝑛𝑖𝑣𝑖 (2.10)

where 𝑛𝑖 is the number of values in a bucket 𝑣𝑖 is the variance of the frequencies in-

side a bucket. Such histograms are called V-optimal histograms. Intuitively, V-optimal

histograms have buckets where the distribution of frequencies is somewhat uniform. This

leads to reduced errors when performing linear interpolation within a bucket. While V-
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optimal histograms are more accurate than equi-width and equi-height histograms, they

have some drawbacks. Building a V-optimal histogram is nothing less than an optimisa-

tion problem where the parameters are the number of buckets and the size of each bucket.

Moreover, V-optimal histogram are difficult to maintain because they can require a complete

reconstruction when new tuples are appended to a relation.

[Ioannidis and Christodoulakis, 1993] introduced biased histograms in order to build

histograms that avoid the worst possible errors. A biased histogram is a histograms that

contains 𝑛 − 1 uni-valued buckets and one multi-valued bucket. On the one hand if these

𝑛− 1 buckets represent the lowest frequencies then the histogram is said to be low-biased.

On the other hand a high-biased histogram is a biased histogram where the 𝑛−1 uni-valued

buckets represent the highest frequencies. Finally the histogram is said to be end-biased if

the 𝑛− 1 uni-valued buckets capture both the most frequent and the lest frequent values.

End-biased histograms are often used in practice because they offer a good compromise

between storing all possible frequencies and storing an approximate distribution. Indeed if

the goal is to avoid the worst possible error whilst not storing too much information, then

[Ioannidis and Christodoulakis, 1993] advocates that end-biased histograms are optimal –

at least if one is comparing different kinds of histograms. Indeed the intuition is store the

exact values of the lowest and highest frequencies by means of uni-valued buckets and to

store the rest of the frequencies through a single bucket. The intuition is that the rarer

frequencies should be stored more precisely because they offer more information about the

underlying distribution. For example consider the distribution [1, 8, 9, 10]. The frequency

of the first element is much smaller than the three other values which relatively similar.

In this case a histogram ℎ1 with buckets {1} and {8, 9, 10} is preferable over a histogram

ℎ2 with buckets {1, 8, 9} and {10}. Indeed the distribution approximation of ℎ1 will be

[1, 9, 9, 9] whereas it will be [4.5, 4.5, 4.5, 10] for ℎ2. Moreover, having precise estimates of

high frequencies helps a lot in obtaining better join size estimates. Indeed the larger the

number of joins the larger the share of frequently occurring values will be [Ioannidis and

Christodoulakis, 1993], thus getting precise estimates as early as possible is very beneficial.

Histograms have also been tailored for specific types of queries. For instance, [Poosala et al.,

1996] did a systematic review of various types of histograms, and benchmarked them on

a range selectivity estimation task. They also gave some cues for selecting the number of

buckets depending on the shape of the underlying data distribution.

39



In most cases, histograms are “good enough” for capturing the distribution of an single

attribute’s values. Most of the error made by the cost model is instead due to missed de-

pendencies between attributes. In spite of this, one-dimensional histograms are ubiquitous

in existing relational database cost models. Furthermore, histograms are used as build-

ing blocks in more sophisticated methods, such as Bayesian networks. Meanwhile, multi-

dimensional histograms have been proposed to capture dependencies between attributes.

Even though single-column histograms capture the skew in a distribution, they do not take

into account correlations between attributes. To compute the selectivity of a conjunctive

predicate 𝑠(𝑝1 ∩ 𝑝2) with only single-column histograms, one still has to make AVI assump-

tion and compute 𝑠(𝑝1) × 𝑠(𝑝2). Even if 𝑠(𝑝1) and 𝑠(𝑝2) are perfectly known, an overlap

between 𝑝1 and 𝑝2 means that the estimated selectivity will be lower than 𝑠(𝑝1)×𝑠(𝑝2). As an

example consider a relation employee with two attributes age and salary and that we wish to

obtain the selectivity of the predicate (𝑎𝑔𝑒 > 42)∩(𝑠𝑎𝑙𝑎𝑟𝑦 > 24000). Because single-column

histograms are available we know that 𝑠(𝑎𝑔𝑒 > 42) ≃ 0.4 and 𝑠(𝑠𝑎𝑙𝑎𝑟𝑦 > 24000) ≃ 0.7. If

we assume the AVI assumption holds then we can calculate 𝑠((𝑎𝑔𝑒 > 42)∩(𝑠𝑎𝑙𝑎𝑟𝑦 > 24000))

as 0.7 × 0.4 = 0.28. However, it might be that age and salary are correlated – which is

quite often the case in reality. In other words it might be that older employees usually have

higher salaries. In that case the proportion of employees older than 42 and earning more

than 24000 might be equal to, say, 0.36 and not 0.28. Multi-column statistics are necessary

to capture this kind of correlation. [Muralikrishna and DeWitt, 1988] introduced multi-

dimensional histograms for estimating selectivities for multi-attribute predicates. [Poosala

and Ioannidis, 1997] gave a thorough treatment of multi-dimensional histograms, and dis-

cussed practical aspects and common operations to be performed.

While multidimensional histograms are certainly of merit, they have enjoyed limited

success, albeit more than other methods. A big issue with multi-column histograms is that

too many values have to be stored. Let 𝑏 be the number of bins per dimension and 𝑘 the

number of attributes in a database. Then there are
∑︀𝑘

𝑖=1
(︀𝑘

𝑖

)︀
× 𝑏𝑖 values that have to be

stored to capture all the possible interactions. This number grows extremely quick. For

example for 𝑏 equal to 100 and 𝑘 equal to 30 – quite conservative numbers – the number

of possible histograms is 1.347 × 1060. Therefore, the attributes on which to build multi-

dimensional histograms has to be chosen, either manually or automatically. In a similar

vein, [Muthukrishnan et al., 1999] proved that finding an optimal partitioning for multiple
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attributes is an NP-hard problem. Therefore, approximate algorithms have been proposed.

For instance, [Lee et al., 1999] proposed a method based on cosine transforms, which re-

duces the amount of required storage space. To address the issue of not being able to build

histograms for each combination of attributes, [Bruno et al., 2001] proposed a workload

aware methodology. Instead of looking at the data, they look at the issued queries and

build multidimensional histograms for attributes that are often queried together. A simi-

lar proposal was made in [Srivastava et al., 2006]. The main difference is that the latter

uses entropy-based histograms, which seek to build histograms wherein the entropy of each

bucket is minimised. A simpler description for unidimensional histograms can be found

in [To et al., 2013]. In the meantime, [Gunopulos et al., 2005] made some improvements

to deal with skewed attributes and provided better experimental results. In the statisti-

cal community, histograms have for long been cast aside in favour of more sophisticated

methods, such as kernel density estimation.

2.4.2 Kernel density estimation

Kernel density estimation (KDE) have also been studied extensively for the purpose of

selectivity estimation. They can be seen as a smooth version of histograms [Blohsfeld et al.,

1999]. The general idea behind KDEs is to build a distribution by averaging individual

points 𝑥𝑖. Each point contributes to the global distribution through a kernel function 𝐾.

Together with a bandwidth parameter, 𝐾 determines how each point 𝑥𝑖 “spreads” in it’s

neighbourhood:

𝑓(𝑥) = 1
𝑛ℎ

𝑛∑︁
𝑖=1

𝐾(𝑥− 𝑥𝑖

ℎ
) (2.11)

A KDE can be viewed as a set of averaged “bumps” which are positioned at the samples

𝑥𝑖. The bandwidth ℎ determines the spread of these bumps, whilst the kernel 𝐾 determines

their shape. The global distribution is constructed by averaging up these bumps. The

bandwidth ℎ is also called smoothing parameter and plays a crucial role in producing good

estimates. On the one hand, if ℎ is too large over-smoothing will occur and sharp details

of the distribution will be obfuscated. On the other hand if 𝑘 is too small then the global

distribution will seem very rough and spiky. Tuning ℎ is important in order to obtain an

accurate estimator, just like determining the number of bins in a histogram is crucial to
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it’s performance. In order to choose ℎ, [Blohsfeld et al., 1999] chooses to minimise the

relative error, turning the problem into an optimisation process with regard to ℎ. As for

the kernel function, the general consensus is that it doesn’t matter as much [Silverman,

1986]. [Blohsfeld et al., 1999] chooses to use the Epanechnikov kernel because it is fast to

compute.

The main advantage KDEs have over histograms is that they are smoother, and can

thus better approximate real data. Whereas histograms require linearly interpolation within

buckets, KDEs can directly be queried at any point. In statistics, KDEs are considered to be

extremely accurate estimators assuming the underlying distribution is sufficiently smooth.

However, this assumption does not often hold in practice [Blohsfeld et al., 1999]. Indeed,

it is often the case that attributes have jagged distributions that oscillate a lot, which is

the main reason why KDEs are not used in practice. To counter this issue, [Blohsfeld

et al., 1999] propose to combine histograms and KDEs and by building one KDE per bin.

Although theoretically sound and accurate, this hybrid method is prohibitively expensive

to use in practice. Indeed, KDEs by themselves are already memory intensive, due to the

fact that their complexity scales linearly with the amount of data points. To alleviate

this computational cost, [Heimel et al., 2015] explored algorithmic tricks and the usage of

GPU cards. They also provided a method to evolve the KDE by continuously updating

the KDE with new kernels. Meanwhile, [Kiefer et al., 2017] applied KDEs for estimating

the selectivity of queries which involve joins. Their main contribution was to show how to

merge KDEs from different tables, which is reminiscent of histogram alignment techniques.

Nonetheless, KDEs have been used as the main alternative histograms. Indeed, they seem

to be more popular than other methods, such as wavelets.

2.4.3 Wavelets

Wavelet decomposition is a method for compressing a signal. For the purpose of selectiv-

ity estimation wavelets can be used as a replacement to histograms [Matias et al., 1998]

– wavelets are nothing more than more granular histograms. The idea of wavelet decom-

position is to “decompose” a signal into a more coarse representation whilst preserving

information so as to be able to “recompose” it afterwards. For instance Haar wavelets are

used in the following manner (taken from [Matias et al., 1998]).

Take the following list:
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𝑆0 = [2, 2, 7, 9]

Average all contiguous values in 𝑆0 to obtain a coarser signal 𝑆1 and store the differences

with each average in another list 𝐷1.

𝑆1 = [2+2
2 , 7+9

2 ] = [2, 8]; 𝐷1 = [2− 2, 9− 8] = [0, 1]

𝑆0 can be reconstructed by doing 𝑆0 = [2− 0, 2 + 0, 8− 1, 8 + 1] = [2, 2, 7, 9]. Although

𝑆1 is shorter than 𝑆0, we still have to store the list of differences to the average 𝐷1 in order

not to lose any information – in other words we still have to store 4 values. The same

decomposition process that was applied to 𝑆0 can be reapplied to 𝑆1 to obtain 𝑆2.

𝑆2 = [2+8
2 ] = [5]; 𝐷2 = [8− 5] = [3]

𝑆2 can’t be decomposed further so the process has to stop. In the same way that 𝑆0

can be reconstructed from 𝑆1 and 𝐷1, 𝑆1 can be reconstructed thanks to 𝑆2 and 𝐷2. This

implies, by recursion, that 𝑆0 can be reconstructed with 𝑆2 and 𝐷2. At this point, all the

information needed to reconstruct the original signal can be stored by concatenating 𝑆2 and

each 𝐴𝑖 as so:

𝑆 = [5, 3, 0, 1]

[Matias et al., 1998] proposes to apply wavelet decomposition to the cumulative distri-

bution function (CDF) of a continuous attribute.

As for compression, the idea in [Matias et al., 1998] is to remove the smallest coefficients

in 𝑆. For example the third value is 0 and doesn’t bring any new information at all when

reconstructing the original signal, hence it can be removed without any loss of information.

Recall that the 0 value comes from computing the differences of two contiguous and identical

values with their average – 2 and 2 in our example. In other words the wavelet decomposition

“captured” the fact that the signal didn’t vary on it’s first two values. In this sense wavelet

decomposition is very similar to information compression methods where one makes the

most of identifying repetitions. [Matias et al., 1998] proposes different methods for choosing

which coefficients to remove from the compressed signal. On the one hand one can keep the

𝑚 largest coefficients if one wishes to have control over the amount of information stored.

On the other hand one may want to minimise the compression error and an optimisation
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process can be used to determine the necessary number of coefficients that have to be stored.

Effectively the trade-offs that have to be same are not so dissimilar to the ones pertaining

to histograms. Once again a compromise has to made between the amount of information

and the storage size.

Wavelet decomposition naturally extends to multi-dimensional distributions. Indeed the

same process described above can also be applied to CDFs with more than one dimension. A

thorough overview of multi-dimensional wavelets is done in [Chakrabarti et al., 2001]. One of

the downsides of wavelet decomposition is that the original signal has to be reconstructed

at run-time, which is significantly more costly that querying a histogram. Whats more,

wavelet decomposition can only be applied to attributes with continuous values.

2.4.4 Probabilistic graphical models

A probabilistic graphical models (PGM) is a way of taking into account the joint distribution

over multiple attributes. From a mathematical point of view, probabilistic graphical models

can compactly represent complex joint distributions over high-dimensional spaces. There

are two main families of PGMs, namely Bayesian networks and Markov models. Probabilistic

relational models [Friedman et al., 1999] are extension of PGM that are tailored towards

relational data. The major contribution in this direction has been to translate the usage of

Bayesian networks to encode attribute dependencies across relations [Getoor et al., 2001].

A graphical model relies on the conditional independence assumption. This assumption

which states that two correlated attributes 𝐴 and 𝐵 can be assumed to be independent

given the knowledge of a third attribute 𝐶. That is, if one knows the joint distributions

𝑃 (𝐴, 𝐶) and 𝑃 (𝐵, 𝐶), then one indirectly knows the joint distribution 𝑃 (𝐴, 𝐵). [Getoor

et al., 2001] gives the example of a boolean home-owner attribute which is conditionally

independent from attribute education given attribute income. That is, if one knows the

link between income and education and the one between education and home-owner, then

something can be said about the relationship between income and home-owner.

A Bayesian network (BN) is a type of PGM that can be used to make the most of

indirect influences between attributes. BNs consist in building a graph where each node

represents an attribute and each vertex stands for a direct link. Attributes that do not share

a vertex are indirectly connected through a sequence of intermediary connections. Much

like histograms, the construction of a BN can be done offline whilst selectivity estimates
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can be obtained online. As an example, consider a relation with 3 attributes 𝐴𝑖. Attribute

𝐴1 has 3 distinct values, 𝐴2 has 3, and 𝐴3 has 2. To know the discrete joint probability

distribution 𝑃 (𝐴1, 𝐴2, 𝐴3) one would have to store 3× 3× 2 = 18 values – 17 by using the

fact that the probabilities have to sum up to 1. With these values the selectivity estimate

for any kind of equality predicate can be obtained. Although feasible for a toy example, the

number of values that has to be stored grows exponentially with the number of relations

and attributes. To counter this, one may represent the joint distribution in a factored form

by leveraging conditional independence. By storing the marginal distribution 𝑃 (𝐴1) and

the conditional distributions 𝑃 (𝐴2 | 𝐴1) and 𝑃 (𝐴3 | 𝐴2), one may retrieve the full joint

distribution like so:

𝑃 (𝐴1, 𝐴2, 𝐴3) = 𝑃 (𝐴1)× 𝑃 (𝐴2 | 𝐴1)× 𝑃 (𝐴3 | 𝐴2) (2.12)

The number of values to store for the factored form is 3 + 9 + 6 = 18, which is the

same as for the non-factored form. However, by taking into account the fact that the

probabilities have to add up to 1, only 2 + 4 + 3 = 9 values have to stored. These savings

grow exponentially with the number of relations and attributes. In fact, [Getoor et al., 2001]

gives an example where they store 951 values instead of 7 billion. Selectivity estimates for

range predicates can also be obtained by summing up the probabilities for each discrete value

in the desired range. Although feasible, this quickly becomes a slow process for attributes

with many distinct values. To handle this, [Getoor et al., 2001] proposes to discretise the

values with a range of techniques, all somewhat similar to the histograms methods described

previously.

The difficulty with Bayesian networks is that a network structure has to chosen. There

exist many valid structures, as one has to determine between which attributes conditional

independence holds. Inevitably, building a BN requires going through a length optimisa-

tion process [Heckerman et al., 1998]. The goal of this optimisation process is to find the

structure which explains the best a given dataset. However no method that runs in poly-

nomial time has yet been discovered. Therefore, in order to simplify the computation, it

is necessary to make simplifying assumptions by constraining the network structure. This

was addressed in [Tzoumas et al., 2011], whereby dependencies are limited to be between

two attributes. This work was also discussed in [Tzoumas et al., 2013].
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2.5 Conclusion

As we have hopefully conveyed, selectivity estimation is a difficult problem in that it requires

making difficult compromises. The sampling approach has the benefit of being simple, but

it comes at the high computational cost of having the execute nonetheless, albeit on a

relatively small excerpt of the database. Meanwhile, the supervised learning approach has

received at of attention in recent times. Although it has its merits, we believe it is flawed

in that it attempts to perform density estimation indirectly. Indeed, selectivity estimation

is nothing more than a case of density estimation, and is usually performed by taking

measures of the data, not by learning a mapping function. Learning to predict selectivities

by looking at queries seems akin to deliberately tying a hand behind our back. Furthermore,

supervised learning methods are limited by the fact that the amount of labeled execution

plans depends on the database usage. Meanwhile, all the data from each relation is at

hand, which is a low-hanging fruit that can be exploited if one frames the problem as an

unsupervised learning problem.

The main advantage of unsupervised learning, and in particular density estimation, is

that it essentially boils down to performing selectivity estimation. Once a density estima-

tion model has been decided upon and trained, it can be used to estimate of any query

whatsoever. It’s performance depends on the amount of capacity that we are ready to allo-

cate to it. As such, Bayesian networks are an elegant method, as it possible to design them

ways that each offer a different computational compromise. During this PhD, we explored

some mechanisms that allow Bayesian networks to act as a strong selectivity estimation

model. Existing proposals are flawed in that their computational cost is too high, essen-

tially because they are trying to do too much. Computational performance is of paramount

importance, and is in fact a constraint to which we must abide. At the core of our work

is the idea to remain simple, and produce methods that are efficient and have a practical

aspect to them.
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Chapter 3

Selectivity estimation with

Bayesian networks

3.1 Motivation

As we have attempted to explain in the previous chapter, selectivity estimation can be

viewed as a case of density estimation. In such a setting, the goal is to determine of data

that satisfies a particular predicate. For instance, how many users are blond, are born

in Sweden, and have taken a flight between Stockholm and Ankara. Bayesian networks

represent a general and powerful framework for reasoning and going about such a task. In

particular, they allow to model dependencies between attributes and organise them into a

graph-like structure. Therefore, Bayesian networks are a promising candidate for performing

selectivity estimation. However, they need to be tutored in such a way that they can be

used in our particular context, which in particular imposes strict performance constraints.

3.2 What is a Bayesian network?

Before delving into our method, we will give a short overview of the principles that underpin

Bayesian networks. This will allow us to briefly highlight and discuss the benefits and

challenges brought by Bayesian networks, in particular in the context of relational data. A

Bayesian network (BN) is a probabilistic model. As such, it is used for approximating the

probability distribution of a dataset. In theory, the underlying dataset is assumed to be

generated from an unknown probability distribution. If we had an infinite amount of time
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and resources, then we could faithfully estimate this generative process by computing the

full joint distribution. The latter is often denoted as 𝑃 (𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝑛), whereby 𝑋𝑖

are variables. We will also denote it by the more terse 𝑃 (𝒳 ). The full joint distribution

is perfectly accurate because it takes into account all the interactions between variables.

However, it is inordinately large and therefore isn’t practical. In order to make things

simpler, one idea is to identify couples of variables that are independent and extract them

from the joint distribution. The extreme way to proceed is to assume that all variables are

independent, and therefore estimate the full joint distribution as so:

𝑃 (𝑋1, . . . , 𝑋𝑖, . . . , 𝑋𝑛) =
𝑛∏︁

𝑖=1
𝑃 (𝑋𝑖) (3.1)

This is essentially what is implied by the attribute value independence (AVI) and join

uniformity assumptions, which we discussed in the previous chapter. The only benefit of

this approach is that it only requires estimating one-dimensional distributions, which is as

tractable as it gets. A more sophisticated notion is to identify conditional independencies

between groups of variables. For instance, take the fact the people who have a headache

usually tend to cough – i.e. the values of both variables are correlated. Well, these variables

are conditionally independent of each other if we know that a person has the flu or not.

In other words, symptoms are independent of each other if we have the knowledge of their

common cause. This allows us to perform the following factorisation:

𝑃 (ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑐𝑜𝑢𝑔ℎ, 𝑓𝑙𝑢) = 𝑃 (ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 | 𝑓𝑙𝑢)× 𝑃 (𝑐𝑜𝑢𝑔ℎ | 𝑓𝑙𝑢)× 𝑃 (𝑓𝑙𝑢) (3.2)

Now we only have to store a couple of two-dimensional distributions along with a one-

dimensional one. That is, assuming that the variable relationships are correct. At this point,

we have made a compromise between the complete independence assumption and the full

joint distribution. The benefit is that we have captured the dependencies that matter and

eliminated the redundant one between ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 and 𝑐𝑜𝑢𝑐ℎ. The goal of a Bayesian network

is to identify these redundant relationships and essentially factor them out of the equation.

The particularity of a Bayesian network is that it uses a directed acyclic graph (DAG) to

organise relationships between variables. The graph contains one node per variable, whilst

each directed edge represents a conditional dependency between two variables. For instance,
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if nodes 𝐴 and 𝐵 are connected with an edge that points from 𝐴 to 𝐵, then this stands for

the conditional distribution 𝑃 (𝐵 |𝐴). A Bayesian network is thus a product of many such

conditional dependencies, which formally is:

𝑃 (𝑋1, . . . , 𝑋𝑛) ≃
∏︁

𝑋𝑖∈𝒳
𝑃 (𝑋𝑖 |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) (3.3)

Once we have a Bayesian network at our disposal, we can use to answer probabilistic

queries, such as “What is the probability of someone having the flu?” or “How likely is

a person of having the flu, knowing that they are coughing but don’t have a headache?”.

With a Bayesian network, we are thus able to answer any selectivity estimation problem

by converting a logical query into a mathematical formula following standard rules of prob-

ability [Jensen et al., 1996], in particular Bayes’ rule. In Bayesian network jargon, this

process is referred to as inference. The important thing to notice is that selectivity esti-

mation is essentially equivalent to answering probabilistic queries. Therefore, if we have a

Bayesian network which accurately models the underlying data, then we can do selectivity

estimation. Note that in such a case we are necessarily more accurate than when using

the AVI assumption. This is an attractive approach because it is a well grounded method

and is very versatile. Indeed, it allows to answer any selectivity estimation query, not just

a subset on which a supervised learning problem would have been trained on. On a side-

note, it is interesting to notice that if we had enough resources, then we could answer the

probabilistic queries we gave by simply interrogating the data. Indeed, although a Bayesian

network summarises the distribution of a dataset, it doesn’t bring any added. In fact, it’s

only benefit is that it provides a much more efficient way to answer a query when compared

to scanning the whole dataset from scratch.

There are a few considerations to take into account before using Bayesian networks off-

the-shelf. First of all, we need to find the structure of the Bayesian network. Clearly, we

cannot expect users to provide a schema of the Bayesian network by themselves. Indeed, we

need an automatic manner of determining the optimal structure of the Bayesian network.

It is easy to see that this is difficult problem, because it implies some notion of causality.

Indeed, human experience tells us that the flu is a cause of headaches, and not the other

way round. However, a computer has no such prior knowledge. Additionally, we have to

consider that we have strong performance constraints. Even though we can answer any
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selectivity estimation query, we also want to be able to do so in a reasonable amount of

time. As we will see, this is largely determined by a Bayesian network’s structure. Finally,

we need to deal with the fact that selectivity estimation has essentially to be performed

over multiple relations, which isn’t a paradigm for which Bayesian networks were designed

for initially. Before delving into the latter, we will first discuss our method for applying

Bayesian networks within a single relation.

3.3 Applying Bayesian networks to single relations

3.3.1 Structure learning

A Bayesian network (BN) factorises a probability distribution 𝑃 (𝑋1, . . . , 𝑋𝑛) into a product

of conditional distributions. For any given probability distribution 𝑃 (𝒳 ) there exist many

possible BNs. For example 𝑃 (ℎ𝑎𝑖𝑟, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝑔𝑒𝑛𝑑𝑒𝑟) can be factorised as:

𝑃 (ℎ𝑎𝑖𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)× 𝑃 (𝑔𝑒𝑛𝑑𝑒𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)× 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦),

as well as:

𝑃 (ℎ𝑎𝑖𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝑔𝑒𝑛𝑑𝑒𝑟)× 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)× 𝑃 (𝑔𝑒𝑛𝑑𝑒𝑟).

Both factorisations are represented graphically in figure 3-1. Both possibilities are valid

in that they both describe a possible manner in which the data could have generated. Only

the data can tell if one is better suited than the other.

N

H G H

N G

Figure 3-1: Possible factorisations of 𝑃 (ℎ𝑎𝑖𝑟, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, 𝑔𝑒𝑛𝑑𝑒𝑟)

Although both factorisations shown in figure 3-1 are legal, they have different storage

complexities. On the one hand, the first factorisation requires a couple of two-dimensional

distributions and a single one-dimensional distribution. On the other hand, the second fac-

torisation requires a couple of one dimensional distribution, along with a three-dimensional

distribution. The problem is that the full joint distribution can be stored with a three-
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dimensional distribution by itself. Therefore, the second factorisation requires more infor-

mation than necessary. As we will discuss in the following section, both factorisations incur

different querying costs. In addition to finding a network structure that adequately fits the

data stored in a relation, we also would like to be able to constrain the network to have a

particular shape. The goal of structure learning is to find a BN that closely matches 𝑃 (𝒳 )

whilst preserving a low computational complexity. Indeed, for any given BN, the cost of

storing it and of answering queries both depend on it’s structure.

The classic approach to structure learning is to define a scoring function that determines

how good a BN is – both in terms of accuracy and complexity – and to run a mathematical

optimisation procedure over the possible structures [Heckerman et al., 1995]. The problem

is that such kind of procedures are too costly and don’t fit inside the tight computational

budget a database typically imposes. Recently, linear programming approaches that require

an upper bound on the number of parents have also been proposed [Jaakkola et al., 2010].

In practice these can handle problems with up to 100 variables which is far from ideal.

Finally, one can also resort to using greedy algorithms that run in polynomial time but

don’t necessarily find a global optimum.

Chow-Liu trees [Chow and Liu, 1968] is one such method that finds a BN where depen-

dencies between two attributes are the only ones considered. Building a Chow-Liu tree only

involves three steps. Initially the mutual information (MI) between each pair of attributes

is computed. Mutual information is defined as so:

𝑀𝐼(𝑋𝑖, 𝑋𝑗) =
∑︁

𝑥𝑖∈𝑋𝑖

∑︁
𝑥𝑗∈𝑋𝑗

𝑃 (𝑥𝑖, 𝑥𝑗)× log( 𝑃 (𝑥𝑖, 𝑥𝑗)
𝑃 (𝑥𝑖)𝑃 (𝑥𝑗)) (3.4)

The mutual information can be seen as the strength of the relation between two variables,

whether it be linear or not. The distribution 𝑃 (𝑋𝑖, 𝑋𝑗) contains the occurrence counts of

each pair (𝑥𝑖, 𝑥𝑗) in a relation 𝑅. It can be obtained with a SELECT COUNT(*) FROM R

GROUP BY 𝑋𝑖, 𝑋𝑗 statement in SQL. The distributions 𝑃 (𝑋𝑖) and 𝑃 (𝑋𝑗) can be obtained

by marginalising over 𝑃 (𝑋𝑖, 𝑋𝑗) with respect to the other attribute. By marginalising, we

refer to the process of choosing one attribute and summing over the values of the other

attributes. Essentially, this collapses a multivariate distribution into a unidimensional one.

The resulting distribution is the distribution of the chosen attribute ceteris paribus. Once

the mutual information for each pair of attributes is computed, they are organised into a
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fully connected weighted graph 𝐺. This graph is therefore composed of edges which are

each associated with an MI value. For the sake of completeness, we will give an example of

our procedure on a toy example. We will reuse this example in further parts of this chapter.

Let us start with a single relation called customers. The latter contains five attributes,

which are nationality, country, city, eye_colour, and hair_colour. Computing the

mutual information values between each pair of attributes and organising them into a fully

connected graph leads to the representation displayed in figure 3-2. Note that we have

chosen the particular MI values somewhat arbitrarily for the sake of example.

nationality

country city

eye colour hair colour

0.55
0.34

0.11
0.59

0.68

0.03 0.25
0.01 0.22

0.10

Figure 3-2: Mutual information amounts for five attributes

The next step is to find the maximum spanning tree (MST) of the graph, which is the

spanning tree whose sum of edge weights is maximal. A spanning tree is a subset of 𝑝− 1

edges that forms a tree. Finding the maximum spanning tree can be done in 𝒪(𝑝 log(𝑝))

time, for example, by using Kruskal’s algorithm [Kruskal, 1956]. Other methods, such as

Borůvka’s algorithm [Nešetřil et al., 2001] and Prim’s algorithm [Prim, 1957], are also valid

candidates and have the same runtime complexity. The result of applying this procedure

to the graph from figure 3-2 is shown in figure 3-3.
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city

country

nationality

eye colour hair colour

Figure 3-3: Maximum spanning tree of figure 3-2

Finally the MST has to be directed by choosing a node at random and defining it as

the root. The choice of the root attribute does not matter because mutual information is

symmetric. From a human perspective, one choice make more sense than another. This

is because we might an inherent sense of causality that would justify the choice of one

particular root node. However, this doesn’t have any influence whatsoever on the amount

of information that the BN is able to capture. Note however that Bayesian networks can

be used to unravel causality, but that is a whole other story [Murphy, 2001]. In our case we

are just doing density estimation, so the edge directions do not matter to us. Therefore, we

have not paid much attention to the choice of the root node.

We chose to use Chow-Liu trees for two practical reasons. First of all they are simple

to construct. The only part that doesn’t scale well is computing the MI values. However,

this can be accelerated by using a coarser representation of the data such as histograms,

effectively discretising the data. Moreover, the process can be run over a sample of a relation.

In our experience, these two methods greatly reduce computation time without hindering the

accuracy of the resulting trees. Secondly the output network is a tree – hence there is only

one parent per node. This is practical because retrieving a marginal distribution – in other

words inferring – from a tree can be done in linear time [Robertson and Seymour, 1986].

Moreover, storing the network only requires saving 𝑛− 1 two-dimensional distributions and

one uni-dimensional distribution. On top of this, [Chow and Liu, 1968] proves that Chow-

Liu trees minimise the KL divergence, meaning that they are the best possible trees from an

information theory perspective. The downside is that they can’t capture events that result

from multiple causes. For instance, it only snows if it is both cold and rainy. This is too

much of a worry, as we should be content enough of having a cheap method for capturing

some dependencies. It’s all about making compromises.
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3.3.2 Parameter estimation

Once a satisfying structure has been found, the necessary probability distributions have to

be computed. Indeed, recall that a Bayesian network is essentially a product of Conditional

Probability Distributions (CPD). A CPD gives the distribution of a variable given the

value of one or more so-called parent variables. For discrete variables, things are relatively

straightforward because CPD are essentially tables. For instance, the two-way tables 3.2

and 3.3 are two CPDs that are both conditioned on the nationality attribute. Likewise,

the 3.1 is a one-dimensional table because the nationality attribute is not conditioned on

any other attribute.

American Swedish

0.5 0.5

Table 3.1: 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

Blond Brown Dark

American 0.2 0.6 0.2

Swedish 0.8 0.2 0

Table 3.2: 𝑃 (ℎ𝑎𝑖𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

Male Female

American 0.5 0.5

Swedish 0.45 0.55

Table 3.3: 𝑃 (𝑔𝑒𝑛𝑑𝑒𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

Meanwhile, things are much murkier in the case of numeric attributes. Indeed, it is

easy to see that tables are an ill-fitting solution for recording probabilities for non-discrete

values. This is due to the fact that numeric attributes have an infinite number of possible

by definition. In our case, because of the closed-world assumption, this number is not

in fact infinite. Nonetheless, it is potentially very large, which can be a problem. In

fact, a discrete attribute with a very high cardinality is also a problem. For continuous
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variables, a potential solution is to assign a parametric representation to said variables.

For instance, we could say that an attribute follows a Gaussian distribution for which the

parameters could be estimated from the data [Weiss and Freeman, 2000]. However, this

requires choosing a distribution for each given attribute, which isn’t very practical. The

other way to proceed is to use a non-parametric representation, such as a histogram. Indeed,

while coarse, a histogram is able to approximate any attribute value distribution, regardless

of it’s statistical properties. This works out nicely, because cost models have a rich history of

using histograms, as explained in the previous chapter. Therefore, all of the different flavors

of histograms can be used for our purpose. As a side-note, note that Bayesian networks that

handle both discrete and continuous attributes are called hybrid Bayesian networks. Due

to the fact that we will essentially be treating them in the same manner via histograms,

we will not be making any distinction between discrete an continuous attributes in further

parts of this chapter.

The number of values needed to define a CPD is 𝑐𝑝+1 where 𝑐 is the cardinality of each

variable – for simplicity we assume it is constant – and 𝑝 is the number of parent variables.

This stems from the fact that each CPD is related to 𝑝 + 1 variables and that each and

every combination of values has to be accounted for. The fact that Chow-Liu trees limits

the number of parents each node has to 1 means that we only have to store 𝑐2 values per

distribution. Moreover, a sparse representation can be used to leverage the fact that 0s

are frequent. Indeed, a value might only appear for particular conditioning values. This is

broadly encompassed by the notion of deterministic distributions. Although they are not

ubiquitous, they can arise in particular cases, an example being functional dependencies.

Indeed, some attributes may have a hierarchical structure, such as cities that belong to

countries, which themselves belong to continents. In such cases, some space can be saved

by using an adequate data structure other than a histogram. As we mentioned above, if

the cardinality of a variable is high, then a lot of values still have to be stored. This can be

rather problematic in a constrained environment.

To preserve a low spatial complexity, we found that end-biased histograms were a good

choice overall. The idea is to preserve the exact probabilities for the 𝑘 most common values

of a variable and put the rest of the probabilities inside 𝑗 equi-height intervals. Using equi-

height intervals means that we don’t have to store the frequency of each interval. Indeed it is

simply 1−
∑︀

𝑖=1 𝑃 (𝑀𝐶𝑉𝑖), where 𝑃 (𝑀𝐶𝑉𝑖) denotes the frequency of the 𝑖𝑡ℎ most common
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value. Instead, by assuming that the values inside an interval are uniformly distributed, we

only have to store the number of distinct values the interval contains. Table 3.4 shows what

a CPD with intervals looks like. In the example, given that a person is American, there is

probability of 1−(0.2+0.5) = 0.3 that his hair colour is in the [Dark, Red] interval. Because

there are 3 distinct values in the [Dark, Red] interval, the probability that an American

has, say, hazel hair is 1−(0.2+0.5)
3 = 0.1.

Blond Brown [Dark, Red]

American 0.2 0.5 3

[British, French] 0.4 0.3 3

Swedish 0.8 0.2 0

Table 3.4: 𝑃 (ℎ𝑎𝑖𝑟|𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) with 𝑘 = 2 and 𝑗 = 1

Compressing a CPD in such a manner means that we only have to store (𝑘 + 𝑗)2 values

per distribution. If we assume that there are 𝑛 attributes inside a relation, then storing a

Bayesian networks requires (𝑘 + 𝑗) + (𝑛− 1)(𝑘 + 𝑗)2 values in total. Indeed, the first (𝑘 + 𝑗)

corresponds to the network’s root node which is not conditioned on any other variable.

This has the added advantage that we can handle continuous variables that usually have

extremely high cardinalities.

In practice, retrieving CPDs inside a relational database can easily be done with GROUP

BY and COUNT statements. Moreover, each CPD can be obtained from a sample of the rela-

tions to reduce computation time. Indeed, having an exact value for each case of each CDP

isn’t of paramount importance. Many RBDMS implementation in fact resort to sampling

in order to compile their sufficient statistics in a timely manner. What’s more, if data is

appended to or removed from a relation, then only the CPDs have to recomputed. Indeed,

if one assumes that the attributes dependency structure remains constant, then there is

no point in running a new structure search. However, if new attributes are added to a

relation, then the structure of the Bayesian network it should belong to has to be rebuilt

from scratch. One may imagine that structure searches can be plumed with CPDs updates

on a fixed schedule.
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3.3.3 Producing selectivity estimates

As previously mentioned, inference is the task of obtaining a marginal distribution from a

Bayesian network. For example we may want to know the probability of Swedish people

having blond hair (i.e. 𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑” ∧ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”)). The idea is to

treat the obtained probability as the selectivity of the associated relational query. For each

relation involved in a query, we identify the part of the query that applies to the relation

and determine it’s selectivity. Then, by assuming that attributes from different relations

are independent, we simply multiply the selectivities together. Although this is a strong

assumption, we argue that capturing table-level dependencies can still have a significant

impact on the overall selectivity estimation. Of course we would be even more precise if we

had determined dependencies between different relations as in [Getoor et al., 2001, Tzoumas

et al., 2011], but it would necessarily involve joins. In other words our method offers a

different trade-off between accuracy and computational feasibility.

Performing exact inference over a BN is an NP-hard problem [Cooper, 1990] in general.

Approximate methods exist based on Monte Carlo estimation exist, such as belief propaga-

tion [Pearl, 1982] and Gibbs sampling [Gelfand and Smith, 1991], but they are not efficient

and don’t suit our purpose. Due to the fact that we have restricted our BNs to trees, we can

make full use of purpose-built algorithms that only apply to trees. The variable elimina-

tion (VE) algorithm [Cowell et al., 2006] is a simple exact inference algorithm that can be

applied to any kind of network topology. Specifically, the complexity of VE is 𝒪(𝑛 exp (𝑤))

where 𝑛 is the number of nodes and 𝑤 is the width of the network [Robertson and Seymour,

1986]. However, the width of a tree is necessarily 1, meaning VE can run in 𝒪(𝑛) time.

The formula for applying VE is given in (3.5), wherein 𝑘 attributes are being queried out

of a total of 𝑛.

𝑃 (𝐴1 = 𝑎1, . . . , 𝐴𝑘 = 𝑎𝑘) =
𝑛∑︁

𝑖=𝑘+1

𝑘∏︁
𝑗=1

𝑃 (𝐴𝑗 = 𝑎𝑗 | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝐴𝑗)) (3.5)
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For example, if ℎ𝑎𝑖𝑟 depends on 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 and 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 depends on 𝑔𝑒𝑛𝑑𝑒𝑟, then

by applying equation (3.5), we obtain:

𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑”) = 𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑” | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”) +

𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑” | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛”)

= 𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑” | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”) ×

(𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝑆𝑤𝑒𝑑𝑖𝑠ℎ” | 𝑔𝑒𝑛𝑑𝑒𝑟 = “𝑀𝑎𝑙𝑒”) +

𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝑆𝑤𝑒𝑑𝑖𝑠ℎ” | 𝑔𝑒𝑛𝑑𝑒𝑟 = “𝐹𝑒𝑚𝑎𝑙𝑒”)) +

𝑃 (ℎ𝑎𝑖𝑟 = “𝐵𝑙𝑜𝑛𝑑” | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛”) ×

(𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛” | 𝑔𝑒𝑛𝑑𝑒𝑟 = “𝑀𝑎𝑙𝑒”) +

𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = “𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛” | 𝑔𝑒𝑛𝑑𝑒𝑟 = “𝐹𝑒𝑚𝑎𝑙𝑒”))

(3.6)

The idea of VE is to walk over the tree in a post-order fashion – i.e. start from the

leaves – and sum up each CPD row-wise. This avoids unnecessarily computing sums more

than needed and ensures the inference process runs in linear time. The computation can

be further increased by noticing that not all nodes in a BN are needed to obtain a given

marginal distribution [Jensen et al., 1996]. Indeed the VE algorithm only has be run on

a necessary subset of the tree’s nodes which is commonly referred to as the Steiner tree

[Hwang et al., 1992]. Extracting a Steiner tree from a tree can be done in linear time (see

algorithm 1).

G

S N

H P

Figure 3-4: Steiner tree in blue containing nodes G, N, and H needed to compute H’s
marginal distribution

In our case we are using CPDs with intervals, meaning that we have to tailor the VE

algorithm around them. Fortunately this is quite simple as we only have to check if a given

value is an interval or not. Range queries can be handled by interpolating inside the interval.
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Meanwhile, for equality queries we can assume that all distinct values in the interval are

equally frequent.

Algorithm 1 Steiner tree extraction
1: function Walk(𝑛𝑜𝑑𝑒, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑝𝑎𝑡ℎ, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

2: if required is empty then

3: return {}

4: else if node in nodes then

5: 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ← 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∖ {𝑛𝑜𝑑𝑒}

6: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ← 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∪ 𝑝𝑎𝑡ℎ

7: end if

8: 𝑝𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ ∪ {𝑛𝑜𝑑𝑒}

9: for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛() do

10: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ← 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ∪ Walk(𝑐ℎ𝑖𝑙𝑑, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑝𝑎𝑡ℎ, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

11: end for

12: return 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

13: end function

14: function ExtractSteinerTree(𝑡𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒𝑠)

15: 𝑛𝑜𝑑𝑒𝑠 ← 𝑛𝑜𝑑𝑒𝑠 ∪ 𝑡𝑟𝑒𝑒.𝑟𝑜𝑜𝑡()

16: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ← Walk(𝑡𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒𝑠, {}, {})

17: return 𝑡𝑟𝑒𝑒.𝑠𝑢𝑏𝑠𝑒𝑡(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡))

18: end function

3.3.4 Toy example

To illustrate our model, we will show how it works on a synthetic purpose-built dataset. The

dataset contains three relations and is intendedly small. By design, it possesses attribute

dependencies inside and between relation. The first relation contains passenger information

whilst the second relates to air travel routes. The third relation is a fact table that indicates

the routes taken by each passenger – a passenger can take more than one route. We will

therefore detail the intermediary results to get a feel of what steps are involves. Before

proceding, let us enumerate some records for each relation.
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ID Origin Destination Minutes

1 Stockholm Boston 515

2 Stockholm San Francisco 830

3 Stockholm New-York 515

4 Fresno Seattle 130

5 Fresno San Francisco 60

6 Fresno Seattle 110

Table 3.5: Routes

ID Nationality Gender Hair

1 Swedish Male Blond

2 Swedish Female Blond

3 Swedish Male Blond

4 Swedish Female Brown

5 Swedish Female Blond

6 American Male Brown

7 American Male Dark

8 American Female Brown

9 American Male Brown

10 American Female Blond

Table 3.6: Passengers
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Passenger ID Route ID

0 0

0 1

0 2

1 0

1 1

1 2

2 2

3 0

4 1

5 3

5 5

6 3

7 3

7 5

8 4

9 4

Table 3.7: Flights

The first step of our model is to determine the structure of a Bayesian network per

relation. To do so we first compute the mutual information between each pair of attributes.

The following tables contains the mutual information values for the passengers and routes

relations. The flights relation only contains key attributes and so we ignore it.
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Attribute 1 Attribute 2 MI

Hair Nationality 0.21801

Gender Hair 0.07938

Gender Nationality 0.02013

Table 3.8: Passengers MI values

Attribute 1 Attribute 2 MI

Minutes Destination 1.32966

Minutes Origin 0.69314

Destination Origin 0.46209

Table 3.9: Routes MI values

The highest dependency in the first relation is between the hair and nationality at-

tributes. This stems from the fact that 4 out of the 5 Swedes in the relation have blond

hair. However there doesn’t seem to be any particular link between American passengers

and their hair colour. Dependencies seem to be more pronounced in the routes relation.

Indeed there appears to be a strong dependency between the number of minutes a flight

can take and the destination. This seems rather counter-intuitive because we know that the

duration actually depends on the origin as well as the destination. This oddity is simply due

to the small size of the relation. Indeed, apart from San Francisco each destination is only

present once, meaning that there is almost a 1-to-1 relationship between the destination and

the duration in minutes. There is also a dependency between the origin and the duration.

This is more natural as it originates from the fact that Stockholm, being a capital city, has

more long-haul flights than it’s Fresno counterpart. Finally there is a dependency between

the origins and the destinations simply because each airport has a different of available

destinations. In other words, given a list of destinations, one should be able to deduct to

which airport the list belongs.

The next step is to treat the mutual information values as weighted edges in a fully

connected graph. For convenience we call this the dependency graph.

H

N G

0.21801 0.07938

0.02013

M

D O

1.32966 0.69314

0.46209

Figure 3-5: Dependency graphs for the passengers relation (left) and the routes relation
(right) annotated with the according mutual information values
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There isn’t a noticeable difference between using any of the three most used MST con-

struction algorithms – Kruskall, Prim, or Borůvka. For this example and the rest of the

experiments we stuck with Kruskall’s algorithm. Once the MST is obtained, we have to

determine it’s root in order to convert it into a direct graph.

N

H

G

M

D O

Figure 3-6: Bayesian networks obtained for the passengers relation (left) and the routes
relation (right)

Once the structure is determined, the conditional probability distributions have to be

computed. Although there aren’t any spatial concerns whatsoever, for the sake of this

example we only keep the two most common values and put the rest of the values inside

two equi-height bins.

515 830 [60, 110] (110, 130]

1
3

1
6 2 1

Table 3.10: 𝑃 (𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

Stockholm Fresno

515 1 0

830 1 0

[60, 110] 0 1

(110, 130] 0 1

Table 3.11: 𝑃 (𝑜𝑟𝑖𝑔𝑖𝑛 | 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
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New-York San Francisco [Boston, Portland] [Seattle, Seattle]

515 0.5 0 1 0

830 0 1 0 0

[60, 110] 0 0.5 1 0

(110, 130] 0 0 0 1

Table 3.12: 𝑃 (𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 | 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

American Swedish

0.5 0.5

Table 3.13: 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

Blond Brown [Dark, Dark]

American 0.2 0.6 0.2

Swedish 0.8 0.2 0

Table 3.14: 𝑃 (ℎ𝑎𝑖𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

Male Female

Blond 0.4 0.6

Brown 0.5 0.5

[Dark, Dark] 1 0

Table 3.15: 𝑃 (𝑔𝑒𝑛𝑑𝑒𝑟 | ℎ𝑎𝑖𝑟)

As mentioned previously, the values under each interval column – e.g. [Boston, Port-

land] – are not probabilities, instead they indicate the number of distinct values that are

present given a particular conditional value. For example there is one unique value in the

interval [Boston, Portland] given that the number of minutes is equal to 515; there is also

a probability of 1−(0+0)
2 = 0.5 that a destination is in the interval [Boston, Portland] given

that the number of minutes is 515.

We now have all the elements required to conduct selectivity estimation. Let us start

with a simple query over a single relation.
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SELECT *

FROM passengers p

WHERE p.hair = 'Blond'

We simply want to know how many passengers have blond hair. The true selectivity of

this query is 0.5. Because the query only targets the passengers relation we only have to

look at the corresponding Bayesian network. The selectivity is therefore computed as so:

𝑃 (“𝐵𝑙𝑜𝑛𝑑”) = 𝑃 (“𝐵𝑙𝑜𝑛𝑑” | “𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛”)× 𝑃 (“𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛”) +

𝑃 (“𝐵𝑙𝑜𝑛𝑑” | “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”)× 𝑃 (“𝑆𝑤𝑒𝑑𝑖𝑠ℎ”)

= 0.2× 0.5 + 0.8× 0.5

= 0.5

(3.7)

Paradoxically, it can be that computing the selectivity of a more complex query involving

two predicates is simpler. For example consider the following query:

SELECT *

FROM passengers p

WHERE p.hair = 'Blond'

AND p.nationality = 'Swedish'

In this case we want to retrieve the passengers who are blond and Swedish. The textbook

approach to compute this selectivity is to consider that hair and nationality are independent

attributes: 𝑃 (“𝐵𝑙𝑜𝑛𝑑”, “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”) = 𝑃 (“𝐵𝑙𝑜𝑛𝑑”) × 𝑃 (“𝑆𝑤𝑒𝑑𝑖𝑠ℎ”) = 0.5 × 0.5 = 0.25.

However, in our dataset, 4 out of the 10 passengers are blond and Swedish. Meanwhile, our

Bayesian network knows this dependency and computes the selectivity as so:

𝑃 (“𝐵𝑙𝑜𝑛𝑑”, “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”) = 𝑃 (“𝐵𝑙𝑜𝑛𝑑” | “𝑆𝑤𝑒𝑑𝑖𝑠ℎ”)× 𝑃 (“𝑆𝑤𝑒𝑑𝑖𝑠ℎ”)

= 0.8× 0.5

= 0.4

(3.8)
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Now let us turn to a query involving a join. For example let’s see what happens if we

join the passengers relation with the flights relation.

SELECT *

FROM passengers p, flights f

WHERE p.hair = 'Blond'

AND p.nationality = 'Swedish'

AND p.id = f.passenger_id

This query returns 8 rows. The selectivity procedure goes as follows:

𝑃 (𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟.𝑖𝑑 = 𝑓𝑙𝑖𝑔ℎ𝑡𝑠.𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑖𝑑) = 𝑚𝑖𝑛( 1
|𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟.𝑖𝑑|

,
1

|𝑓𝑙𝑖𝑔ℎ𝑡𝑠.𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑖𝑑|
)

= 𝑚𝑖𝑛( 1
10 ,

1
10)

= 0.1

(3.9)

The selectivity estimate is thus 0.4×0.1×160 = 6.4 where 160 is the size of the Cartesian

product of the relations involved in the query. Alas we have underestimated the selectivity

of the query (6.4 < 8). The reason behind this error is the fact that the distribution of the

attributes of the passengers relation changes after the join. Indeed, as mentioned earlier 4

out of the 10 passengers are blond and Swedish. However, after the join it seems that 8 out

the 16 flights were taken by blond Swedes. This can be due to the fact that blond people take

more flights, or that Swedes take more flights, or both. In any case, this is a good example

of the join uniformity assumption. In our case, the problem is that 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) refers

to the distribution of the nationality in the passengers relation, not in the join between the

passengers and the flights relations. Interestingly, if we knew 𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) in the latter

case, then our estimate would be perfect. In other words we wouldn’t also have to know

𝑃 (ℎ𝑎𝑖𝑟 | 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) in both cases. This is due to the fact that our probabilities propagate

through the network, meaning that the distribution of the root node determines all the rest

of the distribution. Obtaining this probability would require a single GROUP BY over a single

join between the relations involved. This is much more efficient than [Tzoumas et al., 2011]
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proposal of looking for the highest dependency between pairs of attributes involving two

relations.

Finally let us examine a query involving all three relations. The following query returns

all the flights taken by blond Swedes and originating from Stockholm. The query returns 8

rows.

SELECT *

FROM passengers p, flights f, routes r

WHERE p.hair = 'Blond'

AND p.nationality = 'Swedish'

AND p.id = f.passenger_id

AND f.route_id = r.id

AND r.origin = 'Stockholm'

The attribute predicates belong to two different tables. We thus handle each of these

predicates separately. We already obtained the selectivity for the part of the query involving

the passengers relation – it was 0.4. As for the selectivity for the routes relation, it is

determined as so:

𝑃 (“𝑆𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑚”) = 𝑃 (“𝑆𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑚” | 515)× 𝑃 (515) + 𝑃 (“𝑆𝑡𝑜𝑐𝑘ℎ𝑜𝑙𝑚” | 830)× 𝑃 (830)

= 1× 1
3 + 1× 1

6
= 0.5

(3.10)

The selectivity of the join between the flights and the routes is:

𝑃 (𝑓𝑙𝑖𝑔ℎ𝑡𝑠.𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑖𝑑 = 𝑟𝑜𝑢𝑡𝑒𝑠.𝑖𝑑) = 𝑚𝑖𝑛( 1
|𝑓𝑙𝑖𝑔ℎ𝑡𝑠.𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟_𝑖𝑑|

,
1

|𝑟𝑜𝑢𝑡𝑒𝑠.𝑖𝑑|
)

= 𝑚𝑖𝑛(1
6 ,

1
6)

= 1
6

(3.11)
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Our final selectivity estimate is thus (0.4×0.5)×(0.1× 1
6)×(10×16×6) = 3.2. Sadly this

is well under the expected value of 8. The problem is that Swedes tend to take their flights

from Stockholm. In other words the “nationality” and “origin” attributes are dependent.

However these attributes are located in different relations and a 3-way join is needed in

order to determine this dependency. Even if we used a method that captured dependencies

in 2-way joins, we wouldn’t have detected this dependency.

3.4 Linked Bayesian networks

3.4.1 Discussion

The Bayesian networks we have discussed in the previous sections are built on individual

relations. Therefore, they don’t allow capturing dependencies between attributes that be-

long to one or more different relations. Alas, these are the highest source of error, and

are thus the most important ones to estimate correctly. This is also a much difficult task,

because the number of attribute combinations is increasingly large. Additionally, attribute

value distributions may change once the relation they pertain to is joined with one or more

other relations. Many existing methods get around this issue by making the join uniformity

assumption, which states that there is an equal chance for each tuple in a relation to be part

of a join. In other words, it assumes that attribute values are simply repeated a constant

amount of times, which essentially “stretches” the attribute values but doesn’t modify the

distribution whatsoever. Naturally, this isn’t correct in practice.

It is worth taking a short epistemological detour to get a better understanding. From

the philosophical point of view of logic, Bayesian networks are in essence propositional.

Propositional logic is a subset of logic that deals with logical operators and the calculus

rules that concern them. In a Bayesian network, the variables are part of a single entity.

Propositional logic, which is also called zeroth-order logic, has an older sister called first-

order logic. The latter supersedes zeroth-order logic, and adds a formalism for dealing with

relationships and quantities. Our goal is to somewhat extend Bayesian networks through

the principles of first-order-logic. A much more in-depth treatment is given in section 14.6

of [Russell and Norvig, 2002]. In fact, the latter discusses relational probability models

[Friedman et al., 1999], which are an application of first-order logic to Bayesian networks.

These were applied in a text-book manner in [Getoor et al., 2001]. Although sound in and
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well-grounded in theory – one could even that they are elegant – they are just not amenable

to be used in a cost models, where the computational is extremely tight.

Alas, as we are constrained by strict performance requirements, there is seemingly little

we can do. Recall that the the AVI assumption implies that the statistical distribution of

each attribute is estimated by itself, which leads to the following factorisation:

𝑃 (𝑋1, . . . , 𝑋𝑛) ≃
∏︁
𝑅𝑗

(︂ ∏︁
𝑋𝑖∈𝑅𝑗

𝑃 (𝑋𝑖)
)︂

(3.12)

Methods that work at the resolution of a single relation, which includes the Bayesian

networks we have discusses until now, induce independence between relations:

𝑃 (𝑋1, . . . , 𝑋𝑛) ≃
∏︁
𝑅𝑗

(︂ ∏︁
𝑋𝑖∈𝑅𝑗

𝑃 (𝑋𝑖 |𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖))
)︂

(3.13)

Our goal is to model the full probability distribution by taking into account dependencies

between attributes of different relations, which can summarised as so:

𝑃 (𝑋1, . . . , 𝑋𝑛) ≃
∏︁
𝑋𝑖

𝑃 (𝑋𝑖 |𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖)) (3.14)

Note that equation 3.14 captures more information than equation 3.12. Modeling the

data by taking into account conditional dependencies thus guarantees that the resulting

selectivity estimates are at least as accurate as when assuming independence between at-

tributes. In the previous section, we made the assumption that attribute values of different

relations are independent. Additionally, we assumed that each attribute value distribution

remains the same when the relation it belongs to is joined with another relation. This

is a result of the join uniformity assumption and is a huge source of error. Indeed, the

distributions of an attribute’s values before and after a join are not necessarily the same.

As an example, imagine an e-commerce website where registered customers are stored in

a database alongside with purchases. Each customer can make zero or more purchases whilst

each purchase is made by exactly one customer. Some customers might be registered on the

website, but might not have made a purchase. If the customers and purchases relations are

joined together, then the customers who have not made any purchases will not be included

in the join. Therefore, the attributes from the customers relation will have different value

distributions when joined with the purchases relation. Note, however, that the attribute
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value distributions from the purchases relation will not be modified. This stems from the

fact that the join between the customers and purchases relations is a one-to-many join.

We will now attempt to explain how we can exploit this property to capture dependencies

across relations.

3.4.2 The attribute dependency preservation assumption

Let us assume we have two relations 𝑅 and 𝑆 that share a primary/foreign key relationship.

That is, 𝑆 contains a foreign key which references the primary key of 𝑅. This means that

each tuple from 𝑆 is associated with one tuple from 𝑅. Inversely, each tuple from 𝑅 is

associated with zero more tuples from 𝑆. A direct consequence is that the size of the join

𝑅 ◁▷ 𝑆 is equal to |𝑆|. The join uniformity assumptions implies that the probability for a

tuple 𝑟 from relation 𝑅 to be present in 𝑅 ◁▷ 𝑆 follows a uniform distribution. In statistical

terms, that is:

𝑃 (𝑟 ∈ 𝑅 ◁▷ 𝑆) ∼ 𝒰( 1
|𝑅|

) (3.15)

Consequently, the expected number of times each tuple from 𝑅 will be part of 𝑅 ◁▷ 𝑆

is |𝑆|
|𝑅| . Let us now denote by 𝑃𝑅(𝐴) the value distribution of attribute 𝐴 in relation 𝑅. We

will also define 𝑃𝑅◁▷𝑆(𝐴) as the value distribution of attribute 𝐴 in join 𝑅 ◁▷ 𝑆. The join

uniformity assumption thus implies that the distribution of 𝐴’s values before and after 𝑅

is joined with 𝑆 are equal:

𝑃𝑅(𝐴) = 𝑃𝑅◁▷𝑆(𝐴) (3.16)

Furthermore, assume we have found and built the following factorised distribution over

attributes 𝐴, 𝐵, and 𝐶 from relation 𝑅:

𝑃𝑅(𝐴, 𝐵, 𝐶) ≃ 𝑃𝑅(𝐴 |𝐵)× 𝑃𝑅(𝐵 |𝐶)× 𝑃𝑅(𝐶) (3.17)

If we hold the join uniformity assumption to be true, then we can use the factorised

distribution to estimate selectivities for queries involving 𝐴, 𝐵 and 𝐶 when 𝑅 is joined with

𝑆 without any further modification. The issue is that this is an idealised situation that has

no reason to occur in practice. On the contrary, it is likely are that some tuples from 𝑅
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will be more or less present than others. However, we may assume that after the join the

attribute value dependencies implied by our factorisation remain valid within each relation.

We call this the attribute value dependency preservation assumption. The idea is that if

attributes 𝐴, 𝐵 and 𝐶 are dependent in a certain way in relation 𝑅, then there is not much

reason to believe that these dependencies will disappear once 𝑅 is joined with 𝑆. Although

this may not necessarily always occur in practice, it is still a much softer assumption than

those usually made by cost models.

To illustrate, let us consider a toy database composed of the following relations: cus-

tomers with attributes {𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, ℎ𝑎𝑖𝑟, 𝑠𝑎𝑙𝑎𝑟𝑦}, shops with attributes {𝑛𝑎𝑚𝑒, 𝑐𝑖𝑡𝑦, 𝑠𝑖𝑧𝑒},

purchases with attributes {𝑑𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘}. Moreover, assume that the purchases relation

has two foreign keys, one that references the primary key of customers and another with

that of shops. The purchases relation can thus be seen as a fact table whilst customers and

shops can be viewed as a dimension table. In what follows we will use the shorthand 𝐶 the

customers relation, 𝑆 for the shops relation, and 𝑃 for the purchases relation.

In the customers relation, there are Swedish customers and a lot of them have blond hair.

We might capture this property in a Bayesian network with the conditional distribution

𝑃𝐶(ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦), which indicates that hair colour is influenced by nationality. We

could suppose that the fact that Swedish people have blond hair is still true once the

customers relation is joined with the purchases relation. In other words, the hair colour

shouldn’t change the rate at which Swedish customers make purchases. However, we may

rightly assume that the number of purchases will change according to the nationality of

each customer. Mathematically, we are saying the following:

𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) = 𝑃𝐶(ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)× 𝑃𝐶◁▷𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) (3.18)

In other words, because we assume that 𝑃𝐶(ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) = 𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦),

then we know 𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) – i.e., we assume that their conditional distribution

remains unchanged after the join. An immediate consequence is that we get to know the

𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟) distribution for free. Indeed, by summing over the nationalities, we obtain:

𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟) =
∑︁

𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦

𝑃𝐶(ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)× 𝑃𝐶◁▷𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) (3.19)
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To demonstrate why our assumption is useful for the purpose of selectivity estimation,

let us use the example data in tables 3.16 and 3.17.

Customer Nationality Hair
1 Swedish Blond
2 Swedish Blond
3 Swedish Brown
4 American Blond
5 American Brown

Table 3.16: Customers relation

Purchase Shop Customer
1 1 1
2 1 1
3 2 1
4 2 1
5 3 2
6 4 3
7 5 5

Table 3.17: Purchases relation, which con-
tains a foreign key that is related to the pri-
mary key of the customers relation

Let us say we wish to know how many purchases are made by customers who are both

blond and Swedish. The straightforward way to do this is to count the number of times

“Blond” and “Swedish” appear together in the join 𝐶 ◁▷ 𝑃 :

𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟 = 𝐵𝑙𝑜𝑛𝑑, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = 𝑆𝑤𝑒𝑑𝑖𝑠ℎ) = 5
7 (3.20)

The fraction 5
7 is the true amount of purchases that were made by Swedish customers

with blond hair – said otherwise this is the selectivity of the query. Obtaining it requires

scanning the rows resulting from the join of 𝐶 with 𝑃 . In practice this can be very burden-

some, especially when queries involve many relations. If we assume that the join uniformity

assumption holds – in other words we assume that the value distributions of nationality

and hair do not change – then we can simply reuse the Bayesian network of the customers

relation:

𝑃𝐶◁▷𝑃 (𝐵𝑙𝑜𝑛𝑑, 𝑆𝑤𝑒𝑑𝑖𝑠ℎ) ≃ 𝑃𝐶(𝐵𝑙𝑜𝑛𝑑 |𝑆𝑤𝑒𝑑𝑖𝑠ℎ)× 𝑃𝐶(𝑆𝑤𝑒𝑑𝑖𝑠ℎ)

≃ 2
3 ×

3
5

≃ 2
5

(3.21)

In this case, making the join uniformity independence assumption makes us underesti-

mate the true selectivity by 44% (1 − 2
5 ×

7
5). Some of this error is due to the fact that
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the nationality attribute values are not distributed in the same way once 𝐶 and 𝑃 are

joined – indeed in this toy example Swedish customers make more purchases than Amer-

ican ones. However, if we know the distribution of the nationality attribute values, i.e.,

𝑃𝐶◁▷𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦), then we can enhance our estimate in the following manner:

𝑃𝐶◁▷𝑃 (𝐵𝑙𝑜𝑛𝑑, 𝑆𝑤𝑒𝑑𝑖𝑠ℎ) ≃ 𝑃𝐶(𝐵𝑙𝑜𝑛𝑑 |𝑆𝑤𝑒𝑑𝑖𝑠ℎ)× 𝑃𝐶◁▷𝑃 (𝑆𝑤𝑒𝑑𝑖𝑠ℎ)

≃ 2
3 ×

6
7

≃ 4
7

(3.22)

Now our underestimate has shrunk to 20%. The only difference with the previous

equation is that we have replaced 𝑃𝐶(𝑆𝑤𝑒𝑑𝑖𝑠ℎ) with 𝑃𝐶◁▷𝑃 (𝑆𝑤𝑒𝑑𝑖𝑠ℎ). Note that we did

not have to precompute 𝑃𝐶◁▷𝑃 (𝐵𝑙𝑜𝑛𝑑, 𝑆𝑤𝑒𝑑𝑖𝑠ℎ). Indeed, we assumed that the dependency

between nationality and hair doesn’t change once 𝐶 and 𝑃 are joined, which stems from

our dependency preservation assumption. Note that, in our toy example, the assumption

is slightly wrong because blond customers have a higher purchase rate than brown haired

ones, regardless of the nationality. Regardless, this assumption is still much softer than the

join uniformity and attribute value independence assumptions.

The newly introduced assumption is softer than the join uniformity assumption because

it allows attribute value distributions to change after a join. Statistically speaking, instead

of assuming that tuples appear in a join following a uniform distribution, we are saying

that the distribution of the tuples is conditioned on a particular attribute (e.g., the nation-

ality of the customers dictates the distribution of the customers in the join between shops

and customers). We also assume that attribute value dependencies with each relation are

preserved through joins (e.g., hair colour is still dependent on nationality). The insight is

that in a factorised distribution, the top-most attribute is part of any query. For instance,

in the distribution 𝑃 (𝐴 |𝐵) × 𝑃 (𝐵 |𝐶) × 𝑃 (𝐶), every query involving any combination of

𝐴, 𝐵, and 𝐶 will necessarily involve 𝑃 (𝐶). We will now see how our newly introduced

attribute value dependency preservation assumption can be used to link Bayesian networks

from different relations together, and as such relax the join uniformity and attribute value

independence assumptions at the same time.
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3.4.3 Linking Bayesian networks

As explained in the previous subsection, if a purchases relation has a foreign key that

references a primary key of another relation named customers, then the distribution of

purchases’ attribute values will not change after joining customers and purchases. However

the distribution of customers’ attribute values will change if purchases’ foreign key is skewed,

which is always the case to some degree. If we use Bayesian networks independently, then the

Bayesian network built on customers would not be accurate when estimating selectivities for

queries involving customers and purchases. This is because it would assume the distributions

of the attribute values from customers are preserved after the join, which is a consequence

of the join uniformity assumption. Moreover, because of the AVI assumption, we would

not be capturing the existing dependencies between customers’s attributes and purchases’s

attributes because their respective attributes are assumed to be independent with those of

the opposite relation. On the other hand, if we join customers and purchases and build a

Bayesian network on top of the join then we will capture the cross-relation attribute value

dependencies, but at too high a computational cost [Getoor et al., 2001, Tzoumas et al.,

2011]. Up to now, we have only mentioned the case where there one join occurs, but the

same kind of issues occur for many-way joins – including chain-joins and star-joins [Lindsay

et al., 1999].

If the attribute value distributions of customers and purchases are estimated using

Bayesian networks that possess a tree structure, then we only have to include the dependen-

cies of a subset customers’s attributes with those of purchases. Specifically, we only have to

include the root attribute of customers’s Bayesian network into that of purchases. Indeed,

because customers’s Bayesian network is a tree, then all of its nodes are necessarily linked to

the root. If we know the distribution of the root attribute’s values after customers is joined

with purchases, then, by making the attribute value dependency preservation assumption

earlier introduced, we automatically obtain the distribution of the rest of customers’s at-

tribute. In other words, if the distribution of an attribute’s values is modified when the

relation it belongs to is joined with another relation, then we assume that all the attributes

that depend on it have their value distributions modified in the exact same manner. This

is another way of saying that the conditional distributions remain the same.
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Let us now see how this works on our toy database consisting of relations customers,

shops, and purchases. Following the methodology from the previous section, we would

have built one Bayesian network per relation. Each Bayesian network would necessarily

have been a tree as a consequence of using the Chow-Liu algorithm [Chow and Liu, 1968].

Depending on the specifics of the data, we might have obtained the Bayesian networks

shown in figure 3-7.

Day of weekNationality

Hair Salary

Name

City Size

Figure 3-7: Separate Bayesian networks of customers, shops, and purchases

Furthermore, let us consider the following SQL query:

SELECT *

FROM customers, shops, purchases

WHERE customers.id = purchases.customer_id

AND shops.id = purchases.shop_id

AND customers.nationality = 'Japanese'

AND customers.hair = 'Dark'

AND shops.name = 'Izumi'

If we were to estimate the amount of tuples that satisfy the above query using the

Bayesian networks from figure 3-7, then we would estimate the query selectivity in the

following manner:

𝑃 (𝐷𝑎𝑟𝑘, 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒, 𝐼𝑧𝑢𝑚𝑖) = 𝑃𝐶(𝐷𝑎𝑟𝑘 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

× 𝑃𝐶(𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

× 𝑃𝑆(𝐼𝑧𝑢𝑚𝑖)

(3.23)

On the one hand, the conditional distribution 𝑃𝐶(𝐷𝑎𝑟𝑘 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒) captures the fact

that Japanese people tend to have dark hair inside the customers relation. Graphically

this is represented by the arrow that points from the “Nationality” node to the “Hair”
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node in figure 3-7. On the other hand, our estimate ignores the fact that shops in Japan,

including “Izumi”, are mostly frequented by Japanese people. The reason why is that we

have one Bayesian network per relation, instead of a global network spanning all relations,

and are thus not able to capture this dependency. Regardless of the missed dependency, this

simple method is still more accurate than assuming total independence. Indeed the AVI

assumption would neglect the dependency between ℎ𝑎𝑖𝑟 and 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, even though both

attributes are part of the same relation. Meanwhile assuming relational independence is

convenient because it only requires capturing dependencies within relations, but it discards

the dependency between 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 and 𝑐𝑖𝑡𝑦. We propose to capture said dependency by

adding nodes from the Bayesian networks of customers and shops to the Bayesian network

of purchases. Specifically, for reasons that will become clear further on, we add the roots of

the Bayesian networks of customers and shops (i.e., 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 and 𝑛𝑎𝑚𝑒) to the Bayesian

network of purchases. This results in the linked Bayesian network shown in figure 3-8.

Nationality

Day of week NameNationality

Hair Salary
Name

City Size

Figure 3-8: Linked Bayesian network of customers, shops, and purchases

In this new configuration, we still have one Bayesian network per relation. The difference

is that the Bayesian network of purchases includes the root attributes of both customers

and shops’s Bayesian networks. In other words, we have joined the purchases relation

with the customers and shops and we have then built a Bayesian network for purchases

that now includes attributes from customers and shops. A linked Bayesian network is

thus a set of separate Bayesian networks where some of the attributes are duplicated in

two related networks. In practice, this means that we now know the distribution of the

𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 and 𝑛𝑎𝑚𝑒 attribute values once the relations they belong to have been joined

with purchases. Meanwhile, we also know their distributions when these relations are not
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joined with purchases. In other words, we store two distributions for each root attribute,

one before the join and one afterwards. The distribution of a root attribute in a Bayesian

network is nothing more than a one-dimensional histogram. This means that storing two

distributions for each root attribute doesn’t incur any significant memory burden.

The configuration shown in figure 3-8 has two immediate benefits over the one presented

in figure 3-7. First of all, we are now able to determine if the percentage of Japanese in

the purchases relation is different from the one in the customers relation. Indeed, we do

not have to assume the distribution remains the same after the join now that we know

the distribution of 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦’s values when customers is joined with purchases. A key

observation is that we get to know something about the distribution of the ℎ𝑎𝑖𝑟 attribute

values when customers is joined with purchases. That is to say, because we know how

the distribution of 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute values changes after the join, then we also know

something about the ℎ𝑎𝑖𝑟 attribute values because both attributes are dependent within

the customers relation. This stems from the fact that we assume that the conditional

distribution 𝑃 (ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) is preserved after the join. Mathematically this translates

to:

𝑃𝐶◁▷𝑃 (ℎ𝑎𝑖𝑟, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) = 𝑃𝐶(ℎ𝑎𝑖𝑟 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)𝑃𝐶◁▷𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) (3.24)

Although, in practice, we expect the dependency preservation assumption to not always

be verified, we argue that it is a much weaker assumption than assuming total relational

independence. The second benefit is that we can now take into account the fact the Japanese

people typically shop in Japanese shops, even though the involved attributes belong to

relations that are not directly related. This happens because the 𝑛𝑎𝑚𝑒 attribute is now

part of purchases’s Bayesian network as well as that of shops. Formally the query selectivity

can now be expressed as so:

𝑃𝐶◁▷𝑃 ◁▷𝑆(𝐷𝑎𝑟𝑘, 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒, 𝐼𝑧𝑢𝑚𝑖) = 𝑃𝐶(𝐷𝑎𝑟𝑘 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

× 𝑃𝑃 ◁▷𝑆(𝐼𝑧𝑢𝑚𝑖 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

× 𝑃𝐶◁▷𝑃 (𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

(3.25)
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Let us now consider the following SQL query where the only difference with the previous

query is that are filtering by 𝑐𝑖𝑡𝑦 instead of by 𝑛𝑎𝑚𝑒:

SELECT *

FROM customers, shops, purchases

WHERE customers.id = purchases.customer_id

AND shops.id = purchases.shop_id

AND customers.nationality = 'Japanese'

AND customers.hair = 'Dark'

AND shops.city = 'Osaka'

In this case, our linked Bayesian network would estimate the selectivity as so:

𝑃 (𝐷𝑎𝑟𝑘, 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒, 𝑂𝑠𝑎𝑘𝑎) = 𝑃𝐶(𝐷𝑎𝑟𝑘 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

×
∑︁

𝑛𝑎𝑚𝑒

𝑃𝑃 ◁▷𝑆(𝑂𝑠𝑎𝑘𝑎 |𝑛𝑎𝑚𝑒)𝑃𝑃 (𝑛𝑎𝑚𝑒 | 𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

× 𝑃𝐶◁▷𝑃 (𝐽𝑎𝑝𝑎𝑛𝑒𝑠𝑒)

(3.26)

This is a simple application of Bayesian network arithmetic [Jensen et al., 1996]. The

reason why there is a sum is that we have to take into account all the shops that are located

in Osaka because none of them in particular has been specified in the SQL query. Note that

our linked Bayesian network is still capable of estimating selectivities when only a single

relation is involved. For example, we only need to use 𝑃𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) when the customers

relation is joined with purchases relation. If only the customers relation is involved in a

query, then we can simply use 𝑃𝐶(𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) instead of 𝑃𝑃 (𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦). We discuss

these two points in further detail in subsection 3.4.5.

Linked Bayesian networks thus combine the benefits of independent Bayesian networks,

while having the benefit of softening the join uniformity assumption as well as the attribute

value independence assumption. We will now discuss how one may obtain a linked Bayesian

network in an efficient manner.
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3.4.4 Building linked Bayesian networks

A linked Bayesian network is essentially a set of Bayesian networks. Indeed, our method

consists in taking individual Bayesian networks and linking them together in order to obtain

one single Bayesian network. This linking process is detailed in the next subsection. In our

case, by only including the root attribute of each relation into the Bayesian network of its

parent relation, we ensure that the final network necessarily has a tree topology. Performing

inference on a Bayesian network with a tree topology can be done in linear time using

the sum-product algorithm [Kschischang et al., 2001]. Building a linked Bayesian network

involves building the Bayesian networks of each relation in a particular order. Indeed, in our

example, we first have to build the Bayesian networks of the customers and shops relations in

order to determine the roots that are to be included in the Bayesian network of the purchases

relation. To build the purchases Bayesian network, we first have to join the root attributes

(i.e., 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 and 𝑛𝑎𝑚𝑒) of the first two Bayesian networks (i.e., customers and shops)

with the purchases relation. Naturally, performing joins incurs an added computational

cost. However, we argue that joins are unavoidable if one is to capture attribute value

dependencies across relations. Indeed, if joins are disallowed whatsoever, then there is

basically no hope of measuring dependencies between attributes of different relations. Our

methodology requires performing one left-join per primary/foreign key relationship, whilst

only requiring to include one attribute per join, which is as cost-effective as possible.

The specifics of the procedure we used to build the linked Bayesian network are given in

algorithm 2. We assume the algorithm is given a set of relations. In addition, the algorithm

is provided with the set of primary/foreign key relationships in the database (e.g., purchases

has a foreign key that references customers’ primary key and another that references shops’s

primary key). This set of primary/foreign key relationships can easily be extracted from

any database’s metadata. The idea is to go through the set of relations and check if the

Bayesian networks of the dependent relations have been built. In this implementation a

while loop is used to go through the relations in their topological order, from bottom to

top. The Bayesian networks are built using the 𝐵𝑢𝑖𝑙𝑑𝐵𝑁 function, which is in effect the

algorithm used for the Bayesian networks of the previous section. In short, the 𝐵𝑢𝑖𝑙𝑑𝐵𝑁

function works in three steps:
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1. Build a fully-connected, undirected weighted graph, where each node is an attribute

and each vertex’s weight is the mutual information between two attributes.

2. Find the maximum spanning tree (MST) of the graph.

3. Orient the MST in order to obtain a tree by choosing a root.

The 𝐵𝑢𝑖𝑙𝑑𝐵𝑁 function produces a Bayesian network with a Chow-Liu tree structure.

This tree has the property of being the tree which stores the maximum amount of infor-

mation out of all the legal trees. In our algorithm, the first pass of the while loop will

build the Bayesian networks of the relations that have no dependencies whatsoever (e.g.,

those who’s primary key isn’t referenced by any foreign key). The next pass will build the

Bayesian networks of the relations that contain primary keys referenced by the foreign keys

of the relations covered in the first pass. The algorithm will necessarily terminate once each

relation has an associated Bayesian network; it will take as many steps as there are relations

in the database.

Algorithm 2 Linked Bayesian networks construction
1: function BuildLinkedBN(𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠)

2: 𝑙𝑏𝑛 ← {}

3: 𝑏𝑢𝑖𝑙𝑡 ← {} ◁ Records which relations have been processed

4: while |𝑙𝑏𝑛| < |𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠| do

5: 𝑞𝑢𝑒𝑢𝑒 ← 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∖ 𝑏𝑢𝑖𝑙𝑡 ◁ Relations which don’t have a BN

6: for each 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∈ 𝑞𝑢𝑒𝑢𝑒 do

7: if 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠[𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛] ∖ 𝑏𝑢𝑖𝑙𝑡 = ∅ then

8: for each 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠[𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛] do

9: 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ◁▷ 𝑐ℎ𝑖𝑙𝑑.𝑟𝑜𝑜𝑡

10: end for

11: end if

12: 𝑙𝑏𝑛 ← 𝑙𝑏𝑛 ∪𝐵𝑢𝑖𝑙𝑑𝐵𝑁(𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

13: 𝑏𝑢𝑖𝑙𝑡 ← 𝑏𝑢𝑖𝑙𝑡 ∪ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

14: end for

15: end while

16: return 𝑙𝑏𝑛

17: end function
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3.4.5 Selectivity estimation

The algorithm for producing selectivity estimates using linked Bayesian networks is ex-

tremely similar to the variable elimination procedure used for single Bayesian networks.

The key insight is that we can fuse linked Bayesian networks into a single Bayesian net-

work. Indeed, in our building process we have to make sure to include the root attribute

of each relation’s Bayesian network into it’s parent Bayesian’s network. This allows to link

each pair of adjacent Bayesian networks together via their shared attribute. In figure 3-8,

these implicit links are represented with dotted lines. The purchases and customers rela-

tion have in common the 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute, whereas the shops and purchases relations

have in common the 𝑛𝑎𝑚𝑒 attribute. The resulting “stiched” network is necessarily a tree

because each individual Bayesian network is a tree and each shared attribute is located at

the root of each child network.

Algorithm 3 Selectivity estimation using a linked Bayesian network
1: function InferSelectivity(𝑙𝑏𝑛, 𝑞𝑢𝑒𝑟𝑦)

2: 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑞𝑢𝑒𝑟𝑦)

3: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ← 𝑃𝑟𝑢𝑛𝑒𝐿𝑖𝑛𝑘𝑒𝑑𝐵𝑁(𝑙𝑏𝑛, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠)

4: 𝑙𝑖𝑛𝑘𝑒𝑑 ← 𝐿𝑖𝑛𝑘𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

5: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐴𝑝𝑝𝑙𝑦𝑆𝑢𝑚𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑙𝑖𝑛𝑘𝑒𝑑)

6: return 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

7: end function

The pseudocode for producing selectivity estimates is given in algorithm 3. The first step

of the selectivity estimation algorithm is to identify which relations are involved in a given

query. Indeed each SQL query will usually involve a subset of relations, and thus we only

need to use the Bayesian networks that pertain to said subset. The 𝑃𝑟𝑢𝑛𝑒𝐿𝑖𝑛𝑘𝑒𝑑𝐵𝑁 thus

takes care of removing the unnecessary Bayesian networks from the entire set of Bayesian

networks. Naturally, in practice, and depending on implementation details, this may involve

simply loading in memory the necessary Bayesian networks. In any case, the next step is

to connect the networks into a single one. This necessitates looping over the Bayesian

networks in topological order – in the same exact fashion as algorithm 2 – and linking

them along the way. Linking two Bayesian networks together simply involves replacing the

attribute they have in common with the child Bayesian network. For instance, in figure
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3-8, the 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute from the purchases Bayesian network will be replaced by the

customers Bayesian network. This is because we are interested in the distribution of the

attributes after the join, not before. The resulting tree thus approximates the distribution

of attribute values inside the (𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ◁▷ 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑠 ◁▷ 𝑠ℎ𝑜𝑝𝑠) join instead of estimating

selectivities inside each relation independently, as is done in textbook cost models. The

result of this linking process is exemplified in figure 3-9, which shows the unrolled version of

the linked Bayesian network shown in figure 3-8. Finally, once the Bayesian networks have

been linked together, the sum-product algorithm [Kschischang et al., 2001] can be used to

output the desired selectivity.

Our method for estimating selectivities is very efficient. The main reason is because

we only have to apply the sum-product algorithm once, whereas the methodology from

the previous section requires applying the algorithm once for each relation involved in the

query at hand. This difference is made clear when comparing equations 3.12 and 3.14.

Furthermore, the sum-product algorithm is much more efficient in the case of trees than

the clique tree algorithm from [Tzoumas et al., 2011]. We confirm these insights in the

benchmarks section.

Nationality

HairSalary Day of week Name

City Size

Figure 3-9: Unrolled version of figure 3-8

3.4.6 Including more than just the roots

Our model assumes that the dependencies between attribute values within a relation are

preserved when a join occurs. Indeed we assume that tuples are uniformly distributed inside

a join given each value in the root attribute. One may wonder why we have to stop at the

root. Indeed, it turns out that we can include more attributes in addition to the root of each

child Bayesian network when building a parent Bayesian network. For example, consider the

linked Bayesian network shown in figure 3-10. In this configuration we include the 𝑠𝑎𝑙𝑎𝑟𝑦
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attribute as well as the 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute in the Bayesian network of the purchases

relation. By doing so we obtain a new conditional distribution 𝑃 (𝑠𝑎𝑙𝑎𝑟𝑦|𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) which

tells us the dependence between salary and nationality after customers has been joined with

purchases.

Nationality

Salary Day of weekNationality

Hair Salary

Figure 3-10: Linked Bayesian network of customers and purchases

The linked Bayesian network shown in 3-10 is valid because we can unroll it in order

to obtain a single tree, just as we did earlier on when we only included the nationality

attribute. However, the 𝑠𝑎𝑙𝑎𝑟𝑦 attribute can be included in the purchases Bayesian network

only because of the fact that the 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute is included as well. Indeed, if the

𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 attribute was not included, then linking customers and purchases together

would have resulted in a Bayesian network which would not necessarily have been a tree.

In this case, we would not have been able to compute 𝑃 (𝑠𝑎𝑙𝑎𝑟𝑦 |𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦) in purchases’s

Bayesian network. In other words, a node can be included in a parent Bayesian network

only if all of it’s conditioning attributes are included as well. Assuming a child Bayesian

network has 𝑛 nodes then we can include a number 𝑘 ∈ {0, . . . , 𝑛} of it’s nodes in the parent

Bayesian network. If 𝑘 = 0, then we simply keep each Bayesian network separate, which

brings us back to using independent Bayesian networks. If 𝑘 = 1, then we only include

the root of each child Bayesian network, which is the case we have discussed up to now. If

𝑘 = 𝑛, then we will include all the child’s attributes in the parent BN, which is somewhat

similar to the global methods presented in [Getoor et al., 2001] and [Tzoumas et al., 2011].

On the one hand, increasing 𝑘 will produce larger parent Bayesian networks that capture

more attribute value dependencies but also incur a higher computational cost. On the other

hand, lower values of 𝑘 will necessitate less computation but will assume more strongly that

dependencies are preserved through joins. The 𝑘 parameter is thus a practical parameter

for compromising between selectivity estimation accuracy and computational requirements.
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Notice that different values of 𝑘 can be used for each pair of relations. For instance, we

might want to increase 𝑘 if we notice that the cost model makes very bad estimates for a

certain relation. This can be decided upon as deemed fit, be it manually or via automated

DBA [Van Aken et al., 2017].

3.4.7 Summary

The method we propose attempts to generalise existing selectivity estimation methods based

on Bayesian networks. Following the methodology from the first section, we build one

Bayesian network per relation using Chow-Liu trees. The only difference is that we include

a set of attributes from the child relations into the Bayesian network associated with each

parent relation. The set of included attributes depends on a chosen parameter 𝑘 and the

structure of each child relation’s Bayesian network. Many distributions can be obtained for

free because of the fact that each Bayesian network is a tree in which the root attribute con-

ditions the rest of the attributes. This requires assuming that attribute value dependencies

are preserved through joins. This assumption, although not always necessarily true, is much

softer than the join uniformity as well as the attribute value independence assumptions. The

resulting Bayesian networks are thus able to capture attribute value dependencies across

relations, as well as inside individual relations. The downside of our method is that requires

it requires performing joins between pairs of relations, albeit with only a couple of attributes

at a time. Note however that such joins are performed offline during database downtime,

and therefore have no impact on the runtime performance. Moreover, we argue that joins

have to be performed if one is to capture dependencies across relations, and therefore are

unavoidable. The major benefit of our method is that it only requires including a single

attribute per join, and yet it brings a great deal of information for free through transitiv-

ity thanks to our newly introduced assumption. Moreover, our method can still benefit

from the efficient selectivity estimation procedure presented in the first section because of

the preserved tree structure. Finally, our method is able to generalise existing methods

based on Bayesian networks through a single parameter which determines the amount of

dependency to measure between the attributes of relations that share a primary/foreign key

relationship.
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3.5 Experimental results

We evaluate our proposal on an extensive workload derived from the JOB benchmark [Leis

et al., 2015]. The JOB benchmark consists of 113 SQL queries, along with an accompanying

dataset extracted from the IMDb website. The dataset therefore consists of non-synthetic

data, whereas other benchmarks such as TPC-DS [Poess et al., 2002] are based on synthetic

data. The dataset is challenging because it contains skewed distributions and exhibits many

correlations between attributes, both across and inside relations. The JOB benchmark is

now an established and reliable standard for evaluating and comparing cost models. The

dataset and the queries are publicly available 1.

During the query optimisation phase, the cost model has to estimate the selectivity of

each query execution plan (QEP) enumerated by the query optimiser. Query optimisers

usually build QEPs in a bottom-up fashion [Chaudhuri, 1998]. Initially, the cost model will

have to estimate selectivities for simple QEPs that involve a single relation. It will then be

asked to estimate selectivities for larger QEPs involving multiple joins and predicates. We

decided to mimic this situation by enumerating all the possible sub-queries for each of the

JOB benchmark’s queries, as detailed in [Chaudhuri et al., 2009]. For example, if a query

pertains to 4 relations, we will enumerate all the possible sub-queries involving 1, 2, 3, and

all 4 relations. We also enumerate through all the combinations of filter conditions. To

do so, we represented each query as a graph with each node being an attribute and each

edge a join. We then simply had to retrieve all the so-called induced subgraphs, which are

all the subgraphs that can be made up from a given graph. Each induced subgraph was

then converted back to a valid SQL statement. This procedure only takes a few minutes

and yields a fairly large amount of queries; indeed a total of 5,122,790 subqueries can be

generated for the JOB benchmark’s 113 queries. Tables 3.18 and 3.19 provide an overview

of the contents of our workload.

The general goal of our experiments is to detail the pros and cons of our method with

respect to the textbook approach from [Selinger et al., 1979] and some state-of-the-art

methods that we were able to implement. Most industrial databases still resort to using

textbook approaches, which are thus important to be compared with. Specifically our ex-

periments solely focus on the selectivity estimation module, not on the final query execution
1JOB dataset and queries: https://github.com/gregrahn/join-order-benchmark/
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Joins Amount
0 889

1-5 177,309
6-10 1,175,120
11-15 2,060,614
16-20 1,320,681
21-25 388,177

Table 3.18: Query spread per number of join
conditions

Filters Amount
1 261,440
2 763,392
3 1,301,840
4 1,380,329
5 923,481
6 384,285
7 94,855
8 12,496
9 672

Table 3.19: Query spread per number of filter
conditions

time. We assume that improving the selectivity estimates will necessarily have a beneficial

impact on the accuracy of the cost model and thus on the query execution time. Natu-

rally, the estimation has to remain reasonable. This seems to be a view shared by many in

the query optimisation community [Leis et al., 2015]. Indeed, many papers that deal with

selectivity estimation, both established and new, do not measure the impact on the final

query execution [Chen and Roussopoulos, 1994, Poosala et al., 1996, Poosala and Ioannidis,

1997, Tzoumas et al., 2011, Vengerov et al., 2015, Dutt et al., 2019].

We compared our proposal with a few promising state-of-the-art methods as well as the

selectivity estimation module from the PostgreSQL database system. PostgreSQL’s selec-

tivity estimation module is a fair baseline as it is a textbook implementation of the decades

old ideas from [Selinger et al., 1979]. We used version 10.5 of PostgreSQL and did not tinker

with the default settings. Additionally, we did not bother with building indexes, as these

have no consequence on the selectivity estimation module. A viable selectivity estimation

method should be at least as accurate as PostgreSQL, without introducing too much of a

computational cost increase. We implemented basic random sampling [Olken and Rotem,

1986], which consists in executing a given query on a sample of each relation in order to

extrapolate a selectivity estimate. Basic random sampling is simple to implement, but isn’t

suited for queries that involve joins because of the empty-join problem, as explained in

section 2. However many sampling methods that take into account the empty-join prob-

lem have been proposed. We implemented one such method, namely correlated sampling

[Vengerov et al., 2015]. Correlated sampling works by hashing related primary and foreign

86



keys and discards the tuples of linked relation where the hashes disagree. We also imple-

mented MSCN, which is the deep learning method that is presented in [Kipf et al., 2019b].

Finally we implemented the Bayesian network approach from [Tzoumas et al., 2011]. This

method differs from ours in that it is a global approach that builds one single Bayesian

networks over the entire set of relations. Although a global approach is able to capture

more correlations than ours, it require more computation. We compared our method with

different values for the 𝑘 parameter presented in section 3.4.6. Note that choosing 𝑘 = 0

is equivalent to using independent Bayesian networks. Increasing 𝑘 is expected to improve

the accuracy of the selectivity estimates but deteriorates the computational performance.

The 𝑘 parameter can thus be used to trade between accuracy and computational resources

depending on the use case and the constraints of the environment.

3.5.1 Selectivity estimation accuracy

We first measured the accuracy of the selectivity estimates for each method by comparing

their estimates with the true selectivity. The true selectivity can be obtained by executing

the query and counting the number of tuples in the result. The appropriate metric for such

a comparison is called the 𝑞-error [Moerkotte et al., 2009, Leis et al., 2018], and is defined

as so:

𝑞(𝑦, 𝑦) = 𝑚𝑎𝑥(𝑦, 𝑦)
𝑚𝑖𝑛(𝑦, 𝑦) (3.27)

where 𝑦 is the true selectivity and 𝑦 is the estimated selectivity. The 𝑞-error thus simply

measures the multiplicative error between the estimate and the truth. The 𝑞-error has the

property of being symmetric, and will thus be the same whether 𝑦 is an underestimation

or an overestimation. Moreover the 𝑞-error is scale agnostic (e.g., 8
3 = 24

9 ), which helps in

comparing errors over results with different scales.

Figure 3-11 shows the 𝑞-errors made by each method for all the queries of the workload

derived from the JOB benchmark. The 𝑦 axis represents the 𝑞-error associated with each

query. Meanwhile the 𝑥 axis denotes the amount of queries that have less than a given 𝑞-

error. For instance, PostgreSQL managed to estimate the selectivity of two million queries

with a 𝑞-error of less than 10 for each query. The curves thus give us a detailed view into

the distribution of the 𝑞-errors for each method. While the curves seem to exhibit a linear
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Figure 3-11: Sorted 𝑞-errors for all queries by method on the JOB workload

trend, one must note that the scale of the 𝑦 axis is logarithmic. The figure gives us a global

idea of the accuracy of each method in comparison with the others. The mean, maximum,

and meaningful quantiles of the 𝑞-errors are given in table 3.20.

Table 3.20: 𝑞-error statistics for each method on the JOB workload

median 90th 95th 99th max average
PostgreSQL 7.32 77.01 185.84 707.21 10906.17 77.01

Sampling 4.79 16.45 33.17 81.34 1018.43 12.71
Correlated sampling 3.83 9.63 12.63 22.72 214.1 5.79

MSCN 2.99 6.12 7.47 12.49 110.56 3.89
Global BN 1.95 2.92 3.22 4.01 7.45 1.99

Independent BN 4.0 15.36 32.9 76.91 820.46 11.82
Linked BN 𝑘 = 1 2.41 5.03 6.15 8.07 21.09 2.79
Linked BN 𝑘 = 2 2.13 3.7 4.26 5.23 12.6 2.3

The overall worst method is the cost model used by PostgreSQL. This isn’t a surprise, as

it assumes total independence between attributes, both within and between relations. It is

interesting to notice that the 𝑞-errors made by PostgreSQL’s cost model can be extremely

high, sometimes even reaching the tens of thousands. In this case, the query optimiser
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is nothing short from blind because the selectivity estimates are extremely unreliable. Al-

though this doesn’t necessarily mean that the query optimiser will not be able to find a good

query execution plan, it does imply that finding a good execution plan would be down to

luck [Leis et al., 2018]. One may even wonder if estimating a selectivity by picking a random

number between 0 and 1 might do better. Using our method with 𝑘 equal to 0 is equivalent

to the methodology proposed in the previous sections. Indeed, if no attributes are shared

by the Bayesian networks of each relation, then it is as if we considered attribute value

dependencies within each relation but not between relations. As expected, the performance

is similar to that of random sampling because both methods capture dependencies within

a relation but not between relations. Correlated sampling performs a bit better because it

is a join-aware sampling method. However, the rest of the implemented methods seems to

be more precise by an order of magnitude. The deep learning method, MSCN, outperforms

correlated sampling, but it isn’t as performant as the Bayesian networks. However, it can

probably reach a better level of performance by tuning some of the many parameters that

it exposes. Meanwhile, the method we proposed with 𝑘 = 1 means that we include the root

attribute of each child relation within the Bayesian network of each parent relation. This

brings to the table the benefits detailed in section 3. If 𝑘 = 2, then an additional attribute

from each child relation is included with the Bayesian network of each parent relation. We

can see on figure 3-12 that the global accuracy increases with 𝑘, which is what one would

expect. The most accurate method overall is the global Bayesian network presented in

[Tzoumas et al., 2011]. However, our method with 𝑘 = 2 is not far off. This makes the case

that our attribute value dependency preservation assumption is a realistic one.

We have also benchmarked the methods on the TPC-DS benchmark. In contrast to

the IMDb dataset used in the JOB benchmark, the TPC-DS dataset is synthetic. By

nature, it contains less attribute dependencies than would be expected in a realistic use

case. The TPC-DS dataset is therefore less realistic than the JOB benchmark. To produce

a workload as we did for the JOB benchmark, we have taken the 30 first queries that are

provided with the TPC-DS dataset and have generated all possible sub-queries. This led

to a total 1,414,593 queries. The amount of joins went from 2 to 15. The overall results are

shown in table 3.21.

As expected, the 𝑞-errors for the TPC-DS benchmark are better across the board because

the dataset exhibits less correlations between attributes. Nonetheless, the rankings between

89



1 200k 400k 600k 800k 1M 1.2M 1.4M

Number of queries

100

101

102

103

q-
er

ro
rs

Sorted q-errors by method

PostgreSQL

Random sampling

Correlated sampling

MSCN

Global Bayesian network

Independent Bayesian networks

Linked Bayesian network with k = 1

Linked Bayesian network with k = 2

Figure 3-12: Sorted 𝑞-errors for all queries by method on the TPC-DS workload

Table 3.21: 𝑞-error statistics for each method on the TPC-DS workload

median 90th 95th 99th max average
PostgreSQL 1.23 43.4 138.05 1025.49 82898.28 91.46

Sampling 3.69 13.39 26.34 66.83 669.58 9.87
Correlated sampling 2.89 8.24 10.63 19.32 170.63 4.51

MSCN 1.82 4.23 5.32 9.24 78.01 2.54
Global BN 1.03 1.17 1.23 1.33 1.49 1.06

Independent BN 2.5 13.59 33.87 89.22 597.0 9.12
Linked BN 𝑘 = 1 1.04 1.38 1.54 1.74 1.94 1.11
Linked BN 𝑘 = 2 1.05 1.26 1.35 1.47 1.6 1.08

the methods remains somewhat the same. Our method very slightly outperforms the global

Bayesian network, but we believe that this is just an implementation artifact. In any case,

our method is much more accurate than any method that assumes independence between

attributes of different relations. Even so, a viable selectivity estimation method also has to

be able to produce estimates in a very short amount of time, which is a point we will now

discuss.
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3.5.2 Inference time

Naturally, we next sought to measure how fast each method was at producing selectivity

estimates. In a high throughput environment, the query optimiser isn’t allowed to spend

much time searching for an efficient QEP. In addition to using the cost model, the query

optimiser also has to enumerate potential query execution plans and pick one of them

[Chaudhuri, 1998]. Thus, only a fraction of the short amount of time allocated to the

query optimiser can actually be consumed by the cost model. This means that any viable

selectivity estimation has to be extremely efficient, and is probably the main reason why

current cost models are kept simple. We call the amount of time necessary to produce a

selectivity estimate the inference time. During our experiments we recorded the inference

time for each query and for each model. The results shown in table 3.22 show the average

inference time for each method, aggregated by the number of joins present in each query.

Table 3.22: Average inference time in milliseconds for each method with respect to the
number of joins on the JOB workload

No joins 1 join 2 to 5 joins 6 joins or more
PostgreSQL 2.3± 1.1 2.6± 1.4 3.6± 1.3 8.4± 3.1

Sampling 19.6± 5.4 36.2± 6.8 120.2± 5.9 268.4± 8.7
Correlated sampling 20.4± 4.9 155.7± 3.2 280.6± 7.1 493.4± 9.9

Global BN 84.3± 2.1 116.1± 2.9 145.8± 4.4 236.1± 3.8
Independent BN 8.3± 1.8 10.9± 1.3 12.6± 2.4 12.1± 3.2
Linked BN 𝑘 = 1 9.5± 1.9 12.8± 1.6 14.1± 2.8 15.2± 3.4
Linked BN 𝑘 = 2 10.1± 1.4 12.9± 1.5 14.3± 2.1 16.4± 2.9

It is important to mention that the inference time measured for PostgreSQL is simply

the time it takes the database to execute the ANALYZE statement for each query. This

thus includes the optimisation time, on top of the time spent at estimating selectivities.

Even though they are already by far the best, the numbers displayed in our benchmark for

PostgreSQL are pessimistic and are expected to be much lower in practice. It is also worth

mentioning that we implemented the rest of the methods in Python, which is an interpreted

language and thus slower than compiled languages such as C, in which PostgreSQL is

written. If these methods were implemented in optimised C they would naturally be much

faster. However, what matters here is the relative differences between each method, not the

absolute ones.
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We can clearly see from the results in table 3.22 that the global Bayesian network loses

in speed what it gains in accuracy. This is because it uses a complex inference method

called the clique-tree algorithm, which is the standard approach for Bayesian networks with

arbitrary topologies. Although it is the most accurate method, it is much slower than our

method, regardless of the 𝑘 parameter we use. What’s more, the inference time of our

method doesn’t increase dramatically when the number of joins increases. This is due to

the variable elimination algorithm. The inference algorithm scales well because we are able

to merge the Bayesian networks of each relation into a single tree. We can also see that

correlated sampling is the slowest method, even though it’s accuracy is competitive as shown

in the previous subsection. We argue that even though our method is not as accurate as

the method proposed by [Tzoumas et al., 2011], it is much faster and is thus more likely

to be used in practice. Naturally, we also have to take into account the amount of time it

requires to build our method, as well as how much storage space it requires.

3.5.3 Construction time and space

The cost model uses metadata that is typically obtained when the database isn’t being

used. This is done in order not to compute it in real time during the query optimisation

phase. This metadata has to be refreshed every so often in order for the cost model to

use relevant figures. Typically, the metadata has to be refreshed when the underlying data

distributions change significantly. For instance, if attributes become correlated when new

data is inserted, then the metadata has to be refreshed to take this into account. Therefore,

the amount of time it takes to collect the necessary information is rather important, as

ideally we would like to refresh the metadata as often as possible. Additionally, any viable

selectivity estimation method crucially has to make do with a little amount of storage

space. Indeed, spatial complexity is a major reason why most methods proposed in the

literature are not being used in practice. These two computational requirements highlight

the dilemma that cost models have to face: they have to be accurate whilst running with

a very low footprint. Most multidimensional methods that have been proposed are utterly

useless when it comes to their performance in this regard.

Table 3.23 summarises the computational requirements of the methods we compared.

The results explain why PostgreSQL – and most database engines for that matter – stick

to using simplistic methods. Indeed, in our measurements PostgreSQL is both the fastest
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Table 3.23: Computational requirements of the construction phase per method on the JOB
workload

Construction time Storage size
PostgreSQL 5 seconds 12KB

Sampling 7 seconds 276MB
Correlated sampling 32 seconds 293MB

Global BN 24 minutes 45 seconds 429KB
Independent BN 55 seconds 217KB
Linked BN 𝑘 = 1 2 minutes 3 seconds 322KB
Linked BN 𝑘 = 2 2 minutes 8 seconds 464KB

method as well the lightest one. PostgreSQL’s cost model makes many simplifying assump-

tions and thus only has to build and store one-dimensional histograms, which can be done

extremely rapidly. The sampling methods are quite fast in comparison with the methods

based on Bayesian networks. This isn’t surprising, as they only require sampling the rela-

tions and then storing the samples. Indeed, most of the building time involves persisting

the samples on the disk. On the other hand, sampling methods require a relatively large

amount of space because they do not apply any summarising whatsoever (note that their

storage size are given in terms of megabytes, not kilobytes). Correlated sampling takes

more time than basic sampling because it has to scan primary and foreign keys in order to

avoid the empty join problem.

All of the methods based on Bayesian networks take more time to build than the two

sampling methods, which is as expected. They make up in storage requirements and in

inference time. The global Bayesian network takes a very large amount of time to build,

which is in accordance with the results from [Tzoumas et al., 2011]. In comparison, our

method is much faster. This is a logical consequence of the fact that we only build one

Bayesian network per relation. Additionally, each Bayesian network has a tree topology,

which means that each conditional probability distribution we need to store is a two-way

table. The sudden jump in building time between 𝑘 = 0 and 𝑘 = 1 is due to the need to

compute joins when 𝑘 > 0. However, note that the jump is much smaller between 𝑘 = 1 and

𝑘 = 2. The reason is that the joins don’t have to be repeated for each additional attribute

included in every parent Bayesian network.
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3.6 Conclusion

During the query optimisation phase, a cost model is invoked by the query optimiser to

estimate the cost of query execution plans. In this context, the selectivity of operators is

a crucial input to the cost model [Leis et al., 2015]. Inaccurate selectivity estimates lead

to bad cost estimates which in turn have a negative impact on the overall running time of

a query. Moreover, errors in selectivity estimation grow exponentially throughout a query

execution plan [Ioannidis and Christodoulakis, 1991]. Selectivity estimation is still an open

research problem, even though many proposals have been made. This is down to the fact

that the requirements in terms of computational resources are extremely tight, and one thus

has to compromise between accuracy and efficiency.

Our method is based on Bayesian networks, which are a promising way to solve the

aforementioned compromise. Although the use of Bayesian networks for selectivity estima-

tion isn’t new, previous propositions entail a prohibitive building cost and inference time.

In order to address these issues, we provide a way to link Bayesian networks build on sepa-

rate relations. We show how we can soften the relational independence assumption without

requiring an inordinate amount of computational resources. We validate our method by

comparing it with other methods on an extensive workload derived from the JOB [Leis

et al., 2015] and the TPC-DS [Poess et al., 2002] benchmarks. Our results show that our

method is only slightly less accurate than the global Bayesian network from [Tzoumas et al.,

2011], whilst being an order of magnitude less costly to build and perform inference with.

Additionally, our method is more accurate than join-aware sampling, whilst requiring sig-

nificantly less storage and computational requirements. In comparison with other methods

which make more simplifying assumptions, our method is notably more accurate, whilst

offering very reasonable guarantees in terms of computational time and space. Naturally,

there is still a lot of space for improvement. For instance, when a new attribute is added to

a relation, we do not have any elegant method for adding said attribute to an already exist-

ing Bayesian network. Instead, we have to reconstruct the Bayesian network from scratch.

Another worthy next step would be to implement our method in a database query optimiser

to measure the impact on the overall query response time, as perceived by a query issuer.
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Chapter 4

Correcting selectivities with

machine learning

4.1 Preliminaries

4.1.1 Motivation

The previous chapter explored the use of Bayesian networks for selectivity estimation.

Bayesian networks can be viewed as a density estimation method, which falls under the

umbrella of unsupervised learning. In the latter paradigm, the goal is essentially to model

a probability distribution of the data. This then allows us to answer probabilistic queries,

which is basically what selectivity estimation is all about. Prior to this, we made the case

that unsupervised learning was more adequate than supervised learning. Indeed, with su-

pervised learning, the data is labelled and the goal is to predict outcomes for previously

unseen data. The main justification for our preference towards unsupervised learning is that

selectivity estimation fundamentally boils down to density estimation, which is a subcase of

unsupervised learning. The goal of density estimation is to determine the amount of data

that satisfies certain conditions, and is thus closely related to selectivity estimation. Indeed,

a density estimation model has been fitted to a batch of data, it is capable of answering any

probabilistic query. Density estimation is unsupervised, as the goal is not to predict the

outcome of each sample. On the contrary, the goal is to determine the frequency of samples.

Crudely put, the goal is to predict how likely a person is to be Swedish, rather than deter-

mining if the person is a Swede in the first place. The point is that selectivity estimation can
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be seen as a series of probabilistic queries. The quality of the answers is a function of the

model’s correctness. The latter is essentially bound by how much resources we are willing

to allocate to the model. On the one hand, we can construct high-dimensional distributions

in order to capture dependencies between many attributes. On the other hand, we have to

make a compromise in order to alleviate the computational burden of such a distribution.

Bayesian networks provide a natural framework for tuning this compromise. As already

said, the advantage is that unsupervised learning is data-based, and doesn’t rely on user

queries to function. In other words, we can train an unsupervised model on a database

without having to use a historical log of queries issued by users. Meanwhile, a supervised

learning approach would consist in directly mapping user queries to selectivities. This is

supervised in the sense that there is an explicit target to predict, which is the selectivity.

This challenge is to be able to generalise to unseen queries.

Although a query optimiser may encounter a wide array of query typologies which highly

differ with each other, some recurring patterns can be observed. One of the most compelling

observations is that cost models very often underestimate the selectivity of a query execu-

tion plan [Lohman, 2014]. Although it may happen that they overestimate selectivities,

the usual case is that instead they underestimate them. Indeed, queries tend to pertain to

attribute values that have share traits. The underestimation is thus a direct consequence

of the many simplifying assumptions that are made by the cost model. For instance, for

two attributes 𝐴 and 𝐵, the attribute value independence (AVI) assumption leads to the

estimate 𝑃 (𝐴, 𝐵) ≃ 𝑃 (𝐴)×𝑃 (𝐵). If 𝐴 and 𝐵 are even remotely positively correlated, then

𝑃 (𝐴) × 𝑃 (𝐵) < 𝑃 (𝐴, 𝐵), which is simple consequence of probability theory and indepen-

dence. Indeed, recall that 𝑃 (𝐴, 𝐵) = 𝑃 (𝐴 | 𝐵)𝑃 (𝐵). If 𝐴 is more likely to occur when 𝐵

takes place, then the previous inequality holds. By making this assumption, cost models are

always underestimating selectivities. Naturally, if 𝐴 and 𝐵 are negatively correlated, then

the inequality is reversed. In statistical terms, they are said to be biased. We have discussed

this issue at large throughout this manuscript. The main way to soften the independence

assumption is to develop more sophisticated models that take into account attribute depen-

dencies. For instance, this is the whole purpose of using a Bayesian network. However, the

fact is that industrial databases don’t use these more advanced models because, seemingly,

their computational burden is too high. Therefore, a practical research question is to make

do without relaxing these assumptions. In such a case, if we are not able to change the
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internals of the cost model, then the only leeway we have is to modify its outputs. For

instance, if the cost models is biased and is constantly underestimating selectivities, then

good sense tells us that it might be worth multiplying the selectivities by a correction factor.

The question, therefore, is how much correction to apply.

A small body of query optimisation research has devoted itself to correcting the outputs

of a cost model in order to account for its inherent bias. This can be seen as a “downstream”

approach, whilst the method we have discussed in the previous chapter can be regarded as

an “upstream” approach. Indeed, instead of building a cost model from scratch, we want

to take an existing cost model and tutor it so as to correct its outputs. The most notable

method in this approach is LEO [Stillger et al., 2001], which works by memorising the

selectivities of past query execution plans. However, it is a bit of an outlier because it

doesn’t really “correct” the cost models estimates, but rather replaces them by the ground

truth. In this regard, it doesn’t help whatsoever when having to estimate the selectivity

of previously unseen plans. Aside from the memorising approach, the main other approach

has been to use a heuristic formula. For instance, the exponential-backoff formula [Müller

et al., 2018], consists in replacing the product formula induced by the AVI assumption with

the following approximation:

𝑃 (𝑋1, . . . , 𝑋𝑛) ≃
𝑛∏︁

𝑖=1
𝑃 (𝑋𝑖)

1
𝑖 , (4.1)

where the 𝑃 (𝑋𝑖)s are ordered in decreasing order. In other words 𝑃 (𝑋𝑛) is the selectivity

of most selective attribute. Note that blindly following the AVI assumption would simply

suppress each exponent. Recall that a selectivity is bounded between 0 and 1, as it is

simple a percentage. Therefore, applying a square root moves the product closer towards

1. Intuitively, the goal of the above formula is to dampen the effect of the most selective

attributes. Arguably, this makes more sense than assuming total independence. However,

it doesn’t seem to rest on any theoretical background. Instead, it is very much a heuristic.

Its legitimacy comes from the fact that it works well in practice. The rumour has it that

database systems such as Microsoft’s SQL Server apply it, but alas there is no certainty, as

industrial cost models are very much shrouded in secret.

A natural step forward from heuristic rules would be to learn (better) rules via a machine

learning algorithm. In fact, this methodology is being (re)discovered and adopted in many
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other fields other than database query optimisation. The umbrella term machine learning

systems [Dean, 2017] has in fact been coined to encompass methodologies that aim to

replace hand-craft rules by parameter-dependent rules that are tuned by a machine learning

algorithm from feedback. The term Software 2.0 1 is also regularly mentioned in a similar

context.

Heuristics are aplenty throughout computer systems. Applications possess many knobs

that can be tuned in order to improve a measure of performance. For instance, page sizes

in relational databases [Weisberg and Wiseman, 2009], virtual machine replication amounts

[Goudarzi and Pedram, 2012], cache sizes in storage systems [Oh et al., 2012], and backoff

amounts for re-transmits in networking [Kwak et al., 2005], are all parameters that are

chosen somewhat heuristically. A significant amount of work has explored the idea of

replacing these heuristics with rules found by a machine learning algorithm. For instance,

[Mirhoseini et al., 2017] proposed a reinforcement learning method for optimising device

placement in a heterogeneous distributed environment which outperformed human experts.

Meanwhile in [Kraska et al., 2018], the authors proposed to replace index structures such

as B-trees with what they coined as learned indexes.

4.1.2 Supervised selectivity estimation

Once a QEP has been picked by the query optimiser, it is executed and the results are

returned to the user. Once the execution is finished, the true selectivity at each stage of

the QEP is made available. Therefore, it is possible to measure the error of each selectivity

estimate every time a query is processed. In the case of [Chen and Roussopoulos, 1994],

they use the feedback to update an iterative curve-fitting formula for summarising the

distribution of a single attribute. Meanwhile, in [Aboulnaga and Chaudhuri, 1999], the

authors propose to exploit the feedback to tune the parameters of both univariate and

multivariate query-driven histograms. While innovative, these methods are confined to

single-table predicates. Furthermore, the methodology from [Aboulnaga and Chaudhuri,

1999] still requires the construction of multi-dimensional histograms, which is prohibitively

expensive when done at scale. Furthermore, synopses such as histograms only work when

estimating the selectivity of specific types of predicates. As mentioned above, an alternative
1Andrej Karpathy on Software 2.0: https://medium.com/@karpathy/software-2-0-a64152b37c35
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method is to memorise selectivity estimates. This can be seen as a cheap form of learning,

as it doesn’t allow to generalise to unseen queries.

The issue with a memorising approach is that it uses the explicit representation of a

QEP. If a new QEP differs even by a little from each past QEP, then we are unable to

guess the correct selectivity. A more sophisticated approach is to project QEPs into a new

domain wherein similar QEPs have similar traits. In practical terms, the idea is to represent

a QEP by a set of features. The goal is to define features that are correlated with the query

selectivities. Then, a machine learning algorithm can be taught to map the features to

the selectivities. In the case of selectivity estimation, many models have been proposed to

directly map the features to the selectivity. For instance, linear models have been proposed

[Malik et al., 2007, Wu et al., 2018], as well as support vector machines (SVM) [Akdere

et al., 2012], neural networks [Boulos et al., 2014, Liu et al., 2015], gradient boosting

over decision trees [Ivanov and Bartunov, 2017], and mixture models [Park et al., 2018].

Whatever machine learning method is used, the challenge is to find meaningful features

which help in accurately predicting the selectivity of a QEP. Historically, designing good

features for machine learning purposes has been done manually by domain experts. On top

of being a tedious process, it is difficult to assert that features which work for one particular

workload will work for another. In recent times, there has been a surge of proposals that

aim to automatically learn these features via a deep learning approach. We discussed many

of these proposals in the related work chapter. Overall, learning to estimate selectivities is a

promising approach that is yet to be fully understood by the query optimisation community.

Machine learning approaches, including deep learning ones, seem to regularly outperform

established methods in traditional cases, or so it may seem according to the literature. This

is no surprise, as said methods are extremely simple. The only reason why they are used

in the first place is because they are very efficient, produce estimates in a short amount of

time, and do not require an expensive learning phase.

Meanwhile, machine learning models usually imply heavier algorithms that require a

training phase where all the training data has to be accessible at a single point in time.

Moreover, traditional batch models cannot be dynamically updated. Indeed, they assume

that the training queries they are shown is representative of the queries that will be seen

in the future. Therefore, if a new attribute is appended to a relation, they produce useless

results. For instance, if an attribute is added to a relation, then the one-hot encoding
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schemes of [Kipf et al., 2018] and [Woltmann et al., 2019] won’t be usable anymore. Finally,

batch models do not adapt to concept drift, which is to say that they do not take into

account changes in the distributions of the attributes when tuples are inserted, removed,

or modified. We argue that batch machine learning is thus ill-fitting for the purpose of

selectivity estimation. Indeed, because of the streaming nature of the problem, we believe

that using an online model which can handle such a stream is a much more adequate

solution. Models that can do so are part of a sub-field of machine learning named online

machine learning. We will now give an overview of the latter, before framing the selectivity

estimation problem online.

4.1.3 The benefits of online machine learning

Machine learning is the task of teaching a computer program to learn to perform a task by

showing it examples. This program can be equally referred to as a model. In supervised

learning, the model is shown pairs of samples (𝑥, 𝑦), and is tasked with learning a function

that is able to predict 𝑦 (called the target) given 𝑥 (called the features). In a regression

task, which is a special case of supervised learning, the computer program has to learn a

function 𝑓 : IR𝑝 → IR. That is, for a given set of 𝑝 features 𝑥 = {𝑣1, . . . , 𝑣𝑗 , . . . , 𝑣𝑝}, the

program is capable to output a prediction 𝑦 = 𝑓(𝑥). The performance of 𝑓 can be measured

by comparing the prediction 𝑦 with the true outcome 𝑦, which, in a live environment, is

unknown at the time of making the prediction. Note that selectivity estimation can therefore

be frame as a regression task, which is what is being proposed by a significant amount of

the recent literature query optimisation. In our case, 𝑥 would be features derived from a

query execution plan, whilst 𝑦 would be it’s selectivity.

Machine learning models traditionally function in a batch setting, whereby a bunch of

𝑛 feature sets 𝑋 = {𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑛} and 𝑛 known outcomes 𝑌 = {𝑦1, . . . , 𝑦𝑖, . . . , 𝑦𝑛} are

available. During the training phase, the program learns a function 𝑓 from the so-called

training set (𝑋, 𝑌 ). During the prediction phase, the function 𝑓 is applied to new sets of

features, which we can call the test set. A strong assumption which is usually made is that

the training set and the test set originate from the same statistical distribution. A “good”

model’s performance on test data will be similar to its performance on the training set. If

the performance on the test data is significantly lower, then the model is said to overfit,

which essentially means that it has memorised instead of generalising.
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The main issue with a batch learning model is that it has to be retrained from scratch

in order to learn from new data. Indeed, the predictive function 𝑓 produced by a batch

learner is set in stone and cannot be updated incrementally with a new pair (𝑥, 𝑦). However,

in a live environment such as a database system, a never-ending stream of training data

is constantly being produced. In such a scenario, 𝑓 is immediately sub-optimal because

it isn’t exploiting the new observations. This is even more so the case when concept drift

[Gama et al., 2014] occurs, which implies that the non-stationary condition of the underlying

data distribution is being violated. In this case the model’s performance is susceptible to

plummet. In practice, batch learning models are periodically retrained. The choice of the

period between training sessions is a compromise between the cost of the training and the

regret in terms of missed opportunity. In the software engineering community, periodically

retraining a model offline and making predictions online is often referred to as the lambda

architecture [Kiran et al., 2015]. The lambda architecture is a loose term to describe a

system where the model is treated as a static element, and the incoming stream of data

is fed through the model. Each of the machine learning methods we have discussed until

now follow the lambda architecture. Thus, they are not able to update themselves when

new QEPs are executed and new information is made available. The lambda architecture

opposes itself to the kappa architecture [Lin, 2017], whereby everything is handled in a

streaming fashion. Models are updated every time a new sample arrives, instead of being

periodically retrained from scratch. This allows them to stay-up-date with the latest trends

in the data. The downside is that models that are capable to update themselves with one

element at a time are rarer and not as popular as their batch counterparts.

In contrast to batch machine learning model, an online machine learning model learns

from a potentially infinite stream of observations (𝑥𝑡, 𝑦𝑡), where 𝑡 denotes a timestamp.

In such a setting, the predictive function 𝑓 can be updated with a single observation. It

also has the anytime property, meaning that it can make predictions at any moment in it’s

lifetime. Online machine learning brings many benefits to the table. First of all, once the

learning algorithm has updated itself with an observation, the later can be discarded. In

other words, a training set does not have to be stored aside. This strongly simplifies things

from a data engineering point of view. Secondly, an online learning model is dynamic,

in that the number of features it takes as an input may be altered on-the-fly. Indeed, an

online learning model is resilient and will still work if features are added or are not available.

101



Usually, features that are added in such a manner are called emerging features [Yu et al.,

2015]. Thirdly, if well-designed, an online learning model is adaptive, which means that

it can adjust itself when concept drift occurs. Note that not all online models have this

property, indeed some assume that the data generation process is stationary and that drift

will never happen. Last but not least, the performance of the model can be measured in real-

time. Indeed we can update a performance metric by comparing the model’s prediction with

the true outcome once it is available, before updating the model. This is called progressive

validation [Blum et al., 1999] and is extremely practical because it means all the data can

be used as a validation or test set, instead of a subset of the data as is done in traditional

cross-validation [McMahan et al., 2013]. Another consequence of this interleaved prediction

and learning process is that online models do not overfit. In fact, overfitting becomes a

non-issue in online learning. Indeed online models remain constantly up-to-date with the

latest information and implicitly forget the older data – which is often less relevant and

not as representative of the newer incoming data. On the contrary, in batch learning, the

challenge is to ensure that the model doesn’t memorise the training set, and instead is

able to generalise to unseen data. With online learning we have the ability to constantly

update the model, and therefore are essentially immune to issues pertaining to overfitting.

Of course there is a trade-off. Usually, for a given dataset, online models are less performant

than their batch counterparts. However, their ability to update themselves means they do

not play by the same rules, and therefore the performance discrepancy on a fixed dataset

is a moot point.

Online machine learning is a perfect fit for the selectivity estimation task because of the

streaming nature of database queries. Indeed, the workload of a database consists of queries

emitted by clients, and is therefore continuously ongoing. Therefore, new query patterns

may emerge, and it is therefore important to be able to keep track of the latter and have at

our disposal model that can incorporate the latest information. We will now formalise our

approach and describe our methodology in detail. We will then explain how we converted

QEPs to features and enumerate the online machine learning models we considered.
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4.2 Methodology

4.2.1 Learning to adjust selectivity estimates online

Let us start by introducing a simple heuristic to alleviate the tendency a cost model may

have to underestimate selectivities. We denote by 𝑦 the true selectivity, which is avail-

able after the query has been successfully executed. Meanwhile, 𝑦 denotes the estimated

selectivity, which is produced by the cost model before the query is executed. Note that

this could be any cost model, including one that many simplifying assumptions, but also

including Bayesian networks and other sophisticated methods. On average, the cost model

will underestimate the selectivity by a factor 𝑐, whose definition is:

𝑐 = 1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖

𝑦𝑖
(4.2)

In other words, 𝑐 is the average multiplicative error made by the cost model. If 𝑐 were

equal to 1, then the cost model would be unbiased – i.e. it wouldn’t have a preference

for underestimating or overestimating. It follows that if we were able to multiply each

selectivity estimate 𝑦 by 𝑐, then we could “unbias” the model. This works because the cost

model is not well calibrated. It constantly underestimates the selectivity of conjunctive

predicates because it makes the attribute value independence assumption. Obviously, we

can’t do this because we can only obtain 𝑐 once the queries have been executed. As an

alternative, we could however compute 𝑐 on past queries and apply to new ones. Therefore,

we can multiply each selectivity estimate by this estimate in order to correct the model.

A simple heuristic rule is thus to keep track of the average multiplicative error of the cost

model and multiply each subsequent selectivity by said error. We can refine this heuristic

rule by increasing it’s granularity. For instance, we can segment queries according to the

number of joins they require and keep track of the multiplicative error inside each segment.

Therefore, instead of having a single correction factor 𝑐, we would have one correction

factor 𝑐𝑗 for each number of joins 𝑗. Intuitively, such a method is more accurate than

having a single correction factor 𝑐. The only source of doubt may come from the fact some

𝑐𝑗 may estimated with small sample sizes. In such a case, 𝑐𝑗 might be incorrect and may

in fact worsen our estimates. Later on, we will discuss this issue some more and see how

we can alleviate. Note that we prefer a multiplicative term to an additive term because

103



it removes the scale issues that would arrive from an additive formulation. However, we

haven’t necessarily validated this intuition experimentally.

[Wu et al., 2018] took the idea of refining the correction factor a step further. Indeed,

they proposed to choose the constant as a function of the QEP. They consider many more

attributes on top of the number of joins. Additionally, instead of just computing a running

average for each case, they train a supervise learning model to learn the correction factor

with a statistic model. In other words, they extract features from each QEP, build a

historical dataset, and train a machine learning model to learn to predict the multiplicative

error. In the case of [Wu et al., 2018], they use a batch model that is retrained periodically.

We argue that extending this approach with online machine learning reaps many bene-

fits. Indeed, in the context of selectivity estimation, queries are constantly being issued to

the database, therefore there is a never ending flow of queries to learn from. Whenever a

query arrives, we extract features 𝑥 from it. We then predict the multiplicative error we

expect the cost model to make. Once the cost model has made its estimate – which can be

done concurrently – we multiply it with the inverse of our error estimate. Further along,

once the query optimiser has picked an execution plan and has finished executing it, we

obtain the true selectivity. We can then determine how wrong the cost model was, and

consequently correct our model with the features we extracted and the error made by the

cost model. Note that their is no need to store data, other than keep 𝑥 aside whilst the

associated query is being executed.

4.2.2 Extracting useful features from a plan

A query execution plan as such cannot be processed by a machine learning model. Indeed,

most machine learning models expect to be provided with numeric features. This stems

from the way they were designed. Some models may take as input categorical data, such as

dates and strings, but that is far from being the norm. As per usual in machine learning, the

goal is find meaningful features that are correlated with the output. Ideally features should

be uncorrelated with each other so as to avoid duplicate information. The key advantage

of neural network approaches, such as that of [Kipf et al., 2018], is that they do not have to

define features because these are automatically inferred from the one-hot encoded version of

the QEPs. As we show in the next subsection, this is akin to using a field-aware factorisation

machine [Juan et al., 2016].
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Our feature extraction process was defined by the observation that there are two types

of QEPs may encounter. On the one hand, a QEP might already have been seen. This is

not usual, and is in fact quite common. Indeed, many times queries are repeated by users.

Moreover, QEPs can also be part of larger QEPs (think of a relation which is included in

more than one join). This redundancy was observed and exploited in DB2’s LEO optimiser

[Stillger et al., 2001]. On the other hand, some QEPs might never have been seen before.

In this case memory-based approaches such as LEO are useless. From this observation, we

defined two sets of features.

The first set of features is meant to address QEPs which have never been seen before.

In this case we use features that express general information: 1) the number of joins, 2) the

number of involved relations 3) the number of WHERE statements, 4) the maximum number

of WHERE clauses on a single relation. The second set of features is aimed at exploiting the

fact that QEPs have more often that not already been seen. One way would be store a

hash table mapping QEPs to selectivities, but this would potentially grow too large and

not be practical. Instead, we calculate average selectivity estimation errors by grouping

over various information from each QEP. In machine learning, this encoding scheme is

called target encoding. The idea is to extract information such as the relations, joins,

attributes, attribute values, and replace them by the average of the selectivity estimation

errors encountered in the past. For example, if a QEP contains a filter condition on a

country attribute, then we would look at the average selectivity estimation error of queries

which involved it. We also can do target encoding on combinations, such as on pair of

attributes, and thus capture dependencies. This can be done in a streaming fashion by

noticing that an average can updated online:

�̄�𝑖+1 = �̄�𝑖 + 𝑥− �̄�𝑖

𝑖 + 1 (4.3)

where �̄�𝑖 is the current average and 𝑥 is the new value (in our case, a selectivity). The

main issue of target encoding is that it’s outputs are somewhat unreliable early on. This

steps from the fact that the average of a small sample if often unreliable. Indeed, if a

particular attribute has only been used in one particular QEP before, then the error that

was made for that QEP will be the only one included in the average. To alleviate this issue,

one may use a Bayesian average, which requires choosing a prior average and a weighting
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term in order to compute a weighted average between the observed average and the prior

average. For instance, assuming an empirical average �̄�𝑖 computed on a sample of size 𝑛, a

prior average 𝜇, and a weighting factor 𝑚, a Bayesian average 𝑥⋆ can be computed as so:

𝑥⋆ = 𝑛× �̄�𝑖 + 𝑚× 𝜇

𝑛 + 𝑚
(4.4)

Note that although the above formulation is quite common, it is prone to numeric

overflow because it multiplies unbounded numbers. The following formulation is more

stable:

𝑥⋆ = 𝜇 + 𝑛

𝑛 + 𝑚
× (�̄�𝑖 − 𝜇) (4.5)

Although this might not seem very important, but it gives an insight into the philosophy

of online machine learning. Essentially, the goal is to design algorithms that are able to

hold supposedly for ever. For such a purpose, it is therefore important to take into account

the finite capacity of computer registers by constructing algorithms around it.

Bayesian averages are often used in applied machine learning because of their ability to

reduce the variance of statistical estimates. A detailed treatment can be found in [Micci-

Barreca, 2001].

4.2.3 Choice of online learning models

Machine learning models are traditionally designed with a batch setting in mind. This

is mainly for historical reasons, but also because it is a less constrained setting than the

online setting. Indeed, in an online setting, the rule of the game is that we can process one

sample at a time, and are not allowed to revisit said sample. For a comprehensive review

of the different available approaches, we refer readers to [Gepperth and Hammer, 2016],

[Benczúr et al., 2018], as well as [Hoi et al., 2018], and the references found within each one.

For our experiments, we decided to use well-established models with available open-source

implementations. Indeed, our main motivation in this chapter is to motivate the use of

online machine learning, whereas the exact details are more of an afterthought.
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Linear models

The most common approach to online machine learning is to use models that minimise

an empirical loss function. For instance, a common objective in regression is to find the

parameters 𝜃 of a model 𝑚 which minimise the squared loss between the training set outputs

𝑦 and the predicted outputs 𝑦 = 𝑚(𝑥) made over the training set inputs 𝑥:

𝑚𝑖𝑛
𝜃

𝑛∑︁
𝑖=1

(𝑦𝑖 −𝑚(𝑥𝑖))2 (4.6)

If 𝑚 can be differentiated with respect to it’s inputs, then for each pair (𝑥𝑖, 𝑦𝑖) a gradient

𝑔𝑖 can be obtained. The gradient can then be used to update 𝜃. Because only one pair is

being processed at a time, this is called stochastic gradient descent [Robbins and Monro,

1951]. In the special case of a linear model, 𝜃 corresponds to the weights assigned to each

input 𝑥𝑖. Meanwhile in the case of a neural network, 𝜃 corresponds to the weights and

biases of each neuron within each layer.

There are different flavors of stochastic gradient descent (i.e., updating 𝜃 given a gradient

𝑔𝑖). The simplest way is to multiply the gradient by a learning rate 𝜂 and subtract the

result from 𝜃. The learning rate determines the magnitude of parameter updates, whilst

the gradient gives the best expected update direction. In order to obtain convergence, a

common procedure is to define a schedule which reduces the learning rate as time goes

by. Although learning rate schedules are commonly used in practice, they are ill-suited for

online learning. Indeed, if we expect to observe drift, then lowering the learning rate means

that the model will not be able to adapt as fast as we would like. In our experiments we

thus decided to use a constant learning rate. Note that another possible solution would

have been to use a cyclic learning rate [Smith, 2017]. Many stochastic gradient descent

methods have been proposed, and we refer to [Ruder, 2016] for an overview. In addition

to the plain and simple method we just mentioned, we also explored the use of AdaGrad

[Duchi et al., 2011], Adam [Kingma and Ba, 2014], FTRL [McMahan et al., 2013]. Note

that we considered Online Newton Step (ONS) [Hazan et al., 2007], which is a second-order

method that approximates the Hessian of the loss function, but discarded it because in a

truly online setting it is too slow.

107



Many models can be framed this way. The simplest one is linear regression, which is

just a dot product between a set of 𝑝 weights 𝑤𝑖 and a set of 𝑝 input features 𝑥𝑖:

𝑦 =
𝑝∑︁

𝑗=1
𝑤𝑖𝑗𝑥𝑖𝑗 (4.7)

Although linear regression is a simplistic method, it has the advantage of being inter-

pretable, easy to debug, and fast.

Neural networks

Neural networks (including deep learning) can also be trained via stochastic gradient de-

scent, and in fact almost always are. In our experiments we only considered the use of

standard feed-forward networks. These can be seen as a succession of dot-products 𝑓 inter-

leaved by non-linear activation functions 𝑎 (e.g., sigmoid, tanh, ReLU).

𝑦 = 𝑎(𝑓(𝑎(𝑓 . . . 𝑎(𝑓(𝑥))))) (4.8)

Remark that linear models can be seen as a special of neural networks whereby a single

layer is used. In a neural network, the gradient can be obtained by working backwards

from the loss function and accumulating the individual derivatives at each step along the

way. This process is the well-known backpropagation algorithm [Linnainmaa, 1970]. Neural

networks can be preferable to linear regression because they take into account interactions

between features. The downside is that require tuning many more parameters, and are

therefore more difficult to train.

Factorization machines

Another way to take into account feature interactions is to compute polynomial combina-

tions of said features. For a given parameter 𝑘 > 1, one can thus obtain
∑︀𝑘

𝑖 𝑝𝑖 additional

features, where 𝑝 is the cardinality of the features. This provides a simple way to give

non-linear capacity to a linear model [Chang et al., 2010]. The downside is that the number

of additional features can grow extremely large, which in practice is a strong deterrent.

Moreover, some feature interactions might occur very rarely, which may lead to uncertain

parameter estimation and over-fitting. Factorisation machines (FM) [Rendle, 2010] have

been proposed as to circumvent these issues. Instead of explicitly computing parameter

108



for each combination of features, a FM stores latent parameters for each feature. Each

feature 𝑥𝑗 is thus associated with a latent vector 𝑣𝑗 of length 𝑘. The interaction between

two features is then computed as the dot product between their associated latent vector.

𝑦𝑖 = 𝑤0 +
𝑝∑︁

𝑗=1
𝑤𝑗𝑥𝑗 +

𝑝∑︁
𝑗=1

𝑝∑︁
𝑘=𝑖+1

⟨𝑣𝑗 , 𝑣𝑘⟩𝑥𝑗𝑥𝑘 (4.9)

where ⟨·, ·⟩ is the dot product:

⟨𝑣𝑖, 𝑣𝑗⟩ =
𝑘∑︁

𝑓=1
𝑣𝑖,𝑓 × 𝑣𝑗,𝑓 (4.10)

We can now store 𝑘 × 𝑝 weights instead of 𝑝2. To quote the original FM paper, “in-

stead of using an own model parameter 𝑤𝑖,𝑗 ∈ ℛ for each interaction, the FM models the

interaction by factorising it”. Even if two features have never observed together in a sin-

gle observation, their interaction parameter can be estimated from their respective latent

vectors. FMs have been used with great success for high-dimensional problems such as

click-through rate prediction [Pan et al., 2018]. We identified them as potential solutions to

the selectivity estimation task because of the high number of attributes, values, relations,

and joins present in a database schema. Indeed, we view FMs as an elegant way to identify

attribute dependencies.

Tree learners

Decision trees are efficient models that are popular in practice. They are based on a sim-

ple, which is to partition the space of observations into boxes, whereby the observations

contained inside each box are homogeneous. The idea is recursively partition the data by

finding split rules which minimise a heterogeneity criterion, such as the entropy for clas-

sification or the mean squared error for regression. Decision trees are typically trained in

a batch context [Breiman, 2017]. However, there have been a few proposals to train them

online. The most established method is called the Hoeffding tree [Domingos and Hulten,

2000]. Because all the data is not available at once, the idea is to maintain summary

statistics 𝑃 (𝑋𝑖 | 𝑦𝑗) where 𝑥𝑖 are features and 𝑦𝑗 are labels. The summary statistics are

stored inside each leaf of the tree and are updated each time an observation is sorted into

a leaf. The tree starts off as a single leaf. Every so often, the summary statistics are used
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to evaluate possible split rules. A leaf is split into two leaves, and thus becomes a branch,

once the gain from the heterogeneity criterion surpasses a certain threshold, which is called

the Hoeffding bound.

A Hoeffding tree is guaranteed to find the same structure as a batch decision tree as

long the underlying data distribution is stationary. There also exists an adaptive version

of Hoeffding tree [Hulten et al., 2001] which can cope with concept drift, but we didn’t

try it out because we found there to be a lack of sufficient detail that would permit on an

implementation on our part. Finally, Mondrian trees [Lakshminarayanan et al., 2014] have

also been proposed. In contrast to Hoeffding trees, they take the surprising approach of

picking splits at random. Indeed, the splitting process is based on the Mondrian process

[Roy et al., 2008], which is an infinite stochastic process that can be used to partition a

hyper-rectangle. Essentially, they do not use the target value to inform their split decisions.

Instead, they record the average of the target values seen within each leaf and use these

estimates to produce predictions. They add some sophistication to this process, such as

introducing prior target distributions within each leaf. They also some form of apply aver-

aging so that each leaf can benefit from the information contained in the path that leads

to it from the root. Although novel and interesting, we didn’t find Mondrian trees to be

very performant in practice. Very recently, an improvement called “aggregated Mondrian

forests“ has been proposed [Mourtada et al., 2019]. Its performance is vastly superior to its

eponymous parent, and in fact is competitive with batch random forests. However, as of

writing this manuscript, it hasn’t been peer-reviewed, and we have thus not included it in

our results. We do however believe that it seems like a prominent candidate for becoming

a mainstream tool for online machine learning.

4.2.4 Drift-resilient Bayesian linear regression

The methods we have described in the previous subsection are not novel. In fact, the

emphasis of this chapter isn’t so much on the choice of the models as much as this is on

the basic principle of using online machine learning. Therefore, we have resorted to using

methods that are established in the statistical learning community. However, during the

PhD we have stumbled on an interesting twist of Bayesian linear regression which we have

judged somewhat worthy of being included in this manuscript. We will purposefully skip

some details. For information we refer to chapter 3 of [Bishop, 2006].
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Bayesian modeling is a framework for mixing prior knowledge with observed evidence.

On a side-note, note that this has very little to do with Bayesian networks. Although both

methodologies make use of Bayes’ rule, they are fundamentally different in nature. As an

example, in the case of linear regression, we can impose a prior distribution on the weights.

We can denote this prior distribution as 𝑃 (𝜃). A typical parametrisation choice is to use a

multivariate normal distribution centered in 0. In such a case, it may seem at first that the

prior is uninformative because it is vague and doesn’t contain any subjective information.

We will soon see that this prior becomes useful in a streaming context.

A Bayesian model can be updated with observed samples. The goal is to adjust the

parameters of the model according to the observed information, whilst taking into account

the current knowledge. In some sense, this goal is shared with that of online machine

learning. The advantage of Bayesian modeling is that it offers update formulas which are

consistent with the rules of probability, and are in fact optimal under the latter. Given a

new sample (𝑥𝑡, 𝑦𝑡), Bayesian modeling gives us a mechanism for obtaining a new parameter

distribution 𝑝(𝜃𝑡+1 | 𝜃𝑡, 𝑥𝑡, 𝑦𝑡), which is therefore conditioned on the current distribution and

the new sample. This probability distribution is obtained via Bayes’ rule, as so:

𝑝(𝜃𝑡+1 | 𝜃𝑡, 𝑥𝑡, 𝑦𝑡) = 𝑝(𝑦𝑡 | 𝑥𝑡, 𝜃𝑡)× 𝑝(𝜃𝑡)
𝑝(𝜃𝑡, 𝑥𝑡, 𝑦𝑡)

(4.11)

The left-hand side of the numerator is the likelihood of observing 𝑦𝑡 given the current

parameter distribution 𝜃𝑡 and the features 𝑥𝑡. The right-hand side is the current parameter

distribution. The denominator is the distribution, which isn’t in fact known. However, be-

cause it isn’t dependent on 𝜃, it can be simplified depending on the chosen parametrisation.

In fact, the mathematical details work nicely when the prior distribution and the likelihood

are said to be conjugate. The latter is a mathematical term that describes the fact that

two distributions can be fused into a new distribution with updated parameters. When this

isn’t the case, then one has to resort to approximate Bayesian inference, which is beyond

the scope of this discussion. One way to see it is that we are interested in the “old-school”

way of doing Bayesian modeling, whereby distributions are conjugate to each other, which

111



leads to analytical formulas that are well suited to online machine learning. To keep things

general, we will simply write down:

𝑝(𝜃𝑡+1 | 𝜃𝑡, 𝑥𝑡, 𝑦𝑡) ∝ 𝑝(𝑦𝑡 | 𝑥𝑡, 𝜃𝑡)𝑝(𝜃𝑡) (4.12)

The previous statement simply expresses the fact that the posterior distribution of the

model parameters is proportional to the product of the likelihood and the prior distribution.

In other words, in can be obtained using an analytical formula that is specific to the chosen

likelihood and prior distribution. If we’re being pragmatic, then what we’re really interested

in is to obtain the predictive distribution, which is obtained by marginalising over the model

parameters 𝜃𝑡:

𝑝(𝑦𝑡 | 𝑥𝑡) =
∫︁

𝑝(𝑦𝑡 | w, 𝑥𝑡)𝑝(w)𝑑w (4.13)

Again, this isn’t analytically tractable, except if the likelihood and the prior are conju-

gate to each other. The equation does make sense though, because essentially we’re com-

puting a weighted average of the potential 𝑦𝑖 values, by considering the whole distribution

of model parameters w.

𝑝(𝑦𝑡 | 𝑥𝑡) ∝ 𝑝(𝑦𝑡 | 𝑥𝑡, 𝜃𝑡)𝑝(𝜃𝑡) (4.14)

In short, the predictive distribution can be obtained by mixing the predictive distribution

and the current parameter distribution. Again, this isn’t analytically tractable, except if

the likelihood and the prior are conjugate to each other. For the purpose of online machine

learning, what matters to us is that we can update the distribution of the parameters when

a new pair (𝑥𝑡, 𝑦𝑡) arrives:

𝑝(𝜃𝑡+1 | 𝜃𝑡, 𝑥𝑡, 𝑦𝑡) ∝ 𝑝(𝑥𝑡, 𝑦𝑡 | 𝜃𝑡)𝑝(𝜃𝑡) (4.15)

Before any data comes in, the model parameters follow the initial distribution we picked,

which is 𝑝(𝜃0). At this point, if we’re asked to predict 𝑦0, then it’s predictive distribution

would be obtained as so:

𝑝(𝑦0 | 𝑥0) ∝ 𝑝(𝑦0 | 𝑥0, 𝜃0)𝑝(𝜃0) (4.16)
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Next, once the first observation (𝑥0, 𝑦0) arrives, we can update the distribution of the

parameters:

𝑝(𝜃1 | 𝜃0, 𝑥0, 𝑦0) ∝ 𝑝(𝑥0, 𝑦0 | 𝜃0)𝑝(𝜃0) (4.17)

The predictive distribution, given a set of features 𝑥1, is thus:

𝑝(𝑦1 | 𝑥1) ∝ 𝑝(𝑦1 | 𝑥1, 𝜃1) 𝑝(𝜃1 | 𝜃0, 𝑥0, 𝑦0)⏟  ⏞  
𝑝(𝜃1)

(4.18)

The previous equations expresses the fact that the prior of the weights for the current

iteration is the posterior of the weights at the previous iteration. Once the second pair

(𝑥1, 𝑦1) is available, the distribution of the model parameters is updated in the same way

as before:

𝑝(𝜃2 | 𝜃1, 𝑥1, 𝑦1) ∝ 𝑝(𝑦1 | 𝑥1, 𝜃1) 𝑝(𝑦0 | 𝑥0, 𝜃0)𝑝(𝜃0)⏟  ⏞  
𝑝(𝜃1)

(4.19)

When the pair (𝑥2, 𝑦2) arrives, the distribution of the weights can be obtained once

again:

𝑝(𝜃3 | 𝜃2, 𝑥2, 𝑦2) ∝ 𝑝(𝑦2 | 𝑥2, 𝜃2) 𝑝(𝑦1 | 𝑥1, 𝜃1) 𝑝(𝑦0 | 𝑥0, 𝜃0)𝑝(𝜃0)⏟  ⏞  
𝑝(𝜃1)⏟  ⏞  

𝑝(𝜃2)

(4.20)

By now, it might be clear that there is recursive relationship that links each iteration:

the posterior distribution at step 𝑡 becomes the prior distribution at step 𝑡 + 1. This simple

fact is the reason why analytical Bayesian inference can naturally be used as an online

machine learning algorithm. Indeed, we only need to store the current distribution of the

weights to make everything work.

Up until now we didn’t give any useful example. We will now see how to perform linear

regression by using Bayesian inference. In a linear regression, the model parameters 𝜃𝑡 are

just weights 𝑤𝑡 that are linearly applied to a set of features 𝑥𝑡:

𝑦𝑡 = 𝑤𝑡𝑥
ᵀ
𝑡 + 𝜖𝑡 (4.21)
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Each prediction is the scalar product between 𝑝 features 𝑥𝑡 and 𝑝 weights 𝑤𝑡. The

trick here is that we’re going to assume that the noise 𝜖𝑖 follows a given distribution. In

particular, we will be boring and use the Gaussian ansatz, which implies that the likelihood

function is a Gaussian distribution:

𝑝(𝑦𝑡 | 𝑥𝑡, 𝑤𝑡) = 𝒩 (𝑤𝑡𝑥
ᵀ
𝑡 , 𝛽−1) (4.22)

Christopher Bishop calls 𝛽 the “noise precision parameter”. In statistics, the precision

is inversely related to the noise variance as so: 𝛽 = 1
𝜎2 . Basically, it translates our belief

on how noisy the target distribution is. Both concepts coexist mostly because statisticians

can’t agree on a common Bible. There are ways to tune this parameter automatically from

the data, however for the sake of simplicity we will treat it as known constant. In any

case, the appropriate prior distribution for the above likelihood function is the multivariate

Gaussian distribution:

𝑝(𝑤0) = 𝒩 (𝑚0, 𝑆0) (4.23)

𝑚0 is the mean vector of the distribution while 𝑆0 is its covariance matrix. Initially, their

initial values will be:

𝑚0 = (0, . . . , 0) (4.24)

𝑆0 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛼−1 . . . . . .

. . . 𝛼−1 . . .

. . . . . . 𝛼−1

⎞⎟⎟⎟⎟⎟⎟⎠ (4.25)

𝛼 is a hyperparameter that needs to be provided. From our experience, its influence is

very small in an online scenario and therefore its value does not matter very much. We can

now determine the posterior distribution of the weights:

𝑝(𝑤𝑡+1 | 𝑤𝑡, 𝑥𝑡, 𝑦𝑡) = 𝒩 (𝑚𝑡+1, 𝑆𝑡+1) (4.26)
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𝑆𝑡+1 = (𝑆−1
𝑡 + 𝛽𝑥ᵀ

𝑡 𝑥𝑡)−1 (4.27)

𝑚𝑡+1 = 𝑆𝑡+1(𝑆−1
𝑡 𝑚𝑡 + 𝛽𝑥𝑡𝑦𝑡) (4.28)

Note that 𝑥ᵀ
𝑡 𝑥𝑡 is the outer product of 𝑥𝑡 with itself. There are also a set of formulas

that can be used to obtain the predictive distribution:

𝑝(𝑦𝑡) = 𝒩 (𝜇𝑡, 𝜎𝑡) (4.29)

𝜇𝑡 = 𝑤𝑡𝑥
ᵀ
𝑡 (4.30)

𝜎𝑡 = 1
𝛽

+ 𝑥𝑡𝑆𝑡𝑥
ᵀ
𝑡 (4.31)

All of the above formulas are quite common and can be found in many introductions to

Bayesian inference. One of the issues with this formulation is that the data is assumed to be

stationary. Indeed, the more data we show the model, the more it will be confident about

its parameter estimate. However, we could like to it to be able to be robust to concept

drift and impose some sort of adversarial setting. In the case of plain linear regression this

isn’t so much an issue because we use a constant learning rate that allows the weights to be

updated whenever drift occurs. The solution we found was to change the update formulas

of the covariance matrix and the mean vector in the following manner:

𝑆𝑡+1 = (𝛾𝑆−1
𝑡 + (1− 𝛾)𝛽𝑥ᵀ

𝑡 𝑥𝑡)−1 (4.32)

𝑚𝑡+1 = 𝑆𝑡+1(𝛾𝑆−1
𝑡 𝑚𝑡 + (1− 𝛾)𝛽𝑥𝑡𝑦𝑡) (4.33)

In the above equations, 𝛾 acts a smoothing parameter which controls how much the

model “forgets” its current state and sticks to the new data. In the case where 𝛾 = 1, the

model doesn’t learn and sticks to the prior distribution. On the contrary, when 𝛾 = 0,

the model memorises the latest sample and forgets what it has seen up to there. These
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formulas are very much heuristic and we have not taken the time to give them a thorough

analytical treatment. We have considered them to be worthy of inclusion in the manuscript

because they have provided us with very good experimental results, as will be show in the

next section. As far as we can tell, they haven’t been used in published literature. They

are however, not complex and resemble exponential weighted moving averages. Note that

a similar formulation can be found in [Russac et al., 2019], although the context and the

premises are somewhat different.

4.3 Experimental results

We evaluated our approach using the IMDb dataset from the JOB benchmark [Leis et al.,

2015]. The IMDb dataset contains real-word data pertaining to the movie industry and

contains many correlations (for instance French actors usually play in French movies). It

contains 21 relations and weighs 3.6 GB. We simulated query workloads by sampling from

the queries that accompany each dataset. In the case of the IMDb dataset, there are 113

available queries. For each sampled query, we asked PostgreSQL to generate an execution

plan and sampled sub-plans from each of these execution plans. For each sub-plan, we tasked

each machine learning model we benchmarked to predict the correction factor we introduced

previously. We then multiplied each predicted correction factor with the selectivity estimate

made by PostgreSQL’s cost model. Finally, we calculated the 𝑞-error [Moerkotte et al.,

2009], which measures the multiplicative difference between predictions and ground truths.

The 𝑞-error is generally used for evaluating selectivity estimation modules.

We sampled the queries in three different manners. First of all, we sampled the queries

completely at random. Secondly, we split the queries into three buckets and sampled from

a particular bucket. We made sure that each bucket contained queries that were similar

with other, whilst being different to the queries from other buckets. At certain points in

time, we swap the buckets in order to simulate a hard drift. Our goal with this approach is

to measure how well a method is able to cope with a change in query patterns. Finally, we

created an environment with a slow drift, where we slowly transitioned from one bucket to

the other. To perform such a simulation, we define the probability of sampling a bucket to
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be a function of the current time step. There are many ways to define such a function. In

our experiments we chose the following formula:

𝑃 (𝑏, 𝑡) =
𝑒𝑥𝑝(− (𝑡−𝑡𝑏)2

𝑑 )∑︀
𝑏𝑖

𝑒𝑥𝑝(− (𝑡−𝑡𝑏𝑖
)2

𝑑 )
(4.34)

where 𝑃 (𝑏, 𝑡) is the probability of sampling bucket 𝑏 at time step 𝑡. Meanwhile, 𝑡𝑏 is an

arbitrary time step assigned to bucket 𝑏, and 𝑤 is a parameter which controls the abruptness

of the drift. For our experiments we arbitrarily settled on a value for 𝑤 of 3.

We benchmarked the following online machine learning models:

1. Linear regression trained via stochastic gradient descent, with a constant learning rate

of 0.1.

2. Bayesian linear regression, which 𝛼 set to 10. Note that in practice the 𝛼 doesn’t

seem to have a great impact on the model’s convergence.

3. Hoeffding tree with a patience of 200 and a maximum depth of 5. This means that

we attempt to split nodes every 200 samples, and stop whenever a leaf has reached a

depth of 5.

4. Feed-forward neural network with 2 hidden layers of 30 neurons trained with the

Adam optimiser and a constant learning rate of 0.01.

5. FM with 10 components trained via stochastic gradient, with a constant learning rate

of 0.1. We provided it with one-hot encoded versions of the used attributes, attribute

values, relations, and joins.

Note that the parameters we propose are those that have us the best results experimen-

tally. For the sake of simplicity we haven’t the detail of all of our results. As a comparison,

we included the selectivity estimates made by PostgreSQL’s cost model. We also bench-

marked the following batch learning methods:

1. Standard linear regression fitted with maximum likelihood estimation (MLE). This

provides a baseline of what a simple batch learning method is able to do.

2. LightGBM [Ke et al., 2017], which is an ensemble method that combines boosting

[Freund et al., 1996] with decision trees. In short, this involves a step-wise process
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where each decision tree attempts to correct the mistakes of its predecessors. This is

widely considered to be the best off-the-shelf supervised (batch) learning model, and

is therefore interesting to compare against. Note that we used the default parameters

proposed in the reference implementation.

3. MSCN from [Kipf et al., 2019b], which we trained for 50 epochs. We chose this

method in particular because it is a representative candidate of the recent trend from

the query optimisation community towards deep learning models.

We trained each batch method on 100,000 execution plans prior to conducting the

benchmark. Meanwhile the online methods do not require this warm-up phase because they

are trained online. The evaluation phase samples 500,000 query execution plans and obtains

a prediction from each method. Figure 4-1 shows the 𝑞-errors for each method along time.

Note that the online models are represented with dotted lines whereas the batch models

are show with solid lines. As can be expected, the batch methods initially outperform the

online methods because they have has a warm-up phase. However, online learning methods

eventually outperform their batch counterparts. The best performing method is FM, which

attains an average 𝑞-error of 4.5. As a comparison, PostgreSQL has an average 𝑞-error of

25. Naturally, the batch learning can be retrained and thus may outperform the online

methods, but that requires storing observations and defining a training schedule, which is

something we are tried to avoid.
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Figure 4-1: 𝑞-errors for each method when sampling queries at random

The second sampling manner simulates a concept drift. We randomly sample 200,000

execution plans from a pool of queries, and then repeat this twice for two other query pools.

The results are shown in figure 4-2. Up until the first hard drift, which occurs at the 200,000

marker, the curves follow somewhat the same ranking as in figure 4-1. Most of the models

experience a drop in performance once the query patterns changes. For instance, batch linear

regression goes from an average 𝑞-error of around 12 to 26. The online models also take a hit

from the drift, but are for the most part able adapt. Meanwhile, the Hoeffding tree, which

is not designed to handle concept drift, is not able to reattain its initial performance. The

reason why is that it is not able to revisit the decision splits it has made, which therefore

become irrelevant.
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Figure 4-2: 𝑞-errors for each method when simulating concept drift

Our final sampling schema incurs a slow drift, which is represented in 4-3. Effectively,

we start by sampling from the first pool of queries, and slowly transition to the second

bucket. After some time we also transition towards the first bucket. Towards the middle

of the process, we are essentially sampling from all three buckets at random. This is a

strongly adversarial environment to cope with for any machine learning model, be it online

or not. As can be seen in figure 4-3, the average 𝑞-error are worse all across the board. The

performance of the online learning models seems somewhat constant, which highlights the

fact that the underlying data distribution keeps changing. Meanwhile, the batch models

do not adapt, as they have been trained on a workload which is similar to the first bucket.

Therefore their performant plummets as time goes on.
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Figure 4-3: 𝑞-errors for each method when simulating concept drift

4.4 Conclusion

In this chapter, we have looked at correcting an existing selectivity estimation model, instead

of designing one from scratch as we did in the previous chapter. Specifically, we resorted to

correct selectivity estimates with a multiplicative factor. Essentially, our goal has been to

suppress the inherent tendency of simplistic cost models to underestimate selectivities. In

particular, we have advocated the use of online machine learning for this purpose. Indeed,

although a growing body of query optimisation literature is busying itself with applying

supervised learning in many of its shapes and colours, we argue that the batch learning

approach they surmise isn’t particularly well suited to the task. On the contrary, we believe

that in light of the fact that query optimisers receive a never-ending flow of queries, it

makes more sense to use an online approach. First and foremost online machine learning

allows to stay up to date with the latest data and can thus result in better performance

overall. Aside from this benefit, an online paradigm doesn’t require having to store data,

and thus presents somewhat less of an engineering challenge. We have attempted to make

our case both through qualitative arguments, as well as experimental results. The main

point we wish to make is that the methodology we propose is simpler than methods based
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on batch learning. With online machine learning, it is possible to learn from the stream

of execution plans on-the-fly. Therefore, there is no need to store a historical training set

and retrain the model periodically. Another benefit is that online machine learning may

significantly reduce the amount technical debt that is known to plague machine learning

software [Sculley et al., 2014]. We believe that online machine learning can and probably

should be used for many tasks that fall under the umbrella of machine learning for systems

[Dean, 2017], not just selectivity estimation. The challenge, of course, is to think in terms

of online learning and design the resulting system through the lens of online computation.

For instance, features need to be able to be extracted online. Likewise, the necessary data

structures are not the same as those used with batch methods. Finally, we stress that our

approach is complementary to our contribution from the previous chapter, as it is agnostic

to which cost model is being corrected. Therefore, the contributions we have made in both

chapters are complementary and not opposed.
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Chapter 5

Conclusion

The goal and topic of this PhD has been to explore the use of machine learning for the

purpose of selectivity estimation. We began by describing selectivity estimation and dis-

cussed the performance requirements that it usually entails. Selectivity estimation is critical

because it is the main component of the cost model, which is the basis on which the query

optimiser relies to build query execution plans. Selectivity estimation is tricky because one

has to account for correlations between attributes, both within and between relations. The

difficulty comes from the fact that there are strict performance guarantees that we would

like to satisfy. Therefore, complex methods that have a high computational cost are not

usable and are ignored in practice. In this sense, there is no optimal solution to the prob-

lem of selectivity estimation. Instead, a compromise has to be made between efficiency and

accuracy. As of now, and ever since the early works on query optimisation, databases have

strongly erred towards simple models that trade accuracy in favour of efficiency.

We proceeded to enumerate existing methods, and categorised them according to their

style of approach. As we mentioned, there are many ways to skin a cat. The ontology we

chose is not universal, and is fact closer to the statistics point of view than it is to the

query optimisation literature. A first approach is to execute given queries on a sample of

the database. The obtained selectivity can then be extrapolated to the whole database.

The advantage is that this is a straightforward approach, and there are thus many sampling

tools that are very well understood. The main issue is that is difficult to build samples

across multiple relations whilst avoiding the so-called “empty-join problem”. Additionally,
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executing a query on a sample is still a costly operation. Therefore isn’t a satisfying solution

when having to estimate the selectivities for queries that involve multiple relations.

A second approach is to learn to predict selectivities with supervised learning. A su-

pervised learning model takes as input a query execution plan and outputs a selectivity.

Typically, the model learns by examining a historical set of queries and tuning a set of pa-

rameters that work best. There are many flavors to this approach, and a lot of attention is

currently being devoted to it. In particular, the popularity of deep learning has encouraged

researchers to dust off old methods and revisit them with new tools and new computational

settings. The main issue with a supervised learning approach is that it learns from the

queries. It therefore does not exploit the information from the database, such as the dis-

tributions of attribute value and their correlation. It therefore performs density estimation

by taking a detour, which is difficult to justify and has been criticised. One of the particu-

larities of selectivity estimation is that there is domain closure as regards to the underlying

data. We are not in the typical scenario where the data we have is a sample of a bigger

universe. Supervised learning methods are not available to make use of this property.

The third and final approach we have discussed is unsupervised learning. The latter

encompasses every method that attempts to model the distribution of the database’s at-

tribute values. In statistical jargon, this is called density estimation. Many of the old and

venerable methods that have stood the test of time, such as histograms, are in fact cases

of density estimation. Instead of looking at the queries, they look directly at the data and

summarise its distribution into data structures that possess varying amounts of sophisti-

cation. Of the latter, we identified Bayesian networks as the most relevant method, and

decided to examine its use for the purpose of selectivity estimation. We believe that the

computational cost required by existing proposals is too high to be used in practice. We

therefore sought to design a methodology based on Bayesian networks that offered a better

compromise between selectivity estimation accuracy and computational cost.

We began by tailoring Bayesian networks so that they could be used to estimate selectiv-

ities within individual relations. Our goal was therefore to soften the ubiquitous attribute

value independence assumption. In particular, we made precise choices so as to ensure

that each Bayesian networks was 1) able to be built in a timely manner through the use of

Chow-Liu trees, 2) able to provide an upper-bound on the required amount of storage, 3)

structured in a way that permits fast inference. We found that our approach was a solid
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first step towards improving selectivity estimation. However, it did not allow us to capture

dependencies that span over two or more relations, which are the bane of cost models. We

therefore proceeded to extend our methodology so as to allow it to capture some amount

of dependency across more than one relation. We made a point to keep this methodology

simple and not fall into the combinatorial explosion trap. We introduced a new assump-

tion, which we coined the attribute dependency preservation assumption. Our assumption

is that the dependencies that hold within one relation are preserved if the latter is joined

with one or more other relations. In the meantime, we do not assume that an attribute’s

value distribution does not change. In fact, our methodology allows this, contrary to past

proposals. We are able to do so by exploiting the simple fact that since our models are trees,

the root attribute has an influence on the rest of the factorised distribution that the tree

represents. Therefore, by estimating the distribution of the root attribute once it is joined

with another relation, we are able to infer the distribution of other attributes virtually for

free. We have validated our method on common selectivity estimation benchmarks. It is

able to compete with complex methods that model the distribution of the entire database,

but requires a much lower cost, both in terms of spatial and temporal complexity.

To complement our research, we looked downstream and attempted to correct an existing

cost model via supervised learning. The justification for this is that, in practice, cost

models make many simplifying assumptions that lead them to consistently underestimate

selectivities. Therefore, a seemingly reasonable approach is to adjust the cost model by

multiplying each selectivity it produces by a correcting factor. A simple heuristic is to

define each selectivity by a constant factor. A sophistication could be to choose a value

that minimises the error on some historical dataset. An even more involved idea is to

formulate it as a function of features that can be derived from each query execution plan.

In other words, one may frame this as a supervised learning task. We explored this method

in our last chapter. In particular, we made the case that formulating this as an online

supervised learning is a better fit than a batch approach. Indeed, learning online allows

us to exploit the never-ending stream of queries and seamlessly adapt to concept drift. In

fact, we were able to show in our experiments that such a methodology is competitive, and

actually outperforms the more traditional batch methods. The latter include the MSCN

neural network, which is representative of the recent trend from the query optimisation

community towards deep learning.
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Throughout our two methods, we have managed to approach the selectivity estimation

problem from different angles. On the one hand, our Bayesian network is built from the

ground up and can be used to answer many kinds of selectivity estimation queries. On

the other hand, our second method works by correcting an existing selectivity estimation

method, and is therefore complementary to our first method. Meanwhile, we have also used

two different flavors of machine learning, namely unsupervised learning and supervised

learning. As can be expected, there remain a few research directions that we have not

pursued as much as we would have liked to. First of all, on a practical note, it is clear that

the methods we have proposed require further exploration and validation. For example,

it could be worthwhile to integrate some flavor of them into a database system in order

to assess their added value on the query execution duration, as perceived by the user.

Secondly, we believe it would be worthwhile to consider robust query optimisation, which

is a paradigm where the uncertainty of each selectivity estimate is taken into account.

The idea is that if a query optimiser can make a more informed decision and potentially

avoid catastrophic decisions if it is provided with a distribution of values rather than a

point-wise estimate. Bayesian networks are not designed to produce uncertainty estimates

because their structure is assumed to be an exact proxy of the underlying data generation

process. However, they do allow to incorporate uncertainty in their parameter estimates,

but this isn’t of any use to us because of domain closure. Indeed, given a structure, there

is no uncertainty as to the values of each conditional distribution because we are working

with an bounded dataset. Meanwhile, the supervised learning methods discussed in the

last chapter do permit to integrate uncertainty. Finally, we believe that like most work

pertaining to selectivity estimation, our research could be extended to other applications,

such as workload forecasting and resource allocation in database systems. Indeed, the

ability to determine the cost of a query without executing is, without a doubt, and for the

foreseeable future, of immense use.
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