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Working collaboratively is no longer an issue but a reality, what matters today is how to implement collaboration so that it is as successful as possible. However, successful collaboration is not easy and is conditioned by different factors that can influence it. It is therefore necessary to take these impacting factors into account within the context of collaboration for promoting the effectiveness of collaboration. Among the impacting factors, collaborator is a main one, which is closely associated with the effectiveness and success of collaborations.

The selection and/or recommendation of collaborators, taking into account the context of collaboration, can greatly influence the success of collaboration.

Meanwhile, thanks to the development of information technology, many collaborative tools are available, such as e-mail and real-time chat tools. These tools can be integrated into a web-based collaborative work environment. Such environments allow users to collaborate beyond the limit of geographical distances. During collaboration, users can utilize multiple integrated tools, perform various activities, and thus leave traces of activities that can be exploited. This exploitation will be more precise when the context of collaboration is described. It is therefore worth developing web-based collaborative work environments with a model of the collaboration context. Processing the recorded traces can then lead to context-aware collaborator recommendations that can reinforce the collaboration.

To generate collaborator recommendations in web-based Collaborative Working Environments, this thesis focuses on producing context-aware collaborator recommendations by defining, modeling, and processing the collaboration context. To achieve this, we first propose a definition of the collaboration context and choose to build a collaboration context ontology given the advantages of the ontology-based modeling approach. Next, an ontologybased semantic similarity is developed and applied in three different algorithms (i.e., PreF1, PoF1, and PoF2) to generate context-aware collaborator recommendations. Furthermore, we deploy the collaboration context ontology into web-based Collaborative Working Environments by considering an architecture of System of Information Systems from the viewpoint of web-based Collaborative Working Environments. Based on this architecture, a corresponding prototype of web-based Collaborative Working Environment is then constructed. Finally, a dataset of scientific collaborations is employed to test and evaluate the performances of the three context-aware collaborator recommendation algorithms.

Résumé

Travailler en collaboration n'est plus une question mais une réalité, la question qui se pose aujourd'hui concerne la mise en oeuvre de la collaboration de façon à ce qu'elle soit la plus réussie possible. Cependant, une collaboration réussie n'est pas facile et est conditionnée par différents facteurs qui peuvent l'influencer. Il est donc nécessaire de considérer ces facteurs au sein du contexte de collaboration pour favoriser l'efficacité de collaboration. Parmi ces facteurs, le collaborateur est un facteur principal, qui est étroitement associé à l'efficacité et à la réussite des collaborations. Le choix des collaborateurs et/ou la recommandation de ces derniers en tenant compte du contexte de la collaboration peut grandement influencer la réussite de cette dernière.

En même temps, grâce au développement des technologies de l'information, de nombreux outils numériques de collaboration sont mis à la disposition tels que les outils de mail et de chat en temps réel. Ces outils numériques peuvent eux-mêmes être intégrés dans un environnement de travail collaboratif basé sur le web. De tels environnements permettent aux utilisateurs de collaborer au-delà de la limite des distances géographiques. Ces derniers laissent ainsi des traces d'activités qu'ils deviennent possibles d'exploiter. Cette exploitation sera d'autant plus précise que le contexte sera décrit et donc les traces enregistrées riches en description. Il devient donc intéressant de développer les environnements de travail collaboratif basé sur le web en tenant d'une modélisation du contexte de la collaboration. L'exploitation des traces enregistrés pourra alors prendre la forme de recommandation contextuelle de collaborateurs pouvant renforcer la collaboration.

Afin de générer des recommandations de collaborateurs dans des environnements de travail collaboratifs basés sur le web, cette thèse se concentre sur la génération des recommandations contextuelles de collaborateurs en définissant, modélisant et traitant le contexte de collaboration. Pour cela, nous proposons d'abord une définition du contexte de collaboration et choisissons de créer une ontologie du contexte de collaboration compte tenu des avantages de l'approche de modélisation en l'ontologie. Ensuite, une similarité sémantique basée sur l'ontologie est développée et appliquée dans trois algorithmes différents (i.e., PreF1, PoF1 et PoF2) afin de générer des recommandations contextuelles des collaborateurs. Par ailleurs, nous déployons l'ontologie de contexte de collaboration dans des environnements de travail collaboratif basés sur le web en considérant une architecture de système des systèmes d'informations du point de vue des environnements de travail collaboratif basés sur le web.

À partir de cette architecture, un prototype correspondant d'environnement de travail collaboratif basé sur le web est alors construit. Enfin, un ensemble de données de collaborations scientifiques est utilisé pour tester et évaluer les performances des trois algorithmes de recommandation contextuelle des collaborateurs. Collaboration is efficient way of working, where a group of people (at least two) work together to achieve common goals (e.g., creating or producing something) [START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF]. It has received much attention and has had a significant impact. So far, collaboration has benefited people in many fields (e.g., sports, business, academia, technology, education, arts, and even politics), especially when the collaboration is successful. However, successful collaboration is often difficult to achieve (Patel, Pettitt, and Wilson, 2012). There are various factors that can influence collaboration and its success. Among these factors, collaborator can significantly influence the effectiveness and success of collaborations. Appropriate collaborators can contribute to solving the problems encountered in collaborations and creating new collaborations [START_REF] Doherty | Factors of Successful Collaboration: Oregon's Watershed Councils as Collaborative Systems[END_REF]. This then increases the efficiency of collaboration and allows a positive relationship to be established between its members. Hence, we are interested in recommending such collaborators to people for collaborations.

However, recommended collaborators are not always relevant to people's needs, especially when they are collaborating in web-based Collaborative Work Environments (CWEs).

Integrating different collaborative tools (e.g., instant messaging and resource management tools), a web-based CWE is a computer-supported software enabling people to collaborate without any geographical distance limits (Laso [START_REF] Ballesteros | New Collaborative Working Environments[END_REF][START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF][START_REF] Li | Sharing working experience: Using a model of Collaborative Traces[END_REF]. In such environments, there is a lot of information that can influence people's needs of collaborators but is not considered in generating collaborator recommendations, such as information about people's activities during collaborations. Besides, this information comes from heterogeneous tools, increasing challenges to process and apply it for generating collaborator recommendations.

Therefore, one of the current issues is how to generate relevant collaborator recommendations in web-based CWEs, which is the main concern of this thesis. Specifically, we introduce this issue from two aspects: social and scientific. Then, the problem statement is presented.

Social issues

During collaborations, people are often expected to be geographically close. This, in turn, creates a geographical distance limit for collaborations. To overcome such a limitation, many technologies have been developed, such as computer technology [START_REF] Neale | Evaluating computersupported cooperative work: models and frameworks[END_REF]. This leads to the emergence of Computer Supported Collaborative Work (CSCW) field that combines the understanding of the way people work in groups with the enabling technologies of computer networking [START_REF] Wilson | Computer supported cooperative work:: An introduction[END_REF]. In this field, various collaborative supports (e.g. hardware, software, services, and techniques) are developed rapidly, which offer people with convenience in terms of tools and environments during their collaborations [START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF]Patel, Pettitt, and Wilson, 2012). Particularly, these tools can be integrated into a web-based CWE to support people's collaborations.

But simultaneously, the increasing appearance of collaborative tools also raise difficulties for people's collaborations in web-based CWEs. For example, the heterogeneous and disorganized information in distinct tools can weaken people's effectiveness, prevent them from achieving the desired goals of collaboration, thus make collaborations difficult to succeed [START_REF] Kotlarsky | Social ties, knowledge sharing and successful collaboration in globally distributed system development projects[END_REF]. Thus, while generating collaborator recommendations in web-based CWEs, we need to consider various factors that can influence the success of collaborations, such as goals of collaboration, utilized resources, and collaborators themselves (Patel, Pettitt, and Wilson, 2012;[START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF][START_REF] Oliveira | Online group work patterns: How to promote a successful collaboration[END_REF].

However, it is insufficient to just deal with the impacting factors of collaboration. The context can also influence people's actions, effectiveness, and thus the success of collaborations. Here, the context includes various characteristic information of a collaboration, such as the outcomes generated within collaborations. Therefore, in addition to concentrating only on these factors, considering them within the context of collaborations is necessary to form and succeed collaborations [START_REF] Taylor-Powell | Evaluating collaborations: Challenges and methods[END_REF]. In other words, the collaboration context should be taken into account to generate relevant collaborator recommendations in web-based CWEs.

Scientific issues

In web-based CWEs, users (i.e., people) are able to collaborate in groups, regardless of their geographical distance [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF][START_REF] Su | Collaborative design and manufacture supported by multiple Web/Internet techniques[END_REF][START_REF] Kan | An Internet virtual reality collaborative environment for effective product design[END_REF][START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF]. While collaborating, they can apply different collaborative tools that are integrated and deployed in web-based CWEs, allowing them to obtain services and/or use resources. Particularly, each tool is an autonomous and independent information system. Together with the web-based CWE, they form a network of autonomous and independent information systems that are integrated together to accomplish common missions, known as a System of Information Systems (SoIS) [START_REF] Karcanias | System of systems and emergence part 1: Principles and framework[END_REF][START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF]. Specifically, a web-based CWE with its integrated tools can be considered as a collaborative SoIS, where these independent tools work together to support users' collaborations.

In such environments, the aggregation of different tools results in a significant increase in the amount of information, causing information overload problems for users. Besides, the information from different tools is heterogeneous. This leads to other problems in webbased CWEs, like poor interoperability between tools and information processing difficulties [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF][START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF]. It also creates obstacles for users to organize information about collaborations. This implies that users struggle in retrieving information about collaborators, and need collaborator recommendations in the web-based CWEs.

Hence, recommender systems (RS) are designed and applied, which provide suggestions for users among massive information (Ricci, Rokach, and Shapira, 2015). For example, when a user wants a collaborator for web application development, he/she may receive recommendations of collaborators that have built applications. Such recommendations are intended to aid users in seeking out and choosing collaborators. However, they are sometimes not consistent with users' needs. To produce more relevant recommendations, the context is incorporated into recommendation generation processes, which gave rise to a new branch of RS: context-aware recommender system (CARS) (Adomavicius and Tuzhilin, 2011). Particularly, based on [START_REF] Dey | Understanding and using context[END_REF], the context in collaborations indicates any characteristic information that can be used to describe the situation of an entity, which can be a user, object, or event related to a collaboration (including the collaboration itself).

Thus, to generate relevant collaborator recommendations in web-based CWEs, this thesis focuses on building a CARS to produce context-aware collaborator recommendations.

To do so, the heterogeneous information in web-based CWEs should be organized and processed within the context of users' collaborations. However, so far, context is still lacking a universal definition, resulting in its diverse models [START_REF] Bazire | Understanding context before using it[END_REF]. Hence in web-based CWEs, an appropriate definition and model of the collaboration context are needed, so that the collaboration context can be used to generate context-aware collaborator recommendations.

Problem statement

As mentioned in the background of this thesis, in collaborations, appropriate collaborators are needed, which also affect the effectiveness and the success of collaborations. Thus, it is worth recommending such collaborators to people during collaborations, especially when these people are collaborating in web-based CWEs. This requires us to construct a CARS that generates context-aware collaborator recommendations for them in web-based CWEs.

To this end, the following problems have to be addressed: Q1. What is collaboration context and how to model it? Q2. How to process and apply the collaboration context in algorithms for generating contextaware collaborator recommendations? Q3. How to implement and integrate the collaboration context model into web-based CWEs? Q4. Are our context-aware collaborator recommendations algorithms relevant in terms of accuracy and time efficiency?

Therefore, this thesis concerns on defining, modeling, and utilizing the collaboration context in web-based CWEs. Besides, we attempt to build a CARS for producing contextaware collaborator recommendations.

Our approaches and contributions

To deal with the problems listed in Section 1.1.3, the following pieces of work took place:

• Define collaboration context and construct a collaboration context ontology.

We first develop a definition of collaboration context by analyzing and supplementing the previous definitions of context and collaboration. Then, considering the advantages of the ontology-based modeling approach in terms of flexibility, interpretability, and supporting interoperability between different information systems, we decide to construct an ontology-based collaboration context model (i.e. a collaboration context ontology) in webbased CWEs. This model reuses and extends two existing ontologies of the MEMORAe approach [START_REF] Atrash | Supporting organizational learning with collaborative annotation[END_REF][START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF][START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF].

• Develop and employ a semantic similarity in context-aware recommendation algorithms.

To process the collaboration context, we propose an ontology-based semantic similarity, permitting us to measure the likeness/relatedness between two collaborations in the collaboration context ontology. Then, to generate context-aware collaborator recommendations, this semantic similarity is applied in recommendation algorithms, which are implemented following two methods: contextual pre-filtering (PreF) and post-filtering (PoF) (Adomavicius and Tuzhilin, 2011;[START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]Panniello and Gorgoglione, 2012).

• Deploy the collaboration context ontology in an architecture of web-based CWEs and develop a corresponding prototype.

Having built the collaboration context ontology, it is necessary to explore how to deploy and implement it in a web-based CWE. For this, we make use of the relationship between web-based CWEs and SoISs. The architecture of a collaborative SoIS [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] is therefore considered from the viewpoint of web-based CWEs, so that the collaboration context ontology can organize heterogeneous information in a web-based CWE. Based on this architecture, we also build a corresponding prototype of web-based CWE, which is a continuation of the MEMORAe approach.

• Test and evaluate the performances of the context-aware recommendation algorithms.

With the collaboration context ontology and the context-aware recommendation algorithms, the collaboration context can be processed to generate context-aware collaborator recommendations. To test the performances of these algorithms, experiments are carried out on a public dataset of scientific collaborations, which is extracted from multiple academic bibliographies. The results obtained from this dataset are compared and evaluated from two aspects: accuracy and time efficiency.

Besides, to illustrate the usage of the collaboration context ontology and our web-based CWE prototype, the following scenario is utilized in this thesis:

Emma is a PhD student on computer science in Laboratory X. Her thesis is about contextaware applications and guided by two supervisors, Elsa and Marie. During her thesis, Emma has collaborated with several people in different scientific projects. Particularly, Emma collaborated with two engineers, Lucie and Marinela, to build a context-aware application (01/11/2020 -31/12/2020) and to publish their results in a scientific paper. This is a part of her PhD research.

Lucie is a young engineer with a master's degree in computer science. She finished an internship on constructing interfaces of a web application for a company. Then she started her work in Laboratory X with the context-aware application project.

Marinela is an experienced senior engineer in Laboratory X. She has worked for 5 years and helped a lot of students and researchers on their projects. She is an expert in a variety of programming languages, especially in web applications.

Dissertation organization

The rest of this thesis is organized as follows:

Part II State of the Art is dedicated to analyzing and comparing previous studies related to our problem. It consists of two chapters:

Chapter 2 Literature review: We begin by providing some background on collaboration and explore various factors that can have an impact on collaborations. We also present the notion context from its definition, classification, and modeling approach.

Then we focus on the relationship between web-based CWEs and SoISs. The final part is mainly about recommender system and context-aware recommender system.

Chapter 3 A survey of MEMORAe approach: This chapter introduces the MEMO-RAe approach, made up of a web platform and a core ontology.

Part III Contributions is composed of four chapters. Publications: Finally, the publications related to this thesis are presented.

Part II

State of the Art

Chapter 2

Literature review

Introduction

As an effective way of working together, collaboration is important in human society [START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF]. At the same time, collaboration also raises challenges to its participants. They may have problems during collaboration process, such as communication barriers between people speaking different languages. When these problems are inappropriately addressed, both the future process and outcomes of a collaboration suffer, which in turn can affect the efficiency of the collaboration and make it unsuccessful. In other words, collaboration is neither easy to achieve nor guaranteed to succeed, since there are many factors which can influence it (Patel, Pettitt, and Wilson, 2012). Thus, we explore collaboration in terms of its definitions and impacting factors.

In this chapter, we introduce the notion, web-based Collaborative Working Environment (CWE), which has emerged to identify the key elements for collaborators in their daily work [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF]. Another type of system, System of Information Systems (SoIS), is also presented and explained, which can provide inspirations on organizing heterogeneous information in web-based CWEs.

Finally, we focus on recommender systems (RSs). Typical RSs seek to predict how a user would value the utility of an item. By regarding collaborators as items, RSs can also be adapted to generate collaborator recommendations for users in web-based CWEs.

Thus, the remaining parts of this chapter are organized as follows: Section 2.2 presents the notion collaboration and identify what factors can influence its success. Then the definition, classification and modeling of context are introduced in Section 2.3. Section 2.4 mainly covers web-based CWE, SoIS and their relationships. We also illustrate the state of the art of RS and CARS in Section 2.5, including their core functionalities, approaches and techniques in use. Finally, a conclusion is provided at the end of this chapter.

Collaboration

Definition

As a widely used notion, many definitions of collaboration are presented in the literature.

Collaboration indicates the action of working with another person or group of people to create or produce something 1 . This word also means the situation of two or more people working together to create or achieve the same thing 2 . While in Merriam-Webster Dictionary online, the noun collaboration comes from intransitive verb collaborate that is defined as working jointly with others or together especially in an intellectual endeavor 3 .

From these definitions in dictionaries, one common and fundamental meaning of collaboration is to work together with others (at least one person), which is also its initial signification [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF]. Moreover, the first two definitions specify the objectives of collaboration: to create, achieve or produce something, while Merriam-Webster Dictionary emphasizes the intellectual attempt to achieve a goal. Therefore, another meaning of collaboration is to accomplish its goals by attempts.

Besides, Patel, Pettitt, and Wilson (2012) summarized that collaboration involves two or more people engaged in interaction with each other, within a single episode or series od episodes, working together towards the common goals. [START_REF] Suto | A representation model of collaboration in design process[END_REF] highlighted communication process and the functionalities of knowledge transfer in collaborations.

These two definitions focus on interactions (e.g., communication) between collaborators that aim to advance towards goals of collaboration. Here, collaborator can be individuals, groups of people or even organizations. Their actions are carried out by human actors contributing to the collaboration as individual members, or members belonging to the group collaborators or organization collaborators. Moreover, Patel, Pettitt, and Wilson (2012) underlined the goals of collaboration are common and shared by all collaborators. Therefore, after analyzing all above definitions, a collaboration happens between two or more collaborators and comprises a set of human actors' actions on behalf of the corresponding collaborator to achieve their shared goals. Through collaborations, they can improve their relationships and skills [START_REF] Doherty | Factors of Successful Collaboration: Oregon's Watershed Councils as Collaborative Systems[END_REF] by interacting with others. Besides, collaboration can also help to [START_REF] Doherty | Factors of Successful Collaboration: Oregon's Watershed Councils as Collaborative Systems[END_REF]: a. Find solutions that allow for mutual benefit among collaborators Nevertheless, these benefits cannot be obtained through any collaborations. Some are inherent to successful collaborations, such as e and f [START_REF] Doherty | Factors of Successful Collaboration: Oregon's Watershed Councils as Collaborative Systems[END_REF]. Based on [START_REF] Kotlarsky | Social ties, knowledge sharing and successful collaboration in globally distributed system development projects[END_REF], the only condition of a successful collaboration is to achieve its desired goals through effort, which can be qualified by product success and personal satisfaction.

But evaluating a successful collaboration involves much more than that. Various factors that can influence collaborations must also be considered.

Factors of collaboration

Numerous studies have been implemented to identify different factors that have an impact on collaboration, regardless of whether it succeeds or not. [START_REF] Briggs | A seven-layer model of collaboration: Separation of concerns for designers of collaboration systems[END_REF] proposed a Seven-Layer Model of Collaboration (SLMC) to assist designers of collaborative systems. SLMC defines seven groups of impacting factors in collaborations, one group per layer [START_REF] Briggs | A seven-layer model of collaboration: Separation of concerns for designers of collaboration systems[END_REF]):

• Goal: A goal is a desired state or outcome, including factors like motivation, commitment, and other goal-related factors.

• Product: A product is a tangible or intangible artifact or outcome produced by collaborators' effort, containing quality, effectiveness and efficiency of products.

• Activity: Activities are subtasks that, when completed, produce the outputs that make up the achievement of the group's objective, related to sequences of steps to constitute decision-making and problem-solving approaches.

• Pattern of Collaboration: Collaborative patterns are observable patterns of behavior and outcomes that emerge over time in teamwork, depending on regularities of collaborators' actions and outcomes.

• Technique: A collaboration technique is a reusable procedure for invoking useful interactions between collaborators working towards a shared goal, for example, brainstorming.

• Tool: Collaboration tools are artifacts or devices used in the execution of an operation to advance towards its goals, including designing, developing, deploying and using technologies to support collaboration.

• Script: A script is everything team members tell each other and do with their tools to get closer to the collaboration's goals. It can be an internal or external, physical or electronic document.

The seven layers are related to each other. Collaborators apply tools and techniques to carry out activities (set of actions) to create products or achieve shared goals of collaboration. In this process, various scripts are generated and collaboration patterns are established.

Together, these form the core of collaboration and allow it to be characterized [START_REF] Briggs | A seven-layer model of collaboration: Separation of concerns for designers of collaboration systems[END_REF].

Particularly for successful collaborations, Wouters et al. (2017) specified four prerequisites: 1) A shared objective between the stakeholders involved; 2) A synchronization of actions; 3) An exchange of information, between the right entities, at the right time; 4) Complementarity between skills.

Besides, some researches only focus on the factors of successful collaborations.

• Hara et al. (2003) concluded four factors for scientific collaborations: 1) Personal compatibility; 2) Research work connections; 3) Incentives; 4) Socio-technical infrastructure.

• [START_REF] Bruneel | Investigating the factors that diminish the barriers to university-industry collaboration[END_REF] investigated University-Industry collaborations and concentrated on three factors: 1) Experience of collaboration; 2) Breadth of interaction channels; 3) Inter-organizational trust.

• Camarinha-Matos and [START_REF] Camarinha-Matos | Collaborative networks: Value creation in a knowledge society[END_REF] summarized principal elements in Virtual Organization Breeding Environment (VBE4 ) that is a subtype of collaborative network5 [START_REF] Afsarmanesh | Modeling and management of information supporting functional dimension of collaborative networks[END_REF]. The elements are: 1) VBE; 2) VBE member; 3) VO; 4) Profile; 5) History; 6) Evidence; 7) Bag of assets; 8) Management system; 9) VBE governance; 11) Value system; 12) Trust system.

Occasionally, many factors of successful collaboration are too specific that they have to be clustered into groups/categories. For example, San [START_REF] Martín-Rodríguez | The determinants of successful collaboration: a review of theoretical and empirical studies[END_REF] considered three types of factors for interprofessional collaboration in health care (see Table 2.1). 

Organizational factors

Organizational structure; Organization's philosophy;

Administrative support; Team sources; Coordination and communication mechanisms.

Systemic factors

The social system; The professional system; The educational system. Patel, Pettitt, and Wilson (2012) applied seven groups of factors to frame a collaborative working model (see Table 2.2). All these works mentioned above seek to enhance the success of collaborations. Each concerns on the impacting factors of collaboration in its own field of research, which is why these factors are so diverse. Sometimes, certain factors are not universal and cannot qualify collaborations in other fields. For example, research work connections (Hara et al., 2003) is only suitable for scientific collaborations. In commercial collaborations, this factor is no longer adoptable. Based on it, a corresponding factor should be Business connections to describe the matching and complementarity of collaborators. Other similar factors include inter-organizational trust [START_REF] Bruneel | Investigating the factors that diminish the barriers to university-industry collaboration[END_REF] and VBE (Camarinha-Matos and [START_REF] Camarinha-Matos | Collaborative networks: Value creation in a knowledge society[END_REF].

Moreover, all research methods in these works can be divided into two main classes:

1) directly explore impacting factors, e.g., (Hara et al., 2003), [START_REF] Bruneel | Investigating the factors that diminish the barriers to university-industry collaboration[END_REF] and (Camarinha-Matos and Afsarmanesh, 2006); 2) integrate factors into different levels by grouping/categorizing, e.g., [START_REF] Briggs | A seven-layer model of collaboration: Separation of concerns for designers of collaboration systems[END_REF]), (San Martín-Rodríguez et al., 2005), and (Patel, Pettitt, and Wilson, 2012). Such a difference indicates that each factor has a specific impact on collaboration. And its impact depends on the domain of collaboration.

Besides, many shared factors that imply the common characteristic of collaboration are summarized and shown below:

• Goal: This is essential for collaborations and is mentioned by the definitions of collaboration in Section 2.2.1. A goal can refer to desired outcomes, products, or states but must be shared by collaborators [START_REF] Briggs | A seven-layer model of collaboration: Separation of concerns for designers of collaboration systems[END_REF]Wouters et al., 2017;Patel, Pettitt, and Wilson, 2012;[START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF]. If the desired goal is attained, this collaboration is successful [START_REF] Kotlarsky | Social ties, knowledge sharing and successful collaboration in globally distributed system development projects[END_REF].

• Collaborators: This is also basic for collaboration, which signifies members of collaboration. In some cases, it can be represented by a group of factors that are permanent to collaborators as Patel, Pettitt, and Wilson (2012) and [START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF] do. These related factors are shown in Table 2.4. 

Factors

• Context: This involves the surroundings of collaboration that do not define the collaboration but are closely tied to and influence it. It can a cultural, organizational (San [START_REF] Martín-Rodríguez | The determinants of successful collaboration: a review of theoretical and empirical studies[END_REF] or environmental factor [START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF]Patel, Pettitt, and Wilson, 2012). For example, if students learn collaboratively on a site, then the site belongs to this kind of factor when serving as an environment in collaborations. And the site can have an effect on students' actions, patterns, and effectiveness of their learning. Specifically, the site is also termed as a Collaborative

Working Environment (CWE), which can support collaborations among collaborators geographically dispersed.

While these factors have some similarity and differences, they complement each other to some extent. Jointly, they describe the features of collaboration and its success. Therefore, in turn, such factors can contribute to assessing the state of collaboration and suggesting adjustments accordingly.

Discussion

To conclude, a collaboration must have three necessary components: at least two collaborators, a common goal, and interactions among collaborators to advance it. During its process, collaborators can derive some benefits, especially when the collaboration is successful. However, successfully collaborating is often uneasy. Various factors can influence collaboration and its success, each having different impacts. This indicates that the success of a collaboration is not determined by a single factor, but by the integration of all these factors. In turn, adjusting these factors can directly or indirectly assist collaboration to succeed.

However, none of the previous research has shown any interest in this.

Moreover, goals, collaborators, their actions, resources, and context are the key factors of collaboration, which implies common feature of collaboration from the above analysis.

Particularly, the factor context may also influence other factors of collaboration, such as collaborators' interactions and their used tools. This complicates how to integrate these factors together.

Besides, since collaborator plays an essential role in collaborations, recommending appropriate collaborators to people will also help them to collaborate successfully.

Context

As a complex notion [START_REF] Adomavicius | Preface to the special issue on contextaware recommender systems[END_REF], context is the keystone that enables any intelligent entity to understand how occurrences in the surrounding world influence its own behavior. This is because context supports intelligent entities to deduce possible activities and information needs, allowing them to apply appropriate behavior accordingly [START_REF] Kofod-Petersen | Using activity theory to model context awareness[END_REF].

In the field of information technology, it is essential for human-computer interactions by presenting surrounding facts that make sense [START_REF] Schmidt | There is more to context than location[END_REF]. Context also plays a significant role in establishing a common understanding of service interoperability in distributed systems (Strang and Linnhoff-Popien, 2003).

Besides, context is applied in context-aware applications to provide relevant information and/or services to the user, where relevancy depends on the user's task [START_REF] Dey | Understanding and using context[END_REF]) (e.g., context-aware recommender system). The functions of such applications are assigned to three categories [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF]: 1) the presentation of information 6 ; 2)the execution of services 7 ; 3) the storage of context information attached to other captured information for later retrieval 8 . In these applications, one core accessor is a well-designed context model [START_REF] Strang | CoOL: A context ontology language to enable contextual interoperability[END_REF].

However, context stays at an ill-defined stage [START_REF] Bazire | Understanding context before using it[END_REF]. Its various definitions result in diverse contextual information implemented in different contextaware applications. This, in turn, poses difficulties when processing contextual information:

it is hard to describe context and relationships in a precise and traceable manner [START_REF] Strang | CoOL: A context ontology language to enable contextual interoperability[END_REF].

Therefore, we first explore definitions of context. Given the diversity of contextual information, we also discuss its classification to categorize it and to comprehend in a systematic manner [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF]. Finally, approaches to model context are introduced and summarized.

Definition

In Oxford Dictionaries online (2019) 9 , the notion context is defined as the circumstances that form the setting for an event, statement, or idea, and in terms of which it can be fully understood. Psychologically, context is the set of circumstances that frames an event or an object [START_REF] Bazire | Understanding context before using it[END_REF].

Both definitions describe context using the term circumstance, which indicates a fact or condition connected with or relevant to an event or action 10 . Besides, context is restricted to shaping an event, action or object to enhance others' comprehension for it (the event, action 6 Presenting information and services refers to applications that either present context information to the user or use context to propose appropriate selections of actions to the user. 7 Automatically executing a service describes applications that trigger a command or reconfigure the system on behalf of the user according to context changes. 8 To attach context information for later retrieval, context-aware applications tag captured data with relevant context information. 9 https://www.lexico.com/en/definition/context 10 Oxford Dictionaries online (2019) https://www.lexico.com/en/definition/ circumstance or object). Thus, context can be considered as a set of conditions that are pertinent to or constitute an event, statement, or object. Apart from listed above, context has received many definitions in the field of informatics.

From the literature review on context, an overview of its definitions is presented below:

• Context represents a set of explicit variables that model contextual factors in the underlying domain (for example, time, place, surroundings, device, occasion, and so on).

This definition comes from recommender systems (Adomavicius and Tuzhilin, 2011).

• Context is the set of environmental states and settings that either determines an application's behavior or in which an application event occurs and is interesting to the user. This definition is generally used in the field of context-aware computing [START_REF] Chen | A survey of context-aware mobile computing research[END_REF].

• Context can be considered to be everything that affects the computation except the explicit input and output. This definition stands from the perspective of computer programming [START_REF] Lieberman | Out of context: Computer systems that adapt to, and learn from, context[END_REF].

• Context refers to the situation under which user's database access happens. This definition focuses on context-aware database support for ambient intelligence [START_REF] Feng | Towards context-aware data management for ambient intelligence[END_REF]).

• Context a subjective concept that is defined by the entity that perceives it. It could be generally described as the subset of physical and conceptual states of interest to a particular entity. This definition emphasizes wearable computing systems [START_REF] Pascoe | Adding generic contextual capabilities to wearable computers[END_REF].

• A context is the set of all context information characterizing the entities relevant for a specific task in their relevant aspects. Here, a contextual information is any information which can be used to characterize the state of an entity concerning a specific aspect; an entity 11 is a person, a place or in general an object; an aspect 12 is a classification, symbol-or value-range, whose subsets are a superset of all reachable states; a situation is the set of all known context information. This definition applies to the ubiquitous computing environments (Strang and Linnhoff-Popien, 2003).

Besides, we retain a definition that seems to be a consensus on whatever the field of application: context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves [START_REF] Dey | Understanding and using context[END_REF]. 11 An entity is relevant for a specific task, if its state is characterized at least conceirning one relevant aspect (Strang and Linnhoff-Popien, 2003).

12 An aspect is relevant, if the state with respect to this aspect is accessed during a specific task or the state has any kind of influence on the task (Strang and Linnhoff-Popien, 2003).

These definitions specify context as the characteristic information of an entity's circumstances. Such information that can be considered in an entity's context is called contextual information. It represents the values of contextual factors (Adomavicius and Tuzhilin, 2011).

For example, for hour factor, the value 17h is contextual information.

Many contextual factors are mentioned in the previous studies. According to these studies, some contextual factors are shown in Table 2.5. Note that these contextual factors are not related to the same entity. First three of them describe user context, while others separately focus on intelligent environment context [START_REF] Franklin | All gadget and no representation makes jack a dull environment[END_REF], mobile device context [START_REF] Rodden | Exploiting context in HCI design for mobile systems[END_REF] and computer context [START_REF] Ryan | Enhanced reality fieldwork: the context-aware archaeological assistant[END_REF]. In conclusion, the definition of an entity's context remains dependent on what it is intended to use. It is therefore necessary to identify the appropriate dimensions as well as the associated factors, which seeks to define the characteristic features of an entity. These features can be used not only to describe the entity at a given time but also to infer information of the future. For example, in forecasting weather, day d's context is utilized to predict the weather for the next few days.

Classification

One easy approach to classify context is by entities [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF] whose situation is described and characterized by contextual information. [START_REF] Zimmermann | An operational definition of context[END_REF] concerned four entities types: natural, human, artificial and group (see Table 2.7). In the meantime, [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF] identified three types: places, people and things13 . [START_REF] Bazire | Understanding context before using it[END_REF] only considered either an event (e.g., a collaboration) or an object. [START_REF] Zimmermann | An operational definition of context[END_REF].

Description Natural entity

Natural entities indicate all living and non-living things that occur naturally and are not the result of any human activity or intervention (e.g., animals).

Human entity Human entities refer to human beings (e.g., user).

Artificial entity

Artificial entities denote products or phenomena that result from human actions or technical processes (e.g., computer).

Group entity

Group entity is a collection of entities, which share certain characteristic, interact with one another or have established certain relations between each other (e.g., user group).

Under this classification, one of the most widely addressed context is user context, which mainly determines the behaviors of context-aware applications [START_REF] Brown | Context-aware applications: from the laboratory to the marketplace[END_REF]) and matters in predicting users' behaviors [START_REF] Palmisano | Using context to improve predictive modeling of customers in personalization applications[END_REF]. User context concentrates on the entity: user, which is also the entity of most works presented in Section 2.3. This is mainly because context is inevitably tied to an entity according to the definitions in Section 2.3.1 and in most cases the entity is user. However, whatever the entity, all works explore the notion context (of an entity).

Depending on whether context changes over time or not, Adomavicius and Tuzhilin (2011) applied two categories to distinguish different contexts:

Static: Relevant contextual factors and their structure remains stable over time.

Dynamic:

The contextual factors change in some way.

These contexts have a lifetime and their importance shifts over time. For example, during one month, a person's age is relatively static. However, if he/she moves to another city during the month, his/her address is dynamic. Therefore, from a perspective, the address is more important than the age for the given month. [START_REF] Chen | A survey of context-aware mobile computing research[END_REF] identified two types of context with regard to its use in applications: active and passive context. Active context influences the behaviors of an application, while passive context is relevant but not critical to an application. For example, in a map application, user's location belongs to active context, while user's gender is passive context.

Because the user's gender is not decisive in such an application. Instead, the application must change its behaviors when adapting to the user's location.

Another classification method lies in the difficulty of collecting contextual information.

Through different levels for abstracting the entity's contextual information, context can be divided into low-level context and high-level context [START_REF] Hong | Context-aware systems: A literature review and classification[END_REF]. Low-level context comprises raw data collected directly from physical devices (e.g., sensors) [START_REF] Hong | Context-aware systems: A literature review and classification[END_REF]. As acquired without further interpretation, low-level context can be insignificant, trivial, vulnerable to small changes or uncertain [START_REF] Ye | Using situation lattices to model and reason about context[END_REF]. On the other hand, high-level context provides summary descriptions of one entity's state and surroundings (Wang et al., 2004b), derived from reasoning and interpreting low-level context [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. For example, for a conversation between two persons, the low-level contextual factors include time, location, participants and conversation records, while its objective is a high-level factor that cannot be attained directly. Acquiring high-level context is already a challenge. But such information can be valuable and even have a determining impact on the entity.

Besides, context can also be separated into explicit and implicit context (Wang et al., 2004a) according to different collecting mechanisms. Explicit context is collected from context sources directly or required explicitly to the entity. As well, implicit context can either be additional information deduced from explicit context or be implicitly learned from the entity's activities or behaviors (Wang et al., 2004a;[START_REF] Anand | Introduction to intelligent techniques for web personalization[END_REF]. For example, on an online commercial site, user's comment on an item is explicitly required, which is explicit context. But as implicit context, the frequency of the user's navigation clicks on the item is implicitly collected. [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF], which introduce four essential categories (dimensions) shown below. In their research, an entity can also be a user.

• Identity refers to the ability to assign a unique identifier to an entity.

• Location is expanded to include orientation and elevation, as well as all information that can be used to deduce spatial relations between entities, such as co-location, proximity, or containment.

• Status (Activity) identifies intrinsic characteristics of the entity that can be sensed.

• Time helps to describe a situation and makes it possible to leverage off the richness and value of historical information. [START_REF] Sladic | Context-Aware Access Control for IoT Driven Processes[END_REF] applied seven dimensions to present context in business systems for access control requirements: Actor, Action, Resource, Means, Time, Place and

Objective, which can be used to retrieve some current information from a system, like who is the current user.

Apart from the above, some methods are specific to user context. [START_REF] Kofod-Petersen | Using activity theory to model context awareness[END_REF] divided user context into five sub-categories (dimensions):

• Environmental dimension captures the users surroundings, such as things, services, people, and information accessed by the user.

• Personal dimension describes the mental and physical information about the user, such as mood, expertise and disabilities.

• Social dimension presents the social aspects of the user, such as information about the different roles a user can assume.

• Task dimension focuses on what the user is doing, it can describe the user's goals, tasks and activities.

• Spatio-temporal dimension is concerned with attributes like: time, location and the community present.

Negre (2018) retained 5 dimensions for user context in data warehouses: Time, Individuality/User Profile, Activity, Relation, Device. In addition, [START_REF] Ferdousi | Context Factors in Context-Aware Recommender System[END_REF] proposed to analyze user context through 3 families and 10 dimensions:

• Physical family includes all dimensions on which the user's geographical position will have a strong influence.

-Temporal dimension contains factors like week, season, time.

-Spatial dimension is represented by two kind of factors: exact geographical position (e.g., longitude/latitude) and the nominal classes that can determine user's position (e.g., 'at home').

-Environmental dimension expresses environmental characteristics, such as temperature and weather.

-Equipment dimension describes all non-human objects that surrounds the user, such as printer.

• Personal family denotes the user's more specific information through four dimensions.

-Demographic dimension consists of the user's identity information, such as name, age, and gender.

-Social dimension refers to the appearances and roles of other people around the user and their relationships with the user.

-Psycho-physiological dimension reflects the user's psycho-physiological aspect, such as the user's mood and mental state.

-Cognitive dimension relates to the user's experiences, constraints and activities.

• Technical family illustrates the characteristics of the devices utilized by the user.

-Hardware dimension comprises the hardware to access the context-aware applications, such as processors and devices used by the user.

-Data dimension focuses on the data manipulated by the applications, such as its format (text, video, audio, image).

Among all the different dimensions, three are common and included in all studies: Time, Activity (Task)14 , and Location.

Besides, the dimension that contains information and attributes to describe users (actors) themselves is also discussed and explored as well. But this dimension was presented through various terms, such as individuality [START_REF] Zimmermann | An operational definition of context[END_REF][START_REF] Negre | Prise en compte du contexte dans les systèmes de recommandations de requetes OLAP[END_REF], identity [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF], actor [START_REF] Sladic | Context-Aware Access Control for IoT Driven Processes[END_REF]. Some studies even exploited two or more dimensions to present such contextual information of user: Ferdousi, Negre, and Colazzo (2017) introduced personal information by three dimensions (demographic, social, and psycho-physiological), while [START_REF] Kofod-Petersen | Using activity theory to model context awareness[END_REF] specified two (personal and social).

By comparison, [START_REF] Zimmermann | An operational definition of context[END_REF] and [START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF] did not take into account the influence of resources used by users. Negre (2018) improved this by considering device. [START_REF] Sladic | Context-Aware Access Control for IoT Driven Processes[END_REF] and [START_REF] Ferdousi | Context Factors in Context-Aware Recommender System[END_REF] proceeded further by proposing a dimension: resource (data).

Kofod-Petersen and Cassens (2005) described it as information and services available to the user in environmental dimension. Such a dimension is significant to users, which indicates what the user is using. Due to the rapid development of information and communication technologies, digital resources and metadata must also be included. For example, hardware and equipment were taken into consideration by [START_REF] Ferdousi | Context Factors in Context-Aware Recommender System[END_REF].

These diverse dimensions of user context reflect the complex dependencies of context, which raise challenges to context modeling. In order to present context properly and construct a corresponding model, we need to investigate and discuss existing approaches to model context.

Modeling

A large number of context models were proposed with the development of context-aware applications. Based on the scheme of data structures, Strang and Linnhoff-Popien (2004) (Strang and Linnhoff-Popien, 2004) to perform more flexibly [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. Such hybrid models are listed in the most representative one.

Key-value model

As the most simple data structure of context modeling (Strang and Linnhoff-Popien, 2004), key-value model uses key-value pairs to define contextual factors and their values [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. Based on [START_REF] Schilit | Context-aware computing applications[END_REF], the pair location: in room GI136 can represent a user's location context. Such pairs are easy to manage, but lack sophisticated structuring capabilities to enable effective context retrieval algorithms (Strang and Linnhoff-Popien, 2004).

Markup model

Markup model depends on a hierarchical data structure (Strang and Linnhoff-Popien, 2004) that is describe by a variety of markup languages, such as XML [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF].

It consists of mark up tags and content. Typical representatives of markup model are profiles (Strang and Linnhoff-Popien, 2004). For example, through a Comprehensive Structured

Context Profiles (CSCP) proposed by [START_REF] Held | Modeling of context information for pervasive computing applications[END_REF], the user's location is presented in Figure 2.1. Markup model has scheme definitions and set of validation tools. However, it is limited in consistency and completeness checking. It is neither good at supporting reasoning on contextual information (Strang and Linnhoff-Popien, 2004;[START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. 

Graphical model

A well known language for this approach is the Unified Modeling Language (UML) which has a strong graphical component (UML diagrams) (Strang and Linnhoff-Popien, 2004). Then a representation of the user's location is shown in Figure 2.2. Graphical models have great advantages on the structure level. Nevertheless, they can't be formatted and interpreted by machines (Strang and Linnhoff-Popien, 2004). 

Object-oriented model

Two main features of object-oriented models are encapsulation and reusability, which are also the main benefits of this approach (Strang and Linnhoff-Popien, 2004). Most spatial models follow this approach to organize their context information by physical location [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. An example of the Context Modeling Language (CML) is in Figure 2.3, which was developed for conceptual modeling of databases but can also map from an object-oriented model to a runtime context management systems [START_REF] Henricksen | Modeling context information in pervasive computing systems[END_REF][START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. This type of model contributes to solving problems arising from distributed compositions. And it can be implemented easily in a database.

Unfortunately, it poses additional requirements (Strang and Linnhoff-Popien, 2004): it only processes the information formalized based on the model. That is, it can't be used to handle heterogeneous information from different sources and thus does not support interoperability [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF]. 

Logic-based model

In a logic-based context model, the context is defined as facts, expressions, and rules.

These rules form different conditions on which a concluding expression or fact may be reasoned or inferred from a set of other expressions or facts (Strang and Linnhoff-Popien, 2004).

One of the first approaches was researched and proposed by [START_REF] Mccarthy | Notes on formalizing context[END_REF], which focuses more on context reasoning than modeling. This approach has extremely high level of formality and can be composed distributed. However, its partial validation is hard to maintain. A major issue is how it can be applied in computing environments.

Ontology-based model

Ontology provides a formal structure to manipulate knowledge related to a particular field or more broadly knowledge bases. An ontology-based model can be regarded as a formal and explicit specification of a shared, agreed and detailed conceptualization [START_REF] Peckham | Semantic data models[END_REF][START_REF] Gruber | A translation approach to portable ontology specifications[END_REF][START_REF] Du | Apports des ontologies aux systèmes de recommandation : état de l'art et perspectives[END_REF][START_REF] Munir | The use of ontologies for effective knowledge modelling and information retrieval[END_REF]. Based on [START_REF] Du | Apports des ontologies aux systèmes de recommandation : état de l'art et perspectives[END_REF], [START_REF] Negre | Prise en compte du contexte dans les systèmes de recommandations de requetes OLAP[END_REF], [START_REF] Strang | CoOL: A context ontology language to enable contextual interoperability[END_REF], an ontology-based model includes two parts:

1) T-Box defines the nature of concepts (classes of subjects) and their interrelationships that constitute model (represented by the green rectangles in Figure 2.4).

2) A-Box explains the relationships between instances of the concepts and relations that are defined in T-Box (represented by the white rectangle in Figure 2.4).

An example is Context Ontology Language (CoOL) [START_REF] Strang | CoOL: A context ontology language to enable contextual interoperability[END_REF], which aims to enable context-awareness and contextual interoperability in a distributed system. An example about the user's location of this approach is shown in Figure 2.4. This approach offers flexibility and extensibility in distributed systems by supporting distributed storage and multi-author creation [START_REF] Strang | CoOL: A context ontology language to enable contextual interoperability[END_REF]. It also provides a formal semantic presentation of knowledge in a distributed system. This indicates that ontology-based models are capable of processing heterogeneous information from different sources and supports interoperability. Besides, the available semantic representations (e.g., RDF, RDFS, OWL), which are used not only in authoring ontologies but also in automated information processing, enable ontology-based models to be machine-interpretable.

Moreover, the two parts of an ontology-based model gives the opportunity for reusing the T-Box component in existing ontologies to construct new ones and extracting information from the A-Box component in existing ontologies to enrich new ones. Specifically, ontologies that are fully documented15 can provide useful input for ontology reuse and enrichment.

All the advantages mentioned result in ontology being an appropriate choice among the six approaches. Therefore, regarding context as a specific type of knowledge [START_REF] Bettini | A survey of context modelling and reasoning techniques[END_REF], ontology-based modeling is selected to represent context in this thesis.

Discussion

When talking about the notion context, it is always used and related to an entity. As the entity varies, so does its context, reflecting the reliance of the context. Moreover, the diverse properties of the context enable it to be classified in different manners, indicating its complexity. Thus, as a dependent and complicated notion, the definition of the context is still imprecise and somewhat unclear. This also generates difficulties for its representations.

However, through identifying necessary contextual dimensions and factors, the context can be specified and represented, such as user context. This implies that these dimensions and factors can also contribute to developing a well-designed context model.

From the above analysis of the six context modeling approaches, the ontology-based approach is favored because of its flexibility, extensibility, interpretability, reusability, and its support for interoperability. Thus, this thesis focuses on presenting contexts through ontology-based models in the framework of collaborations.

Besides, as the most widespread context in informatics, user context is applied in many context-aware applications to provide more specific services and/or products for users. One is known as the context-aware recommender system, which will be discussed in Section 2.5.

Web-based collaborative working environment and system of information systems

As discussed in Section 2.2, collaboration matters for human activities. With the help of information technology, more and more people are collaborating remotely. This leads to the emergence of a new collaborative space: collaborative working environment (CWE)

where people can work together as spontaneous and dynamic groups assembled in a collaborative manner [START_REF] Prinz | ECOSPACE-towards an integrated collaboration space for eProfessionals[END_REF]. CWEs, especially web-based CWEs, intend to support collaborations between users (i.e., people) by integrating and offering different collaborative tools. To explore such environments, their functionalities, frameworks, and features are studied in Section 2.4.1.

However, there are still unresolved problems in web-based CWEs, such as poor interoperability between heterogeneous tools and difficulties in managing distributed information [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF][START_REF] Hofte | Working apart together: Foundations for component groupware[END_REF]. Solving these issues necessitates to understand the relationship between a web-based CWE and its integrated tools. Each tool can be considered as an information system with its own information management [START_REF] Neto | New challenges in the social web: Towards systems-of-information systems ecosystems[END_REF]. These systems, together with the environment itself can form a System of Information Systems (SoIS). To have a high-level understanding and viewpoint about such systems, we also investigate SoIS and its conceptual origins: System of Systems (SoS) by analyzing their definitions and features.

Web-based collaborative working environment

Collaborative Working Environment (CWE) is derived from the term virtualized collaborative workplace [START_REF] Prinz | ECOSPACE-towards an integrated collaboration space for eProfessionals[END_REF] where eProfessionals can seamlessly collaborate to achieve common goals [START_REF] Prinz | ECOSPACE-towards an integrated collaboration space for eProfessionals[END_REF][START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF]. The notion eProfessionals extends the concept professional by including knowledge worker who intensively uses Information and Communication Technology (ICT) tools and services [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF].

These tools and services can support collaborative work, such as email, document sharing, and project management [START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF]. And they are provided in CWEs [START_REF] Truong | Incontext: A pervasive and collaborative working environment for emerging team forms[END_REF] for assisting people to collaborate.

Another purpose of CWE is similar to those of electronic workplace [START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF] whose main objective is to provide groups with shared spaces to enable their members collaborate [START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF]. Users can be members in different groups, and each group has a corresponding shared space allowing its members to collaborate [START_REF] Bentley | Basic support for cooperative work on the World Wide Web[END_REF]. By gluing different groupware applications [START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF], CWE can serve for users who collaborate in several groups at the same time.

Besides, another requirement raised for CWEs is: to facilitate the collaboration of a group geographically dispersed [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF][START_REF] Su | Collaborative design and manufacture supported by multiple Web/Internet techniques[END_REF][START_REF] Kan | An Internet virtual reality collaborative environment for effective product design[END_REF][START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF]. In traditional collaborations, collaborators are not able to work together and exchange their ideas if they are situated in different locations [START_REF] Kan | An Internet virtual reality collaborative environment for effective product design[END_REF]. To solve this issue, CWEs need to support e-collaborations [START_REF] Kan | An Internet virtual reality collaborative environment for effective product design[END_REF][START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF], which needs to use various technologies, such as Web/Internet technology, ICT, and technologies in Computer Supported

Collaborative Work (CSCW) field 16 (Martínez- [START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF][START_REF] Su | Web-based Collaborative Working Environment and Sustainable Furniture Design[END_REF][START_REF] Su | Collaborative design and manufacture supported by multiple Web/Internet techniques[END_REF]. The development of these technologies gives people the opportunity to collaborate in a web-based CWE regardless of their geographical distances.

To analyze e-collaborations, [START_REF] Weiseth | The wheel of collaboration tools: a typology for analysis within a holistic framework[END_REF] defined a framework consisting of collaboration environment, process and support (see Figure 2.5). A collaboration environment can support various collaboration processes that should use different collaboration supports, such as organizational measures and collaborative tools. Meanwhile, these supports restricts the processes that are carried out in the environment. 16 CSCW addresses how collaborative activities and their coordination can be supported by computer systems [START_REF] Carstensen | Computer supported cooperative work: New challenges to systems design[END_REF]. FIGURE 2.5: A collaboration framework [START_REF] Weiseth | The wheel of collaboration tools: a typology for analysis within a holistic framework[END_REF].

As collaboration environments, web-based CWEs can influence collaboration processes and supports based on the framework in Figure 2.5. This, in turn, has an impact on the efficiency and success of collaboration. To help people succeed in their collaborations, web-based CWEs must be capable to supply collaborators with sufficient functionalities that are listed below and summarized from Martínez- [START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF]), Neo (2003), [START_REF] Su | Web-based Collaborative Working Environment and Sustainable Furniture Design[END_REF], Laso [START_REF] Ballesteros | New Collaborative Working Environments[END_REF], [START_REF] Bafoutsou | Review and functional classification of collaborative systems[END_REF] • Upperware interacts with different applications as collaborative tools to provide their corresponding services. 17 Asynchronous collaboration tools allow users to collaborate at different times [START_REF] Xu | A survey of asynchronous collaboration tools[END_REF]. 18 Synchronous collaboration tools enable users to collaborate at the same time [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF].

• Middleware manages the complexity and heterogeneity inherent in the distributed tools.

• Resources recognizes physical resources in the web-based CWE.

However, among these existing web-based CWEs, there are many difficulties that cannot be completely solved. For example, with the development of collaborative tools, interoperability between heterogeneous tools [START_REF] Carreras | Towards interoperability in collaborative environments[END_REF]) is becoming increasingly difficult to achieve within a web-based CWE. It also poses problems to the common standard to share information between these tools (Martínez- [START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF]. Switching between these tools during collaborations also creates problems to users, including [START_REF] Hofte | Working apart together: Foundations for component groupware[END_REF]: 1) they might need to log into various tools for launching a particular collaboration activity; 2) they must copy and/or move information between tools within a web-based CWE when working with multiple tools. Particularly, such information is stored in different databases (either in the tools where it was produced or in the CWE itself) and applied in specific domains. This causes semantic gaps between information from different tools [START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF], complicating both information access and management in a web-based CWE. Accordingly, it also raises challenges to how collaborative tools can be integrated into a web-based CWE [START_REF] Prinz | ECOSPACE-towards an integrated collaboration space for eProfessionals[END_REF].

With the aim to address the existing problems and establish an improved web-based CWE that satisfies users' needs, it is essential to investigate and analyze several top-ranked features of future CWEs. Based on Martínez- [START_REF] Martínez-Carreras | Designing a generic collaborative working environment[END_REF] and Laso [START_REF] Ballesteros | New Collaborative Working Environments[END_REF], these features include: 1) Ease of use. The easier the system is, the higher productivity and acceptation the CWE achieves.

2) Interoperability. Services offered by different collaborative applications should interoperate in order to facilitate aspects such as mobility, flexibility, and the use of different applications in a CWE.

3) Scalability. The CWE should have the ability to grow up according to the needs of the system and without losing the level of performance. should not be only oriented to get data but also to get knowledge, which necessitates appropriate information management and/or context management. 7) Goal-oriented. The services offered in a CWE should be oriented to solve different problems in an intelligent way, according to the pattern followed by a human being based on decomposing activities in goals. Some feature mentioned above have been achieved, namely 1), 4), And 5). For example, web-based CWEs allow people to collaborate over time and space, satisfying the feature anyplace -anytime. The boundaries between different web-based CWEs are reduced, achieving the feature low cost of entry. However, the other features still need to be developed and fulfilled, especially interoperability. The interoperability between collaborative tools can influence information access, management, and comprehension in web-based CWEs, reducing the efficiency of users' collaborations. Besides, the huge volume of information coming from different tools leads to information overload in web-based CWEs. This creates problems in processing and retrieving information based on users' needs, making it difficult for users to locate their required information.

We, therefore, need to improve information access and management in web-based CWEs so that information can be fetched to meet users' needs during their collaborations. To attain this, ontology can be applied in web-based CWEs, which can not only serve as a knowledge base for integrating and managing heterogeneous information, but also filter information to generate recommendations for users during their collaborations [START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF][START_REF] Ristoski | Semantic Web in data mining and knowledge discovery: A comprehensive survey[END_REF][START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF]. For deploying and implementing ontology in a web-based CWE, we need to understand the relationship between the integrated tools and the web-based CWE.

From system of systems to system of information systems

The notion, System of Systems (SoS), arises from the need to more effectively implement and analyze large, complex, independent, heterogeneous systems working (or made to work) cooperatively [START_REF] Azarnoush | Towards optimization of a real-world robotic-sensor system of systems[END_REF][START_REF] Jamshidi | Systems of systems engineering: principles and applications[END_REF]. It indicates a set of independent and autonomous systems that are integrated together to accomplish common missions [START_REF] Jamshidi | Systems of systems engineering: principles and applications[END_REF][START_REF] Karcanias | System of systems and emergence part 1: Principles and framework[END_REF]. As an inevitable term of systems, SoS receives a lot of interest.

However, there is no standard definition of SoS since it is still at its developing stages [START_REF] Jamshidi | Systems of systems engineering: principles and applications[END_REF]. Consequently, we make a literature survey on the definitions of SoS, which is presented as follows:

Definition 1: A SoS is an assemblage of components which individually may be regarded as systems, and which possesses two additional properties: operational independence and managerial independence of the components [START_REF] Maier | Architecting principles for systems-of-systems[END_REF].

Definition 2: A SoS is a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities (DoD, 2008).

Definition 3: SoS are large-scale integrated systems which are heterogeneous and independently operable on their own, but are networked together for a common goal [START_REF] Jamshidi | Systems of systems engineering: principles and applications[END_REF].

Definition 4: SoS is a new type of systems that is formed from the collaboration between its components, which by themselves are independent systems [START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF].

Definition 5: A SoS is a collection of dedicated systems that combine their resources and capabilities to create a new, more complex system that offers more functionality and performance than simply the sum of constituent systems [START_REF] Ameur | Recommendation of Pedagogical Resources within a Learning Ecosystem[END_REF]. Definition 6: SoS are complex systems resulting from the interoperability of constituent systems, managing resources and capabilities with managerial and operational independence that collaborate to produce emergent behaviors to achieve a specified global mission [START_REF] Mohsin | A Taxonomy of Modeling Approaches for Systems-of-Systems Dynamic Architectures: Overview and Prospects[END_REF].

All the definitions listed above consider SoS as an alliance of components that can be individually regarded as a system. In order words, a SoS can be separated into two parts: the global system, which is the result of the gathering of the components, and the component systems, which are independent and heterogeneous systems [START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF].

Component systems in a SoS are integrated together to achieve a common goal. The goal can be having higher performances [START_REF] Jamshidi | Systems of systems engineering: principles and applications[END_REF], achieving particular missions [START_REF] Mohsin | A Taxonomy of Modeling Approaches for Systems-of-Systems Dynamic Architectures: Overview and Prospects[END_REF], saving cost, or offering more functionalities [START_REF] Ameur | Recommendation of Pedagogical Resources within a Learning Ecosystem[END_REF]. To some extent, SoS can be understood as the result from the collaboration of component systems [START_REF] Mohsin | A Taxonomy of Modeling Approaches for Systems-of-Systems Dynamic Architectures: Overview and Prospects[END_REF]. This implies the driving force behind SoS: to achieve higher capabilities than would be possible with a single component system [START_REF] Azarnoush | Towards optimization of a real-world robotic-sensor system of systems[END_REF].

Besides, SoS has no single point failure and continues to operate even in a dynamic environment [START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF].

Until now, many studies were undertaken to identify and analyze the characteristics of SoS, such as [START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF], [START_REF] Maier | Architecting principles for systems-of-systems[END_REF], [START_REF] Gorod | System of systems management: A network management approach[END_REF]Di-Mario, Boardman, and[START_REF] Dimario | System of systems collaborative formation[END_REF]. Based on them, here is a summary of characteristics that distinguish SoS from other systems [START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF].

Component Systems -Autonomy

The autonomy of component systems encloses both operational and managerial independence. In other words, component systems operate independently not only in a SoS, but also if the SoS is disassembled. Component systems are separately acquired and integrated but maintain a continuing operational existence independent of SoS. Therefore, they can and will choose their decisions based on their interests.

-Heterogeneity Component systems are owned and managed by distinct organizations and stakeholders. That is, these components must be handled by different parties.

-Belonging Component systems can join or leave a SoS based on their choice.

Sometimes this belonging will lose them part of their autonomy, but this loss will be compensated by the wins they will get from the SoS, which is the exact reason why they choose to belong.

-Connectivity Component systems have the capabilities to communicate and interoperate with each other in a SoS, which indicates component systems are connected together to enhance SoS capability.

Global System

-Evolution The autonomy of the components, means that they have the ability to evolve and change, regardless of the SoS. On the other hand, SoS work in an unpredicted, dynamic environment. All of that, in addition to the fact that a SoS's objectives change as well, leads to an ever evolving system, that must adapt to account for internal, together with external changes -Emergence One of the most important characteristics of a SoS, and is inherited from complex systems. SoS achieves its main objectives through the integration of component systems and their interactions, which is not a property of any component systems but of SoS as a whole.

-Diversity SoS should offer a lot of functionalities. These diverse functionalities are not achieved in a single component system but in the whole SoS.

Beyond these characteristics, SoS can be classified into four categories: Directed, Acknowledged, Collaborative, and Virtual [START_REF] Maier | Architecting principles for systems-of-systems[END_REF][START_REF] Dahmann | Understanding the current state of US defense systems of systems and the implications for systems engineering[END_REF][START_REF] Assaad | A view on Systems of Systems (SoS)[END_REF].

Directed: Directed SoS is built to fulfill specific purposes and centrally managed (e.g., the systems responsible of the development of the Future Combat Systems in the US Department of Defense).

Changes in the SoS are based on collaboration between SoS and component systems (e.g., Air Operation Center).

Collaborative: Collaborative SoS doesn't have central management with coercive power. Component systems collaborate to fulfill the central purposes (e.g., Intelligent Transport Systems).

Virtual: Virtual SoS lacks both central management and centrally agreed common purposes. It emerges from the interaction between components, whereas the purposes are unknown. This SoS is maintained through invisible mechanisms (e.g., national economies).

Particularly, if each component system in a SoS is an information system, this SoS can be viewed as a special type: System of Information Systems (SoIS) [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF]. As a special SoS, SoIS always have the characteristics of SoS discussed before. And it can also be classified into the four categories (Directed, Acknowledged, Collaborative, and Virtual).

However, the specificity of SoIS lies in the difference between the information system and other systems. An information system contains a set of interrelated components perform activities aiming at collecting, processing, storing and distributing information, while a system is a set of elements dynamically interrelated to perform activities aiming at achieving a specific goal [START_REF] Neto | New challenges in the social web: Towards systems-of-information systems ecosystems[END_REF]. In comparison, the characteristic of the information system is its objective concerning information. Thus, SoIS uses information from separated information systems to aggregate existing services and produce new ones. A good practice is the Internet. Internet is a SoIS that contains different information systems providing various services to users (see Figure 2.6). To integrate new services, SoIS needs to concern the exchange of information and knowledge among different information systems. Therefore, the interoperability between the information systems is a key issue [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF]. One method is to create a common language to describe data, where each information system can represent its data such that other systems may interpret [START_REF] Bowen | A net-centric xml based system of systems architecture for human tracking[END_REF].

Therefore, Saleh and Abel [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] proposed applying ontology and a corresponding architecture of collaborative SoIS to establish a common knowledge base that can interpret and manage information gathered from different information systems. This eases information communications between heterogeneous systems and thus achieves better interoperability in a SoIS. Except for ontology, an alternative common language is unavailable for SoIS to the best of our knowledge.

Discussion

The overviews of web-based CWE and SoIS reveal many common characteristics between the two notions. Both integrate heterogeneous collaborative tools or information systems in order to provide more advanced and flexible services to users. Besides, a common problem for both web-based CWE and SoIS is the interoperability between the integrated tools or systems.

However, there are also differences between web-based CWE and SoIS. Web-based CWE focuses more on achieving its purpose: to support users' collaborations. Insufficient attention is paid to how collaboration tools are integrated into a web-based CWE. SoIS gives a higher priority to investigating the characteristics of information systems and their relationships, whether they are component systems or the global system. Besides, the integrated systems of a SoIS are explicitly claimed to be autonomous, while those collaborative tools of a CWE are imprecise. This allows us to consider each tool in a web-based CWE as an autonomous information system with its own database. Thus, a web-based CWE with its integrated tools can be considered as a SoIS, precisely, a collaborative SoIS. While the web-based CWE refers to the global system, the tools are the component systems that work together to support collaborations.

Conceiving a web-based CWE as a collaborative SoIS can enhance its scalability and adaptation. This is because, as independent component systems, collaborative tools can be added into and/or removed from a web-based CWE, which satisfies the growing users' needs during collaborations without affecting the other integrated tools. Besides, the ontologybased SoIS and its architecture [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] provide important guidance on how to deploy and implement ontology into web-based CWEs, thereby assisting in improving interoperability between collaborative tools and filtering information rapidly based on users' requirements within web-based CWEs.

Recommender systems

Recommender systems (RS) are information-filtering (advice-giving) systems that are designed and applied to find the information most relevant to users' needs and transfer it to users [START_REF] Negre | Prise en compte du contexte dans les systèmes de recommandations de requetes OLAP[END_REF][START_REF] Nunes | A systematic review and taxonomy of explanations in decision support and recommender systems[END_REF]. In business field, many companies have already successfully used RS in their Web sites to help their customers, such as Amazon, Netflix, YouTube, ITunes, and Last.fm [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]. Besides, RS is an active research domain that contains many hot research topics and relates to data mining and machine learning techniques among others.

RSs gather various kinds of information to provide suggestions for users about items [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]. Here, item is the general term to indicate the objects that RS recommends to users, while user indicates people who will receive these recommendations ( [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]). For example, in a movie recommender system, users can receive recommendations on movies. An item refers to a movie. Usually, RSs only process two dimensions of information: User and Item. Such a RS is mentioned as 2D RS in the rest of this thesis.

However, 2D recommendations are sometimes not quite relevant. Because user decision making, rather than being invariant, depends on the context when RSs provides recommendations (Adomavicius and Tuzhilin, 2011). For example, when recommending movies to users, RSs can incorporate information of users' companions to generate recommendations.

To incorporate such contextual information into RSs, a new type of RS has been proposed and developed quickly in these years: Context-Aware Recommender system (CARS).

To distinguish these two RSs (2D RS and CARS) and clarify their specific features, an overview is provided for each type. It explores the functionalities, approaches, and techniques used in different RSs to generate recommendations.

2D recommender system

To provide recommendations, one core task of RSs is to identify and recommend useful items for users. This needs to predict which items are most suitable for users based on the given data. In 2D RSs, an item is characterized by its utilities (ratings) ( [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]) that indicate how a particular user liked the item [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. Then, the core task of 2D RSs is: Given an initial set of ratings that users explicitly or implicitly give for items, 2D RSs try to calculate/compare items' unknown/missing ratings and decide which items to recommend, based on the data of User and Item [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]Adomavicius and Tuzhilin, 2011). [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF] modeled utility (rating) function of 2D RSs as follows:

R RS : User × Item → Rating (2.1)
where Rating is a totally ordered set (e.g., non-negative integers or real numbers within a certain range).

Most 2D RSs apply the utility (rating) function (presented by Equation 2.1) to generate recommendation of items to users, such as Content-Based filtering (CB) and Collaborative Filtering (CF) approach [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. However, some 2D RSs do not use it. Instead, they apply heuristics to hypothesize that an item is useful to a user, which is typical in Knowledge-Based (KB) approach ( [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]).

Besides, another main approach used in 2D RSs is: Hybrid [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Balabanović | Fab: content-based, collaborative recommendation[END_REF][START_REF] Baltrunas | Context relevance assessment and exploitation in mobile recommender systems[END_REF][START_REF] Panniello | Context-Aware Recommender Systems: A Comparison Of Three Approaches[END_REF].

Content-Based filtering

Content-Based filtering (CB) approach creates a profile for each user and a description for each item to characterize their nature [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF]. By comparing the user profiles and item descriptions, 2D RSs can predict items' unknown utilities (ratings) for users [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. Thus, CB approach can generally be deduced in two main steps shown below.

1. Construct and learn item descriptions and user profiles: Items are represented by a set of features, also called attributes or properties. When each item is described by the same set of attributes, and there is a known set of values the attributes may take, the description of each item is compiled with structured data [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF]. On the other hand, user profile is modeled with the same attributes and built up by analyzing the description of items to express users' preferences [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF]. It might also include demographic information or responses provided on a suitable questionnaire so that users can be associated with their preferred elements [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. Usually, the techniques that are applied and implemented into this step involve Vector Space Model (VSM), TF-IDF, Semantic Analysis (using ontology) [START_REF] Middleton | Ontological user profiling in recommender systems[END_REF][START_REF] Cantador | A multilayer ontology-based hybrid recommendation model[END_REF], Naïve Bayes, Decision Trees [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF], Neural

Networks [START_REF] Oord | Deep contentbased music recommendation[END_REF]. The first three techniques aim to construct descriptions and profiles, while Naïve Baye and Decision Trees are used to classify these descriptions and profiles.

2. Calculate similarities between item descriptions and user profiles: CB approach exploits the content of items to predict its relevance based on user profiles [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF]. In other words, it calculates the similarities between item descriptions and user profiles. This brings predictions of a user's interest in a particular item into a similarity problem. A widely used similarity in CB approach is Cosine similarity [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF].

2D RSs applying CB approach recommend items that are similar to the ones that users liked in the past. The similarity is based on the attributes in descriptions of item and user profiles [START_REF] Ricci | Introduction to recommender systems handbook[END_REF], which leads to dependence: the recommendations generated in CB rely on these predefined attributes. Thus, CB approach can provide explanations on why the item is recommended to users based on these attributes and the calculated similarities [START_REF] Ricci | Introduction to recommender systems handbook[END_REF]. A possible explanation is that: "Item X was recommended because of its attributes A and B are shared by items Y and Z, which you liked" [START_REF] Ricci | Introduction to recommender systems handbook[END_REF][START_REF] Tintarev | A survey of explanations in recommender systems[END_REF]. However, such attributes sometimes require to gather the information that is not available or easy to collect [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], which constitutes a limitation.

Another drawback is serendipity problem, which indicates that content-based 2D RSs tends to produce recommendations with a limited degree of novelty. That is, CB approach has no inherent method for finding something unexpected [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF].

Collaborative Filtering

Collaborative filtering (CF) approach predicts an item's utility (rating) for a particular user based on users' past behaviors, such as previous transactions and items' utilities (ratings) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. The general assumption of CF is: if two users have same utility (rating) on one item, one of them is more likely to have the similar utility (rating) as the other on a different item [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF]. Under this, two primary areas of CF have been developed, known separately as memory-based (neighborhood) and model-based CF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Koren | Advances in collaborative filtering[END_REF][START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF][START_REF] Su | A survey of collaborative filtering techniques[END_REF].

Memory-based (neighborhood) CF concentrates on the similarities between items or, alternatively, between users [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. Calculating the similarities can be done in two ways: user-based and item-based recommendation [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF]. To predict a given user u's rating for a particular item j, user-based recommendations are generated by evaluating other 'similar' users' ratings for item j, while item-based recommendations rely on user u's ratings for other 'similar' items [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF].

All these similarities are calculated from users' past ratings using different techniques, such as Nearest neighbor [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF], Pearson correlation [START_REF] Jin | An automatic weighting scheme for collaborative filtering[END_REF], Cosine similarity [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF] and similarities in ontology [START_REF] Zhang | Ontology-based collaborative filtering recommendation algorithm[END_REF]. All these techniques focus on finding 'similar' items or users.

Model-based CF utilizes the pure rating data [START_REF] Su | A survey of collaborative filtering techniques[END_REF] to estimate or learn a model to make predictions [START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF]. For predicting a given user u's rating for a particular item j, Bayesian networks apply other users' ratings of the item j (Breese, Heckerman, and Kadie, 1998), while Markov decision process handles the user u's last several ratings for items [START_REF] Shani | An MDP-based recommender system[END_REF]. As for latent factor models, they transform both items and users to a same latent factor space where both items and users are characterized through factors inferred from utilities (ratings)

to explain users' ratings [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Koren | Advances in collaborative filtering[END_REF]. Some techniques used in latent factor models are Matrix Factorization (MF), Latent Dirichlet Allocation (LDA), Singular Value Decomposition (SVD) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Koren | Advances in collaborative filtering[END_REF][START_REF] Billsus | Learning Collaborative Information Filters[END_REF][START_REF] Su | A survey of collaborative filtering techniques[END_REF].

CF approach can provide accurate recommendations without any need for exogenous information about neither items nor users [START_REF] Koren | Advances in collaborative filtering[END_REF]. Often, 2D RSs in CF approach can deal with very large data sets [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF], such as the data set in Netflix competition including 17,770 movies rated by over 480,000 users [START_REF] Koren | Advances in collaborative filtering[END_REF].

Besides, another advantage of CF is domain free, which indicates CF can address data aspects that are often elusive and difficult to profile using CB [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. CF may apply users' implicit feedback [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], such as users' clickthroughs on items. Besides, CF approaches are able to give explanations to users, such as:

Other users similar to you liked the item X [START_REF] Ricci | Introduction to recommender systems handbook[END_REF], The item X was recommended because people who liked Y also liked X [START_REF] Tintarev | A survey of explanations in recommender systems[END_REF].

However, CF approach faces two main challenges: sparsity [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF] and cold-start [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]. The sparsity problem is quite common due to the fact that users typically rate only a small proportion of the available items [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF]. When a new item or user is added, there is not any data from old users' past behaviors to generate recommendations. Sometimes, sparse rating data problem can aggravate and be hard to solve, known as cold-start [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF]. These challenges to CF approaches are mainly because it is unlikely that two users or elements have common ratings when the rating data is sparse [START_REF] Desrosiers | A comprehensive survey of neighborhoodbased recommendation methods[END_REF]. This contrasts with the general assumption19 of CF approaches, which impacts their performance in 2D RSs.

Knowledge-Based

Knowledge-based (KB) approach generates recommendations using specific domain knowledge about users' needs and preferences. There are two basic specifics of KB approach: case-based [START_REF] Bridge | Case-based recommender systems[END_REF][START_REF] Burke | Knowledge-based recommender systems[END_REF][START_REF] Lorenzi | Case-based recommender systems: A unifying view[END_REF] and constraint-based [START_REF] Felfernig | An integrated environment for the development of knowledgebased recommender applications[END_REF][START_REF] Felfernig | Constraint-based recommender systems: technologies and research issues[END_REF]Felfernig et al., 2011). Both approaches are using knowledge bases (e.g., ontologies [START_REF] Chen | A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection[END_REF][START_REF] Tarus | Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning[END_REF]) and collecting users' requirements to generate recommendations (Felfernig et al., 2011).

Case-based methods determine recommendations by evaluating similarity metrics (Felfernig et al., 2011) between the predefined cases and the user's requirement. The predefined cases are included in a case base [START_REF] Bridge | Case-based recommender systems[END_REF], which refers to the knowledge base of items. From a case-based viewpoint, the item description are cases [START_REF] Bridge | Case-based recommender systems[END_REF]. This implies that the similarity metrics examines which item can best match the user's requirement according to a knowledge base predefined. Thus, recommendation problems are solved by measuring how closely items come to satisfying the user's requirement [START_REF] Burke | Knowledge-based recommender systems[END_REF].

As for constraint-based methods, explicit rules are necessary. The rules are about how to relate users' requirements with item features (Felfernig et al., 2011). Therefore, the knowledge base contains item descriptions and explicit rules. Generating recommendations then turns into a constraint satisfaction problem [START_REF] Felfernig | Constraint-based recommender systems: technologies and research issues[END_REF], where the recommended item should satisfy certain rules according to users' requirements.

KB approach estimates the extent to which an item can meet users' explicit requirements based on a predefined knowledge base. Specifically, users' requirements are directly elicited within a recommendation session (Felfernig et al., 2011). This indicates that all the necessary data for generating KB recommendations can be extracted or predefined. Thus, there is no sparsity or cold start problem with KB approach (Felfernig et al., 2011). Besides, KB approach can produce explanations to users, such as: The item X has advantages over the previous recommended item Y in features A and B, which will make X more appropriate as you requested [START_REF] Ricci | Introduction to recommender systems handbook[END_REF].

However, KB RSs have one drawback: knowledge acquisition bottleneck, which motivates knowledge engineers to convert the knowledge possessed by domain experts into formal, executable representations (Felfernig et al., 2011).

Hybrid

Hybrid approach combines two or more other native approaches (CB, CF, and KB) [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Baltrunas | Context relevance assessment and exploitation in mobile recommender systems[END_REF][START_REF] Panniello | Context-Aware Recommender Systems: A Comparison Of Three Approaches[END_REF][START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF]. A hybrid 2D RS can be classified into three categories: monolithic, parallelized, and pipelined hybrids. Based on [START_REF] Jannach | Hybrid recommendation approaches[END_REF] and [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF], different hybridization techniques are assigned to the three categories and illustrated as follows.

1. Monolithic hybrids consist of a hybrid recommender component that integrates multiple native approaches by preprocessing and combining several different data sources.

-Feature combination: This technique is used to simply combine and preprocess several types of data sources. For example, when merging CB and CF, collaborative information is processed as additional feature data associated with each item and use CB techniques over this combined data set. However, the combination of input features using KB approaches with CB or CF sources has remained largely unexplored.

-Feature augmentation: This technique applies more complex transformation steps, compared to feature combination. So that the output of the hybrid recommender component augments the feature space of the applied native approaches by preprocessing their knowledge sources. Specifically, such a hybrid recommender is strongly linked to the main components in 2D RSs for performance and functionality reasons, such as a pseudo-user-rating [START_REF] Melville | Content-boosted collaborative filtering for improved recommendations[END_REF].

2. Parallelized hybrids employ several recommender components side by side and apply a specific hybridization mechanism to aggregate their outputs.

-Weighted: This technique computes weighted sums of ratings for items based on the rating results obtained from all available native approaches in a hybrid 2D

RS.

-Switching: This technique uses some criteria to switch between different native approaches. Thus, it requires an oracle that decides which native approach should be used in a specific situation, depending on the user profile and/or the quality of recommendation results.

-Mixed: This technique is practical to make large number of recommendations simultaneously, where recommendations from more than one native approach are presented together at the level of the user interface.

3. Pipelined hybrids implement a staged process in which several native approaches sequentially build on each other before the final one generates recommendations for users.

-Cascade: This technique is based on a sequenced order of recommender components, in which each succeeding recommender only refines the recommendations of its predecessor.

-Meta-level: In this technique, one recommender component builds a model that is exploited by the principal recommender to make recommendations. For instance, [START_REF] Balabanović | Fab: content-based, collaborative recommendation[END_REF] exploited a principal CF recommender, based on user models that are built by a CB recommender.

Hybrid approach aims at overcoming the limitations of native approach (CB, CF, and KB) and improving the prediction performance. It has already been used in many 2D RSs, such as Google news RS [START_REF] Das | Google news personalization: scalable online collaborative filtering[END_REF]. However, no single hybridization technique is applicable in all circumstances [START_REF] Jannach | Hybrid recommendation approaches[END_REF]. This implies that their performances differentiates among different data sources and recommendation problems. Thus, it is necessary to analyze the advantages and disadvantages of these hybridization techniques. Monolithic hybrids are valuable if little additional knowledge is available for inclusion in the data source; As an additional post-processing step, parallelized hybrids are the least invasive for existing native approaches, but they add runtime and matching of ratings generated by these approaches;

Pipeline hybrids require a deeper understanding of the algorithm's functioning to ensure efficient runtime computations, but work well in some cases, such as when CF and KB are combined [START_REF] Jannach | Hybrid recommendation approaches[END_REF].

Context-aware recommender system

Recently, a new branch of RS, Context-Aware Recommender System (CARS), was proposed by [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. A CARS is constructed by incorporating context into 2D recommendation generating process, which can result in more accurate recommendations [START_REF] Palmisano | Using context to improve predictive modeling of customers in personalization applications[END_REF]. Thus, CARS is attracting more and more attentions in both business and academic field. Sourcetone interactive radio (www.sourcetone.com) started to consider the current mood of listeners (the context)

for recommending songs in a CARS (Adomavicius and Tuzhilin, 2011). Besides, CARS has often been a research topic in the conference RecSys since 2009 20 .

Unlike 2D RS, CARS deals with at least three dimensions of data: User, Item and Context. Sometimes, it is even possible to construct a CARS using over three dimensions of data. For example, [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF] handled data separated in 5 dimensions: User, Item, Place, Time and Companion in a context-aware movie RS. Thus, the rating function of a n-dimensional CARS is [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]:

R CARS : D 1 × D 2 × ... × D n → Rating(n ≥ 3, n ∈ N * ) (2.2)
where D 1 , D 2 , ..., D n represent n dimensions of CARS (including User, Item, Context, ...).

Particularly when n = 3, the rating function is:

User × Item × Context → Rating.
Since various contextual information is involved in CARS, Adomavicius and Tuzhilin (2011) identified two critical properties of CARS: complexity and interactivity. Here, complexity indicates that CARS can be significantly more complex in comparison to 2D RSs; interactivity implies that contextual information usually needs to be retrieved from users in CARS.

To integrate context into a CARS, two main approaches are proposed (Adomavicius and Tuzhilin, 2011):

1. Context-driven querying and search: This approach uses and specifies context in queries to search for the most appropriate item. Here, the queries are used to extract relevant rating data based on the implicit or explicit contextual information. For example, Google Map permits users to search for nearby locations, where a data query filters out irrelevant locations using the current position of users (user context).

20 https://recsys.acm.org/recsys09/call/ All three methods can be adapted to the approach: contextual preference elicitation and estimation, while only contextual pre-filtering method is available for the approach:

context-driven querying and search.

Contextual pre-filtering

First, contextual pre-filtering method (PreF) (shown in Figure 2.7 (a)) applies contextual information to filter utilities (ratings) that are irrelevant to specific contexts [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. Particularly, context can essentially serve as a query for selecting relevant utilities (ratings) (Adomavicius and Tuzhilin, 2011). If the data filtering query is constructed using exactly the specified context (e.g., movies made in December 2019), it is exact PreF (Adomavicius and Tuzhilin, 2011). Alternatively, generalized PreF applies the query that refers to some generalization of the specified context (e.g., movies made in winter 20119) [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF].

Afterwards, approaches of 2D RSs (presented in Section 2.5.1) are used to predict unknown utilities (ratings) and thus generate recommendations for users. This results in one major advantage of this method: PreF supports the use of any 2D recommendation approach and technique (Adomavicius and Tuzhilin, 2011).

Contextual post-filtering

The basic idea of contextual post-filtering (PoF) (shown in Figure 2.7 (b)) is to analyze the contextual data for a given user in a particular context to find usage patterns of specific items, and then use these patterns to adjust the item list, resulting in context-aware recommendations (Adomavicius and Tuzhilin, 2011). In other words, the first step is applying approaches of 2D RSs (presented in Section 2.5.1) to have un-contextual recommendation results. Thus, an advantage of this method lies in the capacity to use any 2D recommendation approach and technique.

Then, the particular context is applied to filter out irrelevant results or adjust the ranking of recommendations. Two different techniques are available (Adomavicius and Tuzhilin, 2011).

• Heuristic post-filtering focuses on finding common item attributes (characteristics)

for a given user in a particular context and then use these attributes to adjust the recommendations. For example, an attribute can be an actor (actress) that the user prefer to watch his (her) movies in a particular context.

• Model-based post-filtering can build predictive models that calculate the probability with which the user chooses a certain type of item in a particular context and then use this probability to adjust the recommendations (e.g., probability of relevance that males choose to watch a romantic movie in a particular context). Then, the probability is used to adjust the recommendations. Particularly, Panniello and Gorgoglione (2012) proposed two ways to adjust the recommendations: weight PoF reorders the recommendations by weighting the predicted rating with the probability, while filter PoF filters out recommendations that have small probability (Panniello and Gorgoglione, 2012; Adomavicius and Tuzhilin, 2011).

Contextual modeling

Contextual modeling (CM) methods (shown in Figure 2.7 (c)) directly use context inside the recommendation generation process as explicit attributes of a user's rating for an item. In other words, approaches of 2D RSs (presented in Section 2.5.1) can no longer be applied to implement CM without any changes.

CM gives rise to truly multidimensional recommendation functions, which essentially represents predictive models or heuristic calculations that incorporate contextual information in addition to the user and item data (Adomavicius and Tuzhilin, 2011) [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF] presented a CM method, known as contextual-neighbors CM.

, i.e., Rating = R CARS (D 1 , D 2 , ..., D n )(n ≥ 3, n ∈ N * ) 21 .
It defines a contextual profile Pro f (i, c) for each user, which aims to calculate cosine similarities among users and to find N nearest neighbors of user i in a specific context c.

Discussion

From previous research, the techniques and methods of CARS are still immature when compared to those of 2D RS. However, there is something in common between CARS and Besides, CM necessitates more complicated rating functions to deal with three or more dimensions of data in the recommendation generating process (as shown in Figure 2.7). Consequently, any 2D recommendation approaches can not be directly applied in CM. As discussed in Section 2.5.1, each 2D recommendation approach (CB, CF, KB and Hybrid) has its own advantages and disadvantages in terms of data entry and recommendation outcomes. For instance, KB always places higher requirements than the others due to its use of knowledge bases, making it non-universal and high cost. This necessitates us to consider and adopt these approaches following the needs of the context-aware collaborator recommendations in this thesis.

Specifically, all these 2D recommendation approaches employ a semantic technique: ontology. In CB approach, ontology is used to construct user profiles and/or item descriptions [START_REF] Middleton | Ontological user profiling in recommender systems[END_REF][START_REF] Cantador | A multilayer ontology-based hybrid recommendation model[END_REF]; within CF, ontology serve to calculate similarities between items or users [START_REF] Zhang | Ontology-based collaborative filtering recommendation algorithm[END_REF]; in KB, ontology is applied to build knowledge bases [START_REF] Chen | A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection[END_REF][START_REF] Tarus | Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning[END_REF]; ontology has various possibilities of use due to the combined native approaches (CB, CF, and KB) in Hybrid. This enables us to work differently with the ontology depending on the needs of 2D RS, indicating that ontology is a flexible and extensible technique in generating 2D recommendations. Besides, as a semantic representation, ontology can also be combined with data mining techniques to explore semantic data [START_REF] Ristoski | Semantic Web in data mining and knowledge discovery: A comprehensive survey[END_REF][START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF]. It helps narrow the semantic gaps between data from different domains and/or sources [START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF], enriching data entry in 2D RSs. We are therefore interested in implementing ontology to generate context-aware collaborator recommendations.

Chapter summary

In this chapter, we first introduced collaboration and presented the various factors that can affect its success. Analyzing and adjusting the integration of these factors can make collaborations have a greater chance of success. Particularly, the factor context is so complex that it may influence other factors as well. It also has an impact on both the actual process and the effectiveness of collaboration (Patel, Pettitt, and Wilson, 2012). This necessitates considering these factors within context rather than merely integrating them together. Besides, recommending collaborators also assists in achieving successful collaborations.

Then a retrospect about context was presented. Here, we explored definitions of context and emphasized three basic elements in constructing an entity's context: contextual information, factors, and dimensions. Based on previous work, the definitions of context are not uniform. This poses challenges in defining the context of the collaboration and building its model. Thus, multiple approaches of context modeling were also presented. After comparing these approaches, we notice the advantages of the ontology-based modeling approach in terms of flexibility, extensibility, interpretability, reusability, and its support for interoperability between multiple information systems. Hence, we choose to construct an ontology-based collaboration context model (i.e., a collaboration context ontology).

Afterward, two notions, web-based Collaborative Working Environment and System of Information Systems, were investigated and compared. The similarity between them inspires us that a web-based CWE is a collaborative SoIS when its integrated tools are independent.

Such a relationship implies that the solutions provided for collaborative SoISs can also be transferred to web-based CWEs to handle similar problems. Therefore, the architecture of ontology-based collaborative SoISs [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] can also be considered from the viewpoint of web-based CWEs, providing an opportunity to apply and integrate the collaboration context ontology into web-based CWEs. As for the appropriate collaborators, establishing a context-aware collaborator recommender system in web-based CWEs is a suitable option.

Finally, 2D recommender system and context-aware recommender system were distinguished, including the approaches and techniques applied in these recommender systems.

We also analyzed their advantages and disadvantages in generating recommendations. After excluding CM, appropriate 2D recommendation approaches should be implemented in In the next chapter, we will present the MEMORAe approach, which assists us in defining and implementing the collaboration context ontology into web-based CWEs.

Chapter 3

A survey of MEMORAe approach

Introduction

The MEMORAe approach encompasses a web platform and a core ontology, originally intended to manage resources within organizations and to support the organizational learning process [START_REF] Atrash | Supporting organizational learning with collaborative annotation[END_REF]. With its developments, the MEMORAe approach has been used for other purposes. Specifically, it has been once employed to support collaborations in organizations [START_REF] Deparis | Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires[END_REF][START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF] and to manage resources in a System of Information Systems (SoIS) [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF]. Both are close to our focus in this thesis: supporting users's collaborations in web-based CWEs which can also be considered as collaborative SoISs. This signifies that it is necessary to explore the MEMORAe approach.

Thus, the remaining parts of this chapter are organized as follows: Section 3.2 introduces a continuation of the MEMORAe approach, which can facilitate individuals' collaborations through a core ontology MC2 and a web platform E-MEMORAe2.0 [START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF][START_REF] Deparis | Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires[END_REF]. Section 3.3 presents another continuation, including a core ontology SOIS and a web platform MEMORAe SOIS, aiming at resource management in a SoIS [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF].

Next, we discuss the advantages and disadvantages of the MEMORAe approach in Section 3.4. At the end of this chapter comes the conclusion.

MC2 and E-MEMORAe2.0

As an ontology, MC2 concentrates on three main modules: Individuals and groups of individuals, Resource, and Activity, by integrating with four existing ontologies: SIOC 1 , FOAF 2 , PROV 3 , and VCard 4 [START_REF] Deparis | Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires[END_REF][START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF]. Its general view is shown in Figure 3.1. All concepts in MC2 starts with the prex mc2 indicating its namespace. 

Individuals and groups of individuals

This module is instantiated from SIOC and FOAF ontology (see Figure 3.

2). An indi-

vidual is a person that may have one or more user accounts. These user accounts can be members of groups, either personal, institutional, or free. Specifically, each group has its own space where its members carry out activities and operate on different resources. Each individual holds a VCard (see Figure 3.3). A VCard6 represent a virtual contact file for individuals, where their personal information (e.g., address, telephone number) is contained. Each resource is referenced by an index key that is visible at a group space. This ties a resource to a group. Besides, one resource is also associated with a concept in a semantic map, which enables users to browse and interact with resources available in different groups.

Activity

Activity module of MC2 represents the processes and procedures done over time. It defined two types of activities: mc2:ProceduralActivity and mc2:InteractionActivity (see Figure 3.5). Specifically, the second represents interaction activities in the web platform through importing PROV ontology and identifying six sub-activity types: creating, deleting, modifying, accessing, adding, and sharing [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF]. These activities focus on individuals' interactions with resources. Each interaction activity takes place over a time period and acts on or with resources. This can compose and generate individual activity traces. Each trace belongs to an individual and is linked to the index key of the concerned resource. wiki, chat, or forum [START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF]. 

SOIS and MEMORAe SoIS

The core ontology SOIS is extended from MC2 [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF]. It aims to aggregate and manage resources from different information systems (ISs) [START_REF] Saleh | Digital ecosystem towards a System of Information Systems[END_REF]. Thus, SOIS updated two main modules: Resource and Activity. All concepts in SOIS starts with the prex sois indicating its namespace. 7

Resource

In a SoIS, resources are stocked in the information system where they were originally stored, whether a leader system (represented by sois:LeaderSystem) or a component system (represented by sois:WebBasedApplication and sois:SandAloneSystem). When a resource is contained in a component system, the leader system can provide users access to the resource through a reference key. In SOIS, each resource has a reference key to link itself and the leader system (see Figure 3.7). Such a key can be an HTML tag, a Database Identifier, or a Hash tag. Besides, the web platform MEMORAe SoIS links to multiple autonomous external ISs for capitalizing the resources they can produce (Tiddlywiki, twitter, google contact, OneNote, etc.). These external ISs and MEMORAe SoIS together constitute a SoIS (see Figure 3.9),

Discussion

Consisting of a core ontology and a web platform, the MEMORAe approach is suitable 

Chapter summary

In this chapter, we presented the MEMORAe approach and its compositions. After comparing its advantages and disadvantages, we decide to apply and continue the MEM-ORAe approach in this thesis, which can save our efforts in constructing and implementing an ontology-based collaboration context model in web-based CWEs.

In the next part, we will introduce our contributions in this thesis and explain how to gen- 3). There is a summary at the end of this chapter.

Definitions

Based on the definitions of context (cf. Section 2.3.1), context contains the characteristic information that is pertinent to the circumstances of an event, statement, or object. When considering the event, statement or object as an entity, a user or application in the field of information technology can also be an entity [START_REF] Dey | Understanding and using context[END_REF]. This indicates that the ranges of entities are varied in different fields, which we need to clarify in the definition of context. Besides, context is sensitive to time and its influence on the entity may shift over time.

This should also be pointed out while defining context in this thesis. Therefore, context is identified as follows by supplementing Dey (2001)'s definition of context:

Context is any information that can be used to characterize the situation of an entity over a given period of time. An entity is a person, place, event or object that is considered relevant to the interaction between a user and an application, including the user and the application themselves. The architecture (see Figure 4.1) describes an entity's context model. Particularly, this entity can be of different types. For example, for four types of entities: natural, human, artificial and group (see Table 2.7) [START_REF] Zimmermann | An operational definition of context[END_REF], their contextual models respect this architecture. Thus, based on this architecture, any entity's context model can be developed by identifying the entity and defining its contextual dimensions, factors, and information. In this way, we are able to construct context models for all entities in web-based CWEs, regardless of the modeling approach.

Specifically, since the main purpose of web-based CWEs is to support users' collaborations, an indispensable entity in such environments is collaboration. Besides, defining the context of collaboration and building its model make it possible to gather more information about collaborations, thus helping users to understand their collaborations and to solve problems during collaborations. Therefore, in web-based CWEs, it is necessary to define the collaboration context and establish its model based on the architecture shown in Figure 4.1. Particularly, we determine to construct an ontology-based collaboration context model (i.e., a collaboration context ontology), given the advantages of the ontology-based modeling approach as discussed in Section 2.6.

To define the collaboration context, the definitions of collaboration should be investigated. Based on the literature review of collaboration (cf. Section 2.2.1), a collaboration indicates two collaborators working together to accomplish their common goals through attempts. Therefore, collaboration can be defined as an event that involves at least two collaborators and consists of a set of actions carried out by the human actors acting on behalf of the corresponding collaborator, in order to achieve a common goal. Considering collaboration as an entity, the collaboration context can be defined precisely as follows, based on our above proposed definition of context:

The collaboration context is any information that can be used to characterize the situation of a collaboration over a given period of time. In web-based CWEs, collaboration is an event considered relevant to the interaction between users and/or applications, including the users and the applications themselves. 1. Goal includes multiple factors to describe desired products (outcomes) of a collaboration.

2.

Collaborator is represented by factors about collaborator's abilities and demographic information.

3. Activity employ factors to specify types, actors, involved resources, time, and locations of activities during a collaboration.

4.

Resource contains factors on resource types and identifications.

5. Time has factors to record start time and end time of a collaboration.

6. Location holds factors on identifications, types, and geographical information (e.g., longitude and latitude) of the places that are involved in a collaboration. This section explains the first two functionalities using the scenario presented in Section 1.2, where Emma collaborated with Lucie and Marinela in a context-aware application project. The rest two functionalities of MCC will be presented in Chapter 6.

To define collaborations, MCC applies a class of user group, mcc:UserGroup (see Figure 4.3). An instance of mcc:UserGroup indicates a collaboration between the members of the corresponding user group. In the scenario, Emma's collaboration in the context-aware application project can be represented by an instance kb:Context_aware_application_project2 .

It provides a sharing space (i.e., kb:Group_space_1) for Emma, Lucie, and Marinela to interact with each other and to access available resources. Every mcc:UserGroup is held by a mc2:Group, equivalent to foaf:Group. This class represents a group in the real world. Members of a mcc:Group3 can collaborate multiple times (see Figure 4.4), while members of a mcc:UserGroup are limited to a single collaboration. Surrounding mcc:UserGroup, the eight contextual dimensions of collaboration (i.e., Goal, In MCC, a mcc:UserGroup includes a set of collaborators (at least two) that have a common goal to achieve and hold their own user accounts. These collaborators are human actors acting on behalf of themselves, groups or even organizations, which is detailed in Furthermore, an activity is associated with a location, represented by mcc:Location (see Using MCC, users' collaborations and their contexts in web-based CWEs can be presented around mcc:UserGroup. Particularly, users can examine the success of their collaborations depending on the contextual dimension Goal. Meanwhile, the other seven dimensions can serve to access the efficiency of their collaborations, such as collaborators' contributions, productivity of the performed activities, and utilities of the involved resources.

Chapter summary

In this chapter, we focused on defining and modeling the collaboration context in web- 3) produce context-aware collaborator recommendations.

Therefore, the rest of this chapter is organized as follows. Section 5.2 first introduces existing studies of a 2D recommendation algorithm and several ontology-based semantic similarities. Section 5.3 presents how to generate 2D collaborator recommendations. Then, we develop and utilize an ontology-based semantic similarity to process the collaboration context (cf. Section 5.4). Next, Section 5.5 shows two algorithms and explains how they can be used to produce context-aware collaborator recommendations. Finally comes the summary of this chapter.

Preliminary

Probabilistic matrix factorization

Probabilistic Matrix Factorization (PMF) [START_REF] Mnih | Probabilistic matrix factorization[END_REF]) is a 2D recommendation algorithm, belonging to model-based CF approach (discussed in Section 2.5.1.2).

It was proposed and developed from Matrix Factorization (MF) [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF].

When generating 2D recommendations, MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF] needs a rating matrix R of m × n that contains users' ratings1 for items (m users and n items). Given such a rating matrix R, MF factorizes it into two matrices U of m × d and I of n × d. Usually, d(< min(m, n)) refers to the number of latent factors that characterize users and items. For example, given a rating matrix R of 4 × 3, d can equal to 1 or 2. Then, a user is represented by a j th row vector in user matrix U(U j ∈ U) and an item by a k th column vector in item matrix I(I k ∈ I). Finally, MF predicts the unknown rating R jk that user j might give for item k following Equation 5.1:

R jk = U j I k + r k + b j + b k (5.1)
where r k is the average rating of item k in the rating matrix R; b j and b k indicates the observed deviations of user j and item k. The predicted rating is broken into its four components:

global average (r k ), item bias (b k ), user bias (b j ), and user-item interaction (U j I k ).

Based on MF, PMF adopts a probabilistic linear model with Gaussian observation noise [START_REF] Mnih | Probabilistic matrix factorization[END_REF] on the unknown ratings R * jk (= U j I k ). Its key idea is to treat rating prediction as a generative process and define a conditional probability over the known ratings (represented by positive ratings in R [START_REF] Zhu | TRPN: Matrix Factorization Meets Recurrent Neural Network for Temporal Rating Prediction[END_REF]. In PMF, R jk -R * jk is normally distributed with mean 0 and variance σ 2 . Then the conditional probability of R * jk can be defined (see Equation 5.2) [START_REF] Mnih | Probabilistic matrix factorization[END_REF].

p(R|U, I, σ 2 ) = m ∏ j=1 n ∏ k=1 [N (R jk |U j I k , σ 2 )] V jk (5.2)
where

R jk ∈ [1, Q],
Q is the maximum real-valued rating; V jk is the indicator function that is equal to 1 if user j rated item k and equal to 0 otherwise; the mean of

[N (R jk |U j I k , σ 2 )] V jk is U j I k V jk and variance σ 2 V jk .
Besides, [START_REF] Mnih | Probabilistic matrix factorization[END_REF] also placed zero-mean spherical Gaussian priors on user and item feature vectors. This implies that user and item feature vectors are also normally distributed. Their conditional probabilities therefore are:

p(U|σ 2 U ) = ∏ m j=1 N (U j |0, σ 2 U V) p(V|σ 2 I ) = ∏ n k=1 N (I k |0, σ 2 I V) (5.3)
where the mean of N (U j |0, σ 2 U V) is 0 and the variance σ 2 U V; the mean of N (I k |0, σ 2 I V) is 0 and the variance σ 2 I V.

Then, to get the values of user feature vectors, item feature vectors and unknown ratings, maximum likelihood estimation and maximum a posteriori estimation are applied. The likelihood function (see Equation 5.4) is about two parameters U and I, where others are hyper-parameters. The goal is to minimize Equation 5.4 [START_REF] Mnih | Probabilistic matrix factorization[END_REF], which is equivalent to maximizing the log-posterior of Equation 5.2 over users and items with Equation 5.3.

L(U,

I) = 1 2 m ∏ j=1 n ∏ k=1 V jk (R jk -U j I k ) 2 + λ U 2 m ∏ j=1 U j 2 Fro + λ I 2 n ∏ k=1 I k 2 Fro
(5.4)

where λ U = σ 2 /σ 2 U , λ I = σ 2 /σ 2 I , and • 2 Fro denotes the Frobenius norm.

A local minimum of the function in Equation 5.4 can be found by performing gradient descent algorithm in Appendix A [START_REF] Mnih | Probabilistic matrix factorization[END_REF].

Particularly, the predicted ratings in PMF sometimes can exceed the range of valid rating values ([1, Q]) [START_REF] Mnih | Probabilistic matrix factorization[END_REF]. Thus, to bound the range of predicted ratings, [START_REF] Mnih | Probabilistic matrix factorization[END_REF] proposed to apply the logistic function G(U j I k ) = 1 1+exp(-(U j I k )) , instead of directly using U j I k in Equation 5.2 and 5.4. They also mapped the known ratings R jk to the interval [0, 1] using the function T (R jk ) = (R jk -1)/(Q -1), so that the range of known ratings can match the range of predicted ratings in PMF. Accordingly, the conditional probability of ratings transforms from Equation 5.2 to Equation 5.5:

p(R|U, I, σ 2 ) = m ∏ j=1 n ∏ k=1 [N (R jk |g(U j I k ), σ 2 )] V jk (5.5)

Ontology-based semantic similarity

Semantic similarity is a measurement that aims to compute the likeness/relatedness between classes (instances) and their relationships in knowledge bases [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF], helping to integrate knowledge into the data mining process [START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF]. Thanks to the possibilities that ontologies can serve as knowledge bases, ontology-based semantic similarities have recently been exploited. Such similarities can be classified into three types [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Ovaska | Fast Gene Ontology based clustering for microarray experiments[END_REF]: path-based, feature-based, and information content-based semantic similarity.

While measuring path-based semantic similarities, an ontology is seen as a directed graph where classes (instances) are interrelated mainly by means of various relationships (e.g., is-a) [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF]. In such a graph, semantic similarities are usually calculated based on the shortest path between two classes (instances) [START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Rada | Development and application of a metric on semantic nets[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF]. The longer the shortest path, the more semantically different the two classes (instances) are [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF]. This implies that path-based semantic similarities don't necessitate the detailed information of each class (instance), which is an advantage of such similarities. However, their main problem is that they have a strong dependence on the degree of completeness, homogeneity and coverage of the relationships in the ontology [START_REF] Cimiano | Ontology Learning and Population from Text -Algorithms[END_REF].

Besides, in the calculation of feature-based semantic similarities, classes (instances) in ontologies are described by a set of ontological features [START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF]. The more common features and the less non-common features two classes (instances)

have, the more similar they are [START_REF] Varelas | Semantic similarity methods in wordNet and their application to information retrieval on the web[END_REF]. To compare features, several coefficients on the sets are applicable to feature-based semantic similarities, such as Jaccard index [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF], and Tversky index [START_REF] Tversky | Features of similarity[END_REF]. This indicates that unlike path-based similarities, feature-based similarities require detailed information about the features of each class (instance). Their one advantage is that they can be employed in cross ontologies (i.e. when the two classes (instances) belong to different ontologies), but path-based similarities cannot [START_REF] Petrakis | X-similarity: Computing semantic similarity between concepts from different ontologies[END_REF].

Jaccard(O x , O y ) = |O x ∩O y | |O x |+|O y |-|O x ∩O y | 2 (Jaccard, 1901), Dice coefficient Dice(O x , O y ) = 2|O x ∩O y | |O x |+|O y | 3
Tversky(O x , O y ) = |O x ∩O y | |O x ∩O y |+α|O x -O y |+β|O y -O x | 4
As for information content-based semantic similarities, they measure the amount of information provided by a common ancestor of two classes (instances) in an ontology [START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF]. Particularly for a class (instance) x, such similarities utilize IC(x)(=log p(x)) 5 to identify the amount of its provided information. Using IC(x), infrequent classes (instances) are more informative than the frequent ones [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF]. However, such semantic similarities request recursive computation of all classes' and instances' appearances in an ontology. If any class (instance) or their relations change, recalculations are mandatory. This also implies that information content-based semantic similarities are inapplicable in cross ontologies, lowering the scalability of such similarities [START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF].

Beyond the mentioned similarities, there are other semantic similarities as well. For example, [START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF] 

2D collaborator recommendations

To generate 2D collaborator recommendations, a 2D recommendation approach should be selected. Based on the literature review of 2D recommendation approaches (cf. Section 5 Here, p(x) is the probability of x's appearance in the ontology.

2.5.1), four main approaches can be applied: Content-Based filtering (CB), Collaborative

Filtering (CF), Knowledge-Based (KB), and Hybrid.

First, due to the data entry conflict, CB approach is not appropriate. Specifically, CB needs information to construct collaborator (i.e., item) descriptions and user profiles to generate 2D collaborator recommendations [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. However, such information belongs to the collaboration context (Context(C) in Then, KB approach is also unsuited because of the data entry conflict and its extra requirements. To generate 2D collaborator recommendations, KB additionally necessitates knowledge bases. The information contained in such knowledge bases is part of collaboration context (Context(C) in Figure 5.1), such as collaborator (i.e., item) descriptions [START_REF] Bridge | Case-based recommender systems[END_REF]Felfernig et al., 2011), resulting in data entry conflict. Besides, the construction of knowledge bases makes KB non-universal and high cost, having no interest for us.

Moreover, Hybrid approach can't be implemented, owing to its nature. Such approaches must combine two or more other native approaches (CB, CF, and KB) [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF][START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF]. However, recognizing the shortcomings of the two native approaches (CB and KB), only one native approach is applicable. It is therefore impossible to realize Hybrid approaches for generating 2D collaborator recommendations.

Finally, in CF approach, model-based CF generates 2D recommendations just with users' ratings for items [START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF]. This suggests that only User(U)

and Item(I) are used in this approach (see Figure 5.1), there is no data entry conflict in applying model-based CF. Plus, we're in a web-based CWE where users collaborate with each other in corresponding user groups. In such environments, model-based CF approaches have already been used to generate recommendations [START_REF] Wang | Page recommendation based on user behavior in collaborative working environment[END_REF]. Thus, we decide to employ model-based CF for generating 2D collaborator recommendations for users in webbased CWEs. Specifically, model-based CF involves many techniques: Bayesian networks [START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF], Markov decision process [START_REF] Shani | An MDP-based recommender system[END_REF], MF [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF], Latent Dirichlet Allocation (LDA) [START_REF] Blei | Latent dirichlet allocation[END_REF], Singular Value Decomposition (SVD) [START_REF] Billsus | Learning Collaborative Information Filters[END_REF]. Among all these techniques, we turn toward PMF [START_REF] Mnih | Probabilistic matrix factorization[END_REF], developed from MF. This is mainly for three reasons.

1. As techniques in model-based CF approach, both PMF and MF can be directly integrated in PreF and PoF. Besides, MF is even capable of generating recommendations with several types of context, such as Collective MF (CMF) [START_REF] Singh | Relational learning via collective matrix factorization[END_REF] and context-adaptive MF (AdaMF) [START_REF] Man | Context-adaptive matrix factorization for multi-context recommendation[END_REF].

2. MF is a widely used technique in generating 2D recommendations and context-aware recommendations [START_REF] Raza | Progress in context-aware recommender systems-An overview[END_REF]. It has excellent performances in the Netflix Prize 6 competition [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF] and provides a foundation for other algorithms, such as Tensor Factorization (TF) [START_REF] Karatzoglou | Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering[END_REF] and Sparse

LInear Model (SLIM) [START_REF] Ning | Slim: Sparse linear methods for top-n recommender systems[END_REF].

3. As an evolved version of MF, PMF was proposed and proved to be effective and accurate [START_REF] Mnih | Probabilistic matrix factorization[END_REF]. PMF considers the rating as a random variable and applies Gaussian distribution as a conditional probability over the known ratings, which performed well on the large, sparse, and very imbalanced Netflix dataset [START_REF] Mnih | Probabilistic matrix factorization[END_REF]. This indicates that PMF becomes a new milestone in the development of MF since it solve sparsity problem and makes MF a technique that only has cold-start problem. Based on PMF, many enhancements and derived applications have been studied, such as Bayesian PMF (BPMF) [START_REF] Salakhutdinov | Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[END_REF] and Generalized PMF [START_REF] Shan | Generalized probabilistic matrix factorizations for collaborative filtering[END_REF]. [START_REF] Ma | Sorec: social recommendation using probabilistic matrix factorization[END_REF] also applied PMF to solve social recommendation problems.

Therefore, PMF is chosen to generate 2D collaborator recommendations for users in web-based CWEs. Correspondingly, its rating function R collaborator is:

R collaborator : User × Collaborator → Rating (5.7)
where for a user u in a user group c, a collaborator is another user i( = u) that is not in the user group c.

Based on the principles of PMF (cf. Section 5.2.1), we need to construct a rating matrix R with users' known ratings to predict their unknown ratings. Particularly in the 2D collaborator recommendation problem, collaborators are also users. Thus, we have m users and m collaborators in the rating matrix R. Consequently, the dimension of R is m × m, while the dimensions of the user matrix U and collaborator matrix I are both m × d. 7 In the rating matrix R, R jk (see Equation 5.8) 8 is a user j's rating for collaborator k, which indicates user j's collaboration frequency with collaborator k.

R jk = e jk -1

E max -1 , j = k 0, j = k (5.8)
where e jk represents the number of collaborations that user j and collaborator k have worked together; the range of e jk is [0, E max ]; E max (= arg max j,k (e jk )) is the maximum number of collaborations between any user and any collaborator. Specifically, the values of e jk and E max are obtained and calculated from databases on collaboration.

6 Based on https://en.wikipedia.org/wiki/Netflix_Prize, the Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings without any other information about the users or films. Its home page is at https://www.netflixprize. com/. 7 Here, d(<< m) refers to the number of latent factors that characterize users and collaborators. 8 All ratings in R are in the interval [0, 1].

Notably, R jk (> 0) represents user j's known rating for collaborator k. R jk (= 0) is user j's unknown rating, which imply that user j never collaborate with collaborator k. It also suggests that we don't known how user j prefer to collaborate with collaborator k. This require us to predict such ratings by applying PMF. During this process, we need to bound the range of these ratings, since the predicted ratings R * jk in PMF (see Equation 5.2) may extend beyond the range of known ratings. Thus, we apply the logistic function G(U T j I k ) to replace U T j I k in Equation 5. 2 and 5.4 (Mnih and Salakhutdinov, 2008). Finally, users' unknown ratings for collaborators can be predicted by Equation 5.9.

R * jk = G((U T j I k ), j = k 0, j = k (5.9)
where the user matrix U and the collaborator matrix I are obtained by finding a local minimum of Equation 5.4.

These ratings enables PMF to generate 2D collaborator recommendations without employing any information belonging to the collaboration context (represented as Context(C)

in Figure 5.1) in web-based CWE. Besides, as a model-based CF approach technique, PMF has already been widely used, such as generating social recommendations [START_REF] Ma | Sorec: social recommendation using probabilistic matrix factorization[END_REF] and movie recommendations [START_REF] Yang | Fast Probabilistic Matrix Factorization for recommender system[END_REF]. Therefore, we decide to implement PMF in web-based CWEs to generate 2D collaborator recommendations for users.

Treatment of the collaboration context

This section first presents the formalized terminologies used in the ontology-based context model MCC (cf. Section 4.3). We then explain why the collaboration context can be processed through semantic similarity to generate context-aware collaborator recommendations. Finally, we show how to calculate such a semantic similarity in MCC. Therefore, a collaboration in an instance of mcc:UserGroup c is formulated as a collection of semantic 3-uples < c, p c,t g , o c,t g > |g ≤ G c , t ≤ T, g, t ∈ N + . Here, p c,t g (g ≤ G c , t ≤ 8, g, t ∈ N + ) is a predicate that the collaboration c contains, which represents a contextual factor in the t th dimension; P c,t = p c,t g |g ≤ G c , g, t ∈ N + (t = 1, 2, ...T.) is a set of predicates that the collaboration c contains in the t th contextual dimension;

Terminology

P c = p c g |g ≤ G c , g ∈ N +
is the set of all predicates that the collaboration c contains; o c,t g ∈ O c,t is an object of the predicates p c,t g , which provides value to the corresponding contextual factor in the

t th dimension; O c,t = o c,t g |g ≤ G c , t ≤ 8, g, t ∈ N + is a set of objects that the collaboration c contains through predicates in P c,t ; O c = o c g |g ≤ G c , g ∈ N +
is the set of all objects that the collaboration c contains through predicates in P c ; G c represents the number of predicates (contextual factors) that the collaboration c contain; T(= 8) represents the maximum number of contextual dimensions that the collaboration c can relate9 .

Accordingly, the t th contextual dimension of the collaboration c can be considered a sub- Col . This implies that collaborations and their contextual dimensions10 can be described and interpreted as collections of semantic 3-uples in MCC. Specifically, in these collections of semantic 3-uples, there are two types of predicates (as shown in Figure 4.3). The first type are directly related to mcc:UserGroup, such as datatype properties (e.g. mcc:startedAtTime) and object properties (e.g. mcc:isRelatedWith).

collection < c, p c,t g , o c,t g > |p c,t g ∈ P c,t , o c,t g ∈ O c,t . For example, the contextual dimension collaborator is represented as < c, p c,Col g , o c,Col g > |p c,Col g ∈ P c,Col , o c,Col g ∈ O c,
The other type of predicates are represented as successions of datatype properties, object properties, associated classes and/or instances. Such predicates11 are indirectly related to mcc:UserGroup in MCC. The succession of mcc:hasGoal, mcc:Goal, and mcc:isComposedOf is an example.

Besides, in a collection of semantic 3-uples, the subject may be other instances in MCC.

For example, the resource kb:Scientific_paper created by Emma can be considered as a subject (see Figure 4.11). Then the collection of semantic 3-uples related to this particular subject describes the detailed information of this resource, such as <kb:Scientific_paper, rdf:type, mc2:Document> representing the type of this resource. 

Choosing semantic similarity

While processing the collaboration context, there are many options, such as ontologybased reasoning [START_REF] Dou | Semantic data mining: A survey of ontology-based approaches[END_REF], ontology-based semantic similarity [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Ovaska | Fast Gene Ontology based clustering for microarray experiments[END_REF]. Among them, we choose to compute semantic similarities between collaborations for two reasons.

1. Unlike reasoning, semantic similarities are not overly dependent on the definitions of classes, instances and their relationships in ontologies [START_REF] Roussey | An introduction to ontologies and ontology engineering[END_REF]. For instance, one type semantic similarity (i.e., feature-based semantic similarity) can even be used to measure similarities between classes (instances) in different ontologies [START_REF] Petrakis | X-similarity: Computing semantic similarity between concepts from different ontologies[END_REF]. This makes it easier for us to define classes, instances, and their relationships in MCC, describing heterogeneous information from different collaborative tools in web-based CWEs.

2. In ontologies, semantic similarities enable comparison of classes (instances) and/or their relationships at different levels. For example, in MCC, semantic similarities can be used not only to compare two user groups (i.e., instances of mcc:UserGroup) or resources (i.e., instances of mc2:Resource), but also to measure the similarity between indexed resources within a user group. This implies that calculating semantic similarities in MCC enable us to compare any two classes (instances) and/or their relationships, involved in the collaboration context.

Therefore, the collaboration context is processed through semantic similarities in this thesis. This gives us the possibility to filter and/or adjust users' ratings in generating contextaware collaborator recommendations, following PreF and PoF methods (see Figure 5.1).

Computing semantic similarity

Based on the literature review (cf. Section 5.2.2), existing ontology-based semantic similarities can be classified into three types [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Ovaska | Fast Gene Ontology based clustering for microarray experiments[END_REF] MCC is a core ontology used by different users and user groups in web-based CWEs [START_REF] Roussey | An introduction to ontologies and ontology engineering[END_REF]. Meanwhile, it also serves as an ontological knowledge base for storing and manipulating information across collaborative tools integrated into a web-based CWE, which will be presented and explained in Chapter 4. Thus, the relationships in MCC don't represent uniform distances between calsses and instances. This prevents us from calculating path-based semantic similarities in MCC, because of its dependency on the relationships in an ontology [START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF].

Besides, in MCC, a single subject can relate to different predicates and objects within a collection of semantic 3-uples. Even with the same predicate, objects linked to a subject can be varied. For example, two members in Emma's collaboration (see Figure 4.6) are represented by <mcc:Context_aware_application_project, mcc:has_member, #Lucie_account> and <mcc:Context_aware_application_project, mcc:has_member, #Marinela_account>.

Therefore, the semantic similarity in MCC is expected not only to compare the common and non-common objects in two collections of semantic 3-uples <Subject, Predicate, Object>, but also to assess the amount of information provided by a specific predicate. To this end, a new semantic similarity is developed and employed in MCC, inspired by featurebased and information context-based semantic similarities. Such a semantic similarity compares two collections of semantic 3-uples (describing two subjects x and y) from two aspects: object (built on feature-based semantic similarities) and predicate (built on information content-based semantic similarities).

Object

Drawing inspiration from feature-based semantic similarities, this aspect measures the common and non-common objects that are related to the same predicate in two collections of semantic 3-uples. Depending on the object type in a collection, both qualitative and quantitative objects are considered.

Qualitative object

Qualitative objects contain non-numerical and descriptive information. For example, when comparing whether there are same collaborators in two collections, collaborators are qualitative objects. Such objects that are linked to the same predicate p t g in two collections of semantic 3-uples constitute two sets: O x p t g and O y p t g . These sets can be measures by the following equation:

S 1 (x, y) = T qual ∑ t=1 |P xy,t | ∑ g=1 |O x p t g ∩ O y p t g | |O x p t g ∩ O y p t g | + α|O x p t g -O y p t g | + β|O y p t g -O x p t g | × IC(P x,t ) ∑ T h=1 IC(P x,h ) (5.10)
where x and y; IC(P x,t )(≥ 0) expresses the amount of information provided by the predicates in the t th contextual dimension of the collaboration x (t = 1, 2, ..., T)12 ; ∑ T h=1 IC(P x,h ) is the sum amount of information provided by all the contextual dimensions of the collaboration x; α, β ≥ 0.

T qual (T qual ≤ T, T quan + T qual = T, T qual ∈ N + )
The range of S 1 (x, y) is [0, ∑ T qual t=1 IC(P x,t ) ∑ T h=1 IC(P x,h ) ]. Smaller the semantic similarity S 1 (x, y), more differences between x and y.

Quantitative object

Quantitative objects include numerical information, such as start time and end time of a collaboration (cf. Section 4.2). To compare two such objects, we utilize the absolute difference between them |o | denotes the absolute differences between two objects of x and y related to the predicate p t g ; |P xy,t | represents the number of predicate types belonging to the t th contextual dimension that both x and y relate; IC(P x,t )(≥ 0) expresses the amount of information provided by the predicates in the t th contextual dimension of the collaboration x (t = 1, 2, ..., T)14 ; ∑ T h=1 IC(P x,h ) is the sum amount of information provided by contextual dimensions of the collaboration x; γ ≥ 0.

The range of S 2 (x, y) is [0, ∑ Tquan t=1 IC(P x,t ) ∑ T h=1 IC(P x,h ) ]. Besides, S 2 (x, y) = S 2 (y, x) due to the different values of IC(P x,t
) and IC(P y,t ). Notably, Equation 5.11 is suitable for o p t g whose range of is [0, +∞). Particularly, if the range of o p t g is [0, L], then the above equation is transformed into:

S 2 (x, y) = T quan ∑ t=1 |P xy,t | ∑ g=1 ( L+1 L γ|o x p t g -o y p t g | + 1 - 1 L ) × IC(P x,t ) ∑ T h=1 IC(P x,h )
(5.12)

All object

Combining Equation 5.10, 5.11, and 5.12, we can obtain the semantic similarity between

x and y in the object aspect (see Equation 5.13).

S(x, y) = S 1 (x, y) + S 2 (x, y) (5.13)

The range of S(x, y) is [0, ∑ Tquan t=1 IC(P x,t )+∑

T qual t=1 IC(P x,t ) ∑ T h=1 IC(P x,h )
]. With T quan + T qual = T, we have S(x, y) ∈ [0, 1]. Smaller semantic similarity S(x, y) implies greater difference between x and y.

Predicate

This aspect accesses the amount of information provided by a specific predicate in collections of semantic 3-uples, inspired by information content-based semantic similarities. Particularly, a predicate can relate to one subject multiple times with different objects in a collection. This indicates that the appearance frequency of a predicate depends on the collections, affecting the amount of information provided by this predicate. Therefore, the appearance frequency of a predicate should be considered within the semantic similarity. Besides, the contribution (i.e., how important a predicate is to a subject (Rajaraman and Ullman, 2011))

of a predicate to a collection can also influence the amount of information provided by this predicate. To consider both the appearance frequency and the contribution of a predicate, TF-IDF is applied to measure the amount of information provided by a predicate. Specifically, we replace "term, document, and corpus" in TF-IDF as following for "predicate (factor), a collaboration, and a collection of collaborations" (see Figure 5.3).

For a predicate p in a collaboration x (x ∈ X, X represents a collection of collaborations) and the total number of collaborations in the collection is |X|, we have

t f (p, x) = f (p,P x ) ∑ p ∈P x f (p ,P x ) id f (p, X) = log |X| 1+|x∈X:p∈P x | + 1 t f • id f (p, x, X) = t f (p, x) • id f (p, X) (5.14)
where f (p, P x ) represents the appearance frequency of the predicate p in the collaboration x; ∑ p ∈P x f (p , P x ) denotes the appearance frequencies of all predicates in the collaboration x. The range15 of t f

• id f (p, x, X) is [0, log|X| + 1].
Then we can get the amount of information provided by the predicate p in the collaboration x, IC(p) = t f • id f (p, x, X). As for the amount of information provided by the t th dimension: IC(P x,t )(t = 1, 2, ..., T), it is calculated through Equation 5.15:

IC(P x,t ) = |P x,t | ∑ q=1 t f • id f (p x,t q , x, X) (5.15)
where |P x,t | is the number of predicate types in the t th dimension of the collaboration x; p x,t q ∈ P x,t . The range of

IC(P x,t ) is [0, 2(log|X| + 1)].
Equation 5.15 is used in Equation 5. 10, 5.11, and 5.12 to compute the ontology-based semantic similarity between two collections of semantic 3-uples.

Calculating semantic similarity in MCC

In MCC, we have T = 8 and T quan = 6, including Goal, Collaborator, Activity, Resource, Location, and Relation (cf. Section 4.2). Thus, based on Equation 5.10, we have:

S 1 (x, y) = 6 ∑ t 1 =1 |P xy,t 1 | ∑ g 1 =1 |O x p t 1 g 1 ∩ O y p t 1 g 1 | |O x p t 1 g 1 ∩ O y p t 1 g 1 | + α|O x p t 1 g 1 -O y p t 1 g 1 | + β|O y p t 1 g 1 -O x p t 1 g 1 | × IC(P x,t 1 ) ∑ 8 h=1 IC(P x,h ) (5.16)
where |P xy,t 1 | is the number of predicate types belonging to the t th 1 dimension that both x and y relate; α, β ≥ 0; IC(P x,t 1 ) is calculated from Equation 5.15; ∑ 8 h=1 IC(P x,h ) is the sum amount of information provided by the predicates in all contextual dimensions of the collaboration x.

Besides, the rest two dimensions (Time and Satisfaction) are utilizing quantitative objects (cf. Section 4.2). Particularly, the range of objects in dimension Time is [0, +∞), while the range of objects in dimension Satisfaction is [0, L Sa ]. Thus, based on Equation 5.11 and 5.12, we can obtain:

S 2 (x, y) = |P xy,Time | ∑ g 2 =1 1 γ 1 |o x p Time g 2 -o y p Time g 2 | + 1 × IC(P x,Time ) ∑ 8 h=1 IC(P x,h ) + ( L Sa +1 L Sa γ 2 |o x p Sa -o y p Sa | + 1 - 1 L Sa ) × IC(P x,Sa ) ∑ 8
h=1 IC(P x,h )

(5.17)

where |P xy,Time | is the number of predicate types belonging to the dimension Time that both x and y relate; L Sa is the maximum value in the range of individuals' satisfactions to collaborations16 ; o x p Sa denotes the average of all given satisfactions to the collaboration x; γ 1 , γ 2 ≥ 0; IC(P x,Time ) and IC(P x,Sa ) are also calculated from Equation 5.15.

Combining Equation 5.16 and 5.17, the semantic similarity between x and y in MCC is:

S(x, y) = S 1 (x, y) + S 2 (x, y) = 6 ∑ t 1 =1 |P xy,t 1 | ∑ g 1 =1 |O x p t 1 g 1 ∩ O y p t 1 g 1 | |O x p t 1 g 1 ∩ O y p t 1 g 1 | + α|O x p t 1 g 1 -O y p t 1 g 1 | + β|O y p t 1 g 1 -O x p t 1 g 1 | × IC(P x,t 1 ) ∑ 8 h=1 IC(P x,h ) + |P xy,Time | ∑ g 2 =1 1 γ 1 |o x p Time g 2 -o y p Time g 2 | + 1 × IC(P x,Time ) ∑ 8 h=1 IC(P x,h ) + ( L Sa +1 L Sa γ 2 |o x p Sa -o y p Sa | + 1 - 1 L Sa ) × IC(P x,Sa ) ∑ 8 h=1 IC(P x,h ) (5.18)
where the range of S(x, y) is [0, 1].

Within this semantic similarity S(x, y), the likeness/relatedness between collections of semantic 3-uples with unique subjects can be measured. When the subjects in the two collections are instances of mcc:UserGroup in MCC, a semantic similarity then compares two collaborations and their contexts. In this way, the collaboration context can be processed for generating context-aware collaborator recommendations.

Besides, when the subjects in the two collections of semantic 3-uples are other instances in MCC, the semantic similarity S(x, y) (see Equation 5.13) can also serve to compare the similarities between them. For instance, when x and y represent two resources, then S(x, y) can be calculated based on the objects and predicates in their collections, including identifying common and non-common objects and determining the amount of information provided by the predicates.

Context-aware collaborator recommendation algorithms

Within the collections of semantic 3-uples and the proposed semantic similarity in MCC (cf. Section 5.4), the context-aware collaborator recommendation problem is formulated as:

Given a utility matrix R and a user u in a collaboration c (u

∈ O c,Col ), the top K col- laborators i (i = u, i / ∈ O c,Col
) that can facilitate u's collaboration c in a corresponding user group with the highest probabilities will be recommended to u. Here, the context indicates the context of u's collaboration c, which is represented by a collection of semantic 3-uples

< c, p c,t g , o c,t g > |g ≤ G c , t ≤ 8, g, t ∈ N + .
Specifically, we apply two methods: PreF and PoF, to generate context-aware collaborator recommendations. Based on these methods, three algorithms are developed, known as PreF1, PoF1, and PoF2 in Algorithm 1). Some specific functions are presented in Algorithms 2 and 3.

Particularly, when z = 0, Algorithm 1 refers to PreF1 algorithm, composed of three phases: Phase 1, 2, and 4 (see Algorithm 1). It first calculates ontology-based semantic similarities between the collaboration c and other collaborations d (d ∈ X, d = c) (line 1), based on Equation 5.18. Then it filters out irrelevant collaborators i that did not participate in similar collaborations with c (line 2-3). Next, PMF is applied to predict users' unknown ratings for relevant collaborators (line 4-8). Finally, the top K collaborators with higher ratings will be recommended to the user u (line 27). Briefly, following PreF method (see Figure 5.1), PreF1 algorithm first pre-processes the collaboration context by means of an ontology-based semantic similarity, then generates 2D recommendations by using PMF, and finally produce context-aware collaborator recommendations.

Besides, PoF1 algorithm has z = 1. It also consists of three phases: Phase 2, 3, and 4 (see Algorithm 1). In PoF1, we first utilize PMF to predict users' unknown ratings for collaborators (line 9-12). Then, it computes ontology-based semantic similarities between the Algorithm 1: PreF1, PoF1, and PoF2 algorithms.

Input: The rating matrix: R, the user to whom the recommendations are generated: u, the collaboration: c, the set of members in the collaboration c: O c Col , the number of recommendations: K, the number of known collaborations: |X|, the number of users that can be recommended: m, the type of algorithms: z, the weight of semantic similarity in adjusted ratings: w s , the weight of predicted rating in adjusted ratings: w r . Initialization: A list to save predicted ratings: R (length: m, initial values: 0). Comment: Phase 1 -Pre-processing the collaboration context.

1 SC 0 ← Calculation_SS(c, K, |X|, 1); 2 VU 0 ← Filter(R, u, SC 0 , m, 1); 3 Filter R to R by deleting all ratings of irrelevant collaborators i (VU 0 (i ) = 0); Comment: Phase 2 -Generating 2D collaborator recommendations. 4 if z == 0 then 5 for k ∈ {1, 2, .., m} do 6 if R uk is unknown then 7 apply PMF to predict R(k) ← VU 0 (k) × R *
jk based on Equation 5.9; Comment: Phase 3 -Post-processing the collaboration context.

13 SC 1 ← Calculation_SS(c, K, |X|, 2); 14 VU 1 ← Filter(R, u, SC 1 , m, 3); 15 SC 2 ← Calculation_SS(c, K, |X|, 1); 16 VU 2 ← Filter(R, u, SC 2 , m, 2); 17 if z == 1 then 18 for k ∈ {1, 2, .., m} do 19 if k / ∈ O c,Col then 20 if VU 1 (k) == 1 then 21 R(k) ← w s * sum(SC 1 (k)) + w r * R uk ;
22 go to line 27;

23 if z == 2 then 24 for k ∈ {1, 2, .., m} do 25 R(k) ← R uk × VU 2 (k)
Comment: Phase 4 -Producing context-aware collaborator recommendations. 26 Rank R in decreasing order and get K highest elements;

Output: User u's predicted ratings R, K collaborators with K highest ratings.

Algorithm 2: Calculating semantic similarity function.

Input: The collaboration: c, the number of recommendations: K, the number of collaborations: |X|, the type of results: res 1 .

Initialization:

Two lists to save semantic similarities: SC 1 , SC 2 (length: |X|, initial values: 0). 1 Function Calculation_SS(c, K, |X|, res ss ): Input: The rating matrix: R, the user to whom the recommendations are generated: u, a list of semantic similarities: SC, the number of users that can be recommended: m, the type of results: res 2 .

2 for d ∈ {1, 2, .., |X|} do 3 if d == c then 4 S(d, c) ← 0 ; 5 else 6 S(d, c) ← S 1 (d, c) + S 2 (d, c) based

Initialization:

Three lists to identify relevant collaborators: VU 1 , VU 2 , VU 3 (length: m, initial values: 0). 1 Function Filter(R, u, SC, m, res 2 ): collaboration c and other collaborations d (d ∈ X, d = c), and a sum of semantic similarities between the collaboration c and the recent K collaborations that collaborator i (i = u) participated (line 13-14). Next, users' adjusted ratings for collaborators are calculated based on predicted ratings, calculated semantic similarities, and their weights w s , w r (line 17 -22).

2 for k ∈ {1, 2, .., m} do 3 if R uk is unknown then 4 VU 1 (k) ← 1; 5 VU 3 (k) ← 1; 6 for k ∈ {1,
Finally, the top K collaborators with higher adjusted ratings will be recommended to the user u (line 27).

Finally, when z = 2 in Algorithm 1, PoF2 algorithm can be used through three phases: Phase 2, 3, and 4. It first employs PMF to predict users' unknown ratings for collaborators (line 9-12). Then, the ontology-based semantic similarities between the collaboration c and other collaborations d (d ∈ X, d = c) is computed (line 15). Next, it filters out irrelevant collaborators i that did not participate in similar collaborations with c (line 16). Finally, the top K collaborators with higher ratings will be recommended to the user u (line 23-27).

The differences between PoF1 and PoF2 algorithms are on how to apply semantic similarity in filtering or adjusting the the order of collaborators i (i = u, i / ∈ O c,Col ). The first PoF algorithm (i.e., z = 1) utilizes the K recent collaborations that collaborators i participated, while the other (i.e., z = 2) employs the collaborations with K highest semantic similarity among all |X| collaborations. However, to generate context-aware collaborator recommendations in PoF method (see Figure 5.1), both PoF1 and PoF2 generate 2D collaborator recommendations by using PMF, then process the collaboration context using semantic similarity, and eventually produce context-aware collaborator recommendations.

Using the three algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1), context-aware collaborator recommendations can be produced for users in web-based CWEs. Specifically, all these algorithms employ PMF and the ontology-based semantic similarities in the recommendation generating process, which makes it possible to compare and evaluate their performances through experiments. These experiments will be presented and explained in Chapter 7.

Chapter summary

In this chapter, we concentrated on utilizing the collaboration context to generate context- Finally, RESTFul API offers uniform interfaces1 for accessing such instances and manipulating their state [START_REF] Lucchi | Resource oriented architecture and REST[END_REF]. Such an architecture (see Part (b) in Figure 6.1) allows heterogeneous information located in independent tools to be visible and accessible in web-based CWEs without modifying its storage location (source).

Particularly, thanks to the ontological knowledge base, information collected from different tools can be managed in a single expressive manner. Such a knowledge base can represent and map heterogeneous information into semantic instances, classes, and relationships. This whose unique identification is represented by URIs. Specifically, each instance is described by its characteristic information and can be accessed in JSON format through RESTFul API.

For example, below shows the detailed information of an instance of mcc:UserGroup.

{"id": "groupAPIConcept5fa51d8caea88", "name": "Context-aware application project", "member": [ {"login": "Emma_account","id": "testAPIConcept5db5b8e6250f8"} , {"login": "Marinela_account","id": "testAPIConcept5dc56c6943 da5"} {"login": "Lucie_account","id": "testAPIConcept5db5bbbac5405" } ],

"type": "Project Group", "goal": "Build a context-aware application and publish a corresponding paper", "starttime": "01-11-2020", "endtime": "31-12-2021", "related_group": [ {"name": "Emma's thesis","id": "groupAPIConcept5fa51f1c04761" } ],

"space": "spaceAPIConcept5fa51d8cbd524" } Through applying MCC as the ontological knowledge base, the collaboration context can be processed and managed in web-based CWEs. This allows users to analyze and identify the weak and strong points in their collaborations, then set up corresponding strategies.

Moreover, the leader-follower architecture (see Part (a) in Figure 6.1) was already used to implement a prototype of collaborative SoIS, MEMORAe SoIS [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF], where the ontology SOIS acts as the knowledge base (cf. Section 3.3). This implies that the architecture is practicable. Consequently, the architecture of web-based CWEs (see Part (b) and (c) of figure 6.1) leads to the construction of a web-based CWE prototype.

Prototype: MEMORAe CWE

Following the architecture of web-based CWEs (cf. Section 6.2), we build a corresponding prototype, MEMORAe CWE2 . This prototype is a continuation of the MEMORAe approach [START_REF] Atrash | Supporting organizational learning with collaborative annotation[END_REF]. As presented in Chapter 3, MEMORAe CWE is the web platform in the MEMORAe approach, while the ontology-based collaboration context model MCC is applied as the core ontology. Particularly, users in MEMORAe CWE are organized by user groups and organizations.

An organization consists of multiple users belonging to interrelated user groups. Moreover, each organization has its own organizational ontology where users are allowed to index and manage resources within the organization [START_REF] Atrash | Supporting organizational learning with collaborative annotation[END_REF]. Thus, the main parts in MEMORAe CWE are: the semantic map of the organizational ontology, the list of user groups, and the spaces of the selected user groups (see Figure 6.2).

The semantic map is a graphical representation of the organizational ontology. Once an organization is chosen in MEMORAe CWE, users can browse the corresponding semantic map (see Figure 6.2). Specifically, each node, with its own description, symbolizes a concept3 defined in the organizational ontology. When users click on a particular node in the map, resources indexed with this node in user groups become displayable within MEMORAe CWE.

Each user group provides a sharing space for its members to collaborate with each other and interact with resources from different integrated collaborative tools. Specifically, a resource can be accessible and visible in different user groups as wanted by the users. In this process, MEMORAe CWE doesn't change the resource itself in its original storage but its reference and index keys in MCC (see Figure 4.9).

Each user has at least one user group accessible by all members of the chosen organization. The other user groups include at least two members (including the user himself/herself) that have a common goal to achieve within the chosen organization. All available user groups are listed in the left side of MEMORAe CWE (see Figure 6.2).

For understanding how MEMORAe CWE presents and collects the collaboration context through its contextual dimensions and factors 4 , this section first explains its usage based on the scenario presented in Section 1.2. Then, we illustrate an application of the prototype at the University of Technology of Compiègne (UTC).

Usage

MEMORAe CWE enables users to collaborate within user groups 5 . In the scenario, Emma, Lucie, and Marinela are working together in a user group. Meanwhile, Emma also collaborates with her supervisors, Elsa and Marie, on her thesis in another user group. In MEMORAe CWE, these two pertinent user groups can constitute an organization whose members collaborate with each other to achieve relevant goals. Thus, Emma, Lucie, Lisa, Elsa, and Marie are members of an organization Laboratory X but belong to two distinct user groups: Context-aware application project and Emma's thesis. To reach these user groups in MEMORAe CWE, Emma needs to first log in and choose the organization Laboratory X (see Figure 6.3). After choosing the organization, Emma then can navigate its semantic map (see Figure As for Resource, users can progress their collaborations and access diverse resources within user groups of MEMORAe CWE. Each resource is not only accessible and visible in user groups of MEMORAe CWE, but also indexed with a concept of collaboration goals, represented by a node in the semantic map (as defined in Figure 4.9). For instance, the Students in a user group can then interact with each other to learn the course NF01 collaboratively under the supervision of the teacher. They are also able to submit their project report and/or results to the teacher within user groups. Meanwhile, teachers can share pedagogical documents with students in user groups of practical classes. All these reports, results

and pedagogical documents are accessible resources within user groups, which are also indexed with at least a node in the semantic map. This permits students to link and understand various resources with notions in the course NF01. Moreover, students' and teachers' activities on resources are traced by user groups, such as adding, accessing, and deleting resource activities. This permits students and/or teachers to view other members' activity traces in a user group.

Besides, all students and teachers are provided with a private working space only accessible by themselves, which allows them to index and organize their personal resources within the organization NF01.

At the end of the semester, some students gave us their feedback about their experience with the prototype MEMORAe CWE. The complete survey is available in Appendix C. The responses can be summarized as follows:

• 72.7% students felt that MEMORAe CWE could help them revise the course NF01.

• 81.8% students thought MEMORAe CWE could organize resources for them.

• 72.7% students considered MEMORAe CWE as a useful environment to allow them collaborate with others (students and/or teachers).

• Students averagely rated 5.9 (out of 10) for our prototype as a web-based CWE.

• Students averagely rated 5.8 (out of 10) for our prototype as a learning support in the course NF01.

• 72.7% students evaluated that consulting other users' activity traces could help them to identify people that are related to a notion in the course NF01.

• 45.5% students said they would be interested in receiving context-aware collaborator recommendations in MEMORAe CWE.

Discussion

Regarding the relationship between web-based CWEs and collaborative SoISs, an architecture of an ontology-based collaborative SoIS [START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] Also, this work has some limitations. Due to the limited time, we are unable to add functionalities related to context-aware collaborator recommendations in the prototype, MEMO-RAe CWE. It would be a good practice to develop such functionalities and let users evaluate them during their collaborations.

Chapter summary

In this chapter, our work is mainly about the third question listed in Section 1. Therefore, the rest of this chapter is organized as follows. Section 7.2 introduces the dataset we use and how its scientific collaborations can be presented by the ontology-based collaboration context model. Section 7.3 then shows and evaluates the results obtained from this dataset. Next, we discuss how well these results perform in terms of accuracy and time efficiency. A summary can be found at the end of this chapter.

Dataset

To test and evaluate the performances of the context-aware collaborator recommendation algorithms, we aim to search for datasets where data is retrieved from real users and their collaborations in web-based CWEs. Without finding such datasets, our alternative is to consider an academic article as a scientific collaboration and thus to make use of academic publication datasets for the experiments. While constructing such datasets, MCC permits us to gather the collaboration context from different sources while calculating the ontology-based semantic similarities (cf. Chapter 5). In other words, the dataset in our experiments can consist of heterogeneous information from multiple academic bibliographies. These bibliographies refer to different collaborative tools integrated in a web-based CWE.

Therefore, we choose to utilize a dataset [START_REF] Tang | ArnetMiner: Extraction and Mining of Academic Social Networks[END_REF] Particularly, each article in the dataset represents the fact that its authors have collaborated once in certain research domains. During such a collaboration, the authors work together to write the corresponding article. This implies that an academic article is the result of a scientific collaboration. This permits us to consider an article as a scientific collaboration.

Accordingly, the side information of an article (shown in Table 7.1) belongs to the context of a scientific collaboration.

MCC defines eight contextual dimensions of collaboration and their associated factors (cf. Section 4.2). In scientific collaborations, all these dimensions and factors can be represented as follows (see Table 7.3). Each collaboration is identified by id and title of an article.

For dimension Relation, we filter out irrelevant values of references using the list of the same An example of a scientific collaboration with its context is shown below.

{"id": "1023950486", "title": "Structuring and reusing knowledge from historical events for supporting nuclear emergency and remediation management", "Collaborator": [ {"name": "Stella Moehrle","id": "2185715410"}, {"name": "Wolfgang Raskob","id": "1699906302"} ],

"Location": [ "Institute for Nuclear and Energy Technologies, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany" ],

"Activity": [ {"name": "Stella Moehrle","id": "2185715410","type": "

Writing academic article activity", "contribution": 1}, {"name": "Wolfgang Raskob","id": "1699906302","type": "

Writing academic article activity", "contribution": 2} ],

"Goal": [ "Computer science", "Reuse", "Management science", "Emergency management", "Decision support system", "Case-based reasoning", "Structuring", "History" ],

"Time": 2015, "Relation": [],

"Resource": [ "2032330087", "2041661842", "2087780521", "

] } With such a transformation, each article is a scientific collaboration with its own context.

Accordingly, each block of articles can be considered as a set of scientific collaborations in the corresponding top-level research domain. Specifically, every set is composed of 1000 articles selected randomly from a block due to the different article numbers in these blocks (see Table 7. Particularly, for all scientific collaborations, we have T = 7 and T quan = 6 (i.e., Goal, Collaborator, Activity, Resource, Location, and Relation). Only one dimension Time is described by quantitative objects (i.e., T qual = 1). Therefore, based on Equation 5.13 and 5.15, the ontology-based semantic similarity between two scientific collaborations (c and d)7 is: 

S(d, c) = S 1 (d, c) + S 2 (d, c) = 6 ∑ t=1 |P dc,t | ∑ g 1 =1 |O d p t g 1 ∩ O c p t g 1 | |O d p t g 1 ∩ O c p t g 1 | + α|O d p t g 1 -O c p t g 1 | + β|O c p t g 1 -O d p t g 1 | × IC(P d,t ) ∑ 7 h=1 IC(P d,h ) + |P dc,Time | ∑ g 2 =1 1 γ|o d p
= β = γ = 1. The range of S(d, c) is [0, 1].
Within this semantic similarity S(d, c), this dataset can be applied to test PreF1, PoF1, and PoF2 algorithms (cf. Section 5.5). This dataset well fits our needs in the experiments for the following reasons:

• In this dataset, authors of an academic article are members of a scientific collaboration.

The detailed information of an article (shown in Table 7.1) belongs to the context of this collaboration, which can be represented by the contextual dimensions and their associated factors (shown in Table 7.

3). This corresponds to our ontology-based collaboration context model MCC;

• This dataset is constructed by heterogeneous information from different academic bibliographies, corresponding to MCC that the collaboration context comes from different collaborative tools within a web-based CWE;

• From the aspect of volume, this dataset is able to measure the performance of the context-aware collaborator recommendation algorithms (i.e., PreF1, PoF1, and PoF2).

These algorithms apply the ontology-based semantic similarity (see Equation 5.18 and 5.15) in different phases to generate recommendations.

• In this dataset, we are able to employ other context-aware recommendation algorithms following Contextual Modeling (CM) method (Adomavicius and Tuzhilin, 2011), such as Context-Aware Matrix Factorization (CAMF)8 [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF].

This allows us to compare context-aware recommendation algorithms following PreF and PoF methods with those of CM method.

Thus, it is reasonable to conduct experiments on this dataset. The results of such experiments can help us analyze whether our solution is relevant in terms of accuracy and time efficiency.

Experiments

Evaluation methods

Before applying the algorithms on the dataset, we need to be clear about the evaluation methods. To compare the generated context-aware collaborator recommendations with For evaluation accuracy, we first apply F1 metric in our experiments, which is calculated by the following equation [START_REF] Van Rijsbergen | Information retrieval: theory and practice[END_REF][START_REF] Goutte | A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[END_REF]:

F1 = TP TP + 1 2 (FN + FP) (7.2)
where TP, FN, and FP are numbers of classified collaborators based on Table 7.4.9 The range of F1 is [0, 1]. A higher value of F1 indicates more accurate recommendations.

Besides, the MAE metric is also utilized in our experiments, which is popular in evaluating accuracy [START_REF] Willmott | Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[END_REF]. This metric signifies the difference between an author u's actual rating R ui and predicted rating R ui for a collaborator i (see Equation 7.3).

The lower the value of MAE, the smaller the difference between R ui and R ui .

MAE = ∑ m i=1 |R ui -R ui | m (7.3)
where m is the number of users that can be recommended to u in c.

In addition, time efficiency is equally critical in assessing the context-aware collaborator algorithms [START_REF] Miller | Movielens unplugged: Experiences with a recommender system on four mobile devices[END_REF]. Therefore, we measure the execution time10 that each algorithm takes to generate context-aware collaborator recommendations for an author u in a testing collaboration c.

With the three metrics (i.e., F1, MAE, and execution time), our experiments are conducted on a computer with the following properties:

Operating System: Windows 10 Entreprise 64-bit Processor: Inter(R) Core(TM) i7-8650U CPU @ 1.90GHz

Installed Memory (RAM): 32.00 GB ). This is to analyze whether and how the numbers of generated recommendations influences the performances of the three algorithms. Each experiment uses a different K in a set of scientific collaborations. F1, MAE and execution time are computed during these experiments. Similarly, we also perform the experiments in CAMF [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF] and PMF [START_REF] Mnih | Probabilistic matrix factorization[END_REF]. This is to compare the accuracy and time efficiency between these algorithms with different values of K. All results are shown in In conclusion, the highest values of F1 are achieved by PoF2, PoF1, and PreF1 with different K. Specifically, when K is small, PoF2 has the best performance; when K takes middle values, PoF1 is a better choice; when K is larger than 35, choosing PreF1 seems perfect.

This implies that PreF1, PoF1, and PoF2 can generate more accurate recommendations than CAMF and PMF. This also indicates that applying the ontology-based semantic similarity in different phases of the recommendation algorithms (cf. Section 5.1) impacts F1 and therefore leads to varying accuracy of these algorithms. In addition, when K is small, the difference of F1 among these algorithms is significant. As K grows, the algorithms tend to converge.

This suggests that the ontology-based semantic similarity can augment the accuracy of these algorithms. But its improvements progressively diminish as K grows.

Besides, PreF1 and PoF2 generally have better performances than PoF1, PMF, and CAMF in MAE metric. Similarly, because of the calculations of the adjusted ratings (cf. Section 5.5),

PoF1 still has the highest MAE. However, these algorithms show no obvious trend in MAE when K rises. Plus, the values of MAE are extremely unstable in these algorithms. This proves that the MAE acts independently with K but relates to the random division between training and testing collaborations. As for execution time, PoF1, PoF2, and PMF still have almost the same results, which are close to that of CAMF. Similarly, PreF1 requires the longest execution time due to its higher time complexity. However, the execution time of all algorithms remain stable as K changes.

This indicates that the time efficiencies of these algorithms are also independent with K.

Experiment with different sets of scientific collaborations

In and PMF [START_REF] Mnih | Probabilistic matrix factorization[END_REF] Specifically, our experiments involves 5 existing semantic similarities, including Jaccard, Dice, Tversky, TF-IDF, and IC15 [START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des Alpes et des Jura[END_REF][START_REF] Dice | Measures of the amount of ecologic association between species[END_REF][START_REF] Tversky | Features of similarity[END_REF][START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF][START_REF] Rajaraman | Mining of massive datasets[END_REF].

Among them, the first three are feature-based similarities, while the rest two belong to information content-based similarities. Each experiment uses a different semantic similarity in a set of scientific collaborations. To analyze their performances in the algorithms, F1, MAE and execution time are employed. All the results are shown in Figures 7.10,7.11,[START_REF]Transformation from articles' side information into the contexts of scientific collaborations[END_REF]12.16 7.13, 7.14, and 7.15. 17 In summary, when either PMF or NCF is applied in the three algorithms (i.e. PreF1, PoF2 and PoF1), all values of F1 are higher than those of PMF and NCF themselves (represented as NCF/PMF in Figures 7.13,7.14,and 7.15). This indicates that our ontology-based semantic similarity can increase F1 of PreF1, PoF2 and PoF1 whatever model-based CF technique is used. However, F1 values with NCF are much higher than those with PMF. This implies that the enhancement of F1 driven by our semantic similarity relates to the techniques used to generate 2D collaborator recommendations. Between NCF and PMF, our semantic similarity can attain greater F1 with NCF. Meanwhile, compared with NCF/PMF, lower MAE are also reached when applying PMF and NCF in PreF1, PoF2 and PoF1 (except PMF in PoF1). This signifies that our ontologybased semantic similarity, while using either PMF or NCF in the algorithms, can reduce values of MAE. Similarly, the decreased MAE values with NCF are larger than those with PMF. This also means that the reduction of MAE is caused by our semantic similarity but linked to the techniques used to generate 2D collaborator recommendations. Both higher F1

and lower MAE suggest that our semantic similarity improves the accuracy of PreF1, PoF2, and PoF1. Only its enhancements are more evident with NCF than with PMF.

As for execution time, the results of PoF2, PoF1, and NCF/PMF are very near. On the contrary, the execution time of PreF1 is much longer than those of other algorithms, indicating a higher time complexity of PreF1.

Discussion

Utilizing a dataset of scientific collaborations, we conduct experiments on the performance of the context-aware collaborator recommendations algorithms: PreF1, PoF1, and PoF218 . Specifically, three metrics (i.e., F1, MAE, and execution time) are used to compare the performances for two terms: accuracy and time efficiency. We also apply two other algorithms in this dataset, namely CAMF [START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF] and PMF [START_REF] Mnih | Probabilistic matrix factorization[END_REF]. This allows us to compare the results of the algorithms following PreF and PoF methods with those of an algorithm of CM method and of a 2D recommendation algorithm (Adomavicius and Tuzhilin, 2011). 19 Besides, PMF and NCF [START_REF] He | Neural collaborative filtering[END_REF] Based on the results of the experiments, the following can be concluded:

• PreF1 outperforms PMF and CAMF in F1 and MAE, but suffers in execution time due to its higher time complexity. In particular, the advantages of PreF1 in MAE can be influenced by different datasets.

• PoF1 beats all other algorithms in F1 and has an intermediate performance in execution time. But PoF1 performs worst in MAE due to the calculation of the adjusted ratings.

• The difference between PoF2, CAMF and PMF in execution time is minor. Also, PoF2 has better performance than CAMF and PMF in F1 and MAE.

• 

Conclusion

Collaborations, especially the successful ones, enable people to obtain more beneficial results compared to working individually. However, successful collaboration is often challenging, as it can be influenced by different factors (e.g., goal, resources) (Patel, Pettitt, and Wilson, 2012). Notably, collaborator is a significant impacting factor, which is essential in collaborations. Consequently, we focus on recommending appropriate collaborators to peo- Finally, we utilized a dataset of scientific collaborations for the last question Q4. This dataset well fits the needs of our experiments for several reasons:

• In this dataset, an academic article can be considered as a scientific collaboration.

The detailed information of an article can be used to characterize the situation of a corresponding scientific collaboration over a given period of time, thus belonging to the context of this collaboration.

• This dataset is extracted from multiple academic bibliographies: DBLP 1 , Microsoft Academic Graph (MAG) 2 , and AMiner 3 . Each bibliography refers to a collaborative tools integrated in a web-based CWE. This corresponds to MCC that the collaboration context comes from different collaborative tools within a web-based CWE.

• From the aspect of volume, this dataset is able to measure the performance of the three • It would be worth building a context-aware collaborator recommender system in the prototype of web-based CWEs, MEMORAe CWE. If such a system could be developed, real users would be able to choose whether they want to receive context-aware collaborator recommendations and evaluate the performance of our algorithms. Meanwhile, this will allow us to obtain a dataset containing real users' information in a web-based CWE. With this dataset, we could carry out the experiments, which are same as those we performed in this thesis. This dataset could make the results of these experiments more complete and convincing.

Long-term future work includes:

• In the MEMORAe approach, Wang (2016) defined a competency module to measure people's competencies based on their activities. Such information can be used to describe the situation of a collaboration, thus belonging to the collaboration context. This implies that we can enrich the collaboration context ontology in this thesis by reusing the competency module [START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF], giving us more information of people's collaborations and their contexts.

• Based on the information containing in the collaboration context ontology, we can develop and realize other functionalities in web-based CWEs. For instance, after users complete or finish a collaboration in a web-based CWE, their profiles can de updated considering the information of this collaboration and its context.

• Further, the algorithm used to context-aware collaborator recommendations could be chosen according to people's requests. For example, based on the numbers of collaborator recommendations requested, we can select an algorithm from PoF1 and PoF2 to generate context-aware collaborator recommendations for people in web-based CWEs.

• Our ontology-based semantic similarity is used to compare two collaborations and their contexts. It also can serve to compare two other instances in the collaboration context ontology, such as resources. This implies that we might employ this ontologybased semantic similarity to generate other recommendations in web-based CWEs, such as context-aware resource recommendations. This will reveal the importance of our ontology-based semantic similarity in generating context-aware recommendations.

• In the collaboration context ontology, a collaboration goal consists of several concepts and their relationships (e.g., hierarchical relationships), which are shown respectively as nodes and links of a semantic map in the prototype MEMORAe CWE. These concepts and their relationships can be considered and/or reasoned to generate more specific collaborator recommendations. For instance, during collaborations, we can recommend collaborators to people for certain related concepts.
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 47 Collaboration context and its model: Firstly, we present a definition of collaboration context. Then, based on two existing ontologies of the MEMORAe approach, an ontology-based collaboration context model is constructed, also known as a collaboration context ontology. Chapter 5 Context-aware collaborator recommendations: This chapter starts by explaining how to calculate an ontology-based semantic similarity to process the information in the collaboration context ontology. Then, the semantic similarity is applied in context-aware collaborator recommendation algorithms, based on two methods: PreF and PoF. Chapter 6 Prototype: We first deploy the collaboration context ontology into webbased CWEs by considering an architecture of collaborative SoISs from the viewpoint of web-based CWEs. Then a corresponding prototype of web-based CWE is demonstrated. Experiments: In this chapter, we utilize a dataset to test and evaluate the performances of our context-aware recommendation algorithms (cf. Chapter 5). Based on the results, we discuss advantages and disadvantages of each recommendation algorithm. Part IV Conclusion, Perspectives and Future Work comprises only one chapter. Chapter 8 contains the conclusions of our work and the perspectives for future work.
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 2 FIGURE 2.1: An example of the user's location represented by Markup model.
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 22 FIGURE 2.2: An example of the user's location represented by Graphical model.
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 23 FIGURE 2.3: An example of the user's location represented by Objectoriented model.

FIGURE 2 . 4 :

 24 FIGURE 2.4: An example of the user's location represented by Ontologybased model.

  , and Prinz et al. (2006): • Allow people to collaborate over time and space • Support collaborators' various activities during their collaborations, such as interactions with other users and/or resources • Provide flexible services for users to support their collaborations • Offer asynchronous collaboration tools 17 (e.g., email and Wiki) and synchronous collaboration tools 18 (e.g., real-time chat and video communication systems) • Enable interoperability with different collaborative systems • Increase the productivity and creativity in collaborative processes • Enhance collaborators' critical and analytical thinking and problem-solving skills Many researches already developed web-based CWEs to support collaborations in different domains. For example, Su et al. (2005) constructed a web-based CWE for online designers, where information is exchanged and stored in a database. Truong et al. (2008) aggregated disparate collaboration services (e.g., document sharing, communication, team management and project management services) and provide a web-based CWE, known as inContext, where runtime and historical context and users' interaction information are utilized to adapt services. Besides, Su and Casamayor (2009) applied a web-based CWE to enhance sustainable furniture design, which consists of three layers: upperware, midlle ware and resources.

4 )

 4 Anyplace -Anytime. It is pursued the pervasive collaboration, where collaborators can work together over time at anyplace. 5) Low Cost of Entry. The boundaries between different CWEs should be reduced in order to improve interoperability. Furthermore, this would facilitate the development of new CWEs as well as the use and integration of new tools. 6) Locating required Information. Users should be provided with accurate mechanisms to locate their needed information in CWEs. The retrieval of information in CWEs
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 26 FIGURE 2.6: An example of SoIS: Internet.
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 272 FIGURE 2.7: The incorporation of context in the recommendation process(Adomavicius and Tuzhilin, 2011).

  PreF and PoF to generate context-aware collaborator recommendations. Additionally, due to the flexibility and extensibility of ontology in generating 2D recommendations, we therefore have interests in employing the collaboration context ontology for recommending collaborators to users in web-based CWEs.
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 31 FIGURE 3.1: General view of MC2 with its three main modules[START_REF] Deparis | Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires[END_REF][START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF].
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 32 FIGURE 3.2: Individual and group module of MC2 (Deparis, 2013).
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 33 FIGURE 3.3: VCard in MC2 (Atrash, 2015).
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 34 FIGURE 3.4: Resource module of MC2[START_REF] Deparis | Création de nouvelles connaissances décisionnelles pour une organisation via ses ressources sociales et documentaires[END_REF].
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 35 FIGURE 3.5: Activity module of MC2[START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF][START_REF] Wang | Towards a competency recommender system from collaborative traces[END_REF].
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 36 FIGURE 3.6: The main interface of E-MEMORAe2.0[START_REF] Atrash | Modeling a system of expertise capitalization to support organizational learning within small and medium-sized enterprises[END_REF].
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 37 FIGURE 3.7: Resource module of SOIS[START_REF] Saleh | Digital ecosystem towards a System of Information Systems[END_REF].

FIGURE 3 . 8 :

 38 FIGURE 3.8: Activity module of SOIS[START_REF] Saleh | Digital ecosystem towards a System of Information Systems[END_REF].

  to construct and implement an ontology-based collaboration context model in web-based CWEs. Particularly, the reusability of ontology makes it possible to extend and composite the two existing ontologies (i.e., MC2 and SOIS) into an ontology-based collaboration context model, which can greatly simplify the construction process. The web platforms allows us to develop a prototype of web-based CWEs, where the ontology-based collaboration context model can be integrated to collect and process information within the context of users' collaborations. Besides, both MC2 and SOIS are ontology-based models of collaboration. MC2 establishes the fundamental modules for collaborations between users in organizations. And SOIS deals with users' collaborations in a SoIS by accounting for the complexity and diversity of resource systems. This implies that MC2 and SOIS are worth reusing to build the ontologybased collaboration context model. Specifically, the main modules of MC2 and SOIS already cover several key impacting factors of collaboration (cf. Section 2.2). For instance, the two modules resource and activity correspond separately to the factors resources and collaborators' actions. Note that these factors are not completely represented and must be modified in the ontology-based collaboration context model. However, MC2 and SOIS still have limitations respectively. Neither MC2 nor SOIS can support all users' collaborative activities in web-based CWE due to the incompleteness of their activity modules. MC2 does not consider vote or comment for resources, while SOIS does not support adding, creating, or modifying resources. Moreover, simply accumulating their activity modules together leads to redundant activities (access, share, and delete resources). This requires us to integrate and reorganize the two existing ontologies into the ontology-based collaboration context model. It must also be supplemented and extended according to the definition of the collaboration context, which will be presented in the rest of this thesis.

  erate relevant collaborator recommendations in web-based CWEs by constructing a Context-Aware Recommender System (CARS) that produces context-aware collaborator recommendations. To construct a Context-Aware Recommender System (CARS) that generates contextaware collaborator recommendations in a web-based Collaborative Working Environment (CWE), the first encountered problem is: what is the context of collaboration and how to model it? To address this, we need to clearly define context and collaboration context. It is also necessary to obtain an architecture of context models from which a well-designed collaboration context model can be established, which is also the core of CARS. Particularly, considering the advantages of the ontology-based modeling approach in terms of flexibility, extensibility, interpretability, reusability, and its support for interoperability between multiple information systems, we intend to construct an ontology-based collaboration context model (i.e., a collaboration context ontology) in web-based CWEs. Therefore, the rest of this chapter is organized as follows. Section 4.2 presents our work on the definitions of context and collaboration context. Specifically, drawing on the definition of context, an architecture of context models is developed. Based on this architecture, we then explain how an ontology-based collaboration context model can be built and used in web-based CWEs (cf. Section 4.

  Any information considered as belonging to an entity's context is contextual information. It is also the value of contextual factors. For example, the value of factor hour is 17h. Such factors can be grouped into contextual dimensions to describe the situation of an entity. For instance, dimension time may include four factors: year, month, day, and hour. These three interrelated concepts (contextual information, factor and dimension) can form an architecture of context models (see Figure 4.1).
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 41 FIGURE 4.1: An architecture of context models.
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 42 FIGURE 4.2: The architecture of the collaboration context ontology.

7 .

 7 Relation comprises factors to stand for other related collaborations. 8. Satisfaction owns factors to represent collaborators' satisfaction degrees and comments about a collaboration. With the identified contextual dimensions and factors, the ontology-based collaboration context model can be developed in web-based CWEs. Particularly, the process of building this model can be simplified by the existing ontologies of the MEMORAe approach (i.e., MC2 and SOIS) as discussed in Section 3.4. Thus, both MC2 and SOIS are extended and reused in the ontology-based collaboration context model.4.3 Model: Collaboration context ontology Based on MC2 and SOIS, an ontology-based collaboration context model (i.e. a collaboration context ontology) in web-based CWEs is constructed, known as MCC 1 . It can: 1. Define contextual information, factors, and dimensions of collaboration 2. Describe users' collaborations and their contexts 3. Serve as a knowledge base 4. Process heterogeneous information from different sources
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 43 FIGURE 4.3: Eight contextual dimensions of collaboration in MCC (T-Box component).

  kb:Context_aware_application_project rdf:type mcc:UserGroup kb:Context_aware_application_project rdf:type sioc:Usergroup (BY INFERENCE) kb:Scientific_group rdf:type mcc:Group kb:Scientific_group rdf:type foaf:Group (BY INFERENCE) kb:Scientific_group mcc:holdsUserGroup kb:Context_aware_application_project kb:Emma rdf:type mc2:Person kb:Emma rdf:type mc2:Agent (BY INFERENCE) kb:Emma rdf:type foaf:Agent (BY INFERENCE) kb:Scientific_group foaf:member kb:Emma kb:Lucie rdf:type mc2:Person kb:Scientific_group foaf:member kb:Lucie kb:Marinela rdf:type mc2:Person kb:Scientific_group foaf:member kb:Marinela kb:Group_space_1 rdf:type mc2:Space kb:Group_space_1 rdf:type sioc:Space (BY INFERENCE) kb:Group_space_1 sioc:has_usergroup kb:Scientific_project kb:Context_aware_application_project sioc:usergroup_of kb:Group_space_1
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 44 FIGURE 4.4: The dimension Collaborator in MCC (T-Box component).
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 44 In the scenario, the instance of mcc:UserGroup (i.e., kb:Context_aware_application_project) contains user accounts of Emma, Lucie, and Marinela, rather than themselves. These users accounts are managed in a web-based CWE (represented by sois:LeaderSystem). Through their accounts, Emma, Lucie, and Marinela can access to different collaborative tools (represented by sois:StandAloneSystem and sois:WebBasedApplication) that are integrated into the web-based CWE. kb:Emma_account rdf:type mc2:Account kb:Emma_account rdf:type sioc:UserAccount (BY INFERENCE) kb:Emma_account rdf:type foaf:OnlineAccount (BY INFERENCE) kb:Emma foaf:holdsAccount kb:Emma_account kb:Emma_account sioc:member_of kb:Scientific_group kb:Scientific_group sioc:has_member kb:Emma_account kb:Lucie_account rdf:type mc2:Account kb:Lucie foaf:holdsAccount kb:Lucie_account kb:Lucie_account sioc:member_of kb:Scientific_group kb:Scientific_group sioc:has_member kb:Lucie_account kb:Marinela_account rdf:type mc2:Account kb:Marinela foaf:holdsAccount kb:Marinela_account kb:Marinela_account sioc:member_of kb:Scientific_group kb:Scientific_group sioc:has_member kb:Marinela_accountBesides, a mcc:UserGroup has a common goal among its members. Such a goal is described by multiple concepts, expressed as owl:Thing in MCC. In the scenario, the goal of the context-aware application project is to build a context-aware application and to publish a corresponding paper (see Figure4.5).
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 4 FIGURE 4.5: The goal of the context-aware application project in the scenario (A-Box component).
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 46 FIGURE 4.6: Time, Relation and Satisfaction representations in the scenario (A-Box component).
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 47 FIGURE 4.7: Collaborator profile in MCC (T-Box component).
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 4 FIGURE 4.8: Marinela's profile in the scenario (A-Box component).
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 49 FIGURE 4.9: The dimension Resource in MCC (T-Box component).

Figure 4 .

 4 Figure 4.12). Specifically for geographical locations, their longitude and latitude are contained in MCC. Within information on locations, MCC can track what resources are used in which activity at which location, such as the resources and locations involved in Emma's activity of writing the scientific paper (see Figure 4.11).
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 410 FIGURE 4.10: The dimension Activity in MCC (T-Box component).
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 4 FIGURE 4.11: Emma's creating resources activity (A-Box component).

FIGURE 4 .

 4 FIGURE 4.12: Relation between dimensions Location and Activity in MCC (T-Box component).

based

  CWEs, enabling us to answer the first question listed in Section 1.1.3: what is collaboration context and how to model it. Particularly, we first proposed a definition of context and an architecture of context models based on three interrelated concepts: contextual information, contextual factor, and contextual dimension. This then allows us to define the collaboration context and, based on the architecture, to construct an ontology-based collaboration context model (i.e., a collaboration context ontology), MCC. Finally, we explained how MCC can be applied to represent users' collaborations and their contexts in web-based CWEs. Within MCC, the next chapter will present how to incorporate the collaboration context into the recommendation generation process and how to generate context-aware collaborator recommendations. With the definition and the ontology-based model of collaboration context, our next step is to work out how to they can be processed and employed in algorithms for generating context-aware collaborator recommendations? To achieve this, we need to integrate the collaboration context contained in the ontology-based model into the collaborator recommendation generation processes. For this, three methods are available: Pre-Filtering (PreF), Post-Filtering (PoF), and Contextual Modeling (CM) (Adomavicius and Tuzhilin, 2011). Among these methods, CM has limitations in computing multi-dimensional data when the volume and complexity of the data are large as discussed in Section 2.5. Therefore, we focus on applying PreF and PoF in this thesis to generate context-aware collaborator recommendations for users in web-based CWEs. Based on the literature review (cf. Section 2.5.2), the main phases of the two methods are shown in Figure 5.1.
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 5 FIGURE 5.1: Main phases of PreF and PoF.

  proposed a semantic similarity that combines feature-based and information content-based similarities. Carrer-Neto et al. (2012) employed Equation 5.6 to calculate the semantic similarity based on the features of classes (instances) and the information provided by their relationships. Similarity semantic (x, y) = |P x ∩P y | where |P x ∩ P y | indicates the number of relationships that both x and y have; |O x p g | represents the number of classes (instances) associated to x through the relationship p g ; |O x p g ∩ O y p g | represents the number of common classes (instances) associated to x and y through the relationship p g ; Weight(p g ) expresses the importance of the relationship p g .

2

  Here, x and y are two classes (instances) in ontologies; O x and O y refer to their sets of ontological features; |O x ∩ O y | the number of common features in the sets O x and O y ; |O x | denotes the number of features in the set O x . The range of Jaccard(O x , O y ) is [0, 1]. 3 The range of Dice(O x , O y ) is [0, 1]. 4 Here, O x -O y denotes the relative complement of O y in O x . α, β ≥ 0 are parameters of the Tversky index. Setting α = β = 1 produces Jaccard index; setting α = β = 0.5 produces Dice coefficient.

Figure 5

 5 Figure 5.1), instead of users and collaborators (User(U) and Item(I) in Figure 5.1). Thus, CB is inappropriate for generating 2D collaborator recommendations in web-based CWEs.

  As an ontology-based collaboration context model, MCC specifies all information through semantic 3-uples < Subject, Predicate, Object >, such as <mcc:Context_aware_application _project, mcc:startedAtTime, "01/07/2018"> representing the start time of Emma's collaboration (as shown inFigure 4.6). In this semantic 3-uple, the subject is an instance of mcc:UserGroup, representing Emma's collaboration. The predicate refers to a contextual factor of collaboration, start time (cf. Section 4.2). Consequently, the object shows the information of Emma's collaboration start time (i.e., the value of the contextual factor represented by the predicate). In this way, for a collaboration in a corresponding user group, all its contextual factors and information can be linked to a single subject in MCC. Particularly, MCC also allows us to group predicates for expressing the eight contextual dimensions of collaboration: Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction (cf. Section 4.2).
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 52 FIGURE 5.2: Distribution of classes and interrelations according to their role in the semantic 3-uple.

  : path-based, featurebased, and information content-based semantic similarity. These different semantic similarities have their own disadvantages and advantages. Therefore, we need to compute semantic similarities based on the characteristics of our ontology-based collaboration context model, MCC.
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 53 FIGURE 5.3: Apply TF-IDF to measure the amount of information provided by predicates.

  predict R uk ← R * uk based on Equation 5.9;

  aware collaborator recommendations. This part of work addresses the second question listed in Section 1.1.3: how to process and apply the collaboration context in algorithms for generating context-aware collaborator recommendations. Specifically, we chose a 2D recommendation technique, PMF, to produce 2D collaborator recommendations. Then, we decided to handle the collaboration context through a new ontology-based semantic similarity. It allows us to measure the likeness/relatedness between two collections of semantic 3-uples in the ontology-based collaboration context model. Each collection has a single subject, representing a collaboration and its context. Finally, we explained how to utilize PMF and the ontology-based semantic similarity in three different algorithms to generate context-aware collaborator recommendations. The next chapter will present the answer to the third question: how to implement and integrate the ontology-based collaboration context model into web-based CWEs.6.2 From an architecture of collaborative System of InformationSystems towards an architecture of web-based Collaborative Working Environments[START_REF] Saleh | Moving from digital ecosystem to system of information systems[END_REF] proposed a leader-follower architecture of collaborative SoISs (see Part (a) in Figure6.1). In this architecture, a SoIS is composed of a leader system that refers to the global system and multiple follower systems that are component systems.Particularly, the global system contains an ontological knowledge base to collectively manage heterogeneous information across different information systems.
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 61 FIGURE 6.1: Considering a web-based CWE as a collaborative SoIS.

  permits the web-based CWE to have a uniform representation of heterogeneous information, regardless of where it is contained. In this way, the interoperability between the collaborative tools integrated in a web-based CWE can be improved. However, web-based CWEs under this architecture (see Part (b) in Figure 6.1) do not consider the collaboration context (e.g., users' activities, applied resources) when organizing and retrieving the information to meet users' needs during collaborations, though these needs are influenced by the collaboration context. This implies that the information contained in webbased CWEs should be managed within the collaboration context. Thus, we implement the ontology-based collaboration context model MCC as the ontological knowledge base in the architecture of web-based CWEs (see Part (c) in Figure 6.1). In this way, any information belonging to the collaboration context becomes directly accessible components in MCC. Here, a component indicates an instance (e.g. instances of mcc:UserGroup, mc2:Activity) in MCC,
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 62 FIGURE 6.2: The main interface of MEMORAe CWE.
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 63 FIGURE 6.3: Selecting an organization in MEMORAe CWE.
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 6 FIGURE 6.5: Group profile interface of the user group Context-aware application project.
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 4 , which represents a shared vocabulary that describes the goals of collaboration within the chosen organization. Regarding the goals of Emma's two collaborations, certain concepts and their relationships are defined in the corresponding organizational ontology. All members of the chosen organization can view the map (see Figure 6.4) in MEMORAe CWE. Besides, a detailed description of the goal within each user group can be found in the group profile interface. For example, the goal profile interface of the user group Contextaware application project is shown in Figure 6.5. Apart from Goal, this interface also contain other contextual dimensions: Time, Collaborators, Relation, and Satisfaction. Each dimension consists of certain contextual factors. In Figure 6.5, Time includes 'Start time' and 'End time'; Collaborator is described by 'Members'; Relation is represented by 'Related user groups'; Satisfaction is composed of members' satisfaction degrees and their comments. Meanwhile, users can consult their user profiles in MEMORAe CWE. For instance, Marinela's user profile within MEMORAe CWE is shown in Figure 6.6, indicating her demographic information and abilities (as defined in Figure 4.7).
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 6 FIGURE 6.9: Searching papers through API of HAL.
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 610 FIGURE 6.10: Detailed information of the conference paper.
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 6 FIGURE 6.11: Emma's activities in the user group of Context-aware application project.
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 6 FIGURE 6.12: Emma's activities in the organization Laboratory X.
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 6 FIGURE 6.13: Emma's external collaborative activities in the organization Laboratory X.
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 6 FIGURE 6.14: The location of conference venue in MEMORAe CWE.
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 6 FIGURE 6.15: Partial organizational ontology of the course NF01.

  Figure 6.1) provides uniform interfaces to access and manipulate information, allowing them become directly accessible components in web-based CWEs. Each component refers to an instance in the A-Box. This signifies that all instances are available, comprehensible and operable in web-based CWEs. In other words, organizing heterogeneous information into instances simplifies information communications between different tools, thus improving information access and management in web-based CWEs. To summarize, through considering the architecture of the collaborative SoIS from the viewpoint of web-based CWEs, the ontology-based collaboration context model MCC can be implemented into web-based CWEs. This answers a main question of this thesis: how to integrate the collaboration context model into web-based CWEs? Besides, with MCC, users in web-based CWEs can organize heterogeneous information within the context of their collaborations.

  1.3: how to implement and integrate the collaboration context model into web-based CWEs? Firstly, an architecture of an ontology-based collaborative SoIS (Saleh and Abel, 2016) is considered from the viewpoint of web-based CWEs, given the relationship between webbased CWEs and collaborative SoISs. Thanks to this architecture, the ontology-based collaboration context model MCC is implemented in web-based CWEs as an ontological knowledge base. Then, a corresponding web-based CWE prototype, MEMORAe CWE, is developed. We explored its main functionalities and explained how the collaboration context can With the ontology-based model MCC (cf. Chapter 4) and the context-aware recommendation algorithms (cf. Chapter 5), we can process the collaboration context by means of an ontology-based semantic similarity and thus produce context-aware collaborator recommendations for users. Then the last question is: are our context-aware collaborator recommendations algorithms relevant in terms of accuracy and time efficiency? To solve it, we utilize a public dataset of scientific collaborations, which is extracted from multiple academic bibliographies: DBLP 1 , Microsoft Academic Graph (MAG) 2 , and AMiner 3 . Particularly, we apply all the context-aware recommendation algorithms (i.e., PreF1, PoF1, and PoF2) in this dataset and compare their performances in terms of accuracy and time efficiency. These results allow us to analyze both advantages and disadvantages of employing the ontology-based semantic similarity in producing context-aware collaborator recommendations.

  3). These articles are arbitrarily divided into two parts, representing separately training collaboration and testing collaborations. Particularly in the context-aware collaborator recommendation algorithms (i.e., PreF1, PoF1, and PoF2 in Algorithm 1), training collaborations constitute the set X, providing known information (e.g., known ratings, known contexts of scientific collaborations). Meanwhile, each testing collaboration can be c. For every author u in a testing collaboration c, context-aware collaborator recommendations are generated and tested in our experiments 6 .
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 72 FIGURE 7.2: MAE with different percentages of training collaborations in a set of scientific collaborations.
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 73 FIGURE 7.3: Execution time with different percentages of training collaborations in a set of scientific collaborations.
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 33 Experiment with different values of KIn this experiment, we change the number of generated context-aware collaborator recommendations (i.e., values of K) in the algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1

FiguresFIGURE 7 . 4 :

 74 Figures 7.4, 7.5, and 7.6. 13 
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 7 FIGURE 7.5: MAE with different K in a set of scientific collaborations.
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 76 FIGURE 7.6: Execution time with different K in a set of scientific collaborations.

  FIGURE 7.7: F1 with different sets of scientific collaborations.
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 7 FIGURE 7.8: MAE with different sets of scientific collaborations.
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 7 FIGURE 7.9: Execution time with different sets of scientific collaborations.
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 35 Experiment with different semantic similaritiesIn this experiment, we change the semantic similarity applied in the context-aware collaborator recommendation algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1). This provides us an opportunity to investigate how much our ontology-based semantic similarity (cf. Section 5.4) contributes to generating context-aware collaborator recommendations. Particularly, our ontology-based semantic similarity is inspired and developed from two types of semantic similarities: feature-based and information context-based. To compare our ontology-based semantic similarity with others, we need to utilize existing semantic similarities of these two types in PreF1, PoF1, and PoF2.
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 7107 FIGURE 7.10: F1 with different semantic similarities in a set of scientific collaborations.
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 7 FIGURE 7.12: Execution time with different semantic similarities in a set of scientific collaborations.
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 36 Experiment with different collaborative filtering algorithms In this experiment, another 2D recommendation technique Neural network-based Collaborative Filtering (NCF) (He et al., 2017) is employed in the context-aware recommendation algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1). NCF can replace PMF in PreF1, PoF1, and PoF2 to generate 2D collaborator recommendations. Particularly, NCF also belongs to model-based CF approach and can be considered as an evolved version of MF with neural network architectures (He et al., 2017). In other words, NCF is a product of modelbased CF and deep learning. Applying PMF and NCF in these algorithms gives us a chance to explore whether applying our ontology-based semantic similarity with different modelbased CF techniques can influence the performances of these algorithms. Similar with other experiments, the accuracy and time efficiency are also evaluated through three metrics: F1, MAE and execution time. All the results are shown in Figures
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 7 FIGURE 7.13: F1 with different 2D recommendation algorithms in a set of scientific collaborations.
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 7 FIGURE 7.14: MAE with different 2D recommendation algorithms in a set of scientific collaborations.

FIGURE 7 .

 7 FIGURE 7.15: Execution time with different 2D recommendation algorithms in a set of scientific collaborations.

  are utilized to analyze the influences of applying our ontology-based semantic similarity with different model-based CF techniques to generate context-aware collaborator recommendations.

  The ontology-based semantic similarity (cf. Section 5.4) can shorten execution time of PreF1, PoF1, and PoF2. It also leads to higher accuracy in PoF1 and PoF2, but shows no improvement of accuracy in PreF1.• Calculating our ontology-based semantic similarity in PreF1, PoF1, and PoF2 can produce context-aware collaborator recommendations with higher F1 and lower MAE, regardless of applying NCF or PMF. However, it positive effect on execution time isn't very obvious.Besides, the ontology-based semantic similarity enables us to deal with the collaboration context in the context-aware collaborator recommendation generation processes. This type of context is never considered or discussed in previous studies on such recommendations.These previous studies usually focus on either user context (e.g.,[START_REF] Liu | Context-aware academic collaborator recommendation[END_REF] or item context (e.g.,[START_REF] Xu | A Personalized Researcher Recommendation Approach in Academic Contexts: Combining Social Networks and Semantic Concepts Analysis[END_REF]). None of the previous studies takes into account users and items together. With the collaboration context, users and items are considered jointly in collaborations. This deepens the comprehension of both users and items in context-aware collaborator recommendations.Also, this work has some limitations. The recommendations produced by PreF1 and PoF2 may have a serendipity problem[START_REF] Gemmis | An investigation on the serendipity problem in recommender systems[END_REF]: the recommended collaborators are not 'surprising' to users. This leads to insufficient diversity of recommendations: it is often the same collaborators that are recommended to users. Based on PreF1 and PoF2 (see Algorithm 1), each collaborator recommended to the user must have involved in collaborations with high similarities. Such collaborators are obvious to facilitate users' collaborations, but not the good ones. The collaborators have not involved in the same collaborations with the user should also be included in the two algorithms, which may result in surprising and diverse recommendations.

7. 5

 5 Chapter summaryIn this chapter, our work is mainly about the last question listed in Section 1.1.3: are our context-aware collaborator recommendations algorithms relevant in terms of accuracy and time efficiency? Firstly, a dataset of scientific collaborations are applied to conduct experiments (see Table 7.5) on the performance of the context-aware collaborator recommendations algorithms: PreF1, PoF1, and PoF2 (cf. Section 5.5). Based on the results of these experiments, each algorithm has its advantages and disadvantages under different conditions. Generally, PreF1 has medium accuracy but suffers in time efficiency due to its higher time complexity. And PoF1 reaches better accuracy and time efficiency. PoF2 can lead us to the best accuracy and time efficiency. Therefore, PoF2 is our preferred choice when generating context-aware collaborator recommendations, except when K is very low. With small values of K, we choose

  figure out how to handle and integrate semantic 3-uples into context-aware collaborator recommendation generation processes, leading us to the answer to Q2. Therefore, we developed an ontology-based semantic similarity, which can not only to compare the common and noncommon objects in two collections of semantic 3-uples, but also to assess the amount of information provided by a specific predicate. This ontology-based semantic similarity enables us to develop three different context-aware collaborator algorithms (i.e., PreF1, PoF1, and PoF2), which are based on two existing methods of incorporating context into recommendation processes: contextual pre-filtering and post-filtering. Next, to address the question Q3, a web-based CWE is considered as a collaborative System of Information Systems (SoIS). This permits us to consider an architecture of a collaborative SoIS (Saleh and Abel, 2016) from the viewpoint of web-based CWEs. Based on this architecture, the collaboration context ontology MCC can be implemented as an ontological knowledge base into web-based CWEs. It can process heterogeneous information from different collaborative tools and manage it within the context of users' collaborations. This then enables better information interoperability between heterogeneous tools and help users analyze their collaborations, thus improving information access and management during collaborations. Furthermore, a web-based CWE prototype, MEMORAe CWE, is built following the architecture. The main functionalities of this prototype were explained and tested by real users (i.e., students and teachers of a course at University of Technology of Compiegne).

  context-aware collaborator recommendation algorithms (i.e., PreF1, PoF1, and PoF2), which employ our developed ontology-based semantic similarity in different phases to generate recommendations.• In this dataset, we are able to apply other context-aware recommendation algorithms and 2D recommendation algorithms. This allows us to compare results of these algorithms with those of the context-aware collaborator recommendation algorithms. Specifically, we utilize F1, Mean Absolute Error (MAE), and execution time to analyze the performances of different algorithms from two aspects: accuracy and time efficiency.Based on the results of our experiments, we obtained the advantages and disadvantages of each context-aware collaborator recommendation algorithm. Specifically, PreF1 is good at accuracy (i.e., F1 and MAE), but suffers in time efficiency (i.e., execution time) due to its higher time complexity; PoF1 is the best algorithm in F1 and has an intermediate performance in execution time, but performs worst in MAE due to the calculation of the adjusted ratings; PoF2 has excellent performances in both accuracy (i.e., F1 and MAE) and time efficiency (i.e., execution time). This indicates that PoF2 is our preferred choice to generate context-aware collaborator recommendations, except when the number of generated recommendations is very low. In such cases, we choose PoF1 because of its extremely high values of F1. Overall, all results signify that with our ontology-based semantic similarity, PreF1, PoF1, and PoF2 algorithms can enhance their performances, either in terms of accuracy or time efficiency, or both.8.2 Perspectives and Future WorkGenerating context-aware collaborator recommendations in web-based CWEs is a neverending work. It can always be improved. In our opinions, there are several perspectives from which this work can continue. This section describes two different aspects of perspectives: short-term and long-term future work. Particularly, short-term future work contains: • In the carried out experiments, we changed many parameters to test and evaluate the performances of the context-aware collaborator recommendation algorithms: PreF1, PoF1, and PoF2. However, we only utilize two different 2D recommendation techniques (i.e., PMF and NCF) in these algorithms. It would be useful to apply other 2D recommendation techniques in these algorithms and compare with these results. This will help us investigate why applying our developed ontology-based semantic similarity with different 2D recommendation techniques in PreF1, PoF1, and PoF2 algorithms can influence their performances and how to improve the performances by employing other 2D recommendation techniques.• Besides, the dataset we utilized is about scientific collaborations and extracted from multiple academic bibliographies. But it does not have any information related to the contextual dimension: Satisfaction. It would be interesting for us to apply a dataset with information related to all the contextual dimensions of collaboration. Such datasets should contain information on satisfactions, such as satisfaction with collaborations and with the generated recommendations. The results from these datasets might help us to determine whether the performances of the context-aware collaborator recommendation algorithms would be influenced by the completeness of the collaboration context in datasets.

  

  

  

  

  

  

  

  

TABLE 2 .

 2 1: Three types of factors (San Martín-Rodríguez et al., 2005).

TABLE 2 .

 2 

	Group	Factors
	Context	Culture; Environment; Business climate; Organizational structure.
	Support	Tools; Networks; Training; Team building; Knowledge management; Error management
	Tasks	Type; Structure; Demands.
	Interaction Processes	Learning; Coordination; Communication; Decision-making.
	Team	Roles; Relationships; Shared awareness/knowledge; Common ground; Group processes; Composition.
	Individuals Skills; Psychological factors; Wellbeing.
	Overarching	Trust; Conflict; Experience; Goals; Incentives; Time; Constraints;
	Factors	Management; Performance.

2: Seven groups of factors

(Patel, Pettitt, and Wilson, 2012)

.

Besides,

[START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF] 

figured out 19 factors of successful collaboration and sort them into six categories (see Table

2

.3).

TABLE 2 .

 2 3: Six categories of factors[START_REF] Mattessich | Collaboration: what makes it work. A review of research literature on factors influencing successful collaboration[END_REF].

	Category	Factors
		History of collaboration in the community; Collaborative
	Environment	group seen as a leader in the community; Political/social
		climate favorable.
		Mutual respect, understanding and trust; Appropriate
	Membership	cross-section of members; Members: collaboration as in
		theirself-interest; Ability to compromise.
		Members share a stake in both process and outcome; Mul-
	Process/Structure	tiple layers of decision-making; Flexibility; Development
		of clear roles and policy guidelines; Adaptability.
	Communication	Open and frequent communication; Established informal and formal communication links.
	Purpose	Concrete, attainable goals and objectives; Shared vision; Unique purpose.
	Resources	Sufficient funds; Skilled convener.

TABLE 2 .
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4: Summary of factors related to collaborator.

TABLE 2
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	.5: Summary of contextual factors.
	References	Factors
	Brown, Bovey, and Chen (1997)	user's location, who they are with, what the time of the day is
	Palmisano, Tuzhilin, and Gorgoglione (2008)	user's intent and its changes over time
	Rodden et al. (1998)	nearby devices, space and location
	Franklin and Flaschbart (1998)	what is happening at this moment (current events)
		the location of use, the collection of nearby
	Schilit, Adams, and Want (1994)	people, hosts, accessible devices, and their
		changes over time
	Ryan, Pascoe, and Morse (1998)	location, time, temperature and user identity

TABLE 2

 2 

	.6: Classification of human-factors-related context (Schmidt, Beigl,
		and Gellersen, 1999).
	Entity	Dimension	Factor
			Knowledge of habits
		User	Emotional state
			Bio-physiological conditions
	Human Factors	Social Environment	Co-location of others Social interactions Group dynamics
			Spontaneous activity
		Task	Engaged tasks
			General goasl
	Grouping contextual factors makes it possible to specify a measurable dimension. For
	example, Schmidt, Beigl, and Gellersen (1999) classified human-factors-related context into
	three categories (dimensions): User, Social Environment and Task. Each dimension consists

TABLE 2 .
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7: Classification of entities

TABLE 2

 2 

	.8: Five contextual dimensions of an entity (Zimmermann, Lorenz,
		and Oppermann, 2007).
	Dimension	Description
	Individuality	Contains properties and attributes describing the entity itself
	Time	Provides the time coordinates of the entity
	Location	Provides the spatial coordinates of the entity
	Activity	Covers all tasks that this entity is currently and in future involved in
	Relation	Represents the information about any relationship that the entity has established to other entities
	Another method to analyze dimensions of an entity's context was proposed by Dey,

TABLE 2

 2 CM can not handle the same amount of users and items as the other two methods (PreF and PoF). While CM needs to process data of D 1 × D 2 × ... × D n , the other two focus only on data of D 1 × D 2 . Meanwhile, as the dimensions of the data increase, the computational complexity of CM becomes higher and higher. However, for the other two methods (PreF and PoF), only their extra steps (pre-processing and post-processing) become more complicated. This indicates that, unlike PreF and PoF, CM is too costly when data volume and complexity are heavy. Thus, we concentrate on applying PreF and PoF to generate context-aware collaborator recommendations in this thesis.

	.9: Summary of 2D recommendation approaches that can be di-
	rectly used in CARS methods.
	CB CF KB Hybrid
	PreF Yes Yes Yes	Yes
	PoF Yes Yes Yes	Yes
	CM No No No	No
	Moreover, the multidimensional data in CARS also causes difficulties: from the perspec-
	tive of data volume,	

  5 

1 https://www.w3.org/Submission/sioc-spec/ 2 http://xmlns.com/foaf/spec/ 3 https://www.w3.org/TR/prov-overview/ 4 https://www.w3.org/TR/vcard-rdf/ 5 The complete MC2 ontology is available at https://gitlab.utc.fr/lisiying/ ontologies-in-the-thesis-of-siying-li.git.

  is the number of contextual dimensions that include qualitative objects; O |P xy,t | represents the number of predicate types belonging to the t th contextual dimension of both

	predicate p t g ; O x p t g	-O	y p t g	y p t g denotes the relative complement of O indicates a set of objects that y relates through the y p t g in O x p t g ; |O x p t g y ∩ O p t

g

| represents the number of common objects associated to x and y through the predicate p t g ;

  T quan (T quan ≤ T, T quan + T qual = T, T quan ∈ N + ) is the number of contextual dimensions that include quantitative objects; o x

	lates p t g ; |o x p t g	-o	y p t g					p t g	indicates a quantitative object that x re-
	similarity between o x p t g	x p t g and o y p t g -o . Thus, we apply Equation 5.11 to convert |o x y p t |. The smaller the absolute difference is, the greater the g p t g -o y p t g |. 13
		S 2 (x, y) =	T quan ∑ l=1	|P xy,t | ∑ g=1	γ|o x p t g	1 -o	y p t g	| + 1	×	IC(P x,t ) h=1 IC(P x,h ) ∑ T	(5.11)

where

  on Equation5.18;

	Algorithm 3: Filtering irrelevant collaborator function.
	7	SC 1 .insert(S(d, c); d);
	8	while i ∈ O d Col do
	14	else
	15	SC ← SC 2 ;
	16	return SC ;
		Output: A list of semantic similarities SC.

9 if collaboration d belongs to collaborator i's rencent K collaborations then 10 SC 2 (i).insert(S(d, c)); 11 Rank SC 1 in decreasing order based on the first value of each element and copy K highest elements' second values in a new list SC 1 ; 12 if res 1 == 1 then 13 SC ← SC 1 ;

  2, .., m} do 

	7	for d ∈ {1, 2, .., length(SC)} do
	8	if k ∈ O d Col then
	9	VU 1 (k) ← 1;
	13	else
	14	if res 2 == 2 then
	15	VU ← VU 2 ;
	16	else
	17	VU ← VU 3 ;
	18	return VU ;
		Output: A list to identify relevant collaborators VU.

10 VU 2 (k) ← 1; 11 if res 2 == 1 then 12 VU ← VU 1 ;

  scientific paper added by Emma is accessible in the user group Context-aware application project and indexed with the node Context-aware application (see Figure6.7). Notably, resources are visible and accessible only with the indexed nodes. While Emma is selecting FIGURE 6.6: Marinela's user profile interface in MEMORAe CWE.FIGURE 6.7: Emma's interface in MEMORAe CWE.FIGURE 6.8: Collaborative tools integrated into MEMORAe CWE.another node in the semantic map, the available resources in the user group Context-aware application project are different.In MEMORAe CWE, users can open multiple user groups to view resources simultaneously. All these resources are contained either in MEMORAe CWE, or in an integrated collaborative tools (see Figure6.8). In Emma's scenario, the cited conference paper is a resource stored in HAL but accessible and visible within user groups of MEMORAe CWE. For example, Lucie can create a personal vote and/or annotation on the paper added by Emma in the user group Context-aware application project. All these activities are performed

	While Emma was adding this paper in MEMORAe CWE, she first searched for this paper
	through the API of HAL (see Figure 6.9), then indexed it with the node Context-aware ap-
	plication in the user group Context-aware application project (see Figure 6.10).
	Moreover, users are able to conduct various types of activities on resources, including
	accessing, creating, modifying, sharing, and deleting resource activities (as defined in Figure
	4.10).

  4 designed for research purpose only. It includes academic articles and their citation relationships until 2019-05-05, which are extracted from DBLP, MAG, and AMiner. Each academic article in this dataset can be described by different fields (see Table7.1). Specifically, not all academic articles contain values of all the fields shown in Table7.1. Some values can be missing. For example, articles that are not included in MAG don't have values for the fields fos.name and fos.w.

	Because values of these two fields are obtained from MAG.
	Field Name	Field Type	Description
	id	string	paper ID
	title	string	paper title
	authors.name	string	author name
	author.org	string	author affiliation
	author.id	string	author ID
	venue.id	string	paper venue ID
	venue.raw	string	paper venue name
	year	int	published year
	fos.name	string	paper fields of study
	fos.w	float	fields of study weight
	references	list of strings paper references ID
	n_citation	int	citation number
	page_start	string	page start
	page_end	string	page end
	doc_type	string	paper type:journal, book, etc.
	publisher	string	publisher
	volume	string	volume
	issue	string	issue
	issn	string	issn
	isbn	string	isbn
	doi	string	doi
	pdf	string	pdf URL
	url	list	external links
	indexed_abstract	dict	indexed abstract

TABLE 7 .

 7 

1: Fields of academic articles in the dataset.

  This dataset contains4,107,340 articles and 36,624,464 citation relationships. Most of these articles are tagged with research domains. These research domains are organized in a non-mutually exclusive hierarchy with 19 top-level domains: Art, Biology, Business, Chemistry, Computer science, Economics, Engineering, Environmental science, Geography, Geology, History, Materials science, Mathematics, Medicine, Philosophy, Physics, Political science, Psychology, and Sociology. This allows us to separate the dataset into 20 blocks. Each block contain articles in one top-level domains. Especially, the 20th block includes the articles that are not tagged with any top-level domains. The article numbers in each block 5 are summarized in Table 7.2.

	Block	Article number	Block	Article number
	Art	4944	History	3163
	Biology	36941	Materials science	8907
	Business	41406	Mathematics	904745
	Chemistry	13808	Medicine	32795
	Computer science	2606722	Philosophy	5847
	Economics	37985	Physics	25715
	Engineering	248640	Political science	9064
	Environmental science	3160	Psychology	49972
	Geography	14450	Sociology	15663
	Geology	8614	Others	35518

TABLE 7 .

 7 

2: Article numbers in each block.

TABLE 7 .

 7 

	block's articles' IDs. Because this dimension indicates relation between collaborations in
	a same research domain. We do not consider relations between collaborations in different
	fields. Besides, dimension Activity includes only one type of collaborators' actions: writing
	academic paper activity, but with their different contributions. As for dimension Satisfaction,
	we do not have any information or relevant information that can replace this dimension.

3: Transformation from articles' side information into the contexts of scientific collaborations.

  |P dc,t | is the number of predicate types belonging to the t th contextual dimension that both collaborations c and d relate; |P dc,Time | is the number of predicate types belonging to the contextual dimension Time that both collaborations c and d relate; α

	Time g 2	-o c p Time g 2	| + 1	×	IC(P d,Time ) ∑ 7 h=1 IC(P d,h )	(7.1)

where

TABLE 7 .

 7 4: Classification of collaborators in generate recommendations for an author u in a testing collaboration c.

			Recommended collaborators
			to u in c?	
			No	Yes
	Real collaborators	No	TN	FP
	of u in c?	Yes	FN	TP
	real collaborators in a testing collaboration, we employ three metrics in our experiments:
	F1, Mean Absolute Error (MAE), and execution time. This enables us to evaluate the per-
	formances of the context-aware collaborator recommendation algorithms from two aspects:
	accuracy and time efficiency.			

  . All results are shown inFigures 7.7, 7.8, and However, in terms of MAE, its highest values are obtained in PoF1, due to the calculations of the adjusted ratings (cf. Section 5.5). Besides, PoF2 has the best performance of MAE in nearly all these sets, resulting in more accurate recommendations. As for PreF1, it has lower MAE than CAMF and PMF in half of these sets, but higher in the other half. Thus, among these algorithms, PoF2 is a better choice in terms of MAE metric.Finally, regarding execution time, PoF1, PoF2, PMF, and CAMF have almost the same results. And, PreF1 still takes longer execution time than the others because of its higher time complexity. But no obvious trend in execution time is shown. This implies that the time effi-

	7.9. 14
	Overall, PoF2, PoF1, and PreF1 have higher values of F1 than CAMF and PMF in almost
	all sets of scientific collaborations. This indicates that applying the ontology-based semantic
	similarity in the context-aware collaborator's recommendation generation processes indeed
	improves F1 of the generated recommendations. Specifically, PoF1 clearly exceeds both
	PoF1 and PreF1.

ciencies of these algorithms are unrelated to the degree of closeness between collaborations in a set.

TABLE 7 .

 7 5: Summary of experiments. its extremely high F1. Besides, compared to other semantic similarities, our ontology-based semantic similarity enhances both accuracy and time efficiency in these algorithms. Its ability to improve accuracy is unrelated to the applied model-based CF technique. This chapter is intended to conclude our work. It also presents some perspectives and possible future work of this thesis.

	Experiments	Parameters	Better algorithms to choose
	Experiment with different volume of training collaborations	Percentage of training collaborations	PoF2
	Experiment with different number of generated recommendations	Value of K	PoF1 (if K is small) PoF2 (otherwise)
	Experiment with different degree of closeness bewteen collabortaions	Set of secientific collaborations	PoF2
			Our ontology-based
	Experiment with different semantic	Applied semantic simi-	semantic similarity
	similarities	larity in algorithms	in PreF1, PoF1,
			or PoF2
	Experiment with different model-based CF techniques	Employed model-based hms CF technique in algorit-	PoF2
	PoF1 because of		

VBE is a breeding environment with the main goal of increasing both VBE members' chances and preparedness of collaboration in potential Virtual Organizations (VOs)(Camarinha-Matos and Afsarmanesh, 2008). Here, VO is an alliance comprising a set of (legally) independent organizations that share their resources and skills, to achieve their common mission/goal.

 5 A collaborative network is constituted by a variety of entities (e.g., organizations and people) that are largely autonomous, geographically distributed, and heterogeneous in terms of their: operating environment, culture, social capital, and goals[START_REF] Camarinha-Matos | Collaborative networks: a new scientific discipline[END_REF]. Interactions among these entities are supported by computer network, which allows them to collaborate.

Things are either physical objects or software components and artifacts (e.g., an application or file)[START_REF] Dey | A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications[END_REF].

Only Ferdousi, Negre, and Colazzo (2017) represented it through cognitive dimension, while others defined it as activity/task dimension.

https://www.w3.org/wiki/Good_Ontologies

The general assumption is introduced in Page 39: if two users have same opinions on one item, one of them is more likely to have the similar opinions as the other on a different item(Wang, 

2016).

Here, D 1 , D 2 , ..., D n represent n dimensions of CARS (including User, Item, Context, ...).

https://en.wikipedia.org/wiki/VCard

The complete SOIS ontology is available at https://gitlab.utc.fr/lisiying/ ontologies-in-the-thesis-of-siying-li.git.

All concepts in MCC starts with the prex mcc indicating its namespace. The complete MCC ontology is available at https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li. git.

All instances of the scenario starts with the prex kb indicating its namespace.

In MCC, a mcc:Group can create multiple instances of mcc:UserGroup to stand for different collaborations.

Usually, these ratings are non-negative. This indicates that R jk ≥ 0. If R jk = 0, then the user j has not yet given his/her rating to the item k.

When t = T, the collaboration c contains information of all the eight contextual dimensions in MCC, as follows: Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction.

In MCC, the contextual dimensions of a collaboration include Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction.

A summary of the indirect predicates in the five dimensions (Goal, Collaborator, Activity, and Resource) are available in Figure 5.2.

The calculation of IC(P x,t ) will be presented in Section 5.4.3.2. 

Equation 5.11 is inspired from the above equation of qualitative semantic similarity and the discussion on the site https://stats.stackexchange.com/questions/158279/ how-i-can-convert-distance-euclidean-to-similarity-score.In Equation5.11, we only concern about the predicates linking to limited objects.

The calculation of IC(P x,t ) will be presented in Section 5.4.3.2. 

Particularly, the range of t f (p, x) is [0, 1] and the range of idf (p, X) is [log |X| 1+|X| + 1, log|X| + 1].

For example, if individuals' satisfactions to a collaboration belong to the interval [0, 5], then L Sa = 5.

Particularly, for accessing and manipulating the instances, two different interfaces are provided separately to the instances (see Table B.1 in Appendix B) and the lists of instances (see Table B.2 in Appendix B).

A demonstration video for MEMORAe CWE is available at https://youtu.be/c3xfMI1bktk.

Each concept is defined as owl:Thing in Figure

4.3. 4 The collaboration context contains eight dimensions: Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction. Each of them consists of several relevant contextual factors. (cf. Section 4.2)5 These user groups are defined as instances of mcc:UserGroup in Figure4.3.

https://dblp.org/

https://academic.microsoft.com/home

https://www.aminer.org/

This dataset can downloaded from https://www.aminer.org/citation.

The sum of article numbers in all the 20 blocks is 4,108,059, more than the article number[START_REF] Prinz | ECOSPACE-towards an integrated collaboration space for eProfessionals[END_REF]107,340) in the dataset. 709 articles are part of more than one block, while the other 4,106,632 articles only belong to one block. Specifically, among the 709 articles,

articles are in two blocks; 9 articles belong to three blocks; 1 article is even in four blocks.

Here, u and c are two variables in the formulated problem of context-aware collaborator recommendations (cf. Section 5.5).

Here, c is a testing collaboration; |X| represents the number of training collaborations; d(d ∈ X, d = c) is a training collaboration.

There are three types CAMF: CAMF-C, CAMF-CI, and CAMF-CC[START_REF] Baltrunas | Matrix factorization techniques for context aware recommendation[END_REF]. Based on the dataset, CAMF-C can be realized as a baseline algorithm in our experiments.

Particularly, we have FP + TP = K and FN + TP = Numbers of u's real collaborators in c.

In our experiments, execution time is counted in milliseconds.

Here, a corresponding percentage of testing collaborations is 1percentage(training).

The algorithms (i.e., PreF1, PoF1, and PoF2) have different values of z (see Algorithm 1). InFigures 7.1, 7.2, and 7.3, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2.

InFigures 7.4, 7.5, and 7.6, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).

InFigures 7.7, 7.8,[START_REF]Transformation from articles' side information into the contexts of scientific collaborations[END_REF].9, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).

Here, IC represents IC(c) =log p(c), where p(c) is the probability of c's appearance in an ontology[START_REF] Batet | An ontology-based measure to compute semantic similarity in biomedicine[END_REF][START_REF] Zhang | Medical document clustering using ontology-based term similarity measures[END_REF][START_REF] Sánchez | Ontology-based semantic similarity: A new feature-based approach[END_REF].

InFigures 7.10, 7.11,[START_REF]Transformation from articles' side information into the contexts of scientific collaborations[END_REF]12, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).

InFigures 7.13, 7.14, and 7.15, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).

Here, PreF1, PoF1, and PoF2 have different values of z (see Algorithm 1). PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2.

These algorithms are respectively known as PreF1 (based on PreF method), PoF1, PoF2 (based on PoF method), CAMF (based on CM method), and PMF (i.e. a 2D recommendation algorithm).

https://towardsdatascience.com/probabilistic-matrix-factorization-b7852244a321
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where each resource is accessible in sharing spaces and indexed by the concepts in a semantic map.

FIGURE 3.9: The main interface of MEMORAe SoIS [START_REF] Saleh | Digital ecosystem towards a System of Information Systems[END_REF].

Particularly, the core ontology SOIS is used as a knowledge base of the leader system

MEMORAe SoIS (see Figure 3.10). Based on this architecture, a corresponding prototype of web-based CWEs can be built.

The prototype is a continuation of the MEMORAe approach [START_REF] Atrash | Supporting organizational learning with collaborative annotation[END_REF], known as MEMORAe CWE. It is capable of not only supporting users' collaborations across multiple collaborative tools, but also processing and organizing heterogeneous information from these tools within the collaboration context. Specifically, such information is managed in the knowledge base, MCC.

The remainder of this chapter is organized as follows: Section 6.2 presents how to consider the architecture of the ontology-based collaborative SoIS from the viewpoint of webbased CWEs and employ MCC in it. Then, the web-based CWE prototype, MEMORAe CWE, is presented in Section 6.3. We also discuss its advantages and disadvantages in Section 6.4. At the end of this chapter is the summary.

be presented and collected within it. Besides, the prototype MEMORAe CWE was tested by the students and teachers of a course NF01 at UTC. Their feedback were also shown. Lastly, we discussed our work with MEMORAe CWE and how it responds to the main questions of this thesis.

The next chapter will focus on the last question of this thesis: how well do our contextaware collaborator recommendations algorithms perform in terms of accuracy and time efficiency?

Software: PyCharm 2019.1 (Professional Edition) + Python 3.7.3

Experiment with different percentages of training collaborations
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The detailed gradient descent algorithm

The gradients of L(U, V) (see Equation 5.4) are [START_REF] Mnih | Probabilistic matrix factorization[END_REF][START_REF] Lemaréchal | Cauchy and the gradient method[END_REF]:

PMF gradient descent algorithm requires input data: d (the number of latent factors), lambda_U, lambda_V (regularization parameters defined in Equation 5.4), R (rating matrix of m × n), η (the learning rate in gradient descent algorithm), and Step (predefined maximum iteration steps).

Initially, two matrices U of m × d and V of n × d are given. Then a loop starts to find a local minimum L(U, V) based on Equation 5.4. Each step applies the gradients in Equation A.1 to update U i in U and V j in V (Equation A.2) 1 .

Using these gradients, the algorithm iteratively updates the estimations of U and V until convergence or the maximum iteration steps. Finally, the outputs include updated U and V, and the minimum L(U, V). The pseudo codes of PMF gradient descent algorithm is shown in Algorithm 4.

Algorithm 4: Algorithm of PMF

Input: The number of latent factor d, the learning rate eta, regularization parameters lambda_U, lambda_V, the max iteration Step, and the rating matrix R Initialization: Initialize a random matrix for user matrix U and item matrix V for

error e := rpr;

Fro ) Output: The minimum sum-of-squared-errors objective function L(U, V), user matrix U, and item matrix V.

Appendix B

The interfaces for accessing and manipulating instances The survey of MEMORAe CWE