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Working collaboratively is no longer an issue but a reality, what matters today is how to

implement collaboration so that it is as successful as possible. However, successful collabo-

ration is not easy and is conditioned by different factors that can influence it. It is therefore

necessary to take these impacting factors into account within the context of collaboration for

promoting the effectiveness of collaboration. Among the impacting factors, collaborator is

a main one, which is closely associated with the effectiveness and success of collaborations.

The selection and/or recommendation of collaborators, taking into account the context of

collaboration, can greatly influence the success of collaboration.

Meanwhile, thanks to the development of information technology, many collaborative

tools are available, such as e-mail and real-time chat tools. These tools can be integrated

into a web-based collaborative work environment. Such environments allow users to col-

laborate beyond the limit of geographical distances. During collaboration, users can utilize

multiple integrated tools, perform various activities, and thus leave traces of activities that

can be exploited. This exploitation will be more precise when the context of collaboration

is described. It is therefore worth developing web-based collaborative work environments

with a model of the collaboration context. Processing the recorded traces can then lead to

context-aware collaborator recommendations that can reinforce the collaboration.

To generate collaborator recommendations in web-based Collaborative Working Envi-

ronments, this thesis focuses on producing context-aware collaborator recommendations by

defining, modeling, and processing the collaboration context. To achieve this, we first pro-

pose a definition of the collaboration context and choose to build a collaboration context

ontology given the advantages of the ontology-based modeling approach. Next, an ontology-

based semantic similarity is developed and applied in three different algorithms (i.e., PreF1,

PoF1, and PoF2) to generate context-aware collaborator recommendations. Furthermore, we

deploy the collaboration context ontology into web-based Collaborative Working Environ-

ments by considering an architecture of System of Information Systems from the viewpoint of

web-based Collaborative Working Environments. Based on this architecture, a correspond-

ing prototype of web-based Collaborative Working Environment is then constructed. Finally,

a dataset of scientific collaborations is employed to test and evaluate the performances of the

three context-aware collaborator recommendation algorithms.
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Résumé

Travailler en collaboration n’est plus une question mais une réalité, la question qui se pose

aujourd’hui concerne la mise en oeuvre de la collaboration de façon à ce qu’elle soit la plus

réussie possible. Cependant, une collaboration réussie n’est pas facile et est conditionnée par

différents facteurs qui peuvent l’influencer. Il est donc nécessaire de considérer ces facteurs

au sein du contexte de collaboration pour favoriser l’efficacité de collaboration. Parmi ces

facteurs, le collaborateur est un facteur principal, qui est étroitement associé à l’efficacité

et à la réussite des collaborations. Le choix des collaborateurs et/ou la recommandation de

ces derniers en tenant compte du contexte de la collaboration peut grandement influencer la

réussite de cette dernière.

En même temps, grâce au développement des technologies de l’information, de nom-

breux outils numériques de collaboration sont mis à la disposition tels que les outils de mail

et de chat en temps réel. Ces outils numériques peuvent eux-mêmes être intégrés dans un en-

vironnement de travail collaboratif basé sur le web. De tels environnements permettent aux

utilisateurs de collaborer au-delà de la limite des distances géographiques. Ces derniers lais-

sent ainsi des traces d’activités qu’ils deviennent possibles d’exploiter. Cette exploitation sera

d’autant plus précise que le contexte sera décrit et donc les traces enregistrées riches en de-

scription. Il devient donc intéressant de développer les environnements de travail collaboratif

basé sur le web en tenant d’une modélisation du contexte de la collaboration. L’exploitation

des traces enregistrés pourra alors prendre la forme de recommandation contextuelle de col-

laborateurs pouvant renforcer la collaboration.

Afin de générer des recommandations de collaborateurs dans des environnements de tra-

vail collaboratifs basés sur le web, cette thèse se concentre sur la génération des recomman-

dations contextuelles de collaborateurs en définissant, modélisant et traitant le contexte de

collaboration. Pour cela, nous proposons d’abord une définition du contexte de collaboration

et choisissons de créer une ontologie du contexte de collaboration compte tenu des avantages

de l’approche de modélisation en l’ontologie. Ensuite, une similarité sémantique basée sur

l’ontologie est développée et appliquée dans trois algorithmes différents (i.e., PreF1, PoF1

et PoF2) afin de générer des recommandations contextuelles des collaborateurs. Par ailleurs,

nous déployons l’ontologie de contexte de collaboration dans des environnements de tra-

vail collaboratif basés sur le web en considérant une architecture de système des systèmes

d’informations du point de vue des environnements de travail collaboratif basés sur le web.

À partir de cette architecture, un prototype correspondant d’environnement de travail collab-

oratif basé sur le web est alors construit. Enfin, un ensemble de données de collaborations

scientifiques est utilisé pour tester et évaluer les performances des trois algorithmes de recom-

mandation contextuelle des collaborateurs.
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Chapter 1

Introduction

1.1 Background & Problems

Collaboration is efficient way of working, where a group of people (at least two) work

together to achieve common goals (e.g., creating or producing something) (Mattessich and

Monsey, 1992). It has received much attention and has had a significant impact. So far, col-

laboration has benefited people in many fields (e.g., sports, business, academia, technology,

education, arts, and even politics), especially when the collaboration is successful. However,

successful collaboration is often difficult to achieve (Patel, Pettitt, and Wilson, 2012). There

are various factors that can influence collaboration and its success. Among these factors,

collaborator can significantly influence the effectiveness and success of collaborations. Ap-

propriate collaborators can contribute to solving the problems encountered in collaborations

and creating new collaborations (Doherty, 2015). This then increases the efficiency of col-

laboration and allows a positive relationship to be established between its members. Hence,

we are interested in recommending such collaborators to people for collaborations.

However, recommended collaborators are not always relevant to people’s needs, espe-

cially when they are collaborating in web-based Collaborative Work Environments (CWEs).

Integrating different collaborative tools (e.g., instant messaging and resource management

tools), a web-based CWE is a computer-supported software enabling people to collabo-

rate without any geographical distance limits (Laso Ballesteros and Prinz, 2008; Martínez-

Carreras et al., 2007; Li, Abel, and Barthès, 2012). In such environments, there is a lot of

information that can influence people’s needs of collaborators but is not considered in gen-

erating collaborator recommendations, such as information about people’s activities during

collaborations. Besides, this information comes from heterogeneous tools, increasing chal-

lenges to process and apply it for generating collaborator recommendations.

Therefore, one of the current issues is how to generate relevant collaborator recommenda-

tions in web-based CWEs, which is the main concern of this thesis. Specifically, we introduce

this issue from two aspects: social and scientific. Then, the problem statement is presented.
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1.1.1 Social issues

During collaborations, people are often expected to be geographically close. This, in turn,

creates a geographical distance limit for collaborations. To overcome such a limitation, many

technologies have been developed, such as computer technology (Neale, Carroll, and Rosson,

2004). This leads to the emergence of Computer Supported Collaborative Work (CSCW)

field that combines the understanding of the way people work in groups with the enabling

technologies of computer networking (Wilson, 1991). In this field, various collaborative

supports (e.g. hardware, software, services, and techniques) are developed rapidly, which

offer people with convenience in terms of tools and environments during their collaborations

(Mattessich and Monsey, 1992; Patel, Pettitt, and Wilson, 2012). Particularly, these tools can

be integrated into a web-based CWE to support people’s collaborations.

But simultaneously, the increasing appearance of collaborative tools also raise difficul-

ties for people’s collaborations in web-based CWEs. For example, the heterogeneous and

disorganized information in distinct tools can weaken people’s effectiveness, prevent them

from achieving the desired goals of collaboration, thus make collaborations difficult to suc-

ceed (Kotlarsky and Oshri, 2005). Thus, while generating collaborator recommendations

in web-based CWEs, we need to consider various factors that can influence the success of

collaborations, such as goals of collaboration, utilized resources, and collaborators them-

selves (Patel, Pettitt, and Wilson, 2012; Mattessich and Monsey, 1992; Oliveira, Tinoca, and

Pereira, 2011).

However, it is insufficient to just deal with the impacting factors of collaboration. The

context can also influence people’s actions, effectiveness, and thus the success of collabora-

tions. Here, the context includes various characteristic information of a collaboration, such

as the outcomes generated within collaborations. Therefore, in addition to concentrating only

on these factors, considering them within the context of collaborations is necessary to form

and succeed collaborations (Taylor-Powell and Rossing, 2009). In other words, the collabora-

tion context should be taken into account to generate relevant collaborator recommendations

in web-based CWEs.

1.1.2 Scientific issues

In web-based CWEs, users (i.e., people) are able to collaborate in groups, regardless

of their geographical distance (Carreras and Skarmeta, 2006; Su et al., 2005; Kan, Duffy,

and Su, 2001; Bafoutsou and Mentzas, 2002). While collaborating, they can apply differ-

ent collaborative tools that are integrated and deployed in web-based CWEs, allowing them

to obtain services and/or use resources. Particularly, each tool is an autonomous and inde-

pendent information system. Together with the web-based CWE, they form a network of

autonomous and independent information systems that are integrated together to accomplish
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common missions, known as a System of Information Systems (SoIS) (Karcanias and Hes-

sami, 2011; Saleh and Abel, 2016). Specifically, a web-based CWE with its integrated tools

can be considered as a collaborative SoIS, where these independent tools work together to

support users’ collaborations.

In such environments, the aggregation of different tools results in a significant increase

in the amount of information, causing information overload problems for users. Besides,

the information from different tools is heterogeneous. This leads to other problems in web-

based CWEs, like poor interoperability between tools and information processing difficulties

(Carreras and Skarmeta, 2006; Martínez-Carreras et al., 2007). It also creates obstacles

for users to organize information about collaborations. This implies that users struggle in

retrieving information about collaborators, and need collaborator recommendations in the

web-based CWEs.

Hence, recommender systems (RS) are designed and applied, which provide suggestions

for users among massive information (Ricci, Rokach, and Shapira, 2015). For example, when

a user wants a collaborator for web application development, he/she may receive recommen-

dations of collaborators that have built applications. Such recommendations are intended

to aid users in seeking out and choosing collaborators. However, they are sometimes not

consistent with users’ needs. To produce more relevant recommendations, the context is in-

corporated into recommendation generation processes, which gave rise to a new branch of

RS: context-aware recommender system (CARS) (Adomavicius and Tuzhilin, 2011). Partic-

ularly, based on Dey (2001), the context in collaborations indicates any characteristic infor-

mation that can be used to describe the situation of an entity, which can be a user, object, or

event related to a collaboration (including the collaboration itself).

Thus, to generate relevant collaborator recommendations in web-based CWEs, this the-

sis focuses on building a CARS to produce context-aware collaborator recommendations.

To do so, the heterogeneous information in web-based CWEs should be organized and pro-

cessed within the context of users’ collaborations. However, so far, context is still lacking

a universal definition, resulting in its diverse models (Bazire and Brézillon, 2005). Hence

in web-based CWEs, an appropriate definition and model of the collaboration context are

needed, so that the collaboration context can be used to generate context-aware collaborator

recommendations.

1.1.3 Problem statement

As mentioned in the background of this thesis, in collaborations, appropriate collabora-

tors are needed, which also affect the effectiveness and the success of collaborations. Thus, it

is worth recommending such collaborators to people during collaborations, especially when

these people are collaborating in web-based CWEs. This requires us to construct a CARS

that generates context-aware collaborator recommendations for them in web-based CWEs.



Chapter 1. Introduction 5

To this end, the following problems have to be addressed:

Q1. What is collaboration context and how to model it?

Q2. How to process and apply the collaboration context in algorithms for generating context-

aware collaborator recommendations?

Q3. How to implement and integrate the collaboration context model into web-based CWEs?

Q4. Are our context-aware collaborator recommendations algorithms relevant in terms of

accuracy and time efficiency?

Therefore, this thesis concerns on defining, modeling, and utilizing the collaboration

context in web-based CWEs. Besides, we attempt to build a CARS for producing context-

aware collaborator recommendations.

1.2 Our approaches and contributions

To deal with the problems listed in Section 1.1.3, the following pieces of work took place:

• Define collaboration context and construct a collaboration context ontology.

We first develop a definition of collaboration context by analyzing and supplementing

the previous definitions of context and collaboration. Then, considering the advantages

of the ontology-based modeling approach in terms of flexibility, interpretability, and sup-

porting interoperability between different information systems, we decide to construct an

ontology-based collaboration context model (i.e. a collaboration context ontology) in web-

based CWEs. This model reuses and extends two existing ontologies of the MEMORAe

approach (Atrash, Abel, and Moulin, 2014; Wang, 2016; Saleh and Abel, 2016).

• Develop and employ a semantic similarity in context-aware recommendation al-
gorithms.

To process the collaboration context, we propose an ontology-based semantic similarity,

permitting us to measure the likeness/relatedness between two collaborations in the collabo-

ration context ontology. Then, to generate context-aware collaborator recommendations, this

semantic similarity is applied in recommendation algorithms, which are implemented fol-

lowing two methods: contextual pre-filtering (PreF) and post-filtering (PoF) (Adomavicius

and Tuzhilin, 2011; Adomavicius et al., 2005; Panniello and Gorgoglione, 2012).

• Deploy the collaboration context ontology in an architecture of web-based CWEs
and develop a corresponding prototype.
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Having built the collaboration context ontology, it is necessary to explore how to deploy

and implement it in a web-based CWE. For this, we make use of the relationship between

web-based CWEs and SoISs. The architecture of a collaborative SoIS (Saleh and Abel, 2016)

is therefore considered from the viewpoint of web-based CWEs, so that the collaboration

context ontology can organize heterogeneous information in a web-based CWE. Based on

this architecture, we also build a corresponding prototype of web-based CWE, which is a

continuation of the MEMORAe approach.

• Test and evaluate the performances of the context-aware recommendation algo-
rithms.

With the collaboration context ontology and the context-aware recommendation algo-

rithms, the collaboration context can be processed to generate context-aware collaborator

recommendations. To test the performances of these algorithms, experiments are carried out

on a public dataset of scientific collaborations, which is extracted from multiple academic

bibliographies. The results obtained from this dataset are compared and evaluated from two

aspects: accuracy and time efficiency.

Besides, to illustrate the usage of the collaboration context ontology and our web-based

CWE prototype, the following scenario is utilized in this thesis:

Emma is a PhD student on computer science in Laboratory X. Her thesis is about context-

aware applications and guided by two supervisors, Elsa and Marie. During her thesis, Emma

has collaborated with several people in different scientific projects. Particularly, Emma col-

laborated with two engineers, Lucie and Marinela, to build a context-aware application

(01/11/2020 - 31/12/2020) and to publish their results in a scientific paper. This is a part

of her PhD research.

Lucie is a young engineer with a master’s degree in computer science. She finished an

internship on constructing interfaces of a web application for a company. Then she started

her work in Laboratory X with the context-aware application project.

Marinela is an experienced senior engineer in Laboratory X. She has worked for 5 years

and helped a lot of students and researchers on their projects. She is an expert in a variety of

programming languages, especially in web applications.

1.3 Dissertation organization

The rest of this thesis is organized as follows:

Part II State of the Art is dedicated to analyzing and comparing previous studies related

to our problem. It consists of two chapters:
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Chapter 2 Literature review: We begin by providing some background on collabo-

ration and explore various factors that can have an impact on collaborations. We also

present the notion context from its definition, classification, and modeling approach.

Then we focus on the relationship between web-based CWEs and SoISs. The final part

is mainly about recommender system and context-aware recommender system.

Chapter 3 A survey of MEMORAe approach: This chapter introduces the MEMO-

RAe approach, made up of a web platform and a core ontology.

Part III Contributions is composed of four chapters.

Chapter 4 Collaboration context and its model: Firstly, we present a definition of

collaboration context. Then, based on two existing ontologies of the MEMORAe ap-

proach, an ontology-based collaboration context model is constructed, also known as

a collaboration context ontology.

Chapter 5 Context-aware collaborator recommendations: This chapter starts by

explaining how to calculate an ontology-based semantic similarity to process the in-

formation in the collaboration context ontology. Then, the semantic similarity is ap-

plied in context-aware collaborator recommendation algorithms, based on two meth-

ods: PreF and PoF.

Chapter 6 Prototype: We first deploy the collaboration context ontology into web-

based CWEs by considering an architecture of collaborative SoISs from the viewpoint

of web-based CWEs. Then a corresponding prototype of web-based CWE is demon-

strated.

Chapter 7 Experiments: In this chapter, we utilize a dataset to test and evaluate the

performances of our context-aware recommendation algorithms (cf. Chapter 5). Based

on the results, we discuss advantages and disadvantages of each recommendation al-

gorithm.

Part IV Conclusion, Perspectives and Future Work comprises only one chapter. Chap-

ter 8 contains the conclusions of our work and the perspectives for future work.

Publications: Finally, the publications related to this thesis are presented.
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Part II

State of the Art
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Chapter 2

Literature review

2.1 Introduction

As an effective way of working together, collaboration is important in human society

(Mattessich and Monsey, 1992). At the same time, collaboration also raises challenges to its

participants. They may have problems during collaboration process, such as communication

barriers between people speaking different languages. When these problems are inappropri-

ately addressed, both the future process and outcomes of a collaboration suffer, which in turn

can affect the efficiency of the collaboration and make it unsuccessful. In other words, col-

laboration is neither easy to achieve nor guaranteed to succeed, since there are many factors

which can influence it (Patel, Pettitt, and Wilson, 2012). Thus, we explore collaboration in

terms of its definitions and impacting factors.

In this chapter, we introduce the notion, web-based Collaborative Working Environment

(CWE), which has emerged to identify the key elements for collaborators in their daily work

(Carreras and Skarmeta, 2006). Another type of system, System of Information Systems

(SoIS), is also presented and explained, which can provide inspirations on organizing hetero-

geneous information in web-based CWEs.

Finally, we focus on recommender systems (RSs). Typical RSs seek to predict how a

user would value the utility of an item. By regarding collaborators as items, RSs can also be

adapted to generate collaborator recommendations for users in web-based CWEs.

Thus, the remaining parts of this chapter are organized as follows: Section 2.2 presents

the notion collaboration and identify what factors can influence its success. Then the defini-

tion, classification and modeling of context are introduced in Section 2.3. Section 2.4 mainly

covers web-based CWE, SoIS and their relationships. We also illustrate the state of the art of

RS and CARS in Section 2.5, including their core functionalities, approaches and techniques

in use. Finally, a conclusion is provided at the end of this chapter.



Chapter 2. Literature review 10

2.2 Collaboration

2.2.1 Definition

As a widely used notion, many definitions of collaboration are presented in the literature.

Collaboration indicates the action of working with another person or group of people to create

or produce something1. This word also means the situation of two or more people working

together to create or achieve the same thing2. While in Merriam-Webster Dictionary online,

the noun collaboration comes from intransitive verb collaborate that is defined as working

jointly with others or together especially in an intellectual endeavor3.

From these definitions in dictionaries, one common and fundamental meaning of collab-

oration is to work together with others (at least one person), which is also its initial significa-

tion (Wang, 2016). Moreover, the first two definitions specify the objectives of collaboration:

to create, achieve or produce something, while Merriam-Webster Dictionary emphasizes the

intellectual attempt to achieve a goal. Therefore, another meaning of collaboration is to ac-

complish its goals by attempts.

Besides, Patel, Pettitt, and Wilson (2012) summarized that collaboration involves two

or more people engaged in interaction with each other, within a single episode or series od

episodes, working together towards the common goals. Suto and Patitad (2015) highlighted

communication process and the functionalities of knowledge transfer in collaborations.

These two definitions focus on interactions (e.g., communication) between collaborators

that aim to advance towards goals of collaboration. Here, collaborator can be individuals,

groups of people or even organizations. Their actions are carried out by human actors con-

tributing to the collaboration as individual members, or members belonging to the group

collaborators or organization collaborators. Moreover, Patel, Pettitt, and Wilson (2012) un-

derlined the goals of collaboration are common and shared by all collaborators.

Therefore, after analyzing all above definitions, a collaboration happens between two or

more collaborators and comprises a set of human actors’ actions on behalf of the correspond-

ing collaborator to achieve their shared goals. Through collaborations, they can improve their

relationships and skills (Doherty, 2015) by interacting with others. Besides, collaboration can

also help to (Doherty, 2015):

a. Find solutions that allow for mutual benefit among collaborators

1It is based on the definition of collaboration in Oxford Dictionaries online (2019) https:
//www.lexico.com/en/definition/collaboration and Oxford Learner’s Dictionaries on-
line (2019) https://www.oxfordlearnersdictionaries.com/definition/english/
collaboration.

2Cambridge Dictionary online, 2019, https://dictionary.cambridge.org/dictionary/
english/collaboration

3Merriam-Webster Dictionary online, 2019, https://www.merriam-webster.com/dictionary/
collaboration

https://www.lexico.com/en/definition/collaboration
https://www.lexico.com/en/definition/collaboration
https://www.oxfordlearnersdictionaries.com/definition/english/collaboration
https://www.oxfordlearnersdictionaries.com/definition/english/collaboration
https://dictionary.cambridge.org/dictionary/english/collaboration
https://dictionary.cambridge.org/dictionary/english/collaboration
https://www.merriam-webster.com/dictionary/collaboration
https://www.merriam-webster.com/dictionary/collaboration
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b. Improve decision-making and problem-solving

c. Increase ability to adapt to changing environment

d. Increase ability to resolve/prevent conflicts among collaborators

e. Increase desire to collaborate among collaborators

f. Increase interdependence among collaborators

g. Increase reliance among collaborators

h. Expand resource base (information, problem-solving options, knowledge, etc.)

i. Broaden information/perspective on system issues

j. Increase opportunities for efficiency

k. Decrease individual risk

l. Increase risk sharing among collaborators

m. Increase ability to handle uncertainty

Nevertheless, these benefits cannot be obtained through any collaborations. Some are

inherent to successful collaborations, such as e and f (Doherty, 2015). Based on Kotlarsky

and Oshri (2005), the only condition of a successful collaboration is to achieve its desired

goals through effort, which can be qualified by product success and personal satisfaction.

But evaluating a successful collaboration involves much more than that. Various factors that

can influence collaborations must also be considered.

2.2.2 Factors of collaboration

Numerous studies have been implemented to identify different factors that have an im-

pact on collaboration, regardless of whether it succeeds or not. Briggs et al. (2009) pro-

posed a Seven-Layer Model of Collaboration (SLMC) to assist designers of collaborative

systems. SLMC defines seven groups of impacting factors in collaborations, one group per

layer (Briggs et al., 2009):

• Goal: A goal is a desired state or outcome, including factors like motivation, commit-

ment, and other goal-related factors.

• Product: A product is a tangible or intangible artifact or outcome produced by collab-

orators’ effort, containing quality, effectiveness and efficiency of products.

• Activity: Activities are subtasks that, when completed, produce the outputs that make

up the achievement of the group’s objective, related to sequences of steps to constitute

decision-making and problem-solving approaches.
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• Pattern of Collaboration: Collaborative patterns are observable patterns of behavior

and outcomes that emerge over time in teamwork, depending on regularities of collab-

orators’ actions and outcomes.

• Technique: A collaboration technique is a reusable procedure for invoking useful in-

teractions between collaborators working towards a shared goal, for example, brain-

storming.

• Tool: Collaboration tools are artifacts or devices used in the execution of an operation

to advance towards its goals, including designing, developing, deploying and using

technologies to support collaboration.

• Script: A script is everything team members tell each other and do with their tools

to get closer to the collaboration’s goals. It can be an internal or external, physical or

electronic document.

The seven layers are related to each other. Collaborators apply tools and techniques to

carry out activities (set of actions) to create products or achieve shared goals of collabora-

tion. In this process, various scripts are generated and collaboration patterns are established.

Together, these form the core of collaboration and allow it to be characterized (Briggs et al.,

2009).

Particularly for successful collaborations, Wouters et al. (2017) specified four prereq-

uisites: 1) A shared objective between the stakeholders involved; 2) A synchronization of

actions; 3) An exchange of information, between the right entities, at the right time; 4) Com-

plementarity between skills.

Besides, some researches only focus on the factors of successful collaborations.

• Hara et al. (2003) concluded four factors for scientific collaborations: 1) Personal

compatibility; 2) Research work connections; 3) Incentives; 4) Socio-technical infras-

tructure.

• Bruneel, d’Este, and Salter (2010) investigated University-Industry collaborations and

concentrated on three factors: 1) Experience of collaboration; 2) Breadth of interaction

channels; 3) Inter-organizational trust.

• Camarinha-Matos and Afsarmanesh (2006) summarized principal elements in Virtual

Organization Breeding Environment (VBE4) that is a subtype of collaborative net-

work5 (Afsarmanesh et al., 2009). The elements are: 1) VBE; 2) VBE member; 3)
4VBE is a breeding environment with the main goal of increasing both VBE members’ chances and prepared-

ness of collaboration in potential Virtual Organizations (VOs) (Camarinha-Matos and Afsarmanesh, 2008). Here,
VO is an alliance comprising a set of (legally) independent organizations that share their resources and skills, to
achieve their common mission/goal.

5A collaborative network is constituted by a variety of entities (e.g., organizations and people) that are largely
autonomous, geographically distributed, and heterogeneous in terms of their: operating environment, culture,
social capital, and goals (Camarinha-Matos and Afsarmanesh, 2005). Interactions among these entities are sup-
ported by computer network, which allows them to collaborate.
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VO; 4) Profile; 5) History; 6) Evidence; 7) Bag of assets; 8) Management system; 9)

VBE governance; 11) Value system; 12) Trust system.

Occasionally, many factors of successful collaboration are too specific that they have

to be clustered into groups/categories. For example, San Martín-Rodríguez et al. (2005)

considered three types of factors for interprofessional collaboration in health care (see Table

2.1).

TABLE 2.1: Three types of factors (San Martín-Rodríguez et al., 2005).

Type Factors

Interactional factors
Willingness to collaborate; Trust; Communication;

Mutual respect.

Organizational factors
Organizational structure; Organization’s philosophy;

Administrative support; Team sources; Coordination

and communication mechanisms.

Systemic factors
The social system; The professional system; The

educational system.

Patel, Pettitt, and Wilson (2012) applied seven groups of factors to frame a collaborative

working model (see Table 2.2).

TABLE 2.2: Seven groups of factors (Patel, Pettitt, and Wilson, 2012).

Group Factors

Context Culture; Environment; Business climate; Organizational structure.

Support
Tools; Networks; Training; Team building; Knowledge management;

Error management

Tasks Type; Structure; Demands.

Interaction

Processes
Learning; Coordination; Communication; Decision-making.

Team
Roles; Relationships; Shared awareness/knowledge; Common ground;

Group processes; Composition.

Individuals Skills; Psychological factors; Wellbeing.

Overarching

Factors

Trust; Conflict; Experience; Goals; Incentives; Time; Constraints;

Management; Performance.

Besides, Mattessich and Monsey (1992) figured out 19 factors of successful collaboration

and sort them into six categories (see Table 2.3).
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TABLE 2.3: Six categories of factors (Mattessich and Monsey, 1992).

Category Factors

Environment
History of collaboration in the community; Collaborative

group seen as a leader in the community; Political/social

climate favorable.

Membership
Mutual respect, understanding and trust; Appropriate

cross-section of members; Members: collaboration as in

theirself-interest; Ability to compromise.

Process/Structure
Members share a stake in both process and outcome; Mul-

tiple layers of decision-making; Flexibility; Development

of clear roles and policy guidelines; Adaptability.

Communication
Open and frequent communication; Established informal

and formal communication links.

Purpose
Concrete, attainable goals and objectives; Shared vision;

Unique purpose.

Resources Sufficient funds; Skilled convener.

All these works mentioned above seek to enhance the success of collaborations. Each

concerns on the impacting factors of collaboration in its own field of research, which is why

these factors are so diverse. Sometimes, certain factors are not universal and cannot qualify

collaborations in other fields. For example, research work connections (Hara et al., 2003)

is only suitable for scientific collaborations. In commercial collaborations, this factor is no

longer adoptable. Based on it, a corresponding factor should be Business connections to

describe the matching and complementarity of collaborators. Other similar factors include

inter-organizational trust (Bruneel, d’Este, and Salter, 2010) and VBE (Camarinha-Matos

and Afsarmanesh, 2006).

Moreover, all research methods in these works can be divided into two main classes:

1) directly explore impacting factors, e.g., (Hara et al., 2003), (Bruneel, d’Este, and Salter,

2010) and (Camarinha-Matos and Afsarmanesh, 2006); 2) integrate factors into different

levels by grouping/categorizing, e.g., (Briggs et al., 2009), (San Martín-Rodríguez et al.,

2005), and (Patel, Pettitt, and Wilson, 2012). Such a difference indicates that each factor has

a specific impact on collaboration. And its impact depends on the domain of collaboration.

Besides, many shared factors that imply the common characteristic of collaboration are

summarized and shown below:

• Goal: This is essential for collaborations and is mentioned by the definitions of collab-

oration in Section 2.2.1. A goal can refer to desired outcomes, products, or states but

must be shared by collaborators (Briggs et al., 2009; Wouters et al., 2017; Patel, Pettitt,

and Wilson, 2012; Mattessich and Monsey, 1992). If the desired goal is attained, this
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collaboration is successful (Kotlarsky and Oshri, 2005).

• Collaborators: This is also basic for collaboration, which signifies members of collab-

oration. In some cases, it can be represented by a group of factors that are permanent

to collaborators as Patel, Pettitt, and Wilson (2012) and Mattessich and Monsey (1992)

do. These related factors are shown in Table 2.4.

TABLE 2.4: Summary of factors related to collaborator.

Factors References

Relationships
Camarinha-Matos and Afsarmanesh (2006)

Patel, Pettitt, and Wilson (2012)

Mattessich and Monsey (1992)

Abilities/Skills
Camarinha-Matos and Afsarmanesh (2006)

Patel, Pettitt, and Wilson (2012)

Mattessich and Monsey (1992)

Sharing and compatibility

Wouters et al. (2017)

Hara et al. (2003)

Patel, Pettitt, and Wilson (2012)

Mattessich and Monsey (1992)

Experiences/Histories

Bruneel, d’Este, and Salter (2010)

Camarinha-Matos and Afsarmanesh (2006)

Patel, Pettitt, and Wilson (2012)

Mattessich and Monsey (1992)

Trust

Bruneel, d’Este, and Salter (2010)

Camarinha-Matos and Afsarmanesh (2006)

San Martín-Rodríguez et al. (2005)

Patel, Pettitt, and Wilson (2012)

Mattessich and Monsey (1992)

• Collaborators’ actions: This indicates the actions that collaborators undertake to

progress towards the goals of collaboration. This consists of interactions/communica-

tions among multiple collaborators, or coordination for sub-tasks in collaborations, or

decision-making (Briggs et al., 2009; Wouters et al., 2017; Bruneel, d’Este, and Salter,

2010; San Martín-Rodríguez et al., 2005; Patel, Pettitt, and Wilson, 2012; Mattessich

and Monsey, 1992).

• Resources: This covers various forms of assets used to support collaborations, such as

funding, documents, tools, technologies, materials (Briggs et al., 2009; Wouters et al.,

2017; San Martín-Rodríguez et al., 2005; Patel, Pettitt, and Wilson, 2012; Mattessich

and Monsey, 1992).
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• Context: This involves the surroundings of collaboration that do not define the collab-

oration but are closely tied to and influence it. It can a cultural, organizational (San

Martín-Rodríguez et al., 2005) or environmental factor (Mattessich and Monsey, 1992;

Patel, Pettitt, and Wilson, 2012). For example, if students learn collaboratively on a

site, then the site belongs to this kind of factor when serving as an environment in

collaborations. And the site can have an effect on students’ actions, patterns, and ef-

fectiveness of their learning. Specifically, the site is also termed as a Collaborative

Working Environment (CWE), which can support collaborations among collaborators

geographically dispersed.

While these factors have some similarity and differences, they complement each other to

some extent. Jointly, they describe the features of collaboration and its success. Therefore,

in turn, such factors can contribute to assessing the state of collaboration and suggesting

adjustments accordingly.

2.2.3 Discussion

To conclude, a collaboration must have three necessary components: at least two col-

laborators, a common goal, and interactions among collaborators to advance it. During its

process, collaborators can derive some benefits, especially when the collaboration is suc-

cessful. However, successfully collaborating is often uneasy. Various factors can influence

collaboration and its success, each having different impacts. This indicates that the success

of a collaboration is not determined by a single factor, but by the integration of all these fac-

tors. In turn, adjusting these factors can directly or indirectly assist collaboration to succeed.

However, none of the previous research has shown any interest in this.

Moreover, goals, collaborators, their actions, resources, and context are the key factors

of collaboration, which implies common feature of collaboration from the above analysis.

Particularly, the factor context may also influence other factors of collaboration, such as col-

laborators’ interactions and their used tools. This complicates how to integrate these factors

together.

Besides, since collaborator plays an essential role in collaborations, recommending ap-

propriate collaborators to people will also help them to collaborate successfully.

2.3 Context

As a complex notion (Adomavicius and Jannach, 2014), context is the keystone that

enables any intelligent entity to understand how occurrences in the surrounding world influ-

ence its own behavior. This is because context supports intelligent entities to deduce possible
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activities and information needs, allowing them to apply appropriate behavior accordingly

(Kofod-Petersen and Cassens, 2005).

In the field of information technology, it is essential for human-computer interactions by

presenting surrounding facts that make sense (Schmidt, Beigl, and Gellersen, 1999). Context

also plays a significant role in establishing a common understanding of service interoperabil-

ity in distributed systems (Strang and Linnhoff-Popien, 2003).

Besides, context is applied in context-aware applications to provide relevant information

and/or services to the user, where relevancy depends on the user’s task (Dey, 2001) (e.g.,

context-aware recommender system). The functions of such applications are assigned to

three categories (Dey, Abowd, and Salber, 2001): 1) the presentation of information6; 2)the

execution of services7; 3) the storage of context information attached to other captured infor-

mation for later retrieval8. In these applications, one core accessor is a well-designed context

model (Strang, Linnhoff-Popien, and Frank, 2003).

However, context stays at an ill-defined stage (Bazire and Brézillon, 2005). Its vari-

ous definitions result in diverse contextual information implemented in different context-

aware applications. This, in turn, poses difficulties when processing contextual information:

it is hard to describe context and relationships in a precise and traceable manner (Strang,

Linnhoff-Popien, and Frank, 2003).

Therefore, we first explore definitions of context. Given the diversity of contextual infor-

mation, we also discuss its classification to categorize it and to comprehend in a systematic

manner (Dey, Abowd, and Salber, 2001). Finally, approaches to model context are introduced

and summarized.

2.3.1 Definition

In Oxford Dictionaries online (2019)9, the notion context is defined as the circumstances

that form the setting for an event, statement, or idea, and in terms of which it can be fully

understood. Psychologically, context is the set of circumstances that frames an event or an

object (Bazire and Brézillon, 2005).

Both definitions describe context using the term circumstance, which indicates a fact or

condition connected with or relevant to an event or action10. Besides, context is restricted to

shaping an event, action or object to enhance others’ comprehension for it (the event, action

6Presenting information and services refers to applications that either present context information to the user
or use context to propose appropriate selections of actions to the user.

7Automatically executing a service describes applications that trigger a command or reconfigure the system
on behalf of the user according to context changes.

8To attach context information for later retrieval, context-aware applications tag captured data with relevant
context information.

9https://www.lexico.com/en/definition/context
10Oxford Dictionaries online (2019) https://www.lexico.com/en/definition/

circumstance

https://www.lexico.com/en/definition/context
https://www.lexico.com/en/definition/circumstance
https://www.lexico.com/en/definition/circumstance
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or object). Thus, context can be considered as a set of conditions that are pertinent to or

constitute an event, statement, or object.

Apart from listed above, context has received many definitions in the field of informatics.

From the literature review on context, an overview of its definitions is presented below:

• Context represents a set of explicit variables that model contextual factors in the un-

derlying domain (for example, time, place, surroundings, device, occasion, and so on).

This definition comes from recommender systems (Adomavicius and Tuzhilin, 2011).

• Context is the set of environmental states and settings that either determines an ap-

plication’s behavior or in which an application event occurs and is interesting to the

user. This definition is generally used in the field of context-aware computing (Chen

and Kotz, 2000).

• Context can be considered to be everything that affects the computation except the

explicit input and output. This definition stands from the perspective of computer

programming (Lieberman and Selker, 2000).

• Context refers to the situation under which user’s database access happens. This

definition focuses on context-aware database support for ambient intelligence (Feng,

Apers, and Jonker, 2004).

• Context a subjective concept that is defined by the entity that perceives it. It could

be generally described as the subset of physical and conceptual states of interest to

a particular entity. This definition emphasizes wearable computing systems (Pascoe,

1998).

• A context is the set of all context information characterizing the entities relevant for

a specific task in their relevant aspects. Here, a contextual information is any infor-

mation which can be used to characterize the state of an entity concerning a specific

aspect; an entity11 is a person, a place or in general an object; an aspect12 is a classi-

fication, symbol- or value-range, whose subsets are a superset of all reachable states;

a situation is the set of all known context information. This definition applies to the

ubiquitous computing environments (Strang and Linnhoff-Popien, 2003).

Besides, we retain a definition that seems to be a consensus on whatever the field of

application: context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves (Dey,

2001).

11An entity is relevant for a specific task, if its state is characterized at least conceirning one relevant aspect
(Strang and Linnhoff-Popien, 2003).

12An aspect is relevant, if the state with respect to this aspect is accessed during a specific task or the state has
any kind of influence on the task (Strang and Linnhoff-Popien, 2003).
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These definitions specify context as the characteristic information of an entity’s circum-

stances. Such information that can be considered in an entity’s context is called contextual

information. It represents the values of contextual factors (Adomavicius and Tuzhilin, 2011).

For example, for hour factor, the value 17h is contextual information.

Many contextual factors are mentioned in the previous studies. According to these stud-

ies, some contextual factors are shown in Table 2.5. Note that these contextual factors are not

related to the same entity. First three of them describe user context, while others separately

focus on intelligent environment context (Franklin and Flaschbart, 1998), mobile device con-

text (Rodden et al., 1998) and computer context (Ryan, Pascoe, and Morse, 1998).

TABLE 2.5: Summary of contextual factors.

References Factors

Brown, Bovey, and Chen (1997)
user’s location, who they are with, what the

time of the day is

Palmisano, Tuzhilin, and Gorgoglione

(2008)
user’s intent and its changes over time

Rodden et al. (1998) nearby devices, space and location

Franklin and Flaschbart (1998)
what is happening at this moment (current

events)

Schilit, Adams, and Want (1994)
the location of use, the collection of nearby

people, hosts, accessible devices, and their

changes over time

Ryan, Pascoe, and Morse (1998) location, time, temperature and user identity

TABLE 2.6: Classification of human-factors-related context (Schmidt, Beigl,
and Gellersen, 1999).

Entity Dimension Factor

Human

Factors

User

Knowledge of habits

Emotional state

Bio-physiological conditions

Social

Environment

Co-location of others

Social interactions

Group dynamics

Task

Spontaneous activity

Engaged tasks

General goasl

Grouping contextual factors makes it possible to specify a measurable dimension. For

example, Schmidt, Beigl, and Gellersen (1999) classified human-factors-related context into

three categories (dimensions): User, Social Environment and Task. Each dimension consists
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of three contextual factors (see Table 2.6). It implies that an entity can use multiple contextual

dimensions to identify its circumstances. In other words, an entity’s context has the potential

to become multidimensional.

In conclusion, the definition of an entity’s context remains dependent on what it is in-

tended to use. It is therefore necessary to identify the appropriate dimensions as well as the

associated factors, which seeks to define the characteristic features of an entity. These fea-

tures can be used not only to describe the entity at a given time but also to infer information

of the future. For example, in forecasting weather, day d’s context is utilized to predict the

weather for the next few days.

2.3.2 Classification

One easy approach to classify context is by entities (Dey, Abowd, and Salber, 2001)

whose situation is described and characterized by contextual information. Zimmermann,

Lorenz, and Oppermann (2007) concerned four entities types: natural, human, artificial and

group (see Table 2.7). In the meantime, Dey, Abowd, and Salber (2001) identified three

types: places, people and things13. Bazire and Brézillon (2005) only considered either an

event (e.g., a collaboration) or an object.

TABLE 2.7: Classification of entities (Zimmermann, Lorenz, and Opper-
mann, 2007).

Description

Natural entity
Natural entities indicate all living and non-living

things that occur naturally and are not the result of

any human activity or intervention (e.g., animals).

Human entity Human entities refer to human beings (e.g., user).

Artificial entity
Artificial entities denote products or phenomena that

result from human actions or technical processes

(e.g., computer).

Group entity

Group entity is a collection of entities, which share

certain characteristic, interact with one another or

have established certain relations between each

other (e.g., user group).

Under this classification, one of the most widely addressed context is user context, which

mainly determines the behaviors of context-aware applications (Brown, Bovey, and Chen,

1997) and matters in predicting users’ behaviors (Palmisano, Tuzhilin, and Gorgoglione,

2008). User context concentrates on the entity: user, which is also the entity of most works

13Things are either physical objects or software components and artifacts (e.g., an application or file) (Dey,
Abowd, and Salber, 2001).
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presented in Section 2.3. This is mainly because context is inevitably tied to an entity accord-

ing to the definitions in Section 2.3.1 and in most cases the entity is user. However, whatever

the entity, all works explore the notion context (of an entity).

Depending on whether context changes over time or not, Adomavicius and Tuzhilin

(2011) applied two categories to distinguish different contexts:

Static: Relevant contextual factors and their structure remains stable over time.

Dynamic: The contextual factors change in some way.

These contexts have a lifetime and their importance shifts over time. For example, during one

month, a person’s age is relatively static. However, if he/she moves to another city during

the month, his/her address is dynamic. Therefore, from a perspective, the address is more

important than the age for the given month.

Chen and Kotz (2000) identified two types of context with regard to its use in applica-

tions: active and passive context. Active context influences the behaviors of an application,

while passive context is relevant but not critical to an application. For example, in a map

application, user’s location belongs to active context, while user’s gender is passive context.

Because the user’s gender is not decisive in such an application. Instead, the application must

change its behaviors when adapting to the user’s location.

Another classification method lies in the difficulty of collecting contextual information.

Through different levels for abstracting the entity’s contextual information, context can be di-

vided into low-level context and high-level context (Hong, Suh, and Kim, 2009). Low-level

context comprises raw data collected directly from physical devices (e.g., sensors) (Hong,

Suh, and Kim, 2009). As acquired without further interpretation, low-level context can be

insignificant, trivial, vulnerable to small changes or uncertain (Ye et al., 2007). On the other

hand, high-level context provides summary descriptions of one entity’s state and surround-

ings (Wang et al., 2004b), derived from reasoning and interpreting low-level context (Bettini

et al., 2010). For example, for a conversation between two persons, the low-level contextual

factors include time, location, participants and conversation records, while its objective is a

high-level factor that cannot be attained directly. Acquiring high-level context is already a

challenge. But such information can be valuable and even have a determining impact on the

entity.

Besides, context can also be separated into explicit and implicit context (Wang et al.,

2004a) according to different collecting mechanisms. Explicit context is collected from con-

text sources directly or required explicitly to the entity. As well, implicit context can either

be additional information deduced from explicit context or be implicitly learned from the

entity’s activities or behaviors (Wang et al., 2004a; Anand and Mobasher, 2007). For exam-

ple, on an online commercial site, user’s comment on an item is explicitly required, which is
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explicit context. But as implicit context, the frequency of the user’s navigation clicks on the

item is implicitly collected.

These multiple classifications of context don’t conflict with each other. They are mutually

compatible somehow. Fo instance, explicit context definitely belongs to low-level context as

it is captured from sources or the entity itself without any processing. Meanwhile, implicit

context can be either low-level or high-level.

Overall, the classification of context is not sufficiently stable. The main reasons are the

complexity and reliance of context. Besides, due to the popularity of user context, we fur-

ther investigate its contextual dimensions and associated factors by reviewing and analyzing

previous works.

2.3.2.1 User context

Zimmermann, Lorenz, and Oppermann (2007) exploited five basic categories (dimen-

sions) of an entity (see Table 2.8). An entity can refer to a user.

TABLE 2.8: Five contextual dimensions of an entity (Zimmermann, Lorenz,
and Oppermann, 2007).

Dimension Description

Individuality
Contains properties and attributes describing the entity

itself

Time Provides the time coordinates of the entity

Location Provides the spatial coordinates of the entity

Activity
Covers all tasks that this entity is currently and in future

involved in

Relation
Represents the information about any relationship that

the entity has established to other entities

Another method to analyze dimensions of an entity’s context was proposed by Dey,

Abowd, and Salber (2001), which introduce four essential categories (dimensions) shown

below. In their research, an entity can also be a user.

• Identity refers to the ability to assign a unique identifier to an entity.

• Location is expanded to include orientation and elevation, as well as all information

that can be used to deduce spatial relations between entities, such as co-location, prox-

imity, or containment.

• Status (Activity) identifies intrinsic characteristics of the entity that can be sensed.

• Time helps to describe a situation and makes it possible to leverage off the richness

and value of historical information.
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Sladic and Milosavljević (2017) applied seven dimensions to present context in business

systems for access control requirements: Actor, Action, Resource, Means, Time, Place and

Objective, which can be used to retrieve some current information from a system, like who

is the current user.

Apart from the above, some methods are specific to user context. Kofod-Petersen and

Cassens (2005) divided user context into five sub-categories (dimensions):

• Environmental dimension captures the users surroundings, such as things, services,

people, and information accessed by the user.

• Personal dimension describes the mental and physical information about the user, such

as mood, expertise and disabilities.

• Social dimension presents the social aspects of the user, such as information about the

different roles a user can assume.

• Task dimension focuses on what the user is doing, it can describe the user’s goals,

tasks and activities.

• Spatio-temporal dimension is concerned with attributes like: time, location and the

community present.

Negre (2018) retained 5 dimensions for user context in data warehouses: Time, Individ-

uality/User Profile, Activity, Relation, Device. In addition, Ferdousi, Negre, and Colazzo

(2017) proposed to analyze user context through 3 families and 10 dimensions:

• Physical family includes all dimensions on which the user’s geographical position will

have a strong influence.

– Temporal dimension contains factors like week, season, time.

– Spatial dimension is represented by two kind of factors: exact geographical po-

sition (e.g., longitude/latitude) and the nominal classes that can determine user’s

position (e.g., ’at home’).

– Environmental dimension expresses environmental characteristics, such as tem-

perature and weather.

– Equipment dimension describes all non-human objects that surrounds the user,

such as printer.

• Personal family denotes the user’s more specific information through four dimensions.

– Demographic dimension consists of the user’s identity information, such as

name, age, and gender.

– Social dimension refers to the appearances and roles of other people around the

user and their relationships with the user.
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– Psycho-physiological dimension reflects the user’s psycho-physiological aspect,

such as the user’s mood and mental state.

– Cognitive dimension relates to the user’s experiences, constraints and activities.

• Technical family illustrates the characteristics of the devices utilized by the user.

– Hardware dimension comprises the hardware to access the context-aware appli-

cations, such as processors and devices used by the user.

– Data dimension focuses on the data manipulated by the applications, such as its

format (text, video, audio, image).

Among all the different dimensions, three are common and included in all studies: Time,

Activity (Task)14, and Location.

Besides, the dimension that contains information and attributes to describe users (ac-
tors) themselves is also discussed and explored as well. But this dimension was presented

through various terms, such as individuality (Zimmermann, Lorenz, and Oppermann, 2007;

Negre, 2018), identity (Dey, Abowd, and Salber, 2001), actor (Sladic and Milosavljević,

2017). Some studies even exploited two or more dimensions to present such contextual in-

formation of user: Ferdousi, Negre, and Colazzo (2017) introduced personal information

by three dimensions (demographic, social, and psycho-physiological), while Kofod-Petersen

and Cassens (2005) specified two (personal and social).

By comparison, Zimmermann, Lorenz, and Oppermann (2007) and Dey, Abowd, and

Salber (2001) did not take into account the influence of resources used by users. Negre

(2018) improved this by considering device. Sladic and Milosavljević (2017) and Ferdousi,

Negre, and Colazzo (2017) proceeded further by proposing a dimension: resource (data).

Kofod-Petersen and Cassens (2005) described it as information and services available to the

user in environmental dimension. Such a dimension is significant to users, which indicates

what the user is using. Due to the rapid development of information and communication

technologies, digital resources and metadata must also be included. For example, hardware

and equipment were taken into consideration by Ferdousi, Negre, and Colazzo (2017).

These diverse dimensions of user context reflect the complex dependencies of context,

which raise challenges to context modeling. In order to present context properly and construct

a corresponding model, we need to investigate and discuss existing approaches to model

context.
14Only Ferdousi, Negre, and Colazzo (2017) represented it through cognitive dimension, while others defined

it as activity/task dimension.
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2.3.3 Modeling

A large number of context models were proposed with the development of context-aware

applications. Based on the scheme of data structures, Strang and Linnhoff-Popien (2004) cat-

egorized six approaches of context modeling, as follows: Key-value model, Markup model,

Graphical model, Object-oriented model, Logic-based model, and Ontology-based model.

Moreover, Bettini et al. (2010) highlighted spatial models that concentrate on the location

context. A context model may integrate multiple approaches (Strang and Linnhoff-Popien,

2004) to perform more flexibly (Bettini et al., 2010). Such hybrid models are listed in the

most representative one.

2.3.3.1 Key-value model

As the most simple data structure of context modeling (Strang and Linnhoff-Popien,

2004), key-value model uses key-value pairs to define contextual factors and their values

(Bettini et al., 2010). Based on Schilit, Adams, and Want (1994), the pair location: in room

GI136 can represent a user’s location context. Such pairs are easy to manage, but lack so-

phisticated structuring capabilities to enable effective context retrieval algorithms (Strang and

Linnhoff-Popien, 2004).

2.3.3.2 Markup model

Markup model depends on a hierarchical data structure (Strang and Linnhoff-Popien,

2004) that is describe by a variety of markup languages, such as XML (Bettini et al., 2010).

It consists of mark up tags and content. Typical representatives of markup model are pro-

files (Strang and Linnhoff-Popien, 2004). For example, through a Comprehensive Structured

Context Profiles (CSCP) proposed by Held, Buchholz, and Schill (2002), the user’s loca-

tion is presented in Figure 2.1. Markup model has scheme definitions and set of validation

tools. However, it is limited in consistency and completeness checking. It is neither good at

supporting reasoning on contextual information (Strang and Linnhoff-Popien, 2004; Bettini

et al., 2010).

FIGURE 2.1: An example of the user’s location represented by Markup
model.
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2.3.3.3 Graphical model

A well known language for this approach is the Unified Modeling Language (UML)

which has a strong graphical component (UML diagrams) (Strang and Linnhoff-Popien,

2004). Then a representation of the user’s location is shown in Figure 2.2. Graphical mod-

els have great advantages on the structure level. Nevertheless, they can’t be formatted and

interpreted by machines (Strang and Linnhoff-Popien, 2004).

FIGURE 2.2: An example of the user’s location represented by Graphical
model.

2.3.3.4 Object-oriented model

Two main features of object-oriented models are encapsulation and reusability, which

are also the main benefits of this approach (Strang and Linnhoff-Popien, 2004). Most spa-

tial models follow this approach to organize their context information by physical location

(Bettini et al., 2010). An example of the Context Modeling Language (CML) is in Figure

2.3, which was developed for conceptual modeling of databases but can also map from an

object-oriented model to a runtime context management systems (Henricksen, Indulska, and

Rakotonirainy, 2002; Bettini et al., 2010). This type of model contributes to solving prob-

lems arising from distributed compositions. And it can be implemented easily in a database.

Unfortunately, it poses additional requirements (Strang and Linnhoff-Popien, 2004): it only

processes the information formalized based on the model. That is, it can’t be used to handle

heterogeneous information from different sources and thus does not support interoperability

(Bettini et al., 2010).

FIGURE 2.3: An example of the user’s location represented by Object-
oriented model.

2.3.3.5 Logic-based model

In a logic-based context model, the context is defined as facts, expressions, and rules.

These rules form different conditions on which a concluding expression or fact may be rea-

soned or inferred from a set of other expressions or facts (Strang and Linnhoff-Popien, 2004).

One of the first approaches was researched and proposed by McCarthy (1993), which focuses
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more on context reasoning than modeling. This approach has extremely high level of formal-

ity and can be composed distributed. However, its partial validation is hard to maintain. A

major issue is how it can be applied in computing environments.

2.3.3.6 Ontology-based model

Ontology provides a formal structure to manipulate knowledge related to a particular field

or more broadly knowledge bases. An ontology-based model can be regarded as a formal

and explicit specification of a shared, agreed and detailed conceptualization (Peckham and

Maryanski, 1988; Gruber, 1993; Du et al., 2019; Munir and Anjum, 2018). Based on Du et

al. (2019), Negre (2017), and Strang, Linnhoff-Popien, and Frank (2003), an ontology-based

model includes two parts:

1) T-Box defines the nature of concepts (classes of subjects) and their interrelationships

that constitute model (represented by the green rectangles in Figure 2.4).

2) A-Box explains the relationships between instances of the concepts and relations that

are defined in T-Box (represented by the white rectangle in Figure 2.4).

An example is Context Ontology Language (CoOL) (Strang, Linnhoff-Popien, and Frank,

2003), which aims to enable context-awareness and contextual interoperability in a dis-

tributed system. An example about the user’s location of this approach is shown in Figure

2.4.

FIGURE 2.4: An example of the user’s location represented by Ontology-
based model.

This approach offers flexibility and extensibility in distributed systems by supporting dis-

tributed storage and multi-author creation (Strang, Linnhoff-Popien, and Frank, 2003). It also

provides a formal semantic presentation of knowledge in a distributed system. This indicates

that ontology-based models are capable of processing heterogeneous information from dif-

ferent sources and supports interoperability. Besides, the available semantic representations

(e.g., RDF, RDFS, OWL), which are used not only in authoring ontologies but also in au-

tomated information processing, enable ontology-based models to be machine-interpretable.

Moreover, the two parts of an ontology-based model gives the opportunity for reusing the T-

Box component in existing ontologies to construct new ones and extracting information from

the A-Box component in existing ontologies to enrich new ones. Specifically, ontologies that

are fully documented15 can provide useful input for ontology reuse and enrichment.

15https://www.w3.org/wiki/Good_Ontologies

https://www.w3.org/wiki/Good_Ontologies
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All the advantages mentioned result in ontology being an appropriate choice among the

six approaches. Therefore, regarding context as a specific type of knowledge (Bettini et al.,

2010), ontology-based modeling is selected to represent context in this thesis.

2.3.4 Discussion

When talking about the notion context, it is always used and related to an entity. As

the entity varies, so does its context, reflecting the reliance of the context. Moreover, the

diverse properties of the context enable it to be classified in different manners, indicating its

complexity. Thus, as a dependent and complicated notion, the definition of the context is

still imprecise and somewhat unclear. This also generates difficulties for its representations.

However, through identifying necessary contextual dimensions and factors, the context can

be specified and represented, such as user context. This implies that these dimensions and

factors can also contribute to developing a well-designed context model.

From the above analysis of the six context modeling approaches, the ontology-based

approach is favored because of its flexibility, extensibility, interpretability, reusability, and

its support for interoperability. Thus, this thesis focuses on presenting contexts through

ontology-based models in the framework of collaborations.

Besides, as the most widespread context in informatics, user context is applied in many

context-aware applications to provide more specific services and/or products for users. One

is known as the context-aware recommender system, which will be discussed in Section 2.5.

2.4 Web-based collaborative working environment and system of
information systems

As discussed in Section 2.2, collaboration matters for human activities. With the help

of information technology, more and more people are collaborating remotely. This leads to

the emergence of a new collaborative space: collaborative working environment (CWE)
where people can work together as spontaneous and dynamic groups assembled in a collab-

orative manner (Prinz et al., 2006). CWEs, especially web-based CWEs, intend to support

collaborations between users (i.e., people) by integrating and offering different collabora-

tive tools. To explore such environments, their functionalities, frameworks, and features are

studied in Section 2.4.1.

However, there are still unresolved problems in web-based CWEs, such as poor inter-

operability between heterogeneous tools and difficulties in managing distributed information

(Carreras and Skarmeta, 2006; Hofte, 1998). Solving these issues necessitates to understand

the relationship between a web-based CWE and its integrated tools. Each tool can be con-

sidered as an information system with its own information management (Neto, Araujo, and
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Santos, 2017). These systems, together with the environment itself can form a System of
Information Systems (SoIS). To have a high-level understanding and viewpoint about such

systems, we also investigate SoIS and its conceptual origins: System of Systems (SoS) by

analyzing their definitions and features.

2.4.1 Web-based collaborative working environment

Collaborative Working Environment (CWE) is derived from the term virtualized collab-
orative workplace (Prinz et al., 2006) where eProfessionals can seamlessly collaborate to

achieve common goals (Prinz et al., 2006; Martínez-Carreras et al., 2007). The notion ePro-
fessionals extends the concept professional by including knowledge worker who intensively

uses Information and Communication Technology (ICT) tools and services (Wang, 2016).

These tools and services can support collaborative work, such as email, document sharing,

and project management (Bafoutsou and Mentzas, 2002). And they are provided in CWEs

(Truong et al., 2008) for assisting people to collaborate.

Another purpose of CWE is similar to those of electronic workplace (Bafoutsou and

Mentzas, 2002) whose main objective is to provide groups with shared spaces to enable their

members collaborate (Bafoutsou and Mentzas, 2002). Users can be members in different

groups, and each group has a corresponding shared space allowing its members to collaborate

(Bentley et al., 1997). By gluing different groupware applications (Martínez-Carreras et al.,

2007), CWE can serve for users who collaborate in several groups at the same time.

Besides, another requirement raised for CWEs is: to facilitate the collaboration of a

group geographically dispersed (Carreras and Skarmeta, 2006; Su et al., 2005; Kan, Duffy,

and Su, 2001; Bafoutsou and Mentzas, 2002). In traditional collaborations, collaborators are

not able to work together and exchange their ideas if they are situated in different locations

(Kan, Duffy, and Su, 2001). To solve this issue, CWEs need to support e-collaborations

(Kan, Duffy, and Su, 2001; Bafoutsou and Mentzas, 2002), which needs to use various tech-

nologies, such as Web/Internet technology, ICT, and technologies in Computer Supported

Collaborative Work (CSCW) field16 (Martínez-Carreras et al., 2007; Su and Casamayor,

2009; Su et al., 2005). The development of these technologies gives people the opportunity

to collaborate in a web-based CWE regardless of their geographical distances.

To analyze e-collaborations, Weiseth et al. (2006) defined a framework consisting of col-

laboration environment, process and support (see Figure 2.5). A collaboration environment

can support various collaboration processes that should use different collaboration supports,

such as organizational measures and collaborative tools. Meanwhile, these supports restricts

the processes that are carried out in the environment.

16CSCW addresses how collaborative activities and their coordination can be supported by computer systems
(Carstensen and Schmidt, 1999).
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FIGURE 2.5: A collaboration framework (Weiseth et al., 2006).

As collaboration environments, web-based CWEs can influence collaboration processes

and supports based on the framework in Figure 2.5. This, in turn, has an impact on the

efficiency and success of collaboration. To help people succeed in their collaborations,

web-based CWEs must be capable to supply collaborators with sufficient functionalities that

are listed below and summarized from Martínez-Carreras et al. (2007), Neo (2003), Su and

Casamayor (2009), Laso Ballesteros and Prinz (2008), Bafoutsou and Mentzas (2002), and

Prinz et al. (2006):

• Allow people to collaborate over time and space

• Support collaborators’ various activities during their collaborations, such as interac-

tions with other users and/or resources

• Provide flexible services for users to support their collaborations

• Offer asynchronous collaboration tools17 (e.g., email and Wiki) and synchronous col-

laboration tools18 (e.g., real-time chat and video communication systems)

• Enable interoperability with different collaborative systems

• Increase the productivity and creativity in collaborative processes

• Enhance collaborators’ critical and analytical thinking and problem-solving skills

Many researches already developed web-based CWEs to support collaborations in dif-

ferent domains. For example, Su et al. (2005) constructed a web-based CWE for online

designers, where information is exchanged and stored in a database. Truong et al. (2008)

aggregated disparate collaboration services (e.g., document sharing, communication, team

management and project management services) and provide a web-based CWE, known as

inContext, where runtime and historical context and users’ interaction information are uti-

lized to adapt services. Besides, Su and Casamayor (2009) applied a web-based CWE to

enhance sustainable furniture design, which consists of three layers: upperware, midlle ware

and resources.

• Upperware interacts with different applications as collaborative tools to provide their

corresponding services.

17Asynchronous collaboration tools allow users to collaborate at different times (Xu et al., 2008).
18Synchronous collaboration tools enable users to collaborate at the same time (Wang, 2016).
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• Middleware manages the complexity and heterogeneity inherent in the distributed

tools.

• Resources recognizes physical resources in the web-based CWE.

However, among these existing web-based CWEs, there are many difficulties that cannot

be completely solved. For example, with the development of collaborative tools, interoper-

ability between heterogeneous tools (Carreras and Skarmeta, 2006) is becoming increasingly

difficult to achieve within a web-based CWE. It also poses problems to the common standard

to share information between these tools (Martínez-Carreras et al., 2007). Switching between

these tools during collaborations also creates problems to users, including (Hofte, 1998): 1)

they might need to log into various tools for launching a particular collaboration activity; 2)

they must copy and/or move information between tools within a web-based CWE when work-

ing with multiple tools. Particularly, such information is stored in different databases (either

in the tools where it was produced or in the CWE itself) and applied in specific domains. This

causes semantic gaps between information from different tools (Dou, Wang, and Liu, 2015),

complicating both information access and management in a web-based CWE. Accordingly,

it also raises challenges to how collaborative tools can be integrated into a web-based CWE

(Prinz et al., 2006).

With the aim to address the existing problems and establish an improved web-based CWE

that satisfies users’ needs, it is essential to investigate and analyze several top-ranked features

of future CWEs. Based on Martínez-Carreras et al. (2007) and Laso Ballesteros and Prinz

(2008), these features include:

1) Ease of use. The easier the system is, the higher productivity and acceptation the CWE

achieves.

2) Interoperability. Services offered by different collaborative applications should inter-

operate in order to facilitate aspects such as mobility, flexibility, and the use of different

applications in a CWE.

3) Scalability. The CWE should have the ability to grow up according to the needs of the

system and without losing the level of performance.

4) Anyplace – Anytime. It is pursued the pervasive collaboration, where collaborators

can work together over time at anyplace.

5) Low Cost of Entry. The boundaries between different CWEs should be reduced in

order to improve interoperability. Furthermore, this would facilitate the development

of new CWEs as well as the use and integration of new tools.

6) Locating required Information. Users should be provided with accurate mechanisms

to locate their needed information in CWEs. The retrieval of information in CWEs
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should not be only oriented to get data but also to get knowledge, which necessitates

appropriate information management and/or context management.

7) Goal-oriented. The services offered in a CWE should be oriented to solve different

problems in an intelligent way, according to the pattern followed by a human being

based on decomposing activities in goals.

Some feature mentioned above have been achieved, namely 1), 4), And 5). For example,

web-based CWEs allow people to collaborate over time and space, satisfying the feature any-

place - anytime. The boundaries between different web-based CWEs are reduced, achieving

the feature low cost of entry. However, the other features still need to be developed and

fulfilled, especially interoperability. The interoperability between collaborative tools can in-

fluence information access, management, and comprehension in web-based CWEs, reducing

the efficiency of users’ collaborations. Besides, the huge volume of information coming from

different tools leads to information overload in web-based CWEs. This creates problems in

processing and retrieving information based on users’ needs, making it difficult for users to

locate their required information.

We, therefore, need to improve information access and management in web-based CWEs

so that information can be fetched to meet users’ needs during their collaborations. To attain

this, ontology can be applied in web-based CWEs, which can not only serve as a knowledge

base for integrating and managing heterogeneous information, but also filter information to

generate recommendations for users during their collaborations (Dou, Wang, and Liu, 2015;

Ristoski and Paulheim, 2016; Dou, Wang, and Liu, 2015). For deploying and implementing

ontology in a web-based CWE, we need to understand the relationship between the integrated

tools and the web-based CWE.

2.4.2 From system of systems to system of information systems

The notion, System of Systems (SoS), arises from the need to more effectively imple-

ment and analyze large, complex, independent, heterogeneous systems working (or made to

work) cooperatively (Azarnoush et al., 2006; Jamshidi, 2008). It indicates a set of indepen-

dent and autonomous systems that are integrated together to accomplish common missions

(Jamshidi, 2008; Karcanias and Hessami, 2011). As an inevitable term of systems, SoS

receives a lot of interest.

However, there is no standard definition of SoS since it is still at its developing stages

(Jamshidi, 2008). Consequently, we make a literature survey on the definitions of SoS, which

is presented as follows:

Definition 1: A SoS is an assemblage of components which individually may be re-

garded as systems, and which possesses two additional properties: operational inde-

pendence and managerial independence of the components (Maier, 1998).
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Definition 2: A SoS is a set or arrangement of systems that results when independent

and useful systems are integrated into a larger system that delivers unique capabilities

(DoD, 2008).

Definition 3: SoS are large-scale integrated systems which are heterogeneous and

independently operable on their own, but are networked together for a common goal

(Jamshidi, 2008).

Definition 4: SoS is a new type of systems that is formed from the collaboration

between its components, which by themselves are independent systems (Assaad, Talj,

and Charara, 2016).

Definition 5: A SoS is a collection of dedicated systems that combine their resources

and capabilities to create a new, more complex system that offers more functionality

and performance than simply the sum of constituent systems (Ameur et al., 2017).

Definition 6: SoS are complex systems resulting from the interoperability of con-

stituent systems, managing resources and capabilities with managerial and operational

independence that collaborate to produce emergent behaviors to achieve a specified

global mission (Mohsin et al., 2019).

All the definitions listed above consider SoS as an alliance of components that can be

individually regarded as a system. In order words, a SoS can be separated into two parts:

the global system, which is the result of the gathering of the components, and the compo-
nent systems, which are independent and heterogeneous systems (Assaad, Talj, and Charara,

2016).

Component systems in a SoS are integrated together to achieve a common goal. The goal

can be having higher performances (Jamshidi, 2008), achieving particular missions (Mohsin

et al., 2019), saving cost, or offering more functionalities (Ameur et al., 2017). To some

extent, SoS can be understood as the result from the collaboration of component systems

(Mohsin et al., 2019). This implies the driving force behind SoS: to achieve higher capa-

bilities than would be possible with a single component system (Azarnoush et al., 2006).

Besides, SoS has no single point failure and continues to operate even in a dynamic environ-

ment (Assaad, Talj, and Charara, 2016).

Until now, many studies were undertaken to identify and analyze the characteristics of

SoS, such as Assaad, Talj, and Charara (2016), Maier (1998), Gorod et al. (2007), and Di-

Mario, Boardman, and Sauser (2009). Based on them, here is a summary of characteristics

that distinguish SoS from other systems (Assaad, Talj, and Charara, 2016).

Component Systems
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– Autonomy The autonomy of component systems encloses both operational and

managerial independence. In other words, component systems operate indepen-

dently not only in a SoS, but also if the SoS is disassembled. Component systems

are separately acquired and integrated but maintain a continuing operational ex-

istence independent of SoS. Therefore, they can and will choose their decisions

based on their interests.

– Heterogeneity Component systems are owned and managed by distinct organi-

zations and stakeholders. That is, these components must be handled by different

parties.

– Belonging Component systems can join or leave a SoS based on their choice.

Sometimes this belonging will lose them part of their autonomy, but this loss will

be compensated by the wins they will get from the SoS, which is the exact reason

why they choose to belong.

– Connectivity Component systems have the capabilities to communicate and in-

teroperate with each other in a SoS, which indicates component systems are con-

nected together to enhance SoS capability.

Global System

– Evolution The autonomy of the components, means that they have the ability

to evolve and change, regardless of the SoS. On the other hand, SoS work in an

unpredicted, dynamic environment. All of that, in addition to the fact that a SoS’s

objectives change as well, leads to an ever evolving system, that must adapt to

account for internal, together with external changes

– Emergence One of the most important characteristics of a SoS, and is inherited

from complex systems. SoS achieves its main objectives through the integra-

tion of component systems and their interactions, which is not a property of any

component systems but of SoS as a whole.

– Diversity SoS should offer a lot of functionalities. These diverse functionalities

are not achieved in a single component system but in the whole SoS.

Beyond these characteristics, SoS can be classified into four categories: Directed, Ac-

knowledged, Collaborative, and Virtual (Maier, 1998; Dahmann and Baldwin, 2008; Assaad,

Talj, and Charara, 2016).

Directed: Directed SoS is built to fulfill specific purposes and centrally managed (e.g.,

the systems responsible of the development of the Future Combat Systems in the US

Department of Defense).

Acknowledged: Acknowledged SoS has central management and common resources.

Nevertheless, component systems retain their independent ownership and objectives.
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Changes in the SoS are based on collaboration between SoS and component systems

(e.g., Air Operation Center).

Collaborative: Collaborative SoS doesn’t have central management with coercive

power. Component systems collaborate to fulfill the central purposes (e.g., Intelligent

Transport Systems).

Virtual: Virtual SoS lacks both central management and centrally agreed common

purposes. It emerges from the interaction between components, whereas the purposes

are unknown. This SoS is maintained through invisible mechanisms (e.g., national

economies).

Particularly, if each component system in a SoS is an information system, this SoS can be

viewed as a special type: System of Information Systems (SoIS) (Saleh and Abel, 2016). As

a special SoS, SoIS always have the characteristics of SoS discussed before. And it can also

be classified into the four categories (Directed, Acknowledged, Collaborative, and Virtual).

However, the specificity of SoIS lies in the difference between the information system

and other systems. An information system contains a set of interrelated components per-

form activities aiming at collecting, processing, storing and distributing information, while a

system is a set of elements dynamically interrelated to perform activities aiming at achiev-

ing a specific goal (Neto, Araujo, and Santos, 2017). In comparison, the characteristic of

the information system is its objective concerning information. Thus, SoIS uses information

from separated information systems to aggregate existing services and produce new ones. A

good practice is the Internet. Internet is a SoIS that contains different information systems

providing various services to users (see Figure 2.6).

FIGURE 2.6: An example of SoIS: Internet.

To integrate new services, SoIS needs to concern the exchange of information and knowl-

edge among different information systems. Therefore, the interoperability between the infor-

mation systems is a key issue (Saleh and Abel, 2016). One method is to create a common

language to describe data, where each information system can represent its data such that

other systems may interpret (Bowen and Sahin, 2010).

Therefore, Saleh and Abel (Saleh and Abel, 2016) proposed applying ontology and a cor-

responding architecture of collaborative SoIS to establish a common knowledge base that can
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interpret and manage information gathered from different information systems. This eases

information communications between heterogeneous systems and thus achieves better inter-

operability in a SoIS. Except for ontology, an alternative common language is unavailable for

SoIS to the best of our knowledge.

2.4.3 Discussion

The overviews of web-based CWE and SoIS reveal many common characteristics be-

tween the two notions. Both integrate heterogeneous collaborative tools or information sys-

tems in order to provide more advanced and flexible services to users. Besides, a common

problem for both web-based CWE and SoIS is the interoperability between the integrated

tools or systems.

However, there are also differences between web-based CWE and SoIS. Web-based CWE

focuses more on achieving its purpose: to support users’ collaborations. Insufficient attention

is paid to how collaboration tools are integrated into a web-based CWE. SoIS gives a higher

priority to investigating the characteristics of information systems and their relationships,

whether they are component systems or the global system. Besides, the integrated systems

of a SoIS are explicitly claimed to be autonomous, while those collaborative tools of a CWE

are imprecise. This allows us to consider each tool in a web-based CWE as an autonomous

information system with its own database. Thus, a web-based CWE with its integrated tools

can be considered as a SoIS, precisely, a collaborative SoIS. While the web-based CWE

refers to the global system, the tools are the component systems that work together to support

collaborations.

Conceiving a web-based CWE as a collaborative SoIS can enhance its scalability and

adaptation. This is because, as independent component systems, collaborative tools can be

added into and/or removed from a web-based CWE, which satisfies the growing users’ needs

during collaborations without affecting the other integrated tools. Besides, the ontology-

based SoIS and its architecture (Saleh and Abel, 2016) provide important guidance on how

to deploy and implement ontology into web-based CWEs, thereby assisting in improving

interoperability between collaborative tools and filtering information rapidly based on users’

requirements within web-based CWEs.

2.5 Recommender systems

Recommender systems (RS) are information-filtering (advice-giving) systems that are

designed and applied to find the information most relevant to users’ needs and transfer it

to users (Negre, 2015; Nunes and Jannach, 2017). In business field, many companies have

already successfully used RS in their Web sites to help their customers, such as Amazon,

Netflix, YouTube, ITunes, and Last.fm (Ricci, Rokach, and Shapira, 2011). Besides, RS is
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an active research domain that contains many hot research topics and relates to data mining

and machine learning techniques among others.

RSs gather various kinds of information to provide suggestions for users about items

(Ricci, Rokach, and Shapira, 2011). Here, item is the general term to indicate the objects

that RS recommends to users, while user indicates people who will receive these recommen-

dations ((Ricci, Rokach, and Shapira, 2011)). For example, in a movie recommender system,

users can receive recommendations on movies. An item refers to a movie. Usually, RSs only

process two dimensions of information: User and Item. Such a RS is mentioned as 2D RS in

the rest of this thesis.

However, 2D recommendations are sometimes not quite relevant. Because user decision

making, rather than being invariant, depends on the context when RSs provides recommen-

dations (Adomavicius and Tuzhilin, 2011). For example, when recommending movies to

users, RSs can incorporate information of users’ companions to generate recommendations.

To incorporate such contextual information into RSs, a new type of RS has been proposed

and developed quickly in these years: Context-Aware Recommender system (CARS).

To distinguish these two RSs (2D RS and CARS) and clarify their specific features, an

overview is provided for each type. It explores the functionalities, approaches, and techniques

used in different RSs to generate recommendations.

2.5.1 2D recommender system

To provide recommendations, one core task of RSs is to identify and recommend useful

items for users. This needs to predict which items are most suitable for users based on the

given data. In 2D RSs, an item is characterized by its utilities (ratings) ((Ricci, Rokach, and

Shapira, 2011)) that indicate how a particular user liked the item (Adomavicius and Tuzhilin,

2005). Then, the core task of 2D RSs is: Given an initial set of ratings that users explicitly
or implicitly give for items, 2D RSs try to calculate/compare items’ unknown/missing
ratings and decide which items to recommend, based on the data of User and Item
(Ricci, Rokach, and Shapira, 2011; Adomavicius and Tuzhilin, 2011).

Adomavicius and Tuzhilin (2005) modeled utility (rating) function of 2D RSs as follows:

RRS : User× Item→ Rating (2.1)

where Rating is a totally ordered set (e.g., non-negative integers or real numbers within a

certain range).

Most 2D RSs apply the utility (rating) function (presented by Equation 2.1) to generate

recommendation of items to users, such as Content-Based filtering (CB) and Collaborative
Filtering (CF) approach (Adomavicius and Tuzhilin, 2005; Koren, Bell, and Volinsky, 2009;

Koren, Bell, and Volinsky, 2009; Adomavicius et al., 2005). However, some 2D RSs do
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not use it. Instead, they apply heuristics to hypothesize that an item is useful to a user,

which is typical in Knowledge-Based (KB) approach ((Ricci, Rokach, and Shapira, 2011)).

Besides, another main approach used in 2D RSs is: Hybrid (Adomavicius and Tuzhilin,

2005; Balabanović and Shoham, 1997; Baltrunas et al., 2012; Panniello and Gorgoglione,

2011).

2.5.1.1 Content-Based filtering

Content-Based filtering (CB) approach creates a profile for each user and a description

for each item to characterize their nature (Koren, Bell, and Volinsky, 2009; Adomavicius and

Tuzhilin, 2005; Wang, 2016). By comparing the user profiles and item descriptions, 2D RSs

can predict items’ unknown utilities (ratings) for users (Adomavicius et al., 2005). Thus, CB

approach can generally be deduced in two main steps shown below.

1. Construct and learn item descriptions and user profiles: Items are represented by a

set of features, also called attributes or properties. When each item is described by the

same set of attributes, and there is a known set of values the attributes may take, the de-

scription of each item is compiled with structured data (Lops, De Gemmis, and Semer-

aro, 2011). On the other hand, user profile is modeled with the same attributes and built

up by analyzing the description of items to express users’ preferences (Wang, 2016). It

might also include demographic information or responses provided on a suitable ques-

tionnaire so that users can be associated with their preferred elements (Koren, Bell,

and Volinsky, 2009). Usually, the techniques that are applied and implemented into

this step involve Vector Space Model (VSM), TF-IDF, Semantic Analysis (using on-

tology) (Middleton, Shadbolt, and De Roure, 2004; Cantador, Bellogín, and Castells,

2008), Naïve Bayes, Decision Trees (Lops, De Gemmis, and Semeraro, 2011), Neural

Networks (Oord, Dieleman, and Schrauwen, 2013). The first three techniques aim to

construct descriptions and profiles, while Naïve Baye and Decision Trees are used to

classify these descriptions and profiles.

2. Calculate similarities between item descriptions and user profiles: CB approach

exploits the content of items to predict its relevance based on user profiles (Lops, De

Gemmis, and Semeraro, 2011). In other words, it calculates the similarities between

item descriptions and user profiles. This brings predictions of a user’s interest in a

particular item into a similarity problem. A widely used similarity in CB approach is

Cosine similarity (Lops, De Gemmis, and Semeraro, 2011).

2D RSs applying CB approach recommend items that are similar to the ones that users

liked in the past. The similarity is based on the attributes in descriptions of item and user

profiles (Ricci, Rokach, and Shapira, 2011), which leads to dependence: the recommenda-

tions generated in CB rely on these predefined attributes. Thus, CB approach can provide
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explanations on why the item is recommended to users based on these attributes and the cal-

culated similarities (Ricci, Rokach, and Shapira, 2011). A possible explanation is that: "Item

X was recommended because of its attributes A and B are shared by items Y and Z, which

you liked" (Ricci, Rokach, and Shapira, 2011; Tintarev and Masthoff, 2007). However, such

attributes sometimes require to gather the information that is not available or easy to collect

(Koren, Bell, and Volinsky, 2009), which constitutes a limitation.

Another drawback is serendipity problem, which indicates that content-based 2D RSs

tends to produce recommendations with a limited degree of novelty. That is, CB approach

has no inherent method for finding something unexpected (Wang, 2016).

2.5.1.2 Collaborative Filtering

Collaborative filtering (CF) approach predicts an item’s utility (rating) for a particular

user based on users’ past behaviors, such as previous transactions and items’ utilities (ratings)

(Koren, Bell, and Volinsky, 2009; Adomavicius et al., 2005). The general assumption of CF

is: if two users have same utility (rating) on one item, one of them is more likely to have the

similar utility (rating) as the other on a different item (Wang, 2016). Under this, two primary

areas of CF have been developed, known separately as memory-based (neighborhood) and

model-based CF (Koren, Bell, and Volinsky, 2009; Adomavicius et al., 2005; Koren and Bell,

2015; Breese, Heckerman, and Kadie, 1998; Su and Khoshgoftaar, 2009).

Memory-based (neighborhood) CF concentrates on the similarities between items or, al-

ternatively, between users (Koren, Bell, and Volinsky, 2009). Calculating the similarities can

be done in two ways: user-based and item-based recommendation (Desrosiers and Karypis,

2011). To predict a given user u’s rating for a particular item j, user-based recommendations

are generated by evaluating other ’similar’ users’ ratings for item j, while item-based recom-

mendations rely on user u’s ratings for other ’similar’ items (Desrosiers and Karypis, 2011).

All these similarities are calculated from users’ past ratings using different techniques, such

as Nearest neighbor (Sarwar et al., 2001), Pearson correlation (Jin, Chai, and Si, 2004), Co-

sine similarity (Desrosiers and Karypis, 2011) and similarities in ontology (Zhang, Gong,

and Xie, 2013). All these techniques focus on finding ’similar’ items or users.

Model-based CF utilizes the pure rating data (Su and Khoshgoftaar, 2009) to estimate or

learn a model to make predictions (Breese, Heckerman, and Kadie, 1998). For predicting

a given user u’s rating for a particular item j, Bayesian networks apply other users’ ratings

of the item j (Breese, Heckerman, and Kadie, 1998), while Markov decision process han-

dles the user u’s last several ratings for items (Shani, Heckerman, and Brafman, 2005). As

for latent factor models, they transform both items and users to a same latent factor space

where both items and users are characterized through factors inferred from utilities (ratings)

to explain users’ ratings (Koren, Bell, and Volinsky, 2009; Koren and Bell, 2015). Some
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techniques used in latent factor models are Matrix Factorization (MF), Latent Dirichlet Allo-

cation (LDA), Singular Value Decomposition (SVD) (Koren, Bell, and Volinsky, 2009; Koren

and Bell, 2015; Billsus and Pazzani, 1998; Su and Khoshgoftaar, 2009).

CF approach can provide accurate recommendations without any need for exogenous

information about neither items nor users (Koren and Bell, 2015). Often, 2D RSs in CF

approach can deal with very large data sets (Wang, 2016), such as the data set in Netflix

competition including 17,770 movies rated by over 480,000 users (Koren and Bell, 2015).

Besides, another advantage of CF is domain free, which indicates CF can address data aspects

that are often elusive and difficult to profile using CB (Koren, Bell, and Volinsky, 2009). CF

may apply users’ implicit feedback (Koren, Bell, and Volinsky, 2009), such as users’ click-

throughs on items. Besides, CF approaches are able to give explanations to users, such as:

Other users similar to you liked the item X (Ricci, Rokach, and Shapira, 2011), The item X

was recommended because people who liked Y also liked X (Tintarev and Masthoff, 2007).

However, CF approach faces two main challenges: sparsity (Desrosiers and Karypis,

2011) and cold-start (Koren, Bell, and Volinsky, 2009). The sparsity problem is quite com-

mon due to the fact that users typically rate only a small proportion of the available items

(Desrosiers and Karypis, 2011). When a new item or user is added, there is not any data

from old users’ past behaviors to generate recommendations. Sometimes, sparse rating data

problem can aggravate and be hard to solve, known as cold-start (Koren, Bell, and Volin-

sky, 2009; Desrosiers and Karypis, 2011). These challenges to CF approaches are mainly

because it is unlikely that two users or elements have common ratings when the rating data

is sparse (Desrosiers and Karypis, 2011). This contrasts with the general assumption19 of CF

approaches, which impacts their performance in 2D RSs.

2.5.1.3 Knowledge-Based

Knowledge-based (KB) approach generates recommendations using specific domain knowl-

edge about users’ needs and preferences. There are two basic specifics of KB approach:

case-based (Bridge et al., 2005; Burke, 2000; Lorenzi and Ricci, 2003) and constraint-based

(Felfernig et al., 2006; Felfernig and Burke, 2008; Felfernig et al., 2011). Both approaches

are using knowledge bases (e.g., ontologies (Chen et al., 2012; Tarus, Niu, and Mustafa,

2018)) and collecting users’ requirements to generate recommendations (Felfernig et al.,

2011).

Case-based methods determine recommendations by evaluating similarity metrics (Felfer-

nig et al., 2011) between the predefined cases and the user’s requirement. The predefined

cases are included in a case base (Bridge et al., 2005), which refers to the knowledge base of

items. From a case-based viewpoint, the item description are cases (Bridge et al., 2005). This

19The general assumption is introduced in Page 39: if two users have same opinions on one item, one of them
is more likely to have the similar opinions as the other on a different item (Wang, 2016).
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implies that the similarity metrics examines which item can best match the user’s requirement

according to a knowledge base predefined. Thus, recommendation problems are solved by

measuring how closely items come to satisfying the user’s requirement (Burke, 2000).

As for constraint-based methods, explicit rules are necessary. The rules are about how to

relate users’ requirements with item features (Felfernig et al., 2011). Therefore, the knowl-

edge base contains item descriptions and explicit rules. Generating recommendations then

turns into a constraint satisfaction problem (Felfernig and Burke, 2008), where the recom-

mended item should satisfy certain rules according to users’ requirements.

KB approach estimates the extent to which an item can meet users’ explicit requirements

based on a predefined knowledge base. Specifically, users’ requirements are directly elicited

within a recommendation session (Felfernig et al., 2011). This indicates that all the necessary

data for generating KB recommendations can be extracted or predefined. Thus, there is

no sparsity or cold start problem with KB approach (Felfernig et al., 2011). Besides, KB

approach can produce explanations to users, such as: The item X has advantages over the

previous recommended item Y in features A and B, which will make X more appropriate as

you requested (Ricci, Rokach, and Shapira, 2011).

However, KB RSs have one drawback: knowledge acquisition bottleneck, which moti-

vates knowledge engineers to convert the knowledge possessed by domain experts into for-

mal, executable representations (Felfernig et al., 2011).

2.5.1.4 Hybrid

Hybrid approach combines two or more other native approaches (CB, CF, and KB) (Ado-

mavicius and Tuzhilin, 2005; Baltrunas et al., 2012; Panniello and Gorgoglione, 2011; Burke,

2002). A hybrid 2D RS can be classified into three categories: monolithic, parallelized, and

pipelined hybrids. Based on Jannach et al. (2010) and Burke (2002), different hybridization

techniques are assigned to the three categories and illustrated as follows.

1. Monolithic hybrids consist of a hybrid recommender component that integrates mul-

tiple native approaches by preprocessing and combining several different data sources.

– Feature combination: This technique is used to simply combine and preprocess

several types of data sources. For example, when merging CB and CF, collabora-

tive information is processed as additional feature data associated with each item

and use CB techniques over this combined data set. However, the combination of

input features using KB approaches with CB or CF sources has remained largely

unexplored.

– Feature augmentation: This technique applies more complex transformation steps,

compared to feature combination. So that the output of the hybrid recommender
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component augments the feature space of the applied native approaches by pre-

processing their knowledge sources. Specifically, such a hybrid recommender is

strongly linked to the main components in 2D RSs for performance and function-

ality reasons, such as a pseudo-user-rating (Melville, Mooney, and Nagarajan,

2002).

2. Parallelized hybrids employ several recommender components side by side and apply

a specific hybridization mechanism to aggregate their outputs.

– Weighted: This technique computes weighted sums of ratings for items based on

the rating results obtained from all available native approaches in a hybrid 2D

RS.

– Switching: This technique uses some criteria to switch between different native

approaches. Thus, it requires an oracle that decides which native approach should

be used in a specific situation, depending on the user profile and/or the quality of

recommendation results.

– Mixed: This technique is practical to make large number of recommendations

simultaneously, where recommendations from more than one native approach

are presented together at the level of the user interface.

3. Pipelined hybrids implement a staged process in which several native approaches

sequentially build on each other before the final one generates recommendations for

users.

– Cascade: This technique is based on a sequenced order of recommender compo-

nents, in which each succeeding recommender only refines the recommendations

of its predecessor.

– Meta-level: In this technique, one recommender component builds a model that is

exploited by the principal recommender to make recommendations. For instance,

Balabanović and Shoham (1997) exploited a principal CF recommender, based

on user models that are built by a CB recommender.

Hybrid approach aims at overcoming the limitations of native approach (CB, CF, and KB)

and improving the prediction performance. It has already been used in many 2D RSs, such as

Google news RS (Das et al., 2007). However, no single hybridization technique is applicable

in all circumstances (Jannach et al., 2010). This implies that their performances differentiates

among different data sources and recommendation problems. Thus, it is necessary to analyze

the advantages and disadvantages of these hybridization techniques. Monolithic hybrids
are valuable if little additional knowledge is available for inclusion in the data source; As an

additional post-processing step, parallelized hybrids are the least invasive for existing native

approaches, but they add runtime and matching of ratings generated by these approaches;

Pipeline hybrids require a deeper understanding of the algorithm’s functioning to ensure
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efficient runtime computations, but work well in some cases, such as when CF and KB are

combined (Jannach et al., 2010).

2.5.2 Context-aware recommender system

Recently, a new branch of RS, Context-Aware Recommender System (CARS), was

proposed by Adomavicius et al. (2005). A CARS is constructed by incorporating con-

text into 2D recommendation generating process, which can result in more accurate rec-

ommendations (Palmisano, Tuzhilin, and Gorgoglione, 2008). Thus, CARS is attracting

more and more attentions in both business and academic field. Sourcetone interactive radio

(www.sourcetone.com) started to consider the current mood of listeners (the context)

for recommending songs in a CARS (Adomavicius and Tuzhilin, 2011). Besides, CARS has

often been a research topic in the conference RecSys since 2009 20.

Unlike 2D RS, CARS deals with at least three dimensions of data: User, Item and Con-

text. Sometimes, it is even possible to construct a CARS using over three dimensions of

data. For example, Adomavicius et al. (2005) handled data separated in 5 dimensions: User,

Item, Place, Time and Companion in a context-aware movie RS. Thus, the rating function of

a n-dimensional CARS is (Adomavicius et al., 2005):

RCARS : D1 × D2 × ...× Dn → Rating(n ≥ 3, n ∈N∗) (2.2)

where D1, D2, ..., Dn represent n dimensions of CARS (including User, Item, Context, ...).

Particularly when n = 3, the rating function is: User× Item× Context→ Rating.

Since various contextual information is involved in CARS, Adomavicius and Tuzhilin

(2011) identified two critical properties of CARS: complexity and interactivity. Here, com-

plexity indicates that CARS can be significantly more complex in comparison to 2D RSs;

interactivity implies that contextual information usually needs to be retrieved from users in

CARS.

To integrate context into a CARS, two main approaches are proposed (Adomavicius and

Tuzhilin, 2011):

1. Context-driven querying and search: This approach uses and specifies context in

queries to search for the most appropriate item. Here, the queries are used to extract

relevant rating data based on the implicit or explicit contextual information. For ex-

ample, Google Map permits users to search for nearby locations, where a data query

filters out irrelevant locations using the current position of users (user context).

20https://recsys.acm.org/recsys09/call/

www.sourcetone.com
https://recsys.acm.org/recsys09/call/
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FIGURE 2.7: The incorporation of context in the recommendation process
(Adomavicius and Tuzhilin, 2011).

2. Contextual preference elicitation and estimation: This approach applies context for

modeling and learning user preferences to predict unknown ratings of items. For ex-

ample, Liu, Xie, and Chen (2018) modeled researchers’ preferences in collaborations

that are presented by several indices: topics’ similarity, ratio of new collaborator, re-

searches’ conservativeness and activeness, which all belong to user context.

Based on the two approaches, three methods (see Figure 2.7) are proposed to incorporate

context in different phases of recommendation processes (Adomavicius and Tuzhilin, 2011):

contextual pre-filtering (PreF), contextual post-filtering (PoF) and contextual model-
ing (CM). All three methods can be adapted to the approach: contextual preference elicita-

tion and estimation, while only contextual pre-filtering method is available for the approach:

context-driven querying and search.

2.5.2.1 Contextual pre-filtering

First, contextual pre-filtering method (PreF) (shown in Figure 2.7 (a)) applies contextual

information to filter utilities (ratings) that are irrelevant to specific contexts (Adomavicius

et al., 2005). Particularly, context can essentially serve as a query for selecting relevant

utilities (ratings) (Adomavicius and Tuzhilin, 2011). If the data filtering query is constructed

using exactly the specified context (e.g., movies made in December 2019), it is exact PreF

(Adomavicius and Tuzhilin, 2011). Alternatively, generalized PreF applies the query that

refers to some generalization of the specified context (e.g., movies made in winter 20119)

(Adomavicius et al., 2005).
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Afterwards, approaches of 2D RSs (presented in Section 2.5.1) are used to predict un-

known utilities (ratings) and thus generate recommendations for users. This results in one

major advantage of this method: PreF supports the use of any 2D recommendation approach

and technique (Adomavicius and Tuzhilin, 2011).

2.5.2.2 Contextual post-filtering

The basic idea of contextual post-filtering (PoF) (shown in Figure 2.7 (b)) is to analyze the

contextual data for a given user in a particular context to find usage patterns of specific items,

and then use these patterns to adjust the item list, resulting in context-aware recommendations

(Adomavicius and Tuzhilin, 2011). In other words, the first step is applying approaches of

2D RSs (presented in Section 2.5.1) to have un-contextual recommendation results. Thus, an

advantage of this method lies in the capacity to use any 2D recommendation approach and

technique.

Then, the particular context is applied to filter out irrelevant results or adjust the ranking

of recommendations. Two different techniques are available (Adomavicius and Tuzhilin,

2011).

• Heuristic post-filtering focuses on finding common item attributes (characteristics)

for a given user in a particular context and then use these attributes to adjust the rec-

ommendations. For example, an attribute can be an actor (actress) that the user prefer

to watch his (her) movies in a particular context.

• Model-based post-filtering can build predictive models that calculate the probability

with which the user chooses a certain type of item in a particular context and then

use this probability to adjust the recommendations (e.g., probability of relevance that

males choose to watch a romantic movie in a particular context). Then, the probability

is used to adjust the recommendations. Particularly, Panniello and Gorgoglione (2012)

proposed two ways to adjust the recommendations: weight PoF reorders the recom-

mendations by weighting the predicted rating with the probability, while filter PoF

filters out recommendations that have small probability (Panniello and Gorgoglione,

2012; Adomavicius and Tuzhilin, 2011).

2.5.2.3 Contextual modeling

Contextual modeling (CM) methods (shown in Figure 2.7 (c)) directly use context inside

the recommendation generation process as explicit attributes of a user’s rating for an item. In

other words, approaches of 2D RSs (presented in Section 2.5.1) can no longer be applied to

implement CM without any changes.
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CM gives rise to truly multidimensional recommendation functions, which essentially

represents predictive models or heuristic calculations that incorporate contextual information

in addition to the user and item data (Adomavicius and Tuzhilin, 2011), i.e., Rating =

RCARS(D1, D2, ..., Dn)(n ≥ 3, n ∈N∗)21.

Adomavicius et al. (2005) presented a CM method, known as contextual-neighbors CM.

It defines a contextual profile Pro f (i, c) for each user, which aims to calculate cosine simi-

larities among users and to find N nearest neighbors of user i in a specific context c.

2.5.3 Discussion

From previous research, the techniques and methods of CARS are still immature when

compared to those of 2D RS. However, there is something in common between CARS and

2D RS approaches. For example, both monolithic hybrids and PreF must pre-process the

data. Parallelized hybrids and PoF need a post-process step in the recommendation gener-

ating process. This indicates that 2D RS approaches are important sources of inspiration

for CARS approaches, thus contributing to their development. Accordingly, methods and

techniques in 2D RSs can be borrowed and adapted to generate context-aware collaborator

recommendations in CWEs.

Specifically, we summarize the 2D recommendation approaches that can be directly used

in a CARS method (see Table 2.9). Although both PreF and PoF can support any 2D recom-

mendation approaches, they require extra steps in generating recommendation: PreF needs

to first filter out irrelevant data from sources, as pre-processing step, and PoF must filter

out irrelevant 2D recommendation results, as post-processing step (as shown in Figure 2.7).

Besides, CM necessitates more complicated rating functions to deal with three or more di-

mensions of data in the recommendation generating process (as shown in Figure 2.7). Con-

sequently, any 2D recommendation approaches can not be directly applied in CM.

TABLE 2.9: Summary of 2D recommendation approaches that can be di-
rectly used in CARS methods.

CB CF KB Hybrid

PreF Yes Yes Yes Yes

PoF Yes Yes Yes Yes

CM No No No No

Moreover, the multidimensional data in CARS also causes difficulties: from the perspec-

tive of data volume, CM can not handle the same amount of users and items as the other two

methods (PreF and PoF). While CM needs to process data of D1 × D2 × ...× Dn, the other

two focus only on data of D1 × D2. Meanwhile, as the dimensions of the data increase, the

21Here, D1, D2, ..., Dn represent n dimensions of CARS (including User, Item, Context, ...).



Chapter 2. Literature review 47

computational complexity of CM becomes higher and higher. However, for the other two

methods (PreF and PoF), only their extra steps (pre-processing and post-processing) become

more complicated. This indicates that, unlike PreF and PoF, CM is too costly when data vol-

ume and complexity are heavy. Thus, we concentrate on applying PreF and PoF to generate

context-aware collaborator recommendations in this thesis.

As discussed in Section 2.5.1, each 2D recommendation approach (CB, CF, KB and Hy-

brid) has its own advantages and disadvantages in terms of data entry and recommendation

outcomes. For instance, KB always places higher requirements than the others due to its use

of knowledge bases, making it non-universal and high cost. This necessitates us to consider

and adopt these approaches following the needs of the context-aware collaborator recom-

mendations in this thesis.

Specifically, all these 2D recommendation approaches employ a semantic technique: on-

tology. In CB approach, ontology is used to construct user profiles and/or item descriptions

(Middleton, Shadbolt, and De Roure, 2004; Cantador, Bellogín, and Castells, 2008); within

CF, ontology serve to calculate similarities between items or users (Zhang, Gong, and Xie,

2013); in KB, ontology is applied to build knowledge bases (Chen et al., 2012; Tarus, Niu,

and Mustafa, 2018); ontology has various possibilities of use due to the combined native ap-

proaches (CB, CF, and KB) in Hybrid. This enables us to work differently with the ontology

depending on the needs of 2D RS, indicating that ontology is a flexible and extensible tech-

nique in generating 2D recommendations. Besides, as a semantic representation, ontology

can also be combined with data mining techniques to explore semantic data (Ristoski and

Paulheim, 2016; Dou, Wang, and Liu, 2015). It helps narrow the semantic gaps between data

from different domains and/or sources (Dou, Wang, and Liu, 2015), enriching data entry in

2D RSs. We are therefore interested in implementing ontology to generate context-aware

collaborator recommendations.

2.6 Chapter summary

In this chapter, we first introduced collaboration and presented the various factors that

can affect its success. Analyzing and adjusting the integration of these factors can make col-

laborations have a greater chance of success. Particularly, the factor context is so complex

that it may influence other factors as well. It also has an impact on both the actual process and

the effectiveness of collaboration (Patel, Pettitt, and Wilson, 2012). This necessitates con-

sidering these factors within context rather than merely integrating them together. Besides,

recommending collaborators also assists in achieving successful collaborations.

Then a retrospect about context was presented. Here, we explored definitions of context

and emphasized three basic elements in constructing an entity’s context: contextual infor-

mation, factors, and dimensions. Based on previous work, the definitions of context are not

uniform. This poses challenges in defining the context of the collaboration and building its
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model. Thus, multiple approaches of context modeling were also presented. After compar-

ing these approaches, we notice the advantages of the ontology-based modeling approach in

terms of flexibility, extensibility, interpretability, reusability, and its support for interoperabil-

ity between multiple information systems. Hence, we choose to construct an ontology-based

collaboration context model (i.e., a collaboration context ontology).

Afterward, two notions, web-based Collaborative Working Environment and System of

Information Systems, were investigated and compared. The similarity between them inspires

us that a web-based CWE is a collaborative SoIS when its integrated tools are independent.

Such a relationship implies that the solutions provided for collaborative SoISs can also be

transferred to web-based CWEs to handle similar problems. Therefore, the architecture of

ontology-based collaborative SoISs (Saleh and Abel, 2016) can also be considered from the

viewpoint of web-based CWEs, providing an opportunity to apply and integrate the collab-

oration context ontology into web-based CWEs. As for the appropriate collaborators, estab-

lishing a context-aware collaborator recommender system in web-based CWEs is a suitable

option.

Finally, 2D recommender system and context-aware recommender system were distin-

guished, including the approaches and techniques applied in these recommender systems.

We also analyzed their advantages and disadvantages in generating recommendations. Af-

ter excluding CM, appropriate 2D recommendation approaches should be implemented in

PreF and PoF to generate context-aware collaborator recommendations. Additionally, due to

the flexibility and extensibility of ontology in generating 2D recommendations, we therefore

have interests in employing the collaboration context ontology for recommending collabora-

tors to users in web-based CWEs.

In the next chapter, we will present the MEMORAe approach, which assists us in defining

and implementing the collaboration context ontology into web-based CWEs.
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Chapter 3

A survey of MEMORAe approach

3.1 Introduction

The MEMORAe approach encompasses a web platform and a core ontology, originally

intended to manage resources within organizations and to support the organizational learning

process (Atrash, Abel, and Moulin, 2014). With its developments, the MEMORAe approach

has been used for other purposes. Specifically, it has been once employed to support collab-

orations in organizations (Deparis, 2013; Wang, 2016) and to manage resources in a System

of Information Systems (SoIS) (Saleh and Abel, 2016). Both are close to our focus in this

thesis: supporting users’s collaborations in web-based CWEs which can also be considered

as collaborative SoISs. This signifies that it is necessary to explore the MEMORAe approach.

Thus, the remaining parts of this chapter are organized as follows: Section 3.2 introduces

a continuation of the MEMORAe approach, which can facilitate individuals’ collaborations

through a core ontology MC2 and a web platform E-MEMORAe2.0 (Atrash, 2015; Deparis,

2013). Section 3.3 presents another continuation, including a core ontology SOIS and a web

platform MEMORAe SOIS, aiming at resource management in a SoIS (Saleh and Abel, 2016).

Next, we discuss the advantages and disadvantages of the MEMORAe approach in Section

3.4. At the end of this chapter comes the conclusion.

3.2 MC2 and E-MEMORAe2.0

As an ontology, MC2 concentrates on three main modules: Individuals and groups of
individuals, Resource, and Activity, by integrating with four existing ontologies: SIOC1,

FOAF2, PROV3, and VCard4 (Deparis, 2013; Atrash, 2015). Its general view is shown in

Figure 3.1. All concepts in MC2 starts with the prex mc2 indicating its namespace.5

1https://www.w3.org/Submission/sioc-spec/
2http://xmlns.com/foaf/spec/
3https://www.w3.org/TR/prov-overview/
4https://www.w3.org/TR/vcard-rdf/
5The complete MC2 ontology is available at https://gitlab.utc.fr/lisiying/

ontologies-in-the-thesis-of-siying-li.git.

https://www.w3.org/Submission/sioc-spec/
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/vcard-rdf/
https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
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FIGURE 3.1: General view of MC2 with its three main modules (Deparis,
2013; Atrash, 2015).

Individuals and groups of individuals

This module is instantiated from SIOC and FOAF ontology (see Figure 3.2). An indi-

vidual is a person that may have one or more user accounts. These user accounts can be

members of groups, either personal, institutional, or free. Specifically, each group has its

own space where its members carry out activities and operate on different resources.

FIGURE 3.2: Individual and group module of MC2 (Deparis, 2013).

Each individual holds a VCard (see Figure 3.3). A VCard6 represent a virtual contact

file for individuals, where their personal information (e.g., address, telephone number) is

contained.
6https://en.wikipedia.org/wiki/VCard

https://en.wikipedia.org/wiki/VCard
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FIGURE 3.3: VCard in MC2 (Atrash, 2015).

Resource

MC2 divides resources into two categories: simple and composite (see Figure 3.4). A

document, a vote or an agent can be instances of simple resources. An agent is something that

does stuff, such as a person, group or organization. Composite resources are more complex,

usually containing other resources.

FIGURE 3.4: Resource module of MC2 (Deparis, 2013).

Each resource is referenced by an index key that is visible at a group space. This ties a

resource to a group. Besides, one resource is also associated with a concept in a semantic

map, which enables users to browse and interact with resources available in different groups.
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Activity

Activity module of MC2 represents the processes and procedures done over time. It de-

fined two types of activities: mc2:ProceduralActivity and mc2:InteractionActivity (see Figure

3.5). Specifically, the second represents interaction activities in the web platform through im-

porting PROV ontology and identifying six sub-activity types: creating, deleting, modifying,

accessing, adding, and sharing (Wang, 2016). These activities focus on individuals’ interac-

tions with resources. Each interaction activity takes place over a time period and acts on or

with resources. This can compose and generate individual activity traces. Each trace belongs

to an individual and is linked to the index key of the concerned resource.

FIGURE 3.5: Activity module of MC2 (Atrash, 2015; Wang, 2016).

Besides, in the web platform E-MEMORAe2.0 (see Figure 3.6), individuals can collab-

orate in organizations (Atrash, 2015; Deparis, 2013). An organization is considered as a

collection of individuals belonging to different groups. Each group provides a sharing space

for individuals, where they are allowed to add and share resources (e.g., notes, documents)

in a common reference (represented as a semantic map in Figure 3.6). Specifically, all re-

sources are indexed by the concepts in the semantic map. When a concept is selected, it

becomes the focus concept. Then, the resources indexed by this focus concept are accessible

to individuals, in different sharing spaces. Besides, individuals are also able to collaborate

through informal communication and spontaneous production of knowledge, e.g., semantic

wiki, chat, or forum (Atrash, 2015).
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FIGURE 3.6: The main interface of E-MEMORAe2.0 (Atrash, 2015).

3.3 SOIS and MEMORAe SoIS

The core ontology SOIS is extended from MC2 (Saleh and Abel, 2016). It aims to ag-

gregate and manage resources from different information systems (ISs) (Saleh, 2018). Thus,

SOIS updated two main modules: Resource and Activity. All concepts in SOIS starts with

the prex sois indicating its namespace.7

Resource

In a SoIS, resources are stocked in the information system where they were originally

stored, whether a leader system (represented by sois:LeaderSystem) or a component system

(represented by sois:WebBasedApplication and sois:SandAloneSystem). When a resource is

contained in a component system, the leader system can provide users access to the resource

through a reference key. In SOIS, each resource has a reference key to link itself and the

7The complete SOIS ontology is available at https://gitlab.utc.fr/lisiying/
ontologies-in-the-thesis-of-siying-li.git.

https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
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leader system (see Figure 3.7). Such a key can be an HTML tag, a Database Identifier, or a

Hash tag.

FIGURE 3.7: Resource module of SOIS (Saleh, 2018).

Activity

Users’ activities in the web platform is presented with the help of ms:Activity, which is

derived directly from mc2:Activity (see Figure 3.8). SOIS considers five interaction activity

types: accessing, deleting, voting, commenting and sharing. Besides, it also represents users’

accessing systems activity using sois:NavigationActivity. Similar to MC2, traces of activities

defined in SOIS are also recorded and collected.

FIGURE 3.8: Activity module of SOIS (Saleh, 2018).

Besides, the web platform MEMORAe SoIS links to multiple autonomous external ISs for

capitalizing the resources they can produce (Tiddlywiki, twitter, google contact, OneNote,

etc.). These external ISs and MEMORAe SoIS together constitute a SoIS (see Figure 3.9),
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where each resource is accessible in sharing spaces and indexed by the concepts in a semantic

map.

FIGURE 3.9: The main interface of MEMORAe SoIS (Saleh, 2018).

Particularly, the core ontology SOIS is used as a knowledge base of the leader system

MEMORAe SoIS (see Figure 3.10).

FIGURE 3.10: An architecture of collaborative SoISs (Saleh, 2018).
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3.4 Discussion

Consisting of a core ontology and a web platform, the MEMORAe approach is suitable

to construct and implement an ontology-based collaboration context model in web-based

CWEs. Particularly, the reusability of ontology makes it possible to extend and composite

the two existing ontologies (i.e., MC2 and SOIS) into an ontology-based collaboration con-

text model, which can greatly simplify the construction process. The web platforms allows

us to develop a prototype of web-based CWEs, where the ontology-based collaboration con-

text model can be integrated to collect and process information within the context of users’

collaborations.

Besides, both MC2 and SOIS are ontology-based models of collaboration. MC2 estab-

lishes the fundamental modules for collaborations between users in organizations. And SOIS

deals with users’ collaborations in a SoIS by accounting for the complexity and diversity of

resource systems. This implies that MC2 and SOIS are worth reusing to build the ontology-

based collaboration context model. Specifically, the main modules of MC2 and SOIS already

cover several key impacting factors of collaboration (cf. Section 2.2). For instance, the two

modules resource and activity correspond separately to the factors resources and collabora-

tors’ actions. Note that these factors are not completely represented and must be modified in

the ontology-based collaboration context model.

However, MC2 and SOIS still have limitations respectively. Neither MC2 nor SOIS can

support all users’ collaborative activities in web-based CWE due to the incompleteness of

their activity modules. MC2 does not consider vote or comment for resources, while SOIS

does not support adding, creating, or modifying resources. Moreover, simply accumulat-

ing their activity modules together leads to redundant activities (access, share, and delete

resources). This requires us to integrate and reorganize the two existing ontologies into the

ontology-based collaboration context model. It must also be supplemented and extended ac-

cording to the definition of the collaboration context, which will be presented in the rest of

this thesis.

3.5 Chapter summary

In this chapter, we presented the MEMORAe approach and its compositions. After

comparing its advantages and disadvantages, we decide to apply and continue the MEM-

ORAe approach in this thesis, which can save our efforts in constructing and implementing

an ontology-based collaboration context model in web-based CWEs.

In the next part, we will introduce our contributions in this thesis and explain how to gen-

erate relevant collaborator recommendations in web-based CWEs by constructing a Context-

Aware Recommender System (CARS) that produces context-aware collaborator recommen-

dations.
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Part III

Contributions



58

Chapter 4

Collaboration context and its model

4.1 Introduction

To construct a Context-Aware Recommender System (CARS) that generates context-

aware collaborator recommendations in a web-based Collaborative Working Environment

(CWE), the first encountered problem is: what is the context of collaboration and how to

model it? To address this, we need to clearly define context and collaboration context. It

is also necessary to obtain an architecture of context models from which a well-designed

collaboration context model can be established, which is also the core of CARS. Particularly,

considering the advantages of the ontology-based modeling approach in terms of flexibility,

extensibility, interpretability, reusability, and its support for interoperability between multiple

information systems, we intend to construct an ontology-based collaboration context model

(i.e., a collaboration context ontology) in web-based CWEs.

Therefore, the rest of this chapter is organized as follows. Section 4.2 presents our work

on the definitions of context and collaboration context. Specifically, drawing on the definition

of context, an architecture of context models is developed. Based on this architecture, we

then explain how an ontology-based collaboration context model can be built and used in

web-based CWEs (cf. Section 4.3). There is a summary at the end of this chapter.

4.2 Definitions

Based on the definitions of context (cf. Section 2.3.1), context contains the characteristic

information that is pertinent to the circumstances of an event, statement, or object. When

considering the event, statement or object as an entity, a user or application in the field of

information technology can also be an entity (Dey, 2001). This indicates that the ranges

of entities are varied in different fields, which we need to clarify in the definition of con-

text. Besides, context is sensitive to time and its influence on the entity may shift over time.

This should also be pointed out while defining context in this thesis. Therefore, context is

identified as follows by supplementing Dey (2001)’s definition of context:
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Context is any information that can be used to characterize the situation of an entity

over a given period of time. An entity is a person, place, event or object that is consid-

ered relevant to the interaction between a user and an application, including the user

and the application themselves.

Any information considered as belonging to an entity’s context is contextual informa-
tion. It is also the value of contextual factors. For example, the value of factor hour is

17h. Such factors can be grouped into contextual dimensions to describe the situation of an

entity. For instance, dimension time may include four factors: year, month, day, and hour.

These three interrelated concepts (contextual information, factor and dimension) can form an

architecture of context models (see Figure 4.1).

FIGURE 4.1: An architecture of context models.

The architecture (see Figure 4.1) describes an entity’s context model. Particularly, this

entity can be of different types. For example, for four types of entities: natural, human,

artificial and group (see Table 2.7) (Zimmermann, Lorenz, and Oppermann, 2007), their con-

textual models respect this architecture. Thus, based on this architecture, any entity’s context

model can be developed by identifying the entity and defining its contextual dimensions, fac-

tors, and information. In this way, we are able to construct context models for all entities in

web-based CWEs, regardless of the modeling approach.

Specifically, since the main purpose of web-based CWEs is to support users’ collabora-

tions, an indispensable entity in such environments is collaboration. Besides, defining the

context of collaboration and building its model make it possible to gather more informa-

tion about collaborations, thus helping users to understand their collaborations and to solve

problems during collaborations. Therefore, in web-based CWEs, it is necessary to define

the collaboration context and establish its model based on the architecture shown in Figure

4.1. Particularly, we determine to construct an ontology-based collaboration context model

(i.e., a collaboration context ontology), given the advantages of the ontology-based modeling

approach as discussed in Section 2.6.

To define the collaboration context, the definitions of collaboration should be investi-

gated. Based on the literature review of collaboration (cf. Section 2.2.1), a collaboration
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indicates two collaborators working together to accomplish their common goals through at-

tempts. Therefore, collaboration can be defined as an event that involves at least two collab-

orators and consists of a set of actions carried out by the human actors acting on behalf of the

corresponding collaborator, in order to achieve a common goal. Considering collaboration as

an entity, the collaboration context can be defined precisely as follows, based on our above

proposed definition of context:

The collaboration context is any information that can be used to characterize the situa-

tion of a collaboration over a given period of time. In web-based CWEs, collaboration

is an event considered relevant to the interaction between users and/or applications,

including the users and the applications themselves.

FIGURE 4.2: The architecture of the collaboration context ontology.

Next, to construct the ontology-based collaboration context model, we need to specify

contextual dimensions, factors, and information of collaboration. While identifying the con-

textual factors, we need to explore the impacting factors of collaboration because of their

influences on collaboration and its success (cf. Section 2.2). Notably, one of these impacting

factors context affects other factors as well, requiring us to consider such impacting factors

within the collaboration context. This signifies that these impacting factors can serve as con-

textual factors of collaboration. Thus, the contextual factors are represented by the impacting

factors of collaboration. Groups of these impact factors are therefore equivalent to contex-

tual dimensions, such as the groups in Table 2.1, 2.2 and 2.3. Besides, contextual information

acts as the values of these factors. Hence, the ontology-based collaboration context model is

composed of impacting factors, their values, and their groups (see Figure 4.2).

Specifically, we focus on eight groups of impacting factors: Goal, Collaborator, Activity,

Resource, Time, Location, Relation, and Satisfaction. The first four groups are identified as

a result of the analysis and discussion of shared impacting factors in Section 2.2.2. Next

two groups Time and Location present two basic features of a collaboration: temporal and

spatial. Since collaborations are connected, we also define an group Relation to encompass

the factors that are relevant to these relationships between collaborations. Finally, the group
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Satisfaction allows users to give their personal views about a collaboration. Each of these

eight groups consists of several relevant impacting factors.

1. Goal includes multiple factors to describe desired products (outcomes) of a collabora-

tion.

2. Collaborator is represented by factors about collaborator’s abilities and demographic

information.

3. Activity employ factors to specify types, actors, involved resources, time, and loca-

tions of activities during a collaboration.

4. Resource contains factors on resource types and identifications.

5. Time has factors to record start time and end time of a collaboration.

6. Location holds factors on identifications, types, and geographical information (e.g.,

longitude and latitude) of the places that are involved in a collaboration.

7. Relation comprises factors to stand for other related collaborations.

8. Satisfaction owns factors to represent collaborators’ satisfaction degrees and com-

ments about a collaboration.

With the identified contextual dimensions and factors, the ontology-based collaboration

context model can be developed in web-based CWEs. Particularly, the process of building

this model can be simplified by the existing ontologies of the MEMORAe approach (i.e.,

MC2 and SOIS) as discussed in Section 3.4. Thus, both MC2 and SOIS are extended and

reused in the ontology-based collaboration context model.

4.3 Model: Collaboration context ontology

Based on MC2 and SOIS, an ontology-based collaboration context model (i.e. a collab-

oration context ontology) in web-based CWEs is constructed, known as MCC1. It can:

1. Define contextual information, factors, and dimensions of collaboration

2. Describe users’ collaborations and their contexts

3. Serve as a knowledge base

4. Process heterogeneous information from different sources

1All concepts in MCC starts with the prex mcc indicating its namespace. The complete MCC ontology is avail-
able at https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.
git.

https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
https://gitlab.utc.fr/lisiying/ontologies-in-the-thesis-of-siying-li.git
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FIGURE 4.3: Eight contextual dimensions of collaboration in MCC (T-Box
component).
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This section explains the first two functionalities using the scenario presented in Sec-

tion 1.2, where Emma collaborated with Lucie and Marinela in a context-aware application

project. The rest two functionalities of MCC will be presented in Chapter 6.

To define collaborations, MCC applies a class of user group, mcc:UserGroup (see Figure

4.3). An instance of mcc:UserGroup indicates a collaboration between the members of the

corresponding user group. In the scenario, Emma’s collaboration in the context-aware ap-

plication project can be represented by an instance kb:Context_aware_application_project2.

It provides a sharing space (i.e., kb:Group_space_1) for Emma, Lucie, and Marinela to in-

teract with each other and to access available resources. Every mcc:UserGroup is held by a

mc2:Group, equivalent to foaf:Group. This class represents a group in the real world. Mem-

bers of a mcc:Group3 can collaborate multiple times (see Figure 4.4), while members of a

mcc:UserGroup are limited to a single collaboration.

kb:Context_aware_application_project rdf:type mcc:UserGroup

kb:Context_aware_application_project rdf:type sioc:Usergroup

(BY INFERENCE)

kb:Scientific_group rdf:type mcc:Group

kb:Scientific_group rdf:type foaf:Group (BY INFERENCE)

kb:Scientific_group mcc:holdsUserGroup

kb:Context_aware_application_project

kb:Emma rdf:type mc2:Person

kb:Emma rdf:type mc2:Agent (BY INFERENCE)

kb:Emma rdf:type foaf:Agent (BY INFERENCE)

kb:Scientific_group foaf:member kb:Emma

kb:Lucie rdf:type mc2:Person

kb:Scientific_group foaf:member kb:Lucie

kb:Marinela rdf:type mc2:Person

kb:Scientific_group foaf:member kb:Marinela

kb:Group_space_1 rdf:type mc2:Space

kb:Group_space_1 rdf:type sioc:Space (BY INFERENCE)

kb:Group_space_1 sioc:has_usergroup kb:Scientific_project

kb:Context_aware_application_project sioc:usergroup_of

kb:Group_space_1

Surrounding mcc:UserGroup, the eight contextual dimensions of collaboration (i.e., Goal,

2All instances of the scenario starts with the prex kb indicating its namespace.
3In MCC, a mcc:Group can create multiple instances of mcc:UserGroup to stand for different collaborations.
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FIGURE 4.4: The dimension Collaborator in MCC (T-Box component).

Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction) are represented

by different classes and/or their interrelationships, as specified with rectangles in Figure 4.3.

In MCC, a mcc:UserGroup includes a set of collaborators (at least two) that have a com-

mon goal to achieve and hold their own user accounts. These collaborators are human actors

acting on behalf of themselves, groups or even organizations, which is detailed in Figure 4.4.

In the scenario, the instance of mcc:UserGroup (i.e., kb:Context_aware_application_project)

contains user accounts of Emma, Lucie, and Marinela, rather than themselves. These users

accounts are managed in a web-based CWE (represented by sois:LeaderSystem). Through

their accounts, Emma, Lucie, and Marinela can access to different collaborative tools (rep-

resented by sois:StandAloneSystem and sois:WebBasedApplication) that are integrated into

the web-based CWE.

kb:Emma_account rdf:type mc2:Account

kb:Emma_account rdf:type sioc:UserAccount (BY INFERENCE)

kb:Emma_account rdf:type foaf:OnlineAccount (BY INFERENCE)

kb:Emma foaf:holdsAccount kb:Emma_account

kb:Emma_account sioc:member_of kb:Scientific_group

kb:Scientific_group sioc:has_member kb:Emma_account

kb:Lucie_account rdf:type mc2:Account

kb:Lucie foaf:holdsAccount kb:Lucie_account

kb:Lucie_account sioc:member_of kb:Scientific_group

kb:Scientific_group sioc:has_member kb:Lucie_account

kb:Marinela_account rdf:type mc2:Account

kb:Marinela foaf:holdsAccount kb:Marinela_account
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kb:Marinela_account sioc:member_of kb:Scientific_group

kb:Scientific_group sioc:has_member kb:Marinela_account

Besides, a mcc:UserGroup has a common goal among its members. Such a goal is de-

scribed by multiple concepts, expressed as owl:Thing in MCC. In the scenario, the goal of

the context-aware application project is to build a context-aware application and to publish a

corresponding paper (see Figure 4.5).

FIGURE 4.5: The goal of the context-aware application project in the sce-
nario (A-Box component).

FIGURE 4.6: Time, Relation and Satisfaction representations in the scenario
(A-Box component).

For the other three dimensions (Time, Relation and Satisfaction), they are all directly

related to mcc:UserGroup. With them, MCC is able to register collaborator’s feedback and

analyze relationship between different collaborations. In the scenario, the context-aware

application project is a part of Emma’s PhD research with her professors. Thus, the two

instances of mcc:UserGroup are connected with each other (see Figure 4.6). Besides, Figure

4.6 also demonstrates the common collaborators, their satisfactions, start time, and end time

of the two instances.

MCC also applies MC2, SOIS, FOAF, SIOC, and VCard to model the contextual dimen-

sion - Collaborator (see Figure 4.4). Especially, MC2 and VCard aim to construct profiles

for collaborator, including their demographic information and abilities (see Figure 4.7). In
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the scenario, to arrange tasks between Emma, Lucie, and Marinela, their profiles can be con-

sulted. Figure 4.8 illustrates Marinela’s profile, indicating that she can develop interfaces of

the context-aware application.

FIGURE 4.7: Collaborator profile in MCC (T-Box component).

FIGURE 4.8: Marinela’s profile in the scenario (A-Box component).

As for Resource, MCC divides them into two categories based on their complexity levels:

simple and composite (see Figure 4.9). Particularly, resouces can be contained either in a

web-based CWE, or in an integrated collaborative tool. To associate resources in integrated

systems with the web-based CWE, sois:ReferenceKey is applied and included in the CWE.

Each sois:ReferenceKey and resource stored in the web-based CWE has a mc2:IndexKey

that is visible to certain user groups. Thus, through mc2:IndexKey and sois:ReferenceKey,

all resources are accessible and visible in user groups of the web-based CWE, regardless of

where they are deposited. When user interacting with different resources in the web-based

CWE, it is their reference keys and index keys that are used and modified. Moreover, each

resource is indexed with a concept of collaboration goals (represented by owl:Thing). This

signifies that resource in the web-based CWE are tied to the collaboration goals through

MCC.
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FIGURE 4.9: The dimension Resource in MCC (T-Box component).

Then, MCC integrates the two activities modules (in MC2 and SOIS) together and clas-

sifies activities into three categories (see Figure 4.10). Particularly, navigational activities

(represented by sois:NavigationActivty) involve browsing information systems and naviga-

tion concepts of collaboration goals. Users’ interaction activities on resource (represented

by mc2:InteractionActivity) are reorganized and updated (e.g. annotating and discussing re-

sources). Besides, MCC makes it possible to record users’ activities outsides the web-based

CWE (represented by mc2:ProceduralActivity). In the scenario, when Emma wrote the sci-

entific paper about their context-aware application (see Figure 4.11), she cited a previously

published conference paper wrote by herself. Her activity of writing the conference paper

did not take place in the web-based CWE, but can be imported into it as an instance of

mc2:ProceduralActivity. In MCC, any activity can utilize and/or generate anything, such

as resources. For example, Emma utilizes the conference paper and generates the scientific

paper in her activity of writing the scientific paper (see Figure 4.11).

Furthermore, an activity is associated with a location, represented by mcc:Location (see

Figure 4.12). Specifically for geographical locations, their longitude and latitude are con-

tained in MCC. Within information on locations, MCC can track what resources are used

in which activity at which location, such as the resources and locations involved in Emma’s

activity of writing the scientific paper (see Figure 4.11).
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FIGURE 4.10: The dimension Activity in MCC (T-Box component).

FIGURE 4.11: Emma’s creating resources activity (A-Box component).

FIGURE 4.12: Relation between dimensions Location and Activity in MCC
(T-Box component).
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Using MCC, users’ collaborations and their contexts in web-based CWEs can be pre-

sented around mcc:UserGroup. Particularly, users can examine the success of their collabo-

rations depending on the contextual dimension Goal. Meanwhile, the other seven dimensions

can serve to access the efficiency of their collaborations, such as collaborators’ contributions,

productivity of the performed activities, and utilities of the involved resources.

4.4 Chapter summary

In this chapter, we focused on defining and modeling the collaboration context in web-

based CWEs, enabling us to answer the first question listed in Section 1.1.3: what is collab-

oration context and how to model it.

Particularly, we first proposed a definition of context and an architecture of context mod-

els based on three interrelated concepts: contextual information, contextual factor, and con-

textual dimension. This then allows us to define the collaboration context and, based on the

architecture, to construct an ontology-based collaboration context model (i.e., a collaboration

context ontology), MCC. Finally, we explained how MCC can be applied to represent users’

collaborations and their contexts in web-based CWEs.

Within MCC, the next chapter will present how to incorporate the collaboration context

into the recommendation generation process and how to generate context-aware collaborator

recommendations.
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Chapter 5

Context-aware collaborator
recommendations

5.1 Introduction

With the definition and the ontology-based model of collaboration context, our next step

is to work out how to they can be processed and employed in algorithms for generating

context-aware collaborator recommendations? To achieve this, we need to integrate the col-

laboration context contained in the ontology-based model into the collaborator recommenda-

tion generation processes. For this, three methods are available: Pre-Filtering (PreF), Post-

Filtering (PoF), and Contextual Modeling (CM) (Adomavicius and Tuzhilin, 2011). Among

these methods, CM has limitations in computing multi-dimensional data when the volume

and complexity of the data are large as discussed in Section 2.5. Therefore, we focus on ap-

plying PreF and PoF in this thesis to generate context-aware collaborator recommendations

for users in web-based CWEs. Based on the literature review (cf. Section 2.5.2), the main

phases of the two methods are shown in Figure 5.1.

FIGURE 5.1: Main phases of PreF and PoF.
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Particularly, three common phases of PreF and PoF can be resumed, regardless of their

order:

• Employ User(U) and Item(I) to generate 2D recommendations

• Process Context(C) (pre-processing in PreF and post-processing in PoF)

• Produce context-aware recommendations

Following these common phases of PreF and PoF, three major pieces of work on context-

aware collaborator recommendations are needed: 1) generate 2D collaborator recommenda-

tions using User(U) and Item(I); 2) process the collaboration context (i.e., Context(C));
3) produce context-aware collaborator recommendations.

Therefore, the rest of this chapter is organized as follows. Section 5.2 first introduces

existing studies of a 2D recommendation algorithm and several ontology-based semantic

similarities. Section 5.3 presents how to generate 2D collaborator recommendations. Then,

we develop and utilize an ontology-based semantic similarity to process the collaboration

context (cf. Section 5.4). Next, Section 5.5 shows two algorithms and explains how they

can be used to produce context-aware collaborator recommendations. Finally comes the

summary of this chapter.

5.2 Preliminary

5.2.1 Probabilistic matrix factorization

Probabilistic Matrix Factorization (PMF) (Mnih and Salakhutdinov, 2008) is a 2D recom-

mendation algorithm, belonging to model-based CF approach (discussed in Section 2.5.1.2).

It was proposed and developed from Matrix Factorization (MF) (Koren, Bell, and Volinsky,

2009; Baltrunas, Ludwig, and Ricci, 2011).

When generating 2D recommendations, MF (Koren, Bell, and Volinsky, 2009; Baltrunas,

Ludwig, and Ricci, 2011) needs a rating matrix R of m× n that contains users’ ratings1 for

items (m users and n items). Given such a rating matrix R, MF factorizes it into two matrices

U of m× d and I of n× d. Usually, d(< min(m, n)) refers to the number of latent factors

that characterize users and items. For example, given a rating matrix R of 4× 3, d can equal

to 1 or 2. Then, a user is represented by a jth row vector in user matrix U(Uj ∈ U) and

an item by a kth column vector in item matrix I(Ik ∈ I). Finally, MF predicts the unknown

rating R̂jk that user j might give for item k following Equation 5.1:

1Usually, these ratings are non-negative. This indicates that Rjk ≥ 0. If Rjk = 0, then the user j has not yet
given his/her rating to the item k.
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R̂jk = Uj Ik + rk + bj + bk (5.1)

where rk is the average rating of item k in the rating matrix R; bj and bk indicates the observed

deviations of user j and item k. The predicted rating is broken into its four components:

global average (rk), item bias (bk), user bias (bj), and user-item interaction (Uj Ik).

Based on MF, PMF adopts a probabilistic linear model with Gaussian observation noise

(Mnih and Salakhutdinov, 2008) on the unknown ratings R∗jk(= Uj Ik). Its key idea is to treat

rating prediction as a generative process and define a conditional probability over the known

ratings (represented by positive ratings in R (Zhu, Shen, and Zhou, 2019). In PMF, Rjk− R∗jk
is normally distributed with mean 0 and variance σ2. Then the conditional probability of R∗jk
can be defined (see Equation 5.2) (Mnih and Salakhutdinov, 2008).

p(R|U, I, σ2) =
m

∏
j=1

n

∏
k=1

[N (Rjk|Uj Ik, σ2)]Vjk (5.2)

where Rjk ∈ [1, Q], Q is the maximum real-valued rating; Vjk is the indicator function that

is equal to 1 if user j rated item k and equal to 0 otherwise; the mean of [N (Rjk|Uj Ik, σ2)]Vjk

is Uj IkVjk and variance σ2Vjk.

Besides, Mnih and Salakhutdinov (2008) also placed zero-mean spherical Gaussian pri-

ors on user and item feature vectors. This implies that user and item feature vectors are also

normally distributed. Their conditional probabilities therefore are:

p(U|σ2
U) = ∏m

j=1N (Uj|0, σ2
UV)

p(V|σ2
I ) = ∏n

k=1N (Ik|0, σ2
I V)

(5.3)

where the mean of N (Uj|0, σ2
UV) is 0 and the variance σ2

UV; the mean of N (Ik|0, σ2
I V) is

0 and the variance σ2
I V.

Then, to get the values of user feature vectors, item feature vectors and unknown rat-

ings, maximum likelihood estimation and maximum a posteriori estimation are applied. The

likelihood function (see Equation 5.4) is about two parameters U and I, where others are

hyper-parameters. The goal is to minimize Equation 5.4 (Mnih and Salakhutdinov, 2008),

which is equivalent to maximizing the log-posterior of Equation 5.2 over users and items

with Equation 5.3.

L(U, I) =
1
2

m

∏
j=1

n

∏
k=1

Vjk(Rjk −Uj Ik)
2 +

λU

2

m

∏
j=1

∥∥Uj
∥∥2

Fro +
λI

2

n

∏
k=1
‖Ik‖2

Fro (5.4)

where λU = σ2/σ2
U , λI = σ2/σ2

I , and ‖·‖2
Fro denotes the Frobenius norm.



Chapter 5. Context-aware collaborator recommendations 73

A local minimum of the function in Equation 5.4 can be found by performing gradient

descent algorithm in Appendix A (Mnih and Salakhutdinov, 2008).

Particularly, the predicted ratings in PMF sometimes can exceed the range of valid rat-

ing values ([1, Q]) (Mnih and Salakhutdinov, 2008). Thus, to bound the range of predicted

ratings, Mnih and Salakhutdinov (2008) proposed to apply the logistic function G(Uj Ik) =
1

1+exp(−(Uj Ik))
, instead of directly using Uj Ik in Equation 5.2 and 5.4. They also mapped the

known ratings Rjk to the interval [0, 1] using the function T (Rjk) = (Rjk − 1)/(Q− 1), so

that the range of known ratings can match the range of predicted ratings in PMF. Accordingly,

the conditional probability of ratings transforms from Equation 5.2 to Equation 5.5:

p(R|U, I, σ2) =
m

∏
j=1

n

∏
k=1

[N (Rjk|g(Uj Ik), σ2)]Vjk (5.5)

5.2.2 Ontology-based semantic similarity

Semantic similarity is a measurement that aims to compute the likeness/relatedness be-

tween classes (instances) and their relationships in knowledge bases (Sánchez et al., 2012;

Batet, Sánchez, and Valls, 2011), helping to integrate knowledge into the data mining process

(Zhang et al., 2008). Thanks to the possibilities that ontologies can serve as knowledge bases,

ontology-based semantic similarities have recently been exploited. Such similarities can be

classified into three types (Sánchez et al., 2012; Batet, Sánchez, and Valls, 2011; Zhang et al.,

2008; Ovaska, Laakso, and Hautaniemi, 2008): path-based, feature-based, and information

content-based semantic similarity.

While measuring path-based semantic similarities, an ontology is seen as a directed graph

where classes (instances) are interrelated mainly by means of various relationships (e.g.,

is-a) (Sánchez et al., 2012). In such a graph, semantic similarities are usually calculated

based on the shortest path between two classes (instances) (Zhang et al., 2008; Rada et al.,

1989; Batet, Sánchez, and Valls, 2011). The longer the shortest path, the more semantically

different the two classes (instances) are (Sánchez et al., 2012). This implies that path-based

semantic similarities don’t necessitate the detailed information of each class (instance), which

is an advantage of such similarities. However, their main problem is that they have a strong

dependence on the degree of completeness, homogeneity and coverage of the relationships

in the ontology (Cimiano, 2006).

Besides, in the calculation of feature-based semantic similarities, classes (instances) in

ontologies are described by a set of ontological features (Zhang et al., 2008; Sánchez et al.,

2012). The more common features and the less non-common features two classes (instances)

have, the more similar they are (Varelas et al., 2005). To compare features, several coeffi-

cients on the sets are applicable to feature-based semantic similarities, such as Jaccard index
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Jaccard(Ox, Oy) = |Ox∩Oy|
|Ox |+|Oy|−|Ox∩Oy|

2 (Jaccard, 1901), Dice coefficient Dice(Ox, Oy) =
2|Ox∩Oy|
|Ox |+|Oy|

3 (Dice, 1945), and Tversky index Tversky(Ox, Oy) = |Ox∩Oy|
|Ox∩Oy|+α|Ox−Oy|+β|Oy−Ox |

4

(Tversky, 1977). This indicates that unlike path-based similarities, feature-based similarities

require detailed information about the features of each class (instance). Their one advantage

is that they can be employed in cross ontologies (i.e. when the two classes (instances) belong

to different ontologies), but path-based similarities cannot (Petrakis et al., 2006).

As for information content-based semantic similarities, they measure the amount of in-

formation provided by a common ancestor of two classes (instances) in an ontology (Batet,

Sánchez, and Valls, 2011; Zhang et al., 2008; Sánchez et al., 2012). Particularly for a class

(instance) x, such similarities utilize IC(x)(= − log p(x))5 to identify the amount of its

provided information. Using IC(x), infrequent classes (instances) are more informative than

the frequent ones (Sánchez et al., 2012). However, such semantic similarities request re-

cursive computation of all classes’ and instances’ appearances in an ontology. If any class

(instance) or their relations change, recalculations are mandatory. This also implies that in-

formation content-based semantic similarities are inapplicable in cross ontologies, lowering

the scalability of such similarities (Batet, Sánchez, and Valls, 2011).

Beyond the mentioned similarities, there are other semantic similarities as well. For

example, Batet, Sánchez, and Valls (2011) proposed a semantic similarity that combines

feature-based and information content-based similarities. Carrer-Neto et al. (2012) employed

Equation 5.6 to calculate the semantic similarity based on the features of classes (instances)

and the information provided by their relationships.

Similaritysemantic(x, y) =
|Px∩Py|

∑
g=1

|Ox
pg
∩Oy

pg |
max(|Ox

pg
|, |Oy

pg |)
×Weight(pg) (5.6)

where |Px ∩ Py| indicates the number of relationships that both x and y have; |Ox
pg
| repre-

sents the number of classes (instances) associated to x through the relationship pg; |Ox
pg
∩

Oy
pg | represents the number of common classes (instances) associated to x and y through the

relationship pg; Weight(pg) expresses the importance of the relationship pg.

5.3 2D collaborator recommendations

To generate 2D collaborator recommendations, a 2D recommendation approach should

be selected. Based on the literature review of 2D recommendation approaches (cf. Section

2Here, x and y are two classes (instances) in ontologies; Ox and Oy refer to their sets of ontological features;
|Ox ∩Oy| the number of common features in the sets Ox and Oy; |Ox| denotes the number of features in the set
Ox. The range of Jaccard(Ox, Oy) is [0, 1].

3The range of Dice(Ox, Oy) is [0, 1].
4Here, Ox −Oy denotes the relative complement of Oy in Ox. α, β ≥ 0 are parameters of the Tversky index.

Setting α = β = 1 produces Jaccard index; setting α = β = 0.5 produces Dice coefficient.
5Here, p(x) is the probability of x’s appearance in the ontology.
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2.5.1), four main approaches can be applied: Content-Based filtering (CB), Collaborative

Filtering (CF), Knowledge-Based (KB), and Hybrid.

First, due to the data entry conflict, CB approach is not appropriate. Specifically, CB

needs information to construct collaborator (i.e., item) descriptions and user profiles to gener-

ate 2D collaborator recommendations (Lops, De Gemmis, and Semeraro, 2011; Adomavicius

et al., 2005). However, such information belongs to the collaboration context (Context(C) in

Figure 5.1), instead of users and collaborators (User(U) and Item(I) in Figure 5.1). Thus,

CB is inappropriate for generating 2D collaborator recommendations in web-based CWEs.

Then, KB approach is also unsuited because of the data entry conflict and its extra re-

quirements. To generate 2D collaborator recommendations, KB additionally necessitates

knowledge bases. The information contained in such knowledge bases is part of collabora-

tion context (Context(C) in Figure 5.1), such as collaborator (i.e., item) descriptions (Bridge

et al., 2005; Felfernig et al., 2011), resulting in data entry conflict. Besides, the construction

of knowledge bases makes KB non-universal and high cost, having no interest for us.

Moreover, Hybrid approach can’t be implemented, owing to its nature. Such approaches

must combine two or more other native approaches (CB, CF, and KB) (Adomavicius and

Tuzhilin, 2005; Burke, 2002). However, recognizing the shortcomings of the two native

approaches (CB and KB), only one native approach is applicable. It is therefore impossible

to realize Hybrid approaches for generating 2D collaborator recommendations.

Finally, in CF approach, model-based CF generates 2D recommendations just with users’

ratings for items (Breese, Heckerman, and Kadie, 1998). This suggests that only User(U)

and Item(I) are used in this approach (see Figure 5.1), there is no data entry conflict in

applying model-based CF. Plus, we’re in a web-based CWE where users collaborate with

each other in corresponding user groups. In such environments, model-based CF approaches

have already been used to generate recommendations (Wang et al., 2012). Thus, we decide to

employ model-based CF for generating 2D collaborator recommendations for users in web-

based CWEs. Specifically, model-based CF involves many techniques: Bayesian networks

(Breese, Heckerman, and Kadie, 1998), Markov decision process (Shani, Heckerman, and

Brafman, 2005), MF (Koren, Bell, and Volinsky, 2009), Latent Dirichlet Allocation (LDA)

(Blei, Ng, and Jordan, 2003), Singular Value Decomposition (SVD) (Billsus and Pazzani,

1998). Among all these techniques, we turn toward PMF (Mnih and Salakhutdinov, 2008),

developed from MF. This is mainly for three reasons.

1. As techniques in model-based CF approach, both PMF and MF can be directly inte-

grated in PreF and PoF. Besides, MF is even capable of generating recommendations

with several types of context, such as Collective MF (CMF) (Singh and Gordon, 2008)

and context-adaptive MF (AdaMF) (Man et al., 2015).

2. MF is a widely used technique in generating 2D recommendations and context-aware

recommendations (Raza and Ding, 2019). It has excellent performances in the Netflix
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Prize6 competition (Adomavicius et al., 2005) and provides a foundation for other

algorithms, such as Tensor Factorization (TF) (Karatzoglou et al., 2010) and Sparse

LInear Model (SLIM) (Ning and Karypis, 2011).

3. As an evolved version of MF, PMF was proposed and proved to be effective and accu-

rate (Mnih and Salakhutdinov, 2008). PMF considers the rating as a random variable

and applies Gaussian distribution as a conditional probability over the known ratings,

which performed well on the large, sparse, and very imbalanced Netflix dataset (Mnih

and Salakhutdinov, 2008). This indicates that PMF becomes a new milestone in the de-

velopment of MF since it solve sparsity problem and makes MF a technique that only

has cold-start problem. Based on PMF, many enhancements and derived applications

have been studied, such as Bayesian PMF (BPMF) (Salakhutdinov and Mnih, 2008)

and Generalized PMF (Shan and Banerjee, 2010). Ma et al. (2008) also applied PMF

to solve social recommendation problems.

Therefore, PMF is chosen to generate 2D collaborator recommendations for users in

web-based CWEs. Correspondingly, its rating function Rcollaborator is:

Rcollaborator : User× Collaborator → Rating (5.7)

where for a user u in a user group c, a collaborator is another user i( 6= u) that is not in the

user group c.

Based on the principles of PMF (cf. Section 5.2.1), we need to construct a rating matrix

R with users’ known ratings to predict their unknown ratings. Particularly in the 2D collab-

orator recommendation problem, collaborators are also users. Thus, we have m users and m
collaborators in the rating matrix R. Consequently, the dimension of R is m×m, while the

dimensions of the user matrix U and collaborator matrix I are both m× d.7

In the rating matrix R, Rjk (see Equation 5.8)8 is a user j’s rating for collaborator k, which

indicates user j’s collaboration frequency with collaborator k.

Rjk =

{ ejk−1
Emax−1 , j 6= k

0, j = k
(5.8)

where ejk represents the number of collaborations that user j and collaborator k have worked

together; the range of ejk is [0, Emax]; Emax(= arg maxj,k(ejk)) is the maximum number of

collaborations between any user and any collaborator. Specifically, the values of ejk and Emax

are obtained and calculated from databases on collaboration.
6Based on https://en.wikipedia.org/wiki/Netflix_Prize, the Netflix Prize was an open

competition for the best collaborative filtering algorithm to predict user ratings for films, based on previous ratings
without any other information about the users or films. Its home page is at https://www.netflixprize.
com/.

7Here, d(<< m) refers to the number of latent factors that characterize users and collaborators.
8All ratings in R are in the interval [0, 1].

https://en.wikipedia.org/wiki/Netflix_Prize
https://www.netflixprize.com/
https://www.netflixprize.com/
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Notably, Rjk(> 0) represents user j’s known rating for collaborator k. Rjk(= 0) is user

j’s unknown rating, which imply that user j never collaborate with collaborator k. It also

suggests that we don’t known how user j prefer to collaborate with collaborator k. This

require us to predict such ratings by applying PMF. During this process, we need to bound

the range of these ratings, since the predicted ratings R∗jk in PMF (see Equation 5.2) may

extend beyond the range of known ratings. Thus, we apply the logistic function G(UT
j Ik)

to replace UT
j Ik in Equation 5.2 and 5.4 (Mnih and Salakhutdinov, 2008). Finally, users’

unknown ratings for collaborators can be predicted by Equation 5.9.

R∗jk =

{
G((UT

j Ik), j 6= k

0, j = k
(5.9)

where the user matrix U and the collaborator matrix I are obtained by finding a local mini-

mum of Equation 5.4.

These ratings enables PMF to generate 2D collaborator recommendations without em-

ploying any information belonging to the collaboration context (represented as Context(C)
in Figure 5.1) in web-based CWE. Besides, as a model-based CF approach technique, PMF

has already been widely used, such as generating social recommendations (Ma et al., 2008)

and movie recommendations (Yang, Wang, and Chen, 2014). Therefore, we decide to imple-

ment PMF in web-based CWEs to generate 2D collaborator recommendations for users.

5.4 Treatment of the collaboration context

This section first presents the formalized terminologies used in the ontology-based con-

text model MCC (cf. Section 4.3). We then explain why the collaboration context can be

processed through semantic similarity to generate context-aware collaborator recommenda-

tions. Finally, we show how to calculate such a semantic similarity in MCC.

5.4.1 Terminology

As an ontology-based collaboration context model, MCC specifies all information through

semantic 3-uples < Subject, Predicate, Object >, such as <mcc:Context_aware_application

_project, mcc:startedAtTime, "01/07/2018"> representing the start time of Emma’s collab-

oration (as shown in Figure 4.6). In this semantic 3-uple, the subject is an instance of

mcc:UserGroup, representing Emma’s collaboration. The predicate refers to a contextual

factor of collaboration, start time (cf. Section 4.2). Consequently, the object shows the infor-

mation of Emma’s collaboration start time (i.e., the value of the contextual factor represented

by the predicate). In this way, for a collaboration in a corresponding user group, all its con-

textual factors and information can be linked to a single subject in MCC. Particularly, MCC



Chapter 5. Context-aware collaborator recommendations 78

also allows us to group predicates for expressing the eight contextual dimensions of collab-

oration: Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction

(cf. Section 4.2).

Therefore, a collaboration in an instance of mcc:UserGroup c is formulated as a col-

lection of semantic 3-uples
{
< c, pc,t

g , oc,t
g > |g ≤ Gc, t ≤ T, g, t ∈N+

}
. Here, pc,t

g (g ≤
Gc, t ≤ 8, g, t ∈ N+) is a predicate that the collaboration c contains, which represents a

contextual factor in the tth dimension; Pc,t =
{

pc,t
g |g ≤ Gc, g, t ∈N+

}
(t = 1, 2, ...T.) is

a set of predicates that the collaboration c contains in the tth contextual dimension; Pc ={
pc

g|g ≤ Gc, g ∈N+
}

is the set of all predicates that the collaboration c contains; oc,t
g ∈

Oc,t is an object of the predicates pc,t
g , which provides value to the corresponding contextual

factor in the tth dimension; Oc,t =
{

oc,t
g |g ≤ Gc, t ≤ 8, g, t ∈N+

}
is a set of objects that

the collaboration c contains through predicates in Pc,t; Oc =
{

oc
g|g ≤ Gc, g ∈N+

}
is the

set of all objects that the collaboration c contains through predicates in Pc; Gc represents the

number of predicates (contextual factors) that the collaboration c contain; T(= 8) represents

the maximum number of contextual dimensions that the collaboration c can relate9.

Accordingly, the tth contextual dimension of the collaboration c can be considered a sub-

collection
{
< c, pc,t

g , oc,t
g > |pc,t

g ∈ Pc,t, oc,t
g ∈ Oc,t

}
. For example, the contextual dimension

collaborator is represented as
{
< c, pc,Col

g , oc,Col
g > |pc,Col

g ∈ Pc,Col , oc,Col
g ∈ Oc,Col

}
. This

implies that collaborations and their contextual dimensions10 can be described and inter-

preted as collections of semantic 3-uples in MCC.

Specifically, in these collections of semantic 3-uples, there are two types of predicates

(as shown in Figure 4.3). The first type are directly related to mcc:UserGroup, such as

datatype properties (e.g. mcc:startedAtTime) and object properties (e.g. mcc:isRelatedWith).

The other type of predicates are represented as successions of datatype properties, object

properties, associated classes and/or instances. Such predicates11 are indirectly related to

mcc:UserGroup in MCC. The succession of mcc:hasGoal, mcc:Goal, and mcc:isComposedOf

is an example.

Besides, in a collection of semantic 3-uples, the subject may be other instances in MCC.

For example, the resource kb:Scientific_paper created by Emma can be considered as a sub-

ject (see Figure 4.11). Then the collection of semantic 3-uples related to this particular

subject describes the detailed information of this resource, such as <kb:Scientific_paper,

rdf:type, mc2:Document> representing the type of this resource.

9When t = T, the collaboration c contains information of all the eight contextual dimensions in MCC, as
follows: Goal, Collaborator, Activity, Resource, Time, Location, Relation, and Satisfaction.

10In MCC, the contextual dimensions of a collaboration include Goal, Collaborator, Activity, Resource, Time,
Location, Relation, and Satisfaction.

11A summary of the indirect predicates in the five dimensions (Goal, Collaborator, Activity, and Resource) are
available in Figure 5.2.
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FIGURE 5.2: Distribution of classes and interrelations according to their role
in the semantic 3-uple.

5.4.2 Choosing semantic similarity

While processing the collaboration context, there are many options, such as ontology-

based reasoning (Dou, Wang, and Liu, 2015), ontology-based semantic similarity (Sánchez

et al., 2012; Batet, Sánchez, and Valls, 2011; Zhang et al., 2008; Ovaska, Laakso, and Hau-

taniemi, 2008). Among them, we choose to compute semantic similarities between collabo-

rations for two reasons.

1. Unlike reasoning, semantic similarities are not overly dependent on the definitions of

classes, instances and their relationships in ontologies (Roussey et al., 2011). For in-

stance, one type semantic similarity (i.e., feature-based semantic similarity) can even

be used to measure similarities between classes (instances) in different ontologies (Pe-

trakis et al., 2006). This makes it easier for us to define classes, instances, and their

relationships in MCC, describing heterogeneous information from different collabora-

tive tools in web-based CWEs.

2. In ontologies, semantic similarities enable comparison of classes (instances) and/or

their relationships at different levels. For example, in MCC, semantic similarities can

be used not only to compare two user groups (i.e., instances of mcc:UserGroup) or

resources (i.e., instances of mc2:Resource), but also to measure the similarity between

indexed resources within a user group. This implies that calculating semantic similari-

ties in MCC enable us to compare any two classes (instances) and/or their relationships,

involved in the collaboration context.
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Therefore, the collaboration context is processed through semantic similarities in this

thesis. This gives us the possibility to filter and/or adjust users’ ratings in generating context-

aware collaborator recommendations, following PreF and PoF methods (see Figure 5.1).

5.4.3 Computing semantic similarity

Based on the literature review (cf. Section 5.2.2), existing ontology-based semantic sim-

ilarities can be classified into three types (Sánchez et al., 2012; Batet, Sánchez, and Valls,

2011; Zhang et al., 2008; Ovaska, Laakso, and Hautaniemi, 2008): path-based, feature-

based, and information content-based semantic similarity. These different semantic similari-

ties have their own disadvantages and advantages. Therefore, we need to compute semantic

similarities based on the characteristics of our ontology-based collaboration context model,

MCC.

MCC is a core ontology used by different users and user groups in web-based CWEs

(Roussey et al., 2011). Meanwhile, it also serves as an ontological knowledge base for storing

and manipulating information across collaborative tools integrated into a web-based CWE,

which will be presented and explained in Chapter 4. Thus, the relationships in MCC don’t

represent uniform distances between calsses and instances. This prevents us from calculating

path-based semantic similarities in MCC, because of its dependency on the relationships in

an ontology (Sánchez et al., 2012).

Besides, in MCC, a single subject can relate to different predicates and objects within

a collection of semantic 3-uples. Even with the same predicate, objects linked to a subject

can be varied. For example, two members in Emma’s collaboration (see Figure 4.6) are rep-

resented by <mcc:Context_aware_application_project, mcc:has_member, #Lucie_account>

and <mcc:Context_aware_application_project, mcc:has_member, #Marinela_account>.

Therefore, the semantic similarity in MCC is expected not only to compare the com-

mon and non-common objects in two collections of semantic 3-uples <Subject, Predicate,

Object>, but also to assess the amount of information provided by a specific predicate. To

this end, a new semantic similarity is developed and employed in MCC, inspired by feature-

based and information context-based semantic similarities. Such a semantic similarity com-

pares two collections of semantic 3-uples (describing two subjects x and y) from two as-

pects: object (built on feature-based semantic similarities) and predicate (built on information

content-based semantic similarities).

5.4.3.1 Object

Drawing inspiration from feature-based semantic similarities, this aspect measures the

common and non-common objects that are related to the same predicate in two collections of
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semantic 3-uples. Depending on the object type in a collection, both qualitative and quanti-

tative objects are considered.

5.4.3.1.1 Qualitative object

Qualitative objects contain non-numerical and descriptive information. For example,

when comparing whether there are same collaborators in two collections, collaborators are

qualitative objects. Such objects that are linked to the same predicate pt
g in two collections

of semantic 3-uples constitute two sets: Ox
pt

g
and Oy

pt
g
. These sets can be measures by the

following equation:

S1(x, y) =
Tqual

∑
t=1

|Pxy,t|

∑
g=1

|Ox
pt

g
∩Oy

pt
g
|

|Ox
pt

g
∩Oy

pt
g
|+ α|Ox

pt
g
−Oy

pt
g
|+ β|Oy

pt
g
−Ox

pt
g
|
× IC(Px,t)

∑T
h=1 IC(Px,h)

(5.10)

where Tqual(Tqual ≤ T, Tquan + Tqual = T, Tqual ∈N+) is the number of contextual dimen-

sions that include qualitative objects; Oy
pt

g
indicates a set of objects that y relates through the

predicate pt
g; Ox

pt
g
−Oy

pt
g

denotes the relative complement of Oy
pt

g
in Ox

pt
g
; |Ox

pt
g
∩Oy

pt
g
| repre-

sents the number of common objects associated to x and y through the predicate pt
g; |Pxy,t|

represents the number of predicate types belonging to the tth contextual dimension of both

x and y; IC(Px,t)(≥ 0) expresses the amount of information provided by the predicates in

the tth contextual dimension of the collaboration x (t = 1, 2, ..., T)12; ∑T
h=1 IC(Px,h) is the

sum amount of information provided by all the contextual dimensions of the collaboration x;

α, β ≥ 0.

The range of S1(x, y) is [0, ∑
Tqual
t=1 IC(Px,t)

∑T
h=1 IC(Px,h)

]. Smaller the semantic similarity S1(x, y), more

differences between x and y.

5.4.3.1.2 Quantitative object

Quantitative objects include numerical information, such as start time and end time of

a collaboration (cf. Section 4.2). To compare two such objects, we utilize the absolute

difference between them |ox
pt

g
− oy

pt
g
|. The smaller the absolute difference is, the greater the

similarity between ox
pt

g
and oy

pt
g
. Thus, we apply Equation 5.11 to convert |ox

pt
g
− oy

pt
g
|.13

S2(x, y) =
Tquan

∑
l=1

|Pxy,t|

∑
g=1

1
γ|ox

pt
g
− oy

pt
g
|+ 1

× IC(Px,t)

∑T
h=1 IC(Px,h)

(5.11)

12The calculation of IC(Px,t) will be presented in Section 5.4.3.2.
13Equation 5.11 is inspired from the above equation of qualitative semantic similarity and

the discussion on the site https://stats.stackexchange.com/questions/158279/
how-i-can-convert-distance-euclidean-to-similarity-score. In Equation 5.11,
we only concern about the predicates linking to limited objects.

https://stats.stackexchange.com/questions/158279/how-i-can-convert-distance-euclidean-to-similarity-score
https://stats.stackexchange.com/questions/158279/how-i-can-convert-distance-euclidean-to-similarity-score
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where Tquan(Tquan ≤ T, Tquan + Tqual = T, Tquan ∈ N+) is the number of contextual

dimensions that include quantitative objects; ox
pt

g
indicates a quantitative object that x re-

lates pt
g; |ox

pt
g
− oy

pt
g
| denotes the absolute differences between two objects of x and y related

to the predicate pt
g; |Pxy,t| represents the number of predicate types belonging to the tth

contextual dimension that both x and y relate; IC(Px,t)(≥ 0) expresses the amount of in-

formation provided by the predicates in the tth contextual dimension of the collaboration x
(t = 1, 2, ..., T)14; ∑T

h=1 IC(Px,h) is the sum amount of information provided by contextual

dimensions of the collaboration x; γ ≥ 0.

The range of S2(x, y) is [0, ∑
Tquan
t=1 IC(Px,t)

∑T
h=1 IC(Px,h)

]. Besides, S2(x, y) 6= S2(y, x) due to the

different values of IC(Px,t) and IC(Py,t). Notably, Equation 5.11 is suitable for opt
g

whose

range of is [0,+∞). Particularly, if the range of opt
g

is [0, L], then the above equation is

transformed into:

S2(x, y) =
Tquan

∑
t=1

|Pxy,t|

∑
g=1

(
L+1

L

γ|ox
pt

g
− oy

pt
g
|+ 1

− 1
L
)× IC(Px,t)

∑T
h=1 IC(Px,h)

(5.12)

5.4.3.1.3 All object

Combining Equation 5.10, 5.11, and 5.12, we can obtain the semantic similarity between

x and y in the object aspect (see Equation 5.13).

S(x, y) = S1(x, y) + S2(x, y) (5.13)

The range of S(x, y) is [0, ∑
Tquan
t=1 IC(Px,t)+∑

Tqual
t=1 IC(Px,t)

∑T
h=1 IC(Px,h)

]. With Tquan + Tqual = T, we have

S(x, y) ∈ [0, 1]. Smaller semantic similarity S(x, y) implies greater difference between x
and y.

5.4.3.2 Predicate

This aspect accesses the amount of information provided by a specific predicate in collec-

tions of semantic 3-uples, inspired by information content-based semantic similarities. Par-

ticularly, a predicate can relate to one subject multiple times with different objects in a collec-

tion. This indicates that the appearance frequency of a predicate depends on the collections,

affecting the amount of information provided by this predicate. Therefore, the appearance

frequency of a predicate should be considered within the semantic similarity. Besides, the

contribution (i.e., how important a predicate is to a subject (Rajaraman and Ullman, 2011))

of a predicate to a collection can also influence the amount of information provided by this

14The calculation of IC(Px,t) will be presented in Section 5.4.3.2.
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FIGURE 5.3: Apply TF-IDF to measure the amount of information provided
by predicates.

predicate. To consider both the appearance frequency and the contribution of a predicate, TF-

IDF is applied to measure the amount of information provided by a predicate. Specifically,

we replace “term, document, and corpus” in TF-IDF as following for "predicate (factor), a

collaboration, and a collection of collaborations" (see Figure 5.3).

For a predicate p in a collaboration x (x ∈ X, X represents a collection of collaborations)

and the total number of collaborations in the collection is |X|, we have

t f (p, x) = f (p,Px)
∑p′∈Px f (p′,Px)

id f (p, X) = log |X|
1+|x∈X:p∈Px | + 1

t f · id f (p, x, X) = t f (p, x) · id f (p, X)

(5.14)

where f (p, Px) represents the appearance frequency of the predicate p in the collaboration

x; ∑p′∈Px f (p′, Px) denotes the appearance frequencies of all predicates in the collaboration

x. The range15 of t f · id f (p, x, X) is [0, log|X|+ 1].

Then we can get the amount of information provided by the predicate p in the collabo-

ration x, IC(p) = t f · id f (p, x, X). As for the amount of information provided by the tth

dimension: IC(Px,t)(t = 1, 2, ..., T), it is calculated through Equation 5.15:

IC(Px,t) =
|Px,t|

∑
q=1

t f · id f (px,t
q , x, X) (5.15)

where |Px,t| is the number of predicate types in the tth dimension of the collaboration x;

px,t
q ∈ Px,t. The range of IC(Px,t) is [0, 2(log|X|+ 1)].

Equation 5.15 is used in Equation 5.10, 5.11, and 5.12 to compute the ontology-based

semantic similarity between two collections of semantic 3-uples.

15Particularly, the range of t f (p, x) is [0, 1] and the range of id f (p, X) is [log |X|
1+|X| + 1, log|X|+ 1].
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5.4.3.3 Calculating semantic similarity in MCC

In MCC, we have T = 8 and Tquan = 6, including Goal, Collaborator, Activity, Re-

source, Location, and Relation (cf. Section 4.2). Thus, based on Equation 5.10, we have:

S1(x, y) =
6

∑
t1=1

|Pxy,t1 |

∑
g1=1

|Ox
pt1
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∩Oy

pt1
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|
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(5.16)

where |Pxy,t1 | is the number of predicate types belonging to the tth
1 dimension that both x

and y relate; α, β ≥ 0; IC(Px,t1) is calculated from Equation 5.15; ∑8
h=1 IC(Px,h) is the

sum amount of information provided by the predicates in all contextual dimensions of the

collaboration x.

Besides, the rest two dimensions (Time and Satisfaction) are utilizing quantitative objects

(cf. Section 4.2). Particularly, the range of objects in dimension Time is [0,+∞), while the

range of objects in dimension Satisfaction is [0, LSa]. Thus, based on Equation 5.11 and 5.12,

we can obtain:

S2(x, y) =
|Pxy,Time|

∑
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1
γ1|ox

pTime
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− oy

pTime
g2
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(5.17)

where |Pxy,Time| is the number of predicate types belonging to the dimension Time that both x
and y relate; LSa is the maximum value in the range of individuals’ satisfactions to collabora-

tions16; ox
pSa denotes the average of all given satisfactions to the collaboration x; γ1, γ2 ≥ 0;

IC(Px,Time) and IC(Px,Sa) are also calculated from Equation 5.15.

Combining Equation 5.16 and 5.17, the semantic similarity between x and y in MCC is:

S(x, y) = S1(x, y) + S2(x, y)

=
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(5.18)

where the range of S(x, y) is [0, 1].

16For example, if individuals’ satisfactions to a collaboration belong to the interval [0, 5], then LSa = 5.
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Within this semantic similarity S(x, y), the likeness/relatedness between collections of

semantic 3-uples with unique subjects can be measured. When the subjects in the two col-

lections are instances of mcc:UserGroup in MCC, a semantic similarity then compares two

collaborations and their contexts. In this way, the collaboration context can be processed for

generating context-aware collaborator recommendations.

Besides, when the subjects in the two collections of semantic 3-uples are other instances

in MCC, the semantic similarity S(x, y) (see Equation 5.13) can also serve to compare the

similarities between them. For instance, when x and y represent two resources, then S(x, y)
can be calculated based on the objects and predicates in their collections, including identify-

ing common and non-common objects and determining the amount of information provided

by the predicates.

5.5 Context-aware collaborator recommendation algorithms

Within the collections of semantic 3-uples and the proposed semantic similarity in MCC

(cf. Section 5.4), the context-aware collaborator recommendation problem is formulated as:

Given a utility matrix R and a user u in a collaboration c (u ∈ Oc,Col), the top K col-

laborators i (i 6= u, i /∈ Oc,Col) that can facilitate u’s collaboration c in a corresponding user

group with the highest probabilities will be recommended to u. Here, the context indicates

the context of u’s collaboration c, which is represented by a collection of semantic 3-uples{
< c, pc,t

g , oc,t
g > |g ≤ Gc, t ≤ 8, g, t ∈N+

}
.

Specifically, we apply two methods: PreF and PoF, to generate context-aware collabo-

rator recommendations. Based on these methods, three algorithms are developed, known as

PreF1, PoF1, and PoF2 in Algorithm 1). Some specific functions are presented in Algorithms

2 and 3.

Particularly, when z = 0, Algorithm 1 refers to PreF1 algorithm, composed of three

phases: Phase 1, 2, and 4 (see Algorithm 1). It first calculates ontology-based semantic

similarities between the collaboration c and other collaborations d (d ∈ X, d 6= c) (line 1),

based on Equation 5.18. Then it filters out irrelevant collaborators i′ that did not participate

in similar collaborations with c (line 2-3). Next, PMF is applied to predict users’ unknown

ratings for relevant collaborators (line 4-8). Finally, the top K collaborators with higher

ratings will be recommended to the user u (line 27). Briefly, following PreF method (see

Figure 5.1), PreF1 algorithm first pre-processes the collaboration context by means of an

ontology-based semantic similarity, then generates 2D recommendations by using PMF, and

finally produce context-aware collaborator recommendations.

Besides, PoF1 algorithm has z = 1. It also consists of three phases: Phase 2, 3, and

4 (see Algorithm 1). In PoF1, we first utilize PMF to predict users’ unknown ratings for

collaborators (line 9-12). Then, it computes ontology-based semantic similarities between the
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Algorithm 1: PreF1, PoF1, and PoF2 algorithms.
Input: The rating matrix: R,
the user to whom the recommendations are generated: u,
the collaboration: c,
the set of members in the collaboration c: Oc

Col ,
the number of recommendations: K,
the number of known collaborations: |X|,
the number of users that can be recommended: m,
the type of algorithms: z,
the weight of semantic similarity in adjusted ratings: ws,
the weight of predicted rating in adjusted ratings: wr.
Initialization: A list to save predicted ratings: R̂ (length: m, initial values: 0).
Comment: Phase 1 - Pre-processing the collaboration context.

1 SC0 ← Calculation_SS(c, K, |X|, 1);
2 VU0 ← Filter(R, u, SC0, m, 1);
3 Filter R to R′ by deleting all ratings of irrelevant collaborators i′ (VU0(i′) = 0);

Comment: Phase 2 - Generating 2D collaborator recommendations.
4 if z == 0 then
5 for k ∈ {1, 2, .., m} do
6 if R′uk is unknown then
7 apply PMF to predict R̂(k)← VU0(k)× R′∗jk based on Equation 5.9;

8 go to line 27;
9 else

10 for k ∈ {1, 2, .., m} do
11 if Ruk is unknown then
12 apply PMF to predict Ruk ← R∗uk based on Equation 5.9;

Comment: Phase 3 - Post-processing the collaboration context.
13 SC1 ← Calculation_SS(c, K, |X|, 2);
14 VU1 ← Filter(R, u, SC1, m, 3);
15 SC2 ← Calculation_SS(c, K, |X|, 1);
16 VU2 ← Filter(R, u, SC2, m, 2);
17 if z == 1 then
18 for k ∈ {1, 2, .., m} do
19 if k /∈ Oc,Col then
20 if VU1(k) == 1 then
21 R̂(k)← ws ∗ sum(SC1(k)) + wr ∗ Ruk;

22 go to line 27;

23 if z == 2 then
24 for k ∈ {1, 2, .., m} do
25 R̂(k)← Ruk ×VU2(k)

Comment: Phase 4 - Producing context-aware collaborator recommendations.
26 Rank R̂ in decreasing order and get K highest elements;

Output: User u’s predicted ratings R̂, K collaborators with K highest ratings.
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Algorithm 2: Calculating semantic similarity function.
Input: The collaboration: c,
the number of recommendations: K,
the number of collaborations: |X|,
the type of results: res1.
Initialization:
Two lists to save semantic similarities: SC1, SC2 (length: |X|, initial values: 0).

1 Function Calculation_SS(c, K, |X|, resss):
2 for d ∈ {1, 2, .., |X|} do
3 if d == c then
4 S(d, c)← 0 ;
5 else
6 S(d, c)← S1(d, c) + S2(d, c) based on Equation 5.18;

7 SC1.insert(S(d, c); d);
8 while i ∈ Od

Col do
9 if collaboration d belongs to collaborator i’s rencent K collaborations

then
10 SC2(i).insert(S(d, c));

11 Rank SC1 in decreasing order based on the first value of each element and copy
K highest elements’ second values in a new list SC′1;

12 if res1 == 1 then
13 SC ← SC′1;
14 else
15 SC ← SC2;

16 return SC ;
Output: A list of semantic similarities SC.
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Algorithm 3: Filtering irrelevant collaborator function.
Input: The rating matrix: R,
the user to whom the recommendations are generated: u,
a list of semantic similarities: SC,
the number of users that can be recommended: m,
the type of results: res2.
Initialization:
Three lists to identify relevant collaborators: VU1, VU2, VU3 (length: m, initial
values: 0).

1 Function Filter(R, u, SC, m, res2):
2 for k ∈ {1, 2, .., m} do
3 if Ruk is unknown then
4 VU1(k)← 1;
5 VU3(k)← 1;

6 for k ∈ {1, 2, .., m} do
7 for d ∈ {1, 2, .., length(SC)} do
8 if k ∈ Od

Col then
9 VU1(k)← 1;

10 VU2(k)← 1;

11 if res2 == 1 then
12 VU ← VU1;
13 else
14 if res2 == 2 then
15 VU ← VU2;
16 else
17 VU ← VU3;

18 return VU ;
Output: A list to identify relevant collaborators VU.
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collaboration c and other collaborations d (d ∈ X, d 6= c), and a sum of semantic similarities

between the collaboration c and the recent K collaborations that collaborator i (i 6= u)
participated (line 13-14). Next, users’ adjusted ratings for collaborators are calculated based

on predicted ratings, calculated semantic similarities, and their weights ws, wr (line 17-22).

Finally, the top K collaborators with higher adjusted ratings will be recommended to the user

u (line 27).

Finally, when z = 2 in Algorithm 1, PoF2 algorithm can be used through three phases:

Phase 2, 3, and 4. It first employs PMF to predict users’ unknown ratings for collaborators

(line 9-12). Then, the ontology-based semantic similarities between the collaboration c and

other collaborations d (d ∈ X, d 6= c) is computed (line 15). Next, it filters out irrelevant

collaborators i′ that did not participate in similar collaborations with c (line 16). Finally, the

top K collaborators with higher ratings will be recommended to the user u (line 23-27).

The differences between PoF1 and PoF2 algorithms are on how to apply semantic simi-

larity in filtering or adjusting the the order of collaborators i (i 6= u, i /∈ Oc,Col). The first

PoF algorithm (i.e., z = 1) utilizes the K recent collaborations that collaborators i partic-

ipated, while the other (i.e., z = 2) employs the collaborations with K highest semantic

similarity among all |X| collaborations. However, to generate context-aware collaborator

recommendations in PoF method (see Figure 5.1), both PoF1 and PoF2 generate 2D collabo-

rator recommendations by using PMF, then process the collaboration context using semantic

similarity, and eventually produce context-aware collaborator recommendations.

Using the three algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1), context-aware

collaborator recommendations can be produced for users in web-based CWEs. Specifically,

all these algorithms employ PMF and the ontology-based semantic similarities in the rec-

ommendation generating process, which makes it possible to compare and evaluate their

performances through experiments. These experiments will be presented and explained in

Chapter 7.

5.6 Chapter summary

In this chapter, we concentrated on utilizing the collaboration context to generate context-

aware collaborator recommendations. This part of work addresses the second question listed

in Section 1.1.3: how to process and apply the collaboration context in algorithms for gener-

ating context-aware collaborator recommendations.

Specifically, we chose a 2D recommendation technique, PMF, to produce 2D collabora-

tor recommendations. Then, we decided to handle the collaboration context through a new

ontology-based semantic similarity. It allows us to measure the likeness/relatedness between

two collections of semantic 3-uples in the ontology-based collaboration context model. Each
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collection has a single subject, representing a collaboration and its context. Finally, we ex-

plained how to utilize PMF and the ontology-based semantic similarity in three different

algorithms to generate context-aware collaborator recommendations.

The next chapter will present the answer to the third question: how to implement and

integrate the ontology-based collaboration context model into web-based CWEs.
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Chapter 6

Prototype

6.1 Introduction

Through the ontology-based model MCC (cf. Chapter 4), the context of users’ collab-

orations in web-based Collaborative Working Environments (CWEs) can be specified and

represented. Then the next question we need to solve is: how to implement and integrate

MCC into web-based CWEs? For this, it is necessary to explore how to deploy MCC from

an architectural perspective. Meantime, since a web-based CWE is a collaborative System of

Information Systems (SoIS), the architectures of collaborative SoIS equally are applicable to

web-based CWEs. Therefore, we consider the architecture of an ontology-based collabora-

tive SoIS (Saleh and Abel, 2016) from the viewpoint of web-based CWEs and employ MCC

as a shared ontological knowledge base in web-based CWEs.

Based on this architecture, a corresponding prototype of web-based CWEs can be built.

The prototype is a continuation of the MEMORAe approach (Atrash, Abel, and Moulin,

2014), known as MEMORAe CWE. It is capable of not only supporting users’ collabora-

tions across multiple collaborative tools, but also processing and organizing heterogeneous

information from these tools within the collaboration context. Specifically, such information

is managed in the knowledge base, MCC.

The remainder of this chapter is organized as follows: Section 6.2 presents how to con-

sider the architecture of the ontology-based collaborative SoIS from the viewpoint of web-

based CWEs and employ MCC in it. Then, the web-based CWE prototype, MEMORAe

CWE, is presented in Section 6.3. We also discuss its advantages and disadvantages in Sec-

tion 6.4. At the end of this chapter is the summary.
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6.2 From an architecture of collaborative System of Information
Systems towards an architecture of web-based Collaborative
Working Environments

Saleh and Abel (2016) proposed a leader-follower architecture of collaborative SoISs

(see Part (a) in Figure 6.1). In this architecture, a SoIS is composed of a leader system

that refers to the global system and multiple follower systems that are component systems.

Particularly, the global system contains an ontological knowledge base to collectively manage

heterogeneous information across different information systems.

FIGURE 6.1: Considering a web-based CWE as a collaborative SoIS.

Considering a web-based CWE as a collaborative SoIS, this leader-follower architecture

can also serve as an architecture of web-based CWEs (see Part (b) in Figure 6.1). Specifically,

the component systems are collaborative tools that provide independent services (e.g., service

1A, ..., MA A in Figure 6.1) and operate under their own control. Moreover, the global

system indicates a web-based CWE with integrated services (e.g., integrated service 1, ..., M
in Figure 6.1), which are results of collaborations between the integrated tools. Particularly,

collaborative tools are added in a web-based CWE to offer and integrate their services into

the CWE, thus supporting users’ collaborations. When they are not desired, they can also be

removed from a web-based CWE by disconnecting with the CWE.

Besides, four parts can manage heterogeneous information in the web-based CWE: API,

data wrapper, ontological knowledge base, and RESTFul API. API exchanges information

with multiple collaborative tools. Then, data wrappers aims to manage the information col-

lected through API and to deploy it into different instances in an ontological knowledge base.
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Finally, RESTFul API offers uniform interfaces1 for accessing such instances and manipu-

lating their state (Lucchi, Millot, and Elfers, 2008). Such an architecture (see Part (b) in

Figure 6.1) allows heterogeneous information located in independent tools to be visible and

accessible in web-based CWEs without modifying its storage location (source).

Particularly, thanks to the ontological knowledge base, information collected from differ-

ent tools can be managed in a single expressive manner. Such a knowledge base can represent

and map heterogeneous information into semantic instances, classes, and relationships. This

permits the web-based CWE to have a uniform representation of heterogeneous information,

regardless of where it is contained. In this way, the interoperability between the collaborative

tools integrated in a web-based CWE can be improved.

However, web-based CWEs under this architecture (see Part (b) in Figure 6.1) do not con-

sider the collaboration context (e.g., users’ activities, applied resources) when organizing and

retrieving the information to meet users’ needs during collaborations, though these needs are

influenced by the collaboration context. This implies that the information contained in web-

based CWEs should be managed within the collaboration context. Thus, we implement the

ontology-based collaboration context model MCC as the ontological knowledge base in the

architecture of web-based CWEs (see Part (c) in Figure 6.1). In this way, any information be-

longing to the collaboration context becomes directly accessible components in MCC. Here,

a component indicates an instance (e.g. instances of mcc:UserGroup, mc2:Activity) in MCC,

whose unique identification is represented by URIs. Specifically, each instance is described

by its characteristic information and can be accessed in JSON format through RESTFul API.

For example, below shows the detailed information of an instance of mcc:UserGroup.

1 {"id": "groupAPIConcept5fa51d8caea88",

2 "name": "Context-aware application project",

3 "member": [

4 {"login": "Emma_account","id": "testAPIConcept5db5b8e6250f8"}

,

5 {"login": "Marinela_account","id": "testAPIConcept5dc56c6943

da5"}

6 {"login": "Lucie_account","id": "testAPIConcept5db5bbbac5405"

}

7 ],

8 "type": "Project Group",

9 "goal": "Build a context-aware application and publish a

corresponding paper",

10 "starttime": "01-11-2020",

11 "endtime": "31-12-2021",

12 "related_group": [

1Particularly, for accessing and manipulating the instances, two different interfaces are provided separately to
the instances (see Table B.1 in Appendix B) and the lists of instances (see Table B.2 in Appendix B).
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13 {"name": "Emma’s thesis","id": "groupAPIConcept5fa51f1c04761"

}

14 ],

15 "space": "spaceAPIConcept5fa51d8cbd524"

16 }

Through applying MCC as the ontological knowledge base, the collaboration context

can be processed and managed in web-based CWEs. This allows users to analyze and iden-

tify the weak and strong points in their collaborations, then set up corresponding strategies.

Moreover, the leader-follower architecture (see Part (a) in Figure 6.1) was already used to im-

plement a prototype of collaborative SoIS, MEMORAe SoIS (Saleh and Abel, 2016), where

the ontology SOIS acts as the knowledge base (cf. Section 3.3). This implies that the archi-

tecture is practicable. Consequently, the architecture of web-based CWEs (see Part (b) and

(c) of figure 6.1) leads to the construction of a web-based CWE prototype.

6.3 Prototype: MEMORAe CWE

Following the architecture of web-based CWEs (cf. Section 6.2), we build a correspond-

ing prototype, MEMORAe CWE2. This prototype is a continuation of the MEMORAe ap-

proach (Atrash, Abel, and Moulin, 2014). As presented in Chapter 3, MEMORAe CWE is the

web platform in the MEMORAe approach, while the ontology-based collaboration context

model MCC is applied as the core ontology.

FIGURE 6.2: The main interface of MEMORAe CWE.

Particularly, users in MEMORAe CWE are organized by user groups and organizations.

An organization consists of multiple users belonging to interrelated user groups. Moreover,

each organization has its own organizational ontology where users are allowed to index and
2A demonstration video for MEMORAe CWE is available at https://youtu.be/c3xfMI1bktk.

https://youtu.be/c3xfMI1bktk
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manage resources within the organization (Atrash, Abel, and Moulin, 2014). Thus, the main

parts in MEMORAe CWE are: the semantic map of the organizational ontology, the list of

user groups, and the spaces of the selected user groups (see Figure 6.2).

The semantic map is a graphical representation of the organizational ontology. Once

an organization is chosen in MEMORAe CWE, users can browse the corresponding seman-

tic map (see Figure 6.2). Specifically, each node, with its own description, symbolizes a

concept3 defined in the organizational ontology. When users click on a particular node in the

map, resources indexed with this node in user groups become displayable within MEMORAe

CWE.

Each user group provides a sharing space for its members to collaborate with each other

and interact with resources from different integrated collaborative tools. Specifically, a re-

source can be accessible and visible in different user groups as wanted by the users. In this

process, MEMORAe CWE doesn’t change the resource itself in its original storage but its

reference and index keys in MCC (see Figure 4.9).

Each user has at least one user group accessible by all members of the chosen organiza-

tion. The other user groups include at least two members (including the user himself/herself)

that have a common goal to achieve within the chosen organization. All available user groups

are listed in the left side of MEMORAe CWE (see Figure 6.2).

For understanding how MEMORAe CWE presents and collects the collaboration context

through its contextual dimensions and factors4, this section first explains its usage based on

the scenario presented in Section 1.2. Then, we illustrate an application of the prototype at

the University of Technology of Compiègne (UTC).

6.3.1 Usage

MEMORAe CWE enables users to collaborate within user groups5. In the scenario,

Emma, Lucie, and Marinela are working together in a user group. Meanwhile, Emma also

collaborates with her supervisors, Elsa and Marie, on her thesis in another user group. In

MEMORAe CWE, these two pertinent user groups can constitute an organization whose

members collaborate with each other to achieve relevant goals. Thus, Emma, Lucie, Lisa,

Elsa, and Marie are members of an organization Laboratory X but belong to two distinct user

groups: Context-aware application project and Emma’s thesis. To reach these user groups

in MEMORAe CWE, Emma needs to first log in and choose the organization Laboratory X

(see Figure 6.3).

3Each concept is defined as owl:Thing in Figure 4.3.
4The collaboration context contains eight dimensions: Goal, Collaborator, Activity, Resource, Time, Loca-

tion, Relation, and Satisfaction. Each of them consists of several relevant contextual factors. (cf. Section 4.2)
5These user groups are defined as instances of mcc:UserGroup in Figure 4.3.
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FIGURE 6.3: Selecting an organization in MEMORAe CWE.

FIGURE 6.4: Organizational knowledge graphs in MEMORAe CWE.
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FIGURE 6.5: Group profile interface of the user group Context-aware appli-
cation project.

After choosing the organization, Emma then can navigate its semantic map (see Figure

6.4), which represents a shared vocabulary that describes the goals of collaboration within

the chosen organization. Regarding the goals of Emma’s two collaborations, certain concepts

and their relationships are defined in the corresponding organizational ontology. All members

of the chosen organization can view the map (see Figure 6.4) in MEMORAe CWE.

Besides, a detailed description of the goal within each user group can be found in the

group profile interface. For example, the goal profile interface of the user group Context-

aware application project is shown in Figure 6.5. Apart from Goal, this interface also contain

other contextual dimensions: Time, Collaborators, Relation, and Satisfaction. Each dimen-

sion consists of certain contextual factors. In Figure 6.5, Time includes ’Start time’ and ’End

time’; Collaborator is described by ’Members’; Relation is represented by ’Related user

groups’; Satisfaction is composed of members’ satisfaction degrees and their comments.

Meanwhile, users can consult their user profiles in MEMORAe CWE. For instance,

Marinela’s user profile within MEMORAe CWE is shown in Figure 6.6, indicating her de-

mographic information and abilities (as defined in Figure 4.7).

As for Resource, users can progress their collaborations and access diverse resources

within user groups of MEMORAe CWE. Each resource is not only accessible and visible

in user groups of MEMORAe CWE, but also indexed with a concept of collaboration goals,

represented by a node in the semantic map (as defined in Figure 4.9). For instance, the

scientific paper added by Emma is accessible in the user group Context-aware application

project and indexed with the node Context-aware application (see Figure 6.7). Notably,

resources are visible and accessible only with the indexed nodes. While Emma is selecting



Chapter 6. Prototype 98

FIGURE 6.6: Marinela’s user profile interface in MEMORAe CWE.
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FIGURE 6.7: Emma’s interface in MEMORAe CWE.

FIGURE 6.8: Collaborative tools integrated into MEMORAe CWE.

another node in the semantic map, the available resources in the user group Context-aware

application project are different.

In MEMORAe CWE, users can open multiple user groups to view resources simulta-

neously. All these resources are contained either in MEMORAe CWE, or in an integrated

collaborative tools (see Figure 6.8). In Emma’s scenario, the cited conference paper is a re-

source stored in HAL but accessible and visible within user groups of MEMORAe CWE.

While Emma was adding this paper in MEMORAe CWE, she first searched for this paper

through the API of HAL (see Figure 6.9), then indexed it with the node Context-aware ap-

plication in the user group Context-aware application project (see Figure 6.10).

Moreover, users are able to conduct various types of activities on resources, including

accessing, creating, modifying, sharing, and deleting resource activities (as defined in Figure

4.10). For example, Lucie can create a personal vote and/or annotation on the paper added by

Emma in the user group Context-aware application project. All these activities are performed



Chapter 6. Prototype 100

FIGURE 6.9: Searching papers through API of HAL.

FIGURE 6.10: Detailed information of the conference paper.
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FIGURE 6.11: Emma’s activities in the user group of Context-aware appli-
cation project.

FIGURE 6.12: Emma’s activities in the organization Laboratory X.

within user groups and/or organizations of MEMORAe CWE, thus traced by user groups and

organizations. For the activity traces in user groups (see Figure 6.11), they are viewed by

activity type, resource type, resource name, index name, date, and actor (user). Meanwhile,

users’ activities in organizations have two additional types: navigating collaborative tools

and nodes (see Figure 6.12). These traces can be used to assess the progress and status of

users’ collaborations within MEMORAe CWE.

Finally, MEMORAe CWE provides users an opportunity to import and view their exter-

nal activities in other locations beyond MEMORAe CWE. For instance, in the website HAL,

users’ collaborative activities in scientific research are traced by their publications. Through

the API of HAL, users can extract and share such information within MEMORAe CWE. In

the scenario, Emma’s activities about the previously published conference paper are shared

in the organization Laboratory X (see Figure 6.13). Moreover, users can also record useful

geographical locations (as defined in Figure 4.3) during their collaborations. For example,

while Emma presented the conference paper, Emma applied a stand-alone web application

GeoAPP to save geographical information about the conference venue. This allows her to

share such information within MEMORAe CWE (see Figure 6.14).
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FIGURE 6.13: Emma’s external collaborative activities in the organization
Laboratory X.

FIGURE 6.14: The location of conference venue in MEMORAe CWE.
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6.3.2 Application

This section presents an application of the prototype MEMORAe CWE within an engi-

neering course NF01 at University of Technology of Compiegne (UTC). This application was

realized in the spring semester, from 25 February to 12 July 2019. NF01 is an "Algorithms

and Programming" course for first year students at UTC. Consequently, 73 students and 3

teachers of this course are users of MEMORAe CWE.

During the course NF01, all students and teachers are members of an organization NF01

within MEMORAe CWE. In this organization, the teachers in charge set up the organiza-

tional ontology (see Figure 6.15) to describe the content and structure of the course NF01.

This ontology is presented by means of a semantic map. Each node in the graph represents a

notion about the course NF01.

FIGURE 6.15: Partial organizational ontology of the course NF01.

Particularly, members of the organization NF01 belong to 23 different user groups. These

user groups are classified into three types: 1 user group accessible by all members of the

organization NF01, 5 user groups of practical classes (i.e., TD1, TD2, TD3, TD5, and TD7)

comprising students and a teacher in the corresponding practical class, and 17 user groups of

projects only consisting of 2, 3 or 4 students and a responsible teacher. These students and

teachers can apply 5 integrated collaborative tools, including Google Search (search engine),

Google Drive (document sharing and management), YouTube (video searching), File Upload

(document storage), and Weblink Share (weblink management).

Students in a user group can then interact with each other to learn the course NF01 col-

laboratively under the supervision of the teacher. They are also able to submit their project

report and/or results to the teacher within user groups. Meanwhile, teachers can share peda-

gogical documents with students in user groups of practical classes. All these reports, results
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and pedagogical documents are accessible resources within user groups, which are also in-

dexed with at least a node in the semantic map. This permits students to link and understand

various resources with notions in the course NF01. Moreover, students’ and teachers’ activi-

ties on resources are traced by user groups, such as adding, accessing, and deleting resource

activities. This permits students and/or teachers to view other members’ activity traces in a

user group.

Besides, all students and teachers are provided with a private working space only acces-

sible by themselves, which allows them to index and organize their personal resources within

the organization NF01.

At the end of the semester, some students gave us their feedback about their experience

with the prototype MEMORAe CWE. The complete survey is available in Appendix C. The

responses can be summarized as follows:

• 72.7% students felt that MEMORAe CWE could help them revise the course NF01.

• 81.8% students thought MEMORAe CWE could organize resources for them.

• 72.7% students considered MEMORAe CWE as a useful environment to allow them

collaborate with others (students and/or teachers).

• Students averagely rated 5.9 (out of 10) for our prototype as a web-based CWE.

• Students averagely rated 5.8 (out of 10) for our prototype as a learning support in the

course NF01.

• 72.7% students evaluated that consulting other users’ activity traces could help them

to identify people that are related to a notion in the course NF01.

• 45.5% students said they would be interested in receiving context-aware collaborator

recommendations in MEMORAe CWE.

6.4 Discussion

Regarding the relationship between web-based CWEs and collaborative SoISs, an archi-

tecture of an ontology-based collaborative SoIS (Saleh and Abel, 2016) was considered from

the viewpoint of web-based CWEs. Based on this architecture, the ontology-based collabo-

ration context model MCC can serve as an ontological knowledge base in web-based CWEs,

which can not only process heterogeneous information from different collaborative tools, but

also manage it within the context of users’ collaborations. From a semantic perspective, this

is mainly approached through two parts: T-Box, and A-Box. Specifically, the T-Box enables

us to define a uniform semantic structure of the information in a web-based CWE. Such a

structure is unconnected to the representation manner or the language of the information,
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but is only concerned with its meaning. In such a structure, different levels of information

representation can be specified in ontologies, e.g., an organizational ontology for describing

the goals of collaboration within an organization. Based on this structure of T-Box, ontol-

ogy can interpret heterogeneous information from different collaborative tools. Then, the

A-Box instantiates the matching information into the corresponding instances. Also, these

instances are expressed using ontology, making them interpretable by the tools integrated

into the web-based CWE. Thus, the information contained in a web-based CWE can be rep-

resented in a unified and standardized way, through which useful knowledge can be reasoned

and extracted.

Implementing the ontology-based collaboration context model MCC into web-based CWEs

also enhances interoperability between collaborative tool. Particularly, RESTFul API (see

Figure 6.1) provides uniform interfaces to access and manipulate information, allowing them

become directly accessible components in web-based CWEs. Each component refers to an

instance in the A-Box. This signifies that all instances are available, comprehensible and

operable in web-based CWEs. In other words, organizing heterogeneous information into

instances simplifies information communications between different tools, thus improving in-

formation access and management in web-based CWEs.

To summarize, through considering the architecture of the collaborative SoIS from the

viewpoint of web-based CWEs, the ontology-based collaboration context model MCC can

be implemented into web-based CWEs. This answers a main question of this thesis: how

to integrate the collaboration context model into web-based CWEs? Besides, with MCC,

users in web-based CWEs can organize heterogeneous information within the context of

their collaborations.

Also, this work has some limitations. Due to the limited time, we are unable to add func-

tionalities related to context-aware collaborator recommendations in the prototype, MEMO-

RAe CWE. It would be a good practice to develop such functionalities and let users evaluate

them during their collaborations.

6.5 Chapter summary

In this chapter, our work is mainly about the third question listed in Section 1.1.3: how

to implement and integrate the collaboration context model into web-based CWEs?

Firstly, an architecture of an ontology-based collaborative SoIS (Saleh and Abel, 2016)

is considered from the viewpoint of web-based CWEs, given the relationship between web-

based CWEs and collaborative SoISs. Thanks to this architecture, the ontology-based collab-

oration context model MCC is implemented in web-based CWEs as an ontological knowl-

edge base. Then, a corresponding web-based CWE prototype, MEMORAe CWE, is devel-

oped. We explored its main functionalities and explained how the collaboration context can
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be presented and collected within it. Besides, the prototype MEMORAe CWE was tested by

the students and teachers of a course NF01 at UTC. Their feedback were also shown. Lastly,

we discussed our work with MEMORAe CWE and how it responds to the main questions of

this thesis.

The next chapter will focus on the last question of this thesis: how well do our context-

aware collaborator recommendations algorithms perform in terms of accuracy and time effi-

ciency?
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Chapter 7

Experiments

7.1 Introduction

With the ontology-based model MCC (cf. Chapter 4) and the context-aware recommen-

dation algorithms (cf. Chapter 5), we can process the collaboration context by means of an

ontology-based semantic similarity and thus produce context-aware collaborator recommen-

dations for users. Then the last question is: are our context-aware collaborator recommen-

dations algorithms relevant in terms of accuracy and time efficiency? To solve it, we utilize

a public dataset of scientific collaborations, which is extracted from multiple academic bib-

liographies: DBLP1, Microsoft Academic Graph (MAG)2, and AMiner3. Particularly, we

apply all the context-aware recommendation algorithms (i.e., PreF1, PoF1, and PoF2) in this

dataset and compare their performances in terms of accuracy and time efficiency. These re-

sults allow us to analyze both advantages and disadvantages of employing the ontology-based

semantic similarity in producing context-aware collaborator recommendations.

Therefore, the rest of this chapter is organized as follows. Section 7.2 introduces the

dataset we use and how its scientific collaborations can be presented by the ontology-based

collaboration context model. Section 7.3 then shows and evaluates the results obtained from

this dataset. Next, we discuss how well these results perform in terms of accuracy and time

efficiency. A summary can be found at the end of this chapter.

7.2 Dataset

To test and evaluate the performances of the context-aware collaborator recommendation

algorithms, we aim to search for datasets where data is retrieved from real users and their col-

laborations in web-based CWEs. Without finding such datasets, our alternative is to consider

an academic article as a scientific collaboration and thus to make use of academic publication

datasets for the experiments. While constructing such datasets, MCC permits us to gather the

1https://dblp.org/
2https://academic.microsoft.com/home
3https://www.aminer.org/

https://dblp.org/
https://academic.microsoft.com/home
https://www.aminer.org/
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collaboration context from different sources while calculating the ontology-based semantic

similarities (cf. Chapter 5). In other words, the dataset in our experiments can consist of het-

erogeneous information from multiple academic bibliographies. These bibliographies refer

to different collaborative tools integrated in a web-based CWE.

Therefore, we choose to utilize a dataset (Tang et al., 2008)4 designed for research pur-

pose only. It includes academic articles and their citation relationships until 2019-05-05,

which are extracted from DBLP, MAG, and AMiner. Each academic article in this dataset

can be described by different fields (see Table 7.1). Specifically, not all academic articles

contain values of all the fields shown in Table 7.1. Some values can be missing. For exam-

ple, articles that are not included in MAG don’t have values for the fields fos.name and fos.w.

Because values of these two fields are obtained from MAG.

Field Name Field Type Description

id string paper ID

title string paper title

authors.name string author name

author.org string author affiliation

author.id string author ID

venue.id string paper venue ID

venue.raw string paper venue name

year int published year

fos.name string paper fields of study

fos.w float fields of study weight

references list of strings paper references ID

n_citation int citation number

page_start string page start

page_end string page end

doc_type string paper type:journal, book, etc.

publisher string publisher

volume string volume

issue string issue

issn string issn

isbn string isbn

doi string doi

pdf string pdf URL

url list external links

indexed_abstract dict indexed abstract

TABLE 7.1: Fields of academic articles in the dataset.

4This dataset can downloaded from https://www.aminer.org/citation.

https://www.aminer.org/citation
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This dataset contains 4,107,340 articles and 36,624,464 citation relationships. Most of

these articles are tagged with research domains. These research domains are organized in a

non-mutually exclusive hierarchy with 19 top-level domains: Art, Biology, Business, Chem-

istry, Computer science, Economics, Engineering, Environmental science, Geography, Geol-

ogy, History, Materials science, Mathematics, Medicine, Philosophy, Physics, Political sci-

ence, Psychology, and Sociology. This allows us to separate the dataset into 20 blocks. Each

block contain articles in one top-level domains. Especially, the 20th block includes the arti-

cles that are not tagged with any top-level domains. The article numbers in each block5 are

summarized in Table 7.2.

Block Article number Block Article number
Art 4944 History 3163

Biology 36941 Materials science 8907
Business 41406 Mathematics 904745

Chemistry 13808 Medicine 32795
Computer science 2606722 Philosophy 5847

Economics 37985 Physics 25715
Engineering 248640 Political science 9064

Environmental science 3160 Psychology 49972
Geography 14450 Sociology 15663
Geology 8614 Others 35518

TABLE 7.2: Article numbers in each block.

Particularly, each article in the dataset represents the fact that its authors have collabo-

rated once in certain research domains. During such a collaboration, the authors work to-

gether to write the corresponding article. This implies that an academic article is the result of

a scientific collaboration. This permits us to consider an article as a scientific collaboration.

Accordingly, the side information of an article (shown in Table 7.1) belongs to the context of

a scientific collaboration.

MCC defines eight contextual dimensions of collaboration and their associated factors

(cf. Section 4.2). In scientific collaborations, all these dimensions and factors can be repre-

sented as follows (see Table 7.3). Each collaboration is identified by id and title of an article.

For dimension Relation, we filter out irrelevant values of references using the list of the same

block’s articles’ IDs. Because this dimension indicates relation between collaborations in

a same research domain. We do not consider relations between collaborations in different

fields. Besides, dimension Activity includes only one type of collaborators’ actions: writing

academic paper activity, but with their different contributions. As for dimension Satisfaction,

we do not have any information or relevant information that can replace this dimension.

5The sum of article numbers in all the 20 blocks is 4,108,059, more than the article number (4,107,340) in the
dataset. 709 articles are part of more than one block, while the other 4,106,632 articles only belong to one block.
Specifically, among the 709 articles, 698 articles are in two blocks; 9 articles belong to three blocks; 1 article is
even in four blocks.
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Contextual

dimension

Contextual

factor

Field Name

(in the datatset)

Goal Focused field of study fos.name

Collaborator
Name of actor authors.name

ID of collaborator authors.id

Activity

Name of actors authors.name

ID of actors authors.id

Activity type
"Writing academic

article activity"

Contribution of actors
Authors’ order

in the author list

Resource ID of cited articles references

Time End time year

Location Location involved authors.org

Relation ID of related collaborations (in a same block) references

Satisfaction

TABLE 7.3: Transformation from articles’ side information into the contexts
of scientific collaborations.

An example of a scientific collaboration with its context is shown below.

1 {"id": "1023950486",

2 "title": "Structuring and reusing knowledge from historical

events for supporting nuclear emergency and remediation

management",

3 "Collaborator": [

4 {"name": "Stella Moehrle","id": "2185715410"},

5 {"name": "Wolfgang Raskob","id": "1699906302"}

6 ],

7 "Location": [

8 "Institute for Nuclear and Energy Technologies, Karlsruhe

Institute of Technology (KIT), Hermann-von-Helmholtz-

Platz 1, 76344 Eggenstein-Leopoldshafen, Germany"

9 ],

10 "Activity": [

11 {"name": "Stella Moehrle","id": "2185715410","type": "

Writing academic article activity", "contribution": 1},

12 {"name": "Wolfgang Raskob","id": "1699906302","type": "

Writing academic article activity", "contribution": 2}

13 ],

14 "Goal": [
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15 "Computer science", "Reuse",

16 "Management science", "Emergency management",

17 "Decision support system",

18 "Case-based reasoning", "Structuring", "History"

19 ],

20 "Time": 2015,

21 "Relation": [],

22 "Resource": [

23 "2032330087",

24 "2041661842",

25 "2087780521",

26 "2126385963"

27 ]

28 }

With such a transformation, each article is a scientific collaboration with its own context.

Accordingly, each block of articles can be considered as a set of scientific collaborations in

the corresponding top-level research domain. Specifically, every set is composed of 1000

articles selected randomly from a block due to the different article numbers in these blocks

(see Table 7.3). These articles are arbitrarily divided into two parts, representing separately

training collaboration and testing collaborations. Particularly in the context-aware collabo-

rator recommendation algorithms (i.e., PreF1, PoF1, and PoF2 in Algorithm 1), training col-

laborations constitute the set X, providing known information (e.g., known ratings, known

contexts of scientific collaborations). Meanwhile, each testing collaboration can be c. For

every author u in a testing collaboration c, context-aware collaborator recommendations are

generated and tested in our experiments6.

Particularly, for all scientific collaborations, we have T = 7 and Tquan = 6 (i.e., Goal,

Collaborator, Activity, Resource, Location, and Relation). Only one dimension Time is de-

scribed by quantitative objects (i.e., Tqual = 1). Therefore, based on Equation 5.13 and 5.15,

the ontology-based semantic similarity between two scientific collaborations (c and d)7 is:

S(d, c) = S1(d, c) + S2(d, c)

=
6

∑
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(7.1)
6Here, u and c are two variables in the formulated problem of context-aware collaborator recommendations

(cf. Section 5.5).
7Here, c is a testing collaboration; |X| represents the number of training collaborations; d(d ∈ X, d 6= c) is a

training collaboration.
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where |Pdc,t| is the number of predicate types belonging to the tth contextual dimension that

both collaborations c and d relate; |Pdc,Time| is the number of predicate types belonging to

the contextual dimension Time that both collaborations c and d relate; α = β = γ = 1. The

range of S(d, c) is [0, 1].

Within this semantic similarity S(d, c), this dataset can be applied to test PreF1, PoF1,

and PoF2 algorithms (cf. Section 5.5). This dataset well fits our needs in the experiments for

the following reasons:

• In this dataset, authors of an academic article are members of a scientific collaboration.

The detailed information of an article (shown in Table 7.1) belongs to the context of

this collaboration, which can be represented by the contextual dimensions and their

associated factors (shown in Table 7.3). This corresponds to our ontology-based col-

laboration context model MCC;

• This dataset is constructed by heterogeneous information from different academic bib-

liographies, corresponding to MCC that the collaboration context comes from different

collaborative tools within a web-based CWE;

• From the aspect of volume, this dataset is able to measure the performance of the

context-aware collaborator recommendation algorithms (i.e., PreF1, PoF1, and PoF2).

These algorithms apply the ontology-based semantic similarity (see Equation 5.18 and

5.15) in different phases to generate recommendations.

• In this dataset, we are able to employ other context-aware recommendation algorithms

following Contextual Modeling (CM) method (Adomavicius and Tuzhilin, 2011), such

as Context-Aware Matrix Factorization (CAMF)8 (Baltrunas, Ludwig, and Ricci, 2011).

This allows us to compare context-aware recommendation algorithms following PreF

and PoF methods with those of CM method.

Thus, it is reasonable to conduct experiments on this dataset. The results of such exper-

iments can help us analyze whether our solution is relevant in terms of accuracy and time

efficiency.

7.3 Experiments

7.3.1 Evaluation methods

Before applying the algorithms on the dataset, we need to be clear about the evalua-

tion methods. To compare the generated context-aware collaborator recommendations with

8There are three types CAMF: CAMF-C, CAMF-CI, and CAMF-CC (Baltrunas, Ludwig, and Ricci, 2011).
Based on the dataset, CAMF-C can be realized as a baseline algorithm in our experiments.



Chapter 7. Experiments 113

TABLE 7.4: Classification of collaborators in generate recommendations for
an author u in a testing collaboration c.

Recommended collaborators
to u in c?

No Yes
Real collaborators

of u in c?
No TN FP
Yes FN TP

real collaborators in a testing collaboration, we employ three metrics in our experiments:

F1, Mean Absolute Error (MAE), and execution time. This enables us to evaluate the per-

formances of the context-aware collaborator recommendation algorithms from two aspects:

accuracy and time efficiency.

For evaluation accuracy, we first apply F1 metric in our experiments, which is calculated

by the following equation (Van Rijsbergen, 1979; Goutte and Gaussier, 2005):

F1 =
TP

TP + 1
2 (FN + FP)

(7.2)

where TP, FN, and FP are numbers of classified collaborators based on Table 7.4.9 The

range of F1 is [0, 1]. A higher value of F1 indicates more accurate recommendations.

Besides, the MAE metric is also utilized in our experiments, which is popular in evaluat-

ing accuracy (Willmott and Matsuura, 2005). This metric signifies the difference between an

author u’s actual rating Rui and predicted rating R̂ui for a collaborator i (see Equation 7.3).

The lower the value of MAE, the smaller the difference between Rui and R̂ui.

MAE =
∑m

i=1 |Rui − R̂ui|
m

(7.3)

where m is the number of users that can be recommended to u in c.

In addition, time efficiency is equally critical in assessing the context-aware collaborator

algorithms (Miller et al., 2004). Therefore, we measure the execution time10 that each al-

gorithm takes to generate context-aware collaborator recommendations for an author u in a

testing collaboration c.

With the three metrics (i.e., F1, MAE, and execution time), our experiments are con-

ducted on a computer with the following properties:

Operating System: Windows 10 Entreprise 64-bit

Processor: Inter(R) Core(TM) i7-8650U CPU @ 1.90GHz

Installed Memory (RAM): 32.00 GB

9Particularly, we have FP + TP = K and FN + TP = Numbers of u’s real collaborators in c.
10In our experiments, execution time is counted in milliseconds.
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Software: PyCharm 2019.1 (Professional Edition) + Python 3.7.3

7.3.2 Experiment with different percentages of training collaborations

In this experiment, we change the numbers of training collaborations in the context-

aware collaborator recommendation algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1).

This is to analyze whether and how the volume of training collaborations influences the

generation of context-aware collaborator recommendations. Each experiment uses a different

percentage of training collaborations in a set of scientific collaborations11. While running

these experiments, F1, MAE and execution time are measured.

Simultaneously, experiments are also performed in another context-aware recommenda-

tion algorithm following CM method, CAMF (Baltrunas, Ludwig, and Ricci, 2011), and a

2D recommendation algorithm, PMF (Mnih and Salakhutdinov, 2008). This allows us to

compare the performances of PreF1, PoF1, and PoF2 with other algorithms. All results are

shown in Figures 7.1, 7.2, and 7.3.12

FIGURE 7.1: F1 with different percentages of training collaborations in a set
of scientific collaborations.

To conclude, PoF1 obviously outperforms the other algorithms in terms of F1 metric.

But it also has the highest values of MAE due to the calculations of the adjusted ratings (cf.

Section 5.5). Besides, PreF1 and PoF2 have better performances than PMF and CAMF in

both F1 and MAE metrics. This indicates that using the ontology-based semantic similarity

leads to more accurate recommendations generated by PreF1, PoF1, and PoF2. As the per-

centage of training collaborations increases, values of F1 and MAE increases in almost all

algorithms (except values of MAE in CAMF algorithm). This implies a common feature of

these algorithms: their accuracy rely on the number of training data.

11Here, a corresponding percentage of testing collaborations is 1− percentage(training).
12The algorithms (i.e., PreF1, PoF1, and PoF2) have different values of z (see Algorithm 1). In Figures 7.1,

7.2, and 7.3, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2.
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FIGURE 7.2: MAE with different percentages of training collaborations in a
set of scientific collaborations.

FIGURE 7.3: Execution time with different percentages of training collabo-
rations in a set of scientific collaborations.

As for execution time, PoF1, PoF2, and PMF have almost the same results. And their

execution time is very close to that of CAMF because of the short time needed to compute

ontology-based semantic similarities. In addition, PreF1 needs the longest execution time

compared to other algorithms. The difference between PreF1 and other algorithms is slight,

when the percentage of training collaborations is small. But it rises rapidly as the percentage

grows, due to the differences in time complexity among these algorithms. Specifically, the

time complexity of PreF1 is O(N3), while that of the others is O(N2).

7.3.3 Experiment with different values of K

In this experiment, we change the number of generated context-aware collaborator rec-

ommendations (i.e., values of K) in the algorithms: PreF1, PoF1, and PoF2 (see Algorithm
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1). This is to analyze whether and how the numbers of generated recommendations influ-

ences the performances of the three algorithms. Each experiment uses a different K in a

set of scientific collaborations. F1, MAE and execution time are computed during these ex-

periments. Similarly, we also perform the experiments in CAMF (Baltrunas, Ludwig, and

Ricci, 2011) and PMF (Mnih and Salakhutdinov, 2008). This is to compare the accuracy and

time efficiency between these algorithms with different values of K. All results are shown in

Figures 7.4, 7.5, and 7.6.13

FIGURE 7.4: F1 with different K in a set of scientific collaborations.

FIGURE 7.5: MAE with different K in a set of scientific collaborations.

In conclusion, the highest values of F1 are achieved by PoF2, PoF1, and PreF1 with dif-

ferent K. Specifically, when K is small, PoF2 has the best performance; when K takes middle

values, PoF1 is a better choice; when K is larger than 35, choosing PreF1 seems perfect.

This implies that PreF1, PoF1, and PoF2 can generate more accurate recommendations than

CAMF and PMF. This also indicates that applying the ontology-based semantic similarity in

different phases of the recommendation algorithms (cf. Section 5.1) impacts F1 and therefore

leads to varying accuracy of these algorithms. In addition, when K is small, the difference
13In Figures 7.4, 7.5, and 7.6, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).
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of F1 among these algorithms is significant. As K grows, the algorithms tend to converge.

This suggests that the ontology-based semantic similarity can augment the accuracy of these

algorithms. But its improvements progressively diminish as K grows.

Besides, PreF1 and PoF2 generally have better performances than PoF1, PMF, and CAMF

in MAE metric. Similarly, because of the calculations of the adjusted ratings (cf. Section 5.5),

PoF1 still has the highest MAE. However, these algorithms show no obvious trend in MAE

when K rises. Plus, the values of MAE are extremely unstable in these algorithms. This

proves that the MAE acts independently with K but relates to the random division between

training and testing collaborations.

FIGURE 7.6: Execution time with different K in a set of scientific collabo-
rations.

As for execution time, PoF1, PoF2, and PMF still have almost the same results, which are

close to that of CAMF. Similarly, PreF1 requires the longest execution time due to its higher

time complexity. However, the execution time of all algorithms remain stable as K changes.

This indicates that the time efficiencies of these algorithms are also independent with K.

7.3.4 Experiment with different sets of scientific collaborations

In this experiment, we change the set of scientific collaborations in PreF1, PoF1, and

PoF2 (see Algorithm 1). Each set contains the same number of scientific collaborations but

a distinct number of authors, thus representing a different degree of closeness between these

collaborations. This enables us to test whether the improvements brought by the ontology-

based semantic similarity work with collaborations having distinct degrees of closeness. Par-

ticularly, each experiment uses a different set of scientific collaborations with its own train-

ing and testing collaborations. During these experiments, F1, MAE and execution time are

recorded. We also perform the experiments in CAMF (Baltrunas, Ludwig, and Ricci, 2011)
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FIGURE 7.7: F1 with different sets of scientific collaborations.



Chapter 7. Experiments 119

FIGURE 7.8: MAE with different sets of scientific collaborations.
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FIGURE 7.9: Execution time with different sets of scientific collaborations.
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and PMF (Mnih and Salakhutdinov, 2008). All results are shown in Figures 7.7, 7.8, and

7.9.14

Overall, PoF2, PoF1, and PreF1 have higher values of F1 than CAMF and PMF in almost

all sets of scientific collaborations. This indicates that applying the ontology-based semantic

similarity in the context-aware collaborator’s recommendation generation processes indeed

improves F1 of the generated recommendations. Specifically, PoF1 clearly exceeds both

PoF1 and PreF1.

However, in terms of MAE, its highest values are obtained in PoF1, due to the calcula-

tions of the adjusted ratings (cf. Section 5.5). Besides, PoF2 has the best performance of

MAE in nearly all these sets, resulting in more accurate recommendations. As for PreF1, it

has lower MAE than CAMF and PMF in half of these sets, but higher in the other half. Thus,

among these algorithms, PoF2 is a better choice in terms of MAE metric.

Finally, regarding execution time, PoF1, PoF2, PMF, and CAMF have almost the same

results. And, PreF1 still takes longer execution time than the others because of its higher time

complexity. But no obvious trend in execution time is shown. This implies that the time effi-

ciencies of these algorithms are unrelated to the degree of closeness between collaborations

in a set.

7.3.5 Experiment with different semantic similarities

In this experiment, we change the semantic similarity applied in the context-aware collab-

orator recommendation algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1). This provides

us an opportunity to investigate how much our ontology-based semantic similarity (cf. Sec-

tion 5.4) contributes to generating context-aware collaborator recommendations. Particularly,

our ontology-based semantic similarity is inspired and developed from two types of semantic

similarities: feature-based and information context-based. To compare our ontology-based

semantic similarity with others, we need to utilize existing semantic similarities of these two

types in PreF1, PoF1, and PoF2.

Specifically, our experiments involves 5 existing semantic similarities, including Jaccard,

Dice, Tversky, TF-IDF, and IC15 (Jaccard, 1901; Dice, 1945; Tversky, 1977; Batet, Sánchez,

and Valls, 2011; Zhang et al., 2008; Sánchez et al., 2012; Rajaraman and Ullman, 2011).

Among them, the first three are feature-based similarities, while the rest two belong to infor-

mation content-based similarities. Each experiment uses a different semantic similarity in a

set of scientific collaborations. To analyze their performances in the algorithms, F1, MAE

and execution time are employed. All the results are shown in Figures 7.10, 7.11, and 7.12.16

14In Figures 7.7, 7.8, and 7.9, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).
15Here, IC represents IC(c) = − log p(c), where p(c) is the probability of c’s appearance in an ontology

(Batet, Sánchez, and Valls, 2011; Zhang et al., 2008; Sánchez et al., 2012).
16In Figures 7.10, 7.11, and 7.12, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).
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FIGURE 7.10: F1 with different semantic similarities in a set of scientific
collaborations.

FIGURE 7.11: MAE with different semantic similarities in a set of scientific
collaborations.

FIGURE 7.12: Execution time with different semantic similarities in a set of
scientific collaborations.

In Figure 7.10, our ontology-based semantic similarity leads to the highest value of F1

when applied in PoF1 and PoF2. This indicates that our semantic similarity can enhance
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F1 and thus generate more accurate context-aware collaborator recommendations. But it

only achieve a medium value of F1 in PreF1. These varied values of F1 imply that the

enhancing effect of our ontology-based semantic similarity depends on the recommendation

algorithms, which is driven by the different phases of the semantic similarity in the algorithms

(cf. Section 5.1).

Besides, when employing our ontology-based semantic similarity in the algorithms, their

MAE results are always lower than those of Jaccard, Tversky, and IC. However, compared

to Dice and TF-IDF, our semantic similarity produces slightly higher MAE results (except

TF-IDF in PoF1). Considering that our semantic similarity brings significantly better results

than Dice and TF-IDF in terms of F1, it is fair to conclude that our ontology-based seman-

tic similarity can improve the accuracy of PoF1 and PoF2. When implemented in PreF1,

our ontology-based semantic similarity has an average performance of accuracy, which is

acceptable.

Lastly, our ontology-based semantic similarity evidently achieves the shortest execution

time among all semantic similarities. This indicates that the time efficiencies of PreF1, PoF1,

and PoF2 are augmented through the use of our semantic similarity.

7.3.6 Experiment with different collaborative filtering algorithms

In this experiment, another 2D recommendation technique Neural network-based Collab-

orative Filtering (NCF) (He et al., 2017) is employed in the context-aware recommendation

algorithms: PreF1, PoF1, and PoF2 (see Algorithm 1). NCF can replace PMF in PreF1,

PoF1, and PoF2 to generate 2D collaborator recommendations. Particularly, NCF also be-

longs to model-based CF approach and can be considered as an evolved version of MF with

neural network architectures (He et al., 2017). In other words, NCF is a product of model-

based CF and deep learning. Applying PMF and NCF in these algorithms gives us a chance

to explore whether applying our ontology-based semantic similarity with different model-

based CF techniques can influence the performances of these algorithms. Similar with other

experiments, the accuracy and time efficiency are also evaluated through three metrics: F1,

MAE and execution time. All the results are shown in Figures 7.13, 7.14, and 7.15.17

In summary, when either PMF or NCF is applied in the three algorithms (i.e. PreF1, PoF2

and PoF1), all values of F1 are higher than those of PMF and NCF themselves (represented as

NCF/PMF in Figures 7.13, 7.14, and 7.15). This indicates that our ontology-based semantic

similarity can increase F1 of PreF1, PoF2 and PoF1 whatever model-based CF technique is

used. However, F1 values with NCF are much higher than those with PMF. This implies that

the enhancement of F1 driven by our semantic similarity relates to the techniques used to

generate 2D collaborator recommendations. Between NCF and PMF, our semantic similarity

can attain greater F1 with NCF.

17In Figures 7.13, 7.14, and 7.15, PreF1 owns z = 0; PoF1 has z = 1; PoF2 refers to z = 2 (see Algorithm 1).
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FIGURE 7.13: F1 with different 2D recommendation algorithms in a set of
scientific collaborations.

FIGURE 7.14: MAE with different 2D recommendation algorithms in a set
of scientific collaborations.

FIGURE 7.15: Execution time with different 2D recommendation algo-
rithms in a set of scientific collaborations.
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Meanwhile, compared with NCF/PMF, lower MAE are also reached when applying PMF

and NCF in PreF1, PoF2 and PoF1 (except PMF in PoF1). This signifies that our ontology-

based semantic similarity, while using either PMF or NCF in the algorithms, can reduce

values of MAE. Similarly, the decreased MAE values with NCF are larger than those with

PMF. This also means that the reduction of MAE is caused by our semantic similarity but

linked to the techniques used to generate 2D collaborator recommendations. Both higher F1

and lower MAE suggest that our semantic similarity improves the accuracy of PreF1, PoF2,

and PoF1. Only its enhancements are more evident with NCF than with PMF.

As for execution time, the results of PoF2, PoF1, and NCF/PMF are very near. On

the contrary, the execution time of PreF1 is much longer than those of other algorithms,

indicating a higher time complexity of PreF1.

7.4 Discussion

Utilizing a dataset of scientific collaborations, we conduct experiments on the perfor-

mance of the context-aware collaborator recommendations algorithms: PreF1, PoF1, and

PoF218. Specifically, three metrics (i.e., F1, MAE, and execution time) are used to com-

pare the performances for two terms: accuracy and time efficiency. We also apply two other

algorithms in this dataset, namely CAMF (Baltrunas, Ludwig, and Ricci, 2011) and PMF

(Mnih and Salakhutdinov, 2008). This allows us to compare the results of the algorithms

following PreF and PoF methods with those of an algorithm of CM method and of a 2D rec-

ommendation algorithm (Adomavicius and Tuzhilin, 2011).19 Besides, PMF and NCF (He

et al., 2017) are utilized to analyze the influences of applying our ontology-based semantic

similarity with different model-based CF techniques to generate context-aware collaborator

recommendations.

Based on the results of the experiments, the following can be concluded:

• PreF1 outperforms PMF and CAMF in F1 and MAE, but suffers in execution time due

to its higher time complexity. In particular, the advantages of PreF1 in MAE can be

influenced by different datasets.

• PoF1 beats all other algorithms in F1 and has an intermediate performance in execution

time. But PoF1 performs worst in MAE due to the calculation of the adjusted ratings.

• The difference between PoF2, CAMF and PMF in execution time is minor. Also, PoF2

has better performance than CAMF and PMF in F1 and MAE.

18Here, PreF1, PoF1, and PoF2 have different values of z (see Algorithm 1). PreF1 owns z = 0; PoF1 has
z = 1; PoF2 refers to z = 2.

19These algorithms are respectively known as PreF1 (based on PreF method), PoF1, PoF2 (based on PoF
method), CAMF (based on CM method), and PMF (i.e. a 2D recommendation algorithm).
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• The ontology-based semantic similarity (cf. Section 5.4) can shorten execution time of

PreF1, PoF1, and PoF2. It also leads to higher accuracy in PoF1 and PoF2, but shows

no improvement of accuracy in PreF1.

• Calculating our ontology-based semantic similarity in PreF1, PoF1, and PoF2 can pro-

duce context-aware collaborator recommendations with higher F1 and lower MAE,

regardless of applying NCF or PMF. However, it positive effect on execution time isn’t

very obvious.

Besides, the ontology-based semantic similarity enables us to deal with the collaboration

context in the context-aware collaborator recommendation generation processes. This type

of context is never considered or discussed in previous studies on such recommendations.

These previous studies usually focus on either user context (e.g., Liu, Xie, and Chen (2018))

or item context (e.g., Xu et al. (2010)). None of the previous studies takes into account users

and items together. With the collaboration context, users and items are considered jointly in

collaborations. This deepens the comprehension of both users and items in context-aware

collaborator recommendations.

Also, this work has some limitations. The recommendations produced by PreF1 and

PoF2 may have a serendipity problem (De Gemmis et al., 2015): the recommended collabo-

rators are not ’surprising’ to users. This leads to insufficient diversity of recommendations: it

is often the same collaborators that are recommended to users. Based on PreF1 and PoF2 (see

Algorithm 1), each collaborator recommended to the user must have involved in collabora-

tions with high similarities. Such collaborators are obvious to facilitate users’ collaborations,

but not the good ones. The collaborators have not involved in the same collaborations with

the user should also be included in the two algorithms, which may result in surprising and

diverse recommendations.

7.5 Chapter summary

In this chapter, our work is mainly about the last question listed in Section 1.1.3: are our

context-aware collaborator recommendations algorithms relevant in terms of accuracy and

time efficiency?

Firstly, a dataset of scientific collaborations are applied to conduct experiments (see Ta-

ble 7.5) on the performance of the context-aware collaborator recommendations algorithms:

PreF1, PoF1, and PoF2 (cf. Section 5.5). Based on the results of these experiments, each

algorithm has its advantages and disadvantages under different conditions. Generally, PreF1

has medium accuracy but suffers in time efficiency due to its higher time complexity. And

PoF1 reaches better accuracy and time efficiency. PoF2 can lead us to the best accuracy and

time efficiency. Therefore, PoF2 is our preferred choice when generating context-aware col-

laborator recommendations, except when K is very low. With small values of K, we choose
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TABLE 7.5: Summary of experiments.

Experiments Parameters
Better algorithms

to choose
Experiment with different volume

of training collaborations
Percentage of training

collaborations
PoF2

Experiment with different number
of generated recommendations

Value of K PoF1 (if K is small)
PoF2 (otherwise)

Experiment with different degree of
closeness bewteen collabortaions

Set of secientific
collaborations

PoF2

Experiment with different semantic
similarities

Applied semantic simi-
larity in algorithms

Our ontology-based
semantic similarity

in PreF1, PoF1,
or PoF2

Experiment with different model-based
CF techniques

Employed model-based
CF technique in algorit-

hms
PoF2

PoF1 because of its extremely high F1. Besides, compared to other semantic similarities, our

ontology-based semantic similarity enhances both accuracy and time efficiency in these algo-

rithms. Its ability to improve accuracy is unrelated to the applied model-based CF technique.
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Chapter 8

Conclusion, perspectives and future
Work

This chapter is intended to conclude our work. It also presents some perspectives and

possible future work of this thesis.

8.1 Conclusion

Collaborations, especially the successful ones, enable people to obtain more beneficial

results compared to working individually. However, successful collaboration is often chal-

lenging, as it can be influenced by different factors (e.g., goal, resources) (Patel, Pettitt, and

Wilson, 2012). Notably, collaborator is a significant impacting factor, which is essential in

collaborations. Consequently, we focus on recommending appropriate collaborators to peo-

ple, particularly when they are collaborating in web-based Collaborative Working Environ-

ments (CWEs). Integrating various collaborative tools (e.g. instant messaging and resource

management tools), a web-based CWE allows people to overcome the limits of geographical

distances between them during collaborations. However, a lot of information contained in

web-based CWEs that can influence people’s needs of collaborators is not considered while

recommending collaborators, resulting irrelevant collaborator recommendations. Thus, to

generate relevant collaborator recommendations in web-based CWEs, this thesis attempts to

address four main questions, listed below.

Q1. What is collaboration context and how to model it?

Q2. How to process and apply the collaboration context in algorithms for generating context-

aware collaborator recommendations?

Q3. How to implement and integrate the collaboration context model into web-based CWEs?

Q4. Are our context-aware collaborator recommendations algorithms relevant in terms of

accuracy and time efficiency?
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To solve Q1, we defined collaboration context and constructed a collaboration context

ontology, MCC. MCC is developed upon an architecture of context models, which is formed

by three interrelated concepts: contextual information, contextual factor, and contextual di-

mension. Particularly, MCC contains eight contextual dimensions (i.e., Goal, Collaborator,

Activity, Resource, Time, Location, Relation, and Satisfaction), which can be used to de-

scribe a collaboration and its context. Each dimension includes several relevant contextual

factors and their values (i.e., contextual information). These contextual dimensions, factors,

and information permits us to clarify the characteristics of collaboration and its context in

different phases.

In the collaboration context ontology MCC, any information is specified through seman-

tic 3-uples <Subject, Predicate, Object>. Particularly, a collaboration is represented by a

collection of semantic 3-uples with a unique subject. With such expressions, we need to

figure out how to handle and integrate semantic 3-uples into context-aware collaborator rec-

ommendation generation processes, leading us to the answer to Q2. Therefore, we developed

an ontology-based semantic similarity, which can not only to compare the common and non-

common objects in two collections of semantic 3-uples, but also to assess the amount of

information provided by a specific predicate. This ontology-based semantic similarity en-

ables us to develop three different context-aware collaborator algorithms (i.e., PreF1, PoF1,

and PoF2), which are based on two existing methods of incorporating context into recom-

mendation processes: contextual pre-filtering and post-filtering.

Next, to address the question Q3, a web-based CWE is considered as a collaborative

System of Information Systems (SoIS). This permits us to consider an architecture of a col-

laborative SoIS (Saleh and Abel, 2016) from the viewpoint of web-based CWEs. Based on

this architecture, the collaboration context ontology MCC can be implemented as an ontolog-

ical knowledge base into web-based CWEs. It can process heterogeneous information from

different collaborative tools and manage it within the context of users’ collaborations. This

then enables better information interoperability between heterogeneous tools and help users

analyze their collaborations, thus improving information access and management during col-

laborations. Furthermore, a web-based CWE prototype, MEMORAe CWE, is built following

the architecture. The main functionalities of this prototype were explained and tested by real

users (i.e., students and teachers of a course at University of Technology of Compiegne).

Finally, we utilized a dataset of scientific collaborations for the last question Q4. This

dataset well fits the needs of our experiments for several reasons:

• In this dataset, an academic article can be considered as a scientific collaboration.

The detailed information of an article can be used to characterize the situation of a

corresponding scientific collaboration over a given period of time, thus belonging to

the context of this collaboration.
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• This dataset is extracted from multiple academic bibliographies: DBLP1, Microsoft

Academic Graph (MAG)2, and AMiner3. Each bibliography refers to a collaborative

tools integrated in a web-based CWE. This corresponds to MCC that the collaboration

context comes from different collaborative tools within a web-based CWE.

• From the aspect of volume, this dataset is able to measure the performance of the three

context-aware collaborator recommendation algorithms (i.e., PreF1, PoF1, and PoF2),

which employ our developed ontology-based semantic similarity in different phases to

generate recommendations.

• In this dataset, we are able to apply other context-aware recommendation algorithms

and 2D recommendation algorithms. This allows us to compare results of these al-

gorithms with those of the context-aware collaborator recommendation algorithms.

Specifically, we utilize F1, Mean Absolute Error (MAE), and execution time to an-

alyze the performances of different algorithms from two aspects: accuracy and time

efficiency.

Based on the results of our experiments, we obtained the advantages and disadvantages

of each context-aware collaborator recommendation algorithm. Specifically, PreF1 is good

at accuracy (i.e., F1 and MAE), but suffers in time efficiency (i.e., execution time) due to

its higher time complexity; PoF1 is the best algorithm in F1 and has an intermediate perfor-

mance in execution time, but performs worst in MAE due to the calculation of the adjusted

ratings; PoF2 has excellent performances in both accuracy (i.e., F1 and MAE) and time ef-

ficiency (i.e., execution time). This indicates that PoF2 is our preferred choice to generate

context-aware collaborator recommendations, except when the number of generated recom-

mendations is very low. In such cases, we choose PoF1 because of its extremely high values

of F1. Overall, all results signify that with our ontology-based semantic similarity, PreF1,

PoF1, and PoF2 algorithms can enhance their performances, either in terms of accuracy or

time efficiency, or both.

8.2 Perspectives and Future Work

Generating context-aware collaborator recommendations in web-based CWEs is a never-

ending work. It can always be improved. In our opinions, there are several perspectives from

which this work can continue. This section describes two different aspects of perspectives:

short-term and long-term future work.

Particularly, short-term future work contains:

1https://dblp.org/
2https://academic.microsoft.com/home
3https://www.aminer.org/

https://dblp.org/
https://academic.microsoft.com/home
https://www.aminer.org/
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• In the carried out experiments, we changed many parameters to test and evaluate the

performances of the context-aware collaborator recommendation algorithms: PreF1,

PoF1, and PoF2. However, we only utilize two different 2D recommendation tech-

niques (i.e., PMF and NCF) in these algorithms. It would be useful to apply other 2D

recommendation techniques in these algorithms and compare with these results. This

will help us investigate why applying our developed ontology-based semantic similar-

ity with different 2D recommendation techniques in PreF1, PoF1, and PoF2 algorithms

can influence their performances and how to improve the performances by employing

other 2D recommendation techniques.

• Besides, the dataset we utilized is about scientific collaborations and extracted from

multiple academic bibliographies. But it does not have any information related to

the contextual dimension: Satisfaction. It would be interesting for us to apply a

dataset with information related to all the contextual dimensions of collaboration. Such

datasets should contain information on satisfactions, such as satisfaction with collabo-

rations and with the generated recommendations. The results from these datasets might

help us to determine whether the performances of the context-aware collaborator rec-

ommendation algorithms would be influenced by the completeness of the collaboration

context in datasets.

• It would be worth building a context-aware collaborator recommender system in the

prototype of web-based CWEs, MEMORAe CWE. If such a system could be developed,

real users would be able to choose whether they want to receive context-aware collab-

orator recommendations and evaluate the performance of our algorithms. Meanwhile,

this will allow us to obtain a dataset containing real users’ information in a web-based

CWE. With this dataset, we could carry out the experiments, which are same as those

we performed in this thesis. This dataset could make the results of these experiments

more complete and convincing.

Long-term future work includes:

• In the MEMORAe approach, Wang (2016) defined a competency module to measure

people’s competencies based on their activities. Such information can be used to de-

scribe the situation of a collaboration, thus belonging to the collaboration context. This

implies that we can enrich the collaboration context ontology in this thesis by reusing

the competency module (Wang, 2016), giving us more information of people’s collab-

orations and their contexts.

• Based on the information containing in the collaboration context ontology, we can

develop and realize other functionalities in web-based CWEs. For instance, after users

complete or finish a collaboration in a web-based CWE, their profiles can de updated

considering the information of this collaboration and its context.
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• Further, the algorithm used to context-aware collaborator recommendations could be

chosen according to people’s requests. For example, based on the numbers of collabo-

rator recommendations requested, we can select an algorithm from PoF1 and PoF2 to

generate context-aware collaborator recommendations for people in web-based CWEs.

• Our ontology-based semantic similarity is used to compare two collaborations and

their contexts. It also can serve to compare two other instances in the collaboration

context ontology, such as resources. This implies that we might employ this ontology-

based semantic similarity to generate other recommendations in web-based CWEs,

such as context-aware resource recommendations. This will reveal the importance of

our ontology-based semantic similarity in generating context-aware recommendations.

• In the collaboration context ontology, a collaboration goal consists of several con-

cepts and their relationships (e.g., hierarchical relationships), which are shown respec-

tively as nodes and links of a semantic map in the prototype MEMORAe CWE. These

concepts and their relationships can be considered and/or reasoned to generate more

specific collaborator recommendations. For instance, during collaborations, we can

recommend collaborators to people for certain related concepts.
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Appendix A

The detailed gradient descent
algorithm

The gradients ofL(U, V) (see Equation 5.4) are (Mnih and Salakhutdinov, 2008; Lemaréchal,

2012):

{
∂L(U,V)

∂Ui
= −Iij(Rij −UT

i Vj)Vj + λUUi
∂L(U,V)

∂Vj
= −Iij(Rij −UT

i Vj)Ui + λVVj
(A.1)

PMF gradient descent algorithm requires input data: d (the number of latent factors),

lambda_U, lambda_V (regularization parameters defined in Equation 5.4), R (rating matrix

of m× n), η (the learning rate in gradient descent algorithm), and Step (predefined maximum

iteration steps).

Initially, two matrices U of m× d and V of n× d are given. Then a loop starts to find a

local minimum L(U, V) based on Equation 5.4. Each step applies the gradients in Equation

A.1 to update Ui in U and Vj in V (Equation A.2)1.

U(t+1)
i = U(t)

i − η ∗ ∂L(U,V)
∂Ui

V(t+1)
j = V(t)

j − η ∗ ∂L(U,V)
∂Vj

(A.2)

Using these gradients, the algorithm iteratively updates the estimations of U and V until

convergence or the maximum iteration steps. Finally, the outputs include updated U and V,

and the minimum L(U, V). The pseudo codes of PMF gradient descent algorithm is shown

in Algorithm 4.

1https://towardsdatascience.com/probabilistic-matrix-factorization-b7852244a321

https://towardsdatascience.com/probabilistic-matrix-factorization-b7852244a321
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Algorithm 4: Algorithm of PMF
Input: The number of latent factor d, the learning rate eta, regularization parameters

lambda_U, lambda_V, the max iteration Step, and the rating matrix R
Initialization: Initialize a random matrix for user matrix U and item matrix V

1 for t := 1, 2, ..., Step do
2 L(U, V) := 0 ;
3 for (i, j) in R do
4 r := Rij ;
5 make prediction pr := UT

i ∗Vj;
6 error e := r− pr;
7 Ui := Ui + η ∗ (e ∗Vj − lambda_V ∗Ui);
8 Vj := Vj + η ∗ (e ∗Ui − lambda_V ∗Vj);
9 L(U, V) :=

L(U, V) + 0.5 ∗ (e2 + lambda_U ∗ ‖Ui‖2
Fro + lambda_V ∗

∥∥Vj
∥∥2

Fro)

Output: The minimum sum-of-squared-errors objective function L(U, V), user
matrix U, and item matrix V.
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Appendix B

The interfaces for accessing and
manipulating instances

TABLE B.1: Interface for the instances.

URL
http://memorae.hds.utc.fr/api/abox
/<Instance_Type>/<Instance_ID>

HTTP
Operation

GET Retrieve the representation of an instance

PUT

Modify the representation of an instance
(if Instance_ID exists)
Create the representation of an instance
(if Instance_ID does not exist)

DELETE Delete the representation of an instance

TABLE B.2: Interface for the lists of instances.

URL
http://memorae.hds.utc.fr/api/abox/<Instance_Type>

HTTP
Operation

GET Retrieve a list of instances
POST Create a new representation of an instance in a list

DELETE Delete a list of instances
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Appendix C

The survey of MEMORAe CWE
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