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Résumé : Les nanotubes de tunnellisation (TNT) 

sont des structures riches en F-actine qui relient 

des cellules distantes, permettant ainsi le trans-

port de nombreux composants cellulaires, no-

tamment des vésicules, des organites et différents 

types de molécules. Les TNT sont impliqués 

dans des processus cellulaires clés, tels que le 

développement, l'immunité et la régénération des 

tissus, mais également dans la transmission de 

divers agents pathogènes. 

Plusieurs facteurs moléculaires ont été identifiés 

pour participer à la régulation de la formation de 

TNT. Le complexe de l'exocyste est l'un des 

premiers facteurs moléculaires impliqués dans la 

formation de TNT. Ce complexe est également 

impliqué dans la fixation des vésicules sécré-

toires pendant la sécrétion, ce qui suggère que les 

protéines qui régulent le trafic vésiculaire pour-

raient jouer un rôle dans la formation de TNT. 

Nous avons émis l'hypothèse que la formation de 

TNT est modulée par des protéines qui partici-

pent à la fois à la régulation du trafic vésiculaire 

et au remodelage du cytosquelette d'actine, et 

que ces deux processus sont essentiels pour la 

formation de ces structures. 

Comme les GTPases de Rab sont les principaux 

régulateurs du trafic vésiculaire et participent 

également à la régulation du cytosquelette d'ac-

tine, nous avons examiné le rôle de cette famille 

de protéines dans la formation de TNT. Tout 

d'abord, nous avons effectué un criblage de plu-

sieurs protéines de Rab différentes pour son effet 

sur le transfert de vésicule dépendant de TNT. 

Nous avons constaté que Rab8a, Rab11a et 

Rab35 ont un effet positif sur le transfert de vési-

cule. Des études supplémentaires ont démontré 

que la surexpression de Rab8a et Rab11a aug-

mentait également le nombre de cellules connec-

tées au TNT. Lors de la surexpression de 

VAMP3 (une autre protéine impliquée dans le 

trafic vésiculaire), nous avons également observé 

une augmentation du nombre de cellules connec-

tées au TNT. Une analyse plus poussée a montré 

que les trois protéines, à savoir Rab11a, Rab8a et 

VAMP3, ont un effet sur la formation de TNT de 

manière cascade. Pour établir une relation entre 

Rab11a et Rab8a, nous avons vérifié le rôle de 

Rabin8 sur la formation de TNT (une protéine 

qui interagit avec Rab11 et qui active Rab8) et  

nous avons constaté qu’elle n’avait aucun rôle 

dans la formation de TNT. 

De plus, nous avons vérifié une autre protéine 

dont la fonction est similaire à Rabin8, à savoir 

GRAB (facteur d’échange de nucléotide de gua-

nine pour Rab3A) et son rôle dans la formation 

de TNT. Les résultats montrent que la surexpres-

sion de GRAB augmente la formation de TNT, 

mais qu’elle agit de manière indépendante de 

Rab11 et Rab8a pour réguler la formation de 

TNT.L'analyse de Rab35, une protéine impliquée 

dans le recyclage des endocytes, la cytokinèse et 

la croissance des neurites, a montré que la forme 

liée au GTP-Rab35 augmente également la for-

mation de TNT. La croissance des neurites est un 

processus essentiel pour établir la connectivité 

neuronale et le recyclage des vésicules joue un 

rôle crucial dans ce processus. Rab35 interagit 

avec plusieurs protéines impliquées dans le trafic 

vésiculaire, telles que ACAP2 (agit en tant que 

GAP de ARF6), MICAL-L1 (molécule interagis-

sant avec CasL-like 1, qui joue un rôle dans le 

recyclage des vésicules) EHD1 (un ciseau molé-

culaire) qui joue un rôle dans la scission de la 

vésicule). Sur les endosomes positifs pour ARF6, 

Rab35 recrute ACAP2 et MICAL-L1 et forme un 

complexe qui se lie à EHD1 pour réguler la 

croissance des neurites. Nos données suggèrent 

fortement que ces effecteurs pourraient égale-

ment être impliqués dans la formation de TNT. 

Individuellement, ACAP2, EHD1 et ARF6-GDP 

régulent la formation de TNT de manière posi-

tive. Mais la surexpression de MICAL-L1 dans 

les cellules ne montre aucun effet sur les TNT. 

En outre, des données préliminaires indiquent 

que Rab35 et EHD1 agissent dans un mécanisme 

en cascade pour réguler la formation de TNT. 

Ceci indique que la formation de TNT et la 

croissance des neurites peuvent agir de manière 

similaire, mais pas exactement. Les molécules 

identifiées ici qui jouent un rôle dans la forma-

tion de TNT constituent des cibles moléculaires 

potentielles pour les thérapies visant à bloquer la 

propagation d'agents pathogènes transférés à tra-

vers les TNT. 

Cette étude prouve que les protéines jouant un 

rôle dans le trafic vésiculaire et la croissance des 

neurites, telles que les protéines de Rab, partici-

pent également à la formation de TNT. 
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Abstract: Tunneling nanotubes (TNTs) are F-

actin rich structures that connect distant cells, 

allowing the transport of many cellular compo-

nents, including vesicles, organelles, and dif-

ferent kind of molecules. TNTs are implicated 

in key cellular processes, such as development, 

immunity, and tissue regeneration, but also in 

the transmission of various pathogens.  

Several molecular factors have been identified 

to participate in the regulation of TNT for-

mation. One of the early molecular factors that 

is implicated in TNT formation is the exocyst 

complex. This complex is also involved in the 

tethering of secretory vesicles during secretion, 

which suggest that proteins that regulate vesi-

cle trafficking could have a role in TNT for-

mation. We have hypothesized that the for-

mation of TNTs is modulated by proteins that 

participate in both, the regulation of vesicle 

trafficking and the remodelling of the actin cy-

toskeleton, and that these two processes are key 

for the formation of these structures.  

Since Rab GTPases are the major regulators of 

vesicle trafficking and also participate in actin 

cytoskeleton regulation, we examined the role 

of this protein family in TNT formation. First, 

we performed a screening of several different 

Rab proteins for its effect on TNT-dependent 

vesicle transfer. We found that Rab8a, Rab11a 

and Rab35 have a positive effect on vesicle 

transfer. Additional studies demonstrated that 

Rab8a and Rab11a overexpression also in-

crease the number of TNT connected cells. Up-

on overexpression of VAMP3 (another protein 

involved in vesicle trafficking), we also ob-

served an increase in the number of TNT con-

nected cells. Further analysis showed that all 

three proteins, i.e. Rab11a, Rab8a and VAMP3, 

show an effect on TNT formation in a cascade 

dependent manner. To establish a relationship 

between Rab11a and Rab8a, we checked the 

role on TNT formation of Rabin8 (a protein 

that interacts with Rab11a and activates Rab8a) 

and we found that it has no role in TNT for-

mation. Additionally, we checked another pro-

tein whose function is similar to Rabin8, i.e. 

GRAB (guanine nucleotide exchange factor for 

Rab3A) and its role in TNT formation. The 

results show that GRAB overexpression in-

creases TNT formation, but it acts in a pathway 

independent of Rab11 and Rab8a to regulate 

TNT formation. The analysis of Rab35, a pro-

tein involved in endocytic recycling, cytokine-

sis, and neurite outgrowth, showed that the 

GTP-Rab35 bound form also increases TNT 

formation. Neurite outgrowth is an essential 

process in order to establish neural connectivity 

and vesicle recycling plays a crucial role in this 

process. Rab35 interacts with several proteins, 

that are involved in vesicle trafficking such as 

such as ACAP2 (acts as GAP of ARF6), 

MICAL-L1 (molecule interacting with CasL-

like 1, which plays a role in vesicle recycling) 

EHD1 (a molecular scissor that has a role in 

vesicle scission). At the ARF6 positive endo-

somes, Rab35 recruits ACAP2 and MICAL-L1, 

and forms a complex that binds to EHD1 to 

regulate neurite outgrowth. Our data strongly 

suggest that these effectors may also be in-

volved in the formation of TNTs. Individually, 

ACAP2, EHD1 and ARF6-GDP regulate TNT 

formation in a positive manner. But MICAL-

L1 overexpression in cells shows no effect on 

TNTs. Also, preliminary data, indicates that 

Rab35 and EHD1 acts in a cascade mechanism 

to regulate TNT formation. This indicates that 

TNT formation and neurite outgrowth may act 

in a similar, but not exact pathway. The mole-

cules identified here that have a role in TNT 

formation, constitute potential molecular tar-

gets for therapies aiming to block the spreading 

of pathogens that transfer through TNTs. 

This study proves that proteins that have a role 

in vesicle trafficking and neurite outgrowth, 

such as Rab proteins, are also involved in TNT 

formation. 
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Section1 

Introduction 
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Preambule: The introduction is divided in three chapters. Chapter 1 will 

introduce Tunnelling nanotubes and summarize the current findings on their 

regulation and role in intercellular communincation. Chapter 2 will give an 

overview on vesicle trafficking pathways and on the role of Rab proteins, as 

the focus of my thesis has been the investigation of the role of Rab proteins in 

the formation of TNTs. Finally, in Chapter 3, I will discuss more in depth the 

Rabs and downstream pathways that I have found, during my PhD thesis 

work, involved in TNT regulation. 
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Chapter 1: Introduction to TNTs. 

1) Overview of TNTs: 

a) Intercellular connections and introduction to TNTs: 

Cell-cell communication is important for development and function of multicellular 

organisms. One of the many mechanisms for cell communication is via cell-cell 

interactions through different mechanisms between adjacent or distant cells. Intercellular 

connecting structures have been shown in a wide variety of living organisms like 

plasmodesmata in plants, cytonemes in Drosophila and gap junctions in mammals. These 

structures allow transport of molecules, ions, metabolites, and hormones.  

Plasmodesmata are cylindrical channels about 40 nm. in diameter, which are connected to 

the endoplasmic reticulum (ER) of the adjacent cells through the desmitubule (Tilney et. 

al., 1991). They can transport ribonucleoprotein omplexes, which dictate whole organism 

co-ordination for development or can be used by viruses to spread infection. Gap junctions 

are made of integral membrane protein assemblies, primarily of connexins. They have 

molecular cutoff values of around 1kDa. They allow the passage of different molecules, 

ions, and electrical impulses, therefore are involved in calcium (Ca+2) signalling between 

neural cells, healthy functioning of the heart etc. Cytonemes and filopodial bridges are 

membranous protrusions rich in filamentous actin (F-actin) shown to connect neighbouring 

cells with the help of adhesion and ligand receptor interaction between the two cells. 

These structures are observed during development and generally transport morphogens 

which regulate development of the organism (Figure 1). 

(Lucas et. al., 2001, Ramirez-Weber et. al., 1999, Maeda and Tsukihara, 2011, Sherer and 

Mothes, 2008, Roy et. al., 2011, Goodenough et. al., 1996) 
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Figure 1: Structures involved in cell to cell interaction: Plasmodesmata: Top panel-

cartoon of a plasmodesmata seen in PM (plasma membrane) lined channel through the 

cell wall containing central ER-derived rod shaped desmitubule. Proteinaceous 

components in the channel represented by arrows. Bottom panel- Punctate distribution of 

plasmodesmata protein (green) along the cell wall in Arabidopsis. Gap junction: Top 

panel: Cartoon showing the docking of two hemichannels from two cells forming a gap 

junction. Bottom panel: Cell labeled for Connexin 43 (green) and TMR (Tetramethyl 

rhodamine) label (red). Cytonemes: Top panel: Schematic showing cytonema extending 

from one cell to another. Bottom panel: Frizzled-cherry expressing myoblasts (Marked with 

CD86) sending out cytonemes in Drosophila. Filopodia: Top panel: Schematic diagram of 

filopodia with actin. Bottom panel: Filopodia (highlighted with magenta) and cell stained for 

actin (gray) along the cell edge in DCIS.COM (Ductal carcinoma in situ) cells (Thomas et. 

al., 2008, Wu and Wang, 2019, Wang et. al., 2015, Stanganello and Scholpp, 2016, E 

Lundquist, 2009, Jacquemet et. al., 2017). 
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A novel form of cell-cell connecting structures were discovered by Rustom et. al., in 2004 

in the rat PC12 (pheochromocytoma) cell line and named Tunneling nanotubes (TNTs) 

(Figure 2). Tunneling nanotubes are primarily F-actin based intercellular membrane 

protrusions that transport cytoplasmic contents, cargoes, and organelles. They were 

originally described as cell to cell connecting bridges made of continuous membranous 

connections, that are not adherent to the substrate. Their diameter ranges from 50-150 

nm. and their length can extend up to hundreds of micrometers (Rustom et. al., 2004, 

Sartori-Rupp et. al., 2019). They are extremely fragile in nature, sensitive to light, chemical 

and mechanical fixation. Since their discovery TNTs have been described under several 

different names as “T membrane nanotubes”, “’intercellular’ or ‘epithelial’ bridges” or 

“cytoplasmic extensions” (Figure 2) (Lou et. al., 2012, Arkwright et. al., 2010, Abounit et. 

al., 2015), or the closed membranous tubes are named as “nanotubes”. While all these 

connections should be called TNT-like connections, only the open-ended tubes are real 

“tunneling nanotubes” (Sartori-Rupp et. al., 2019, Lou et. al., 2012, Arkwright et. al., 2010, 

Abounit et. al., 2015, Korenkova et. al., 2019, submitted). 
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Figure 2: Overview of TNTs in PC12 cells: A to D) TNTs between cultured PC12 cells. 

Cells are connected via one (A) or several TNTs (B) with surrounding cells. Rarely, 

branched TNTs were observed [(C), arrow]. In (D) a selected (x-z) section obtained from a 

confocal 3D reconstruction of TNT. Ultrastructure of TNTs. PC12 cells analyzed by SEM 

(Scanning Electron Microscope) (F) from the boxed areas higher magnification images are 

shown Open arrowhead show secretory granule. Scale bars: (A to E), 15 μm; (F), 10 μm; 

F1 to F3, 200 nm (Rustom et. al., 2004). 

 

 

 

 

TNTs may be formed by two different mechanisms; a) By the extension of cellular 

protrusion like actin dependent filopodia, to form an initial connection which results in TNT 

formation (Rustom et. al., 2004, Yang et. al., 2016). b) Or they can form by cell to cell 

contact and then dislodgement of the cells which results in a functional TNT connection 

between the cells (Figure 3) (Onfelt et. al., 2004, Reichert et. al., 2016, Pedicini et. al., 

2018). 
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Figure 3: Cellular mechanism of TNT formation: A) One cell forms an F-actin driven 

protrusion (Dark Blue) to another cell which fuses and forms a functional TNT. B) Two 

cells come in contact with each other and then move away which eventually gives rise to a 

functional TNT. C) RAW/LR5 macrophages transfected with GFP-CAAX and co-cultured 

with cells transfected with mcherry-CAAX forming TNT like protrusion. D) Cells forming 

TNT like connections by cell dislodgement mechanism in MCF7 cells subsequent to cell 

division (Shaarvari Bhat, Hanna et. al., 2017b, Patheja and Sahu, 2017). 
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The cytoskeletal composition of TNTs described is slightly varied with a vast majority 

containing F-actin, but a subpopulation also contained microtubules. For example, in 

laryngeal carcinoma cells TNTs are made up of both actin and alpha-tubulin. 

(Antanaviciute et. al., 2014). In astrocytes TNTs were mostly microtubule positive (Wang 

et. al., 2012). 

Treating cells with drugs affecting cytoskeleton showed an effect on TNTs. F-actin 

affecting agents such as cytochalasin D, latrunculin A (disrupts F-actin) or tolytoxin (a 

cyanobacterial nucleoside which affects F-actin polymerization), show reduction in TNTs in 

AML (Acute Myeloid Leukemia) cells, neurons, astrocytes, PC12, bone marrow derived 

mesenchymal stem cells (MSCs), SW13 (epithelial cell line) and SH-SY5Y cells (human 

neuronal cell line). But the microtubule affecting agents as nocodazole (which disrupts the 

microtubule), and paclitaxel (microtubule stabilizing agent) had no effect on TNTs in RAW 

264.7 (mouse macrophage cell line), PC12, PC3 (human prostate cell line) cells (Marlein 

et. al., 2017, Wang et. al., 2011, Rustom et. al., 2004, Han et. al., 2016, Dilsizoglu Senol 

et. al., 2019, Zhang et. al., 2018, Hanna et. al., 2017a, Kretschmer et. al., 2019). Detailed 

explanation of cytoskeleton composition in TNTs is shown in Table 1. 

The differences in the molecular and cytoskeletal composition of TNTs might indicate 

different structures (see below), therefore we proposed to define the different protrusions 

identified in vitro as “TNT-like structures” unless they fulfill four specific criteria (see 

below). In the last 10 years TNT-like structures have been found in multiple cell types 

including human peripheral blood NK (natural killer) cells, macrophages, and EBV (Epstein 

Barr Virus) -transformed B cells and murine macrophage J774 cells, human embryonic 

kidney (HEK) or normal rat kidney (NRK) cells, MSCs, dendritic cells and monocytes, 

prostate cancer cells (Yin et. al., 2017, Rustom et. al., 2004, Watkins et. al., 2005, Onfelt 

et. al., 2004, Kretschmer et. al., 2019). TNTs can be formed between heterocellular 

cocultures, as MCF7 and MDA cell lines derived from breast cancers, and SKOV3 and 

OVCAR3 cells derived from ovarian cancers, and non-malignant ECs (Endothelial cells) 

and MSCs, cancer cells and MSCs or ECs, prostate cancer cells and osteoblasts 

(Kretschmer et. al., 2019, Pasquier et. al., 2013). Although in some cases, TNTs are 

formed only in the homogenous population e.g. malignant mesothelioma cells or just 

normal mesothelioma cells but not between heterogeneous population consisting 

cocultures between malignant mesothelioma cells and the normal mesothelioma cells (Lou 

et. al., 2012). Detailed explanation of TNT connected cells is given in Table 1. 



9 

 

 

b) Molecules positive for TNT markers: Unfortunately, there are no molecular markers 

identified yet that are specific for TNTs. However, TNTs have shown to be positive for 

several proteins like transmembrane protein CD59, CD81 and CD86. TNTs are also 

shown to be positive for H-Ras protein (Transforming protein P21), and lectin (Arkwright 

et. al., 2010, Rainy et. al. 2013) as well as other molecules as MyosinX (MyoX), M-sec 

(also known as TNFaip2 (tumour necrosis factor-α-induced protein 2)) etc. (Gousset et. al., 

2013, Ohno et. al., 2010) that were not exclusive markers. On the other hand, recent 

papers are looking at methods to identify by proteomics the specific TNT composition 

(Gousset et. al., 2019). Indeed, only by specific markers we will be able to identify TNTs 

both in vitro and most importantly in vivo.  

c) Tunneling nanotubes in vivo: Although major studies involving TNTs have been 

conducted invitro, because of the lack of specific markers the identification of TNT in vivo 

is difficult, however, there have been several evidences of TNT like connections observed 

in vivo or under 3-D organoid culture conditions mainly based on their morphological 

aspect (Figure 4). During development, TNT like structures were shown in chick and sea 

urchin embryos (Miller et. al., 1995, Teddy et. al., 2004). Tunneling nanotubes were also 

formed between mesenchymal stromal cells and alveolar macrophages, in vivo, in mice 

(Jackson et. al., 2016). TNTs are observed between tumor cells derived from squamous 

cell carcinomas (SCC) cultured under 2-D and 3-D conditions and also in SCC tissues 

(Sáenz-de-Santa-María et. al., 2017). Actin based functional TNTs that transfer 

intracellular material are observed in spheroids made from human MSCs (Zhang et. al., 

2018). In studies by Naphade et. al., in 2015 lysosomal defects have been corrected by 

the transport of vesicles from the diseased cells to the healthy cells by TNT like structures 

in vivo. This is done by transplantation of hematopoietic stem cells (HSCs) in the cystinoic 

kidneys. Detailed explanation is given in Table 2. 
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Figure 4: Long flexible connections invivo: Invivo description of long flexible extensions 

found in mouse neural crest cells. a) Scale bar 50um, b) Scale bar 10um (Cells are labeled 

with Venus Fluorescence reporter) (Pyrgaki et. al., 2010) 
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d) Structural organization of TNT: Since the majority of studies on TNTs have employed 

low-resolution tools (i.e. light /confocal microscopy) until date it has been very difficult to 

distinguish them from other membranous protrusions (e.g., filopodia). Recent data from 

our lab, using correlative Electron Microscopy show that TNTs are structurally different 

than other actin based cellular protrusions like filopodia. Specifically, by using for the first 

time correlative light- and cryo-electron microscopy approaches and Focused-Ion Beam 

Scanning Electron Microscopy (FIB-SEM), our lab has demonstrated that in neuronal cells 

TNTs are specific structures with a distinct ultrastructure, different from other cellular 

protrusions. They are comprised of a bundle of open-ended “individual Tunneling 

Nanotubes” (iTNTs), held together by N-cadherin based connections. Each iTNT is 

surrounded by a plasma membrane and contains highly organized parallel actin bundles 

that allow the intercellular transfer of membrane-bound compartments and organelles like 

mitochondria (Sartori-Rupp et. al., 2019) as shown in Figure 5. 

Following this study, we proposed to call “TNT” only the membrane protrusion that fulfill 

the following criteria: 1. that connect distant cells, 2. that are open-ended; 3. that contain 

actin fibers and 4. that allows the transfer of cargoes. However, for simplification, I will 

continue to use the term TNTs while describing the current literature, as none of the 

current studies have looked at all the four criteria when studying TNTs. 
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Figure 5: Schematic diagram showing structure of TNTs. The TNTs that are connecting 

cells can either be single thick connections or a bundle of thin individual TNTs (iTNTs). 

iTNTs contain vesicles and mitochondria. Membranous compartments within iTNTs appear 

to be connected by thin filaments to actin on one side and to the inner side of the plasma 

membrane on the other. Thin membrane threads coil between and around several iTNTs. 

(Sartori-Rupp et. al., 2019). 
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Table 1 : Overview of TNTs. 

Cell type Cytoskeleton Cargo Ref. 

PC12 
F-actin, 

myosinVa 

DID-labeled organelles, Membrane components (c-

HA-Ras), Endosome/lysosome related organelles, 

Lipid anchored proteins (EGFP-f), EGFP-actin 

(Bukoreshtliev et. al., 

2009, Rustom et. al., 

2004) 

HEK293T F-actin 

Calcium signaling (IP3R, Electrical coupling 

through gap junction at the TNT end); Fluorescent 

prion protein construct (GFP-PrPwt) 

(Smith et al., 2011) 

RT4 F-actin NF (Not found) (Kabaso et al., 2011) 

T24 F-actin NF (Kabaso et al., 2011) 

MSTO-211H F-actin Vesicles, Proteins, Mitochondria 
(Lou et al., 2012a, Lou et 

al., 2012b) 

HUVEC F-actin Electrical signals (Wang et al., 2010) 

HeLa F-actin Ca2+, Vesicles 
(Hase et al., 2009, 

Schiller et al., 2013) 

Jurkat and primary 

T cells 
F-actin 

HIV protein Gag, Mitochondria, Membrane 

components (CD81, CD59, GPI-anchored GFP, 

TM-proteins (ICAM-I, HLA-Cw7), Cytosolic stain 

CFSE, Death signals (Fas ligand, caspase-3), Virus 

(GFP-Gag) 

(Arkwright et al., 2010, 

Schiller et al., 2013) 

ARPE-19 F-actin 
Mitochondria, Ca2+, Small molecules such as 

Lucifer Yellow 
(Wittig et al., 2012) 

Normal rat kidney 

cells (NRK) 

F-actin, 

Myosin Va 

Endosome-related organelles, Depolarization 

signals 

(Rustom et al., 2004, 

Wang et al., 2010) 

RPTEC F-actin Endosomes, Lysosomes (Domhan et al., 2011) 

Cardiac myoblast 

H9c2 cell 

F-actin, 

Microtubules 

Mitochondria, Nanoparticles quantum dots 

(CdSe/ZnS) 
(He et al., 2010) 

Human lung 

carcinoma A549 

F-actin, 

Microtubules 
Wheat germ agglutinin (Wang et al., 2012b) 

Mouse Cath. a-

differentiated 

(CAD) neuronal 

cells 

F-actin 
Exogenous and endogenous membrane GFP-PrP), 

Proteinaceous aggregates (PrPSc) 
(Gousset et al., 2009) 

MDM 
F-actin, 

Microtubules 

Golgi and Endoplasmic reticulum, Mitochondria, 

Endosome/lysosome related organelles, 

Lysosomes, Membrane components (MHC-I), 

Bacteria (Mycobacterium bovis BCG), HIV Env and 

Gag proteins 

(Kadiu and Gendelman, 

2011a, Kadiu and 

Gendelman, 2011b, 

Onfelt et al., 2006) 

Raw264.7 

macrophages 
F-actin Ca2+ (Hase et al., 2009) 

Myeloid (dendritic) 

cells 
ND 

Ca2+, Surface receptors (HLA-A, B, C class I 

MHC), Small molecules such as Lucifer Yellow 

(Watkins and Salter, 

2005) 
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THP-1 monocytes F-actin 
Calcium fluxes (Ca2+, Fura-2), Lucifer yellow, 

Surface receptors (HLA-A, B, C class I MHC) 

(Watkins and Salter, 

2005) 

NK cells 
F-actin, 

Microtubules 
Membrane components (MHC-I), Death signals (Chauveau et al., 2010) 

Bacteria ND Proteins, Genetic materials 
(Dubey and Ben-Yehuda, 

2011) 
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Table 2: TNTs between different cell types 

Cell type Cytoskeleton Cargo Ref. 

HEK293T and COS-7 in co-culture NF Membrane receptors GPCRs (Guescini et al., 2012) 

EPC and HUVEC in co-culture F-actin Lysosomes (Yasuda et al., 2011) 

EBV-transformed human B cell line 

(721.221) and human peripheral 

blood NK cells in co-culture 

NF GPI-GFP (HLA-Cw6) (Onfelt et al., 2004) 

MMSC and RTC in co-culture NF 
Mitochondria, Cytoplasmic 

components (Calcein) 
(Plotnikov et al., 2010) 

Primary neurons and astrocytes in 

co-culture 

F-actin, 

Microtubules 
Depolarization signals 

(Wang et al., 2012a, 

Victoria et al., 2016) 

Dendritic cells and cerebellar 

granule neurons 
NF PrPSc (Langevin et al., 2010) 

Dendritic cells and THP-1 

monocytes in co-culture 
NF Calcium fluxes (Ca2+, Fura-2) 

(Watkins and Salter, 

2005) 

CMs and FBs in co-culture 
F-actin, 

Microtubules 

Mitochondria, Endosomal 

vesicles, Ca2+, Cytosolic GFP 
(He et al., 2011) 

HSCs and macrophages in co-

culture 
NF 

Vesicular exchange 

(endosome/lysosome system) 
(Naphade et al., 2015) 

MSCs and CMs in co-culture NF Mitochondria (Cselenyak et al., 2010) 

Vascular smooth muscle cells and 

MSCs in co-culture 
NF Mitochondria (Vallabhaneni et al., 2012) 

EPC and CMs in co-culture NF 
Mitochondria, Soluble proteins 

(GFP) 
(Koyanagi et al., 2005) 

Human MSCs and adult CMs in co-

culture 

F-actin, 

Microtubules 
Mitochondria 

(Acquistapace et al., 

2011) 

DaMSCs and MEF in co-culture F-actin, 

Microtubules 

4-Oct (Rolf et al., 2012) 
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2) Cellular mechanisms involved in the formation of TNTs: 

a) Role of Stress and inflammation on TNT formation: 

One of the major questions in the TNT field is how TNTs are formed and specifically what 

are the stimuli that trigger TNT formation. Until date this issue is still not very clear. 

However, one intriguing finding is that various stress and inflammatory cues and 

molecules are shown to regulate TNT formation (A Rustom, 2016). 

Superoxide produced by NOX2 (NADPH oxidase 2) induces TNT formation between bone 

marrow stromal cells (BMSCs) and AML cells (Marlein et. al., 2017). Rotenone induced 

oxidative stress leads to formation of TNTs between MSCs and corneal epithelial cells 

(CECs). TNTs are formed by filopodial outgrowth, this is due to stress induced 

inflammatory response of NFκB (nuclear factor kappa-light-chain-enhancer of activated B 

cells)/TNFαIP (Jiang et. al., 2016). In CAD (mouse catecholaminergic neuronal cell line) 

cells, exposure of cells to hydrogen peroxide (H202) also showed an increase in levels of 

reactive oxygen species (ROS). This result in an increase in the number of TNT connected 

cells (Abounit et. al., 2016a). Addition of inflammatory mediators from the conditioned 

medium of macrophages, to MCF7 cells increased formation of TNTs (Patheja and Sahu, 

2017). Blocking androgen receptors in prostate cancer cells stressed them which leads to 

increase TNT formation by phosphatidylinositol 3-kinase (PI3K)/AKT (Protein Kinase B) 

and Eps8 (epidermal growth factor receptor kinase) dependent manner (Kretschmer et. al., 

2019). Exposure of PC12 cells with UV (Ultraviolet) light shows an increase in TNTs 

(Wang and Gerdes, 2015). In rat astrocytes p53 (tumor protein p53; is involved in 

regulation of cell cycle and apoptosis) activation leads to TNT formation through 

AKT/mTOR (Target of Rapamycin), PI3K and epidermal growth factor-receptor (EGF-R) 

dependent pathway (Wang et. al., 2011). Fas/CD95 cell death signalling cascade is 

important for the formation of TNTs in Jurkat and primary T cells. This pathway is 

dependent on the Rho GTPases, as its inhibitor, toxin B of Clostridium difficile, or inhibitor 

of Cdc42 (a member of the Rho GTPase family) secramine reduced the Fas dependent 

TNT formation (Hanna et. al., 2017b). 

The next open question is what are the pathways that are activated in response to the 

original trigger in order to form TNTs. It is clear that when a cell is extending a membrane 

protrusion like in the case of filopodia and cilia, there are two major pathways that 

contribute to the extension of the protrusion; the membrane trafficking that provides protein 

and lipids for the actual growth of the protrusion and the cytoskeleton which provides 
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either the force to generate the protrusion and/or gives it the structural stability. Consistent 

with this, lipids, small GTPases regulating membrane trafficking and actin cytoskeleton 

have been the major actors in TNT formation. 

 

 

b) Role of Lipids on TNT formation: Lipids have a role in TNT formation, however studies 

of the specific membrane composition of TNTs are still scarce. In mesothelioma cells 

TNTs are shown to be enriched in lipid rafts (Thayanithy et. al., 2014a). Reduction in 

sphingolipid or cholesterol leads to decrease in TNTs. These TNTs are positive for 

gangliosides in human Daudi B cell lines, thus the lipid composition of the nanotubes may 

have an influence over the elasticity fluidity of membrane. This may indirectly influence the 

nanotube growth (Toth et. al., 2017).  
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c) Role of Small GTPases on TNT formation:  

Small GTPases have been shown to regulate different membrane pathways (see below) 

and there is substantial evidence from several studies that TNT formation is regulated by 

several different small GTPases. 

In RAW 264.7 cells, M-sec protein (expressed in myeloid cells and homologous to Sec 6; 

part of the exocyst complex) regulates TNTs through RalA GTPase (Hase et. al., 2009). In 

urothelial carcinoma-derived 5637 cancer cells, RalGPS2 (Ras-independent Guanine 

Nucleotide Exchange Factor (GEF) for RalA) interacts with LST-1 (leukocyte specific 

transcript), RalA and Sec5 (component of exocyst complex) to regulate TNT formation 

(D’Aloia et. al., 2018). In HeLa cells, overexpression of LST1 protein increased TNT 

formation and transfer of MHC-I (Major Histocompatibility Complex-class I) protein through 

TNTs (Schiller et. al., 2013b). LST1 recruits RalA protein, filamin, forming a multimolecular 

complex with myosin, myoferlin and M-sec, and regulates TNTs (Schiller et. al., 2013a). 

TNTs can form between B and T cells, through plasma membrane patches enriched with 

H-Ras (a small GTPase), and H-Ras freely diffuses through these TNTs (Rainy et. al., 

2013). 

Viral protein of HTLV (human T-cell leukemia virus type 1) protein P8 shows an increase in 

TNT connections in the T cells and monocytes (Omsland et. al., 2018). In bronchial cell 

carcinoma, protein RASSF1A (Ras association domain family 1 isoform A) shows an 

induction in TNT formation through Rab11 (Dubois et. al., 2018). Similarly, Rab8a and 

Rab11a also have been reported to form TNTs. This acts through the cascade mechanism 

through VAMP3 and positively regulates TNT formation (described in this thesis) (Zhu et. 

al., 2016, Zhu et. al., 2018). 

mTOR pathway inhibition by drug everolimus resulted in negative effect on TNTs (Lou et. 

al., 2012). In bladder cancer cells changes in the AKT/mTOR pathways resulted in an 

increase in the number of TNTs (Lu et. al., 2017). 
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d) Role of Cytoskeleton associated Proteins on TNT formation: 

Since TNTs are primarily made of actin and microtubules, several proteins which modify 

cytoskeleton also show an effect on TNT formation.  

Focal Adhesion Kinase (FAK) interacts with matrix metalloprotease (MMP-2) in SCCs and 

forms TNTs (Sáenz-de-Santa-María et. al., 2017). In B cells, interaction between integrin 

and fibronectin or laminin results in TNT formation (Osteikoetxea-Molnar, 2016). Fascin, a 

protein mainly involved in filopodia formation, localised at the base of the TNTs in the 

mesothelioma cells and regulates TNT formation (Lou et. al., 2012). However, in neuronal 

cells fascin increases filopodia and not TNTs (Gousset et. al., 2013). This again suggests 

that TNTs observed in different cells and context might be different structures and/or that 

TNT involve different cell specific pathways in different cells. 

 Although overexpression of N-cadherin had no effect on TNT formation (Gousset et. al., 

2013), endogenous N-cadherin is present between iTNTs (Sartori-Rupp et. al., 2019). The 

U53 cells connected by TNTs showed enrichment at formation sites with proteins like α-

catenin and E-cadherins (Jansens et. al., 2017). Nef protein (accessory protein to HIV 

virus) is transferred through TNTs and regulates the formation of TNTs through MyoX (Uhl 

et. al., 2019). Overexpression of MyoX increases TNT formation in CADs and in 

osteoclasts (Tasca et. al., 2017, Gousset et. al., 2013). 

In the macrophage cells, actin regulating Rho GTPases like Rac and Cdc42 acts through 

Wiskott-Aldrich syndrome protein (WASP), WASP family verprolin-homologous 2 (WAVE-

2) and Arp2/3 (Actin Related Protein 2/3), on TNT biogenesis (Hanna et. al., 2017b). But in 

neuronal CAD cells, the proteins positively regulating filopodia like IRSp53 (Insulin 

receptor substrate p53) and VASP (Vasodilator-stimulated phosphoprotein) shows a 

decrease in TNT formation while the proteins negatively regulating the filopodia formation 

i.e. Eps8 shows an increase in TNT formation, this indicates that filopodia and TNT are 

regulated in opposite manner (Delage et. al., 2016). Similarly, TNTs are decreased by 

addition of Arp2/3 inhibitor compound, CK-666 in CAD cells (Sartori-Rupp et. al., 2019). 

Non-muscle myosin 2 protein acts as an inhibitor of TNTs in the B cells (Osteikoetxea-

Molnar, 2016). 
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3) Organelle transfer by TNTs: 

The major function of TNTs is to exchange different cargoes between cells. Several 

cargoes and different cellular organelles are transported through TNTs as summarized in 

Table 1. In the next section I will summarize the studies highlighting the potential role that 

TNT mediate organelle transfer could have in different physio-pathological conditions. 

a) Effect of transfer of cellular organelles under various conditions: 

Several studies have shown that mitochondria transfer occurs through TNTs. Transport of 

mitochondria through TNTs helps to alleviate various stress conditions as described 

below.  

Upon exposure to UV rays, PC12 cells induce TNT formation, also undergo apoptosis. 

These TNTs transport mitochondria from the healthy cells to the apoptotic cells in co-

culture, reversing the effects of apoptosis (Wang and Gerdes, 2015). Stress induction by 

H2O2, results in an increased number of TNT connected cells (Abounit et. al., 2016a). In 

human MSCs, on coculturing stressed (treated with H2O2) and the non-stressed cells, 

mitochondria transfer from the non-stressed cells through TNTs. This results in 

downregulation of expression of S616-phosphorylated dynamin-related protein 1 

(regulates fragmentation/fission of mitochondria) (Lu et. al., 2017). Rotenone induced 

oxidative stress caused the transfer of mitochondria from MSCs to corneal epithelial cells 

(CECs). In the alkali injured cornea eye model of the mouse, upon transplantation of the 

healthy MSCs, there seemed to be a rescue effect in the corneal epithelium by the transfer 

of mitochondria through TNTs (Jiang et. al., 2016).  

Several molecular proteins were also involved in TNT formation and mitochondria transfer. 

p53 activation by the stressed cells plays a major role in the formation of TNTs in rat 

astrocytes. This is dependent on AKT/ mTOR and PI3K pathway; usually stressed cells 

initiate the formation of TNTs to unhealthy cells and transfer mitochondria (Wang et. al., 

2011). Miro1 (mitochondrial Rho-GTPase) helps in the movement of mitochondria on 

microtubules. It facilitates transfer of intercellular mitochondria from MSCs, resulting in 

rescuing effects of the damaged (treated with proinflammatory supernatant of 

macrophages) epithelial cells (Ahmad et. al., 2014). Mitochondria transfers from BMSCs to 

AML cells through TNTs, due to superoxide produced by NOX2. Blocking of NOX2 in 

BMSCs results in impaired mitochondria transfer, and results in apoptotic death of AML 

cells (Marlein et. al., 2017). From the above examples it is shown that TNTs are formed 
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between various kinds of cells, and typically under stressful conditions, transfer of healthy 

mitochondria results in reversing the stressful effect. 

The phenomenon of mitochondria transfer through TNTs is also seen in the cells upon 

infection by pathogenic organisms. This transfer is usually beneficial to the infected 

acceptor cells, as in the case of E. coli infection, the alveolar macrophages, upon receiving 

healthy mitochondria resulted in enhancing the phagocytic ability and bacterial clearance 

(Jackson et. al., 2016). Mitochondria transfer through TNTs from uninfected cells rescued 

cells from apoptosis/necrosis in early stages of infection in cells infected with porcine 

reproductive and respiratory syndrome virus (PRRSV) (Guo et. al., 2018).  

Similarly, mitochondria transfer through TNTs occurs in several different disease 

conditions such as ischemia (results from shortage of oxygen for cellular metabolism), 

Acute Respiratory Distress Syndrome (ARDS; Respiratory failure resulting from rapid 

inflammation), sepsis, asthmatic inflammation (onset of acute inflammation in asthma 

conditions) etc. Transport of mitochondria by Miro1 from MSCs compensates 

mitochondrial impairment in ischemic differentiated cells (Babenko et. al., 2018, Jiang et. 

al., 2016). In ARDS and sepsis, mesenchymal stromal cells transfer healthy mitochondria 

through TNTs that results in increased immune functions of macrophages, both invitro and 

in vivo (Jackson et. al., 2016). Recovery of simulated ischemia/reperfusion in bone marrow 

derived MSCs and cardiomyocytes i.e. H9C2 cells, was shown upon mitochondria transfer 

through TNTs (Han et. al., 2016). Similarly, iPSC-MSCs (human induced pluripotent stem 

cell (iPSC)-derived mesenchymal stem cells) to epithelial cells mitochondria transfer 

through TNTs alleviate asthmatic inflammation both invitro and in vivo (Yao et. al., 2018). 

Lysosomes are also shown to be transferred through TNTs (Abounit et. al., 2016a, 

Osteikoetxea-Molnar, 2016). Lysosomes are found to travel unidirectionally inside TNTs in 

PC12 cells (Rustom et. al., 2004). TNTs are shown to form between different cell types 

such as epithelial or mesenchymal cells and transport lysosomes through them. There 

have been several effects of lyosomal transfer, for example in SCCs the cells deficient in 

FAKs transfer autophagosomes/lysosomes to the FAK proficient cells, to adapt to stress 

conditions (Sáenz-de-Santa-María et. al., 2017). TNTs transport lysosomes, alpha-

synuclein between astrocytes, CAD cells and primary neurons (Rostami et. al., 2017, 

Abounit et. al., 2016a). 

In addition to mitochondria and lysosome transfer through TNTs, that have been observed 

more frequently, TNTs have also been shown to transport variety of other organelles and 
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various molecules. They include exosomes, micro-RNA (Thayanithy et. al., 2014a, 

Thayanithy et. al., 2014b), ER, golgi, endosomes (Wang et. al., 2011, Smith et. al., 2011), 

microvesicles (Giusceni et. al., 2012), DiI or DiO labelled organelles (Rustom et. al., 2004), 

GM1/ GM3 (Ganglioside enriched) vesicles (Osteikoetxea-Molnar, 2016). It also transports 

different proteins and receptors such as MHC-II (Major Histocompatibility Complex-class 

II), B7-2 (CD86) (Osteikoetxea-Molnar, 2016), IP3 (inositol triphosphate) (Smith et. al., 

2011), synaptophysin (an early endosomal marker), myosinVa (motor protein) (Rustom et. 

al., 2004), GPCRs (G-protein coupled receptors) (Guescini et. al., 2012), CD133 (stem cell 

marker) (Reichert et. al., 2016), MHC-I, GPI (glycosylphosphatidylinositol) anchored 

proteins (Onfelt et. al., 2004), Ca+2 and LPS (Lipopolysaccharide) signals (Smith et. al., 

2011, Osteikoetxea-Molnar, 2016). Our lab has shown that TNT mediate the intercellular 

transfer of different amyloid proteins involved in neurodegenerative diseases (prions, alpha 

synuclein, huntingtin and tau) and proposed that TNTs facilitate the spreading of pathology 

and progression of the diseases (Victoria and Zurzolo, 2017, Abounit et. al., 2016a, 

Abounit et. al., 2016b, Gousset et. al., 2009, Costanzo et. al., 2013). Thus, in this respect 

TNTs may represent a novel therapeutic target to halt the progression of these diseases. 
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b) Effect of transfer of cellular organelles in cancer: 

Cancer is a group of diseases that is characterized by uncontrollable cell division, 

migration, and invasion of cells to different parts of body, from origin site, leading to the 

general perturbation of equilibrium in the normal cells and body functions. Progression of 

carcinogenesis occurs following different mechanisms of cell to cell signalling in the 

tumour micro environment such as paracrine mediated mechanisms and exosome 

mediated cellular content transfer between cells (Kaminska et. al., 2015, Quail and Joyce, 

2013, Roma-Rodrigues et. al., 2014). Since cell-cell interactions are shown to play such a 

vital role in cancer progression, the possible role of TNTs in cancer is a topic of many 

current studies 

Emil Lou et. al., in 2012, showed TNTs are present in mesothelioma cell lines (MSTO 

211H), human mesothelioma cells, malignant pleural mesothelioma and lung 

adenocarcinoma tissue specimens. TNTs indeed play a role in the bidirectional transfer of 

cellular contents such as proteins, mitochondria and golgi vesicles in MSTO 211H cells. 

This transfer of mitochondria may be implicated in phenotypical changes and aggressivity 

of cancer cells. 

Pasquier et. al., in 2013 showed that functional TNTs transporting mitochondria were 

formed between the endothelial cells and cancer cells. As mentioned before TNTs are 

known to transport micro-RNAs, and this seems to lead to an increase in oncogenesis of 

the cells. TNTs have been shown to play role in regulating the invasiveness of cancer 

cells, especially in pancreatic carcinoma. The number of TNTs increases after the 

treatment of cells with chemotherapeutic agent doxorubicin, thus they may play a role in 

the drug resistance in cancer (Desir et. al., 2018). Tunneling nanotubes are involved in the 

transfer of mitochondria in heterogonous mixture of bladder cancer cells in co-culture, 

which results in increased invasiveness of these cancer cells (Lu et. al., 2017). 
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c) Effect of transfer of cellular organelles in neurodegeneration: 

Neurodegenerative diseases are adult onset diseases which are characterized by 

progressive destruction of neurons leading to a loss of variety of homeostatic functions in 

the body. There are several neurodegenerative diseases that are identified and described 

till date such as Alzheimer’s, Huntington, Parkinson’s, Amyotropic lateral sclerosis etc. 

Often the causes of neurodegenerative diseases are the proteins that are involved in the 

normal and developmental functions of neurons such as alpha-synuclein, huntingtin, tau, 

presenilin-1 etc. (Winner et. al., 2011). Most of the neurodegenerative diseases can be 

familial or sporadic in nature. The familial form of the disease is associated with the 

genetic mutations of the protein causing the disease but the sporadic form of the disease 

is attributed to both genetic and environmental factors (Rietdijk et. al., 2017). Upon onset 

of the disease, the proteins misfold, aggregate and accumulate in the cells leading to 

neurotoxicity (Walsh and Selkoe, 2016). Thus, the intercellular transfer of misfolded 

protein aggregates to the target cells, which further leads to aggregation or misfolding in 

the target cells causing neurodegenerative disorders, is most widely recognized 

explanation of disease progression. In 2003, Braak and his colleagues showed a staging 

system for the spread of disease in mice, in which it develops in a particular region of the 

brain and then spreads to the different connected regions. This study provided the 

evidence that spread of neurodegenerative diseases throughout the brain is due to the 

spread of misfolded proteins between different parts of the brain.  

Alzheimer’s disease is characterised by the presence of Aβ peptides (beta amyloid) which 

is made by beta and gamma secretases by amyloid precursor protein (APP) mainly 

accumulating outside the cells (Udayar et. al., 2013), and of tau aggregates accumulating 

inside the neurons in tangles and neurofibrils (Goedert and Spillantini, 2017). Aβ peptides 

were transferred through TNTs and cause cytotoxicity in the neurons (Wang et. al., 2011). 

Presence of tau shows an increase in TNTs in the neurons, and they propagate through 

TNTs (Abounit et. al. 2016b, Tardivel et. al., 2016) shown in Figure 6. 

Presence and spread of misfolded alpha synuclein is one of the major characteristics of 

Parkinson’s disease (Brundin et. al., 2010, Hansen et. al., 2011). TNTs are formed 

between the human neuronal cell line SH-SY5Y and primary human pericytes and 

have been shown to transfer alpha synuclein (Dieriks et. al., 2017). Alpha synuclein is also 

transported through TNTs in CADs and neurons. As mentioned above this transfer occurs 

usually through lysosomes inside the TNTs from the diseased to healthy cells (Abounit et. 
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al., 2016a). Interestingly when alpha synuclein is transported through TNTs in astrocytes, 

mitochondria are transported in the opposite direction from the healthy astrocytes to the 

diseased cells enabling a rescue mechanism (Rostami et. al., 2017). Our lab has also 

shown that transfer of alpha synuclein is cell type specfic. Alpha synuclein transfer occurs 

between different cell types such as neurons to astrocytoes, or astrocytes to astrocytes, 

but less efficiently between astrocytes to neurons. Furthermore, we also showed that 

astrocytes are much more efficient in degrading alpha synuclein than neurons (Loria et. 

al., 2017). 

Rhes (striatal-specific protein) protein is also transported between the TNTs and is 

responsible for the transport of the mutant huntingtin between cells, interestingly these 

TNTs carry Rab5a positive vesicles inside them (Sharma and Subramaniam, 2019).  
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Figure 6: Model of prion/prion-like protein induced formation of TNTs and spreading. 

Prions or prion-like proteins such as tau fibrils after “infecting” a cell (in red) (1) induce via 

an unknown (possible common) mechanism (for example, induced via radical oxygen 

species (ROS) from oxidative stress) an increase in TNT number (2). The prion/prion-like 

aggregates would then be propagated via TNT-mediated intercellular trafficking from 

infected cells to naïve cells (Abounit et. al., 2016b). 
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Chapter 2: Overview of vesicle trafficking and the role of Rab proteins in 

cellular functions 

1) Vesicle trafficking in cells 

Intracellular vesicle trafficking can be divided into two main pathways i.e. endocytosis and 

exocytosis.  

Exocytosis is mainly used to expel cellular substances, while endocytosis is involved the 

uptake of molecules/solutes by the cells. Exocytosis involves fusion of vesicular 

membranes with the plasma membrane. 

Endocytosis internalizes lipids and proteins of plasma membranes in the cells (Doherty 

and McMohan, 2009). Endocytosis can be divided into phagocytosis (uptake of large 

particles) and pinocytosis (uptake of fluid and solutes) (Conner and Schmid, 2003). 

Endocytosis is important for nutrient uptake, cell adhesion and migration, signaling, 

pathogen entry, synaptic transmission, receptor down regulation, antigen presentation, cell 

polarity, mitosis, growth and differentiation, and drug delivery (Doherty and McMohan, 

2009). The different pathways of endocytosis are summarized in Figure 7. 

 

 

Figure 7: Vesicle trafficking in cells: Representation of different types of endocytic pathways 

depending upon the cargo internalized and the proteins associated with the internalization process. 

(Conner and Schmid, 2003) 
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a) Endocytic Pathways: 

Phagocytosis occurs in specialized cells such as macrophages, monocytes and 

neutrophils. These cells are able to rearrange actin cytoskeleton which could lead to 

internalization of molecules and pathogens, such as bacteria (Conner and Schmid, 2003, 

Aderem and Underhill, 1999, Dramsi and Cossart, 1998). Among the proteins that are 

involved in this process, Rho GTPases play an important role (Hall and Nobes, 2000). 

Pinocytosis is widespread in a variety of cells. It is divided into four main processes - 

macropinocytosis, clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis, 

and clathrin- and caveolae-independent endocytosis (Connor and Schmid, 2003).  

Macropinocytosis: is the uptake of cellular substances especially, solutes. This process 

occurs usually in dendritic cells since they have to sense the cellular environment during 

immune surveillance (Steele-Mortimer et. al., 2000).  

Clathrin mediated endocytosis (CME): Plays an important role in immune response, 

neurotransmission, intercellular communication, signal transduction, cellular and systemic 

homeostasis (Conner and Schmid, 2003). In CME, cytoplasmic domains of the plasma 

membrane proteins are recognized by the adaptor proteins (AP2) and then packaged into 

clathrin coated vesicles and internalized in the cells (A Sorkin, 2004). For example, iron 

bound transferrin receptors (TFRs) and the low-density lipoprotein receptors (LDLRs) 

undergo CME.  

Caveolae mediated endocytosis: In caveloae mediated endocytosis, caveolin forms loops 

in the inner leaflet of the plasma membrane and forms membrane invaginations (Conner 

and Schmid, 2003). It acts through actin and dynamin. Caveolin regulates endocytosis, 

transcytosis (the uptake of macromolecules from one end and its expulsion from the other 

end of the cell) and cell signaling (Pelkmans and Helenius, 2002). Caveolar endocytosis 

involves caveolin coat and is usually involved in the internalization of glycosphingolipids 

and viruses (Mayor and Pagano, 2007, Sandvig et. al., 2008). 

Clathrin independent endocytosis: The clathrin independent endocytosis involves 

internalization of the receptors such as beta integrins, MHC-I, GPI and CD59. ARF6 

mediates clathrin independent endocytosis in different cell types including HeLa cells, 

COS (CV-1 in Origin with SV40 genes) cells, MCF7 cells, B cells, cardiomyocytes, 

hippocampal neurons, and dendritic cells (Grant and Donaldson, 2009, Naslavsky et. al., 

2004b). 
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b) Recycling of Endosomes (recycling pathway): 

 The cargoes that are internalized by endocytosis undergo either recycling or degradation 

(Bhuin and Roy, 2014). Endocytic recycling involves the return of membrane and receptors 

back to the plasma membrane, and this process involves vesicles to be transported back 

to the plasma membrane (Cai et. al., 2013). The recycling pathway is regulated by Rabs, 

ARF and polarity proteins (Radhakrishna and Donaldson, 1997, Balasubramanian et. al., 

2007). They belong to family of small GTPases (Takai et. al., 2001). They are involved in 

various steps of vesicle trafficking in cells. There are around 60 Rab GTPases in mammals 

(Kiral et. al., 2018). I will be talking about the Rabs and ARF proteins in detail, in part 2 of 

this chapter and chapter 3 respectively.  

The recycling pathway involves the internalization of cargo by clathrin coated pits or 

clathrin independent endocytosis at the membrane which are eventually pinched off from 

the plasma membrane to form early endosomes. These early endosomes are associated 

with specific Rab molecules which allow vesicles to fuse and form the multivesicular body 

(MVB). Afterwards, they are recycled back to the membrane (which usually occurs for 

plasma membrane receptors) (Katzmann et. al., 2002) or are fused with lysosomes for 

degradation of vesicle content (Cullen and Steinberg, 2018). This process is summarised 

in Figure 8. 

There is a balance between uptake of contents by endocytosis and their recycling back to 

the plasma membrane. These two pathways control various cell processes such as cell 

migration, cytokinesis, maintenance of cell polarity, cell adhesion and junction formation 

(Grant and Donaldson, 2009). Recycling of membrane is quite frequent; for instance, in 

mouse macrophages plasma membrane recycling occurs around 1-5 times per hour 

(Steinman et. al., 1983). The cargoes meant for recycling are usually first targeted to the 

endocytic recycling compartment (ERC) which is localised near Microtubule organizing 

center (MTOC) at the perinuclear region of the cell (Grant and Donaldson, 2009). I will 

discuss ERC and give more information on recycling pathway in part 2 of this chapter. 

Recycling pathway is involved in several different functions: 

a) In myoblast fusion: Rac is enriched at the cell-to-cell contact sites and is involved in cell 

fusion by remodeling the actin cytoskeleton. Rac is also involved in the migration of cells 

by ARF6 mediated recycling (Palamidessi et. al., 2008). Rac localization and activation is 

affected by the activation of ARF6 (Chen et. al., 2003). 
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b) In learning and memory: Learning and memory, usually involves two receptors i.e. 

AMPAR (Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid-Receptor) and 

NMDA (N-methyl-D-Aspartate) receptor. Receptor recycling is essential for formation of 

long term memory or neuronal structures like dendritic spines. Several Rab proteins are 

involved in this process for e.g. Rab11, Rab10 etc. (Glodowski et. al., 2007, Wang et. al., 

2008). 

c) In cytokinesis: Recycling endosomes are involved in the late step of cytokinesis, by 

associating with the cytokinetic bridges (Ai and Skop, 2009). 
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Figure 8: The endolysosomal network: The integration between the endolysosomal 

network and the secretory pathway helps to establish, maintain, and remodel the cell 

surface proteome. Following their endocytosis, internalized integral membrane proteins 

enter the early endosome, where most sorting is initiated. Selected cargo can be recycled 

back to the cell surface by means of tubulo-vesicular transport carriers either directly, 

termed ‘fast recycling’, or by transit through the endocytic recycling compartment, termed 

‘slow recycling’. Recycling back to the cell surface can occur by passage through the 

trans-Golgi network and entry into the secretory pathway (termed ‘retrograde transport’). 

Other cargoes are targeted for degradation within the lysosome. This is principally 

achieved through cargo sorting into intraluminal vesicles (ILVs). Iterative rounds of cargo 

sorting and ILV biogenesis, coupled with maturation of the early endosome, result in the 

formation of the late endosome (also known as the multivesicular endosome or 

multivesicular body). The late endosome is able to fuse with lysosome to form an 

endolysosome within which ILVs and their accompanying cargoes are degraded (Cullen 

and Steinberg, 2018) 
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c) Role of Cytoskeleton in vesicle trafficking: Inside the cell, vesicles are usually 

transported on microtubule or actin tracks (Grant and Donaldson, 2009, Radhakrishna and 

Donaldson, 1997, Balasubramanian et. al., 2007). Several vesicle trafficking processes as 

endocytosis, exocytosis and vesicle recycling involves and/or affects actin modifying 

proteins. Vesicle trafficking is important for cell migration, formation of cellular protrusions, 

lamellopodia, pseudopods etc. Actin regulating proteins such as Rho A, Rho B, Rho D, 

Rac and Cdc42 are also involved in membrane trafficking in cells. Rac promotes the 

formation of membrane ruffles and lamellipodia while Cdc42 affects the formation of finger 

like protrusions like filopodia and microspikes. Both of these proteins act by inducing actin 

polymerization and branching (Lamarche et. al., 1996). Endocytosis of various receptors 

has an effect on several cytoskeletal based cellular functions like cell migration or 

formation of cellular protrusions like pseudopods (which is a filament like extension from 

the plasma membrane) (Powelka et. al., 2004). Rac is also involved in TFR endocytosis 

and apico-basal polarization of cells (Lamaze et. al., 1996, Jou et. al., 2000). PDGF 

(Platelet Derived Growth Factor) binds to its receptor to induce a variety of cellular 

functions such as cell migration, formation of dorsal ruffles. PDGF induces 

macropinocytosis and involves actin regulating proteins such as Rac and P21 activated 

kinases (A Ridley, 2001).  

Vesicle recycling also regulates formation of cellular protrusions. Rac induced membrane 

ruffles and lamellopodia are formed due to actin polymerization. Recycling vesicular 

membrane gives rise to the new membranes necessary for the formation of these 

structures (Bretscher and Aguado-Velasco, 1998). Rac and Cdc42 also stimulate the 

adherens junction assembly in the epithelial cells. E-cadherin is recycled through the 

endosomal pathway and is involved in the formation of adherens junctions (A Ridley, 2001, 

Le et. al., 1999). Rab8 recycles transferrin positive vesicles back to the plasma 

membranes. These vesicles participate in the formation of cellular protrusions (Hattula et. 

al., 2006). 

Exocytosis also involves several actin modifying proteins. Cdc42 is affected by Rab8a. 

Knocking down Rab8a and Rab11a, leads to reduced activation of Cdc42. This may 

explain the correlation between actin and vesicle trafficking in the cells. This pathway also 

regulates the apical exocytosis mediated by Rab11 (Bryant et. al., 2010). In infections, as 

by Shigella and Listeria, the bacteria move through the cells by forming actin comets. They 

are secreted outside the cells with the activation of Cdc42, N-WASp, Arp2/3 complex 

inducing long protrusions by the cells (Frischknecht and Way, 2001). Rac and/or Cdc42 
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directly activates phospholipaseCγ which can generate IP3 and induce secretion of 

vesicles. Rac induces actin polymerization associated with secretory granules through 

WAVEs/SCARs and Arp2/3 complex (Kumari and Mayor, 2008). 

We became interested in Rab proteins as Rabs are involved in the regulation of the 

plasma membrane by the maintenance of the lipid content in the cells (Dambournet et. al., 

2011). Rabs also regulate the recycling of the vesicles back to the membrane which may 

be involved in the membrane dynamics and lead to the formation of TNTs (described in 

this thesis). 
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2) Overview of Rab proteins: 

 Small GTPases are divided into Ras, Rho, Rab, Sar1/Arf, and Ran family (Takai et. al., 

2001). Their molecular weight ranges from 21-25 kDa. There are around 60 Rab GTPases 

in mammals, 31 in Drosophila and 11 in yeast (Kiral et. al., 2018, Zhang et al., 2007). They 

were first identified in 1980s as proteins isolated from yeast and then in rat brains (Rabs-

Ras like protein from rat brain). They are numbered according to sequence of discovery as 

Rab1, Rab2 etc. (Das and Guo, 2011). 

Rab proteins are master regulators of cellular functions, as shown in Figure 10. They are 

involved in vesicle trafficking, migration of cells and formation of cellular protrusions like 

filopodia, lamellipodia (Das and Guo, 2011). 

a) Regulation of Rab proteins: Rabs function through GTP (Guanosine 5’-triphosphate) 

bound (active) –GDP (Guanosine 5’-diphosphate) bound (inactive) cycle. They are 

regulated by GEFs (Guanine nucleotide Exchange Factors), GAPs (GTPase Activating 

Proteins) and GDIs (Guanine Dissociation Inhibitors). 

 As shown in the Figure 9, Rabs are regulated by several different proteins. Rabs can bind 

to REP (Rab escort protein) which presents it to geranylgeranyl transferase to be 

geranylated (Pfeffer and Aizavan, 2004, S Pfeffer, 2017). The geranylation of Rabs allows 

it to bind the membranes and is usually targeted to their respective membranes with the 

help of REP (Kinsella and Maltese, 1992). GDF (GDI Displacement Factor) dissociates 

Rab-GDI complexes. Once the Rabs are dissociated from the GDI 

 they are acted on by the GEFs which convert Rab-GDP to Rab-GTP and this conversion 

allows the Rabs to bind their effectors (Grosshans et. al., 2006, Dirac-Svejstrup et. al., 

1997). Most of the Rab proteins contain two switch elements in their structure, switch I and 

switch II which change their conformation upon binding to γ phosphate of GTP. The switch 

regions are unfolded in their GDP bound state and adopt distinct conformations on binding 

to GTP (Lee et. al., 2009). GAPs are necessary for the cycling of GTP-Rab proteins to 

their GDP bound forms (Dumas et. al., 1999, Seabra and Wasmeier, 2004). After 

converting to their GDP bound forms, Rabs are extracted from the membrane and sent 

back to the cytosol by the GDI (Grosshans et. al., 2006, Heo et. al., 2006, Gavriljuk et. al., 

2013). 
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Figure 9: Overview of Rab cycle: Rabs in their GDP-bound conformations are present in 

cytosol bound to GDI. GDI presents the Rab to the membrane; GDF displaces the GDI 

and allows the Rab to bind to the membrane. Rabs are then activated by a specific GEF, 

converting the Rab into its GTP-bound form. The GTP-bound Rab is then able to bind 

effectors. If a Rab is not activated, it can be re-extracted by GDI for redelivery to another 

membrane (S Pfeffer, 2005). 
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b) Functions of Rab proteins: The Rab proteins accumulate at their target membranes thus 

they are used as the marker of organelles. Rab proteins are involved in tethering and 

docking of the vesicles to its membrane in the cells and this leads to fusion of respective 

vesicle with the membrane. Each of the Rab protein controls a specific pathway of 

membrane trafficking (Bhuin and Roy, 2014). They are involved in different processes as 

summarized in Table 3 and shown in the Figure 10 below.  

 

Figure 10: Overview of Rab functions in the cell (Zhen and Stenmark, 2015) 
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Table 3: Overview of Rab proteins 

Rab 
Intracellular  

Localization 
Function Effector 

Rab1 A, B ER–Golgi intermediate 
ER–Golgi trafficking, 

Intra golgi 

 p115/Uso1, GM130, giantin, golgin-

84, GCC185, MICAL-1, MICAL 

COOH-terminal like, JRAB/MICAL-L2, 

OCRL1, INPP5B, Cog6, GBF1 (Arf1 

GEF), Iporin, Chlamydia pneumoniae 

Inc protein Cpn 0585, Trypanosoma 

brucei golgin Tbg63 

Rab2A, B 
 ER, ER–Golgi interme-

diate, Golgi 
ER–Golgi trafficking 

INPP5B, golgin-45, RIC-19 

(Caenorhabditis elegansortholog of 

ICA69), PKC iota/lambda, GM130, 

GAPDH, Drosophila melano-

gaster germ cell-less homolog 1, 

GARI, Fam71f2, Fam71b 

Rab3A-C 

TGN-apico-lateral mem-

branes, Secretory vesi-

cles, Plasma membrane 

Exocytosis of secretory 

granules and vesicles 

from TGN to apico-

lateral membranes, 

Neurotransmitter re-

lease 

rabin3, RIM1α, RIM2α, granuphilin, 

Noc2, Munc18-1, rabphilin, INPP5B, 

SNAP-29, synapsin, polymeric IgA 

receptor (Rab3b), Gas8 (Rab3b), 

Zwint-1 (Rab3c), OCRL1; Warburg 

Micro/Martsolf syndromes (Rab3GAP) 

Rab3D 

(Rab16) 

Secretory vesicles, 

plasma membrane 

Exocytosis, regulated 

Exocytosis in 

nonneuronal cell 

rabin3, RIM1α, RIM2α, granuphilin, 

Noc2, Munc18-1, rabphilin, INPP5B, 

SNAP-29, synapsin, polymeric IgA 

receptor (Rab3b), Gas8 (Rab3b), 

Zwint-1 (Rab3c), OCRL1; Warburg 

Micro/Martsolf syndromes (Rab3GAP) 

Rab 4A, B 
Early and recycling en-

dosomes 

Endocytic recycling to 

plasma membrane 

Rabaptin-4, βCD2AP, D-AKAP2, 

Rabip4, Rabip4=, Rabaptin-5α, 

Rabaptin-5, Syntaxin 4, Dynein LIC-1, 

Rab coupling protein (RCP), 

Rabenosyn-5 

Rab5, A, 

B, C 

Clathrin coated vesicles 

and early endosomes, 

PM 

Endocytic internaliza-

tion and early endo-

some fusion 

Vac1, EEA1 (early endosome antigen 

1), Rabenosyn-5, CORVET (Class C 

core vacuole/endosome tethering), 

Rabaptin-5/5β, Rabex-5, INPP5B, 

OCRL1, PI3 kinases (hVPS34-p150, 

p110β-p85α), Rabankyrin-5, APPL1, 

APPL2, Huntingtin-HAP40, caveolin-1, 

angiotensin II type 1A receptor, Ra-

bi6p4’ 
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Rab6 A, A' Golgi 

Endosome to Golgi, 

intra-Golgi transport, 

Golgi to ER 

Rab6 interacting protein 1/2A/2B, 

Cog6, kinesin Rab6-KIFL, GCC185, 

giantin, OCRL1, ELKS, INPP5B, 

golgin SCYL1BP1, golgin-97, golgin-

245, hVps52 (GARP/VFT complex), 

dynein light chain DYNLRB1, p150 

(Glued) subunit of dynein/dynactin 

complex, mint3 adaptor protein, 

Bicaudal-D1/2, VFT complex, golgin 

Sgm1 (TMF/ARA160); Gerodermia 

osteodysplastica (golgin SCYL1BP1) 

Rabkinesin6, GAPCenA 

Rab6B Golgi 

Intra-Golgi transport, 

preferentially expressed 

in neuronal cells 

Rab6 interacting protein 1/2A/2B, 

Cog6, kinesin Rab6-KIFL, GCC185, 

giantin, OCRL1, ELKS, INPP5B, 

golgin SCYL1BP1, golgin-97, golgin-

245, hVps52 (GARP/VFT complex), 

dynein light chain DYNLRB1, p150 

(Glued) subunit of dynein/dynactin 

complex, mint3 adaptor protein, 

Bicaudal-D1/2, VFT complex, golgin 

Sgm1 (TMF/ARA160); Gerodermia 

osteodysplastica (golgin SCYL1BP1)  

Rab7A 

Late endosomes, lyso-

somes/vacuole, 

melanosomes, 

phagosomes 

Late endosome to lyso-

some 

 HOPS (Homotypic fusion and protein 

sorting) complex, Rabring7, pro-

teasome alpha-subunit PSMA7, 

Vps34/p150 PI3-kinase complex, 

oxysterol binding protein related pro-

tein 1, RILP 

Rab7B Lysosomes 
Late endosome to lyso-

some 

 HOPS (Homotypic fusion and protein 

sorting) complex, Rabring7, pro-

teasome alpha-subunit PSMA7, 

Vps34/p150 PI3-kinase complex, 

oxysterol binding protein related pro-

tein 1, RILP 

Rab8 A, B 

Median Golgi and TGN, 

Cell membrane, Vesi-

cles, Primary cilia 

Basolateral protein 

transport from median 

Golgi and TGN, Exocy-

tosis 

Rab8IP (IP-interacting protein), 

Rabphilin, MICAL-1, MICAL COOH-

terminal like, MICAL-L1, 

JRAB/MICAL-L2, TRIP8b (Rab8b), 

FIP-2, optineurin, otoferlin, RIM1, 

RIM2, Noc2, OCRL1, Sro7 (Sec4), 

cenexin3 

Rab9 A Late endosomes 

Transport from late 

endsomes to trans-

Golgi 

p40, TIP47 (TIP-Tail interacting pro-

tein), TIP47, INPP5B, GCC185, PI3P 

PIKfyve kinase associated protein 

p40, NdeI, 14-3-3 protein theta, HPS4 

Rab9B Late endosomes, golgi 

Transport from late 

endsomes to trans-

Golgi 

p40, TIP47 (TIP-Tail interacting pro-

tein), TIP47, INPP5B, GCC185, PI3P 

PIKfyve kinase associated protein 
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p40, NdeI, 14-3-3 protein theta, HPS4 

Rab10 

Median Golgi and TGN, 

Sorting endosomes, 

GLUT4 vesicles 

Basolateral protein 

transport from median 

Golgi and TGN, Exocy-

tosis 

Rim1, MICAL-1, MICAL COOH-

terminal like, MICAL-L1, 

JRAB/MICAL-L2, Chlamydia 

pneumoniae Inc protein Cpn 0585 

Rab11 A, 

B 

TGN/post-Golgi vesicles 

and recycling endo-

somes 

Transport from the Gol-

gi, and apical and 

basolateral endocytic 

recycling 

Rabphilin11, Rab11BP (BP-Binding 

protein), FIP2, FIP3, FIP4 (FIFP-

Family interacting protein), Sec15, 

RIP11(RIP-Rab interacting protein), 

Sec15, Rab11-FIP1 to FIP5 [FIP3 3 

eferin/arfophilin, FIP5 3 Rip11, FIP1c 

3 Rab coupling protein (RCP)], D. 

melanogaster nuclear fallout, 

arfophilin-2, myosin Vb, PI4-kinase β, 

rabphilin-11, Rab6 interacting protein 

1, Rabin3, Chlamydia pneumoniae Inc 

protein Cpn 0585, Sec2 (Ypt31/32), 

Gyp1 (Ypt32); Huntington’s disease 

Rab12 

Peripheral region of cell 

to perinuclear centro-

somes, secretory vesi-

cles, Golgi 

Transport from periph-

eral region of cell to 

perinuclear centro-

somes, 

Exocytosis 

Rab interacting lysosomal protein-like 

1 (RILP-L1) 

Rab13 
Cell/tight junctions, TGN, 

RE 

TGN/RE to plasma 

membrane 

Delta-PDE, MICAL-1, MICAL COOH-

terminal like, MICAL-L1, 

JRAB/MICAL-L2, protein kinase A, 

INPP5B, OCRL1 

Rab14 
Early endosomes and 

Golgi, GLUT4 vesicles 

Transport between ear-

ly endosomes and Gol-

gi, Apical membrane 

trafficking 

FIP2, RCP, Rip11, D-AKAP2 

Rab15 
Early and recycling en-

dosomes 

Sorting endosome/RE 

to plasma membrane 

REP15 (REP-Rab escort protein), 

MICAL-1, MICAL COOH-terminal like, 

MICAL-L1, JRAB/MICAL-L2, Rab15 

effector protein 

Rab17 
Epithelial specific; apical 

recycling endosome 

Transport through api-

cal recycling endo-

somes, Transcytosis 

 

Rab18 
ER–Golgi intermediate, 

Lipid Droplets 

ER–Golgi trafficking, 

Lipid Droplet formation 
 

Rab19 Golgi Unknown 

D-AKAP2, ddGCC88, dGolgin97, 

Wdr38, oxidative stress-induced 

growth inhibitor family member 2 (D. 

melanogaster GRIP domain proteins) 
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Rab20 

In apical dense tubules, 

endocytic structures, 

Endosome, Golgi 

In apical endocyto-

sis/recycling 
INPP5E 

Rab21 Early endosomes Endosomal transport α-Integrin subunit 

Rab22 A 
Early endosomes and 

TGN 

Endosomal transport, 

protein recycling to 

plasma membrane 

Rabex-5, EEA1, rabenosyn-5, RAD51, 

INPP5B, OCRL1, rKIAA1055 

Rab23 
Plasma membranes and 

early endocytic vesicles 

Transport between 

plasma membranes and 

early endocytic vesicles 

 

Rab24 

ER/cis-Golgi region and 

on late endosomal struc-

tures 

Autophagy-related pro-

cesses 
COOH-terminal binding protein 1 

Rab25 
Epithelial specific; apical 

recycling endosome 

Transport through api-

cal recycling endo-

somes 

Integrin β-1 subunit, FIP2, Rip11; epi-

thelial cancers 

Rab26 

TGN-apico-lateral mem-

branes, Secretory Gra-

nules 

Exocytosis of secretory 

granules and vesicles 

from TGN to apico-

lateral membranes 

RIM1 

Rab27 A, 

B 
Melanosomes Exocytosis 

Melanophilin, Rabphilin-3, Noc2, 

Granuphilin (SLP4), Slp1-5, Slac2-a 

(melanophilin), Slac2-b, granuphilin, 

MyRIP (Slac2-c), Rim2, Rabphilin, 

Noc2, Munc13-4, Golga4/p230;  

Rab30 ER, Golgi Unknown 

Cog4, Golga4/p230, dGCC88, 

dGolgin97, dGolgin245 (D. melano-

gaster GRIP domain proteins) 

Rab31(Ra

b22B) 

Early endosomes and 

TGN 

Transport between TGN 

and early endosomes 

and vice versa, M6P 

receptor transport to 

endosome 

OCRL1 

Rab32 
Mitochondria, 

melanosomes 

TGN to melanosome, 

mitochondrial fission 
Varp/Ankrd27, PKA 

Rab33 A 
Golgi, dense-core vesi-

cles 

Autophagosome for-

mation 
ATG16L, GM130, rabaptin-5, rabex-5 

Rab33B Golgi 
Autophagosome for-

mation 
Rab33b-BP 

Rab34 Golgi, macropinosomes Intra-Golgi transport, 

peri-Golgi positioning of 
RILP, Hmunc13, RILP-L1 
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lysosome 

Rab35 
Recycling endosomes, 

PM 

Apical endocytic recy-

cling, Actin assembly 

MICAL COOH-terminal like, MICAL-

L1, MICAL-1, OCRL1, fascin, 

Centaurin β2 

Rab36 Golgi Unknown 
MICAL-1, MICAL-L1, RILP, RILP-L1, 

GAPCenA, Leprecan 

Rab37 

TGN-apico-lateral mem-

branes, Secretory Gra-

nules 

Exocytosis of secretory 

granules and vesicles 

from TGN to apico-

lateral membranes 

RIM1 

Rab38 Melanosomes TGN to melanosome Varp/Ankrd27 

Rab39 Golgi Unknown Caspase-1 

Rab40 A, 

B, C 
Golgi, RE 

Endosome/intracellular 

transport 

Elongin B/C, Cullin5, D-AKAP2, RILP-

L1, RME-8 

Rab41 Golgi Unknown Cog6, Golga4/p230, D-AKAP2 

Rab42 Unknown Unknown Unknown 

Rab43 ER, Golgi 
ER to Golgi, Shiga toxin 

transport 
Unknown 

Rab44 Unknown Unknown Unknown 

Rab45 Perinuclear region Unknown Unknown 

Modified from (Hutagalung and Novick, 2011, Bhuin and Roy, 2014) 
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● Vesicle budding : 

Rab proteins have been shown to regulate vesicle budding from different organelles. Rab1 

controls budding from the ER (Allan et. al., 2000). Rab9 regulates membrane budding from 

the Trans-Golgi network (TGN). Rab5 regulates the half-life formation of clathrin coated 

pits, while Rab7 regulates the budding of the vesicles from the golgi complex (Lombardi et. 

al., 1993, Diaz and Pfeffer, 1998).  

 Vesicle transport : 

Rabs are involved in the transport of vesicles; Rab6 is involved in the microtubule-based 

transport from the golgi, while Rab5 has been implicated in the attachment and movement 

of early endosomes along the microtubules (Zerial and McBride, 2001). Rabs are involved 

in early and late endosomes trafficking and fusion, specifically Rab5 localises to early 

endosomes, while late endosomes require Rab7 localization (Rink et. al. 2005). The switch 

between Rab5 and Rab7 is essential to identify these organelles and to progress in the 

endocytic pathway. This is due to interaction of Rab5 with the HOPS/VPS (homotypic 

fusion and protein-sorting/class C vacuole protein-sorting) complex (GEF of Rab7). As the 

endosomes migrate from the cell periphery to the center of the cell Rab5 is replaced by 

Rab7 (Rink et. al., 2005). 

 Vesicle fusion :  

The exocyst is a complex of proteins that only functions in exocytosis in the exocytosis by 

acting as a tether between the vesicles and the plasma membrane (TerBush et. al., 1996). 

This complex has been identified in yeast, where it was shown to regulate the fusion of 

Rab loaded vesicles to the plasma membrane. Rab5 regulates the transport of the clathrin 

coated vesicles from the plasma membrane to the early endosomes and its fusion. EEA1 

(Early Endosome Antigen 1) is the effector of Rab5 and allows the docking of the Rab5 

bearing membranes (generally early endosomes) together (McBride et. al., 1999). 

Different Rab proteins regulate the effect of SNARES involved in fusion. For example, in 

our studies Rab8 regulates VAMP3 (involved in vesicle fusion) while Rab35 regulates the 

vesicle scission protein i.e. EHD1 and these proteins have been indicated in TNT 

formation (described in this thesis). This indicates that molecules affecting membrane 

fusion and scission regulates cell protrusions. 
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 Rabs and endosome recycling : 

Several Rab proteins are involved in the recycling pathway. Rab11/EHD1 presence on the 

tubules is the indication ERC (Grant and Donaldson, 2009). Early endosomes lose Rab5 

and acquires Rab11, and this result in the formation of the tubules by the early endosomes 

and the main body of the early endosomes gives rise to the mutlivesicular body. The ERC 

is usually situated near the golgi or MTOC (microtubule organizing centre) (Maxfield and 

McGraw, 2004). Recycling of endosomes involves rapid and slow recycling pathways. The 

rapid recycling occurs in endosomes that are Rab 4/5 positive, while slow recycling occurs 

in endosomes positive for Rab 4/11 (Hao et. al., 2000, Mayor et. al., 1993, Sonnichsen et. 

al., 2000). 

The rapid recycling occurs by movement of the cargo from early endosomes directly to the 

plasma membrane. This pathway usually involves Rab4 and Rab35 and recycles 

transferrin, glycosphingolipids (Maxfield and McGraw, 2004, Kouranti et. al., 2006) MHC-

receptors (Walseng et. al., 2008). 

 In slow recycling, cargo travels from early endosomes to the ERC, and then back to the 

plasma membrane. In mammals this pathway involves adaptor protein (AP2) protein and 

ARF6, usually this is involved in recycling of MHC-I (Lau and Chou, 2008). ARF6 also 

regulates the uptake and recycling of lipid rafts back to the plasma membrane 

(Balasubramanian et. al., 2007).  

Several proteins and receptors are recycled with the help of Rab proteins. MHC-I is 

recycled by Rab11, Rab22a, EHD1 in association with ARF6 (Hattula et. al. 2006, Weigert 

et. al., 2004, Powelka et. al., 2004, Magadan et. al., 2006). β-integrins are recycled by 

Rab11, EHD1 (Powelka et. al. 2004, Jovic et. al., 2007), TFRs are recycled by Rab8, 

Rab22a (Hattula et. al. 2006, Weigert et. al., 2004, Magadan et. al., 2006), AMPA 

receptors by Rab 10 (Glodowski et. al., 2007).  

The active form of Rab22a induces formation of large recycling tubules and accumulated 

vesicles. This stopped MHC-I recycling. Rab11a may co-ordinate different steps of MHC-I 

recycling (Weigert et. al., 2004). EHD1 regulates integrin recycling back to the plasma 

membrane. EHD1 is localized in the vesicles and maybe involved in cell spreading and 

migration (Jovic et. al., 2007). Similarly, EHD2 regulates GLUT4 receptor recycling back to 

the plasma membrane (Park et. al., 2004). EHD1 is also involved in recycling of the MHC-I 

receptors back to the plasma membrane in association with ARF6, EHD1 is tubule 
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inducing factor in this case, SNX-4 (Sorting nexin) proteins in the yeast whose absence 

allows the degradation of TFR (Traer et. al., 2007) 

The recycling of T cell receptors depends upon the lipid rafts, protein tyrosine kinase 

activity and clathrin coated pits in cells. This process depends on the recycling of these 

complexes and its interaction with the ligands (Monjas et. al., 2004, Liu et. al., 2000).  

 Rabs and Cilia formation: 

 Cilia are cellular projections that interpret and transmit a variety of extracellular signals. 

Cilia are structures made up of microtubules; their cell surface is made of molecules like 

smoothened, GPCRs, somatostatin and rhodopsin. Cilia formation involves both the 

polarized membrane trafficking and microtubule organization (S Sorokin, 1962). Cilia forms 

in a stepwise manner where the centrioles form the basal bodies, and they dock on the cell 

cortex to induce the formation of cilium. Assembly of cilia involves protein trafficking from 

the cytoplasm to the base of the cilium (Ishikawa and Marshall, 2011). Ciliary defects are 

associated with a wide variety of disorders such as retinal degeneration, Biedel Bardet 

syndrome etc. (Das and Guo, 2011).  

Rab29 is localized at the base of cilia and regulates its formation by recruiting smoothened 

and interacting with Rab8, Rab11 and IFT20 (Intraflagellar Transport protein 20 homolog) 

and promoting ciliary growth (Onnis et. al., 2015, Vivar et. al., 2016). Rab8a regulates 

ciliogenesis in several different species such as mice, C. elegans, Zebrafish etc. Rab8a is 

usually localized to the base of the ciliary membrane (Westlake et. al., 2011). Rab8a works 

with Rab10 in a redundant manner. Rab8a interacts with Rab11 in a cascade mechanism 

involving Rabin8 to regulate cilia formation (Westlake et. al., 2011). Rab11 is regulated by 

ODF2/Cenexin protein and PI3K which generates phosphatidylinositol 3-phosphate (PI3P) 

(Hehnly et. al., 2012) and PI3P activates Rab11 (Franco et. al., 2014). Rab23 regulates 

cilia length by acting as inhibitor of cilia specific Shh (Sonic Hedgehog) signaling (Huangfu 

et. al., 2003, Yoshimura et. al., 2007, Lim and Tang, 2015). Rab28 is also involved in cilia 

formation and is localized to the ciliary body and at the root of the rat photoreceptor cells 

and regulates intraflagellar transport (Estrada-Cuzcano et. al., 2012, Jensen et. al., 2016). 
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 Rab and immunological synapse formation: 

 Immune synapse is the interface between T cells and antigen presenting cells, where the 

molecular interactions take place. It involves several receptors one of them is T cell 

receptor (M Dustin, 2014). T cell receptors (TCRs) are continuously taken up and recycled 

back to the plasma membrane. Upon encountering antigen presenting cells the T cells 

polarize towards the antigen presenting cell, and the recycling endosomes are localized 

towards the immunological synapse and exocytic t-SNAREs (soluble NSF attachment 

protein receptors) are accumulated at this site (Das et. al., 2004). Rab proteins are 

important for this function (Gorska et. al., 2009). In Jurkat T cells, EPI64C acts as GAP for 

Rab35 and regulates the TCRs and transferrin recycling (Patino–Lopez, 2008). Rab29 

interacts with Rab8a, Rab11a and IFT20 for assembly of immune synapse and TCR 

trafficking. Rab11 recruits FIP3 (Rab11 Family of interacting proteins-3) to interact with 

Rac which induces actin remodeling for formation of immune synapse (Bouchet et. al., 

2016). Rab8 and Rab11 interact with the SNARE protein VAMP3 (Vesicle associated 

membrane protein) for TCR trafficking to the immunological synapse, and formation of 

immune synapse (Finetti et. al., 2015). Transmembrane adaptor LAT (Linker for activation 

of T cells) is internalized by clathrin independent pathway, mediated by ARF6 via Rab27a 

and Rab37 vesicles (Soares et. al., 2013). The cytotoxic T lymphocytes need VAMP8 / 

Rab11 mediated vesicle fusion to fuse cytolytic granules with the membrane (Parker et. 

al., 2018). Immune synapse formation is regulated by Rab11 and myosinVb motor protein 

which further interact actin cytoskeleton (Gorska et. al., 2009). 

● Rabs and disease :  

Membrane trafficking is involved in many processes of the neurons, alteration in 

membrane trafficking has been implicated in neurodegeneration and cancer (Kiral et. al. 

2018). 

Neurodegenerative diseases: Alpha synuclein associated with lewy bodies are hallmark of 

Parkinson disease (Gitler et. al., 2008). Alpha synuclein is involved in vesicular trafficking 

and shown to interact with several different Rab proteins. Mutant alpha synuclein interacts 

with Rab5, Rab8 and Rab3a (Dalfo et. al., 2004). Alpha synuclein impairs ER-Golgi traffic 

and overexpression of Rab1 in these neurons rescues this effect and protects, loss of 

dopaminergic neurons (Cooper et. al., 2006). Further in dopaminergic neurons it was 

shown that Rab3a and Rab8a rescue the effect of alpha synuclein in mice (Gitler et. al., 



46 

 

 

2008). Rab11 is involved in regulating the levels of Aβ by controlling the recycling of beta 

secretase (Udayar et. al., 2013).  

Huntington is autosomal recessive genetic disorder which is caused by expansion of the 

trinucleotide repeat of the huntingtin gene (htt). Huntingtin prevents the trafficking of Rab8 

and disrupts clathrin mediated trafficking to the lysosomes (Sahlender et. al., 2005, del 

Toro et. al., 2009). Huntingtin also interacts with the Rab11. Overexpression of dominant 

negative form of Rab11 disrupted the motor functions in mice (Li et. al., 2008, Li et. al., 

2009a, Li et. al., 2009b). 

Mutations in Rab7 causes Charcot marie tooth syndrome 2b, which results in 

overexpression tenfold of Rab7 (Cherry et. al., 2013). In rare human disease Griscelli 

syndrome, mutations in Rab27a and myosinVa cause the accumulation of melanosomes 

due to inability of granule movement (Zerial and McBride, 2001). 

Cancer: Membrane trafficking also plays an important role in cancer due to loss of cell po-

larity and involved in enabling metastasis of cells (Mosesson et. al., 2008). Rab25 is 

upregulated in breast cancer and ovarian cancer (Cheng et. al., 2004). 
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b) Role of Rabs in polarization: The case of neuronal polarization: 

Otto Friedrich Karl Deiters (1834–1863) gave the first description of neurons as “The cell 

body continues without interruption into a more or less large number of processes that run 

in long courses, often branching repeatedlyand extending finally into immeasurably fine 

processes called protoplasmic processes (the dendrites). These are immediately 

distinguishable from an outstanding single process that arises from the cell body or from 

the root of one of the larger protoplasmic processes (the axons).” This is referred in Figure 

11. More detailed description of the neuron was given by Cajal in 1989, as “Every neuron, 

then, possesses a receptor apparatus, the body and the dendritic prolongations, an 

apparatus of emission, the axon, and an apparatus of distribution, the terminal arborization 

of the nerve fiber." 

 

Figure 11: Neurons: The drawings in are from the spinal cord gray matter at 300–400 

times magnification (Otto Friedrich Karl Dieters) 
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The neurons contain two different structures as the axons and the dendrites. Cultured 

hippocampal neurons undergo different stages of development from stage 1 to stage 5, 

from bearing immature neurites to forming fully functional neurons bearing axons and 

dendrites (Craig and Banker, 1994, Dotti et. al., 1988).  

Neurons are polarised cells. They contain polarized structures as multiple dendrites and a 

single axon; they need specific proteins to maintain their polarization. These proteins are 

synthesized in the somatodendritic regions and are trafficked along the intracellular 

trafficking machinery to maintain neuronal polarity (Bentley and Banker, 2016). This 

indicates the importance of vesicle trafficking in regulating the neuronal polarization. 

 

 

Figure 12: Membrane trafficking contribution to neurite elongation: in 

neuroblastoma. Rab GTPases from TGN derived vesicles (green), early/late endosomes 

(blue) and recycling endosomes (red) are represented in a neuroblastoma cell line. The 

identity of several Rabs involved in membrane trafficking is illustrated by triangles, 

squares, circles, and pentagons. The vesicle routes promoting neurite outgrowth are 

represented by continued lines, whereas inhibitory activities are shown as dashed lines 

(Villaroel-Campos, 2014). 
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Neuronal cells and epithelial cells may share a similar mechanism of polarization. This was 

first proposed by Dotti and Simons in 1990, in MDCK cells, the vesicular stomatitis virus 

(VSV) G protein, is delivered to the basolateral surface, whereas the influenza fowl plague 

virus (FPV) hemagglutinin (HA) is delivered apically similarly these proteins are 

segregated in mature hippocampal neurons where (VSV) G protein was sorted 

somatodendritically while the (FPV) HA protein was directed to the axons.  

Neuronal polarity and the formation of axons and the dendrites require recycling 

endosomes (Horton and Ehlers, 2003) Figure 12. There are two models which describes 

recycling pathways involved in neurons, the first model proposes sorting of the vesicles 

from the TGN-RE (Trans-Golgi network-Recycling endosome) compartment either to 

axons or dendrites. Usually TFRs are targeted in a selective manner to the dendrites, 

while the axonal protein NgCAM ((neuron—glia CAM)/L1) is transported to both the axons 

and dendrites (Burack et. al., 2000). Microtubule polarity may be responsible for the 

transport of vesicles towards specific compartments (Baas, 1998). Thus, both the recycling 

pathway and the cytoskeleton are involved in maintaining the polarity of neurons. 

 The second model proposes a specific fusion event in which the molecules or the 

receptors can be transported both to the axons and the dendrites but they can fuse only in 

the axon, as the protein NgCAM (Burack et. al., 2000, Sampo et. al., 2003).  

 Along with directing proteins for maintaining axons and dendrites, vesicle trafficking is 

also involved in formation of neuronal structures such as neurite outgrowth as shown in 

Figure 13, formation of dendritic spines etc. Several proteins involved in vesicle trafficking 

are also involved in the formation of neuronal processes. For example, exocyst complex is 

one of the major components of the recycling endosomes, especially Sec 6/8 is localized 

at the growth cones and the neurites (Hazuka et. al., 1999). Rab11 and TFRs are present 

at the base of dendritic spines under normal conditions in neurons (Schmidt and Haucke, 

2004). Rab11 is regulating localisation of N-cadherin in neurons in turn regulating 

polarisation of the neurons (Barnat et. al., 2017). It is also reported that Rab5 acts 

upstream of Rab11 in regulating the migration of neurons, while the Rab7 regulates the 

late stage of migration of neurons (Kawauchi et. al., 2010). In the post mitotic cultured 

neurons, downstream of Ras protein PI3K action regulates the levels of PIP3 in cells. 

Overexpression of active subunit of PI3K leads to the formation of axons. PTEN 

(phosphatase and tensin homolog deleted on chromosome 10) is known to act on the 

neuronal polarisation and its effect is opposite of PI3K since it converts PIP3 to PIP2 and 

increases its levels. Over expression of PTEN in neurons leads to the decrease in 
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formation of axons. Recycling pathway is important for maintaining and formation of the 

dendritic spines (Park et. al., 2006).  

 

 

 

 Figure 13: Mechanisms of neuronal polarization. Initially, all neurites are assumed to 

be equal. a) Cytoskeleton is changes occur before polarization. b) These cytoskeletal 

changes are present in the axons and kinesin one shows more preference to the future 

axons. c) The cytoskeleton is more dynamic and giving rise to the growth cone in one of 

the neurite, the microtubule motor proteins are trafficked along axon (Witte and Bradke, 

2008). 
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Chapter 3: Overview of the Rabs and downstream pathways involved in 

TNT regulation 

1) Rab8a: 

Rab8a is localized at the basolateral membrane, golgi and tubulovesicular structures. It is 

involved in recycling of endosomes and basolateral transport of membrane proteins (Lee 

et. al., 2003). Rab8a colocalises with several different proteins as ARF6, Rab11 (Hattula 

et. al., 2006) β integrins under polarized conditions (Peranen et. al., 1996) and IFT20 

(Finetti et. al., 2015). Rab8a is involved in vesicle trafficking and its effects, such as 

exocytosis (Huber et. al., 1993, Hattula et. al., 2006), membrane recycling and polarisation 

of cells, see Figure 14. For example, overexpression of active form of Rab8a shows 

increase in formation of tubular and reticular structures in cells. Rab8a interacts with 

EHBP1L1 (EH domain–binding protein 1–like 1), Bin 1 and dynamin complex to regulate 

apical membrane transport in rat intestinal cells (Huber et. al., 1993). Rab8a is involved in 

the recycling of T cell receptors in immune cells (NIH3T3 cells) (Finetti et. al., 2015). It 

colocalizes with and is involved in the transfer of membrane protein perforin to the 

immunological synapse (Lesteberg et. al., 2017). 

Rab8a is involved in both membrane recycling and formation of cellular structures. Rab8a 

positive tubules are involved in membrane formation at membrane ruffling and the 

formation of protrusions, by recycling vesicles back to the membrane. Knockdown of 

Rab8a results in formation of stress fibers (Hattula et. al., 2006).  

Formation of Rab8a positive intracellular tubules depends on actin and microtubules in the 

cells (Huber et. al., 1993). Rab8a has been shown to have an effect on both microtubules 

and actin reorganization and induced the formation of cellular protrusions in BHK (Baby 

hamster kidney) cells similar to lamellipodia and filopodia (Peranen et. al., 1996). 

Overexpression of dominant negative form of RhoA in cells increased the presence of 

tubular structures positive for Rab8a inside the cellular protrusions. Importantly, these 

Rab8a positive vesicles were shown to fuse with the plasma membrane protrusions giving 

rise to filopodia (Hattula et. al., 2006). Under polarized conditions active Rab8a is recycled 

back slowly. This allows it to form complexes with its effectors at the plasma membrane 

and enables its interaction with actin. This results in formation of tubulovesicular structures 

into cellular protrusions (Peranen et. al., 1996). Over expression of inactive form of Rab8a 

shows an increase in the stress fibers but the active form of Rab8a shows redistribution of 

actin filaments in the cells. It was also shown that Rab8a localises with actin in 

lamellopodia like structures formed in the cells overexpressing Rab8a. However, the 



52 

 

 

mechanisms responsible for the inter-regulation of Rab8a and actin is unknown (Peranen 

et. al., 1996).  

 

 Figure 14: Role of Rab8 and Rab11 in cell: The sorting of biosynthetic cargoes to 

different plasma membrane domains takes place either at the TGN or in recycling 

endosomes in polarized epithelial cells. Vesicular trafficking to the cilium may originate in 

recycling endosomes where Rab8 or Rab11 or both may regulate the organization of 

distinct subdomains. The exocyst has been shown to play a role in vesicular trafficking 

from the recycling endosomes (RE) to the basolateral membrane (arrow 1) as well as in 

trafficking to the cilium in association with Rab8, Rabin8, and Rab11 (arrow 2). Vesicles 

may be directed to the base of the cilium by the interaction of Rabin8 and BBS1. Rab11 

also has a known role in sorting to the apical membrane (arrow3) (Kang and Folsch, 

2009).  
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2) Rab11a: 

Rab11 is involved in transport of recycling endosomes back to the plasma membrane (Das 

and Guo, 2011). Rab11a is enriched at the base of the cilia and is involved in the 

maintenance of the primary cilia (Knodler et. al., 2010), as shown in Figure 14. 

Rab11a-Rab8a with the help of Rabin8 and Cdc42 regulates epithelial lumenogenesis 

(Bryant et. al., 2010). GTP bound Rab11 colocalises with and recycles transferrin positive 

endosomes in CHO, BHK, and COS1 cells (Ullrich et. al., 1999, Ren et. al., 1998, 

Naughtin et. al., 2010). Rab11 is associated with MVBs and is involved in fusion of the 

autophagosomes to MVBs (Fader et. al., 2009). 

Importantly Rab8 and Rab11 are involved in cilia formation with the help of Rabin8 (GEF 

of Rab8a). Rabin8 is shown to be the link between Rab11 dependent activation of Rab8a 

and the two Rabs act in a cascade that leads to the formation of cilia (Knodler et. al., 

2010). In my thesis work (together with another student) we found a role for Rab11a and 

Rab8a in TNT formation (see below and results). However, Rabin8 does not have an 

effect on the formation of the tunneling nanotubes in CAD cells (Zhu et. al., 2018). GRAB 

(GRAB/Rab3IL1 (guanine nucleotide exchange factor for Rab3A; Rab3A interacting 

protein (rabin3)-like 1), which acts in a similar manner to Rabin8. It acts as a downstream 

effector of Rab11a and Rab8a and is involved in axon outgrowth (Furusawa et. al., 2017). 

Rab11 interacts with GRAB and overexpression of Rab11 causes GRAB to shift to the 

membranes (Horgan et. al., 2013).  

In my thesis work we showed that GRAB, is involved in the formation of the TNTs. 

However, it was not involved in the cascade mechanism for the regulation of TNTs (Zhu et. 

al., 2018).  
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3) VAMP3: 

The targeting, docking and fusion of vesicles with the acceptor membranes require 

interaction with actin and microtubule cytoskeleton, recruitment of cytosolic docking 

complexes and specific recognition between integral membrane proteins known as v- and 

t-SNARES. SNARE proteins are divided into distinct ‘v’ and ‘t’ snares on the basis of their 

cellular localization. v-SNAREs are vesicle localized while the t-SNAREs are localized to 

the target vesicles. But this nomenclature is not specific since v-SNAREs are also 

localized at the target vesicles while the t-SNAREs are localized to the vesicles 

(Ungermann and Langosch, 2005). SNARE proteins are involved in phagocytosis, 

exocytosis, cell spreading, and integrin recycling (Hackam et. al., 1998, Skalski et. al., 

2005). VAMP3 (Vesicle associated membrane protein 3) belongs to the family of SNARE 

proteins (Banerjee et. al., 2017). 

The major role of VAMP3 is in regulation of membrane recycling from endosome to the 

plasma membrane, as I explain in the examples cited below. VAMP3 regulates the 

recycling and intracellular distribution of α5β1 integrins and therefore affects cell migration 

and lamellopodia formation in CHO-K (Chinese Hamster Ovary) cells (Tayeb et. al., 2005). 

In platelet cells, megakaryocytes, VAMP3 is involved in fibrinogen recycling (Banerjee et. 

al., 2017). In dendritic cells, MHC-I is concentrated to Rab11a, VAMP3/Cellulobrevin 

positive endosomes at the ERC (Nair-Gupta et. al., 2014). In NK cells recycling 

endosomes are involved in the secretion of granules, thus upon inactivation of Rab11 or 

VAMP3, cells are unable to recycle the cytokines back to the plasma membrane. VAMP3 

also regulates the fusion of the tumor necrosis factor α (TNFα) from the recycling 

endosomes to the plasma membrane (Murray et. al., 2005). VAMP3 is localized near 

phagocytic cups and helps in engulfment of organism to be phagocytosed (Bajno et. al., 

2000). Rab8a, Rab11a and IFT20 (Intraflagellar Transport protein; involved in the 

formation and maintenance of primary cilium) and act in concert for the recycling of T cell 

receptors. The IFT20 and the Rab8 positive vesicles colocalise with each other but 

VAMP3 is necessary for vesicles to fuse with plasma membrane and then undergo 

recycling. Furthermore, Rab8 was shown to be involved in the recruitment of VAMP3 

(Finnetti et. al., 2015). VAMP3 is also involved in trafficking of the integrins from Rab11 

positive recycling endosomes (Skalski et. al., 2005). 

VAMP3 is also shown to interact with the smoothened (transmembrane protein found in 

the cilia, necessary for signal transduction) and Rab8a in ciliary growth (Finnetti et. al., 
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2015). Cilia usually forms in a stepwise manner where the centrioles form the basal 

bodies, and they dock on the cell cortex to induce the formation of cilium. Assembly of cilia 

involves protein trafficking from the cytoplasm to the base of the cilium (Ishikawa and 

Marshall, 2011). 
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4) Rab35 and its interactors: 

Rab35 was first cloned from the human skeletal muscle and is ubiquitously expressed. It 

was described as 201 amino acid containing protein, that exhibits homology to Rab1A, 

Rab1B, and YPT1 at its N terminus and was initially named as H-ray protein (Zhu et. al., 

1994). Due to its similarity to Rab1 protein, it was renamed to Rab1C, but eventually it 

came to be known as Rab35 (Klinkert and Echard, 2016). Rab35 is the only Rab protein 

that localizes both to the plasma membrane and the endosome (Klinkert and Echard, 

2016). It is involved in cytokinesis and fast endocytic recycling in cells. Rab35 regulates 

the recycling of various receptors such as MHC-I, MHC-II, TCRs, N-Cadherin, TFRs 

(Dikshit et. al., 2014).  

Rab35 has several effector proteins such as OCRL (Oculo-Cerebro-Renal syndrome of 

Lowe), ACAP2 (β-centaurin), and MICAL-L1 (molecules interacting with CasL-Like 1) 

(Dambournet et. al., 2011). Rab35 in its GTP bound state binds to lipids, 

phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) at the plasma membrane (Heo et. al., 2006). Rab35 is necessary for 

recycling of the synaptic vesicle proteins through ESCRT (endosomal sorting complexes 

required for transport) machinery, which enables the degradation of synaptic vesicle 

proteins (Sheehan and Waites, 2019). The GTP bound form of Rab35 directly binds to the 

enzyme OCRL. OCRL hydrolyzes PIP2 to PI4P (Phosphatidylinositol-4-phosphate). 

Mutation in OCRL causes the disease known as OCRL syndrome (Dambournet et. al., 

2011). Depletion of either OCRL or Rab35 leads to delays in trafficking of the internalized 

mannose-6-phosphate receptor to the TGN. Rab35 in its GTP bound state binds to PIP2 

and PIP3 at the plasma membrane (Heo et. al., 2006).  

The presence of large vacuoles at the cytokinetic bridge suggests the role of endocytic 

recycling in cytokinesis in drosophila S2 cells and HeLa cells. Rab35 is involved in fast 

endocytic recycling and its downregulation resulted in the accumulation of the endocytic 

markers in the various vacuoles throughout the cells leading to failed cytokinesis. It was 

subsequently shown that Rab35 is involved in localisation of PIP2 and Septin to the 

cytokinetic bridge (Kouranti et. al., 2006). ARF6 negatively regulates Rab35 activation and 

its role in cytokinesis through its effector EPI64B (Chesneau et. al., 2012). Kobayashi and 

Fukuda, in 2013, showed that NGF (Nerve Growth Factor) activation induces neurite 

outgrowth due to Rab35 association to the ARF6 positive endosomes. Rab35 then recruits 

ACAP2 and MICAL-L1 to form a complex. MICAL-L1 directly acts as a binding site for 
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EHD1. While ACAP2 indirectly regulates the recruitment of EHD1 to the membrane by 

inactivating ARF6 and thereby influencing the levels of PI4P on the membrane of the 

vesicles which allows for the binding of the EHD1 to the vesicle membrane, and EHD1 

then acts to regulate the neurite outgrowth. 

a) MICAL-L1: 

 MICAL (molecules interacting with CasL) proteins cause F-actin depolymerisation which 

is NADPH dependent. This action due to N-terminal FAD-containing domain catalyzes a 

strong NADPH oxidase activity in free state. MICAL-L1 (MICAL Like proteins) proteins are 

homologous to these proteins but are encoded by the different genes. They interact with 

actin cytoskeleton, but they lack the NADPH oxidizing activity. MICAL-like proteins are 

commonly involved in membrane recycling (M. Vanoni, 2017). MICAL-L1 proteins have a 

calponin homology (CH), LIM, proline rich and coiled-coil domains, and are associated 

with late endosomes and tubular recycling endosomes (Abou-Zeid et. al., 2011, Bahl et. 

al., 2016).  

MICAL-like proteins have the binding capacity for a broad range of proteins including 

Rab8a/b, Rab10, Rab13 and Rab15. MICAL-L1 interacts with Rab-EHD complex of 

proteins (M Vanoni, 2017). 

Loss of MICAL-L1 leads to impairment in recycling of transferrin and integrin receptors 

back to the plasma membrane (Sharma et. al., 2010). MICAL-L1 links Rab8a and EHD1 

and regulates the recruitment of EHD1 to the membrane tubules (Sharma et. al., 2009). 

MICAL-L1 interacts with EHD1 and GRAF1 (GTPase Regulator Associated with Focal 

Adhesion Kinase) at TREs (tubular recycling endosomes) in cells (Cai et. al., 2014). It is 

involved in the formation of elongated tubular endosomal network in the human dendritic 

cells (Compeer and Boes, 2014). MICAL-L1 also recruits EHD1 molecules to the recycling 

endosomes. MICAL-L1 along with another BAR (Bin, Amphiphysin and Rvs) domain 

protein syndapin-2 (also known as PACSIN-2) binds to phosphatidic acid, and this leads to 

the stabilization of the two proteins and helps in the nucleation of the recycling endosomes 

by the syndapin-2 (Giridharan et. al., 2013). Loss of MICAL-L1 has a role in trafficking of 

the EGF- receptor back to the plasma membrane, though it has no effect on late 

endosomes (Abou-Zeid et. al., 2011).  

 Rab35 regulates the localisation of MICAL-L1 and Rab8 to the ERC membranes by ARF6 

and MICAL-L1. MICAL-L1 binds to its partner CRMP2 (Collapsin Response Mediator 

Protein-2; CRMP2 helps the vesicles bind to the microtubule motor protein dynein and 
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kinesin) and directs the vesicles to membranes (Giridharan et. al., 2012, Rahajeng et. al., 

2010). MICAL-L1 interacts with GTP bound form of Rab35 and Rab10 through its coiled-

coil region (Rahajeng et. al., 2012). Rab35 has a role in the interaction with MICAL-L1 and 

this recruits Rab8a on the tubular endosomes by MICAL-L1. MICAL-L1 is regulated by 

ARF6. Overexpression of activated ARF6 in the cells resulted in the recruitment of MICAL-

L1 in the tubular endosomes (Rahajeng et. al., 2012).  

Loss of MICAL-L1 leads to loss of focal adhesion turnover, cell migration and cell 

spreading. MICAL-L1 also recruits EHD1 to Src positive endosomes and is involved in the 

recycling of the Src protein (non-receptor tyrosine kinase) back to the plasma membrane 

(Reinecke et. al., 2014). Impaired recycling endosome is responsible for production of 

binucleated cells during the cytokinetic process, and MICAL-L1 and EHD1 are two 

components whose depletion leads to this phenomenon, along with the loss of Rab11 on 

these intercellular bridges and they have formed abnormally large intercellular bridges. 

Loss of MICAL-L1 leads to the elongation of spindle fibers during the cytokinetic process in 

the cells (Reinecke et. al., 2015). 

b) ACAP2: 

 ACAP2 (Arf GAP with coiled coil, ANK repeat and PH domain) or Centaurin β2 is found in 

a wide variety of multicellular organisms ranging from Drosophila melanogaster, 

Caenorhabditis elegans, and Arabidopsis thaliana to mammals including humans and 

mouse. It is expressed in different tissues in humans such as amygdala, retina, and testis. 

It is usually localized at the cell periphery (Jackson et. al., 2000). 

It has been shown that the activity of ACAP2 is dependent on PIP2 and phosphatidic acid 

levels in cells (Jackson et. al., 2000). Rab35 is involved in early stages of phagocytosis, 

specifically in the pseudopod extension. In C. elegans, a homolog to mammalian ACAP1 

and ACAP2 i.e. CNT1 (Centaurin 1) is recruited by Rab10 in the intestinal epithelium and 

is necessary for regulating the PIP2 levels in the recycling endosomes (Shi et. al., 2012). 

Rab35 downregulates the effects of ARF6 through ACAP2 and its recycling-based effects 

on the β integrins and EGF receptors and this has an effect on cell adhesion and migration 

(Allaire et. al., 2013). ACAP2 is also shown to mediate the transcytosis of the apical 

marker of polarized cell i.e. podocalyxin in 3D culture model of MDCK cells (Mrozowska 

and Fukuda, 2016).  
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c) ARF6: 

ARF GTPases are small proteins of 21kDa. They are divided into three classes, class-I 

includes ARFs 1–3, class-II includes ARFs 4 and 5, and class-III ARF includes ARF6 

(Jackson and Casanova, 2000). ARF6 was discovered in the 1980s in rabbit liver 

membranes as a protein that localises with and acts as a cofactor of Cholera toxin B by 

activating adenylate cyclase activity (Kahn et. al., 1984).  

ARF6 GEFs belongs to ARNO/cytohesin and EFA6 (exchange factor for ARF6) families 

(Jackson and Casanova, 2000) or Arf-GEP100 (Guanine Nucleotide Exchange Protein for 

ADP-ribosylation Factor 6) (Someya et. al., 2001). ARF6 GAPs includes Git1, ACAP2 etc. 

(Jackson et. al., 2000).  

ARF6 is involved in different steps of vesicle trafficking. Clathrin coat formation is 

dependent on the elevated levels of PIP2 in the cells. Levels of PIP2 is dependent on the 

activation of PIP5 kinase by ARF6 (Krauss et. al., 2003, Honda et. al., 1999). When the 

cells overexpress the active form of ARF6 i.e. GTP bound form of ARF6, this leads to 

formation of PIP2 positive actin coated vesicles. In turn, this impairs the recycling of beta 

integrins, plakoglobins, MHC-I back to the plasma membrane as they are trapped in these 

vesicles. Thus, cycling of ARF6 between active and inactive forms is important for the 

recycling of vesicles back to the plasma membrane (Brown et. al., 2001). Phospholipase D 

(PLD) interacts with phosphatidylinositol-4-phosphate 5 (PI4P) kinase to convert PI4P to 

PIP2. This PIP2 in turn is necessary for the activity of PLD. ARF6 mutants which have 

inability to activate PLD show defects in the recycling and failure to form protrusions by 

cells (Jovanovic et. al., 2006). ARF6 is involved in non clathrin dependent endocytosis and 

recycling back to the plasma membrane. It is involved in recycling of actin regulating 

proteins such as Cdc42 and Rac and PAR6 complex (Donaldson and Jackson, 2011). 

ARF6 is involved in the internalization of the integral membrane proteins independent of 

AP2 proteins, such as IL-2 receptor alpha subunit Tac (Radhakrishna and Donaldson, 

1997, Peters et. al., 1995, Cavenagh et. al., 1996). Fc γ receptor mediated endocytosis 

depends on ARF6 (Zhang et. al., 1998, Niedergang et. al., 2003). 

ARF6 is involved in regulating the cytoskeleton and its activity. As consequence, ARF6 

has been shown to be involved in cell spreading (Song et. al., 1998). Activated form of 

ARF6 has a role in forming protrusive membrane structures that are not particularly rich in 

F-actin (Brown et. al., 2001). ARF6 colocalizes with Rac1 at the plasma membrane. The 

over expression of both ARF6 and Rac1 induces formation of dorsal ruffles and actin 



60 

 

 

mediated protrusions. ARF6 plays a role in Rac1 mediated formation of lamellipodia by 

affecting the recycling Rac1 to the plasma membrane. In addition, ARF6 also has an 

independent capability of altering the cortical actin cytoskeleton upon activation, 

independent of Rac1 (Radhakrishna et. al., 1999). 

Protein kinase C acts through ARNO, which is a GEF for ARF6 and regulates 

reorganization of actin and the formation of membrane protrusions (Frank et. al., 1998). 

ARF6 activates PIP5 kinase, and this activation requires phosphatidic acid that is the 

product of phospholipase D, at the ruffling membranes (Honda et. al., 1999, Brown et. al., 

2001, Cockcroft et. al., 1994). ARF6 forms lamellopodia through ARNO and also affects 

cellular motility (Santy et. al., 2001). It is involved in dendritic branching and neurite 

outgrowth, through ARNO (Hernandez-Deviez et. al., 2002). It is also involved in cell 

polarity, and maintenance of adherens junctions in cells (Palacios and D'souza-Schorey, 

2003, Palacios et. al., 2002). 

d) EHD1: 

Endocytic recycling involves the return of the membranes and receptors back to the 

plasma membrane, and this process involves the tubular and vesicular vesicles carriers in 

the cells where they are easily transported back to the plasma membrane through the 

microtubules. EHD family of proteins was found to be important in endocytic recycling and 

they are predominantly associated to the ERC (Cai et. al., 2013). EHD family of proteins is 

homolog to Eps15 protein. They contain the EH domain (Eps15 homology domain) that is 

used to interact with the phosphatidylinositols (Posey et. al., 2014). They have a molecular 

weight of 60 kDa. 

Rabenosyn 5 interacts with EHD1 to recycle TFR or MHC-I back to the plasma membrane 

(Naslavsky et. al., 2004a). EHD proteins are involved in the tubule formation in muscle 

cells and regulates the fusion of myoblasts. Loss of EHD1 results in mislocalisation and 

defective recycling of key muscle proteins. EHD1 regulates BIN1 mediated tubule 

formation (Posey et. al., 2014). EHD1 is involved in spermatogenesis and, lens 

development in mice. Its deletion in lens tissue resulted in decreased epithelial 

proliferation, reduced expression of E-cadherin and adherens junction proteins (Arya et. 

al., 2015). EHD1 and Rab11 act together in recycling of the AMPAR to the membrane. 

EHD1 has also has a role in the movement of NgCAM from the somatodendritic region to 

the axon (Moore and Baleja, 2012). 
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It was shown that EHD1 directly colocalised with smoothened (as mentioned before 

smoothened is involved in signal transduction and is primarily situated at the base of the 

cilia) and trafficked along cilium (Bhattacharyya et. al., 2016). EHD1 is necessary for the 

formation of proper spindle fibers during the early stages of cytokinesis (Reinecke et. al., 

2015). EHD1 and EHD4 are involved in the vesiculation and recycling of the membranes 

decorated with MICAL-L1, while EHD3 is a membrane tubulating protein (Cai et. al., 2013). 

Similarly, EHD1 and EHD3 interacts with Rab11 and Rab8 cascade and regulating the 

intiation of cilia formation, along with EHD1, SNARE protein namely SNAP29 is needed for 

the formation of the vesicles assembled at the base of the cilia which eventually results in 

the growth of cilia (Lu et. al., 2015). 

 EHD1 has been shown to be involved in several diseases. EHD1 is upregulated in the 

spinal cord as well as neurons, microglias and astrocytes, in rat model of Spinal cord 

Injury. EHD1 induced the up regulation of Trk A and the recycling of TrkA, which induces 

the uptake of NGF in the neurons which is important for neurite outgrowth (Wu et. al., 

2016).  
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Table 4: General overview of Rab proteins and their effectors.  

Protein Function Binding/ Interacting  
partners 

Reference 

Rab8a Exocytosis, membrane recy-
cling, polarisation of cells 

ARF6, Rab11, IFT20 Lee et. al., 2003, Hattula 
et. al., 2006, Finetti et. 

al., 2015 

Rab11 Vesicle recycling, cilia for-
mation 

Rab8a, Rabin8, Cdc 42, 
GRAB 

Das and Guo, 2011, 
Knodler et. al., 2010 Bry-

ant et. al., 2010, 
Furusawa et. al., 2017 

VAMP3 Cilia formation, Integrin re-
ceptor recycling 

Rab8a, smoothened, 
Rab11 

Finnetti et. al., 2015, 
Skalski et. al., 2005 

Rab35 Fast endocytic recycling, 
cytokinesis 

OCRL, ACAP2 (β-
centaurin), and MICAL-L1 

Dambournet et. al., 
2011, Klinkert and 

Echard, 2016 

MICAL-L1 Actin cytoskeleton interac-
tion, membrane recycling 

Rab8a/b, Rab10, Rab13 , 
Rab35, Rab15, EHD1 

Rahajeng et. al., 2012, M. 
Vanoni, 2017, Abou-Zeid 
et. al., 2011, Bahl et. al., 

2016). 

ACAP2 Vesicle recycling, cell adhe-
sion and cell migration 

Rab35, ARF6 Allaire et. al., 2013, Jack-
son et. al., 2000 

ARF6 Non clathrin dependent en-
docytosis, vesicle recycling 

ARNO/cytohesin, Arf-
GEP100, EFA6, Git1, ACAP2 

Someya et. al., 2001, 
Jackson et. al., 2000, 

Donaldson and Jackson, 
2011 

EHD1 endocytic recycling Rabenosyn 5, MICAL-L1, 
Rab11, smoothened 

Naslavsky et. al., 2004a 
Moore and Baleja, 2012, 

Bhattacharyya et. al., 
2016 
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Section 2 

Aims and Objectives 
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Aims and Objectives: 

Tunneling nanotubes (TNTs) are F-actin based intercellular membrane connections, non-

adherent to substrate, which are able to transport cytoplasmic contents and cellular 

organelles between two connected cells. Their diameter ranges from 50-150 nm and their 

length can extend up to several hundred micrometers (Rustom et. al., 2004, Sartori-Rupp 

et. al., 2019). They transport a variety of different organelles and molecules like 

lyosomses, mitochondria, golgi, cellular vesicles, calcium, RNA etc. (Rustom et. al., 2004, 

Abounit et. al., 2016a, Lu et. al., 2017, Wang et. al., 2012). 

 TNTs are also involved in several disease conditions. They transport diffferent pathogens 

like HIV (Eugenin et. al., 2008), bacteria (Sisakhtnezhad and Khosravi, 2015) and were 

shown to spread pathogenic protein aggregates causing neurodegeneration like prions, 

alpha synuclein, huntingtin, tau, aβ peptides etc. (Zhu et. al., 2015, Sharma and 

Subramanian, 2019, Wang et. al., 2011, Dieriks et. al., 2017, Dilsizoglu Senol et. al., 2019, 

Tardivel et. al., 2016, Costanzo et. al., 2013). More recently TNTs have been described to 

have an important role in intercellular communication between cancer cells and stroma 

and were proposed to be involved in promoting invasiveness of cancer cells (Lou et. al., 

2012, Pasquier et. al., 2013).  

 TNTs can be formed by two different mechanisms 1) Cell protrusion mediated 

mechanism in which the cells form a filopodia like protrusion which eventually connects the 

two cells giving rise to a TNT (Gousset et. al., 2013, Rustom et. al., 2004) 2) Cell 

dislodgement mechanism: Two cells come into contact with each other and then form a 

functional TNT after moving apart (Onfelt et. al., 2004).  

TNT like structures have been shown in a wide variety of cells like e.g. NK cells, 

macrophages, HEK cells, CAD, PC12, SH-SY5Y cells etc. (Yin et. al., 2017, Rustom et. 

al., 2004, Watkins et. al., 2005, Onfelt et. al., 2005, Gousset et. al., 2009, Gousset et. al., 

2013, Sartori-Rupp et. al., 2019). Furthermore, TNTs can be formed between homocellular 

or heterocellular cocultures (Kretschmer et. al., 2019). 

TNTs are regulated by several different proteins, several stress factors, actin modifying 

proteins or small GTPases. Stress conditions or signals like serum deprivation, exposure 

to UV light, increases in the levels of ROS in cells lead to an increase in TNT formation 

(Wang et. al., 2011, Abounit et. al., 2016, Wang et. al., 2015). Several proteins like M-sec, 

RalA, and LST1 are shown to regulate TNT formation (Hase et. al., 2009, D’Aloia et. al., 
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2018, Schiller et. al., 2013). In addition, different actin modifying proteins have been shown 

to regulate TNTs like Focal adhesion kinases (FAK) and matrix metalloproteases (Sáenz-

de-Santa-María et. al., 2017), Fascin (Lou et. al., 2012), MyosinX (Uhl et. al., 2019, 

Gousset et. al., 2013), Eps8 (Delage et. al., 2016), Rac and Cdc42 (Hanna et. al., 2017a). 

However, the mechanism of TNT formation is not completely understood. Several 

pathways could lead to TNT formation and that this could also be cell type specific 

(Abounit et. al., 2012, Marzo et. al., 2013, Goussset et. al., 2013). 

Role of Rabs in TNT formation and vesicle transfer: 

Endocytic recycling involves the return of receptors back to the plasma membrane (Cai et. 

al., 2013). The membrane recycling process regulates the plasma membrane composition 

by maintaining the balance between endocytosis and exocytosis of lipids and protein 

components, this in turn contributes to several cellular processes such as cytokinesis, cell 

migration, polarisation and signal transduction (Grant and Donaldson, 2009). 

Rab proteins are the master regulators of cellular functions. They are involved in functions 

such as vesicle trafficking, migration of cells and formation of protrusions like filopodia, 

lamellipodia. Rabs function through GTP bound (active) – GDP bound (inactive) cycle 

(Das and Guo, 2011). In my thesis I have contributed to show that Rab8a and Rab11a 

regulate TNT formation (Zhu et. al., 2018).  

Rab8a is a major regulator of vesicle trafficking (Huber et. al., 1993, Hattula et. al., 2006). 

Rab8a positive tubules are involved in membrane formation at membrane ruffling and the 

formation of protrusions, by recycling back to the membrane. Rab8a positive tubules are 

also positive for ARF6 and Rab11 (Hattula et. al., 2006). In addition, Rab8a is also 

involved in the formation of different cellular structures such as immune synapse, cilia etc. 

(Lesteberg et. al., 2017, Lu et. al., 2015). Rab8a is also involved in the formation of cellular 

protrusions like filopodia and lamellopodia and cilia formation, by affecting actin and 

microtubule organization (Peranen et. al., 1996). Interestingly, knockdown of Rab8a 

results in formation of stress fibers (Hattula et. al., 2006). 

Rab11 is involved in transport of recycling endosomes back to the plasma membrane (Das 

and Guo, 2011). Rab11a is enriched at the base of the cilia and is involved in the 

maintenance of the primary cilia (Knodler et. al., 2010). Rab8 and Rab11 are involved in 

cilia formation with the help of Rabin8 (which is a GEF of Rab8a) (Knodler et. al., 2010). 

GRAB (GRAB/Rab3IL1 (guanine nucleotide exchange factor for Rab3A; Rab3A interacting 

protein (rabin3)-like 1) is acting as a downstream effector of Rab11a and GEF of Rab8a, 
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was shown to be involved in axon outgrowth (Furusawa et. al., 2017). Overexpression of 

Rab11 causes GRAB to shift to the membranes (Horgan et. al., 2013). SNARES (soluble 

NSF attachment protein receptors) are involved in phagocytosis, exocytosis, cell 

spreading, and integrin recycling in cells (Hackam et. al., 1998, Skalski et. al., 2005). 

VAMP3 (Vesicle associated membrane protein 3) belongs to the family of SNARE proteins 

(Banerjee et. al., 2017). Rab8a, Rab11a and IFT20 act with each other for the recycling of 

T cell receptors. The IFT20 and the Rab8 positive vesicles colocalise with each other but 

VAMP3 is necessary for vesicles to fuse with plasma membrane and then undergo 

recycling. Rab8 is important in the recruitment of VAMP3 (Finnetti et. al., 2015). VAMP3 is 

also involved in trafficking of the integrins from Rab11 positive recycling endosomes 

(Skalski et. al., 2005). VAMP3 is shown to interact with the smoothened and Rab8a in 

ciliary growth (Finnetti et. al., 2015). Another Rab protein shown to have a central role in 

vesicle recycling is Rab35. Rab35 is involved in fast endocytic recycling. It plays a key role 

in TFR recycling and cytokinesis (Kouranti et. al., 2006, Klinkert and Echard, 2016, Dikshit 

et. al., 2014). ARF6 (ADP Ribosylation Factor) negatively regulates Rab35 in cytokinesis 

(Chesneau et. al., 2012). EHD family of proteins have an EH domain (Eps15 homology 

domain) are homolog to the Eps15 protein. EHD family of proteins is associated to the 

ERC, and EHD1 and EHD4 are involved in the vesiculation and recycling of the 

membranes decorated with MICAL-L1 (Cai et. al., 2013). Loss of MICAL-L1 leads to the 

elongation of spindle fibers during the cytokinetic process in the cells (Reinecke et. al., 

2015). Reduction of PI4P either by activation of PIP5KI-gamma expression or by Sac1-

induced dephosphoryation of PtdIns4P to PtdIns, caused a reduction in EHD1 associated 

tubular membranes (Jovic et. al., 2007). 

In an interesting study by Kobayashi and Fukuda, 2013 it was shown that NGF activation 

positively regulates neurite outgrowth due to the association of Rab35 to the ARF6 positive 

endosomes. Rab35 recruits ACAP2 and MICAL-L1 to form a tripartite complex. MICAL-L1 

directly acts as a binding site for EHD1 on the PM, which then has a positive effect on the 

neurite outgrowth. Indeed, EHD1 facilitates pinching off the vesicles and therefore their 

recycling to the PM, thus providing the lipids and proteins necessary for the neurite 

outgrowth. In addition, this process is also facilitated by ACAP2 which indirectly regulates 

the recruitment of EHD1 to the membrane by inactivating ARF6. ARF6 inactivation leads 

to an increase of the levels of PI4P on the membrane of the vesicles, which allows for the 

binding of the EHD1 to the membrane and favors its action to promote neurite outgrowth. 

In the second part of my thesis I was interested in exploring whether this pathway could 

also have a role in TNT formation. 
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Objectives 

 

Following a screen made by a previous PhD student in the lab, who screened 41 Rabs for 

a possible role of these small GTPases in TNT formation, the objectives of my thesis are 

two-fold 

● To characterize the specific Rabs involved in TNT formation. 

● To uncover the downstream effectors of Rabs involved in TNT formation  

Specifically, in the first part of my thesis I helped the characterization of the downstream 

pathway involved in the Rab11a, Rab8a cascade that regulates TNT formation, while in 

the second part I characterized the role of Rab 35 that was another positive hit for TNTs in 

the Rab screen. 
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Section 3 

Results 
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Title: Rab11a–Rab8a cascade regulates the formation of tunneling 

nanotubes through vesicle recycling. 

 

Summary of results and discussion: 

 It has been shown that Rab proteins are involved in several cellular processes such as 

cytokinesis, formation of cilia, immune synapse etc. They are shown to be master 

regulators of cellular functions (Das and Guo, 2011). Thus, we screened several different 

Rab proteins to identify the ones involved in TNT formation. In this study Seng Zhu 

(previous PhD student in the lab) set up a screen for TNTs, based on the ability of 

overexpressed Rab proteins to increase or decrease TNT mediated vesicle transfer 

between a donor and acceptor cell population. Out of the 41 different Rab proteins 

screened, Rab8a, Rab11a and Rab35 were strong positive hits. Rab8a is involved in the 

formation of different cellular structures such as immune synapse and cilia formation 

(Lesteberg et. al., 2017, Lu et. al., 2015). Rab8a is also involved in the formation of cellular 

protrusions like filopodia and lamellopodia in the cells, by affecting actin and microtubule 

organization (Peranen et. al., 1996). Rab8 and Rab11 are involved in cilia formation with 

the help of Rabin8 (GEF of Rab8a) (Knodler et. al., 2010). Upon overexpression of each of 

these proteins it was observed that GTP bound forms of Rab8a and Rab11a were 

increasing TNTs. We also showed that they regulate TNTs through a cascade mechanism. 

However, while Rabin8 increased filopodia formation, we demonstrated that this was not 

the case for TNTs as Rabin8 overexpression did not affect TNTs. Another GEF of Rab8a, 

i.e. GRAB was shown before to be involved in axon outgrowth through the cascade 

mechanism by Rab11a-Rab8a (Furusawa et. al., 2017). Thus, we looked at the role of 

GRAB with respect to TNTs. We found that overexpression of GRAB leads to an increase 

in TNT connected cells, but this seems to be independent of Rab8-Rab11 cascade. On the 

other hand, we found that VAMP3 which is known to interact with Rab8 and to be 

responsible for the final fusion of vesicles back to the membrane (Finetti et. al., 2015) was 

involved. VAMP3 was also shown to interact with Rab8 at the base of the cilium and 

regulates ciliary outgrowth (Patrussi and Baldari, 2016).  

The data presented here provide new insights into the factors involved in TNT formation 

and intercellular vesicle transfer in neuron-like CAD cells. Our results show that Rab11a, 

Rab8a and VAMP3 increase both the number of TNT-connected cells and the vesicle 

transfer through TNTs in CAD cells. We demonstrate that Rab11a and Rab8a work in the 
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same pathway and employ VAMP3 as an effector to induce functional TNTs but not 

filopodia. Of interest, this Rab11a-Rab8a signaling cascade does not require Rabin8, 

which on the other hand is essential to mediate Rab8a-activated filopodia formation. Thus, 

in addition to providing mechanistic details about the role of Rab proteins in TNT 

formation, these data also strengthen our hypothesis that filopodia and TNTs are different 

structures, which rely on different mechanisms of formation 

 

Personal contribution: 

I showed the role of GRAB proteins in the TNT formation. In addition, I performed all the 

experiments that the reviewers had asked to sustain the initial findings during the review 

process of the paper. I wrote the revised results and answered the reviewers. 
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Rab11a–Rab8a cascade regulates the formation of tunneling
nanotubes through vesicle recycling
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ABSTRACT
Tunneling nanotubes (TNTs) are actin-enriched membranous
channels enabling cells to communicate over long distances. TNT-
like structures form between various cell types and mediate the
exchange of different cargos, such as ions, vesicles, organelles and
pathogens; thus, they may play a role in physiological conditions and
diseases (e.g. cancer and infection). TNTs also allow the intercellular
passage of protein aggregates related to neurodegenerative
diseases, thus propagating protein misfolding. Understanding the
mechanism of TNT formation is mandatory in order to reveal the
mechanism of disease propagation and to uncover their physiological
function. Vesicular transport controlled by the small GTPases
Rab11a and Rab8a can promote the formation of different plasma
membrane protrusions (filopodia, cilia and neurites). Here, we report
that inhibiting membrane recycling reduces the number of TNT-
connected cells and that overexpression of Rab11a and Rab8a
increases the number of TNT-connected cells and the propagation of
vesicles between cells in co-culture. We demonstrate that these two
Rab GTPases act in a cascade in which Rab11a activation of Rab8a
is independent of Rabin8. We also show that VAMP3 acts
downstream of Rab8a to regulate TNT formation.

KEY WORDS: Rab GTPase, Tunneling nanotube, Vesicle recycling,
Vesicle transfer

INTRODUCTION
Tunneling nanotubes (TNTs) are thin membranous structures that
connect distant cells. Observed in different cell types, TNTs are
normally observed as straight membrane protrusions hovering above
the substrate between two cells (Rustom et al., 2004). TNTs act as
conduits between cells that allow the exchange of both cell-surface
molecules and cytoplasmic content such as endosomes,
mitochondria, endoplasmic reticulum and calcium ions (Abounit
and Zurzolo, 2012;Marzo et al., 2012). TNTs can also be hijacked by
different pathogens, including prions (Gousset et al., 2009; Zhu et al.,
2017), bacteria (Onfelt et al., 2006) and viruses (Kadiu and
Gendelman, 2011; Sherer and Mothes, 2008; Sowinski et al.,
2008), thus participating in the propagation of a wide range of
diseases. Interestingly, several misfolded proteins associated with
neurodegenerative diseases, such as β-amyloid (Aβ), tau, α-synuclein
(α-syn) and huntingtin polyglutamine aggregates, have been found

inside TNTs, supporting the hypothesis that TNTs are a preferential
highway for the spreading of proteinaceous aggregates (Abounit
et al., 2016a,b; Marzo et al., 2012; Victoria and Zurzolo, 2017;
Wang et al., 2011).

TNTs principally comprise continuous actin filaments that are
enclosed in a lipid bilayer (Austefjord et al., 2014). In some cells
(e.g. macrophages), TNTs have been shown to also contain
microtubules organized in bundles parallel to the major axis
(Sanchez et al., 2017). The formation of TNTs can be impaired by
the use of F-actin-depolymerizing drugs, such as latrunculin and
cytochalasin D (Bukoreshtliev et al., 2009; Gousset et al., 2009;
Rustom et al., 2004), suggesting that actin polymerization plays an
important role in TNT formation. However, the mechanism
underlying TNT formation is not completely understood and it is
possible that different mechanisms are involved in different cell
types (Abounit and Zurzolo, 2012; Gousset et al., 2013).

Time-lapse imaging studies have previously suggested two
possible mechanisms of TNT formation: (1) actin-driven
protrusion outgrowth (Abounit and Zurzolo, 2012; Reichert et al.,
2016; Rustom et al., 2004) and (2) cell dislodgement (Davis and
Sowinski, 2008; Rustom et al., 2004; Sowinski et al., 2008). Based
on our current understanding, an intercellular bridge is established
by the outgrowth of a filopodia-like protrusion containing F-actin
from either one or both cells. After extension, the tip of the
filopodia-like protrusion contacts the target cell directly (or through
adhesion molecules) and could (or not) fuse with the receiving cell
(Rustom et al., 2004). On the other hand, it has been proposed that
when two cells come into physical contact with each other, they
could either form an immune synapse (Dustin et al., 2010; Reichert
et al., 2016) or fuse temporarily. After plasma membrane fusion,
cells continue to migrate in opposing directions, stretching out the
plasma membranes to form TNTs that could be formed by either one
or two cells. Although the first mechanism is more common in
immobile cells such as neurons, the latter is mainly found in motile
cells such as macrophages and other cells of the immune system
(Abounit and Zurzolo, 2012).

Several proteins controlling actin polymerization and
depolymerization have been shown to play a role in filopodia
formation. Among these proteins, the cell division control protein
42 homolog (CDC42), a small GTPase of the Ras superfamily,
regulates actin polymerization through direct binding to the neural
Wiskott–Aldrich syndrome protein (N-WASP), which subsequently
activates Arp2/3, a protein complex that promotes actin branching
(Higgs and Pollard, 1999). Treatment of Jurkat cells with the
CDC42-specific inhibitor secramine A blocks TNT formation
(Arkwright et al., 2010). Similarly, inhibition of CDC42 in HeLa
cells results in the decreased formation of TNTs induced by the
overexpression of M-Sec, whereas Rac1 inhibition shows no effect
(Hase et al., 2009). On the other hand, in macrophages, both the
CDC42 and Rac1 pathways are involved in TNT formation through
WASP-dependent actin remodeling (Hanna et al., 2017). InReceived 24 January 2018; Accepted 29 August 2018
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neurons, the actin regulator proteins CDC42, insulin receptor
substrate of 53kDa (IRSp53) and vasodilator-stimulated
phosphoprotein (VASP) work as a network to increase filopodia
formation (Disanza et al., 2013). Interestingly, we showed that the
same network inhibits TNT formation in neuronal cells while
increasing filopodia formation. These and other data suggest that the
same actin modifiers might have opposite actions on filopodia and
TNT formation, indicating that these two structures, although
similar, are distinct organelles with different functions (Delage
et al., 2016; Gousset et al., 2013).
In addition to actin polymerization, formation of cellular

protrusions (TNT, filopodia, cilia, etc.) also requires vesicular
traffic. Rab GTPases are considered to be master regulators of
intracellular membrane trafficking (Fukuda, 2008; Stenmark, 2009).
Rab GTPases are localized in different membrane compartments to
control the specificity and directionality of membrane trafficking
pathways, mostly related to the trafficking of vesicles. Of particular
interest, Rab GTPases are also involved in the regulation of
cytoskeleton dynamics, including the formation of cell protrusions
(Diekmann et al., 2011; Klöpper et al., 2012; Villarroel-Campos
et al., 2016). Rab8 localizes to the primary cilium membrane during
ciliogenesis, and cilia formation is inhibited or promoted when a
Rab8 dominant-negative or positive form is expressed, respectively
(Follit et al., 2010; Nachury et al., 2007). This suggests that the
activity of Rab8 is crucial for the biogenesis of cilia. Rab8 is
functionally linked to ADP-ribosylation factor 6 (Arf6). When the
active form of Arf6 is present, cell protrusions induced by Rab8 can
be inhibited (Hattula et al., 2006), indicating that inhibition may be
related to membrane trafficking via endosome recycling rather than
through the trans-Golgi network (TGN) (Hattula et al., 2006;
Villarroel-Campos et al., 2016). On the other hand, Rab11 has been
shown to promote neuritogenesis, both in hippocampal neurons in
culture and in PC12 cells differentiated with nerve growth factor
(NGF) through its interaction with protrudin (Shirane and
Nakayama, 2006). Rab11 also increases axon outgrowth, a
process that requires remodeling of the actin cytoskeleton. In
hippocampal neurons, depletion of Rab11 reduces axonal length,
which is also controlled by cyclin-dependent protein kinase5
(Cdk5) via an inhibitory phosphorylation of lemur kinase 1
(LMTK1), which in turn can activate Rab11 (Takano et al., 2012).
We decided to investigate the role of Rab GTPases in TNT

formation and therefore performed a screen by overexpressing 41
GFP–Rab GTPases in our neuronal model CAD cells, (Matsui and
Fukuda, 2011; Tsuboi and Fukuda, 2006). Based on this
screening, Rab8a and Rab11a seemed promising candidates so
we chose to investigate their specific involvement in TNT
formation. Although two recent independent observations
indicated that Rab8a and/or Rab11a are involved in TNT
formation, the specific mechanism was not investigated (Burtey
et al., 2015; Zhu et al., 2016). Our results showed that Rab8a and
Rab11a positively regulate TNT formation and function in vesicle
transfer between connected cells, via their active GTP-bound
form. We demonstrated that Rab11a and Rab8a act through a
cascade pathway to regulate downstream v-SNARE VAMP3-
mediated fusion, suggesting that they increase vesicle recycling to
the cell surface in order to form TNTs. Importantly, we
demonstrated that this Rab cascade also regulates filopodia
formation in our cell model, but through different effectors.
Thus, in addition to improving our knowledge about TNT
formation, our data demonstrate that TNTs are specific novel
structures that are different from filopodia and other cellular
protrusions.

RESULTS
High-content screening reveals that Rab8a and Rab11a
promote DiD-labeled vesicle transfer between cells
To determine whether and which Rab GTPases affect TNT
formation, we set up a screen whereby 41 GFP–Rab GTPases
were overexpressed in our CAD cell line model. The transfer of
cargos between cells, which is the main function of TNTs, was used
to perform a preliminary screen and subsequently to study the
formation of TNTs. To perform the transfer experiments, donor cells
were transfected with 41 different GFP–Rab GTPases and incubated
with the nonspecific membrane dye DiD (Vybrant™DiD), which is
quickly internalized and labels all internal vesicular compartments.
Acceptor cells were transfected with H2B–mCherry and co-cultured
with donor cells in a 1:1 ratio (Fig. 1A) (Delage et al., 2016). After
16 h of co-culture in 96-well plates, cells were fixed and images
acquired to analyze the percentage of acceptor cells containing DiD-
labeled vesicles transferred from donor cells (Fig. 1A). Images were
analyzed with Cellprofiler (Fig. 1B). The percentage of acceptor
cells containing DiD-labeled vesicles from each condition was
normalized to control condition (cells transfected with an empty
vector tagged with GFP) (Table S1). GFP–myosin10 and GFP–
VASP were employed as positive and negative controls, as they
respectively increase and decrease TNT formation and vesicle
transfer (Delage et al., 2016; Gousset et al., 2013). We used three
additional conditions as controls for cell-to-cell contact-mediated
transfer: (i) mixture, where cells were just mixed and not incubated
in co-culture, which gives the background noise; (ii) filter, where
cells in co-culture were separated by a Transwell filter that impairs
cell-to-cell contact; and (iii) supernatant, where the supernatant of
donor cells was challenged with acceptor cells cultured separately,
which measures transfer though secretion (Fig. 1C–F). To call hits
from 41 GFP–Rab GTPases, two threshold values (105% and 95%)
were set to score all conditions. When the relative percentage was
higher than 105%, a hit was scored as ‘1’; when a hit was lower than
95%, it was scored as ‘−1’; and when a hit was between 95% and
105%, it was scored as ‘0’ (Table S1). The score values obtained
from the average of triplicates from four experiments were summed,
and a comparative analysis of the 41 GFP–Rab GTPases tested was
performed. Among others, cells overexpressing Rab8a and Rab11a
increased vesicle transfer between cells. These results were
intriguing, because both these Rabs are involved in formation of
cilia and other cell protrusions (Cox et al., 2000; Eva et al., 2010;
Hattula et al., 2006; Peränen, 2011). Furthermore, two independent
reports suggest that Rab8 or both Rab8 and Rab11 might be
involved in regulating TNT formation, although the mechanism was
not explored (Burtey et al., 2015; Zhu et al., 2016).

Rab11a positively regulates TNT formation and function via
the active GTP-bound form
Rab11 localizes at the endocytic recycling compartment/recycling
endosome (ERC/RE), the TGN and post-Golgi vesicles. It
influences several cellular processes, including exocytic and
recycling processes (controlling both secretion and composition
of plasma membrane), cytokinesis, phagocytosis, cell migration,
immunological synapse and primary cilia formation (Campa and
Hirsch, 2017). To understand whether the increase in vesicle
transfer is related to an increase in TNTs, we investigated the effect
of Rab11a on TNTs by calculating the percentage of TNT-
connected cells. Because no specific marker of TNTs is currently
available, we quantified TNTs between cells (labeled with wheat
germ agglutinin; WGA) (Delage et al., 2016). TNTs were identified
in culture according to the current definition of TNTs as
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membranous stretches between cells that do not contact the substrate
(Fig. S1A) (Rustom et al., 2004). To rule out possible effects
resulting from the distance between cells on TNT formation, we
seeded different concentrations of cells (Fig. S1B) and determined
the range of cell concentrations (Fig. S1C,D) for which the number

of TNT-connected cells was not affected (Fig. S1E). This measured
the tolerance of the system and assured the reproducibility of our
data. For all subsequent experiments, cells were plated at the same
concentration within the determined tolerance regime. By using this
method, we overexpressed wild-type (WT) GFP–Rab11a and

Fig. 1. See next page for legend.
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observed a significant increase in the percentage of TNT-connected
cells (Fig. 2A,B and Table S2).
To confirm that the intercellular connections induced by Rab11a

were functional TNTs, we performed transfer assays measuring the
transfer of labeled vesicles between cells in co-culture (Abounit
et al., 2015). Two populations of cells, donor cells (transfected with
GFP–Rab11a-WT) with internal vesicles labeled with a fluorescent
membrane dye (VybrantTM DiD) and acceptor cells (transfected
with H2B–mCherry) were mixed at a 1:1 ratio and co-cultured for
16 h (Delage et al., 2016). Overexpression of GFP–Rab11a-WT
significantly increased the transfer of DiD-labeled vesicles, as
measured by two different methods, quantitative fluorescent image
analysis (Fig. 2C) and flow cytometry (Fig. S2A). Again, we used
two controls to exclude the effect of vesicle transfer by secretion: (1)
cells were co-cultured using a Transwell filter to separate the two
populations, and/or (2) the conditioned medium from donor cells
(cultured in a separate dish) was applied to acceptor cells. In both
conditions, transfer of vesicles was very low and not affected by the
overexpression of GFP–Rab11a-WT, showing that vesicle transfer
between cells relied on cell-to-cell contact, and not on secretion
(Fig. S2A). We also found that Rab11a-WT protein was present in
acceptor cells, which indicates that Rab11a-positive vesicles could
transfer between cells through TNTs (Fig. S2B). These combined
results show that the increase in TNTs induced by Rab11a
corresponds to an increase in cargo transfer between cells,
suggesting that the TNTs induced by Rab11a are functional.
Rab GTPases switch between two conformations, an inactive

form bound to guanosine diphosphate (GDP) and an active form
bound to guanosine triphosphate (GTP), to regulate different
cellular processes. Thus, cells were transfected with GFP–Rab11a-
Q70L (constitutively active mutant) and GFP–Rab11a-S25N
(dominant-negative mutant) for 40 h. For GFP–Rab11a-Q70L, the
increase in the percentage of TNT-connected cells was similar to
that observed with GFP–Rab11a-WT (Fig. 2A,B and Table S2).
Similarly, we observed an increase in vesicle transfer between cells
(Fig. 2C). By contrast, GFP–Rab11a-S25N overexpression showed
no increase in the number of TNT-connected cells (Fig. 2A,B and
Table S2) nor an increase in vesicle transfer (Fig. 2C). Importantly,
when the expression time of GFP–Rab11a-S25N was extended to
52 h, the percentage of TNT-connected cells was significantly
decreased (Fig. S3A), indicating that the effectiveness of the

dominant-negative proteins depends on the time elapsed after
transfection. We speculate that the levels of expression of dominant-
negative Rabs at 40 h after transfection are insufficient to show
dominant-negative effects (e.g. trapping their activator’s GEFs)
(Ramalho et al., 2002).

To further confirm the effect of Rab11a on TNTs, Rab11a was
knocked down in an acute manner (more than 90%) using short
hairpin RNA (shRNA; Fig. 2D). In this condition, both the number
of TNT-connected cells (Fig. 2E,F and Table S2) and vesicle
transfer between the two cell populations (Fig. 2G) were
substantially decreased. Rescue experiments in which GFP–
Rab11a-WT was overexpressed in Rab11a knockdown cells
showed that both the number of TNT-connected cells (Fig. 2E,F
and Table S2) and vesicle transfer were rescued (Fig. 2G). Together,
these results suggest that Rab11a plays a role in the formation of
functionally active TNTs and that the active GTP-bound form of
Rab11a is needed.

Rab8a positively regulates TNT formation and function via
the active GTP-bound form
Rab8 localizes in the TGN, where it recycles endosomes,
vesicular and tubular structures in the cytosol, membrane
protrusions and the plasma membrane. Rab8 is reported to be
involved in several transport pathways, and it induces actin
polymerization and cell surface protrusion formation (Hattula
et al., 2002, 2006). We overexpressed GFP–Rab8a-WT, GFP–
Rab8a-Q67L (constitutively active mutant) and GFP–Rab8a-
T22N (dominant-negative mutant) for 40 h by transient
transfection and found that GFP–Rab8a-WT and GFP–Rab8a-
Q67L significantly increased the number of TNT-connected
cells (Fig. 3A,B and Table S2). On the other hand, expression of
GFP–Rab8a-T22N had no significant effect on TNT-connected
cells (Fig. 3A,B and Table S2) unless its expression time was
extended to 52 h. In the latter case, the percentage of TNT-
connected cells was significantly decreased (Fig. S3A).

Consistent with a positive role of Rab8a in TNT formation, the
transfer of vesicles increased in cells overexpressing GFP–Rab8a-
WT and GFP–Rab8a-Q67L (Fig. 3C and Fig. S2C). On the other
hand, expression of GFP–Rab8a-T22N resulted in a decrease in
vesicle transfer between cells (Fig. 3C). By comparison with
Transwell plate co-culture or conditioned medium, the effect of
secretion on vesicle transfer in this condition was negligible,
indicating that the transfer of vesicles between cells was mediated
through cell–cell contact and not secretion (Fig. S2C). Similar to
Rab11a, Rab8a protein could also transfer between cells through
cell–cell contact and not secretion (Fig. S2D).

To further confirm the effect of Rab8a on TNTs, we acutely
depleted Rab8a (more than 90%) with a specific shRNA (Fig. 3D).
Downregulating the expression of Rab8a decreased the number of
TNT-connected cells (Fig. 3E,F and Table S2) as well as DiD-
labeled vesicle transfer between cells (Fig. 3G). Of importance,
when overexpressing GFP–Rab8a-WT in Rab8a knockdown cells,
both the number of TNT-connected cells (Fig. 3E,F and Table S2)
and vesicles transferred (Fig. 3G) were rescued to control levels. All
these results suggest that Rab8a is a positive regulator of TNTs
through its GTP-active form.

An isoform of Rab8a (Rab8b) has been shown to have an effect
on apical transport (Sato et al., 2014). Thus, we also checked the
role of Rab8b in TNT formation. We found that overexpression of
GFP–Rab8b-WT in CAD cells had no effect on either the number of
TNT-connected cells (Fig. S3B) or the number of acceptor cells
containing vesicles following co-culture (Fig. S3C). Overall, the

Fig. 1. Co-culture system for intercellular transfer of DiD-labeled vesicles
and high-content screening assay. (A) An example of the co-culture system
setup. Donor cells were transfected with GFP–vector or GFP–Rab plasmids
and labeled with DiD; acceptor cells were transfected with H2B–mCherry. Cells
were fixed after co-culture and labeled with HCS CellMask™. DiD-labeled
vesicles transferred to acceptor cells were detected as white spots in cells with
red nuclei. (B) Left panel shows high-content screening setup and workflow.
Cells were co-cultured as described in A and fixed after co-culture. Right panel
shows a representative image of process of segmentation of cells and vesicles.
(C) Representative flow cytometry raw data (dot plots) of the co-culture of
donor cells expressing GFP–vector or GFP–myosin10 and labeled with DiD
and acceptor cells expressing H2B–mCherry. Acceptor cells containing DiD-
labeled vesicles from the entire population of acceptor cells after co-culture
were quantified. The various conditions were donor and acceptor cells co-
cultured, cultured separately and mixed just before sorting (mixture); cultured
separated by a filter (filter); and acceptor cells challenged with donor cells
supernatant (supernatant). (D) Bar graphs showing the relative percentage of
acceptor cells from the experiment described in C (GFP–vector=100±1.8,
GFP–myosin10=130.9±5.6). (E,F) As C,D, except that GFP–vector
or GFP–VASP was expressed in donor cells (GFP–vector=100.0±1.8,
GFP–VASP=85.2±2.4). Data show mean±s.e.m. from three independent
experiments. Scale bar: 10 μm.
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data indicate that only the Rab8-specific isoform Rab8a has a
positive effect on TNT formation.

Rab11a–Rab8a cascade in TNT formation
Of interest, Rab11 and Rab8 have been shown to work in a cascade
pathway in several cellular processes, such as cyst lumen formation
in MDCK cells (Roland et al., 2011), primary cilium generation
(Westlake et al., 2011) and axon outgrowth (Furusawa et al., 2017).
To assess whether Rab8a and Rab11a GTPases work in the same

pathway to modulate TNTs, we depleted one of the two Rabs and
overexpressed the other one and quantified the number of TNT-
connected cells and vesicle transfer between cells. We found that
overexpressing Rab8a in shRNA-depleted Rab11a cells still led to
an increase in the number of TNT-connected cells (Fig. 4A,B and
Table S2) and rescued vesicle transfer between cells to control levels
(Fig. 4C). By contrast, in cells depleted of Rab8a using shRNA,
Rab11a overexpression had no effect on the number of
TNT-connected cells (Fig. 4D,E and Table S2) or the number of

Fig. 2. See next page for legend.
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vesicles transferred between cells (Fig. 4F). These experiments
showed that the effect of Rab8a on TNTs could be independent of
Rab11a activation, whereas the effect of Rab11a on TNTs was
dependent on the presence of Rab8a, indicating that Rab8a acts
downstream of Rab11a in the regulation of TNT formation.
Interestingly, when co-transfected in CAD cells, GFP–Rab8a and
strawberry-Rab11a appeared to locate on the end of TNTs. This
suggests that the two proteins cooperate on the same endosome at
the base of the TNT for its formation (Fig. S4A).
A similar Rab activation cascade has been implicated in the de

novo generation of the primary cilium (Westlake et al., 2011). It was
demonstrated that Rab11 regulates Rab8 function by activating
Rabin8 (Westlake et al., 2011), which is a major guanine nucleotide
exchange factor (GEF) for Rab8 and an essential component for cell
protrusion formation, such as ciliogenesis and neurite outgrowth
(Wang et al., 2015). However, overexpression of GFP–Rabin8 did
not affect the number of TNT-connected cells compared with the
GFP control (Fig. S5A,B) nor affect the transfer of DiD-labeled
vesicles between cells (Fig. S5C,D). Similarly, knockdown of
Rabin8 by shRNA (Fig. S5E) had no effect on either the number of
TNT-connected cells (Fig. S5F) or the number of vesicles
transferred (Fig. S5G,H). This suggests that Rabin8 is not
involved in the Rab11a–Rab8a cascade leading to TNT increase.
It has been reported that MICAL-L1 binds to GTP-bound Rab8a

and stabilizes it on tubular membranes (Sharma et al., 2009;
Rahajeng et al., 2012). Rab35 is known to interact with MICAL-L1
and to regulate neurite outgrowth (Kobayashi et al., 2014).
Additionally, Rab35 also activates MICAL1 (Fremont et al.,
2017; Deng et al., 2016). Because Rab35 was one of the positive
hits in the screening (Table S1), we overexpressed MICAL-L1 and
MICAL1 and checked their effect on TNT formation (Fig. S4B) and
vesicle transfer (Fig. S4C). However, no significant effect on either
vesicle transfer or TNT formation was observed, thereby indicating
that Rab8 and Rab11 act independently of MICAL1 and
MICAL-L1 proteins.

GRAB regulates TNT formation independently of Rab8a
It has been reported that GRAB (a guanine nucleotide exchange
factor for Rab8a) mediates the Rab11a–Rab8a cascade mechanism
and facilitates axonal growth (Furusawa et al., 2017). Therefore, we
tested the effect of GRAB on TNT formation. We overexpressed
wild-type GRAB in CAD cells and found that there was an increase
in the number of TNT-connected cells (Fig. 5A,B and Table S2) and
in vesicle transfer between cells in co-culture (Fig. 5C,D). To
validate whether GRAB acts through the same pathway as Rab11a
and Rab8a, we knocked down Rab8a by shRNA and overexpressed
wild-type GFP–GRAB. We could still see an increase in TNT
formation between cells (Fig. 5E,F and Table S2) and also an
increase in vesicle transfer (Fig. 5G,H). This is an indication that
GRAB does not act upstream of Rab8a and that it might act through
an independent pathway that does not involve Rab8a.

VAMP3 acts downstream of Rab8a in regulating TNT
formation
Rab8 and Rab11 have been shown to be crucial in vesicle recycling
from the plasma membrane (Chen et al., 1998; Zhang et al., 2005).
Blocking of either Rab8 or Rab11 pathways leads to an inhibition of
the TGN-to-plasma membrane transport of recycling endosomes, as
well as inhibition of plasma membrane recycling (Rowe et al.,
2008); thus, one possibility is that TNT formation could be affected
by this process. Primaquine (PMQ) interferes with membrane
recycling from endosomes to the plasma membrane through direct
interaction with endosomes (van Weert et al., 2000). We used this
drug to inhibit transferrin recycling to the plasma membrane
(Fig. 6A) and quantified the number of TNT-connected cells after
4 h of PMQ treatment. The results showed a significant decrease in
the number of TNT-connected cells (Fig. 6B,C and Table S2),
suggesting that vesicle recycling to the plasma membrane is
involved in TNT formation.

The cascade of Rab11 activation couples cargo transport from the
TGN and recycling endosomes to vesicle docking and fusion at the
plasma membrane. By interacting with the v-SNARE VAMP3,
Rab8 is responsible for the final docking/fusion step in T cell
receptor recycling to the immune synapse (Finetti et al., 2015).
Rab8 also interacts with VAMP3 at the base of the cilium, where
VAMP3 regulates ciliary growth and targeting of Smoothened to the
plasma membrane (Patrussi and Baldari, 2016). To test whether
the Rab cascade affects TNTs through an increase in vesicle
recycling, as mediated by VAMP3, we overexpressed GFP–VAMP3
and quantified the number of TNT-connected cells and vesicle
transfer between cells. We found that there was an increase in both
the percentage of TNT-connected cells (Fig. 6D,E and Table S2)
and the number of DiD-labeled vesicles transferred (Fig. 6F and
Fig. S6A). Comparison between the total transfer of vesicles and the
supernatant-dependent transfer showed that the transfer of vesicles
was mainly mediated by cell-to-cell contact (Fig. S6A). Interestingly,
we also found that VAMP3-positive vesicles could transfer between
cells in a cell–cell contact-dependent manner (Fig. S6B).

To confirm the function of VAMP3 in regulating TNT formation,
knockdown of VAMP3 by shRNA (Fig. 6G) decreased the number
of TNT-connected cells (Fig. 6H,I and Table S2) and decreased the
transfer of vesicles between cells (Fig. 6J). On the other hand,
overexpressing VAMP3 in VAMP3 knockdown cells restored both
the number of TNT-connected cells (Fig. 6H,I and Table S2) and
vesicle transfer between cells (Fig. 6J). These results suggest that
VAMP3 is involved in the regulation of TNT formation.

To confirm whether VAMP3 is a downstream effector of Rab8a
in regulating TNT formation, GFP–Rab8a-WT was overexpressed

Fig. 2. Rab11a positively regulates functional TNTs via the active
GTP-bound form. (A) Representative confocal images of TNT-connected
cells after transfection of GFP–vector, GFP–Rab11a-WT, GFP–Rab11a-Q70L
and GFP–Rab11aS25N. Inserts are enlargements of boxed regions in the
merge panel. (B) Bar graph showing the relative percentage of TNT-connected
cells from experiment described in A (GFP–vector=100±0.5,
GFP–Rab11aWT=131.0±4.7, GFP–Rab11a-Q70L=152.4±2.2,
GFP–Rab11aS25N=97.6±11.0). (C) Bar graph showing the relative
percentage of acceptor cells containing DiD-labeled vesicles from the
co-cultures, where donor cells were transfected with GFP–vector, GFP–
Rab11a-WT, GFP–Rab11a-Q70L or GFP–Rab11a-S25N and labeled with
DiD (GFP–vector=100±0.0, GFPRab11aWT=120.4±4.6,
GFPRab11aQ70L=115.5±1.2, GFPRab11aS25N=94.6±1.6). (D) Western
blot analysis of cells transfected with shRNA non-targeting (ShCTL) or
targeting Rab11a (ShRab11a), showing the expression of Rab11a and
α-tubulin as loading control. (E) Representative confocal images of TNT-
connected cells after transfection with ShCTL/GFP–vector, ShRab11a/GFP–
vector or ShRab11a/GFP–Rab11a. Inserts are enlargements of framed
regions in merge panel. (F) Bar graph representing relative percentage of TNT-
connected cells from experiment described in E (ShCTL/GFP–vector=100
±0.5, ShRab11a/GFP–vector=70.5±4.5, ShRab11a/GFP–Rab11a=126.1
±5.1). (G) Bar graph showing the relative percentage of acceptor cells
containing DiD-labeled vesicles from the co-cultures, where donor cells were
transfected with ShCTL/GFP–vector, ShRab11a/GFP–vector or ShRab11a/
GFP–Rab11a and labeled with DiD (ShCTL/GFP–vector=100±0.2,
ShRab11a/GFP–vector=81.3±2.4, ShRab11a/GFPRab11a=94.2±4.2). All
graphs show mean±s.e.m. from three independent experiments (ns, not
significant; *P<0.05, **P<0.01, ***P<0.001; by one-way ANOVA with Tukey’s
multiple comparison post test). Scale bars: 10 µm.

6

RESEARCH ARTICLE Journal of Cell Science (2018) 131, jcs215889. doi:10.1242/jcs.215889

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.215889.supplemental


Fig. 3. Rab8a positively regulates functional TNTs via the active GTP-bound form. (A) Representative confocal images of TNT-connected cells after
transfection with GFP–vector, GFP–Rab8a-WT, GFP–Rab8a-Q67L or GFP–Rab8a-T22N. Inserts are enlargements of boxed regions in merge panel. (B) Bar
graph representing relative percentage of TNT-connected cells from experiment described in A (GFP–vector=100, GFP–Rab8a-WT=124.2±3.1, GFP–Rab8a-
Q67L=138.8±2.1, GFP–Rab8a-T22N=88.3±0.9). (C) Bar graph showing the relative percentage of acceptor cells containing DiD-labeled vesicles from the
co-cultures, where donor cells were transfected with GFP–vector, GFP–Rab8a-WT, GFP–Rab8a-Q67L or GFP–Rab8a-T22N and labeled with DiD
(GFP–vector=100.0±0.57, GFP–Rab8aWT=114.9±2.004, GFP–Rab8aQ67L=115±1.729, GFP–Rab8a-T22N=84.02±3.145). (D) Western blot of cells
transfected with shRNA non-targeting (ShCTL) or targeting Rab8a (ShRab8a) and α-tubulin as loading control. (E) Representative confocal images of
TNT-connected cells after transfection with ShCTL/GFP–vector, ShRab8a/GFP–vector, and ShRab8a/GFP–Rab8a. Inserts are enlargements of the framed
region in merge panel. (F) Bar graph representing the relative percentage of TNT-connected cells from experiment described in E (ShCTL/GFP–vector=100
±0.57, ShRab8a/GFP–vector=75.67±1.8, ShRab8a/GFPRab8a=138.3±17.3). (G) Bar graph showing the relative percentage of acceptor cells containing
DiD-labeled vesicles from the co-cultures, where donor cells were transfected with ShCTL/GFP–vector, ShRab8a/GFP–vector or ShRab8a/GFP–Rab8a and
labeled with DiD (ShCTL/GFP–vector=100±0.2, ShRab8a/GFP–vector=84.5±2.4, ShRab8a/GFPRab8a=100.1±7.5). All graphs show mean±s.e.m. from three
independent experiments (ns, not significant; *P<0.05, **P<0.01, ***P<0.001; by one-way ANOVAwith Tukey’smultiple comparison post test). Scale bars: 10 µm.
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in VAMP3 knockdown cells. Under these conditions, neither the
number of TNT-connected cells (Fig. 7A,B and Table S2) nor the
vesicles transferred between cells (Fig. 7C) were affected.

Furthermore, overexpressing GFP–Rab11a-WT in VAMP3
knockdown cells had no effect on the number of TNT-connected
cells (Fig. 7A,B and Table S2) nor vesicle transfer between cells

Fig. 4. Rab11a–Rab8a cascade in TNT formation. (A) Representative confocal images of TNT-connected cells after transfection with ShCTL/GFP–vector,
ShRab11a/GFP–vector or ShRab11a/GFP–Rab8a. Inserts are enlargements of framed regions in merge panel. (B) Bar graph showing relative percentage
of TNT-connected cells from experiment described in A (ShCTL/GFP–vector=100±0.57, ShRab11a/GFP–vector=76.74±3.9, ShRab11a/GFP–Rab8a=121.7±4.74).
(C) Bar graph showing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with ShCTL/
GFP–vector, ShRab11a/GFP–vector or ShRab11a/GFP–Rab8a and labeled with DiD (ShCTL/GFP–vector=100±0.69, ShRab11a/GFP–vector=79.91±1.3,
ShRab11a/GFPRab8a=96.7±2.94). (D)Representative confocal images of TNT-connected cells after transfectionwith ShCTL/GFP–vector, ShRab8a/GFP–vector or
ShRab8a/GFP–Rab11a. Inserts are enlargements of the framed regions in merge panel. (E) Bar graph showing the relative percentage of TNT-connected cells from
the experiment described in D (ShCTL/GFP–vector=100±0.57, ShRab8a/GFP–vector=77.97±5.51, ShRab8a/GFP–Rab11a=81.95±3.15). (F) Bar graph
representing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with ShCTL/
GFP–vector, ShRab8a/GFP–vector or ShRab8a/GFP–Rab11a and labeled with DiD (ShCTL/GFP–vector=100±0.6, ShRab8a/GF–vector=78.05±1.9, ShRab8a/
GFP–Rab11a=80.91±2.9). All graphs are from three independent experiments and show mean±s.e.m. (ns, not significant; *P<0.05, **P<0.01, ***P<0.001;
by one-way ANOVA with Tukey’s multiple comparison post test). Scale bars: 10 µm.
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Fig. 5. GRAB regulates formation of TNT independent of Rab8a. (A) Representative confocal images of TNT-connected cells after transfection with GFP–
vector or GFP–GRAB. Inserts are enlargements of the framed region in merge panel. (B) Bar graph representing relative percentage of TNT-connected cells from
the experiment described in A (GFP–vector=100±0.5, GFP–GRAB=125±5.4). (C) Raw data (dot plots) of flow cytometry from a representative experiment
showing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with either GFP–vector
or GFP–GRAB and labeled with DiD. (D) Bar graph representing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures of
the experiment described in C (GFP–vector=100.0±0.5, GFP–GRAB=128.0±5.8). All graphs show mean±s.e.m. from three independent experiments (*P<0.05,
**P<0.01; by unpaired Student’s t-test). (E) Representative confocal images of TNT-connected cells after transfection with ShCTL/GFP–vector, ShRab8a/GFP–
vector or ShRab8a/GFP–GRAB. Inserts are enlargements of the framed regions in merge panel. (F) Bar graph showing relative percentage of TNT-connected
cells from experiment described in E (ShCTL/GFP–vector=100, ShRab8a/GFP–vector=78.2±3.4, ShRab8a/GFP–GRAB=126.9±0.6). (G) Raw data (dot plots) of
flow cytometry from a representative experiment showing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, in which
the donor cells were transfected with ShCTL/GFP–vector, ShRab8a/GFP–vector or ShRab8a/GFP–GRAB and labeled with DiD. (H) Bar graph representing the
relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures of the experiment described in G (ShCTL/GFP–vector=99.5±0.5,
ShRab8a/GFP–vector=85.1±10.2, ShRab8a/GFPGRAB=120.0±12.1). All graphs show mean±s.e.m. (*P<0.05, **P<0.01, ***P<0.001; by one-way ANOVAwith
Tukey’s multiple comparison post test) from two independent experiments. Scale bars: 10 µm.
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(Fig. 7C). These results indicate that VAMP3 is involved in the
Rab11a–Rab8a cascade, regulating TNT formation by acting
downstream of Rab8a.

Rab8a and Rab11a promote both TNTs and filopodia
formation, with different mechanisms
Both Rab11 and Rab8 have been shown to be involved in filopodia
formation in different contexts (Cox et al., 2000; Eva et al., 2010;
Hattula et al., 2006; Peränen, 2011). Although we have shown that

in CAD cells filopodia and TNTs are formed by different
mechanisms leading to actin remodeling (Delage et al., 2016), the
question arises whether, in our cell model, the same Rab cascade
also leads to an increase in filopodia formation. In contrast to TNTs,
attached filopodia exhibit vinculin-positive focal adhesions at the
tip (Bohil et al., 2006; Schafer et al., 2010). By automatically
detecting vinculin-positive peripheral cellular protrusions, we
observed that overexpression of Rab8a or Rab11a also increased
the number of vinculin-positive protrusions (Fig. S7A,B). Inversely,

Fig. 6. See next page for legend.
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knocking down Rab8a or Rab11a was associated with a decrease in
vinculin-positive protrusions (Fig. S7C,D). This result indicates that
Rab8a and Rab11a increased both the number of TNTs and the
number of attached filopodia. Interestingly, we found that
overexpression of Rabin8 increased the number of vinculin-
positive protrusions (Fig. S7E,F), whereas it had no effect on
TNT formation and vesicle transfer between the cells (Fig. S5).
Thus, Rabin8 could be the effector of Rab11a, and GEF of Rab8a, in
promoting attached filopodia formation, but not for TNTs. On the
other hand, overexpression of VAMP3, which increased TNTs
(Fig. 6), decreased the number of attached filopodia (Fig. S7E,F).
Together, these results suggest that VAMP3 could act as an effector
of Rab8a in regulating TNT formation, but not the formation of
attached filopodia.

DISCUSSION
The data presented here provide new insights into the factors
involved in TNT formation and intercellular vesicle transfer in
neuron-like CAD cells. Our results show that Rab11a, Rab8a and
VAMP3 increase both the number of TNT-connected cells and
vesicle transfer through TNTs in CAD cells. We have demonstrated
that Rab11a and Rab8a work in the same pathway and employ
VAMP3 as an effector to induce functional TNTs but not filopodia.
Of interest, this Rab11a–Rab8a signaling cascade does not require
Rabin8, which is essential in mediating Rab8a-activated filopodia
formation. Thus, in addition to providing mechanistic details about
the role of Rab proteins in TNT formation, the data also strengthen
our hypothesis that filopodia and TNTs are different structures,
which rely on different mechanisms of formation.

The fact that Rab effectors are highly diverse illustrates that Rab
GTPases control multiple biochemical events. The functions of Rab
GTPases and their effectors are mostly related to the vesicular traffic
between donor and recipient compartments. Some distinct Rab
effectors are involved in the sorting of cargo into vesicles by acting
on budding, uncoating and motility along actin or microtubule
filaments (Stenmark, 2009). Through their activation, Rab GTPases
control the maturation of vesicles, as well as vesicle shuttling
between different membrane compartments (Zhen and Stenmark,
2015). The function of activated Rab GTPases is to recruit effectors
such as coat proteins (Carroll et al., 2001), cytoskeletal motors
(Roland et al., 2007; Wu et al., 2002), kinases and phosphatases
(Shin et al., 2005) and membrane tethering/fusion proteins (Nielsen
et al., 2000; Simonsen et al., 1998). Because TNTs are novel cellular
structures consisting of membranous channels containing actin
that bridge distant cells and allow the exchange of different
materials/cargos (Abounit and Zurzolo, 2012), it is likely that
specific Rab proteins are involved in TNT formation. To assess
this, we set up a screen where all 41 Rab subfamilies were tested
for possible roles in TNT-mediated vesicle transfer in CAD cells.
Although Rab8a, Rab11a and Rab35 could increase vesicle
transfer between cells, we found that Rab39 and Rab40 had
negative effects (Table S1).

We decided to focus on Rab8 and Rab11, for which there is
evidence supporting their role in TNT formation in other cell
systems, although the mechanism was unexplored (Burtey et al.,
2015; Zhu et al., 2016). Rab11 and Rab8 could work independently
from each other or in the same pathway (Hattula et al., 2006). In
addition, because TNTs are membrane protrusions containing actin
filaments, these two Rab GTPases could affect TNT formation by
playing a role either in modulating actin dynamics and/or by
regulating the supply of the membrane-specific lipids and proteins
required for TNT development.

Both Rab8 and Rab11 can be found associated with the trans-
Golgi network and recycling endosomes, and have been shown to
be essential in the trafficking of proteins from the Golgi to the
plasma membrane (Rowe et al., 2008). Intriguingly, Rab8 and
Rab11 could also modulate actin dynamics (Castillo-Romero et al.,
2010; Hattula et al., 2002; Ramel et al., 2013). Rab11 is known to be
involved in the recycling of endocytosed proteins. However, Rab11
also regulates actin dynamics during formation of membrane
protrusions and is required for the spatial control of Rac1 activity
through the control of cell–cell communication during collective
cell migration by inducing cell protrusions through the regulation of
moesin activation (Ramel et al., 2013). On the other hand, Rab8 has
been shown to drive cytoskeletal reorganization in HeLa cells, either
through RhoA GTPase, calpain or MT1-MMP activation
(Bravo-Cordero et al., 2016). However, knocking down RhoA
GTPase in DNA damage-induced senescent cells did not induce a
significant reduction in mCherry transfer between cells, suggesting
that Rab8 could regulate TNT formation not only through actin
polymerization (Biran et al., 2015).

Of interest, Rab8 has been reported to target vesicles to the
cilium to promote ciliary membrane elongation (Nachury et al.,
2007). Endogenous Rab8 localizes to the primary cilium and to the
BBsome, which associates with the ciliary membrane. VAMP3,
which is involved in the docking and/or fusion of synaptic vesicles
with the plasma membrane, interacts with Rab8 at the base of the
cilium to regulate ciliary growth and transport of specific
receptors, such as Smoothened and fibrocystin to the cilium
(Boehlke et al., 2010; Follit et al., 2010). By interacting with
VAMP3, Rab8 is also responsible for the final docking/fusion step

Fig. 6. VAMP3 positively regulates functional TNTs. (A) Relative mean
intensity of Alexa Fluor 546-transferrin bound to cells after treatment
with Primaquine (PMQ) or H2O for 0 min (H2O=98.6, PMQ=99.2), 5 min
(H2O=98.6, PMQ=99.3),15 min (H2O=93.6, PMQ=98.4), 30 min (H2O=74.1,
PMQ=98.1), 60 min (H2O=44.0, PMQ=94.6), 120 min (H2O=13.8, PMQ=85.4)
or 240 min (H2O=11.0, PMQ=86.7) analyzed by flow cytometry. (B) Bar graphs
showing relative percentage of TNT-connected cells after treatment with PMQ
or H2O for 4 h (H2O=100±0.57, PMQ=64.92±10.07). The graph shows
mean±s.e.m. from three independent experiments (*P<0.05; by unpaired
Student’s t-test). (C) Representative confocal images of TNT-connected cells
after treatment with PMQor H2O for 4 h. (D) Representative confocal images of
TNT-connected cells after transfection with GFP–vector or GFP–VAMP3.
Inserts are enlargements of the framed regions in merge panel. (E) Bar graph
representing relative percentage of TNT-connected cells from experiment
described in D (GFP–vector=100.0±0.5, GFP–VAMP3=126.4±1.7). (F) Bar
graph representing the relative percentage of acceptor cells containing DiD-
labeled vesicles from the co-cultures, where donor cells were transfected with
either GFP–vector or GFP–VAMP3 and labeled with DiD (GFP–vector=100.2
±0.73, GFP–VAMP3=129.0±5.3). The graphs show mean±s.e.m. from three
independent experiments (**P<0.01, ***P<0.001; by unpairedStudent’s t-test).
(G) Western blot of cells transfected with shRNA non-targeting (ShCTL) or
targeting VAMP3 (ShVAMP3), showing the expression of VAMP3 and α-tubulin
as loading control. (H) Representative confocal images of TNT-connected
cells after transfection with ShCTL/GFP–vector, ShVAMP3/GFP–vector or
ShVAMP3/GFP–VAMP3. Inserts are enlargements of the framed region in
merge panel. (I) Bar graph representing relative percentage of TNT-connected
cells from experiment described in H (ShCTL/GFP–vector=100±0.4,
ShVAMP3/GFP–vector=81.6±3.6, ShVAMP3/GFP–VAMP3=126±2.9). (J) Bar
graph representing the relative percentage of acceptor cells containing DiD-
labeled vesicles from the co-cultures, where donor cells were transfected with
ShCTL/GFP–vector, ShVAMP3/GFP–vector or ShVAMP3/GFP–VAMP3 and
labeled with DiD (ShCTL/GFP–vector=100, ShVAMP3/GFP–vector=75.3
±1.2, ShVAMP3/GFP–VAMP3=104.5±1.2). The above graphs show mean
±s.e.m. from three independent experiments (*P<0.05, **P<0.01, ***P<0.001;
by one-way ANOVA with Tukey’s multiple comparison post test). Scale bars:
10 µm.
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in T cell receptor recycling to the immune synapse (Patrussi and
Baldari, 2016).
Our results clearly show that VAMP3 promotes TNT formation

by acting downstream of Rab8a in CAD cells. It is therefore possible
that Rab8a uses a similar mechanism to facilitate TNT formation by
transporting vesicles and/or specific proteins or receptors to the

bases of TNTs. This could be initiated by the fusion of a contractile
vacuole with the cell membrane to form negative and positive
curvature at the TNT tip and base, respectively. Subsequently, the
extension of TNTs could be supported by membrane intake through
motor proteins and exocytosis involving myosin10 (Bishai et al.,
2013; Gousset et al., 2013) and Rab8 (Wang et al., 2015). Our

Fig. 7. VAMP3 acts downstreamof Rab8a in regulating TNTs. (A) Representative confocal images of TNT-connected cells after transfection with ShCTL/GFP–
vector, ShVAMP3/GFP–vector, ShVAMP3/GFP–Rab8a or ShVAMP3/GFP–Rab11a. Inserts are enlargements of the framed region inmerge panel. (B) Bar graph
showing relative percentage of TNT-connected cells from the experiment described in A (ShCTL/GFP–vector=100±0.4, ShVAMP3/GFP–vector=81.6±3.6,
ShVAMP3/GFP–Rab8a=79.0±3.7, ShVAMP3/GFP–Rab11a=85.6±3.2). (C) Bar graph representing the relative percentage of acceptor cells containing
DiD-labeled vesicles from the co-cultures, where donor cells were transfected with ShCTL/GFP–vector, ShVAMP3/GFP–vector, ShVAMP3/GFP–Rab8a or
ShVAMP3/GFP–Rab11a and labeled with DiD (ShCTL/GFP–vector=100, ShVAMP3/GFP–vector=75.3±1.2, ShVAMP3/GFP–Rab8a=72.7±3.3, ShVAMP3/
GFP–Rab11a=78.3±1.4). The graphs show mean±s.e.m. from three independent experiments (ns, not significant; *P<0.05, **P<0.01, ***P<0.001; by one-way
ANOVA with Tukey’s multiple comparison post test). Scale bars: 10 μm.
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results show an impairment of membrane recycling from
endosomes to the plasma membrane with PMQ, leading to a
decrease in the number of TNT-connected cells, which is in perfect
accordance with this model.
There is evidence supporting a model in which, during membrane

flow from one organelle to another, the compartment transition from
an upstream Rab to a downstream Rab is regulated by the
recruitment of effectors (Hutagalung and Novick, 2011). The
Rab11–Rab8 cascade has been shown to be involved in several
cellular processes, including transferrin receptor recycling, primary
cilium formation and axon outgrowth. Regarding TNTs, our results
show that Rab8a depletion inhibits TNT formation induced by
Rab11a, whereas Rab11a depletion does not affect the formation of
TNTs induced by Rab8a. This indicates that Rab8a acts as a
downstream effector of Rab11a to regulate TNT formation. How
this occurs is still unclear. However, when overexpressed together,
Rab11a and Rab8a appear to colocalize at the base of the TNT,
which suggests that the two proteins cooperate on the same
endosome at the base of the TNT for its formation. On the other
hand, from this qualitative analysis, the two proteins do not appear
to colocalize inside TNTs.
Even though we have shown that the downregulation of Rab11a

and Rab8a by shRNA is close to 90%, we did not see a similar
decrease in 90% of the TNT-connected cells. This is expected, as
other effectors have been described to increase TNT formation, such
as M-sec (Hase et al., 2009) and myosin-10 (Gousset et al., 2013).
On the other hand, the data suggest that these proteins might act in
an independent (or parallel) pathway to the Rab11a–Rab8a cascade
described here.
M-sec is known to be a component of the exocyst complex. It

interacts with RalA (Ras-like small GTPase) to regulate the
formation of TNTs (Kimura et al., 2016). RalA interacts with
CDC42 through Ral1 binding protein for the formation of filopodia
(Ikeda et al., 1998). Additionally, CDC42 has been shown to
regulate the formation of TNTs in Raw264.7 cells (Hanna et al.,
2017). However, in the case of CAD cells, CDC42 negatively
regulates the formation of TNTs (Delage et al., 2016). Thus, we
believe that this pathway is not responsible for TNT formation in
our cell model.
However, some proteins of the exocyst complex (e.g. Sec15 and

Exo70) have been shown to interact with Rab11 (Takahashi et al.,
2012; Wu et al., 2005). From preliminary experiments,
overexpression of Sec15 in CAD cells results in only a slight
decrease in vesicle transfer between cells in co-culture;
consequently, we did not pursue this further. However, Exo70
could be an interesting candidate because it is known to induce
membrane curvature and actin-free filopodia (Zhao et al., 2013) and
it also interacts with Rab11 in the exocytosis process (Takahashi
et al., 2012). Further research is necessary to explore this possibility.
Guanine nucleotide exchange factor for Rab3A (GRAB), a GEF

of Rab8, has been shown to regulate axon outgrowth (Furusawa
et al., 2017). These results indicated that GRAB regulates axonal
outgrowth via activation and recruitment of Rab8A to Rab11A-
positive endosomes in a Cdk5-dependent manner. GRAB might act
as a GEF for regulating the formation of TNTs and the transfer of
vesicles. But, from our results, we conclude that GRAB acts on
TNT formation irrespective of Rab8a and is not involved in a
Rab8a–Rab11a pathway in regulating the formation of TNT.
Because GFP–GRAB promoted vesicle transfer in Rab8a-KD
cells, GRAB might activate unknown Rabs other than Rab8a to
increase vesicle transfer. Rabin8, a close homolog of GRAB, can
activate both Rab8 and Rab10 to promote neurite outgrowth of

PC12 cells. Overexpression of Rab10 (WT/QL) had no effect on
neurite outgrowth, whereas its knockdown decreased neurite
outgrowth (Homma and Fukuda, 2016). Thus, Rab10 is a likely
candidate for an alternative GRAB target in regulating the formation
of TNTs between the cells. However, since Rab10 did not come up
as a possible positive regulator in our initial screening of 41 Rabs,
we believe that further studies are needed to explore the mechanism
of Rab10 and GRAB in regulating the formation of TNTs.

In other circumstances, for example in de novo generation of the
primary cilium, Rab11 regulates Rab8 function by activating
Rabin8, a GEF of Rab8 (Westlake et al., 2011). However, in our cell
system, overexpression of Rabin8 did not affect TNT number,
strongly suggesting that Rabin8 is not the effector between Rab8
and Rab11 in the regulatory pathway of TNTs. Furthermore, we
showed that, in our cell system, the Rab11a–Rab8a cascade induces
filopodia formation through Rabin8, whereas VAMP3 had no effect
on filopodia. This indicates that filopodia and TNTs, although
naively similar in appearance, are distinct structures with different
mechanisms of formation and different functions. We propose that
Rab11a and Rab8a facilitate the trafficking and fusion of vesicles,
containing specific proteins and lipids necessary for TNT formation
and function, with the plasma membrane (by interacting with the
v-SNARE protein VAMP3). On the other hand, this cellular process
could also regulate TNT formation simply by facilitating membrane
accumulation at the site of TNT formation (see schematic in Fig. 8).

In summary, our results represent the first molecular evidence
of a mechanism whereby Rab GTPases regulate TNT formation in
neuron-like CAD cells. Our study further confirms that TNTs are
regulated differently from other cell protrusions, including filopodia
and primary cilia. Future studies are required to provide further

Fig. 8. Schematic of Rab11a–Rab8a–VAMP3 cascade in regulating TNTs.
GTP-bound Rab11a acts upstream of Rab8a, while VAMP3 acts downstream
of Rab8a in regulating TNT formation. Rab11a-induced activation of Rab8a is
independent of Rabin8 and GRAB. One possibility is that Rab11a is released
from the recycling endosome (RE) when Rab8a is activated. GTP-bound
Rab8a interacts with VAMP3, which functions as a Rab8a effector and
facilitates the fusion of RE-derived vesicle to supply lipids and specific proteins
needed for TNT formation.
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insights into the involvement of these and other Rab proteins (as
from our screen) in vesicular trafficking and actin remodeling in
TNT formation to better characterize the differences and similarities
between TNT and other membrane protrusions.

MATERIALS AND METHODS
Cell lines, plasmids and transfection procedures
The mouse catecholaminergic neuronal CAD cell line (mouse
catecholaminergic neuronal cell line, Cath.aDifferentiated) (Gousset et al.,
2013) was grown in Gibco OptiMEM supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin. pEGFP–C1-Rab plasmids
library, pEGFP–C1-Rab8a(Q67L), pEGFP–C1-Rab8a(T22N), pEGFP–C1-
Rab11a(Q70L), pEGFP–C1-Rab11a(S25N) and pEGFP–C1-Rabin8, and
pEGFP–C1-GRAB were prepared as described previously (Furusawa et al.,
2017; Ishida et al., 2012; Matsui and Fukuda, 2011; Tsuboi and Fukuda,
2006). GFP–VAMP3 was a kind gift from Thierry Galli (Center of
Psychiatry and Neuroscience, INSERMU894, Paris France). GFPMICAL1
and GFP MICAL-LI were a kind gift from Arnaud Echard (Institut Pasteur,
Paris). The shRNA non-target control (SHC016-1EA), shRNA Rab8a
(TRCN0000100422) and shRNA Rab11a (TRCN0000100344) were from
Sigma Aldrich. ShRNA Rabin8 was prepared as described previously
(Homma and Fukuda, 2016). Anti-Rabin8 was purified as described
(Homma and Fukuda, 2016). Anti-Rab8a antibody (ab188574), Anti-
Rab11a antibody (ab128913) and anti-VAMP3 antibody (ab2102) were
from Abcam. GFP–vector and H2B–mCherry–vector were from AddGene.
CAD cells were transiently transfected with Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions.

High-content screening of Rab-GTPases
Confluent CAD cells were mechanically detached and counted, and 5000
cells were plated for 6 h in 96-well plates (Greiner Bio-One). The 41 GFP–
Rab GTPase plasmids were mixed with 10 µl Opti-MEM, and 0.2 µl
Lipofectamine was mixed with 10 µl Opti-MEM. After mixing these two
compartments for 15 min, the transfection mixture was added to cells and
80 µl additional complete medium was added to cells. After 16 h of
transfection, cells were labeled with lipophilic tracer VybrantTM DiD (long-
chain dialkylcarbocyanine) in complete medium for 30 min at 37°C and
rinsed with PBS. 5000 CAD cells that had been transfected with H2B–
mCherry were added to each well and co-cultured for 24 h. Cells were fixed
with 4% PFA for 20 min at room temperature and labeled with HCS
CellMask™ Blue. Images were acquired with a 20× objective from Opera
Phenix High Content Screening System (PerkinElmer). Fifty images of
different fields from each well were acquired and analyzed using Cellprofiler
(http://cellprofiler.org/).

Quantification of TNT-connected cells
Confluent CAD cells were mechanically detached and counted, and
300,000 cells were plated for 6 h in six-well plates. Cells were transfected
with the appropriate plasmids. At 24 h post-transfection, cells were
detached and counted, and 220,000 cells were plated for 16 h on Ibidi
μ-dishes (Biovalley, France). At 16 h post-seeding, cells were fixed with
fixative solution 1 (2% PFA, 0.05% glutaraldehyde and 0.2 M HEPES in
PBS) for 20 min at 37°C, followed by a second 20 min fixation with
fixative solution 2 (4% PFA and 0.2 M HEPES in PBS) at 37°C. The cells
were gently washed with PBS and labeled with WGA-Alexa Fluor 594
(Sigma) (1:300 in PBS) for 20 min at room temperature, washed and sealed
with Aqua-Polymount (Polysciences, Inc.). Cells were labeled with
WGA-Alexa Fluor 594 for the plasma membrane and DAPI for the
nucleus in all the experiments.

Image stacks (0.3 µm) covering the whole cellular volume were acquired
using a confocal microscope (Zeiss LSM 700) controlled by ZEN software.
To evaluate the number of TNT-connected cells, manual analysis was
performed for transfected cells with TNTs. The criterion for identifying
TNTs was that a continuous connection could be found when moving along
the stacks after removing the bottom three slices. The two cells connected by
at least one continuous connection were marked as TNT-connected cells.
Each experiment was performed at least in triplicate. Image analyses and

displays of raw data, such as Z-projections, were obtained using ICY
software (Gousset et al., 2013).

Fluorescence image analysis to quantify the transfer of DiD-
labeled vesicles
Confluent CAD cells were mechanically detached and counted, and 800,000
cells were plated for 6 h in T25 flasks. The cells were transfected with the
appropriate GFP-tagged constructs for donor cells and H2B–mCherry for
acceptor cells for 24 h in complete medium. The donor cells were labeled
using a 333 nM solution of Vybrant™DiD in complete medium for 30 min
at 37°C. Cells were then washed with PBS and 0.01% trypsin, resuspended
in complete medium and counted. The labeled donor cells were mixed in a
1:1 ratio with H2B-transfected acceptor cells and plated at subconfluence
(220,000 cells) on Ibidi μ-dishes (Biovalley, France) for 16 h at 37°C. Cells
were fixed with 4% PFA. Cells were washed and sequentially stained for
30 min with a 1 μgml−1 solution of HCS CellMask™Blue, which stains the
entire cell volume (i.e. cytoplasm and nucleus). Samples were washed and
sealed with Aqua-Poly/Mount (Polysciences, Inc.). The cells were imaged
with an inverted confocal microscope (Zeiss LSM700) controlled by ZEN
software. Quantification was carried out using ICY software (http://icy.
bioimageanalysis.org/).

Flow cytometry to analyze the transfer of DiD-labeled vesicles
Confluent CAD cells were mechanically detached and counted, and
800,000 cells were plated for 6 h in T25 flasks. Cells were transfected
with Lipofectamine 2000 (Invitrogen), according to the manufacturer’s
instructions, with the appropriate GFP-tagged constructs for donor cells and
with H2B–mCherry for acceptor cells, for 24 h in complete medium. Donor
cells were detached, counted and labeled with a 333 nM solution of
Vybrant™ DiD in complete medium for 30 min at 37°C. Cells were then
washed with PBS and 0.01% trypsin, resuspended in complete medium and
counted.

The labeled donor cells were mixed in a 1:1 ratio with H2B–mCherry-
transfected acceptor cells and plated at subconfluence (120,000 cells per
well) on 24-well plates for 16 h at 37°C. Each independent co-culture was
performed in triplicate. To verify that the transfer of vesicles between cells is
cell–cell dependent and not through secretion, two populations of cells were
co-cultured with a Transwell insert (i.e. a filter; 0.4 µm) that could separate
two populations of cells but share the medium. Alternatively, the
supernatant from donor cells after overnight culture was taken and added
to acceptor cells for another 16 h of culture. Cells were then washed with
PBS, mechanically detached from the dish by pipetting up and down with
500 μl PBS and then passed through sterile 40-mm nylon cell strainers (BD
Falcon™) in order to obtain single-cell suspensions. Cell suspensions were
fixed with 500 μl of 4% PFA (2% final solution). Flow cytometry data were
acquired using an LSR Fortessa flow cytometer (BD Biosciences). GFP
fluorescence was analyzed at 488 nm excitation wavelength, RFP and
mCherry fluorescence were analyzed at 561 nm excitation wavelength and
DiD fluorescence was analyzed at 640 nm excitation wavelength. Samples
were analyzed at a high flow rate, corresponding to 200–400 events per
second, and 10,000 events were acquired for each condition. Data were
analyzed using FlowJo analysis software.

Quantification of vinculin-positive peripheral focal adhesion
For indirect immunofluorescence labeling of vinculin, 90,000 cells were
plated for 16 h on Ibidi μ-dishes and then fixed in 4% PFA in PBS for
15 min at 37°C. Cell samples were quenched with 50 mM NH4Cl for
15 min, then permeabilized with 0.01% saponin in PBS containing 2%BSA
(w/v) for 20 min at 37°C. After a first 1-h incubation with mouse anti-
vinculin antibody (V9264, Sigma) diluted 1:500 in PBS containing 0.01%
saponin and 2%BSA (w/v), cells were thoroughly washed and incubated for
40 min with goat anti-mouse Alexa Fluor 488 (Invitrogen) diluted 1:500 in
PBS containing 0.01% saponin and 2% BSA (w/v). Cells were washed and
sequentially stained for 20 min with a 3.3 μg μl−1 solution of WGA Alexa
Fluor 647 nm conjugate, for 30 min with 1 μg ml−1 solution of HCS
CellMask™ Blue, which stains the entire cell volume (i.e. cytoplasm and
nucleus), and for 5 min with a 0.2 μg μl−1 solution of DAPI. Samples were
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washed and sealed with Aqua-Poly/Mount (Polysciences, Inc.). The bottom
of the cell (in contact with the plastic dish) was imaged with an inverted
confocal microscope (Zeiss LSM700) controlled by ZEN software.
Displayed images corresponded to stack projections. Only linear
corrections were applied, using the software ImageJ. Vinculin-positive
peripheral focal adhesion was automatically detected and counted using
ICY software (http://icy.bioimageanalysis.org/).

Western blot
Cells transfected with shRNAwere lysed in NP-40 lysis buffer (25 mMTris,
pH 7–8, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton
X-100). Protein concentration in the cell lysate was quantified using a
Bradford protein assay (Bio-Rad). Protein samples were incubated at 100°C
for 5 min and electrophoresed on 10% SDS-polyacrylamide gels. Proteins
were transferred to PVDF membranes (GE Healthcare Life Sciences).
Membranes were blocked in 5% nonfat milk in Tris-buffered saline with
0.1%Tween 20 (Sigma) (TBS-T) for 1 h.Membranes were then incubated at
4°C with a primary antibody, rabbit anti-Rab8a, anti-Rab11a, anti-VAMP3
and anti-Rabin8 and mouse anti-α-tubulin (Sigma) or anti-rabbit GAPDH
(Cell Signaling Technology) diluted in 5% nonfat milk overnight (1:500 and
1:10,000, respectively) then washed several times with TBS-T. After 1 h
incubation with horseradish peroxidase conjugated with the respective IgG
secondary antibody (1:10,000) (GE Healthcare Life Sciences), membranes
were washed with TBS-T and protein bands on the membrane were detected
using an ECL-Plus immunoblotting chemiluminescence system (GE
Healthcare Life Sciences). Membranes were imaged using ImageQuant
LAS 500TM camera (GE Healthcare Life Sciences).
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Fig. S1. The percentage of TNT connected cells does not change within a range of cell
distance. A. Representative confocal images of TNT formation between CAD cells. Images were 
acquired in 27 stacks, TNTs were present from stack 6 to stack 20. WGA-Alexa594 (white) was 
used to label cell plasma membrane and DAPI (blue) was used to label the nucleus. (Scale 

e number of CADs cells per images when 160K to 240K cells were plated 
(160K=23.77±1.39,180K=25.70±1.77,200K=29.21±2.769,220K=31.16±2.163,240K=34.70±3.14
9) C. Average distance between two cell nuclei from conditions as in (B) in
mm(160K=22.51±0.62,180K=20.60±0.53,200K=20.49±0.43,220K=19.10±0.42,240K=18.44±0.4
0). D. Cumulative distribution of cell nuclear distance from conditions in (B). E. Bar graph
representing average percentage of TNT connected cells from experiment described in (B)
(160K=58.62±1.9 ,180K=58.75±1.91,200K=57.62±1.87,220K=58.49±2.72,240K=58.91±2.72)
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Fig. S2. DiD-labeled vesicles transfer between cells overexpressing Rab11a or Rab8a 
is mediated by cell-to-cell contact. . Left panel, Raw data (dot plots) from a representative
experiment showing the transfer of DiD-labeled vesicles to the acceptor cells population
(H2B-mCherry) from mixture, co-culture with filter GFP-vector or GFP-Rab11a, coculture
with/ without filter and supernatant between donor cells transfected with GFP-vector or GFP-
Rab11a and acceptor cells. Right panel, Bar graph representing relative percentage of DiD 
positive acceptor cells by flow cytometry from conditions indicated in left panel mixture GFP-
vector=5.03±0.67 or GFP-Rab11a=4.186±0.76, co-culture with filter GFP-vector=3.66±0.58,
GFP-Rab11a=5.58±0.57 coculture without filter GFP-vector=100.0±1.4 or GFP-
Rab11a=143.1±6.02 and supernatant GFP-vector=22.2±3.14 or GFP-Rab11a= 18.46±0.95

. Left panel, Raw data (dot plots) from a representative experiment showing the transfer of
GFP protein to the acceptor cells population (H2B-mCherry) from mixture , co-culture without
filter with filter, and supernatant between donor cells transfected with GFP-vector or GFP-
Rab11a and acceptor cells. Right panel shows bar graph representing relative percentage of
GFP protein positive acceptor cells by flow cytometry from conditions indicated in left panel for
mixture (GFP-vector=6.5±2.25 GFP-Rab11a=5.37±1.38), co-culture with filter (GFP-
vector=0.35 ±0.17, GFP-Rab11a=0.44±0.08), coculture without filter (GFP-vector=100±3.84,
GFP-Rab11a =72.64± 8.26) and supernatant (GFP-vector=0.85±0.21, GFP-Rab11a=1.13
±0.12).  Left panel, Raw data (dot plots) from a representative experiment showing the
transfer of DiD-labeled vesicles to the acceptor cells population (H2BmCherry) from
mixture, co-culture (with/without filter) and supernatant between donor cells transfected
with GFP-vector or GFP-Rab8a and acceptor cells. Right panel, Bar graph representing
relative percentage of DiD positive acceptor cells by flow cytometry from conditions
indicated in left panel for mixture GFP-vector=5.03±0.67 or GFP-Rab8a=3.46±0.6, co-
culture with filter GFP-vector=3.6±0.58 , GFP-Rab8a =3.193  coculture without filter GFP-
vector=100.0±1.4 or GFP-Rab8a=130.1±3.23 and supernatant (GFP-vector=22.2±3.14
or GFP-Rab8a= 20.04±3.6) . Left panel, Raw data (dot plots) from a representative
experiment showing the transfer of GFP protein to the acceptor cells population (H2B-
mCherry) from mixture coculture with filter coculture without filter and supernatant between
donor cells transfected with GFP-vector or GFP-Rab8a and acceptor cells. Right panel, Bar graph
representing relative percentage of GFP protein positive acceptor cells by flow cytometry from
conditions indicated in left panel for mixture (GFP-vector=9.09± 1.25, GFP-Rab8a=4.95±1.2),
co-culture without filter (GFP-vector=100± 3.764 GFP-Rab8a= 81.64±5.40) with filter
(GFP-vector=0.32±0.18, GFP-Rab8a=0.54±0.11), and supernatant (GFP-vector=0.57±0.29,
GFP-Rab8a=0.54 ±0.11). Data represent the mean ± s.e.m of at least 3 independent
experiments in triplicate setting
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Fig.S . Overexpression of inactive mutants of Rab11a and Rab8a for 52 hours significantly 
decreased the number of TNT-connected cells and Rab8b has no role in the TNT formation.
A. Bar graph showing relative percentage of TNT connected cells after transfection with either
GFP-vector, GFP-Rab8a-T22N and Rab11a-S25N for 52hr (GFP-vector=100± 0.577, GFP-
Rab8a-T22N=75.94±1.60 and Rab11a-S25N=78.29±0.92). The data represents the mean ±
s.e.m, of at least 3 independent experiments (ns, no significant; ***, p < 0.001 by One-way ANOVA
with Tukey’s multiple comparison post test). B. Left panel show representative confocal images
of TNT connected cells after transfection with GFP-vector and GFP-Rab8b. Right panel is
showing bar graph of relative percentage of the TNT-connected cells from the experiment
described in the left panel (GFP-vector = 100.0 ± 0.5774 ,GFP-Rab8b= 86.05 ± 11.27), the graph
shows mean ± s.e.m from three independent experiments (ns, no significant by Unpaired t test)
C. Left panel shows the dot plot of the flow cytometry analysis of DiD transfer between donor cells
overexpressing GFP-vector or GFP-Rab8b and acceptor cells expressing H2Bmcherry(GFP-
vector= 100.0 ± 0.5774,GFP-Rab8b= 116.2 ± 12.67). Right panel shows bar graph of the relative
percentage of the acceptor cells with DiD. Data shows mean ± s.e.m from three independent
experiments (ns, no significant by unpaired student t test).
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Fig.S4 Rabs do not colocalise on TNT and MICAL1 and MICAL-L1 has no effect on 
TNT formation: A Images show cells cotransfected with GFP-Rab8a(green) and
mStrawberry-Rab11a(red). The DAPI (blue) and WGA-Alexa 594(white) was used to label 
the nucleus and cell membrane respectively. Inset shows the magnification of the region
marked with yellow box from merge. (Scale bar =10µm) B. Bar graph representing the relative
percentage of TNT-connected cells transfected with GFP-Vector, GFP-MICAL-L1, GFP-MICAL1.
(GFP-Vector= 100±1.90, GFP-MICAL-L1= 90.46±3.75, GFP-MICAL1= 93.86±4.57) C. Bar
graph showing the relative percentage of acceptor cells containing DiD labeled vesicles from
the co-cultures, in which the donor cells were transfected with either GFP-Vector, GFP-MICAL-
L1, GFP-MICAL1 and labeled with Did. All the above bar graphs show mean ± s.e.m from
three independent experiments (GFP-Vector= 100±0.00, GFP-MICAL-L1= 94.51±6.49, GFP-
MICAL1= 104.5±4.98) (ns, no significant by One-way ANOVA with Tukey’s multiple comparison 
post test).
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Fig.S5. Rabin8 has no effect on the number of TNT-connected cells and vesicle transfer 
between cells. A. Representative confocal images of TNT connected cells transfected with GFP 
vector or GFP-Rabin8. Inserts are enlargements of the framed region in merge panel. 
WGAAlexa594 (white) was used to label cell plasma membrane to show TNT between cells. 
(Scale bar=10μm). B. Bar graph showing relative percentage of TNT connected cells transfected 
with GFP-vector or GFP-Rabin8(GFP-vector=100 ±0.57, GFP-Rabin8=96.80 ±2.60). Data shows 
mean ± s.e.m from three independent experiments (ns, no significant; by unpaired t test). C. Raw 
data (dot plots) from a representative experiment showing the transfer of DiD labeled vesicles to 
the acceptor cells population (H2B-mCherry) from co-culture, mixture and supernatant between 
donor cells transfected with GFP-vector or GFP-Rabin8 and acceptor cells by flow cytometry. D. 
Bar graph showing relative percentage of DiD positive acceptor cells from the experiment 
described in (C) (GFP-vector or GFP-Rabin8). Data represent the mean ± s.e.m of three 
independent experiments in triplicate setting (ns, no significant; by unpaired student t test). E.
Western blot analysis of extracts from cells transfected for 48h with ShRNA non-targeting (CTL) 
or targeting Rabin8 and GAPDH as loading control. F. Bar graph showing quantification of relative 
percentage of TNT connected cells transfected with ShCTL+GFP-vector or Shrabin8+GFP 
(ShCTL+GFP-vector= 100.5 ± 0.5, Shrabin8+GFP= 93.74 ± 10.37). Data shows mean ± s.e.m 
from two independent experiment (ns, no significant; by unpaired student t test). G. Raw data (dot 
plots) from a representative experiment showing the transfer of DiD labeled vesicles to the 
acceptor cells population (H2B-mCherry) from co-culture between ShCTL+GFPvector and 
shRabin8+GFP-vector transfected donor cells and acceptor cells. H. Bar graph showing relative 
percentage DiD positive acceptor cells from the experiment described in (G) (ShCTL+GFPvector=
100.0 ± 0.57, shRabin8+GFP-vector= 100.2 ± 2.09). Data shows mean ± s.e.m (ns, no significant; 
by unpaired t test) from one experiment performed in triplicate.)
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Fig. S6. DiD labeled vesicles transfer between cells affected by VAMP3 overexpression 
was mediated by cell-to-cell contact. A. Left panel, Raw data (dot plots) from a representative
experiment showing the transfer of DiD labeled vesicles to the acceptor cells population 
(H2BmCherry) from co-culture, mixture, and supernatant between donor cells transfected with 
GFPvector or GFP-VAMP3 and acceptor cells, was analyzed by flow cytometry. Right panel, bar
graph showing the relative percentage of DiD positive acceptor cells from the experiment
described in the left panel (coculture GFPvector=100.0±1.5 or GFP- VAMP3=127.8±3.19 mixture
GFPvector=4.5±1.38 GFP- VAMP3=4.15±1.18 supernatant GFPvector=3.18±0.01 GFP-
VAMP3=3.7±0.74) Data represent the mean ± s.e.m of at least 3 independent experiments in
triplicates. B. Left panel, Raw data (dot plots) from a representative experiment showing the
transfer of GFP-Vector or GFP-VAMP3 protein to the acceptor cells population (H2B-mCherry)
from mixture, co-culture (with/without filter) and supernatant between GFP-vector or GFP-VAMP3
transfected donor cells and acceptor cells and analyzed by flow cytometry. Right panel, Bar graph
showing relative percentage of DiD positive acceptor cells from the experiment described in the
left panel. Data represent the mean ± s.e.m, of at least 3 independent experiments in triplicates.
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Fig. S7. Rab8a and Rab11a promote attached filopodia formation.
A. Representative confocal images of cells transfected with either GFP- vector, GFP-Rab8a or
GFP-Rab11a. Cells were immunostained with anti-vinculin antibody (red). B. The bar graph
represents the average number of vinculin positive puncta per cell from the experiment described
in (A) (GFP- vector= 29.26±1.91, GFP-Rab8a= 40.84±2.43 or GFP-Rab11a= 67.59±5.87) C.
Representative confocal images of cells transfected with either ShCTL, ShRab8a or ShRab11a.
Cells were immunostained with anti-vinculin antibody (Green) and stained with HCS
CellMaskTM. Quantification of average number of vinculin positive puncta per cell of the
experiment described in (C) (ShCTL= 28.11±1.25, ShRab8a= 20.78±0.84, ShRab11a=
23.11±0.87). E. Representative confocal images of cells transfected with either GFP-vector,
GFPVAMP3 or GFP-Rabin8. Cells were immunostained with anti-vinculin antibody (Red).
Representation of the average number of vinculin positive puncta per cell from the experiment
described in (E) (GFP-vector= 30.52±2.40, GFPVAMP3= 21.15±2.12, GFP-Rabin8=
50.49±4.21). All the above graphs show mean ± s.e.m from three independent experiments (ns,
no significant *, p < 0.05; **, p < 0.01; ***, p<0.001 by one-way ANOVA with Tukey’s multiple
comparison post test). Scale bar=10μm
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Table S1. Data of High content subfamily-wide screening of 41 Rab GTPases 
overexpressed in CAD cells. Relative percentage of acceptor cells containing DID labeled 

vesicles that transferred from donor cells. Data were normalized to control conditions. Values of 

score when applying two thresholds (95% and 105%) to data and sum of 4 experiments.
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Table 2. Data showing  percentage of TNT connected cells. Cells
transfected with the plasmids as mentioned and the corresponding average of 
percentage of TNT connected cells showing ± s.e.m.  
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Title: Role of Rab 35 and its effectors on Tunneling nanotubes 

Bhat S, Ljubojevic N, Zhu S, Echard A, Fukuda M, Zurzolo C. 

Abstract: Tunneling nanotubes (TNTs) are F-actin rich structures that connect distant 

cells, allowing the transport of many cellular components, including vesicles, organelles, 

and different kind of molecules. TNTs are implicated in key cellular processes, such as 

development, immunity, and tissue regeneration, but also in the transmission of various 

pathogens. Since Rab GTPases are the major regulators of vesicle trafficking and also 

participate in actin cytoskeleton regulation, we examined the role of this protein family in 

TNT formation. First, we performed a screening of several different Rab proteins for its 

effect on TNT-dependent vesicle transfer. Rab35 was one of the Rabs to have a positive 

effect on vesicle transfer. The analysis of Rab35, a protein involved in endocytic recycling, 

cytokinesis, and neurite outgrowth, showed that the GTP-Rab35 bound form also 

increases TNT formation. Neurite outgrowth is an essential process in order to establish 

neural connectivity and vesicle recycling plays a crucial role in this process. Rab35 

interacts with several proteins, that are involved in vesicle trafficking such as such as 

ACAP2 (acts as GAP of ARF6), MICAL-L1 (molecule interacting with CasL-like 1, which 

plays a role in vesicle recycling) EHD1 (a molecular scissor that has a role in vesicle 

scission). At the ARF6 positive endosomes, Rab35 recruits ACAP2 and MICAL-L1, and 

forms a complex that binds to EHD1 to regulate neurite outgrowth. Our data strongly 

suggest that these effectors may also be involved in the formation of TNTs. Individually, 

ACAP2, EHD1 and ARF6-GDP regulate TNT formation in a positive manner. But MICAL-

L1 overexpression in cells shows no effect on TNTs. Also, preliminary data, indicates that 

Rab35 and EHD1 acts in a cascade mechanism to regulate TNT formation. This indicates 

that TNT formation and neurite outgrowth may act in a similar, but not exact pathway. The 

molecules identified here that have a role in TNT formation, constitute potential molecular 

targets for therapies aiming to block the spreading of pathogens that transfer through 

TNTs.This study proves that proteins that have a role in vesicle trafficking and neurite 

outgrowth, such as Rab proteins, are also involved in TNT formation. 
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Introduction: 

Tunneling nanotubes (TNTs) are F-actin based intercellular membrane connections, 

non-adherent to substrate and transport cytoplasmic contents and cellular organelles. 

Their diameter ranges from 50-150 nm and their length can extend upto several hundred 

micrometers (Rustom et. al., 2004, Sartori-Rupp et. al., 2019). TNTs transport lysosomes 

(Rustom et. al., 2004, Abounit et. al., 2016a), mitochondria (Lu et. al, 2017, Wang and 

Gerdes, 2015), RNA and calcium (Antanaviciute et. al., 2014, Wang et. al., 2012). 

TNTs have been shown to be involved in several pathogenic conditions, as they are 

hijacked by different pathogens; by viruses like HIV (Eugenin et. al., 2008) and bacteria 

(Sisakhtnezhad and Khosravi, 2015). In several cases of neurodegenerative diseases, 

they have been involved in the spreading of proteins like prions, alpha synuclein, 

huntingtin etc. to the healthy neighboring cells (Zhu et. al., 2015, Sharma and 

Subramaniam, 2019, Wang et. al., 2011, Dieriks et. al., 2017, Dilsizoglu Senol et. al., 

2019, Tardivel et. al., 2016). TNTs have also been found in several types of cancer, where 

their presence was shown to result a more aggressive phenotype (Lou et. al., 2012, 

Pasquier et. al., 2013). Furthermore, TNT like structures plays a role in development, as 

shown in chick and sea urchin embryos (Miller et. al., 1995, Teddy et. al., 2004). 

 TNTs are predominantly made of F-actin. F-actin affecting agents such as cytochalasin B, 

and latranculin A or tolytoxin (a cyanobacterial neucleoside which affects F-actin 

polymerization) show a reduction in TNTs in AML cells, neurons, astrocytes, PC12, bone 

marrow derived MSCs, SW13, SH-SY5Y cells and CAD cells. On the other hand, 

microtubule affecting agents as nocodazole (which disrupts the microtubule), and 

paclitaxel (microtubule stabilizing agent) had no effect on TNTs in the majority of the cells 

(e.g. CAD, SH-SY5Y, RAW 264.7, PC12, PC3 cell lines) (Marlein et. al., 2017, Wang et. 

al., 2011, Rustom et. al., 2004, Han et. al., 2016, Dilsizoglu Senol et. al., 2019, Zhang et. 

al., 2018, Hanna et. al., 2017b, Kretschmer et. al., 2019, Abounit et. al., 2016a). There are 

two major mechanisms by which TNTs are formed: 1) They can be formed after two cells 

come in contact followed by their dislodgement or 2) they can be formed by actin 

protrusions dependent mechanim in which one cell sends a filopodia like protrusions that 

becomes a TNT when it fuses with the opposite cell (Onfelt et. al., 2005, Abounit et. al. 

2012, Marzo et. al., 2012, Reichert et. al., 2016).  

We have shown that in neuronal cells which are immobile the actin driven protrusion 

mechanism is the most active (Gousset et. al., 2009, Gousset et. al., 2013). Indeed, 
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different actin modifying proteins have been shown to regulate TNTs like focal adhesion 

kinases (FAK) and matrix metalloproteases (Sáenz-de-Santa-María et. al., 2017), fascin 

(Lou et. al., 2012), MyosinX (Uhl et. al., 2019, Gousset et. al., 2013), Rac and Cdc42 

(Hanna et. al., 2017a). Interestingly we have shown that in CAD cells the 

CDC42/IRSp53/VASP cascade that increases filopodia formation decreased TNTs, while 

Eps8 acts in decreasing filopodia and increasing TNTs (Delage et. al., 2016). We also 

found the Arp2/3 inhibition, increased TNTs. We therefore concluded that in neuronal cells 

the regulation of TNTs and filopodia seems to employ the same molecules which act in an 

opposite manner (Delage et. al., 2016, Sartori-Rupp et. al., 2019). 

In addition to actin polymerization the formation of a membrane protrusion also requires 

the support of lipids and proteins at the plasma membrane site where the extension 

occurs. Endocytic recycling mediates the return of receptors back to the plasma 

membrane (Cai et. al., 2013). The membrane recycling process is regulating the plasma 

membrane composition by maintaining the balance between uptake and recycling, this in 

turn contributes to several cellular processes such as cytokinesis, cell migration and 

polarisation and signal transduction (Grant and Donaldson, 2009). 

Rab proteins are known to be master regulators of cellular functions. They are involved in 

processes such as vesicle trafficking, migration of cells and formation of protrusion like 

filopodia, lamellipodia. Rabs function through GTP bound (active) – GDP bound (inactive) 

cycle (Das and Guo, 2011). 41 Rabs were screened in our lab to identify the specific Rabs 

regulating TNTs; Rab8, Rab11 and Rab35 was shown to regulate TNTs positively (Zhu et. 

al., 2018). We have previously characterized the mechanism by which Rab8 and Rab11 

regulate TNT formation (Zhu et. al., 2018).  

Rab35 is involved in fast endocytic recycling and is known to recycle TFRs and plays a 

key role in cytokinesis (Kouranti et. al., 2006, Klinkert and Echard, 2016, Dikshit et. al., 

2014). ARF6 (ADP Ribosylation Factor) negatively regulates Rab35 in cytokinesis 

(Chesneau et. al., 2012). EHD family of proteins have an EH domain (Eps15 homology 

domain) are homolog to the Eps15 protein. EHD family of proteins is associated with ERC, 

and EHD1 and EHD4 are involved in the recycling of the membranes decorated with 

MICAL-L1 (Cai et. al., 2013). Also, loss of MICAL-L1 leads to the elongation of spindle 

fibers during the cytokinetic process in the cells (Reinecke et. al., 2015). Reduction of PI4P 

either by activation of PIP5KI-gamma expression or by Sac1, a phosphatase that 

specifically induces dephosphoryation of PtdIns4P to PtdIns, caused a reduction in EHD1 

associated tubular membranes (Jovic et. al., 2007). 
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Interestingly, association of Rab35 to the ARF6 positive endosomes was shown to induce 

neurite outgrowth following NGF activation (Kobayashi and Fukuda, 2013). The authors 

demonstrated that Rab35 recruits both ACAP2 and MICAL-L1 to form a tripartite complex. 

MICAL-L1 directly acts as a binding site for EHD1, which then has a positive effect on the 

neurite outgrowth. On the other hand, ACAP2 indirectly regulates the recruitment of EHD1 

to the membrane by inactivating ARF6 and may thereby influence the levels of PI4P on the 

membrane of the vesicles, which in turn allows the binding of EHD1 to the membrane and 

EHD1 function in regulating neurite outgrowth. Based on these findings, here we analysed 

a possible role of Rab 35 in TNT formation. 

 Neurite outgrowth involves both recycling of membrane and the cytoskeletal assembly. 

Since we had already shown the need of cytoskeleton modification and the involvement of 

membrane recycling for TNT formation (Delage et. al., 2016, Zhu et. al., 2018) in neuronal 

cells, we postulated that Rab35 may act through a similar pathway as neurite outgrowth, in 

regulating TNT formation. By overexpressing/dowregulation of Rab35 and different 

downstream effectors, we found that Rab35 positively regulates TNT formation and vesicle 

transfer between connected cells, via its active GTP-bound form. We demonstrated that 

Rab35 acts through a cascade pathway to regulate downstream EHD1 mediated vesicle 

recycling. Importantly, we show that Rab35 acts though ARF6 and ACAP2 but does not 

require MICAL-L1. This suggests that this pathway is specific for TNT and is different from 

the one shown to be activated in the case of neurite elongation, where MICAL-L1 is 

required. Thus, our data concur to demonstrate that activation of vesicle recycling through 

Rab35 is necessary for TNTs formation and that TNTs are specific novel structures that 

differ from other neurite protrusions. 
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Results 

Rab35-GTP shows an increase in TNTs  

Rab35 has been implicated in a variety of cellular processes such as neurite outgrowth, 

cilia formation and cytokinesis (Kouranti et. al., 2006, Kobayashi and Fukuda, 2013, Kuhns 

et. al., 2019). In our previous screening, based on the effect of Rab protein overexpression 

to affect TNT-mediated vesicle transfer in CAD cells in 96 well plate, one positive hit was 

Rab35 (Zhu et. al., 2018). Thus, we decided to validate this result by overexpressing 

Rab35 and its active and inactive forms of CAD cells grown in 35cm cell plate. Specifically, 

we transfected the wild type (WT), active (Q67L) and inactive (S22N) form of Rab35–GFP 

in CAD cells. After transfection, cells were cultured for 16 hours and then fixed to check 

eventual effect on the number of TNT connected cells. Because no specific marker of 

TNTs is currently available, we quantified TNTs between cells (labeled with wheat germ 

agglutinin; WGA) (Delage et. al., 2016). TNTs were identified in culture according to the 

current definition of TNTs as membranous stretches between cells that do not contact the 

substrate (Fig. 1a) (Rustom et al., 2004, Abounit et. al., 2012). Overexpression of Rab35-

WT GFP and Rab35-Q67L GFP shows an increase in number of TNT connected cells 

(Figure 1 a, b). While overexpression of inactive form of Rab35-S22N GFP shows a 

decrease the number of TNT (Fig 1 a, b). In order to be sure that the intercellular 

connections induced by Rab35 identified by morphological criteria were functional, next we 

performed transfer assays measuring the transfer of labeled vesicles between cells in co-

culture as previously described (Abounit et. al., 2015). Two populations of cells, donor 

cells (transfected with GFP–Rab35-WT, active (Q67L) and inactive (S22N)) with internal 

vesicles labeled with a fluorescent membrane dye (VybrantTM DiD) and acceptor cells 

(transfected with H2B–mCherry) were mixed at a 1:1 ratio and co-cultured for 16 hours 

(Delage et. al., 2016). Overexpression of GFP–Rab35-WT and Q67L significantly 

increased the transfer of DiD-labeled vesicles, as measured by two different methods, 

quantitative fluorescent image analysis (Figure 1 c) and flow cytometry (Figure S1 a, b). 

On the other hand, overexpression of the inactive form of Rab35-S22N GFP shows a 

decrease in vesicle transfer between the cells as compared to the control (Figure 1 c). In 

control conditions the cells were transfected with just empty vector CMV-GFP.  

We used two controls to exclude the effect of vesicle transfer by secretion: (1) the 

conditioned medium from donor cells (cultured in a separate dish) was applied to acceptor 

cells (Supernatant) (2) Both the donor and acceptor populations were mixed after fixation. 
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(Mixture). In both conditions, transfer of vesicles was very low and not affected by the 

overexpression of GFP–Rab35-WT, showing that vesicle transfer between cells relied on 

cell-to-cell contact, and not on secretion (Fig. S1 a, b). Furthermore, downregulating 

Rab35 by using CRISPR shows decrease in endogenous Rab35 (Figure S2 b) and 

decreases in the number of TNT connected cells (Figure S2 a, d) and vesicle transfer 

between cells (Figure S2 d). Overexpression of Rab35-GFP in the cells depleted with 

endogenous Rab35 shows rescue effect on TNTs and vesicle transfer (Figure S2 a, d, e). 

Thus, all combined these data support that Rab35 increase in TNTs corresponds to an 

increase in cargo transfer between cells, suggesting that the TNTs induced by Rab35 are 

functional.  
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Figure 1: Rab35 positively regulates TNT: a) Confocal images of cells transfected with CMV-GFP, 

GFP-Rab35-WT, GFP-Rab35-Q67L, GFP-Rab35-S22N. b) Bar graphs representing the relative 

percentage of TNT connected cells described in (a) (CMV-GFP=100%, GFP-Rab35-

WT=139±9.862%, GFP-Rab35-Q67L=134.4±8.664, GFP-Rab35-S22N=83.30±4.214%). c) Bar 

graph showing the percentage of acceptor cells containing DiD-labeled vesicles from the co-

cultures, where donor cells were transfected with CMV-GFP, GFP-Rab35-WT, GFP-Rab35-Q67L, 

GFP-Rab35-S22N and labeled with DiD (CMV-GFP=12.69±4.301%, GFP-Rab35-

WT=22.73±0.133%, GFP-Rab35-Q67L=21.35%, GFP-Rab35-S22N=5.054%).Graph (a) from three 

independent experiments and show mean±s.e.m. (ns, not significant; *P<0.05, **P<0.01, 

***P<0.001; by one-way ANOVA with Tukey’s multiple comparison post test). Graph (b) from one 

experiment. Scale bars: 10 µm 
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Figure S1:Rab35 positively regulates Vesicle transfer: a) Raw data (dot plots) of flow cytometry 

from a representative experiment showing the relative percentage of acceptor cells containing DiD-

labeled vesicles from the co-cultures, where donor cells were transfected with CMV-GFP, 

Rab35(WT)-GFP and labeled with DiD. b) Bar graph showing the relative percentage of acceptor 

cells containing DiD-labeled vesicles from the co-cultures, supernatant and mixture where donor 

cells were transfected with CMV-GFP and Rab35(WT)-GFP (coculture-CMV-GFP=100%, 

Rab35(WT)-GFP= 135.5±5.47%, supernatant- CMV-GFP=4.75±0.15%, Rab35(WT)-GFP= 

5.25±0.95%, mixture- CMV-GFP= 5.7±3.3%, Rab35(WT)-GFP=3%) Graphs from two independent 

experiments and show mean±s.e.m 
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Figure S2: Downregulation of Rab35 shows a decrease in TNT formation: a) Confocal images of 

cells transfected with shCTL, CRISPR Rab35, CRISPR Rab35-GFP. b) Western blot of cells 

transfected with non-targeting (ShCTL) or targeting Rab35 (CRISPR Rab35), showing the 

expression of Rab35 and α-tubulin as loading control. c) Bar graphs representing the relative 

percentage of TNT connected cells described in (a) (shCTL=100%, CRISPR 

Rab35=80.36±10.03%, CRISPR Rab35-GFP=114.3±5.172%) d) Bar graph showing the relative 

percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where donor 

cells were transfected with shCTL, CRISPR Rab35, CRISPR Rab35-GFP. (shCTL=100%, CRISPR 

Rab35=80.53±8.35%, CRISPR Rab35-GFP=106.5±2.38%) Graphs from three independent 

experiments and show mean±s.e.m. (ns, not significant; *P<0.05, **P<0.01, ***P<0.001; by one-

way ANOVA with Tukey’s multiple comparison post test). Scale bars: 10 µm. 
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ACAP2 shows an increase in TNTs 

In order to understand by which pathway Rab35 was affecting TNTs we decided to look at 

downstream effectors and in particular we started with assessing the role of ACAP2 / β 

centaurin. ACAP2 indeed was shown to inhibit the formation of ARF6 dependent cellular 

protrusions by acting as GAP of ARF6 (Jackson et. al., 2000). 

 Kobayashi and Fukuda, in 2013 demonstrated that Rab35 recruits both ACAP2 and 

MICAL-L1 to form a tripartite complex. MICAL-L1 directly acts as a binding site for EHD1, 

which then has a positive effect on the neurite outgrowth. On the other hand, ACAP2 

indirectly regulates the recruitment of EHD1 to the membrane by inactivating ARF6 and 

may thereby influence the levels of PI4P on the membrane of the vesicles, which in turn 

allows the binding of the EHD1 to the membrane and EHD1 function in regulating neurite 

outgrowth. As shown in the Figure 15 below.

Figure 15: Role of Rab35 in neurite outgrowth: Rab35 is accumulated at the perinuclear 

compartment at ARF6 positive endosomes upon NGF stimulation, and then recruits two distinct 

effectors MICAL-L1 and ACAP2/centaurinβ2, at the same compartment, MICAL-L1 and 

ACAP2/centaurinβ2 acts as a scaffold to EHD1 and recruits it to the same compartment and 

inactivates ARF6, and then facilitate neurite outgrowth. 

 

By using the same methods described before, CAD cells were transfected with CMV-GFP 

(control) and ACAP2-WT GFP (donors) for 24 hours and re-plated for 16 hours as single 

cell population to analyse the percentage of TNT connected cells or in coculture 



116 

 

 

transfected with H2B-mcherry acceptor cells to analyze vesicle transfer cells. We found 

that overexpression of ACAP2-GFP results in an increase in the number of TNT connected 

cells (Figure 2 a, c), and vesicle transfer between the cells (Figure 2 b, d).  

MICAL-L1 (MICAL Like proteins) was shown to work along with to ACAP2 to increase 

neurite protrusions (Kobayashi and Fukuda, 2013). MICAL-L1 are mostly involved in the 

membrane recycling activity (M. Vanoni, 2017). We therefore checked if overexpression of 

MICAL-L1-GFP would affect TNT formation and function by using the same assays as 

described above. Overexpression of MICAL-L1-GFP in the cells showed no significant 

effect either the number of TNT connected cells (Figure S3 a, b) or vesicle transfer 

between the cells (Figure S3c). Thus, these data indicated that Rab35 may regulate the 

TNT formation between the cells only through ACAP2 and not through MICAL-L1. 
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Figure 2: ACAP2 positively regulates TNTs: a) Confocal images of cells transfected with CMV-

GFP, ACAP2-GFP. b) Raw data (dot plots) of flow cytometry from a representative experiment 

showing the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-

cultures, where donor cells were transfected with CMV-GFP or ACAP2-GFP and labeled with DiD. 

c) Bar graphs representing the relative percentage of TNT connected cells described in (a) (CMV-

GFP=100%, ACAP2-GFP=124.4±0.06%) c) Bar graph showing the relative percentage of acceptor 

cells containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with 

CMV-GFP, ACAP2-GFP (CMV-GFP=100%, ACAP2-GFP=140.2±15.63%) Graph (a) from three 

independent experiments and show mean±s.e.m by unpaired students's t-test. (ns, not significant; 

*P<0.05, **P<0.01, ***P<0.001; Graph (b) from two independent experiments. Scale bars: 10 µm. 
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Figure S3: MICAL-L1 has no effect on TNT formation: a) Confocal images of cells transfected with 

CMV-GFP, MICAL-L1-GFP. b) Bar graphs representing the relative percentage of TNT connected 

cells described in (a) (CMV-GFP=100%, MICAL-L1-GFP=94.51±1.233%) c) Bar graph showing the 

relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where 

donor cells were transfected with CMV-GFP, MICAL-L1-GFP (CMV-GFP=100%, MICAL-L1-

GFP=95.5±5.54%). Graphs from three independent experiments and show mean±s.e.m by 

unpaired students's t-test. (ns, not significant; *P<0.05, **P<0.01, ***P<0.001) Arrows indicates 

TNTs. Scale bar = 10 um. 
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ARF6-GDP shows an increase in TNTs 

Next question we wanted to address was how ACAP2 through Rab35 would affect TNTs. 

ACAP2 is an ARF6 GAP, and inactivation of ARF6 by Rab35 through ACAP2 was shown 

to be required for successful neurite outgrowth of PC12 cells (Kobayashi and Fukuda, 

2012). We hypothesized that a similar mechanism could be involved in TNT formation. 

Thus, cells were transfected with CMV-GFP (Control) ARF6-WT GFP (wild type), ARF6-

Q67L GFP (active) and ARF6-T27N GFP (inactive) form in the cells and checked for their 

effect on TNTs as shown above. Overexpression of ARF6-WT-GFP showed a decrease in 

number of TNT connected cells (Figure 3 a, b) while vesicle transfer between the cells was 

not significantly affected (Figure 3 d, e). On the other hand, overexpression of ARF6-

Q67L–GFP in the cells showed a decrease the number of TNT connected cells (Figure 3 

a, b) and vesicle transfer between the cells (Figure 3 d, e). Furthermore ARF6-T27N-GFP 

overexpression in the cells shows an increase in the number of TNT connected cells 

(Figure 3 a, b) and increased vesicle transfer between cells (Figure 3 d, e). Overall these 

data indicate that inactive form of ARF6 plays a role on TNT formation and this inactivation 

of ARF6 may be due to its GAP activity on for ARF6. 
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Figure 3: ARF6-GDP positively regulates TNTs: a) Confocal images of cells transfected with CMV-

GFP, ARF6WT-GFP, ARF6Q67L-GFP, ARF6T27N-GFP.b) Raw data (dot plots) of flow cytometry 

from a representative experiment showing the relative percentage of acceptor cells containing DiD-

labeled vesicles from the co-cultures, where donor cells were transfected with CMV-GFP, 

ARF6WT-GFP, ARF6Q67L-GFP or ARF6T27N-GFP and labeled with DiD. c) Bar graphs 

representing the relative percentage of TNT connected cells described in (a)(CMV-GFP=100%, 

ARF6WT-GFP=69.61±4.651%,ARF6Q67L-GFP=69.23±3.694%, ARF6T27N-GFP=142.2±4.656%) 

d) Bar graph showing the relative percentage of acceptor cells containing DiD-labeled vesicles 

from the co-cultures, where donor cells were transfected with CMV-GFP, ARF6WT-GFP, 

ARF6Q67L-GFP, ARF6T27N-GFP (CMV-GFP=100%, ARF6WT-GFP=99.53±0.471%, ARF6Q67L-

GFP=83.54±16.46%, ARF6T27NGFP=127.3±27.32%)Graphs from three independent experiments 

and show mean±s.e.m. (ns, not significant; *P<0.05, **P<0.01, ***P<0.001; by one-way ANOVA 

with Tukey’s multiple comparison post test). Arrows indicate TNTs. Scale bars: 10 µm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

 

EHD1 shows an increase in TNTs. 

Because active ARF6 converts PtdIns4P to phosphatidylinositol 4,5-bisphosphate (PtdIns 

(4,5) P2) by activation of PtdIns4P 5-kinase (PIP5K) (Brown et al., 2001; Jovic et. al., 

2007), it was speculated that inactivation of ARF6 might be required to maintain PtdIns4P 

and to recruit EHD1. EHD1 in turn was shown to be essential in promoting neurite 

outgrowth following Rab35 activation (see schematic in Figure 15) 

Thus, we next tested the role of EHD1. Overexpression of wild type form of EHD1 showed 

an increase in the number of TNT connected cells (Figure 4 a, c) and vesicle transfer 

between the cells (Figure 4 b, d).  

 By using shRNA against EHD1 we could see a decrease in the expression of 

endogenous EHD1 (Figure S4 b). These cells showed a decrease in the number of TNT 

connected cells (Figure S4 a, d) and vesicle transfer between the cells (Figure S4 c, e). In 

addition, by overexpressing EHD1, in cells depleted of endogenous EHD1, we could 

observe a rescue of the number of TNT connected cells (Figure S4 a, d) and the number 

of acceptor cells containing vesicles (Figure S4 c, e). Thus, altogether these data indicated 

that EHD1 regulates TNT formation between the cells.  
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Figure 4: EHD1 positively regulates TNT: a) Confocal images of cells transfected with CMV-GFP, 

EHD1-GFP. b) Raw data (dot plots) of flow cytometry from a representative experiment showing 

the relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, 

where donor cells were transfected with either GFP–vector or EHD1-GFP and labeled with DiD. 

c)Bar graphs representing the relative percentage of TNT connected cells described in (a) (CMV-

GFP=100%, EHD1-GFP=150.5±23%) d) Bar graph showing the relative percentage of acceptor 

cells containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with 

CMV-GFP, EHD1-GFP (CMV-GFP=100%,EHD1-GFP=157.6±5.549%);Graphs from three 

independent experiments and show mean±s.e.m by unpaired students's t-test (ns, not significant; 

*P<0.05, **P<0.01, ***P<0.001; Scale bars: 10 µm. 
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Figure S4: Down regulation of EHD1 shows a decrease in TNT formation: a) Confocal images of 

cells transfected with shControl+GFP, shEHD1+cmv-GFP, shEHD1+EHD1-GFP. b) Western blot 

of cells transfected with shRNA non-targeting (ShCTL) or targeting EHD1 (ShEHD1), showing the 

expression of EHD1 and α-tubulin as loading control. c) Raw data (dot plots) of flow cytometry from 

a representative experiment showing the relative percentage of acceptor cells containing DiD-

labeled vesicles from the co-cultures, where donor cells were transfected with either 

shControl+GFP, shEHD1+cmv-GFP or shEHD1+EHD1-GFP and labeled with DiD. d)Bar graphs 

representing the relative percentage of TNT connected cells described in (a) (shControl+GFP= 

100%,shEHD1+cmv-GFP= 39.04±5.029%,shEHD1+EHD1-GFP=102%).e) Bar graph showing the 

relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where 

donor cells were transfected with shControl+GFP, shEHD1+cmv-GFP, shEHD1+EHD1-GFP 

(shControl+GFP=100%, shEHD1+cmv-GFP=81.16±7.295, shEHD1+EHD1-GFP=115.2±2.201%) 

Graphs from two independent experiments and show mean±s.e.m. Arrows indicate TNTs. Scale 

bars: 10 µm 
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Rab35 acts upstream of EHD1 to regulate TNTs: 

To check if Rab35 and EHD1 were working on the same pathway, we overexpressed 

Rab35-WT GFP in cells in which endogenous EHD1 has been depleted by shRNA and 

checked both the number of TNT connected cells and vesicle transfer. From the 

preliminary data, compared to the control we found a slight decrease in the number of TNT 

connected cells (Figure 5 a, c) and vesicle transfer between the cells (Figure 5 b, d).  
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Figure 5: Rab35 acts upstream of EHD1 and regulates TNTs.: a) Confocal images of cells 

transfected with shControl+cmvGFP, shEHD1+Rab35GFP. b) Raw data (dot plots) of flow 

cytometry from a representative experiment showing the relative percentage of acceptor cells 

containing DiD-labeled vesicles from the co-cultures, where donor cells were transfected with 

either shControl+cmvGFP or shEHD1+Rab35GFP and labeled with DiD. c) Bar graphs 

representing the relative percentage of TNT connected cells described in (a) 

(shControl+cmvGFP=100%, shEHD1+Rab35GFP=70.67±14.14%). d) Bar graph showing the 

relative percentage of acceptor cells containing DiD-labeled vesicles from the co-cultures, where 

donor cells were transfected with shControl+cmvGFP, shEHD1+Rab35GFP 

(shControl+cmvGFP=100%, shEHD1+Rab35GFP=77.31±16.88%). Graphs from two independent 

experiments and show mean±s.e.m; Arrows indicate TNTs. Scale bars: 10 µm. 
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These data indicate that there is a relation between the action of Rab35 and EHD1 and 

that EHD1 act downstream of Rab35 to regulate TNTs. 

Overall, from the above data we can fairly speculate that Rab35, ACAP2, ARF6 and EHD1 

are involved in the formation of TNTs (Figure 6).  

 

Figure 6: Schematic of Rab35 regulating TNTs: Rab35-GTP positively regulates TNT formation. 

Downstream effectors of Rab35 involving, ACAP2 also shows a positive regulation of TNTs. 

ACAP2 may act in maintaining the GDP bound form of ARF6 which inturn positively regulates TNT 

formation. This may influence the recruitment of EHD1 and positively regulate TNT formation. 

EHD1 acts downstream of Rab35 in regulating TNT formation. 
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Discussion: 

Tunneling nanotube are F actin rich structures. There are no molecular markers for 

detecting TNTs, thus we classify them as cell to cell connecting thin structures that are 

non-adherent to substrate, are F-actin positive and can transport various molecules, 

proteins and cellular organelles. Until date several molecular factors have been shown to 

regulate TNTs. Since majority of TNTs are made of F-actin, several actins regulating 

proteins have been studied with respect to TNTs like WASP, MyosinX, WAVE, Arp2/3, and 

shown to be positive regulators of TNTs in several cells (e.g. CADs, macrophages) 

(Gousset et. al., 2013, Hanna et. al., 2017b). But in neuronal CAD cells, the actin 

polymerising proteins like IRSp53, VASP, Arp2/3 have been shown to regulate TNTs 

negatively (Delage et. al., 2016, Sartori-Rupp et. al., 2019). In the neuronal cells, filopodia 

and TNTs are regulated in opposite manner, for e.g. Eps8 which is a bundling protein 

regulates filopodia number in a negative manner but it regulates the number of TNT 

connected cells in a positive manner; on the other hand, VASP increases filopodia number 

while decreasing the number of TNT connected cells (Delage et. al., 2016). This indicates 

that TNTs in macrophages and neuronal cells may be regulated by different mechanisms 

(Delage et. al., 2016, Sartori-Rupp et. al., 2019). 

Thus, it is imperative to study the molecular effectors that are regulating TNTs. Previous 

studies in the lab have also shown that in addtion to actin remodelling, membrane 

recycling plays an important part in TNT formation. Rab proteins have been shown to play 

an important role in membrane recycling (Grant and Donaldson, 2009). Rabs are also 

shown to be important in several different cellular functions like cytokinesis, vesicle 

trafficking and formation of cellular structures like cilia, lamellopodia and filopodia etc. (Das 

and Guo, 2011). There have been studies indicating the role of Rab8 and Rab11 on TNT 

formation (Zhu et. al., 2016). Previous study in the lab, has shown that upon screening 41 

different Rabs, Rab8a and Rab11a are involved in TNT formation through the action of 

VAMP3, thus involving the fusion of recycling vesicles to the plasma membrane. All the 

three proteins are shown to regulate TNTs by acting through a cascade mechanism (Zhu 

et. al., 2018). 

From this screening another candidate of Rab proteins i.e. Rab35 was also shown to 

positively regulate TNT formation. Thus, I decided to study the role of Rab35 and its 

effectors in the formation of TNTs. 
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Several different proteins have been involved in the neurite outgrowth in the cells. Neurites 

are the initial cellular protrusions which further gives rise to axons and dendrites in 

neuronal cells. Though it seems intuitive that the cytoskeleton may be one of the major 

influencers in the formation of the axons and dendrites, the formation of cellular 

protrusions is also influenced by vesicle trafficking (Horton and Ehlers, 2009). Majority of 

vesicle trafficking is guided by Rabs which regulates proteins that are directed to the 

neurite outgrowth (Schmidt and Haucke, 2000). There have been studies which indicate 

that Rabs and the recycling compartment are involved in TNT formation (Zhu et. al., 2016, 

Zhu et. al., 2018). This led us to take an educated guess that the neurite outgrowth and 

the formation of the TNTs may be related or they may form by a similar mechanism.  

Rab35 and recycling endosomes are involved in neurite outgrowth of the cells (Kobayashi 

and Fukuda, 2013). During neurite outgrowth, Rab35 acts along with ACAP2 and MICAL-

L1 to regulate ARF6 and EHD1 (Kobayashi and Fukuda, 2013). In our studies we have 

shown that GTP bound form of Rab35 shows an increase in TNT formation. But unlike 

neurite outgrowth, MICAL-L1 is not involved in TNT formation. However, we could show 

that several of the downstream effectors such as ACAP2, GDP-ARF6 and EHD1 are 

involved in TNT formation. ACAP2 has been shown to indirectly regulate neurite 

outgrowth, by acting as a GAP of ARF6 (Kobayashi and Fukuda, 2013). ARF6 activates 

PIP5kinase which converts PI4P to PIP2 Thus inactivation of ARF6 regulates the PI4P 

levels (Krauss et. al., 2003). EHD1 has been shown to bind to vesicles and membranes 

that are rich in PI4P (Jovic et. al., 2007). Thus, we can speculate that Rab35 indirectly 

regulates EHD1 through ACAP2 and ARF6 for TNT formation. Indeed, here we were able 

to demonstrate that Rab35 acts upstream of EHD1 in regulating the growth of TNTs. 

However, EHD1 was also shown to possess a binding site to MICAL-L1 (Sharma et. al., 

2009) and this direct binding is involved in neurite outgrowth. It was shown that both the 

indirect regulation through ACAP2 and the direct regulation through MICAL-L1 of EHD1 is 

necessary in neurite outgrowth (Kobayashi and Fukuda, 2013). But in the case of TNT 

formation we demonstrated that MICAL-L1 is not involved. Thus, these data clearly show 

that even though they use similar pathways through the activation of Rab35 and the 

recruitment of EHD1, neurite outgrowth and TNT formation are regulated in different 

manner. On the other hand, the mechanism by which EHD1 works for both neurite 

outgrowth and TNT formation could be the same, that is through promoting endocytic 

recycling, and in particular the trafficking from recycling endosomes to the plasma 

membrane (Naslavsky and Caplan, 2011, Kobayashi and Fukuda, 2013). Endocytic 

recycling has been proposed to be crucial to supply membranes and/or proteins to neurite 
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tips and growing protrusions like cilia, filopodia and also TNTs to enable their extension 

(Sann et al., 2009, Zhu et. al., 2018, Lu et. al., 2015, Hattula et. al., 2006). This according 

with the current literature we propose that EHD1 may facilitate TNT growth by facilitating 

fission of vesicles targeted to the budding TNT from recycling endosomes in response to 

activation of Rab35.  

However further studies are needed to validate this hypothesis and to demonstrate the role 

of all the effectors, and their interaction with each other to regulate TNT formation.  

Specifically, to understand whether these proteins are acting along with each other or they 

act individually, it would be interesting to see if Rab35, ACAP2 and EHD1 act in the same 

or different pathway to regulate TNTs. For this we would perform a similar experiment 

described in the paper. We would downregulate the endogenous protein and over express 

the other protein and check its effect in the formation of TNTs. For example, to check 

whether Rab35 and ACAP2 are acting in the same or different pathway we plan to 

downregulate Rab35 and overexpress ACAP2. According to our hypothesis these two 

proteins should be acting in the same pathway and thus in this case we hypothesize to see 

an increase in TNT formation. On the other hand, if the activation of Rab35 recruits 

ACAP2 if we downregulate ACAP2 and overexpress Rab35 we should not see an effect 

on TNTs. Thus, we plan to perform these types of experiments for each protein that have 

been tested postive for TNT formation in my studies, for e.g. Rab35, ACAP2, ARF6 and 

EHD1 to check whether they form TNTs in a cascade mechanism. 

MICAL-L1 has been shown to regulate neurite outgrowth by forming a tripartite complex 

with Rab35 and ACAP2 (Kobayashi and Fukuda, 2013), but over-expression of MICAL-L1 

alone in CAD cells shows no effect on TNT formation. It would be interesting to investigate 

if a similar effect is shown by knocking down the endogenous MICAL-L1 to completely rule 

out the role of MICAL-L1 in TNT formation. 

Finally, it would be interesting to study the interaction of Rab35 and its effectors by 

studying the colocalization of these proteins with respect to each other. Rab35 and its 

effectors were shown to interact with each other by co- immuno precipitation (Kobayashi 

and Fukuda, 2013), thus it would be also interesting to check if these proteins interact with 

each other by colocalization/ FRET studies or by co-immuno precipitation. 

From all the above studies we plan to uncover the mechanism by which Rab35 and its 

effectors regulate TNTs. This study will provide a novel insight into the role of Rabs, 
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recycling endosomes and neurite outgrowth in TNT formation. This will provide us with a 

novel direction for the study of molecular effectors involved in TNT formation. 
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Materials and methods: 

Cell lines, plasmids and transfection procedures 

The mouse catecholaminergic neuronal CAD cell line (mouse catecholaminergic neuronal 

cell line, Cath.aDifferentiated) (Gousset et al., 2013) was grown in Gibco’s OptiMEM 

supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. 

PEGFP-C1-Rab35 (WT), pEGFP-C1-Rab35 (Q67L), pEGFP-C1-Rab35 (S22N), centaurin-

β2 (Centβ2-WT) and EHD1 WT and shRNA non-target control and shRNA against EHD1 

were from Mitsunori Fukuda (Laboratory of Membrane Trafficking Mechanisms, Tohoku 

University, Japan). GFP MICAL-LI, GFP-ARF6 (WT), GFP-ARF6 (Q67L), GFP ARF6 

(T27N), CRISPR Rab35 were from Arnaud Echard (Pasteur Institute, Paris, France). GFP-

vector and mCherry-vector (AddGene). CAD cells were transiently transfected with 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions 

Quantification of TNT-connected cells. 

Confluent CAD cells were mechanically detached and counted, and 300,000 cells were 

plated for 6 h in 6 well plate. Cells were transfected as described above, with the 

appropriate plasmids. At 24h post-transfection, cells were detached and counted, and 

220,000 cells were plated for 16h on Ibidi μ -dishes (Biovalley, France). After 16h post-

seeding, cells were fixed with fixative solution 1 (2% PFA, 0.05% glutaraldehyde and 0.2 M 

HEPES in PBS) for 20 minutes at,37 °C followed by a second 20 minutes fixation with 

fixative solution 2 (4% PFA and 0.2 M HEPES in PBS) at 37 °C. The cells were gently 

washed with PBS and labeled with WGA-Alexa 594 (Sigma) (1:300 in PBS) for 20 minutes 

at room temperature, washed and sealed with Aqua-Polymount.  

Image stacks (0.3µm) covering the whole cellular volume were acquired using a confocal 

microscope (Zeiss LSM 700) controlled by ZEN software. To evaluate the number of 

TNTs-connected cells, the manual analysis was performed for transfected cells, which 

possessed TNTs, were counted. The criteria to identify TNT are a continuous connection 

could be found when moving along the stacks after removing the bottom 3 slices. The two 

cells which were connected with at least one continuous connection were marked as TNT-

connected cells. Each experiment was performed at least in triplicate. Image analyses and 

displays of raw data, such as Z-projections, were obtained using ICY software (Gousset et 

al., 2013). 
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 Fluorescence image analysis to quantify the transfer of DiD-labeled vesicle. 

Confluent CAD cells were mechanically detached and counted, and 800,000 cells were 

plated for 6 h in T25 flasks. The cells were transfected with the appropriate GFP tagged 

constructs for donor cells and H2B-mCherry for acceptor cells for 24h in complete 

medium. The donor cells were labeled with a 333 nM solution of the lypophilic tracer 

VybrantTM DiD (long-chain dialkylcarbocyanine) in complete medium for 30 min at 37 °C. 

Cells were then washed with PBS and 0.01% trypsin, subsequently resuspended in 

complete medium and counted. The labeled donor cells were mixed in a 1:1 ratio with 

H2B-transfected acceptor cells and plated at subconfluence (220,000 cells) on Ibidi μ -

dishes (Biovalley, France) for 16 h at 37 °C. Cells were fixed with 4% PFA. Cells were 

washed and sequentially stained for 30 min with a 1 μg. mL−1 solution of HCS CellMaskTM 

Blue, which stains the entire cell volume (i.e. cytoplasm and nucleus). Samples were 

washed and sealed with Aqua-Poly/Mount (Polysciences, Inc.). The cells were imaged 

with an inverted confocal microscope (Zeiss LSM700) controlled by ZEN software and 

quantification was done by using ICY software (http://icy.bioimageanalysis.org/). 

Flow cytometry to analyze the transfer of DiD-labeled vesicle.  

Confluent CAD cells were mechanically detached and counted, and 800,000 cells were 

plated for 6 h in T25 flasks. Cells were transfected with the appropriate GFP tagged 

constructs for donor cells and with H2B-mCherry for acceptor cells, for 24h in complete 

medium. Donor cells were detached, counted and labeled with a 333 nM solution of the 

lypophilic tracer VybrantTM DiD (long-chain dialkylcarbocyanine) in complete medium for 

30 min at 37 °C. The donor cells were labeled with a 333 nM solution of the lypophilic 

tracer VybrantTM DiD (long-chain dialkylcarbocyanine) in complete medium for 30 min at 

37 °C. Cells were then washed with PBS and 0.01% trypsin, subsequently resuspended in 

complete medium and counted. 

The labeled donor cells were mixed in a 1:1 ratio with H2B-mCherry transfected acceptor 

cells and plated at subconfluence (120,000 cells per well) on 24-well plates for 16 h at 37 

°C. Each independent co-culture was performed in triplicate. To verify the transfer of 

vesicles between cells is cell-cell dependent not through secretion, two populations of cells 

were co-cultured with transwell insert which could separate two populations of cells but 

share the medium. Or the supernatant from donor cells after cultured for overnight was 

taken and add to acceptor cells to culture for another 16h. Cells were then washed with 

PBS, mechanically detached from the dish by pipetting up and down with 500 μl PBS and 

http://icy.bioimageanalysis.org/
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passed through sterile 40-mm nylon cell strainers (BD FalconTM) in order to obtain single-

cell suspensions. Cell suspensions were fixed with 500 μl of 4% PFA (2% final solution). 

Flow cytometry data were acquired using an LSR Fortessa flow cytometer (BD 

Biosciences). GFP fluorescence was analyzed at 488 nm excitation wavelength, RFP and 

mCherry fluorescence were analyzed at 561 nm excitation wavelength, and DiD 

fluorescence was analyzed at 640 nm excitation wavelength. Samples were analyzed at a 

high flow rate, corresponding to 200–400 events per second and 10,000 events were 

acquired for each condition. The data was analyzed using FlowJo analysis software. 

Western blot 

Cells transfected with ShRNA were lysed in NP-40 lysis buffer (25mM Tris, pH 7-8,150 

mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100), and protein 

concentration in the cell lysate was quantified using a Bradford protein assay (Bio-Rad). 

Protein samples were incubated at 100 °C for 5 min and electrophoresed on 10% SDS-

polyacrylamide gels. Proteins were transferred to PVDF membranes (GE Healthcare Life 

Sciences). Membranes were blocked in 5% nonfat milk in Tris-buffered saline with 0.1% 

Tween 20 (TBS-T) for 1 h. Membranes were then incubated at 4 °C with a primary 

antibody, rabbit anti-Rab35 (ab230838) anti-EHD1 (24657-1-AP), mouse anti-α-tubulin 

(Sigma) diluted in 5% nonfat milk overnight (1:500 and 1:10,000, respectively) then 

washed several times with TBS-T. After 1 h incubation with horseradish peroxidase-

conjugated with respective IgG secondary antibody (1:10,000) (GE Healthcare Life 

Sciences), membranes were washed with TBS-T and protein bands on the membrane 

were detected using an ECL-Plus immunoblotting chemiluminescence system (GE 

Healthcare Life Sciences). Membranes were imaged using ImageQuant LAS 500TM 

camera (GE Healthcare Life Sciences). 

 

 

 

 

 

 

 



140 

 

 

References 

Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, 

Zurzolo C (2016a) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular 

trafficking of lysosomes. EMBO J 35: 2120-2138 

Abounit S, Zurzolo C (2012) Wiring through tunneling nanotubes - from electrical signals to 

organelle transfer. J Cell Sci 125: 1089-1098 

Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, 

Uloza V, Skeberdis VA (2014) Long-distance communication between laryngeal carcinoma 

cells. PLoS One 9: e99196 

Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4,5-

bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154: 1007-17 

Cai B, Giridharan SS, Zhang J, Saxena S, Bahl K, Schmidt JA, Sorgen PL, Guo W, 

Naslavsky N, Caplan S (2013) Differential roles of C-terminal Eps15 homology domain 

proteins as vesiculators and tubulators of recycling endosomes. J Biol Chem 288: 30172-

80 

Chesneau L, Dambournet D, Machicoane M, Kouranti I, Fukuda M, Goud B, Echard A 

(2012) An ARF6/Rab35 GTPase cascade for endocytic recycling and successful 

cytokinesis. Curr Biol 22: 147-53 

Das A, Guo W (2011) Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. 

Trends Cell Biol 21: 383-386 

Delage E, Cervantes DC, Penard E, Schmitt C, Syan S, Disanza A, Scita G, Zurzolo C 

(2016) Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite 

functions of actin regulatory complexes. Sci Rep-Uk 6 

Dieriks BV, Park TI, Fourie C, Faull RL, Dragunow M, Curtis MA (2017) alpha-synuclein 

transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes 

from Parkinson's disease patients. Sci Rep 7: 42984 

Dikshit N, Bist P, Fenlon SN, Pulloor NK, Chua CE, Scidmore MA, Carlyon JA, Tang BL, 

Chen SL, Sukumaran B (2015) Intracellular Uropathogenic E. coli Exploits Host Rab35 for 

Iron Acquisition and Survival within Urinary Bladder Cells. PLoS Pathog 11: e1005083 

Dilsizoglu Senol A, Pepe A, Grudina C, Sassoon N, Reiko U, Bousset L, Melki R, Piel J, 

Gugger M, Zurzolo C (2019) Effect of tolytoxin on tunneling nanotube formation and 

function. Sci Rep 9: 5741 

Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by 
HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell 
Immunol 254: 142-148 



141 

 

 

Gousset K, Marzo L, Commere PH, Zurzolo C (2013) Myo10 is a key regulator of TNT 

formation in neuronal cells. J Cell Sci 126: 4424-35 

Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de 

Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions 

hijack tunnelling nanotubes for intercellular spread. Nature Cell Biology 11: 328-U232 

Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat 

Rev Mol Cell Biol 10: 597-608 

Han H, Hu JQ, Yan Q, Zhu JZ, Zhu ZB, Chen YJ, Sun JT, Zhang RY (2016) Bone marrow-

derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact 

mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion 

model. Molecular Medicine Reports 13: 1517-1524 

Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D (2017b) 

The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nano-

tube Biogenesis. Sci Rep-Uk 7 

Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpaa K, Laakkonen P, Peranen J (2006) Char-

acterization of the Rab8-specific membrane traffic route linked to protrusion formation. J 

Cell Sci 119: 4866-4877 

Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, Hsu VW, Donaldson JG, 

Randazzo PA (2000) ACAPs are arf6 GTPase-activating proteins that function in the cell 

periphery. J Cell Biol 151: 627-38 

Jovic M, Naslavsky N, Rapaport D, Horowitz M, Caplan S (2007) EHD1 regulates beta 1 

integrin endosomal transport: effects on focal adhesions, cell spreading and migration. 

Journal of Cell Science 120: 802-814 

Klinkert K, Echard A (2016) Rab35 GTPase: A Central Regulator of Phosphoinositides and 

F-actin in Endocytic Recycling and Beyond. Traffic 17: 1063-1077 

Kouranti I, Sachse M, Arouche N, Goud B, Echard A (2006) Rab35 regulates an endocytic 

recycling pathway essential for the terminal steps of cytokinesis. Curr Biol 16: 1719-25 

Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) ARF6 stimulates 

clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phos-

phate kinase type I gamma. Journal of Cell Biology 162: 113-124 

Kretschmer A, Zhang F, Somasekharan SP, Tse C, Leachman L, Gleave A, Li B, Asmaro 

I, Huang T, Kotula L, Sorensen PH, Gleave ME (2019) Stress-induced tunneling 

nanotubes support treatment adaptation in prostate cancer. Sci Rep 9: 7826 

Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, José S Ramalho JS, 

Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE (2019) Rab35  



142 

 

 

Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira AL, 

Manova-Todorova K, Moore MAS (2012) Tunneling Nanotubes Provide a Unique Conduit 

for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma. 

Plos One 7 

Lu JJ, Zheng XF, Li F, Yu Y, Chen Z, Liu Z, Wang ZH, Xu H, Yang WM (2017) Tunneling 

nanotubes promote intercellular mitochondria transfer followed by increased invasiveness 

in bladder cancer cells. Oncotarget 8: 15539-15552 

Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA, Rahajeng J, Baxa U, Walia V, Cuenca A, 

Hwang YS, Daar IO, Lopes S, Lippincott-Schwartz J, Jackson PK, Caplan S, Westlake CJ 

(2015) Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary 

vesicle formation. Nat Cell Biol 17: 228-240 

Marlein CR, Zaitseva L, Piddock RE, Robinson SD, Edwards DR, Shafat MS, Zhou Z, 

Lawes M, Bowles KM, Rushworth SA (2017) NADPH oxidase-2 derived superoxide drives 

mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130: 

1649-1660 

Marzo L, Gousset K, Zurzolo C (2012) Multifaceted roles of tunneling nanotubes in inter-

cellular communication. Front Physiol 3 

Miller J, Fraser SE, Mcclay D (1995) Dynamics of Thin Filopodia during Sea-Urchin 

Gastrulation. Development 121: 2501-2511 

Naslavsky N, Caplan S (2011) EHD proteins: key conductors of endocytic transport. 
Trends Cell Biol 21: 122-131 
Onfelt B, Benninger RKP, Nedvetzki S, Neil MAA, French PMW, Davis DM (2005) Probing 

intercellular communication across membrane nanotubes and immunological Synapses. 

Biophysical Journal 88: 431a-431a 

Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, Jacob A, 

Mirshahi M, Galas L, Rafii S, Le Foll F, Rafii A (2013) Preferential transfer of mitochondria 

from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. 

J Transl Med 11: 94 

Reichert D, Scheinpflug J, Karbanova J, Freund D, Bornhauser M, Corbeil D (2016) 

Tunneling nanotubes mediate the transfer of stem cell marker CD133 between 

hematopoietic progenitor cells. Exp Hematol 44: 1092-1112 e2 

Reinecke JB, Katafiasz D, Naslavsky N, Caplan S (2015) Novel functions for the endocytic 

regulatory proteins MICAL-L1 and EHD1 in mitosis. Traffic 16: 48-67 

Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for 

intercellular organelle transport. Science 303: 1007-1010 



143 

 

 

Saenz-de-Santa-Maria I, Bernardo-Castineira C, Enciso E, Garcia-Moreno I, Chiara JL, 

Suarez C, Chiara MD (2017) Control of long-distance cell-to-cell communication and 

autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 

8: 20939-20960 

Sann S, Wang ZP, Brown H, Jin YS (2009) Roles of endosomal trafficking in neurite out-
growth and guidance. Trends Cell Biol 19: 317-324 
Sartori-Rupp A, Cordero Cervantes D, Pepe A, Gousset K, Delage E, Corroyer-Dulmont S, 

Schmitt C, Krijnse-Locker J, Zurzolo C (2019) Correlative cryo-electron microscopy reveals 

the structure of TNTs in neuronal cells. Nat Commun 10: 342 

Schmidt MR, Haucke V (2007) Recycling endosomes in neuronal membrane traffic. Biol 

Cell 99: 333-342 

Sharma M, Giridharan SS, Rahajeng J, Naslavsky N, Caplan S (2009) MICAL-L1 links 

EHD1 to tubular recycling endosomes and regulates receptor recycling. Mol Biol Cell 20: 

5181-94 

Sharma M, Subramaniam S (2019) Rhes travels from cell to cell and transports Huntington 

disease protein via TNT-like protrusion. J Cell Biol 218: 1972-1993 

Sisakhtnezhad S, Khosravi L (2015) Emerging physiological and pathological implications 

of tunneling nanotubes formation between cells. Eur J Cell Biol 94: 429-443 

Tardivel M, Begard S, Bousset L, Dujardin S, Coens A, Melki R, Buee L, Colin M (2016) 

Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein 

assemblies. Acta Neuropathol Commun 4: 117 

Teddy JM, Kulesa PM (2004) In vivo evidence for short- and long-range cell 

communication in cranial neural crest cells. Development 131: 6141-6151 

Uhl J, Gujarathi S, Waheed AA, Gordon A, Freed EO, Gousset K (2019) Myosin-X is 

essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. J Cell 

Commun Signal 13: 209-224 

Vanoni MA (2017) Structure-function studies of MICAL, the unusual multidomain 

flavoenzyme involved in actin cytoskeleton dynamics. Arch Biochem Biophys 632: 118-141 

Wang X, Gerdes HH (2015) Transfer of mitochondria via tunneling nanotubes rescues 

apoptotic PC12 cells. Cell Death Differ 22: 1181-91 

Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes 

depends on p53 activation. Cell Death Differ 18: 732-42 

Yin K, Zhu R, Wang S, Zhao RC (2017) Low-Level Laser Effect on Proliferation, Migration, 

and Antiapoptosis of Mesenchymal Stem Cells. Stem Cells Dev 26: 762-775 



144 

 

 

Zhang J, Whitehead J, Liu Y, Yang Q, Leach JK, Liu GY (2018) Direct Observation of 

Tunneling Nanotubes within Human Mesenchymal Stem Cell Spheroids. J Phys Chem B 

122: 9920-9926 

Zhu H, Xue CB, Xu X, Guo YB, Li XH, Lu JJ, Ju SQ, Wang YJ, Cao Z, Gu XS (2016) 

Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling 

nanotubes. Cell Death & Disease 7 

Zhu S, Bhat S, Syan S, Kuchitsu Y, Fukuda M, Zurzolo C (2018) Rab11a-Rab8a cascade 

regulates the formation of tunneling nanotubes through vesicle recycling. Journal of Cell 

Science 131 

Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C (2015) Prion aggregates transfer 

through tunneling nanotubes in endocytic vesicles. Prion 9: 125-135 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

 

 

 

 

 

 

Section 4 
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Conclusion and perspectives 

From screening 41 different Rab proteins, we found that Rab8a, Rab11a and Rab35 

positively regulate contact dependent vesicle transfer between cells. Upon further 

investigation we demonstrated that individually Rab8a and Rab11a regulate the formation 

of TNTs. Since VAMP3 protein regulates the formation of cilia along with Rab8a and 

Rab11a (Finetti et. al., 2015), we investigated its role and found that VAMP3 positively 

regulates TNT formation. We further showed that all the three proteins Rab11a, Rab8a 

and VAMP3 act in cascade manner to regulate TNT formation. Rabin8 which interacts with 

Rab11a and acts as a GEF of Rab8a in cilia formation (Knodler et. al., 2010), shows no 

effect on TNTs. On the other hand, I found that GRAB a protein whose function is similar 

to Rabin8 (Furusawa et. al., 2017) upon over-expression in our neuronal cell model leads 

to an increase in TNT connected cells. However, I demonstrated that this TNT regulation is 

independent of the Rab11a-Rab8a cascade. This opens new questions for investigation 

such as to find the factors that act as a connecting link between Rab11a and Rab8a. Also, 

it would be intriguing to further investigate the role of GRAB and its interacting proteins 

that may regulate TNT formation. 

 Several Rab proteins are involved in the recycling pathway. The ERC is usually situated 

near the golgi or MTOC (microtubule organizing centre) (Maxfield and McGraw, 2004). 

Rab11/EHD1 presence on the tubules is the indication of ERC (Grant and Donaldson, 

2009). Rac and Cdc42 stimulates adherens junction assembly in the epithelial cells by 

recycling of E-cadherin through the endosomal pathway (A Ridley, 2001, Le et. al., 1999). 

Rab8 recycles transferrin positive vesicles back to the plasma membranes. These vesicles 

participate in the formation of cellular protrusions (Hattula et. al., 2006). Thus, since the 

recycling of vesicles plays an important role in the formation of different cellular protrusions 

we propose that this is also important for the regulation of TNTs, however this needs to be 

further investigated. 

Preliminary data (data not shown) has indicated that Rab8a and Rab11a are localized at 

the base of the TNTs. It would be interesting to study the role of Rab8 and Rab11 proteins 

in regulating TNT formation in live conditions, and whether the vesicles positive for these 

proteins are giving rise to TNTs. Primaquine which is a membrane recycling inhibitor and 

blocked the transferrin recycling in CAD cells (Zhu et. al., 2018) shows a negative effect on 

TNT connected cells. This shows that recycling of the membrane has an important effect 

on TNTs since it may supply lipids and proteins necessary for the outgrowth of TNTs.  
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During neurite outgrowth, Rab35 acts along with ACAP2 and MICAL-L1 to regulate ARF6 

and EHD1 (Kobayashi and Fukuda, 2013). In our studies we have shown that GTP bound 

form of Rab35 leads to an increase in the number of TNT connected cells. But unlike 

neurite outgrowth, MICAL-L1 is not involved in TNT formation. However, we could show 

that several of the downstream effectors such as ACAP2, GDP-ARF6 and EHD1 are 

involved in TNT formation. ACAP2 has been shown to indirectly regulate neurite 

outgrowth, by acting as a GAP of ARF6. Active form of ARF6 activates PIP5kinase which 

converts PI4P to PIP2 (Krauss et. al., 2003). Thus, inactivation of ARF6 may regulate PI4P 

levels (Kobayashi and Fukuda, 2013). EHD1 binds to vesicles that are rich in PI4P (Jovic 

et. al., 2007). Therefore, we can speculate that Rab35 indirectly regulates EHD1 through 

ACAP2 and ARF6 for TNT formation. Indeed, here we have demonstrated that Rab35 acts 

upstream of EHD1 in regulating the growth of TNTs. However, EHD1 was also shown 

possess a binding site to MICAL-L1 (Sharma et. al., 2009). It was shown that both the 

indirect regulation through ACAP2 and the direct regulation through MICAL-L1 of EHD1 is 

necessary in neurite outgrowth (Kobayashi and Fukuda, 2013). But in the case of TNT 

formation we demonstrated that MICAL-L1 is not involved. Thus, these data clearly show 

that even though they use the similar pathway through the activation of Rab35, neurite 

outgrowth and TNT formation are regulated in different manner.  

There are several different EHD proteins in humans (EHD 1-4). Some of them have a role 

in cilia formation and recycling pathway (Naslavsky et. al., 2011). It would also be 

interesting to see if these proteins have a role in TNT formation.  

Along with directing proteins for neurite outgrowth and maintaining axons and dendrites, 

vesicle trafficking and recycling is also involved in the formation of different neuronal 

structures such as neurite outgrowth, formation of dendritic spines etc. Exocyst complex is 

one of the major components of the recycling endosomes, for e.g. Sec 6/8 is localized at 

the growth cones and the neurites (Hazuka et. al., 1999). Rab11 is regulating localisation 

of the N-cadherin in neurons and polarisation of the neurons (Barnat et. al., 2017). It is 

also reported that Rab5 acts upstream of Rab11 in regulating the migration of neurons, 

while the Rab7 regulates the late stage of migration in the neurons (Kawauchi et. al., 

2010). Rac induced membrane ruffles and lamellopodia are formed due actin 

polymerization. Recycling membrane gives rise to newer membranes of these cellular 

structures (Bretscher and Aguado-Velasco, 1998). This indicates that the recycling 

pathway, neurite outgrowth and its effect on cytoskeletal structures are related. 
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 Overall from our studies, Rab8a, Rab11a and Rab35, all three show a positive effect on 

contact dependent vesicle transfer by TNTs. Hence it might be an interesting pathway to 

study their effect with respect to each other, since all the three proteins Rab8a, Rab11a 

and Rab35 are also involved in the formation of cellular protrusions such as cilia (Onnis et. 

al., 2015, Kuhns et. al., 2019). Preliminary data suggests that downregulating Rab35 and 

overexpressing either Rab8 or Rab11 has no role on TNT formation (data not shown), they 

may work in another mechanism wherein Rab35 acts downstream of Rab8 and Rab11 and 

show an effect on TNTs. Further experiments are needed to validate this. 

Previous studies done in our lab has shown that filopodia and TNTs, even though they are 

structures that are highly enriched in F-actin, are regulated by different manner. Especially 

in neuronal cells the proteins which are regulating filopodia in a positive manner are shown 

to negatively regulate TNTs e.g. IRSp53 and VASP, while Eps8 that negatively regulates 

filopodia, has a positive effect on TNTs (Delage et. al., 2016). MyosinX which has been 

shown to be a positive regulator for TNTs in many studies, regulates TNTs and filopodia 

by different domains on the protein (Gousset et. al., 2013).  

Recent work in the lab suggests that actin structure in both the TNTs and filopodia are 

different (Sartori-rupp et. al., 2019). It would be interesting to study the role of Rab35, 

ACAP2, EHD1 in the ultrastructure of TNTs. From these studies we plan to establish the 

role of Rabs and its effect on TNT formation. 

 



149 

 

 

 

Figure 16 : Working Model and Hypothesis : a) Role of Rab11a-Rab8a-VAMP3 cascade 

regulating the formation of TNTs b) Role of Rab35 and its effectors involved in TNT formation.  
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SYNTHÈSE EN FRANÇAIS 

(Texte traduit par Google translate) 

La communication cellule-cellule est importante pour le développement et la fonction des 

organismes multicellulaires. Les interactions cellule-cellule se produisent à travers 

différents mécanismes entre des cellules adjacentes ou distantes. Des structures de con-

nexion intercellulaire ont été montrées dans une grande variété d'organismes vivants 

comme les plasmodesmes dans les plantes, les cytonèmes chez la drosophile et les 

jonctions lacunaires chez les mammifères. Ces structures permettent le transport de 

molécules, d'ions, de métabolites et d'hormones. 

Les nanotubes à effet tunnel sont principalement des protubérances membranaires 

intercellulaires à base de F-actine qui transportent le contenu cytoplasmique, les 

cargaisons et les organites. Ils étaient à l'origine décrits comme des ponts de connexion 

de cellule à cellule constitués de connexions membraneuses continues qui n'adhèrent pas 

au substrat. Leur diamètre varie de 50 à 150 nm. et leur longueur peut aller jusqu'à une 

centaine de micromètres (Rustom et. al., 2004, Sartori-Rupp et. al., 2019). Ils sont de na-

ture extrêmement fragile, sensibles à la fixation lumineuse, chimique et mécanique. La 

composition cytosquelettique des TNT décrits est légèrement variée, une grande majorité 

contenant de la F-actine, mais une sous-population contenant également des microtubules 

(Antanaviciute et. Al., 2014). Les TNT se forment non seulement dans la population 

homogène mais aussi dans la population hétérogène de cellules (Lou et. Al., 2012, 

Kretschmer et. Al., 2019, Pasquier et. Al., 2013). Malheureusement, aucun marqueur 

moléculaire n'a encore été identifié, qui soit spécifique aux TNT. Bien que des études 

majeures impliquant des TNT aient été menées in vitro, en raison du manque de 

marqueurs spécifiques, l'identification des TNTin vivo est difficile, cependant, il y a eu 

plusieurs preuves de connexions de type TNT observées in vivo ou dans des conditions 

de culture organoïde 3D principalement basées sur leur aspect morphologique. Plus 

précisément, en utilisant pour la première fois des approches de microscopie corrélative à 

lumière et cryoélectron et la microscopie électronique à balayage par faisceau d'ions 

focalisés (FIB-SEM), notre laboratoire a démontré que dans les cellules neuronales, les 

TNT sont des structures spécifiques avec une ultrastructure distincte, différente de autres 

protubérances cellulaires. Ils se composent d'un ensemble de «nanotubes de tunnelage» 

(iTNT) ouverts, maintenus ensemble par des connexions basées sur la N-cadhérine. 

(Sartori-Rupp et. Al., 2019) 
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Les TNT peuvent être formés par deux mécanismes différents; a) Par l'extension de la 

protrusion cellulaire comme les filopodes dépendants de l'actine, pour former une connex-

ion initiale qui se traduit par la formation de TNT (Rustom et. al., 2004, Yang et. al., 2016). 

b) Ou ils peuvent se former par contact de cellule à cellule, puis délogement des cellules, 

ce qui entraîne une connexion TNT fonctionnelle entre les cellules (figure 3) (Onfelt et. al., 

2004, Reichert et. al., 2016, Pedicini et . al., 2018). 

La formation de TNT est régulée par plusieurs facteurs et protéines différents. Il a été 

démontré que divers signaux et molécules de stress et inflammatoires régulent la for-

mation de TNT (A Rustom, 2016). L'exposition des cellules à des produits chimiques 

comme le peroxyde d'hydrogène (H 2 0 2 ) ou à des conditions environnementales comme 

la lumière ultraviolette (UV) provoque une augmentation du nombre de cellules 

connectées au TNT. Des protéines qui régulent le stress dans les cellules comme le NFκB 

(facteur nucléaire kappa-activateur de chaîne légère des cellules B activées) / TNFαIP ou 

la protéine tumorale p53 sont impliquées dans la formation de TNT. Les lipides ont un rôle 

dans la formation de TNT, cependant les études de la composition membranaire 

spécifique des TNT sont encore rares. (Thayanithy et al., 2014). Il a été démontré que les 

petites GTPases régulent différentes voies membranaires et il existe des preuves 

substantielles de plusieurs études que la formation de TNT est régulée par plusieurs pe-

tites GTPases différentes, par exemple; RalGPS2 (facteur d'échange de nucléotides de 

guanine indépendant de Ras (GEF) pour RalA), RASSF1A (isoforme A de la famille 1 du 

domaine d'association Ras) régulent positivement les TNT. Comme les TNT sont 

principalement constitués d'actine et de microtubules, plusieurs protéines qui modifient le 

cytosquelette montrent également un effet sur la formation de TNT. Ces protéines incluent 

les protéines régulatrices des filopodes et des lamellipodes comme Rac et Cdc42, la 

protéine du syndrome de Wiskott-Aldrich (WASP), la famille WASP homologue à la 

verproline 2 (WAVE-2) et Arp2 / 3 (Actin Related Protein 2/3) sur les TNT dans différentes 

cellules. les types. Mais dans les cellules CAD neuronales, les protéines régulant 

positivement les filopodes comme IRSp53 (substrat récepteur de l'insuline p53) et VASP 

( phosphoprotéine stimulée par vasodilatateur) montrent une diminution de la formation de 

TNT tandis que les protéines régulant négativement la formation de filopodes, c'est-à-dire 

Eps8, montrent une augmentation de la formation de TNT, cela indique que les filopodes 

et le TNT sont réglementés de manière opposée (Delage et al., 2016). 

La fonction principale des TNT est d'échanger différentes cargaisons entre les cellules. Il a 

été démontré qu'ils transportent plusieurs organites cellulaires et substances cellulaires 
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différents comme les récepteurs membranaires GPCR (récepteurs couplés aux protéines 

G), les lysosomes, les mitochondries, etc. 

Plusieurs études mettent en évidence le rôle potentiel que pourrait avoir le transfert 

d'organelles médié par le TNT dans différentes conditions physiopathologiques. 

Par exemple, dans les maladies neurodégénératives comme Alzheimer, Parkinson Hun-

tington, etc., les TNT se sont avérés transporter plusieurs des protéines pathogènes 

responsables de la propagation de la maladie. Ce transport de protéines pathogènes vers 

les cellules saines conduit à la cytotoxicité dans les cellules saines. Par exemple; Les pep-

tides β ont été transférés par les TNT et provoquent une cytotoxicité dans les neurones 

(Wang et. Al., 2011). L'alpha synucléine est également transportée à travers les TNT dans 

les CAD et les neurones. Ce transfert se produit généralement à travers les lysosomes à 

l'intérieur des TNT des cellules malades vers les cellules saines (Abounit et al., 2016a). 

Fait intéressant, lorsque l'alpha synucléine est transportée à travers les TNT dans les as-

trocytes, les mitochondries sont transportées dans la direction opposée des astrocytes 

sains aux cellules malades, ce qui permet un mécanisme de sauvetage (Rostami et al., 

2017). Notre laboratoire a également montré que le transfert d'alpha-synucléine est 

spécifique au type cellulaire. Le transfert d'alpha-synucléine se produit entre différents 

types de cellules, comme les neurones aux astrocytos ou les astrocytes aux astrocytes, 

mais de manière moins efficace entre les astrocytes et les neurones. De plus, nous avons 

également montré que les astrocytes sont beaucoup plus efficaces pour dégrader l'alpha-

synucléine que les neurones (Loria et al., 2017). 

Les TNT étant essentiels dans plusieurs processus physiopathologiques, il était essentiel 

de les étudier plus en détail. Et comme il y avait plusieurs exemples mettant en évidence 

le rôle des protéines sur les TNT, j'ai choisi d'étudier le rôle des protéines Rab (petites 

GTPases) et son effet sur les TNT. 

Les GTPases Rab sont l'une des principales familles de protéines impliquées dans le trafic 

de vésicules dans les cellules. Le trafic de vésicules est important pour l'absorption des 

nutriments, l'adhésion et la migration des cellules, la signalisation, l'entrée d'agents 

pathogènes, la transmission synaptique, la régulation des récepteurs, la présentation de 

l'antigène, la polarité cellulaire, la mitose, la croissance et la différenciation, et la 

délivrance de médicaments (Doherty et McMohan, 2009). Le trafic de vésicules 

intracellulaires peut être divisé en deux voies principales, à savoir l'endocytose et 

l'exocytose. 
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L'exocytose est principalement utilisée pour expulser les substances cellulaires, tandis que 

l'endocytose est impliquée dans l'absorption de molécules / solutés par les cellules. 

L'exocytose implique la fusion des membranes vésiculaires avec la membrane plasmique. 

L'endocytose intériorise les lipides et les protéines des membranes plasmiques dans les 

cellules (Doherty et McMohan, 2009). 

L'un des processus du trafic de vésicules est la voie de recyclage des vésicules. Elle 

implique le processus de recyclage des vésicules vers la membrane plasmique. La voie de 

recyclage implique l'internalisation de la cargaison par des puits recouverts de clathrine ou 

une endocytose indépendante de la clathrine au niveau de la membrane qui est finalement 

pincée de la membrane plasmique pour former des endosomes précoces. Ces endo-

somes précoces sont associés à des molécules Rab spécifiques qui permettent aux 

vésicules de fusionner et de former le corps multivesiculaire (MVB). Ensuite, ils sont 

recyclés vers la membrane (ce qui se produit généralement pour les récepteurs de la 

membrane plasmique) (Katzmann et al., 2002) ou fusionnés avec des lysosomes pour la 

dégradation du contenu des vésicules (Cullen et Steinberg, 2018). Il existe un équilibre 

entre l'absorption du contenu par l'endocytose et leur recyclage vers la membrane 

plasmique. Ces deux voies contrôlent divers processus cellulaires tels que la migration 

cellulaire, la cytokinèse, le maintien de la polarité cellulaire, l'adhésion cellulaire et la for-

mation de jonction (Grant et Donaldson, 2009). 

Le trafic de vésicules est impliqué dans la formation de différentes structures cellulaires. À 

l'intérieur de la cellule, les vésicules sont généralement transportées sur des pistes de mi-

crotubules ou d'actine (Grant et Donaldson, 2009). Le recyclage des vésicules régule 

également la formation de protubérances cellulaires. Des volants de membrane et des 

lamellopodes induits par Rac se forment en raison de la polymérisation de l'actine. Le 

recyclage de la membrane vésiculaire donne naissance aux nouvelles membranes 

nécessaires à sa formation (Bretscher et Aguado-Velasco, 1998). Les cils sont des struc-

tures composées de microtubules; leur surface cellulaire est constituée de molécules 

comme le lissé, les GPCR, la somatostatine et la rhodopsine. La formation des cils 

implique à la fois le trafic des membranes polarisées et l'organisation des microtubules (S 

Sorokin, 1962). Le trafic membranaire est impliqué dans de nombreux processus des neu-

rones, l'altération du trafic membranaire a été impliquée dans la neurodégénérescence et 

le cancer (Kiral et al. 2018). Les Rabs régulent également le recyclage des vésicules vers 

la membrane qui peuvent être impliquées dans la dynamique de la membrane et conduire 

à la formation de TNT (décrites dans cette thèse). 



181 

 

 

Les petites GTPases sont divisées en familles Ras, Rho, Rab, Sar1 / Arf et Ran (Takai et 

al., 2001). Il existe environ 60 GTPases Rab chez les mammifères, 31 chez la drosophile 

et 11 chez la levure (Kiral et al., 2018, Zhang et al., 2007). Ils ont été identifiés pour la 

première fois dans les années 1980. Les Rabs fonctionnent via le cycle lié au GTP 

(Guanosine 5'-triphosphate) (actif) –GDP (Guanosine 5'-diphosphate) (inactif). Ils sont 

régulés par les GEF (Guanine nucleotide Exchange Factors), les GAP (GTPase Activating 

Proteins) et les GDI (Guanine Dissociation Inhibitors). 

Les protéines Rab s'accumulent au niveau de leurs membranes cibles et sont donc 

utilisées comme marqueur d'organites. Les protéines Rab sont impliquées dans l'attache 

et l'amarrage des vésicules à sa membrane dans les cellules, ce qui conduit à la fusion de 

la vésicule respective avec la membrane. Chacune des protéines Rab contrôle une voie 

spécifique de trafic membranaire (Bhuin et Roy, 2014). Il a été démontré que les protéines 

Rab régulent le bourgeonnement des vésicules à partir de différents organites. Les Rabs 

participent au transport des vésicules. Plusieurs protéines Rab sont impliquées dans la 

filière de recyclage. La présence de Rab11 / EHD1 sur les tubules est l'indication ERC 

(Endocytic Recycling Compartment) (Grant et Donaldson, 2009). Les endosomes 

précoces perdent Rab5 et acquièrent Rab11, ce qui entraîne la formation des tubules par 

les endosomes précoces et le corps principal des endosomes précoces donne naissance 

au corps mutlivesiculaire. L'ERC est généralement situé près du golgi ou MTOC (centre 

d'organisation des microtubules) (Maxfield et McGraw, 2004). 

Voici les différentes protéines Rab et leurs effecteurs impliqués dans la formation de TNT. 

Rab8a est localisé au niveau de la membrane basolatérale, des golgi et des structures 

tubulovésiculaires (Lee et. Al., 2003). Rab8a colocalise avec plusieurs protéines 

différentes comme ARF6, Rab11 (Hattula et. Al., 2006), les intégrines β en conditions 

polarisées (Peranen et. Al., 1996) et IFT20 (Finetti et. Al., 2015). Rab8a est impliquée 

dans le trafic de vésicules et ses effets, tels que l'exocytose (Huber et. Al., 1993, Hattula et. 

Al., 2006), le recyclage des membranes et la polarisation des cellules. Rab8a est 

impliquée dans la formation de la membrane au niveau du froissement de la membrane et 

la formation de protubérances comme les filopodes et les lamellipodes, et la formation de 

fibres de stress en recyclant les vésicules vers la membrane (Hattula et al., 2006). La 

surexpression de la forme inactive de Rab8a montre une augmentation des fibres de 

stress mais la forme active de Rab8a montre une redistribution des filaments d'actine dans 

les cellules. Il a également été montré que Rab8a se localise avec l'actine dans des struc-

tures semblables à des lamellopodes formées dans les cellules surexprimant Rab8a. 
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Cependant, les mécanismes responsables de l'inter-régulation de Rab8a et d'actine sont 

inconnus (Peranen et al., 1996). 

Rab11 est impliqué dans le transport des endosomes recyclés vers la membrane 

plasmique (Das et Guo, 2011). Rab11a est enrichi à la base des cils et participe à 

l'entretien des cils primaires (Knodler et al., 2010). Rab11a-Rab8a à l'aide de Rabin8 et 

Cdc42 régule la luménogenèse épithéliale (Bryant et al., 2010). Rab8 et Rab11 sont 

impliqués dans la formation des cils avec l'aide de Rabin8 (FEM de Rab8a). Rabin8 se 

révèle être le lien entre l'activation dépendante de Rab11 de Rab8a et les deux Rabs 

agissent en cascade qui conduit à la formation de cils (Knodler et al., 2010). Dans mon 

travail de thèse (avec un autre étudiant), nous avons trouvé un rôle pour Rab11a et Rab8a 

dans la formation de TNT (voir ci-dessous et résultats). Cependant, Rabin8 n'a pas d'effet 

sur la formation des nanotubes à effet tunnel dans les cellules CAD (Zhu et. Al., 2018). 

GRAB (GRAB / Rab3IL1 (facteur d'échange de nucléotides guanine pour Rab3A; Rab3A 

interagissant protéine (rabin3) -like 1) agit de manière similaire à Rabin8. Il agit en tant 

qu'effecteur en aval de Rab11a et Rab8a et est impliqué dans la croissance des axones 

(Furusawa et . al., 2017). Rab11 interagit avec GRAB et la surexpression de Rab11 

provoque le déplacement de GRAB vers les membranes (Horgan et. al., 2013). Dans mon 

travail de thèse, nous avons montré que GRAB, est impliqué dans la formation des TNT. 

Cependant, il n'était pas impliqué dans le mécanisme en cascade pour la régulation des 

TNT (Zhu et al., 2018). 

Le ciblage, l'amarrage et la fusion des vésicules avec les membranes accepteurs 

nécessitent une interaction avec l'actine et le cytosquelette des microtubules, le 

recrutement de complexes d'accostage cytosolique et une reconnaissance spécifique en-

tre les protéines membranaires intégrales connues sous le nom de SNARES (récepteurs 

solubles de la protéine de fixation NSF). VAMP3 (protéine membranaire associée aux 

vésicules 3) appartient à la famille des protéines SNARE (Banerjee et al., 2017). Il a été 

démontré que Rab8 était impliqué dans le recrutement de VAMP3 et aide au recyclage 

des vésicules. Il est également démontré que VAMP3 interagit avec le lissé (protéine 

transmembranaire trouvée dans les cils, nécessaire à la transduction du signal) et Rab8a 

dans la croissance ciliaire ((Finnetti et. Al., 2015). VAMP3 est également impliqué dans le 

trafic des intégrines de Rab11 positif le recyclage des endosomes (Skalski et. al., 2005). 

Rab35 a d'abord été cloné à partir du muscle squelettique humain et est exprimé de 

manière omniprésente. Il participe à la cytokinèse et au recyclage endocytaire rapide des 

cellules. Rab35 régule le recyclage de plusieurs récepteurs (Dikshit et. Al., 2014). Rab35 
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possède plusieurs protéines effectrices telles que l'OCRL (syndrome oculo-cérébro-rénal 

de Lowe), ACAP2 (β-centaurine) et MICAL-L1 (molécules interagissant avec CasL-Like 1) 

(Dambournet et al., 2011). Rab35 est impliqué dans le recyclage endocytaire rapide et sa 

régulation négative a entraîné l'accumulation de marqueurs endocytaires dans les 

diverses vacuoles à travers les cellules, entraînant une échec de la cytokinèse. Il a été 

démontré par la suite que Rab35 est impliqué dans la localisation de PIP2 et de Septin au 

pont cytokinétique (Kouranti et. Al., 2006). ARF6 régule négativement l'activation de 

Rab35 et son rôle dans la cytokinèse par son effecteur EPI64B (Chesneau et al., 2012). 

Kobayashi et Fukuda, en 2013, ont montré que l'activation du NGF (Nerve Growth Factor) 

induit la croissance des neurites en raison de l'association de Rab35 aux endosomes 

positifs ARF6. Rab35 recrute ensuite ACAP2 et MICAL-L1 pour former un complexe. 

MICAL-L1 agit directement comme un site de liaison pour EHD1. Alors que l'ACAP2 

régule indirectement le recrutement d'EHD1 à la membrane en inactivant ARF6 et en 

influençant ainsi les niveaux de PI4P sur la membrane des vésicules, ce qui permet la liai-

son d'EHD1 à la membrane vésiculaire qui régule l'excroissance des neurites. 

MICAL-L1 (molécules MICAL interagissant avec CasL - Like), interagit avec le 

cytosquelette d'actine et est couramment impliqué dans le recyclage des membranes (M. 

Vanoni, 2017). Les protéines de type MICAL ont la capacité de liaison pour une large 

gamme de protéines, y compris Rab8a / b, Rab10, Rab13 et Rab15. MICAL-L1 interagit 

avec le complexe de protéines Rab-EHD. Rab35 interagit avec MICAL-L1 et recrute 

Rab8a sur les endosomes tubulaires. MICAL-L1 est réglementé par ARF6. La 

surexpression d'ARF6 activé dans les cellules a entraîné le recrutement de MICAL-L1 

dans les endosomes tubulaires (Rahajeng et al., 2012). 

ACAP2 (Arf GAP avec bobine enroulée, répétition ANK et domaine PH) ou Centaurin β2 

se trouve dans une grande variété d'organismes multicellulaires allant de Drosophila mel-

anogaster , Caenorhabditis elegans et Arabidopsis thaliana aux mammifères, y compris 

l'homme et la souris. Il a été démontré que l'activité de ACAP2 dépend des niveaux d' 

acide PIP2 et phosphatidiques dans la cellule de (Jackson et al. Al., 2000). Rab35 est 

impliqué dans les premiers stades de la phagocytose, en particulier dans l'extension des 

pseudopodes . Chez C. elegans , un homologue des mammifères ACAP1 et ACAP2, 

c'est-à-dire CNT1 (Centaurine 1) est recruté par Rab10 dans l'épithélium intestinal et est 

nécessaire pour réguler les niveaux de PIP2 dans les endosomes de recyclage (Shi et al., 

2012 ). 
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Les GTPases ARF sont de petites protéines de 21 kDa. Ils sont divisés en trois classes, la 

classe I comprend les ARF 1 à 3, la classe II comprend les ARF 4 et 5, et la classe III ARF 

comprend ARF6 (Jackson et Casanova, 2000). La phospholipase D (PLD) interagit avec la 

phosphatidylinositol-4-phosphate 5 ( PI4P) kinase pour convertir PI4P en PIP2. Ce PIP2 

est à son tour nécessaire à l'activité de PLD. Les mutants ARF6 qui sont incapables 

d'activer la PLD présentent des défauts de recyclage et ne parviennent pas à former des 

protubérances par les cellules (Jovanovic et. Al., 2006). ARF6 est impliqué dans 

l'endocytose non dépendante de la clathrine et le recyclage vers la membrane plasmique. 

Il est impliqué dans le recyclage des protéines régulatrices d'actine telles que le complexe 

Cdc42 et Rac et PAR6 (Donaldson et Jackson, 2011) 

Le recyclage endocytaire implique le retour des membranes et des récepteurs à la mem-

brane plasmique, et ce processus implique les vésicules tubulaires et vésiculaires porteurs 

dans les cellules où ils sont facilement transportés vers la membrane plasmique à travers 

les microtubules. La famille de protéines EHD s'est avérée importante dans le recyclage 

endocytaire et elles sont principalement associées au CER (Cai et. Al., 2013). La famille 

de protéines EHD est homologue de la protéine Eps15. Il a été montré que l'EHD1 

directement colocalisé avec lissé (comme mentionné précédemment lissé est impliqué 

dans la transduction du signal et est principalement situé à la base des cils) et trafiqué le 

long du cil (Bhattacharyya et. Al., 2016). 

La première partie de la thèse décrit le rôle de Rab8a et Rab11a et de leurs effecteurs sur 

les TNT. Les résultats sont résumés comme suit. Il a été démontré que les protéines Rab 

sont impliquées dans plusieurs processus cellulaires tels que la cytokinèse, la formation 

de cils, la synapse immunitaire, etc. Elles se révèlent être des maîtres régulateurs des 

fonctions cellulaires (Das et Guo, 2011). Ainsi, nous avons criblé plusieurs protéines Rab 

différentes pour identifier celles impliquées dans la formation de TNT. Dans cette étude, le 

Dr Seng Zhu (ancien doctorant du laboratoire) a mis en place un dépistage des TNT, basé 

sur la capacité des protéines Rab surexprimées à augmenter ou diminuer le transfert de 

vésicules induit par le TNT entre un donneur et un accepteur de cellules. Sur les 41 

protéines Rab différentes testées, Rab8a, Rab11a et Rab35 étaient de forts résultats 

positifs. Rab8a est impliquée dans la formation de différentes structures cellulaires telles 

que la synapse immunitaire et la formation de cils (Lesteberg et. Al., 2017, Lu et. Al., 

2015). Rab8a est également impliquée dans la formation de protubérances cellulaires 

comme les filopodes et les lamellipodes dans les cellules, en affectant l'organisation de 

l'actine et des microtubules (Peranen et al., 1996). Rab8 et Rab11 sont impliqués dans la 
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formation des cils avec l'aide de Rabin8 (FEM de Rab8a) (Knodler et al., 2010). Lors de la 

surexpression de chacune de ces protéines, il a été observé que les formes liées au GTP 

de Rab8a et Rab11a augmentaient les TNT. Nous avons également montré qu'ils régulent 

les TNT via un mécanisme en cascade. Cependant, alors que Rabin8 augmentait la for-

mation de filopodes, nous avons démontré que ce n'était pas le cas pour les TNT car la 

surexpression de Rabin8 n'affectait pas les TNT. Un autre FEM de Rab8a, c'est-à-dire 

GRAB, a été démontré auparavant comme étant impliqué dans la croissance des axones 

par le mécanisme en cascade par Rab11a-Rab8a (Furusawa et al., 2017). Ainsi, nous 

avons examiné le rôle du GRAB par rapport aux TNT. Nous avons constaté que la 

surexpression de GRAB conduit à une augmentation des cellules connectées au TNT, 

mais cela semble être indépendant de la cascade Rab8-Rab11. D'autre part, nous avons 

constaté que VAMP3 qui est connu pour interagir avec Rab8 et être responsable de la fu-

sion finale des vésicules à la membrane (Finetti et al., 2015) était impliqué. Il a également 

été démontré que VAMP3 interagit avec Rab8 à la base du cil et régule l'excroissance 

ciliaire (Patrussi et Baldari, 2016). 

Les données présentées ici fournissent de nouvelles informations sur les facteurs 

impliqués dans la formation de TNT et le transfert de vésicules intercellulaires dans les 

cellules CAD neuronales. Nos résultats montrent que Rab11a, Rab8a et VAMP3 

augmentent à la fois le nombre de cellules connectées au TNT et le transfert de vésicules 

à travers les TNT dans les cellules CAD. Nous démontrons que Rab11a et Rab8a 

fonctionnent dans la même voie et utilisent VAMP3 comme effecteur pour induire des TNT 

fonctionnels mais pas des filopodes. Il est intéressant de noter que cette cascade de sig-

nalisation Rab11a-Rab8a ne nécessite pas Rabin8, qui d'autre part est essentiel pour as-

surer la médiation de la formation de filopodes activés par Rab8a. Ainsi, en plus de fournir 

des détails mécanistes sur le rôle des protéines Rab dans la formation de TNT, ces 

données renforcent également notre hypothèse selon laquelle les filopodes et les TNT 

sont des structures différentes, qui dépendent de différents mécanismes de formation. 

Dans la deuxième partie de ma thèse, je me concentre sur l'étude du rôle de Rab35 et de 

ses effecteurs sur la formation de TNT. Les résultats sont résumés comme suit. Les nano-

tubes à effet tunnel (TNT) sont des structures riches en F-actine qui connectent des cel-

lules distantes, permettant le transport de nombreux composants cellulaires, y compris les 

vésicules, les organites et différents types de molécules. Les TNT sont impliqués dans des 

processus cellulaires clés, tels que le développement, l'immunité et la régénération 

tissulaire, mais également dans la transmission de divers agents pathogènes. Étant donné 
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que les GTPases Rab sont les principaux régulateurs du trafic de vésicules et participent 

également à la régulation du cytosquelette d'actine, nous avons examiné le rôle de cette 

famille de protéines dans la formation de TNT. Tout d'abord, nous avons effectué un 

criblage de plusieurs protéines Rab différentes pour son effet sur le transfert de vésicules 

dépendant du TNT. Rab35 a été l'un des Rabs à avoir un effet positif sur le transfert des 

vésicules. L'analyse de Rab35, une protéine impliquée dans le recyclage endocytaire, la 

cytokinèse et la croissance des neurites, a montré que la forme liée au GTP-Rab35 

augmente également la formation de TNT. La croissance des neurites est un processus 

essentiel pour établir la connectivité neuronale et le recyclage des vésicules joue un rôle 

crucial dans ce processus. Rab35 interagit avec plusieurs protéines impliquées dans le 

trafic de vésicules telles que ACAP2 (agit comme GAP de ARF6), MICAL-L1 (molécule 

interagissant avec CasL-like 1, qui joue un rôle dans le recyclage des vésicules) EHD1 

(ciseau moléculaire qui a un rôle dans la scission des vésicules). Aux endosomes positifs 

ARF6, Rab35 recrute ACAP2 et MICAL-L1, et forme un complexe qui se lie à EHD1 pour 

réguler la croissance des neurites. Nos données suggèrent fortement que ces effecteurs 

peuvent également être impliqués dans la formation de TNT. Individuellement, ACAP2, 

EHD1 et ARF6-GDP régulent la formation de TNT de manière positive. Mais la 

surexpression de MICAL-L1 dans les cellules ne montre aucun effet sur les TNT. De plus, 

les données préliminaires indiquent que Rab35 et EHD1 agissent dans un mécanisme en 

cascade pour réguler la formation de TNT. Cela indique que la formation de TNT et 

l'excroissance des neurites peuvent agir dans une voie similaire, mais pas exacte. Les 

molécules identifiées ici qui ont un rôle dans la formation de TNT, constituent des cibles 

moléculaires potentielles pour des thérapies visant à bloquer la propagation des 

pathogènes qui se transmettent par les TNT. Cette étude prouve que les protéines qui ont 

un rôle dans le trafic de vésicules et la croissance des neurites, telles que les protéines 

Rab, sont également impliquées dans la formation de TNT . 

De toutes les études menées au cours de ma thèse, nous avons tiré les conclusions 

suivantes. Du criblage de 41 protéines Rab différentes, nous avons constaté que Rab8a, 

Rab11a et Rab35 régulent positivement le transfert de vésicules dépendant du contact en-

tre les cellules. Après une enquête plus approfondie, nous avons démontré que 

individuellement Rab8a et Rab11a régulent la formation de TNT. Puisque la protéine 

VAMP3 régule la formation de cils avec Rab8a et Rab11a (Finetti et al., 2015), nous avons 

étudié son rôle et constaté que VAMP3 régule positivement la formation de TNT. Nous 

avons en outre montré que les trois protéines Rab11a, Rab8a et VAMP3 agissent en cas-

cade pour réguler la formation de TNT. Rabin8 qui interagit avec Rab11a et agit comme 
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un GEF de Rab8a dans la formation des cils (Knodler et al., 2010), ne montre aucun effet 

sur les TNT. D'un autre côté, j'ai trouvé que GRAB une protéine dont la fonction est 

similaire à Rabin8 (Furusawa et al., 2017) lors de la surexpression dans notre modèle de 

cellule neuronale conduit à une augmentation des cellules connectées au TNT. Cependant, 

j'ai démontré que cette régulation TNT est indépendante de la cascade Rab11a-Rab8a. 

Cela ouvre de nouvelles questions à rechercher, notamment pour trouver les facteurs qui 

agissent comme un lien entre Rab11a et Rab8a. En outre, il serait intéressant d'étudier 

plus en détail le rôle de GRAB et de ses protéines en interaction qui peuvent réguler la 

formation de TNT. 

Plusieurs protéines Rab sont impliquées dans la filière de recyclage. L'ERC est 

généralement situé près du golgi ou MTOC (centre d'organisation des microtubules) 

(Maxfield et McGraw, 2004). La présence de Rab11 / EHD1 sur les tubules est l'indication 

de l'ERC (Grant et Donaldson, 2009). Rac et Cdc42 stimulent l'assemblage des jonctions 

adhérentes dans les cellules épithéliales en recyclant la E-cadhérine par la voie 

endosomale (A Ridley, 2001, Le et. Al., 1999). Rab8 recycle les vésicules positives pour la 

transferrine vers les membranes plasmiques. Ces vésicules participent à la formation de 

protubérances cellulaires (Hattula et. Al., 2006). Ainsi, puisque le recyclage des vésicules 

joue un rôle important dans la formation de différentes protubérances cellulaires, nous 

proposons que cela soit également important pour la régulation des TNT, mais cela doit 

être étudié plus avant. 

Des données préliminaires (données non présentées) ont indiqué que Rab8a et Rab11a 

sont localisés à la base des TNT. Il serait intéressant d'étudier le rôle des protéines Rab8 

et Rab11 dans la régulation de la formation de TNT dans des conditions vivantes, et si les 

vésicules positives pour ces protéines sont à l'origine de TNT. La primaquine qui est un 

inhibiteur du recyclage des membranes et a bloqué le recyclage de la transferrine dans les 

cellules CAD (Zhu et. Al., 2018) montre un effet négatif sur les cellules connectées au TNT. 

Cela montre que le recyclage de la membrane a un effet important sur les TNT car il peut 

fournir des lipides et des protéines nécessaires à la croissance des TNT. 

Pendant la croissance des neurites, Rab35 agit avec ACAP2 et MICAL-L1 pour réguler 

ARF6 et EHD1 (Kobayashi et Fukuda, 2013). Dans nos études, nous avons montré que la 

forme liée au GTP de Rab35 entraîne une augmentation du nombre de cellules 

connectées au TNT. Mais contrairement à la croissance des neurites, MICAL-L1 n'est pas 

impliqué dans la formation de TNT. Cependant, nous pourrions montrer que plusieurs des 

effecteurs en aval tels que ACAP2, GDP-ARF6 et EHD1 sont impliqués dans la formation 
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de TNT. ACAP2 s'est avéré réguler indirectement la croissance des neurites, en agissant 

comme un GAP d'ARF6. La forme active d'ARF6 active la PIP5kinase qui convertit PI4P 

en PIP2 (Krauss et. Al., 2003). Ainsi, l'inactivation de l'ARF6 peut réguler les niveaux de 

PI4P (Kobayashi et Fukuda, 2013). L'EHD1 se lie aux vésicules riches en PI4P (Jovic et. 

Al., 2007). Par conséquent, nous pouvons spéculer que Rab35 régule indirectement EHD1 

via ACAP2 et ARF6 pour la formation de TNT. En effet, nous avons ici démontré que 

Rab35 agit en amont de l'EHD1 en régulant la croissance des TNT. Cependant, EHD1 

s'est également avéré posséder un site de liaison à MICAL-L1 (Sharma et al., 2009). Il a 

été démontré que la régulation indirecte via ACAP2 et la régulation directe via MICAL-L1 

de EHD1 sont nécessaires dans la croissance des neurites (Kobayashi et Fukuda, 2013). 

Mais dans le cas de la formation de TNT, nous avons démontré que MICAL-L1 n'est pas 

impliqué. Ainsi, ces données montrent clairement que même si elles utilisent la voie 

similaire à travers l'activation de Rab35, l'excroissance des neurites et la formation de TNT 

sont régulées de manière différente. 

Il existe plusieurs protéines EHD différentes chez l'homme (EHD 1-4). Certains d'entre eux 

jouent un rôle dans la formation des cils et la voie de recyclage (Naslavsky et. Al., 2011). Il 

serait également intéressant de voir si ces protéines ont un rôle dans la formation de TNT. 

En plus de diriger les protéines pour la croissance des neurites et de maintenir les axones 

et les dendrites, le trafic et le recyclage des vésicules sont également impliqués dans la 

formation de différentes structures neuronales telles que la croissance des neurites, la 

formation d'épines dendritiques, etc. Le complexe d'exocystes est l'un des principaux 

composants du recyclage des endosomes , par exemple, Sec 6/8 est localisé au niveau 

des cônes de croissance et des neurites (Hazuka et. al., 1999). Rab11 régule la localisa-

tion de la N-cadhérine dans les neurones et la polarisation des neurones (Barnat et al., 

2017). Il est également rapporté que Rab5 agit en amont de Rab11 en régulant la migra-

tion des neurones, tandis que Rab7 régule le stade tardif de la migration dans les neu-

rones (Kawauchi et. Al., 2010). Des volants de membrane et des lamellopodes induits par 

Rac se forment en raison de la polymérisation de l'actine. La membrane de recyclage 

donne naissance à de nouvelles membranes de ces structures cellulaires (Bretscher et 

Aguado-Velasco, 1998). Cela indique que la voie de recyclage, l'excroissance des 

neurites et son effet sur les structures cytosquelettiques sont liés. 

Dans l'ensemble de nos études, Rab8a, Rab11a et Rab35, les trois montrent un effet 

positif sur le transfert de vésicules dépendantes du contact par les TNT. Par conséquent, 

cela pourrait être une voie intéressante pour étudier leurs effets les uns par rapport aux 
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autres, car les trois protéines Rab8a, Rab11a et Rab35 sont également impliquées dans la 

formation de protubérances cellulaires telles que les cils (Onnis et. Al., 2015, Kuhns et . al., 

2019). Les données préliminaires suggèrent que la régulation négative de Rab35 et la 

surexpression de Rab8 ou Rab11 n'ont aucun rôle sur la formation de TNT (données non 

présentées), ils peuvent fonctionner dans un autre mécanisme dans lequel Rab35 agit en 

aval de Rab8 et Rab11 et montre un effet sur les TNT. D'autres expériences sont 

nécessaires pour valider cela. 

Des études antérieures réalisées dans notre laboratoire ont montré que les filopodes et les 

TNT, même s'il s'agit de structures hautement enrichies en F-actine, sont régulés de 

différentes manières. Surtout dans les cellules neuronales, les protéines qui régulent les 

filopodes de manière positive se sont avérées réguler négativement les TNT, par exemple 

IRSp53 et VASP, tandis que l'Eps8 qui régule négativement les filopodes a un effet positif 

sur les TNT (Delage et al., 2016). MyosinX, qui s'est révélé être un régulateur positif pour 

les TNT dans de nombreuses études, régule les TNT et les filopodes par différents 

domaines sur la protéine (Gousset et. Al., 2013). 

Des travaux récents en laboratoire suggèrent que la structure de l'actine dans les TNT et 

les filopodes est différente (Sartori-rupp et. Al., 2019). Il serait intéressant d'étudier le rôle 

de Rab35, ACAP2, EHD1 dans l'ultrastructure des TNT. À partir de ces études, nous 

prévoyons d'établir le rôle de Rabs et son effet sur la formation de TNT. 

Ainsi, à partir des études menées au cours de mon travail de thèse, on peut conclure que 

les protéines Rab et certains effecteurs sont impliqués dans la formation du TNT. Les 

protéines qui peuvent être impliquées dans la croissance des neurites peuvent également 

être impliquées dans la formation de TNT. 
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Résumé : Les nanotubes de tunnellisation (TNT) 

sont des structures riches en F-actine qui relient 

des cellules distantes, permettant ainsi le trans-

port de nombreux composants cellulaires, no-

tamment des vésicules, des organites et différents 

types de molécules. Les TNT sont impliqués 

dans des processus cellulaires clés, tels que le 

développement, l'immunité et la régénération des 

tissus, mais également dans la transmission de 

divers agents pathogènes. 

Plusieurs facteurs moléculaires ont été identifiés 

pour participer à la régulation de la formation de 

TNT. Le complexe de l'exocyste est l'un des 

premiers facteurs moléculaires impliqués dans la 

formation de TNT. Ce complexe est également 

impliqué dans la fixation des vésicules sécré-

toires pendant la sécrétion, ce qui suggère que les 

protéines qui régulent le trafic vésiculaire pour-

raient jouer un rôle dans la formation de TNT. 

Nous avons émis l'hypothèse que la formation de 

TNT est modulée par des protéines qui partici-

pent à la fois à la régulation du trafic vésiculaire 

et au remodelage du cytosquelette d'actine, et 

que ces deux processus sont essentiels pour la 

formation de ces structures. 

Comme les GTPases de Rab sont les principaux 

régulateurs du trafic vésiculaire et participent 

également à la régulation du cytosquelette d'ac-

tine, nous avons examiné le rôle de cette famille 

de protéines dans la formation de TNT. Tout 

d'abord, nous avons effectué un criblage de plu-

sieurs protéines de Rab différentes pour son effet 

sur le transfert de vésicule dépendant de TNT. 

Nous avons constaté que Rab8a, Rab11a et 

Rab35 ont un effet positif sur le transfert de vési-

cule. Des études supplémentaires ont démontré 

que la surexpression de Rab8a et Rab11a aug-

mentait également le nombre de cellules connec-

tées au TNT. Lors de la surexpression de 

VAMP3 (une autre protéine impliquée dans le 

trafic vésiculaire), nous avons également observé 

une augmentation du nombre de cellules connec-

tées au TNT. Une analyse plus poussée a montré 

que les trois protéines, à savoir Rab11a, Rab8a et 

VAMP3, ont un effet sur la formation de TNT de 

manière cascade. Pour établir une relation entre 

Rab11a et Rab8a, nous avons vérifié le rôle de 

Rabin8 sur la formation de TNT (une protéine 

qui interagit avec Rab11 et qui active Rab8) et  

nous avons constaté qu’elle n’avait aucun rôle 

dans la formation de TNT. 

De plus, nous avons vérifié une autre protéine 

dont la fonction est similaire à Rabin8, à savoir 

GRAB (facteur d’échange de nucléotide de gua-

nine pour Rab3A) et son rôle dans la formation 

de TNT. Les résultats montrent que la surexpres-

sion de GRAB augmente la formation de TNT, 

mais qu’elle agit de manière indépendante de 

Rab11 et Rab8a pour réguler la formation de 

TNT.L'analyse de Rab35, une protéine impliquée 

dans le recyclage des endocytes, la cytokinèse et 

la croissance des neurites, a montré que la forme 

liée au GTP-Rab35 augmente également la for-

mation de TNT. La croissance des neurites est un 

processus essentiel pour établir la connectivité 

neuronale et le recyclage des vésicules joue un 

rôle crucial dans ce processus. Rab35 interagit 

avec plusieurs protéines impliquées dans le trafic 

vésiculaire, telles que ACAP2 (agit en tant que 

GAP de ARF6), MICAL-L1 (molécule interagis-

sant avec CasL-like 1, qui joue un rôle dans le 

recyclage des vésicules) EHD1 (un ciseau molé-

culaire) qui joue un rôle dans la scission de la 

vésicule). Sur les endosomes positifs pour ARF6, 

Rab35 recrute ACAP2 et MICAL-L1 et forme un 

complexe qui se lie à EHD1 pour réguler la 

croissance des neurites. Nos données suggèrent 

fortement que ces effecteurs pourraient égale-

ment être impliqués dans la formation de TNT. 

Individuellement, ACAP2, EHD1 et ARF6-GDP 

régulent la formation de TNT de manière posi-

tive. Mais la surexpression de MICAL-L1 dans 

les cellules ne montre aucun effet sur les TNT. 

En outre, des données préliminaires indiquent 

que Rab35 et EHD1 agissent dans un mécanisme 

en cascade pour réguler la formation de TNT. 

Ceci indique que la formation de TNT et la 

croissance des neurites peuvent agir de manière 

similaire, mais pas exactement. Les molécules 

identifiées ici qui jouent un rôle dans la forma-

tion de TNT constituent des cibles moléculaires 

potentielles pour les thérapies visant à bloquer la 

propagation d'agents pathogènes transférés à tra-

vers les TNT. 

Cette étude prouve que les protéines jouant un 

rôle dans le trafic vésiculaire et la croissance des 

neurites, telles que les protéines de Rab, partici-

pent également à la formation de TNT. 
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Abstract: Tunneling nanotubes (TNTs) are F-

actin rich structures that connect distant cells, 

allowing the transport of many cellular compo-

nents, including vesicles, organelles, and dif-

ferent kind of molecules. TNTs are implicated 

in key cellular processes, such as development, 

immunity, and tissue regeneration, but also in 

the transmission of various pathogens.  

Several molecular factors have been identified 

to participate in the regulation of TNT for-

mation. One of the early molecular factors that 

is implicated in TNT formation is the exocyst 

complex. This complex is also involved in the 

tethering of secretory vesicles during secretion, 

which suggest that proteins that regulate vesi-

cle trafficking could have a role in TNT for-

mation. We have hypothesized that the for-

mation of TNTs is modulated by proteins that 

participate in both, the regulation of vesicle 

trafficking and the remodelling of the actin cy-

toskeleton, and that these two processes are key 

for the formation of these structures.  

Since Rab GTPases are the major regulators of 

vesicle trafficking and also participate in actin 

cytoskeleton regulation, we examined the role 

of this protein family in TNT formation. First, 

we performed a screening of several different 

Rab proteins for its effect on TNT-dependent 

vesicle transfer. We found that Rab8a, Rab11a 

and Rab35 have a positive effect on vesicle 

transfer. Additional studies demonstrated that 

Rab8a and Rab11a overexpression also in-

crease the number of TNT connected cells. Up-

on overexpression of VAMP3 (another protein 

involved in vesicle trafficking), we also ob-

served an increase in the number of TNT con-

nected cells. Further analysis showed that all 

three proteins, i.e. Rab11a, Rab8a and VAMP3, 

show an effect on TNT formation in a cascade 

dependent manner. To establish a relationship 

between Rab11a and Rab8a, we checked the 

role on TNT formation of Rabin8 (a protein 

that interacts with Rab11a and activates Rab8a) 

and we found that it has no role in TNT for-

mation. Additionally, we checked another pro-

tein whose function is similar to Rabin8, i.e. 

GRAB (guanine nucleotide exchange factor for 

Rab3A) and its role in TNT formation. The 

results show that GRAB overexpression in-

creases TNT formation, but it acts in a pathway 

independent of Rab11 and Rab8a to regulate 

TNT formation. The analysis of Rab35, a pro-

tein involved in endocytic recycling, cytokine-

sis, and neurite outgrowth, showed that the 

GTP-Rab35 bound form also increases TNT 

formation. Neurite outgrowth is an essential 

process in order to establish neural connectivity 

and vesicle recycling plays a crucial role in this 

process. Rab35 interacts with several proteins, 

that are involved in vesicle trafficking such as 

such as ACAP2 (acts as GAP of ARF6), 

MICAL-L1 (molecule interacting with CasL-

like 1, which plays a role in vesicle recycling) 

EHD1 (a molecular scissor that has a role in 

vesicle scission). At the ARF6 positive endo-

somes, Rab35 recruits ACAP2 and MICAL-L1, 

and forms a complex that binds to EHD1 to 

regulate neurite outgrowth. Our data strongly 

suggest that these effectors may also be in-

volved in the formation of TNTs. Individually, 

ACAP2, EHD1 and ARF6-GDP regulate TNT 

formation in a positive manner. But MICAL-

L1 overexpression in cells shows no effect on 

TNTs. Also, preliminary data, indicates that 

Rab35 and EHD1 acts in a cascade mechanism 

to regulate TNT formation. This indicates that 

TNT formation and neurite outgrowth may act 

in a similar, but not exact pathway. The mole-

cules identified here that have a role in TNT 

formation, constitute potential molecular tar-

gets for therapies aiming to block the spreading 

of pathogens that transfer through TNTs. 

This study proves that proteins that have a role 

in vesicle trafficking and neurite outgrowth, 

such as Rab proteins, are also involved in TNT 

formation. 
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