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Abstract 
 

In this thesis, a simple methodology to find robust bandgaps is presented. Four different periodic structures 
are used as numerical examples for infinite and finite models. The first two are related to attenuation zones 
created for longitudinal waves using spring-mass and stepped rod unit cells. The Transfer Matrix method is 
used to model the unit cell. With this method, it is possible to obtain the frequency responses, using a spec-
tral method, and dispersion constants, solving an eigenvalue problem. The most influential physical and ge-
ometrical parameters are determined by performing partial derivative and finite difference sensitivity analy-
sis through an infinite model. Therein, for the second example, the cross-section area of half-cell is consid-
ered as a stochastic variable represented by a probability density function with specific deviation properties 
for a probabilistic analysis. The third example concerns the bandgaps for flexural waves using stepped beams 
unit cells. For this case, the classical Transfer Matrix method cannot be used to obtain finite structures re-
sponse in low frequency because of the presence of ill-conditioned matrices. Therefore, a recursive method 
termed Translation Matrix, which avoid matrix multiplication, is used and the corresponding probabilistic 
analysis is performed using the half-cell thickness as a random variable. An experimental analysis is also 
performed for this case, but considering half-cell length as uncertain. The last example is a periodic truss that 
is considered with and without smart components. The unit cell of this lattice structure can present passive 
and active members. As long as the type of unit cell is more complex, the finite element method is used. 
However, this kind of structure does not have impedance mismatches strong enough to open bandgaps alt-
hough the presence of repetitive substructures. In virtue of this, eight scenarios are investigated considering 
the introduction of concentrated mass on joints and piezoelectric actuators in resonant shunt circuit which are 
considered as stochastic for specific cases. For each structure model, a Monte Carlo Simulation with Latin 
Hypercube sampling is carried out, the distinctions between the corresponding uncertain attenuation zones 
for finite and infinite models are exposed and the relation with localized modes is clarified. These results 
lead to conclude that the finite models present a larger stop zone considering stochastic parameters than infi-
nite models. In other words, the uncertainties between neighbors’ cells compensate each other and the finite 
structures is naturally more robust. Finally, the effect of increasing the uncertainty level, by varying a sto-
chastic coefficient, is analyzed and the concept of robust band gap is presented. 

 

Keywords 
Periodic Structures, Vibration Control, Probabilistic Analysis, Uncertainty Propagation, Localization Phe-
nomena, Wave Propagation  
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Résumé 
 

Dans cette thèse, une méthodologie simple pour trouver des bandes interdites robustes est présentée. Quatre 
structures différentes sont utilisées comme exemples numériques pour des modèles infinis et finis. Les deux 
premières possèdent des zones d'atténuation créées pour les ondes longitudinales en utilisant des cellules 
unitaires de masses/ressorts et de barres. La méthode des Matrices de Transfert est utilisée pour modéliser la 
cellule unitaire. Avec cette méthode, il est possible d'obtenir les réponses en fréquence, en utilisant une 
méthode spectrale, et les constantes de dispersion, en résolvant un problème aux valeurs propres. Les 
paramètres physiques et géométriques les plus influents sont déterminés en effectuant une analyse de 
sensibilité aux dérivées partielles et aux différences finies à travers un modèle infini. Dans ce cas, pour le 
deuxième exemple, la section de la demi-cellule est considérée comme une variable stochastique, représentée 
par une fonction densité de probabilité pour une analyse probabiliste. Le troisième exemple concerne les 
bandes interdites pour les ondes de flexion utilisant des cellules unitaires de poutres. Dans ce cas, la méthode 
classique des Matrices de Transfert ne peut pas être utilisée pour obtenir une réponse de structure finie en 
basses fréquences en raison de la présence de matrices mal conditionnées. Par conséquent, une méthode 
récursive est utilisée. Une analyse expérimentale est également réalisée pour ce cas, mais considérant la 
longueur de la moitié des cellules unitaire comme incertaine. Le dernier exemple est un treillis périodique 
considéré avec et sans dispositifs intelligents. La cellule unitaire de cette structure en treillis peut présenter 
des éléments passifs et actifs. En raison de la complexité de ce type de cellule, la méthode des éléments finis 
est utilisée. Cependant, ce type de structure ne présente pas de ruptures d'impédance suffisamment fortes 
pour ouvrir des bandes interdites même en présence de sous-structures répétitives. En vertu de cela, huit 
scénarios sont étudiés en considérant l'introduction de masses concentrées dans les articulations, et les 
actionneurs piézoélectriques dans les circuits shunt résonants qui sont considérés comme stochastiques pour 
des cas spécifiques. Pour chaque modèle de structure, une simulation de Monte Carlo avec Latin Hypercube 
est effectuée, les distinctions entre les zones d'atténuation incertaines correspondantes pour les modèles finis 
et infinis sont exposées et la relation avec les modes localisés est clarifiée. Ces résultats suggèrent que les 
modèles finis ont une bande interdite plus large que les modèles infinis en considérant les incertitudes. En 
d'autres termes, les incertitudes entre les cellules voisines se compensent et les structures finies sont 
naturellement plus robustes. Enfin, l'effet de l'augmentation du niveau d'incertitude, en faisant varier un 
coefficient stochastique, est analysé et le concept de bande interdite robuste est présenté. 

 

Mots-clés 
Structures Périodiques, Contrôle de vibration, Analyse Probabiliste, Propagation d’incertitudes, Phénomène 
de localization, Propagation des ondes   
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Resumo 
 

Nesta tese, uma metodologia simples para encontrar bandas de atenuação robustas é apresentada. Quatro 
estruturas periódicas diferentes são usadas como exemplos numéricos para modelos infinitos e finitos. As 
duas primeiras estão relacionadas à zonas de atenuação criadas para ondas longitudinais utilizando sistemas 
massa-mola e barras como células unitátias. O método da Matrix de Transferência é usado para modelar a 
célula unitária. Com este método, é possível obter respostas em freqüência, usando um método espectral, e 
constantes de dispersão, resolvendo um problema de autovalor. Os parâmetros físicos e geométricos mais 
influentes são determinados pela realização de análises des sensibilidade através de derivadas parciais e dife-
renças finitas usando um modelo infinito. Para o segundo exemplo, a área de seção transversal de meia célula 
é considerada como uma variável estocástica representada por uma função densidade de probabilidade com 
propriedades de desvios específicas para uma análise probabilística. O terceiro exemplo diz respeito às ban-
das proibidas para ondas de flexão usando células unitárias compostas de vigas. Para este caso, o método 
clássico de Matriz de Transferência não pode ser usado para obter as respostas de estruturas finitas em baixa 
freqüência devido à presença de matrizes mal condicionadas. Portanto, um método recursivo denominado 
Matriz de Translação, que evita a multiplicação de matrizes, é usado e a análise probabilística corresponden-
te é realizada usando a espessura de meia célula como variável aleatória. Uma análise experimental também 
é realizada para este caso, mas considerando o comprimento de meia célula como incerto. O último exemplo 
é uma treliça periódica considerada com e sem componentes inteligentes. A célula unitária desta estrutura 
pode apresentar membros passivos e ativos. Enquanto o tipo de célula unitária for mais complexo, o método 
de elementos finitos é usado. No entanto, esse tipo de estrutura não possui rupturas de impedância fortes o 
suficiente para abrir bandas de atenuação, embora haja a presença de subestruturas repetitivas. Em virtude 
disto, oito cenários são investigados considerando a introdução de massa concentrada em articulações e atua-
dores piezoelétricos em circuito shunt ressonante que são considerados estocásticos para casos específicos. 
Para cada modelo estrutural, uma Simulação de Monte Carlo com amostragem de Hypercube latino é reali-
zada, as diferenças entre as zonas de atenuação incertas correspondentes aos modelos finitos e infinitos são 
expostas e a relação com modos localizados é esclarecida. Esses resultados levam a concluir que os modelos 
finitos possuem uma região de atenuação maior do as de modelos infinitos considerando parâmetros estocás-
ticos. Em outras palavras, as incertezas entre células vizinhas se compensam e as estruturas finitas são natu-
ralmente mais robustas. Finalmente, o efeito do aumento do nível de incerteza, variando um coeficiente esto-
cástico, é analisado e o conceito de banda de atenuação robusta é apresentado. 

Palavras-chave 
Estruturas Periódicas, Controle de Vibração, Análise Probabilística, Propagação de Incertezas, Fenômenos 
de Localização, Propagação de ondas  
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 Introduction 
1.1 Context 

 

In this thesis, attention is devoted to periodic structures. These structural arrangements have some par-

ticularities such as the way they are modeled as infinite assemblies of identical cells. Nonetheless, the situa-

tion of perfectness is unachievable in reality and a lack of information can be noticed in the literature. Be-

sides, these repetitive structures are an extremely exciting area of current research, which aims to improve 

the vibration attenuation in some frequency bands by creating or exploring periodicity already present in 

some kind of structures. Many examples can be mentioned like bridges, towers, antennas, satellites, space 

stations and shuttles, aircraft structures, among others. 

These structures can operate as “mechanical filters” achieving high levels of attenuation and overcom-

ing the limitations of traditional active, passive and semi-passive vibration controls. Beyond that, they are 

interesting because of their specific strength. They do not add considerable weight, being able even to reduce 

this characteristic, and they can resist important solicitations providing an extremely lightweight, resistant 

and compact solution. Concisely, this is a way to optimally guide energy inside the structure. However, the 

efficiency of the vibration reduction is limited in terms of frequency bandwidth, hence deep understanding of 

underlying physics and efficient modelling tools are required for the design of periodic structures. 

Concerning vibration control, an important aspect is the spectrum location of resonance frequencies. 

Some other interesting aspects that designers usually do not take into account are the positions of anti-

resonances. With periodic structures, for example, the superposition of dynamic vibration absorbers anti-

resonances can create large frequency bands of intense attenuation. 

Another concept that has been largely investigated over the last years is smart structures. This concept, 

allied to some specific materials that can exchange energy from different physical domains, defines the ca-

pacity of self-adapting to overcome unpredicted situations. These structures are composed by materials that 

can sense and actuate simultaneously. This ability transforms this kind of material in an interesting solution 

as it can be tuned to work in a specific mode. Moreover, this structure can have its health monitored continu-

ously due to the presence of sensors. 

Periodic and Smart Structures are promising concepts for the future of engineering. They can be com-

plementary to each other and this allows exploring further the limits of each of them. Before prospecting 

these improvements, it is important to create a trustworthy model to represent their behaviors. Then, it is 

necessary to exhaustively simulate, execute parametric studies and validate experimentally. Nevertheless, 
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these analytical or numerical models are most of the time deterministic and they are not able to represent 

every structure behavior. For example, a model for longitudinal waves in a rod does not to consider trans-

verse displacement. However, in reality, the excitation force can be able to excite motion in more than one 

direction. 

One limitation of simulating periodic structures is the high computational cost. Normally, it is possible 

to represent a phenomenon by knowing its fundamentals and assuming some hypotheses. Firstly, an analyti-

cal solution may be searched. A numerical solution is always a second option because it is more expensive 

and less accurate than analytical solutions. For example, a finite element model with a fine mesh can be 

highly expensive. Despite of that, if an analytical model cannot be used, model reduction techniques can be 

employed in numerical models to reduce computation time. Moreover, during the resolution, numerical is-

sues can appear increasing errors in results. For example, an ill-conditioned matrix can produce erroneous 

results by creating divergent data while using transfer matrix methods. It occurs due to the presence of insig-

nificant errors in previous steps due to matrix inversion that cumulate during the multiplication process. 

These matrices problems can appear even in semi-analytical models and they are present in the majority of 

numerical models. 
Therefore, the choice of suitable methods can increase the efficiency and reduce the computational 

cost. In addition, for some complex structures and situations, there is an obligation to employ some specific 

software. Automatic scripts are mandatory in engineering nowadays to simulate and design optimized struc-

tures considering the best performance without weakening, approaching to a failure situation, or reducing the 

robustness of them. 
With the progress of technology, brute force methods are becoming interesting to execute using paral-

lel computing. Computers with multiple cores can split repeated and independent tasks and the Monte Carlo 

Simulation and some optimization algorithms can be used. Some problems can be found when each core 

needs a software license to launch a batch simulation. In this case, some dependency to software can become 

a problem. They are easy to use but the designer can be blocked in some circumstances. For example, in 

some cases of parallel computing, each core needs a software license or a special one to run scripts in paral-

lel and, consequently, gain time.  In this case, the ubiquity of Matlab® and programing languages, as C or 

C++, can be interesting in these situations and homemade scripts are considerably appreciated. For example, 

a Matlab® loop for parallel computing can be easily implemented using a homemade function with no de-

pendency of another software. 
Uncertainty is a terminology used to describe situations involving unknown information or imperfec-

tion. 

In engineering, all kinds of manufactured structures are not perfect, have no exact dimension and this 

desired exactitude is not possible to be obtained, even if some tolerances are acceptable. They can present no 

observable defects and even a skilled worker cannot construct the same structure twice. In addition, these 

structures can face unanticipated situations for which they were not designed to withstand. 
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Every model is based on assumptions, and geometrical and physical properties are supposed to be de-

terministic except if the considered model is stochastic. For example, some parameters like temperature and 

pre-stresses may be seen as random variables as long as these components cannot be controlled or imposed 

in some occasions in vibration. Consequently, it becomes important to investigate uncertainties in all kind of 

structures. 

From a probabilistic analysis context, input variables can be considered as stochastic and they can be 

represented by probability density functions (pdf). Depending on the nature of these variables, specific pdfs 

are more suitable to represent the randomness of them. Generally, a normal distribution is used, but other 

types can be more suitable for specific situations as Uniform distribution for the same probability in a range, 

Lognormal or Gamma for non-negative values, and Beta distribution for strict border values. 

In reliability, the limit state function represents the threshold from a safe to a failure state. This state 

can be a performance requirement that has to be attainted. For periodic structures in vibration control, since a 

stop band is where there is no wave propagation, a predefined band can be used as condition and trespassing 

its borders can be a failure state.  

These outputs can be more sensitive to the variation of specific input variables. For this reason, before 

launching an expensive simulation without knowing these parameters, time can be saved by performing a 

sensitivity analyses. There are several methods to execute the local and global sensitivity analysis. The local 

one is performed varying one variable and keeping other inputs constants. Consequently, no interaction be-

tween input variables can be observed. In global sensitivity, the variation of all considered input parameters 

is essential to define the importance of each one and the interaction between them. Both sensitivity analyses 

have to be investigated for satisfactory results. For periodic structures, input variables can have their sensitiv-

ity calculated using infinite or finite models using unit cell parameters. Differently, the probabilistic analysis 

may present distinct results since unit cells are assumed to be perfectly placed side by side in the infinite 

model and it is not the reality for a finite structure.  

After constructing a trustworthy model, it is necessary to know if the model is robust enough to unpre-

dicted situations. Increasing the input variable uncertainty can be a manner to investigate if more robust 

structures can be constructed and their bandgap regions are not excessively sensitive to input parameters 

deviations. 
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1.2 Objectives 
 

In the context described above, the general objective of the research work reported herein is to con-

tribute with new ideas about parametric studies, sensitivity, probabilistic and reliability analysis involving 

periodic structures in vibration control. 

 

The general objectives established are the following: 

 

• Search for analytical solutions for bandgap borders (Bragg’s and local resonance); 

• Sensitivity analysis of periodic structure; 

• Evaluate numerically the effects of uncertainties on periodic structures; 

• Evaluate experimentally the effects of uncertainties on periodic structures; 

• Uncertainty propagation on periodic structures. 

 

1.3 Literature Review 
 

Some authors like Newton (1687) and Rayleigh (1887) were important scientists who contributed a lot 

to the development of the fundamentals of wave propagation. In order to understand in a simple way the 

wave propagation phenomenon, the governing equation behind the physics and the solutions to this equation, 

a simple string model is used in the following. 

In solid mechanics, a general tridimensional governing equation for wave propagation with no damp-

ing can be expressed as (Graff, 1975): 

 

( ) ( ) ( )uufu ×∇×∇−∇∇++= µµλρ .2 , (1.1) 

 

where λ  and µ  (G) are the Lamé parameters, ρ  is the density, f  is the force vector and u  the displacement 

vector. There are different ways to solve this differential equation and several types of waves can propagate 

in this model depending on boundary conditions. 

In the right side of equation (1.1), the first term multiplying the Laplacian ( µλ 2+ ) is known as P-

wave modulus. The P letter can have two meanings according to literature: Pressure (Dilatational) or Prima-

ry. The second term, restricted to shear modulus (G), describes the well-known S-waves. This S can also be 

interpreted for Shear or Secondary. In geology and earthquake science, these are known as body waves. 

Normally, waves can be classified in body and surface waves. P (Pressure or Primary) and S (Shear or Sec-

ondary) waves represent the first type. Rayleigh, Love and Lamb waves (Graff, 1975; Doyle, 1997) are ex-

amples of the second kind. They are equivalent to body waves with specific boundary conditions. 
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Equation (1.1) can be simplified and a simple example of unidirectional shear wave propagating in a 

string can be represented by 

 

uu
22

∇= c . (1.2) 

 

If the wave is propagating in a string, the wave speed can be calculated using ρfc =  where f  is 

the tension and ρ  is the linear mass density of the string. This is the simplest governing equation for a prop-

agating wave. The same equation can represent the longitudinal vibration in rods ( ρEc = , where E  is the 

Young’s modulus), torsion waves in beams ( ρGc = , where G  is the shear modulus) or acoustic pressure 

in ducts ( ργ pc =  where γ  is the adiabatic index and p  the pressure). 

Figure 1.1 shows a propagating wave in time domain for a fixed-fixed string with two density mis-

matches in the middle, i.e., a connection from different string densities on positions 0,333 and 0,666. An 

explicit method using finite differences was used to solve equation (1.2). 

 

 
Figure 1.1 Wave propagating in a string with two density mismatches, in normalized positions 0.333 and 0.666, and fixed-fixed boundary contitions. 

 

It is possible to observe the wave interaction with three distinct impedance mismatches, different den-

sities from higher to lower, the inverse and fixed boundary condition, and each one causes a different trans-

mission or reflection of the one-cycle sinusoidal wave. The tension f  is the same along this string but the 

red segment has 4 times the density value of black segments. Consequently, the wave speed in the middle 
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part is 2 times lower than in the other parts. Even in the absence of damping, the wave amplitude decreases 

in transmission during the passage of a discontinuity from a black to red part. In the opposite direction, it 

increases. The reflection on fixed boundary conditions causes the inversion of wave sense but the amplitude 

remains the same. It is analogous to a reflection from low to high-density part, but with change in amplitude 

because a part of energy is transmitted. Oppositely, when there is reflection from high to low density part, 

the speed and amplitude are inverted, the reflected wave has a lower amplitude and part of the energy is 

transmitted. It is similar for a sliding boundary condition with no transmission and full energy reflection at 

the end. 

The exactitude of input parameters such as same length segments, perfect wave interaction in discon-

tinuities and values for tension and density enable the formation of a moustache picture in the middle of this 

string when normalized time is 9 in Figure 1.1. Shortly thereafter, these waves interacted destructively.  

Some questions may appear when all these input parameters are not deterministic and this kind of waves has 

to be mitigated. 

Steady wave or standing waves can be understood as vibration modes (Graff, 1975; Doyle, 1997). 

Considering harmonic excitation, there is a plenty of methods to control or mitigate the vibration of these 

modes. They can be mainly classified in two types: active and passive control. 

In the first one, it is necessary to inject energy to the system to oppositely suppress or dissipate the un-

desirable energy. In the second one, no external energy is needed and passive ways of dissipation are used. 

Reusing the Figure 1.1 with some analogies, introducing a similar motion with same phase but opposite 

magnitude can create a destructive interference. In active control, generally, a force performed by actuators 

can be used to compensate for the motion measured by sensors. For passive control, for example, viscoelastic 

tapes can be glued to the structure adding damping and thermally dissipating energy. 

In addition, dynamic vibration absorbers (DVA) can be employed to reduce the vibration level for a 

determined frequency. The first idea of this mechanism was proposed by Frahm (1907). Den Hartog (1956) 

presents a complete tuning guide for this. 

In optimization of engineering structures, removing or replacing material can produce a more resistant 

and lighter assemble. However, it is necessary to respect design constraints and safety requirements. 

Nowadays, periodic structures have being intensively explored. The repetitive impedance mismatch 

created by boundary conditions can induce wave interactions that may be beneficial for wave attenuation. A 

well-chosen material and specially designed geometries can maximize some effects inside these structures. 
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1.3.1 Metamaterials and Periodic Structures 

 

Metamaterials are artificial materials that present atypical characteristics that cannot be found in natu-

rally occurring materials.  

Periodic structures are a particular type of metamaterial and their analysis in scientific literature can be 

traced back to Newton (1687), when he described the propagation of sound in air, as mentioned by Brillouin 

(1946). Recently, it was discovered that even spider webs can present periodic properties (Schneider et al, 

2016). These characteristics can cause waves interferences and energy can be trapped or guided. Bragg 

(1915) discovered dispersion bandgaps that are frequency bands in which only evanescent waves can occur, 

rendering any propagation impossible. This finding granted him and his son the physics Nobel prize of 1915 

(Bragg, 1922). 

In the last few years, the study of these periodic structures has been a very active research in the field 

of wave propagation and vibroacoustics (Banerjee, 2011). A recent article published in Nature about perio-

dicity in spider webs (Schneider el al, 2016) exemplifies the potential of this kind of structures and other 

examples present in nature are showed in Figure 1.2. 

 

(a) (b) (c) 

   

 

Figure 1.2 Examples of periodic structures in nature: (a) bamboo, (b) honeycomb and (c) spider web. 

 

Many concepts originally developed in physics have been considered in the quest for solutions to dif-

ferent kinds of engineering problems. However, their capacity has not been explored at the same level. 

The manifested interest in periodic structures is explained by the unusual phenomena related to wave 

propagation in periodic systems, which can be found in various physical domains, such as dispersion of 

sound waves (Hussein et al., 2014), vibrations in solid media (Hussein et al., 2014), propagation of magnetic 

waves (Sigalas et al., 1996) or light waves and even electron motion (Anderson, 1958). In particular, some 

studies have demonstrated the great potential of the use of periodic structures for noise and vibration attenua-
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tion (Hussein et al., 2014), the protection of buildings against seism motion (Banerjee, 2011) and even the 

possibility of producing light cloaking and, consequently, artificial invisibility (Banerjee, 2011). 

Impedance mismatches, also referred to as discontinuities, can be created by periodically changing 

physical or geometrical equivalent properties as inertia and stiffness in acoustical and electromagnetic do-

mains. These materials can be classified as phononic and photonic metamaterials, respectively. This perio-

dicity induces wave interactions that can create constructive or destructive interferences. In solid mechanics, 

repetitive concentrations or even the absence of mass or stiffness can create ''mechanical filters'' which al-

lows or not the passage of waves in certain frequency bands. These bands are called frequency stop-bands or 

band gaps. 

Several researchers have made significant contributions (Mead, 1996; Hussein et al., 2014; Mester and 

Benaroya, 1995). Hussein et al. (2014) presents an important historic review about the past, present day and 

future of periodic structures. As mentioned by the authors, there is a great potential. However, different and 

numerous models considering infinite and finite structures are used. Some of them are discussed in the fol-

lowing.  

Briefly, a unit cell is a structure that is repeated side by side to assemble a complete structure. As long 

as these cells are identical, appropriate periodic boundary conditions (Floquet, 1883; Bloch, 1929) can be 

taken into account and an infinite model can be created. Considering one dimension, equation (1.3) presents 

the Floquet-Bloch theorem: 

 

( ) ( )xXlxX λ=+ , (1.3) 

 

where ( ) ( ) ( ){ }xfxuxX ;=  can be the state vector, with u  the displacement and f  the force, x  the position, 

l  the cell length, or spatial period, and λ  is the Floquet multiplier for a unidirectional wave propagation. 

According to equation (1.3), for µλ e= , equations (1.4a) and (1.4b) are, respectively, the conditions of conti-

nuity and equilibrium to the left ( L ) and right ( R ) of the unit cells n  and 1+n . 

 
)()1()( n

L
n

L
n

R ueuu µ== + , (1.4.a) 

)()1()( n
L

n
L

n
R feff µ−=−= + . (1.4.b) 

 

These are the boundary conditions of the unit cell. The resolution of the system with these boundary 

conditions provides µ ∈  ℂ as a function of ω . This variable µ  is called propagation constant. It has a real 

part (δ ) and an imaginary part ( ε ) that are known as attenuation and phase constants, respectively (Mead, 

1996; Hussein et al., 2014). For a purely imaginary µ , the waves propagate and the frequency zone is a pass 

band. For a real µ , the waves are attenuated and this zone is a stop band, also known as a band gap.  
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Orris and Petyt (1964) used the finite element technique to evaluate periodic structures. They show 

that this method is simple to apply and very complex structures can be analyzed. Nonetheless, its conver-

gence has to be always checked and the higher the number of finite elements, the higher the computational 

cost. 

Using an exact wave-based method, Leamy (2012) shows a procedure that is more faithfull to reality 

while modeling the finite nature of 2D lattice connections. This characteristic makes this method attractive 

for uncertainty analysis. If the finite element models are ready to use, it is possible to investigate physical 

properties of complex systems. 

Bragg’s band gaps are created according to cell length and discontinuity position while local reso-

nance bandgaps are created as consequence of superimposing the effect of multiple resonators in same fre-

quency. 

Clayes et al. (2013) show that resonance band gaps can provide stop-bands in lower frequencies with 

more attenuation than Bragg’s band gaps (Bragg, 1915), although, the first type of attenuation zone has a 

narrower band comparing to second one. 

The influence of damping and damping localization is addressed by Jensen (2003) and Bouzit and 

Pierre (1995a). The last authors analyze the influence of damping in periodic structures and compare the 

energy confinement or dispersion and energy dissipation created by periodic and damped structures, respec-

tively. Collet et al. (2012) also analyzes a periodic damped structure. 

The presence of defects in 2D periodic structures is explained by Movchan (2006) and new kinds of 

repetitive structures are also investigated. For example, cyclic periodic structures are presented by Xie and 

Ariatanam (1996a, 1996b). Jensen and Pedersen (2006) presented an interesting work about topological op-

timization and Xie (1997) about disordered large planar lattice trusses. 

New kinds of structures inspired by Fibonacci series and fractals were also studied by many researches 

(Poddubny and Ivchenko, 2010). Chen and Wang (2007) analyzed quasi-periodic structures and investigate 

other kind of periodicity imposed by Fibonacci aperiodic structures compared to periodic disordered struc-

tures. This type of structure can be interesting due to its capacity of superimposing attenuation zones. The 

same property is presented by Trainiti et al. (2016) with graded undulated structural lattices. 

Periodic structures with auxetic properties (negative Poisson coefficient) can redirect the energy as 

presented by Billon et al. (2016) using hierarchic structures and by Ruzzene and Scarpa (2005) with honey-

combs with different geometries. 
Moreover, these structures can be tuned and this subject is expected to continue attracting interest in 

the future, as discussed by Hussein et al. (2014). A powerful and wise solution can be the use of smart mate-

rials and structures with periodic structures. 
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1.3.2 Smart materials and structures 

 

One important step before describing the smart structures is to describe the smart materials. In this 

work, their use is focused on vibration control by actuating and sensing vibration. 

According to Leo (2007), smart materials exhibit coupling between multiple physical domains. In oth-

er words, they have the capacity to convert energy from one domain to another. 

The most important characteristic of smart materials is their capacity of self-sensing and self-changing 

to adapt to new conditions according to design requirements. Some fundamental aspects of these intriguing 

materials can be found in (Leo, 2007).  

 

(a)  (b) 

 

 

 
 

Figure 1.3 Examples of Smart Materials: (a) Piezoelectric and (b) Shape memory polymers (reproduced from Butaud et al. (2016)). 

 

Figure 1.3 shows two types of these materials: piezoelectric and shape memory polymers (Butaud et 

al, 2016). The first set consists in ceramic materials that convert energy between mechanical and electrical 

domains. The second one is thermomechanical material that deforms when heated and cooled. 
Ruzzene and Baz (2000) shows a periodic rod with shape memory inserts that are placed periodically 

along a rod to act as a source of controllable impedance mismatch by changing the temperature and, conse-

quently, the elastic modulus. Similarly, but for a plate structure with steel cylinders, Billon (2016) uses the 

temperature change as a switch effect. A shape memory polymer is placed between the plate and the cylinder 

and, for high temperatures, the structure loses the periodicity effect. 

Giving a special attention to piezoelectric materials, a seminal work about PZT patches with shunt cir-

cuits was done by Hagood and Von Flotow (1991). They developed the idea of a dynamic vibration absorber, 

as presented by Den Hartog (1956) or Frahm (1907), using electric resonator instead of classical mechanical 

one. 
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For example, if a piezoelectric actuator is linked in series with a resonant shunt circuit, it will dynami-

cally behave as adding a Dynamic Vibration Absorber (DVA) (Leo, 2007; Hagood and Von Flotow, 1991; 

Preumont, 2004). This kind of mechanism creates resonant bandgaps if placed periodically in a structure. 

More information about DVAs can be found in (Den Hartog, 1956; Korenev and Reznikov, 1993; Rade and 

Steffen, 2000). The principle behind this strategy is that the vibrational energy is transformed into electric 

energy through the direct piezoelectric effect and is transferred to the circuit where it is partially dissipated 

and/or dispersed. Among the types of used electric circuit, RL, known as resonant circuits, are considered as 

some of the most efficient (Hagood and Von Flotow, 2013; dell’Isola et al., 2004). Such circuits comprise an 

inductor and a resistor that are connected to the piezoelectric transducer that is assimilated to a capacitor, 

thus forming an RLC circuit. When coupled to a dynamic system, this device operates similarly to a dynamic 

vibration absorber (DVA). For example, Thorp et al. (2001) uses shunted piezoelectric patches along rods to 

control longitudinal vibration. Distributing these devices may lead to multimodal control (dell’Isola et al., 

2004). As adding damping for DVAs, adding electrical resistance adds damping for energy dissipation in a 

same way. For example, using a periodic array of piezoelectric patches, Lossouarn et al. (2015a, 2015b) 

shows a multimodal vibration damping of a rod and a beam and Tateo et al. (2014b) in a plate and Collet et 

al. (2012) defines the optimal electric impedance of the shunt circuit. 
Claeys et al. (2013) describes the difference between placing a localized mass and a DVA in a period-

ic structure. Normally, increasing the mass density in one specific degree of freedom (dof) in a unit cell may 

create a large band gap but with weak attenuation. Oppositely, by adding a spring-mass dof, it is possible to 

create resonant band gaps whose attenuation zones are narrower but with strong dispersion thanks to lower 

frequency response amplitudes. Collet et al. (2012) and Tateo et al. (2014a) show that it is possible to syn-

thetize negative resistance or capacitance with operational amplifiers, but it needs inserting energy in the 

system and it is a semi-passive method. The main advantage of using piezoelectric actuators, rather than 

DVAs, is the characteristic of no addition of significant mass to the main structure and the convenience of 

electronically tuning without changing geometric properties. Moreover, these circuits can be redesigned and 

unusual behaviors can be included. One example of this is the negative capacitance shunting (Park and Baz, 

2005), which aims at removing the intrinsic capacitive effect of the piezoelectric patch (Marneffe and Preu-

mont, 2008). This may be combined with resonant circuits (Casadei et al, 2012), opening the way to new 

strategies with wideband efficiency (Lossouarn et al., 2015, Tateo et al., 2014a; Tateo et al., 2014b). 

Signorelli and Von Flotow (1987, 1988) show the wave propagation behavior in 2D truss structures by 

using beam finite element and the Transfer Matrix method. This sort of structure also has the weightlessness 

as its major characteristic. In virtue of this, the use of piezoelectric actuator in these lattices structures seems 

to be a good compromise because it favors the lightness design requirements. Nevertheless, uncertainty and 

robustness analysis are rare in literature. Near-periodic structures, defects, impurities in periodic structures 

and the localization phenomena are well detailed in (Li and Benaroya, 1992; Li and Benaroya, 1994a, 1994b; 

Mester and Benaroya, 1995), but robustness analyses are scarce. 
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The robustness of these repetitive structures whose attenuation zones are created and passively con-

trolled by using piezoelectric stack actuators is associated with electrical shunt circuits (Leo, 2007; Hagood 

and Von Flotow, 1991). Just like DVAs, shunt circuits must be tuned, which means that the values of their 

electric parameters must be precisely chosen for vibration attenuation in a narrow frequency band. However, 

the characteristic values of electronic components are prone to variability, due to manufacturing process and 

temperature, which can lead to mistuning and, consequently, decreasing of the control performance. 

In this scenario, it becomes essential to evaluate the probability that the system will comply with the 

design requirements, given the probability density functions ascribed to the uncertain variables considered. 

Periodic nature for dispersion and damping nature for dissipation can be used together to improve the attenu-

ation. The capacity of tuning incorporated to periodic structures can be a solution, adding robustness to the 

system and, for example, compensate any structural uncertainty. 

Truss structures are versatile by themselves because of their properties as high resistance and low 

weight compared to solid profiles. To exemplify this polyvalence, their configuration can be optimized ac-

cording to the local of high solicitations to increase their resistance. In addition, this kind of structure pre-

sents repetitive substructures, but, normally, this characteristic is still uninvestigated despite its potential for 

passively controlling vibration. Furthermore, this structure can be combined with smart bars or beams to 

explore the tunability of periodic materials and increase its robustness. 

More information about periodic and smart structures is shown in (Thorp et al., 2001) and (Spadoni et 

al., 2009). Another advantage of incorporating smart structures to periodic structures is the possibility of 

managing non-perfect periodicity while tuning semi-passive shunt circuits. It is possible either to compensate 

manufacturing defects or voluntarily breaking the periodicity. From a more academic point of view, it opens 

the way to the control of uncertainties for experimental validation of stochastic methods. In addition, some 

aspects like localization phenomena can be deeply investigated in both cases: Bragg scattering and local 

resonances. 

There are several methods to model periodic structures.  However, the same methodology cannot be 

used for all mentioned structures because, as the structure becomes more complex, closed form exact analyt-

ical solutions are not available anymore. 

The Transfer Matrix method, generally used in acoustics or elastic waves (Thompson, 1950), can be a 

good choice for 1D waves. However, it can present instability problems. Dazel et al. (2013) proposes a re-

cursive method to avoid matrix multiplication. Other alternatives like wave method (Leamy, 2012); re-

ceptance method (Mead, 1996) can be used to obtain exact analytical solutions. For more complex unit cells, 

the use of numerical methods like Plane Wave Expansion (PWE), Semi-Analytical Finite Element (SAFE) 

(Gravic, 1995), Finite-Difference Time- Domain (FDTM) and Wave Finite Element (WFE) (Mencik, 2014; 

Silva et al., 2016). However, some of these numerical methods can present excessive computational cost for 

complex unit cells and it becomes impracticable. 

Signorelli and Von Flotow (1988) showed that a truss presents some complex modes while modelling 

a truss with beam finite elements. These modes are not easy to interpret. There is a possibility that these 
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modes are related to the resonance of internal components. Chesnais et al. (2012) described these inner reso-

nances using an analytical method to represent a truss with equivalent beam models. Noor et al. (1978) also 

investigated the periodicity of truss structures. Trainiti et al. (2015, 2016) considered undulated frames, 

which seems to be motivated by symmetric and antisymmetric Lamé modes, presented the coupling effect of 

different types of waves. 

These references illustrate the great potential of these structures. However, probabilistic analysis of 

these structures is a scarce subject in literature. In practical applications, all parameters used in these works 

present uncertainties and this can jeopardize their envisaged effect. 

Several researchers have already made significant contributions (Mead, 1996; Hussein et al., 2014; 

Mester and Benaroya, 1995) according to periodic structures. However, from a probabilistic point of view, 

there is a very low number of contributions about the influence of uncertainties in these structures and their 

robustness. Like any type of structure, these systems are inevitably subjected to the presence of uncertainties 

in the physical and geometrical parameters (Haldar and Mahadevan, 2000; Lemaire, 2009; Melchers, 1987). 

Stochastic approaches are widely used in various engineering fields to estimate the impact of parametric or 

even non-parametric uncertainties (Ichchou et al., 2011) on the features of interest. As far as periodic struc-

tures are concerned, some very early works suggested that considering uncertainties in the analyses might be 

of importance. For example, Montroll and Potts (1955) explained the effect of defects on lattice vibrations, a 

few years before Anderson’s discovery (1958): he suggested the Localization Phenomena in his paper about 

“Absence of Diffusion in Certain Random Lattices” which granted him the physics Nobel prize of 1977 

(Anderson, 1977). After him, many researchers followed the same domain investigating deeply this interest-

ing revelation (Bogdanoff and Chenea, 1961; Soong and Bogdanoff, 1963; Bliven and Soong, 1969). 

Some interesting aspects about disorder (Bansal, 1978; Lin and Yang, 1974; Lin, 1996), impurities, ir-

regularities (Hodges, 1982) or defects and imperfections (Luongo, 1992) have been investigated. To our best 

knowledge, many articles about the localization phenomena in disordered periodic structures have been pub-

lished, but no study about their robustness and/or reliability was carried-out. 

Li and Benaroya (1994) present in a simple way how localization phenomena happens in rod struc-

tures with longitudinal displacement. In their review, Mester and Benaroya (1995) show the most important 

contributions considering uncertainties in periodic and near-periodic (disordered) structures and some im-

portant concepts as quasiperiodic, aperiodic or near-periodic structures, which are used by many authors to 

describe the disordered structures. Bansal (1997) states that, in reality, due to manufacturing limitations, 

engineering structures are not ideally periodic and they are disordered in the sense that the cells are not iden-

tical. They can have random imperfections. 

Lin (1996) makes an important view about uncertainties saying that the ignorance and the lack of ca-

pacity to control all parameters in a simulation forces the need of considering uncertainties.  

Hodges (1982) has shown that confinement of vibration by irregularity is another way to refer to local-

ization phenomena. Kissel (1988; 1991) also explains this phenomenon in his doctorate thesis. Some exper-

13 



Robust bandgaps for vibration control in periodic structures 

Chapter 1 - Introduction 

imental results are presented by Bouzit and Pierre (1995); Junyi and Balint (2015) and Junyi et al. (2016) 

who found it experimentally because of boundary conditions.  

1.4 Research context 
 

The main purpose of this work is to describe how uncertainties affect the performance of a smart peri-

odic truss designed for vibration control. Indeed, longitudinal, shear and flexural waves can all propagate at a 

same time on the structure depending on the excitation type. These periodicities can create bandgaps in dif-

ferent frequency bands for each type of wave. Moreover, Bragg’s, resonance and coupling modes bandgaps 

can appear as described in literature. There is a huge new horizon to explore. 

For the sake of clarity, in the present work, there is a progressive development of the uncertainty sub-

ject from simple structures as spring-mass systems, continuous bars and beams to smart trusses. The sche-

matic idea is represented in Figure 1.4. 

 

 

 

Figure 1.4 Evolution from spring-mass systems, rods and beams to smart trusses. 

 

Firstly, before engaging probabilistic analysis, an accurate and efficient program is necessary.  There-

fore, some methods were considered as showed in Figure 1.5. The criteria for choosing these methods were, 

firstly, the presence of analytical solution to avoid numerical errors and, secondly, the fastest semi-analytical 

and numerical solutions to the best of our knowlodge. 
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Figure 1.5 Proposed solutions. 
 

In the context outlined above, the specific objectives of the research work reported herein are: 
 

• Analyze longitudinal waves using Transfer Matrix method on: 

o spring-mass systems considering Bragg’s and local resonance bandgaps for 

 Analytical local sensitivity analysis using partial derivatives; 

o stepped rod unit cell considering Bragg’s bandgaps for 

 Numerical local sensitivity analysis using finite differences; 

 Probabilistic analysis using infinite and finite models; 
 

• Analyze flexural waves using Translation Matrix method to: 

o perform a parametric study on geometrical properties; 

o perform a probabilistic analysis using infinite and finite models; 
 

• Experimental evaluation on random dimensions of periodic structures; 

• Probabilistic analysis of classical and smart periodic trusses using finite and infinite models. 
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1.5 Organization of the thesis 
 

This thesis is organized in six chapters, including this first, devoted to contextualization of the re-

search work and statement of the objectives. All of them describe 1D wave propagation but involving one to 

several sorts of waves. For the sake of easy understanding, there is a progression of ideas from simple struc-

tures to complex ones. 
In the second chapter, simple models of continuous bar and spring-mass systems are considered. The 

basic concepts necessary to comprehend infinite models are enlighten. The Transfer Matrix method is used 

and the exact solution for these periodic structures is presented. There is an inspection of Bragg’s and local 

resonance stop bands. Local sensitivity analyses are performed. A probabilistic analysis is carried out using  

Monte Carlo Simulation combined with Latin Hypercube sampling. 
In the third chapter, flexural waves in periodic structures are investigated. Simple models using con-

tinuous Euler-Bernoulli beams are analyzed. The Translation Matrix method is presented using a recursive 

method. A probabilistic analysis is carried out using the same idea as the previous chapter. 

The fourth chapter presents an experimental survey of previous structures. A complete model present-

ing longitudinal, flexural and shear waves is used. The experiments aimed to verify what was proposed nu-

merically in the previous chapters.  
The fifth chapter addresses truss structures with periodic assumptions. A probabilistic analysis is per-

formed with a bar finite element tridimensional truss composed by passive and active members. A beam 

finite element tridimensional truss is used to investigate the inner resonance effects. 

Finally, the sixth chapter presents the final conclusion and perspectives. 
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 Longitudinal waves 
2.1 Introduction 
 

A beam-like truss will always present 1D waves. This type of wave can be represented by a discrete 

model using a simple spring-mass system or by a continuous model using a uniform rod. For the first model, 

two kinds of stop bands can be created. They are known as Bragg’s and local resonance bandgaps. The sec-

ond model can present just Bragg’s scattering as long as discrete mass-springs are not attached to the rod. 

For both cases, considering just scattering and no resonance, the relation between wavelength and cell 

length (spatial periodicity), and the distance between positions of wave reflection, determine the frequency 

around which this attenuation zone can be created. However, intensity and type of impedance mismatch also 

define the frequency borders of this zone because they change wave reflection and transmission behaviors. 

The presence of discontinuities caused by inertia or stiffness change can shift the stop band position. 

The Transfer Matrix method is a powerful technique to deal with periodic arrangements of unit cells, 

in which analytical description of the movement of the cells can be used. This method, also known as 

Thompson-Haskell Method (Dazel et al., 2013; apud Thompson, 1950; Haskell, 1953), is widely used in 

acoustics for sound wave propagation through multilayers. For multi-coupled models, this method can pre-

sent instability problems as the number of degrees of freedom increases. However, it provides accurate re-

sults for mono-coupled systems in low frequency band. 

In this chapter, a general spring-mass unit cell is generated based on the formulation presented by Bril-

louin (1946) and Hussein et al. (2014). The goal is to find the analytical equations for the frequency value on 

attenuation zones borders and to enlighten the procedure to extend the same methodology to more complex 

structures. The principal advantage of these analytical equations is that their partial derivatives in function of 

any input parameter can be easily obtained. This measure can represent the local sensitivity of a function and 

an explicit implementation reduces the computational cost. The calculation is faster and the results are more 

accurate as compared to numerical analysis. It is also convenient for a probabilistic analysis that normally 

needs a high number of samples. 

Following this line of reasoning and considering a continuous rod, this chapter also proposes a method 

to determine a robust bandgap according to considered uncertainty levels. After knowing the advantages of 

each methodology, the following work is also based on Transfer Matrix method for a simple rod model 
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(Ruzzene and Baz, 2000; Ruzzene and Scarpa, 2003; Lin, 1996) and its mode shapes are used to better ex-

plain the localization phenomena. 

Initially, a simple non-periodic rod model is proposed and its exact solution is presented. In a second 

step, this rod is divided into two segments and its exact solution is also achieved considering the same mate-

rial and different cross section areas. This two segments rod is used as unit cell and the transfer matrix is 

used to find the exact solution for finite and infinite structure models. The frequency response function is 

obtained by using a spectral method (Doyle, 1997) and the dispersion constants are found by solving an ei-

genvalue problem. 

A local sensitivity analysis is performed using an infinite model to discover the most influential input 

variables in band gaps frequency characteristics. It is important to mention that this analysis is performed 

with one cell repeated infinitely. Therefore, the effect of only one cell in a finite structure is not observed for 

this analysis. After, a brute force Monte Carlo Simulation (Haldar and Mahadevan, 2000; Lemaire, 2009; 

Melchers, 1987) is used to model the stochastic behavior of this structure to compare the effect of uncertain-

ties considering an infinite and a finite structure. 

For finite periodic structures, the number of cells increases the wave attenuation inside band gaps. 

However, the finite structures studied in this chapter can present natural frequencies inside the attenuation 

zones. These modes cannot be found by calculating the dispersion constants. This peculiarity is known as 

localization phenomena (Anderson, 1958) and it is well detailed by Mester and Benaroya (1995). For specif-

ic situations, this mode can be found by considering a single cell eigenvalue problem (Mead, 1975a; Mead, 

1975b; Hvatov and Sorokin, 2015), but this is not deeply investigated here. However, some other effects due 

to random localized modes contribute to intensify the natural robustness of this kind of structure.  

Finally, a probabilistic numerical example is used to explain this special characteristic and the notion 

of robust bandgaps is established considering infinite and finite models. 

The main contributions are the novelties related to the robustness of periodic structures, while compar-

ing infinite and finite models, and investigations about localization phenomena corresponding to one cell 

free-free spectral analysis and strong impedance mismatch for a specific cell. This fact can create localized 

modes and cause the misinterpretation of bandgap borders. As long as these localized modes are inside the 

attenuation but they do not change the band gap border value, i.e., for a finite structure composed by numer-

ous unit cells, these characteristics add robustness to this kind of structure. However, if the number of cells it 

low, this natural frequency can change the bandgap border.  
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2.2 Longitudinal waves in rods 

2.2.1 Discrete systems 

 

Spring-mass chains can be used to represent a dispersive-media for longitudinal vibration. The pur-

pose of using this model is to investigate the differences between Bragg and local resonance bandgaps. Simi-

lar to the model proposed by Hussein et al. (2014), the unit cell presented on Figure 2.1 is used to obtain a 

general spring-mass model using Transfer Matrix method. 

 

 
 

Figure 2.1 Example of spring-mass unit cell. 
 

A spring-mass system with two masses, iM  and riM , and two springs, iK  and riK , is presented in 

Figure 2.1. The mass and the spring with subscript r indicate that they are connected as an internal resonator-

to the first mass. As long as there is no internal force in this case, rf  is equal to zero. In the whole chapter, no 

damping is considered and the governing equation of this unit cell is represented by: 

 

)()()( ttt FKUUM =+ , (2.1) 
 

where M  is the mass matrix, K  is the stiffness matrix, U  is the vector with displacements and F  is the 

force vector in function of time t. The equation (2.2) shows the matrices and vectors elements of equation 

(2.1). 
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Considering a harmonic solution, 
tj
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equation can be found 
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The absence of force on internal resonator allows the condensation of this degree of freedom and the 

equation (2.4) is obtained, 
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where the dimensionless frequency is 0ωω=Ω  with ii MK=0ω and the dimensionless tuned frequency is 

riri ωω=Ω  with ririri MK=ω . Using equation (2.4), the Transfer Matrix method can be used to model 
infinite and finite arrangements of spring-mass systems. 

Rearranging the equation (2.4), the corresponding degrees of freedom on the right (R) and on the left 

(L) can be disposed as 
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which writes ( ) ( ) ( )ωωω ,, iiiiii xlx yTy =+  with ( ) [ ]Tiii fux ˆˆ, =ωy . Considering the dofs on the right and on the 

left of cell i , one has 
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To assemble a finite structure, these Transfer Matrices can be sequentially multiplied and the relation 

between state vectors from first cell to the n-th cell is 

 
( )

( )
( )

∏ −
−







=







 1

1
n

i L

L
in

n

L

L

f
u

f
u

ωT . (2.8) 

 

This equation can be rearranged back as 
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where the dynamic flexibility matrix is 
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with 12T , 21T , 22T  and 11T  the line and column components of multiplied transfer matrix. Using ( )ωT  and 

( )ωD , infinite and finite models can be implemented. Dispersion constants can be obtained by calculating the 

eigenvalues of ( )ωT  and the frequency response functions can be obtained by choosing the corresponding 

dofs of excitation and response in ( )ωD . 

Figures 2.2(a), 2.2(b) and 2.2(c) show the dispersion diagrams calculated using the resultant transfer 

matrix for three different cases. They consider a unit cell with one, two and three spring-mass subsystems, 

whose properties are listed in Table 2.1. In these simulations, no internal resonators are considered ( 0=riM ). 

The propagation constants are εδµ i+= , being δ  the attenuation constant (for evanescent waves) and 

ε  the phase constant (for propagating waves). 

The magnitudes of their respective frequency response functions, computed by considering one and 

ten cells, are depicted in Figures 2.2(d), 2.2(e) and 2.2(f).  

 
Table 2.1 Spring and mass values for three types of unit cells (without internal resonators). 

Cases unit cell  M1 K1 M2 K2 M3 K3 

1 1 Mass + 1 Spring 1 1 - - - - 

2 2 Masses + 2 Springs 1 1 2 1 - - 

3 3 Masses + 3 Springs 1 1 2 1 1 1 
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(a) 

 

(b) 

 

(c) 

 

   
(d) 

 

(e) 

 

(f) 

 
 

Figure 2.2 Dispersion diagrams for different unit cells: (a) case 1, (b) case 2 and (c) case 3, and FRF amplitudes computed for 1 and 10 cells: (d) case 

1; (e) case 2; (f) case 3. 
 

The frequency responses for one cell shown in Figures 2.2(d), 2.2(e) and 2.2(f) show that if there are 

natural frequencies inside the bandgap region (grey areas identified in the dispersion diagrams), these peaks 

are also present inside this attenuation zone for a finite structure with ten cells (see Figure 2.2(e)). It is im-

portant to notice that if these frequencies are near to bandgap borders, they can overlay the borders calculat-

ed using dispersion constants on Figures 2.2(a), 2.2(b) and 2.2(c) and it creates different border values for 

finite structures analysis. If the number of cells is increased, the contribution of these natural frequencies 

decreases and can be neglected. 

Other three different types of unit cells are presented in Table 2.2 considering an internal resonator at-

tached to the first mass. It is known that the goal of a resonator-type DVA is incorporate a resonant structure 

with no more than 5% of main structure mass to reduce the vibration amplitude at a specific forcing frequen-
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cy. However, with the purpose of obtaining larger local resonance bandgaps, the values of attached mass and 

spring have the same magnitude of the main spring-mass. 

 
Table 2.2 Spring and mass values for three types of unit cell with a resonator attached to mass 1. 

Cases Spring-Mass unit cell  M1 K1 M2 K2 Mr1 Kr1 

4 1 Mass + 1 Spring + 1 resonator 1 1 - - 1 1 

5 2 Masses + 2 Springs + 1 resonator 1 1 1 1 1 1 

6 2 Masses + 2 Springs + 1 resonator 1 1 2 1 1 1 
 

(a) 

 

(b) 

 

(c) 

 

   
(d) 

 

(e) 

 

(f) 

 
 

Figure 2.3 Dispersion diagrams for different unit cells: (a) case 4, (b) case 5, (c) case 6 and FRF amplitudes computed for 1 and 10 cells: (d) case 4; 

(e) case 5; (f) case 6. 
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It is possible to observe in Figures 2.3(a) and 2.3(d) that the local resonance bandgap has a stronger at-

tenuation than Bragg’s bandgap presented in Figures 2.2(b) and 2.2(e). Figures 2.3(b) and 2.3(e) present 

these two kinds of stop-bands. Differently, the dispersion constants of Figure 2.3(c) seem to present just a 

Bragg’s band-gap, while the frequency response functions of Figure 2.3(f) show the presence of two reso-

nance peaks and an anti-resonance inside the attenuation zone. In fact, the model should have these two typi-

cal kinds of stop bands, because the presence of a second mass with different value from first mass and a 

resonator attached to the first one. Nonetheless, there is the appearance of a unique attenuation zone. 

All lower and upper borders of the grey regions in Figures 2.2 and 2.3 were obtained with analytical 

equations, as explained in the following. 

Bragg and local resonance bandgaps are created by different physical mechanisms. The first one de-

pends mainly on the cell length and the position of impedance mismatch, while the second one depends on 

the frequency the resonant mass is tuned with. In spite of having different origins, their band-gap borders can 

be found using the same formulation. The analytical expressions of these borders can be found by solving a 

quadratic equation while calculating the eigenvalue of the transfer matrix ( ( )( ) 0det =−Ω IλT ). For example, if 

a unit cell with one spring-mass system and no resonator is considered, the quadratic equation 

( ) 01222 =+−Ω+ λλ  is obtained. Its two solutions are given by: 
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Considering the point where real and imaginary solutions of 2,1λ  intersect, i.e., the value inside the 

square root is zero, the values for dimensionless frequencies are 01 =Ω  (i.e. 01 =ω ) and 22 =Ω (i.e. 

MK22 =ω ). The first non-null border value for the case with one spring-mass is defined as 211 ωω = . The 

same methodology can be applied to any system with more spring-masses and bandgaps borders can be 

found analytically by calculating the transfer matrix as defined by equation (2.8). For a system with two 

spring-mass unit cells the analytical border values are given by equations (2.12), (2.13) and (2.14). For the 

sake of brevity, the corresponding equation development is omitted here. 
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Similarly, equations (2.15), (2.16) and (2.17) are the analytical bandgap borders found for a unit cell 

with one spring-mass and one resonator. 
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2.2.2 Continuous systems 

 

For continuous rods, non-dispersive longitudinal waves propagate in the structure. A way to create 

dispersive waves consists in introducing an impedance mismatch by changing geometrical or physical prop-

erties. Figure 2.4 shows a stepped rod composed of two different continuous segments with different values 

of cross section area iA , Young modulus iE , density iρ  and length il  ( i  indicating  the segment number). 

 

 
 

Figure 2.4 Rod unit cell with two continuous dissimilar parts. 
 

Transfer matrix and spectral method approaches (Doyle, 1997; Ruzzene and Scarpa, 2003) are used in 

this subtopic. Assuming harmonic steady state condition, the classical equation of motion (wave equation) 

can be written as: 

 

( ) ( ) 02
2

2
=+

∂

∂
iii

i

ii
ii xuA

x
xu

AE ρω . (2.18) 

 

According to (Ruzzene and Scarpa, 2005), equation (2.18) can be rewritten in the form 

( ) ( ) ( )xx
x
x yAy ω,=

∂
∂ , where ( )xy is the state vector ( ) ( ) ( )[ ]Txfxux =y  with the normal force 

( ) ( ) ( ) xxuxEAxf ∂∂=  and ( )ω,xA  is given by 
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It should be noticed that this matrix can be periodic in space ( ) ( )( )ωω ,, xlx AA =+  if a periodic infi-

nite structure is considered. Therefore, these differential equations can be solved using the transition matrix, 

where the boundary condition can be written as ( ) ( )le lyy A−=0 . This is equivalent to the solution conducted 

by using the Floquet-Bloch theorem ( ) ( )( )xlx yy λ=+  for 0=x , and a Transfer Matrix can be deduced as 

( ) ( )lxex ωω ,, AT = . 

For a stepped rod, under the hypotheses considered herein, enforcing displacement continuity 
( ) ( )i

R
i

L uu =+1  and force equilibrium ( ) ( )i
R

i
L ff −=+1  to each interface between adjacent segments, the transfer 

matrix for each segment can be obtained as ( ) iil
i eAT =ω  with 2,1=i  for two different segments. The relation 

between the state vectors on the right and on the left can be expressed as ( ) ( ) ( )xlx iiii yTy ω=+  and the eigen-

solutions of ( )ωiT  give the propagation constants as mentioned before. 

Another methodology to obtain the transfer matrix consists is considering the general solution of the 

equation of motion  ( ) ( ) ( )iiiiii xkBxkAxku sincos +=  and its derivative,  using the expression of the normal 

force ( ) ( ) ( ) xxuxEAxf ∂∂=  to obtain the state vectors on the right ( )ii lx =  and on the left ( )0=ix  as ex-

pressed by: 
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where the Transfer Matrix is  

 

( ) ( ) ( )
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sin1cos
ωT  (2.21) 

 

with wavenumber ii ck ω= , wave speed iii Ec ρ=  and impedance iiii EAZ ρω= . 

Compared to the first approach, this approach has the advantage that it facilitates obtaining the analyt-

ical values of bandgap borders for unit cells. For example, considering two different segments with different 

geometrical and physical properties, the Transfer Matrix will be 2112 TTT =  and the following exact solution 

of a free-free beam can be derived as presented by Graff (1975): 

 

0sincossincos 11222211
111

222 =+ lklklklk
kAE
kAE . (2.22) 
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Figure 2.5 shows the dispersion constants and frequency response functions obtained by calculating 

the eigenvalues of ( )ω12T  and using the equation (2.10) to find the correspondent dynamic flexibility matrix 

( )ωD ,  for a rod unit cell comprising two segments with the same material ( 21 EE =  and 21 ρρ = ), same 

segment length ( 21 ll = ) and different cross-section areas ( 21 3AA = ). The same results are obtained using both 

approaches. 

 
Figure 2.5 Dispersion diagram for a contrinuous rod and for a stepped rod. 

 

 
Figure 2.6 Frequency response functions for a free-free periodic stepped rod finite structure with 10 cells, one cell and its exact natural frequencies 

for symmetric and antisymmetric modes. 
 

The frequency response function in Figure 2.6 is represented in terms of dimensionless units 

2ωω=Ω  and ( ) ( )Ω=Ω 21DkDk  with lEAk 1=  and subscripts representing excitation on the left (1) and 
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response on the rigth (2). The value 2ω  is calculated using equation (2.22) and it is the first nonzero symmet-

ric natural frequency of the free-free unit cell.  

The circles and the asterisks in Figure 2.6 represent, respectively, the frequency response functions of 

a finite structure composed of 10 cells and 1 cell. The blue and black lines represent the symmetric and anti-

symmetric modes of the free-free unit cell found using equation (2.22) and described by Graff (1975). As 

they perfectly coincide with specific frequency response peaks, the method is validated as an exact solution 

for this case. In addition, Figure 2.6 shows some interesting aspects related to symmetric and anti-symmetric 

modes. Firstly, there is a concentration and absence of energy around the cell symmetric and anti-symmetric 

modes, respectively. It is possible to observe on these FRFs that as the number of cells increases, the number 

of natural frequencies inside the propagation zone also increases. The response magnitude inside bandgaps 

reduces while it increases in the propagation zones. Succinctly, there is an energy redistribution along the 

spectrum. 

Another interesting point is that there is also a natural frequency inside the attenuation zone and it dis-

appears as the number of cells is increased. This phenomenon is explained in the following topics. 

Analytical expression of bandgap borders can be found with the same methodology presented previ-

ously. Equation (2.23) gives all bandgap frequency borders for a periodic arrangement of two continuous rod 

segments having a same material and different cross-section areas. 

 

( )




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
−+








+

±= 12sin1

21

21 k
AA
AAaE

L
π

ρ
ω  (2.23) 

 

where, k  is the thk −  propagation zone. For different materials, with different wave speeds and different 

segment lengths, a transcendental equation is found. 

As observed in the presented results, the attenuation zone needs a minimum quantity of unit cells to be 

effective. It is proposed here to analyze the effect of the number of cells in finite structures on the depth of 

the band gap. 

Figure 2.7 shows the frequency response functions of a periodic structure modeled by using the Trans-

fer Matrix method with 4, 10 and 16 cells. It shows that 10 cells are sufficient to detect the attenuation zone 

with well-defined borders in the frequency response. Besides, for the finite structure with 4 cells, the fifth 

natural frequency is located inside the first bandgap. Similarly, for 10 and 16 cells, as the number of cells n 

increases, the thm −  natural frequency is found inside the i th− , with )12(1 −+= inm . 
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Figure 2.7 Frequency response functions for finite strucutres with various cell number. 

 

2.3 Parametric and Sensitivity Analysis 
 

A sensitivity analysis is performed with partial derivatives for spring-mass unit cell and with finite dif-

ferences for stepped rod unit cell using an infinite model and its parametric study involving dispersion con-

stants. This analysis can be employed to determine the influence of input parameters in the selected output 

responses. 

 

2.3.1 Spring-mass models 

 

Cases 2 and 4 of tables 2.1 and 2.2 are used in this section. The partial derivatives of equations (2.12) 

to (2.17) can be obtained analytically using the following definition 

 

∆
−∆+

=
∂

∂
→∆

)()(lim)(
0

ii

i

i XX
X
X ωωω  (2.24) 

 

The development of these derivatives is a cumbersome operation. Therefore, a symbolic calculation 

was performed to facilitate this task. However, these steps are omitted here. 

Using equations (2.12), (2.13) and (2.14) and their derivatives, a parametric variation of variables K1, 

M1, K2 and M2 is performed. The bandgap envelopes and the analytical derivative of borders for case 2 of 

Table 2.1 are presented in Figure 2.8. The natural frequency inside the attenuation zone can be calculated 

according to 
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MM
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+
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This equation is obtained by calculating ( )( )det ω− =D 1 0 . This frequency is important to know 

because it can change the value of bandgap border for a finite structure if its value is inside the bandgap re-

gion and near to stop band bound. This fact can be observed in Figure 2.8, in which it can also be noticed 

that increasing mass and stiffness values shift the bandgap region to lower and higher frequencies, respec-

tively. When the mass values are the same, the bandgap in lower frequencies disappear. 

 
 

Figure 2.8 (a) Parametric variation of unit cell parameters on abscissa and frequency on ordinate for band gap envelopes (  ),  natural frequency 

inside attenuation zone ( ), band gap borders 1 ( ), 2 ( ) and 3 ( ) and (b) their corresponding analytical derivatives for case 2.  

 

Derivatives of analytical equations with closed form solutions of equations (2.15), (2.16) and (2.17) 

can also be calculated. Figure 2.9 shows the parametric variation of variables K1, M1, Kr and Mr for case 4 of 

Table 2.2. 

It possible to observe in Figure 2.9 that the natural frequency calculated for one cell is the upper bound 

of first bandgap in this situation. It can be calculated using equation (2.15). The position of anti-resonances 

can also change the value of a bandgap border in a finite model. Its value is the resonance of the attached 

internal resonator. 

(a) 

(b) 
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Figure 2.9 (a) Parametric variation of unit cell parameters on abscissa and frequency on ordinate for band gap envelopes (  ), anti-resonance inside 

attenuation zone ( ) and natural frequency ( ); band gap borders 1 (  ), 2 ( ) and 3 ( ) and (b) their corresponding analytical deriva-

tives for case 5. 

2.3.2 Continuous models 

 

Using the example consisting of two continuous rod segments made of a same material and having dif-

ferent cross section areas, the derivative of equation (2.23) can be expressed analytically as follows 
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
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jii

ji

i

ji

AAA
AAE
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It should be mentioned that if different material were considered for the segments, only transcendental 

equations could be obtained. In this case, numerical methods would have to be used to obtain the local sensi-

tivity of bandgap borders. 

In this section, the influence of unit cell properties as cross-sectional area, Young’s modulus and den-

sity are taken into account to analyze the bandgap lower bound ( LB ), bandgap upper bound (UB ) and 

bandgap width (W ). The following variables are defined as outputs: 

 

)()( jUBj1 xxq Ω= , (2.27) 

)()(2 jLBj xxq Ω= , (2.28) 

(a) 

(b) 
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)()()()(3 jLBjUBjWj xxxxq Ω−Ω=Ω= , (2.29) 

 

where ( )jxΩ  means the normalized output to the corresponding input jx . For example, if jx  is the density, 

1ω  varies for each value of ρ  and it must be normalized at each increment of input variable. In these circum-

stances, the local sensitivity for each border i according to the finite difference method is expressed as: 

 

j

jjUBjUB

j

jjiji
ji x

xxx
x

xxqxq
x

∆

∆−Ω−Ω
=

∆

∆−−
=Φ

)()()()(
)(  for i = 1, (2.30) 

 

with iΦ  the requested output sensitivity and jx∆  the spacing parameter normalized with respect to 1ω . In 

this study, only the local sensitivity is calculated. In other words, only one variable change is considered, the 

two other variables are kept constant. This approach does not consider dependency between input variables, 

but there are some sensitivity techniques that deal with it. Saltelli et al. (2000), Ouisse et al. (2012) and 

Christen et al. (2016) show more details about these procedures.  

In Figure 2.10, the input parameters 1A , 1E  and 1ρ , denoted by jx , are the properties of first half of 

the unit cell. They are varied from 30% to 300% and the regions filled with solid colors represent the first 

stop band. When the input variable is equal to 100%, the structure is not periodic and, therefore, the upper 

and lower limits have the same values and the frequency bandgap width is zero. 

 

 
Figure 2.10 (a) Bandgap envelopes, (b) bandgap borders and width; (c) their respective numerical derivatives. 

(a) 

(b) (c) 
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Figure 2.10(a) presents the bandgap created by varying each input parameter, while Figure 2.10(b) 

provides the lower and upper limit dimensionless frequencies, and Figure 2.10(c) shows the corresponding 

numerical derivatives. 

It can be noticed that when the density is increased, the bandgap moves to lower frequencies. Oppo-

sitely, when the Young’s modulus increases, the bandgap moves to higher frequencies. If these values cross 

the non-dispersive configuration values ( jx  equals to 100%), the upper bound frequency turns to lower 

bound frequency and this creates a discontinuity in the corresponding iΦ curve. 

The bandgap created by varying the cross section area on Figure 2.10(a) is larger than the others and it 

is symmetric with respect to the dimensionless frequency equal to 0.5. Concerning the bounds, Young’s 

modulus and density are the most influential parameters, depending whether the parameter is higher or lower 

than 100%. For jx < 100 %, density is the most influential for upper bound and Young’s modulus is the 

most influential for lower bound. For jx > 100 %, the behavior is the opposite. The cross-section area is the 

second most influential variable in both cases. 

It is possible to observe that the width of the attenuation zone is more sensitive to variations in cross 

section area than in the Young's modulus and density in both conditions.  

Given that the cross section area is the most influential parameter for bandgap width and it is the sec-

ond most influential parameter for bandgap borders before and after the 100% point, it seems suitable to be 

considered as an uncertain variable in uncertainty propagation analyses. 

Inasmuch as this sensitivity analysis considers an infinite structure, the verisimilitude of considering 

different values for each cell of a complete structure is not verified. To deal with this problem, Monte Carlo 

Simulation can be used, as described in the next section. 

 

2.4 Uncertainty propagation using Monte Carlo Simulation 
 

Monte Carlo Simulation (MCS) is a method that consists in sampling input random variables, defined 

by probability density functions, to obtain the corresponding outputs samples (Haldar and Mahadevan, 2000; 

Lemaire, 2009; Melchers, 1987). However, it is widely recognized that the main disadvantage of MCS is 

that, for achieving statistical significance, a large number of samples is required. This convergence is charac-

terized by the stabilization of mean and standard deviation of the output variables. For problems featuring 

random variables with low dispersions, very large numbers of samples are necessary.  

According to Melchers (1987), the estimation error can be evaluated in function of the number of sim-

ulations and the confidence interval for a normal probability density function. Optimized sampling methods 

can be used to reduce the computation effort necessary for MCS convergence. In this work, the technique 
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referred to as Latin Hypercube Sampling (LHS) was used. More details about this sampling technique can be 

found in (Choi et al., 2007). 

Specific probability density functions must be chosen to represent the stochastic variables, accounting 

for their specific characteristics. In this work, normal (Gaussian) distributions are used. A numerical example 

using a stepped rod is presented in the following. 

 

2.4.1 Uncertainty propagation for a two-segment continuous rod 

 

In practice, due to manufacturing inaccuracies, it is not possible to obtain a perfect modulation of the 

inertia and the stiffness of a mechanical structure. Normally, properties such as Young’s modulus and densi-

ty do not vary considerably if the material comes from a same batch. Therefore, the main source of uncer-

tainties are the imperfections or defects caused by the manufacturing process. Moreover, the cross section 

area is the most influential parameter as related to the bandgap width, as shown in Figure 2.10. Under these 

circumstances, the cross section areas A A, A A= =1 23  were chosen as stochastic input variables for the nu-

merical example considered in this section.  

The variables of each cell are assumed to be independent from each other. In the following, infinite 

and finite models are used in the probabilistic analyses, and results are compared. To perform this investiga-

tion, based on the standard deviation of each input variable, the convergence of Monte Carlo Simulation is 

verified.  

Figure 2.11 shows that a 10-cell model is satisfactory for identifying the attenuation zone on finite 

structure. In this calculation, the band gap edges corresponding to lower bound ( LB ), upper bound (UB ) and 

width (W ) are the outputs as indicated in equations (2.27) to (2.29). Figures 2.11(a) and 2.11(b) show an il-

lustration of these variables where the red dots are the LB and UB for a finite (FS) and an infinite structure 

(IS), respectively. 

The random variables are represented by normal probability density functions. Two variants of uncer-

tainty distribution are considered: 

 

• Type 1: a single numerical sample of the random variable (RV) is applied to all the 10 cells.   

Consequently, the structure remains periodic; 

 

• Type 2: 10 different samples of the random variable (RV) are applied, one in each of the 10 

cells. In this case, the structure is not perfectly periodic, meaning quasi-periodicity. 
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Figure 2.11 Bandgap borders for: (a) finite model and (b) infinite model. 
 

For both cases, infinite and finite models are constructed using the Transfer Matrix exact model. The 

level of uncertainty is controlled with variation coefficient γ , that relates the standard deviation σ  and the 

mean value µ  as follows: 

 

µγσ ×= . (2.31) 

 

In the simulations, this parameter is varied from 2 % to 16 %, with a step of 2 %. Then, for each value 

considered, a Monte Carlo Simulation with Latin Hypercube is performed until convergence (number of 

samples around 5000). 

The confidence interval for the outputs with normal distribution is defined as

i i i iq q q qk ; kµ σ µ σ − +  . For a 95% confidence level, the value of k must be equal to 1.96. This means 

that the probability of the mean of the output variables to be within this interval is 95%.  

Figure 2.12(a) shows the mean and 95% confidence limits of the bandgap lower and upper frequency 

for three situations: 1) infinite periodic structure with uncertainty of Type 1. In this case, the structure is 

strictly periodic, but stochastic; 2) finite periodic structure with uncertainty of Type 1. Also in this case, the 

structure is strictly periodic, but stochastic; 3) finite periodic with uncertainty of Type 2. In this case, one has 

a quasi-periodic structure. Similarly, Figure 2.12(b) shows the results in terms of bandgap width. 

 

(a) (b) 

UBΩ  LBΩ  

WΩ  

UB  LB  

UB  

LB  

WΩ  
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Figure 2.12 (a) Bandgap borders’ and (b) width’s mean and confidence intervals for infinite structure (IS) with 1 random variable (RV) and for finite 

structures (FS) with 1 and 10 random variables. 
 

In Figure 2.12(a), it is possible to observe that the edges of the bandgap vary almost linearly according 

to the increase of the uncertainty level. For uncertainty of Type 1, for every 1% of uncertainty level, the di-

mensionless limits of the attenuation zone vary nearly ±0.035. For uncertainty of Type 2, these bounds vary 

around ±0.013. The behavior of the bandgap width is similar, but the ratio of the variations observed for the 

two types of uncertainty is approximately 2. 

 

 
 

Figure 2.13 Robust bandgaps for rod example considering (a) finite structure and (b) infinite structure. 
 

Assuming an uncertainty level of 10 %, for the cross-sectional area, the robust bandgap (bandgap al-

most certain considering these geometrical uncertainties) will be the light and dark gray areas considered in 

Figures 2.13(a) and 2.13(b) for finite and infinite models, respectively. 

(a) (b) 

(a) (b) 

LBΩ  

UBΩ  

WΩ  
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The light gray areas in Figures 2.13(a) and 2.13(b) indicate the robust attenuation zone calculated with 

a single random variable. They are obtained using the light gray confidence interval with the uncertainty 

parameter equals to 10 % on Figure 2.12. The dark gray areas in Figure 2.13(a) are obtained in the same way 

but considering 10 random variables for a finite structure. The light gray ones, contrarily to the envelopes 

representation where the light gray envelopes are larger, superpose these areas. Therefore, when one differ-

ent random variable is considered for each cell of a finite structure, which corresponds to the quasi-real case, 

the robust bandgap is larger and it can be explained by a compensation effect on the responses. In other 

words, the probabilistic analysis with 10 random variables, which better represents the real situation, shows 

that the finite structure is intrinsically more robust. 

 

2.4.2 Robust Bandgap and Localization phenomena 

 

The envelopes in Figure 2.13(a) does not take into account the localization phenomena on the borders. 

It consider a magnitude threshold on FRFs of finite model to detect the bandgap borders. Consequently, a 

natural frequency can appear inside the attenuation zone without being detected. 

The natural frequency that appears inside the attenuation zone is known as localized mode and this is 

referred to in literature as localization phenomena (Anderson, 1958). It is a confined mode in a specific place 

of the structure, in this case, at the right end. As the number of cells tends to infinity, the participation of this 

mode tends to diminish and this mode can be neglected. Consequently, it does not appear in the infinite 

model.  

Some experimental results can be found in (Junyi et al., 2016) for a localized mode near a clamped 

boundary condition. It is explained by the fact that the last unit cell that has a different boundary condition. It 

causes a distinct wave interaction, because of different impedance mismatch, and the localization phenome-

non appears. 

In the case of the structure studied herein, the fact that the last segment is different from the first in-

duces a strong asymmetry, and this causes mode localization. To demonstrate this phenomenon, Figure 

2.14(a) shows a nominal antisymmetric structure and its symmetric counterpart. Figure 2.14(b) shows the 

mode localization in frequency response and Figure 2.14(c) depicts the corresponding normalized deformed 

shape. 
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Figure 2.14 Comparison between (a) symmetrical and antisymmetrical structures, their (b) FRFs and (c) the shape of localized mode L1 for antisym-

metrical one. 
 

As it can be seen, the attenuation zone boundaries are the same for both symmetric and antisymmetric 

structures, whereas mode localization, with high amplitudes, occurs within the bandgap for the antisymmet-

ric rod. Therefore, this phenomenon can produce incorrect confidence interval envelopes in Monte Carlo 

Simulations for a finite structure. If the deviation of a random variable of any cell of a finite structure is con-

siderably different from the others, this peculiarity appears. 

 

 

  

   
 

Figure 2.15 (a) 14 different structures cases and their corresponding FRFs for (b) cases 0, 1, 2, 3 and 4; (c) 0, 5, 6, 7 and 8; (d) 1, 9, 10 and 11; (e) 0, 

12, 13 and 14; and (f) the shape of localized modes L2, L3 and L4. 
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Figure 2.15(a) shows some variations of the nominal structure studied to explain the localization phe-

nomena. Case 0 represents the nominal finite structure. As the unit cell is asymmetric, the complete structure 

is also asymmetric. Cases 1 and 2 are symmetric variants of case 0, without the last half-cell and with half 

part of next one, respectively. Cases 3 and 4 are their opposites by permuting their half-cells. Similarly, cases 

5, 6, 7 and 8 are their correspondents with one quarter first and last cells. Moreover, cases 9, 10, 11 and 12, 

13, 14 are the variation of cases 0 and 1 by strongly and gradually changing cross section area value 1A  of 

the sixth cell. 

Figures 2.15(b) to 2.15(e) show the natural frequencies that appear inside the bandgaps for each case. 

The symbol Li indicates the i-th localization phenomenon, whose corresponding normalized mode shapes are 

depicted in Figure 2.15(f). Li symbol also appears in Figure 2.15(a) to indicate where the localized mode is 

spatially located. 

By observing Figure 2.15(a) and their FRFs, it is possible to see that where there is a strong impedance 

mismatch, different from nominal repetitive structures, there is also a localized mode. As the number of cells 

increases, the displacement decreases in magnitude and it becomes concentrated where the strong deviation 

takes place. In spite of having low amplitudes inside the band gap, the FRF attenuation zones are sensible 

and it can describe where it shows up. 

In Figure 2.15(c), it is possible to observe that unit cell structures, which differs from nominal one, 

placed on the left or on the right side of finite structure can slightly shift the attenuation zone to the right 

(cases 5 and 6) or to the left (cases 7 and 8) in frequency response. Considering cases 5 and 6, these finite 

structures also has the amplitude of left side of bandgap increased and the amplituce of right side decreased. 

The opposite is observed for cases 7 and 8. 

Figures 2.15(d) and 2.15(e) show that gradually increasing the cross-section area of sixth unit cell im-

ply shifts of the localized modes from the bandgap borders to its center. In this situation, if the impedance 

mismatch is stronger than other cells, its localized mode frequency is placed in the middle of the attenuation 

zone. In spite of the presence of these localized modes, it is possible to observe that the bandgap width with 

localized modes is larger than the attenuation zone of nominal cases for symmetric and asymmetric struc-

tures. This can be confirmed by comparing the bandgap borders of light and dark gray FRF curves with cor-

responding blue and red curves. The attenuation zone has its attenuation reduced and its width increased. 

These phenomena can be considered as beneficial as long as it reduces the variation of bandgap bor-

ders. In other words, this kind event can add robustness to the bandgap behavior in terms of variation of its 

borders. However, a robust interval confidence envelope will not take into account the localization phenom-

ena since the worst configuration may take part in any cell in a random analysis. In addition, for high uncer-

tainty paramenter values, the chances of appearing this situation is higher. 

If these localized natural frequencies are present in a structure with low number of unit cells, their 

magnitude can affect the attenuation inside the stop band and it can be considered as a drawback. The same 

behaviour can be observed in longitudinal waves in spring-mass systems. 
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2.5 Partial conclusion 
 

Two simple models describing longitudinal wave propagation in periodic structure were investigated 

in this chapter.  

For the first one, a Transfer Matrix method was used to represent the dynamic behavior of a general 

spring-mass unit cell. The purpose was to observe the influential parameters in two kind of attenuation 

zones, Bragg’s and local resonance bandgaps, and their particularities. 

It was observed that analyzing the frequency response of one cell, one localized mode can be predicted 

if there is a peak inside the attenuation zone. For a resonance bandgap, this frequency is a bandgap border. 

For a Bragg’s bandgap, this peak can be wrongly defined as an attenuation zone border. 

For the second model, an exact solution using Transfer Matrix method was used to represent a contin-

uous rod. Pursuing, a Transfer Matrix method was used to find an exact solution for a rod composed by two 

different continuous rods. Solutions for finite and infinite structures were found, as well as their frequency 

response and dispersion diagrams. A spectral approach was used for the finite model in frequency domain. 

A number of cells equals to ten has been selected for both finite structures. This choice was made in 

order to obtain credible location of the first attenuation frequency zone without substantially increasing the 

computational cost. 

A local sensitivity analysis was performed using finite differences. The cross-sectional area was 

found, in general, as the most influential input on the characteristics of the first band gap for this simple 

model. 

An uncertainty analysis was performed using the finite and infinite models of the structure. The cross-

sectional area was purposely chosen as a random variable with a Gaussian probability density function own-

ing a mean and standard deviation as stochastic properties. Although the area value may achieve negative 

values for this model, an extremely high value of standard deviation is necessary to produces negative val-

ues. 

A coefficient of variation was specified to vary the standard deviation as a percentage of the mean 

value. Numerous Monte Carlo Simulations with Latin Hypercube Sampling were conducted until their con-

vergences for each value of the coefficient mentioned before. 

The results for finite and infinite models with a single stochastic variable are slightly different. These 

results are not completely reliable since the same uncertainty is repeated indefinitely for the infinite structure 

and ten times for the finite structure with ten cells. 

The confidence intervals for the complete structure with ten stochastic variables are narrower than 

those found with one random variable. Besides, they are more reliable due to the model being closer to reali-

ty for the same case. The fact of considering ten random variables, instead of one, illustrates that the uncer-

tainties self-compensate and the periodic structures are intrinsically robust. In this case, a more accurate and 

reliable robust bandgap was obtained. 
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Another type of localization phenomenon was identified related to symmetry and asymmetry of the 

unit cell. This important remark was clarified with examples of finite structures and explains the influence of 

uncertainties in this kind of repetitive structure. 

The other type of localization phenomenon is caused by a strong impedance mismatch, which highly 

differs from the other cells, in some place of the structure. It can reveal interesting properties for structural 

design such as damage detection. The localized modes can be advantageous for a structure with numerous 

unit cells since a defect shifts a mode inside the attenuation zone but it does not change its borders. However, 

they can be a drawback for a structure with low number of unit cells since this mode can be misinterpreted as 

a bandgap border. 

A procedure to detect a priori all these localized modes, caused by unit cell asymmetry or strong im-

pedance mismatch can help better understanding the behaviour of a studied periodic structure. Therefore, the 

analysis of a unit cell as finite structure must be done considering several boundary conditions to search for 

localized modes, which should be detected and accounted for in a probabilistic analysis. 
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 Flexural waves 
3.1 Introduction 
 

A flexural propagating wave in a beam is dispersive, i.e., the group velocity of this kind of wave is 

not constant and, consequently, this velocity increases in higher frequencies. Completely different wave be-

haviors are observed comparing flexural and longitudinal waves. These can propagate together in the same 

structure, such as a truss, and some remarks of these two types of waves are important to be mentioned. In 

general, longitudinal waves are faster than flexural waves; Bragg’s longitudinal bandgaps are normally in 

higher frequencies than flexural bandgaps; the second type is more dependent on geometrical properties than 

the first one. The geometry of cross section defines the second moment of area, which is associated to bend-

ing stiffness, and inertia effects. As long as more variables are required to be defined, this peculiar type of 

wave is also more susceptible to uncertainties. 

Several researchers have already used exact models of periodic beams without changing cross section 

area and using specific boundary conditions. Examples of multi-supported beams are reported for aeronautic 

structures called skin-stringers (Lin and Yang, 1974; Mead; 1970) in which transversal displacement is 

blocked and rotation is allowed. In this case, a mono-coupled uniform beam has the rotation dof on supports 

coupled to the corresponding dof of neighbor cells (Lin and McDaniel, 1969; Sen Gupta, 1971; Mead and 

Bansal, 1978a, 1978b; Orris and Petyt, 1974). The article of Bouzit and Pierre (1993) shows an experimental 

investigation of vibration localization in this kind of structure. For periodic free-free beams, exact analyses 

of finite structures are scarce in literature. Usually, finite element models are used to represent the behavior 

of this finite structure. However, a fine mesh is needed for accurate results and, consequently, the computa-

tional cost rises, mainly when the number of cells is large. 

Thin and long beams, whose sectional inertia and shear effects can be neglected, can be modeled with 

Euler-Bernoulli theory. The influence of these parameters can be verified a priori by adopting acceptable 

values of slenderness coefficient. Otherwise, a Timoshenko beam model must be used because these neglect-

ed effects becomes important and the Euler-Bernouilli models become less accurate when the frequency 

increases. 

Keeping the idea of “exact model” and looking for analytical exact solutions, the use of continuum 

models remains a good option compared to bar models analyzed in the previous chapter. The Transfer Matrix 

method has been applied successfully in many cases (Lin and McDaniel, 1969; Yong and Lin, 1989; Yong 
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and Lin, 1990; Ruzzene and Baz, 2000; Thorp et al, 2001; Ruzzene and Scarpa, 2003) and one of its power-

ful properties is that it can be applied for both infinite and finite structures. It has also been proved to be fast 

and exact from a mathematical point of view. However, the Transfer Matrix method can present instability 

problems (Lin and McDaniel, 1969; Dazel et al., 2013), especially when the size of the matrices involved 

increases. This inconvenience can be explained by the presence of ill-conditioned transfer matrices. Accord-

ing to (Dazel et al., 2013), the reason of this divergence is a bad numerical evaluation of the involved expo-

nential terms by finite-arithmetic computers. Exponentially growing terms make the results diverge with the 

minimal presence of errors.  

Following this idea, in this chapter, a method that explores the reduction of matrices multiplications 

and inverse calculation is used for parametric and probabilistic analyses.  

Firstly, a continuous Euler-Bernoulli beam transfer matrix is considered. The Transfer Matrix method 

is used to exemplify a divergence problem. A method termed as Translation Matrix method, based on (Dazel 

et al., 2013) and other recursive methods, is presented and used. The general idea consists in not propagating 

the whole state vector but only non-redundant information. The most important characteristic of this method 

is that it can be considered mathematically equivalent to the traditional Transfer Matrix method and can 

thereby be considered as exact. A finite element method is used to validate this method by comparing the 

frequency response functions with gradually refining the mesh. Subsequently, for a numerical example, an 

asymmetric periodic beam unit cell is used for a parametric study with different geometrical properties fo-

cusing on Bragg’s bandgap.  

Infinite structures models do not represent the effect of dissimilarities between cells. In reality, these 

cells are not perfect. To verify the effects of uncertainties on infinity and finite structures, a probabilistic 

analysis using Monte Carlo Simulation with Latin Hypercube (Melchers, 1999; Haldar and Mahadevan, 

2000; Lemaire, 2009) is performed and a robust bandgap is obtained. 

The localization phenomena (Anderson, 1958) is inspected with different symmetric unit cells and 

their FRFs are used to observe peaks inside the attenuation zone (Hvatov and Sorokin, 2015).  The flexural 

bandgaps are compared to longitudinal ones investigated in the previous chapter. At the end, a localization 

phenomenon is created in a finite periodic beam structure by removing an impedance mismatch and damping 

is added in this “imperfect cell” (Langley, 1994; Bouzit, 1995; Collet et al., 2012). 
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3.2 Flexural waves in Euler-Bernoulli beams 
 

Figure 3.1 shows a representation of a unit cell with rectangular cross-section that is used to character-

ize the propagation of flexural waves. In this case, an asymmetrical unit cell is investigated.  

 

 
 

Figure 3.1 Representation of two continuous parts unit cell for a periodic beam structure. 
 

The classical equation governing free motion of Euler-Bernoulli beams is (Graff, 1975): 
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where u is the deflection y direction, Ei is the Young’s modulus, Ii is the second moment of area, ρi is the 

mass density and Ai is the cross-section area of segment i. The slope θi, the bending moment Mi and the shear 

force Vi are expressed as 
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The general solution of equation (3.1) is   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xAxAxAxAxu i
i

i
i

i
i

i
i

i ββββ sincossinhcosh 4321 +++=  with i =1, 2 (3.3) 

 

for both parts of the beam (see Figure (3.1) ). Constants ( )iA1 , ( )iA2 , ( )iA3  and ( )iA4  are determined by en-

forcing boundary conditions, and the wave number is found to be defined as: 
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For a beam having two segments with same physical and geometrical properties, the solutions can be 

found and the natural frequencies can be expressed as: 
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where lnβ  is a value obtained by solving transcendental equations depending on boundary conditions and 

21 lll +=  is the total beam length. For two specific cases, the beam model can have the same frequency 

equation as a rod: pinned-pinned beam (simply supported) and sliding-sliding beam. Concatenating continu-

ous models by linking their boundary conditions is a way to represent periodic continuous models for infinite 

and finite models. 

 

3.2.1 Periodic models 

 

Two beams with different characteristics can be linked with one or two degrees of freedom (deflection 

or slope), and can be defined as mono-coupled or bi-coupled, respectively. One method that can be used to 

do this in a simple way is the Transfer Matrix method. By replicating side by side the same boundary condi-

tions, mass, stiffness and damping characteristics can be propagated from the left (L) to the right (R) side of a 

structure by using the Transfer Matrix method: 

 

{ } [ ]{ }LR qTq =  (3.6) 

with 

[ ] [ ][ ]12 TTT =  (3.7) 

 

for a beam unit cell with two different segments. Using the same development as the one used for the general 

solution of governing equation in Chapter 2, the following relation between right and left degrees-of-freedom 

and efforts can be obtained: 

 

 

 

 

46 



Robust bandgaps for vibration control in periodic structures 

Chapter 3 - Flexural waves 

 















































−−

−−

−−

−−

=





















L
y

L
z

L
z

L
y

R
y

R
z

R
z

R
y

V
M

u

ccEIcEIc

c
cEIcEIc

EI
c

EI
c

cc

EI
c

EI
cc

c

V
M

u
θ

βββ
β

ββ

ββ
β

βββ

θ

143
2

2
3

2
143

2

2
32

14

3
4

2
32

1

 (3.8) 

with 

 

( ) ( )( ) 2coscosh1 llc ββ += , (3.9) 

( ) ( )( ) 2sinsinh2 llc ββ += , (3.10) 

( ) ( )( ) 2coscosh3 llc ββ −= , (3.11) 

( ) ( )( ) 2sinsinh4 llc ββ −= . (3.12) 

 

where l is the length of  half-cell in this case. 

Solving the eigenvalue problem [ ][ ] 0=Φ− IT λ , the eigenvalues and eigenvectors corresponding to the 

unit cell can be obtained. Dispersion constants can be obtained in the same way as in the previous chapter 

with λ  = µe , where the real part and the imaginary part of µ  are denoted as δ  and ε , respectively. The eva-

nescent waves are represented by the attenuation constant  and the propagating waves are defined by the 

phase constant .  

Figure 3.2 shows a dispersion diagram for a continuous beam with unit cell length l and for stepped 

beam unit cell with different thickness (h1=5h2). The wave 2 on Figures 3.2(a) and 3.2(b) is evanescent in-

side all studied frequency domain while wave 1 is evanescent just inside the band gap zone. The ordinate (Ω) 

is normalized to the first non-zero natural frequency of the free-free unit cell stepped beam. 

In spite of the fact that it is possible to calculate the dispersion constants, the Transfer Matrix can be ill 

conditioned because of finite-arithmetic operations in computers. This problem is addressed in the next sec-

tion. 

 

δ

ε
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Figure 3.2 Dispersion constants considering flexural waves for (a) continuous beam and (b) stepped periodic beam. 

 

3.3 Transfer Matrix method and stability problems 
 

When assembling a high number of cells, the transfer matrix of equation (2.8) is self-multiplied many 

times. As an example, Figure 3.3(a) and Figure 3.3(b) show a frequency response function obtained with 10 

multiplications of a transfer matrix for a continuous beam and for a periodic beam, respectively.  

The FRF magnitude is scaled in dimensionless units ( ) ( )Ω=Ω 41DkDk  with 
3

112 lEIk =  and sub-

scripts representing vertical excitantion force on left (1) and response of vertical displacement on right (4).  

 

 

(a) 

(b) 

48 



Robust bandgaps for vibration control in periodic structures 

Chapter 3 - Flexural waves 

 

 

 

 
 

Figure 3.3 FRF Transfer Matrix method stability problem for: (a) continuous beam and (b) stepped periodic beam. 

 

The black line in Figure 3.3 shows a frequency response function calculated using finite element 

method with fine mesh for an equivalent model. The red circles represent the FRF calculated with the Trans-

fer Matrix method. It is possible to observe that numerical instability begins after Ω = 1.25 and Ω = 0.25 for 

a continuous beam and for a periodic beam, respectively. This problem appears as a result of small errors 

present in ill-conditioned matrices. Therefore, to avoid this multiplication, one alternative technique, termed 

Translation Matrix method is proposed. 

The instability problem can be solved by improving the numerical conditioning of the transfer matrix, 

or avoiding self-multiplication and/or inverse calculation. A method, based on a recursive approach, adapted 

from (Dazel et al., 2013) is proposed herein. 

Some data, extracted from previous transfer matrix [ ]iT , are necessary. The first step is to sort the ei-

gensolution outputs, values [ ]iλ  and vectors [ ]iΦ , according to the real part of eigenvalues as: 

 

( ) ( ) ( )m221 Re...ReRe λλλ >>> . (3.13) 

 

where m  is the number of waves or dofs. The corresponding Transfer Matrix can be recalculated in function 

of sorted values as follows: 

 

[ ] [ ][ ][ ]iiiiT ΨΦ= λ . (3.14) 

 

with [ ] [ ] 1−Φ=Ψ ii . 

In the following, the state-space representation is used for each layer or state i  between cells, namely 

(a) (b) 
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{ } [ ]{ }iii XS Ω= . (3.15) 

 

where { }iS  is the state vector, [ ]iΩ  is the translation matrix and { }iX  are the dofs or efforts vector (infor-

mation vector). The Translation Matrix determines the link between information and state vectors. For a 

finite periodic structure, the first state on the left of a first unit cell is indicated by 0 , as origin, and the last 

state on the right end of last cell is denoted by n. These states can be represented by the following equations: 

 

{ } [ ]{ }000 XS Ω= . (3.16) 

{ } [ ]{ }nnn XS Ω= . (3.17) 

 

Departing from the end of the structure, it is possible to obtain the state vectors from n  to 0 ,  and then 

recalculate all corresponding degrees-of-freedom or efforts from 0  to n : 

 

nn XX →→Ω→Ω 00 . (3.18) 

 

For example, for a free end boundary condition, force and moment are imposed to be zero, while noth-

ing is imposed on displacement and rotation. In this case, the following translation matrix [ ]nΩ  is used to 

link the state vector{ }nS with the information vector { }nX : 
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Typically, the goal is to obtain a displacement and rotation output on the right ( n ) caused by a force or 

moment excitation input on the left ( 0 ) of the structure. With specific components of 0Ω  it is possible to find 

0X  : 
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Table 3.1 shows the end translation matrices and information vector for a specific excitation and their 

corresponding boundary conditions. 
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Table 3.1 Examples of Translation Matrices and information vectors for the end and first layer or boundary. 
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For discontinuities created by supports inside the cell, i.e, not on the left neither on the right side of fi-

nite structure, continuity and equilibrium relations for displacement and stresses must be redefined. As this 

configuration is not observed with the periodic beam studied in this chapter, no intermediary condition is 

considered. More details can be found in (Dazel et al., 2013). 

To calculate all translation matrices, it is necessary to begin from the end of the structure until the first 

state as defined on following recursive equation: 

 

( )( )( )( )......3210 nnTTTT Ω=Ω  (3.21) 

 

where the function ( )iiT Ω  provides the translation matrix 1−Ω i . This function is presented as follows: 
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where 
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[ ] [ ][ ]iii ΩΨ=Ξ ' . (3.23) 

 

In a similar way, all dofs and effort vectors can be obtained as:  
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where the function ( )1−ii XW  provides the value of iX : 
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Considering a harmonic solution, all these steps can be performed for each frequency value and the 

FRF is obtained for a finite structure. 

The improvement herein, compared to method presented by Dazel et al. (2013), is the manner of re-

calculating the information vector presented in equation (3.20) for specific boundary condition. In addition, 

no application of this method, normally used in acoustics, was found in literature for multi-coupled systems 

involving flexural waves. 

To verify the method described above, a finite element model using Euler-Bernoulli beam elements is 

used. Considering a harmonic excitation ωiL
y eV , the following information vectors and translation matrices in 

function of ω  are needed. 

 

( ){ } ( )[ ] ( ){ }ωωω 000 XS Ω= . (3.26) 
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The equivalent of a FEM frequency response function can be obtained as: 
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where ( )ω1
nS  indicates the corresponding displacement (1 for n

yu )value on interface n and ( )ω4
0S  represents 

the corresponding effort (4 for 0
yV ) value on interface 0. 
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Figure 3.4 shows the FE mesh convergence for 2, 6 and 10 finite elements per half-cell. For a finite 

model with 10 cells, the respective numbers of finite elements are 40, 120 and 200. The FE results are com-

pared to those obtained by using the Translation Matrix method. 

 

 
Figure 3.4 FRF convergence of finite element mesh to Translation Matrix model for a periodic beam with 10 cells.  

 

It is possible to observe that as the number of finite elements increases, the frequency response be-

come overlapped. The black line on Figure 3.4 is the frequency response function calculated with Translation 

Matrix method.   

For a continuous structure, the analytical FRFs can also be used in comparison. In Figure 3.5, the ana-

lytical response frequency function is almost perfectly overlapped by that obtained by using the Translation 

Matrix method. Therefore, this method is validated. 

 

 
 

Figure 3.5 Comparison of Translation Matrix method FRF for a continuous beam composed of 10 continuous parts with analytical FRF.  

Analytical (h = h1) 

Translation Matrix 

4 f.e. per cell (40 f.e.) 
12 f.e. per cell (120 f.e.) 
20 f.e. per cell (200 f.e.) 
Translation Matrix 
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3.4 Numerical examples 
 

3.4.1 Two continuous part beam parametric study 

 

In this numerical example, the effect of thickness change in the width of the bandgap and the robust-

ness of this solution to uncertainties are investigated. It is interesting to notice that producing a thickness 

discontinuity can be used as an strategy to create a large Bragg bandgap. Differently from Chapter 2, the 

variation of physical parameters is not analyzed in this chapter. Special attention is given to effects of geo-

metrical properties for a beam unit cell. As mentioned in Chapter 2, the manufacturing process is the main 

source of uncertainties in structures. 

 

 

 

 

Figure 3.6 (a) Asymmetric beam unit cell and (b) its finite structure with 10 cells. 

 

The variation of geometric variables are investigated in this subtopic. Figures 3.7(a) and 3.7(b) illus-

trate the influence of the variation of thickness h2 and width b2, respectively. In this case, the values of h1 and 

b1 are kept constant. 

 

 

 

 

 

(a) 

(b) 
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Figure 3.7 FRFs of stepped beam for several values of beam (a) thickness h2 and (b) width b2. 
 

 

In other words, increasing geometric properties that are related to bending stiffness shifts the natural 

frequencies to higher frequencies and the same is observed for bandgap borders. Inversely, by increasing 

geometric properties related to inertia, the bandgap is moved to lower frequencies. 

Figures 3.8(a) and 3.8(b) present the influences of the discontinuity location, i.e., the position of cross 

section area mismatch, and the cell length l, respectively. They have a similar effect, shifting the attenuation 

zone to lower frequencies. 

 

 

  
 

Figure 3.8 FRFs of stepped beam for several values of (a) discontinuity location and (b) cell length l. 
 

 

 

 

(a) (b) 

(a) (b) 
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3.4.2 Probabilistic analysis and robust bandgap 

 

In the following, infinite and finite models are used in a probabilistic analysis, and results are com-

pared. The same concept used in Chapter 2 is applied for flexural waves. As the cross section area is used in 

this example, in order to compare trends obtained for longitudinal and flexural waves, the thickness of the 

second segment h2 is used as input stochastic variable. The relation h h=2 1 5  is adopted. 

Considering the thickness h2 as random parameter, a Monte Carlo Simulation (MCS) with Latin Hy-

percube is performed. To realize this investigation, for each standard deviation of input variables, a conver-

gence of MCS is achieved and the outputs are obtained. 

Figure 3.9 shows the frequency response functions for a finite structure with 1, 4, 10 and 16 cells. It 

can be again verified that as the number of unit cells increases, the attenuation inside the bandgap also in-

creases.  

 

 
 

Figure 3.9 Number of cells for a stepped unit cell finite structure for an observable attenuation zone. 
 

Similarly to what have been done in Chapter 2, Figure 3.9 shows that a 10-cell model is satisfactory 

for identifying the attenuation zone on finite structure. In this calculation, the band gap edges corresponding 

to lower bound (LB), upper bound (UB) and width (W) are the outputs as indicated in equations (2.27) to 

(2.29). Figures 3.10(a) and 3.10(b) show an illustration of these variables where the red dots are the LB and 

UB for a finite (FS) and an infinite structure (IS), respectively. 
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Figure 3.10 Bandgaps borders and width for (a) finite model and (b) infinite model. 

 

The random variables are represented by normal probability density functions. Two variants of uncer-

tainty distribution are considered: 

 

• Type 1: a single numerical sample of the random thickness h2 is applied to all the 10 cells.   

Consequently, the structure remains periodic; 

 

• Type 2: 10 different samples of the random thickness h2 are applied, one in each of the 10 

cells. In this case, the structure is not perfectly periodic, meaning quasi-periodicity. 

 

For both cases, infinite and finite structure models are analyzed considering the Translation Matrix  

exact model. The same values of the coefficient of variation γ  used in Chapter 2 are used here. This parame-

ter varies from 2% to 20% with a step of 2 %. Then, for each considered value, a Monte Carlo Simulation 

with Latin Hypercube is performed until its convergence (number of samples around 5000). 

Figure 3.11 shows the variation of the frequency bandgaps, represented by mean values and their 95% 

confidence intervals, for variants types 1 and 2. 

 

UBΩ  LBΩ  

WΩ  

UB  LB  

UB  

LB  

 

WΩ  

 

(a) (b) 
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Figure 3.11 Confidence intervals for (a) LB, UB and (b) W for infinite structure (IS) with a stepped beam unit cell and for a finite structure (FS) with 

10 stepped beam unit cells. 

 

It is possible to observe that the edges of the stopband envelope increase their values according to the 

increase of uncertainty. In cases with one random variable, for example, for every 1% of uncertainty, the 

limits of attenuation zone vary nearly ±0.01 in terms of dimensionless frequency. In cases with 10 uncertain-

ties, these bounds vary around ±0.005 in dimensionless frequency, almost the half of the case mentioned 

before. However, the means of border values are slightly different, which causes an offset between envelopes 

of confidence interval. 

Considering an uncertainty level of 10 % for the thickness h2, the robust bandgap will be the light and 

dark gray areas considered in Figures 3.12(a) and 3.12(b) for finite and infinite models, respectively. 

 
 

  
Figure 3.12 Robust bandgap for a stepped beam example considering (a) finite and (b) infinite structure. 

(a) (b) 

(a) (b) 
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The light gray areas in Figure 3.12(b) indicate the robust attenuation zone calculated with a single ran-

dom variable. They are obtained using the light gray confidence interval with the uncertainty parameter 

equal to 10%. The dark gray area in Figure 3.12(a) is obtained in the same way but considering 10 random 

variables for a finite structure. In this case, the stop band has almost the same width as the light gray. There-

fore, the same result is not verified as the robust band present in Chapter 2. The robustness of finite structure 

is not verified although this would be expected. It is necessary to consider more unit cells to be able to get 

more reliable attenuation zones using finite models. Considering values higher than 14% for γ in Figure 

3.11(a), the robustness of finite structure is verified and it can be explained by a compensation effect on the 

responses. 

 

3.4.3 Localization phenomena in stepped beam unit cell 

 

The presence of localized modes on symmetric finite structures is investigated with two different types 

of symmetric unit cells presented in Figure 3.13. They have the same dispersion constants for an infinite 

model. They are composed by three segments, among which the first and third segments have the same 

thickness and length. 

 

  

Figure 3.13 Symmetric unit cells (a) 1 and (b) 2 for flexural beams. 

 

Figures 3.14(a) and 3.14(b) show the frequency response function for 1-cell finite structure (black 

line) and 10-cells finite structure (blue line with circles) for the symmetric unit cells of Figures 3.13(a) and 

3.13(b), respectively. Differently from periodic rod models, the response function for one free-free cell pre-

sents resonance frequencies inside the attenuation zones but they are not the same as shown in the frequency 

response obtained with 10 unit cells for a finite structure. Therefore, the same localization phenomenon pre-

sented for rod models on the previous chapter, because of the asymmetry of the cell, is not observed in peri-

odic beam models.  

 

 

(a) (b) 
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Figure 3.14 FRFs of a finite structure with one and ten cells for symmetric cell (a) 1 and (b) 2. 

 

 

 
 

Figure 3.15 FRFs for convergence of cell number for: symmetric cases (a) and (b) and asymmetric case (c). 

 

Figure 3.15(a) show the convergence of bandgap with increasing number of cells for assymetrical unit 

cell of Figure 3.6(a). Figures 3.15(b) and 3.15(c) show the FRFs with increasing number of cells for the unit 

cells presented in Figures 3.13(a) and 3.13(b). In the first figure, it is possible to note that as the number of 

cells increases, the natural frequency shifts to lower frequencies. Differently, for the second figure, two natu-

ral frequencies presented inside the attenuation zone seem to merge in just one as the number of cells in-

creases. 

 

3.4.3.1 Introduction of damping 
 

To reproduce another type of localization phenomenon inside the bandgap region, without considering 

a unit cell analysis, a cell in the middle of the structure is considered with no impedance mismatch, i.e., the 

(a) (b) 

(a) (b) (c) 
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first half  of cell 6 has the same thickness as its second half. Figure 3.16 shows the finite structure with in-

duced localization. 

 

 
Figure 3.16 Periodic beam with 10 cells and localization phenomenon on cell 6 (h1 = h2). 

 

In the following, proportional damping ( ( )jEE η+= 1 ) is introduced in cell number 6 where there is “de-

fect” placement. Figure 3.17 shows the frequency response function with localized mode with η = 0.001 and 

without damping. 

 

 

 

Figure 3.17 FRF of a beam periodic structure with localization phenomena and damping on cell 6. 

 

Figure 3.17 shows that the natural frequency inside the attenuation zone has more damping than the 

others peaks analyzed in this frequency domain. In other words, a localized damping can be placed in locali-

zation mode location to reduce the amplitude of resonance peak. Therefore, by increasing the damping in this 

region, the magnitude of this localized mode can be also decreased. 
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3.5 Partial conclusion 
 

One simple model describing flexural wave propagation using periodic Euler-Bernoulli beams is in-

vestigated in this chapter. 

The use of exact solutions is envisaged. However, the Transfer Matrix method is not suitable for this 

case due to the presence of ill-conditioned matrices. A method called Translation Matrix method is proposed 

to circumvent the numerical stability problem in the computation of frequency response functions. This 

method, adapted from (Dazel et al., 2013), is based on a recursive methods used in acoustic models involv-

ing sound waves.  The results presented in this chapter illustrate its suitability for use in association with 

propagation of flexural waves. It is faster comparing to finite element models and more accurate, as it pro-

vides the exact solution from a mathematical point of view.  

It is observed, in the parametric analysis, that increasing the values of geometric properties that are re-

lated to bending stiffness leads to shifts of the natural frequencies to higher frequencies; the same is observed 

for bandgap borders. Inversely, by increasing geometric properties related to inertia of structure, the stop 

band is move to lower frequencies. 

A probabilistic analysis is performed using a Monte Carlo Simulation with Latin hypercube consider-

ing two cases: infinite and finite structures. Differently from periodic rods with stepped unit cells, the differ-

ence between robust band gap calculated with 1 random variable for infinite model and the robust bandgap 

calculated with 10 random variables for finite model is not so notable. The envelope with 95% confidence is 

larger for infinite structure. However, bandgaps obtained with infinite and finite models are almost the same.  

Differently from periodic rods, it is verified that the cell asymmetry does not cause the appearance of 

localization phenomena inside the attenuation zone for flexural waves. Increasing the number of cells may 

however move some natural frequencies inside the stop band. 

Concerning the induced localization phenomena by creating a different mismatch on a given cell, the 

presence of a new localized peak inside the flexural waves attenuation zone is verified. Moreover, damping 

can be used as a way to reduce the amplitude of natural frequencies inside the stop band. 
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 Experimental analysis of flexural 
beams 
4.1 Introduction 
 

This chapter presents an experimental analysis to validate the finite periodic models studied before, 

including the concept of robust bandgap. Despite the existence of uncertainties in all its dimensions, manu-

factured structures tend to have more deviations in specific dimensions according to the machining tech-

niques. For example, milling technique can present more deviations in dimensions such as cut depth and cut 

length. 

In the present study, a continuous extruded beam had material removed with this technique to produce 

a periodic beam. This type of structure is suitable for an experimental survey in virtue of the presence of 

attenuation zones for flexural waves in low frequencies, in comparison to longitudinal waves, as verified in 

Chapter 3. 

The material selected for the beams is aluminum, since it facilitates the machining process and avoids 

cracks and other defects. A numerical simulation is performed, considering the above-mentioned aspects, 

and a periodic aluminum beam with stepped unit cells is designed for identification of flexural waves and 

Bragg’s bandgap. 

The experiment is carried-out based on the assumption that only flexural waves are excited. An im-

pact hammer is used to excite the left end of the beam and an accelerometer is used to collect the response on 

the right end. Impact excitation is simpler, less expensive, and faster than using a shaker. However, it is dif-

ficult to control the direction of the impact. 

In the following, the results obtained for a continuous and for a periodic beam are compared with nu-

merical results calculated with the Translation Matrix method. 

In spite of the existence of uncertainties in many parameters of this periodic beam, a probabilistic 

analysis is performed considering only the length of each half-cell as uncertain. The Gaussian probability 

density function is used to represent the stochasticity with measured mean and calculated standard deviation 

as inputs for a Monte Carlo Simulation combined with Latin Hypercube Sampling. A confidence interval 

envelope and a robust band gap are defined, considering only this random variable.  

Unexpected modes appeared inside the attenuation zone and some comments and hypotheses are 

drawn to explain this phenomenon. 
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4.2 Modeling of stepped beam unit cell with six dofs 
 

A rectangular cross-section with longitudinal, flexural waves on both planes and torsion is considered 

in the Translation Matrix model used in this chapter. Therefore, displacements and rotations in x, y and z are 

considered. These dofs are modeled using a full Euler-Bernoulli beam model enabling to characterize  longi-

tudinal wave propagation addressed in Chapter 2, as well as flexural wave propagation considered in Chapter 

3, besides an additional dof related to torsion and shear waves. The interest is to create only one matrix com-

posed by the others, such as used in finite element method. To introduce this degree of freedom, the same 

idea of Chapter 2 is used, since longitudinal and torsion motion have similar governing equations, but differ-

ent wave speeds. This transfer matrix can be described by 
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with wave number ii cωγ = , frequency ω , wave speed (for shear waves) iii Gc ρ=  considering the shear 

coefficient iii JCG =  where iC  is the torsional rigidity and iJ  is the polar moment of inertia for i being the 

segment. Similar to longitudinal vibration, but for torsional, the impedance iiii GAz ρω=  with the cross-

section area iA  and the density iρ . For rectangular cross-section iii hbA = , the area moment of inertia on y-

axis is 123
iiy hbI = , on z-axis is 123

iiz bhI =  and polar moment of inertia is 
3
iiii bhJ κ=  with the width ib , the 

thickness the ih  and iκ  a constant ratio between these two previous dimensions. Together with other matrices, 

it can assemble a transfer matrix 12×12 with all dofs. 

Using this transfer matrix with six degrees of freedom, the numerical instability problems addressed in 

Chapter 3 can appear for flexural modes in low frequency and at higher frequency for other wave types. 

Solving the eigenvalue problem for six dofs, the dispersion constants are obtained. To illustrate their use, the 

dispersion constants of a continuous beam and a stepped beam unit cell have been calculated using parame-

ters described in Table 4.1 and are presented in Figures 4.1(a) and 4.1(b), respectively. 

 
Table 4.1 – Properties for continuous beam and for periodic beam with stepped unit cell. 

Parameter Variable 
[unit] 

Value 
Continuous 

beam 
Stepped beam unit cell 

First half Second half 
Young’s Modulus E [N/m²]  0.7×1011 0.7×1011 0.7×1011 
Poisson ν [ - ] 0,333 0,333 0,333 
Density ρ [kg/m³] 2700 2700 2700 
Width b [mm] 60 60 60 
Thickness h [mm] 10 10 2 
Length l [mm] 100 50 50 
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(a)        (b) 

           
 

(a)        (b) 

            
 

Figure 4.1 (a) Real and (b) imaginary parts of dispersion constants for continuous beam unit cell and (c) real and (d) imaginary parts for stepped 
beam unit cell. 

 

It is possible to classify all types of waves propagating in a beam as shown in Figure 4.1(a) and 4.1(b). 

There are two non-dispersive waves, one corresponding to the longitudinal waves (LW) and the other to 

shear waves (SW). For each coordinate plan, there are two waves related to bending that are dispersive with-

out presenting periodicity. Two of them (FeW1 and FeW2) are evanescent inside all the analyzed domain and 

the other two are propagative (FpW1 and FpW2). These wave types are pointed with arrows in Figure 4.1(a) 

and 4.1(b). 

By removing material and creating the same periodicity considered in Chapter 3, it is possible to ob-

serve in Figure 4.1(c) and 4.1(d) that some branches change their shape. In other words, there are variations 

on stiffness and mass properties for corresponding wave type. The group speed changes for some waves and 

for a specific one there is the appearance of frequency zone where it becomes evanescent, i.e., a partial 

bandgap is created and flexural waves cannot propagate inside this zone. When such a full model is used, it 

is hard to track and sort the dispersion diagrams branches according to wave type. They can be tracked ac-

cording to various strategies (Billon, 2016; Silva, 2015) but the nature of stop bands (Bragg’s, local reso-
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nance and coupling waves) in different frequency zones makes them difficult to follow in the frequency do-

main. This topic will be enlighten in next chapter devoted to periodic truss. 

Focusing on flexural waves in virtue of the presence of this partial bandgap in Figure 4.1, the Transla-

tion Matrix Method with six dofs is verified in the following. 

 

4.2.1 Translation Matrix with six dofs verification 

 

To validate the Translation Matrix method described above, a finite element model using Euler-

Bernoulli beams was used. Considering a transverse harmonic excitation to excite only flexural waves on a 

free-free beam, the Figure 4.2 shows the frequency response using FEM and Translation Matrix method  

with six dofs. 

 
 

Figure 4.2 FRF convergence of F.E. model for a periodic beam with 10 cells to Translation Matrix model with six dofs. 
 

In order to illustrate the performance of Translation Matrix method, the results obtained for flexural 

waves in periodic beams are compared. Table 4.2 shows the computation time and the error between FRFs 

obtained using method Translation Matrix method with six dofs and using FEM with 40, 120 and 200 finite 

elements. A computer with processor Intel Core i7-4500U CPU (two cores) and 8 GB of RAM was used to 

perform the calculations. The mean absolute percent error (MAPE) is calculated as: 
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where i is the frequency point from 1 to 5000, FRFFEM is the frequency response function obtained with fi-

nite element method and FRFTMM2 is the corresponding frequency calculated with Translation Matrix meth-

od. It can be noted that the higher relative error correspond to the mesh with lower number of finite elements 
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and it means that the FEM results are converging to Transfer Matrix method. It is possible to considerer 

damping in this model and it is used to compare the experimental and numerical results. 

 
Table 4.2 Validating method for two continuous part unit cell periodic beam. 

Used Method* Unit cell mesh 
(FEs) 

Computation 
time MAPE [%] Time reduction 

[%] 

FEM 
40 0h 15m 17s  10,27 % 33 % 

120 0h 33m 41s 3,17 % 66 % 
200 1h 13m 11s 2,18 % 86 % 

Translation Matrix - 10 min - - 
*For a FRF with 5000 points. 
 

4.3 Experimental bench and setup 
 

An experimental analysis is performed to verify the half-cell length uncertainty effects on a periodic 

beam with stepped unit cell. Figure 4.3 presents the experimental set-up composed by one impact hammer 

PCB®, one accelerometer ICP-PCB®, one acquisition and signal conditioning board NI® and a computer with 

software LabVIEW® and a homemade MATLAB® script for post-processing. 

 

 

  
 
 
 

Figure 4.3 Experimental set up for a periodic free-free beam. 
 

Two experiments are conducted: one to verify the results on a continuous beam and the second one us-

ing a periodic beam with dimensions described on Table 4.3. To avoid self-weight deflection and exciting 
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longitudinal waves on x-axis and flexural waves on xz-plane, thickness dimension is chosen to be considera-

bly smaller than width dimension. See table 4.3 for details. Milling has been used to remove material and 

fabricate this periodic beam.  The beam is suspended using fishing line to represent free-free boundary con-

ditions. The PCB accelerometer is placed on the right side of the structure, i.e., in the last cell, and first cell is 

excited by a PCB Impact Hammer. To avoid exciting torsion modes (shear waves), the excitation point was 

defined in the middle width of first cell with 1 cm from its left border as shown on Figure 4.3. In this case, 

the first half-cell has around 60 mm, 10 mm more than other cells segments. The accelerometer is placed 5 

mm from the right border of last half-cell. The impact hammer and the accelerometer are connected to a 

board NI 9234 for data acquisition and signal conditioning. This board transfers the data to a computer with 

LabVIEW® that transforms this information in treatable data for MATLAB®. It is possible to excite the fre-

quency band from 0 to 5000 Hz with the impact hammer with a rigid metal tip. 

 

4.4 Numerical and experimental results 
 

Table 4.3 presents the values of physical and geometrical properties for the periodic stepped unit cell 

beam illustrated in Figure 4.3. 

 
Table 4. 3 Geometrical and Physical properties of periodic beam 

 Parameter Variable [unit] First half cell Second half cell 

General 
properties 

Young Modulus E [GPa]  0,7×1011 
Poisson ν [-] 0,333 
Loss factor η [-] 0,0001 
Measured mass M [kg]  1,12 
Measured volume V [m³] 4,137×10-4 
Calculated Density ρ [kg/m³] 2707,27 
Width b [mm] 60 

Cell 1 Thickness h [mm] 10,15 2,20 
Length l [mm] 60,34 49,22 

Cell 2 Thickness h [mm] 10.21 2,30 
Length l [mm] 50,68 49,30 

Cell 3 Thickness h [mm] 10,12 2,25 
Length l [mm] 50,65 49,28 

Cell 4 Thickness h [mm] 10,18 2,25 
Length l [mm] 50,67 49,28 

Cell 5 Thickness h [mm] 10,16 2,29 
Length l [mm] 50,68 49,28 

Cell 6 Thickness h [mm] 10,16 2,24 
Length l [mm] 50,69 49,26 

Cell 7 Thickness h [mm] 10,13 2,19 
Length l [mm] 50,72 49,31 

Cell 8 Thickness h [mm] 10,12 2.16 
Length l [mm] 50,75 49,28 

Cell 9 Thickness h [mm] 10,15 1,98 
Length l [mm] 50,34 49,28 

Cell 10 Thickness h [mm] 10,12 2.13 
Length l [mm] 50,69 49,30 

Cell 11 Thickness h [mm] 10,11 - 
Length l [mm] 56,32 - 

 Thickness Mean (Standard Deviation) h [mm] 10,14 (0,0304) 2,20 (0,0941) 
 Cell Length Mean (Standard Deviation) l [mm] 52,05 (3,2351) 49,28 (0,0251) 
 Total Length L [mm] 1065,32 
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The geometrical data provided in Table 4.3 are sequentially measured for each cell. It means that the 

length of each cell is measured with respect to the end of previous segment end.  

Firstly, to validate the experimental procedure, a continuous beam, with same width b, thickness h and 

length L, but without periodicities, is excited considering the same conditions as the experiment performed 

with the periodic beam. Figure 4.4 shows the frequency response functions obtained for this continuous 

beam and the numerical result obtained with Translation Matrix method. 

 

 
Figure 4.4 Frequency response function obtained experimentally for a free-free continuous beam. 

 

In Figure 4.4, it is possible to observe that the numerical FRF fits well the experimental results in low-

frequency range. However, the shear deformation and rotational inertia effect become evident for higher 

frequencies, which lead to conclude that a Timoshenko beam model must be used. 

 

 
Figure 4.5 Frequency response function obtained experimentally for a free-free periodic beam with 10 stepped unit cells. 
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Figure 4.5 shows the FRF for a periodic beam with stepped unit cells. It is possible to observe that the 

region inside bandgaps is extremely sensitive and other resonant peaks appear inside this zone. Moreover, 

the accelerometer cannot measure the response inside this frequency band and the amplitude is limited by 

external noise. The red and blue thin curves represent the resolution that the accelerometer can measure. 

Therefore, there is an accelerometer resolution limitation to this kind of experiment involving periodic struc-

tures. 

The appearance of these modes inside the attenuation zone can be explained in virtue of the impossi-

bility to perfectly control the direction of the impact excitation force. Moreover, the accelerometer also has 

an angle deviation and it can measure small accelerations in other directions. Additionally, this slender beam 

can present other kinds of imperfections related to being bended or twisted.  

 

4.4.1 Non localized modes inside the attenuation zone 

 

Depending on the structure, unpredicted modes that are not considered in the used model can appear in 

virtue of the incapacity of perfectly applying appropriate boundary conditions (Junyi and Balint, 2015; Junyi 

et al., 2016) or forces to excite only the desired motion, besides the fact that the beam is not perfectly 

straight.  In this way, modes in different planes can be excited by changing the applied force characteristics. 

Even if small, a force component in other direction can excite other modes and it can be verified with numer-

ical results presented in Figure 4.6. The four natural frequencies inside the attenuation zone are associated to 

one longitudinal mode (LM2) and three flexural modes (FM2, FM3 and FM4) on x-z plane. There are no 

torsion modes excited inside the bandgap for this experiment.  

 

 
Figure 4.6 FRF with non-predicted resonance frequencies inside the attenuation zone. 
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Figure 4.6 also shows that the model also predicted a localized mode (L1) but it is not present in the 

experimental result because it may be detected in same magnitude as measurement noise. 

A full-field measurement was done and the natural frequencies inside the BG were confirmed as longi-

tudinal and flexural modes.  

 

4.4.1.1 Considering variation on excitation and measument parameters 
 

The variation of excitation and measurement parameters like position and measurement direction can 

excite other modes if a non-orthogonal excitation or measurement are used. To investigate this behavior, a 

study was performed using finite element model of the periodic beam and the applied force and the measured 

acceleration are considered inclined with two angles θ and φ. The first one in about the x-axis (yz plane) and 

the second one is about y-axis (xz plane). In other words, two rotations of the local coordinate system are 

applied, one around x-axis and the other around y-axis for the applied force on the left and displacement 

output on the right side of the beam. 

Applying a moment as excitation, in this case, is the same as decentralize the point where the force is 

applied and suppress this vertical component in the middle, e.g., by applying another in opposite direction. If 

the force position is considered as uncertain, it can creates the appearance of torsion modes. However, this 

study is not showed here. 

Figure 4.7 shows the influence of the variation of angles θ and φ from one to four degrees. 

 

 
Figure 4.7 FRF with variation on exciting force angle and direction of measured displacement. 

 

Figure 4.7 shows the influence of the variation of angles θ and φ from one to four degrees. It can be 

seen that as the angles values increase, more modes appear inside the attenuation zone in the frequency re-

sponse function.  
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It is important to note that even for low disorientation values as one degree, the projected force can 

excite modes inside the bandgap that are related to other types of waves. 

Therefore, it can be confirmed that these peaks are present because efforts cannot be applied perfectly 

perpendicular to the beam surface. 

 

4.4.2 Robust bandgap and experimental FRFs 

 

A probabilistic analysis, similar to those performed in Chapters 2 and 3, was performed considering 

the length of the first half-cell (l1) as an uncertain variable. Table 5.3 shows that the standard deviation of 

this variable is 3,2351 mm (6,22 % of l1 mean 52,05 mm). In this case, since this periodic structure has 10 

cells plus 1 half-cell, a Monte Carlo Simulation with Latin hypercube is performed considering 11 random 

variables with Gaussian probability density function with mean 52,05 mm and standard deviation 3.2351 mm 

(6.22 % of mean). The detailed explanation is similar to that presented in Chapters 2 and 3, and is not repeat-

ed here. 

 

  
Figure 4.8 FRF with envelope confidence interval, experimental results and robust bandgap for calculated standard deviation. 

 

Figure 4.8 shows the experimental results with the bandgap envelope for 95% confidence interval and 

the robust bandgap, indicated by the gray region, considering 6.22 % of the mean, i.e. the standard deviation, 

as the variatioan coefficient. 

It is possible to verify that the robust bandgap calculated considering the mean and standard deviation 

of each half-cell as input uncertain variables agrees well with the experimental bandgap region presented in 

the FRF. 
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4.5 Partial conclusion 
 

Periodic beams are investigated experimentally and numerically in this chapter. Firstly, a Translation 

Matrix method with six degrees of freedom is proposed for assembling transfer matrices for longitudinal, 

flexural in two planes and torsion. Then, dispersion constants for a continuous beam and for a periodic beam 

with stepped unit cell are observed for six types of waves: four flexural in two planes (two evanescent and 

two propagative), one longitudinal and one torsional (shear). There is a partial bandgap for flexural waves in 

the periodic structure. Subsequently, Translation Matrix method is verified for flexural waves by comparing 

frequency response functions to the counterparts obtained with a finite element model using 40, 120 and 200 

finite elements. As the number of finite elements increase, the calculated errors are reduced and it was con-

cluded that the Translation Matrix method present satisfactory accuracy for 200 finite elements. An experi-

mental analysis is performed and its results are compared to numerical results for flexural waves. In low 

frequencies, the numerical frequency response function agree well with experimental results. Inside the 

bandgap region, is not possible to measure the magnitude and most part of bandgap region is affected by 

measurement noise.  

Four resonant peaks appear inside the attenuation zone and they are not localized modes. The numeri-

cal model predicts one localized mode near the upper border but it is not possible to be identify it experimen-

tally because the noise presented the same magnitude. 

A probabilistic analysis was performed using the half-cell length of first segment for each cell as ran-

dom variable with Gaussian probabilistic density function and a robust bandgap is obtained for this kind of 

uncertainty. The lower bound of this large bandgap  seems coherent with experimental results. 

The four modes excited inside the stop band are investigated and their values are found to be close to 

three flexural modes in the other plane xz and one longitudinal on axis x. A study corresponding to the an-

gles of excitation force and displacement measurement is done. It was possible to conclude that, for even for 

small variations on the values of these angles, other modes can be excited and the low magnitude inside the 

bandgap zone favors their appearance. 
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 Truss structures 
5.1 Introduction 
 

Smart and periodic structures have received the attention of researchers by virtue of their great poten-

tial. These structures have powerful properties like adaptiveness and the ability to operate as mechanical 

filters. 

However, the presence of uncertainties must be taken into account to guarantee robustness. Thus, in 

this chapter, a finite element model is proposed to elucidate the importance of stochastic aspects and to pre-

sent the concept of robust frequency bandgap for smart trusses. The smart components consist of piezoelec-

tric transducers connected to resonant circuits in a tridimensional truss unit cell. Although this truss presents 

three dimensions, the wave propagation is unidirectional. The periodic part is the replication of this cell to 

assemble the final structure. Floquet-Bloch conditions are used to model the infinite representation. Then, a 

Monte Carlo Simulation is carried out and the bandgap bounds are analyzed considering frequency responses 

and dispersion diagrams, the goal being to evaluate the influence of uncertainties affecting the prediction of 

the attenuation zones. 

Detailed reviews about these periodic structures can be found in (Mead, 1996) and some perspectives 

are drawn in (Hussein et al., 2014). One of these perspectives is related to adaptiveness and tunable frequen-

cy bandgaps. 

Smart materials and structures capacity of self-sensing and self-changing to adapt to new conditions 

according to design requirements is their most important characteristic. Some fundamental aspects of these 

intriguing structures can be found in (Leo, 2007). Among others, periodic and smart structures are good can-

didates to help the resolution of complex vibration problems. Interesting reviews are proposed in (Thorp et 

al., 2011) and (Spadoni et al., 2009). 

Piezoelectric (PZT) actuators (Leo, 2007; Hagood and Von Flotow, 1991; Preumont, 2004) are used in 

the numerical example of this study. When they are coupled with electric circuits, the dynamics of the struc-

ture becomes coupled with the dynamics of the electric circuit. This concept can be used for structural vibra-

tion control and it is referred to as “piezoelectric shunt” in the literature. The principle behind this strategy is 

that the vibrational energy is transformed into electric energy through the direct piezoelectric effect and is 

transferred to the circuit where it is partially dissipated and/or dispersed. Among the types of electric circuit, 

one composed by electrical resistance and inductance (RL) is known as resonant circuit and it is probably the 
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most popular because of their simplicity and efficacy (Hagood and Von Flotow, 1991; Sales et al., 2013). 

Such circuits comprise an inductor and a resistor that are connected to the piezoelectric transducer that is 

assimilated to a capacitor, thus forming an RLC circuit. When coupled to a dynamic system, this device op-

erates similarly to a dynamic vibration absorber (DVA). This kind of mechanism creates resonant bandgaps 

if placed periodically in a structure. More information about DVAs can be found in (Den Hartog, 1956; Ko-

renev and Reznikov, 1993; Rade and Steffen, 2000). Distributing these devices may lead to multimodal con-

trol (dell’Isola et al., 2004). 

The main advantage of using piezoelectric actuators, rather than DVAs, is the characteristic of no ad-

dition of significant mass to the main structure and the convenience of electronically tuning without chang-

ing mechanical properties. Moreover, these circuits can be redesigned and unusual behaviors can be induced. 

One example of this is the negative capacitance shunting (Park and Baz, 2005), which aims at removing the 

intrinsic capacitive effect of the piezoelectric transducer (Marneffe and Preumont, 2008). This may be com-

bined with resonant circuits (Casadei et al., 2012), opening the way to new strategies with wideband effi-

ciency (Lossouarn et al., 2015; Tateo et al., 2014a; Tateo et al., 2014b). 

Reference (Signorelli and Von Flotow, 1988) show the wave propagation behavior in truss structures 

by using beam finite elements and the Transfer Matrix method. This sort of structure also has the light-

weightiness as its major characteristic. In virtue of this, the use of piezoelectric actuators in these lattice like 

structures seems to be a good choice because it favors the weight requirements. Nevertheless, uncertainty 

and robustness analysis of truss structures are rare in literature. Near-periodic structures, defects, impurities 

on periodic structures and the localization phenomena are well detailed in (Lust et al., 1995; Wu et al., 2014; 

Mester and Benaroya, 1995), but robustness analyses are scarce. 

In this chapter, one addresses the robustness of repetitive truss structures whose attenuation zones are 

created and passively controlled by using piezoelectric stack actuators associated with electrical shunt cir-

cuits (Leo, 2007; Hagood and Von Flotow, 1991. The finite element method is used to find the equation of 

motion for unit cells (Orris and Petyt, 1974; Mace and Manconi, 2008) which contain a piezoelectric stack 

actuator connected to this circuit. Just like DVAs, shunt circuits can be tuned, which means that the values of 

their electric parameters must be precisely chosen for vibration attenuation in a narrow frequency band. 

However, the characteristic values of electronic components are prone to variability, due to manufacturing 

process and temperature, which can lead to mistuning and, consequently, decrease of the control perfor-

mance. 

In this scenario, it becomes essential to evaluate the probability that the system will comply with the 

design requirements, given the probability density functions ascribed to the uncertain variables considered. 

For that, three different cases are analyzed based on typical operation and performance requirements. Uncer-

tainties in the values of some model parameters (mass of the joints and inductance of the shunt circuit) are 

modeled as Gaussian random variables. Next, a Monte Carlo Simulation (Melchers, 1999; Lemaire, 2009; 

Haldar and Mahadevan, 2000) is performed considering infinite and finite models by using the dispersion 

constants and frequency response function bandgaps data as output variables. The uncertainty level is varied 
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by increasing the standard deviation of input variables as a percentage of their means. Subsequently, the re-

sults are presented and discussed. 

Likewise, the consequences of increasing the uncertainty level are evaluated and a comparison with 

another truss model to investigate the inner resonances is performed. 
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5.2 Methodology for truss structures 
 

In the following, on considers a simple truss unit cell, composed of 12 longitudinal rods, as ilustrated 

in Figure 5.1. The embedded smart devices will be described in the next section. 

 
Figure 5.1 (a) 3D truss unit cell and (b) its finite model. 

 

Firstly, for the sake of simplicity and to reduce the computational cost, the repetitive truss structure in 

Figure 5.1 is composed of rod finite elements with 2 nodes and 3 degrees-of-freedom (dof) per node. This 

structure has 3 boundary nodes on each side, and the relevant properties of the rods are cross section area A, 

Young's modulus E, mass density ρ. Moreover, il  denotes the length of the i-th cell, while l  is the total 

length of a structure with n cells. 

 

5.2.1 Discrete systems comparison 

 

As seen in previous chapters, each type of wave has its own branch in the dispersion diagram. Numer-

ical tools provide discrete evaluation of these curves and tracking these branches is easy only on simple 

structures. For more complex structures, a simple wave type can be tracked in many different branches. 

When a bandgap zone is open, for Bragg’s, local resonance or coupling modes, the understanding of both 

propagation constants is not easy. Figures 5.2(b) and 5.2(c) show the dispersion diagrams for the unit cell of 

Figure 5.2(a) which does not have concentrated masses on the nodes. Although this truss structure present 

periodic spatial characteristics, the imaginary part of the dispersion constant does not present bandgaps. 

Moreover, the propagation constant does not present information in an easily understandable format as pre-

sented in previous chapters. 

Figure 5.3 presents equivalent results for a unit cell with concentrated masses (Spadoni and Ruzzene, 

2006; Taniker and Yilmaz, 2013) on its nodes. It is possible to verify, comparing both figures, that the curves 

b) a) 
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of dispersion constants shifted to lower frequencies and the same tendency observed for the structures con-

sidered in previous chapters are obtained. Such as the discrete spring-mass unit cell on Chapter 2, the number 

of solutions on imaginary part of dispersion constants is limited because of the finite number of dofs of the 

unit cell. Therefore, the region after 6500 Hz is not considered as a bandgap for a real structure. 

 

 
 

  

 

  
 

Figure 5.2 (b) Attenuation and (c) phase constants of truss unit cell (a) without concentrated mass on nodes. 

 

 
 

  

 

  
 

Figure 5.3 (b) Attenuation and (c) phase constants of truss unit cell (a) with concentrated mass on nodes. 

(b) (c) 

(b) (c) 

(a) 
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5.3 First structure: smart rod finite element truss 

5.3.1 Smart cell: Constitutive equations of linear piezoelectricity  

 

The fundaments of piezoelectric material modelling is explained are first introduced. These materials 

produce an electrical output when a mechanical strain is imposed. This is called direct piezoelectric effect. 

Oppositely, a mechanical strain can also be induced by applying an electrical signal. This is the inverse pie-

zoelectric effect. The electromechanical coupling is expressed mathematically by the following constitutive 

equations 
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where D and S are the electric displacement and the mechanical strain, E and T are the electrical field and 

mechanical stress. The material properties T
33ε (F/m), d33 (C/N or V/m) and Es (m²/N) are, respectively, the 

dielectric permittivity coefficient, piezoelectric strain coefficient and mechanical compliance of the piezoe-

lectric material. The indexes E and T are used to designate the properties measured in short-circuit (constant 

electric field) and stress-free conditions, respectively, while subscript 3 indicates the direction along the axis 

of piezoelectric material polarization, which is one of the most common operating modes of piezoelectric 

devices. These characteristics are used to model the semi-active finite element present on the structure con-

sidered in this work. 

 

5.3.1.1 Smart unit cell with shunt circuit 
 

This section presents the finite element model of the three-dimensional truss cell shown in Figure 5.4. 

This unit cell is composed by 6 nodes, 9 passive elements and 3 active elements. The nodes displacement are 

connected and, as long as the rotations are not coupled, the joint has a spherical function. Each of the active 

members is considered as being composed of a stack-type actuator placed between two passive segments. 

The actuator is assumed to be composed of piezoelectric discs poled in the axial direction (direction 3), 

wired in such a way that those discs are electrically connected in parallel. 
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Figure 5.4 (a) Smart unit cell and (b) its piezoelectric stack actuator described as a finite element model. 

 

As indicated in Figure 5.4, Eb (N/m2), Ab (m2) and ρb (kg/m) are the Young’s modulus, cross-section 

area and linear mass density of the passive members, respectively. The others properties, EY33 (N/m2), Ap (m2), 

tp (m) and ρp (kg/m³) are the Young’s modulus, cross-section area, thickness of the piezoelectric discs and 

linear mass density of the piezoelectric material of the active members. The physical and geometrical proper-

ties of the main structure and the actuator are provided in Table 5.1, in which subscripts b and p indicate the 

properties related to the metallic and piezoelectric material. 
 

Table 5.1 Properties of the smart periodic cells. 
Property Unit Symbol Steel (b) PZT-5H (p) 

Young’s modulus ][ 2mN  iE  and EY33  11101.2 ×  9100.60 ×  
Density ][ 3mkg  iρ , bρ  or pρ  0.7860  0.7860  

Cross section area ][ 2m  iA , bA  or pA  6100.25 −×  6105.27 −×  
Bar lengths (Cell length) ][m  bL  or pL ( L or il ) ( )1.0033.0  ( )1.0033.0  

Piezoelectric strain coefficient ]/[ NC or ][ mV  33d  - 12100.650 −×  

Dielectric permittivity coefficient ][ mF  T
33ε  - 9100.33 −×  

 

As detailed in references (Leo, 2007; Hagood and Von Flotow, 1991), neglecting damping, the finite 

element model of the electromechanical system can be written as: 
 

( ) ( ) ( ) ( )ttVtt FKKUUM =−+
~ , (5.2) 

( ) ( ) ( )tQtVt =+ ΓUK~ , (5.3) 
 

where M  is the mass matrix, K  is the stiffness matrix, K~  is the electromechanical coupling matrix, F  is the 

vector of external loads, Γ  is the matrix of dielectric permittivity, U  is the vector of mechanical degrees of 

freedom, ( )tQ  is the electric charge and ( )tV  is the voltage across the electrodes of the piezoelectric patches. 

If a RL shunt circuit is connected to the piezo stack, the voltage and the electrical charge are linked by 

(b) (a) 
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( ) ( ) ( )tQLtQRtV  += . (5.4) 

 

Associating Eqs. (5.2), (5.3) and (5.4), the electromechanical equations of motion are found under the form: 

 

( ) ( ) ( ) ( )tttt FZKZCZM =++  , (5.5) 

 

where ( )tZ , M , C  and K  are equal to ( ) ( )[ ]TtQtU , [ ]Γ0KM LL ;~
− , [ ]Γ0K0 RR ;~

−  and 

[ ]IK0K −
~; , respectively, and ( )tF  is the load vector. An equivalent equation of motion of a truss model 

using the admittance of the shunt circuit can be found in (Preumont, 2004). 

 

5.3.1.2 Tuning a resonant RLC circuit 
 

Figure 5.4(b) illustrates a piezoelectric transducer connected to a resonant (RL) shunt circuit and 

bonded to a host vibrating structure. Similarly to a dynamic vibration absorbers, the resonant shunt circuits 

must be tuned, which means that the values of the electrical resistance and inductance parameters must be 

accurately determined for the attenuation of vibrations of the host structure in a given range of frequencies. 

According to Hagood and Von Flotow (1991), the electromechanical coupling coefficient ∆  plays the same 

role as the mass ratio in tuning a DVA. Indeed, this coefficient can be approximated as follows: 

( ) ( )( ) ( )2222 E
n

E
n

D
n ωωω −=∆ where 

D
nω and 

E
nω  are the n -th natural frequencies in open and closed circuit, 

respectively. Knowing the value of ∆ , one can calculate the optimum values of resistance optR  and induct-

ance optL  according to: ( ) ( )212 ∆+∆=optr , ( )E
n

S
optopt CrR ω= , 21 ∆+=optδ  and ( )( ) 12 −

= SE
nopt CL ω . 

Herein, the electrical resistance is considered as null and no optimal values are used to tune because the 

bandgap border lose definition when damping is considered. Thus, equation (5.6) shows how the inductance 

value is obtained for a specific tuning frequency: 

 

S
nCL 21 ω= . (5.6) 

 

where SC  is the capacitance of piezoelectric actuator and nω  the tuning frequency. In practical conditions, 

the values of the electric characteristics of the shunt circuit are inevitably affected by uncertainties resulting 

from material composition, manufacturing process and temperature variations. Such uncertainties can lead to 

mistuning of the shunt circuit and, as a result, deterioration of the performance of the damping/resonating 

device. In the case of periodic structures, they influence the bandgap bounds and, for a strong impedance 
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mismatch in mechanical and electrical domains, natural frequencies can appear inside the bandgap and, con-

sequently, decrease the attenuation zone efficacy. 

 

5.3.2 Frequency response function and dispersion diagrams 

 
There are several ways to create impedance mismatch in truss structures to create Bragg’s bandgaps or 

to tune the shunt circuit with piezoelectric stack to create local resonance bandgaps. Accordingly, one man-

ner is to increase the mass value of the joints and another is to change the inductance value to tune a specific 

frequency. To give a sense on the influence of the joint mass and shunt inductance, 8 scenarios are compared 

by observing the dispersion diagrams and frequency responses, which are illustrated in Figure 5.5. 

 

    

    

    

    
 

Figure 5.5 Considered unit cells (a), (b), (c), (d), (e), (f), (g) and (h) with their respective dispersion diagrams. 

 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Equation (5.5) can be solved considering a harmonic solution to obtain the frequency response func-

tion (FRF) in equation (5.7). Moreover, equation (5.8) is achieved by solving equation (5.5) considering 

infinite periodic boundary conditions of continuity and equilibrium (Floquet, 1883). 
 

  ( ) ( ) 12 −
++−= KCMH ωωω j , (5.7) 

 [ ] 0)()()( )()(2)()( =−+ µµωωµ rrrr j UMCK . (5.8) 

 

where (r) means reduced matrices considering boundary conditions. Figures 5.5(a) to 5.5(h) show the added 

mass and actuator position with their corresponding imaginary parts of dispersion constants. Transversal and 

longitudinal wave modes are not tracked and the bandgaps highlighted in gray are valid for these two types 

of waves. The red dots indicate the bandgap bounds. It is important to mention that as the model of one cell 

has 18 and 21 dofs (3 dofs per node and 3 more electric dofs for active members), considering reduced ma-

trices (r), the same number of mode branches are found. As the unit cell does not represent all dofs that one 

finite structure can have, the area after the last branch is not considered as an attenuation zone and the re-

spective areas are not exposed in these diagrams. Figure 5.6 shows the frequency responses  by considering a 

transversal (x or y) and longitudinal (z) excitation on the first cell node on the left and observing the response 

of equivalent node of the last cell for a finite structure with 10 cells. 
 

 
 

Figure 5.6 (a), (b) and (c) frequency responses of 8 scenarios periodic finite structures with 10 cells by exciting the firt node on direction x, y and z 
and observeing the corresponding dofs on the last unit cell. 
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The joint mass ( am ) is equal to 0.3 kg and the value of the inductance (L) to tune to a 7000 Hz, con-

sidering equation (6.6) is 0.1084 H. Some configurations does not exhibit the stop band corresponding to 

local resonance because the impedance mismatch and the anti-resonances were not strong enough to open a 

bandgap. 

It is possible to observe that infinite and finite models have the same bandgaps, as can be verified by 

comparing Figures 5.5 and 5.6. Some important aspects can be observed. Firstly, the models without joint 

mass and piezoelectric actuator have no band gaps (Figure 5.5(a)). The same can be observed by adding 

mass in all joints or adding actuators as shown in Figures 5.5(b) and 5.5(e). Adding mass to joints, or consid-

ering the actuators in half-cell, creates attenuation zones as seen in Figures 5.5(c) and 5.5(f). By comparing 

these diagrams, a larger bandgap is found in the case of added mass and a deeper one with added mass and 

PZT in shunt circuit. It is similar to the added mass and mass-spring effects (Clayes et al., 2013). 

Figures 5.5(d), 5.5(g) and 5.5(h) are the combination of the others. The bandgap width is increased by 

combining added masses and actuators in scenarios of Figures 5.5(g) and 5.5(h). Uncertainties can drastically 

change these bandgaps behavior, as show in the next section.  

 

5.3.3 Monte Carlo Simulation and localization phenomena 

 

The localization phenomenon can be briefly explained as normal mode that is confined in a specific 

region of the structure. As the number of cells tends increases, the influence of this mode diminishes. Conse-

quently, it does not appear in the infinite model. As already mentioned in Chapter 2, it is explained due to the 

stronger impedance mismatch compared to other cells. This phenomenon is worthy of exploration since it 

enables to reduce the variation of bandgap borders. 

This kind of event in a Monte Carlo Sampling adds robustness to the bandgap behavior in terms of 

borders variation but it becomes hard to observe the amplitude on FRF inside bandgaps zones and to identify 

the effective attenuation zones. Consequently, a robust interval confidence envelope will not take into ac-

count the localization phenomena since the worst configuration may take part in any cell in a random analy-

sis. 
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Figure 5.7 (a) FRFs with localization phenomena L1, L2, L3 and L4 and (b) their corresponding mode shape. 

 

Figure 5.7(a) shows two FRFs considering a strong mismatch between one or two cells and the others 

in the same structure. L1, L2 and L3 illustrate the localization phenomena by adding a mass of 1 kg on dofs 

located in cell 8. L4 is the same but by changing the inductance of cells 8 and 9 to 0.001 H. Figure 5.7(b) 

depicts their respective mode shapes, and it can be observed that the displacements of nodes in these places 

are higher than the other positions of finite structure. 

 

5.3.4 Probabilistic Analysis 

 

In practice, it is not easy to design locally or to modulate periodically the inertia and the stiffness of a 

mechanical structure. Normally, properties as Young’s modulus and density do not vary considerably if the 

material comes from same batch. Therefore, the principal source of uncertainties are the imperfections or 

defects caused by the manufacturing process. Accordingly, Figures 5.5(c), (f) and (h) illustrate the three situ-

ations of interest in which the added joint mass and inductance values are stochastically analyzed. Table 5.1 

shows the properties of the truss unit cell for the numerical example.  

Cells        1           2           3           4           5           6           7           8          9          10 
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L4 
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A robustness analysis is employed for this periodic structure with the goal of estimating a robust 

bandgap. For this case, to get closer to reality, the variables of each cell should be independent. For the sake 

of comparison, infinite and finite models are used in this probabilistic analysis. To realize this investigation, 

for each standard deviation of random input variable (RV), a convergence of Monte Carlo Simulation is 

achieved and the outputs are obtained. The band gap edges are the outputs. For infinite structures analyses, 

Figures 5.5 show an illustration of these variables where the red dots  are the bounds for the infinite struc-

ture. For finite structures, a specified magnitude in the FRF, defined according to an observable bandgap that 

is different for each case, is used as a threshold for obtaining the bandgap limits for a finite structure. The 

stochastic properties of the input random variables are shown in Table 5.2. 

 

Table 5.2 Probabilistic variables and their distributions. 
 Variables Distribution Mean )(µ  Standard Deviation )(σ  

1X  ][kgma  Normal (Gaussian) 3.0  1Xµγ ×  

2X  ][HL  Normal (Gaussian) 1084.0  2Xµγ ×  

 

Again, using the same technique as in previous chapters, two different cases are considered for each of 

the three scenarios of Figures 5.5(c), 5.5(f) and 5.5(g): 

• a single uncertain variable is associated repeatedly to each cell and, consequently, the structure 

remains periodic (infinite model); 

• all 10 cells are independent from the uncertainty point of view (the structure is not perfectly 

periodic anymore, meaning quasiperiodicity). 

 

For both cases, FE models are considered. To quantify and increase gradually the value of random var-

iables, a stochastic coefficient γ is used. It permits the variation of uncertainty level, given by the standard 

deviation, which is obtained from a percentage of probability distribution mean, according to 
nn XX = µγσ × . 

The variation coefficient γ  varies from 2 % to 20 % with a step of 2 % for this numerical example. 

Then, for each considered value, a Monte Carlo Simulation with Latin Hypercube is performed until its con-

vergence (number of samples around 5000). Considering a Normal (Gaussian) distribution with 95% of con-

fidence level envelope, the output standard deviation value must multiplied by 1.96 to obtain the interval in 

which the output samples have 95% of probability to be in. 

 

5.3.5 Numerical results 

 

Figure 5.8 shows the envelope of the frequency band gaps for the three considered scenarios. Figures 

5.8 (a), 5.8(b) and 5.8(c) for infinite model are obtained from the imaginary part of propagation constant, 
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considering 1 RV (strictly periodic structure),  and Figures 5.8(d), 5.8(e) and 5.8(f) for finite model are ob-

tained from frequency responses with 10 RV (quasi-periodic structure). 

 

 

 

 

  
 

    
 
Figure 5.8 Bandgap bounds envelopes relatives to scenarios on Figures 5.3(c), 5.3(f) and 5.3(h), with: (a) mass as RV, (b) and (c) inductance as RV 

considering an infinite model (1 RV) with their corresponding (d), (e) and (f) for finite results with 10 RV. 
 

Considering a Normal (Gaussian) distribution, this picture shows the means (black lines) and the 95% 

confidence intervals (red area). It is possible to observe that the envelopes widths increase according to the 

increasing of uncertainty level. In general, the envelopes are narrower for the models with finite structures 

(10 RV), approximately less than a half of the bandgaps obtained with infinite structures (1 RV). There is an 

exception for bandgap borders on Figures 5.8(b) and 5.8(e), where it was not possible to obtain the bandgap 

borders for finite structure. 

If an uncertainty level of 10 % is considered for the random variables, the dark gray areas represent 

the robust bandgaps (bandgap considering uncertainties on each cell of finite structure). 

The localization phenomenon perturbed the result in Figure 5.8(e) and equivalent results were not 

found as related to Figures 5.8(d) and 5.8(f). This proves that this phenomenon is strongly sensitive to small 

variations of inductance values in the shunt circuit and an erroneous result is obtained because the border 

values were not correctly detected. 

(c) (a) (b) 

(d) (e) (f) 
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Figure 5.9 Robust band gaps for finite structures composed of 10 unit cells (a) and (c) and their respective dispersions diagramas for infinite struc-
tures (b) and (d). 

 

Figure 5.9 elucidates the concept of robust band gap by situating the classical bandgaps and robust 

bandgaps inside the frequency response and dispersion diagrams, for infinite and finite models. 

The light red areas (envelopes) in Figure 5.9 indicate that the attenuation zone calculated with a single 

random variable is narrower than the dark gray, which was obtained with ten random variables for gamma, 

considering γ  = 10%. Thus, when one uncertainty is considered for each cell of a finite structure, which cor-

responds to practical cases, the effects on the responses are compensated and the structure is intrinsically 

more robust. This remains true as long as localization phenomena does not appear. However, it can appear 
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just in the case of finite model simulation. For high values of γ, the chances of appearing this situation is 

higher. 

It is also possible to observe in Figures 5.9(b) and 5.9(d) that there is a branch corresponding to a lon-

gitudinal wave that inhibits the appearance of two others low frequency bandgaps, as confirmed in the FRFs 

shown in Figures 5.7(a) and 5.7(c). 

For the case with only local resonance bandgaps, Figures 5.8(b) and 5.8(e), the robust bandgap does 

not appear in Figures 5.10(a) and 5.10(b) because the envelope cannot be obtained for finite structures. Even 

if the result for infinite structures is considered for creating this region, it covers the stop band for the value 

of ten percent of stochasticity level. 

 

 
 

Figure 5.10 Band gap for (a) finite and (b) infinite structures considering the local resonance effect. 
 

After having observed the presence of bandgap in the smart truss, it is necessary for the designer to 

characterize the physical phenomenon that could increase the width of these bandgaps. In the following, a 

fully passive truss is presented. Its physical behavior is comparable to the previous interesting cases and its 

simplicity will help to understand the underlying phenomenon. This lattice structure can be represented ana-

lytically by a beam like structure with inner resonances as proposed by (Chesnais et al., 2010; Baravelli and 

Ruzzene, 2013). However, these inner resonances are not easy to comprehend. Complex modes, as related by 

Signorelli and Von Flotow (1987) of a wave that can be propagating and attenuating at same time, can be 

present and the interpretation of the phase and propagation constants on dispersion diagrams are difficult. 
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5.4 Second structure: beam finite element truss 
 

This numerical example is an attempt to create a truss with lower frequency inner resonances 

(Chesnais et al., 2010) to observe their effects on dispersion diagrams, according to infinite and finite mod-

els. Therefore, the same truss is numerically modeled using Euler-Bernoulli beams with six dofs per node. 

Figure 5.11 illustrates two possibilities of inner resonance unit cells that are substructures with embedded 

local mass, which implies the presence of local resonance. For vertical excitation, the first one favors the 

longitudinal modes for beams with concentrated mass in the middle and the second one favors their flexural 

modes. For horizontal excitation, the flexural modes of the first one are excited while both, flexural and lon-

gitudinal modes, are excited for the second unit cell. 

Figure 5.12 illustrates the finite element model used for this analysis. Since the beams are excited in 

multiple directions, it is expected that their behavior is similar to a multi-modal dynamic vibration absorber. 

 

    
Figure 5.11 Example of truss unit cell with concentrated mass in the middle of (a) vertical and (b) horizontal bars to reduce frequency of inner reso-

nances. 

    
Figure 5.12 (a) Truss unit cell modeled with Euler-Bernoulli beams with concentrated mass on yellow circles dofs and (b) corresponding finite 

structure. 

(a) (b) 

(a) (b) 
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The frequency response functions are analyzed while a concentrated mass has its position changed 

from 1 to 9. These numbers represent positions equally spaced along the beam where a mass with 142,5 g is 

purposely placed. 

Figures 5.13(a) and 5.13(b) show the frequency response functions of a clamped-clamped beam with 

10 finite elements mesh. It is possible to observe that changing the mass position along the beam can in-

crease or decrease the frequency values for longitudinal and flexural modes. Figure 5.13(c) is a zoomed por-

tion of Figure 5.13(b) and confirms the presence of flexural modes in lower frequency range. The beam with 

mass on position 5 presents the lowest natural frequencies. In the following, this beam is used as an internal 

component of a periodic truss. 

 

 

 

 

         

 
Figure 5.13 Resonant beam with concentrated mass and its (a) first longitudinal mode, (b) first three flexural modes and (c) a zoom of (b) in low 

frequency. 

 

  

(a) 

(b) (c) 
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5.4.1 Dispersion constants 

 

For the sake of better understanding, two different unit cells are considered, the first one without con-

centrated mass and the second one with this mass in position 5 of horizontal beams. The dispersion constants 

of the first one are illustrated in Figures 5.14(a) and 5.14(b). The curves for the truss with the inner reso-

nances are presented in Figures 5.14(c) and 5.14(d). 
 

    

    
Figure 5.14 Dispersion constants for unit cell (a) without concentrated mass and (b) with mass on position 5. 

 

It is possible to observe that the truss without concentrated mass presents no stop band from 0 to 5000 

Hz. However, it is noticed that some wave branches are coupled for different wave types.  

(a) (b) 

(c) (d) 
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Considering attenuation constants of the unit cell with embedded mass, some branches of real part of 

dispersion constants tend to specific values. Comparing to dispersions constants of local resonance bandgaps 

of Chapter 2, the real part of propagation constants indicates that their values are related to inner resonances. 

 

5.5 Partial conclusion 
 

A low computational cost three-dimensional periodic structure truss is used as a numerical example. 

Firstly, solutions for finite and infinite structures are found as well as their frequency response and dispersion 

diagrams. This structure is discretized by a bar finite element with 3 degrees of freedom per node. A number 

of cells equals to ten has been selected for the finite structure. This choice is made in order to obtain accurate 

location of the attenuation frequency zones without substantially increasing the computational cost. 

The localization phenomenon is identified related to a location with strong impedance mismatch. This 

important remark is clarified and explains the behavior of uncertainties in this kind of repetitive structure. A 

relevant impedance mismatch, which highly differs from the other cells, localized in some place of the repet-

itive structure can reveal interesting properties. 

An uncertainty analysis is performed using the finite and infinite models of the structure. The added 

joint mass and inductance values are purposely chosen as random variables with a Gaussian probability den-

sity function having a mean and standard deviation as stochastic properties. 

A coefficient of variation is specified to vary the standard deviation as a percentage of the mean value. 

Monte Carlo Simulations with Latin Hypercube are conducted until their convergences for each value of the 

coefficient mentioned before. 

The conclusions for infinite and finite models are different. The results for infinite structures are not 

completely reliable since the same uncertainty is repeated indefinitely. Finite analysis is required to correctly 

estimate the statistics of dynamic responses. 

The confidence envelopes for the full structure with ten stochastic variables is narrower than those 

found with one random variable on infinite model. Besides, they are more reliable due to the model being 

closer to reality for the same case. The fact of considering ten random variables, instead of one, proves that 

the uncertainties self-compensate and the periodic structures are intrinsically robust. Accordingly, a more 

accurate and reliable robust bandgap is obtained. 

Inner resonances are investigated for a numerical example with no spherical joints on nodes, i.e. con-

sidering Euler-Bernoulli beams with coupled rotation. The dispersion constants are obtained for a truss with 

and without concentrated mass in the middle of their beams for two different kind of unit cells. The purpose 

is get more information about these complex modes, where a wave can be propagating and attenuating at 

same time. There is presumption that the propagation constants are related to the inner resonances. However, 

the model is computationally time consuming and more research about this topic is needed.  
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 Conclusion and Perspectives 
6.1 Conclusions 
 

In this thesis, the first and main objectives were to perform a probabilistic and reliability analysis of a 

smart periodic truss and its members, as bar or beams, followed by an experimental validation. 

This truss, composed by intelligent actuators as piezoelectric stacks in shunt circuit, would be able to 

simulate the uncertainty effect by tuning different frequencies while arbitrarily changing the inductance val-

ue with small deviations. Although presenting an innovative and ambitious idea, creating local resonance 

bandgaps in trusses is not an easy task, even assuming hypothesis to facilitate their simulation. In other 

words, all the objectives were not possible to be reached and some work is still necessary to solve all the 

issues discovered on the way. 

The periodicity effect, which can transform a periodic mechanical structure in mechanical filters that 

are able to filtrate the vibration in determinate frequency bands, does not induces the appearance of stop 

bands in low frequency on classical trusses. The impedance mismatch created by their intersection between 

bays, or referred as unit cell for periodic structures, is not strong enough to create “omni” wave type 

bandgaps for this kind of structures. Moreover, for local resonance bandgaps, the used models were not able 

to create attenuation zones in lower frequencies using piezoelectric stack actuators in shunt circuit. These 

models were presented in the international conference ASME 2015 and in the workshop JJCAB 2015. 

For the sake of better understanding these two mechanical filter behaviors, simple models, which can 

constitute the truss members, were used and a probabilistic analysis was performed presenting the concept of 

“Robust bandgap”. In other words, this term can be defined as a stop band that considers the uncertainty 

effects on structure geometrical and physical properties. Consequently, a narrower attenuation zone would be 

calculated but presenting more chance that those defects, impurities, temperature variation, difference on cell 

dimensions and many unpredictable situations would not affect the bandgap function. 

Firstly, a periodic structure with stepped bar unit cells was numerically simulated using principally 

two methods: finite element and transfer matrix. The first method is an extremely powerful tool but it can be 

expensive for infinite and finite models as long as a fine mesh is needed. Moreover, for a probabilistic analy-

sis, which normally need samplings of the model considering different values of parameters, it is not a smart 

solution considering computational cost. Accordingly, two approaches using transfer matrix, which gives the 

exact solution from a mathematical point of view, were used to analyze the effect of finiteness on periodic 
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structure models. The goal was to compare infinite and finite models and, by considering one uncertainty for 

one infinite cell and one for each cell in a finite structure, respectively, observe the difference between the 

envelopes with 95% of confidence for a Gaussian distribution for both cases. The obtained results show that 

the robust bandgap obtained with finite number of cells is larger than the robust bandgap obtained for an 

infinite structure. The conclusion was that the uncertainties are compensated for a finite model while they are 

repeated infinitely for an infinite model. However, a natural frequency was inside the attenuation zone which 

got the attention because, normally, a bandgap does not present resonant peaks. Accidentally, the localization 

phenomena appeared on simulation results. This study was presented in conference CFA/VISHNO 2016. A 

periodic journal about this subject is in process of correction and it will be submitted soon. 

Parametric studies and local sensitivity analyses were performed in these stepped unit cell bars and in 

general spring-mass unit cell for Bragg’s and Local resonance bandgaps. For spring-mass unit cells, the res-

onance inside the attenuation zone can be obtained by calculating the value of natural frequencies for a free 

finite structure with only one unit cell. The same can be observed for both types of attenuation zones. This 

was presented in the international conference MEDYNA 2017. 

For longitudinal vibration, the symmetry of an unit cell can tells by calculating its natural frequency 

for free-free boundary conditions the presence of specific localized modes. It can be verified for periodic bar 

models and spring-mass systems. However, for beam free-free models it cannot be verified. 

Envisaging a future experimental evaluation, a periodic Euler Bernouilli beam model was investigated. 

The Transfer Matrix method was firstly used to simulate this model, but stability problems were found. This 

multi-coupled periodic structure present an ill-conditioned transfer matrix which, if self-multiplied, makes 

the computer finite arithmetic errors grow exponentially. One way to reduce this problem is avoiding matrix 

multiplication. An adapted recursive method (Translation Matrix method), normally used in acoustics, was 

used and the finite periodic structure response was calculated. The robust bandgap was obtained considering 

first half-cell thickness as uncertain variable. Although this beam stepped unit cell not being symmetric, no 

natural frequencies were found inside the attenuation zone. Its corresponding symmetric unit cells, i.e., pre-

senting same dispersion constants, has natural frequencies inside the attenuation zone and it does not corre-

spond to natural frequencies of finite structure with only one unit cell. 

Experimentally, a truss is not a structure of simple construction and instrumentation. Their joints are 

not perfect and several other uncertain geometrical and physical parameters can be influent on frequency 

response. To observe the feasibility and the measurement of frequency responses with bandgaps, a periodic 

beam with stepped unit cell was used. An impact hammer was used to apply an impulse to favors flexural 

waves on the left size of a periodic beam with uncertainties on thickness and length of half-cell. The experi-

ment was executed under free-free boundary conditions. The corresponding acceleration was measured in the 

right side of this beam. In low frequency until the first border of second bandgap, the numerical model 

agrees with experimental results. Inside the attenuation zone, it was not possible to measure the structure 

response because, as it is demonstrated in theory, its magnitude is extremely small and the room noise over-
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lay the structure response near the accelerometer resolution. However, unexpected modes appeared inside the 

attenuation zone and it was verified by simulation with small angle variations on excitation force. 

Finally, a periodic truss model was simulated considering bar models with passive and active mem-

bers. A probabilistic analysis was performed and for the cases where the bandgaps were observable, the ro-

bust bandgap considering uncertain values for mass value on joints and inductance value for infinite and 

finite models was obtained. This work was presented in ISMA/USD2016 and it received the award of best 

student article in uncertainties. 

For a mesh convergence for this truss model, beam finite elements were used. However, the active 

PZT stack members were not considered because of the presence of bending moments that could damage 

these type of actuators for a future experimental implementation. Therefore, to analyze the presence of inner 

resonances, concentrated mass was considered in the middle of specified beams with the purpose of bringing 

the value of local resonances to lower frequencies. This was presented at JJCAB2016. 

 

6.2 Contributions 
 

The originality of this work is based on robustness aspects of periodic structures. Although the pres-

ence of several unexpected facts, some important contributions were made and they are listed as follow. 

 

For longitudinal waves in stepped rod unit cells, one contribution is the concept of Robust Bandgap 

that was presented for the first time and it was verified by considering uncertainties in finite models that pe-

riodic structures are naturally robust. For finite structures, the presence of deviations in physical and geomet-

rical unit cell properties creates the localization phenomenon inside the stop band and it goes from its borders 

to the middle as the impedance mismatch that caused this localized mode becomes stronger. If the peaks 

inside the bandgap are not considered a problem, although their presence within this region, the attenuation 

zones have less variation in their border positions and the finiteness of a periodic structure shows that this 

type of structure is consequently more robust. These conclusions were obtained comparing results of infinite 

and finite models. Additionally, it was verified that the natural frequencies of one unit cell can predict a kind 

of localized mode. 

 

For longitudinal waves in spring-mass systems, analytical equations for Bragg’s and local resonance 

bandgap borders were presented. It was also possible to track the natural frequency inside the stop band. One 

important observation and contribution it that this mode can be near of bandgap borders and it can be misin-

terpreted as a bandgap border. In addition, a local resonance bandgap can be inside the zone of a Bragg’s 

bandgap and the dispersion constants may not show its presence. To the best knowledge of the author, it was 

the first time that a general unit cell was proposed to investigate analytically, with the developpement of 
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closed-form equations, the bandgap borders for Bragg’s and local resonance bandgaps considering the num-

ber and type of spring-mass chaings and internal resonators. 

 

For flexural waves in stepped beam unit cells, the same robust conclusion was verified with numerical 

probabilistic analysis. Another novelty is that a recursive method termed as Translation Matrix method was 

successfully used for the first time for flexural waves to avoid stability problems. Semi-analytical results 

were presented for finite structures and this procedure presented efficiency and low computation time com-

paring to finite element analysis. Furthermore, the natural frequencies of one unit cell for free-free boundary 

conditions does not predict the presence of localized modes inside the attenuation zone. In this case, the 

asymmetric unit cell does not present natural frequencies inside the attenuation zone while the symmetric 

unit cells do. 

 

It was shown experimentally that it is impossible to excite a structure intending to excite just one type 

of wave if the frequency band is not a stop band for other wave types. The region inside the bandgap is sensi-

tive and the modes corresponding to other type of waves can be excited because of the presence of weak 

angle deviations. 

 

For several types of waves propagating in a truss unit cell, a robust bandgap was also verified for a 

truss model considering spherical joints. The effects of adding mass on joints and tuning a shunt circuit for 

this kind of structure were investigated using infinite and finite models and the localization phenomena was 

intentionally created to be analyzed in this model. 

 

Moreover, it is the first time a 3D smart periodic truss with periodic assumptions was purposely mod-

eled to simulate uncertain input variables, as circuit components, that can be tuned. This original approach is 

a powerfull tool concerning uncertainty investigation no matter what domain is investigated. 
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6.3 Perspectives 
 

Several ideas were conceived to solve the problems above mentioned and to explore more the great 

potential of combining periodic and smart materials. Therefore, the perspectives are listed in the following. 

 

• Firstly, other probabilistic methods can be used to verify the robustness of a stop band. Differ-

ent ways to obtain the bandgap borders in a finite structure can be used. One idea would be to 

combine the use of both analyses to investigate complex structures by using infinite models to 

firstly discover the bandgap zone and, after, execute an algorithm to search all important 

measures inside this region using a finite model, i.e., where the borders, anti-resonances and 

localized modes are placed.  

 

• Secondly, create a bandgap, to be analized experimentally, without having other type of waves 

and excited modes inside the attenuation zone. On solution could be optimize the structure 

considering place the unwanted natural frequencies of other wave types inside the propagation 

zone. For example, a structure with circular cross-section would not have this problem for 

flexural waves. The Translation Matrix method can be used to create the objective function of 

this multi-objective optimization problem. 

 

• Thirdly, as observed in frequency response with localization phenomena, bandgap robustness 

and width can be improved using gradient effects. Another perspective is investigate the po-

tential of non-uniform periodicity or gradient meta-structures. 

 

• Investigate the localization phenomena as valuable information about unexpected impedances 

mismatches inside the periodic structure. For example, it can be used for Structural Health 

Monitoring for a purposely-designed periodic structure. Thus, more investigation is needed 

and this phenomenon can be intentionally created in periodic beams to be investigated with 

more details. 

 

• Explore the idea of tunable periodic structures. It has to be developed for simple structures in-

volving smart materials. More information is needed before implementing the powerful smart 

truss. 
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6.4 List of publications and presentations 

 

• L.R. Cunha, R.J. Portugal, D.A. Rade, M. Ouisse. Estrutura periódica unidimensional contendo atu-

adores piezelétricos para controle de vibrações, Simpósio do Programa de Pós-Graduação em 

Engenharia Mecânica (POSMEC 2014), Uberlândia/MG, Brazil, November 2014 (Article and 

Poster); 

 

• L.R. Cunha, M. Ouisse, D.A. Rade, Uncertainty analysis of a Smart Periodic truss, Smart Materi-

als, Adaptive Structures and Intelligent Systems (SMASIS, ASME 2015), Colorado Springs - 

CO, EUA, September 2015 (Abstract and presentation); 

 

• L.R. Cunha, M. Ouisse, D. A. Rade, Analyse d’incertitudes sur des treillis périodiques intelligents, 

Journées Jeunes Chercheurs en vibration, Acoustique et Bruit (JJCAB 2015), Besançon, 

France, November 2015 (Abstract, poster and presentation); 

 

• L.R. Cunha, D.A. Rade, M. Ouisse, Conception de Bandes Interdites Robustes pour les Structures 

Périodiques Unidimensionelles, Congrès Français d’Acoustique joint avec Colloque Vibrations, 

Shocks and Noise (CFA/VISHNO 2016), Le Mans, France, April 2016 (Abstract, article and 

presentation); 

 

• L.R. Cunha, M. Ouisse, D.A. Rade, Robust Smart Periodic Truss, International Conference on 

Noise and Vibration Engineering/International Conference on Uncertainty in Structural Dy-

namics (ISMA/USD 2016), Leuven, Belgium, September 2016 (Abstract, Article and presentation 

with USD2016 best Student Paper Award); 

 

• L.R. Cunha, M. Ouisse, D. A. Rade, Accord non uniforme d’amortisseurs dynamiques multi modaux 

pour treillis périodiques, Journées Jeunes Chercheurs en vibration, Acoustique et Bruit (JJCAB 

2016), Marseille, France, November 2016 (Abstract, poster and presentation); 

 

• L.R Cunha, M. Ouisse, D.A. Rade, Analytical and Numerical Local Sensitivity Analysis of Periodic 

Spring-Mass Chains, 2nd Euro-Mediterranean Conference on Structural Dynamics and Vi-

broacoustics (MEDYNA 2017), Sevilla, Spain, April 2017 (Abstract, article and presentation). 
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Résumé : Dans cette thèse, une méthodologie simple pour trouver 
des bandes interdites robustes est présentée. Quatre structures 
différentes sont utilisées comme exemples numériques pour des 
modèles infinis et finis. Les deux premières possèdent des zones 
d'atténuation créées pour les ondes longitudinales en utilisant des 
cellules unitaires de masses/ressorts et de barres. La méthode des 
Matrices de Transfert est utilisée pour modéliser la cellule 
unitaire. Avec cette méthode, il est possible d'obtenir les réponses 
en fréquence, en utilisant une méthode spectrale, et les constantes 
de dispersion, en résolvant un problème aux valeurs propres. Les 
paramètres physiques et géométriques les plus influents sont 
déterminés en effectuant une analyse de sensibilité aux dérivées 
partielles et aux différences finies à travers un modèle infini. Dans 
ce cas, pour le deuxième exemple, la section de la demi-cellule est 
considérée comme une variable stochastique, représentée par une 
fonction densité de probabilité pour une analyse probabiliste. Le 
troisième exemple concerne les bandes interdites pour les ondes 
de flexion utilisant des cellules unitaires de poutres. Dans ce cas, 
la méthode classique des Matrices de Transfert ne peut pas être 
utilisée pour obtenir une réponse de structure finie en basses 
fréquences en raison de la présence de matrices mal 
conditionnées. Par conséquent, une méthode récursive est utilisée. 
Une analyse expérimentale est également réalisée pour ce cas, 
mais considérant la longueur de la moitié des cellules unitaire 
comme incertaine. 
 

Le dernier exemple est un treillis périodique considéré avec et 
sans dispositifs intelligents. La cellule unitaire de cette structure 
en treillis peut présenter des éléments passifs et actifs. En raison 
de la complexité de ce type de cellule, la méthode des éléments 
finis est utilisée. Cependant, ce type de structure ne présente pas 
de ruptures d'impédance suffisamment fortes pour ouvrir des 
bandes interdites même en présence de sous-structures répétitives. 
En vertu de cela, huit scénarios sont étudiés en considérant 
l'introduction de masses concentrées dans les articulations, et les 
actionneurs piézoélectriques dans les circuits shunt résonants qui 
sont considérés comme stochastiques pour des cas spécifiques. 
Pour chaque modèle de structure, une simulation de Monte Carlo 
avec Latin Hypercube est effectuée, les distinctions entre les zones 
d'atténuation incertaines correspondantes pour les modèles finis et 
infinis sont exposées et la relation avec les modes localisés est 
clarifiée. Ces résultats suggèrent que les modèles finis ont une 
bande interdite plus large que les modèles infinis en considérant 
les incertitudes. En d'autres termes, les incertitudes entre les 
cellules voisines se compensent et les structures finies sont 
naturellement plus robustes. Enfin, l'effet de l'augmentation du 
niveau d'incertitude, en faisant varier un coefficient stochastique, 
est analysé et le concept de bande interdite robuste est présenté. 

 

Title : Robust bandgaps for vibration control in periodic structures 

Keywords : Periodic Structures, Vibration Control, Probabilistic Analysis, Uncertainty Propagation, Localization Phenom-
ena, Wave Propagation  

Abstract : In this thesis, a simple methodology to find robust 
bandgaps is presented. Four different periodic structures are used 
as numerical examples for infinite and finite models. The first 
two are related to attenuation zones created for longitudinal 
waves using spring-mass and stepped rod unit cells. The Transfer 
Matrix method is used to model the unit cell. With this method, it 
is possible to obtain the frequency responses, using a spectral 
method, and dispersion constants, solving an eigenvalue problem. 
The most influential physical and geometrical parameters are 
determined by performing partial derivative and finite difference 
sensitivity analysis through an infinite model. Therein, for the 
second example, the cross-section area of half-cell is considered 
as a stochastic variable represented by a probability density 
function with specific deviation properties for a probabilistic 
analysis. The third example concerns the bandgaps for flexural 
waves using stepped beams unit cells. For this case, the classical 
Transfer Matrix method cannot be used to obtain finite structures 
response in low frequency because of the presence of ill-
conditioned matrices. Therefore, a recursive method termed 
Translation Matrix, which avoid matrix multiplication, is used 
and the corresponding probabilistic analysis is performed using 
the half-cell thickness as a random variable. An experimental 
analysis is also performed for this case, but considering half-cell 
length as uncertain.  
 

The last example is a periodic truss that is considered with and 
without smart components. The unit cell of this lattice structure 
can present passive and active members. As long as the type of 
unit cell is more complex, the finite element method is used. 
However, this kind of structure does not have impedance mis-
matches strong enough to open bandgaps although the presence of 
repetitive substructures. In virtue of this, eight scenarios are 
investigated considering the introduction of concentrated mass on 
joints and piezoelectric actuators in resonant shunt circuit which 
are considered as stochastic for specific cases. For each structure 
model, a Monte Carlo Simulation with Latin Hypercube sampling 
is carried out, the distinctions between the corresponding uncer-
tain attenuation zones for finite and infinite models are exposed 
and the relation with localized modes is clarified. These results 
lead to conclude that the finite models present a larger stop zone 
considering stochastic parameters than infinite models. In other 
words, the uncertainties between neighbors’ cells compensate each 
other and the finite structures is naturally more robust. Finally, the 
effect of increasing the uncertainty level, by varying a stochastic 
coefficient, is analyzed and the concept of robust band gap is 
presented.  
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