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This work is concerned with the development of hybrid electric vehicle technologies. It is split into three main topics:

The first topic, covered in Chapter 2, is concerned with the energetic supervisory control that, by taking advantage of the extra degrees of freedom present in a hybrid vehicle, satisfies the power demand from the driver such that the total fuel consumption is minimized. This supervisory control can be cast as an optimal control problem. The contribution of this work is an approach based on Pontryagin's minimum principle, penalty functions, and an implicit Hamiltonian minimization that allows computing the offline energy management under multiple states subject to path constraints. The approach is used to compute the supervisory control, also known as energy management strategy, for two case studies: (1) a series hybrid electric vehicle (modeled as a mixed input-state constrained optimal control with two states) under cold operating conditions and (2) a dual series hybrid electric vehicle (modeled as a mixed input-state constrained optimal control problem with two states and two inputs). The approach is shown to be up to 46 times faster than dynamic programming.

The second topic, covered in Chapter 3, is concerned with the undesired driveshaft oscillations. In a vehicle with a gear-based transmission, this phenomenon is mainly noticeable at low gear ratios (and therefore low speeds) when the torsional dynamics of the driveshaft are excited with large torque values. The contribution of this work is the design and implementation of a damping controller able to significantly reduce the undesired oscillations. The controller is implemented by adding a damping torque signal to the reference torque of the electric machine commanded by the energetic supervisory control (energy management strategy).

No additional actuators are required for the implementation of the controller.

Moreover, the damping controller is effective without significantly interfering with the energetic supervisory control.

The third topic, covered in Chapter 4, is the design of hybrid vehicle architectures.

The complex task of automatically computing the optimal architecture design subsumes other important tasks such as the optimization of the supervisory control, the technology of the powertrain components, and the parametrization of such components. In this work, building upon existing results, the powertrain components are fitted into piecewise affine convex models. In this convex formulation, the hybrid powertrain is seen as a power network. The main contribution is the formulation of the energy management and the architecture design in a simultaneous framework via mixed-integer linear programming.
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Why hybrid electric vehicles

HEVs are one of the approaches aimed to reduce the consumption of fossil fuel resources used for transportation. The main reason why we are interested in reducing the amount of fuel that our vehicles consume comes from the fact that their consumption generates pollutants: CO 2 , NO x , particulate matter, hydrocarbons, and CO. These pollutants have damaging effects on the environment that range from local to a global. The local effects are the deterioration of air quality in urban areas [START_REF] Conor | Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone gps data[END_REF][START_REF] Zwack | Modeling spatial patterns of traffic-related air pollutants in complex urban terrain[END_REF]. The global effects come from the emission of CO 2 , a gas that contributes to climate change (greenhouse effect [START_REF] John | The "greenhouse" effect and climate change[END_REF]) [START_REF] Karl | Modern global climate change[END_REF][START_REF]Greenhouse gas emissions from transport in europe[END_REF]. In order to reduce these damaging effects, several government entities around the world have imposed progresively stricter fuel efficiency and pollution restrictions.

At least ten government entities, representing the 80% of the light-duty vehicle world market, have imposed fuel efficiency and/or CO 2 emission standards for new light-duty vehicles [START_REF] Yang | Light-duty vehicle greenhouse gas and fuel economy standards[END_REF]. One of these government entities, the Europen Union (EU), has gone as far as to set the target of reducing the average CO 2 emissions from new passenger vehicles by a 37.5% by 2030 with respect to the CO 2 emissions of 2021 [START_REF]ICCT. EU: Light-duty: GHG emissions[END_REF]. If this tendency Chapter 1: Introduction 2 continues and no drastic developments are made on increasing the efficiency of internal combustion engines (ICE), in a few decades from now, the only type of vehicles capable of meeting the fuel efficiency and CO 2 emission restrictions will be hybrid and electric vehicles. For instance, according to the United States (US) Environmental Protection Agency, the hybrid version of a 2020 Toyota Camry can achieve 55% less CO 2 emissions and a around 44% better fuel economy than the conventional 2020 Toyota Camry [13].

Moreover, according to a study from Emission Analytics, the average hybrid vehicle in the EU and US markets, having a 1.1 kWh battery, has 30% less CO 2 emissions than its conventional counterpart [START_REF]Emission Analytics[END_REF]. Nevertheless, hybrid and electric vehicles are by no means the only way in which CO 2 emission reduction targets can be achieved. There are other methods that may play a significant role in meeting these targets as well, for instance, the replacement of fossil fuels by low-carbon fuels, such as biofuels and e-fuels [START_REF] Mendiara | Negative CO 2 emissions through the use of biofuels in chemical looping technology: a review[END_REF]. In fact, it is likely that meeting the CO 2 emission reduction targets will require the simultaneous implementation of several approaches [START_REF] Senecal | Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet[END_REF].

What is a hybrid electric vehicle and how does it improve fuel efficiency

A vehicle is defined as hybrid if it is propelled by more than one source of energy and at least one these sources is reversible. An HEV is built by adding a battery pack and/or a supercapacitor (the reversible sources) and one or more electric machines (EM) to a conventional ICE vehicle. Fig. 1.1a and 1.1b compare the powertrains of an HEV and a conventional vehicle. An HEV can also be built combining a battery pack and/or a supercapacitor (the reversible sources) and one or more electric machines (EM) with a fuel-cell (nonreversible source), see Fig. 1.1d. The presence of the aforementioned components gives an HEV more degrees-of-freedom, with respect to a conventional vehicle, when meeting the power demand from the driver. The extra degrees-of-freedom can be used to achieve a better fuel consumption by: operating the ICE in its most efficient region available, recovering energy via regenerative braking, shutting down the engine during stand-still and low-power driving conditions.

HEVs can be classified in mild, full and plug-in HEVs. The ability of an HEV to improve fuel efficiency depends on to which of these classifications it belongs: A mild HEV has the smallest energy storage system and EM of the three types of HEV: around 0.4 kWh of capacity for the storage system. This HEV only has some of the three capabilities listed above: turning off the engine at standstill and regenerative braking. It does not turn off the engine during low-power driving conditions since its EM is too small to propel the vehicle by its own.

A full HEV improves fuel efficiency with respect to a mild HEV through a bigger storage system (around 1.8 kWh of capacity) and more powerful EMs. It can perform all of the three capabilities listed above: operating the ICE in its most efficient region available, recovering energy via regenerative braking, shutting down the engine during stand-still and low-power driving conditions. Moreover, it can recover more energy via regenerative braking than a mild HEV.

A Plug-in HEV can further improve the fuel efficiency by significantly increasing the size of its components, the storage system (typically between 5 and 20 kWh)

and the EMs, and by having a battery pack that can be directly recharged from the grid, see Fig. 1.1c.
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In the rest of the thesis, every discussion about HEVs will refer to full HEVs, unless it is explicitly stated otherwise. Other factors that influence an HEV performance are its architecture and the technology used by its components. A limitless number of HEV architectures can be conceived. The most common architectures are the series, parallel and power-split architectures. After an architecture has been chosen, it can be implemented using different technologies. For example, an ICE may be spark-ignited or compressionignited, the battery pack may be built using lead-acid, or nickel-metal hydrides, or lithium-on cells, the EMs may be permanent-magnet, or induction, or switched reluctance machines, and the transmission may be a gearbox or a continuous variable transmission (CVT) technology. However, the chance of an HEV being built and deployed on the roads does not depend solely on its performance but also on its cost-effectiveness.

A high-performance HEV may never hit the roads if it is prohibitively expensive.

Energy management strategies

The algorithm that handles the extra degrees-of-freedom such that the total fuel consumption is minimized is known as energy management strategy (EMS) [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]. Its operation is depicted in Fig. 1.2. Its inputs are the power request from the driver and the state of the vehicle's components; its outputs are set-points to the low-level controllers.

Although the main objective of an EMS is to improve the fuel efficiency, additional criteria may be considered in its problem formulation as well, e.g., reducing the emission of pollutants (the optimal energetic operation of the vehicle may not coincide with the optimal operation of its catalyst) [START_REF] Kum | Optimal energy and catalyst temperature management of plug-in hybrid electric vehicles for minimum fuel consumption and tail-pipe emissions[END_REF][START_REF] Michel | Optimizing fuel consumption and pollutant emissions of gasoline-HEV with catalytic converter[END_REF], improving the driver's comfort [START_REF] Daniel | An energy management controller to optimally trade off fuel economy and drivability for hybrid vehicles[END_REF][START_REF] Miro-Padovani | Implementation of an energy management strategy for hybrid electric vehicles including drivability constraints[END_REF], and prolonging the lifetime of the energy sources [START_REF] Ebbesen | Battery state-of-health perceptive energy management for hybrid electric vehicles[END_REF][START_REF] Sciarretta | Optimal energy management of automotive battery systems including thermal dynamics and aging[END_REF]. 

Real-time energy management

Real-time EMS [START_REF] Hou | Approximate Pontryagin's minimum principle applied to the energy management of plug-in hybrid electric vehicles[END_REF] are used to operate actual vehicles and can only rely on causal algorithms. Examples of real-time EMS techniques are model predictive control (MPC) [START_REF] Hoseinali Borhan | MPC-based energy management of a power-split hybrid electric vehicle[END_REF], heuristic based control [START_REF] Pisu | A comparative study of supervisory control strategies for hybrid electric vehicles[END_REF], and the equivalent consumption minimization strategy (ECMS) [START_REF] Kessels | Online energy management for hybrid electric vehicles[END_REF].
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In MPC approaches, the optimal control problem equivalent to the EMS is computed at every sampling time but only the first control sequence is used as set-point for the vehicle's controllers. This receding horizon feature helps to overcome the uncertainties and unmodeled dynamics ignored during the design of the controller. One advantage of the MPC method is that the constraints on the states and inputs can be included in the problem formulation explicitly. Its main drawbacks are that (i) its performance depends on the availability of sufficiently accurate predictions of the future driving conditions and

(ii) that it can required an important computation effort. The prediction of the future driving conditions can be estimated using sensors such as GPS navigation systems, cameras, LIDARs, general information about the traffic conditions ahead, exponential decay models for the future torque signal [START_REF] Hoseinali Borhan | MPC-based energy management of a power-split hybrid electric vehicle[END_REF], and stochastic models for the driving profile [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF].

Alternatively, heuristic rules can be designed using expert knowledge about the vehicle's powertrain and/or analyzing the offline solutions under different driving conditions [START_REF] Peng | Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming[END_REF][START_REF] Lin | Energy management strategy for a parallel hybrid electric truck[END_REF]. This approach can lead to close to optimal results and it has the advantage of requiring an small computational effort. The main drawback of this approach is that the heuristic rules designed for one vehicle architecture cannot be easily translated to another architecture. Therefore, the design of the heuristic rules can be a time-consuming task.

The Equivalent consumption minimization strategy (ECMS) is yet another real-time EMS [START_REF] Paganelli | Equivalent consumption minimization strategy for parallel hybrid powertrains[END_REF]. ECMS is based on the fact that, in the case of charge sustaining HEVs, the energy depleted from the battery will be eventually replenished by the ICE, thus, consuming fuel. The ECMS consists in the instantaneous minimization of a function formed by the sum of the fuel consumption rate and the electric power provided by the battery pondered by an equivalent factor which accounts for the amount of fuel that will be required to recharge the battery. Although it was originally conceived using engineering intuition, it can be derived from the Pontryagin minimum principle (PMP) if the equivalent factor is seen as a co-state [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF]. In order to achieve close to optimal results, ECMS requires a good estimate of the optimal co-state trajectory, which can be exactly determined only if the driving conditions are perfectly known beforehand. Despite this, the ECMS can achieve close to optimal results without any a priori knowledge of the driving profile. The main advantages of the ECMS are that it can be more easily adapted to different powertrain topologies than heuristic based approaches and that it requires a smaller computational effort than MPC methods. Its main drawback is that it cannot explicitly handle state constraints.

Offline energy management

In simulation, finding the offline EMS consists in computing (eventually, in a non-causal way) the ultimate performance of the HEV. In practice, the obtained results allow assessing, from an energy consumption perspective, different vehicle architectures and component sizing [START_REF] Silvas | Review of optimization strategies for system-level design in hybrid electric vehicles[END_REF]. They can also be used to evaluate the performance of real-time energy management algorithms. EMS in its most general form can be formulated as an optimal control problem with: mixed input-state constraints, discrete and continuous inputs, and discrete and continuous dynamics.

The methods for solving this optimal control problem can be classified in three groups: dynamic programming (DP), direct-approach methods, and indirect-approach methods.

Dynamic programming

In the DP approach, all the variables, inputs, states and time, are quantized. Then, the resulting discrete static optimization problem is solved to determine the optimal EMS.

The DP approach is widely used in the literature of HEV, since it can solve the EMS in its most general form, i.e, with hybrid dynamics and input and state constraints. The main drawback of this method comes from its computational expensiveness, referred as the curse of dimensionality [START_REF] Ernest | Dynamic Programming[END_REF]. Namely, the number of elementary operations has an exponential relationship with respect to the number of states and inputs in the problem formulation. Likewise, the memory requirements increase exponentially with respect to the number of states. As a consequence, DP is, usually, restricted to problems with only one [START_REF] Lin | Power management strategy for a parallel hybrid electric truck[END_REF][START_REF] Ebbesen | Particle swarm optimisation for hybrid electric drive-train sizing[END_REF], or two continuous states [START_REF] Ansarey | Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming[END_REF][START_REF] Yang | Comparison of powersplit and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach[END_REF].

Direct-approach methods

In the direct-approach methods, only the time is often quantized (finite-time problems). The resulting static minimization problem is solved using mathematical programming techniques such as nonlinear programming, e.g., sequential quadratic programming Chapter 1: Introduction
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(SQP) [START_REF] Zhu | A fourstep method to design an energy management strategy for hybrid vehicles[END_REF][START_REF] Khalik | Vehicle energy management with ecodriving: A sequential quadratic programming approach with dual decomposition[END_REF], or convex programming, e.g., second-order cone programming (SOCP) [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF], quadratic programming (QP) [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF], and linear programming (LP) [START_REF] Tate | Finding ultimate limits of performance for hybrid electric vehicles[END_REF][START_REF] Azrin | Fast numerical powertrain optimization strategy for connected hybrid electric vehicles[END_REF]. State constraints can be taken into account. Optimizing discrete controls leads to very large mixed-integer programming problems due to the considered long optimization horizon (typically, more than 1000 time steps). These problems are not tractable in general, even if they are restricted to be mixed-integer linear programming (MILP) problems.

Nonetheless, when only continuous controls are considered, the direct approach does not posses the curse of dimensionality suffered by DP, therefore, it can be applied to obtain the optimal EMS, when several continuous states are considered. Moreover, it has been even applied to obtain, simultaneously, the optimal EMS and the optimal sizing of the main powertrain components [START_REF] Pourabdollah | Optimal sizing of a parallel PHEV powertrain[END_REF].

Indirect-approach methods

In the group of indirect methods, the calculus of variations or the Pontryagin minimum principle (PMP) is applied to obtain optimality conditions. The original EMS is then reduced to a simpler equivalent problem, namely, a boundary value problem (BVP).

Hybrid-PMP [START_REF] Pierre Riedinger | An optimal control approach for hybrid systems[END_REF][START_REF] Ngo | Optimal control of the gearshift command for hybrid electric vehicles[END_REF] allows considering both continuous and discrete systems, and thus, handling discrete controls signals, although they can lead to singular control issues [START_REF] Chasse | Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management[END_REF][START_REF] Delprat | Hybrid vehicle energy management: Singular optimal control[END_REF]. State constraints lead to many theoretical difficulties, and there is no algorithm available to efficiently derive a solution in the general case. An algorithm is proposed in [START_REF] Thijs Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF] to solve the EMS problem restricted to a single state.

Contribution

The contribution of the this work is in three important topics in the filed of hybrid vehicle technology. How these topics are related and a brief explanation of the contributions made on each of these topics will be discussed in the following. The first topic covered is the main characteristic of an HEV: the EMS. In this work, its offline version is considered, Section 1.4.1. In an HEV, having the energetic performance as the paramount objective may lead to the replacement or removal of components that provide a passive damping to the driveline, i.e, an energetically efficient driveline may be underdamped, and hence present driveshaft oscillations noticeable enough to affect the driver's comfort. This drawback may be overcome by taking advantage of the additional actuators available in a hybrid powertrain to implement an active damping controller. The main constraint of this controller is that it should not interfere with the EMS. The design and implementation of this damping controller is the second topic covered in this work, Section 1.4.2. The third and last topic, Section 1.4.3, is the optimal design of powertrain architectures. This is the most general topic and it can subsume all the other ones: we cannot determine the optimal architecture without first solving the EMS and we could include the maximization of the driveline damping in the problem formulation affecting the relevance of the second topic. In this work, the single criterion to be considered for computing the optimal architecture is the minimization of the total losses along the powertrain, i.e., the EMS is included in the problem formulation but damping maximization is not. The rest of this section explains the contributions made on each topic.

State constrained energy management for HEVs: an implicit

Hamiltonian minimization approach

The energy management under several constrained states can be solved using the penalty function approach. It consists in adding an additional cost to the criterion that forces the state to stay in the feasible region. This approach converts the state constrained problem into an unconstrained one that can be solved using the classical PMP [START_REF] Kareemulla | State constrained hybrid vehicle optimal energy management: an interior penalty approach[END_REF][START_REF] Han | Handling state constraints in fast-computing optimal control for hybrid powertrains[END_REF].

Nevertheless, the resulting optimality conditions are significantly more difficult to solve [START_REF] Sanchez | Hybrid vehicle energy management: Avoiding the explicit hamiltonian minimization[END_REF].

The contribution of this work is a novel method for the minimization of the Hamiltonian that overcomes the difficulties found in the penalty-based approaches to satisfy the optimality conditions. The novel method is based on an implicit Hamiltonian minimization that, under strict convexity assumptions, can solve the EMS formulated with n states and m inputs under mixed input-state constraints. Although other penalty approaches have been successfully applied to the EMS under state constraints, they have been so far restricted to formulations with only one state [START_REF] Kareemulla | State constrained hybrid vehicle optimal energy management: an interior penalty approach[END_REF][START_REF] Han | Handling state constraints in fast-computing optimal control for hybrid powertrains[END_REF]. Increasing the number of states and inputs is relevant since it is necessary to produce a more accurate representation of the vehicle and all its subsystems that have an effect on the energy management [START_REF] Wang | Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty[END_REF].

Energy management and active damping of the side-shaft oscillations

Beyond the energetic management, the extra actuators in an HEV can help mitigate the presence of drive-shaft oscillations. In a vehicle with a gear-based transmission, the driveshaft oscillations are mainly noticeable at the first and second gear, and therefore at relatively low speeds: when a low gear is engaged and the driver demands strong accelerations, the driveshaft experiences steep and particularly high torque changes, thus, exciting its torsional dynamics to the point of producing noticeable torque and speed oscillations. These oscillations affect the driver's comfort and can wear off the driveline components [START_REF] Caruntu | Lyapunov based predictive control of vehicle drivetrains over can[END_REF][START_REF] Zhang | Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking[END_REF]. The contribution of the thesis is a control law based on a discrete RST approach able to mitigate these oscillations without significantly interfering with the EMS: it is found in simulation that the total fuel consumption increases only in a +0.26% when a synthetic driving mission designed to have a high number of steep torque changes in a short period of time is used. This synthetic driving cycle is unlikely to arrive in normal driving conditions and as such it is used as a worst case scenario. The controller does not require the installation of new hardware and it has been validated experimentally.

Architecture design for hybrid electric vehicles

The optimal design of powertrain topologies is a complex nonconvex and nonlinear problem. It is a nondeterministic polynomial time (NP) problem in general. For this reason, the works available in the literature constraint the number of components from which the topology architectures can be built [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF][START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF][START_REF] Zhuang | Rapid configuration design of multiple-planetary-gear power-split hybrid powertrain via mode combination[END_REF]. In order to answer the question of what is the best topology design, one has to simultaneously determine, what technology should be used for each of the components, how should the size of each of the components be chosen together with the EMS. In this work, building upon existing results [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF][START_REF] Tate | Finding ultimate limits of performance for hybrid electric vehicles[END_REF][START_REF] Ahmadi | Mathematical representation of radiality constraint in distribution system reconfiguration problem[END_REF] the powertrain components are fitted into piecewise affine convex models. In this convex formulation, the hybrid powertrain is modeled as a power network. The main contribution is the formulation of the energy management and the architecture design in a simultaneous framework via mixed-integer linear programming.
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-Energy management of hybrid vehicles with state constraints: A penalty and implicit Hamiltonian minimization approach (2020); M. The algorithm that handles the extra degrees-of-freedom such that the total fuel consumption is minimized is known as energy management strategy (EMS) [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]. In its more general form, the EMS can be cast as an optimal control problem with: 

nonlinear
J = t f 0 ṁf (u(t), ϑ[k]) dt, (2.1a) 
subject to:

ẋ(t) = f (x(t), u(t), ξ[k], ϑ, w(t)) (2.1b) ξ[k + 1] = g(ξ[k], ϑ[k], w(t)) (2.1c) x ∈ X(t), (2.1d 
)

ξ ∈ Ξ[k] (2.1e) u ∈ U (t, w(t))), (2.1f) ϑ ∈ Θ(t, w(t)), (2.1g) 
with ṁf (g/s) the fuel consumption rate, (

•)[k] denoting (•) (t ∈ k • ∆t), k ∈ N, ∆t ∈ [0, t ],
w(t) the vector of exogenous variables, and where X, Ξ, U , and Θ are nonconvex sets in general. The vector of exogenous variables typically includes the power demand from the driver, the vehicle longitudinal speed and the road slope. In short, EMS seeks to minimize the total fuel consumption for a given driving mission under several constraints. The main constraint being that the power demand from the driver has to be satisfied all along the driving mission (t ∈ [0, t f ]).

In simulation, the power demand from the driver, for a given driving mission, is commonly computed using a quasi-static approach [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]. This is the approach taken in this work. Let us as denote m (kg) as the vehicle mass, v(t) (m/s) as the vehicle longitudinal velocity, r (m) as the radius of the wheels, c rr (-) as the rolling resistance coefficient, g (m/s 2 ) as the acceleration of gravity, α (rad) as the grade of the road, ρ (kg/m 3 ) as the air density, A s (m 2 ) as the vehicle frontal area, and c air (-) as the aerodynamic drag coefficient. In the quasi-static approach, the vehicle is modeled as a lumped mass under the action of 4 forces:

m eq • a v = F trac -F rr -F slope -F air , (2.2) 
with m eq = m+I v (t)/r 2 (kg) the equivalent mass and I v (t) (kg•m 2 ) the powertrain total moment of inertia seen from the wheels 1 , a v = dv/dt (m/s 2 ) the vehicle acceleration, 

F air = 1 2 • ρ • c air • A s • v 2 ( 
N) the aerodynamic drag force. Therefore, assuming that v(t), a v (t) and α(t) are known 1 Iv(t) depends on the vehicle architecture and the clutch and gears state of engaged/disengagement.
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P w (t) = F trac (t) • v(t).
(2.3)

P w (t) = (m eq • a v + F rr + F α + F air ) • v(t), (2.4) 
From a torque and angular velocity perspective, the powertrain has to provide the following torque signal at the wheels:

T w (t) = (m eq • a v + F rr + F α + F air ) • r (2.5)
under the kinematic constraints imposed by the angular speed:

ω w (t) = v(t)/r, (2.6) 
in order to complete the driving mission. Quasi-static models are considered valid for energy management applications because most of the energy flowing through the vehicle is carried by low-frequency signals, which makes reasonable to neglect the transient response of the vehicle components. As mentioned in the previous chapter, additional criteria may be added to (2.1a). For instance, minimizing the total amount of pollutant and green-house effect tailpipe emissions [START_REF] Kum | Optimal energy and catalyst temperature management of plug-in hybrid electric vehicles for minimum fuel consumption and tail-pipe emissions[END_REF][START_REF] Michel | Optimizing fuel consumption and pollutant emissions of gasoline-HEV with catalytic converter[END_REF], improving the driver's comfort [START_REF] Daniel | An energy management controller to optimally trade off fuel economy and drivability for hybrid vehicles[END_REF][START_REF] Miro-Padovani | Implementation of an energy management strategy for hybrid electric vehicles including drivability constraints[END_REF],

and prolonging the lifetime of the energy sources [START_REF] Ebbesen | Battery state-of-health perceptive energy management for hybrid electric vehicles[END_REF][START_REF] Sciarretta | Optimal energy management of automotive battery systems including thermal dynamics and aging[END_REF]. In simulation, the methods for solving (2.1) can be classified in three groups: dynamic programming (DP), direct-approach methods, and indirect-approach methods.

The contribution of this work lies within the third group: the indirect-methods. However, a general discussion on the three groups of methods will be provided before entering into the details of the contribution.
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2.2 State-of-the-art

Dynamic programming

In the DP approach, all the continuous variables, inputs, states and time, are quantized:

min u[k],ϑ[k] J = N -1 k=0 ṁf (u[k], ϑ[k]) • ∆t, (2.7a) 
subject to:

ẋ[k + 1] = f (x[k], u[k], ξ[k], ϑ[k], w[k]) (2.7b) ξ[k + 1] = g(ξ[k], ϑ[k], w[k]) (2.7c) x ∈ X[k], (2.7d) 
ξ ∈ Ξ[k] (2.7e) u ∈ U (k, w[k]), (2.7f) ϑ ∈ Θ(k, w[k]), (2.7g) 
with ∆t the time period of the quantization, k ∈ N; and where

X ⊂ R n , Ξ ⊂ N n d , U ⊂ R m
, and Θ ⊂ N m d are finite sets. Then, the resulting discrete static optimization problem, (2.7) is solved to determine the optimal EMS. The DP approach is widely used in the literature, since it can solve the EMS in its most general form and its solution is globally optimal. The DP algorithm implements a backwards and a forwards simulation.

The backwards simulation of the DP algorithm is summarized in Algorithm 1. By ana-Algorithm 1 Backward sub-routine of the DP algorithm. Adapted from [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF].

1. for k = N -1 : 0 do 2.
for all x ∈ X, ξ ∈ Θ do

3.

for all u ∈ U , ϑ ∈ Θ do 4.

x

[k + 1] = f (x, u, ξ, θ, w[k]) 5. ξ[k + 1] = g (ξ, θ, w[k]) 6. L = ṁf (u, θ) • ∆ t 7. J (u, ϑ) = L + J ctg (x[k + 1], ξ[k + 1], k + 1) 8.
end for 9.

J ctg (x, ξ, k) = min J (u, ϑ)

10.

[U ctg (x, ξ, k), Θ ctg (x, ξ, k)] = arg min J (u, ϑ) and |U | = U m , thus, the computational complexity grows exponentially with respect to the number of continuous inputs and states:

O(N × X n × U m × |Ξ| × |Θ|), (2.8) 
Moreover, from lines 7, 9, and 10 of the algorithm, it can be concluded that the memory requirements are determined by matrices J (u, ϑ) which contains U m × |Θ| real numbers, 

J ctg (x, ξ, k), which contains N × X n × |Ξ| real numbers, U ctg (x, ξ, k) which contains N × X n × |Ξ| m-length real vectors or m × N × X n × |Ξ|
O ((m + m d ) × (N × X n × |Ξ|) + U m × |Θ|) , (2.9) 
Therefore, the memory requirements also grow exponentially with respect to the number of continuous inputs and states. In general, X is much greater than U. For HEV applications in particular, n ≈ m. Therefore, the memory requirements can be estimated by m × N × X n for HEV applications. words, the requirements become highly prohibitive for n = 3 states. This computational expensiveness, referred as the curse of dimensionality [START_REF] Ernest | Dynamic Programming[END_REF], explains why DP is usually restricted to EMS problems with only one [START_REF] Lin | Power management strategy for a parallel hybrid electric truck[END_REF][START_REF] Ebbesen | Particle swarm optimisation for hybrid electric drive-train sizing[END_REF] or two continuous states [START_REF] Ansarey | Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming[END_REF][START_REF] Yang | Comparison of powersplit and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach[END_REF]. The estimations on the computational resources required by DP discussed in this paragraph are summarized in 

Direct methods

In the direct-approach methods, only the time is often quantized (finite-time problems). The resulting static minimization problem is solved using mathematical programming techniques such as nonlinear programming, e.g., sequential quadratic programming (SQP) [START_REF] Zhu | A fourstep method to design an energy management strategy for hybrid vehicles[END_REF][START_REF] Khalik | Vehicle energy management with ecodriving: A sequential quadratic programming approach with dual decomposition[END_REF], or convex programming, e.g., second-order cone programming (SOCP) [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF], quadratic programming (QP) [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF], and linear programming (LP) [START_REF] Tate | Finding ultimate limits of performance for hybrid electric vehicles[END_REF][START_REF] Azrin | Fast numerical powertrain optimization strategy for connected hybrid electric vehicles[END_REF]. State constraints can be taken into account. Optimizing discrete controls leads to (nonconvex) very large mixed-integer programming problems due to the considered long optimization horizon (typically, more than 1000 time steps). These problems are not tractable in general, even if they are restricted to be mixed-integer linear programming (MILP) problems. Nonetheless, when only continuous controls are considered, the direct approach does not posses the curse of dimensionality suffered by DP, therefore, it can be applied to obtain the optimal EMS, when several continuous states are considered.

Moreover, it has been even applied to obtain, simultaneously, the optimal EMS and the optimal sizing of the main powertrain components [START_REF] Pourabdollah | Optimal sizing of a parallel PHEV powertrain[END_REF]. Including discrete controls can be feasible by combining convex programming with another method better suited for dealing with discrete inputs. For instance, it has been combined with DP in an iterative approach in order to compute the EMS of a parallel HEV including discrete variables: engine on/off state and gear-shifting [START_REF] Nüesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF]. Necessary and sufficient optimality conditions for the iterative approach are provided therein. Similarly, in [START_REF] Hadj-Said | Convex optimization for energy management of parallel hybrid electric vehicles[END_REF], convex programming was combined with an indirect approach to compute the EMS of a parallel HEV with engine on/off state.

One of the main difficulties that limits the use of convex programming is the challenge of determining if the concerned mathematical program is indeed a convex program. This is not tractable in general and it may require a high level of expertise. A modeling tool

Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 17 called disciplined convex programming was conceived to ease these expertise requirements on potential convex programming users [START_REF] Grant | Disciplined convex programming[END_REF]. A disciplined convex program can be straightforwardly identified as such by applying a finite set of rules. Every disciplined convex program is a convex program but the opposite is not true: a mathematical program may not be a disciplined convex program and still be a convex program. If a mathematical program is indeed a disciplined convex program, it can be modeled as such using the Matlab-based tool CVX [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF]. Once the disciplined convex program has been modeled, CVX will translate it into a standard form suitable for a convex programming solver 2 . CVX has been regularly used in HEV applications. For instance, in [START_REF] Pourabdollah | Optimal sizing of a parallel PHEV powertrain[END_REF], [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF], [START_REF] Nüesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF], and [START_REF] Hadj-Said | Convex optimization for energy management of parallel hybrid electric vehicles[END_REF], among others.

Indirect methods

In the group of indirect methods, the calculus of variations or Pontryagin minimum principle (PMP) is applied to obtain optimality conditions. The original EMS is then reduced to a simpler equivalent problem, namely, a boundary value problem (BVP).

Although the optimality conditions usually do not require any quantization, computing the solution of the BVP does require the quantization of the independent variable whenever an analytic solution is not possible. The conditions offered by PMP are necessary conditions only. Assuming that an optimal solution exists, it can be obtained by computing all the trajectories that satisfy the necessary conditions and then choosing the one with the best performance. If it is proven that only one trajectory satisfies PMP conditions, the necessary conditions become sufficient as well.

Classical Pontryagin minimum principle

The original version of PMP [START_REF] Semenovich | The mathematical theory of optimal processes[END_REF] 

ẋ(t) = f (x(t), u(t), w(t)) (2.10b) x(0) = X(0), (2.10c 
)

x(t f ) = X(t f ), (2.10d) u ∈ U (t, w(t))), (2.10e) 
In order to apply PMP, the Hamiltonian has to be computed first. For (2.10), the Hamiltonian is defined as follows:

H(x(t), u(t) | w(t)) = ṁf (u(t)) + λ(t) T f (x(t), u(t), w(t)), (2.11) 
where λ(t) ∈ R n is the vector of costates of the optimal control problem. PMP states the following necessary optimality conditions for (2.10) [START_REF] Semenovich | The mathematical theory of optimal processes[END_REF]: 

λ(t) = - ∂H (x(t), u(t) | w(t)) ∂x , (2.12a) 
J = t f 0 ṁf (u(t), ϑ[k]) , (2.14a) 
subject to:

ẋ(t) = f (x(t), u(t), ξ[k], ϑ, w(t)) (2.14b) ξ[k + 1] = g(ξ[k], ϑ[k], w(t)) (2.14c) x(0) = X(0), (2.14d 
)

x(t f ) = X(t f ), (2.14e) u ∈ U (t, w(t))), (2.14f) ϑ ∈ Θ(t, w(t)), (2.14g) 
Defining the Hamiltonian of (2.14) as follows:

H(x(t), ξ[k], u(t), ϑ[k] | w(t)) = ṁf (u(t), ϑ[k]) + λ(t) T f (x(t), ξ[k], u(t), ϑ[k], w(t)), (2.15) 
the necessary conditions of optimality offered by Hybrid-PMP are:

λ(t) = - ∂H (x(t), ξ[k], u(t), ϑ[k] | w(t)) ∂x , (2.16a 
)

{u(t), ϑ[k]} = arg min ϑ[k]∈Θ[k]
arg min

u(t)∈U H (x(t), ξ[k], u(t), ϑ[k] | w(t)) (2.16b) 
Again, for each state x i that does not have a fixed terminal condition, i.e., x i (t f ) / ∈ X(t f ), the following terminal condition has to be added:

λ i (t f ) = 0. (2.17)
However, the inclusion of discrete inputs for EMS applied to HEV may lead to singular control arcs 3 [START_REF] Delprat | Hybrid vehicle energy management: Singular optimal control[END_REF]. A singular control arc occurs when, for a non-trivial period of time [t 1 , t 2 ], PMP optimality condition (2.16b) is not enough to compute an optimal control candidate [START_REF] Kirk | Optimal control theory: an introduction[END_REF]. 3 In some works, this phenomenon was wrongly blamed on numerical inaccuracy [START_REF] Chasse | Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management[END_REF].
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Motivation

State constraints lead to many theoretical difficulties, and there is no algorithm available to efficiently derive a solution in the general case. An algorithm is proposed in [START_REF] Thijs Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF] to solve the EMS problem restricted to a single state.

Problems with many constrained states can be handled using the penalty function approach. It consists in adding an additional cost to the criterion that forces the state to stay in the feasible region. This approach converts the state constrained problem into an unconstrained one that can be solved using the classical PMP [START_REF] Kareemulla | State constrained hybrid vehicle optimal energy management: an interior penalty approach[END_REF][START_REF] Han | Handling state constraints in fast-computing optimal control for hybrid powertrains[END_REF]. Nevertheless, the resulting optimality conditions are significantly more difficult to solve [START_REF] Sanchez | Hybrid vehicle energy management: Avoiding the explicit hamiltonian minimization[END_REF].

Contribution: A penalty function and implicit Hamiltonian minimization approach

The first part of this section explains the penalty function approach: how the constraints of the original EMS can be relaxed by adding nonlinear terms to the Hamiltonian. The second part explains how the PMP optimality conditions can transform the relaxed EMS formulation into an equivalent BVP. The optimal control must be chosen to minimize the Hamiltonian, a given scalar function. The relaxation of the constraints by adding nonlinear terms to the Hamiltonian makes more difficult its explicit minimization. Hence, the last subsection explains the main contribution: an implicit minimization scheme.

The contribution will be explained assuming an EMS with the following form4 :

min u(t)≤u(t)≤ū(t) J = t f 0 ṁf (u(t)) , (2.18a) 
subject to:

ẋ(t) = f (x(t), u(t), w(t)) (2.18b) x ≤ x(t) ≤ x, (2.18c) u(t) ≤ u(t) ≤ ū(t), (2.18d) 
x(0) = X(0), (2.18e)

x(t f ) = X(t f ), (2.18f) 
Discrete signals are omitted in EMS (2.18) in order to focus on the handling of the path state constraints, the main contribution of the chapter; since their inclusion may lead to
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Penalty function approach

In the penalty approach, inequality constraints (2.18c) and (2.18d) are taken into account by adding nonlinear terms, denoted as penalties, to the cost functional, (2.18a). These nonlinear terms drastically increase their values, whenever a constraint is violated (for exterior penalty functions) or close to be violated (for interior and extended penalty functions). These characteristics force the optimal solution to satisfy the constraints.

Consider a function P z defined as follows:

P z = P (z) =          (z -z) n , z ≤ z (z -z) n , z ≥ z 0, otherwise. (2.19)
with z the minimum allowed value for z, z the maximum allowed value for z, and n > 1 a function parameter. P z is classified as an exterior penalty function, as it only affects the cost-functional when the constraints have been violated. Define P u and P x as the exterior penalty functions for state constraints (2.18c) and input constraints (2.18d), respectively. Given cost functional (2.18a), the penalty approach solves EMS (2.18) by solving an equivalent unconstrained version of the problem: 

min u(t)∈R m Ĵ(u) = t f 0 ṁf (u) + 1 ε (P u + P x ) dt, (2.20a 
where ε is a real positive parameter pondering the penalty functions P u and P x . If ε is small enough, the effect of P u and P x increases to force the solution to EMS (2.20), Ĵ * , to be approximately equal to the solution to EMS (2.18), J * . Moreover, Ĵ * → J * as ε → 0. Therefore, in order to get a fairly accurate approximation for the solution to EMS (2.18), it is sufficient to solve EMS (2.20) for a small enough value of ε. Proofs on the convergence of the penalty approach are given in [START_REF] Lasdon | An interior penalty method for inequality constrained optimal control problems[END_REF][START_REF] Milind | A proof of the convergence of the Kelley-Bryson penalty function technique for state-constrained control problems[END_REF].

Optimality conditions

As mentioned in section 2.2. 

H(u, x, λ, w) = ṁf + 1 (P u + P x ) + λ T ẋ (2.21)
with λ(t) ∈ R n denoting the vector of co-states. The necessary optimality conditions for EMS (2.20) are the following [START_REF] Kirk | Optimal control theory: an introduction[END_REF]: (i) the optimal control, u * (t), minimizes the Hamiltonian for every possible control:

u * (t) = arg min u∈R {H (u, x, λ, w)}, (2.22) 
(ii) the co-states obey the following dynamics:

λ(t) = - ∂H ∂x , (2.23) 
and (iii) for each state x i that does not have a fixed terminal condition, i.e., x i (t f ) / ∈ X(t f ), the following terminal condition has to be added [START_REF] Kirk | Optimal control theory: an introduction[END_REF]Page 200]:

λ i (t f ) = 0. (2.24)
It is not always possible to obtain u * explicitly. Nevertheless, let us assume by now that an explicit expression can be computed for u * and let us denote this expression as Π(u, x, λ, w):

u * (t) = Π(u, x, λ, w). (2.25)
On the assumption that an optimal solution exists and that H satisfies the following sufficient strict convexity condition with respect to u: 

∂ 2 H ∂u 2 > 0, ( 2 
ẋ(t) = f (x(t), Π (u(t), x(t), λ(t), w(t)) , w(t)) (2.27a) λ(t) = - ∂H ∂x , (2.27b 
)

λ i (t f ) = 0, ∀x i (t f ) / ∈ X(t f ) (2.27c) state boundary constraints (2.18e) -(2.18f). (2.27d)
This BVP can be solved through different numerical methods, e.g. shooting, multipleshooting, or collocation [START_REF] Ascher | Numerical solution of boundary value problems for ordinary differential equations[END_REF][70]. Due to its numerical stability, a collocation method Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 23 has been chosen in this work [START_REF] Kierzenka | A BVP solver based on residual control and the Maltab PSE[END_REF]. The use of penalty functions increases the difficulty for minimizing the Hamiltonian, which is a necessary optimality condition. A solution to overcome this issue is presented in the following subsection.

Implicit Hamiltonian minimization

Firstly, consider the minimization of the Hamiltonian with respect to the input vector: optimality condition (2.22). For an unconstrained input signal and assuming that H satisfies strict convexity condition (2.26), the optimal control, u * (t), can be defined from first order optimality conditions as follows:

u * (t) = u(t) | ∂H (u, x, λ, w) ∂u(t) = 0 . (2.28)
In general, (2.28) cannot be solved explicitly but an implicit Hamiltonian minimization can be used instead. Let us define q(t) ∈ R m as follows:

q(t) = ∂H (u, x, λ, w) ∂u . (2.29) 
The following equivalent conditions for u * (t) can be obtained from q(t): q(0) = 0, (2.30) 

q(t) = 0, ( 2 
ẋ(t) = f (x(t), u * (t), w(t), w(t)) (2.33a) λ(t) = - ∂H ∂x , (2.33b) u * (t) = - ∂q ∂u -1 ∂q ∂x ẋ + ∂q ∂λ λ + ∂q ∂w ẇ , (2.33c 
)

q(0) = 0, (2.33d 
)

λ i (t f ) = 0, ∀x i (t f ) / ∈ X(t f ) (2.33e) state boundary constraints (2.18e) -(2.18f). (2.33f)
In the following, the solution to BVP (2.33) will be denoted as Y (t) ∈ R 2n+m . The dynamics of Y will be denoted as F (Y, t). Note that the idea of computing higher order time derivatives of the Hamiltonian was also considered in [START_REF] Petit | Optimal drive of electric vehicles using an inversion-based trajectory generation approach[END_REF]. There, it is presented an inversion approach that allows parameterizing an optimal control problem using only one higher-order unknown parameter. However, their inversion method requires having access to an explicit expression of the optimal control, which is not the case for the problem formulation considered in our contribution.

Numerical solution of the EMS

Whenever a state reaches its boundary, its corresponding co-state becomes discontinuous [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF]. BVP solvers cannot easily handle such discontinuities straightforwardly. This section deals with the numerical aspects that need to be considered when computing the solution to BVP (2.33). The first two subsections discuss the continuation procedure, a numerical routine that breaks down the initial BVP into a sequence of several simpler sub-problems, starting from an unconstrained one down to a fully constrained one.

Solutions to these sub-problems may temporarily exceed the state and control limits and as a result, the solutions may even lay outside the definition domain of F (Y, t). To deal with this issue, the third subsection proposes to extend F (Y, t) outside its domain of definition.

Continuation Procedure

The numerical success of the BVP solver depends on the initial guess solution being close enough to the unknown solution. The difficulty of generating a good enough initial guess is overcome by the implementation of a continuation or homotopy procedure [START_REF] Fabien | Numerical solution of constrained optimal control problems with parameters[END_REF][START_REF] Graichen | Constructive methods for initialization and handling mixed state-input constraints in optimal control[END_REF].

Before explaining the continuation procedure used for the considered BVP, let us briefly recall how a continuation procedure is implemented in general. Algorithm 2 General continuation procedure

Inputs: ζ 0 , Y 0 , ζ N , N Outputs: Y N for i = 1 to N do ζ i ← update (ζ i-1 ) Y i ← solve (ζ i , Y i-1 ) end for

Application to the considered problem

In order to solve BVP (2.33), first, an initial guess is generated and then two continuation procedures are used. In order to identify the parameters of each continuation procedure, the following notation is introduced: ζ j i denotes parameter values at iteration i ∈ {0, 1, . . . , N } of the continuation procedure described in step j ∈ {a, b, c}.

Step a: generation of an initial solution

The penalty pondering coefficient ε a is initially set to a large value so the penalty functions are negligible. The initial co-states are selected such that strict convexity assumption (2.26) is satisfied. Failing to meet this assumption could lead to ∂ 2 H ∂u 2 = ∂q ∂u equal to zero, rendering the optimal control dynamics, (2.33c), undefined. The initial values for the optimal control u(0) are numerically computed by solving q(0) = 0. Given these initial conditions, a solution is numerically computed by integrating differential equations (2.33a) -(2.33c) using an ODE solver. This solution is denoted by Y a (t).
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Step b: First continuation procedure

The purpose of the first continuation procedure is to bring the states and co-states to its prescribed final values X(t f ) and λ i (t f ) = 0, ∀x i (t f ) / ∈ X(t f ), respectively. The penalty pondering coefficient ε remains unchanged : ε b = ε a . The continuation procedure pa-

rameters are ζ b = x(t f ), λ(t f ) T . ζ b 0 is set equal to the final conditions x a (t f ), λ a (t f ) T from the initial solution Y a . ζ b N is set to X(t f ), λ i (t f ) = 0 T as defined in (2.33e) and
(2.33f). The parameter update function is assumed linear, values of ζ b i are given by:

ζ b i = ζ b N -ζ b 0 N b + ζ b i-1 , (2.34) 
Algorithm 3 First continuation procedure.

Inputs:

ζ b 0 = x a (t f ), λ a (t f ) T , Y b 0 = Y a , ζ b N = X(t f ), λ i (t f ) = 0 T , N b ; Outputs: Y b N ; for i = 1 to N b do ζ b i ← ζ b N -ζ b 0 /N b + ζ b i-1 Y b i ← solve ζ b i , Y b i-1
end for

The output of the continuation procedure is the unconstrained (non-penalized) solution to EMS (2.18). The continuation procedure is summarized in Algorithm 3.

Step c: Second continuation procedure

The second continuation procedure activates the penalty functions by reducing the value of ε, thus ζ c = ε. ζ c 0 is set equal to the large value of ε used initially:

ζ c 0 = ε b = ε a .
In order to obtain a solution that fulfills the constraints, a very small value of ε should be reached at the end of this continuation procedure : ζ c N ≈ 0. The values of ζ c i are chosen to be varied exponentially. The continuation procedure can be summarized in the following algorithm:

Algorithm 4 Second continuation procedure. Inputs: ζ c 0 , Y c 0 = Y b N , ζ c N ≈ 0, N c ; Outputs: Y c N ; α ← (ln(ζ c N ) -ln(ζ c 0 )) /N c for i = 1 to N c do ζ c i ← e α • ζ c i-1 Y c i ← solve ζ c i , Y c i-1
end for
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The output of the second continuation procedure is the solution to constrained (penalized) EMS (2.18). The general numerical procedure presented in this subsection is summarized in Fig. 2.1.

Step a 

λ(0) s.t.

Function extension

We now consider the case where dynamics F (Y, t)

: U → R 2n+m in (2.33) have a defini- tion domain such that U = R 2n+m . For instance, it is frequently encountered that the state dynamics f contains a term √ E 2 -4R • u and therefore U = -∞, E 2 4•R ×R 2n+m-1 .
Since the only constraint for the initial co-states, used to generate the initial solution in Step a, is to satisfy strict convexity assumption (2.26), the states may reach values outside the definition domain of F . As a consequence, Step a and b may not be feasible.

Moreover, even in

Step c, the BVP solver may require to evaluate F (Y, t) outside its definition domain. To overcome the latter problems, F (Y, t) is extended outside its definition domain and the resulting function is denoted by F ext (Y, t) : R 2n+m → R 2n+m . F and F ext are identical for all Y ∈ U. F ext is obtained by replacing every scalar nonlinear term in F which is not defined for all R n i , denoted as h i (y) with y ∈ H i ⊂ R n i , by a function extension based on the Taylor series, g i (y). Let us that all the h i terms are C ∞ . The Taylor series expansion of h i around of ỹ is defined as follows:

h i (y) =h i (ỹ) + (y -ỹ) T ∇f i (ỹ)+ + 1 2 (y -ỹ) T ∇ 2 f i (ỹ) (y -ỹ) + . . .
With ∇h i and ∇ 2 h i defined as the gradient and Hessian matrix of h i , respectively. Given ỹ ∈ ∂H i , and z ∈ X i , the domain of h i is extended outside H i by the following function:

g i (z) = h i (ỹ) + (z -ỹ) T ∇h i (ỹ) + 1 2 (z -ỹ) T ∇ 2 h i (ỹ) (z -ỹ) , (2.35) 
where ỹ is defined as the closest point on the boundary of H i , ∂H i , with respect to z.
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Taylor-based function extension (2.35) can preserve the convexity properties of the original function and thus guarantee that the strict convexity assumption on the Hamiltonian, (2.26), which in turn guarantees that the solution remains unique and that optimal control dynamics (2.33c) is well defined.

Application 1: Series HEV with battery thermal dynamics

In this first application, the penalty function and implicit Hamiltonian minimization approach will be applied to compute the two-state (the battery state-of-energy and the battery temperature) single-input (the power generated by the APU) EMS under input and state constraints. The studied vehicle is a Series-HEV, shown in Fig. 2.2. We would like to study the effect that extreme cold conditions (-20 degrees Celsius) have on fuel consumption when battery thermal dynamics are considered in the EMS.

The driving mission used to model the power demand from the user is the Worldwide Light-vehicle Test Cycle Class 3 (WLTC-C3), and it is depicted in Fig. 2.3 (left). For the considered series hybrid vehicle, see Fig. 2.2, and the parameters of Table 2.2 the EMS input data is the power w(t) (kW) required to propel the vehicle along the given driving cycle [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF].

In the rest of this section, the offline-EMS will be defined in more detail for the considered series hybrid vehicle. However, it is worth noticing that the methodology presented in this work can be applied to many other hybrid vehicle topologies as well.

Modeling

Consider the HEV powertrain topology displayed in Fig. 2.2. The power required by the traction motor (TM) for propelling, w(t) ∈ R, must be provided at each instant by the Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 29 auxiliary power unit (APU), u(t) ∈ R, and/or the battery pack, P b (t) ∈ R. Moreover, the APU is subject to a on/off command signal, ϑ(t) ∈ {0, 1}. The series topology imposes the following restriction among the power signals:

w(t) = ϑ(t) • u(t) + P b (t).
(2.36)

The models required to compute w(t), P b (t), and u(t) are discussed in the following subsections. For the ease of readiness, in the following, the time dependence of the variables will be omitted when convenient.

Traction subsystem

The traction subsystem includes the vehicle model and transmission from the wheels to the TM. The corresponding model allows evaluating the energetic requirement of the vehicle. Given a velocity profile v(t), the vehicle parameters, and assuming a flat road the torque T w (t) and the angular velocity at the wheels ω w (t), required to complete the driving mission, are computed [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]:

T w (t) = r w m eq • dv(t) dt + m • g • c r + 1 2 ρ a • A s • c d • v 2 (t) , (2.37 
)

ω w (t) = v(t)/r w , (2.38) 
with c r the tire rolling resistance (-), g the gravity acceleration kg • m/s 2 , ρ a the air density kg/m 3 , A s the vehicle frontal area m 2 , c d the drag coefficient (-), γ the final gear ratio (-), r w the radius of the wheels (m), m the vehicle mass (kg), and

m eq = m + J tm / γ 2 r 2
w the equivalent mass of the vehicle (kg). The vehicle is rear wheel driven (RWD): when braking, T w < 0, only 40% of the torque is assumed to be provided by regenerative braking and the remaining 60% is assumed to be provided by the mechanical brakes. Indicated with µ b (t) as a piecewise constant torque brake factor. A constant torque brake factor for regenerative braking is considered for the sake of simplicity. More advanced blending braking strategies may be applied, as in [START_REF] Ruan | The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle[END_REF]. Finally, the TM torque and speed, denoted as T tm and ω tm , are derived:

T tm (t) = γ • µ b (t) • T w (t),
(2.39)

µ b (t) =    0.4, T w (t) < 0 1, otherwise (2.40 
)

ω tm (t) = ω w (t)/γ. (2.41)
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At last, the power demand signal w(t) is computed using the traction motor efficiency map η tm :

w(t) = T tm (t)ω tm (t)η tm (T tm (t), ω tm (t)) -sign(Ttm(t)) (2.42)
Given the WLTC-C3 driving cycle, the power demand signal w(t) is displayed in Fig. Power demand signal w(t) for the WLTC-C3 (right).

(right).

Battery Pack

The battery pack is connected to a DC/DC converter that fixes the DC bus voltage. Its losses are assumed to be negligible. The energetic behavior is modeled using both the state-of-energy dynamics given in [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF] and a thermal model similar to the one found in [START_REF] Miro Padovani | Optimal energy management strategy including battery health through thermal management for hybrid vehicles[END_REF]. They relate the battery power, P b (t), to the state-of-energy, denoted as x 1 (t), and the battery temperature, denoted as x 2 (t). The battery state-of-energy, x 1 (t), is derived

from an equivalent electric circuit model. It consists of an open circuit voltage U (x 1 (t))
in series with a temperature dependent resistance R b (x 2 (t)). The state-of-energy, x 1 (t), has the following dynamics:

ẋ1 (t) = 1 Ū • Q -P b (t) - R b (x 2 (t)) U 2 (x 1 (t)) P 2 b (t) , (2.43) 
with Ū the maximum open circuit voltage (V) and Q the charge capacity of the battery pack (Ah). The battery state-of-energy, x 1 (t), is constrained between x 1 and x1

x 1 ≤ x 1 (t) ≤ x1 . (2.44)
Within the battery pack operating range (30%-90%), U is modeled as a linear function The battery pack power P b (t) is constrained by the current limitations of the battery pack:

of x 1 : U (x 1 ) = a x 1 + b x 1 x 1 ,
P b (R b , U ) ≤ P b (t) ≤ Pb (R b , U ), (2.45) 
with For the dynamics of x 2 , the whole battery pack is modeled as a lumped mass and then the model is derived from a thermal energy balance equation [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF][START_REF] Miro Padovani | Optimal energy management strategy including battery health through thermal management for hybrid vehicles[END_REF][START_REF] Lin | Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring[END_REF][START_REF] Yang | Electrothermal modeling of lithium-ion batteries for electric vehicles[END_REF]:

P b = I • U -R b • I 2 and Pb = Ī • U -R b • Ī2 , I
ẋ2 (t) = 1 C b h • (T ∞ -x 2 (t)) + R b (x 2 (t)) U 2 (x 1 (t)) P 2 b (t) (2.46)
with C b the heat capacity of the battery pack (kJ/K), T ∞ the ambient temperature (K), and h the heat transfer coefficient between the battery pack and its surroundings (W/K).

The term depending on P b stands for the heat dissipated by the battery resistance R b whose dependency on x 2 has been derived from [START_REF] Jaguemont | Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures[END_REF]. The battery resistance increases for low temperatures, thus reducing both the battery pack efficiency and the maximum power Pb .

Auxiliary Power Unit

The APU consists of one ICE coupled with one generator (Gen) to produce electrical energy using fuel. The APU instantaneous fuel consumption, ṁf (t) (g/s), required to generate electric power u(t) (W), is estimated by the following quadratic function [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF][START_REF] Murgovski | Convex optimization of charging infrastructure design and component sizing of a plug-in series hev powertrain[END_REF]:

ṁf (u(t)) = a + b • u(t) + c • u 2 (t). (2.47)
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The data used to compute the parameters of (2.47) is given in Appendix A.3. The criterion to be minimized by the EMS is the total fuel consumption:

J = t f 0 ṁf (u(t)) ϑ(t) + d • (1 -ϑ(t)) u 2 (t) dt, (2.48) 
where t f stands for the duration of the driving cycle and d is a conversion factor g (kW) 2 •s . The additional term (1 -ϑ) • u 2 allows enforcing u = 0, whenever ϑ = 0 [START_REF] Sanchez | Hybrid vehicle energy management: Avoiding the explicit hamiltonian minimization[END_REF].

Recall that optimizing the binary variable ϑ may lead to theoretical difficulties, such as singular controls [START_REF] Delprat | Hybrid vehicle energy management: Singular optimal control[END_REF] and non-unique optimal solutions. As stated in Section 2.4.1, in order to focus on the state constraints handling, the binary signal ϑ is assumed to be fixed beforehand as a function of w(t). For instance, it can be computed using a set of empirical rules according to the power demand w(t). The power produced by the APU is constrained by the physical limits of its components:

0 ≤ u(t) ≤ ū, (2.49) 
yet also by the limits of other components on the powertrain via (2.36):

w(t) -Pb (t) ≤ u(t) ≤ w(t) -P b (t). (2.50) 
Constraints (2.49) and (2.50) can be combined together:

u (t) ≤ u(t) ≤ ū (t), (2.51) 
u (t) = max 0, w(t) -Pb , ū (t) = min [ū, w(t) -P b ] .
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Problem statement

At last, the EMS can be cast as follows:

min J(u) = t f 0 ϑ • a + b • u + c • u 2 + d • (1 -ϑ) • u 2 dt, (2.52a) 
subject to:

ẋ1 (t) = 1 Ū • Q -(w -ϑu) - R b (x 2 ) U 2 (x 1 ) (w -ϑu) 2 , (2.52b) ẋ2 (t) = 1 C b h • (T ∞ -x 2 ) + R b (x 2 ) U 2 (x 1 ) (w -ϑu) 2 , (2.52c) u (t) ≤ u(t) ≤ ū (t), (2.52d 
)

u (t) = max 0, w(t) -Pb (t) , ū (t) = min [ū, w(t) -P b (t)] . x 1 ≤ x 1 (t) ≤ x1 , (2.52e 
)

x 1 (0) = x 1,0 , (2.52f) x 2 (0) = x 2,0 , (2.52g 
)

x 1 (t f ) = x 1,f . (2.52h) 
The final condition x 1 (t f ) allows to guarantee that a certain amount of energy will remain in the battery at the end of the driving cycle. The final state-of-energy x 1 (t f ) is often assumed to be equal to x 1 (0) to allow a fair comparison with respect to the fuel consumption of conventional vehicles.

The problem statement above is a state and input constrained formulation of the EMS.

As it accounts for the battery thermal modeling, its solution allows investigating the effect that a battery operating under low-temperature has on fuel consumption.

Solution

Penalty functions

Path constraint (2.52e) and input constraint (2.52d) are relaxed by adding

1 ε Pu + P x to cost functional (2.52a) min Ĵ(u) = t f 0 ϑ • ṁf (u) + d • (1 -ϑ) • u 2 + 1 ε Pu + P x dt, (2.53) 
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P x = P (x) =          (x -x) 2 , x ≤ x (x -x) 2 , x ≥ x 0, otherwise, (2.54) 
and Pu = φ • P u , where

P u = P (u) =          (u -u) 2 , u ≤ u (u -ū) 2 , u ≥ ū 0, otherwise, (2.55) 
and where φ = (1/ū) 2 is meant to scale Pu down to the range of values of P x .

Implicit Hamiltonian minimization

Considering optimality conditions (2.33c)-(2.33d) and cost functional, (2.52) can be solved via the following BVP: 

ẋ1 (t) = 1 Ū • Q -(w -ϑ • u * ) - R b (x 2 ) U 2 (x 1 ) (w -ϑ • u * ) 2 , (2.56a) 
ẋ2 (t) = 1 C b h • (T ∞ -x 2 ) + R b (x 2 ) U 2 (x 1 ) (w -ϑ • u * ) 2 , (2.56b) λ1 (t) = - 1 ε ∂P x ∂x 1 , (2.56c) λ2 (t) = -λ 1 ∂ ẋ1 ∂x 2 -λ 2 ∂ ẋ2 ∂x 2 , (2.56d) u * (t) =- ∂q ∂u -1 ∂q ∂x 1 ẋ1 + ∂q ∂x 2 ẋ2 + ∂q ∂λ 1 λ1 + ∂q ∂λ 2 λ2 + ∂q ∂w ẇ + ∂q ∂ϑ θ , (2.56e) 
q(0) = 0, (2.56f) λ 2 (t f ) = 0, ( 2 
(-a x 1 /b x 1 , +∞] → R + by f ext (x 1 | x1 ) : R → R + , with: f ext (x 1 | x1 ) =    1/U (x 1 ), if x 1 ≥ x1 g(x 1 ), otherwise (2.57) g(x 1 ) =1/U (x 1 ) + (x 1 -x1 ) d (1/U (x 1 )) dx 1 + 1 2 (x 1 -x1 ) 2 d 2 (1/U (x 1 )) dx 2 1 , (2.58) 
where x1 is a scalar to be chosen from the interval (-a

x 1 /b x 1 , x 1 ].
In this case, the Taylor-based function extension preserves the convexity properties of the original function, thus, preserving strict convexity assumption (2.26). 

Numerical Results

Considering the vehicle parameters contained in Table 2.2, the offline-EMS is solved under low-temperature and warm operation conditions in order to study the effect that battery temperature has on fuel consumption.

Low-temperature operation

The low-temperature operation is defined here as starting the vehicle with T ∞ = 253.15 K (-20 • C), where T ∞ is assumed to remain constant along the entire driving cycle. At the beginning of the driving cycle, the following assumption holds: 

x 2 = T ∞ .
ζ b 0 = x a 1 (t f ), λ a 2 (t f ) T .
Step b allows computing a solution that reaches the expected final state-of-energy and the necessary final condition for the second co-state: for λ 1 (t). This phenomenon is to be expected, whenever a state makes contact with its bounds [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF]. It is worth noticing that the procedure proposed in this work does not require any a priori knowledge about these discontinuities.

ζ b f = [x 1 (t f ), 0] T .

Warm versus low-temperature operation

Here, the fuel consumption of the low-temperature operation will be compared with an ideal warm operation. The warm operation is defined as T ∞ = 298. 

Solution via DP

The optimal energy management for the low-temperature operation will be solved again using DP. The objective is to validate the optimality of the proposed approach and to benchmark its computational efficiency. As mentioned in Section 2.2.1, DP has been widely used to solve the EMS in the literature of hybrid electric vehicles [35][36]. Its advantages are that it can solve the EMS with mixed input-state constraints with a guarantee of global optimality. Its main drawback is that it has an exponential growth of space and computational complexity with respect to the number of states and inputs, denoted as the curse of dimensionality [START_REF] Ernest | Dynamic Programming[END_REF]. For this reason, its use is limited to EMS formulations with one [START_REF] Lin | Power management strategy for a parallel hybrid electric truck[END_REF] or two states [START_REF] Ansarey | Optimal energy management in a dual-storage fuel-cell hybrid vehicle using multi-dimensional dynamic programming[END_REF]. The DP algorithm is implemented using the Matlab code from [START_REF] Sundstrom | A generic dynamic programming matlab function[END_REF], together with the iterative approach described in [START_REF] Luus | Iterative dynamic programming[END_REF]. The solution has been computed using the parameters presented in 

Application 2: Dual Series HEV

In this application, the energy management is solved for an HEV equipped with a battery pack and a supercapacitor in a series configuration, see Fig. 2.12. The problem formulation has two states (the battery state-of-charge and the capacitor voltage), and two inputs (the current going through the battery and the current going through the supercapacitor). Both states are subject to path constraints. Both inputs are constrained as well. As in the previous application, the solution will be bench-marked and validated with the help of iterative-dynamic programming. The solution provided by our contribution is once more able to solve the problem significantly faster than the I-DP approach. Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 42

Modeling

Consider the HEV powertrain topology displayed in Fig. 2.12. The power required by the traction motor (TM) for propelling, w(t) ∈ R, must be provided at each instant by the auxiliary power unit (APU), u 1 (t) ∈ R, and/or the battery pack, P b (t) ∈ R, and/or the supercapacitor. The series topology operates with a constant DC voltage V bus and imposes the following restriction among the power signals:

w(t) = u 1 (t) + P sc (t) + P b (t).
(2.59)

The models required to compute w(t), P sc (t), P b (t) and u 1 (t) are discussed in the following subsections. For the ease of readiness, in the following, the time dependence of the variables will be omitted when convenient.

Traction subsystem

The traction subsystem includes the vehicle model and transmission from the wheels to the TM. The corresponding model allows evaluating the energetic requirement of the vehicle. Given a velocity profile v(t), the vehicle parameters, and assuming a flat road, the torque T w (t) and the angular velocity at the wheels ω w (t), required to complete the driving mission, are computed [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]:

T w (t) = r w m eq • dv(t) dt + m • g • c r + 1 2 ρ a • A s • c d • v 2 (t) , (2.60 
)

ω w (t) = v(t)/r w , (2.61) 
with c r the tire rolling resistance (-), g the gravity acceleration kg • m/s 2 , ρ a the air density kg/m 3 , A s the vehicle frontal area m 2 , c d the drag coefficient (-), γ the final gear ratio (-), r w the radius of the wheels (m), m the vehicle mass (kg), and

m eq = m + J tm / γ 2 r 2
w the equivalent mass of the vehicle (kg). The vehicle is rear wheel driven (RWD): when braking, T w < 0, only 40% of the torque is assumed to be provided by regenerative braking and the remaining 60% is assumed to be provided by the mechanical brakes. Indicated with µ b (t) as a piecewise constant torque brake factor.

A constant torque brake factor for regenerative braking is considered for the sake of Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 43 simplicity. Finally, the TM torque and speed, denoted as T tm and ω tm , are derived:

T tm (t) = γ • µ b (t) • T w (t), (2.62 
)

µ b (t) =    0.4, T w (t) < 0 1, otherwise (2.63 
)

ω tm (t) = ω w (t)/γ. (2.64)
At last, the power demand signal w(t) is computed using the traction motor efficiency map η tm :

w(t) = T tm (t)ω tm (t)η tm (T tm (t), ω tm (t)) -sign(Ttm(t)) (2.65)
Given the WLTC-C3 driving cycle, the power demand signal w(t) is displayed in Fig.

(right).

Battery Pack

The battery pack is connected to a DC/DC converter that fixes the DC bus voltage V bus .

Its losses are assumed to be negligible. The energetic behavior is modeled using a single dynamics model: it relates the battery power, P b (t), to the state-of-charge, denoted as 

ẋ1 (t) = -U + U 2 -4 • R b • V bus • i 1 (t) 2 • Q R b , (2.66) 
with Q the charge capacity of the battery pack (As). The battery state-of-charge, x 1 (t), is constrained between x 1 and x1

x 1 ≤ x 1 (t) ≤ x1 , (2.67) 
likewise, i 1 is constrained as follows:

i 1 ≤ i 1 (t) ≤ ī1 . (2.68)
Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 44

Supercapacitor Pack

Assuming a DC/DC converter with negligible losses, the power at the SC, P sc , can be described as:

P sc = i 1 (t) • V bus = i sc • (x sc (t) -R sc • i sc (t)) = -R sc • i 2 sc (t) + i sc • x sc ,
then, we can obtain the expression for the current from -R sc •i 2 sc (t)+i sc •x sc -i 1 (t)•V bus = 0:

i sc (t) = -x sc ± x 2 sc -4 • R • i 1 (t) • V bus -2 • R sc = -x sc ± x 2 sc -4 • R • i 1 (t) • V bus -2 • R sc . (2.69)
Defining x 2 = x sc and considering that voltage and current in a capacitor obey i sc (t) = C • dxsc dt , the voltage dynamics of the SC are given as follows:

ẋ2 (t) = - 1 C i sc (t) = -x 2 + x 2 2 -4 • R • i 2 (t) • V bus 2 • C • R sc . (2.70)
x 2 is constrained between x 2 ≤ x 2 ≤ x2 :

x 2 ≤ x 2 (t) ≤ x2 , (2.71) 
likewise, i 2 is constrained as follows:

i 2 ≤ i 2 (t) ≤ ī2 .
(2.72)

Auxiliary Power Unit

The APU consists of one ICE coupled with one generator (Gen) to produce electrical energy using fuel. The APU instantaneous fuel consumption, ṁf (t) (g/s), required to generate a given electric power u 1 (t) (W), is estimated by the following quadratic function [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF][START_REF] Murgovski | Convex optimization of charging infrastructure design and component sizing of a plug-in series hev powertrain[END_REF]:

ṁf (u 1 (t)) = a + b • u 1 (t) + c • u 2 1 (t). ( 2 

.73)

The data used to compute the parameters of (2.47) is given in Appendix A.3. The criterion to be minimized by the EMS is the total fuel consumption:

J = t f 0 ṁf (u 1 (t)) dt, (2.74) 
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where t f stands for the duration of the driving cycle. The power produced by the APU is constrained by the physical limits of its components:

0 ≤ u 1 (t) ≤ ū1 , (2.75) 
and by (2.36):

w(t) -Pb -Pb ≤ u 1 (t) ≤ w(t) -P b -P sc , (2.76) 
with

P b = V bus • i 1 , P sc = V bus • i 2 , Pb = V bus • i 1 ,
and Psc = V bus • ī2 . These constraints can be combined together as follows:

u 1 (t) ≤ u 1 (t) ≤ ū (t), (2.77 
)

u 1 (t) = max [0, w(t) -V bus • ī1 -V bus • ī2 ] , ū 1 (t) = min [ū 1 , w(t) -V bus • i 1 -V bus • i 2 ] .

Problem statement

Defining u 2 = i 2 and considering solving (2.59) for P b , the EMS can be cast as follows:

min J(u 1 ) = t f 0 a + b • u 1 + c • u 2 1 dt, (2.78a) 
subject to:

ẋ1 (t) = -U + U 2 -4 • R b • (w -u 1 -V bus • u 2 ) 2 • Q R b , (2.78b) ẋ2 (t) = -x 2 + x 2 2 -4 • R sc • V bus • u 2 2 • C • R sc , (2.78c 
)

u 1 (t) ≤ u 1 (t) ≤ ū 1 (t), (2.78d 
)

u 1 (t) = max [0, w(t) -V bus • ī1 -V bus • ū2 ] , ū 1 (t) = min [ū 1 , w(t) -V bus • i 1 -V bus • u 2 ] , u 2 ≤ u 2 (t) ≤ ū2 , (2.78e 
)

x 1 ≤ x 1 (t) ≤ x1 , (2.78f 
)

x 2 ≤ x 2 (t) ≤ x2 , (2.78g 
)

x 1 (0) = x 1,0 , (2.78h) 
x 2 (0) = x 2,0 , (2.78i)

x 1 (t f ) = x 1,f . (2.78j) x 2 (t f ) = x 2,f . (2.78k) 
The final condition x 1 (t f ) allows to guarantee that a certain amount of energy will remain in the battery at the end of the driving cycle. The final state-of-charge x 1 (t f ) is
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The problem statement above is a state and input constrained formulation of the EMS.

Solution

Penalty functions

Path constraints (2.78f)-(2.78g) and input constraints are relaxed by adding

1 ε Pu 1 + Pu 2 + P x 1 + Px 2 to cost functional (2.78a) min Ĵ(u) = t f 0 ṁf + 1 ε Pu 1 + Pu 2 + P x 1 + Px 2 dt, (2.79) 
with:

P x 1 = P (x 1 ) =          (x 1 -x 1 ) 2 , x 1 ≤ x 1 (x 1 -x1 ) 2 , x 1 ≥ x1 0, otherwise, (2.80 
)

Pu 1 = φ 1 • P u 1 , Pu 2 = φ 2 • P u 2 ,
and Px 2 = φ 3 • P x 2 , where

P u 1 = P (u 1 ) =          (u 1 -u 1 ) 2 , u 1 ≤ u 1 (u 1 -ū1 ) 2 , u 1 ≥ ū1 0, otherwise, , P u 2 = P (u 2 ) =          (u 2 -u 2 ) 2 , u 2 ≤ u 2 (u 2 -ū2 ) 2 , u 2 ≥ ū2 0, otherwise, , P x 2 = P (x 2 ) =          (x 2 -x 2 ) 2 , x 2 ≤ x 2 (x 2 -x2 ) 2 , x 2 ≥ x2 0, otherwise,
, and where 

φ 1 = (1/ū 1 ) 2 , φ 2 = (1/ū 2 ) 2 ,
ẋ1 (t) = -U + U 2 -4 • R b • (w -u * 1 -V bus • u * 2 ) 2 • Q R b , (2.81a) ẋ2 (t) = -x 2 + x 2 2 -4 • R sc • V bus • u * 2 2 • C • R sc , (2.81b) λ1 (t) = - 1 ε ∂P x 1 ∂x 1 , (2.81c) λ2 (t) = -λ 2 ∂ ẋ2 ∂x 2 - 1 ε ∂ Px 2 ∂x 2 , (2.81d) 
u * (t) =-∂q ∂u

-1 ∂q ∂x ẋ + ∂q ∂λ λ + ∂q ∂w ẇ , (2.81e 
) 

q(0) = 0, ( 2 
with u = u 1 u 2 T , x = x 1 x 2 T , q = q 1 q 2 T . The solution to (2.81) is denoted as Y (t) = x 1 (t) x 2 (t) λ 1 (t) λ 2 (t) u * 1 (t) u * 2 (t) T .
The dynamics of Y is denoted as F (Y, t).

Function extension

Dynamics F (Y, t) is not defined for all R 6 due to the presence of the terms

U 2 -4 • R b • P b and x 2 2 -4 • R sc • P sc .
The former term, which is defined for U 2 -4 • R b • P b ≥ 0, will be replaced by:

f ext,1 (P b | Pb ) =    U 2 -4 • R b • P b , if P b ≥ Pb g 1 (P b ), otherwise g 1 (P b ) = U 2 -4 • R b • Pb + (P b -Pb ) d U 2 -4 • R b • P b dP b + 1 2 (P b -Pb ) 2 d 2 U 2 -4 • R b • P b dP 2 b ,
Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 48 with Pb ≤ U 2 4•R b . The term x 2 2 -4 • R sc • P sc , which is defined for x 2 2 -4 • R sc • P sc ≥ 0, will be replaced by the following extended function:

f ext,2 (x 2 , P sc | x2 , Psc ) =    x 2 2 -4 • R sc • P sc , if P sc ≥ Psc or x 2 ≤ x2 g 2 (x 2 , P sc ), otherwise g 2 (x 2 , P sc ) = x2 2 -4 • R sc • Psc +       x 2 -x2 P sc -Psc       T ∂ x 2 2 -4 • R sc • P sc ∂    x 2 P sc    +       x 2 -x2 P sc -Psc       T ∂ x 2 2 -4 • R sc • P sc ∂    x 2 P sc          x 2 -x2 P sc -Psc       ,
with Psc = 2 • 10 4 (W) and x2 = 60 (V) which ensures that x 2 2 -4 • R sc • P sc ≥ 0.

Numerical results

The EMS will be solved considering the vehicle parameters of Table 2. 

ζ b 0 = x a 1 (t f ), x a 2 (t f ) T .
Step b allows computing a solution that reaches the expected final state-of-charge and the necessary final condition for the second co-state: As it ocurred in the solution of the previous application, the constrained EMS, see Fig. 2.17, presents discontinuity phenomena for λ 1 (t) and λ 2 (t). These phenomena are to be expected, whenever a state makes contact with its bounds [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF]. The procedure proposed in this work does not require any a priori knowledge about these discontinuities.

ζ b f = [x 1 (t f ), x 2 (t f )] T .

Parameter Value Units

M eq 2166 kg As the trajectories become darker, they approach the final boundary conditions. The final trajectory of the procedure is displayed in black.

A s 1.

Solution via DP

The optimality of the approach will be validated by solving the EMS once again using DP. The DP algorithm is implemented using the Matlab code from [START_REF] Sundstrom | A generic dynamic programming matlab function[END_REF], together with the iterative approach described in [START_REF] Luus | Iterative dynamic programming[END_REF]. The solution has been computed using 

Conclusion

An indirect-approach method to compute the optimal offline energy management strategy of a hybrid vehicle with several continuous states and under input and state constraints has been proposed. The indirect-approach method relies on exterior penalty functions and an implicit Hamiltonian minimization to handle the constraints and solve the Pontryagin's minimum principle optimality conditions. A continuation procedure and a domain function-extension are also proposed to deal with the difficulties of computing a numerical solution. The proposed method does not require any a priori knowledge on the optimal solution and can be applied to energy management formulations with several inputs and states. The proposed method is shown effective by solving the offline energy management strategy for: a series HEV under low-temperature conditions modeled as a two-state, the battery state-of-energy and temperature, mixed input-state constrained problem, and a dual series HEV modeled as a two-state, the battery state of charge and the supercapacitor voltage, two-input, the APU power and the current going through the supercapacitor, mixed input-state constrained problem.

The optimality of the solution is validated by obtaining a slightly different solution via dynamic programming. The small difference is not surprising since in dynamic programming all variables are quantized, which limits the accuracy of the solution. Moreover, the proposed method shows to be up to 46 times faster than dynamic programming.

One possible extension of this work is to solve a more general energy management formulation, for example, by considering both the engine and the catalytic converter temperature and including the emission of pollutants in the objective function [START_REF] Kum | Optimal energy and catalyst temperature management of plug-in hybrid electric vehicles for minimum fuel consumption and tail-pipe emissions[END_REF][START_REF] Merz | On the optimal thermal management of hybrid-electric vehicles with heat recovery systems[END_REF].

Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 54 Also, real-time algorithms for hybrid vehicle energy management were derived using the Pontryagin's minimum principle within a model predictive control framework in [START_REF] Xie | Pontryagin's minimum principle based model predictive control of energy management for a plug-in hybrid electric bus[END_REF]. The method proposed here could be combined with the latter to account for mixed input-state constraints and a second dynamics in a real-time energy management algorithm but more work is needed to cope with the actual computing power available on a vehicle.

Chapter 3

Energy management and active damping of the side-shaft oscillations

Introduction

In a hybrid electric vehicle (HEV) powertrain, the main role of the electric machines (EMs) is to achieve the powersplit that reduces the total fuel consumption for a given driving mission. Furthermore, the capabilities of a powertrain to solve automotive related problems go beyond this main purpose. One of these problems is the presence of drive-shaft oscillations. In a vehicle with a gear-based transmission, it is is mainly perceivable at low gear ratios (first and second), so it occurs at relatively low speeds. The reason behind this is that when a low gear ratio is engaged and the driver demands strong accelerations, the driveshaft experiences steep and particularly high torque changes, thus, exciting its torsional dynamics to the point of producing noticeable torque and speed oscillations. These oscillations affect the driver's comfort and can stress the vehicle's components [START_REF] Caruntu | Lyapunov based predictive control of vehicle drivetrains over can[END_REF][START_REF] Zhang | Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking[END_REF]. Since the EMs are actuators with a larger frequency response than that of internal combustion engines (ICEs), they can be used to actively damp the drive-shaft oscillations. Moreover, considering that most of the energetic flow on the powertrain is carried by low frequency signals and that drive-shaft oscillations have higher frequencies, it is possible to design a damping controller such that its influence on the energetic behavior of the vehicle is negligible.

Several works in the literature are concerned with active damping of the drive-shaft oscillations for conventional [START_REF] Mo | Active control of driveability[END_REF][START_REF] Fredriksson | Powertrain control for active damping of driveline oscillations[END_REF][START_REF] Lefebvre | An H ∞ -based control design methodology dedicated to the active control of vehicle longitudinal oscillations[END_REF][START_REF] Berriri | Active damping of automotive powertrain oscillations by a partial torque compensator[END_REF][START_REF] Yoon | Model predictive control for drivability enhancement with input dead-segment[END_REF][START_REF] Walker | Active damping of transient vibration in dual clutch transmission equipped powertrains: A comparison of conventional and hybrid electric vehicles[END_REF], hybrid [START_REF] Fredriksson | Improved driveability of a hybrid electric vehicle using powertrain control[END_REF][START_REF] Fazal | Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle[END_REF][START_REF] Kawamura | Highlyresponsive acceleration control for the nissan leaf electric vehicle[END_REF][START_REF] Fujimoto | Hev application of shaking vibration control system based on advanced motor control[END_REF][START_REF] Sriram | Modeling and control of power-split powertrains: Examining the influence of drive-shaft compliance[END_REF][START_REF] Sangili | MPC for active torsional vibration reduction of hybrid electric powertrains[END_REF][START_REF] Zhong | Simulation model and method for active torsional vibration control of an hev[END_REF][START_REF] Liu | Active damping of driveline vibration in power-split hybrid vehicles based on model reference control[END_REF], and electric vehicles [START_REF] Wang | Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty[END_REF][START_REF] Zhang | Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking[END_REF][START_REF] Notker Amann | Active damping of drive train oscillations for an electrically driven vehicle[END_REF][START_REF] Zhang | Active oscillation control of electric vehicles with two-speed transmission considering nonlinear backlash[END_REF].

PID-based controllers were designed to actively damp the oscillations for a conventional Chapter 3: Energy management and active damping of the side-shaft oscillations 56 vehicle as well as an HEV in [START_REF] Walker | Active damping of transient vibration in dual clutch transmission equipped powertrains: A comparison of conventional and hybrid electric vehicles[END_REF]. There, it is found that due to the fast response of the electric machine, an HEV allows for a more effective damping than a conventional ICE vehicle. A PID controller was also compared to a linear-quadratic-guassian (LQG) controller for a conventional heavy-duty truck in [START_REF] Fredriksson | Powertrain control for active damping of driveline oscillations[END_REF]. The LQG controller was found to be superior and it was implemented in real-time. This work was extended to a parallel HEV in [START_REF] Fredriksson | Improved driveability of a hybrid electric vehicle using powertrain control[END_REF], contrary to [START_REF] Walker | Active damping of transient vibration in dual clutch transmission equipped powertrains: A comparison of conventional and hybrid electric vehicles[END_REF], there the ICE torque is also considered a control signal, i.e., the problem formulation contains two inputs and control allocation is use to split the damping torque between the two actuators. In [START_REF] Fazal | Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle[END_REF], active damping was used in a power-split HEV to suppress the torque oscillations at the wheels below 100 N•m (the minimum value perceived by the driver on the 1820-kg vehicle studied there). This study included experimental validation. A powersplit HEV is also studied in [START_REF] Liu | Active damping of driveline vibration in power-split hybrid vehicles based on model reference control[END_REF], where model reference adaptive control is combined with linear state feedback to produce a controller that can overcome the uncertainty generated by the changing transmission ratio. The controller is tested in a hardware-in-the-loop experiment

In [START_REF] Notker Amann | Active damping of drive train oscillations for an electrically driven vehicle[END_REF], a nonlinear observer is combined with a controller designed on the frequency domain to actively damp the drive-shafts of an electric vehicle. A discrete Kalman filter is the chosen observer. The observer dynamics includes a measurement time-delay for the speed at the wheels, induced by the controller area network (CAN) bus, and a nonlinearity introduced by the backlash phenomenon. Oscillations are damped for a powersplit HEV in [START_REF] Sriram | Modeling and control of power-split powertrains: Examining the influence of drive-shaft compliance[END_REF], via a linear quadratic regulator with loop transfer recovery LQR/LTR and integral action. The integral action is based on the assumption that the actual driveshaft torque and the desired driveshaft torque, commanded by the EMS, are available. In [START_REF] Zhang | Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking[END_REF], a damping controller including time-varying delays compensation induced by the CAN bus is designed with a guaranteed H ∞ performance. The effect of the controller under braking conditions is studied by the modeling of the hydraulic braking system and a cooperative braking control algorithm. The desired damping effect is corroborated by HIL simulations. In [START_REF] Zhang | Active oscillation control of electric vehicles with two-speed transmission considering nonlinear backlash[END_REF], the proposed control scheme relies on a dual Kalman filter to estimate the vehicle mass and the driveshaft torsion. As in [START_REF] Notker Amann | Active damping of drive train oscillations for an electrically driven vehicle[END_REF],

nonlinear phenomena induced by backlash is included in the problem formulation. The estimated torsion is used to decide whether the driveline is either in contact mode or in backlash mode. If the driveline is in contact mode, then a LQR controller is in charge of damping the oscillations. If the driveline is in backlash mode, a PID controller is used instead. Model predictive control was considered in [START_REF] Wang | Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty[END_REF] to damp the oscillations in an electric bus. Damping is achieved by the minimization of two square error signals: [START_REF] Jaguemont | Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures[END_REF] the minimization of the difference between shaft and wheel speeds and their predicted future values, computed as if the shaft was ideally stiff, and (2) the minimization of the difference between the reference shaft torque and the actual shaft torque. If the second error term was not considered in the objective functional, the controller could still successfully damp the oscillations but at the cost of overriding the torque request from the driver or the EMS.

Motivation

In the case of an HEV, a proper EMS allows to reduce the vehicle total fuel consumption, and thus the pollution and emission of green-house effect gasses, and as such it is the most important feature of this type of vehicle. Nevertheless, most of the works discussed above overlook the energetic cost/effect of their proposed controllers. Motivated by this mostly overlook aspect, the present work is concerned with the design of a damping controller and the study of its influence on the energetic behavior of the powertrain. 

Contribution

Organization

The organization for the rest of the Chapter is as follows. Section 3.2 presents the problem formulation and the considered driveline model. Section 3.3 details the proposed damping controller. In Section 3.4, the robustness of the proposed controller to parametric uncertainty is studied. In Section 3.5, it is shown that the controller does not significantly affect the EMS. Experimental validation of the control law is presented in Section 3.6. At last, conclusions and possible future work extensions are discussed in Section 3.7.

Problem formulation

The system studied in this work is a parallel P 0 HEV, whose powertrain is shown in Fig.

3.1.

When the driver requests power through the throttle pedal, the EMS sends torque setpoints to the ICE and the EM to satisfy the power-request according to the optimal powersplit. However, when the driver requests a brutal/important acceleration to the vehicle, the sudden high torque signal sent through the driveline may be high enough to excite its torsional dynamics in such a way that it generates wheel speed oscillations.

These oscillations have a negative effect on the driveability and are mainly produced by the sideshaft flexibility. This phenomenon is illustrated in Fig. Results from a physical experiment recorded at the LAMIH UMR CNRS 8201 using a prototype hybrid vehicle BELHYSYMA [2]. Top: estimated driveshaft torque. Bottom: driveline oscillations at the torsional speed. The torsional speed is defined as the difference between the speed at the transmission output and the speed at the wheels.

can be mitigated or damped without any hardware modification by adding a damping torque to the setpoints from the EMS. The design of the controller providing the damping torque signal should affect the energetic behavior of the powertrain as little as possible.

In other words, it is constrained to not modifying the setpoints provided by the EMS in a significant way. Since the sideshaft torsion mode is in the 2-10Hz bandwidth, the EM is chosen here as the actuator that provides the damping torque. As a consequence, T EM (t), the EM torque setpoint, is defined as the sum of T EM (t), the torque setpoint Chapter 3: Energy management and active damping of the side-shaft oscillations 59 from the EMS, and u(t) the damping controller:

T EM (t) = T EM (t) + u(t) (3.1)
The controller configuration is shown in Fig. 

Model derivation

The driveline model considered in this work is based on Fig. 3.1. It assumes that all the elements of the driveline except the sideshafts have ideal stiffness and that the clutch is always engaged, i.e., there is no gearshifting. Under these assumptions, the torsional dynamics can be computed using the simplified model shown in Fig. 3.4. It consists of a rotational two-mass-spring-damper system whose stiffness is denoted by k and its damping by c. Although simple, it has been widely used in the literature since it can capture the phenomenon of interest, and hence it is suitable for control design [START_REF] Mo | Active control of driveability[END_REF][START_REF] Fredriksson | Powertrain control for active damping of driveline oscillations[END_REF].

J G = R(i) 2 • J ICE + ρ 2 • J EM , with J EM the electric machine intertia,
J ICE the ICE inertia, R(i) the total transmission gear ratio, and ρ the electric machine reductor gear ratio. The equivalent inertia at the wheels, J w , is equal to

J w = m • r 2 ,
with m the total vehicle mass (kg) and r (m) the wheel radius.

T tor = k • ∆θ + c • ∆ θ. T tract = R(i) • ρ • ŤEM + ŤICE with ∆θ = θ G -θ w , θ G the angular position of J G and
θ w the angular position of J w . Applying Newton's second law at J G , one gets:

J G • ωG = T tract -T tor , J G • ωG = R(i) • ρ • ŤEM + ŤICE -k • ∆θ + c • ∆ θ, ⇐⇒ ωG = 1 J G • R(i) • ρ • ŤEM + ŤICE -k • ∆θ + c • ∆ θ . (3.2)
Applying Newton's second law at inertia J w , one gets: 

J w • ωw = T tor -T res , J w • ωw = k • ∆θ + c • ∆ θ -T res , ⇐⇒ ωw = 1 J w • k • ∆θ + c • ∆ θ -T res . ( 3 
∆ θ = 1 J G • R(i)• ρ • ŤEM + ŤICE -k • ∆θ + c • ∆ θ - 1 J w • k • ∆θ + c • ∆ θ -T res , ∆ θ = - 1 J G + 1 J w k • ∆θ - 1 J G + 1 J w c • ∆ θ + R(i) J G • ρ • ŤEM + ŤICE + 1 J w T res , (3.4) 
Note that even though the system is actually a third-order system, as it requires 3

states to be completely defined, a second-order formulation (3.4) is sufficient to design the controller. The dynamics of the EM together with its built-in controller are modeled with a first-order linear system with time constant τ em :

Ṫem (t) = - 1 τ em Ťem (t) + T em (t -τ ). (3.5) 
Assuming zero initial conditions for Ťem (t) and considering that a time-delay is a linear operator, yields the following:

Ṫ em (t) = - 1 τ em Ť em (t) + T em (t -τ ), (3.6) uem (t) = - 1 τ em ǔem (t) + u(t -τ ), (3.7) 
with Ťem = Ť em + ǔem . Defining α = 1 J G + 1 Jw , and defining β = ρ•R(i) J G , and considering (3.6), the state-space model is given by:

      ∆ θ ∆ θ u       =       0 1 0 -α • k -α • c β τem 0 0 -1 τem       A       ∆θ ∆ θ ǔ       +       0 0 1       B u(t -τ )+       0 1 0       H R(i) J G • ρ • Ť EM + ŤICE + 1 J w T res z , (3.8a 
)

y = 0 1 0 C       ∆θ ∆ θ ǔ       , (3.8b) 

Controller design

The control objective is to damp the sideshaft oscillations without interfering with the EMS: in steady-state, we should get T em = T em , which is equivalent to u being a vanishing controller: 

Y (s) U (s) = C (s • I -A) -1 B • e -τ s = β • s • e -τ s (τ em • s + 1) (s 2 + α c • s + α k) , (3.10) 
and Y (s)/Z(s) is given as follows:

Y (s) Z(s) = C (s • I -A) -1 H = s s 2 + α c • s + α . (3.11)
Considering the parameters of Table 3.1, the Bode plot of (3.11) is given in Fig. 3.5:

the resonant frequency occurs at 3.76 Hz. Given (3.10) and (3.11), Y (s) is given by:

Y (s) = β • s • e -τ s s 2 + α c • s + α k • U (s) + β -1 e τ s • Z(s) , (3.12) 
with U (s) = 1 τem•s+1 U (s). The system will be discretized and an RST approach [START_REF] Doré | Digital control systems: design, identification and implementation[END_REF] will be used to design the damping controller. Considering a sampling period T s , τ = N • T s and a zero-order hold discretization method, the system transfer functions are written 3.1 with the second gear engaged: R(i) = 8.89.

using the following polynomials:

A(z -1 ) = a 0 + a 1 • z -1 + a 2 • z -2 , (3.13) B(z -1 ) = a 0 • z -N + a 1 • z -(N +1) , (3.14) b em (z -1 ) = b em,0 , (3.15) 
a em (z -1 ) = a em,0 + a em,1 • z -1 , (3.16) 
Chapter 3: Energy management and active damping of the side-shaft oscillations 63 with R(z -1 ) and S(z -1 ) the polynomials in z -1 to be designed. The control scheme is depicted in Fig. 3.6. The closed-loop transfer function Y (z -1 )/Y r (z -1 ) is given as follows:

Y (z -1 ) Y r (z -1 ) = B (z -1 ) • R(z -1 ) A (z -1 ) • S(z -1 ) + B (z -1 ) • R(z -1 ) , (3.17) 
with A = A • a em , B = B • b em , and where R(z -1 ) and S(z -1 ) are to be designed such that the system has a desired denominator C(z -1 ):

A(z -1 ) • S(z -1 ) + B (z -1 ) • R(z -1 ) = C(z -1 ). (3.18)
Given the desired closed-loop plant, there are infinite ways to compute the parameters for an RST controller. In [START_REF] Jacknoon | Design of rst controllers based on intelligent optimization algorithms[END_REF], the parameters are computed as a nonlinear optimization problem which is solved through evolutionary algorithms (for example, backtracking search optimization [START_REF] Civicioglu | Backtracking search optimization algorithm for numerical optimization problems[END_REF] or Particle Swarm Optimization [START_REF] Madiouni | Particle swarm optimization-based design of polynomial rst controllers[END_REF]). A unique solution to (3.18) exists if the following identities are satisfied:

deg(C) = max{deg(A ) + deg(S), deg(B ) + deg(R)}, (3.19) 
deg(R) + deg(S) = deg(C) -1, (3.20) 
with deg(•) the degree of the polynomial (•). Given (3.9), R should contain the factor 1 -z -1 in order to obey Y (1)/Z(1) = 0, and thus achieve a vanishing controller. The term 1 + z -1 2 is another predefined term of R, it is required to filter out-high frequency 

noise. R(z -1 ) = 1 -z -1 • 1 + z -1 2 • R (z -1 ): A (z -1 ) • S(z -1 ) + B (z -1 ) • 1 -z -1 R (z -1 ) = C(z -1 ), (3.21) 
A (z -1 ) • S(z -1 ) + B (z -1 ) • R (z -1 ) = C(z -1 ), (3.22 
R (z -1 ) = r 0 + r 1 • z -1 + r 2 • z -2 , (3.23) S(z -1 ) = s 0 + s 1 • z -1 + . . . + s 8 • z -8 . (3.24)
The desired closed loop polynomial is chosen as follows

C = z -1 -e -Ts•ωn 2 • z -1 -d aux 3 • z -6
, with d aux = e -2•Ts•ωn , and ω n = √ α • k. The coefficients above can be computed from the following system of linear equations:

                    a 0 0 • • • 0 b 0 0 • • • 0 a 1 a 0 • • • 0 b 1 b 0 • • • 0 . . . . . . . . . . . . . . . . . . . . . . . . a 3 a 2 • • • 0 b 9 b 8 • • • b 0 0 a 3 • • • 0 0 b 9 • • • b 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • a 3 0 0 • • • b 9                                         s 0 s 1 . . . s 8 r 0 r 1 r 2                     =                     c 0 c 1 . . . c 5 0 . . . 0                     (3.25)
The poles of the closed-loop system are shown in Fig (3.7). The Bode plots of In the following, in order to present a quantitative analysis of the controller performance, the oscillations in the torsional speed (∆ θ) will be assessed using its root mean square (RMS) value:

RMS = 1 n • i ∆ θ[i].
(3.26)

Simulation test

The control law designed in the previous section will be tested in simulation. The control law is given by:

U (z -1 ) = R(z -1 ) S(z -1 ) . (3.27)
The parameters used for the simulation are those given in Table 3.1. These parameters have been validated with real-time experiments. Considering the torque setpoint signals from the top subplot of Fig. 3.9, the response of the driveline torsional dynamics is given in the middle top and bottom subplots of the same figure: the control law, see bottom subplot of Fig. 3.9, effectively damps the oscillations: it provides a 24.35% reduction according to the RMS assessment (3.26). Moreover, it vanishes in steady-state, condition (3.9), as it is required for keeping it from interfering with the EMS. One can conclude that the control law is successful. However, in this simulation it is assumed that the system parameters are known exactly. This is is not the case for real control systems.

Robustness with respect to parametric uncertainty is studied in the next section. 

Robustness with respect to parametric uncertainty

The robustness with respect to parametric uncertainty will be tested. The parameters whose uncertainty is studied are the vehicle mass, m, the stiffness, k, and the damping coefficient c. Considering a disturbance signal, denoted as P (z -1 ) at the output, the transfer function U (z -1 )/P (z -1 ) will be denoted as S (P U ) :

S (P U ) = -A • R A • S + B • R . (3.28)
Denoting the open-loop transfer function corresponding to the nominal system model as G(z -1 ):

G(z -1 ) = A (z -1 ) B (z -1 ) , (3.29) 
and denoting as G (z -1 ) the real plant to be controlled. Controller (3.27) stabilizes

G (z -1
) if the following condition is satisfied [START_REF] Doré | Digital control systems: design, identification and implementation[END_REF]:

G (z -1 ) -G(z -1 ) ≤ 1 S (P U ) , (3.30) 
Condition (3.30) is graphically interpreted in Fig. 3.10. Any plant G (z -1 ), such that

G (z -1
) is inside the green area, will be stabilized when in closed-loop with (3.27). 

Uncertainty in m

Let us assume that all the parameters except the total mass m of the nominal system G(z -1 ) are equal to those of the real system G (z -1 ), and that m , the total mass of G (z -1 ), is an uncertain value bounded as follows m ∈ [0.5 m, 1.5 m]. This is equivalent to a ±50% variation. The admissible region, (3.30), for G (z -1 ) is displayed in Fig. 3.11.

It shows that the controller is highly robust with respect to mass variations.

Uncertainty in c

Let us assume that all the parameters except the total damping c of the nominal system G(z -1 ) are equal to those of the real system G (z -1 ), and that c , the total damping of G (z -1 ), is an uncertain value bounded as follows c ∈ [0.75 c, 1.25 c]. This is equivalent to a ±25% variation. The admissible region, (3.30), for G (z -1 ) is displayed in Fig. 3.12. Under the considered uncertainty levels, the set of open-loop system variations induced by uncertainty in c remains in the admissible region, i.e., the set of systems is stabilizable by the proposed controller. Different from the total mass, the damping coefficient variation does have a noticeable effect on the open-loop system gain: it mainly increases or decreases the resonant gain.

Uncertainty in k

Let us assume that all the parameters except the total damping k in the nominal system G(z -1 ) are equal to those of the real system G (z -1 ), and that k , the total stiffness of G (z -1 ), is an uncertain value bounded as follows k ∈ [0.75 k, 1.25 k]. This is equivalent to a ±25% variation. The admissible region, (3.30), for G (z -1 ) is displayed in Fig. 3.13 induced by the uncertain parameters remains in the admissible region. Nevertheless, there is little space left for further increasing the levels of uncertainty.

Effect on energy management

The effect on the EMS of the proposed control law is of crucial importance. A proper EMS guarantees that the HEV is able to exploit the extra-degrees-of freedom in order to reduce fuel consumption. Significantly interfering with the EMS is not acceptable for a damping controller. The EMS is derived, as in Chapter 1, from a quasi-static model [START_REF] Sciarretta | Optimal energy management of automotive battery systems including thermal dynamics and aging[END_REF] with a very low bandwidth (typically 0-2 Hz) whereas the oscillations of the side shafts are located above 2 Hz. Coming back to Fig. 1 from Section 3.1. The model parameters, Table 3.1, correspond to the BELHYSYMA prototype [2]. The vehicle uses The gearbox and the belt system efficiency are assumed to be 1. The clutch control and modeling being out of the scope of this study. The considered driving cycle is chosen to be short and it does not include any gearshift event. This is nevertheless sufficient to evaluate the energetic impact of the damping controller.

EMS formulation

The problem of designing an optimal EMS has been extensively studied over the last decade [START_REF] Jager | Optimal control of hybrid vehicles[END_REF]. The fuel consumption rate ṁf (T ice , ω ice ) (g/s) is computed from a lookup table. The objective functional to be minimized is given by the total fuel consumption:

J = t f 0 ṁf (T ice (t) , ω ice (t)) dt, (3.31)
wit t f (s) the driving cycle length. The battery state of charge dynamics is given by:

ẋ (t) = - 1 Q I b (T em , ω em ) , (3.32) 
with I b (T em , ω em ) (A) the battery current and Q the battery capacity (A•s). The EMS is formulated as follows:

min J = t f 0 ṁf (T ice (t) , ω ice (t)) dt, (3.33a) ẋ (t) = - 1 Q I b (T em , ω em ) , (3.33b 
)

T ice ∈ T min ice (ω ice ), T max ice (ω ice ) , (3.33c) 
T em ∈ T min em (ω em ), T max em (ω em ) , (3.33d) 
T G = R(i) • (T ice + ρ • T em ) , (3.33e 
)

ω G = ω ice R(i) • ρ = ω em ρ (3.33f)
x(0) = x 0 , (3.33g)

x(t f ) = x f . (3.33h)
By solving the static inequalities above for T ice and ω ice , respectively, one gets:

min J = t f 0 ṁf (T ice (t) , ω ice (t)) dt, (3.34a) ẋ (t) = - 1 Q I b 1 ρ 1 R(i) • T G -T ice , R(i) ρ • ω G , (3.34b) 
T ice ∈ T min ice (ω ice ), T max ice (ω ice ) , (3.34c) 
T em ∈ T min em (ω em ), T max em (ω em ) , (3.34d) 
x(0) = x 0 , (3.34e)

x(t f ) = x f . (3.34f)
Defining the Hamiltonian associated with the optimal control problem above as follows:

H (T ice , λ, t) = ṁf (T ice , R(i) • ω G ) - λ Q I b 1 ρ 1 R(i) • T G -T ice , R(i) ρ • ω G , (3.35)
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ẋ (t) = - 1 Q I b 1 ρ 1 R(i) • T G -T ice , R(i) ρ • ω G , (3.36a) λ(t) = 0, (3.36b) x(0) = x 0 , (3.36c) x(t f ) = x f , (3.36d) 
with

T ice = arg min H (T ice , λ, t) . (3.37)
The EMS responds to the torque requested by the driver through the throttle pedal.

Fig. 3.15 shows a synthetic driving mission (top) along with the torque at the output of the transmission, T G , (bottom) required to complete such mission. In the following, the following notation will be considered:

A superscript 0 refers to a signal computed in the ideal case: k → ∞ and c = 0.

A superscript 1 refers to a signal computed with k and c as given in Table 3.

1
where damping controller (3.27) is kept off during the whole driving mission.

A superscript 2 refers to a signal computed with k and c as given in Table 3.

1
where damping controller (3.27) is active. 

Fuel-optimal control with active damping

This subsection finds the optimal EMS that achieves the same damping performance of the closed-loop solution. In order to compute this, T 2 G is used as the reference in a open-loop setting and the optimal power split is found via (3.36a). The solution is given in Fig. 3.19, with a total fuel consumption equal to 10.3757 l/100 km. The results for the four previous cases are summarized in Table 3.2. The damping control law significantly reduces the oscillations, up to 51.58%, at the cost of a small fuel consumption increase, 0.26%. Moreover, the optimal EMS with identical damping performance, which is not implementable in real-life, has an increase in total fuel consumption of 0.23 %. It is worth noticing, that in addition to the control law having an insignificant impact on the total fuel consumption, the considered driving mission was been chosen to include several steep edges, 20, over a short period of time: 115s. This is a pessimistic or worst case scenario setting since these conditions are unlikely to happen in real life. In practice, the average fuel consumption increase could be even more limited. worse damping performance: 25.86% against 30.63% achieved when a low-pass filter is included in the controller. From all the experimental results, it can be concluded that the damping controller effectively reduces the driveshaft oscillations and that it tends to vanish when the torsional dynamics tends to its steady state. Therefore, the controller 

Experimental results

Conclusions

A control law for driveshaft oscillations damping has been designed via a discrete RST approach. The dynamics used for its design are based on a P 0 parallel HEV and includes time-delays induced by the CAN bus. The control law is shown to be robust with respect to parametric uncertainty. Regarding the effect of this control law on the energy management, it is found that its effect on the EMS is very limited: a +0.26% increase in total fuel consumption. This is obtained for a synthetic driving mission designed to have a high number of steep torque changes in a short period of time (an scenario unlikely to occur in real-life). This is achieved by designing the control law with a vanishing behavior whenever the system tends to steady-state. The control law is validated via experimental results where up to 30% of oscillations reduction is achieved. Although these results validate the ability of the designed controller to damp the drivelshaft oscillations, it might be possible to further improve its performance if a more accurate model dynamics is considered and/or if measurement quantization is taken into account. The effect of quantization in the measured signals comes mainly from the measured speed at the wheels since the sensor used for this signal has a very low resolution. By conceiving an appropriate model of the clutch, another possible way to extend the present work is to include oscillations induced during gearshifting.

Chapter 4

Powertrain system architecture design

Introduction

The increasing interest on hybrid vehicle technology within the automotive sector has lead researchers and engineers into seeking not only a methodical way to solve the energy management strategy (EMS) but also a way to find the optimal powertrain configuration.

When designing hybrid electric vehicles, automakers have to conceive a powertrain configuration able to meet a set of requirements. Among these requirements, there are: performance requirements, e.g., maximum acceleration, maximum speed, range, government regulation requirements such as fuel consumption, CO 2 emission and pollution, maximum cost requirements, manufacture requirements, technology requirements, specific design requirements, e.g., not to use a configuration/architecture patented by a competitor, and time requirements.

All these restrictions are inherently linked to each other. Clearly, optimizing under that many complex restrictions in order to compute the best powertrain configuration is a truly difficult problem. Several approaches have been proposed in the literature to help solve this task.

In [START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF], a fixed library of 15 elements, with 8 unique components (see 
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Table 4.1: Library of components considered in [START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF].

In [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF], a similar graph representation and CLP, with a set of only 9 constraints, is applied to generate feasible topologies from a library of 14 elements with 6 unique components (see Table 4.2). One important difference between this approach and the one presented in [START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF] is that instead of Planetary Gear Sets (PGS), synchronizer units (gearboxes) are used to build series-parallel architectures as is done in [START_REF] Masfaraud | Automatized gearbox architecture design exploration by exhaustive graph generation[END_REF]. Another important difference is that once the set of architectures that satisfy the 9 constraints has been solved via CLP, filtering steps are applied to further discard architectures that are either functionally identical among each other or that do not comply with basic performance constraints. These filtering steps are taken before analyzing the energetic performance of the architectures and, thus, they provide the advantage of reducing the computation time of the optimization routine but they can also reduce the effort of designing and programming tens of constraints. The sizing of the ICE and the EMs is linearly scaled from their reference models; this includes the minimum and maximum torques, the loss maps and the weights. The inertia of the rotating components is computed by taking the scale factor to the power of 5/3. One limitation of this approach is that the bi-level optimization (the optimization of the sizing and the EMS) of a single architecture takes around 8-10 hours. Yet another recent work that relies on fixing a library of components and imposing restrictions via CLP to obtain feasible architectures can be found in [START_REF] Wijkniet | Modified computational design synthesis using simulation-based evaluation and constraint consistency for vehicle powertrain systems[END_REF]. There, 174 constraints are implemented in around 4,600 lines of code. Additional filtering steps are also performed, allowing to reduce the total design space from 2.5 • 10 27 to 635 topologies. The generation of the topologies using Prolog takes 5 hours. The filtering steps needed to further reduce the design space down to 635 topologies takes 20 hours.

Number

One important difference with respect to the previously discussed works is that the transmission elements are belt continuously variable transmissions (CVTs).

The same tendency of analyzing the set of topologies directly on terms of its functionality instead of their topological structure has been followed in other recent works. For instance, in [START_REF] Zhuang | Rapid configuration design of multiple-planetary-gear power-split hybrid powertrain via mode combination[END_REF], the space design is reduced from 10 8 down to a 10 5 possible designs by means of an approach that looks directly into the modes before building topologies.

In fact, there it is concluded that only 3476 unique modes can be obtained from the library of components. The library includes, as fixed elements, 3 PGS, 1 ICE, and 2

EMs. The topology design problem consists in placing up to 3 clutches and up to 3 permanent connections among the sun and ring gears of the 3 PGS. In order to improve the computation time of the approach, the EMS is computed by a sub-optimal technique called PEARS [START_REF] Zhang | A near-optimal power management strategy for rapid component sizing of multimode power split hybrid vehicles[END_REF]. No sizing or parametrization is included in the approach. After 15 hours of computation, the mode combination approach is able to find 173 topologies that comply with a given set of performance requirements.

At the cost of a reduced accuracy, convex models can be computed from the static maps.

With this, standard convex problem formulations of the EMS are possible, such as linear programming (LP), quadratic programming (QP), second-order cone programming (SOC), or semi-definite programming (SDP). The advantages of a convex problem formulation are a guarantee of global optimality and the existence of algorithms able to solve the problem in polynomial time. The main disadvantage of their use for solving the EMS is that the introduction of integer variables transforms them into mixed-integer problems, which are non-convex NP-hard problems in general. Nonetheless, convex optimization has allowed computing the Complete Vehicle Energy Management (CVEM) of a hybrid truck under a driving mission of 55795 seconds by means of a distributed convex optimization approach [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF]. There, the powertrain together with the auxiliaries or hotel load components are seen as a power network whose components interact under conservation of power principles, giving place to a 5-state EMS formulation. When integer variables such as the on/off signal of the engine or the gearshifting are included in the convex EMS formulation, one possible solution explored in the literature is to consider a heuristic sub-optimal approach for the on/off command of the ICE [START_REF] Robuschi | Minimum-fuel engine on/off control for the energy management of a hybrid electric vehicle via iterative linear programming[END_REF].

The heuristic consists in solving the EMS with a relaxed binary signal and then to set the binary signal to zero whenever the ICE output power is below a threshold value (also done in [START_REF] Pourabdollah | Effect of driving, charging, and pricing scenarios on optimal component sizing of a phev[END_REF] and [START_REF] Wei | Model-Based Fuel Optimal Control of Hybrid Electric Vehicle Using Variable Structure Control Systems[END_REF], where it is shown to be optimal according to PMP). This routine is embedded in a bisection algorithm that seeks the feasible EMS with the higher threshold value, i.e., the aim is to maintain the ICE off as much as possible. The convex formulation is based on linear programming. Another solution that, in addition to the on/off signal, also optimizes the gearshifting signal was presented in [START_REF] Nüesch | Convex optimization for the energy management of hybrid electric vehicles considering engine start and gearshift costs[END_REF]. Its proposal consists in optimizing the discrete variables iteratively in an outer loop that has as input the solution of the EMS with fixed discrete signals. One important remark on this work is that the optimality of the discrete EMS can be established, at least with a certain level of accuracy.

Moreover, convex optimization, SOCP, has been successfully used to compute the EMS and the optimal sizing of the main components for different plug-in hybrid powertrain architectures, i.e., series [START_REF] Pourabdollah | Effect of driving, charging, and pricing scenarios on optimal component sizing of a phev[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF], parallel [START_REF] Pourabdollah | Optimal sizing of a parallel PHEV powertrain[END_REF], and fuel-cell [START_REF] Hu | Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming[END_REF][START_REF] Pourabdollah | Convex optimization methods for powertrain sizing of electrified vehicles by using different levels of modeling details[END_REF]. The same technique has been also applied to non plug-in HEVs [START_REF] Hu | Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management[END_REF][START_REF] Hu | Longevityconscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus[END_REF]. The germinal paper that preceded these works only considered sizing the battery pack [START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF]. This was later extended to including sizing of EMs, ICEs, APUs, supercapacitor stacks [START_REF] Hu | Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management[END_REF][START_REF] Hu | Longevityconscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus[END_REF], and fuel-cells. For instance, in [START_REF] Pourabdollah | Convex optimization methods for powertrain sizing of electrified vehicles by using different levels of modeling details[END_REF], the total ownership cost is minimized for a fuel-cell plug-in HEV propelled by a single EM by assuming a given lifetime. All the latter results rely on the assumption that the most relevant characteristics of the main powertrain components can be linearly scaled from their baseline models. Contrary to [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF], in these works, the moment of inertia is not scaled (it is neglected altogether).

Motivation

The flexibility of the modeling framework presented in [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF], together with the short computation times achieved by state-of-the-art convex solvers, and the tendencies of studying HEV architectures directly on terms of their functionality, as seen in [START_REF] Zhuang | Rapid configuration design of multiple-planetary-gear power-split hybrid powertrain via mode combination[END_REF] and [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF], have inspired us to conceive a convex architecture optimization approach that can compute the optimal architecture and solve the EMS simultaneously. The approach is based on Mixed-Integer Linear Programming (MILP). The main hypothesis taken when formulating this approach is that cutting-edge Mixed-Integer solvers such as Mosek [START_REF] Mosek Aps | The MOSEK optimization toolbox for MATLAB manual[END_REF] and Gurobi [START_REF]Gurobi optimizer reference manual[END_REF] are able to solve, relatively quickly, problem formulations big enough to be of practical interest for architecture optimization of HEV.

Contribution

The topology optimization methodology presented here is a novel simultaneous approach based on (1) the modeling framework from [START_REF] Romijn | A distributed optimization approach for complete vehicle energy management[END_REF]: the objective function to be minimized is the total power loss across the power network, the components have piecewise linear loss models [START_REF] Tate | Finding ultimate limits of performance for hybrid electric vehicles[END_REF], the connection among the components is done through nodes that are subject to power conservation constraints; (2) connectivity constraints based on graph theory, similarly to [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF][START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF] , which determine how many edges (connections) each component has: either it is present in the network and thus all its edges are connected or it is not present and thus none of its edges is connected, and whether the edges can be connected at the same node: electrical edges and mechanical edges cannot be connected to the same node; and (3) linearization constraints which relax the product of binary and continuous variables, as it is done in [START_REF] Ahmadi | Mathematical representation of radiality constraint in distribution system reconfiguration problem[END_REF]. The contribution of the our proposal can be summarized in the following two observations:

By applying basic principles, the simultaneous approach is able to optimize over the space design of functional topologies without requiring the expert knowledge and the programming effort done in previous works such as [START_REF] Wijkniet | Modified computational design synthesis using simulation-based evaluation and constraint consistency for vehicle powertrain systems[END_REF], where up to 174 constraints were written in about 4,600 lines of code.

Thanks to the capabilities of cutting-edge convex solvers, such as GUROBI and Mosek, the methodology presented here is able to solve the simultaneous optimization problem relatively quickly despite the constraint of having an NP-hard problem formulation (MILP).

The developed technique can be applied or extended to other energy network design problems as well (e.g. smart city grid network optimizing, local energy storage, and the connection of plug-in vehicles whose state dynamics vary while being connected to the grid). This work is focused on HEVs as a proof of concept. As it has been previously done in the literature, the first step taken was to define a library of components. In this case, all the components are single-input single-output and have piecewise linear loss models computed, for example, from the brake-specific fuel consumption (bsfc) for the case of the ICE or from the efficiency maps for the case of the EM. The interaction among the components of the network is carried out by nodes, which are constrained to obey basic principles:

the conservation of power : the sum of all the power signals going to a node is equal to zero at all time instant.

the separation of layers: a mechanical and a electrical edge cannot be connected to the same edge, i.e., the interaction of power signals of different nature requires the presence of a conversion component.

Organization

The rest of the chapter is organized as follows: Section Convex Models, details how the piecewise linear models are computed for each of the components in the library; Section

Model Validation shows that the accuracy lost by using convex models is not considerable when compared to the original nonlinear maps; Section Simultaneous Optimization Framework contains the main results of the chapter; Section Case Study presents an application of the methodology; Section Conclusions closes the chapter with important observations and possible future-work extensions on the proposed approach.

Convex Modeling

The set of elements modeled in the proposed approach are ICEs, EMs, and battery packs.

They are modeled as single-input single-output power storage/conversion/transmission elements subject to piecewise linear loss models. The rest of the components on the powertrain are considered ideal: they allow the main powertrain components to operate in their most efficient region.

Internal combustion engine

In a internal combustion engine, the efficiency depends on the torque and angular velocity, (T ICE , ω ICE ) pair. The efficiency map for an ICE is shown in figure 4.1. In this research, we would like to focus in the analysis of power flows. Thus, we are not interested in the torques and velocities of the ICE: an optimal efficiency model will be used instead. The optimal efficiency model is computed by finding the best efficiency achievable for each admissible output power, η * (P ice,out ). Namely, it is computed as the solution of the following optimization problem parametrized by P ice,out : min

T ICE ,ω ICE -η (T ICE , ω ICE ) (4.1a) 
subject to:

T ICE ω ICE = P ice,out , (4.1b) 
T min (ω ICE ) ≤ T ICE ≤ T M ax (ω ICE ) (4.1c) ω min ICE ≤ ω ICE ≤ ω max ICE (4.1d)
This is solved for several values of P ice,out ∈ P min ice,out P max ice,out . Once η * (P ice,out ) has been computed, an affine approximation of P ice,inp -P ice,out can be computed:

P ice,out = η * (P ice,out ) • P ice,inp ≈ a ICE P ice,inp + b ICE . (4.2) 
The affine approximation and the measured values for P ice,inp -P ice,out are shown in figure 4.2. A more detailed perspective on the accuracy of the approximation can be obtained by plotting the P ice,inp -η * curve. The approximation of η * can be computed from (4.2):

η * (P ice,out ) ≈ a ICE P ice,inp + b ICE P ice,out = a ICE + b ICE /P ice,inp (4.3) 
The P ice,inp -η * curve is shown in figure 4. 
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Electric machine

The efficiency of an electric machine depends on its torque and angular speed, (T EM , ω EM ) pair. The efficiency map of an electric machine is shown in figure 4.5.

As it was done for the ICE, an optimal efficiency model will be computed via solving the following optimization problem parametrized by P EM, out : min

T EM ,ω EM -η (T EM , ω EM ) (4.4a)
subject to:

T EM ω EM = P EM, out , (4.4b 
)

0 ≤ T EM ≤ T M ax (ω EM ) , (4.4c 
) 2) (blue line); convex region described by (4.2) (red dots); the optimal curve P ice, inp -P ice, out (dashed lines). The optimal P EM, inp -η * curve and its linear approximation are displayed in figure 4.7.

ω min ≤ ω EM ≤ ω M ax . (4.4d) 
The approximation is close to the measured data curve. However, it does not capture the fact that the efficiency starts to drop when the input power goes beyond 25 kW.

Although (4.6) is only fitted for P EM, inp ∈ P + EM, inp , the symmetry of η * (P EM, out ) can be used to build an affine piecewise approximation for P EM, out on its whole range as follows: The minimum loss curve is shown in Fig. 4.8a (blue dashed line) along with its quadratic approximation computed as (green solid line): then defining:

P EM, out =    a EM P EM,
Loss * EM = P EM,
Loss EM = P EM,inp -P EM,out = a EM • P 2 EM,inp + b EM • P EM,inp + c EM , (4.12) 
we get the following: 

P EM,out = a EM • P 2 EM,inp + b EM • P EM,inp + c EM , ( 4 
P EM,out ≤ a i P EM,inp + b i , i ∈ {1, 2, . . . , n} (4.14) 
For the EM considered in this section, the convex region enclosed by (4.14) is shown in Fig. 4.8b with n = 4.

Battery pack

Let us consider the zero-order equivalent circuit battery model displayed in Fig. 

-I batt • E + R • I 2 batt + I batt • U batt = 0, defining P batt,inp = I batt • E: -P batt,inp + R E 2 E 2 • I

Main Results

This section presents the mathematical framework of the power network modeling. A validation of these modeling by comparing it a more common speed and torque traditional approach in Section 4.3.2 and the main result: a simultaneous EMS and topology optimization approach via MILP in Section 4.3.3.

Mathematical framework

The mathematical framework for the convex optimization problems to be solved will be defined and after that the convex modeling will be validated by comparing it against the DP solution based on the original nonlinear static maps. In order to model the vehicle's powertrain as a power network, let us consider the following assumptions:

Assumption 1. All the electrical and mechanical power transmission elements that are not modeled in the problem formulation are replaced by ideal power transmission elements. We define an ideal power transmission element as a device that 1. transmits power in a lossless way and that 2. allows all the elements that are connected to it to operate in their optimal efficiency regions regardless of their voltage, current, torque, and speed values.

The assumption above allow us to focus on the energetic behavior of the components and to ignore the relation between the efficiency and the speed, torque, current, and voltage.

Moreover, the assumption above means that the optimal solution that we compute in this work will be a lower ultimate bound on the optimal energetic performance that can be obtained in the real HEV. Other than the vehicle's ideal power transmission elements, the network is composed of the following elements:

1. an ICE engine (modeled as a power source element), 2. a battery pack (modeled as a power sink/source element),

3. an electric machine (modeled as a electric/mechanical power converter element), 4. the gearbox (modeled as a mechanical element with a constant efficiency), 5. the wheels (modeled as a power sink/source element) that provides the power demand signal to the network.

In the following, the ideal transmission elements will be referred to as nodes.

The objective is operate the network in order to satisfy the power demand (exogenous signal) introduced to the network by the wheels element while minimizing the power losses on the whole network. The objective function takes the following form:

J = n j=1 N f -1 k=1 P m j ,inp (k) -P m j ,out (k) (4.18)
with n the number of elements, N f the length of the power demand signal, j = {1, 2, . . . , n}, and m j the name of the j -th component of the network. In our case, n = 3, m j ∈ {ice, batt, em, T}. The components are modeled using piecewise loss models of the form:

P m j ,out (k) = min{a m j ,1 •P m j ,inp (k)+b m j ,1 , a m j ,2 •P m j ,inp ( 
k)+b m j ,2 , . . . , a m j ,q j •P m j ,inp (k)+b m j ,q j },

with q j the number of piecewise linear equations used to model the losses of the j-th element. The convex region enclosed by the convex function above is described by:

P m j ,out (k) ≤ a m j ,i • P m j ,inp (k) + b m j ,i , i ∈ {1, 2, . . . , q j }. (4.20) 
for all k ∈ {1, 2, . . . , N f }, whenever q j > 1 1 . This relaxation is necessary in order to integrate the pieceiwise affine losses in the convex optimization problem. Although these inequalities include values outside of the loss models, in the optimal solution they are guaranteed to satisfy the inequality constraints since going below these constraints would lead to extra power waste. Inequality constraints are also used to constraint the inputs or outputs of each component:

P min m j ,t ≤ P m j ,t (k) ≤ P max m j ,t (4.21) 
with t ∈ {inp, out}, for all k ∈ {1, 2, . . . , N f }. Equality constraints represent the connection of the components at a given node. All the nodes observe conservation of power.

For instance, the connection between the battery pack and the electric machine at node 3, n 3 , will be enforced through the following constraint:

P batt,inp (k) -P em,inp (k) = 0, (4.22) 
for all k ∈ {1, 2, . . . , N f }, under the convention that P em,inp is extracting power from n 3 and that P batt,inp is providing that power; the presence of a power demand signal or an input or output variable P (•) at the i -th node is i 1 if P (•) provides power to the i -th node whenever P (•) > 0,

ii -1 if P (•) extracts power from the node whenever P (•) > 0, and iii 0 if P (•) has no relation with the node.

In general, for a network with r nodes, the latter is represented by the following equality constraints:

n j=1 P m j ,out (k) • R m j ,out -P m j ,inp (k) • R m j ,inp + p l=1 P w l (k) • R w l = 0. (4.23)
with R m j ,t , R w 1 ∈ R r×1 , p the total number of power demand signals in the network, and where the i -th entry of R m j ,t (respectively R w 1 ) is equal to 1 if and only if P m j ,t

(respectively P w l ) is present at the i -th node and zero otherwise; the rest of its entries are equal to zero. In our case, the network only has 3 nodes, r = 3, and one power 1 If qj = 1, the inequality relaxation is not required since a single line is a convex region.

Chapter 4: Powertrain system architecture design 96 demand signal, p = 1, thus, R m j ,t and R w l are given as follows:

R ice,inp =       0 0 0       , R em,inp =       0 0 1       , R batt,inp =       0 0 0       , R w 1 =       0 1 0       , R ice,out =       1 0 0       , R em,out =       0 1 0       , R batt,out =       0 0 1       ,
In addition to input and output power variables, the elements with buffer capabilities have linear dynamics to determine their state-of-energy. The linear dynamics is given as follows:

x ms (k + 1) = (∆t

• A ms + 1) x ms (k) + ∆t • B ms,inp P ms,inp (k) + ∆t • B ms,out P ms,out (k), (4.24) 
with m s the name of the s -th element in the network which posses buffer capabilities, s ⊆ j. The states of energy can be subject to path:

x min ms (k) ≤ x ms (k) ≤ x max ms (k), (4.25) 
and boundary constraints:

x ms (1) = x 0 ms (4.26a) 

x ms (N f ) = x N f ms . ( 4 
P m j ,out (k) • R m j ,out -P m j ,inp (k) • R m j ,inp + p l=1 P w l (k) • R w l = 0, (4.27i) 
x batt (k + 1) = (∆t

• A batt + 1) x batt (k) + ∆t • B batt,inp P batt,inp (k) + ∆t • B batt,out P batt,out (k), (4.27j) 
x min batt (k) ≤ x batt (k) ≤ x max batt (k), (4.27k) 
x batt (1) = x 0 batt , (4.27l) continuous variables; 2n + n j=1 q j + 2S •(N f -1) inequality constraints (2n (N f -1) from the constraints on the power variables, n j=1 q j • (N f -1) from the piecewise affine loss models, and 2S •(N f -1) from the state path constraints); and (r + S)•(N f -1)+S equality constraints (r • (N f -1) from the conservation of power constraints, S • (N f -1) from the state dynamics constraints, and S from the final value constraints). With N f = 1023, n = 4, q j = {1, 2, 8, 2}, S = 1, r = 3, we have 9198 continuous variables, 23506 inequality constraints, and 4089 equality constraints.

x batt (N f ) = x N f batt . ( 4 

Model validation

The topology optimization is performed using power signal whereas the component models depend on speed and torque signals. In order to assess the validity of such models, a Chapter 4: Powertrain system architecture design 98 comparison is carried out using DP, which guarantees a globally optimal solution. This approach requires the quantization of all the variables in the problem formulation: the independent variable, all the inputs, all the state variables, and all the power demand variables.

Assumption 2. (DP) The EMS formulation explored here will take a step further in the modeling of the mechanical transmission elements. That is, the assumption on the ideal (mechanical and electrical) power transmission element will be strengthen for the mechanical power transmission elements. Namely, the following three elements: (i) the final drive, (ii) the gearbox, and (iii) the reduction gear. These three elements will remain lossless and will be modeled only through their gear ratios: γ F G , γ GB (i GB (k)), and γ EM , respectively.

The EMS considered for the DP approach replaces the power demand signal at the wheels by the following corresponding torque demand signal:

T w (i GB (k) | a v (k)) = (m v (i GB (k)) • a v (k) + F rr + F slope + F air ) • r (4.28) 
m v = m + I v (i GB (k))/r 2 , (4.29) 
I v (i GB (k)) = I EM • γ 2 EM + I ICE • γ 2 GB (i) • γ 2 F G .
The equation enforcing the conservation of mechanical power will be replaced by a conservation of torque equation applied at the main shaft:

γ GB (i GB (k)) • T ice + γ EM • T em - 1 γ F G • T w (i GB (k) | a v (k)) = 0 (4.30)
The objective function will be replaced by the following speed-dependent one:

J fuel = ∆t • k ṁf (T ice (k), w ice (u GB (k))) , (4.31) 
with ṁf (.) (g/s) the fuel consumption rate, and T ice (N) the engine torque. Adapting the notation of the previous subsection, the DP problem formulation is described as follows:

min

T ice (k) , u GB (k) J fuel = ∆t • k ṁf (T ice (k), w ice (u GB (k))) , (4.32a) 
subject to:

P em,inp (k) = T em (k) • ω em (k) • η -sign(Tem(k)) (T em (k) | ω em (k)) (4.32b) P batt,inp (k) = E 2 2 R 1 -1 -4 R E 2 P batt,out (4.32c) 
T min ice (ω ice (k)) ≤ T ice (k) ≤ T max ice (ω ice (k)), (4.32d) 
T min em (ω em (k)) ≤ T em (k) ≤ T max em (ω em (k)), (4.32e) 
P min batt,out ≤ P batt,out (k) ≤ P max batt,out , (4.32f)

u GB (k) ∈ {-1, 0, 1}, (4.32g 
)

ω ice (k) = v(k) r • γ F G • γ GB (i GB (k)) (4.32h) ω em (k) = v(k) r • γ F G • γ EM (4.32i) ω min ice ≤ ω ice (k) ≤ ω max ice , (4.32j 
)

ω min em ≤ ω em (k) ≤ ω max em , (4.32k) 
P batt,out (k) -P em,inp (k) = 0, (4.32l) 
γ GB (i GB (k)) • T ice (k) + γ EM • T em (k) - 1 γ F G • T w (i GB (k) | a v (k)) = 0, (4.32m) 
x batt (k + 1) = (∆t • A batt + 1) x batt (k) + ∆t • B batt,inp P batt,inp (k), (4.32n)

i GB (k + 1) = i GB (k) + u GB (k), (4.32o) 
i GB (k) ∈ {1, 2, . . . , 5}, (4.32p)

x min batt ≤ x batt (k) ≤ x max batt , (4.32q) 
x batt (1) = x 0 batt (4.32r)

x batt (N f ) = x N f batt , (4.32s) 
with A batt = 0, and B batt,inp = -1/Q • E. The problem can be simplified by combining (4.32b), (4.32c), and (4.32l) as follows:

min

T ice (k) , u GB (k) J fuel = ∆t • k ṁf (T ice (k), w ice (u GB (k))) , (4.33a) 
subject to:

P batt,inp (k) = E 2 2 R 1 -1 -4 R E 2 T em (k) • ω em (k) • η -sign(Tem(k)) (T em (k) | ω em (k)) (4.33b) T min ice (ω ice (k)) ≤ T ice (k) ≤ T max ice (ω ice (k)), (4.33c) 
T min em (ω em (k)) ≤ T em (k) ≤ T max em (ω em (k)), (4.33d) 
P min batt,out ≤ P batt,out (k) ≤ P max batt,out , (4.33e)

u GB (k) ∈ {-1, 0, 1}, (4.33f 
)

ω ice (k) = v(k) r • γ F G • γ GB (i GB (k)) (4.33g) ω em (k) = v(k) r • γ F G • γ EM (4.33h) ω min ice ≤ ω ice (k) ≤ ω max ice , (4.33i 
)

ω min em ≤ ω em (k) ≤ ω max em , (4.33j) 
γ GB (i GB (k)) • T ice (k) + γ EM • T em (k) - 1 γ F G • T w (i GB (k) | a v (k)) = 0, (4.33k) 
x batt (k + 1) = (∆t

• A batt + 1) x batt (k) + ∆t • B batt,inp P batt,inp (k), (4.33l) i GB (k + 1) = i GB (k) + u GB (k), (4.33m) 
i GB (k) ∈ {1, 2, . . . , 5}, (4.33n)

x min batt ≤ x batt (k) ≤ x max batt , (4.33o) 
x batt (1) = x 0 batt (4.33p)

x batt (N f ) = x N f batt . (4.33q) 
At last, if we solve the conservation of torque equation for T em , 

T em (k) = 1 γ EM 1 γ F G • T w (i GB (k) | a v (k)) -γ GB (i GB (k)) • T ice (k) , (4.34 
T ice (k) ∈ U ice,grid , x batt (k) ∈ X batt,grid ,
For the sake of completeness, the convex (solved via LP) and the non-convex (solved via DP) techniques will be compared in three different cases:

(a) Fixed total moment of inertia: For this first comparison, the total moment of inertia will be fixed to the following average value:

I v,avg = 1 5 5 i=1 I EM • γ 2 EM + I ICE • γ 2 GB (i) • γ 2 F G . (4.35)
Although a constant moment of inertia is used to compute the power demand, gear shifting is kept as a control variable for the DP formulation and thus optimized.

Fixing the total moment of inertia is done with the aim of having the same power demand signal in both, the speed dependent and the speed independent formulation.

The power signals computed for the speed-dependent DP problem formulation and the speed-independent LP formulation are displayed on Fig. 4.12. Their difference in relative fuel consumption is summarized on Table 4.3. As expected, the LP speedindependent approach achieves a lower fuel consumption. This was expected since that formulation is based on more idealistic assumptions: compare Assumption 1 against Assumption 2. One can even argue that the fuel consumption computed with the LP speed-independent approach is not as small as expected. A possible explanation could be the fact that the speed-independent model of the EM has significant losses (around 800 W) even when it is not being used (P em,out (k) = 0).

(b) Varying total moment of inertia: This time I v will depend on gearshifting, i GB (4.30). In other words, the equivalent mass can be optimized in the DP formulation through u GB , which could lead to a better fuel consumption. Once the DP formulation has been computed, the total moment of inertia signal is used to compute the power demand signal for the LP formulation. The relevant signals computed from both approaches are displayed on Fig. 4.13. As can be seen in the first subplot, the power demand is higher than for a fixed total moment of inertia when P w (k) > 0, reducing the effort required by the engine, and a higher absolute value for P w < 0, increasing the amount of regenerative braking power. strategy that solely depends on the speed. This gearshifting strategy will be used to compute the total moment of inertia for both the LP speed-independent approach and the DP-speed dependent approach. The power signal results are displayed on Fig. 4.15. The fuel consumption is presented on Table 4.3: there is an important increase in fuel consumption for the DP speed-dependent approach and a very small increase for the LP speed-independent approach despite both approaches having the same power demand signal. This highlights the importance of the gearshifting strategy and shows that the proposed one, based only on the longitudinal speed, may lead to poor fuel consumption results. Previous works have found that optimizing over a set of architectures with different sub-optimal EMS might lead to different optimal architectures. Moreover, as it is illustrated in Appendix B, using a poor sub-optimal EMS may lead a designer to underestimate the potential of the optimal solution with respect to other candidate architectures. Based on the results obtained in the comparisons above, it can be concluded that the LP convex formulation of the EMS does not imply a considerable loss of accuracy: for cases (a) and (b), it provides a tight lower bound for the optimal fuel consumption. When the optimality is not guaranteed, significant differences may arise, see case (c). Nonetheless, when optimality is indeed guaranteed, the main limitation seems to be given by the total moment of inertia: since the LP convex approach is based on a power network modeling, the moment of inertia is neglected. The assumption of a negligible moment of inertia has been taken in several previous convex modeling works [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF]. Moreover, as it will be shown later, in this work, under these assumptions we will be able to perform a simultaneous computation of the optimal architecture and EMS. Comparison between the DP speed-dependent approach and the LP speed-independent approach. I v (k) has been fixed as (4.35). The final state-of-energy is identical for both methods.

Simultaneous architecture design

Before presenting the MILP formulation of the architecture design, let us recall that the topological structure of the power network is defined by the following equation: demand signal, p = 1, thus, R m j ,t and R w l are given as follows:

n j=1 P m j ,out (k) • R m j ,out -P m j ,inp (k) • R m j ,inp + p l=1 P w l (k) • R w l = 0. ( 4 
R ice,inp =       0 0 0       , R em,inp =       0 0 1       , R batt,inp =       0 0 0       , R w 1 =       0 1 0       , R ice,out =       1 0 0       , R em,out =       0 1 0       , R batt,out =       0 0 1      
, Therefore, if we would like to include the architecture design as a part of the optimization problem, it should suffice to replace the parameter vectors R m j ,t by vectors of binary variables R m j ,t ∈ B r . Additionally, we would like to let the program optimizing the element connections also decide which elements should be part of the topology and which ones should be discarded. To this end, let us define z m j ∈ B as the binary variable that is equal to one only if the m j has been chosen to be connected to the network. If z m j = 1, then the input and the output (respectively, only the input if the element is a sink/source, e.g., an ICE or a battery pack) should be connected to the network, i.e., R m j ,inp and R m j ,out (respectively, only R m j ,out ) must have one entry equal to 1. If z m j = 0, all the entries of R m j ,out and R m j ,out must be equal to zero. The latter can be imposed through the following equality constraints:

   R T m j ,inp R T m j ,out    I r = I m j z m j , (4.37) 
with

I r = [1] ∈ R r an I m j = [1] ∈ R 2 if m j is a transmission element, and through R T m j ,inp I r = I m j , z m j or R T m j ,out I m j = I 1 , z m j (4.38) with I m j = [1] ∈ R 1 if m j is a source/sink element.
Note that an additional constraint has to be imposed on R m j ,t to avoid having power variables of different nature (electrical and mechanical) interacting at the same node. The convention that will be followed in this work is that the mechanical nodes of the network will be represented by the first r mech entries of R m j ,t and the electrical nodes will correspond to the last r elect entries of R m j ,t . If R m j ,out (R m j ,inp ) corresponds to a mechanical power variable, then the last r elect elements of R m j ,out (R m j ,inp ) will be forced to zero. Conversely, If R m j ,out (R m j ,inp ) corresponds to an electrical power variable, then the first r mech elements of R m j ,out (R m j ,inp ) will be forced to zero. For instance, let us consider a network with r = 3 nodes, where r mech , the number of mechanical nodes, is equal to 2, and r elect the number of electric nodes, is equal to The final state-of-energy is identical for both methods will be equal to:

   r (1) 
T,inp r

T,inp r

T,inp r

T,out r

T,out r

T,out          1 1 1       =    1 1    z T , (3) 
but since the third node is an electrical node r

T,inp and r

T,out are equal to zero, thus: r

T,inp + r

T,inp = z T , r

T,out + r with

m j =    R T m j ,inp R T m j ,out   , R m j = R T m j ,inp or R m j = R T m j ,out , if m j is a transmis- sion element, if m j is sink/source element, and R =           R m 1 R m 2 . . . R mn           , ( 4 
I m = diag[I m j ] =           I m 1 0 I m 2 0 . . . I mn           , and z =           z m 1 z m 2 . . . z mn          
.

By adding (4.39) to the previous problem formulation, (4.27), we can finally obtain a simultaneous architecture design and EMS mixed-integer programming formulation.

However, note the conservation of power constraint, includes the nonlinear term P m j ,t • R m j ,t , which corresponds to the product of a continuous variable and a binary variable.

Fortunately, this product can be linearized by replacing it by an additional continuous variable, thus, obtaining the sought MILP formulation. The variable replacing the product P m j ,t • R m j ,t will be denoted as Y m j ,t ∈ R r . To ensure that Y m j ,t is equal to the product P m j ,t • R m j ,t , the following four inequality constraints are imposed for each triple Y m j ,t , R m j ,t , P m j ,t [START_REF] Ahmadi | Mathematical representation of radiality constraint in distribution system reconfiguration problem[END_REF]:

Y m j ,t -P m j ,t -P min m j ,t • R m j ,t -I r • P min m j ,t , (4.40a) 
-Y m j ,t + P m j ,t + P max m j ,t • R m j ,t I r • P max m j ,t , (4.40b) 
Y m j ,t -P max m j ,t • R m j ,t 0, (4.40c) 
-Y m j ,t + P min m j ,t • R m j ,t 0, (4.40d)

with denoting an element-wise inequality. In order to show that the four constraints above actually impose Y m j ,t = P m j ,t • R m j ,t , we will use an scalar version of them.

Namely, we will analyze the product P m j ,t • r

m j ,t and its equivalence to y 

m j ,t = 0: regardless of the value taken by P m j ,t , the last two constraints imposed the following y (1) m j ,t ≤ 0, y

m j ,t ≥ 0, which can only be simultaneously satisfied if y

(1) m j ,t = 0, validating that y (1)

m j ,t = P m j ,t • r (1) m j ,t = 0 when r (1) m j ,t = 0. Case 2: r (1)
m j ,t = 1 and P m j ,t = 0: the first two constrains imposed the following y 1 m j ,t ≤ 0, y 1 m j ,t ≥ 0, which can only be simultaneously satisfied if y

(1) m j ,t = 0, validating that y (1)

m j ,t = P m j ,t • r (1)
m j ,t = 0 when P m j ,t = 0. Case 3: r (1) m j ,t = 1 and P m j ,t = 0: the first two constraints take the following form y 1 m j ,t ≤ P m j ,t , y 1 m j ,t ≥ P m j ,t , which can only be simultaneously satisfied if y

(1) m j ,t = P m j ,t , proving that y (1)

m j ,t = P m j ,t • r (1)
m j ,t = P m j ,t when r 

(N s + 2 • N T ) • r • N f = (2 + 2 • 2) • 3 • 1100 = 19800 extra variables would be required.
As for the discrete variables, connectivity constraints (4.39) require (N s + 2

• N s ) • r + (N s + 2 • N s ) = (2 + 2 • 2) • 3 + (2 + 2) = 20 binary variables.
Once the linearization constraints have been imposed, the nonlinear terms have replaced by Y m j ,t (k) in the conservation of power equation:

n j=1 Y m j ,out (k) -Y m j ,inp (k) + p l=1 P w l (k) • R w l = 0, (4.41) 
Finally, the simultaneous architecture optimization and EMS is formulated as the following MILP: min

Pm j ,t J = ∆t • j k P m j ,inp (k) -P m j ,out (k), (4.42a) 
subject to:

P m j ,out (k) ≤ a m j ,i • P m j ,inp (k) + b m j ,i , i ∈ {1, 2 
, . . . , q j } (4.42b)

P min m j ,out ≤ P m j ,out (k) ≤ P max m j ,out , (4.42c 
)

n j=1 Y m j ,out (k) -Y m j ,inp (k) + p l=1 P w l (k) • R w l = 0, (4.42d) 
x ms (k + 1) = (∆t • A ms + 1) x ms (k) + ∆t • B ms,inp P ms,inp (k) + ∆t • B ms,out P ms,out (k), (4.42e)

x min ms (k) ≤ x ms (k) ≤ x max ms (k), (4.42f) 
x ms (1) = x 0 ms (4.42g)

x ms (N f ) = x N f ms , (4.42h) 
R(R m j ,t ) I r = I m z, (4.42i) 
Y m j ,t (k) -P m j ,t (k) -P min m j ,t • R m j ,t -I r • P min m j ,t , (4.42j) 
-Y m j ,t (k) + P m j ,t (k) + P max m j ,t • R m j ,t I r • P max m j ,t , (4.42k) 
Y m j ,t (k) -P max m j ,t • R m j ,t 0, (4.42l) 
-Y m j ,t (k) + P min m j ,t • R m j ,t 0, (4.42m) for all k ∈ {1, 2, . . . , N f -1}, j = {1, 2, . . . , n}, s ⊆ j, m j , m s ∈ {batt}, t ∈ {inp, out}, with ∆t = 1.

Remark 4.3. Note that for the definition of J given above, if there is an element that has non-zero losses at the minimum value of its loss model, even if the element is not in the topology, it will affect the value of J. To correct this modeling error, we will modify the objective functional as follows:

J = J -(N f -1) • c m f • 1 -z m j , (4.43) 
with c m j > 0 the minimum loss value for the loss model of the m j component.

Architectures as graphs

As done in several other works [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF][START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF], the representation of the architectures as power networks used here can be seen from a graph theory perspective. More concretely, the network representation is equivalent to a bipartite graph (see Fig. 
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For the particular case of Fig. 4.16 we have:
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Case Study: topology and control optimization

In order to illustrate the the approach, let us consider a network with 2 mechanical nodes, 1 electric node, 1 ICE, 2 identical EMs, a battery pack and 1 mechanical transmission.

The ICE will be fixed at node 1 and the power demand will be placed at node 2. The rest of the components are free, see Fig. 4.17. (4.42) takes the following form: Y m j ,t (k) -P m j ,t (k) -P min m j ,t • R m j ,t -I r • P min m j ,t , (

-Y m j ,t (k) + P m j ,t (k) + P max m j ,t • R m j ,t I r • P max m j ,t , (

Y m j ,t (k) -P max m j ,t • R m j ,t 0, (

-Y m j ,t (k) + P min m j ,t • R m j ,t 0, (4.46s) for all k ∈ {1, 2, . . . , N f -1}, j = {1, 2, . . . , n}, s ⊆ j, m j , m s ∈ {batt}, t ∈ {inp, out}, with ∆t = 1, and B batt,inp = -1/Q•E. The battery pack and the EMs use 16 affine models, the ICE uses one, and the transmission uses 2 (it is based on a constant efficiency of 95%). The battery is empty at the beginning of the driving cycle. Given the parameters of Table C.1, using the WLTC-C1 as driving mission, and assuming that the moment of the inertia of the rotating parts can be neglected, the optimal topology found by the approach is given in Fig. 4.18, the EMS in Fig. 4.19, and the fuel consumption and computation time in Table 4.4. The optimal topology is a parallel post-transmission topology. As expected, the program was able to figure out that connecting a buffer would be advantageous, even if the buffer is initially empty. 

Limitations and possible extensions

The assumptions considered in the presented MILP simultaneous approach have important limitations when studying the design of HEV powertrains. Being an approach based on a power network modeling, the importance of the transmission components is underestimated. Moreover, since most HEV powertrains have only one ICE, at most two electric machines and at most 2 storage systems, the design space of this methodology is limited. In fact, the richness of the topology design problems studied in the literature comes from the presence of mechanical transmission elements, such as PGS [START_REF] Silvas | Functional and cost-based automatic generator for hybrid vehicles topologies[END_REF][START_REF] Zhuang | Rapid configuration design of multiple-planetary-gear power-split hybrid powertrain via mode combination[END_REF] or sycrhonizer units [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF][START_REF] Masfaraud | Automatized gearbox architecture design exploration by exhaustive graph generation[END_REF].

Nevertheless, beyond the systems usually encountered in the automotive sector, in the maritime industry hybrid powertrains may possess several ICEs, EMs, and storage systems. For instance, let us consider the hybrid maritime power system shown in Fig. 

Possible extension 2: main components parametrization

Convex optimization has been used to compute the optimal sizing or parametrization of the main powertrain components and the EMS simultaneously [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF]. The parametrization is based on the assumption that the main characteristics of the power losses models can be linearly scaled by a continuous scalar s. For instance, for EMs and ICEs, s scales the torque. For battery packs, s scales the number of cells connected in series or parallel. This sizing methodology can be adapted to our affine piecewise models as follows. Given a base loss model P out = f (P inp ) with P out ∈ P min out , P max out , the model can be linearly scaled by a factor s as follows: One important limitation of the existing convex approaches with able to optimize the size of the components is that moment of inertia of the rotational parts is neglected. This limitation can be lifted/overcome with the piecewise affine modeling and the assumption that the base rotational inertia of the main components can be scaled by s 5/3 . This assumption is presented in [START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF]. Since s 5/3 is a convex function, we can approximate it with arbitrary accuracy, see Fig. 4.22, and thus extend the results of [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF] to include the moment of inertia of the main components with rotating parts in the problem formulation. 

Pout = s • f (P inp ) , (4.49) 

Conclusions

A simultaneous approach for architecture design and EMS of HEV has been presented.

The problem formulation is based on MILP. The main assumption taken is that despite the NP-hard nature of MILP, cutting-edge solvers are capable of solving big enough problems to be of practical use in a relatively short time. One of the main limitations is that it underestimates the importance of the transmission components. There are several possible ways of extending the presented results. One of them is to extend the results to the design of maritime hybrid powertrains where the number of energy storage and energy converter components is bigger than in a HEV. Another possible extension is to consider optimally fitted piecewise loss models in order to improve the accuracy of the approach. Piecewise affine models could also be exploited to extend the results of [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF] to no longer neglect the moment of inertia of the main components. The semidefinite programming convex formulation of a power-split HEV recently presented in [START_REF] Bonab | Fuel-optimal energy management strategy for a power-split powertrain via convex optimization[END_REF] might also be approximated by a LP formulation in order to optimally parametrize its main components. Having a LP formulation is more convenient than a SOCP or a SDP formulation due to the fact that LP is a more mature technology and as such its solvers are expected to be more widely available, to be faster, and to produce more reliable solutions.

Chapter 5

Conclusions

More than two decades after it began to be widely studied, hybrid vehicle technology is still a highly active field of research. Three important topics inside this field of research have been considered in this work:

Regarding EMS, a methodology based on the Pontryagin minimum principle, penalty functions, and an implicit Hamiltonian representation has been proposed in order to compute the offline EMS under mixed input-state constraints. The methodology is illustrated via two application examples. This approach might be extended to conceive a real-time EMS. The most straightforward way to do so is to conceive a model predictive control (MPC) approach [START_REF] Xie | Pontryagin's minimum principle based model predictive control of energy management for a plug-in hybrid electric bus[END_REF]. Nevertheless, an approach similar to ECMS would be more convenient as it requires much less computation resources to be implemented.

Regarding how to use the extra degrees-of-freedom in the powertrain beyond the EMS, a damping control law has been designed and implemented to mitigate the driveline oscillations. The control law achieves the objective of not interfering with the EMS in a significant way: it is found that it increases fuel consumption only in a +0.26% for a synthetic driving mission designed to have a high number of steep torque changes in a short period of time (an scenario unlikely to occur in real-life). This is achieved by designing the control law with a vanishing behavior whenever the system tends to steady-state. The dynamics used for its design are based on a P 0 parallel HEV and it includes (CAN bus induced) time-delays. A robustness analysis with respect to parametric uncertainty is presented. The control law is validated via experimental results achieving up to a 30% of oscillations reduction.

Future work on this topic will include a model of the clutch in the control problem formulation. By doing this, gearshifting phases could be taken into account, further increasing the usefulness of the control law. 
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 11 Figure 1.1: Four different vehicle architectures: (a) a conventional ICE arhitecture; (b) a parallel HEV architecture; (c) a parallel plug-in HEV architecture; (d) a fuel-cell HEV architecture. In these figures, T stands for transmission.
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 12 Figure 1.2: Diagram of the EMS operation.

F

  trac (N) the force provided by the vehicle powertrain, F rr = c rr • m • g • cos α (N) the rolling resistance of the wheels, F α = m • g • sin α (N) the force exerted on the vehicle, by the acceleration of gravity, due to the slope of the road, and

  Let us consider an EMS problem with 1 continuous state and X = 2000, 1 continuous input and U = 25, 1 discrete state and Ξ = 5, 1 discrete input and Θ = 3, and a driving mission of length N = 1000. Based on (2.8) and (2.9), the number of basic computations and the required number of variables will be estimated as N × X n × U m × |Ξ| × |Θ| and (m + m d ) × (N × X n × |Ξ|) + U m × |Θ|, respectively. Assuming that each basic operation takes 1 µ second and each variable requires 64 bits (or 8 bytes) of memory, the total computation time and the total memory requirements can be estimated as 750 seconds and 160 MB, respectively. If we add a continuous state, the computation time grows to 1.5 • 10 6 seconds or about 17 days. The memory goes up to 320 GB. If a total of three continuous sates are considered, the requirements reach 3•10 9 seconds (or about 95 years!) of computation time and 640 TB of memory! In other

Chapter 2 :

 2 State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 25 Let us consider a BVP that depends on a set of parameters ζ. The objective is to compute a solution for the parameter values ζ N using a BVP solver. This is a difficult task in general. Let us use Y i to denote the solution to the BVP for the set of parameters ζ i , with i ∈ {1, 2, . . . , N }. In the continuation procedure, a set of parameters ζ 0 is chosen such that Y 0 can be easily computed. Y 0 is used as an initial guess for Y 1 , where ζ 1 is chosen such that its values are between ζ 0 and ζ N but close enough to ζ 0 such that Y 0 is a good enough initial guess for Y 1 . At each iteration i, with i > 0, Y i is computed using the solution computed at the previous iteration, Y i-1 , as an initial guess. The values of ζ i smoothly approach those of the original problem at each iteration. The algorithm converges when Y N , the solution to the original BVP, is reached. The convergence and the computation time of the algorithm depend on the total number of iterations, N , and the update function applied to vary the parameters from ζ 0 to ζ N . The general continuation procedure described in the present paragraph is summarized in Algorithm 2.
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 21 Figure 2.1: Overview of Step a, Step b, and Step c.

Figure 2 . 2 :

 22 Figure 2.2: Diagram of the series-HEV powertrain.

Figure 2 . 3 :

 23 Figure 2.3: Worldwide Light-vehicle Test Cycle Class 3 (WLTC-C3) in m/s (left).Power demand signal w(t) for the WLTC-C3 (right).

Figure 2 . 4 :

 24 Figure 2.4: Open circuit voltage U as a function of x 1 derived from [1] (in blue) and the considered model U (x 1 ) = a x1 + b x1 x 1 (in red); plotted along the whole range of available data (left); plotted along the operating range (right). The parameters of U (x 1 ) are a x1 = 27.14 and b x1 = 653.85.

  the minimum, and Ī the maximum battery pack current (A).
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 25 Figure 2.5: 1/U (x 1 ) (blue line), its function extension f ext (x 1 | x1 ) (black line), the limit of the definition domain of 1/U (x 1 ): x 1 = -a x1 /b x1 (red dotted line), and x1 = x 1 = 0.1 (green dotted line).
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 226 Figure 2.6: Initial guess Y a generated in Step a for the WLTC-C3 driving cycle.
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 2728 Figure 2.7: Set of solutions computed in Step b for the low-temperature operation and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution of the continuation procedure. As the trajectories become darker, they approach the final boundary conditions. The final trajectory of the procedure is displayed in black.
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 29210 Figure 2.9: Set of solutions computed in Step c for the low-temperature operation and the WLTC-C3 driving cycle: the light gray trajectory denotes the first solution of the continuation procedure. As the trajectories become darker, they approach the constrained solution. The final trajectory of the procedure is displayed in black.

  15 K (25 • C), with T ∞ assumed constant along the entire driving cycle. At the beginning of the driving cycle x 2 = T ∞ holds. Moreover, in the warm operation, the dynamics of the battery temperature is considered to be equal to zero; on the assumption that a cooling system is in place to keep x 2 ≈ 298.15 K (25 • C) along the entire driving cycle. The offline-EMS is solved under warm operation conditions using the same vehicle parameters of the low-temperature operation. The fuel consumption for each operation is shown in
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 212 Figure 2.12: Dual Series HEV diagram.

x 1 (

 1 t). It is derived from an equivalent electric circuit model. It consists of a fixed open circuit voltage U in series with a fixed resistance R b . The state-of-charge, x 1 (t), has the following dynamics:

5 . 7 T 6 T

 576 The initial guess Y a is generated as described in Step a 2.4.4.3 using λ(0) = 3.258 • 10 7 3.622 • 10 and the initial penalty pondering coefficient ε a = 1•10 10 . The obtained initial solution Y a is depicted in Fig. 2.13. The supercapacitor voltage reaches negative values, illustrating that the initial guess does not necessarily have a physical meaning. The final conditions from Y a , x a 1 (t f ), x a 2 (t f ) T = 2.66 • 10 4 -1.89 • 10 , are applied at the beginning of Step b:

  This procedure is depicted in Fig.2.14. Its output Y b N , shown in Fig.2.15, is the solution to EMS (2.78) without constraints, since the penalty functions are negligible:ε b = ε a = 1 • 10 10 . The output of Step b, Y b N , is used in Step c: Y c 0 = Y b N .Step c is used to activate the penalty functions. The initial penalty pondering coefficient is set to the same value of Step b:ζ c 0 = ε c 0 = ε b = 1 • 10 10. The final penalty pondering coefficient is set to a small positive value: ε c N = 1 • 10 -9 . This procedure is depicted in Fig.2.16. The output of Step c, Y c N , is the solution to constrained EMS (2.78) and is shown in Fig. 2.17. It allows computing the total fuel consumption : 9.415 l/100km. Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 49
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 2214 Figure 2.13: Initial guess Y a generated in Step a for the WLTC-C3 driving cycle and the Dual Series HEV.
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 2215216217 Figure 2.15: Unconstrained solution to (2.78) for the WLTC-C3 driving cycle. The fuel consumption is 9.2935 l/100km. The red dashed lines at the top and bottom subfigures represent the bounds on the state-of-charge, the supercapacitor voltage, and the control inputs (2.78f), (2.78g), (2.78d), and (2.78e), respectively.
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 2218 Figure 2.18: Solution to (2.78) for operation and the WLTC-C3 driving cycle with DP (green solid line) and the proposed implicit Hamiltonian minimization (black solid line). The red dashed lines at the top and bottom subfigures represent the bounds on the state-of-charge, the supercapacitor voltage, and the control inputs (2.78f), (2.78g),(2.78d), and (2.78e), respectively.
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  damping controller for a parallel HEV with a gear-based transmission. The controller is based on discrete RST compensation. It includes communication delays induced by the CAN bus and it relies only on the hardware already present in the vehicle. More importantly, contrary to the current works found in the literature, in this work it is shown that the damping controller does not compromise the proper operation of the EMS. The effectiveness of the controller is shown in simulation and experimental results.
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 31 Figure 3.1: Pre-transmission (P 0) parallel HEV. Blue lines represent electric connections and black lines for mechanical connections.

3 . 2 Figure 3 . 2 :

 3232 Figure 3.2:Results from a physical experiment recorded at the LAMIH UMR CNRS 8201 using a prototype hybrid vehicle BELHYSYMA[2]. Top: estimated driveshaft torque. Bottom: driveline oscillations at the torsional speed. The torsional speed is defined as the difference between the speed at the transmission output and the speed at the wheels.

  3.3, with T ICE the ICE torque setpoint, Σ the vehicle driveline, and y(t) the vector of measured powertrain signals. The model derived for Σ will be detailed in the next section.
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 33 Figure 3.3: Configuration of the damping controller.

. 3 )

 3 Considering (3.2), (3.3), and ∆ θ = ωG -ωw :
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 34 Figure 3.4: Equivalent simplified driveline with flexible sideshaft.

  L{•} as the Laplace transform operator, U (s) = L{u(t)}, Y (s) = L{y(t)}, and Z(s) = L{z(t)}, the transfer function Y (s)/U (s) is given as follows:

Figure 3 . 5 :

 35 Figure 3.5: Open-loop Bode plot of (3.11) for the parameters of Table3.1 with the second gear engaged: R(i) = 8.89.

  ) Considering N = 3 and deg(A) = 3, then deg(B ) = 9 and the identities above can be satisfied by choosing deg(S) = deg(B ) -1 = 8, deg(R ) = deg(A ) -1 = 2, and deg(C) = deg(R) + deg(S) + 1 = 11:
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 36 Figure 3.6: RST controller structure.
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 3738 Figure 3.7: Closed-loop poles (red ×) and zeros (red •) for transfer function (3.17).
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 39 Figure 3.9: Torque setpoints T ice and T em = T em + u (top); driveshaft torsion ∆θ (middle up); driveshaft torsional speed ∆ θ (middle bottom); torsional control u(t) (bottom). The RMS values, (3.26), of the open and closed-loop response are 0.409 and 0.309, respectively. Second gear engaged: R(i)=8.89.
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 310 Figure 3.10: Nominal system gain G(z -1 ) (solid red line) and admissible region for G (z -1 ) to be stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB scale (bottom).
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 311 Figure 3.11: Nominal system gain G(z -1 ) (solid red line), set of open-loop system variations with m ∈ [0.5 m, 1.5 m] (blue area), and admissible region for G (z -1 ) to be stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB scale (bottom).

Figure 3 . 12 :

 312 Figure 3.12: Nominal system gain G(z -1 ) (solid red line), set of open-loop system variations with c ∈ [0.75 c, 1.25 c] (blue area), and admissible region for G (z -1 ) to be stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB scale (bottom).

1 .

 1 The set of open-loop system variations induced by a 25% of uncertainty in k remains in the admissible region, i.e., the set of systems is stabilizable by the proposed controller.Variations on the total stiffness have a noticeable effect on the open-loop system gain: they push the nominal gain to the sides.

3. 4 . 4

 44 Simultaneous uncertainty in m, c, and k At last, all three previous parameters will be considered simultaneously uncertain and bounded as follows: m ∈ [0.5 k, 1.5 m], c ∈ [0.75 c, 1.25 c], k ∈ [0.75 k, 1.25 k]. This is equivalent to ±50%, ±25%, and ±25% variations, respectively. The admissible region,(3.30), for G (z -1 ) is displayed in Fig.3.14. The set of open-loop system variations1 The driveline stiffness can change up to 25% over the total vehicle life cycle[START_REF] Fazal | Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle[END_REF].

Figure 3 .

 3 Figure 3.13: Nominal system gain G(z -1 ) (solid red line), set of open-loop system variations with k ∈ [0.75 k, 1.25 k] (blue area), and admissible region for G (z -1 ) to be stabilizable (green area) when in closed-loop with (3.27) in natural scale (top) and dB scale (bottom).
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 314 Figure 3.14: Nominal system gain G(z -1 ) (solid red line), set of open-loop system variations with m ∈ [0.5 m, 1.5 m], c ∈ [0.75 c, 1.25 c], and k ∈ [0.75 k, 1.25 k] (blue area), and admissible region for G (z -1 ) to be stabilizable (green area) when in closedloop with (3.27) in natural scale (top) and dB scale (bottom).
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 315 Figure 3.15: Top: synthetic driving mission. Bottom: Transmission output shaft torque T G required to follow the velocity profile under ideal stiffness.
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 54318 Figure 3.18: EMS (3.35) under feedback control law (3.27) and torsional dynamics. The total fuel consumption is 10.3791 l/100km. RMS value (3.26) equal to 0.356.
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 319 Figure 3.19: EMS (3.35) in open-loop with T 2 G as the torque reference. The total fuel consumption is 10.3757 l/100km. RMS value (3.26) equal to 0.356.
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 320 Figure 3.20: BELHYSYMA prototype [2]. The HEV used for experimental validation.
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 321 Figure 3.21: Top: ICE and EM torque setpoints. Middle: measured torsional speed ∆ θ. Bottom: total EM torque setpoint, T em , and the measured torque, Ťem . The RMS values, (3.26), are 0.44 and 0.634 with and without the damping controller: a 30.63% reduction. The experiment was carried out with the second gear engaged: R(i) = 8.89. The red and green backgrounds at the middle of the figure indicate when the damping controller remained off and on, respectively.
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 322 Figure 3.22: Top: ICE and EM torque setpoints. Middle: measured torsional speed ∆ θ. Bottom: total EM torque setpoint, T em , and the measured torque, Ťem . The RMS values, (3.26), are 0.296 and 0.418 with and without the damping controller: a 29.33% reduction. The experiment was carried out with the first gear engaged: R(i) = 16.45. The red and green backgrounds at the middle of the figure indicate when the damping controller remained off and on, respectively.
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 323 Figure 3.23: Left: experimental results with damping controller as designed in Section 3.3, (3.27). Right: experimental results with the damping controller modified such that the low-pass filter is removed from its structure. The experiments were carried out with the second gear engaged: R(i) = 8.89. The red and green backgrounds at the middle of the figure indicate when the damping controller remained off and on, respectively.
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 41 Figure 4.1: Contour curves for the efficiency map of an ICE.

3 .

 3 The approximation fails to predict an efficiency peak after P ice,out = 60 (kW). The convex region used to model the ICE losses is shown in Fig.4.4. 
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 42 Figure 4.2: Optimal P ice, inp -P ice, out curve; its affine approximation, (4.2), with a ICE = 0.3264 (-), b ICE = -1.2364 • 10 3 (W); and the ideal curve.
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 43 Figure 4.3: Optimal curve P ice, inp -η * and its affine approximation.
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 44 Figure 4.4: Affine approximation (4.2) (blue line); convex region described by (4.2)(red dots); the optimal curve P ice, inp -P ice, out (dashed lines).
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 45 Figure 4.5: Contour curves for the efficiency map of an EM (η EM (T EM , ω EM )).
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 46 Figure 4.6: Optimal P EM, inp -P EM, out curve for P EM, inp ≥ 0; its affine approximation, (4.5), with a EM = 0.892, b EM = -46.7012; and the ideal curve.

  .13) with a EM = -a EM , b EM = 1 -b EM , and c EM = -c EM . The expression above can be relaxed to an inequality in order to include the EM model in an SOCP. Alternatively, piecewise affine functions can be used to approximate the original quadratic convex function with an arbitrary accuracy, see red solid line in Fig. 4.8a. The convex region contained below the affine piecewise model is given as follows:

Figure 4 . 8 :

 48 Figure 4.8: A: Minimal loss (4.11) (blue dashed line), quadratic approximation (4.13) (green solid line), and piecewise affine approximation with n = 4 affine models (red solid line). B: Piecewise model (4.9) (black solid curve); convex region described by (4.14) with n = 4 (red dots); the lossless curve (blue dashed line).

  )as it is shown in Fig.4.10 (right). Using the piecewise affine functions, it is possible to approximate the original quadratic convex region with arbitrary accuracy, see Fig.4.11.

Figure 4 . 9 :

 49 Figure 4.9: Diagram of the zero-order equivalent circuit model of the battery pack.

Figure 4 . 10 :

 410 Figure 4.10: Quadratic (left) and piecewise (right) input-output models for the battery pack (black lines); the convex regions (red dots); the lossless input-output curve (dashed blue line).

  n = 2: maximum loss difference equal to 1800 W, maximum relative error equal to 26.633 %. n = 4 : maximum loss difference equal to 449.28 W, maximum relative error equal to 11.576 %. n = 8 : maximum loss difference equal to 112.32 W, maximum relative error equal to 5.546 %.

Figure 4 . 11 :

 411 Figure 4.11: Piecewise approximations for the battery loss model.

  .27m) for all k ∈ {1, 2, . . . , N f -1}, n = 4, j = {1, 2, 3, 4}, s ⊆ j = {3}, m j ∈ {ice, em, batt, T},m s ∈ {batt}, t ∈ {inp, out}, with ∆t = 1, A batt = 0, B batt,inp = 0, B batt,out = -1/Q • E. Remark 4.1. An idea of the computational complexity of (4.27) can be obtained from the number of variables and constraints in the problem formulation; it has (2n + S)•(N f -1)

  (c) Varying total moment of inertia as function of a rule-based gearshifting strategy: Consider the gearshifting strategy shown in Fig. 4.14. It is a ruled-based Chapter 4: Powertrain system architecture design 102

Chapter 4 :Figure 4 .

 44 Figure 4.12: Comparison between the DP speed-dependent approach and the LP speed-independent approach. I v (k) has been fixed as(4.35). The final state-of-energy is identical for both methods.

Figure 4 . 14 :

 414 Figure 4.14: Top: velocity profile; bottom: rule-based gearshifting strategy.

Figure 4 . 15 :

 415 Figure 4.15: Comparison between the DP speed-dependent approach and the LP speed-independent approach subject to the gearshifting strategy shown in Fig.4.14.The final state-of-energy is identical for both methods

( 2 )

 2 T,out = z T .Chapter 4: Powertrain system architecture design 107 Defining R

  .37) and (4.38) can be expressed in the following more compact form: R I r = I m z (4.39)

( 1 )

 1 m j ,t = 1.Remark 4.2. For an EMS with N s source/sink elements, N T transmission elements and r nodes, linearization constraints (4.40) add (N s + 2 • N T ) • r • N f continuous variables to the convex problem formulation. For instance, for the simple parallel topology studied in Subsection Model validation, N s = 2, N T = 2, r = 2 and N f = 1100. Therefore,

  4.16), since all the Chapter 4: Powertrain system architecture design 110 connections between the components are done through the nodes of the network. In this bipartite graph, the transmission elements are represented by two vertexes (input and output power connection) and the sinks/sources are represented by only one vertex (input or output power connection). Representing the topology as a directed graph, we get the following adjacency matrix:

  .45) 

Figure 4 . 16 :

 416 Figure 4.16: Bipartite arrangement of a pre-transmission parallel HEV represented as a power network.

Figure 4 . 17 :

 417 Figure 4.17: Topology design corresponding to simultaneous MILP (4.46).

YChapter 4 :

 4 m j ,out (k) -Y m j ,inp (k) + p l=1 P w l (k) • R w l = 0, (4.46k) x batt (k + 1) = x batt (k) + ∆t • B batt,inp P batt,inp (k),(4.46l)x min batt (k) ≤ x batt (k) ≤ x max batt (Powertrain system architecture design 112 R(R m j ,t ) I r = I m z, (4.46o)

Figure 4 . 18 :

 418 Figure 4.18: Topology design computed as solution to simultaneous MILP (4.46).

Figure 4 . 19 :

 419 Figure 4.19: EMS computed solution to (4.46).

. 20 :

 20 it includes 3 generator sets (thus, 3 ICEs and 3 EM used as generators), 3 EMs used as traction motors/generators, 1 storage system, and 2 power demand signals, resulting in a more complex power network than what can be found in typical HEVs.

Figure 4 . 20 :

 420 Figure 4.20: Example of a maritime hybrid powertrain [3].

4. 5 . 1 2 ,

 512 Possible extension 1: optimal convex modelsUsing affine piecewise functions one can go beyond approximating a quadratic loss model with arbitrary accuracy. Given a set of d data points P (i) inp , L (i) representing the original nonlinear and nonconvex loss model, we can compute the optimal affine piecewise approximation as a quadratic programming problem[START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]:min L -L ∈ {1, 2, . . . , d},(4.47b)where the affine models are recovered as a i = g i and b i = L-g i •P (i) inp , i ∈ {1, 2, . . . , d-1}. Considering the EM minimal loss data from Fig. 4.14, the piecewise convex model computed via (4.47a) is shown in Fig. 4.21. The model shown there is a more accurate representation of the original data points than the quadratic model. In this approach the number of piecewise affine functions of the convex model cannot be chosen beforehand and it could go up to d -1. Alternatively, we can fix the number of piecewise models

Figure 4 . 21 :-L 2 ,

 4212 Figure 4.21: Optimal affine piecewise convex model computed from d data points P (i) inp , L (i) with d -1 linear functions (left) and with q = 4 models (right), computed via (4.47a) and (4.48), respectively.

Chapter 4 :Figure 4 . 22 :

 4422 Figure 4.22: Nonlinear convex moment of inertia scale [4] and its piecewise affine approximation with 4 line segments.

Figure B. 4 :

 4 Figure B.4: Comparison between EMS for architecture (1) and architecture (2) with an optimized gearshifting.
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  |Ξ| and |Θ| are usually small with respect to |X| and |U |. For Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian minimization approach 15 this reason, we will focus on the effect that continuous states and inputs have on the computation complexity. Assuming a grid with X values for each of the n continuous states and a grid with U values for each of the m continuous inputs, we have |X| = X n

	11.	end for
	12. end for
	lyzing this algorithm (pseudocode) and using |.| to define the cardinality of a set, it can
	be inferred that its computational complexity is given by O (N × |X| × |Ξ| × |U | × |Θ|):
	it grows linearly with respect to the length of the driving mission and the cardinality
	of each set. However,

  real numbers, and Θ ctg (x, ξ, k),which contains N × X n × |Ξ| m d -length integer vectors or m d × N × X n × |Ξ| integer numbers, thus:

Table 2

 2 

	.1.

  First, the initial guess Y a is generated as described in Step a using λ(0) = 1.4 • 10 5 1.45 • 10 5 T and the initial penalty pondering coefficient ε a = 1 • 10 12 . The obtained initial solution Y a is depicted in Fig. 2.6. The state-of-energy reaches negative values, showing that the initial guess does not necessarily have a physical meaning.

	Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian
	minimization approach		36
	BVP (2.56) using a collocation solver [70] and the numerical procedure and function
	extension described in Section 2.4.4.		
	T	T	
	The final conditions from Y a , x a 1 (t f ), λ a 2 (t f )	= -7.3, 5.32 • 10 6	, are applied at
	the beginning of Step b:		

Considering

the WLTC-C3 driving cycle, the offline-EMS defined in (2.52) is solved via the equivalent

Table 2 .

 2 This procedure is depicted in Fig. 2.7. Its output Y b N , shown in Fig. 2.8, is the solution to EMS (2.52) without constraints, since the penalty functions are negligible: ε b = ε a = 1 • 10 12 .

	Parameter Value	Units
	M eq	2166	kg
	A s	1.98	m 2
	c d	0.32	-
	c r	0.01	-
	γ	4.2	-
	r w	0.26	m
	g	9.81	kg•m/s 2
	J tm	0.045	kg•m 2
	I	-40	A
	Ī	40	A
	a x 1	653.85	V
	b x 1	27.14	V
	Q	1800	A•s
	h	4.343	W/K
	C b	142.56	kJ/K
	a	0.2924	g/s
	b	0.0834	g kW•s
	c	0.0055	g (kW) 2 •s
	d	1	g (kW) 2 •s
	ū	17.5	kW

2: Parameters considered in the numerical experiments of application 1.

Table 2 .

 2 3. The low-temperature operation increases the fuel consumption with respect to the ideal warm operation in a 4.01%.

	Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian
	minimization approach		40
	Operation	Fuel consumption	Difference
		(WLTC-C3)	
	Warm	9.47 l/100km	-
	Low-temperature	9.85 l/100km	+4.01 %

Table 2 . 3 :

 23 Fuel consumption results for each operating condition.

Table 2

 2 

	Method	Fuel consumption	Computation time (hours)
		(WLTC-C3)	
	DP	9.81 l/100km (100%)	17.186 (≈4600%)
	Implicit Hamiltonian minimization 9.85 l/100km (100.4%)	0.366 (100%)

.2. The results of the DP solution to

(2.52) 

are displayed in Fig.

2

.11 along with the solution computed with the proposed approach. The fuel consumption and computation times are compared in Table

2

.4. The proposed approach is 46 times faster than DP but obtains +0.4% more fuel consumption as well. The small difference in fuel consumption can be due to the limited accuracy that DP posses as a consequence of the quantization of all variables and the Euler integration scheme in which it relies on.

Table 2 .

 2 Solution to(2.52) for the low-temperature operation and the WLTC-C3 driving cycle with DP (green solid line) and the proposed implicit Hamiltonian minimization (black solid line). The red dashed lines at the top and bottom subfigures represent the bounds on the state-of-energy and the control input, (2.52e) and (2.52d), respectively.

	4: Fuel consumption and computation time for DP and the proposed implicit
	Hamiltonian minimization under low-temperature conditions. The algorithms were im-
	plemented in a workstation with 64 GB of RAM and a processor Intel(R) Core(TM)
	i7-9800X CPU @3.80GHz with 8 cores.

  and φ 3 = (1/x 2 ) 2 are meant to scale Pu 1 , Pu 2 , and Px 2 down to the range of values of P x 1 .

	Chapter 2: State-constrained energy management for HEVs: an implicit Hamiltonian
	minimization approach	47
	2.6.3.2 Implicit Hamiltonian minimization	
	Considering optimality conditions (2.33c)-(2.33d) and cost functional, (2.78a) can be
	solved via the following BVP:	

Table 2 . 5 :

 25 Parameters considered in the numerical experiments of application 2.

		98	m 2
	c d	0.32	-
	c r	0.01	-
	γ	4.2	-
	r w	0.26	m
	g	9.81	kg•m/s 2
	J tm	0.045	kg•m 2
	V bus	30	V
	P b	-22656	W
	Pb	19584	W
	U	528	V
	Q	900	A•s
	R b	0.96	Ω
	x 1	0	%
	x1	100	%
	R sc	0.0258	Ω
	C	27.27	F
	x 2	55	V
	x2	308	V
	a	0.2924	g/s
	b	0.0834	g kW•s
	c	0.0055	g (kW) 2 •s
	ū1	17.5	kW
	u 2	-500	A
	ū2	500	A

Table 2 .

 2 

	Method	Fuel consumption	Computation time
		(WLTC-C3)	(hours)
	DP	9.411 l/100km (100%)	7.286 (≈3500%)
	Implicit Hamiltonian minimization 9.415 l/100km (100.043%)	0.206 (100%)

[START_REF] Conor | Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone gps data[END_REF]

. The proposed approach is 35 times faster than DP but obtains +0.043% more fuel consumption. The small difference in fuel consumption can be due to the limited accuracy that DP posses as a consequence of the quantization of all variables and the Euler integration scheme in which it relies on.

Table 2 . 6 :

 26 Fuel consumption and computation time for DP and the proposed implicit Hamiltonian minimization for the dual series HEV application. The algorithms were implemented in a workstation with 64 GB of RAM and a processor Intel(R) Core(TM) i7-9800X CPU @3.80GHz with 8 cores.
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	Symbol	Value	Units
	r wheel	0.3108	(m)
	J ice	0.0616	(kg•m 2 )
	J em	0.0045	(kg•m 2 )
	c	23.53	(N•m•s/rad)
	k	2.863•10 3	(N•m/rad)
	ρ	1	(-)
	R(i)	{16.45, 8.89, 6.15, 4.54, 3.55} (-)
	m	1742	(kg)
	c rr	0.0068	(-)
	A f	2.3185	(m 2 )
	c air	0.314	(-)
	T s	20	(ms)

Table 3 .

 3 

1: Nominal driveline model parameters.

Table 3 . 2 :

 32 Summary of the simulation results carried out to study the energetic effect of the damping controller. All the simulations have the same initial and final state-ofcharge.

Table 4

 4 .1), is build and each possible architecture is defined as an undirected graph (each component is represented by a node and each connection is represented by an edge). The total number of possible undirected graphs (architectures) is equal to 5.7 • 10 45 . However, this number includes architectures that lack any practical meaning or that are simply not hybrid powertrains. The problem of generating feasible hybrid topologies under this undirected graph formulation is solved by imposing 57 constraints implemented via constraint logic programming (CLP). A total of 4779 are obtained in this manner. By means of automatic model generation, optimization over the set of feasible architectures is carried out via nonlinear optimization algorithms, such as, SQP, Particle Swarm Optimization, and

	Genetic Algorithms [106].		
	Number	Name	Number of instances
	1	ICE	1
	2	Electric machine	2
	3	Gearbox	1
	4	Planetary gear set	2
	5	Differential/wheels	1
	6	Clutch	3
	7	Brake	3
	8		

Table 4 . 2 :

 42 Library of components considered in[START_REF] Kabalan | Systematic methodology for generation and design of hybrid vehicle powertrains[END_REF].

		Name	Number of instances
	1	ICE	1
	2	Electric machine	2
	3	Final drive	1
	4	Shaft	4
	5	Clutch	3
	6	Synchronizer unit	3

  EM, inp -P EM, out relationship can be approximated on the interval P + EM, out = 0, P max EM, inp with an affine function as follows:P EM, out = η * (P EM,out ) • P EM,inp ≈ a EM P EM, inp + b EM . (4.5)For the EM studied above, the measured optimal efficiency relation P EM, inp -P EM, out is shown in figure 4.6. The affine approximation of the optimal P EM, inp -P EM, out , (4.5), curve is shown in the same figure. More details about the approximation are noticeable if we look at the P EM, inp -η * curve: from the efficiency map, described as follows: η * (P EM, out ) ≈ a EM P EM, inp + b EM P EM, inp = a EM + b EM /P EM, inp .

	This is solve for several values of P EM, out ∈ P min EM, out , P max EM, out .	The opti-
	mal P (4.6)

  inp + b EM , P EM, inp ≥ 0 1 a EM P EM, inp + b EM /a EM P EM, inp < 0 Optimal curve P EM, inp -η * and its affine approximation for P EM, inp ≥ 0. affine approximation (4.5) on P EM, inp ∈ P + EM, inp is replaced by a linear approximation: P EM, out = η * (P EM, out ) • P EM, inp ≈ a EM P EM, inp , (4.8) a piecewise linear approximation can be computed for the whole range of P EM, inp as EM,inp -P EM,out = P EM,inp -η * (P EM,out ) • P EM,inp . (4.10)

	(4.7) Piecewise affine model (4.7) has a discontinuity at P EM, inp = 0 and is not convex. If 5 10 15 20 25 30 35 P EM (kW) 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 Optimal efficiency Affine approximation P EM, out =    a EM P EM, inp , P EM, inp ≥ 0 1 a EM P EM, inp P EM, inp < 0 (4.9) (4.9) is convex. Therefore, it can be used in a convex optimization approach with inequality constraint relaxations. Nevertheless, a more accurate model is sought. Let us consider the minimum loss curve, computed as: Figure 4.7: follows: Loss * EM = P

  inp -η * (P EM,out )•P EM,inp ≈ a EM •P 2 EM,inp +b EM •P EM,inp +c EM , (4.11)

  P batt,out ≤ a i P batt,inp + b i , i ∈ {1, 2, . . . , n}, (4.17

	Chapter 4: Powertrain system architecture design	92
	The convex region enclosed by		
	P batt,out ≤ P batt,inp -	R E 2 P 2 batt,inp ,	(4.16)
	is displayed on Fig. 4.10 (left). This quadratic convex region is approximated by they
	region below a set of n piecewise affine functions,
		2 batt + P batt,out = 0,
	-P batt,inp +	R E 2 P 2 batt,inp + P batt,inp = 0,
	thus:		
	P batt,out = P batt,inp -	R E 2 P 2 batt,inp ,	(4.15)

  ) and replace this expression in the rest of the problem formulation we can simplify the problem to one having one continuous input variable T ice (k), one discrete input variable u GB (k), one continuous state x batt (k), and one discrete state i GB (k). Additionally,

	Chapter 4: Powertrain system architecture design	101
	quantization constraints should be added to the continuous input and state variables:

Table 4 . 3 :

 43 Fuel consumption comparison for the convex modeling validation.

	Case Approach	Fuel consumption	Units	Computation time (s)
	(a)	LP speed-independent	4.181	l/100km	2.295
		DP speed-dependent	4.423	l/100km	4.680•10 3
	(b)	LP speed-independent	3.121	l/100km	1.866
		DP speed-dependent	3.294	l/100km	4.817•10 3
	(c)	LP speed-independent	3.472	l/100km	1.659
		DP speed-dependent	6.356	l/100km	2.410•10 3

  .36) with r the total number of nodes, R m j ,t , R w 1 ∈ R r×1 , p the total number of power demand signals in the network, and where the i -th entry of R m j ,t (respectively R w 1 ) is equal to 1 if and only if P m j ,t (respectively P w l ) is present at the i -th node and zero otherwise; the rest of its entries are equal to zero. For the parallel HEV studied in Comparison between the DP speed-dependent approach and the LP speed-independent approach. A varying total moment of inertia, I v (k), is considered and computed by optimizing gearshifting. The final state-of-energy is identical for both methods.
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	Figure 4.13:									
	Subsection Model Validation 4.3.2, the network only has 3 nodes, r = 3, and one power

  • P em 1 ,inp (k) + b em 1 ,i , i ∈ {1, 2, . . . , 16}(4.46c)P em 2 ,out (k) ≤ a em 2 ,i • P em 2 ,inp (k) + b em 2 ,i , i ∈ {1, 2, . . . , 16}(4.46d)P batt,out (k) ≤ a batt,i • P batt,inp (k) + b batt,i , i ∈ {1, 2, . . . , 16} (4.46e) P T,out (k) ≤ a T,i • P T,inp (k) + b T,i , ,out ≤ P em 1 ,out (k) ≤ P max em 1 ,out ,(4.46h)P min em 2 ,out ≤ P em 2 ,out (k) ≤ P max em 2 ,out , (4.46i)

	i ∈ {1, 2}	(4.46f)
	P min ice,out ≤ P ice,out (k) ≤ P max ice,out ,	(4.46g)
	P min em 1	

P min

batt,out ≤ P batt,out (k) ≤ P max batt,out , (4.46j)

Table 4 . 4 :

 44 Fuel consumption and computation time for simultaneous MILP approach (4.46).

  Since in this case f (P inp ) = a i • P inp + b i , i ∈ {1, 2, . . . , q}:Pout = a i • P inp + s • b i , i ∈ {1, 2, . . . , q},(4.53)

	Pout = s • f	Pinp s	,		(4.51)
	Pout ∈ s • P min out , P max out	.	(4.52)
	Pout ∈ s • P min out , P max out	.			(4.54)

Pout ∈ s • P min out , P max out ,

(4.50)

with Pinp = s • P inp , which yields:

Up to its 2.2 version, CVX supports four solvers: SeDuMi, SDPT3, GUROBI, and MOSEK.

Throughout the rest of the chapter, an underline ( ) and an overline ( ¯) are used to denote minimum and maximum value, respectively.

Ideal case

Solving EMS (3.35) under ideal stiffness for x 0 = x f = 0.5 yields a total fuel consumption of 10.3576 l/100km and a state variation of x(T ) -x(0) = -6.32 • 10 -4 %. The state-ofcharge trajectory and the power split of this solution are shown in Fig. 3.16. At last, regarding how to optimally conceive a powertrain architecture, a simultaneous approach for architecture design and EMS of HEVs is presented. The problem formulation is based on MILP. The main assumption taken is that despite the NP-hard nature of MILP, cutting-edge solvers are capable of solving big enough problems to be of practical use in a relatively short period of time. One of the main limitations of the approach is that it underestimates the importance of the transmission components. There are several possible ways of extending the presented results. One of them is to extend the results to the design of maritime hybrid powertrains, where the number of energy storage and energy converter components is bigger than in a HEV. Another possible extension is to consider optimally fitted piecewise loss models in order to improve the accuracy of the approach. Piecewise affine models could also be exploited to extend the results of [START_REF] Pourabdollah | Optimal sizing of a series PHEV: Comparison between convex optimization and particle swarm optimization[END_REF][START_REF] Murgovski | Component sizing of a plug-in hybrid electric powertrain via convex optimization[END_REF] to no longer neglect the moment of inertia of the main components.

The semidefinite programming (SDP) convex formulation of a power-split HEV recently presented in [START_REF] Bonab | Fuel-optimal energy management strategy for a power-split powertrain via convex optimization[END_REF] might also be approximated by a LP formulation in order to include optimal parametrization of its main components. Having a LP formulation is more convenient than a SOCP or a SDP formulation due to the fact that LP is a more mature technology and as such its solvers are expected to be more widely available, faster, and produce more reliable solutions.

Appendix A A.1 Function extension with multiple variables

Let us consider

, where X i is a convex region and f i is C ∞ . The Taylor series expansion of f i around of x is defined as follows:

With ∇f i and ∇ 2 f i defined as the gradient and Hessian matrix of f i , respectively. Given

x ∈ ∂X i , and y ∈ X, the domain of f i is extended outside X i by the following function:

where x is defined as the closest point on the boundary of X i , ∂X i , with respect to y.

A.2 Piecewise polynomial approximation of the the power demand and the On/Off signal command

The time derivatives of the power demand, ẇ(t), and the On/Off command of the APU, θ(t), are necessary to compute the optimal control dynamics u * (t), see (2.32). Since these signals are not available, a monotone piecewise cubic interpolation [START_REF] Fritsch | Monotone piecewise cubic interpolation[END_REF] is applied to w(t) and ϑ(t) in order to approximate them. The interpolating polynomials of w(t)

and ϑ(t), denoted as p w (t) and p ϑ (t), respectively, are guaranteed to be at least once continuously differential. The difference between the signals and its piecewise cubic approximations can be arbitrarily reduced by increasing the number of interpolating points at the cost of a greater computational effort.

The computation of the interpolating polynomials is carried out using a predefined Matlab function: pchip. Once p w (t) and p ϑ (t) have been computed, ṗw (t) and ṗϑ (t) are used to approximate ẇ(t) and θ(t), respectively.

A.3 Efficiency and BSFC maps

The APU model computed using a static efficiency map for the generator and a BSFC map for the engine [START_REF] Murgovski | Convex optimization of charging infrastructure design and component sizing of a plug-in series hev powertrain[END_REF][START_REF] Chen | A novel energy management method for series plug-in hybrid electric vehicles[END_REF] 

)

)

)

T gen (ω gen (t)) ≥ T gen (t) ≥ Tgen (ω gen (t)), (A.9)

with T gen and ω gen the torque and speed of the generator, respectively, and ρ the gear ratio between the ICE and the generator. In both cases it can be concluded that the post-transmission architecture is the best topology. However, when a sub-optimal EMS is considered, the difference in total fuel consumption is less than 0.5 %, whereas, when a optimal EMS is used, the difference goes up to 26.881 %. Therefore, using suboptimals EMS could lead to the designer 123 underestimating the true potential of the optimal architecture with respect to the rest of the candidates.