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Abstracts
Transport quantique des trous dans une monocouche de WSe2 sous champ
magnétique intense.

Les dichalcogénures des métaux de transition sont constitués d’un empilement de
monocouches atomiques liées entre elles par des liaisons faibles de type Van der
Waals. Lorsqu’une monocouche de ce matériau est isolée, la symétrie d’inversion
du cristal est brisée et la présence d’un couplage spin-orbite fort introduit une levée
de dégénérescence des états électroniques ayant des spins différents. Le facteur de
Landé effectif (g?) qui intervient dans l’énergie Zeeman est un paramètre qui car-
actérise, entre autres, la structure de bande du matériau. Il est exceptionnellement
grand dans le système WSe2 en raison de la présence de tungstène et des interactions
électroniques. Sa détermination au travers des mesures de résistance électrique sous
champ magnétique intense est l’objet de cette thèse.
Dans un premier temps, des monocouches de WSe2 sont produites par l’exfoliation
mécanique du matériau massif et leur adressage électrique à l’échelle micrométrique
est réalisé par des procédés technologiques de salle blanche impliquant la lithographie
électronique. La magnétorésistance des échantillons produits est ensuite étudiée dans
des conditions extrêmes de basse température et de champ magnétique intense. La
densité de porteur de charges, des trous dans le cas cette thèse, peut être ajustée
in-situ par effet de champ.
Dans les monocouches de WSe2, la quantification de l’énergie des niveaux de Lan-
dau modifiée par l’effet Zeeman est révélée par la présence d’oscillations complexes
de la magnéto-résistance (oscillations de Shubnikov-de Haas). Le développement
d’un modèle théorique dédié, où le désordre est pris en compte par un élargissement
Gaussien des niveaux de Landau, est nécessaire afin d’interpréter quantitativement
les résultats expérimentaux. Il simule l’évolution des composantes du tenseur de
résistivité où les paramètres d’ajustement sont la mobilité électronique, l’énergie des
bords de mobilité des niveaux de Landau ainsi que le facteur de Landé effectif.
L’ajustement théorique aux résultats expérimentaux permet d’extraire l’évolution
de g? des trous en fonction de leur densité dans une gamme variant de 5.1012 à
7.5.1012 cm−2, qui s’inscrit dans la continuité des résultats issus de la littérature.
Au-délà des approches novatrices sur le plan des conditions expérimentales et de
modélisation, cette étude confirme l’importance des interactions électroniques dans
la compréhension des propriétés électroniques de ce matériau.

Mots clés: Champ magnétique intense, métaux de dichalcogénure de tran-
sition, monocouche, brisure de symetrie, transport quantique, effet de
Shubnikov-de Haas, niveaux de Landau, énergie cyclotron, énergie Zee-
man, facteur de landé effectif.
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Abstracts

Quantum transport of holes in WSe2 monolayers under high magnetic field.

Transition metal dichalcogenides are made up of a stack of atomic monolayers bound
together by weak Van der Waals interactions. When a single layer of this material
is isolated, the crystal inversion symmetry is broken, leading to the degeneracy lift-
ing of the electronic states having different spins in the presence of strong spin-orbit
coupling. The effective Landé factor (g?) which arises in the Zeeman energy is a
parameter which characterizes, among others, the band-structure of the material. It
is exceptionally large in WSe2 monolayers thanks to the presence of heavy tungsten
atoms as well as electronic interactions. Its experimental determination through elec-
trical resistance measurements under intense magnetic field constitutes the objective
of this thesis.
First, WSe2 monolayers are produced by mechanical exfoliation of the mother mate-
rial and their electrical addressing at the micrometric scale is achieved by clean room
processes involving electron-beam lithography. Their magneto-resistance is studied
under extreme conditions of low temperature and high magnetic field. The charge
carrier density, holes in the thesis, can be varied in situ thanks to field effect.
In WSe2 monolayers, the quantization of the Landau level energy modified by the
Zeeman effect is revealed by the presence of complex magneto-resistance oscillations
(Shubnikov-de Haas oscillations). A dedicated theoretical model, where disorder is
introduced through a Gaussian broadening of the Landau levels, is necessary for a
quantitative understanding of the experimental results. The components of the resis-
tivity tensor are simulated by this model where the main fitting parameters are the
electronic mobility, the mobility edge of the Landau levels and the effective Landé
factor. The fitting of the experimental results allows the extraction of g? for a hole
density ranging from 5.1012 to 7.5.1012 cm−2, which follows the trend reported in
the literature. Beyond the innovative approaches in terms of experimental conditions
and modelling, this study confirms the importance of electronic interactions in un-
derstanding the electronic properties of this material.

Key words: High magnetic field, Transition metal dichalcogenide, mono-
layer, symmetry breaking, quantum transport, Shubnikov-de Haas effect,
Landau levels, cyclotron energy, Zeeman energy, effective landé factor
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2DEG two dimensional electron gas

2DHG two dimensional hole gas

FET Field effect transistor
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General introduction

The theory of quantum mechanics describes elementary particles such as electrons
with complex wave-functions. Similar to optical or mechanical waves, the con-

finement of electrons into one or several dimensions results in standing wave-functions
whose associated quantized energy spectrum provides the systems with properties
that are different from those of the bulk material from which they originate. The
rapid development of techniques for manufacturing, observing, handling and charac-
terizing confined systems from the middle of the 20th century opened a broad research
field aiming at exploring these new properties of matter with reduced dimensions.
One of the most interesting and studied systems is certainly the two-dimensional gas
of charged particles. In this system, electrons (or holes) can evolve freely within
a plane, while their confinement in the third dimension quantifies their energy into
discrete energy levels. Historically, the first 2D electronic systems were fabricated in
MOS-FET hetero-junctions and at the interface of GaAs/AlGaAs a few years laterby
taking advantage of the built-in electrostatic potential well. At low temperature, the
electronic properties of two-dimensional systems differ from their bulk counterparts,
but the most surprising effect arises with the application of a sufficiently intense mag-
netic field perpendicular to the confinement plane. The in-plane energy spectrum of
the electrons is quantized into Landau levels and gives rise to remarkable transport
properties. When the match between the electron density and the intensity of the
magnetic field is favorable, the electrical resistance of the system is exactly zero while
the Hall resistance is equal to integer fractions of the resistance quantum h/q2, defined
only via the fundamental elementary charge q and the Planck constant h. This effect,
named “Quantum Hall effect”, was celebrated by the 1985 Nobel prize attributed to
Klaus von Klitzing [1]. Shortly afterwards, the physics of two-dimensional electron
systems was once again honored through the discovery of the fractional quantum
Hall effect, whose authors Horst Störmer, Daniel Tsui and Robert B. Laughlin were
also awarded the Nobel Prize in 1998 [2]. The interest aroused by these discover-
ies was no less linked to the theoretical interpretation of quantum transport than
to the measurement of a fundamental quantity (the Hall resistance) independent of
the microscopic details and the chemical nature of the host materials. The physics
of two-dimensional electronic systems was again in the spotlight in the early 2000s
with the discovery of graphene [3] by K. Novoselov and A. Geim, a monoatomic layer
of carbon atoms arranged in a hexagonal lattice. This major discovery marked the
marriage of nano-sciences and the physics of two-dimensional electron gases. Indeed,
for the first time, charge carriers were no longer confined in a potential well resulting
from semiconductor engineering, but in an object whose thickness reaches the ulti-
mate limit of a single atom. Graphene was revolutionary in many ways: on one hand
it changed the paradigm according to which purely 2D materials could not be stable
at room temperature, and on the other hand it brought a revival of interest to the
quantum Hall effect in which the values of the Hall resistance (still an integer fraction
of the resistance quantum) are intimately linked to the nature of the quasi-particles
ultimately defined by the atomic lattice of the material. But even beyond the major
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General introduction

theoretical advances of which it was the precursor (topological matter crowned by the
Nobel Prize of 2016 [4]), its success lies above all in the simplicity of its manufacture,
requiring only a roll of adhesive tape and eventually the technologies of electrical
addressing already in place for conventional semiconductors. This manufacturing
technique, named micro-mechanical exfoliation depicted in figure 1-a), is actually
suitable for all materials made up of a stack of mono-atomic 2D layers interacting
with each other via weak Van der Waals interactions. Their unprecedented transport
and optical properties opened the exploration of many research routes where new
degrees of freedom involving the spin or the valley index in addition to the charge
could be exploited for future applications (see figure 1-b). The materials belonging
to the family of transition metal dichacogenides are at the forefront of these research
perspectives.

Figure 1: Left: Artistic view of micro-mechanical exfoliation of a mono-atomic layer of
graphene using an adhesive tape. Right: Range of two-dimensional materials properties for
potential applications.

Contrary to graphene, the transition metal dichalcogenides have a bandgap sepa-
rating the valence from the conduction bands. Corresponding to visible light, the
bandgap is indirect in bulk materials and turns into a direct one when the material is
thinned down to a monolayer. Beyond the evident opto-electronic applications, the
large spin-orbit coupling originating from the heavy metallic atoms and the broken
inversion symmetry of the cristallographic structure make transition metal dichaloco-
genides monolayers a fertile playground for fundamental research. Indeed, the elec-
tronic properties involves both the spin and the valley degrees of freedom which are

x



strongly coupled by the spin-orbit interaction. This dissertation is focused on the fun-
damental electronic properties of monolayer tungsten diselenide (WSe2), a member
of the transition metal dichalcogenides family with the largest spin-orbit interaction.
We make use of extreme conditions of intense magnetic field and low temperature to
quantize the energy spectrum into discrete energy levels, which affect in turn the mea-
sured transport properties such as the electrical resistance. The magneto-resistance
fingerprints are analyzed to ultimately reveal the ground state of the system, providing
experimental evidences for the theoretical models. In particular, we extracted the ex-
perimental values of the effective Landé factor for hole quasi-particles (valence band)
and its enhancement beyond its expected value (band-structure calculations) due to
electron-electron interactions. Besides, this work constitutes the first achievement of
quantum transport measurements of WSe2 monolayers using a pulsed magnetic field.
The use of very intense magnetic field (55 T) allows reaching the quantum transport
regime even for samples with moderate electronic mobility, produced without compli-
cated engineering methods. It paves the route for future technical improvements and
the measurement of alternative Transition metal dichalcogenides (TMDCs) materials
of higher quality.

This dissertation is organized in the following way. The chapter 1 describes the crys-
tal structure of monolayer, bilayer and multilayer (even- and odd- number of layers)
transition metal dichalcogenides as well as the group symmetry to whom they be-
long. In the same chapter, their main optical and electronic properties are briefly
discussed. Chapter 2 is dedicated to the transport properties of a gas of charged
particles. This theoretical chapter is written in a pedagogical way: I describe first
the simplest concept of electronic transport considering the single-particle classical
approach (Drude model), before introducing a statistical description of the electron
gas referred to the Boltzmann model. Next, I comment how the dynamics of charged
particles are modified by an external weak magnetic field, and the consequences on
magneto-transport. Finally, for high magnetic field, the quantum nature of electrons
cannot be ignored and I discuss how the energy spectrum of a 2D electron gas turns
into discrete energy levels by solving the Schrödinger equation in the presence of
a magnetic field. After analyzing the effects on magneto-transport and the related
emergence of Shubnikov-de Haas oscillations, I comment on the Zeeman energy which
is another energy scale competing with the cyclotron gap. Next, chapter 3 describes
in details the fabrication techniques of monolayer WSe2 and its electrical address-
ing. We discuss the influence of the metallic electrodes, leading to the emergence
of Schottky barriers, which restrict the charge carrier injection in the system. This
chapter also describes the different techniques to determine precisely the thickness of
the WSe2 flakes obtained by micro-mechanical exfoliation. The rest of this chapter is
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General introduction

dedicated to magneto-transport measurements under pulsed magnetic field. Finally,
chapter 4 presents and analyses the magneto-transport results obtained from a mono-
layer WSe2 sample. The measured quantum oscillations’ pattern is beyond a simple
interpretation in terms of energy levels separated each other from the cyclotron gap
and the Zeeman energy must be taken into account. For this purpose, I detail a
model to simulate the magneto-resistance which is compared to the experimental re-
sults. This analysis allows extracting transport parameters and most particularly the
effective Landé factor. Its evolution with the carrier density, modified in situ using a
back-gate voltage, constitutes a direct evidence of the important role played by the
electron-electron interactions in monolayer WSe2 systems.
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Chapter 1

Structural and electronic
properties of WSe2

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Symmetry properties and space group for TMDCs . . . . . . . . 3

1.3.1 Monolayer-TMDC with trigonal prismatic configuration
and TMDCs with odd number of layers . . . . . . . . . . . 4

1.3.2 Monolayer-TMDC with octahedral coordination and other
TMDCs with even number of layers . . . . . . . . . . . . . 4

1.3.3 Symmetry group of the wave vector . . . . . . . . . . . . . 5

1.3.4 Consequence of the Kramers theorem on the TMDC band
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Electronic band-structure . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Mono-layer WSe2 . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Bi-layer WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Band gap from mono-layer to bulk TMDCs . . . . . . . . 12

1.4.4 Few-layer WSe2 . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Introduction

There are about 60 different compounds belonging to the TMDCs family. Two-third
of these assume a layered structure [25] of the form MX2, where M stands for groups
4-10 transition metal atoms and X stands for the chalcogen atoms (see figure1.1-a).
TMDCs monolayers are made of M structure, many of these stochiometric planes are
stacked upon each other and the stability of the crystal is ensured by weak van der
Waals (vdW) interactions as depicted in figure 1.1-b[25].
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Chapter 1. Structural and electronic properties of WSe2

Figure 1.1: (a) Periodic classification of elements, where groups 4-10 transition metal
atoms and chalcogen atoms have been highlighted. b) Schematics of the layered atomic
structure of the transition metal dichalcogenides.

1.2 Crystal structure

Monolayer TMDCs consists of three atomic planes. The top and bottom planes are
chalcogen atoms arranged in a triangular lattice, and the middle plane is also a trian-
gular lattice of metal atoms. There are two polymorphs of mono-layer TMDCs with
atomic trigonal prismatic (H) and octahedral (T) coordination of the metal atom
as shown in figure 6.1-a. Monolayer TMDCs (stochiometric planes) are the building
blocks from which complex 3D crystals are formed. Bulk TMDCs can be found in
three polymorphs called 1T, 2H and 3R. In this nomenclature, the number indicates
how many MX2 layers are present in the unit cell while the letter stands for the
symmetry group (T for trigonal, H for hexagonal, R for rhombohedral) [32]. These
polymorphs are schematically shown in figure 6.1-b. The unit cell is sketched with
the c-axis perpendicular to the layers while the parameter a represents the minimal
in-plane distance between two chalcogen atoms. TMDCs crystals with trigonal sym-
metry are charaterized by one layer per unit cell and an octahedral coordination of the
metal atoms. On the other hand, the hexagonal symmetry is described with two lay-
ers per unit cell and a trigonal prismatic coordination of the metal atoms. Finally, the
rhombohedral symmetry maintains the trigonal prismatic coordination of the metal
atoms, but is defined with three layers per unit cell shifted by each other. First-
principle calculations show that 2H stacking is the most stable configuration. Upon

2



1.3 Symmetry properties and space group for TMDCs

reducing the number of TMDCs layers down to unity, the symmetry elements of the
system undergo drastic changes which translate into modifications of the material’s
electronic structure, affecting directly the optical and transport properties.

Figure 1.2: (a) Side and top views of the two polymorphs of monolayer TMDCs. Left
panel trigonal prismatic (2H); right panel octahedral (1T). Chalcogen and metal atoms are
shown in orange and green/violet, respectively .(b) Schematics of the structural polytypes of
TMDCs from left to right 1T (tetragonal symmetry, one layer per unit cell and, octahedral
coordination of the metal), 2H (hexagonal symmetry with two layers per unit cell and
trigonal prismatic coordination) and 3R (rhombohedral symmetry with three layers per
unit cell and trigonal prismatic coordination of the metal atoms). The yellow-filled triangles
highlight the spatial position of the chalcogen atoms. For the 1T and 2H polytypes, top
views are additionally shown. Note that in these images the yellow triangles highlight
spatial positions of the chalcogen atoms. Adapted from [28]..

1.3 Symmetry properties and space group for TMDCs

The symmetry elements of TMDCs depend on the metal atom coordination and
whether the total number of layers is odd or even. The difference between these two
groups is ultimately given by the presence or absence of point inversion symmetry.

3



Chapter 1. Structural and electronic properties of WSe2

Figure 1.3: Representation of symmetry elements for (a) monolayer and (b) bi-layer
TMDCs (both with trigonal prismatic configuration of the metal atom). The chalcogen
and metal atoms are shown in orange and green respectively. σh is the mirror symmetry
operation by the horizontal planes sketched in yellow for monolayer and violet for bilayer.
The red dot in inset (b) is an inversion symmetry point.

1.3.1 Monolayer-TMDC with trigonal prismatic configura-
tion and TMDCs with odd number of layers

Monolayer TMDCs with trigonal prismatic configuration belongs to the D1
3h hexag-

onal space group [27], as well as other few-layer TMDCs with odd (> 1) number
of layers. The symmetry elements characterizing these compounds are the identity
(E), the clockwise and anticlockwise rotations of 120◦ (C+

3 and C−3 ) along the axis
perpendicular to the TMDCs plane ; as well as the mirror symmetry (σh) by the
plane passing through the transition metal atoms shown in figure 1.3-a. The system
is also unchanged upon 180◦ rotation along the three in-plane axis C2 oriented 120o
each other, connecting two opposite corners of the in-plane projection of the hexag-
onal unit cell. Mirror reflections, noted σv, by the three vertical planes that contain
the aforementioned axis are other symmetry elements of the monolayer. Besides, the
symmetry elements also include two S3 operations, namely the clockwise and anti-
clockwise rotations followed by the reflection σh by the horizontal plane . It is worth
noting that these systems lack inversion symmetry.

1.3.2 Monolayer-TMDC with octahedral coordination and
other TMDCs with even number of layers

Monolayer-TMDC with octahedral configuration of the metal atom and any other few-
layer TMDCs with an even number of layers belong to the D3

3d hexagonal space group
[27]. The symmetry operations which leave the system unchanged are: the identity
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1.3 Symmetry properties and space group for TMDCs

(E) as well as the clockwise and anticlockwise rotations of 120◦ (C+
3 and C−3 ) along c-

axis represented in figure 1.3-b. These systems also hold inversion symmetry (i) where
the point of inversion is depicted as the red dot. Another symmetry elements include
the 180o rotations along axes placed in between two adjacent stochiometric planes
(e.g. in the middle of the van der Waals gap) connecting two opposite corners of the
in-plane projection of the hexagonal unit cell. We also note mirror symmetry from
dihedral vertical planes containing the violet dashed lines in figure 1.3-b. Besides, the
crystal is invariant under two S6 operations, namely the clockwise and anticlockwise
rotations of 60◦ along C6 axis followed by a σh operation.

1.3.3 Symmetry group of the wave vector

For the two types of monolayers (trigonal prismatic or octahedral configuration of
the metal atom), equation 6.4 defines # »a1 and # »a2 as the primitive vectors of the
real space lattice depicted in figure 6.2-a, projected onto the Cartesian basis vectors
x̂ and ŷ. Equation 6.4 defines also the reciprocal vectors #»

b1 = 2π
a2

(
# »a2 ∧

#»

k
)

and
#»

b2 = 2π
a2

(
#»

k ∧ # »a1
)

where #»

k = x̂ ∧ ŷ is a unit vector oriented in the out-of-plane
direction.

# »a1 = a

2(
√

3x̂+ ŷ) # »a2 = a

2(−
√

3x̂+ ŷ) #»

b1 = 2π
a

(
√

3
3 x̂+ ŷ) #»

b2 = 2π
a

(−
√

3
3 x̂+ ŷ)

(1.1)

Figure 1.4: a) Real and b) reciprocal space
representation of a monolayer TMDC.

Figure 6.2-b shows the reciprocal space
including the high symmetry points K,
K ′, Γ and M ; the high symmetry lines
T , T ′ and Σ as well as the points Q
and Q′ located half-way along the Γ−K
and Γ − K ′ lines, respectively. The six
corners of the first Brillouin zone lie at
the inequivalent K and K ′ points due
to strong spin-orbit coupling. The two
groups of equivalent corners are related
to each other by reciprocal lattice vec-
tors. The unit cell contains one metal
atom and two chalcogen atoms.
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Space group Γ K(K ′)
N odd D1

3h D1
3h C1

3h
N even D3

3d D3
3d D2

3
Bulk D4

6h D4
6h D4

3h

Table 1.1: Space groups and wave
vector symmetry elements for 2H
TMDCs. Adapted from [27].

The D1
3h and D3

3d space groups, rep-
resenting respectively odd and even
number of few layer TMDCs with
trigonal prismatic coordination of the
metal atoms, imply different symme-
try elements for the wave vector at
the high symmetry points or direc-
tions in the reciprocal space. Table 1.1
summarizes the wave-vector symmetry
properties at relevant high symmetry
points and axes of the first Brillouin
Zone (BZ), including bulk TMDCs (in-
finite number of layers) for which in-
version symmetry is prevalent.

1.3.4 Consequence of the Kramers theorem on the TMDC
band structure

The knowledge of a system’s quantum state at a given time t combined with the
deterministic laws of physics are sufficient to determine the quantum state of the
system. If the wave function ψ(r, t) specifies the time evolution of the state ψ(r, 0),
then ψ(r,−t) is called the time-reversed conjugate of ψ(r, t). The time-reversed con-
jugate quantum state is achieved by running the system backwards in time, therefore
reversing all the velocities of the system. In the following, the time reversal operation
t −→ −t is denoted by the operator T̂ . We also introduce the inversion operation
r −→ −r denoted by the operator Î. A crystal is inversion symmetric when the oper-
ator Î leaves it unchanged. When the Hamiltonian commutes with the spin (e.g. in
systems without spin-orbit interaction), the same Schrödinger equation is solved for
both spins, leading to spin-degenerate quantum states whether or not there is spatial
inversion symmetry. On the other hand, when the spin must be taken into account, a
spin degeneracy lifting occurs only if the system is not inversion-symmetric. Indeed,
we remind that the time-reversal operation changes both the sign of the wave-vector
and the spin of a quantum state, so that T̂ψ(r, k, t, ↑) = ψ(r,−k,−t, ↓). Since the
Hamiltonian and time-reversal operators commute, we end up with:

E(k, ↑) = E(−k, ↓) and E(k, ↓) = E(−k, ↑) (1.2)
In addition, if the system is inversion-symmetric, we have :

E(k, ↑) = E(−k, ↑) and E(k, ↓) = E(−k, ↓) (1.3)
The combination of equations 1.2 and 1.3 leads to

E(k, ↓) = E(k, ↑) (1.4)
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1.4 Electronic band-structure

making ψ(r, k, t, ↑) and ψ(r, k, t, ↓) spin-degenerate quantum states. This demonstra-
tion is known as the Kramer degeneracy theorem.

Figure 1.5: Schematic example of Kramers degeneracy in a crystal in the case (a) no spin-
orbit interaction where each level is doubly degenerate, (b) both spin-orbit interaction and
inversion symmetry are present leading to two-fold degenerate quantum states, (c) spin-
orbit interaction and no inversion symmetry leading to non-degenerate quantum states.
Adapted from [57].

However, if there is no inversion symmetry, only equation 1.2 remains fulfilled leading
to spin degeneracy lifting (except in some particular high symmetry points of the 1st
BZ) as shown in figure 1.5-c.

1.4 Electronic band-structure

Figure 1.6: Schematic density of states
of bulk layered TMDCs from different
groups of the Periodic Table. Adapted
from[33].

The electronic band-structure of bulk TMDCs
strongly depends on the coordination geom-
etry and the number of electrons occupying
the d-orbitals of the transition atom.

In systems with octahedral coordination (be-
longing to the D3d symmetry group), two de-
generate bands are formed: the eg band (orig-
inating from the dz2 and dx2−y2 atomic or-
bitals) and the t2g band (originating from the
dxy, dyz and dxz atomic orbitals) which can
together accommodate up to 6 d-electrons.
In the trigonal prismatic configuration (be-
longing to the D3h symmetry group), the hy-
bridation of atomic d-orbitals produces three
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Chapter 1. Structural and electronic properties of WSe2

bands named: A1 (dz2) ; E (dx2−y2 + dxy) and E ′(dyz + dxz) [29, 9].

The different electronic properties of TMDCs result from the progressive filling of
these bands. If the highest occupied band is partially filled, the material is a metal
(group 5 and 7 in figure 1.6). On the other hand, when the lowest energy band is
fully occupied and the highest energy one is left empty, the material shows semi-
conducting properties (group 4, 6 and 10 in figure 1.6). The impact of the nature
of the chalcogen atoms on the electronic properties of TMDCs is minor (the d-bands
broaden with a concomitant decrease of the energy gap) compared to the effect of
the transition metal atomic species. In the following, we will focus our discussion
on WSe2 band-structure and provide indication when a qualitative comparison is not
appropriate to other TMDCs of the same group.

1.4.1 Mono-layer WSe2

A precise and complete description of the electronic band-structure of monolayer
WSe2 requires rigorous density functional theory (DFT) calculations. This approach,
detailed in [8], is out of the scope of this thesis: we focus below our discussion on
the main results only, considering the highest-energy valence band (VB) and the
lowest-energy conduction band (CB). The conduction band minimum (CBM) and
the valence band maximum (VBM) are both located at the 6 corners of the first
Brillouin zone (FBZ) K and K’, thereby forming a direct band-gap. Although the
quantum states at the 1st BZ corners have the same energy, they are not identical
since a pair of points K and K’ is not related through a reciprocal lattice vector. The
band extrema are energetically degenerate so that the valley index (also referred to as
the pseudospin) constitutes an additional degree of freedom with respect to the trivial
spin. It is worth reminding here that the two groups of K and K’ points transform
into each other under the time reversal operation.

Figure 1.7: Spin states under σh
symmetry operation.

The electronic quantum states must be described
by considering the spin-orbit interaction originat-
ing from the d-orbitals of the metal atoms [15].
We start our discussion by noting that the sym-
metry element σh imposes a Bloch state and its
mirror reflection to have the same energy. The
operation, σh transforms a spin in the in-plane
direction into its opposite, while the out-of-plane
spin direction remains unchanged (see figure 1.7).
As a consequence, only the out-of-plane spin de-
generacy can be lifted by the spin-orbit coupling and the spin expectation values will
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1.4 Electronic band-structure

be either “up” or “down”. On the other hand, the time reversal symmetry dictates
an identical magnitude but opposite sign of the spin at K and K’ points [42, 43]. This
important property is sketched in figure 6.3 where the spin splitting of both the VB
and CB extrema are interchanged at K and K’ points. The spin-splitting is larger
in the VB compared to the CB at K-points for tungsten-based TMDCs and change
sign for their molybdenum-based counterparts. The spin-orbit interaction introduces
a coupling between the spin and valley degree of freedom, so that the spin state is
intimately related to the valley index. In agreement with equation 1.2, this coupling
is inherent to monolayer and odd-number of layers TMDCs, which lack i as opposed
to their even-number of layer counterparts.

Figure 1.8: Out-of-plane spin splitting
with opposite signs at the K and K’ points
of the 1st BZ in mono-layer WSe2. Adapted
from [9].

In the following, Kc and Kv denote the quantum states at the CBM and the VBM
respectively. We also note that the CB has six local minima at the low symmetry Q
points, while the VB has a local maximum at the Γ point, which will be referred as to
Qc and Γv quantum states, respectively. These states, which are energetically close
to Kc and Kv, become the global CBM and VBM in the case of mutli-layer WSe2.
The Γ, K and Q points of the 1st BZ are invariant under C3 operation, so that the
dispersion relation in the neighborhood of these points show a three-fold rotational
symmetry named after “trigonal warping” (not shown in figure 6.3).

Figure 1.9: (a),(b) orbitally resolved contributions of Se and W atoms in the band-
structure of mono-layer WSe2 (c) Qualitative contribution of atomic orbitals to the Bloch
states at high symmetry points of the FBZ. See the main text for the nomenclature.
Adapted from [15].
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First principles calculations predict that the Kc and Kv quantum states are pre-
dominately from the transition metal T (dx2−y2 , dxy, dz2) orbitals as well as chalcogen
X(px, py) orbitals. On the other hand, the contribution from X(pz) orbitals become
significant in the Qc and Γv states. Anticipating section 1.4.2, the non-negligible
X(Pz) orbital overlap in multilayer WSe2 leads to appreciable energy changes of Qc

and Γv which triggers a transition from a direct band-gap to an indirect one.
The main difference between the molybdenum- and tungsten- based compounds is
the larger splitting of the valence band for the latter, which is due to the larger spin-
orbit coupling strength [37]. The splitting typically ranges from 150 meV to 450 meV
for light molybdenum- and heavy tungsten-based TMDCs, respectively. The table
1.10 illustrates the values of the splitting in the VB and CB for different mono-layers
obtained from first-principles calculations [41, 9].

Figure 1.10: spin-orbit coupling (SOC) splitting at Kv and Kc in TMDCs mono-layers
from first-principles calculations. Adapted from [40].

Experimental evidence for such a giant spin-orbit coupling can be proved by perform-
ing direct measurements of the band structure using Angle-Resolved Photo-Emission
Spectroscopy (ARPES), as shown in figure 1.11-a) for a single-layer WSe2 [18]. Two
spin-resolved traces are clearly identified near the point K. In addition, the photo-
luminescence quantum yield (QY), shows a dramatic enhancement between bulk
(dark) and monolayer (bright) confirming the transition from indirect-gap in bulk
crystal to a direct-gap in monolayers [44]. Two Photo-luminescence (PL) peaks, at-
tributed to A and B excitons, correspond to an energy separation in agreement with
the VB spin splitting at points ±K of the first BZ (see figure 1.11-a). Besides, Raman
measurements shows distinct spectra between monolayer TMDCs and its few-layer
counterpart, where there are four Raman-active modes, namely A1g, E1g, E1

2g and
E2

2g modes, only 2 modes are present in measurements which are A1g and E1
2g (see

figure 1.11-b).
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1.4 Electronic band-structure

Figure 1.11: (a)The experimental monolayer WSe2 band structure the top of the valence
band along the high symmetry lines [18], (b) Normalized PL spectra by the intensity of
peak A of thin layers of WSe2 for N= 1-4 and bulk, (c) Raman spectra of WSe2 for N=1-4
and bulk [45].

1.4.2 bi-layer WSe2

First-principle calculations show that bi-layer TMDCs, where the transition metal
atoms have trigonal prismatic coordination, is the most stable atomic structure [49].
The unit cell of bilayer WSe2 is the double of that of a monolayer, where the upper
and lower layers are in-plane rotated by 180o with respect to each other. This system
is point inversion symmetric and therefore, even in the presence of SOC, the elec-
tronic states are spin-degenerate (see section 1.3.4). Actually, the two layers interact
only weakly via van der Waals forces and the electronic properties of bilayer-TMDCs
resembles, at first sight, much like those of two independent monolayers rotated 180o
to each other. This symmetry operation switches the two valleys K and K ′ (see figure
6.4) but leaves the spin unchanged, so that the valley-dependent physical properties
naturally average to zero (valley Hall effect, valley circular dichroism) while the spin-
dependent effects add up (spin Hall effect and spin optical dichroism). In bilayer
WSe2, the sign of the spin-splitting is intimately related to the valley as well as the
layer index, which is a new degree of freedom for the electronic states (e.g. the elec-
tron wave-function for bilayer WSe2 can be regarded as a linear superposition of two
wave-functions fully localized either on the top or the bottom layers). Considering
now the interaction between the two stochiometric planes, we note that interlayer
hopping does not naturally change the spin and crystal momentum of charged parti-
cles. Therefore, such a hopping is allowed only if the electron spin is simultaneously
changed with an associated spin splitting energy cost [43]. In WSe2, the SOC is par-
ticularly strong and the spin splitting is much larger than the hopping energy, so that
inter-layer hopping is effectively suppressed. It follows that spin-up(down) quantum
states are localized either in the top(bottom) or in the bottom(top) layer depending
on the valley index, which sets a spin-layer locking of the degrees of freedom. As
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anticipated above, the valley physics at points K and K ′ is similar to the one of two
decoupled monolayers. Nevertheless, it is important to stress that a perpendicular
electric field breaks inversion symmetry [26] and restores the valley-dependent prop-
erties. For instance, references [16, 13] report inversion symmetry breaking in bi-layer
MoS2 and WSe2 by applying an external perpendicular electrical field, controlled by
a gate voltage in the transistor configuration.
The first-principle band-structure calculations for bilayer TMDCs are much sensitive

Figure 1.12: The electronic properties of
2H-bilayer TMDCs resemble those of two
monolayer TMDCs in-plane rotated of 180o
to each other. In the reciprocal space, the
band edges at K and K ′ points of a bilayer
TMDCs 1st BZ is merely a superposition of
the band edge of each monolayer, leading to
spin-degenerate states as required for point
inversion symmetry systems.

to the lattice and interlayer distances, leading to quite different band edges and band-
gaps [50]. A review of such calculations is out of the scope of this thesis [51, 52], but
we stress the presence of an indirect band-gap as the most important feature. The
transition from direct band-gap at K-points in monolayer WSe2 to indirect band-gap
in bilayer finds its origin in interlayer hopping [40]. In the presence of spin-orbit cou-
pling, the valence band edge at K-points is not much affected due to the spin-layer
coupling effect. However, the valence and conduction band edges at Γ and Q-points
respectively are particularly affected. Indeed, the Bloch states at Qc and Γv include
a contribution of X(pz) orbitals with strong overlap, since the chalcogen atoms are
the nearest neighbors at the van der Waals gap between the top and bottom layers.
For comparison, even when the spin-orbit coupling is turned of, the quantum states
defining Kv barely change their energy from mono to bilayer WSe2, since these states
are mainly derived from the weakly overlapping transition metal orbitals [38].

1.4.3 Band gap from mono-layer to bulk TMDCs
Monolayer WSe2 and other group VI TMDCs have a direct band gap, which turn
into indirect as new successive layers are added (bilayers, trilayers to bulk TMDCs).
This transition was first reported in reference [34]. The band gap transition to an
indirect one at the bilayer, as well as its evolution with increasing number of layers
is illustrated in figure 1.13 for WSe2 where the SOC is taken into account.
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1.4 Electronic band-structure

The electronic band gap is defined as the energy difference between the CBM and the

Figure 1.13: Band structure of mono-, bi-, tri- and quad-layer WSe2 obtained from DFT
calculations including SOC. The horizontal dotted lines in dictates the spin-split bands,
which represents the inter-layer hopping strength. Adapted from [37].

VBM. It can be experimentally determined using transport or optical measurements.
However, the value obtained from these two different methods differs due to the ex-
citonic effect present in the optical process (see figure 1.14a). Transport experiments
is sensitive to the single-particle excitations and provide a rather direct measurement
of the band-gap. On the other hand, in experiments involving optical transitions, the
absorption of a photon simultaneously creates an electron and a hole in the CB and
VB respectively. These quasi-particles interact through the Coulomb interaction and
form an exciton. The minimum energy required to create an exciton is defined as the
optical band gap EOpt as illustrated in figure 1.14a for group VI TMDCs. The energy
difference between the electronic and optical band gaps corresponds to the binding
energy of the exciton corresponding to the Coulomb interaction strength. Optical
band gaps of group VI TMDCs monolayers have been determined from PL measure-
ments (see figure 1.14b . Although the substrate and the dielectric environment may
affect weakly the exact bad gap value, they reside into the visible frequency range [6].

(a) (b)

Figure 1.14: (a) Illustration of optical and electronic band-gap. (b) Optical band gap
values for group VI TMDCs. Adapted from [28]

1.4.4 Few-layer WSe2

We remind that monolayer and bilayer TMDCs belong to the space group D1
3h and
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D3
3d respectively, where the latter includes inversion symmetry [9]. The minima of the

conduction bands are not located at the K/K ′ points, but rather at the Q/Q′ and
Γ points with quadratic dispersion relation in their neighborhood as shown in figure
6.5. The C3 rotational symmetry dictates the threefold Q-valley degeneracy. For even-
layer TMDCs, the Q and Q′ valleys are related by both time reversal and inversion
symmetries, where the Kramer degeneracy theorem applies [55]. On the other hand,
the inversion symmetry is broken in odd-layers so that all the sub-bands at each Q-
valleys are spin non-degenerate. The spin-valley locking properties of monolayer and
bilayer TMDCs can be extended to few-layer TMDCs with odd and even number of
layers respectively, considering however the Q valleys instead of K valleys [56].

Figure 1.15: (a),(b) calculated band structure of 3L- MoS2, and 6L-WS2 .(b) High sym-
metry point representation in the reciprocal space with the red and the blue color refer to
the spin-down and the spin-up respectively. (d) Schematic diagrams for the Bloch bands.
Adapted from [56].
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Electronic transport
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2.1 Classical approach to charge transport
Electrical transport involves the motion of charges (the current) under the influence
of electric and/or magnetic fields. In non-ballistic systems, the charge carriers are,
on one hand, accelerated by the driving fields and, on the other hand, scattered
and/or slowed down when colliding onto the medium’s defects, phonons or between
themselves. These opposite interactions lead to a constant mean velocity of the charge
carriers referred to as the drift velocity vd. The classical treatment of conduction relies
on the Drude model, which introduces a mean scattering time to take into account
the diffusion processes. This concept can also be used within a statistical approach
of a charged particles gas, named after the relaxation time approximation in the
Boltzmann transport equation. The Drude model and its statistical counterpart will
be developed in the absence of magnetic field in the first two sections. When a
magnetic field is included, the dynamics of the charged particles change as well as the
resulting conductivity. This problem was first tackled by Edwin Herbert Hall1 (1855-
1938) who found out that a homogeneous magnetic field normal to the direction of
the current flow results in a voltage VH between two points with their connecting line
normal to the magnetic field and normal to the current flow. The Hall effect and
the derivation of the magneto-conductivity tensor are described in the third section,

1An American physicist who discovered the eponymous Hall effect
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Chapter 2. Electronic transport

while the statistical approach of a gas of charged particles in the presence of both
electric and magnetic fields is derived in the last section.

2.1.1 The Drude model of conductivity
Let us consider the system in figure 2.1, where a voltage is applied between two ends of
a material, say a metal or a semi-conductor. In the absence of electric field (E = 0),
the charge carriers move in all directions: their motion is random as they bounce
independently on the materials’ defects, its boundaries or between themselves. We
assume that the direction of motion after scattering is completely independent of the
motion before scattering. For a very large number of charge carriers, the net current
averages to zero. On the other hand, when the electric field E is non-zero, the charge
carriers drift along the direction of the electric field. The random motion does not
disappear but its time average leads to a linear trajectory with constant drift velocity
vd. We define the current density j as the product of the carrier density n by the drift
velocity vd and the elementary charge q, which can be either negative or positive for
electrons or holes, respectively.

j = en · vd (2.1)

Figure 2.1: (a) Sketch of a material submitted to an external electric field. (b) Random
motion of charge carriers in the absence of electric field : the net current is null. (c) Drift
motion of the charge carriers in the presence of an external electric field.

The electrical conductance probes the global scattering of charge carriers taking place
at a microscopic level in the material. Neglecting the spin, we distinguish different
sources of scattering such as crystal defects, charged impurities, lattice vibrations
(phonons) or scattering via electron-electron interaction to cite only a few examples.
The mean scattering time τ is defined as the average time in between two scattering
events. In the stationary regime, the drift velocity divided by the mean scattering
time defines an acceleration which, multiplied by the effective mass of a charge carrier,
is equivalent to a force opposite to the one produced by the external electric field.
We can define the mobility µ of a material as the ratio between the drift velocity
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2.1 Classical approach to charge transport

and the electric field and, by applying the static Newton’s law (the net acceleration
of the charge carriers is null, for constant drift velocity), we show that the mobility
alternatively relates the mean scattering time, the effective mass and the charge of
the carriers:

q.E︸︷︷︸
Fc

−m∗vd/τ︸ ︷︷ ︸
Fdrift

= 0⇔ µ = |vd|
|E|

= qτ

m∗
(2.2)

The mobility is proportional to the mean free time and inversely proportional to the
charge carrier mass. Combining equations 6.5 and 6.6, the current density can be
written as a function of the electric field where the proportionality factor defines the
conductivity σ of the material. In the absence of magnetic field, the resistivity is the
inverse of the conductivty:

σ = q2τn

m∗
= nqµ (2.3)

ρ = m∗

q2τn
= 1/(nqµ) (2.4)

To summarize, the classical Drude model describes the dynamics of a charged particle
in a homogeneously disordered medium and under the influence of an external elec-
tric field. The model assumes that all the conduction electrons behave in a similar
way, so that the macroscopic observables (conductivity, current...) are obtained by
multiplying the single-particle dynamics by the charge carrier density. This simple
approach of the material’s conductivity provides the starting point for a more complex
(semi-classical) theory taking into account the insights of statistical physics where the
Fermi-Dirac distribution function is introduced.

2.1.2 Boltzmann transport equation without magnetic field
The driving force of the external electric field and the dissipative effect of the scat-
tering of the charge carriers are two competing mechanisms. This section details the
Boltzmann equation which describes the interplay between them. This theory is semi-
classical since the charge carriers are treated as point particles but the Fermi-Dirac
statistics resulting from the Pauli exclusion principle is also introduced. Let us con-
sider the time evolution of the total number of charged particles N in a phase-space
volume r3.p3. We now introduce the distribution function of the system f(r,p,t), in
other words the probability density of finding a particle at position r with momentum
p at time t, so that N(t) =

∫
p

∫
r
f(r,p,t)d

3p.d3r. To ease the derivation of the Boltz-
mann equation, we now restrict our analysis to a one-dimensional system, say in the
x-direction, so that a given particle state is provided only by the knowledge of x and
px. The evolution of the distribution function can be separated into two contributions
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: df(x,px,t) =
(
df(x,px,t)

)
ext

+
(
df(x,px,t)

)
int

where
(
df(x,px,t)

)
ext

is related to the effect of
external forces whereas

(
df(x,px,t)

)
int

represents the scattering contribution. In the
following, we derive an explicit expression for

(
df(x,px,t)

)
ext

by expanding f(x,px,t) to
the first order in momentum and space coordinates (we assume the distribution func-
tion does not depend explicitly with time, so that its partial derivative with respect
to time is dropped off):

(2.5)df ext(x,px,t) = ∂f(x,px,t)

∂x
.dx+ ∂f(x,px,t)

∂px
dpx

=
(
∂f(x,px,t)

∂x

px
m∗

+ ∂f(x,px,t)

∂px
qEx

)
dt,

where dx
dt

= px
m∗

and dpx
dt

= qEx. The evolution of the distribution function due
to internal forces is difficult to model, as it requires a microscopic description for
the scattering processes. Nevertheless, this term is usually approximated by the so
called relaxation time ansatz, which assumes an exponential return to equilibrium
distribution function f int0(x,px) with characteristic time set by the mean scattering time
τ .

f int(x,px,t) = f0(x,px)+
[
f(x,px,t=0) − f0(x,px)

]
×exp (−t/τ)⇒

df int(x,px,t)

dt
= −f0(x,px,t) − f0(x,px,t)

τ
(2.6)

Combining equations 2.5 and 2.6, the evolution of the 1D-distribution function is

df(x,px,t) = df ext(x,px,t)+d
intf(x,px,t) =

(
∂f(x,px,t)

∂x

px
m∗

+ ∂f(x,px,t)

∂px
qEx −

f(x,px,t) − f0(x,px)

τ

)
.dt

(2.7)
Generalizing to the 6D phase-space, the Boltzmann equation using the relaxation
time ansatz reads:

df(r,p,t)

dt
= ∇p

(
f(r,p,t)

)
qE +∇r

(
f(r,p,t)

) p
m∗
−
f(r,p,t) − f0(r,p)

τ
(2.8)

The stationary solution of the Boltzmann equation is obtained by dropping off the
time derivative df(r,p,t)

dt
≡ 0. Additionally and for simplicity, we also assume an ho-

mogeneous system so that ∇r
(
f(r,p,t)

)
= 0. Setting the electric field E = Exx̂ in the
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2.1 Classical approach to charge transport

x-direction, the Boltzmann equation simplifies to :

∇p (f(r,p, t)) F︸ ︷︷ ︸
∂f0(r,p)
∂px

qEx

+∇r (f(r,p, t)) p
m∗︸ ︷︷ ︸

=0

= 1
τ

f(r,p, t)︸ ︷︷ ︸
f(r,p,t)

− f0(r,p)︸ ︷︷ ︸
f0(r,p)


∂f0(r,p)
∂px

qEx = 1
τ

(
f(r,p, t)− f0(r,p)

)
f(r,p, t) = f0(r,p) + qExτ ×

∂f0(r,p)
∂px

(2.9)

Figure 2.2: Fermi distribution at different
temperatures. Adapted from [61]

In the following, the equilibrium dis-
tribution function will be replaced by
the Fermi-Dirac function f0(r,p) =
2
h3

1
exp[(ε(p)−εF )/kBT ]+1

as shown in figure
2.2. The pre-factor 2

h3 corresponds to the
elementary quantum volume in 6D-space
including the spin degeneracy. Looking
at equation 2.9, the stationary distribu-
tion function resulting from an external
field Ex and including the effect of scat-
tering can be represented by a Fermi dis-
tribution shifted by qExτ from the equi-
librium as shown in figure 2.3.

The mean current density at position r and time t is provided by integrating over
all possible states (here defined by the vector momentum) the distribution function
by the velocity. Looking at the current in the x-direction only, we end up with the
following expressions

〈j(r, t)〉 = q ×
∫
p

f(r,p, t)× p
m∗
× d3p,

〈jx(r, t)〉 = 〈j(r, t)〉 .x̂ = q ×
∫
p

f(r,p, t)× px
m∗
× d3p,

〈jx(r, t)〉 = q ×
∫
p

f0(r,p) + qExτ ×
∂f0(r,p)
∂px

× px
m∗
× d3p,

〈jx(r, t)〉 = q2Ex
m∗
×
∫
p

τ × ∂f0(r,p)
∂px

× px × d3p,
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Chapter 2. Electronic transport

Figure 2.3: The effect of a constant electric field E = Exx̂ on the k-space distribution of
quasi-free electrons. (a) The Fermi sphere at equilibrium is centred at zero and is displaced
in the out-of-equilibrium stationary state by an amount δkx = qτEx/~. (b) The out-
of-equilibrium Fermi distribution f(ε(k)) only differs from the equilibrium distribution f0
dashed in the vicinity of the Fermi energy. Adapted from [61]

where
∫
p
f0(r,p)d3p = 0 since the Fermi-Dirac distribution function at equilibrium is

isotropic. The mean scattering time τ is, in general, a function of momentum and
must remains inside the integral. In the following, we change the integration variable
from momentum to energy (d3p = 4πp2dp = 4π

(√
2m∗ε

)2
dε√
2m∗ε with ε = p2/2m∗)

and make use of the equality ∂ε
∂px

= px
m∗

:

〈jx(r, t)〉 = q2Ex
m∗
×
∫
p

τ(p) ×
∂f0(r,p)

∂ε
× ∂ε

∂px
× px × d3p,

〈jx(r, t)〉 = q2Ex
m∗
×
∫
p

τ(p) ×
∂f0(r,p)

∂ε
× p2

x × d3p,

〈jx(r, t)〉 = q2Ex
3m∗ ×

∫
ε

τ(ε) ×
∂f0(r,p)

∂ε
× p2 × 4π

√
2m∗εdε. (2.10)

It is worth noting that, since 〈jx(r, t)〉 would be the same if we changed px to py or
pz, we replaced p2

x by p2 and divided the overall expression by 3. The derivative of
the equilibrium Fermi distribution function is peaked to −2/h3 at ε = εF and equal
zero for all other values of the energy. The integral is therefore proportional to the
integrand evaluated at the Fermi energy :

〈jx(r, t)〉 = −q
2Ex
m∗
× 2
h3×τ(εF )×p(εF )2×4π

√
2m∗εF = −8πq2Ex

3m∗h3 ×(2m∗)3/2×τ(εF )×(εF )3/2

(2.11)
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2.1 Classical approach to charge transport

Since the Fermi energy can be expressed as a function of the carrier density εF =
~2

2m∗ (3π2n0)2/3, we obtain 〈jx(r, t)〉 = −q2n0τ(εF )
m∗

Ex so that the conductivity σ(r, t) =
|〈jx(r,t)〉|
|Ex| reads :

σ = q2n0τ(εF )

m∗
(2.12)

This expression for the conductivity is similar to the one obtained using the Drude
model (equation 6.8), except the mean scattering time which is evaluated at the Fermi
energy. This is a direct consequence of the Fermi-Dirac distribution function which
indicates that only the charge carriers at the Fermi energy contribute to the transport
properties. In other words, the conductivity cannot be derived from thermodynamic
principles since it does not involve all the particles in the system. The resemblance
of the conductivity expressions derived from the Drude model and the Boltzmann
model is linked to the relaxation time approximation, where the mean scattering
time τ is introduced. Although quite general, the classical and statistical treatment
of the conductivity beyond the relaxation time approximation is out of the scope of
this thesis and requires advanced numerical calculations.

2.1.3 Electrical conductivity in the presence of a magnetic
field

We consider a three-dimensional system made of N non-interacting charged particles
(of effective mass m∗ and charge q) in the presence of magnetic and electric fields.
The magnetic field B = Bz ẑ is applied in the z-direction so that the Lorentz force
acts only in the x-y plane. An electric field E = Exx̂+Eyŷ is either set (or established
as a consequence of the Lorentz force) in the x-y plane as well. We note that the
addition of a z-component to the electric field would yield the same result as in section
2.1.1, namely the conductivity in the z-direction is defined only through the mean
scattering time σzz = nq2τ

m∗
since the Lorentz force does not act on charge carriers

moving in the z-direction. Besides, when the charge carrier velocity is projected into
the x-y components only, the Newton’s law of motion gives:

m∗
dv
dt

= qFL −m∗
v
τ

with FL = q (E + v ∧B)

m∗
dv
dt

=
(
qEx −m∗

vx
τ

+ qvyBz

)
x̂−

(
qvxBz +m∗

vy
τ

)
ŷ (2.13)

Here, v is the drift velocity (the subscript “d” has been abandoned for clarity) and the
left hand side of the equation can be set to zero in the stationary regime. Equation
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Chapter 2. Electronic transport

2.13 can be projected onto the x̂ and ŷ basis vectors, providing new expressions for
vx and vy from which the current density (j = nqv) is established as follow:

j = jxx̂+ jyŷ = nτq2

m∗
[(Ex + vyBz) x̂+ (Ey − vxBz) ŷ]

j = jxx̂+ jyŷ = nτq2

m∗

[(
Ex + jy

nq
Bz

)
x̂+

(
Ey −

jx
nq
Bz

)
ŷ

]
(2.14)

The projection of this equation onto the unit vectors x̂ and ŷ leads to a system of
two coupled equations involving jx and jy. Introducing the zero-field conductivity
σ0(B = 0) = nq2τ

m∗
and the mobility µ = qτ

m∗
, the system can be decoupled using

simple algebra where each component of the current density depends linearly on the
electric field components.

jx = σ0
1+(µBz)2 (Ex + µBzEy)

jy = σ0
1+(µBz)2 (−µBzEx + Ey)

(2.15)

The components of the current density can be written in a compact form involving

the 2D conductivity tensor σ̄ =
(
σxx σxy
σyx σyy

)
which establishes for each component of

the current density, a linear relation with both components of the electric field:

j = σ̄E⇔ jx = σxxEx + σxyEy
jy = σyxEx + σyyEy

(2.16)

The identification of equation 2.15 with equation 2.16 leads to explicit expressions for
the components of the conductivity tensor:

σ =
 σ0

1+(µ.Bz)2
σ0µB

1+(µBz)2

− σ0µB
1+(µBz)2

σ0
1+(µBz)2

 (2.17)

Through the Lorentz force, the magnetic field leads to non-zero off-diagonal terms
for the conductivity tensor. We note that σxx = σyy = σ0

1+(µBz)2 and σxy = −σyx =
σ0µB

1+(µBz)2 satisfy the time-reversal symmetry. Introducing the cyclotron pulsation ωc =
eBz
m∗

, the term µBz can be alternatively replaced by ωcτ . The components of the

22



2.1 Classical approach to charge transport

conductivity tensor should not be confused with the longitudinal conductivity σL ≡
jx/Ex or the Hall conductivity σH ≡ jx/Ey which depend on the sample geometry.
For example, let us consider a three-dimensional electron gas having the shape of
a parallelogram of length L in the x-direction, of width l in the y-direction and of
thickness t in the z-direction as sketched in figure 2.4. An external magnetic field is
established in the z-direction while a voltage difference is set between the two ends
of the system in the x-direction. No net current can flow in the y-direction (nor in
the z-direction as well) and we set jy = 0 in equation 2.16. Now, the current density
flowing in the x-direction can be solely written either as a function of Ex (eq. 2.18) ;
or as a function of Ey (eq. 2.19):

jx = σxx

[
1 +

(
σxy
σxx

)2
]
Ex = σ0Ex ≡ σLEx (2.18)

jy = σxy

1 +
(
σxx
σxy

)2
Ey = σ0

µBz

Ey ≡ σHEy (2.19)

One note that the longitudinal conductivity σL is equal to the zero-field conductivity
σ0 established within the Drude model. This result is contradicted by experimen-
tal evidences, which often show a dependence with respect to the magnetic field.
Actually, one must go beyond the mean relaxation time approximation to properly
describe the magnetic field dependence of the magneto-conductance, at least for weak
enough magnetic field and within the classical theory (see section 2.1.4).

Another important remark must be mentioned concerning the electric field established
in the y-direction: this is a direct consequence of the Lorentz force. Classically, the
charged carriers are deviated from their expected mean motion in the x-direction
under the influence of the external electric field. The charged particles accumulate
along one edge of the sample while a deficit of charges is created on the other edge.
This carrier density difference along the y-direction is at the origin of the y-component
of the electric field, which counterbalances the effect of the Lorentz force. Using
E = −∇r (V), one can work out the Hall voltage (VH) between the two ends in the
y-direction of the system resulting from the transverse electric field :
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Chapter 2. Electronic transport

VH = −
l∫

0

Eydy = −
l∫

0

µB

σ0
jxdy = −µ.B

σ0
jx

l∫
0

dy = −µBljx
σ0

(2.20)

VH = −µBI
tσ0

= RHI (2.21)

where we used I =
y=l∫
y=0

z=t∫
z=0

jxdydz. The Hall voltage scales linearly with the current

flowing through the system and the proportionality factor is defined as the Hall resis-
tance RH = −µB

tσ0
= −1

t
B
nq

. The Hall effect can therefore be used not only to compute
the carrier density, but also to deduce the sign of the carried charge. We note that
the Hall resistance reduces to RH = − B

n′q
where n′ is the effective two-dimensional

charge carrier density.

Figure 2.4: The Hall effect

The resistivity tensor ρ̄, defined as the inverse of the conductivity tensor, is better
suited to deal with samples having a bar geometry. This is because the resistivity
tensor relates each component of the electric field to the components of the current
flowing in the x and y-direction. In the bar geometry considered above, no current
can flow in the y-direction and once one sets jy = 0, the relation between jx and Ex
becomes straightforward.

(
Ex
Ey

)
=
(
ρxx ρxy
ρyx ρyy

)
.

(
jx
jy

)
⇔︸︷︷︸
jy=0

(
ρxx = ρL ≡ Ex

jx

ρxy = ρH ≡ Ey
jx

)
(2.22)
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2.1 Classical approach to charge transport

Unlike their conductivity counterparts, the components of the resistivity tensor are
directly accessible from experiment using a Hall bar sample where, on one hand, the
voltage measured between two electrodes located on the same side of the bar provides
the longitudinal resistivity ρL = ρxx = l

L
Vxx
I

and on the other hand, the voltage
measured between two electrodes located on opposite sides of the bar yields the Hall
resistivity ρH = ρxy = l

L
VH
I

. The two-dimensional resistivity tensor is obtained by
conductivity tensor inversion (σ̄ρ̄ = 1̄):

ρ =
(
ρxx ρxy
ρyx ρyy

)
=
 σxx
σ2
xx+σ2

xy

−σxy
σ2
xy+σ2

xx
σxy

σ2
xy+σ2

xx

σxx
σ2
xx+σ2

xy

 (2.23)

Combining equations 2.23 and 2.15, the resistivity tensor can be re-written as a
function of ρ0 = 1/σ0 = m∗

nq2τ
and the magnetic field:

ρ =
(

1/σ0 −µB/σ0
µB/σ0 1/σ0

)
≡
(

ρ0 −ρ0µB
ρ0µB ρ0

)
(2.24)

We note that the product of the zero-field resistivity by the mobility yields the Hall
resistance (ρ0µ = 1

nq
≡ RH) in consistency with the Hall effect described above. The

magnetic field dependence of the conductivity and resistivity tensor components are
plotted in figure 6.6.

Figure 2.5: a) Components of the conductivity tensor as a function of the magnetic field.
At µB = 1 , σxx = σxy. (b) Components of the resistivity tensor as a function of magnetic
field. For µB = 1 , ρxx = ρxy

In the center of the Hall bar, the equipotentials makes an angle ψ = arctan (µ.B) ≡
arctan

(
B
nq

1
ρ0

)
with the y-axis. This angle is referred to as the Hall angle which does

not depend on the geometry of the sample. The identification ρxx = ρL and ρxy = ρH
is valid only when the Hall angle is constant, i.e. far from the contacts where the
current lines (in the x-direction) are not perpendicular to the equipotentials. In other
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Chapter 2. Electronic transport

words, far enough from the drain-source contacts which act as fixed equipotential
volumes, the current lines are not aligned with the electric field lines. Conversely, the
electric field and the current density are not uniform in the vicinity of the contacts,
which breaks the initial hypotheses leading to equation 2.24. The minimum distance
from the contacts where the uniform regime holds is estimated to d = `×tanψ ≡ `µB.
In the vicinity of the contacts, neither ρxx nor ρxy can be immediately identified to
ρL and ρH , respectively, since jy 6= 0.

Figure 2.6: a) Equipotential (dashed) and electric field lines (solid) for a bar geometry.
b) Full view of the equipotentials in a Hall bar configuration

2.1.4 Boltzmann transport equation in the presence of a mag-
netic field

To derive the conductivity tensor and the Hall effect with a statistical description of
the electron gas in the presence of a homogeneous and constant magnetic field, our
starting point is the Boltzmann equation with the mean relaxation time approxima-
tion where the distribution function is replaced by the carrier density.

∂n

∂t
+ p
m∗
∇r (n) + F∇p (n) = −n− n0(p)

τ
(2.25)

We now assume the permanent regime (∂n
∂t

= 0) while the force F = q
(
E + p∧B

m∗

)
re-

sults from an electric field E = Exx̂ in the x-direction and a magnetic field B = Bz ẑ in
the z-direction. The system is supposed homogeneous and isotropic so that ∇r (n) =
0. The Boltzmann equation is solved with a “test function” n(p) = (1 + φ) × n0(p)
where φ is a perturbation term to be found. To complement the resolution of the
Boltzmann equation in section 2.1.2, we shall use now the classical Boltzmann-
Maxwell distribution function (instead of the Fermi-Dirac function) which reads

n0(p) = n0
exp
(
− p2

2m∗kBT

)
(2πm∗kBT )3/2 . The use of Boltzmann-Maxwell distribution function al-

lows straightforward simplifications of the Boltzmann equation and produces an easy
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2.1 Classical approach to charge transport

interpretation for the magneto-conductance tensor. The reader is invited to read ref-
erence [65] p.157 for a derivation using the Fermi-Dirac distribution function, whose
results are reproduced in equations 2.57. The Boltzmann equation 2.25 reduces to:

n(p) = n0(p) − τF∇p
(
n(p)

)
= n0(p) − τF∇p

[
(1 + φ)× n0(p)

]

n(p) = n0(p) − τ ×

F (1 + φ)∇p
(
n0(p)

)
︸ ︷︷ ︸
− p
m∗kBT

n0(p)

+n0(p) F∇p (φ)︸ ︷︷ ︸
q(����E∇p(φ)+ p∧B

m∗ ∇p(φ))


n(p) = n0(p) − τ ×

[
−q (1 + φ)

(
E
( pn0(p)

m∗kBT

)
+

����������p ∧B
m∗

( pn0(p)

m∗kBT

))]
+n0(p)q

p ∧B
m∗
∇p (φ)

n(p) = n0(p) − τ ×
[
−q (1 + ��φ)

(
E

pn0(p)

m∗kBT

)
+ n0(p)q

p ∧B
m∗
∇p (φ)

]
(1 + φ)× n0(p) = n0(p) + τ ×

[
q
(
E

pn0(p)

m∗kBT

)
− n0(p)q

p ∧B
m∗
∇p (φ)

]
(2.26)

Where the term E∇p (φ) (second line of equation 2.26) and φ
(
E pn0(p)
m∗kBT

)
(fourth line

of equation 2.26), which are of second order in E, are neglected to keep only the
linear response. On the other hand, the term p∧B

m∗

( pn0(p)
m∗kBT

)
is null since (p ∧B) is

perpendicular to p.

φ

τ
− q

m∗kBT
(Ep) + q

m∗
(p ∧B)∇p (φ) = 0 (2.27)

Introducing the notations ωc = qτ
m∗

and ξ = [1 + ω2
cτ

2]−1, the solution to this equation
and hence the final form of n(p) are :

φ = qτξ

m∗kBT
pE−

(
qτ

m∗

)2 ξ

kBT
E (p ∧B)

n(p) = n0 (1 + φ) ≈ n0 + qτξn0

m∗kBT
(pE)−

(
qτ

m∗

)2 n0ξ

kBT
E (p ∧B) (2.28)

When the electric and magnetic fields are set in the x- and z-direction respectively,
the current flows in the x-y plane. The component of the vector current density is
calculated using the relation ji = q

m∗

∫
(p)
n(p)pid

3p where i ≡ x, y. The first term in
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equation 2.28 does not contribute to the current for symmetry reason. We end up
with :

(2.29a)
jx =

(
q

m∗

)2 1
kBT

∫
p

n0τξ
(
p2
xEx +���pxpyEy

)
d3p

−
(
q

m∗

)3 B

kBT

∫
p

n0τ
2ξ
(
p2
xEy −���pxpyEx

)
d3p

(2.29b)
jy =

(
q

m∗

)2 1
kBT

∫
p

n0τξ
(
���pxpyEx + p2

yEy
)
d3p

−
(
q

m∗

)3 B

kBT

∫
p

n0τ
2ξ
(
���pxpyEy − p2

yEx
)
d3p

where the cross-terms pxpy yield no contribution to the integral for symmetry reasons.
Comparing equations 2.29 and 2.15, we derive an expression for the components of
the 2D conductivity tensor :

σxx = 1
3kBT

(
q

m∗

)2 ∫
(p)

p2n0τξd
3p (2.30)

σxy = B

3kBT

(
q

m∗

)3 ∫
(p)

p2n0τ
2ξd3p (2.31)

σyx = − B

3kBT

(
q

m∗

)3 ∫
(p)

p2n0τ
2ξd3p (2.32)

σyy = 1
3kBT

(
q

m∗

)2 ∫
(p)

p2n0τξd
3p (2.33)

where we used the isotropy of n0, τ and ξ to replace the integral of the components
of momentum by one-third the integral of the modulus of the vector momentum. We
note, in agreement with Onsager’s relations, that σxx(B) = σyy(−B) and σxy(B) =
−σyx(−B). When the mean scattering time is independent of energy, the energy
equipartition theorem

∫
1

2m∗ p2.n0(p)d
3p∫

n0(p)d3p
= 3

2kBT can be used to simplify the expressions
of σxx and σxy:

σxx = σ0

1 + ω2
cτ

2 (2.34)

σxy = σ0ωcτ

1 + ω2
cτ

2 ≡ σxxωcτ (2.35)
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where
∫
n0(p)d

3p = n0 and σ0 = n0q2τ
m∗

is the zero-magnetic field conductivity. We end
up with the same equations 2.15 provided by the Drude model. As stated earlier, the
magneto-resistance does not depend on the magnetic field, which is at odd with most
experimental observations where a quadratic behavior is observed for small enough
magnetic field. This apparent contradiction is solved by introducing an energy-
dependent scattering time τ(p) for the mean values for the quantities of interests in
equation 2.33. We define 〈X〉 =

∫
X(p).p2.n0(p)d

3p∫
p2.n0(p)d3p

where X(p) = τ(p)ξ(p) or τ 2
(p)ξ(p). Us-

ing once again the energy equipartition theorem (the denominator of the last equation
can be replaced by 3

2kBTn0) and the components of the conductivity tensor are:

(2.36a)

σxx = 1
3kBT

(
q

m∗

)2
×
∫

(p)

p2n0(p)τ(p)ξ(p)d
3p

= 1
3kBT

(
q

m∗

)2
× 〈τξ〉

∫
(p)

p2n0(p)d
3p

= 2m∗
3kBT

(
q

m∗

)2
× 〈τξ〉 × 3

2kBTn0

= q2n0 〈τξ〉
m∗

(2.36b)

σxy = B

3kBT

(
q

m∗

)3
×
∫

(p)

p2n0(p)τ
2
(p)ξ(p)d

3p

= B

3kBT

(
q

m∗

)3
× 〈τ 2ξ〉

∫
(p)

p2n0(p)d
3p

= 2m∗B
3kBT

(
q

m∗

)3
× 〈τ 2ξ〉 × 3

2kBTn0

= Bq3n0 〈τ 2ξ〉
m∗2

When the sample is within the Hall geometry, the current is forced to flow in the
x-direction while the Hall and longitudinal voltages are measured along the y- and
x-direction, respectively. Setting jy = 0 in equation 2.15, we end up with Ey = σxy

σxx
.Ex

which, together with jx = σL(B)Ex, provides σL(B) = σ2
xx+σ2

xy

σxx
= σ0

〈τξ〉
τ

[
1 +

(
qB
m∗
〈τ2ξ〉
〈τξ〉

)2]
.

The longitudinal magneto-conductance and hence the longitudinal magneto-resistance
ρL ≡ ρxx = 1/σL are now magnetic field dependent.
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2.2 Transport phenomena in quantizing Magnetic
When the magnetic field is strong enough (µ.B = ωc.τ > 1), the charge carrier can
complete at least one complete cyclotron orbit before being scattered. Such a cir-
cular motion resembles the classical trajectory of an electron bound to its positively
charged nucleus in the hydrogen atom. This problem was first tackled by N. Bohr
in 1913 who, based on heuristic arguments, found that the kinetic moment L of the
electron is quantized by units of the Planck constant. An alternative and more nat-
ural explanation was proposed after De Broglie introduced the particle wave duality
in 1923, as the circular electron orbit must be an integer number of the quantum
wavelength λ = 2π

k
= h

p
.

Figure 2.7: Semi-classical model of a
charged particle in a magnetic field. The
wave-function is a quasi-plane wave de-
fined by k spreading along a circular tra-
jectory of length L. The wave-function
cannot be multiply defined, thus imposing
the condition kL = 2πN.

Indeed, in such a semi-classical description, this constraint is imposed in closed loop
trajectories since the electron wave-function cannot be multiply-defined (e.g. have
different phase) at any given positions. Classically, a charged particle of effective
mass m∗ and charge q has a circular motion in the presence of an external magnetic
field with constant pulsation ωc = eB/m∗. We note r the radius and v = rωc the
constant velocity. The elementary quantum phase acquired as the charged particle
travels along its orbit is dϕ = d (kr) where ~k = m∗v− qA. We compute:

2πn =
∫
circ

dϕ =
∫
circ

kd` = 1
~

∫
circ

m∗vθ̂rdθθ̂ − qAd`

2πn = 1
~

2π∫
0

m∗r2ωcdθ + 1
~

∫∫
S

−q∇ (A)dS = 1
~

[
2πm∗r2 eB

m∗
− qBπr2

]
2π~n = πr2qB ⇔ r =

√
2n`B

where `B =
√

~
eB

is the magnetic length. For a given energy (or momentum), the
interference of the electron wave-function along its orbit is constructive when the
radius scales as

√
2n × `B, and destructive for any other radius. In other words,

a charge makes a circular motion at pulsation ωc only for particular values of the
radius. Using the relation εc = 1

2m
∗v2 = 1

2Lωc, we find that the kinetic energy is also
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2.2 Transport phenomena in quantizing Magnetic

quantized in units of ~ωc. Although this heuristic model predicts the quantization of
the cyclotron radius and the kinetic energy of a free charged particle in the presence
of a magnetic field, the correct interpretation requires a full quantum mechanical
treatment detailed in sections 2.2.1 and 2.2.2, leading to the Landau levels spectrum.
Next, we will discuss the Landau levels’ implication in transport measurement in
section 2.2.3, and in particular the oscillations of the magneto-resistance also referred
to as the Shubnikov-de Haas oscillations. In section 2.2.4, we introduce the spin of
the charge carriers leading to another energy scale (Zeeman energy) which competes
with the energy of the Landau levels. Finally, we will review how to extract the
carrier density and effective mass of the charge carriers using the Lifshitz-Kosevitch
equation in the last section 2.2.5.

2.2.1 Landau levels
Let us consider a three-dimensional gas of charged particles with a magnetic field
B = rot (A) oriented along the direction [Oz]. We shall use the Landau gauge for
the vector potential, so that Ax = −By, Ay = 0 and Az = 0. The sample has finite
dimensions in all directions, even though the length is often much longer than the
width and the thickness in the bar configuration. We therefore introduce a potential
V(y,z) = V ′(y) + V ′′(z) to take into account the finite lateral dimensions of the bar, while
the electrons are not confined in the x-direction. The Schrödinger equation is:

(
−i~ ∂

∂x
− qBy

)2

2m∗ − ~2

2m∗

(
∂2

∂y2 + ∂2

∂z2

)
+ V(y,z)

Ψ(x,y,z) = ε×Ψ(x,y,z) (2.37)

The bracket term is the Hamiltonian which contains the kinetic and magnetic field
energy of the charged particles through the Peierls substitution of the classical mo-
mentum p→ p + q.A. We recall that the kinetic momentum operator is p = −i~∇.
We expand equation 2.37 which writes:

(2.38)
[
− ~2

2m∗
∂2

∂x2 + 2i~qBy
2m∗

∂

∂x
+ (qBy)2

2m∗ −
~2

2m∗
∂2

∂y2 −
~2

2m∗
∂2

∂z2 +V ′(y) +V ′′(z)

]
.Ψ(x,y,z)

= ε×Ψ(x,y,z)

We are looking for a solution of the Schrödinger equation (wave-function) in the
form Ψ(x,y,z) = φ(x) × η(y) × ξ(z). Such a a “test wave-function” is first motivated
by noticing that no potential energy is affected to the x-direction. Despite the fact
that the Hamiltonian couples the operators ∂/∂x and y, both of them commute with
the kinetic momentum px. Therefore, we expect φ(x) to take the form of a plane
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wave (free particle). Second, we notice that all terms involving the z-direction are
independent in the Schrödinger equation, which can therefore be broken into two
separate equations:[
− ~2

2m∗
∂2

∂x2 + i~qBy
2

∂

∂x
+ (qBy)2

2m∗ −
~2

2m∗
∂2

∂y2 + V ′(y)

]
φ(x) × η(y) = ε(x,y) × φ(x) × η(y)

(2.39)[
− ~2

2m∗
∂2

∂z2 + V ′′(z)

]
ξ(z) = ε(z) × ξ(z) (2.40)

As expected, the second line is the standard one-dimensional Schrödinger equation
for a particle moving in a potential well V ′′(z). This equation will be dropped off in
order to focus on the two dimensional wave-function φ(x) × η(y) governed by the first
equation. If the gas of charged particle is not confined in the z-direction (V ′′(z) ≡ 0), the
kinetic energy ~2.k2

z/2m∗ should simply add to the total energy eigenvalues. Setting
φ(x) = 1√

Lx
eikxx (plane wave in the x-direction) and assuming V ′(y) = 1

2 .m
∗.ω0.y

2, the
Schrödinger equation simplifies to:

ε(kx,y) × η(kx,y) =
 ~2

2m∗
∂2

∂y2 + 1
2 .~.ωc

(
y − ~.kx

q.B

)2

+ 1
2m

∗ω0y
2

 η(kx,y)

=
[
~2

2m∗
∂2

∂y2 + 1
2m

∗
(
α2 × (y − yk)2 + β

)]
η(kx,y) = E(kx,y) × η(kx,y)

(2.41)

where we introduced the cyclotron frequency ωc = qB/m∗. The choice of harmonic
confinement potential in the y-direction is justified only because it allows analyti-
cal solutions. Indeed, equation 2.41 takes the form to the 1D-Schrödinger equation
for a particle confined in an effective harmonic potential of strength α2 = ω2

c + ω2
0

centered at coordinate yk =
(
ω2
c
~kx
qB

)
/(ω2

c + ω2
0). The additional term 1/2m∗β =

1/2m∗
[(

~kx
m∗

)2
× ω2

0
ω2

0+ω2
c

]
is a constant with respect to the y-differential equation, and

will add simply to the energy eigenvalues. We note that the wavefunction and eigen-
energies for the y-component of the wave-function depends now both on y and kx
as

ηN(kx,y) ∝ exp
−1

2
m∗
√
ω2
c + ω2

0

~
(y − yk)2

×H
N [
√

m∗α
~ (y−yk)] (2.42)

εN(kx,y) = ~
√
ω2
c + ω2

0

(
N + 1

2

)
+ ~2k2

x

2m∗
ω2

0
ω2

0 + ω2
c

(2.43)
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where N is an integer and HN is the Hermite polynomial of the Nth order. In the
absence of confining potential in the y-direction (ω0 ≡ 0), the eigen-energies are εN =(
N + 1

2

)
~ωc so that the kinetic energy is quantized in units of ~ωc, as anticipated

using the semi-classical model for high enough energy quantum states. Quantum
states with small kx wave-vector (in other words far from the edges of the sample
since yk ∼ kx) are localized and do not contribute much to the transport properties.
On the other hand, quantum states close to the edges have a large group velocity
(vg = 1/~.∂E/∂kx) and contribute to the conductance. These quantum states are
referred to “chiral edge states” since the group velocity is opposite at opposite edges
of the sample.
Let us specify the length and width of the 2D system with Lx and Ly, respectively.
Since the system is quasi-infinite in the x-direction, the energy does not depend on
kx. In other words, many quantum states with wave-vector allowed by the condition
kxLx = 2πn have the same energy. When the magnetic confinement is larger than the
geometrical confinement, we note that yk ≈ ~kx

qB
so that the width of a quantum state

defined by the wave-vector kx is δyk ≈ ~.δkx
q.B

. Clearly, the ratio between the sample’s
width to the width occupied by one quantum state defines the number of quantum
states allowed per unit energy for the whole sample. The density of states at energy
εN is derived by computing the number of quantum states allowed per unit energy
per surface as follows:

gL(εN ) = 1
S

Ly
δyk

= 1
LxLy

Ly
qB

~δkx
= qB

~Lx
Lx
2π = qB

h
(2.44)

The density of states is proportional to magnetic field and does not depend on the
index N . These states are commonly referred to “Landau levels” at energy εN =
~.ωc (N + 1/2) with orbital degeneracy gL = q.B/h. The degeneracy of Landau levels
is increased to gs.gL for electron gas where gs = 2 stands for the spin degeneracy.
We finish this section by introducing the filling factor ν(B) which counts how many
Landau levels are occupied in a system with carrier density n. In other words, the
filling factor is the ratio of the carrier density to the Landau level degeneracy which
takes the simple form:

ν(B) = n

gsgL
= nh

gsqB
(2.45)

Considering a constant Fermi energy (this approximation is valid for large filling
factors only), the density of states of the conduction electrons will be large each time
the energy of the Landau levels crosses the Fermi energy, that is when the filling factor
is half integer. The magneto-resistivity of the systems, which depends in a complicate
manner to the density of states at the Fermi energy when disorder is introduced, will
therefore reflects the quantization of the system’s energy into Landau levels and will
oscillate with filling factor in a 1/B-periodic fashion.
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Figure 2.8: (a) The corresponding density of states Density of states (DOS) for a free
2DEG perpendicular to the magnetic field without disorder. (b) Energy levels for electrons
under a magnetic field. The slope depends on the quantum number N . At a fixed electron
density the Fermi energy (red dashes) oscillates as a function of the filling factor.

2.2.2 Landau levels broadening
Impurities and defects in the crystal are always present and act as a source of scat-
tering for the charged carriers. As a consequence, the lifetime of a quantum state
is limited and is referred to as τq: the mean quantum lifetime. Its physical inter-
pretation is similar to the Drude mean scattering time, although the latter includes
a cosine dependence of the scattering angle when multiplied by the raw scattering
probability in order to put more weight on back-scattering events. Depending on the
nature of scattering (e.g. range of interaction with scatterers), the quantum lifetime
can be one order of magnitude shorter than its Drude counterpart. When disorder
is introduced, the delta function density of states of the ideal Landau level (equation
2.44) is broadened as shown in figure 6.8. Let us assume that lifetime broadening
leads to a Lorentzian density of states

DoS2D
(ε) = gLgs

1
π

∑
N=0

~
2τq

(ε− εN)2 +
(

~
2τq

)2 (2.46)

where 1/τq is the mean scattering rate and ~/τq is the energy broadening according
to time-energy uncertainty relation. A difficulty arises by noting that the mean
scattering rate is not constant under magnetic field, but actually depends on the
density of states at the Fermi energy. Considering short-range scatterers, first order
perturbation theory [65] yields 1/τq(ε) = (2π/~)niv̄2DoS2D

(ε) where ni is the areal
density of scatterers and v̄2 is an angle and impurity ensemble averaged squared
scattering matrix element. Inserting this expression into equation 2.46 yields the
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elliptic density of states which now depends only on energy:

DoS2D
(ε) = nLns

πΓ

+∞∑
N=0

[
1−

(
ε− εN

ΓN

)2
]1/2

(2.47)

where Γ =
√

1
2π~ωc

~
τq(0)

and τq(0) is the zero-magnetic field quantum lifetime. This

expression for Γ is valid only if the magnetic length is such that `B (2N + 1)1/2 > d
where d is the range of the scattering potential. This model predicts that Landau
level broadening is independent on the index N and scales with the square-root of
the magnetic field. However, it fails to reproduce the tail of the Landau levels since
DoS2D

(ε) = 0 for |ε− εN |> Γ. An alternative description [109] of the broadened density
of states considers a Gaussian function:

Dos2D
(ε) = gL.gs.

√
2
πΓ2

+∞∑
N=0

exp
(
−2 (ε− εN)2

Γ2

)
(2.48)

If the scattering rate (1/τq) is sufficiently large, the Landau levels merge into one
another and the oscillatory behavior observed in Shubnikov-de Haas measurements is
damped. Meanwhile, such oscillations will be observed only if distinct Landau levels
exist, which implies that the broadening ~/τq should be less than the Landau level
spacing ε(N) − ε(N−1) = ~ωc.

Figure 2.9: (a) The individual landau levels are broadened due to the presence of charged
scatterers causing potential fluctuations in the sample. (b) The sum of broadened Landau
levels defines the density of states. The modulation of the density of states induced by the
magnetic field can be experimentally detected if the individual Landau levels are sufficiently
separated. Adapted from [65, 70].
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2.2.3 Shubnikov-de Haas oscillations

Under magnetic field, the density of states can be approximated as the sum of individ-
ual broadened Landau levels centered at energy εn = ~ωc (n+ 1/2). We will assume
a Lorentzian broadening so that each Landau level contributes to the total density of
states a quantity gL.L (ε− εn) where gL is the orbital Landau level degeneracy (see
equation 2.44) and L is a Lorentzian function of HWFM equals to ~/τq. The density
of states reads:

DoS(ε,B) = gsgL
∑
n

L(ε−εn) (2.49)

The sum over several Lorentzian fonctions peaked at different energies leads to an
oscillatory behavior, which is better visualized by rewriting the density of states using
Poisson’s summation formula (

∞∑
n=0

f(n+1/2) =
∞∫
0
f(x)dx+2

∞∑
s=1

(−1)s
∞∫
0
f(x) cos(2πxs)dx):

DoS2D
(ε,B) = gsgL

∑
n

L(ε−~ωc(n+ 1
2)) (2.50)

DoS2D
(ε,B) = gsgL ×

 ∞∫
0

L(ε− ~ωcx)dx+ 2
∞∑
s=1

(−1)s
∞∫
0

L(ε− ~ωcx) cos(2πxs)dx


(2.51)

DOS2D
(ε,B) = gsgL

~ωc

 ε∫
−∞

L(ξ)dξ + 2
∞∑
s=1

(−1)s
ε∫

−∞

L(ξ) cos
(

2π(ε− ξ)s
~ωc

)
dξ

 (2.52)

where we changed the variable ξ = ε − ~ωcx from the second to the third equation.
When the energy is much higher than the typical Landau level width ~/τq, the upper
bound of the integral may be replaced by +∞. We remind gL = qB/h and ωc =
qB/m∗ so that the prefactor of equation 2.52 simplifies to m∗/π~2 (for gs = 2) which
is equal to the two dimensional density of states for a free electron gas. Besides, the
first term in bracket reduces to 1 since it corresponds to the total area enclosed by a
Lorentzian function. We end up with:

DoS2D
(E,B) = m∗

π~2

[
1 + ∆D

D

]
where ∆D

D
= 2

∞∑
s=1

(−1)s
E∫

−∞

L(ξ) cos
(

2π(ε− ξ)s
~ωc

)
dξ

(2.53)
is the unit-less oscillatory part of the density of states. The term ∆D/D can be
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alternatively written:

∆D
D

= 2
∞∑
s=1

(−1)s

cos
(2πεs
~ωc

) ∞∫
−∞

L(ξ) cos
(

2πξs
~ωc

)
dξ + sin

(2πεs
~ωc

) ∞∫
−∞

L(ξ) sin
(

2πξs
~ωc

)
dξ

︸ ︷︷ ︸
=0 if L(ξ)=L(−ξ)


= 2

∞∑
s=1

(−1)s cos
(2πεs
~ωc

) ∞∫
−∞

L(ξ) cos
(

2πξs
~ωc

)
dξ = 2

∞∑
s=1

(−1)s cos
(2πεs
~ωc

)
× L̃

(2πs
~ωc

)

= 2
∞∑
s=1

(−1)s cos
(2πεs
~.ωc

)
× exp

(
−πs
ωcτq

)
(2.54)

The second integral of the first equation vanishes for symmetry reasons if the Landau
levels are identically broadened on both sides of εn while the first integral corresponds
to the cosine Fourier transform of the Lorentzian function noted L̃

(
2πs
~ωc

)
. This Fourier

transform, which can be alternatively written exp
(
−πs
ωc.τq

)
, is known as the Dingle fac-

tor and accounts for the effect of the finite Landau level width on the density of states
oscillations. When the magnetic field increases, the amplitude of the modulation of
the density of states increases exponentially.
We would like now to move one step forward and compute the magneto-resistance
tensor from the above established low-field density of states. Looking back to the
transport equations provided in sections 2.1.4 and 2.1.3, only the mean scattering
time can have a connection with the density of states. This relation is very complex
to establish and is out of the scope of this thesis. Instead, we hypothesize from heuris-
tic arguments that the energy-dependent scattering rate 1/τ(ε) is proportional to the
density of states. In other words, an electron at the Fermi energy is likely to scatter
when there are many unoccupied quantum states with close energy. We write:

1
τ(ε)

= 1
τ0(ε)

(
1 + ∆D

D

)
so that τ(ε) = τ0(ε)

(
1− ∆D

D

)
(2.55)

where 1/τ0(ε) is the zero-magnetic-field scattering rate. We now insert this expression
of τ(ε) into the components of the conductivity tensor established using the Boltzmann
equation with the Fermi-Dirac distribution function [65]

σxx(ε) =
∫ (
−∂f0(ε)

∂ε

)
× 1
m∗

nq2τ(ε)

1 + ω2
cτ

2
(ε)
× dε (2.56)

σxy(ε) =
∫ (
−∂f0(ε)

∂ε

)
× 1
m∗

nq2ωcτ
2
(ε)

1 + ω2
cτ

2
(ε)
× dε (2.57)
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and we keep only the linear terms in ∆D/D. Neglecting the energy dependence of
τ0(ε) we end up with

σxx(ε) =
∫ (
−∂f0(ε)

∂ε

)
× 1
m∗

nq2τ0

1 + ω2
cτ

2
0

[
1− 1− ω2

cτ
2
0

1 + ω2
cτ

2
0

∆D
D

]
× dε (2.58)

σxy(ε) =
∫ (
−∂f0(ε)

∂ε

)
× 1
m∗

nq2ωcτ
2
0

1 + ω2
cτ

2
0

[
1− 2

1 + ω2
cτ

2
0

∆D
D

]
× dε (2.59)

where the main mathematical difficulty is to evaluate the expression
+∞∫
−∞

(
−∂f0(ε)

∂ε

)
×

cos
(2πεs
~ωc

)
dε (we remind that ∆D/D is a cosine function of the energy according to

equation 2.54). Using the formula

+∞∫
−∞

(
−∂f0(ε)

∂ε

)
× cos

(2πεs
~ωc

)
dε = 1

2 cos
(2πεs
~ωc

)
×

+∞∫
−∞

cos
(

4πskBT
~ωc x

)
cosh (x) dx (2.60)

= −
2π2skBT

~ωc

sinh
(

2π2skBT
~ωc

) × cos
(2πsεF

~ωc

)
(2.61)

we obtain the final expressions for the component of the conductivity tensor :

(2.62a)
σxx = 1

m∗
n.q2τ0

1 + ω2
cτ

2
0

1−
∞∑
s=1

(−1)s × 21− ω2
cτ

2
0

1 + ω2
cτ

2
0
× exp

(
−πs
ωcτq

)

×
2π2skBT

~ωc

sinh
(

2π2skBT
~ωc

) × cos
(

2πhns
2qB

)

(2.62b)
σxy = 1

m∗
nq2ωcτ

2
0

1 + ω2
cτ

2
0

1−
∞∑
s=1

(−1)s × 4
1 + ω2

cτ
2
0
× exp

(
−πs
ωcτq

)

×
2π2skBT

~ωc

sinh
(

2π2skBT
~ωc

) × cos
(

2πhns
2qB

)

We remind, here, that τ0 is the mean scattering time at zero magnetic field (which we
assumed independent of energy), while τq is the lifetime of the quantum states. By
inverting the conductivity tensor and keeping only the linear terms in ∆D/D, one can
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recover the expression of the longitudinal resistivity named after the Lifshitz-Kosevich
formula:

ρL = ρxx = m∗

nq2τ0

1 +
∞∑
s=1

(−1)s × 2 exp
(
−πs
ωcτq

)
×

2π2skBT
~ωc

sinh
(

2π2skBT
~ωc

) × cos
(

2πhns
2qB

)
(2.63)

The longitudinal resistivity is composed of two terms. The first one is constant and
corresponds to the expression of the resistivity established within to the Drude model
(see equation 6.8). The second term is an oscillation function with respect to the
inverse of the magnetic field. The oscillation frequency of the first harmonic (s=1)
f = hn/2q is proportional to the carrier density as well as the spin degeneracy (the
factor 2 in the denominator). As anticipated using the Einstein relation for conduc-
tivity σE = DoS2Dq2D(τ), where D is the diffusion coefficient which depends on the
mean scattering time, the conductivity and hence the resistivity show minima when
the Fermi energy lies at minima of the density of states. The Dingle factor accounts
for the finite lifetime broadening of the Landau levels and is responsible for the ex-
ponential increase of the amplitude of the oscillations as the magnetic field increases.
The term X/sinh (X) corresponds to the thermal broadening which tends to reduce
the amplitude of the oscillations as a result of energy averaging over kBT around the
Fermi energy. The Lifschitz-Kosevich formula is valid only for small magnetic field,
where the ridge of the density of states display a series of maxima and minima cor-
responding to the onset of Landau levels made of extended states only. We end this
section by remarking that the resistivity ρxy (not computed here) does not have an
oscillatory behaviour. This statement is valid only for long-range scattering poten-
tials within approximation 2.55. In the case of short-range scatterers, an oscillating
contribution to ρxy appears. In some experimental realizations, the longitudinal re-
sistivity shows weak oscillations on top a large background (consider, for instance,
the results established in section 2.1.4) so that they are hardly exploitable. On the
other hand, the same oscillations can be better extracted for the weak and linear Hall
resistivity background.

2.2.4 Zeeman energy
In the presence of a magnetic field, the energy spectrum of a free electron gas within
the effective mass approximation is quantized into Landau levels as shown in section
2.2.1. However, because the charge carriers (electrons or holes) have a spin of 1/2,
an extra energy term arises coined the Zeeman energy:

εZ = gµBσB (2.64)

where µB = q~/2m is the Bohr magneton which links the kinetic orbital moment to
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the magnetic moment via the factor g . In the case of spin σ = ±1/2 particles such as
electrons or holes in a crystal, the factor is named after the Landé factor computed
from gs and gL, the spin and orbital contributions respectively. We have gL=1 while
gs ≈ 2 according to the Dirac theory of electron. In solid states physics, the quan-
tum states for the charge carriers can be seen as a linear combination of the atomic
orbitals from which the band-structure is derived using the Bloch theorem. Thanks
to the Wigner-Eckart theorem, a proportionality relation between the magnetic mo-
ment and the total angular momentum holds, but the general factor is replaced by an
effective Landé factor g? encoded in the band-structure of the material. An analogy
can be put forward in atomic physics where the Landé factor is not the simple sum
of gs and gL, but involves the total spin angular momentum and the orbital angular
momentum of the atom. The rules of angular momentum coupling and the different
g-factors for orbital and spin parts involve a non-trivial relation between these quan-
tities. However, the magnetic moment µ = g.µB.J remains proportional to the total
angular momentum J provided an effective g-factor is included in this relation.
In addition, the effective Landé factor is further modified by electron-electron interac-
tions and exchange. Therefore, the experimental determination of the effective Landé
factor constitutes a unique probe to address the strength of electronic interactions
in various materials. Considering equation 2.64, the energy of the Landau levels are
εN = ~ωc (N + 1/2) ± 1

2g
?µBB. The introduction of the Zeeman energy affects the

1/B-periodicity and the amplitude of the Shubnikov-de Haas oscillations, as a result
of the superposition of two 1/B-periodic oscillating phenomena with a priori differ-
ent frequencies and phases. For high enough magnetic field (EZ > Γ), this effect
leads usually in conventional semi-conductor to a frequency doubling. Actually, when
analyzing the magneto-resistance fingerprints alone, the experimental extraction of
the Zeeman energy is not straightforward and cannot be determined with precision
without a dedicated theoretical model. On the other hand, this parameter can be
measured accurately by tilting the magnetic field orientation with respect to the sam-
ple plane using the so-called “coincidence angle method”. Indeed, the energy of the
Landau levels, related to the kinetic energy of the charged particles, depends on the
perpendicular projection of the magnetic field B⊥ with respect to the 2D plane. On
the other hand, the Zeeman energy relates to the total magnetic field B. When the
direction of the magnetic field makes an angle θ with respect to the normal to the
sample plane, the charged particle energy writes:

εN = ~qB⊥
m∗

(
N + 1

2

)
± 1

2g
∗µBB =

[
~q cos (θ)

m∗

(
N + 1

2

)
± 1

2g
∗µB

]
×B (2.65)

When the angle θ is set so that N ′~q cos(θ)
m∗

= g∗µB where N ′ 6= 0 is an integer, equation
2.65 can be factorized in the form εN,N ′ = ~ω⊥c (N + 1/2(1±N ′)) ≡ ~ω⊥c N . This
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equation yields similar Landau level energy separation as is the Zeeman contribution
was absent, leading to unperturbed 1/B-periodic Shubnikov-de Haas oscillations. Un-
der this condition, the angle θ is coined “cöıcidence angle” and corresponds to the
constructive superposition of two 1/B-periodic oscillating magneto-resistance phe-
nomena. Once the minimum coincidence angle θc is experimentally found for N ′ = 1,
the effective Landé factor writes:

g∗ = ~q cos (θc)
µBm∗

= 2m
m∗

cos (θc) (2.66)

2.2.5 Standard analysis of the Shubnikov-de Haas oscilla-
tions

The Shubnikov-de Haas oscillations constitute a unique fingerprint of the associated
studied material. The 1/B-periodic behaviour provides a direct access to the carrier
density provided the quantum lifetime is large enough. The carrier density extracted
from the Hall effect, on the other hand, is sensitive to all the conduction charge carriers
whatever their band mobility. This is the reason why, in some complex multi-band
systems, the Hall carrier density is larger than its Shubnikov-de Haas counterpart.
Beyond the carrier density, the quantum life time τq and the effective mass m∗ can be
extracted. When the experiment is repeated for various orientation of the magnetic
field with respect to its crystallographic axis, one is able to determine the Fermi
surface of the material.
Based on equation 6.11 and considering only the first harmonic (s = 1), the maxima of
the magneto-resistance occur when the argument of the cosine function is minimum,
providing the condition 2πhn

gsqB
= π+2πN where N is an integer. When plotted against

1/B, the magneto-resistance oscillates with a frequency ω = hn/2πgsq, giving access
to the carrier density. we can rewrite this condition with an explicit dependence on
1/B:

N = hn

gsq
×
( 1
B

)
− 1

2 (2.67)

δN = hn

gsq
×
(

1
B(N)

− 1
B(N−1)

)
(2.68)

Traditionally, one indexes the maxima of the magneto-resistance with successive in-
teger N and plot them as a function of their corresponding 1/B value as shown in
figure 2.10. The plot necessarily defines a straight line where the slope equals hn

gsq

from which the carrier density can be extracted. The absolute value of the N indices
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can be determined by making sure that N = −1/2 when 1/B = 0, in other words
when the Fermi energy is aligned with the zeroth-index Landau level (with infinite
degeneracy) for infinite magnetic field.

Figure 2.10: (a) Magnetoconductivity oscillations as a function of the inverse of the
magnetic field for Sb2Te2Se single crystal.(b) Landau levels index for the minima and the
maxima of the magnetocondiuctivity. The linear extrapolation of the points crosses the
point with the coordinates (H−1 = 0, N = 0.5) [71]

Beyond the carrier density, both the effective mass m∗ and the quantum lifetime
τq can be extracted from the measurement of the temperature dependence of the
Shubnikov-de Haas oscillations. Indeed, for a given magnetic field, the logarithms
of the the amplitude (A = ρxx(N) − ρxx(N − 1/2)) of the oscillation in the vicinity
of a given magnetic field BN , divided by the temperature simplify greatly using the
approximation ln(sinh x) ∼ x when x << 1

ln
(
A

T

)
= ln

 m∗

nq2τ0
× 2 exp

(
−π
ωcτq

)
×

2π2kB
~ωc

sinh
(

2π2kBT
~ωc

)
 (2.69)

ln
(
A

T

)
= ln

[
2m∗
nq2τ0

]
+ ln

[
exp

(
−π
ωcτq

)]
+ ln

[
2π2kB
~ωc

]
︸ ︷︷ ︸

C1

− ln
[
sinh

(
2π2kBT

~ωc

)]

(2.70)

ln
(
A

T

)
≈ C1 −

2π2kBT

~ωc
(2.71)

where C1 is independent of the temperature. Thus, by plotting ln(A/T ) against
temperature, one obtains a straight line with a slope given by 2π2kBm

∗/q.BN .~, from
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which the effective mass can be extracted. Once m∗ is known, the broadening of the
Landau levels characterized by τq can be determined by measuring the amplitude of
ρxx oscillations as a function of the magnetic field, at a given temperature. For this
purpose, we compute the quantity A × BN × sinh

(
2π2kBm

∗T
qBN~

)
for several magnetic

field BN before applying the logarithm:

A×BN × sinh
(

2π2kBm
∗T

qBN~

)
=
(
m∗

nq2τ0
× 2 exp

(
−π
ωcτq

)
× 2π2kBm

∗T

q~

)
(2.72)

ln
[
A×BN × sinh

(
2π2kBm

∗T

qBN~

)]
= C2 −

π

ωcτq
= C2 −

m∗π

qBNτq
(2.73)

The plot of ln
[
A×BN × sinh

(
2π2kBm

∗T
qBN~

)]
versus B−1

N , known as the Dingle plot, pro-
vides a straight line with slope πm∗/qτq from which the quantum lifetime (broadening
of the Landau levels) can be extracted.

43



44



Chapter 3

Experimental techniques
Contents

3.1 Device fabrication and electrical characterization . . . . . . . . . 45
3.1.1 From 3D to 2D transition metal dichalcogenides . . . . . . 45
3.1.2 Device processing . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Thickness determination . . . . . . . . . . . . . . . . . . . 55
3.1.4 Electrical characterisation . . . . . . . . . . . . . . . . . . 59

3.2 Measurements in pulsed magnetic field and low temperature . . 65
3.2.1 Pulsed magnetic field generation . . . . . . . . . . . . . . . 65
3.2.2 Cryogenics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.3 Insert and sample holder . . . . . . . . . . . . . . . . . . . 67
3.2.4 Data acquisition and induced voltage removal . . . . . . . 68

3.1 Device fabrication and electrical characteriza-
tion

3.1.1 From 3D to 2D transition metal dichalcogenides
Thin flakes of TMDCs can be fabricated using two approaches. The top-down ap-
proach consists of thinning a bulk material down to a few atomic layers only. For
exfoliable materials such as WSe2, this hand-made technique is cheap and easy but
requires long experience and special know-how. It produces high-quality 2D-systems
(depending on the quality of the mother bulk crystal) with an overall size limited to
a few tens of micrometers in length and width. On the other hand, the bottom-up
approach consists in fabricating the desired material from its initial building blocks
(e.g. atoms or molecules). The dedicated techniques for TMDCs are the Chemical
Vapour Deposition (CVD) and the Molecular Beam Epitaxy (MBE) [76, 77]. The
work in this thesis is only focused on the fabrication technique using the top-down
approach.

Controlled layer stacking using the dry transfer technique

The objective is to fabricate a structure with a monolayer WSe2 flake deposited on top
of a larger hexagonal boron nitride (h-BN) flake. This system must be connected to
several metallic electrodes for electrical transport measurements. Alternative systems
where the WSe2 monolayer is sandwiched between two larger h-BN flakes display much
higher quality in terms of electronic mobility, but the electrical addressing process
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remains technologically very challenging. h-BN is an ideal template for electronics
based on 2D exfoliable materials, owing to its unique properties as a dielectric film
[72]. It consists of alternating boron and nitrogen atoms in a honeycomb lattice
with strong in-plane covalent bonding, while the atomic planes are stacked upon each
other and interact via weak van der Waals forces. Even when thinned down to a few
atomic layers, this material remains a wide band-gap insulator (5.5 − 6 eV ). It is
chemically inert without any dangling bonds or charged traps [58] and stays flat when
deposited on a substrate. Compared to a sample made of WSe2 lying directly on a
silicon oxide substrate, the use of h-BN few layers as a buffer layer (below the WSe2
flake, or both below and above) improves the electronic mobility by several orders
of magnitude for the following reasons: (i) The in-plane lattice parameter of h-BN
(0.25 nm) matches closely the WSe2 one, allowing material stress reduction [103] ; (ii)
When the bottom h-BN flake is fairly thick (∼ 20 nm), it conforms to the underlying
Silicon dioxide (SiO2) substrate and attenuates the height variations at the atomic
scale. The WSe2 flake can, therefore, be deposited on an atomically flat surface ; (iii)
The large h-BN dielectric constant reduces the interaction with trapped charges in
SiO2 substrate. (Where its value in the bulk case εh−BN = 3.8 [78]) and (iv) h-BN
shows remarkable chemical and thermal stability with high impermeability to gas and
liquids [108, 102].

Substrate preparation

First, we deposit h-BN few-layer flakes randomly on a standard Si/SiO2 substrate
with dSiO2=300 nm. For this purpose, we start by cutting a small piece of PDMS
film (Polydimethylsiloxane belongs to a group of polymeric organo-silicon compounds
that are commonly referred to as silicones), purchased from Gel Pak, and we put it
on a microscope glass slide. Next, we exfoliate several times the h-BN commercial
bulk crystal, purchased from hq graphene company with a piece of adhesive tape.
The adhesive tape is pressed gently against the PDMS, and peeled off smoothly.
Some h-BN thin flakes are randomly transferred from the adhesive tape to the PDMS
surface. Finally, we put the PDMS into contact with the Si/SiO2 substrate. The
use of PDMS as an intermediate step allows for a clean transfer of a few h-BN flakes
with different thicknesses and sizes, well isolated from each others, onto the Si/SiO2
substrate. Referring to contrast obtained using optical microscope (Huvitz HRM300-
model) with 100x objective, we search for the most ideal h-BN thin flakes transferred
into the substrate in terms of lateral size, flatness, thickness (maximum 30 nm )
and surrounding free space. Figure 3.1 shows different h-BN flakes using this process.
Usually, the color of the flake gives an idea about the thickness which varies from blue
to green, yellow and reddish. When necessary, AFM measurements are performed to
determine precisely the thickness.
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Figure 3.1: Optical microscopy photos for different exfoliated h-BN flakes, the thickness
t is determined using AFM

2H-WSe2 exfoliation and precise deposition onto a h-BN flake

Commercial bulk WSe2 crystals purchased from 2D semi-conductor company are pro-
cessed in the same way as detailed earlier. However, a monolayer WSe2 flake is se-
lected right after its deposition on the glass/PDMS system. Later, we shall deposit
this flake exactly on top of the h-BN flake using a set of precision moving stages
purchased from Thorlabs/RB13M/M. This method is referred to as the dry transfer
technique illustrated in figure 6.9. For higher accuracy, the h-BN/SiO2/Si substrate
is itself hold on another precision X-Y stage purchased from Thorlabs/XYR1/M. The
WSe2/PDMS system is aligned with the h-BN/SiO2/Si substrate under the objective
of a microscope. The optical transparency of the PDMS and glass slide allows the
visualization of both the WSe2 and h-BN flakes by paying with the microscope fo-
cus. Once the desired alignment is reached as shown in figure 3.3, the two flakes are
pressed against each other. We note that the optical colors change when the PDMS
stamp touches the Si/SiO2 wafer. Finally, we peel off the stamp slowly in order to
avoid to break the stack. Most of he time, the WSe2 flake detach from the PDMS
and remains stacked on its BN counterpart.

Figure 3.2: Micro-alignment setup and precision movable stage under optical microscope
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Figure 3.3: Different steps for stacking exfoliated h-BN and WSe2 using the dry transfer
technique

3.1.2 Device processing
The samples were fabricated partly at LNCMI for exfoliation and localization ; partly
at the AIME clean room facility of the INSA campus for chemistry processes, elec-
tron beam lithography and dicing and partly at LPCNO for metal evaporation and
sputtering as well as plasma etching. Figure 3.4 represents the flowchart for major
processes, each of them will be described in details.

Figure 3.4: Basic fabrication process of FET based on TMDCs materials

Cleaning of Si/SiO2 substrates

We use p-doped Si/SiO2 square substrates with lateral size 1 cm, having an alpha-
numeric grid performed by standard optical lithography. The thickness of the silicon
oxide is 300 nm. The LAAS laboratory and AIME clean-room facility provide us with
such substrates with a resist protective layer. Most of the resist is removed when
rinsing the substrate in high purity acetone, but a thin film resist usually remains.
At this stage, more sophisticated methods are used to remove the residues starting
from the least to the most aggressive ones to preserve at maximum the oxide layer.
For instance, hot acetone and/or sonication are proven very useful. At last resort, we
use oxygen plasma cleaning method with very low power and very limited exposure
time (1s at 10W Radio Frequency (RF) power).
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e-beam lithography

Most of the time, WSe2 flakes of interest have lateral size of the order of a few
micrometers, and can be localized anywhere on the substrate. Therefore, electron-
beam lithography presents a special interest in making the electrical contacts at the
micro/nano-meter scale. This technique developed in the 1960’s, focuses an electron
beam at the desired place on a substrate. When striking a thin polymethyl methacry-
late (PMMA) resist with an energetic beam of electrons, the long-chain polymers are
fragmented. When the substrate is later plunged in a dissolving solution, the exposed
spots are removed much faster than the pristine (nor exposed) PMMA resist.

Figure 3.5: The resist spinner sys-
tem. The wafer is maintained onto
a chuck with vacuum. The resist is
dispensed at the center of the wafer
just before spinning.

During this work, we used 2 different types of
PMMA resists with different molecular weight
with two different concentrations of solvants
(anisole), namely PMMA-495/A3 and PMMA-
950/A2. The lower molecular weight resist is
more sensitive compared to its high molecular
weigth counterpart, so that it enhances the un-
dercut profile when used a the bottom layer. The
coating was performed using a resist spinner sys-
tem shown in figure 3.5. The recipe depends on
the size of the electrodes. We distinguish the
micro-electrodes, which are connecting directly
the WSe2 flake with high precision, from the
macro-electrodes which spread over a few mm2

and are used for electrical interconnection purposes.

• Micro-electrodes: we start by spin-coating the PMMA-495/A3 with a rotation
speed equal to 2000 rpm. We bake it for 1 minute before deposing another layer
of PMMA-950/A2 with a rotation speed of 3000 rpm. We bake the substrate
again for 1 minute. Finally, we end up with a total PMMA thikness of 180 nm.

• Macro-electrodes: we start by spin-coating the PMMA-495/A8 with a rotation
speed equal to 3000 rpm. We bake it for 1 minute before deposing another layer
of PMMA-950/A2 with a rotation speed of 3000 rpm. We bake the substrate
again for 1 minute. We end up with a total resist thickness of the order of 520
nm.

Since each sample is different from one another, the electron beam lithography process
uses unique drawings for the micro-electrodes. On the other hand, a template was
used for the macro-electrodes. We use AutoCAD and kLayout softwares to design
the electrodes. AutoCAD was used to design and set the macro-electrodes and the
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micro-electrodes into two separate layers in order to facilitate the exposure steps (see
figure 6.10). The alignment marks are drawn on the corners of each working area
for precision electron beam adjustment. The AutoCAD .dwg file format was first
converted into the .dxf format. This file was then imported into klayout software
and later saved in the .GDS format compatible with the electron beam lithography
machine.

Figure 3.6: AutoCAD design for a) macro-electrodes and b) micro-electrodes. c) Hall bar
dimension and typical distance between the micro electrodes

Once the resist is spin-coated and the drawings are ready, the sample is inserted into
a scanning electron microscope upgraded with an electron beam lithography mod-
ule. After a few alignment and focus procedures, the sample is exposed following the
desired drawings where the magnification, the beam current and the area step size
defines the correct electron dose. After exposure, we use a MIBK solution (1:2 solu-
tion of (4-methyl-2-pentanone):(2-propanol)) as a developer for removing the exposed
parts of the PMMA resist. The development process lasts exactly for 30s. Figures
3.7-a & 3.7-b left panels show the micro and macro-electrodes pattern after exposure
and development.

Parameters Micro-
electrodes

Macro-
electrodes

Write field size (µm ) 250 800
Min step size (µm ) 0.0040 0.0130
Beam current (nA) 0.1 6
Area step size (µm) 0.0080 0.0780
Area line spacing (µm) 0.0080 0.0780
Area dwell time (ms) 0.001250 0.002000
Area dose (µC/cm2) 195.315200 197.238659
beam speed (mm/s) 6.4000256 39.0001560

Table 3.1: Pattern parameters for micro and macro-electrodes.

50



3.1 Device fabrication and electrical characterization

Figure 3.7: (a) Optical miscroscope image of micro-electrodes after left: MIBK develop-
ment, right: metalization and lift-off. (b) Optical miscroscope image of macro-electrodes
after left: MIBK development, right: metalization and lift-off.

Metalization and lift-off

Once the PMMA resist has been developed, the sample is ready for metalization. The
metal must satisfy certain conditions such as low electrical resistance, good adhesion
to the top of the surface and non-oxydable. The technique of deposition depends
on the required thickness and suitability for lift-off. For this purpose, we deposit a
metalic bilayer made of platinum (Pt) and gold (Au) for the micro-electrodes, whereas
titanium (Ti) and gold are used for the macro-electrodes.

• Sputtering deposition: this technique consists of dispersing atoms on the sample
originating from a bulk target containing the desired metal which is electrically
grounded and serves as a cathode. Argon gas is introduced into the cham-
ber at low pressure and ionised into positive ions (plasma) with RF frequency
excitation. The ions are accelerated toward the cathode and act as a milling
tool which disperse the metallic atoms to be deposited. This technique allows
uniform and high quality metal films; but is not suited for lift-off unless the
thickness of deposited metal is very small compared to the PMMA thickness.
For the deposition of 10 nm of platinium, the flow of argon gas is 30 sccm
((cm3/min) and the polarization voltage is set to 330V for 2 min and 50 s.
For the deposition of 10 nm of titanium, the argon gas flow is 30 sccm and the
polarization voltage is set to 263V for 7 min and 40s.

• Vacuum evaporation: A metal is heated under vacuum by passing a high current
in a tungsten filament wrapped around. The metal source undergoes a phase
transition from solid to liquid, and then from liquid to gas when the temperature
is further raised. The evaporated atoms form a thin layer on the wafer held as far
as possible from the source to avoid sample heating. The evaporation technique
is directional and fits well the subsequent lift-off process. The gold was used in
this thesis, the thickness of the evaporated gold is 30 nm for micro-electrodes
and around 150 nm for macro-electrodes under a current equal to 250 A, with
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a flux ratio of 0.20 nm/s.

Figure 3.8: (a) Schematic representation for a sputtering process, which encloses the
target, the sample holder, the ionised argon gas and the thickness monitor. (b) Evaporation
source including the evaporation source, a sample holder and a tungsten filament for Joule
heating.

Etching

The etching is a delicate process where numerous parameters have to be properly cal-
ibrated. Several etching techniques can be used such as dry etching, wet etching and
sputter etching. In this thesis, some samples were etch before the fabrication of the
electrodes for obtaining a well-shaped Hall bar geometry. We used the plasma etch-
ing technique represented in figure 3.10. The sample is first covered by PMMA resist
except the parts to be etched which are removed using electron beam lithography.

Figure 3.9: A plasma
etching planar system.
The plasma consists of
oxygen ions accelerated
toward the wafer and
thus impinging the mate-
rial to be etched.
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Figure 3.10: (a) WSe2/h-BN stack before etching. (b) A Hall bar etched device with the
parameter shown in table 3.2. (c) Image of an atomic force microscopy (AFM) for Hall bar
etched device. (d) Etched Hall bar device addressed using classical techniques of e-beam
lithography and metal evaporation.

With the etching parameters mentioned in 3.2, we found out that 90 nm of the resist
was removed. This is usually more than enough to fully remove the unwanted multi-
layer material attached to a WSe2 monolayer flake of interest.

Parameters Values
Plasma gas Argon
Exposure time (min) 8
Power (W) 100
Ar pressure (mTorr) 5
Ar flow (sccm) 31.4
DC bias (V) 460

Table 3.2: Etching parameters.

Full encapsulation and top gating

Some of the samples fabricated during this thesis were fully encapsulated using h-BN
flakes. In other words, a WSe2 flake is sandwiched between two h-BN flakes so that
both sides are protected from its direct environment. In case a metallic electrode is
fabricated on top of the overall structure, so that the top h-BN flake acts as a top-gate
dielectric, one must consider the following criteria for the choice of the top h-BN flake:
(i) it should be large enough to cover all the fabricated electrodes to avoid possible
short circuit (see figure 3.10-b), (ii) its thickness should be of the order of ∼ 20 nm
to provide a gate voltage range between -10V and +10V without breaking. Thicker
flakes may not be compatible with the fabrication of of the gate electrode, since the
step is too high for the continuity of the metal electrodes.
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Figure 3.11: (a) h-BN/WSe2 electrically contacted device. (b) Full encapsulation with
h-BN. (c) Electron beam lithography pattern for the top gate electrode. (d) Top gate
metalization.

After top h-BN deposition, the top-gate electrode (see figures 3.11 c & d) is fabricated
by sputtering a 10 nm of titanium and evaporation of 60 nm of gold.

Dicing and wire bonding

At the beginning of the sample fabrication process, the Si/SiO2 substrate is a square
of 1 cm for the lateral dimensions and 500 µm for the thickness. These dimensions
ensure a large enough area to search for ideal monolayer TMDCs flakes and for the
spin-deposition of resist with homogeneous thickness. It is also easily to manipulate
and fits most of the clean room chuck standards. However, the sample must be
reduced to a square of about 3 mm in size to fit high magnetic field insert (see section
3.2.4). For this purpose, we cover the sample within a layer of PMMA (to protect
the fabricated device) and we us a dicing machine equipped with a highly accurate
blade as illustrated in figure 3.12-a.

Figure 3.12: (a) Left: photograph of dicing machine available at the clean room facility
AIME. Right: Dicing of the wafer with an accurate blade. (b) Photograph of the wire
bonding machine used during this work.

For connecting the macro-electrodes of the sample to a larger connector, we use a wire
bonding machine as shown in figure 3.12-b. A gold wire with a diameter of 10 µm is
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pressed against the sample’s electrode while a pulse of ultra-sounds melts the metal
locally and ensure a good electrical contact. The process is repeated to the connector
pad and then cut. Wire bonding is risky and may damage the SiO2 dielectric if the
parameters are not properly adjusted. The thickness of the metallic electrodes is also
an important criterion for successful wedge-bonding.

3.1.3 Thickness determination

The physical properties of TMDCs are ultimately related to the number and parity of
the layers, as explained in chapter 1. The number of layers can be determined using
several methods such as optical microscopy, atomic force microscopy, photolumines-
cence, Raman spectroscopy and transmission electron microscopy.

Optical microscopy

Optical microscopy constitutes the simplest way to estimate the number of layers,
from 1 to 3 at best. It is a non-destructive method, based on optical constrast, which
is widely used for TMDCs materials.

Figure 3.13: Left:Optical image of MoS2 un-
der white illumination. Right:thickness deter-
mination based on optical contrast and artifi-
cial intelligence. Adapted from [80]

The image contrast between 2D materi-
als and the rest of the substrate under
visible light originates from integrated
contrasts of each wavelength component
[80]. The method can be improved using
a narrow-band illumination and the se-
lection of appropriate substrates [74, 75].
With the emergence of machine learning
algorithms in image analysis, the identi-
fication of 2D materials based on their
number of layers becomes viable [79] as
shown in figure 3.13 with recognition and
topography of a MoS2 exfoliated flake.

55



Chapter 3. Experimental techniques

Figure 3.14: Top: Exfoliated WSe2 flakes with different thicknesses. Middle: thickness
determination using AFM. Bottom: height profile obtained from AFM measurements.

Atomic force microscopy

Atomic force microscopy was used to determine the thickness of 2D materials. The
thickness of a TMDCs monolayer is of the order of 0.7 nm (depending on the na-
ture of the substrate on which it is deposited) which corresponds to the interlayer
distance between X-T-X bonds [81]. The AFM used here is Nano-RTM from Pacific
Nanotechnology, as illustrated in figure 6.11.

Figure 3.15: AFM for thickness deter-
mination with an illustration of the tap-
ping mode.

The imaging mode used is the tapping mode.
Figure 3.14 shows AFM micrographs for dif-
ferent exfoliated flakes of WSe2 with different
thicknesses. For proper measurements, the
scan size was 4 µm with 512 pixels resolu-
tion. The software WSxM was used for im-
age processing. Surface contamination and
water adsorption prevent a reliable determi-
nation of the number of layers. When the
AFM imaging parameters are not properly
set, the tapping mode damages the surface
of the flakes. For this reason, optical spec-
troscopy techniques detailed in the next paragraphs are prefered.
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Photo-luminescence

Photoluminescence (PL) is a very efficient technique to distinguish monolayer TMDCs.
It is sensitive to the indirect to direct bandgap transition in monolayer TMDCs [82].

Figure 3.16: Room temperature PL spec-
trum for mono- and bi-layer WSe2 exfoliated
flakes on Si/SiO2 substrate. The left inset
represents the difference between optical and
electrical bandgap. The right inset shows the
calculated band structure of monolayer ob-
tained from [88].

The PL intensity is very weak for indi-
rect bandgap materials since it relies on a
phonon-assisted process with low quan-
tum yield. On the other hand, the PL
response is high for monolayer TMDCs,
which is a signature of a direct bandgap
semi-conductor [44, 7].

A PL emission peak at 1.63 eV was
reported in references [45, 87, 51] in
line with the PL measurements of our
monolayer WSe2 samples performed at
CEMES laboratory in collaboration with
P. Puech (see figure 3.16). The exci-
tonic binding energy is 0.9 eV [87]. By
adding the emission peak energy and
the excitonic binding energy, one ob-
tains the electronic energy gap which is
equal to 2.53 eV. PL constitutes a pow-
erful and non-invasive technique to de-
termine monolayer flakes without any
doubt. However, it is not possible to distinguish bi-layer from other multi-layer
TMDCs flakes.

Raman spectroscopy

Raman spectroscopy is a powerful and non-destructive characterization tool to study
2D materials. Discovered in 1928 by Raman, this technique is based on changes in
optical frequency when light is scattered by atoms or molecules into motion [90]. As
a result, the photon may gain (lose) energy and we observe a Stockes (anti-Stockes)
shift [85] of the frequency of the incident light. In the following, we will discuss the
Raman spectra for WSe2 flakes on Si/SiO2 substrates. The Raman spectra are mea-
sured in collaboration with P. Puech in the CEMES laboratory, using a microscope
fitted with a 40x objective and a laser excitation wavelength of 633 nm with 0.7mW
power at room temperature.
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Figure 3.17: Raman spectra of mono-, bi-
layer and bulk WSe2 measured using a 633
nm excitation wavelength. Prominent peaks
emerge at ∼ 375 cm−1 and ∼ 395cm−1 corre-
sponding to E1

2g and A1g modes. Inset: E1
2g,

A1g modes frequency difference as a function
of the number of layers.

Even though group theory predicts that
4 vibrational modes are Raman active,
only the E1

2g and A1g modes are accessi-
ble by experiments. Each Raman spectra
acquired 2 peaks associated to E1

2g and
A1g vibrational modes, consistent with
the phonon dispersion. The monolayer
features E1

2g and A1g modes take val-
ues at 375 cm−1 and 395 cm−1 respec-
tively, with frequency difference between
the peak < 21.2 cm−1 as shown in fig-
ure 3.17. The Raman peak separation
increases with increasing number of lay-
ers, and the E1

2g mode is found to red-
shift while the A1g is found to blue-shift
as we increase the layer thickness, in con-
sistency with [86]. The frequency differ-
ence of the 2 measured modes E1

2g and
A1g is small (> 2 cm−1) between mono-
and bi-layer rendering the thickness identification rather challenging.

Structural characterisation

The thickness determination can be performed by a direct observation of the sample
using a transmission electron microscopy. This study was performed in collaboration
with Bénédictde Warrot-Fonrose from the CEMES laboratory. This technique is
destructive and is always performed after measuring the samples.

Figure 3.18: Bright Field Scanning Transmission Electron Microscopy (BF-STEM) on
which the h-BN substrate appears as dark/bright fringes whereas the WSe2 layer consists
of dark spots surrounded by brighter ones. The inter-atomic distance between W and Se
atoms correspond to the expected ones. The WSe2 layer is continuous and reproduces the
top surface of h-BN stack.
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3.1 Device fabrication and electrical characterization

Transmission electron microscopy requires specific sample preparation to get electron
transparent lamellae. These lamellae are realized with a Focused ion Beam (FIB)
machine using the lift-out technique that allows having the least damage of the sample
and the best atomic resolution. The whole process was achieved in a FEI Helios
NanoLab 600i. A protection layer was deposited on top of the sample surface with
ion beam platinum deposition assisted by a gas injection system (GIS). The thickness
of the lamella is monitored by electron imaging at 2 kV [96, 97].

3.1.4 Electrical characterisation
Basic transport properties such as carrier density and electronic mobility can be ob-
tained by measuring the current as a function of the gate voltage or the drain-source
(bias) voltage [91]. We distinguish two measurement configurations: (i) A bias volt-
age is applied between the two ends of the sample while the current passing through
is recorded using a low noise current preamplifier. The ratio of the measured current
over the applied bias voltage provides the two probe conductance, which includes the
resistances of the drain and source contacts. This method is particularly well suited
for devices with large intrinsic resistance, so that the contact resistances become
negligible. (ii) A current is forced to circulate through the device while the voltage
difference between another two electrodes is recorded using a high resistance instru-
mentation amplifier. The ratio between the imposed current and the recorded voltage
provides the four-probe conductance. Here, the contact resistances do not contribute
since no current passes through the voltage electrodes. This method is well adapted
to systems having a resistance much smaller than the amplifier input resistance. In
both cases, the back-gate voltage can also be varied, allowing a measurement of the
trans conductance G(Vg) for linear I-V characteristics, or the differential conductance
dI/dVbias(Vg) at a given bias voltage when the I-V curve is non-linear.

Schottky barrier

When an electrical contact is achieved between a metal and a semi-conductor, a
Schottky barrier is established. Near the interface, a transfer of charges occurs until
the Fermi energy is the same in both materials. This effect goes hand in hand with the
formation of a varying electrostatic potential across the junction. The exact charge
distribution and potential profile requires solving the Poisson equation iteratively
until the Fermi energy of both materials are aligned. A local modification of the
extrema of the conduction and valence bands follows, with the creation of a potential
barrier. The work function of platinum is 6 eV [94] while the valence band edge
of WSe2 is located about 5.5 eV [95] from the vacuum level. When into electrical
contact, the WSe2 band bending is at the origin of the Schottky barrier.
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Figure 3.19: a) Illustration of band bending at the interface between a metal (Pt) and
p-doped semi-conductor (SC) (WSe2) and the formation of a Schottky barrier. b) Band
diagrams representation for TMDCs FET at VD = 0 for VBG >,= and < 0 [92].

Since the Fermi energy lies in the band-gap of WSe2, the system is an insulator. When
a negative back-gate voltage is applied to the gate electrode, the electro-chemical
potential of the charge carriers in WSe2 is modified which results in decreasing the
Schottky barrier as the Fermi energy approaches the valence band maximum. For
high enough (negative) back-gate voltage, the Fermi energy is close enough to the
valence band edge and a current can pass through the device. On the other hand,
when a positive back-gate voltage is applied to the gate electrode, electrons should be
able to carry the current when the Fermi energy is close to the conduction band edge.
Nevertheless, the minimum back-gate voltage required to achieve electron conduction
is out of experimental reach (> 110 V). This process is illustrated in figure 3.19-b.
When the Fermi energy is set close the valence band maximum (but remains inside
the band-gap), some charge carriers may have enough thermal energy to overpass the
barrier or to tunnel through it, resulting in a measurable net current. The current
increases rapidly as the drain-source voltage becomes large enough as shown in figure
6.13. When the back-gate voltage is small (e.g. from 0 to -45V), the current is null for
the explored range of bias voltage at T = 4.2 K. For Vg > 60 V, a small current can be
measured only when the bias voltage is large enough, rendering a strongly non-linear
I-V curve. The non-linearity tends to vanish as the back-gate voltage approaches
VBG = -90 V and eventually disappear if the Fermi energy is further pushed inside
the valence band. Figure 6.13-b is an alternative representation of this effect, where
the current ID is displayed as a function of both the bias voltage and the back-gate
voltage in a color map. The field effect mobility µFE can be extracted using the
formula [14]:

µFE = 1
CBG

L

W

dG

dVBG
(3.1)
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Figure 3.20: a)Drain-source current for various values of the back-gate voltage from −45 V
to −90 V by steps of −2.5 V in a multi-layer WSe2 field effect transistor at T=4.2K.b)Vxx

vs VBG at various VD at T = 4.2K in a monolayer WSe2 FET.

where CBG = 11.4 nF.cm−2 is the back-gate capacitance for two layers of SiO2
(300 nm,εSiO2

r = 3.9) and h-BN (20 nm, εh−BNr = 3.8)

Figure 3.21: (a) Two-probe and four-probe conductance at room temperature as a function
of the back-gate voltage, from which the corresponding field effect mobility is extracted.
(b) Strong variation of the contact resistance as a function of the back-voltage.

From the results displayed in figure 3.21-a, we extract µ2p = 14 cm2/Vs and µ4p =
277 cm2/Vs at room temperature for a monolayer WSe2 sample(chip 46) in line with
previous published reports [92, 14, 93]. The field effect mobility extracted from the
two-probe conductance provides a lower bound of the intrinsic conductance since it
includes large contact resistances shown in figure 3.21-b. The mean resistance per
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contact is calculated using the relation Rc = W
2

(
( 1
G2pt
− 1

G4pt

)
. At room temperature,

a large hysteretic behavior is observed when the back-gate voltage increases and de-
creases, as shown in figure 3.23-a. This behaviour tends to vanish as the temperature
is lowered as shown in Fig. 3.23-b. This effect is due to molecules (such as water of
oxygen) adsorbed at the surface of the device, as well as the presence of charge traps
close to the interface between WSe2 and SiO2 as reported in [100, 99, 98].

Effect of Dual Gating

The top-gate provides another knob to tune the charge carrier in a few-layer WSe2
FET channel, and therefore the FET characteristics. The stark difference of applying
both a VTG and a VBG in the same time can be understood by examining the electrical
field distribution in the device. Fig. 3.22 shows G2pt vs (VBG and VTG) measured at
T=4.2K.

Figure 3.22: G2pt vs (VBG and VTG) varying from 0 to -110V and from -10V to 10V
respectively at T=4.2K. The inset represents the connected and top-gated chip 52. The
edge of the bottom h-BN, the WSe2 multi-layer and the top h-BN are limited with dashed
lines.

The back-gate can tune the carrier density both in the channel and on the back of the
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contacts, while the top-gate can only modulate the WSe2 channel but not the contact
regions due to the screening by the contacts. Therefore, transfer characteristics are
contact resistance limited, especially at low |VBG|. The G2pt saturation is due to
the contact resistance. Since the contact resistance can be modulated much more
effectively using VBG, G2pt in the ON state is more sensitive to the VBG. The shift
in the VBG at the onset of saturation with varying the VTG values is due to the
dual-gating of the channel. A more negative VBG accumulates additional holes in the
channel which then requires a more positive VTG to deplete.

Obstacles and improvements

The conduction band of monolayer WSe2 is difficult to probe and only a few works
report on electron transport properties in the literature [13, 14] using high quality
TMDCs-based devices with advanced contact engineering. In an attempt to reach this
regime, or to increase the current flowing through the channel, we tried to improve
our device fabrication method. In particular, we deposited the WSe2 flakes at T ∼
150oC using an integrated oven in our flake deposition setup.

Figure 3.23: (a) Hysteresis effect on a FET based WSe2 multi-layer contacted with plat-
inum electrodes at room temperature. (b) The hysteresis effect decreases as the temperature
is lowered.
The mechanical properties of the PDMS stamp are modified at this temperature
and the formation of bubbles between the h-BN/WSe2 interface should be reduced.
However, despite many attempts, the results were not encouraging. Above room
temperature, we found that a PDMS residue remains on the substrate and obstructed
the homogeneous deposition of the PMMA resist. It was then impossible to proceed
further with the fabrication process.
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Figure 3.24: (a) Electrical characteristics of tri-layer WSe2 before and after annealing at
400 oC. (b) and (c) Evolution of the device performance after annealing for the p-doped and
n-doped regimes, respectively, (t corresponds to the time were I performed the electrical
characterisation after removing the sample from the annealing chamber).

We also tried to anneal our final devices in vacuum [101]. The annealing process
changed the electrical properties of the devices, but it is rather unreproducible and
non permanent. Figure 3.24 shows an example of vacuum annealing of a trilayer WSe2
device for 2 hours at Tmax = 400 oC including ramps of 20 K/min, where the current
after annealing exceeds 4 times the one measured before annealing at VBG = −50 V.
The n-doped regime was achieved in this particular annealed device, however the
current remained too small to proceed with high magnetic field measurements.

Although the electron conduction regime has been reached in this annealed device,
the current remains very weak for positive back-gate voltages. Depending on the
work-functions of the materials into electrical contact and Fermi level pinning, the
Schottky barriers can be much different for electrons and holes, resulting in a strong
conduction asymmetry. Temperature-dependent transport measurements would have
certainly helped to clarify this hypothesis, but was out of the scope of this thesis.
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3.2 Measurements in pulsed magnetic field and
low temperature

This chapter describes the key aspects of the experimental techniques used to generate
pulsed magnetic field and to perform magneto-transport measurements at very low
temperature. In comparison to DC high magnetic field, pulsed magnetic field is less
expensive to operate and reaches higher maximum magnetic field. On the other hand,
the repetition rate of a measurement is limited by the time required to cool down the
coil at liquid nitrogen after a magnetic field pulse, while the duration of the pulse is
mainly limited by the coil size (impedance) and the maximum energy which can be
stored in the capacitor bank. The experimental work achieved during this thesis was
performed with magnetic field pulses of duration ∼ 300 ms and maximum field of
55 T, which could be repeated every hour roughly. The short duration of the pulse
demands a particular instrumentation and experimental know-how to obtain reliable
results.

3.2.1 Pulsed magnetic field generation
Pulsed magnetic fields are produced via the discharge of a large capacitor bank in a
resistive coil cooled down to liquid nitrogen temperature (77K). A scheme of principle
is shown in figure 3.25.

Figure 3.25: a) Schematic electric diagram to produce a pulsed magnetic field. b) New
14 MJ generator at LNCMI.

The capacitor bank is able to store an electrostatic energy of 14 MJ when charged
under a maximum voltage of 24 kV. When the charge is complete, optically triggered
thyristors (TR) let the current flow to the magnetic field generating coil. The coil is
cooled at nitrogen temperature to reduce its resistance from ∼ 800 mΩ at room tem-
perature to 125 mΩ. After a magnetic field pulse, the temperature of the coil reaches
roughly 200 K. The current flowing through the coil circuit, which is proportional to
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the produced magnetic field, will increase in a sinusoidal fashion until reaching its
maximum value at t = π

2
√
L2.C where L2 is the total inductance of the circuit and

C is the capacity of the capacitor bank. At this moment the voltage at the capacitor
bank changes sign (in a LC circuit, the voltage is at phase quadrature with the cur-
rent) and the diode becomes conductive. The magnetic energy stored in the coil will
dissipate by the Joule effect in a resistance in serie with the circuit containing the
diode. The current, and therefore the magnetic field, will decrease according to an
exponential law having a time constant τ = L2/R4 (see figure reffig:60T coil). The
inductors (L1 = 1mH) in serie with the magnetic field producing coil protect the
circuit against excessively strong currents which may appear in case of coil failure
(short-circuit).

Figure 3.26: Pulsed magnetic field as a function of time, reaching 60T at maximum.

The coil represented in the inset of figure 3.26 is made by winding a copper wire
reinforced with zylon embedded in epoxy resin.

3.2.2 Cryogenics
Low temperature is required to study quantum effects in condensed matter. Cryogenic
liquids are used for this purpose. All the magneto-transport measurements performed
during this thesis were done at low temperature in a cryostat combining both nitrogen
and helium liquids.

Liquid nitrogen cryostat

The liquid nitrogen cryostat is a large vessel made with a double wall of stainless steel.
It is sealed with a 3 cm thick poly-carbonate cover. The liquid nitrogen cryostat holds
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the coil which produces the high magnetic field. After a pulse of magnetic field, a
large part of the liquid nitrogen is used and evaporated for cooling down the coil.
The evaporation process is facilitated by pumping the nitrogen vapour, which speeds
up the cooling down process of the coil to roughly 40 minutes at maximum. The
cryostat is automatically refilled when the liquid nitrogen level is below a user-defined
threshold. The nitrogen cryostat supports a helium cryostat located in the core of
the magnetic field coil (see figure 3.27-a).

Liquid helium cryostat

The helium cryostat is shaped as a cylinder with two different diameters. The largest
diameter part, located at the top of the cryostat, is composed of a double wall of
stainless steel containing a large quantity of liquid helium. The smaller diameter part,
located at the bottom, is inserted inside the core of the coil used for magnetic field
generation. It is filled with liquid helium using a cold valve (needle valve) connecting
to the upper part of the cryostat. The sample is located inside the bottom part of
the cryostat, using an insert, in the middle of the coil where the magnetic field is
maximum. This part of the cryostat can be pumped to decrease the temperature
down to 1.6K. On the contrary, to achieve temperature above liquid helium up to
room temperature, a heater is glued on the inner tube of the stainless steel double
wall, close to the sample (see figure 3.27-b).

3.2.3 Insert and sample holder
For performing transport-measurement, the sample must be electrically bounded and
placed at the bottom of an insert. First, we glue the sample on a ceramic disk with 10
serigraphied gold pads as shown in figure 3.27-c. The gold pads allow us to connect the
sample with the wedge bonding machine. The ceramic plate is then glued to a 10-pin
commercial socket with GE-varnish. The electrical connections between the ceramic
pad and the socket are hand-made using silver paste. The socket is directly plugged
at the bottom part of the inserts, made with glass fiber instead of metal to avoid eddy
current induced by the pulsed magnetic field. The wires connecting the sample (low
temperature bottom part of the insert) to the Jeager connector (room temperature
upper part of the insert) are twisted in pairs to reduce the parasitic induced voltage
during the pulse. The insert diameter depends on the core of the coils, starting from 8
mm for 90T coils to 28 mm for 60 T coils. Some inserts are equipped with a rotation
stage in order to tilt the sample from parallel to perpendicular with respect of the
magnetic field direction. The precise tilt angle is measured using a pick-up coil which
rotates together with the sample stage. The temperature is set and/or measured
using a Lakeshore 331 controller with a diode sensor (DT-670) placed nearby the

67



Chapter 3. Experimental techniques

sample.

Figure 3.27: (a) a general view of The 4He cryostat inserted inside the coil used for
magnetic field generation, in a large nitrogen cryostat with the probe. (b) A detailed
description of 4He cryostat with a top and interior view. (c) Head of the rotative probe
with a connected sample.

3.2.4 Data acquisition and induced voltage removal

Transport measurements in a pulsed magnetic field is usually much more challenging
than its DC-field counterpart because of the short duration of the pulse. When the
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typical resistance of the samples is more than a few tens of kOhms (as it is the case
for the WSe2 samples measured in this thesis), the excitation must be continuous
(DC measurement mode). Indeed, the use of lock-in is prohibited in this case as the
minimum modulation frequency (set by the magnetic field pulse duration) is strongly
attenuated by RC low-pass filtering, where R is the sample’es resistance and C is
the circuitry capacitance. An induced voltage proportional the time-derivative of the
magnetic flux enclosing the sample circuitry U = d

dt

[∫∫ ~B. ~dS] adds to the sample’s
voltage. This parasitic induced voltage may exceed the value of the signal itself. Be-
sides, the mechanical vibrations of the insert during a pulse of magnetic field generate
noise and render the measurement of small voltages a difficult task. Usually, the ex-
citation current or voltage must be about one order of magnitude higher compared
to DC magnetic field experiments in order to achieve comparable signal-to-noise ratio.

Figure 3.28: Data acquisition setup.

A pulsed magnetic field mea-
surement campaign starts with
the introduction of the insert
inside the cryostat, which was
previously heated up at room
temperature to avoid thermal
shocks. During the manipu-
lation of the insert, the sam-
ple is grounded to prevent any
uncontrolled electrostatic dis-
charge which would otherwise
burn it. The electrical connec-
tion between the sample and the
measurement system is realized
using a switch box. Then, the
sample is allowed to cool down
slowly using the Lakeshore tem-
perature controller. Once the
sample is at the desired temper-
ature (usually 4.2 K or 1.6 K)
and the coil is cold enough,
users must exit the experimen-
tal room, close the door and op-
erate remotely the experiment
from a computer installed in a
safe place. Inside the experi-
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mental room, a PXI chassis holding a fast data acquisition card, is controlled via
an optical fiber connected to the user’s computer outside the room. The data acqui-
sition system is synchronized to the pulsed magnetic field so that when the capacitor
bank is fully charged, the user can start the pulsed magnetic field generation after
making sure all the safety issues are respected.

The data acquisition card can measure up to 8 channels with maximum frequency
2 MHz. Two channels are dedicated to the main and rotation pick-up coils, while the
rest can be set according to the experimental configuration. A Labview software drives
the data acquisition process and records the raw data in a file with ASCII format,
where the first column is the time. The raw data pre-processing is semi-automatic
using a home-made software with screen capture shown in figures 3.29. First, a frac-
tion of the pick up voltage is subtracted to the signal. The proportionality factor is
set properly when the signal acquired as the magnetic field increases matches the one
recorded when the magnetic field decreases. Due to the stray inductance and capaci-
tance of the measuring circuit, the induced voltage removal may not be perfect. Most
of the time and when temperature is not an issue, the signal recorded as the magnetic
field decreases is kept for further data analysis. Next, the software smooth the data
using the windows averaging method and perform basic mathematical operations to
set the correct units. We note that the induced voltage can alternatively be elimi-
nated by running two magnetic field pulses with reversed polarity. Symmetrization
or anti-symmetrization of the signal is performed numerically to extract either the
magneto-resistance or the Hall signal.

Figure 3.29: a) Raw signal: voltage vs magnetic field, b) The parasitic induced voltage
has been removed from the sample’s signal, c) Windows averaging is used to smooth the
signal
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Quantum oscillations in a p-doped
WSe2 monolayer
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Many samples have been fabricated following the procedure described in section 3.1,
however only a few of them provided exploitable magneto-transport results. Most
of the time, the resistance of the samples was too large to allow a correct signal-
to-noise ratio with DC measurement method, not to mention failures of the clean
room processes. Besides, monolayer WSe2 samples are fragile and a measurement
campaign (lasting between one and two weeks on average) under extreme conditions
of low temperature and high magnetic field remains challenging. In this chapter,
we will focus on a particular monolayer WSe2 sample with the best characteristics.
We start with a description of the sample and the magneto-transport results, before
presenting the model to simulate the experimental data. We finish with a discussion
regarding the evaluation of the Landé factor and its evolution with carrier density.
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4.1 Sample characterization and magneto-transport

4.1.1 Fabrication
Figure 6.15-a) shows the optical image of the sample after the whole fabrication
process. A monolayer WSe2 flake is deposited on top of a larger BN flake, lying
on a Si/SiO2 substrate. A red dotted line circles the monolayer WSe2 flake (not
clearly visible on the picture) and a thicker flake of thickness 10 nm attached to
it. The BN flake is, on the other hand, enclosed with a blue dotted line. Although
the sample could not be etched into a Hall, the electrode design includes two large
contacts for current injection and four electrodes located on both sides of the sample.
Two of them (left-hand side electrodes in figure 6.15-a) connect the larger WSe2
flake before addressing the monolayer. The four-probe magneto-resistance measured
with this two contacts did not provide exploitable results and have been discarded
from analysis. Regrettably, the Hall voltage could not be properly measured for the
same reasons. The magneto-resistance data presented later in this chapter therefore
originate from the other pair of electrodes (right-hand side electrodes) with direct
contact to the monolayer flake. Figure 6.15-b) shows a sketch of the sample with
operating electrodes only.

Figure 4.1: a) Optical image of a barely visible monolayer WSe2 sample attached to a
thicker flake. The whole WSe2 flake and the underlying BN flake are enclosed by red and
blue dotted lines, respectively. b) Sketch of the sample with operating electrodes connecting
the monolayer WSe2. The carrier density can be tuned electrostatically using a back-gate
voltage VBG.

4.1.2 Characterization
Structural and optical characterization techniques were performed to certify the mono-
layer nature of the WSe2 flake in this sample. Figure 4.2-a) shows an AFM image
together with the height profile on the edge of the WSe2 flake marked with a blue line
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on the image. The step height is equal to 0.7 nm in agreement with the typical mono-
layer thickness. Another confirmation came from Bright field-scanning transmission
electron microscopy (BF-STEM) analysis (figure 4.2-b) performed on the device after
the whole measurement campaign, where the monolayer WSe2 flake is observed with
side-view. The BF-STEM technique makes it possible to get atomic resolution with
heavy atoms appearing in dark (tungsten and selenium atoms with atomic numbers
ZW = 74 and ZSe = 34, respectively) and lighter atoms (bore and nitrogen atoms
with atomic numbers ZB = 5 and ZN = 7, respectively) in brighter tones. When
compared to other Transmission electron microscopy (TEM) techniques, BF-STEM
imaging is less dependent on imaging conditions. The inter-atomic distances between
W and Se atoms correspond to the expected ones. The WSe2 layer is continuous and
reproduces the top surface of the h-BN stack. Although the BF-STEM analysis visu-
alizes only a limited sample area, we assume that the scanned part is representative
of the whole flake considering its homogeneity observed with optical microscope and
AFM. Last, the photoluminescence fingerprint of monolayer WSe2 was retrieved with
an emission peak at 1.63 eV as shown in figure 4.2-c).

Figure 4.2: a) Left: AFM image of the sample. Right: the height profile from monolayer
WSe2 to the underlying BN flake. b) BF-STEM image on which the h-BN flake appears
as dark/bright fringes whereas the WSe2 monolayer consists of dark spots surrounded by
brighter ones. c) Photoluminescence spectrum typical of WSe2 monolayer.

After bonding the sample and fixing it into an insert dedicated for 60 T pulsed mag-
netic field measurements, we cooled down the sample and measured the drain-source
current IDS vs VBG at three different temperatures as shown in figure 4.3. The drain-
source voltage is set to VDS = 100 mV while the back-gate voltage VBG, ranging from
0 to −110 V, is delivered using Yokogawa GS610 voltage source. The drain-source
current IDS is amplified with a low noise current preamplifier (SR570) and measured
with an Agilent (34401A) voltmeter. The device turns into the “ON” state only for
back-gate voltages below a temperature-dependent threshold voltage V thr

BG . When a
current flows, the Fermi energy is close enough to the top of the valence band so
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that thermally excited holes have enough energy to overcome the Schottky barrier.
The electron conduction regime was searched for VBG up to +110 V, but could not
be observed for this sample.

Figure 4.3: Evolution of the drain-source current as a function of the back-gate voltage,
for three different temperatures, evidencing a temperature-dependent back-gate voltage
threshold for the ”ON” state. The fluctuations of the lowest temperature curve reflects
impurity levels in the gap or in the Schottky barriers.

4.1.3 High magnetic field measurements

Figure 4.4: Background removal procedure. a) Raw data. b) Manual identification of
the oscillations’ extrema, defining the envelope spline functions and the background. c)
Background subtracted data.

We performed magneto-transport measurements under pulsed magnetic field up to
55 T at low temperature down to 4.2 K for different values of the back-gate voltage.
A constant DC current of 1µA is passed through the sample while measurement
the longitudinal voltage is synchronized with the magnetic field pulse. The magneto-
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resistance displays large-amplitude oscillating features on top of a smooth background
when the back-gate voltage is set close to its maximum experimental limit (−110 V),
e.g. for high hole concentrations. On the other hand, for back-gate voltage close
to V thr

BG , the current injection is hindered by large Schottky barriers and may not
flow homogeneously in the sample. In this regime, we measure weak and distorted
oscillations of the magneto-resistance on top of a large and non-monotonous back-
ground. The proper analysis of the quantum oscillations requires their extraction by
numerical removal of the magneto-resistance background, related to smooth varia-
tions of the mean scattering time induced by the magnetic field beyond the effect of
the density of states quantization (equations 2.36). This treatment is quite subtle:
although the periodicity of the extracted oscillations is only weakly user-dependent,
the shape of the extrema is quite sensitive to the method used. For high mobility
samples, the magneto-resistance background is usually a smooth and monotonous
function which can be removed by subtracting to the raw data either a pair polyno-
mial function, or the magneto-resistance data at a high enough temperature where
the quantum oscillations have vanished. This simple method is however not adapted
for this sample where the background is tortuous and changes drastically for different
back-gate voltages. We preferred a manual method which consists first in identifying
the oscillations’ extrema. Then, two spline curves S+

(B) and S−(B) are computed pass-
ing by the maxima and the minima respectively, thus defining the envelopes of the
oscillations. The half-sum of these curves produces the background signal which is
subtracted to the raw data ∆Rxx(B) = Rxx(B)− 1

2(S+
(B) + S−(B)), as shown in figure

4.4 for VBG = −110V. The background removal becomes subject to personal inter-
pretation for low carrier density, where the identification of the relevant oscillations
is problematic.

Figure 4.5: High field magneto-resistance of monolayer WSe2 at T = 4.2 K, for different
back-gate voltages. The curves are offset and split into two graphs for clarity.
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The data after treatment are shown in figure 6.16: for all back-gate voltages, the
oscillation pattern is complex and must be analyzed beyond the single band model
with 1/B-periodic SdH oscillations. We assume that a large Zeeman energy competes
with the cyclotron energy to produce distorted or extra oscillating features. This
model will be described in the next section. Although the oscillations’ extrema can
be traced from one curve to the other, it is worth pointing out that they display a
rather irregular behavior for VBG > −90 V. These data will thus be discarded from
analysis.

4.1.4 Effective mass

Following the lines of section 2.2.5, the temperature dependence of the quantum oscil-
lations can be studied to determine the effective mass. As expected, the amplitude A
between two successive extrema decreases with increasing temperature as plotted in
the insert of figure 4.6 for VBG = −105 V in a temperature range of 1.4 K to 15 K. By
plotting ln (A/T ) versus temperature, we obtain a straight line with slope equals to
2π2.m∗.kB.T/q.B.~. The extracted value of the effective mass m∗ = (0.45±0.04)×me

is in agreement with the literature [13].

Figure 4.6: Determination of the effective mass, where the amplitude of the oscillations
as a function of temperature is evaluated for different values of the magnetic field. Insert:
temperature evolution of monolayer WSe2 magneto-resistance at VBG = −105 V, in the
temperature range 1.4 K to 15 K.
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4.2 Magneto-transport simulation
The Lifschitz-Kosevich formula presented in section 6.11, including the spin contri-
bution, could reproduce parts of the longitudinal resistivity curves, but was proven
unadapted when investigating the whole experimental dataset. Therefore, we decided
to investigate on the quantum oscillations beyond the SdH oscillation regime. This
section is devoted to the model, developed using Python, to simulate the oscillatory
part of the magneto-resistivity at both weak and high magnetic field.

4.2.1 Schrödinger fermions or massive Dirac fermions ?
WSe2 monolayers are expected to host quasi-particles named after “massive Dirac
fermions” (MDF). The energy dispersion is quasi-linear in the vicinity of the K and K ′
points and the lack of inversion symmetry introduces a gap ∆ between the conduction
band and the valence bands [19]. The valence band is spin-split with a gap ∆v

SOC

(see table 1.10) due to the spin-orbit interaction [17, 19, 20]. For energies very close
to the top of the upper valence band, the dispersion relation can be approximated to
a parabolic function with effective mass m∗ = (∆−∆v

SOC) /v2
F . Setting the energy

origin at the top of the upper valence band and applying a perpendicular magnetic
field, the energy is quantized into Landau levels whose energy spectrum is (without
taking into account the Zeeman energy):

εvN,sτ = −N~ωc = −N ~qB
m∗

(4.1)

where N = 0, 1, 2..., and s.τ = ±1 are the Landau level index and the product of the
spin and valley indexes, respectively. In the absence of Zeeman effect, the Landau
levels are two-fold degenerate except the non-dispersive N = 0 Landau level which
is non-degenerate. The nature of the quasi-particles (e.g. Massive Dirac fermions) is
encoded in the wave-functions and cannot be revealed when looking only at the band-
structure. Actually, if one changes the nature of the quasi-particles to the canonical
Schrödinger fermions discussed in section 2.2.1, the Landau level spectrum would be
very similar to equation 4.1 except the following points: N is changed to N+1 and the
N = 0 Landau level is two-fold degenerate. Including Zeeman energy and anticipating
the discussion of section 4.3.2, the two models provide the same magneto-transport
signature provided the ratio between the Zeeman energy and the cyclotron energy is
offset by 1. In the following and without any loss of generality, we will analyze our
experimental results considering a spin degenerate 2D gas of Schrödinger fermions
before discussing the massive Dirac fermion model in section 4.3.2. For simplicity
and for the rest of this section, we will consider positive energies for the valence band
Landau levels (e.g. the minus sign of equation 4.1 will be dropped) and the coupled
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Chapter 4. Quantum oscillations in a p-doped WSe2 monolayer

Figure 4.7: a) Band structure of monolayer WSe2 at points K and K ′ of the first Brillouin
zone. The dispersion relation can be approximated by a parabolic function for energies
close to the top of the spin-split valence bands. b) Under perpendicular magnetic field,
the energy is quantized into two-fold degenerate Landau levels, except the non-dispersive
N = 0 Landau level. Adapted from [19]

spin/valley s.τ indexes will be referred to as the spin index s = ±1 only.

4.2.2 Electro-chemical potential

Gaussian broadening of the Landau levels

As discussed in section 2.2.3, the energy of the charge carriers are quantized into
Landau levels in the presence of a perpendicular magnetic field. When the Zeeman
energy is included, the energy of the Landau levels writes:

εN,s = ~qB
m∗

(
N + 1

2

)
+ s

m (εz/εc)
m∗

µBB (4.2)

where εz/εc is the ratio of the Zeeman energy over the cyclotron energy, N is the
Landau level index (N = 0, 1, 2...) and s = ±1 is the spin index. The Landau level
degeneracy, gL = qB/h, is the density of states contribution of each Landau levels. We
assume that the energy of the quantum states of the Nth Landau level is not exactly
at εN,s but follows a Gaussian distribution

(
1/
√

2πΓ
)
× exp

[
− ((ε− εN,s) /Γ)2 /2

]
around the energy εN,s. The prefactor 1/

√
2πΓ is required to make sure that the area

enclosed by the Gaussian function is normalized to unity. The density of states is
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therefore simulated using equation 6.12:

ρ(ε, B) = qB

h

∑
N,s

GLL(ε− εN,s) =
N=Nc∑

N=0,s=±1

qB

h
× 1√

2πΓ(B)
× exp

(−(ε− εN,s)
Γ2(B)

)2


(4.3)
Here, Nc ∼ 20 represents a cut-off parameter for the sum over the Landau level
index, which should otherwise run to infinity. We also introduced the field-dependent
Landau level broadening Γ(B) so that the full width half maximum (FWHM) of
the normal Gaussian distribution is given by FWHM = 2

√
2 ln (2) × Γ(B). This

broadening is linked to the hole (quantum) mobility µh, a fit parameter, through the
relation Γ(B) = ~q

m∗

√
2B
πµh

. We assume the same broadening for all the Landau levels,
whatever their orbital and spin index. We note that the Landau level based density
of states has been approached with a sum of Lorentzian broadening functions in
section 2.46 for the demonstration of the Lifschitz-Kosevich formula. This choice was
motivated by the fact that the subsequent Fourier transform of Lorentzian functions
are simply exponential functions, allowing an analytical derivation of the formula,
with implicit hypothesis of a constant electrochemical potential. However, the use of
Lorentzian functions instead of Gaussian functions in equation 6.12 fails to properly
reproduce the electrochemical variations. Indeed, the tail of the Lorentzian functions
is larger to their Gaussian counterparts and leads to diverging chemical potential at
low magnetic field.

4.2.3 Self-consistent determination of the electrochemical po-
tential

The electrochemical potential, noted µ in the following, is the energy of the highest
occupied quantum states. It corresponds exactly to the Fermi energy at absolute zero
temperature. The carrier density is computed by counting the cumulative orbital
degeneracy up to the chemical potential:

nh =
+∞∫
−∞

ρ(ε, B)f
(
ε− µ(B)

)
dε (4.4)

where f(ε − µ) is the Fermi-Dirac distribution function (see figure 2.2). For each
value of the magnetic field in the range [0.1 T ; 55 T], a Python routine computes
the electrochemical potential µ(B) so that nh is a constant (user-defined parameter),
set by the fixed back-gate voltage VBG. The electrochemical potential, which varies
according to the variation of the density of states induced by the magnetic field, is
displayed in figure 4.8 for a given carrier density and two different hole mobilities.
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For weak magnetic field, the chemical potential is nearly constant and equals the zero
magnetic field expectation µ(B = 0) =

(
2π~2.nh

)
/(gs.m∗) for 2D electron systems.

On the other hand, large variations are observed at high magnetic field. The elec-
trochemical potential follows the highest occupied Landau level (ith) until the total
density of states (which increases linearly with magnetic field) is enough to hold all
the charge carriers up to the ith−1 Landau level. The electrochemical potential drop
from a Landau level to the adjacent lower energy one is sudden at low temperature
and/or weak Landau level broadening, and tends to soften when the temperature
and/or Landau level broadening increases. When the ratio of the Zeeman energy to
the cyclotron energy is an integer (or null), the electrochemical potential crosses the
Landau levels for the same magnetic field values as if the electrochemical potential
was constant. However, this picture changes for non-integer values of Ez/Ec, as shown
in figure 4.8 which compares the two cases.

Figure 4.8: Evolution of the chemical potential µ(B) at T = 4.2 K for µh = 2000 cm2/V.s
(blue curve) and µh = 6000 cm2/V.s (red curve) for a) a sin-degenerate Landau level struc-
ture (Ez/Ec is an integer) and b) a spin-resolved Landau level structure. The green dotted
line is µ(B = 0).

4.2.4 Components of the conductivity tensor
The longitudinal conductivity for homogeneous 2D systems is approached using equa-
tion 6.14, derived from high-order perturbation theory of electron impurity scattering
[109, 24, 23]:

σxx(B) = q2

h

∑
N,s

(
N + 1

2

) ∞∫
−∞

[
−
df(ε− µ(B))

dε

]
× exp

[
−1

2

(
ε− εN,s

Γ

)2
]
dε (4.5)

where the exponential term can be traced back from the broadened Landau level
expression. A Python-based routine computes the integral for each value of the
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magnetic field, taking into account the evolution of µ(B) calculated earlier. Instead
of ±∞, the lower and upper bounds of the integral is replaced by µ − 10 × kB.T
and µ + 10 × kB.T , respectively. This expression reproduces well the Shubnikov-
de Haas oscillations at low magnetic field, but fails to describe the high magnetic
field regime. This is because the nature of scattering changes when the product
ωcτq � 1. The relation between the density of states and the scattering rate is
difficult to simulate in this regime and, in our case, is treated phenomenologically with
a cut-off delta-function of width δε(B) applied on the tail of the exponential functions.
The contribution to the conductivity of the quantum states with energy far from εN,s
is suppressed, and acts similarly to a magnetic field-dependent mobility edge which
distinguishes the localized from the extended states in the quantum Hall regime (see
section 2.2.1). Since the sum of equation 6.14 runs over s = ±1, the conductivity of
the system is interpreted within the two-fluid model without interaction between the
charge carriers belonging to different valley/spin indices. The contribution of each
quantum states to the conductivity add therefore independently. We emphasize that
this model is certainly oversimplified since it cannot reproduce Landau level anti-
crossing as investigated in references [16, 11] for MoS2 and reference [12] for WSe2
systems. The width of the cut-off delta function (δε(B)) spans over three times the
FWHM of the Gaussian broadened Landau levels at small magnetic field, so that it
has no effect on the simulated curves. However, δε(B) rapidly decreases and becomes
comparable to the FWHM near a magnetic field threshold B0. The magnetic field
evolution of δε(B) is established using a Boltzmann-like function

δε(B) =
[

A1 − A2

1 + exp [(B −B0) /δ(B)] + A2

]
× 3× FWHM(B) (4.6)

where A1 ≡ 1 while A2 ∈ [0, 1], B0 and δB will be determined by the fit routine.
Although the parameter B0 is, in principle, linked to the hole mobility and localization
length, we break this constraint and make it a phenomenological free parameter in the
simulation. We require the longitudinal resistivity, instead of conductivity, in order
to compare the simulation outputs with the experimental results. For this purpose,
we simulate the transverse resistivity using equation 4.7:

ρxy(B) = h

q2

N,s∑
0

+∞∫
−∞

GLL(ε− εN,s)× f(ε− µB)× dε)−1 (4.7)

which counts how many Landau levels are below the electrochemical potential, each
of them contributing to the spin-less quantum of resistance ~

q2 . For computational
reasons, the lower bound of the integral is replaced by the lowest energy Landau level
minus 5×Γ(B) while the upper bound is changed to µ+ 10× kB.T . For typical hole
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Figure 4.9: a) Spin-resolved broadened Landau levels under high magnetic field. The red
curve stands for spin up Landau levels whereas the blue curve represents the spin down. The
violet line is the cumulative density of states according to equation 6.12. The filled areas
represent the product of the cut-off function δε(B) with the Gaussian broadened Landau
levels. Unrealistic parameters have been chosen to prevent overlapping effects and to help
understanding the figure: nh = 8× 1012 cm−2, B = 60 T, Ez/Ec = 1/2, µh = 2000 cm2/V.s,
B0 = 35 T, δε(B = 60T ) = 6.28 meV. b) Example δε(B) with parameters A1 = 1, A2 = 0.2,
B0 = 30 T and δB = 2 T used to define the cut-off function of the broadened Landau levels.
δε(B) defines the actual width of the Landau level states contributing to the conductance.

mobility in the range µh ∼ 2000 cm−2 and temperature T = 4.2 K, ρxy is equivalent to
its classical expression ρcxy = B/(q.nh) for magnetic field up to roughly 30 T. At higher
magnetic field, the linear transverse resistivity is distorted with smooth plateaus
reflecting the onset of the quantum Hall regime. Actually, in the magnetic field range
[0, 55T], equation 4.7 can be replaced by its classical counterpart in the simulation
without much difference. Using the general expressions linking the components of the
conductivity tensor to the resistivity tensor, we express ρxx as a function of ρxy and
σxx only. We first combine equations ρxy = −σxy

σ2
xx+σ2

xy
and σxy = −ρxy

ρ2
xx+ρ2

xy
which yields:

ρxy

(
σxx
ρxx

)
= ρxy
ρ2
xx + ρ2

xy

⇔ σxxρ
2
xx − ρxx + σxxρ

2
xy = 0

The solutions to this second order polynomial are : ρxx = 1±
√

1−4σ2
xxρ

2
xy

2σxx . We drop the
unrealistic solution with plus sign and we use the approximation σxxρxy << 1 when
the chemical potential is located in between two successive Landau levels, allowing a
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power series expansion of the square-root expression:

ρxx =
1−

(
1− 2σ2

xxρ
2
xy − 2σ4

xxρ
4
xy + ...

)
2σxx

= σxx × ρ2
xy + σ3

xx × ρ4
xy + ... (4.8)

The next stage consists in extracting the oscillating part of this expression. We pro-
ceed with the same method used for the experimental data. A routine searches for
the maxima and minima of ρxx(B) and computes a spline function passing through
these points. The half difference between the upper and the lower envelope func-
tions yields the non-oscillating background, which is subtracted to the longitudinal
magneto-resistivity. We note that the first order expression of ρxx(B) is simply the
longitudinal conductance multiplied by a smooth function ρxy(B), which is almost
eliminated during the background subtraction process. Therefore, the oscillating
part of σxx(B) is very similar to ρxx(B).

4.2.5 Simulations

Algotrithm and fit procedure

For each value of the back-gate voltage (i.e. for different hole densities nh), the de-
veloped software imports the experimental data ∆Rexp

xx (B) and tries to minimize the
quantity η = (∆Rexp

xx (B)−∆Rsim
xx (B))2. Due to the large number of input param-

eters (listed in table 4.1) and the difficulty to achieve a nice fitting over the whole
magnetic field range, this process cannot be automatized. For instance, the exact
fitting of the last oscillation must be abandoned in some cases since the background
subtraction is critical at high magnetic field. However the software may consider
that the overall error is minimized when this part is properly fitted, to the detri-
ment of the more reliable low magnetic field oscillations. Since each experimental
data curve contains some artifacts (due to evident noise during data acquisition or
approximate background subtraction in some magnetic field range), we decided to
select the best fitting curve manually. For this purpose, the software computes the
magneto-resistivity for all the configurations of the user-defined input parameters
and computes the associated fit quality η. The simulation, which was mainly running
overnight, records the graph of the simulated magneto-resistance superimposed with
the experimental data each time η is below a user-defined threshold.

Fit parameters and their relative importance

The range of input parameters and the fit quality threshold are adjusted during initial
tests which explore the limits of each parameters. With sufficient practice and know-
how, the interplay and contribution of the fit parameters to the magneto-resistivity
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becomes more or less predictable, as summarized in table 4.1. Once the simulation
stops, the user proceeds with visual inspection of the selected outputs and decide for
the best set of parameters.

Fit parameter Description
nh Hole density. Affects the main 1/B-oscillation frequency, especially

at low field where the oscillations are more regular
εz/εc Ratio of Zeeman to cyclotron energy. Affects the departure from

“perfect” 1/B-oscillating trend
µh Hole mobility. Affects the magnetic field-dependent damping of the

amplitude of the oscillations
B0, A2, δB Phenomenological parameters which distinguish localized from ex-

tended states. Affect the form of the oscillations’ maxima
m∗ Effective mass. Set to 0.45×me according to the estimation of the

effective mass (see section 4.1.4 and reference [13])
T Temperature. Set to 4.2K, according to experimental measurement

conditions

Table 4.1: List of parameters for the simulation and their effect on the simulated magneto-
resistance

The simulation was performed for several experimental data with different back-
gate voltages, as shown in figure 4.11. As expected, the quality of the fit is better
for highly negative back-gate voltage (high hole concentration). In this regime, the
resistance of the device is low and the current flowing through the device can be large
enough to reveal well defined magneto-resistance oscillations. On the other hand,
the best simulated curves fail to reproduce the details of the experimental results for
weaker hole concentration. The background subtraction is particularly risky in this
regime and can strongly affect the overall shape of the curves, leading to significant
discrepancy and fit quality loss. For Vg ≥ −90 V, we estimate that the quality of the
experimental data is not good enough for fitting, as even the most obvious features
cannot be reproduced with a unique set of parameters. We emphasize on the fact that
the very last part of the curves (roughly from 50 T till 55 T) is strongly background
dependent and cannot be fitted with confidence whatever the back-gate voltage.
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Figure 4.10: Output of the simulation for a given set of input parameters (EZ/Ec = 4.3).
a) The electrochemical potential (green curve) is displayed together with the Landau level
spectrum for spin up (red lines) and spin down (blue lines). b) Experimental magneto-
resistance (black curve) superimposed with the calculated one (orange curve). c) Longitu-
dinal conductivity for spin up (red curve) and spin down (blue curve). d) The transverse
resistivity computed using equation 4.7 (solid line) or from classical formula (dotted line).
e) Landau level broadening Γ(B) compared with the energy cut-off function 1/2δε(B).

The fit parameters nh and εz/εc are the most significant and require special attention.
The last section of this chapter is devoted to the magnetic-field independent εz/εc
ratio and we focus here on the hole density evolution with respect to the back-gate
voltage. Figure 4.12-a) indicates that the carrier density evolves linearly versus VBG
in agreement with the plane capacitor model nh = Cg (VBG − V0) where V0 is an offset

to the back-gate voltage reflecting the doping and Cg =
[(

ε
SiO2
r .ε0
dSiO2

)−1
+
(
εBN
r .ε0
dBN

)−1
]−1

is the gate capacitance per unit area. The silicon oxide dielectric thickness is dSiO2 =
280 nm and the relative dielectric permittivity is εSiO2

r = 3.9. We take εBN
r = 3.8 while

the BN thickness is an adjustable parameter, as well as V0. The best fit provides
Cg = 11.5 nF.cm−2 and V0 = −8 V, so that dBN = 20 nm in good agreement with the
typical thickness of the deposited BN flakes.

The hole (quantum) mobility µh is another fit parameter of less importance, since it
strongly depends on the way it is linked to Γ (see section 4.2.2). An alternative relation
between µh and Γ than the one we adopted here - leading, for example, to a magnetic
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Figure 4.11: Experimental magneto-resistance superimposed with the simulated curves
for selected back-gate voltages.

field independent broadening of the Landau levels - modifies the values of µh and the
profile of the cut-off function, but has only very little influence on the quality of the
fit. Therefore, even if the Hall effect would have been experimentally available, an
eventual comparison of the extracted values of µh with the hole (transport) mobility
would be inappropriate. We obtain µh ∼ 2000 cm2V−1s−1 for nh & 6.5 × 1012 cm−2,
with a progressive drop down to µh ∼ 1000 cm2V−1s−1 as the gate voltage increases
(i.e., lower hole density). Although uncertain, the absolute values of the hole mobility
are in line to the expected ones considering the onset of the SdH oscillations at
magnetic field Bonset set by the criterion µh.Bonset ∼ 1.
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Figure 4.12: a) The hole carrier density extracted from the simulation (dots) and from
the plane capacitor model (line). b) Extracted quantum hole mobility from the simulation.

4.3 Experimental determination of the Landé fac-
tor

4.3.1 Multiplicity of the ratio Ez/Ec

The carrier density and the ratio Ez/Ec are the most influential fit parameters. The
former allows fitting mainly the weak magnetic field regime, where the Landau level
broadening is large compared to cyclotron or Zeeman energy. In this regime, the
quantum oscillations appear roughly 1/B-periodic and the period is almost solely de-
termined by the carrier density. On the other hand, the ratio Ez/Ec is particularly in-
fluential in the high magnetic field regime, where strong departure from 1/B-periodic
behavior is observed with the presence of extra peaks, valleys or inflections. Contrary
to the carrier density, the value of Ez/Ec is not unique to properly fit the data. The
multiplicity of this parameter is evidenced in figure 4.13: for weak enough magnetic
field and/or high enough charge carrier concentration, the Landau level spectrum is
exactly the same for a particular value of Ez/Ec ± N ′, where N ′ is an even integer.
The magnetoresistance spectrum is essentially the result of scattering mechanisms
between available states, it does not allow for a direct spin distinction. For a given
magnetic field, the energy range where Landau levels of both spin are present con-
stitutes the mixed regime whereas the polarized regime is established when Landau
levels have the same spin index. Probing the polarized regime allows establishing the
exact value of Ez/Ec, but this regime is experimentally difficult to reach. It requires
either high quality samples for which transport properties can be probed at very low
charge carrier density, or very high magnetic field, or both. In this work and for the
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range of available hole densities, no hint of the polarized regime could be observed,
despite magnetic fields as high as 55 T.

On the other hand, the parity of the integer part of the ratio Ez/Ec suffers no doubt.
Indeed, a change of ±1 of this parameter leads to a phase shift of π of the 1/B-periodic
quantum oscillations for weak magnetic field. This phase shift could be easily coun-
terbalanced with an adjustment of the carrier density, but this last one would become
incompatible with the values expected from the plane capacitor model. We found that
the ratio Ez/Ec is close to an even value for VBG = −110 V. Furthermore, looking
at equation 6.14, we notice that the relative amplitude of the quantum oscillations
depends on the Landau level index. If the value Ez/Ec is offset modulo 2 and for
the same carrier density, Landau levels with different indexes will cross the Fermi
energy. We found that the fit quality is not satisfying for Ez/Ec ∼ 2, whereas we
would certainly be probing the polarized regime for Ez/Ec ∼ 6 or higher. Therefore,
this parameter is close to 4. Figure 4.13 illustrates the influence of Ez/Ec for the
curve VBG = −102.5V , the best fit gives Ez/Ec = 4.56. If this ratio was offset by
+2, an additional large amplitude peak corresponding to a spin-up/valley-K Landau
level should be observed at B = 52T , indicating that the mixed/polarized Landau
level transition would occur within our experimental magnetic field range.

4.3.2 Carrier density evolution of the g-factor
In section 4.2.2, we detailed the Landau level energy spectrum of Schrödinger particles
which has been used to implement EN,s in the simulation. An alternative would
be to use the Landau level energy spectrum of massive Dirac fermions (MDF) as
suggested in [17]. Regarding transport properties only, the difference lies in the
double spin/valley degeneracy of the 0th Landau level, as evidenced in figure 4.14
which compares the Landau level energy spectrum (at a given magnetic field) as
a function of the ratio Ez/Ec. The Landau level energy spectra are identical for
any given value of Ez/Ec in the massive Dirac fermion model and for Ez/Ec + 1 in
the Schrödinger fermions (SCHF) model. As a consequence, the simulation provides
exactly the same outputs and it is impossible to distinguish between the nature of
the charge carriers. When the Zeeman energy is weaker than the cyclotron energy,
e.g. when we know by other mean that the ratio Ez/Ec is not larger than 1, the
two different models would translate into a shift of the SdH oscillations by half a
period. This effect has been particularly put forward in graphene to distinguish its
peculiar electronic properties (originating from massless Dirac fermions) from those
of standard semiconducting 2DEG. However for systems such as TMDCs where Ez
can be a priori several times larger than Ec, the distinction is impossible.

Figure 6.18 shows the ratio Ez/Ec extracted from the fit in the explored hole density
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4.3 Experimental determination of the Landé factor

range. The black marks refers to the SCHF model where the N = 0 landau level is
two-fold degenerate at zero magnetic field, whereas the gray dots correspond to the
MDF model with broken symmetry of the zeroth Landau level for K and k′ valleys.
We note that Ez/Ec increases as the carrier density decreases. This trend is in line
with the literature dedicated to WSe2 monolayers, namely Movva et al. [13] and
Gustafsson et al. [12] whose data have been digitized and reproduced in figure 6.18
to ease the comparison. In the former study, the Ez/Ec ratio takes integer values only,
since the authors detected the magneto-resistance minima at even(odd)-integer values
of the filling factor corresponding to odd(even)-integer Ez/Ec ratio. It is important to
note, here, that only parts of their experimental results have been reproduced. The
data (blue marks) can also be offset by +2 since the authors cannot experimentally
distinguish between these two possible values of Ez/Ec. We have reproduced here
the option which adjust best with our experimental data, despite theoretical studies
[107, 106] in better agreement with the alternative case. In the latter study however,
the Ez/Ec ratio is determined from the electrochemical potential jumps between two
successive Landau levels, detected using a single-electron transistor coupled to the
WSe2 monolayer. Interestingly, the MDF model is assumed in reference [13] whereas
the authors of reference [12] published their data considering the SCHF model. To
ease the comparison, we used vivid color for data corresponding to the SCH model
and light color for the MDF model, where the values of Ez/Ec are downshifted by 1.
Although our estimation of Ez/Ec is coherent with the values reported by other
groups, the inevitable discrepancies may originate from experimental data precision,
limitations of the model, or the nature/strength of disorder.
The numerical simulations indicate that, in first approximation, the ratio Ez/Ec does
not change with magnetic field. Therefore the reported values of Ez/Ec (as well as
g?) in figure 4.15 correspond to the zero-magnetic field case. However, this assertion
would certainly fail at higher magnetic field (or lower carrier density), when the
system is driven into the polarized regime. Further investigations with higher quality
samples are necessary to address this issue. The effective Landé factor is linked
to the ratio Ez/Ec through the relation g∗ = 2me

m∗
× Ez

Ec
. Importantly, the effective

Landé factor contains information relative to the strength of the electron-electron
interactions as discussed in section 2.2.4. The interaction enhancement of g∗ can be
intuitively explained by considering the competition between the kinetic and Coulomb
interactions. Indeed, within the Hartree-Fock approximation, the exchange energy
between two charged particles of same spin is negative and tends to lower the total
energy of the system. Therefore, a system composed of particles with the same spin
state is favored as the exchange energy increases relative to the kinetic energy. The
spin polarization of the system can be measured from the spin susceptibility χ, which
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Figure 4.13: Simulation results (orange curves) are compared to the experimental data
for VBG = −102.5V (black curve), for different possible values of Ez/Ec offset by ±2.
a) For Ez/Ec = 2.56, the overall fit is fair but the 1/B-periodic oscillations in the weak
magnetic field regime is questionable. b) The best fit is obtained for Ez/Ec = 4.56 c) For
Ez/Ec = 6.56, a transition from the mixed to polarized regime is expected, but not observed
experimentally.

is directly linked to g∗.

Actually, the interaction enhancement of the spin susceptibility is better described by
the ratio χ/χ0 = g∗.m∗

gb.mb
where χ0 is the Pauli susceptibility in the absence of interac-

tions (e.g. g-factor gb and mass mb are solely determined from the band-structure).
To resume, when the electron-electron interaction increases, so does the exchange
energy which tends to favor a spin-polarized state. As a consequence, the spin sus-
ceptibility increases as well as the effective Landé factor. The relative strength of the
electron-electron interaction is evaluated from the dimensionless parameter rs defined
as the ratio between the Coulomb interaction and the kinetic energy of a particle.
In two-dimensional systems, the Coulomb energy writes εee = q2

√
π.nh

4πε0εr whereas the
kinetic energy is εc = ~2π.nh

m∗
. The ratio between these two energy terms is therefore

rs = 1
aB
√
π.nh
≡ where aB = ~2.4πε0εr

m∗.q2 is the effective Bohr radius. Considering aB as
a normalization factor, this ratio can be interpreted as the mean distance between
the charged particles, regardless the material. The introduction of the effective Bohr
radius (aB = a0 × (εr.me/m

∗) where a0 = 4πε0~2/me.q
2 is the Bohr radius) avoids

considering the effect of the medium which inevitably affects the interaction distances.
We note that rs decreases as the carrier density increases or, in another words, the
relative strength of electron-electron interactions is enhanced at low carrier density.
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The ratio Ez/Ec and the hole density have been converted to g∗ versus rs in figure
4.16 where we assume an interaction independent effective mass m∗ = mb = 0.45.me.
Although the value of the band g-factor for WSe2 monolayers remains controversial
[21, 12, 20, 22], its enhancement with interaction strength is clear even for moder-
ate values of rs. This study1 evidences an interaction enhanced g-factor in WSe2
monolayers for higher hole densities than those reported in the literature.

Figure 4.14: a) Comparison of the Landau level energy spectrum between the massive
Dirac fermion (MDF) model and the Schrödinger (SCHF) fermion model at a given magnetic
field. The same Landau level spectra are evidenced here with Ez/Ec = 3.2 for the MDF
model and Ez/Ec = 4.2 for the SCHF model.

4.4 Concluding remarks
We would like to highlight here the hypothesis and limitations of the study presented
in this chapter. First, the experimental results are subjected to doubts considering
the geometry of the investigated sample which does not meet the required standards
for proper measurement of the longitudinal resistivity. Indeed, the presence of a
large WSe2 flake in electrical contact with the investigated monolayer may affect the
equipotentials and current lines in an unpredictable way, even if the current injection
and voltage measurement electrodes are not directly connected to it. Even if the
experimental data have been checked using either opposite magnetic field or current
(or both), we cannot exclude the eventual contribution of this large flake as well as
the non-perfect Hall bar geometry of the device. This point can be addressed in the
future by etching the sample into a proper Hall bar. Next, the data treatment for

1Part of this work was published in [110]
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Figure 4.15: Extracted values of Ez/Ec as a function the hole density. The pink dots are
the values obtained assuming the SCHF Landau level structure. By down-shifting these
values by 1 (light pink dots), we obtain the values corresponding to the MDF Landau
levels (LLs) structure. The Ez/Ec ratio is compared to the values found in the literature
(blue and green dots), where either the MDF (light color) or SCHF (vivid color) model was
considered. Only parts of the experimental data (see main text for details).

background removal of the magneto-resistance is questionable, especially for small
hole concentrations where the quantum oscillations are difficult to extract from a
large and noisy background. The procedure is manual and therefore user-dependent,
affecting mainly the shape and the amplitude of the oscillation extrema. The mag-
netic field location of the extrema are also affected, but to a lesser extent. Indeed, the
related periodicity of the oscillation is a quite robust parameter which is only slightly
affected by data treatments. Regrettably, the Hall effect could not be measured be-
cause of the sample shape and geometry. Although we had no choice but to simulate
the transverse magneto-resistance to properly compute its longitudinal counterpart,
we found out that the Hall effect has only very little influence for studying the quan-
tum oscillations. For ρxy.σxx << 1 and considering ρxy(B) as a smoothly varying
function in comparison to the quantum oscillations, we have ρxx ∼ σxx. Nevertheless,
an experimental access to the Hall effect would have been highly desirable to confirm
the carrier density (which wouldn’t be an adjustable parameter anymore) and to an-
alyze the Hall plateaus at high field.

There is no exact simple theoretical model to properly fit our experimental data.
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Figure 4.16: Evolution of the Landé factor g∗ (left) and the ratio Ez/Ec (right) versus
the interaction parameter rs (bottom) and the carrier density nh (top) as a function of the
carrier density, on the same graph, for two different models. g∗ increases as the interaction
parameter rs increases, evidencing an interaction enhanced g-factor in this system. We used
εWSe2,BN
r = 1/2.

(
εvacuumr + εBNr

)
= 2.4 to compute rs.

The interplay between the mean scattering time and the Landau level-based density
of states is a complex and unknown function, in addition to the eventual localiza-
tion effects which depends on the microscopic sample details and boundaries of the
sample. The use of equation 6.14 is therefore rather inadequate, especially because it
was established for scattering centers with short-range potentials. The exact nature
of disorder in our sample is certainly a mixture of short-range and long-range defect
potentials. This difficulty is addressed phenomenologically by the introduction of a
magnetic-field dependent cut-off function of the broadened Landau levels, which acts
similar as a mobility edge in the quantum Hall regime. This cut-off function could
in principle be related to the localization length, although this quantity is difficult
to evaluate without experimental access to the fully developed quantum Hall regime.
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We also recall that the exact broadening of the Landau levels is unknown, although
we chose a Gaussian broadening adapted for short range defects [67] and long range
scatterers where the correlation length of the potential fluctuations is larger than
`B/N

1/2 [105]. Because this condition cannot be verified, it is assumed in the present
work.

Despite possible errors in experimental data treatment and the lack of physical justi-
fication for some hypothesis in the model, the quality of the magneto-resistivity fit is
remarkable for the highest hole density curves, without invoking a field dependence
of the ratio Ez/Ec. One of the key ingredient for this success is the self-consistent cal-
culation of the chemical potential, which goes beyond the Lifschitz-Kosevich formula
(see section 6.11). Indeed, simulations performed with a magnetic-field independent
electrochemical potential reproduces well the low field part of the experimental data,
but fail to address properly the high field regime. The relation between the carrier
density and the electrochemical potential is provided by equation 6.13. When the hole
concentration is constant, the chemical potential must vary. However if the chemi-
cal potential is set constant, the carrier density must be magnetic field-dependent.
Although real systems are certainly a mixture of these two ideal cases, we believe
that the first condition mostly apply for our sample. Indeed, in the plane capacitor
geometry, the charge carrier density is related to the total capacitance of the device,
including the geometrical and quantum capacitance. The former is very small (con-
sidering the large SiO2 thickness) and dominates the total capacitance. Since this
quantity does not depend on the magnetic field, so does the related carrier density.

The simulation is helpful to analyze quantum oscillations from a sample with partial
Landau level resolution, e.g. with moderate mobility. However, it would be interesting
to reproduce this study with a sample of higher quality. One route to achieve this
goal is to fabricate a fully h-BN encapsulated WSe2 monolayer [16, 13, 12], even if
ohmic contact are difficult to achieve in this configuration. The enhancement of the
Landé factor certainly depends on disorder and it would be interesting to address this
issue with higher mobility samples.
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Conclusion

At cryogenic temperature and under high enough magnetic field, the magnetic con-
finement of the quasi-particle wave-functions is no more hindered by the disorder.
Their subsequent energy quantization into Landau levels reflects some of the fun-
damentals properties of the host material. In a magneto-transport experiment, the
quasi-particle energy spectrum is inferred from the variations of the electrical resis-
tance which is intimately linked to the energy dependent mean scattering time at the
Fermi energy. In other words, the magnetic field acts as a tunable knob which changes
the Hamiltonian of the system, and the resulting quasi-particle energy spectrum is
experimentally probed by the electrical resistance. The comparison between the ex-
perimental results and the theoretical models contributes to unveil the specific charge
carrier dynamics of a material. This work is dedicated to the study of the electronic
properties of monolayer tungsten diselenide (WSe2) by mean of high magnetic field
magneto-transport.

This system has been chosen for several reasons. First, it hosts a two-dimensional gas
of charged particles since its thickness reaches the ultimate limit of one stochiometric
unit cell. The electronic properties of two-dimensional materials are much different
from their bulk counterparts due to the breaking of translational symmetry in one
direction. A detailed knowledge of their electronic properties is essential for their
integration into future opto-electronic devices. Second, WSe2 material belongs to the
family of transition metal dichalcogenides which are expected to host a new type of
quasi-particles named “massive Dirac fermions” when thinned down to a monolayer.
Unlike massless Dirac fermions in graphene or Schrödinger fermions in conventional
2D semiconductor systems, the massive Dirac fermions are characterized by both the
presence of a direct energy gap and a locking of the spin and valley degrees of freedom.
Third, the large effective mass of the holes (m∗ ∼ 0.45 × me) and the low effective
dielectric constant of the medium surrounding the monolayer (typically vacuum and
hexagonal boron nitride in this study) allows for large interaction parameter. This
system is therefore a very interesting platform to study electron-electron interactions.

Actually, due to the energy gap, magneto-optical spectroscopic techniques are partic-
ularly adapted to study the electronic properties of monolayer WSe2. On the contrary,
their investigation by mean of the magneto-transport technique remains challenging.
The main difficulties are inherent to the quality of the sample (electronic mobility as
the main metric of the degree of disorder) and to the electrical contacts with metallic
electrodes. The choice of this technique is however motivated since it is sensitive
to the degeneracy of the lowest energy Landau level. This property constitutes the
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hallmark of the nature of the charge carriers, so that magneto-transport experiments
allow for a direct experimental distinction between massive Dirac and Schrödinger
fermions in monolayer WSe2 (provided the Zeeman energy is already known or neg-
ligible).

After several attempts, a multiply connected monolayer WSe2 device with decent
electronic mobility and contact resistances has been fabricated. The monolayer lies
on hexagonal boron nitride flake itself deposited on a SiO2/Si substrate, allowing
an in situ change of the carrier density by electrostatic doping using a back-gate.
The as-fabricated device is insulating at cryogenic temperature (4.2 K), but starts
conducting when the back-gate voltage is negative. In this configuration, the Fermi
energy is closed to the top of the valence band and the electronic properties of holes
are probed. The high magnetic field resistance displays a complex quantum oscillation
pattern suggesting a competition between the Zeeman energy Ez and the cyclotron
energy Ec. We emphasize here the use of strong magnetic fields which were essential
to compensate the moderate electronic mobility of the sample in order to reach the
quantum transport regime. The data analysis, based on the comparison of the exper-
imental results with simulations involving, among others, the Zeeman energy, allowed
to extract the effective Landé factor as a function of the interaction parameter. In
agreement with the literature, we confirmed and enlarged the carrier density range
where the enhancement of the effective Landé factor has been reported. For systems
with negligible Zeeman energy such as graphene, the phase of the quantum oscilla-
tions can be related to the nature of the quasi-particles. In this study, on the other
hand, the large (several times the cyclotron energy) and a priori unknown Zeeman
energy prevents an unambiguous determination of the ratio Ez/Ec, which is inferred
±1 depending on the nature of the charge carriers. An independent measurement of
the Zeeman energy is required to address this issue.

A straightforward new research direction would be to study magneto-transport in
higher quality samples. Disorder is an important parameter which competes with
interaction effects in two dimensional electron gas. With access to higher quality ma-
terials, the fully developed quantum Hall regime, the polarized Landau level regime or
even the fractional quantum Hall regime could be at reach. This goal can be achieved
with cleaner sample fabrication techniques and encapsulation of the monolayer with
top and bottom boron nitride flakes. In this configuration however, the fabrication of
electrical contacts with low contact resistance remains challenging and requires state-
of-the-art clean room processes. The use of graphene or thin graphite as an interlayer
between the WSe2 monolayer and the metallic electrodes is a promising route towards
this objective. Besides, probing the electronic properties of the conduction band by
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mean of magneto-transport is another interesting perspective for this material. De-
spite several attempts, it was not possible to align the Fermi energy with the bottom
of the conduction band in this study. The choice of a metal with appropriate work
function for the contacting electrodes can certainly help reaching this goal.
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Résumé en français
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6.1 Introduction
Contrairement au graphène, les dichalcogénures de métaux de transition ont une
bande interdite séparant la bande de valence de la bande de conduction. Cette
bande interdite est indirecte dans les matériaux massifs et devient directe lorsque le
matériau est aminci à un seul plan stœchiométrique atomique. Au-delà des applica-
tions opto-électroniques évidentes, un couplage spin-orbite important fait des mono-
couches de dichalocogénures de métaux de transition un système particulièrement
intéressant pour la recherche fondamentale. En effet, leurs propriétés électroniques
impliquent deux degrés de liberté (appelés spin et vallée) qui sont fortement couplés
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par l’interaction spin-orbite. Cette thèse expérimentale s’intéresse en particulier à
la mono-couche de diséléniure de tungstène (WSe2). Nous utilisons des conditions
extrêmes de champ magnétique intense et de basse température pour quantifier le
spectre d’énergie des porteurs de charge en niveaux d’énergie discrets (niveaux de
Landau), qui affectent à leur tour les propriétés de transport électrique. Ainsi, la
magnéto-résistance constitue l’empreinte digitale du système permettant de révéler
son état fondamental. Ce travail constitue la première réalisation de mesures de
transport quantique sur des mono-couches de WSe2 à l’aide d’un champ magnétique
pulsé. Il ouvre la voie à de futures améliorations techniques et à la mesure d’autres
matériaux de la famille des dichalcogénures de métaux de transition.

6.2 Propriétés électroniques des dichalcogénures
de métaux de transition

6.2.1 Généralités
Il existe environ 60 composés différents appartenant à la famille des dichalcogénures
de métaux de transition (DCMTs). Les deux tiers d’entre eux possèdent une struc-
ture en couches de la forme MX2 [25], où M représente les atomes des métaux de
transition (groupes 4 à 10 du tableau périodique des éléments) et X représente des
atomes chalcogènes. Les mono-couches de DCMT sont constituées d’atomes M pris
en sandwich par deux couches d’atomes X, qui sont fortement liés par des liaisons
covalentes. Dans une structure 3D, de nombreux plans stœchiométriques sont empilés
les uns sur les autres et interagissent par des interactions faibles de van der Waals
(vdW) [25]. Les DCMTs existent sous trois formes appelées 1T, 2H et 3R. Dans cette
nomenclature, le nombre indique le nombre de couches MX2 présentes dans la cellule
unité tandis que la lettre représente le groupe de symétrie (T pour trigonal, H pour
hexagonal, R pour rhomboédrique) [32]. Ces polymorphes sont schématisés sur la
figure 6.1.

6.2.2 Monocouche

Réseau direct et réseau réciproque

Dans la figure 6.2, les expressions (1) et (2) définissent # »a1 et # »a2 comme les vecteurs
primitifs du réseau direct exprimés selon les vecteurs de la base cartésienne x̂ et
ŷ. La cellule unité contient un atome de métal et deux atomes de chalcogène. Les
expressions (3) et (4) définissent les vecteurs de base du réseau réciproque #»

b1 =
2π
a2

(
# »a2 ∧

#»

k
)

et #»

b2 = 2π
a2

(
#»

k ∧ # »a1
)

où #»

k = x̂ ∧ ŷ est un vecteur unitaire orienté dans
la direction hors du plan. La figure 6.2-b montre l’espace réciproque comprenant les
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Figure 6.1: Schémas des polymorphes
de DCMT de gauche à droite : 1T
(symétrie tétragonale, une couche par cel-
lule unité, coordination octaédrique de
l’atome métallique), 2H (symétrie hexago-
nale avec deux couches par cellule unité, co-
ordination prismatique trigonale de l’atome
metallique) et 3R (symétrie rhomboédrique
avec trois couches par cellule unité, coor-
dination prismatique trigonale de l’atome
métallique). Adapté de [28]

points de haute symétrie K, K ′, Γ et M ; les lignes T , T ′ et Σ ainsi que les points
Q et Q′ situés à mi-chemin le long de la ligne Γ −K et Γ −K ′. Les six coins de la
première zone de Brillouin se trouvent aux points K et K ′, qui sont inéquivalents.

Figure 6.2: a) réseau réél et b) réseau réciproque
d’une monocouche de DCMT.

# »a1 = a
2(
√

3x̂+ ŷ) (6.1)
# »a2 = a

2(−
√

3x̂+ ŷ) (6.2)
#»

b1 = 2π
a

(
√

3
3 x̂+ ŷ) (6.3)

#»

b2 = 2π
a

(−
√

3
3 x̂+ ŷ) (6.4)

Structure de bande

Les états quantiques électroniques doivent être décrits en prenant en compte l’interaction
spin-orbite provenant des orbitales d des atomes métalliques [15]. La symmétrie de
réflexion miroir modifie la projection hors du plan d’un état de spin, tandis que sa
composante dans le plan reste inchangée. Cependant, la symétrie d’inversion du temps
impose un renversement des états de spin lorsque ceux-ci appartiennent à des états
électroniques des vallées K et K’ [42, 43]. Ainsi les états quantique sont dégénérés en
spin qui est perpendicluaire au plan de la monocouche. Cette propriété importante
est représentée dans la figure 6.3 où la levée de degenérescence de spin aux extrema
de la bande de valence et de la bande de conduction est interchangée selon l’indice de
vallée K et K’. La bande interdite de spin/vallée est plus grande dans la bande de
valence par rapport à celle de la bande de conduction pour les monocouches à base
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de tungstène. Ce couplage spin/vallée est inhérent aux TDMCs dont le nombre de
couches est impair, incluant la monocouche. Ces systèmes ont en commun l’absence
de symétrie d’inversion contrairement aux DCMTs ayant un nombre de couches pair.

Figure 6.3: Levée de la dégénérescence de
spin aux points K et K ′ de la première zone
de Brillouin d’une monocouche de WSe2.
Adapté de [9]

6.2.3 Bicouche
La cellule unité de la bicouche de DCMTs est le double de celle d’une monocouche,
où les couches supérieures et inférieures sont tournées dans le plan de 180o l’une
par rapport à l’autre. Ce système possède un point de symmétrie d’inversion et
donc, même en présence d’un couplage spin-orbite fort, les états électroniques de spin
restent dégénérés. En réalité, les deux couches n’interagissent que faiblement via
les forces de van der Waals et les propriétés electroniques des bicouches de DCMTs
ressemblent, à première vue, à celles de deux monocouches indépendantes tournées
de 180o l’une par rapport à l’autre. Cette opération de symétrie commute les deux
vallées K et K ′ (voir figure 6.4) mais laisse le spin inchangé. Ainsi, les propriétés
dépendantes de l’indice de vallée se moyennent naturellement à zéro (par exemple
effet Hall de vallée, dichröısme circulaire de vallée) tandis que les effets dépendants
du spin s’additionnent (effet Hall de spin et dichröısme optique de spin). Le signe
de l’énergie de clivage de spin est intimement lié à la vallée ainsi qu’à l’indice de
couche, qui constitue un nouveau degré de liberté pour les états électroniques (par
exemple, la fonction d’onde électronique peut être considéré comme une superposition
linéaire de deux fonctions d’onde entièrement localisées soit sur la couche supérieure,
soit sur la couche inférieure). Dans le composé WSe2, le couplage spin-orbite est
particulièrement fort et l’énergie de clivage de spin est beaucoup plus grande que
l’énergie de saut entre les couches. Il s’ensuit que les états quantiques de spin up
(down) sont localisés dans la couche inférieure (supérieure) en fonction de l’indice
de vallée. Ainsi et en première approximation, la physique impliquant les indices de
vallée reste similaire à celle impliquant deux monocouches découplées. Néanmoins, il
est important de souligner qu’un champ électrique perpendiculaire brise la symétrie
d’inversion [26] et restaure les propriétés dépendantes de l’indice de de vallée. Par
exemple, l’absence de symétrie d’inversion dans les bicouches de MoS2 et WSe2 a
été mis en évidence par l’application d’un champ électrique perpendiculaire dans les
références [16, 13].
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Figure 6.4: Les propriétés
électroniques des bicouches DCMT
ressemblent à celles de deux DCMT
monocouches tournées de 180o l’une
par rapport à l’autre. Dans l’espace
réciproque, les bords de la première
zone de Brillouin (points K et K ′)
sont une superposition des états de
chaque monocouche, conduisant à
des états de spin dégénérés.

6.2.4 Multi-couche

Dans les multi-couches de DCMTs, les minima des bandes de conduction ne sont pas
situés aux points K/K ′, mais plutôt aux points Q/Q′ et Γ avec une relation de disper-
sion quadratique dans leur voisinage comme le montre la figure 6.5. Pour les DCMTs
ayant un nombre de couches pair, les vallées Q et Q′ sont reliées par des éléments de
symétrie d’inversion de temps et d’inversion par rapport à un point [55]. La symétrie
d’inversion est toutefois absente dans les DCMTs ayant un nombre de couches impair
de sorte que toutes les sous-bandes aux points Q/Q′ sont non-dégénérées en spin.
Pour un état électronique donné et en première approximation, le couplage entre les
indices de spin et de vallée dans les DCMTs monocouches et bicouches peuvent être
étendues aux multi-couches de DCMTs, en considérant cependant les vallées Q/Q′ au
lieu des vallées K/K ′ [56].

Figure 6.5: (a),(b) structure de bande calculée pour tricouche MoS2 et 6-couches WS2.
Adapté de [56].
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6.3 Transport électronique

6.3.1 Modèle classique de Drude
Le transport électronique implique le mouvement de charges (le courant) sous l’influen-
ce de champs électriques et/ou magnétiques. Dans les systèmes diffusifs, les porteurs
de charge sont d’une part accélérés par les champs moteurs, d’autre part dispersés
et/ou ralentis lors de collisions. Ces interactions opposées conduisent à une vitesse
moyenne constante des porteurs de charge appelée vitesse de dérive #»vd. Le traitement
classique de la conduction repose sur le modèle de Drude, qui introduit un temps de
diffusion moyen pour prendre en compte les processus de diffusion. Nous définissons
la densité de courant #»

j comme le produit de la densité de porteurs n par la vitesse de
dérive #»vd et la charge élémentaire q, qui peut être respectivement négative ou positive
pour les électrons ou les trous.

#»
j = q.n. #»vd (6.5)

La conductance électrique sonde la diffusion globale des porteurs de charge ayant lieu
à un niveau microscopique dans le matériau. En régime stationnaire, la vitesse de
dérive divisée par le temps de diffusion moyen définit une accélération qui, multipliée
par la masse effective des porteurs de charge, équivaut à une force opposée à celle
produite par le champ électrique externe. On peut définir la mobilité µ d’un matériau
comme le rapport entre la vitesse de dérive et le champ électrique et, en appliquant la
loi de Newton, nous montrons que la mobilité s’exprime alternativement en fonction
du temps de diffusion moyen, de la masse effective et la charge des porteurs.

q.
#»

E︸︷︷︸
#»
F c

−m∗. #»v d/τ︸ ︷︷ ︸
#»
F drift

= 0⇔ µ = |
#»v d|
| #»E |

= qτ

m∗
(6.6)

En combinant les équations 6.5 et 6.6, la densité de courant peut s’écrire en fonc-
tion du champ électrique où le facteur de proportionnalité définit la conductivité σ0
du matériau. En l’absence de champ magnétique, la résistivité est l’inverse de la
conductivité.

σ0 = q2.τ.n

m∗
= n.q.µ (6.7)

ρ0 = m∗

q2.τ.n
= 1/(n.q.µ) (6.8)

Le modèle classique de Drude décrit la dynamique d’une particule chargée dans un
milieu désordonné de manière homogène et sous l’influence d’un champ électrique
externe. Le modèle suppose que tous les électrons de conduction se comportent de
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manière similaire, de sorte que les observables macroscopiques (conductivité, courant..)
sont obtenus en multipliant la dynamique d’une particule par la densité des porteurs
de charge. Cette approche simple de la conductivité du matériau fournit le point
de départ d’une théorie plus complexe (semi-classique) prenant en compte les con-
cepts de la physique statistique où la fonction de distribution de Fermi-Dirac est
introduite. En prenant en compte le champ magnétique, la conductivité devient un
tenseur qui couple les composantes de la densité de courant et les composantes du
champ électrique. Le tenseur de conductivité (9) et de résistivité (10) sont donnés
dans la figure 6.6 en fonction du champ magnétique. Une approche plus complète, à
partir de l’équation de Boltzmann est décrite dans le manuscrit de thèse.

Figure 6.6: Composantes du tenseur de conduc-
tivité (a) et de résistivité (b) en fonction du champ
magnétique.

σ =
 σ0

1+(µ.B)2
σ0.µ.B

1+(µ.B)2

− σ0.µ.B
1+(µ.B)2

σ0
1+(µ.B)2

 (6.9)

ρ =
(

ρ0 −ρ0.µ.B
ρ0.µ.B ρ0

)
(6.10)

6.3.2 Transport sous champ magnétique intense

Niveaux de Landau

Lorsque le champ magnétique est suffisamment fort, les porteurs de charge peuvent
réaliser au moins une orbite cyclotron avant d’être diffusés. Dans cette description
semi-classique, l’orbite circulaire électronique doit correspondre à un nombre entier de
fois la longueur d’onde λ = 2π

k
= h

p
. Cette contrainte est nécéssaire puisque la fonction

d’onde électronique ne peut pas être définie de manière multiple (c’est à dire avoir
une phase différente) à une position donnée. Classiquement, une particule chargée
de masse effective m∗ et de charge q a un mouvement circulaire en présence d’un
champ magnétique externe avec une pulsation constante ωc = q.B/m∗. On note #»r le
rayon et #»v = #»ω c ∧ #»r la vitesse de la particule. La phase acquise lorsque la particule
chargée se déplace le long de son orbite est dϕ = d

(
#»

k . #»r
)

où ~. #»

k = m∗. #»v − q. #»

A.
Nous calculons:

2π.N =
∫
circ

dϕ =
∫
circ

#»

k .
#»

d` = 1
~

[
2π.m∗.r2.

e.B

m∗
− q.B.π.r2

]
2π.~.N = π.r2.q.B ⇔ r =

√
2.N.`B
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où `B =
√

~
e.B

est la longueur magnétique. Bien que ce modèle heuristique prédise la
quantification du rayon du cyclotron et de l’énergie cinétique d’une particule chargée
libre en présence d’un champ magnétique, l’interprétation correcte nécessite un traite-
ment mécanique quantique complet détaillé dans le manuscrit de thèse, conduisant
au spectre des niveaux de Landau. Nous montrons que la densité d’états d’un gaz
d’électrons bidimensionnel sous champ magnétique perpendiculaire est repatie en
niveaux d’énergie discrets εN = ~.ωc (N + 1/2) appelés “niveaux de Landau”, où
N est un entier correspondant à l’indice des niveaux de Landau.

Figure 6.7: (a) Densité d’états pour un gaz d’électrons libres et indépendants en pres-
ence d’un champ magnétique. (b) Energie des niveaux de Landau en fonction du champ
magnétique. La pente dépend du nombre quantique N (noté n dans la figure).

Les impuretés et les défauts sont toujours présents dans un matériau et agissent
comme une source de diffusion pour les porteurs chargés. En conséquence, la durée
de vie d’un état quantique est limitée et est notée τq. Son interprétation physique
est similaire au temps de diffusion moyen de Drude, bien que ce dernier inclue une
dépendance de l’angle de diffusion afin de donner plus de poids aux événements de
rétrodiffusion. Lorsque le désordre est introduit, la densité d’états est élargie autour
des niveaux d’énergie discrets de Landau (voir figure 6.8).

Figure 6.8: (a) Les niveaux de Landau sont élargis à cause du désordre. (b) La somme des
niveaux de Landau élargis définit la densité des états totale. La modulation de la densité
d’états induite par le champ magnétique peut être détectée expérimentalement si les niveaux
de Landau individuels sont suffisamment séparés. Adapté de [65, 70]
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Oscillations de Shunikov-de Haas

Pour un champ magnétique faible et en présence de désordre, la densité d’états
d’un gaz d’électrons bidimensionnel ondule faiblement au-dessus d’un fond constant.
Cette faible modulation de la densité d’états est à l’origine de faibles oscillations
de la magnéto-résistance en fonction du champ magnétique, appelées “oscillations
de Shubnikov-de Haas”. La magetno-resistance est alors donnée par la formule de
Lifshitz-Kosevich:

ρxx = m∗

n.q2.τ0

1 + 2 exp
(
−π
ωc.τq

)
×

2.π2.kBT
~ωc

sinh
(

2π2.kBT
~ωc

) × cos
(

2π.h.n
2qB

) (6.11)

La résistivité longitudinale est composée de deux termes. Le premier est constant
et correspond à l’expression de la résistivité établie avec le modèle de Drude. Le
deuxième terme est une fonction oscillante dont la période est proportionelle à l’inverse
du champ magnétique. La résistivité est minimum lorsque l’énergie de Fermi est
située entre deux niveaux de Landau. Le terme exponentiel impliquant τq est le
facteur de Dingle qui est responsable de l’augmentation de l’amplitude des oscillations
de la résistivité lorsque le champ magnétique augmente. Le terme X/sinh (X) (où
X = 2π2.kBT

~ωc ) correspond aux effets de la temperaure qui tend à réduire l’amplitude
des oscillations. La formule de Lifschitz-Kosevich n’est valable que pour les petits
champs magnétiques, où la crête de la densité des états affiche une série de maxima
et minima correspondant à l’apparition de niveaux de Landau. Les oscillations de
Shubnikov-de Haas constituent une empreinte digitale du matériau étudié : l’étude
de la période des oscillations en 1/B fournit un accès direct à la densité des porteurs
de charges à condition que leur durée de vie soit suffisamment grande. Au contraire,
la densité de porteurs extraite de l’effet Hall est sensible à tous les porteurs de charge
quelle que soit leur mobilité. C’est la raison pour laquelle, dans certains systèmes
multi-bandes complexes, la densité de porteurs extraite de l’effet Hall est plus grande
que son homologue extraite de l’étude des oscillations de Shubnikov-de Haas. Au-
delà de la densité de porteurs, la durée de vie quantique τq et la masse effective m∗
sont des grandeurs essentielles accessibles experimentalement gràce à la formule de
Lifschitz-Kosevich.
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6.4 Fabrication des dispositifs et caractérisation
électrique

6.4.1 Dichalcogénures de métaux de transition : de 3D à 2D

L’approche “top-down” consiste à amincir un matériau massif jusqu’à quelques couches
atomiques voire une monocouche. Pour les matériaux exfoliables tels que WSe2,
cette technique réalisée “à la main” est bon marché et facile à mettre en oeuvre
mais nécessite une longue expérience et un savoir-faire particulier. Elle produit des
systèmes 2D de haute qualité avec des dimensions de quelques dizaines de micromètres
carrés. L’objectif est de fabriquer une structure avec une monocouche WSe2 déposée
sur un flocon de nitrure de bore hexagonal (h-BN). Ce système doit ensuite être con-
necté à plusieurs électrodes métalliques pour les mesures de transport électrique. Les
étapes principales de fabrication d’un échantillon sont décrites ci-dessous.

Nettoyage du substrat Si/SiO2: Nous utilisons des substrats carrés de Si/SiO2
dopés p avec une taille latérale de 1 cm, ayant un repère alpha-numérique réalisée par
lithographie optique. L’épaisseur de l’oxyde de silicium est de 300 nm. Des méthodes
sophistiquées sont utilisées pour éliminer les résidus, en commençant par les plus
douces jusqu’aux plus agressives, afin de préserver au maximum la couche d’oxyde.
Par exemple, l’acétone chaude et/ou la sonication se sont avérées très utiles. En
dernier recours, nous utilisons une méthode de nettoyage avec un plasma d’oxygène
de faible puissance et un temps d’exposition très limité (1 s à une puissance de ra-
diofréquence de 10 W).

Préparation du substrat: L’objectif est de déposer des flocons de h-BN ayant
une épaisseur de quelques couches au hasard sur un substrat standard Si/SiO2. Pour
cela nous découpons une pièce de PDMS (Silicone) que nous déposons sur une lame
de verre. Ensuite, nous exfolions plusieurs fois le cristal de h-BN, avec un ruban
adhésif. Le ruban adhésif est doucement pressé contre le PDMS et décollé en douceur.
Certains flocons de h-BN sont transférés au hasard depuis le ruban adhésif à la sur-
face du PDMS. Enfin, nous mettons le PDMS en contact avec le substrat Si/SiO2.
L’utilisation du PDMS comme étape intermédiaire permet un transfert propre de
quelques flocons de h-BN avec des épaisseurs et des tailles différentes, bien isolés les
uns des autres, sur le substrat Si/SiO2. En se référant au contraste obtenu à l’aide
d’un microscope optique, nous recherchons les paillettes de h-BN les plus importantes
transférées sur le substrat en termes de taille latérale, planéité, épaisseur (maximum
30 nm) et espace libre environnant. Si nécessaire, des mesures AFM sont effectuées
pour déterminer précisément l’épaisseur.
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Exfoliation de WSe2 et dépôt sur flocon de h-BN: Les cristaux de WSe2 massifs
sont traités de la même manière que détaillée précédemment. Nous déposons ensuite
ce flocon exactement au-dessus du flocon h-BN à l’aide d’un ensemble d’étages mo-
biles de précision. Cette méthode appelée “technique de transfert à sec” est illustrée
dans la figure 6.9. Le système WSe2/PDMS est aligné avec le substrat h-BN/SiO2/Si
sous l’objectif d’un microscope. La transparence optique du PDMS et de la lame de
verre permet la visualisation des flocons WSe2 et h-BN en ajustant la mise au point
du microscope. Une fois que l’alignement souhaité est atteint, les deux flocons sont
pressés l’un contre l’autre.

Figure 6.9: Dispositif de micro-alignement des flocons de DCMTs et de h-BN

6.4.2 Fabrication et adressage électrique des échantillons
Lithographie électronique: Cette technique développée dans les années 60, utilise
un faisceau d’électrons focalisé sur les zones choisies d’un substrat préalablement
recouvert d’une résine électro-sensible. Le substrat est ensuite plongé dans une solu-
tion de dissolution, les zones exposées sont éliminées beaucoup plus rapidement que
la résine non exposée. Dans ce travail on distingue les micro-électrodes, qui relient
directement le flocon de WSe2 avec une grande précision, des macro-électrodes qui
s’étalent sur quelques mm2 et sont utilisées à des fins d’interconnexion électrique.
Nous utilisons les logiciels AutoCAD et kLayout pour concevoir les électrodes (voir
figure 6.10). Les marques d’alignement sont dessinées sur les coins de chaque zone de
travail pour un réglage précis du faisceau d’électrons.
Metalisation et “lift-off”: Une fois que la résine a été développée, l’échantillon est
prêt pour la métallisation. Nous déposons un bicouche métallique en platine (Pt) et
or (Au) pour les micro-électrodes, tandis que le titane (Ti) et l’or sont utilisés pour
les macro-électrodes.

109



Chapter 6. Résumé en français

Figure 6.10: a) et b) Dessin des macro-electrodes et des micro-éléctrodes. c) Géométrie
barre de Hall typique utilisée

Gravure plasma: Nous avons utilisé la technique de gravure au plasma pour certains
échantillons afin d’obtenir une géométrie en barre de Hall bien définie. L’échantillon
est d’abord recouvert de résine à l’exception des parties à graver qui sont retirées par
lithographie par faisceau d’électrons.

Soudure par thermo-compression: Pour connecter les macro-électrodes de l’échantillon
à un contact électrique de plus grande dimension, nous utilisons une machine de micro-
soudure. Un fil d’or d’un diamètre 17µm est plaqué contre l’électrode de l’échantillon
tandis qu’une impulsion d’ultra-sons fait fondre le métal localement et assure un bon
contact électrique. Le processus est répété sur le plot de connexion, puis coupé.

6.4.3 Caractérisation structurale et mesure de l’épaisseur des
flocons h-BN/WSe2

Les propriétés physiques des DCMTs sont intimement liées au nombre et à la parité du
nombre des couches. Le nombre de couches peut être déterminé en utilisant plusieurs
méthodes telles que la microscopie optique, la microscopie à force atomique, la photo-
luminescence, la spectroscopie Raman et la microscopie électronique en transmission.
La microscopie optique constitue le moyen le plus simple d’estimer le nombre de
couches, pour des échantillons constitués au maximum de 3 couches. Il s’agit d’une
méthode non destructive, basée sur le contraste optique, largement utilisée pour les
matériaux DCMTs. La microscopie à force atomique a été utilisée pour déterminer
l’épaisseur des échantillons réalisés dans ce travail, le mode d’imagerie utilisé est le
mode ”tapping”. La figure 6.11 montre des micrographies AFM pour différents flocons
exfoliés de WSe2 avec différentes épaisseurs. L’intensité de photoluminescence (PL)
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Figure 6.11: Microscope à force atom-
ique (AFM) utilisé pour la détermination
de l’épaisseur des flocons. Illustration du
mode tapping.

Figure 6.12: Cliché de microscopie
électronique en transmission dans lequel
le flocon de h-BN apparait comme des
franges sombres et claires tandis que le
flocon de WSe2 apparait comme une al-
ternance de points sombres et clairs.

est très faible pour les matériaux à bande interdite indirecte car elle repose sur un
processus assisté par phonons à faible rendement quantique. D’autre part, la réponse
en PL est élevée pour les DCMTs monocouches, signature d’un semi-conducteur à
bande interdite directe [82]. Un pic d’émission PL à 1.63 eV a été rapporté dans
les références [44, 7] en accord avec les mesures PL réalisées sur nos échantillons de
WSe2 monocouches. Par ailleurs, la détermination de l’épaisseur peut être effectuée
par une observation directe de l’échantillon à l’aide d’une microscopie électronique à
transmission. La microscopie électronique en transmission à balayage en champ clair
est rapportée sur la figure 6.12.

6.4.4 Caractérisations électriques
Les propriétés de transport de base telles que la densité de porteurs et la mobilité
électronique peuvent être obtenues en mesurant le courant en fonction de la tension
de grille ou de la tension drain-source (polarisation) [91]. Il convient de mentionner
que lorsqu’un contact électrique est réalisé entre un métal et un semi-conducteur, une
barrière Schottky est établie. Près de l’interface, un transfert de charges se produit
jusqu’à ce que l’énergie de Fermi soit la même dans les deux matériaux. Les flocons de
WSe2 n’étant pas dopés, l’énergie de Fermi se situe dans la bande interdite, le système
est un isolant. Lorsqu’une tension négative est appliquée à l’électrode de grille, le po-
tentiel électrochimique des porteurs de charge dans WSe2 est modifié, ce qui entrâıne
une diminution de la barrière Schottky lorsque l’énergie de Fermi s’approche du max-
imum de la bande de valence. Pour une tension de grille négative et suffisamment
élevée, l’énergie de Fermi est proche du bord de la bande de valence, cette situation
résulte en un courant net mesurable. Le courant augmente rapidement à mesure que
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la tension drain-source devient suffisamment élevée, comme le montre la figure 6.13.
Lorsque la tension de grille est faible (par exemple de 0 à -45 V), le courant est nul
pour la plage de tension de polarisation explorée à T=4.2 K. Pour Vg < −60 V, un
courant faible apparâıt qui ne peut être mesuré que lorsque la tension de polarisa-
tion est suffisamment grande, ce qui donne une courbe I(V) fortement non linéaire.
La non-linéarité a tendance à disparâıtre lorsque la tension de grille s’approche de
VBG = −90 V et finit par disparâıtre lorsque l’énergie de Fermi est à l’intérieur de
la bande de valence. La figure 6.13-b est une représentation alternative de cet effet,
où le courant ID est affiché en fonction à la fois de la tension de polarisation et de
la tension de grille arrière dans un diagramme en couleurs. D’autre part, lorsqu’une
tension positive est appliquée à l’électrode de grille, les électrons devraient être ca-
pables de transporter le courant lorsque l’énergie de Fermi est proche du bord de la
bande de conduction. Néanmoins, la tension de grille arrière minimale requise pour
réaliser la conduction électronique est hors de portée expérimentale (¿110 V).

Figure 6.13: a) Courant drain-source pour différentes valeures de la tension de grille de
−45 V à −90 V par pas de −2.5 V dans un flocon multi-couches de WSe2. b) Représentation
du courant drain-source avec une carte de couleur en fonction de VBG et Vds pour un flocon
monocouche de WSe2 .

6.4.5 Génération de champ magnétique pulsé
Le travail expérimental réalisé au cours de cette thèse a été réalisé avec des im-
pulsions de champ magnétique d’une durée ∼ 300 ms et d’un champ maximum de
55 T, qui pouvaient être répétées toutes les heures environ. Les champs magnétiques
pulsés sont produits par la décharge d’une grande batterie de condensateurs dans
une bobine résistive refroidie à la température de l’azote liquide (77K). Une diode
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”crowbar” est insérée dans le circuit RLC afin d’éviter toute oscillation du courant,
de la tension ou du champ. La batterie de condensateurs est capable de stocker une
énergie électrostatique de 14 MJ lorsqu’elle est chargée sous une tension maximale de
24 kV. Lorsque la charge est terminée, des thyristors à déclenchement optique lais-
sent le courant circuler vers la bobine génératrice de champ magnétique. Le courant
circulant dans le circuit de la bobine, qui est proportionnel au champ magnétique
produit, augmentera de manière sinusöıdale jusqu’à atteindre sa valeur maximale, à
ce moment la tension au niveau de la batterie de condensateurs change de signe et la
diode � crowbar � devient conductrice. L’énergie magnétique stockée dans la bobine
se dissipera par effet Joule dans une résistance en série avec le circuit contenant la
diode. Le courant, et donc le champ magnétique, diminuera selon une loi exponen-
tielle. La bobine représentée dans l’encart de la figure 6.14 est réalisée en enroulant
un fil de cuivre renforcé de zylon noyé dans de la résine époxy.

Figure 6.14: Profile du champ magnétique pulsé, atteignant 60 T au maximum. Encart:
photographie d’une bobine permettant la génération de champs magnétiques.
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6.5 Oscillations quantiques dans une monocouche
de WSe2 dopée P

De nombreux échantillons ont été fabriqués mais seuls quelques-uns d’entre eux ont
fourni des résultats de magnéto-transport exploitables. La plupart du temps, la
résistance des échantillons était trop grande pour permettre un rapport signal sur
bruit signal suffisant pour réaliser des mesures sous champ magnétique intense, sans
parler des échecs du processus de fabrication. De plus, les échantillons de mono-
couches de WSe2 sont fragiles et une campagne de mesure (d’une à deux semaines
en moyenne) dans les conditions extrêmes de basses températures et de champs
magnétiques élevés est délicate. Ci-après, nous nous concentrerons sur un échantillon
WSe2 monocouche particulier qui a présenté les meilleures caractéristiques.

6.5.1 Caractérisation des échantillons et magnéto-transport

Fabrication: La figure 6.15 montre l’image au microscope optique de l’échantillon
après tout le processus de fabrication. Un flocon de WSe2 monocouche est déposé
sur un flocon de h-BN plus grand, et l’ensemble repose sur un substrat Si/SiO2. Bien
que l’échantillon ne puisse pas être gravé en barre de Hall, la connexion électrique
est faite avec deux grands contacts pour l’injection de courant et quatre électrodes
situées des deux côtés de l’échantillon.

Figure 6.15: a) Image au microscope optique de l’échantillon : une mono-couche de WSe2
difficilement visible attachée à un flocon épais. Le flocon de WSe2 et le flocon de BN
sur lequel il repose sont entourées de lignes rouges et bleues, respectivement. b) Schéma
de connexion électrique des électrodes de mesure de l’échantillon. La densité de porteurs
peut être modifiées par effet de champ à l’aide de la tension de grille VBG appliquée sur le
substrat de silicium.
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Caractérisation: Des techniques de caractérisation structurale et optique ont été
mises en oeuvre pour certifier la nature monocouche du flocon de WSe2 dans cet
échantillon. La mesure AFM réalisée sur le bord du flocon de WSe2 donne une hau-
teur de marche égale à 0.7 nm, en accord avec l’épaisseur typique d’une monocouche.
Une autre confirmation est venue de l’analyse par microscopie électronique à trans-
mission en champ clair réalisée sur l’échantillon après la campagne de mesure. Enfin,
une réponse en photoluminescence qui montre un pic d’émission à 1.63 eV est la signa-
ture d’une monocouche de WSe2. Après avoir préparé l’échantillon et l’avoir installé
dans un insert dédié pour les mesures en champ magnétique pulsé, nous l’avons re-
froidi à 4 K et mesuré le courant drain-source IDS en fonction de la tension de grille
VBG. L’échantillon passe à l’état conducteur uniquement pour les tensions de grille
inférieures à une tension de seuil VthrBG, ce qui traduit une conduction par les trous.
Le régime de conduction électronique a été recherché pour une tension de grille posi-
tive jusqu’à +110 V, mais n’a pas pu être observé pour cet échantillon.

Mesures sous fort champ magnétique: Nous avons effectué des mesures de
magnéto-transport sous champ magnétique pulsé jusqu’à 55 T à basse température
(4.2 K) pour différentes valeurs de la tension de grille. La magnétorésistance présente
des oscillations de grande amplitude superposées à un fond lentement variable lorsque
la tension de grille est réglée près de la limite expérimentale maximale (-110 V), c’est-
à-dire pour des concentrations de trous élevées. En revanche, pour une tension de
grille proche du seuil de conduction, l’injection de courant est perturbée par de grandes
barrières de Schottky. L’analyse des oscillations quantiques nécessite leur extraction
via la suppression du fond de magnéto-résistance, qui est liée à la variation lente
du temps de diffusion moyen induite par le champ magnétique en plus de l’effet de
quantification de la densité d’états (formation des niveaux de Landau). Les données,
après traitement numérique, sont présentées sur la figure 6.16. Pour toutes les ten-
sions de grille, les oscillations de la magnéto-résistance sont complexes et nous faisons
l’hypothèse que l’énergie Zeeman est suffisamment grande pour entrer en compétition
avec l’énergie cyclotron, ce qui peut expliquer des oscillations supplémentaires ou
déformées par rapport au résultat attendu issu de l’équation de Lifshitz-Kosevich.

Masse effective: La dépendance en température des oscillations quantiques a été
étudiée pour déterminer la masse effective des trous. Comme prévu, l’amplitude entre
deux extremums successifs diminue avec l’augmentation de la température. La valeur
extraite de la masse effective m∗ = (0.45±0, 04)×me est en accord avec la littérature
[13].
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Figure 6.16: Magnéto-résistance à fort champ magnétique d’une mono-couche de WSe2
à T = 4.2 K, pour plusieurs tensions de grille. Les courbes sont décalées verticalement et
réparties sur deux graphiques pour davantage de lisibilité.

6.5.2 Simulation du magnéto-transport
La formule de Lifschitz-Kosevich, en prenant en compte les contributions de spin, peut
reproduire en partie les courbes de résistivité longitudinale, mais n’est pas adaptée à
l’analyse des données expérimentales dans leur ensemble. Par conséquent, nous avons
décidé, pour étudier les oscillations quantiques au-delà du régime d’oscillation SdH, de
développer un modèle pour simuler la composante oscillatoire de la magnétorésistance,
à la fois à champ magnétique faible et élevé. Dans un premier temps, nous supposons
que les monocouches WSe2 hébergent des quasi-particules nommées fermions de Dirac
massifs (MDF).

Détermination auto-cohérente du potentiel électrochimique : Nous sup-
posons que l’énergie des états quantiques du niveau de Landau d’indice N suit une
distribution gaussienne autour de l’énergie εN,s. La densité d’états est donc simulée
à l’aide de l’équation 6.12:

ρ(ε, B) =
N=Nc∑

N=0,s=±1/2

q.B

h
× 1√

2πΓ(B)
× exp

−1
2

(
ε− εN,s
Γ(B)

)2
 (6.12)

Nous avons introduit la fonction d’élargissement des niveaux de Landau Γ(B), qui
dépend du champ, et qui est liée à la mobilité (quantique) des trous µh, un paramètre
d’ajustement, via la relation Γ(B) = ~.q

m∗

√
2B
π.µh

. Nous avons supposé que tous les
niveaux de Landau ont le même élargissement. Le potentiel électrochimique est noté
µ dans la suite. La densité de trous nh est calculée en comptant les niveaux occupés
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jusqu’au potentiel chimique:

n2D =
µ(B)∫
0

ρ(ε, B).f
(
ε− µ(B)

)
.dε (6.13)

où f(ε−µ) est la fonction de distribution de Fermi-Dirac. Une routine Python calcule
le potentiel électrochimique µ(B) de sorte que nh est une constante.

Composants du tenseur de conductivité: La conductivité longitudinale des
systèmes 2D homogènes est abordée à l’aide de l’équation 6.14, dérivée de la théorie
des perturbations d’ordre élevé de la diffusion sur des impuretés électroniques étendues
[24]

σxx(B) = q2

h

∑
N,s

(
N + 1

2

) ∞∫
−∞

[
−
df(ε− µ(B))

dε

]
× exp

[
−1

2

(
ε− εN,s

Γ

)2
]
.dε (6.14)

Cette expression reproduit bien les oscillations de Shubnikov-de Haas à faible champ
magnétique, mais ne parvient pas à décrire le régime de champ magnétique élevé. La
relation entre la densité d’états et le taux de diffusion est difficile à simuler dans ce
régime et, à la place, nous le traitons phénoménologiquement avec une fonction de
coupure de largeur δε(B) appliquée sur la queue des niveaux de Landau. La résistivité
est finalement simulée en utilisant les équations 6.15:

ρxx = σxx × ρ2
xy + σ3

xx × ρ4
xy + ... (6.15)

où

ρxy(B) = h
q2
∑
N,s

[
+∞∫
−∞

f(ε− µ(B))× dε√
2πΓ exp

(
−(ε−εN,s)2

2Γ2

)]−1

est la magnéto-résistance transversale (de Hall).

Simulations, algorithme et procédure d’ajustement: Pour chaque valeur de
la tension de grille (c’est-à-dire pour différentes densités de trous nh), le logiciel im-
porte les données expérimentales Rxx

exp(B) et minimise la différence entre la résistance
longitudinale expérimentale et simulée. En raison du grand nombre de paramètres,
la difficulté à réaliser un ajustement sur l’ensemble de la plage de champ magnétique
est telle que nous avons décidé de sélectionner manuellement la meilleure courbe
d’ajustement. Les paramètres d’ajustement nh et Ez/Ec sont les plus significatifs
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et nécessitent une attention particulière. Le premier influe principalement sur le
régime de champ magnétique faible, où l’élargissement des niveaux de Landau est
plus grand que l’énergie cyclotron ou Zeeman. Dans ce régime, les oscillations quan-
tiques apparaissent à peu près quasi périodiques en 1/B et la période est presque
uniquement déterminée par la densité des porteurs. En revanche, le rapport Ez/Ec
est particulièrement influent dans le régime de champ magnétique élevé. Selon sa
valeur, on observe la présence de pics, vallées ou inflexions supplémentaires. Con-
trairement à la densité de porteurs, il n’existe pas une unique valeur de Ez/Ec qui
permet d’ajuster correctement la simulation aux données, la figure 6.17 présente les
courbes expérimentales avec leurs simulations correspndantes.

Figure 6.17: Magnéto-résistance expérimentale superposée aux courbes simulées pour
certaines tensions de grille.

6.5.3 Détermination expérimentale du facteur de Landé
Multiplicité du rapport Ez / Ec: Pour un champ magnétique assez faible et/ou
à concentration de porteurs de charge suffisamment élevée, le spectre de niveau de
Landau est exactement le même pour une valeur particulière de Ez/Ec±N0, où N0 est
un entier pair. Pour un champ magnétique donné, la gamme d’énergie où les niveaux
de Landau des deux spin sont présents constitue le régime mixte alors que le régime
polarisé est établi lorsque Landau les niveaux ont le même indice de spin. Sonder
le régime polarisé permet d’établir la valeur exacte de Ez/Ec, mais ce régime est
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expérimentalement difficile à atteindre. Dans ce travail et pour la plage de densités de
trous disponibles, aucune indication du régime polarisé n’a pu être observée, malgré
des champs magnétiques aussi élevés que 55 T. En revanche, la parité de la partie
entière du rapport Ez/Ec ne souffre aucun doute. En effet, un changement de ±1 de
ce paramètre conduit à un déphasage de 1/B-périodique oscillations quantiques pour
champ magnétique faible.

Évolution de la densité de porteuse du facteur g: En revenant sur l’hypothèse
concernant la nature des porteurs de charge et en utilisant le spectre d’énergie des
niveaux de Landau des Fermions de Schrödinger, les simulations sont adéquates pour
un jeu de paramètres identiques sauf en ce qui concerne le rapport Ez/Ec. La
différence entre les deux types de porteurs de charge réside dans la dégénérescence
du niveau Landau N = 0. Ainsi, si le rapport Ez/Ec permet un bon ajustement
théorique dans le modèle des Fermions de Dirac Massifs, le rapport Ez/Ec + 1 sera
tout aussi adéquat avec le modèle des fermions de Schrödinger. En conséquence, il
est impossible de distinguer la nature des porteurs de charge. La figure 6.18 montre
le rapport Ez/Ec extrait de l’ajustement dans la plage de densité de trous explorée
pour les deux modèles considérés. Nous notons que Ez/Ec augmente à mesure que la
densité de porteurs diminue. Cette tendance est en accord avec la littérature dédiée
aux monocouches de WSe2 [13, 12]. Le facteur Landé effectif, sensible aux inter-
actions électron-électron, est lié au rapport Ez/Ec par la relation g∗ = 2me

m∗
× Ez

Ec
.

Lorsque la densité de trous diminue, l’énergie associée aux interactions électroniques
devient prépondérante devant l’énergie cinétique dans les gas bidimensionnels. Les in-
teractions électroniques incluent l’interaction d’échange, qui est minimisée lorsqu’elle
implique deux particules de même spin dans l’approximation de Hartree-Fock. Par
conséquent, un système composé de particules avec le même état de spin est favorisé
dès lors que les interactions électroniques se renforcent au détriment de l’énergie
cinétique. La susceptibilité magnétique de spin est proportionnelle au facteur de
Landé effectif et rend compte de l’état de polarisation de spin des systèmes. Ainsi,
l’augmentation du facteur de Landé effectif indique une polarisation de spin crois-
sante dans le système, provoqué par le renforcement des interactions électroniques à
mesure que la densité de trous diminue.

Remarques finales Malgré d’éventuelles erreurs dans le traitement des données
expérimentales et le manque de justification physique pour certaines hypothèses du
modèle, la qualité de l’ajustement de magnétorésistivité est remarquable pour les
courbes de densité de trous les plus élevées, sans invoquer une dépendance de champ
du rapport Ez/Ec. L’un des ingrédients clés de ce succès est le calcul auto-cohérent
du potentiel chimique, qui va au-delà de la formule de Lifschitz-Kosevich. En effet,
des simulations réalisées avec un potentiel électrochimique indépendent du champ
magnétique reproduit bien la partie bas champ des données expérimentales, mais ne
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Figure 6.18: Valeurs de Ez/Ec ex-
traites de la simulation en fonction de
la densité de trous. Les points roses
correspondent au modèle impliquant
des fermions de Schrödinger (SCHF).
En diminuant ces valeurs de 1 (points
roses clair), nous obtenons les valeurs
du rapport Ez/Ec avec le modèle im-
pliquant des fermions de Dirac massifs
(MDF). Ces grandeurs sont comparées
à celles de la littérature (points bleus
et verts), où le modèle MDF (couleurs
claires) ou SCHF (couleurs vives) sont
reportés.

parviennent pas à aborder correctement le régime de champ élevé. La simulation
est utile pour analyser les oscillations quantiques d’un échantillon avec Résolution
de niveau Landau, par exemple à mobilité modérée. Cependant, il serait intéressant
de reproduire cette étude avec un échantillon de meilleure qualité. Une voie pour
y parvenir est de fabriquer une mono-couche WSe2 entièrement encapsulée avec du
h-BN [16, 13, 12], même si les contacts ohmiques sont difficiles à réaliser dans cette
configuration.

6.6 Conclusion

Cette thèse est dédiée à l’étude des propriétés électroniques d’une mono-couche de
diséléniure de tungstène (WSe2) par magnéto-transport sous champ intense. Ce
système a été choisi pour plusieurs raisons. Premièrement, il est le siège d’un gaz
bidimensionnel de particules chargées puisque son épaisseur atteint la limite ultime
d’un plan stocḧıométrique atomique. Les propriétés électroniques des systèmes bidi-
mensionnels sont très différentes de leurs homologues massifs en raison de l’absence
de symétrie de translation dans une direction. Une connaissance approfondie de leurs
propriétés électroniques est essentielle pour leur intégration dans les futurs disposi-
tifs optoélectroniques. Deuxièmement, la monocouche de WSe2, qui appartient à
la famille des dichalcogénures de métaux de transition, est susceptible d’héberger
un nouveau type de quasi-particules appelées �fermions de Dirac massifs�. Con-
trairement aux fermions de Dirac sans masse dans le graphène ou aux fermions de
Schrödinger dans les systèmes semi-conducteurs 2D, les fermions de Dirac massifs
sont caractérisés à la fois par la présence d’une bande d’énergie interdite dans le
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spectre des excitations et d’un verrouillage des degrés de liberté de spin et de vallée.
Troisièmement, la masse effective des porteurs de charge (en particulier des trous avec
m∗ = 0.45×me) et la faible constante diélectrique du milieu entourant la mono-couche
(le vide et un flocon de nitrure de bore dans cette étude) implique un ratio impor-
tant entre l’énergie Coulombienne et l’énergie cinétique. Ce système est donc une
plate-forme très intéressante pour étudier les interactions entre les particles chargées.
L’analyse des données expérimentales, basée sur des simulations impliquant l’énergie
Zeeman a permis d’extraire le facteur de Landé effectif en fonction de la densité des
porteurs de charge (trous dans cette étude). Ce facteur, sensible à la force des in-
teractions d’échange, augmente lorsque la concentration de trous diminue en accord
avec les données de la littérature.
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être modifiées par effet de champ à l’aide de la tension de grille VBG
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