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Title: Contributions to temporal graph theory and mobility-related problems
Abstract: In this thesis, we are interested in research questions that pertain respectively
to temporal graphs, to mobility, as well as to the interaction between the two. The
problem we consider on temporal graphs is motivated by a 20-year old open question,
namely what the analog definition of a spanning tree in temporal graphs is. Our main
result in this topic is to show that, even though sparse spanners do not exist in general
temporal graphs, sparse spanners exist in significant particular cases. On the other end of
the field of dynamic networks, we study the design of physical movements, which led us
to consider a discrete model of acceleration called racetrack and to revisit the traveling
salesperson problem (TSP). The questions of movement design on one hand, and temporal
graphs on the other, end up being in strong interaction when considering the execution
of distributed algorithms in a MANET scenario. In this context, the third contribution
consists of a software package proposing mobility models that induce temporal graph
properties in the resulting communication network.
Keywords: temporal graph theory, motion planning, algorithms

——————————————————————————————

Titre : Contributions à la théorie des graphes temporels et aux problèmes de mobilité
Résumé : Dans cette thèse, nous nous intéressons à des questions de recherche qui
concernent respectivement les graphes temporels, la mobilité, ainsi que l’interaction entre
les deux. Le problème que nous considérons sur les graphes temporels est motivé par une
question ouverte depuis 20 ans, à savoir quelle est la définition analogique d’un arbre
couvrant dans les graphes temporels. Notre principal résultat dans ce sujet est de montrer
que, même si des spanners peu denses n’existent pas dans les graphes temporels en général,
ces spanners existent cependant dans des cas particuliers significatifs. À l’autre bout du
champ des réseaux dynamiques, nous étudions la conception des mouvements physiques,
en considérant un modèle d’accélération discret appelé racetrack dans le contexte du
problème du voyageur de commerce (TSP). Les questions de conception de mouvement
d’une part, et de graphes temporels d’autre part, sont en forte interaction lorsque l’on
considère l’exécution d’algorithmes distribués dans un scénario MANET. Dans ce contexte,
la troisième contribution consiste en un progiciel proposant des modèles de mobilité qui
induisent des propriétés de graphe temporel dans le réseau de communication résultant.
Mots clés : Théorie des graphes temporels, planification de mouvement, algorithmique

——————————————————————————————

Research unit
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France





Contents

Page

1 Introduction 7
1.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Temporal cliques admit sparse spanners . . . . . . . . . . . . . . . 8
1.1.3 VectorTSP: A Traveling Salesperson Problem with Racetrack-like

acceleration constraints . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Temporal graph properties induced by collective mobility . . . . . 10
1.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Order of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction (en français) 11
1.1 Résumé des contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Préliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Les cliques temporelles admettent des spanners peu denses . . . . 12
1.1.3 VectorTSP: un problème de voyageur de commerce avec des con-

traintes d’accélération Racetrack . . . . . . . . . . . . . . . . . . . 13
1.1.4 Propriétés de graphes temporels induits par la mobilité collective . 14
1.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Ordre des chapitres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 17
2.1 Standard graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Generalizations of graphs . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Temporal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



2.2.2 Temporal graph classes . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Generalizations of temporal graphs . . . . . . . . . . . . . . . . . . 30

2.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Computational problems . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Reductions among problems . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Motion planning and related algorithms . . . . . . . . . . . . . . . . . . . 39
2.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Configuration space . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Graph algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Racetrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Temporal cliques admit sparse spanners 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Sparse Temporal Spanners and Related Work . . . . . . . . . . . . 50
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Definitions and basic results . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Generality of simple labelings . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 Basic techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Delegation and Dismountability . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 k-hop delegation and k-hop dismountability . . . . . . . . . . . . . 58
3.3.2 Adversarial Families . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 The Fireworks Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Forward Fireworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Backward Fireworks . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.3 Bidirectional Fireworks . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Recursing or sparsifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.1 Sparsifying the Residual Instance . . . . . . . . . . . . . . . . . . . 69

3.6 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7.1 Transition between chapters . . . . . . . . . . . . . . . . . . . . . . 75

4 VectorTSP: A Traveling Salesperson Problem with Racetrack-like
acceleration constraints 77



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Generalized Racetrack model . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Definition of VectorTSP . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 The configuration space can be bounded . . . . . . . . . . . . . . . 88
4.3.2 A glimpse at computational complexity . . . . . . . . . . . . . . . 89

4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1 Exploring visit orders (FlipVTSP) . . . . . . . . . . . . . . . . . . 98
4.4.2 Optimal racetrack given a fixed visit order (Multipoint A*) . . 100

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.1 Transition between chapters . . . . . . . . . . . . . . . . . . . . . . 107

5 Temporal properties induced by collective mobility 109
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Properties and context . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1.2 Properties through mobility . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Proposed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.1 Atomic blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2 Mobility models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.3 Mobility constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Usage examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1 Testing environment . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusion 127
6.1 Open questions and future work . . . . . . . . . . . . . . . . . . . . . . . 128

6.1.1 Temporal cliques admit sparse spanners . . . . . . . . . . . . . . . 128
6.1.2 VectorTSP: A Traveling Salesperson Problem with Racetrack-like

acceleration constraints . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.3 Temporal properties induced by collective mobility . . . . . . . . . 130

6.2 In the next few years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131





Acknowledgements

My acknowledgements are given in three languages. Starting with English, concerning
mostly work-related mentions, then French, for Elodie and friends, and finishing with
Dutch, for family. Some people may be mentioned more than once.

My advisor Arnaud Casteigts deserves my first thanks. Having guided and advised
me over these last years may not have always been easy. I consider myself lucky to have
had an advisor who would always make time for his students. I hope to be as curious,
creative, and successful a researcher as Arnaud.
I had the honor of having a high-quality multi-disciplined jury who examined this
document as well as my defense. Thank you to the members composing this jury, being
Quentin Bramas, Arnaud Casteigts, Paola Flocchini, Nicolas Hanusse, Ralf Klasing, Rolf
Niedermeier, and Eric Sanlaville. Thanks to Isabelle Bordas for the organization.
I had the pleasure to have worked with the following researchers, engineers and students:
Joseph G. Peters, Mathieu Raffinot, Rémi Laplace, Luiz Fernando Afra Brito, Luis Fredes,
Valentin Pasquale, Clément Larue and Ladislav Stacho. Joseph stands out among these
people, as he acted almost as a second advisor during my time spent as a visiting graduate
student at Vancouver’s Simon Fraser University.
Others who had a notable influence on my three years as a graduate student, include
Lamine Lamali, Ralf Klasing, Cyril Gavoille, Marc Zeitoun and Sofian Maabout.
In terms of teaching, I’d like to thank Guy Melançon who introduced me to computer
science, as well as Carole Blanc for being an exceptional teacher and role model.
A special thanks to Brady Haran, creator of Numberphile, a YouTube channel that
explores topics from a variety of fields of mathematics, of which I am a big fan.
Thanks to coffee for the energy, to Stack Overflow for the daily troubleshooting, and to
“Jason of tomorrow” to whom I delegated most of the work.

Jason Schoeters — University of Bordeaux, LaBRI 1



Le plus grand merci est pour Elodie Gaudry, ma compagne. Même après toutes
ces années, je passerais une thèse pour l’impressionner. Il va falloir trouver autre chose
d’impressionnant maintenant, comme une medaille olympique, un prix Nobel, ou encore
une boîte remplie de chocolats.
J’en profite pour remercier sa famille également, notamment Nadia et Christophe Gaudry,
ainsi que Hélène et Hugo Van Espen, pour de bons moments passé en bonne compagnie,
et souvent autour de bons repas.
Un merci va à mes cobureaux Rohan Fossé et Paul Ouvrard. Entre le code à Roro, et
les preuves à Paulo, il y avait de quoi s’entraider, et de quoi rigoler. Luis Fredes est un
cobureau informel, car techniquement un mur nous sépare (à démolir ?). La légende dit
que la bière a meilleur goût une fois que l’on est docteur, mais plus d’expériences sont
nécessaires avant de pouvoir attaquer cette conjecture.
Un autre merci va à Clément Larue, qui étudie des arbres n’ayant pas de sommets ou
d’arêtes, mais qui ont néanmoins des feuilles. Ceci n’a bien entendu aucun sens, ce que je
répète sans cesse pendant nos réunions hebdomadaires à discuter de l’état de l’art.
Merci à Rocket League, Duvel et au Taco’Tac de Talence d’avoir sponsorisé ces réunions.
J’aimerais remercier également d’autres doctorants (ou docteurs entre temps), que j’ai
eu le plaisir de connaître ou de rencontrer au cours des dernières années : Karim Alami,
Karim Aderghal, Trang Ngo, Christelle Al Hasrouty, Simon Da Silva, Mathias Lacaud,
Alexandre Blanché, Henri Derijcke, Dimitri Lajou, Tobias Castanet, Antonin Lentz,
Yessin Neggaz, Mohammed Senhaji, Théo Pierron, Giovanni Farina, Yackolley Amoussou-
Guenou, Gewu Bu, Kawtar Lasri, Guillaume Marques et Peter Bradshaw.
Bizarre que cela puisse paraître, j’ai également des amis avec qui je peux parler d’autre
chose que de science et de recherche. Merci à eux de me permettre de m’échapper à des
moments : Teddy Jamin, Lucille Bozetto, Anique Van De Put, Faycel Grine, Florian
Marcel, Rodney Embola, Pierre-Louis Euvrard, Dimitri Ranchou, Nicolas Marcy et
Daniela Cortés Robles.
À l’autre bout du monde, ce rôle d’ami a été pris par Larissa Nobre Campos et Giampaolo
Lepore, ainsi que par Mitsuki et Marek (dont je n’ai pas les noms de famille).
Le plus petit merci va à mon chat, Freddie (qui n’a pas de nom de famille).

Jason Schoeters — University of Bordeaux, LaBRI 2



Hartelijk dank aan mijn dichte familie, bij wie ik altijd welkom ben wanneer ik België
en omstreken bezoek, en vice versa, wie altijd welkom zijn bij mij thuis:
Mijn ouders Dominique Bastien en Gerrit Donny.
Rudy Schoeters en Sabine Smeulders, mijn tweede paar ouders.
Mijn drie “kleine” zussen Jessie, Lotte, en Hanne Schoeters.
Yvette Vermeylen, mijn meter en onthaalmoeder.
Goede vrienden Steven Dams en Julie Van Agtmael.
En mijn vierpotige vriend Max, die misschien de volgende doctor in de familie zal zijn.

Jason Schoeters — University of Bordeaux, LaBRI 3





Voor mijn moeder.





Chapter 1

Introduction

I still keep asking these “how” and “why” questions.
Occasionally, I find an answer.

— Stephen Hawking

The study of dynamic networks has gained increasingly more interest over recent years,
motivated mainly by emerging technological contexts like vehicular networks, robots, and
drones. Other applications include social networks analysis and influence spreading, and
more recently epidemics analysis such as trying to understand the spread of infection (for
example concerning COVID-19). The presence of communication or interaction links in
such networks may vary over time due to a variety of reasons, ranging from the removal
of physical Ethernet cables and security measures to the effects of social distancing.
Concerning Mobile Ad hoc Networks (MANETs), in which mobile agents are able to
communicate when in communication range of each other, controlling mobility of these
agents is key for controlling the entirety of the network. Optimal control over a mobile
agent’s movements in itself has long been studied in physics and control theory, and has
several applications in robotics concerning autonomy and automation, so as to minimize
any needed human intervenience.

In this thesis, we are interested in several aspects of these topics. More precisely, we
consider research questions that pertain respectively to temporal graphs, to mobility, as
well as to the interaction between the two. The problem we consider on temporal graphs
is motivated by a 20-year old open question, namely what the analog definition of a
spanning tree in temporal graphs is. It turns out that this notion has puzzled researchers
ever since, due to the fact that even analogs of sparse spanners do not exist in general
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CHAPTER 1. INTRODUCTION 1.1. SUMMARY OF CONTRIBUTIONS

temporal graphs. Our main result in this topic is to show that sparse spanners however
exist in significant particular cases. On the other end of the field of dynamic networks,
motivated mostly by the particular case of MANETs, we study the design of physical
movements and how this may be approached in an algorithmic fashion, instead of through
typical control theory methods. This led us to consider a discrete model of acceleration
called racetrack and to revisit the traveling salesperson problem (TSP) with this
additional constraint. While seemingly unrelated, the questions of movement design on
one hand, and temporal graphs on the other, end up being in strong interaction when
considering the execution of distributed algorithms in a MANET scenario. In an effort to
connect the two ends of the spectrum, our third contribution considers the interaction
between the two, by means of the design of collective movements that induce temporal
graph properties in the resulting communication network. This third topic is developed as
a software package, available for researchers in distributed computing. We now describe
in more details each of these contributions.

1.1 Summary of contributions

1.1.1 Preliminaries

In Chapter 2, we start by giving some basic definitions, standard notations, and well-
known results from graph theory, computational complexity, algorithmics and motion
planning. These are necessary for the understanding of the following more precise results
in this document. Basic concepts from temporal graph theory are introduced here as well.

1.1.2 Temporal cliques admit sparse spanners

More and more standard graph theory structures, as well as their corresponding com-
putational problems, are being extended into temporal graph problems, and as such
are often redefined over time rather than at any given instant. It is even possible for
a relatively simple structure to be naturally extended in a dynamic environment and
become a relatively complex structure. An example of this is a spanning tree. Indeed,
although the size of a spanning tree in any standard graph is considered trivial (as well
as its computation), several open questions surround the subject of spanners in temporal
graphs, including their size and computation, even when restrained to simple topologies.

Inspired by a question from Kempe, Kleinberg, and Kumar in [60], previous work on
temporal spanners (in particular, [11]) has shown that there exist some infinite families

Jason Schoeters — University of Bordeaux, LaBRI 8



CHAPTER 1. INTRODUCTION 1.1. SUMMARY OF CONTRIBUTIONS

of temporal graphs admitting no sparse temporal spanner, where sparse refers to a
subquadratic number of edges. In Chapter 3, we present our results on temporal spanners
in complete temporal graphs. More precisely, we provide (among other results) the first
positive answer in this line of research, showing that temporal cliques always admits
a spanner of size O(n logn) edges. We prove this through a multi-step constructive
algorithm. This work has been published in the proceedings of ICALP 2019 [25] and the
full version is currently in minor revision for the JCSS journal.

1.1.3 VectorTSP: A Traveling Salesperson Problem with Racetrack-
like acceleration constraints

Mobility models often do not take into account acceleration (and inertia) forces, and as
a result are not adapted to deal with situations in which these may play a significant
role. The few models that do propose acceleration are often of a continuous nature,
which may be more prone to the fields of control theory and analytic functions. An old
paper-and-pencil game named Racetrack, defined by Martin Gardner in [45], proposes
some simple, yet intriguingly accurate mobility constraints for a player’s race car, in which
velocity, acceleration and inertia all are simulated through a small set of rules, which
specifies that the velocity of the vehicule can only be modified by some discrete amount
in each time step, in each dimension. Being by definition discrete, these constraints are
naturally inclined to algorithmic investigation.

In Chapter 4, we present the Vector Traveling Salesman Problem, an adaptation of
the standard Traveling Salesman Problem, in which we add the Racetrack acceleration
constraints. Even though these Racetrack constraints have been investigated already in the
setting of trajectory optimization, we obtain a number of interesting results when applied
to the visit of multiple points in a non-predetermined order (i.e., the TSP). Our results
include insights and comparisons (differences even) between standard Euclidean TSP and
VectorTSP’s respective solutions. We include a proof of NP-hardness, reducing Exact Set
Cover to VectorTSP, as well as a reduction from VectorTSP to Group TSP. Through an
adapted TSP algorithm, using an A* oracle, we demonstrate that VectorTSP is genuinely
distinct from other known versions of TSP and we quantify the gap experimentally. This
work has been published in the proceedings of ALGOSENSORS 2020 [27] and the full
version is about to be submitted to a journal.

Jason Schoeters — University of Bordeaux, LaBRI 9



CHAPTER 1. INTRODUCTION 1.2. ORDER OF CHAPTERS

1.1.4 Temporal graph properties induced by collective mobility

Standard graph properties can result in a multitude of possible extensions when considered
in a temporal context. A good example is the standard notion of connectivity, extending to
temporal connectivity, constant connectivity or windowed connectivity, to name but a few.
In fact, a whole hierarchy of different types of temporal connectivity has been identified
by Casteigts et al. in [21] (and recently extended by Casteigts in [18]), identifying over a
dozen temporal properties that had been studied and used in the distributed computing
and networking literature (e.g. see Altisen et al.’s recent work [4]). These properties often
correspond to necessary or sufficient conditions for some algorithm or problem.

In Chapter 5, we propose multiple mobility models for MANET, which induce and/or
exclude several temporal properties on the underlying temporal graph, through governing
the collective movements of mobile entities. This contribution is more practical and
offered as a software package coded in Java using the JBotSim library, a simulation
library for distributed algorithms in dynamic networks (first presented by Casteigts et al.
in [23]). Users are able to use this package as a black box test environment to visualize,
as well as verify, their distributed algorithms relying on a specific temporal property.

1.1.5 Conclusion

We conclude in Chapter 6 with a collection of open questions, remarks and proposed
directions for future work concerning the multiple research items presented in this thesis.

1.2 Order of chapters

The order in which the chapters are read, after Chapter 2, is up to the reader, each
chapter being self-contained. The order chosen however, starts with the more abstract
and theoretical works and finishes with the more practical results. It also happens to be
the (more or less) chronological order in which the presented research was conducted.

Jason Schoeters — University of Bordeaux, LaBRI 10



Chapter 1

Introduction (en français)

Je continue à poser ces questions de “comment” et “pourquoi”.
Parfois, je trouve une réponse.

— Stephen Hawking

L’étude des réseaux dynamiques suscite de plus en plus d’intérêt au cours des dernières
années, motivée principalement par des technologies émergentes comme les réseaux
véhiculaires, les robots, et les drones. D’autres applications sont l’analyse des réseaux
sociaux et la propagation de l’influence, et plus récemment l’analyse des épidémies comme
essayer de comprendre la propagation de l’infection (par exemple concernant le COVID-
19). La présence de liens de communication ou d’interaction dans ces réseaux peut varier
au cours du temps pour diverses raisons, allant de la suppression des câbles Ethernet
physiques jusqu’aux mesures de sécurité comme la distanciation sociale. Concernant les
réseaux mobiles ad hoc (MANET), dans lesquels les agents mobiles sont capables de
communiquer lorsqu’ils sont à portée de communication les uns des autres, le contrôle de
la mobilité de ces agents est essentiel pour contrôler l’ensemble du réseau. Le contrôle
optimal des mouvements d’un agent mobile en lui-même a longtemps été étudié en
physique et en théorie du contrôle, et a plusieurs applications en robotique concernant
l’autonomie et l’automatisation, afin de minimiser toute intervention humaine nécessaire.

Dans cette thèse, nous nous intéressons à plusieurs aspects de ces sujets. Plus précisément,
nous considérons des questions de recherche qui concernent respectivement les graphes
temporels, la mobilité, ainsi que l’interaction entre les deux. Le problème que nous
considérons sur les graphes temporels est motivé par une question ouverte depuis 20
ans, à savoir quelle est la définition analogique d’un arbre couvrant dans les graphes
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temporels. Cette notion a intrigué les chercheurs, du fait que même les analogues des
spanners peu denses n’existent pas dans les graphes temporels en général. Notre principal
résultat dans ce sujet est de montrer que des spanners peu denses existent cependant
dans des cas particuliers significatifs. À l’autre bout du champ des réseaux dynamiques,
motivés principalement par le cas particulier des MANET, nous étudions la conception des
mouvements physiques et comment cela peut être abordé de manière algorithmique, plutôt
que par des méthodes classiques de la théorie du contrôle. Ceci nous a conduit à considérer
un modèle d’accélération discret appelé racetrack et à revoir le problème du voyageur
de commerce (TSP) avec cette contrainte supplémentaire. Bien qu’apparemment sans
rapport, les questions de conception de mouvement d’une part, et de graphes temporels
d’autre part, finissent par être en forte interaction lorsque l’on considère l’exécution
d’algorithmes distribués dans un scénario MANET. Dans un effort de connecter les deux
extrémités du spectre, notre troisième contribution considère l’interaction entre les deux,
au moyen de la conception de mouvements collectifs qui induisent des propriétés de graphe
temporel dans le réseau de communication résultant. Ce troisième thème est développé
sous forme de progiciel, disponible pour les chercheurs en informatique distribuée. Nous
décrivons maintenant plus en détail chacune de ces contributions.

1.1 Résumé des contributions

1.1.1 Préliminaries

Dans Chapitre 2, nous commençons par donner quelques définitions de base, des notations
standard et des résultats bien connus de la théorie des graphes, de la complexité de
calcul, de l’algorithmique et de la planification de mouvement. Celles-ci sont nécessaires
pour comprendre les résultats plus poussés dans ce document. Les concepts de base de la
théorie des graphes temporels sont également introduits ici.

1.1.2 Les cliques temporelles admettent des spanners peu denses

De plus en plus de structures de théorie des graphes standards, ainsi que leurs problèmes
de calcul correspondants, sont étendues à des problèmes de graphes temporels, et en tant
que telles sont souvent redéfinies au fil du temps plutôt qu’à un instant donné. Il est
même possible qu’une structure relativement simple soit naturellement étendue dans un
environnement dynamique et devienne une structure relativement complexe. Un exemple
de ceci est un arbre couvrant. En effet, bien que la taille d’un arbre couvrant dans tout
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graphe standard soit considérée comme triviale (ainsi que son calcul), plusieurs questions
ouvertes entourent le sujet des spanners dans les graphes temporels, y compris leur taille
et leur calcul, même lorsqu’ils sont limités à des topologies simples.

Inspiré d’une question de Kempe, Kleinberg et Kumar dans [60], des travaux antérieurs
sur les spanners temporels (en particulier, [11]) ont montré qu’il existe des familles infinies
de graphes temporels n’admettant pas de spanner temporel peu dense, où peu dense
fait référence à un nombre sous-quadratique d’arêtes. Dans Chapitre 3, nous présentons
nos résultats sur les spanners temporels dans des graphes temporels complets. Plus
précisément, nous fournissons (entre autres résultats) la première réponse positive dans
cette ligne de recherche, montrant que les cliques temporelles admettent toujours un
spanner de taille O(n logn) arêtes. Nous le prouvons grâce à un algorithme constructif en
plusieurs étapes. Ce travail a été publié dans les actes de ICALP 2019 [25] et la version
complète est actuellement en révision mineure pour le journal JCSS.

1.1.3 VectorTSP: un problème de voyageur de commerce avec des con-
traintes d’accélération Racetrack

Les modèles de mobilité ne prennent souvent pas en compte les forces d’accélération (et
d’inertie) et ne sont donc pas adaptés pour faire face à des situations dans lesquelles celles-
ci peuvent jouer un rôle significatif. Les quelques modèles qui proposent une accélération
sont souvent de nature continue, ce qui peut être plus enclin aux domaines de la théorie du
contrôle et des fonctions analytiques. Un vieux jeu de papier et crayon nommé Racetrack,
défini par Martin Gardner dans [45], propose des contraintes de mobilité simples mais
étonnamment précises pour la voiture de course d’un joueur, dans lesquelles la vitesse,
l’accélération et l’inertie sont toutes simulées à travers un petit ensemble de règles, qui
spécifie que la vitesse du véhicule ne peut être modifiée que d’une certaine quantité
discrète à chaque pas de temps, dans chaque dimension. Étant par définition discrètes,
ces contraintes sont naturellement portées à l’investigation algorithmique.

Dans Chapitre 4, nous présentons le Vector Travelling Salesman Problem, une adaptation
du Travelling Salesman Problem standard, dans lequel nous ajoutons les contraintes
d’accélération Racetrack. Même si ces contraintes Racetrack ont déjà été étudiées dans
le cadre de l’optimisation de trajectoire, nous obtenons un certain nombre de résultats
intéressants lorsqu’ils sont appliqués à la visite de plusieurs points dans un ordre non
prédéterminé (i.e., le TSP). Nos résultats incluent des aperçus et des comparaisons (même
des différences) entre les solutions respectives du TSP euclidien standard et de VectorTSP.
Nous incluons une preuve de NP-complétude, réduisant le problème de couverture par
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ensembles exacte à VectorTSP, ainsi qu’une réduction de VectorTSP à Groupe TSP. Grâce
à un algorithme TSP adapté, utilisant un oracle A*, nous démontrons que VectorTSP
est véritablement distinct des autres versions connues de TSP et nous quantifions l’écart
expérimentalement. Ce travail a été publié dans les actes d’ALGOSENSORS 2020 [27] et
la version complète est sur le point d’être soumise à un journal.

1.1.4 Propriétés de graphes temporels induits par la mobilité collective

Les propriétés de graphe standard peuvent donner lieu à une multitude d’extensions
possibles lorsqu’elles sont considérées dans un contexte temporel. Un bon exemple est la
notion standard de connectivité, qui s’étend à la connectivité temporelle, à la connectivité
constante ou à la connectivité fenêtrée, pour n’en citer que quelques-uns. En fait, toute
une hiérarchie de différents types de connectivité temporelle a été identifiée dans [21] (et
récemment étendue dans [18]), identifiant plus d’une douzaine de propriétés temporelles
qui sont étudiées et utilisées dans l’informatique distribuée et les réseaux. Ces propriétés
correspondent souvent à des conditions nécessaires ou suffisantes pour un algorithme ou
un problème.

Dans Chapitre 5, nous proposons de multiples modèles de mobilité pour MANET, qui
induisent et/ou excluent plusieurs propriétés temporelles sur le graphe temporel sous-
jacent, en gouvernant les mouvements collectifs des entités mobiles. Cette contribution est
plus pratique et proposée sous forme de progiciel codé en Java à l’aide de la bibliothèque
JBotSim, une bibliothèque de simulation d’algorithmes distribués dans des réseaux
dynamiques. Les utilisateurs peuvent utiliser ce package comme un environnement de
test de boîte noire pour visualiser, ainsi que vérifier, leurs algorithmes distribués qui
s’appuyent sur une propriété temporelle spécifique.

1.1.5 Conclusion

Nous concluons dans Chapitre 6 en regroupant les questions ouvertes, ainsi que des
remarques ou directions intéressantes pour du futur travail concernant les sujets de
recherche présentés dans cette thèse.

1.2 Ordre des chapitres

L’ordre dans lequel les chapitres sont lus, après Chapitre 2, appartient au lecteur, chaque
chapitre étant indépendant. Cependant, l’ordre choisi commence par les travaux les plus
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abstraits et théoriques et se termine par les résultats les plus pratiques. Il se trouve
également qu’il s’agit de l’ordre (plus ou moins) chronologique dans lequel la recherche
présentée a été menée.
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Chapter 2

Preliminaries

Computer science is no more about computers than astronomy is
about telescopes.

— Edsger Dijkstra
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In this chapter, we present necessary basic definitions, notations and known results
for the general understanding of this document’s methods and results. More specific
information is given in the concerned chapters. We start by presenting several properties
and structures from graph theory. Some of these properties and structures are then
revisited in the context of temporal graphs, as most of these are affected by the addition
of the dimension of time. We then present some notations surrounding algorithmic
analysis and important classes of computational complexity, with basic examples. Finally,
we give some standard methods and algorithmic aspects surrounding motion planning.

2.1 Standard graphs

Here, we review some main concepts of graph theory, the study of graphs. We will
commonly call graphs standard graphs or static graphs to differentiate them from
temporal graphs. When the context is clear enough, we will just call these graphs.

2.1.1 Definitions

We recall the definition of a graph. To be precise, an undirected, unweighted, and
simple graph. Generalizations are discussed later in Section 2.1.3, and the particular
generalization of temporal graphs in Section 2.2.

Definition 1. A graph is a pair (V,E), where V is a set of vertices, and E a collection
of (unordered) pairs of vertices, called edges.

Informally, a graph is composed of some dots with some lines connecting these dots
(see Figure 2.1). These dots represent the vertices, and the lines represent the edges
(also called nodes and links respectively in some contexts). When generally speaking
about a graph, one often uses n as the number of vertices, and m as the number of edges.

Figure 2.1: Example of a graph with 5 vertices and 7 edges.
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An edge e = {u, v} induces a symmetric relation over its endpoints u, v ∈ V , and one
says that these vertices are adjacent or neighbors. In a similar manner, edge e = {u, v}
is said to be incident to u and to v, as well as to any other edge containing u or v.

The degree of a vertex u, denoted deg(u), is its number of incident edges, or equivalently
here, its number of neighbors.

A path joining two vertices u and v (also called the endpoints of the path) is a sequence
of distinct adjacent vertices (u, u0, u1, ..., uk, v), or equivalently, a sequence of distinct
incident edges ({u, u0}, {u0, u1}, ..., {uk, v}). The length of a path is the number of edges
it contains. Note that a path of length 1 is simply an edge.

The distance between two vertices u and v, noted d(u, v), is defined as the length of a
shortest path between u and v. If there is no path between u and v, then d(u, v) =∞.

If there exists at least one path between every pair of vertices of the graph, the graph is
said to be connected. If there exists no path between some pair of vertices, then the
graph is disconnected.

A cycle is a path in which the first and last vertices are equal, so {u, u0, u1, ..., uk, u}.

A subgraph G′ of a graph G = (V,E) is composed of a subset V ′ of V and a subset E′

of E.

Generally speaking, we use the term structure to identify a type of subgraph in a graph,
whereas the term property mostly designates a feature or characteristic of either a
vertex, an edge, a subgraph, or a graph.

We give two last examples of structures in graphs, which we will use as examples or
references during the rest of this chapter, and which are related to the subjects studied
thereafter. The first of these is a spanning tree.

Definition 2. A spanning tree of a graph G = (V,E) is a connected subgraph T =
(V,E′ ⊆ E) which admits no cycles.

The term spanning refers to the fact that a structure contains all vertices. Note how
removing an edge from a spanning tree T results in a disconnected graph. We thus obtain
the following fact.

Fact 1. A spanning tree T is a minimal subgraph of the graph G that maintains connec-
tivity.

In fact, the size of the spanning tree (so its number of edges) is also minimum, since all
spanning trees have the same number of edges (namely, n− 1 edges).
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Another useful structure for the rest of this section is that of a Hamiltonian cycle.

Definition 3. A Hamiltonian cycle of a graph G = (V,E) is a cycle which visits each
vertex exactly once.

Many more properties and structures can be defined, some more complex than others
(such as the treewidth of a graph, which is outside of the scope of this document).

2.1.2 Graph classes

Many different types of graphs exist, and can be grouped in distinct sets according to
some shared properties (also called graph invariants), which can then be subdivided
into several subsets, and so on. Such sets are often referred to as graph classes or
graph families. Note that graph classes can be of infinite size, for example the class of
all connected graphs.

Many such graph classes exist for the purpose of adapting graphs to specific situations.
Another purpose of some families of graphs is that they represent the graphs in which
some computational problem may be solved easily, or reversely, be hard to solve. More
on this in Section 2.3.

Following are basic examples of graph classes (see Figure 2.2).

A path graph is defined as a connected graph with exactly two vertices of degree 1 (its
endpoints), and the other vertices of degree 2.

Remark 1. These path graphs are not to be confused with the concept of a path between
two vertices, presented before. Indeed, although similar, the former is a graph family and
the latter a structure found in graphs. The same holds for cycles and cycle graphs.

A cycle graph is a connected graph in which all vertices have degree 2. It is thus equivalent
to a path graph in which the endpoints are identical (thus removing it from the path
family since it has no more vertices of degree 1).

A star is a connected graph of n vertices with one vertex having degree n− 1, and the
other vertices having degree 1.

A clique, or complete graph, is a connected graph of n vertices with all vertices having
degree n− 1.

A caterpillar is a path graph in which one adds any number of vertices of degree 1
adjacent to the path (or rather to the vertices of the path). These added vertices are
sometimes referred to as satellite vertices.
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A tree is a connected graph without cycles. Vertices of degree 1 in a tree graph are
referred to as leaves. Note how the only spanning tree of a tree graph is itself.

A forest is a (possibly disconnected) graph without cycles. Informally, a forest graph can
be seen as a tree graph in which one removes some edges. Equivalently, a forest graph
can be created by taking some tree graphs and referring to them as one graph.

As a last example, a cactus is a connected graph in which any two cycles have no edge
in common. Informally, a cactus can be seen as an inflated tree.

(a) Path (b) Cycle (c) Star (d) Clique

(e) Caterpillar (f) Tree (g) Cactus

Figure 2.2: Example graphs of multiple graph classes.

2.1.2.1 Hierarchy of graph classes

It is useful to compare and organize different graph classes for a multitude of reasons.
Citing Information System on Graph Classes and their Inclusions [35] (also known as
ISGCI or graphclasses.org), it can be useful to:

• Check the relation between graph classes and get a witness for a result

• Draw clear inclusion diagrams

• Find the P/NP boundary for a problem (more on P/NP in Section 2.3)

• Find references on classes, inclusions and algorithms

We give an example of such a hierarchy surrounding the presented classes (see Figure 2.3).
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PATH CATERPILLAR TREE FOREST

STAR CLIQUE CY CLE CACTUS

Figure 2.3: An example of a hierarchy surrounding some simple graph classes.

In the presented hierarchy, the set denoted by PATH refers to the family of paths, the
one denoted by STAR to the family of stars, etc. Inclusion of some set X in a set Y is
portrayed by an arrow from X to Y . Multiple relations are thus made clear through this
hierarchy. We give some of these relations:

• Path graphs are included in caterpillar graphs. Indeed, a caterpillar without any
satellite vertices is still a caterpillar, but in particular, is also a path.

• Star graphs are tree graphs, as star graphs admit no cycles.

• Cycle graphs can be constructed as a cactus as follows. Take the tree graph consisting
of one edge. Now, inflate it to a cycle of any size. This shows cycles are a special
case of cacti. Also, among the presented classes, cycle graphs are only comparable
to cactus graphs.

• Complete graphs (or cliques) are not comparable to any of the presented graph
classes. Indeed, cliques are no special case of paths, stars, etc., nor vice versa. Note
however that there is a (very small) overlap between cliques and cycles, concerning
the cycle of order 3.

Note how all the classes present in Figure 2.3 are naturally included in the set of all
graphs, even though this inclusion is not portrayed.

2.1.3 Generalizations of graphs

It is possible to generalize graphs to represent situations that standard graphs might
not. In terms of generalizing graphs, multiple models exist, and one could probably invent
many more.
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Following are multiple examples of graph generalizations (see Figure 2.4).

2

110

5

11

20

Figure 2.4: Examples of a directed graph, a weighted graph, and a non-simple graph
respectively.

One model is that of a directed graph, where edges may no longer be symmetric between
endpoints and thus may have a direction, from a source vertex, towards a destination
vertex. Such edges are then named directed edges, or simply arcs. This model may more
accurately represent road maps with possible one-way streets for example.

Another model is a graph on which one can label each edge e with a number, called the
weight of the edge, denoted w(e). Such a graph is then called a weighted graph. The
weight of an edge can represent, for example, the capacity of a communication link, or
its latency.

Finally, one might consider allowing loops, i.e. edges that join a vertex u to itself,
or multi-edges, i.e. more than one edge joining a pair of vertices. When no loops or
multi-edges are present in a graph, one calls such a graph a simple graph, otherwise the
graph is called non-simple.

Often, graphs can be seen as special cases of these generalizations. Regarding the examples
of generalizations given, an undirected, unweighted, simple graph can be seen as:

• a directed graph where all arcs are bidirectional.

• a weighted graph with all weights equal to 1 (or 0 depending on the context).

• a non-simple graph without loops or multi-edges.

2.2 Temporal graphs

Temporal graphs are another generalization of graphs, although an important one con-
cerning this document’s work.

Temporal graphs are also known under the names of dynamic graphs [51], evolving graphs
[44], time-varying graphs [21], stream graphs and link streams [64], and possibly more.
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For most purposes, these represent the same generalization of graphs (the main issue
arises when time is continuous, see e.g. [19]).

Informally, a temporal graph is a graph on which edges can appear and disappear. We
will use a simple definition which suits us regarding the work presented in this document,
and rely on a combination of terminologies from [21] and [90].

2.2.1 Definitions

Definition 4. A temporal graph is a pair (G,λ), where G = (V,E) is a graph, and
λ : E → 2N a mapping that assigns to each edge of G a (non-empty) set of discrete
presence times.

A temporal graph is thus a graph on which edges can appear and disappear over some
defined timeline, also called the lifetime of the graph. The lifetime of the graph may
either be finite or infinite. In this document, time is discrete, unless explicitly stated
otherwise, and the lifetime can thus be considered as a subinterval of the natural numbers.

Temporal graphs can be seen as a generalization of graphs, because any graph is simply
some temporal graph whose edges are always present.

One may visualize a temporal graph G = (G,λ) in the following manner. Take the induced
static graph G, also called the footprint of G or underlying graph, and add time labels
(also called time stamps in some works) on each appearing edge corresponding to the
labeling λ (see Figure 2.5).

2, 3

0, 1, 20, 1

0

2, 30

1, 2

Figure 2.5: Example of a temporal graph, represented through the footprint with time
labels on present edges.

These labels thus represent the moment(s) when the corresponding edge is present.
Reversely, if some label t is not marked on an edge, it means this edge is not present at
time t of the lifetime of the graph. Edges that are not drawn, are simply never present.

Another way to visualize temporal graphs is to look at the corresponding sequence of
snapshots, i.e. static graphs corresponding to each time step t in the lifetime of the
graph (see Figure 2.6).
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(a) G0 (b) G1 (c) G2 (d) G3

Figure 2.6: Example of a temporal graph G (the same one as in Figure 2.5), represented
as a sequence of static graphs (G0, G1, G2, G3).

Different visualizations of temporal graphs add different points of view which can be
helpful for reasoning on the graph in question. In this document, we rely mainly on the
representation using time labels, although some temporal concepts presented are easier
to define or better observed in the sequence of snapshots.

Some notations, properties and structures from static graphs directly adapt to temporal
graphs (such as adjacency, incidence, etc.), others take on some new meaning, and possibly
multiple adaptations. The addition of time also makes way for completely new structures
to be studied. Below are the most basic and important structures to understand the rest
of this document.

The eventual footprint of an infinite lifetime temporal graph is its footprint without
non-recurring edges (edges which no longer reappear after some point in time).

A time edge (also called a contact) (e, t) is the edge e = {u, v} at time t ∈ λ(e). At
time t, vertices u and v are thus adjacent, or neighbors.

A temporal path, or simply journey, from vertex u to vertex v is a sequence of time
edges with non-decreasing time labels (({u, u1}, t1), ({u1, u2}, t2), ..., ({uk−1, v}, tk)). An
example of a journey is given on both models of temporal graph visualization in Figure 2.7.

We say a vertex u can reach vertex v through a journey (or reversely, a vertex v can be
reached by vertex u), if a journey from u to v exists.

Even when time edges are symmetrical, i.e. the existence of time edge ({u, v}, t) implies
the existence of time edge ({v, u}, t), this is not necessarily the case for journeys. Indeed,
unlike paths in static graphs, the existence of a journey from some u to v, does not imply
the existence of a journey from v to u. A simple example is the journey given from u to
v in Figure 2.7, as no journey exists from v to u.

Two different versions of journeys can be considered. We say journeys are strict if only
increasing time labels are allowed on the journey’s time edges. Allowing for non-decreasing
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2, 3

0,1, 20, 1

0

2,30

1, 2

u v

u v

(a) G0

u v

(b) G1

u v

(c) G2

u v

(d) G3

Figure 2.7: Example of a journey from vertex u to vertex v (marked in bold and red).

time labels results in non-strict journeys. The journey given in Figure 2.7 is a strict
journey.

The distance between two vertices u and v can now be defined as, again, the length of a
shortest journey between these vertices. However, the term “length of a shortest journey”
can now possibly take on multiple meanings. Does it relate to the amount of time edges
it contains, or rather the time it takes between the first time edge and the last? Or is it
related to the overall arrival time, independently of the amount of edges and total travel
time? All these notions and variations of shortest journeys are studied in [20, 74, 15].

A temporal graph is said to be temporally connected (also noted T C) if there exists
a journey (of the considered type) between each pair of vertices (in both directions).

We note that, somewhat counter intuitively, a temporal graph with a connected footprint
is not necessarily temporally connected. Indeed, see again Figure 2.7. This example graph
has a connected footprint, however it is not temporally connected, since, as stated before,
there exists no journey from v to u.

Temporal connectivity was considered in an early paper by Awerbuch and Even [10]
(1984), and studied from a graph-theoretical point of view in the early 2000’s in a
number of seminal works including Kempe, Kleinberg, and Kumar [61], and Bui-Xuan,
Ferreira, and Jarry [15] (see also [74] for an early study of graphs with time-dependent
delays on the edges). More recently, it has been the subject of algorithmic studies,
such as [3, 11, 86, 22, 85], which consider algorithms for computing structures related to
temporal connectivity, and [41, 90] whose work focuses on restricting temporal connectivity
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(epidemics, malware spreading, etc.). Broad reviews on these topics can be found, e.g.,
in [21, 54, 69], although the list is non-exhaustive and the literature is rapidly evolving.

A round trip is a journey in which the first and last vertices are equal. Note that in
most cases, and in contrast to its static counterpart, a round trip only allows for traversal
in one direction.

A temporal subgraph G′ of a temporal graph G = ((V,E), λ) is composed of a subgraph
(V ′, E′) of the footprint (V,E), and for every edge e ∈ E′, a subset λ′(e) of λ(e).

Lastly, let us look at what happens to the spanning tree in temporal graphs. The spanning
tree in static graphs is a tree, meaning it contains no cycles. So one might look into how
to extend the concept of a spanning tree to a structure which contains no round trips for
example. However, in Chapter 3, we focus on a different extension of the spanning tree.
As stated in Fact 1, a spanning tree can be seen as a (minimum) subgraph preserving
connectivity in a static graph. We take this point of view of a spanning tree, and adapt
it so as to preserve temporal connectivity.

Definition 5. A temporal spanner of a temporal graph G = ((V,E), λ) is a temporally
connected subgraph S = ((V,E′ ⊆ E), λ′ ⊆ λ).

We remark how a spanning tree in static graphs is minimum in size by default. This is
not the case however for a temporal spanner (so size in terms of number of edges or time
edges), unless we specifically consider a minimum temporal spanner.

2.2.2 Temporal graph classes

With the introduction of temporal graphs, various new and natural temporal graph
properties can be defined, such as temporal connectivity. The literature quickly got filled
with several temporal properties that turned out to be of use, such as the necessary
or sufficient condition for some algorithm in distributed computing and networking, to
function correctly in temporal graphs. In [21], a dozen temporal properties were identified
that have been effectively exploited in the distributed computing and networking literature.
These were extended more recently in [18], and renamed using mnemonic symbols. These
in turn induce several classes of temporal graphs in which these properties are satisfied
(or not). Following are some examples of these temporal graph classes. More context
about these classes is given in Chapter 5.

Some of these properties are, by definition, satisfiable in some finite amount of time steps,
and thus the evolution of the temporal graph after the property has been satisfied does
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Figure 2.8: Some temporal graphs respecting some temporal properties.

not impact the property itself. An example of such a property is temporal connectivity,
as once all vertices have been able to connect over time, the evolution of the graph
afterwards no longer matters in regard of this property. In the following, such properties
are referred to as finite properties.

The property (or class) J 1∀ is when the graph has a temporal source, i.e. when at
least one vertex can reach all the others through a journey.

When every vertex can reach every other vertex, and be reached from that vertex
afterwards, the graph is said to be round trip connected, noted T C�.

The class K includes temporal graphs having a complete graph as a footprint. These
graphs are simply called temporal cliques. In Chapter 3, we focus on the case of
temporal cliques, to study and solve a long-standing open question on the existence of
sparse temporal spanners.

Other properties are recurrent, in the sense that these properties need to be satisfied
infinitely often. Such properties can of course only occur in infinite lifetime graphs.

Recurrent temporal connectivity is the most basic of recurrent properties. Noted
T CR, it denotes the property of any vertex being able to reach any other vertex of the
graph through a journey, starting after any point in time.

Among the more specific properties, the class EP contains the temporal graphs with
periodic edges, meaning that any appearing edge in the lifetime of the graph, reappears
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in a periodic fashion. Additionally, temporal graphs in this class must have a connected
footprint.

As a last example, the class C∗ represents the property of having always-connected
snapshots. So, at any point in time, the snapshot of the temporal graph is connected.

More temporal properties are presented in Chapter 5, where we present mobility models
for MANET to induce some of these properties in the corresponding interactions graph.

2.2.2.1 Hierarchy of temporal graph classes

A hierarchy concerning temporal graphs has been presented in [21] by Casteigts et al.,
in an effort to unify most properties found in the studies on dynamic networks. This
hierarchy is mostly focused on connectivity in temporal graphs (see Figure 2.9).

C∩ C∗ CR PR

α-T CB T CB T CR

EP EB ER

KR

T C	 T C J 1∀

K E1∀ J ∀1

finiterecurrent

Figure 2.9: Hierarchy surrounding connectivity in temporal graphs (figure from [18]).

Numerous classes in this hierarchy are not presented in this chapter, but are not necessary
to understand some relationships between the presented classes:

• Relations between finite and recurrent properties exist. In particular, classes based
on recurrent properties are special cases (subsets) of those based on finite properties,
for example T CR ⊂ T C.

• On the far right side of the hierarchy, one can find the most general classes of
temporal graphs, such as J 1∀. Indeed, all the other classes are included (either
directly or indirectly) in J 1∀.

• On the other end, one can find classes such as EP and C∗, which are very specific
classes, as almost no others are included in them.
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2.2.3 Generalizations of temporal graphs

Outside of the scope of this document, but worth mentioning, is the possibility to
generalize even further the concept of temporal graphs. Indeed, one can generalize in
the same manner as shown for static graphs, such as considering directed edges or arcs,
instead of bidirectional edges.

As discussed in [18], investigating the relations between directed analogues of these classes
can have a significant impact. For example, with undirected edges, the repetition of
journeys from a vertex u to a vertex v eventually creates backward journeys from v to u,
which explains why no recurrent version of J 1∀ was defined (since it would amount to
T CR). This type of “reversibility” argument does not apply to directed networks.

Rainbow structures have some relation to temporal structures. For example, a strict
journey can be seen as a rainbow path (i.e. a path in a graph with colored edges, using
distinct colors for each edge) in which the “colors” must obey some given order. Some
work on rainbow Hamiltonian paths and cycles in complete graphs has been done in
[50, 5]. However, although similar in some aspects, temporal graphs often have multiple
labels, whereas edges in a rainbow setting typically only have one color. Also, rainbow
structures are often considered in a graph which has a proper edge-coloring (whereas
locally distinct labels on temporal graphs are generally not assumed).

2.3 Computational complexity

This section defines basic computational problems, which one might try to solve in graphs
or temporal graphs (or other settings). A way to solve such problems is through some
algorithm which, when given the problem as an input, computes a solution. An important
area of theoretical computer science is interested in, first of all, if such an algorithm
exists, and secondly, how much computational resources (computation time and/or space)
such an algorithm would need to find a solution to the problem. We will go over the main
related concepts being of interest to this document.

2.3.1 Computational problems

As discussed in 2.1 and 2.2, many structures and properties reside in graphs, which can
be used to define some graph classes. A natural question one can ask is whether a given
graph belongs to some given class or not. The answer to this question is either yes or no.
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A question such as this one, for which there is only a yes or no answer, is referred to as a
decision problem.

The input of a decision problem is the given object (e.g. a graph) for which the question
is asked. The output is yes or no. The input is said to be a positive instance of the
problem if the output is yes, and a negative instance if the answer is no.

A decision problem that naturally corresponds to the spanning tree in standard graphs is
the following:

Definition 6. Spanning tree decision problem

INPUT: A graph G.
QUESTION: Does G contain a spanning tree?
OUTPUT: Yes/no.

Fact 2. The decision problem of whether a given graph G contains a spanning tree,
is equivalent to the decision problem of whether the graph G is connected, since only
connected graphs admit spanning trees, and vice-versa, graphs admitting spanning trees
are all connected.

The problem can be modified easily to ask the same question regarding the existence of a
temporal spanner in a given temporal graph. Similarly, this problem would be equivalent
to the problem of deciding whether or not the input temporal graph is temporally
connected, since only temporally connected graphs admit temporal spanners. A slightly
different problem, which is not equivalent to the temporal connectivity problem, is the
following:

Definition 7. Temporal spanner decision problem

INPUT: A temporal graph G and an integer k.
QUESTION: Does G contain a temporal spanner of size k?
OUTPUT: Yes/no.

This decision problem has a strong connection to our results presented in Chapter 3.

Other recent theses focusing on adapting classical graph problems in temporal graphs
include Hendrik Molter’s thesis [71] and Mathilde Vernet’s thesis [84].

In optimization problems, one would like to obtain a solution corresponding to
the optimization (so maximization or minimization) of some parameter. Optimization
problems thus do not output yes or no.
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The straightforward optimization problem regarding a spanning tree in standard graphs
is of no interest, since a spanning tree is always of size exactly n− 1 edges.

In the case of weighted graphs however, a spanning tree can be minimized according to
the sum of the weights of its edges. A minimum weight spanning tree is usually referred
to as a minimum spanning tree or simply MST.

Similarly as with the spanning tree, the straightforward Hamiltonian cycle optimization
problem makes little sense, but in weighted graphs the problem is known as the Traveling
salesman problem, or TSP.

Definition 8. Traveling salesman problem

INPUT: A weighted graph G.
OUTPUT: A Hamiltonian cycle of G of minimum weight.

A Hamiltonian cycle in a weighted graph is commonly referred to as a TSP tour. In
Chapter 4, we present and study a new version of this well-known optimization problem.

Since (most) decision and optimization versions of a problem are more or less the same
problem, when referring to a problem (such as the temporal spanner problem or the
traveling salesman problem) we tend to refer to both decision and optimization versions
of the problem, unless specifically stated otherwise.

2.3.2 Algorithms

An algorithm is a finite sequence of well-defined instructions aiming to solve a given
problem. These instructions can be the creation of variables in which it stores a value
in computer memory, some changes of these variables, some basic operations between
values such as a sum or multiplication, etc..

For the sake of illustration, consider Algorithm 1, which shows a version of a well-known
graph traversal algorithm named Breadth First Search, or simply BFS which is used
extensively in our work in Chapter 4.

This BFS algorithm solves the problem of whether the given graph G is connected. As
stated in Fact 2, since this problem is equivalent to the spanning tree decision problem,
Algorithm 1 also solves the spanning tree decision problem.

In terms of memory, it uses some variables, namely u, v and Q, the latter being a queue
data structure. Data structures allow for ease of storing and retrieving data. Data
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Algorithm 1 : Breadth First Search (connectivity version).
Input: A graph G = (V,E)
Question: Is G connected?
Output: Yes/no

1: Queue Q
2: Vertex u = random vertex of V
3: mark u
4: Q.enqueue(u)
5: while Q is not empty do
6: v = Q.dequeue()
7: for each neighbor w of v do
8: if w is not marked then
9: mark w

10: Q.enqueue(w)
11: if all vertices in V are visited then
12: return yes

13: return no

structures can take on many forms, such as queues, stacks, linked lists, hash tables,
priority queues, etc..

Algorithms may use loops to repeat lines of code, such as the while loop used to repeat
instructions 6 to 10, or the for loop repeating lines 9 and 10. Conditional instructions,
marked by if are only executed if the corresponding condition is met, such as line 10
which is only executed if vertex w is not yet visited.

Finally, the algorithm finishes by returning some value. In this algorithm, it either
returns yes or no. It is possible for an algorithm to not finish with a return, in which case
the algorithm may finish after having executed its last line of instructions, or may run
for some indefinite period of time (such as the mobility models proposed in Chapter 5).

2.3.3 Complexity

Some problems are harder to solve than others. Mostly, comparisons are in terms of
execution time needed to solve a problem (and sometimes in terms of memory space
needed) when the input scales in size.

For simplicity, the running time of an algorithm can be interpreted as the number of
instructions executed by the algorithm (each having a unitary cost).

Jason Schoeters — University of Bordeaux, LaBRI 33



CHAPTER 2. PRELIMINARIES 2.3. COMPUTATIONAL COMPLEXITY

In complexity theory, given a problem with an input of size n, one is interested in the
running time of algorithms solving the problem. In particular, the term with the highest
growth in n is of interest, since considering the scaling of n will eventually make other
terms negligible. Multiplicative factors which do not depend on n are often ignored as
well, at least when comparing complexities having different growth.

Let’s start with some definitions, which we will then explain in more detail, and for which
we will give quick examples regarding some presented problems.

Definition 9. An algorithm’s asymptotic time complexity is O(f(n)) if there exists some
constant c and some n′ such that for all n > n′, the algorithm runs in time at most
c · f(n).

Definition 10. An algorithm’s asymptotic time complexity is Ω(f(n)) if there exists
some constant c and an n-vertex graph (for arbitrarily large n), such that the algorithm
runs in time at least c · f(n) on said graph.

Definition 11. An algorithm’s asymptotic time complexity is Θ(f(n)) if the algorithm’s
asymptotic time complexity is O(f(n)) and Ω(f(n)).

The O notation extends to the problem that is solved by the analyzed algorithm. This
means that if for some problem P of input size n, one obtains an algorithm solving P in
time O(f(n)), then the problem itself is said to be solvable in time O(f(n)). (The same
holds for Ω and Θ if the algorithm is optimal.)

As an example, consider again Algorithm 1. Through proper analysis of the algorithm,
one may find an upper bound on this algorithm’s running time, depending on n, the
number of vertices of the given graph. One may find the upper bound O(n9) for example.
Such a bound is said to be loose, in the sense that while technically correct, there exists
a better, or tighter bound. Indeed, regarding Algorithm 1, a tighter bound may be
O(n2) or even O(n+m), where m represents the number of edges in the given graph. A
tight Ω bound on Algorithm 1’s execution time is Ω(n+m) as well, which is attained on
any connected graph. By definition, this algorithm thus runs in time Θ(n+m).

As a second example, consider an algorithm solving the Hamiltonian cycle problem, by
generating all possible permutations of vertices and checking whether one corresponds
to a Hamiltonian cycle. Such an algorithm is commonly referred to as a brute force
algorithm or a naive algorithm, in which one simply tests all possible solutions. Due
to the fact that there are n! possible permutations of vertices, the time complexity of
this particular algorithm is Θ(n!), which is prohibitive. However, a better algorithm,
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named the Bellman-Held-Karp algorithm, was proposed in [53]. This algorithm solves the
Hamiltonian cycle decision problem (as well as TSP) in time O(2nn2), through dynamic
programming.

In addition to these three standard asymptotic complexity notations, in this document
we will use two other notations. The first is used to designate a loose upper bound (as
opposed to O designating a potentially tight upper bound).

Definition 12. An algorithm’s asymptotic time complexity is o(f(n)) if for every constant
c, there exists some n′ such that for all n > n′, the algorithm runs in time at most c ·f(n).

The second is a big O notation which ignores logarithmic factors as well, on top of
ignoring constant factors.

Definition 13. An algorithm’s asymptotic time complexity is Õ(f(n)) if there exists
some constant k such that the algorithm runs in time at most O(f(n) · logk f(n).

The asymptotic notations O, Ω, Θ, o and Õ are not solely used for time complexity.
These notations adapt to anything which may be bounded asymptotically, such as space
complexity or the size of a solution, e.g. in Chapter 3 these notations are used to quantify
the asymptotic size of a resulting spanner, and in Chapter 4 these are used to denote the
length of a TSP tour. Such a quantity is called polynomial when it is O(nc) for some
constant c.

2.3.4 Reductions among problems

Generally speaking, theoretical computer scientists often consider polynomial time to be
an “acceptable” running time, whereas superpolynomial (anything larger than polynomial)
time is not. Corresponding problems are said to be tractable or intractable respectively
(sometimes they are simply said to be easy or hard respectively). Observe that polynomial
time is closed under composition, which is a convenient fact to keep in mind when
designing polynomial time algorithms.

Polynomial reductions are useful to prove a problem’s intractability. Multiple versions
of polynomial reductions exist, but the one we present and use in this document is the
polynomial many-one reduction.

Definition 14. A polynomial many-one reduction from problem A to problem B,
is a polynomial time algorithm that takes as an input any input a for A, and outputs an
input b for B. Additionally, a is a positive instance of A, if and only if b is a positive
instance of B.
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For the rest of this document, a polynomial many-one reduction may simply be called
reduction or polynomial reduction.

To show why such a reduction allows for transferring the intractability of one problem to
another, suppose one can reduce a problem A which is known to be intractable to some
other problem B. Since problem A is intractable, no polynomial algorithm is known to
solve it. Reducing it to B is done in polynomial time. Now, if B is solvable in polynomial
time, then the reduction followed by the algorithm used for B constitutes a polynomial
algorithm to solve A, which is a contradiction. Problem B must therefore be intractable
as well.

Of course, if problem B does turn out to be solvable in polynomial time, then problem A

will be as well.

2.3.5 Complexity classes

Distinct problems, and algorithms solving them, may scale in a similar manner when their
input scales. Such problems can be classified, and a multitude of distinct complexity
classes can be defined accordingly.

We focus on the standard complexity classes related to time complexity, most relevant to
this document’s work (although in 2.4.4 we will mention space complexity classes not
presented here).

Definition 15. The complexity class P (for polynomial time) contains all problems
which can be solved through a polynomial time algorithm.

Class P includes the spanning tree problem, since we have given Algorithm 1 which
solves it in time O(n2).

The Hamiltonian cycle problem is not known to be in P , since either there exists no
polynomial algorithm for it, or it hasn’t been found yet (the best known bound being
O(2nn2)).

Definition 16. The complexity class NP contains all problems which can be verified
in polynomial time.

By verified in polynomial time, we mean that any positive instance can be checked
by some algorithm in polynomial time, given some proof (called certificate in this
context).
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To give an example, the Hamiltonian cycle problem is in NP , since the Hamiltonian
cycle itself is a proof that the graph contains one. Indeed, all one has to do is to check if
the given Hamiltonian cycle is indeed a cycle, if it is Hamiltonian (so visiting each vertex
exactly once), and of course if it is a subgraph of the input graph. All this can be done
in polynomial time. NP has another equivalent definition.

Definition 17. The complexity class NP (for non-deterministic polynomial time)
contains all problems which can be solved by a polynomial non-deterministic algorithm.

Formally, this definition relies on non-deterministic Turing machines, which can
be seen as an abstract model of a standard computer. Without going into details, non-
determinism essentially allows an algorithm to search for a solution to a problem in
multiple directions, or multiple branches, at once. A standard computer only supports
deterministic algorithms (such as the ones we’ve seen thus far), meaning that it can
only execute one instruction at a time, and thus only test one of such branches at a time.

Definition 18. The complexity class NP -hard contains all problems for which there
exists a polynomial reduction from all problems in NP .

In other words, if all problems in NP are able to be reduced to some problem A, then
A is NP -hard. As presented in 2.3.4, reducing some problem A to another problem B

makes it so that problem B is at least as hard as A. Now, if all problems A in NP are
reducible to some problem B, then B is seen as a relatively “harder” problem than any
problem A, since solving it allows for solving any problem A in turn.

Definition 19. The complexity class NP -complete contains all NP problems which are
NP -hard.

The first problem to have been shown NP -complete is the satisfiability problem
(usually referred to as SAT), which given a boolean formula (boolean variables joined
by and and or operations), asks if some assignment of the variables exists in which the
boolean formula resolves to True. The problem is in NP since a given solution/proof can
be verified in polynomial time. The problem is shown NP -hard by Cook [32] and later
by Levin [66] in a different manner, through a non-trivial and groundbreaking theorem,
now referred to as the Cook-Levin theorem.

Ever since, SAT has been the mother of all NP -complete problems. Since all one had to
do to show some other problem was NP -complete was to find a reduction from SAT to
the other problem, which in turn could serve for other reductions, etc.
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Many problems have since been shown to be NP -complete, including the Hamiltonian
cycle problem [59]. Whenever a new problem is studied which is in NP , it is natural to
ask if it is NP -complete, and if so, to exhibit a reduction that proves it (which is what
we did for our version of TSP in Chapter 4).

One of the reasons why NP -complete problems constitute such an important class, is
that solving one of these problems in polynomial time would indirectly solve the famous
millennium problem of P versus NP (discussed below).

Many more complexity classes exist outside of the ones presented, such as EXPTIME,
PSPACE, etc. as well as circuit complexity classes such as AC, NC, etc. and parameterized
complexity classes such as FPT, W[1], etc. All these classes are sometimes jokingly referred
to as the complexity zoo, and are detailed on complexityzoo.net.

2.3.5.1 Complexity hierarchy

A well-known hierarchy arises from the definitions of P , NP , NP -hard and NP -complete
(see Figure 2.10). In this hierarchy, “bubbles” are typically used to represent classes and
inclusions/intersections, rather than the inclusion arcs used in Figure 2.3 and Figure 2.9.

NP

P

NP -hard

NP -complete

Figure 2.10: The usual depiction of the complexity hierarchy surrounding classes P , NP ,
NP -hard and NP -complete (assuming P 6= NP ).

The main information to take away from Figure 2.10 is the following:

• All problems in P are contained in NP , due to the observation that such a problem’s
positive instances can be “checked” with no proof at all in polynomial time, simply
by using the problem’s corresponding polynomial algorithm.
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• The class NP -hard is depicted as open on one end, because the class is defined
through a lower bound, unlike P and NP .

The famous conjecture about P versus NP, formally introduced by Cook in 1971
[32] and later in 1973 by Levin [66], asks the question whether P equals NP . Although
inclusion of P in NP is clear, it is unknown whether the inclusion is strict or not. Indeed,
some problems in NP exist for which either no polynomial algorithm exists, or for which
we simply haven’t found one yet (such as the Hamiltonian cycle problem). The general
consensus is that P 6= NP , and many results are actually conditional upon this conjecture,
although unproven.

The conjecture is one of the famous seven millennium prize problems in mathematics [56].
Proving or disproving any of these conjectures is worth a 1 million US dollars prize. Thus
far, only one of the seven conjectures has been solved. Concerning P versus NP , if it
does turn out P = NP , it could radically change discrete mathematics and computer
science, as well as have impacts on cryptography, life sciences, logistics and many more.

2.4 Motion planning and related algorithms

2.4.1 Definitions

From an abstract point of view, motion planning decision problems can be stated as
follows.

Definition 20. Motion planning decision problem

INPUT: a mobile entity m with some mobility constraints, a (potentially infinite)
environment E, a starting position ps ∈ E, a finishing position pf ∈ E, some obstacles
O ⊂ E
QUESTION: can m reach pf , starting from ps?
OUTPUT: yes/no

The exact definition depends on how the environment and the obstacles are modeled,
and what the constraints are. As a simple example, let us consider a robot r which can
move up to a speed of one meter per second in any direction, and which can change
directions instantly. The robot’s size is often considered negligible. An example of the
environment E can be a square plane of side length 10 meters in the real domain R2, with
the starting position for ps = (1, 1) and finishing position pf = (9, 9) (see Figure 2.11a).
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Now, depending on the obstacles, the output might be no if some obstacles, such as a
wall or a river, separates the robot from its finishing position. If no obstacles are present
however, the answer is trivially yes.

The optimization version typically aims to find a solution path that optimizes some
parameter concerning the mobile entity. The most natural parameters to minimize could
be the total distance traveled by the entity, or the total amount of travel time it needs to
get to pf .

In the above example, if no objects are blocking a direct path between ps = (1, 1) and
pf = (9, 9), the shortest path would be of length (or travel time)

√
82 + 82 = 8

√
2 ≈ 11.31.

However, as we can see in Figure 2.11a, an obstacle is present on the direct path, resulting
in the most direct path costing ≈ 12.09.

(a) Mothion planning problem, with optimal
path of cost ≈ 12.09 (seconds or meters) pass-
ing via location (4, 7).

(b) Configuration space in a discretized version,
with optimal path of cost 16. The graph is
disconnected.

Figure 2.11: An example motion planning problem for robot r, with ps = (1, 1), pf = (9, 9)
and some obstacles, and a corresponding configuration space. Optimal paths are shown
in red and dashed.

Closely related to motion planning are reachability problems and pathfinding problems.
All three capture the general idea of a system with a starting state and a goal state,
attainable (or not) through some allowed operations on the system. Motion planning
represents the problem in the particular setting of a mobile entity. Reachability is the
term used mainly in automata, Petri nets, graphs and other abstract settings. The term
pathfinding is also used in the setting of graphs and maze-solving. As it turns out though,
most motion planning problems can actually be transformed into a graph problem, via
the creation of a configuration space.
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2.4.2 Configuration space

A navigation mesh is the result of a specific transformation from a motion planning
instance into a graph. Here, we’re interested in a specific navigation mesh, commonly
called the configuration space, phase space, state graph, etc. A configuration space
corresponding to some motion planning problem is a (possibly directed and/or weighted)
graph constructed by considering all possible configurations in which the mobile entity
can possibly find itself (possibly infinitely many states). These configurations constitute
the configuration space’s vertices. Arcs are added between vertices if the mobile entity
is capable of going from the source vertex’s configuration to the destination vertex’s
configuration in one time unit. One may add a weight to the arc representing the cost of
using this arc w.r.t. some parameter to optimize.

An example on how to construct the configuration space for a discrete version of the robot
example (see again Figure 2.11) is as follows. Consider that the robot can only change
directions every second, in one of only four directions (east, west, north and south), at
only one speed, say 1 meter per second. The robot’s configuration space’s vertices are
then the set V = {vxy|0 ≤ x, y ≤ 10} for any (x, y) which isn’t located on an obstacle.
One might define vs = v11 as the vertex representing ps, and vf = v99 representing pf .
Its configuration space’s arcs are {(vxy, vx′y′)} if |x− x′|+ |y − y′| = 1 and if no object is
placed between these configurations (see Figure 2.11b). One may add an implicit weight
to these arcs of 1 (meter or second).

To remain realistic, the discretization of a entity’s mobility constraints should be chosen
carefully. Indeed, some discretizations may alter the output of some motion planning
problems. A discretization removing too much of the initial power of the entity’s mobility
constraints can make it so no path exists between vs and vf , even if it a path exists
between ps and pf . The cost of an optimal path (whether it be distance, travel time, ...)
may also be altered, although one may bound the possible error from the optimum result.

As can be observed in Figure 2.11, an optimal path is present for the robot between ps

and pf , passing by position (4, 6). This path is only barely present in the configuration
space. Indeed, if the obstacle close to (4, 6) were only a bit larger, covering (4, 6), then no
path would exist between vs and vf , even though one would still exist between ps and pf .
This is the case for the small gaps between obstacles near (7, 3.5), as well as near (8, 7),
which are not present in the configuration space (in fact, the graph is disconnected due
to this). To avoid such problems, one might have chosen a smaller time unit, such as 0.1
seconds, maintaining paths between close obstacles, at the cost of a larger configuration
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space. In terms of the cost of an optimal path, in the original setting it costs ≈ 12.09,
while afterwards it costs exactly 16. In fact, through this specific discretization, costs
of paths have a worst case multiplicative error of

√
2 (assuming optimal paths were

maintained).

We also note here that some very large (or infinite) configuration spaces which may be
too large to generate and store at once, may simply be generated on the fly, as they are
traversed by some algorithm (see Section 2.4.3).

More techniques exist to transform a given motion planning problem into a more tangible
and solvable structure. For example, some other navigation mesh, known as triangulation
creates a specific type of graph which might have been a better way to treat our example
problem with the robot, since the resulting graph typically doesn’t distort optimal paths’
distances. Also, in triangulation, little to no discretization needs to be applied to the
entity’s mobility constraints. However, we choose to present the configuration space
technique, since the configuration space is the go to navigation mesh concerning work
(including ours in Chapter 4) on the Racetrack model (see Section 2.4.4). For more
on the broad subject of different techniques and navigation meshes, see Botea et al.’s
survey [13], covering also real-time search and multi-agent pathfinding. For the specific
triangulation navigation mesh, the reader is referred to [36] by Demyen et al. (Also, in
French, I recommend Cyril Gavoille’s lecture notes for “Techniques Algorithmiques et
Programmation” [47] which, among other subjects including TSP and A*, covers the
subject of navigation meshes.)

2.4.3 Graph algorithms

We presented how a given instance of a motion planning problem can be transformed into
a graph. Now, the problem is how to get from vertex vs in this graph, representing ps, to
vertex vf , representing pf . (The term pathfinding is now appropriate since we consider
the setting of graphs.)

Multiple algorithms on the topic of graph traversal or graph search can be applied. We’ll go
over the most well known ones. We start by giving algorithms which are able to solve any
pathfinding problem, whether it be a decision, optimization or computational problems.
These algorithms are breadth first search, Dijkstra’s algorithm and A* (pronounce A
star), algorithms which are able to compute optimal paths, also called simply shortest
paths. Afterwards, we’ll also give a quick overview of other algorithms of notice which
do not necessarily result in shortest paths.
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Breadth first search (or BFS) is an algorithm that traverses a graph, prioritizing the
visit of adjacent vertices over the visit of distant vertices. Partially presented in 2.3.2, we
present a more generic form, which can be adapted to a multitude of problems needing
to traverse a given graph (including the spanning tree decision problem).

Algorithm 2 : Generic Breadth First Search.
Input: A graph G = (V,E) and starting vertex vs

1: Queue Q
2: mark vs

3: Q.enqueue(vs)
4: while Q is not empty do
5: v = Q.dequeue()
6: for each neighbor w of v do
7: if w is not marked then
8: mark w
9: Q.enqueue(w)

BFS starts at some vertex, which in our motion planning problems, will correspond to ps.
The algorithm marks this vertex as visited, and stores all of its neighbors which aren’t
yet marked visited in a queue data structure. It then dequeues an element from that
queue and repeats. It isn’t hard to prove that this process will visit the entirety of the
given graph G if G is connected. Also, it will visit pf if and only if it is reachable from ps.
A simple condition can be added between lines 5 and 6 to check if the dequeued vertex
represents pf . If so, then for the decision problem one can return true. To obtain the
shortest path, one would also need to add a way to retrace the path taken to get to vertex
pf . This can be done by adding a parent vertex to traversed vertices. For the weighted
versions, there’s a potential problem with BFS: it doesn’t take into account any potential
weights on arcs. This actually doesn’t create any problems for graphs with no weights, or
for graphs in which all arcs have the same weights. Indeed, BFS always returns a path
using the minimum amount of arcs. However, if the graph contains different weights on
arcs, the optimal path in terms of minimum sum of weights on arcs may not correspond
to the path using the minimum amount of arcs. Our robot example does not use any
different weights on arcs, as by construction, any arc has a cost of distance 1 or time 1
for the robot. One can of course easily create a context in which different weights are
needed, such as taking into account different terrain, such as as muddy terrain, or uphill
and downhill terrain, etc.

The BFS algorithm runs in time O(n + m), where n and m represent the number of
vertices and edges of the graph respectively.
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For completion, we present Dijkstra’s algorithm, even though our work and results
presented in Chapter 4 have no need for it, since our configuration space will be a graph
with the same weights on all arcs.
In [37], Edsger W. Dijkstra presented an elegant modification of BFS, distinct enough to
be known as Dijkstra’s algorithm nowadays, which is able to produce results for graphs
with differently weighted arcs (but with positive weights), unlike BFS.

Algorithm 3 : Generic Dijkstra’s algorithm.
Input: A graph G = (V,E) and starting vertex vs

1: List L
2: for each vertex u in V do
3: d[u] =∞
4: L.add(u)
5: d[vs] = 0
6: mark vs as visited
7: while L is not empty do
8: v = element in L with minimum d[v]
9: L.remove(v)

10: mark v as visited
11: for each neighbor w of v do
12: if w is not visited then
13: d′ = d[v] + w(v, w)
14: if d′ < d[w] then
15: d[w] = d′

As shown in Algorithm 3, some similar concepts from BFS are used, but in a way so as
that the cost (or sum of weights) necessary to get to a vertex from the starting vertex,
may be updated if a better path has been found with less total cost over the course of the
algorithm. It does this through a data structure which allows the algorithm to recover
an element in the data structure according to some criteria (line 8). This is done with a
list here, but can be implemented with other data structures as well, such as a priority
queue (used in Algorithm 4). As with BFS, some small modifications suffice to adapt
this algorithm to motion planning problems.

Dijkstra’s algorithm runs in time O((n+m) logn) when using a priority queue, and in
time O(m+ n logn) when using a Fibonacci heap.

The A star algorithm (A*) is basically a BFS or a Dijkstra’s algorithm, in which one
is able to guide the search towards pf . For this, one needs to find a suitable guiding
heuristic, denoted g(v), which is able to estimate the cost needed to go from vertex v to
vf . This guiding heuristic doesn’t need to be exact, although it does need to respect one
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important property: not overestimating the actual cost between v and vf . If it does
not respect this property, it may not return an optimal path.

For the example in Figure 2.11, a suitable guiding heuristic may be the Euclidean distance
or even the Manhattan distance.

Algorithm 4 : Generic A star.
Input: A graph G = (V,E), starting vertex vs and finishing vertex vf

1: PriorityQueue Q
2: vs.cost = 0
3: Q.enqueue(vs, 0)
4: while Q is not empty do
5: v = Q.dequeue()
6: if v is not visited then
7: mark v as visited
8: for each neighbor w of v do
9: if w is not visited then

10: w.cost = v.cost +w(v, w)
11: c = w.cost +g(w)
12: Q.enqueue(w, c)

Generally speaking, A* shares Dijkstra’s time complexity, although some better bounds
may be found depending on the context, guiding heuristic, etc.. In practice though, this
algorithm is much faster than BFS or Dijkstra’s algorithm.

Other algorithms of notice, which do not generally result in an optimal path, are random
walk, the greedy algorithm and Depth First Search (DFS). These algorithms may still be
useful regarding other settings, such as for geographic routing in sensor networks due
to low memory usage or no need for global knowledge. Another usage may simply be in
video games, to make enemies’ movement naive or unpredictable.

Lastly, worth noting, is that some general techniques exist to make the resulting configu-
ration space paths more realistic and less costly. In our configuration space example with
the robot, it can be useful to round sharp turns in a computed path using the B-spline
technique for example. If the mobile entity’s constraints are discrete by nature however,
such as the Racetrack model, one has no need for such techniques.

2.4.4 Racetrack

In a recreative column of the Scientific American in 1973 [45], Martin Gardner presented
a paper-and-pencil game known as Racetrack. Other names for this game include Vector
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Racer, Graph Racer, Vector Rally, Vector Race, Vektorrennen (in German) and Le Zip
(in French). The game is played in rounds, by multiple players, in which they compete
to finish first. This can in fact be seen as a motion planning optimization problem under
the guise of a multiplayer game. Any Racetrack game is thus a motion planning problem,
with fixed mobility constraints. The natural parameter to minimize is the amount of
rounds needed for a mobile entity to finish.

The mobility constraints are as follows (see also Figure 2.12). In each step, the mobile
entity moves according to a discrete-coordinate vector, initially the zero vector (0, 0).
This vector is allowed to be modified at each step (before moving accordingly), but must
obey the rule that at step i+ 1 it cannot differ from the vector at step i by more than
one unit in each dimension.

These constraints allow for a rather simple but effective way to simulate a mobile entity
with velocity, acceleration and inertia forces, such as (originally) a race car, or a drone.

Figure 2.12: Example trajectory of a drone with the Racetrack mobility constraints,
trying to turn to the left. Due to a significant initial velocity to the right, it takes a few
rounds to effectively turn.

Since these constraints, by definition, allow for only a finite amount of positions in a
finite environment, an L×H environment E can be given as a two dimensional array,
representing every discrete position while also precising whether it lays on an obstacle
or not. By convention and for ease of computational analysis, N = max(L,H) and E is
given as an N ×N array.

The original Racetrack problem can now be formulated as follows.
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Definition 21. original Racetrack problem

INPUT: A mobile entity m respecting the Racetrack mobility constraints, an N ×N
array representing the environment E, a starting position ps ∈ E, a finishing position
pf ∈ E
OUTPUT: Minimum amount of rounds necessary for m to reach pf , starting from ps.

Since the term “path” doesn’t reflect the concept of acceleration, we define the term
trajectory to be a solution path in Racetrack instances.

The creation and traversal of a configuration space is a natural solution for a Racetrack
problem. The simple mobility constraints have no need to be further discretized, as they
already propose a set of simple options every discrete round.

So no optimal paths are lost, and their costs remain unchanged, after transforming a
Racetrack instance into a configuration space graph.

A configuration space corresponding to a given Racetrack instance is the following
directed graph. The configurations are of the form (x, y, dx, dy), where (x, y) represents
the entity’s position, and (dx, dy) its velocity vector. x and y are trivially bounded
by O(N) each, as well as dx and dy. However, observe that after k rounds of only
accelerating, a total distance of 1 + 2 + 3 + ...+ k = k(k + 1)/2 = O(k2) can be crossed
by the Racetrack vehicle in each dimension. Since the environment is bounded by N ×N ,
the vehicle can reach a top speed of at most O(

√
N) in each dimension, so dx and dy can

be bounded tighter than O(N), namely by O(
√
N). As a result, the configuration space

contains a total of O(N ×N ×
√
N ×

√
N) = O(N3) vertices. Since each configuration

has nine possible next configurations, the amount of edges is also bounded by O(N3).
The resulting graph is thus polynomial in size w.r.t to the Racetrack instance’s input
environment.

Any presented graph traversal algorithm (see Section 2.4.3) can then be applied to obtain
an optimal trajectory. Since these algorithms run in linear time on the graph, and the
graph is polynomial in size, the complete algorithm of creating a configuration space and
traversing it runs in polynomial time. The original Racetrack problem thus belongs to
complexity class P .

In [55], Holzer and McKenzie present some more precise complexity results, alongside
interesting reductions to and from Racetrack. Indeed, inside of complexity class P exist
some more complexity classes surrounding the amount of memory space needed, which
are classes we did not discuss. These classes can be considered outside of the scope of
this thesis. In short, Racetrack’s complexity depends on whether obstacles’ borders are
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accessible or not (for example, in Figure 2.11 we suppose they are). If they are, then
Racetrack is equivalent to the grid graph reachability problem, and is thus a problem
in L (problems needing a logarithmic amount of memory space). If obstacles’ borders
are not accessible, then Racetrack is equivalent to directed graph reachability, which is
known to be NL-complete (somewhat similar in relation to L, as NP -complete is to P ).
The authors finish by proving that verifying if a given strategy for Racetrack is winning is
P -hard (so among the hardest problems of P ), which contradicts the popular “conjecture”
stating that all interesting and fun games are NP -hard.

In [12], Bekos et al. are interested in specific environments of Racetrack games, such
as the Indianapolis track, a simple rectangular track of size L ×H of some width W .
The mobile entity has to do a complete lap as fast as possible. In this specific track,
the authors were able to show that one can do significantly better than a polynomial
algorithm w.r.t. the size of the environment L×H, by proposing an algorithm which runs
in time O(W 5), so only polynomial in the width of the Indianapolis track, whatever the
size L×H. They further generalize their algorithm for generalized tracks of Indianapolis,
in which any number of orthogonally placed tracks of width W can be treated. The
authors finish by proposing algorithms which only have access to a limited view of the
racetrack, which essentially allows for faster computing of a solution, but potentially
results in non-optimal solutions. This is similar to how we decided to accelerate our
proposed algorithm for experimental results in Chapter 4.
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Chapter 3

Temporal cliques admit sparse
spanners

The worst thing you can do to a problem is solve it completely.

— Daniel Kleitman
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This chapter is based on our work on temporal spanners, which was pub-
lished in the proceedings of the International Colloquium on Automata, Lan-
guages, and Programming (ICALP) 2019 [25]. The full version is currently
in minor revision for the Journal of Computer and System Sciences (JCSS).
This work is available on ArXiv [26], and a short French version was pre-
sented at national conference ALGOTEL [24], where it was awarded the best
paper award.

Let G = (V,E) be an undirected graph on n vertices and λ : E → 2N a mapping
that assigns to every edge a non-empty set of positive integer labels. These labels can
be seen as discrete times when the edge is present. Such a labeled graph G = (G,λ)
is temporally connected if a path exists with non-decreasing times from every vertex
to every other vertex. In a seminal paper, Kempe, Kleinberg, and Kumar [61] asked
whether, given such a temporal graph, a sparse subset of edges can always be found
whose labels suffice to preserve temporal connectivity—a temporal spanner. Axiotis and
Fotakis [11] answered negatively by exhibiting a family of Θ(n2)-dense temporal graphs
which admit no temporal spanner of density o(n2). The natural question is then whether
sparse temporal spanners can always be found in at least some classes of dense graphs.

In this chapter, we answer this question affirmatively, by showing that if the underlying
graph G is complete, then one can always find temporal spanners of density O(n logn).
The best known result for complete graphs so far was that they admit spanners of density(n

2
)
− bn/4c = O(n2). Our result is the first positive answer as to the existence of o(n2)

sparse spanners in adversarial instances of temporal graphs since the original question by
Kempe et al., focusing here on complete graphs. The proofs are constructive and directly
adaptable as an algorithm.

3.1 Introduction

3.1.1 Sparse Temporal Spanners and Related Work

In the last section of [61] (conference version [60]), Kempe, Kleinberg, and Kumar ask
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“Given a temporally connected network G = (V,E) on n nodes, is there a
set E′ ⊆ E consisting of O(n) edges so that the temporal network on the
subgraph (V,E′) is also temporally connected? In other words, do all temporal
networks have sparse subgraphs preserving this basic connectivity property?”

Here, Kempe et al. consider a model where each edge has a single label, thus the
edges are identified with their labels, but the discussion is more general. What they are
asking, essentially, is whether an analogue of spanning tree exists for temporal networks
when the labels are already fixed. They answer immediately (and negatively) for the
particular case of O(n) density, by showing that hypercubes labeled in a certain way need
all of their edges to achieve temporal connectivity, thus some temporal graphs of density
Θ(n logn) cannot be sparsified. The more general question, asking whether o(n2)-sparse
spanners always exist in dense temporal graphs remained open for more than a decade,
and was eventually settled, again negatively, by Axiotis and Fotakis [11]. The proof in [11]
exhibits an infinite family of temporally connected graphs with Θ(n2) edges that do not
admit o(n2)-sparse spanners. Their construction can be adapted for strict and non-strict
journeys.

On the positive side, Akrida et al. [3] show that, if the underlying graph G is a
complete graph and every edge is assigned a single globally-unique label, then it is always
possible to find a temporal spanner of density

(n
2
)
− bn/4c edges (leaving however the

asymptotic density unchanged). Akrida et al. [3] also prove that if the label of every
edge in G is chosen uniformly at random (from an appropriate interval), then almost
surely the graph admits a temporal spanner with O(n logn) edges. Both [11] and [3]
include further results related to the (in-)approximability of finding a minimum temporal
spanner, which is out of the scope of this chapter and document.

By its nature, the problem of finding a temporal spanner in a temporal network seems
to be significantly different from its classical (i.e., non-temporal) version, whether this
version considers a static graph (see e.g. [30, 72, 78]) or the current network topology of
an updated dynamic graph (see e.g. [9, 40, 49]). The essential difference is that spanning
trees always exist in standard (connected) graphs, thus one typically focuses on the
tradeoff between the density of a solution and a quality parameter like the stretch factor,
rather than to the very existence of a sparse spanner.
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3.1.2 Contributions

In this chapter, we establish that temporal graphs built on top of complete graphs
unconditionally admit Θ(n logn)-sparse temporal spanners when non-strict journeys are
allowed. Furthermore, such a spanner can be computed in polynomial time. The case of
strict journeys requires more discussion. Kempe et al. observed in [61] that if every edge
of a complete graph is given the same label, then this graph is temporally connected,
but no multi-hop strict journey exist, thus none of the edges can be removed, and the
problem is trivially a no-instance. To make the problem interesting when only strict
journeys are allowed, one should constrain λ to avoid such a pathological situation. In
the present case, we require that a sub-labeling of one label per edge exists in which any
two adjacent edges have different labels. This formulation slightly generalizes the single-
label global-unicity assumption made in [3] (although essentially equivalent regarding
temporal connectivity) and eliminates the distinction between strict and non-strict
journeys. Under this restriction, we establish that all temporal graphs whose underlying
graph is complete admit a O(n logn)-sparse temporal spanner. Moreover, if the restricted
labeling is given, then the spanner can be computed in polynomial time. (The problem
of deciding whether a general labeling admits such a sub-labeling is not discussed here; it
might be computationally hard.)

Our proofs are constructive. We start by observing that the above two settings one-way
reduce to the setting where every edge has a single label and two adjacent edges have
different labels. The reduction is “one-way” in the sense that the transformed instance
may have less feasible journeys than the original instance, but all of these journeys
correspond to valid journeys in the original instance, so a temporal spanner computed in
the transformed instance is valid in the original instance. As a result, the main algorithm
takes as input a complete graph G with single, locally distinct labels, and computes a
O(n logn)-sparse temporal spanner of G in polynomial time.

In summary, we give the first positive answer to the question of whether sparse
temporal spanners always exist in a class of dense graphs, focusing here on the case of
complete graphs. This answer complements the negative answer by Axiotis and Fotakis [11]
and motivates more investigation to understand where the transition occurs between
their negative result (no sparse spanners exist in some dense temporal graphs) and our
positive result (they essentially always exist in complete graphs). Our algorithms are
based on a number of original techniques, which we think may be of more general interest
for problems related to temporal connectivity.
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The chapter is organized as follows. In Section 3.2, we define the model and notations,
and describe the one-way reductions that allows us to concentrate subsequently on single
and distinct labels. We also mention two basic techniques of interest for this problem,
although they are not used subsequently in the presented results, namely the sub-clique
technique (from [3]) and the pivoting technique (introduced here). In Section 3.3 we
introduce the main concepts and techniques used in our algorithms, namely delegation,
dismountability, and k-hop dismountability, whose purpose is to recursively self-reduce the
problem to smaller graph instances. These techniques are subsequently combined into a
more sophisticated algorithm that successfully computes a temporal spanner of O(n logn)
edges. The first step, presented in Section 3.4, is called fireworks and results in a spanner
of density (essentially)

(n
2
)
/2. Then, in Section 3.5, we exploit a particular dichotomy

in the structure of the residual instance, which allows us to sparsify the graph down
to O(n logn) edges. In Section 3.6, we review the main components of the algorithm,
showing that its running time complexity is polynomial. In Chapter 6, we present a few
open questions and conclude with some remarks.

3.2 Definitions and basic results

3.2.1 Model and definitions

Let G = (V,E) be an undirected graph and λ : E → 2N a mapping that assigns to every
edge of E a non-empty set of integer labels. These labels can be seen as discrete times
when the edge is present. In this chapter, we refer to the resulting graph G = (G,λ) as a
temporal graph (other models and terminologies exist, many of them being equivalent for
the considered problem). If λ is single-valued and locally injective (i.e., adjacent edges
have different labels), then we say that λ is simple, and by extension, a temporal graph
is simple if its labeling is simple.

A temporal path in G (also called journey), is a finite sequence of k triplets J =
{(ui, ui+1, ti)} such that (u1, . . . , uk+1) is a path in G and for all 1 ≤ i < k, {ui, ui+1} ∈ E,
ti ∈ λ({ui, ui+1}) and ti+1 ≥ ti. Strict temporal path (strict journeys) are defined
analogously by requiring that ti+1 > ti. We say that a vertex u can reach a vertex v iff
a journey exists from u to v (strict or non-strict, depending on the context). If every
vertex can reach every other vertex, then G is temporally connected. Finally, observe that
the distinction between strict and non-strict journeys does not exist in simple temporal
graphs, as all the journeys are strict.
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In general, one can define a temporal spanner of G = ((V,E), λ) as a temporal graph
G′ = ((V ′, E′), λ′) such that V = V ′, E′ ⊆ E and λ′ : E′ → 2N with λ′(e) ⊆ λ(e) for all
e ∈ E′. We call G′ a valid spanner if G′ is temporally connected. Observe that, if G is
simple, then spanners are fully determined by the chosen subset of edges E′ ⊆ E (as in
the above citation from [61]). Thus, in such cases, we say that E′ itself is the spanner.
Many of these notions are analogous to the ones considered in [3, 11, 61], although they
are not referred to as “spanners” in these works.

Finally, when the underlying graph G is a complete graph, we call G a temporal
clique. An example of a (valid) temporal spanner of a simple temporal clique is shown in
Figure 3.1.
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Figure 3.1: Example of a simple temporal clique and one of its temporal spanners (edges
in bold). This spanner is not minimum (nor even minimal) and the reader may try to
remove further edges.

3.2.2 Generality of simple labelings

We claimed in Section 3.1.2 that if non-strict journeys are allowed, then one can transform
a temporal clique G = (G,λ) with unrestricted labeling λ into a clique H = (G,λH)
with simple labeling such that any valid temporal spanner of H induces a valid temporal
spanner of G. (As explained, the converse is false, but this is not a problem.) The
reduction proceeds in two steps: (1) For every edge e, restrict λ(e) to a single label chosen
arbitrarily; and (2) Whenever k edges adjacent to a same vertex have the same label l,
these edges are relabeled with a unique value in the interval [l, l+ k− 1] (arbitrarily) and
the value of all the other labels in the graph which are larger than l are shifted by k. It is
not difficult to see that if a journey exists in H, then the same sequence of edges allows
for a (possibly non-strict) journey in G. A small example of such a process is given below.
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Figure 3.2: Example transformation of a temporal clique (with non-strict journeys) into
a temporal clique with simple labelling. First, take one label per edge, then, determine
an order between locally equal labels (top right vertex with two edges having label 1)
and shift the larger labels.

As for the second claim of the introduction, if strict journeys are the only ones
allowed, then as explained, we require the existence of a simple sub-labeling of λ (whose
computation is not discussed). Here, it is even more direct that any journey based on the
sub-labeling is a fortiori available in the complete instance. Based on these arguments,
the rest of the chapter focuses on simple temporal cliques, and we sometimes drop the
adjective “simple” when it is clear from the context. Consequently, the input is a temporal
clique G = (G,λ), where G = Kn is the complete graph on n vertices, and λ a simple
labelling of the edges, which may be represented as a permutation π of (1, 2, 3, ...,

(n
2
)
).

3.2.3 Basic techniques

We present here two basic sparsification techniques. The first is from previous works, the
second is original. These techniques are not used subsequently, thus they are presented
here rather than in Section 3.3. However, they are relevant to the problem in general,
and may carry some insights.

3.2.3.1 The subclique technique

So far, the only existing approach for sparsifying simple temporal cliques is that of Akrida
et al. [3], who prove that one can always remove bn/4c edges without breaking temporal
connectivity. Their approach is as follows. First, it is established that if n = 4, then it is
always possible to remove at least one edge. Then, as n→∞, one can arbitrarily partition
the input clique into (essentially) n/4 subcliques of 4 vertices each, and remove an edge
from each subclique. The edges between subcliques are kept, thus the impact of each
removal is limited to the corresponding subclique and the resulting graph is temporally
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connected. Before moving to other techniques, let us observe that this technique can be
greatly improved as follows.

Observation 1 (Improving the subclique technique). The type of partitioning used in [3]
is node-disjoint, but a key observation is that the same argument actually holds when
applied to edge-disjoint subcliques, with significant consequences. Indeed, by Wilson’s
Theorem [87], the number of edge-disjoint cliques on 4 vertices in a complete graph on n
vertices is bn2/12c, possibly with a few vertices remaining. (More generally, as c → 1,
graphs with minimum degree at least cn have b

(n
2
)
/
(k

2
)
c disjoint copies of Kk for all k.)

The immediate consequence is that one can remove bn2/12c = Θ(n2) edges by the same
technique as in [3].

Although this technique allows us to remove Θ(n2) edges, it seems unlikely that purely
structural techniques like this one will lead to spanners of o(n2) edges. The techniques we
develop in this chapter are different in essence and consider the interplay of timestamps
at a finer scale.

3.2.3.2 Pivotability

Another natural approach that one might think of is inspired by Kosaraju’s principle for
testing strong connectivity in a directed graph (see [2]). This principle relies on finding a
vertex that all the other vertices can reach (through directed paths) and that can reach
all these vertices in return. This condition is sufficient in standard graphs because paths
are transitive. In the temporal setting, transitivity does not hold, but we can define a
temporal analogue as follows. A pivot vertex p is a vertex such that all other vertices
can reach p by some time t (through journeys) and p can reach all other vertices after
time t. The union of the tree of (incoming) journeys towards p and the tree of (outgoing)
journeys from p forms a temporal spanner with at most 2(n− 1) edges. Such a spanner
is illustrated on Figure 3.3. Unfortunately, arbitrarily large non-pivotable cliques may
exist (see Section 3.3.2.1 for an example of infinite family). However, experiments suggest
that they may exist asymptotically almost surely in random temporal cliques (where an
instance corresponds to a random permutations of the time interval [

(n
2
)
]).
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Figure 3.3: Examples of pivotable graph (left) and non-pivotable graph (right). The
(light) green edges in the pivotable graph belong to the tree of incoming journeys to pivot
vertex p (with t = 4); the (darker) red edges belong to the tree of outgoing journeys; the
dashed edges belong to neither.

3.3 Delegation and Dismountability

This section introduces a number of basic techniques which are subsequently used (and
extended) in Sections 3.4 and 3.5. Given a vertex v, write e−(v) for the edge with smallest
label incident with v, and e+(v) analogously for the largest label.

Lemma 1. Given a temporal clique G, if {u, v} = e−(v), then u can reach all vertices
through v. Symmetrically, if {u,w} = e+(w), then all vertices can reach u through w.

Proof. If {u, v} = e−(v), then v has a direct edge with every other vertex after that time,
thus a journey exist from u to every vertex through v. (A symmetrical argument applies
in the second case.)

Observe that Lemma 1 holds only when the underlying graph is complete. This
property makes it possible for a vertex u to delegate its emissions to a vertex v, i.e.,
exploit the fact that v can still reach all the other vertices after interacting with u, thus
none of u’s other edges are required for reaching the other vertices. By a symmetrical
argument, u can delegate its receptions to a vertex w if w can be reached by all the
other vertices before interacting with u, so the other edges of u are not needed for being
reached by other vertices.

The delegation concept suggests an interesting technique to construct temporal
spanners. We say that a vertex u in a temporal clique G is dismountable if there exist
two other vertices v and w such that {u, v} = e−(v) and {u,w} = e+(w), i.e., u can
delegate both its emissions and its receptions. The existence of such a vertex enables a
self-reduction of the spanner construction as follows: select e−(v) and e+(w) for future
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inclusion in the spanner, then recurse on the smaller clique G[V \ u], as illustrated on
Figure 3.5. More precisely:

Theorem 1 (Dismountability). Let G be a temporal clique, and let u, v, w be three vertices
in G such that {u, v} = e−(v) and {u,w} = e+(w). Let S′ be a temporal spanner of
G[V \ u]. Then S = S′ ∪ {{u, v}, {u,w}} is a temporal spanner of G.

Proof. Since {u, v} = e−(v), all edges incident with v in S′ have a larger label than {u, v},
thus u can reach all the vertices through v using only the edges of S′. A symmetrical
argument implies that all vertices in G can reach u through w using only {u,w} and the
edges of S′.

We call a graph dismountable if it contains a dismountable vertex. It is said to be fully
dismountable if one can find an ordering of V that allows for a recursive dismounting of
the graph until the residual instance has two vertices. An example of fully dismountable
graph is given in Figure 3.4.
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Figure 3.4: Example of a fully dismountable graph and the resulting spanner.

Fact 3 (Spanners based on dismountability). If a graph can be fully dismounted, then
the resulting spanner will have 2(n− 2) + 1 = 2n− 3 edges.

Unfortunately, one can design arbitrarily large temporal cliques which are not fully
dismountable (see Subsection 3.3.2).

3.3.1 k-hop delegation and k-hop dismountability

The dismountability technique can be generalized to multi-hop journeys. Let J be
a journey from vertex u to vertex v through vertices u = u0, u1, . . . , uk = v with
{uk−1, uk} = e−(v). The key observation is that u can delegate its emissions to v even
though {ui−1, ui} 6= e−(ui) for some i. Indeed, it is sufficient that the last edge of a
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journey from u to v is the minimum (at v) in order to delegate u’s emissions to v.
Symmetrically, it is sufficient that the first edge of a journey from w to u is e+(w) in
order to delegate u’s receptions to w. Accordingly, a vertex u is called k-hop dismountable
if one can find two other vertices v and w (possibly identical if k > 1) such that there
are journeys of at most k hops (1) from u to v that arrives at v through e−(v), and (2)
from w to u that leaves w through e+(w). See Figure 3.5 for an illustration.

v

u

w
e−(v) e+(w)

(a) Dismountability principle.

v

u

w
e+(w)

>e+(w)e−(v)

(b) Example of 2-hop dismountability.

Figure 3.5: Illustration of the principle of dismountability and k-hop dismountability.

Temporal spanners can be obtained in a similar way to 1-hop dismountability by
selecting all of the edges involved in these journeys for inclusion in the spanner. However,
only the edges adjacent to the dismounted vertex are removed in the recursion, thus some
edges used in a multi-hop journey may be selected several times over the recursion (at
our advantage). We can then state an analogue fact for k-hop dismountability as follows.

Fact 4. If a temporal graph G is fully k-hop dismountable, then this process yields a
temporal spanner with at most 2k(n− 2) + 1 ' 2kn edges.

Unfortunately, again, there exist arbitrarily large graphs which are not k-hop dis-
mountable for any k (the same counter-example as for 1-hop dismountability applies, see
Section 3.3.2.2). Nonetheless, k-hop dismountability is a core component in the more
sophisticated techniques presented next.

3.3.2 Adversarial Families

3.3.2.1 Non-pivotable Graphs

We explain how to construct non-pivotable graphs of arbitrary sizes. The construction
ensures that there is a time t before which no vertex can be reached by all vertices, and
after which no vertex can reach all vertices. The choice of t does not matter, as moving it
forward or backward could only worsen one of the direction. Thus, the simple existence
of such a t rules out the existence of a pivot vertex. The construction is first presented
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with respect to the 6-vertex clique of Figure 3.6, then we explain how to generalize it.
Thus, let n = 6. In this case, let t = 7 and let us consider the two periods [0, 7] and [8, 14].
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Figure 3.6: Example of a non-pivotable clique seen as the union of two specific subgraphs
which represent the periods [0, 7] (left) and [8, 14] (right).

Looking at the graph, observe that none of the vertices can be reached by all the others
during the first period. This is true because (1) the only vertex that w can reach is v,
making v the only candidate, and (2) none of the other vertices (except u) can reach v.
Similarly, none of the vertices can reach all the others in the second period. This is true
because (1) u can only be reached by w, making w the only candidate, and (2) w cannot
reach v in the second period.

The construction can be generalized to any larger value of n by choosing three vertices
to play the same role as u, v, and w. The graph of the first period corresponds to a
subclique on n− 2 vertices (including u, but not v and w), plus the two edges {u, v} and
{v, w}. Thus t =

(n−2
2
)

+ 1. The labeling assigns 0 to {u, v}, 1 to {v, w}, and all values
in [3, t] to the edges of the subclique (arbitrarily). By the same argument as above, none
of the vertices can be reached by all others during the first period. As for the second
period, the labeling must ensure that all the edges of w have a larger label than all the
edges of v, and that {u,w} is assigned the smallest label among the edges incident to w,
which results in direct applicability of the same argument as above. Thus, none of the
vertices can reach all the others during the second period.

Remark 2. One may be tempted to make both periods overlap by one unit, so that the
edge labeled t can be used for both directions. However, this would have no decisive effect
on the construction.
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3.3.2.2 Non-dismountable Graphs

We explain how to construct arbitrarily large simple temporal cliques which are not k-hop
dismountable for all k (non-dismountable, for short). To start, consider a 4-vertex clique
in which the local relations among labels is the same as in Figure 3.7. Such a clique is
non-dismountable, because none of the vertices can (1) reach a vertex u through e−(u)
and (2) be reached from a vertex v through e+(v). An arbitrary large clique can be built
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Figure 3.7: Example of a non-dismountable clique on 4 vertices.

by making copies of this clique and assigning labels so that the local minima and maxima
in each copy behave as in the original clique. An example with 8 vertices (thus 28 edges)
is shown in Figure 3.8. All the other edges are assigned an intermediate label, i.e., whose
value is between the local minima and maxima, which prevents journeys between different
cliques that arrive through a minimum edge (or leave through a maximum edge). This
construction can be generalized to any number of vertices which is a multiple of 4.
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Figure 3.8: Example of a non-dismountable clique on 8 vertices.

Remark 3. The given construction for non-dismountable graphs makes it possible to find
a pivot vertex. However, experiments that we conducted suggest that there exist instances
of arbitrary sizes which are neither pivotable nor dismountable.
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3.4 The Fireworks Technique

In this section, we present an algorithm called fireworks, which exploits a system of
multi-hop delegations among vertices. In particular, we take advantage of one-sided
delegations, in which a vertex delegates only its emissions, or only its receptions. The
combination of many such delegations is shown to lead to the removal of essentially half
of the edges of the input clique. The residual instance has a particular structure that is
exploited in Section 3.5 to obtain the final O(n logn)-sparse spanners.

3.4.1 Forward Fireworks

The purpose of fireworks is to mutualize several one-sided delegations in a transitive way,
so that many vertices do not need to reach the other vertices directly. Given a temporal
clique G = (G,λ) with G = (V,E), define the directed graph G− = (V,E−) such that
(u, v) ∈ E− iff {u, v} = e−(v), except that, if e−(u) = e−(v) for some u and v, only one
of the arcs is included (chosen arbitrarily).

Lemma 2. Directed paths in G− correspond to journeys in G.

Proof (by contradiction).. Let (u0, u1), (u1, u2), ..., (uk−1, uk) be a directed path in G−

and suppose that the corresponding path in G is not a journey. Then it must be the
case that the label of an edge (ui−1, ui) is greater than the label on the adjacent edge
(ui, ui+1) for some i. Then {ui−1, ui} 6= e−(ui) which is impossible.

By construction, E− induces a disjoint set of out-trees (one source, possibly several
sinks). We transform E− into a disjoint set T − = (V,E−T ) of in-trees (one sink, possibly
several sources) as follows, see also Figure 3.9 for an illustration. Let E−T be initialized
as a copy of E−. For every v with outdegree at least 2 in E−, let (v, u1), ..., (v, u`) be
its out-arcs with (v, u`) being the one with the largest label. For every i < `, if ui is
a sink vertex, then flip the direction of (v, ui) in E−T (i.e., replace (v, ui) by (ui, v) in
E−T ); otherwise remove (v, ui) from E−T . Let T − = (V,E−T ) be the resulting set of in-trees
T −1 , ..., T −k (containing possibly more in-trees than the number of initial out-trees).

Fact 5. The set of in-trees T − = (V,E−T ) has the following properties:

1. Directed paths in T − correspond to journeys in G.

2. Every vertex belongs to exactly one tree.

Jason Schoeters — University of Bordeaux, LaBRI 62



CHAPTER 3. TEMPORAL CLIQUES ADMIT SPARSE SPANNERS 3.4. THE FIREWORKS TECHNIQUE

→

Figure 3.9: Example of transformation from a disjoint set of out-trees (V,E−) to a
disjoint set of in-trees (V,E−T ). The colored vertices represent sink vertices.

3. Every tree contains at least two vertices.

4. There is a unique sink in each tree.

5. The unique arc incident with a sink s corresponds to e−(s).

Fact 5.1 follows from Lemma 2 because an arc (v, ui) is only replaced by (ui, v) if the
label of (v, ui) is less than the label of another arc (v, u`), so (ui, v), (v, u`) is a journey in
G. Observe that some of the journeys induced by the arcs of T − may include intermediate
hops where the arc’s label is not locally minimum for its head endpoint. However, as
already discussed in Section 3.3, a delegation only requires that the label of the last hop
of a journey be locally minimum, and that is the case here (Fact 5.5).

The motivation behind this construction is that all the vertices in each in-tree are
able to delegate their emissions to the corresponding sink vertex. For this reason, the
sink vertex will be called an emitter in the rest of this work. An important consequence
of our construction is that the number of emitters in T − cannot exceed half of the total
number of vertices.

Lemma 3. The number of emitters in T − is at most n/2

Proof. After the transformation from E− to E−T , there is only one emitter in each in-tree
T −i ∈ T − (Fact 5.4), and there are at most n/2 trees because each one contains at least
2 vertices (Fact 5.3).

We are now ready to define a temporal spanner based on T −, which consists of the
union of all edges involved in an in-tree and all edges incident with at least one emitter.
More formally, let S−T = {{u, v} ∈ E : (u, v) ∈ T −} ∪ {{u, v} ∈ E : u is an emitter}.

Theorem 2. S−T is a temporal spanner of G.
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Proof. By Fact 5, every vertex v of G that is a non-emitter in T − can reach an emitter s
through an edge e−(s). Furthermore, the inclusion of all edges incident to a vertex s that
is an emitter in T − ensures that v can still reach all other vertices afterwards and so can
s. Therefore, every vertex can reach all other vertices by using only edges from S−T .

We call this type of spanner a forward fireworks cover. An example is given in
Figure 3.10, the corresponding journeys being depicted on the left side.
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Figure 3.10: Example of forward fireworks cover and the resulting spanner.

Theorem 3. Forward fireworks covers have at most 3/4
(n

2
)

+O(n) edges.

Proof. Let S−T be a forward fireworks cover based on a set of in-trees T −. Each non-
emitter in T − has only one out-arc which becomes one edge in S−T , thus overall T −

contributes less than n edges to S−T . Now, every emitter has an edge to every other
vertex in S−T , and there are at most n/2 emitters in T − by Lemma 3. Note that the
edges between emitters are selected twice but should be counted only once. Thus in the
end, there are at most n(n/2)− n2/8 edges, plus the edges of the in-trees (that is O(n)
edges).

Before moving to Section 3.4.2, we establish a small technical lemma that will be
used in Section 3.5, but is worth being stated here as it pertains to the structure of the
in-trees.

Lemma 4. Every non-emitter vertex v can reach a vertex v′ in the same in-tree T −i
(emitter or not) using a journey of length at most two that arrives at v′ through e−(v′).

Proof. Before the transformation from E− to E−T , all arcs (u, v) ∈ E− are such that
{u, v} = e−(v), thus all the journeys in E− have the required property. Then, some arcs
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are flipped by the transformation (replaced by oppositely directed arcs). Now, if an arc
(v, u) is flipped, then its head u is a sink in E− and its tail v is not, thus no arc of the
form (w, v) is flipped. As a result, at least one arc in any two consecutive arcs in a journey
in T −i is the minimum edge of its head.

3.4.2 Backward Fireworks

A symmetrical concept of fireworks can be defined based on the edges {u, v} = e+(v) of a
temporal clique G = (G,λ). All arguments developed in the context of forward fireworks
can be adapted in a symmetrical way, so we will omit most of the details. First, we
build a directed graph G+ = (V,E+) which is a disjoint set of in-trees. By an analogous
transformation as above, this set is then converted into a disjoint set T + = (V,E+

T ) of
out-trees each of which contains only one source which we call a collector. The collector
s of an out-tree can reach all of the other vertices in this tree by journeys that leave
s through its edge e+(s), thereby guaranteeing that every other vertex that reaches s
can subsequently reach all other vertices in the tree. The following lemma is obtained by
symmetrical arguments.

Lemma 5. The number of collectors in T + is at most n/2

Finally, we can build a temporal spanner S+
T = {{u, v} : (u, v) ∈ T +} ∪ {{u, v} : u is

a collector} which we call a backward fireworks cover, and prove the following results by
symmetrical arguments to the ones in Section 3.4.1.

Theorem 4. S+
T is a temporal spanner of the temporal clique G.

Theorem 5. Backward fireworks covers have at most 3/4
(n

2
)

+O(n) edges.

An example of a backward fireworks cover is given on Figure 3.11. Finally, we establish
a symmetrical property as in Lemma 4, to be used also in Section 3.5.

Lemma 6. For every non-collector vertex v in an out-tree T +
i ∈ T +, there exists a

vertex v′ in T +
i (collector or not), such that a journey of length at most two from v′ to v

exists, leaving v′ through e+(v′).

3.4.3 Bidirectional Fireworks

A forward fireworks cover makes it possible to identify a subset of vertices, the emitters,
such that every vertex can reach at least one emitter u through e−(u) and u can reach
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Figure 3.11: Example of a backward fireworks cover and the resulting spanner (p:65).

every other vertex afterwards through a single edge. Similarly, a backward fireworks cover
makes it possible to identify a subset of vertices, the collectors, such that every vertex
can be reached by at least one collector v through e+(v) and v can be reached by every
other vertex before this through a single edge. Combining both ideas, we can define a
sparser spanner in which we do not need to include all of the edges incident with emitters
and collectors, but only the edges between emitters and collectors (plus, of course, the
edges used for reaching an emitter and for being reached by a collector).

Precisely, let T − be the disjoint set of in-trees obtained during the construction of
a forward fireworks cover (see Figure 3.9), and let T + be the disjoint set of out-trees
obtained during the construction of a backward fireworks cover. Let X− be the set
of emitters (one per in-tree in T −) and let X+ be the set of collectors (one per out-
tree in T +). The two sets can overlap, as a vertex may happen to be both an emitter
in some tree in T − and a collector in some tree in T +, which is not a problem. Let
H = (X− ∪X+, EH) be the graph such that EH = {{u, v} ∈ E : u ∈ X−, v ∈ X+}; in
other words, H is the subgraph of G that connects all emitters with all collectors. Finally,
let S = {{u, v} : (u, v) ∈ T − ∪ T +} ∪ EH . We call S a bidirectional fireworks cover (or
simply a fireworks cover). An illustration is given in Figure 3.12.

Theorem 6. S is a temporal spanner of G.

Proof. Every non-emitter vertex can reach at least one emitter u through e−(u). Every
emitter can reach all collectors afterwards. Every vertex can be reached by a collector v
through e+(v).

Theorem 7. Bidirectional fireworks covers have at most
(n

2
)
/2 +O(n) edges.
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Figure 3.12: A bidirectional fireworks cover and the corresponding spanner. The forward
component and the emitters are depicted in (light) green; the backward component and
the collectors are depicted in (darker) red. The top vertex is both an emitter and a
collector.

Proof. The number of edges in T − and T + is linear in n. By Lemma 3, the number of
emitters is at most n/2, and so is the number of collectors by Lemma 5. Some vertices
may be both emitter and collector; however, the number of edges is maximized when X−

and X+ are disjoint, i.e., H is a complete bipartite graph with n/2 vertices in each part.
Thus, the spanner contains at most n2/4 edges plus the edges of T − and T +.

3.5 Recursing or sparsifying

After applying the fireworks technique, one is left with a residual instance (or spanner)
made of all the edges between emitters X− and collectors X+, together with all the
edges corresponding to the arcs of T − and T +, these edges being denoted S− and S+ for
simplicity. As we will see, the algorithm may recurse several times due to dismountability,
thus it is worth mentioning that variables G and V refer to the instance of the current
recursion. The algorithm considers two cases, depending on the outcome of the fireworks
procedure. Either X− ∪X+ 6= V (Case 1) or X− ∪X+ = V (Case 2).

Case 1 (X− ∪X+ 6= V ). In this configuration, at least one vertex v is neither emitter
nor collector. By Lemma 4, there exists a journey of length at most two from v that
arrives at some vertex u 6= v through e−(u). Similarly, by Lemma 6, there is a journey of
length at most two from some vertex w 6= v to v, leaving w through e+(w). As a result, v
is 2-hop dismountable (see Section 3.3). One can thus select the corresponding edges (at
most four) for future inclusion in the spanner and recurse on G[V \ v]; that is, re-apply
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the fireworks technique from scratch. Then, either the recursion keeps entering Case 1
and dismounts the graph completely, or it eventually enters Case 2.

Case 2 (X− ∪X+ = V ). Both X− and X+ have size at most n/2 (Lemma 3 and 5),
thus if their union is V , then both sets must be disjoint and of size exactly n/2. As a
result, the graph which connects vertices of X− to vertices of X+ (called H in Section 3.4)
is a complete bipartite graph. In fact, H possesses even more structure; in particular,
both S− and S+ are perfect matchings—by contradiction, if this is not the case, then
at least one of the in-tree (out-tree) contains more than one edge, resulting in strictly
less emitters (collectors) than n/2. Furthermore, every vertex is either an emitter or a
collector, thus each of these edges connects an emitter with a collector, implying that the
residual instance is H itself. Now, recall that every edge in S− is locally minimum for
the corresponding emitter (Fact 5.5), and every edge in S+ is locally maximum for the
corresponding collector. We then have the following stronger property.

Lemma 7. If the minimum edge of an emitter is not also the minimum edge of the
corresponding collector in H, then the residual instance is 2-hop dismountable. The
same holds if the maximum edge of a collector is not also the maximum edge of the
corresponding emitter in H.

Proof. Let us prove this for minimum edges (a symmetrical argument applies for maximum
edges). Consider an emitter u whose minimum edge {u, v} = e−(u) leads to collector v
such that {u, v} 6= e−(v) in the bipartite graph. Then an edge with smaller label exists
between v and another emitter u′, which creates a 2-hop journey from u′ to u arriving
through e−(u), implying that u′ can delegate its emissions to u. Moreover, emitters and
collectors are disjoint, thus u′ is not a collector. As a result, u′ already delegates its
receptions to a collector (through a direct edge), thus u′ is 2-hop dismountable.

Lemma 7 implies that either a vertex v is 2-hop dismountable and the algorithm can
recurse as in Case 1, or the edges of the matchings are minimum (resp. maximum) on
both sides. An example of the latter case is given in Figure 3.13.

In summary, either the algorithm recurses until the input clique is fully dismounted
(through Case 1 or Case 2), resulting in a O(n)-dense spanner (Fact 4), or the recursion
stops and the residual instance is sparsified further by a dedicated procedure, described
now.
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Figure 3.13: Temporal clique for which the output of the fireworks technique results in the
second case: every vertex is either an emitter or a collector and the edges of the matchings
are minimum (resp. maximum) on both sides. The minimum edges are depicted in light
green and maximum edges in dark red.

3.5.1 Sparsifying the Residual Instance

For simplicity, the sparsification of the residual instance is considered as a separate
problem. The input is a labeled complete bipartite graph B = (X−, X+, EB) where X−

is the set of emitters, X+ is the set of collectors, and the labels are inherited from G.
There are two perfect matchings S− and S+ in B such that the labels of the edges in S−

(resp. S+) are minimum (resp. maximum) locally to both of their endpoints (Lemma 7).
The objective is to remove as many edges as possible from EB, while preserving S−, S+,
and the fact that every emitter can reach all collectors by a journey. Indeed, these three
properties ensure temporal connectivity of the graph (using the same arguments as in
Theorem 6).

While both S− and S+ are matchings, our algorithm effectively exploits this property
with respect to S+ as follows.

Fact 6. If an emitter can reach another emitter, then it can reach the corresponding
collector by adding to its journey the corresponding edge of S+.

This property makes it possible to reduce the task of reaching some collectors to that
of reaching the corresponding emitter in S+. It is however impossible for an emitter u to
make a complete delegation to another emitter v, because the existence of a journey from
u to v arriving through e−(v) would contradict the fact that S− is also a matching. For
this reason, when a journey from emitter u arrives at emitter v, some of v’s edges have
already disappeared. Nevertheless, the algorithm exploits such partial delegations, while
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paying extra edges for the missed opportunities (contained within a logarithmic factor).
This is done by means of an iterative procedure called layered delegations, described over
the remaining of this section. Note the term iterative, not recursive; from now on, the
instance has a fixed vertex set and it is sparsified until the final bound is reached.

3.5.1.1 Layered Delegations

The algorithm proceeds by eliminating half of the emitters in each step j, while selecting
a set Sj of edges for inclusion in the spanner, so that the eliminated emitters can reach
all collectors by a mixture of direct edges and indirect journeys through other emitters
(partial delegations). The set of non-eliminated emitters at step j (called alive) is denoted
by X−j , with X−1 = X−. The set of collectors X+ is invariant over the execution. We
denote by k = n/2 be the initial degree of the emitters in B (one edge shared with each
collector), and by ei(v) the edge with the ith smallest label (label of rank i) locally to a
vertex v, in particular e1(v) = e−(v) and ek(v) = e+(v).

The k ranks are partitioned into subintervals of doubling size Ij = [2j+2− 7, 2j+3− 8],
where j denotes the current step of the iteration, ranging from 1 to log2 k − 3. For
simplicity, assume that k is a power of two, we explain below how to adapt the algorithm
when this is not the case. For example, if k = 128, then I1 = [1, 8], I2 = [9, 24], I3 =
[25, 56], and I4 = [57, 120]. Computation step j is made with respect to the subgraph
Bj = (X−j , X+, Ej) where Ej = {ei(v) ∈ EB : i ∈ Ij , v ∈ X−j }, namely the edges of the
currently alive emitters, whose ranks are in the interval Ij .

Lemma 8. In each step j, X−j can be split into two sets Xa and Xb such that |Xa| ≥ |Xb|
and every vertex in Xa can reach a vertex in Xb through a 2-hop journey (within Bj).

Proof. This proof is illustrated on Figure 3.14 for the particular case that j = 1 (first
step). The main idea is to show that the average degree of collectors in Bj forces the
existence of sufficiently many two-hop journeys among emitters. To start, observe that
if a collector v shares an edge with d emitters in Bj (we say that these emitters meet
at v), then the emitter whose edge with v has the largest label can be reached by the
d− 1 other emitters through two-hop journeys. The proof proceeds by showing that, in
each step j, the distribution of degrees over collectors forces the existence of sufficiently
many such meetings among emitters. Here, the size of the first interval Ij matters, as
if one starts with intervals of size only 2 or 4 (say), then the density of edges remains
insufficient for the argument to apply, and starting with 8 (in fact, any constant power of
two) does not impact the asymptotic cost, as we will see. Also observe that the doubling
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size of the rank intervals cancels out the halving size of X−j over the steps, leading to an
average degree for collectors that remains constant over the steps (namely, 8).

The generic calculation relative to step j is itself based on an iterative argument that
one should be careful not to mistake with the outer loop varying j. Thus, keeping j fixed
for the rest of the proof, Xa and Xb are built iteratively as follows: identify the collector
c with highest degree and add all the corresponding emitters to Xa except for the one
whose edge with c has largest label, which is added to Xb; eliminate these emitters and
repeat until Xa ≥ X−j /2, then add the remaining emitters to Xb. To see why this works
(and always terminates), observe that the average degree of 8 for collectors forces at least
one collector to be of degree 8. In fact, by the pigeon hole principle, this property remains
true as long as the number of emitters not being processed yet (i.e., in X−j \ (Xa ∪Xb))
is larger than 7/8 · |X−j |, which guarantees that Xa has size at least 1/8 · 7/8 · |X−j | when
the number of non processed emitters goes below that threshold. An analogue argument
forces at least one collector to be of degree 7 so long as the number of non processed
emitters is above 6/8 · |X−j |, resulting in at least 1/8 · 6/7 · |X−j | more emitters in Xa

when the next threshold is attained (indeed, six emitters out of the seven considered
enter Xa). By iterating this argument, the size of Xa ends up being at least a fraction of
X−j equal to 1/8 · (7/8 + 6/7 + 5/6 + 4/5 + 3/4 + 2/3 + 1/2) ' 0.66 ≥ 0.5.

...
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...

...
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(a) Emitters “meeting”
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... ≥ 1
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−
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|Xa| ≥ |X−j |/2

(b) Calculation of the size of Xa with respect to
the set of emitters X−j .

Figure 3.14: Illustration of the method used in the proof of Lemma 8.

Remark 4. The computation of Xa (described in the proof) proceeds by repeatedly
considering the largest degree d of a collector and assigning d− 1 of the corresponding
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emitters to Xa and one to Xb; it is therefore a greedy algorithm. The process is to be
stopped whenever Xa reaches half the size of X−j . If Xa exceeds this threshold during step
j, then some emitters can be arbitrarily transferred from Xa to Xb to preserve the fact
that |X−j+1| is a power of two. The case that |X−1 | = k is not a power of two is addressed
similarly after the first iteration, in order to set the size of Xb to the highest power of
two below k.

How Xa and Xb are then used: When an emitter u in Xa can reach another emitter
v in Xb, the corresponding journey arrives at v through some edge ei(v) with i ∈ Ij . We
say that u partially delegates its emissions to v in the sense that all collectors that v can
reach after this time can de facto be reached from u (through v), the other collectors
being possibly no longer reachable from v after this time. Thus, the delegation is partial.

Lemma 9. If an emitter u makes a partial delegation to v in step j, then the number of
collectors that u may no longer reach through v is at most 2j+3 − 8.

Proof. This number is the largest value in the current interval; it corresponds to the
largest rank of the edge through which the journey from u may have arrived at v. All
the edges whose rank locally to v is larger than 2j+1 − 2 can still be used and thus the
corresponding collectors are still reachable.

A partial delegation from u to v in step j implies the removal of u from the set of
emitters, the selection of the two edges of the journey from u to v, and the selection
of at most 2j+3 − 8 direct edges between u and the missed collectors. This implies the
following fact.

Fact 7. In each step j, at most 2j+3 edges are selected relative to every eliminated
emitter.

More globally, let Jj be the edges used in all the delegation journeys from vertices in
Xa to vertices in Xb in step j, and Dj the union of direct edges towards missed collectors.
Let Sj = Jj ∪Dj . The algorithm thus consists of selecting all the edges in Sj for inclusion
into the spanner. Then X−j+1 is set to Xb and the iteration proceeds with the next step.
The computation goes for j ranging from 1 to log2 k − 3, which leaves exactly eight final
emitters alive. All the remaining edges of these emitters (call them Slast) are finally
selected. Overall, the final spanner is the union of all selected edges, plus the edges
corresponding to the two initial matchings, i.e., S = (∪jSj) ∪ Slast ∪ S− ∪ S+.

Jason Schoeters — University of Bordeaux, LaBRI 72



CHAPTER 3. TEMPORAL CLIQUES ADMIT SPARSE SPANNERS 3.6. TIME COMPLEXITY

Theorem 8. S is a temporal spanner of the complete bipartite graph B and it is made
of Θ(n logn) edges.

Proof. The key observation for establishing validity of the spanner is that eliminated
emitters reach all collectors either directly or through an emitter that can still reach
this collector afterwards. This property applies transitively (thanks to the disjoint and
increasing intervals) until eight emitters remain, all the edges of which are selected
for simplicity. Therefore, every initial emitter can reach all collectors. The rest of the
arguments are the same as in the proof of Theorem 6: all vertices in the input clique can
reach at least one emitter u through e−(u), and be reached by at least one collector v
through e+(v).

Regarding the size of the spanner, in step j, k
2j emitters are eliminated and at most

2j+3 edges are selected for each of them (Fact 7), amounting to at most 8k = 4n edges.
The number of iterations is Θ(log k) = Θ(logn). Finally, the sets Slast, S

−, and S+ each
contain Θ(n) edges (and S+ is actually included in Slast).

Corollary 1. Simple temporal cliques always admit O(n logn)-sparse spanners.

Proof. In each recursion of the global algorithm, either the residual instance of the
fireworks procedure is 2-hop dismountable and the algorithm recurses on a smaller
instance induced by a removed vertex, after selecting a constant number of edges, or
the algorithm computes a Θ(n logn)-sparse spanner of the residual instance through
the layered delegation process. Let n1 be the number of times the graph is 2-hop
dismounted and n2 = n− n1 be the number of vertices of the residual instance when the
layered delegation process begins (if applicable, 0 otherwise). The resulting spanner has
Θ(n1) + Θ(n2 logn2) = O(n logn) many edges.

3.6 Time complexity

This short section reviews the cost in time of the main components involved in the
algorithm. This discussion is by no means a detailed analysis, its purpose is rather to
sustain the claim that the overall algorithm runs in polynomial time. To start, the input
is a temporal clique G = (G,λ), where G = Kn is the complete graph on n vertices,
and λ a simple labelling of the edges, which may be represented as a permutation π of
(1, 2, 3, ...,

(n
2
)
). The global algorithm is portrayed in Figure 3.15. Observe that whenever

the algorithm recurses, the number of vertices is reduced by one, and in each recursion the
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Global algorithm

Fireworks Technique

Input: G = (Kn, λ), given as permutation π

select ≤ 4 edges

Layered Delegations

select up to

Output: Union of selected edges (Spanner of size O(n log n))

Residual

and 2-hop dismount

Case 1 Case 2

Subcase 2.1

Subcase 2.2

select ≤ 4 edges
and 2-hop dismount

O(n log n) edges

instance

if n = 3
select all edges

Figure 3.15: The global algorithm, using the fireworks technique, dismounting, and layered
delegations.

fireworks process is run twice (forward and backward), possibly followed by the layered
delegation processes, in which case the algorithm subsequently terminates. The fireworks
process will thus run less than 2n times and the delegation process at most one time.
The fireworks process first identifies the edges which are minimum (maximum) for at
least one vertex. Then, it transforms this structure by means of a set of local operations
consisting of flipping edges (at most once) or discarding them. As for layered delegations,
the main operation is the composition of the delegation sets Xa and Xb, which is done a
logarithmic number of times by a greedy procedure whose main operation is to examine
the degrees of all collectors to detect the local maximum among their labels. In light of
these observations, we hope that it is clear to the reader that the overall running time is
polynomial.

3.7 Conclusion

In this chapter, we established that sparse temporal spanners always exist in temporal
cliques, proving constructively that one can find O(n logn) edges that suffice to preserve
temporal connectivity. Our results hold for non-strict journeys with single or multiple
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labels on each edge, and strict journeys with single or multiple labels on each edge with
the property that there is a subset of locally exclusive single labels. Our results give the
first positive answer to the question of whether any class of dense graphs always has
sparse temporal spanners.

To prove our results, we introduced several techniques (pivotability, delegation, dismount-
ability and k-hop dismountability, forward and backward fireworks, partial delegation,
and layered delegations), all of which are original and some of which might be of inde-
pendent interest. Whether some of these techniques can be used for more general classes
of graphs is an open question. Delegation and dismounting rely explicitly on the graph
being complete; however, refined versions of these techniques like partial delegation might
have wider applicability.

We decide to discuss the open questions regarding temporal spanners in 6.

3.7.1 Transition between chapters

Changing the setting and the context a bit, the next chapter will consider an original
problem, first studied during my thesis, surrounding motion planning and the well-known
optimization problem TSP. The current chapter and the next one may thus at first seem
quite unrelated, but we remind the reader that Chapter 5 can be considered as a link
between the two subjects, since we’ll be interested in temporal graph properties induced
through mobile agents’ controlled mobility.
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Chapter 4

VectorTSP: A Traveling
Salesperson Problem with
Racetrack-like acceleration
constraints

Nothing happens until something moves.

— Albert Einstein

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Generalized Racetrack model . . . . . . . . . . . . . . . . . . 82
4.2.2 Definition of VectorTSP . . . . . . . . . . . . . . . . . . . . 84

4.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 The configuration space can be bounded . . . . . . . . . . . . 88
4.3.2 A glimpse at computational complexity . . . . . . . . . . . . 89

4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1 Exploring visit orders (FlipVTSP) . . . . . . . . . . . . . . . 98
4.4.2 Optimal racetrack given a fixed visit order (Multipoint A*) 100

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Jason Schoeters — University of Bordeaux, LaBRI 77



CHAPTER 4. VECTORTSP 4.1. INTRODUCTION

4.6.1 Transition between chapters . . . . . . . . . . . . . . . . . . . 107

This chapter is based on our work on VectorTSP, recently presented and
published in the proceedings of Algorithms for Sensor Networks (ALGOSEN-
SORS) 2020 [27]. The full version is about to be submitted to a journal. This
work is available on ArXiv as well [28].

We study a new version of the Euclidean TSP called VectorTSP (VTSP for short)
where a mobile entity is allowed to move according to a set of physical constraints inspired
from the pen-and-pencil game [45] (also known as Vector Racer). In contrast to other
versions of TSP accounting for physical constraints, such as Dubins TSP, the spirit of
this model is that (1) no speed limitations apply, and (2) inertia depends on the current
velocity. As such, this model is closer to typical models considered in path planning
problems, although applied here to the visit of n cities in a non-predetermined order.

We motivate and introduce the VectorTSP problem, discussing fundamental dif-
ferences with previous versions of TSP. In particular, an optimal visit order for ETSP
may not be optimal for VTSP. We show that VectorTSP is NP-hard, and in the other
direction, that VectorTSP reduces to GroupTSP in polynomial time (although with
a significant blow-up in size). On the algorithmic side, we formulate the search for a
solution as an interactive scheme between a high-level algorithm and a trajectory oracle,
the former being responsible for computing the visit order and the latter for computing
the cost (or the trajectory) for a given visit order. We present algorithms for both, and
we demonstrate and quantify through experiments that this approach frequently finds
a better solution than the optimal trajectory realizing an optimal ETSP tour, which
legitimates the problem itself and (we hope) motivates further algorithmic developments.

4.1 Introduction

The problem of visiting a given set of places and returning to the starting point, while
minimizing the total cost, is known as the Traveling Salesperson Problem (TSP, for short).
The problem was independently formulated by Hamilton and Kirkman in the 1800s
and has been extensively studied since. Many versions of this problem exist, motivated
by applications in various areas, such as delivery planning, stock cutting, and DNA
reconstruction. In the classical version, an instance of the problem is specified as a
graph whose vertices represent the cities (places to be visited) and weights on the edges
represent the cost of moving from one city to another (the move is impossible if the
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edge does no exist). One is asked to find the minimum cost tour (optimization version)
or to decide whether a tour having at most some cost exists (decision version) subject
to the constraint that every city is visited exactly once. Karp proved in 1972 that the
Hamiltonian Cycle problem is NP-hard, which implies that TSP is NP-hard [59]. TSP
was subsequently shown to be inapproximable (unless P = NP ) by Orponen and Manilla
in 1990 [75]. On the positive side, while the trivial algorithm has a factorial running time
(essentially, evaluating all permutations of the visit order), Held and Karp presented a
dynamic programming algorithm [53] running in time O(n22n), which as of today remains
the fastest we known.

In many cases, the problem is restricted to more tractable settings. In Metric TSP,
the costs must respect the triangle inequality, namely cost(u, v) ≤ cost(u,w) + cost(w, v)
for all u, v, w, and the constraint of visiting a city exactly once is relaxed (or equivalently,
it is not, but the instance is turned into a complete graph where the weight of every
edge uv is the cost of a shortest path from u to v in the original instance). Metric TSP
was shown to be approximable within factor 1.5 by Christofides [31]. Whether the factor
is optimal is unknown, although it cannot be less than 1.0045 (unless P = NP ) and
so no PTAS exists for Metric TSP [76]. A particular case of Metric TSP is when the
cities are points in the plane, and weights are the Euclidean distance between them,
known as the Euclidean TSP (ETSP, for short). This problem, although still NP-hard
(see Papadimitriou [77] and Garey et al. [46]), was shown to admit a PTAS by Arora [8]
and Mitchell [70].

An attempt to add physical constraints to the ETSP is Dubins TSP (DTSP). This
version of TSP, which is also NP-hard (Le Ny et al. [65]), accounts for inertia through
bounding by a fixed radius the curvature of a trajectory. This approach offers an elegant
(i.e. purely geometrical) abstraction to the problem. However, it does not account for speed
variations; for example, it does not enable sharper turns when the speed is low, nor does
it account for inertia beyond a fixed speed. More realistic models have been considered
beyond TSP, such as in the context of the path planning problem, where one aims to
find an optimal trajectory between two given points (with obstacles), while satisfying
constraints on acceleration/inertia. More generally, the literature on kinodynamics is vast
(see, e.g. [16, 17, 39] for some relevant examples). The constraints are often formulated
in terms of the considered space’s dimensions, a bounded acceleration and a bounded
speed. The positions may either be considered in a discrete domain or continuous domain,
the latter being more related to the fields of control theory and analytic functions. In
constrast, the discrete domain is naturally prone to algorithmic investigation.
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Savla et al. presented a simple but effective algorithm, adapting every other segment
of an ETSP solution to obey the curvature constraint [82]. In the same paper, the
authors prove there exists a constant C such that for any instance on n points with
optimal ETSP tour length L, the optimal DTSP tour for this instance has length L′ with
L ≤ L′ ≤ L+ Cn. A DTSP trajectory is often thought of as some vehicle on which the
wheels cannot be turned more than some angle, e.g. a car, thus resulting in its trajectory
being curvature-constraint. A DTSP trajectory can however also be thought of as an
entity moving at some constant speed, which creates some constant and fixed inertia
force, thus resulting in its trajectory being curvature-constraint. Note that DubinsTSP
also has the property that the optimal visit order may be different from that of the
ETSP [65].

Considering Racetrack, presented in 2.4.4, Bekos et al. [12] present efficient algo-
rithms for simpler tracks of uniform width, as well as algorithms for when the parts of the
track are known as soon as they become visible during the race. The results mentionned
above are all under the assumption the Racetrack instance is encoded as a 2-dimensional
array. A parameter to this problem is whether or not the entity is allowed to touch the
defined boundaries, as this changes the hardness of the problem. Indeed, Holzer and
McKenzie have proven in 2010 that the non-touching variant is NL-complete, and the
touching variant is in L [55]. They also proved that the reachability problem with a
given time unit limit is NL-complete (also called single-player Racetrack), regardless of
touching, as well as deciding the existence of a winning strategy in Gardner’s original
two-player game is P-complete [55]. Erickson states a more natural input representation
than the array is a set of line segments that delimit the boundary of the Racetrack.
Erickson only considers the non-touching variant. Under these assumptions, he proves
the single-player Racetrack problem belongs to PSPACE, and computing an optimal
racing strategy needs exponential time, as any explicit description of the optimal path
could have exponential complexity.

4.1.1 Contributions

Defining a version of TSP based on a racetrack-like physical model is quite natural.
Consider, for instance, a scenario involving a spacecraft in a simplified physical setting
(i.e. non-relativized and without gravity), where no speed limit applies and acceleration
constraints are identical in all directions. Finding the best tour visiting a given set of
planets, or asking whether such a tour can be performed in a given time are indeed
natural questions and objectives. Another, perhaps more realistic, scenario involves a
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drone taking aerial pictures of a set of locations. Despite an extensive literature, the
TSP problem does not seem to have been investigated from the point of view of pure
acceleration. (Anecdotally, there exists a TSP heuristics called “racetrack” [89], which
does not relate to such models, nor to acceleration in general.)

In this chapter, we introduce a version of the Traveling Salesperson Problem called
VectorTSP (or VTSP), in which a vehicle must visit a given set of points in some
Euclidean space and return to the starting point, subject to racetrack-like constraints.
The quality of a solution is the number of vectors (equivalently, of configurations) it
uses. We start by presenting a generalized racetrack physical model, in Section 3.2.1,
and reviewing some of its algorithmic features, including known techniques based on the
graph of configurations. Then, we define the VTSP problem in a quite general setting,
where the space may be discrete or continuous, in an arbitrary number of dimensions
(namely, Zd or Rd). An instance may be parameterized by two additional parameters: the
maximum speed at which a city is considered as visited (visit speed ν), the speed being
otherwise unbounded; and the maximum distance at which a city is considered as visited
(visit distance α). These parameters correspond to natural motivations. For example, if
the aforementioned space mission consists of dropping or collecting passengers in given
“city”, then the vehicle might need to slow down (or stop) at visit time; if it consists of
making quick measurements, then the visit speed is unconstrained and some distance
from the visited city may even be tolerated.

In Section 4.3, we make a number of general observations about VTSP. In particular,
optimizing the racetrack trajectory of an optimal ETSP tour may not result in an optimal
VTSP solution: the visit order is impacted by acceleration. Another key observation is
that even if the speed is unbounded, one can easily compute a loose bound on the maximal
speed to be considered in the search for an optimal solution, with important consequences
on the computational complexity of the problem. In fact, we prove that VTSP is NP-hard
under a natural parameterization (and therefore, in general), and in the other direction, it
polynomially reduces to GroupTSP, however with a significant blow-up in the input size.
On the algorithmic side, we present in Section 4.4 a modular approach to address VTSP
based on an interactive scheme between a high-level algorithm and a trajectory oracle.
The first is responsible for exploring the space of possible visit orders, while making
queries to the second for knowing the cost (or full trajectory) associated with a given
visit order. We present algorithms for both. The high-level algorithm adapts a known
heuristic for ETSP, trying to gradually improve the solution through generating a set of
2-permutations (swaps of two cities) until a local optimum is found. As for the oracle,
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we present an algorithm which adapts the A* framework to multipoint paths in the
configuration space, using an original cost function based on unidimensional projections
of the cities coordinates.

In Section 4.5, we present a few experimental results based on this algorithmic
framework. Beyond demonstrating the practicality of our algorithms, our results motivate
the problem itself, by showing empirical evidence that the optimum trajectory resulting
from an optimal ETSP tour is unlikely to be optimal for VTSP, and so, in most natural
settings. In particular, the probability that our algorithm improves upon such a trajectory
seems to approach 1 as the number of cities increase in a fixed area.

4.2 Model and definitions

In this section, we present a generalized version of the racetrack model, highlighting
some of its algorithmic features. Then, we define VectorTSP in generality, making
observations and presenting preliminary results that are used in the subsequent sections.

4.2.1 Generalized Racetrack model

Let us consider a mobile entity (hereafter, the vehicle), moving in a discrete or continuous
Euclidean space S of some dimension d (for example, S = Z2 or S = R3). The state of the
vehicle at any time is given by a configuration c, which is a couple containing a position
pos(c) and a velocity vel(c), both encoded as elements of S. For example, if S = Z2,
then a configuration c is of the form ((x, y), (dx, dy)). Furthermore, we write speed(c) for
||vel(c)||. Given a configuration c, the set of configurations being reachable from c in a
single time step, i.e., the successors of c, is written as succ(c) and is model-dependent.

The original model presented by Gardner [45] corresponds to the case that S = Z2,
and given two configurations ci and cj , written as above, cj ∈ succ(ci) if and only if
xj = xi + dxi + χ and dxj = xj − xi, and yj = yi + dyi + ψ and dyj = yj − yi, where
χ, ψ ∈ {−1, 0, 1}. In other words, the velocity of a configuration corresponds to the
difference between its position and the position of the previous configuration, and this
difference may only vary by one unit in each dimension in one time step. In the following,
we refer to this model as the default setting, or sometimes 9-successor model, since
we sometimes consider the case that at most one dimension can change in one time
step, which will be referred to as the 5-successor model. These models can be naturally
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extended to continuous space, by considering that the set of successors is infinite, typically
amounting to choosing a point in a d-sphere, as illustrated on Figure 4.1.

Figure 4.1: Discrete and continuous space racetrack models (left and right, respectively).

Definition 22 (Trajectory). A trajectory (of length k) is a sequence of configurations
c1, c2, ..., ck. It is called valid if ci+1 ∈ succ(ci) for all i < k.

We define the inverse c−1 of a configuration c as the configuration that represents the
same movement in the opposite direction. For example, if S = Z2 and c = ((x, y), (dx, dy)),
then c−1 = ((x + dx, y + dy), (−dx,−dy)). A successor function is symmetrical if cj ∈
succ(ci) if and only if c−1

i ∈ succ(c−1
j ). Intuitively, this implies that if (c1, c2, . . . , ck)

is a valid trajectory, then (c−1
k , . . . , c−1

2 , c−1
1 ) is also a valid trajectory: the trajectory

is reversible. All the successor functions considered in this chapter are symmetrical;
however, it could make sense in general to consider non-symmetrical successor functions,
for example if the vehicle can decelerate faster than it can accelerate.

4.2.1.1 Configuration space

The concept of configuration space is a powerful and natural tool in the study of racetrack-
like problems. This concept was rediscovered many times and is now considered as folklore.
The idea is to consider the graph of configurations induced by the successor function as
follows.

Definition 23 (Configuration graph). Let C be the set of all possible configurations,
then the configuration graph is the directed graph G(C) = (V,E) where V = C and
E = {(ci, cj) ⊆ C2 : cj ∈ succ(ci)}.
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The configuration graph G(C) is particularly useful when the number of successors of
a configuration is bounded by a constant. In this case, G(C) is sparse and one can search
for optimal trajectories within it, using standard algorithms like breadth-first search
(BFS). For example, in a L× L subspace of Z2, there are at most L2 possible positions
and at most O(L) possible velocities (the speed cannot exceed

√
L in each dimension

without getting out of bounds [42]), thus G(C) has Θ(L3)-many vertices and edges. More
generally:

Observation 2 (Folklore). A breadth-first search (BFS) in a L× L subspace of Z2 can
find an optimum trajectory between two given configurations in time O(L3). A similar
observation leads to time O(L9/2) in Z3, and more generally O(L3d/2) in dimension d.

Note that the presence of obstacles (if any) results only in the graph having possibly
less vertices and edges. (We do not consider obstacles in this work.)

4.2.2 Definition of VectorTSP

Informally, VectorTSP is defined as the problem of finding a minimum length trajectory
(optimization version), or deciding if a trajectory of at most a given length exists (decision
version), which visits a given set of unordered cities (points) in some Euclidean space,
subject to racetrack-like physical constraints. As explained in the introduction, we consider
additional parameters to the problem, which are (1) Visit speed ν: maximum speed at
which a city is visited; (2) Visit distance α: maximum distance at which a city is visited;
and (3) Vector completion β: (true/false) whether the visit distance is evaluated only at
the coordinates of the configurations, or also in-between configurations. See Figure 4.2
for a small example in which a city is considered visited only for some specific values of
these parameters. In general, we say a trajectory visits a city, but in particular, one can
pinpoint a specific vector (or configuration) fo such a trajectory which visits the city. The
first two parameters’ context are already discussed in the introduction. The visit distance
is actually similar in spirit to the TSP with neighborhood [7]. The third parameter is more
technical, although it could be motivated by having a specific action (sensing, taking
pictures, etc.) being realized only at periodic times, for minimizing energy consumption.

We are now ready to define VectorTSP. For simplicity, the definitions rely on
discrete space (S = Zd), to avoid technical issues with the representation of real numbers,
in particular their impact on the input size. Similarly, we require the parameters ν and
α to be integers and β to be a boolean. However, the problem might be adaptable to
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Figure 4.2: A trajectory visiting some city p = (x, y), if ν ≥ 7, α ≥ 2, and β = false. If
either ν < 7, α < 2, or β = true, the city is not visited. More precisely, the red vector
corresponding to configuration (x+ 3, y + 2, 7, 0) visits the city.

continuous space without much complications, possibly with the use of a real RAM
abstraction [79].

Definition 24. VectorTSP (decision version)

Input: A set of n cities (points) P ⊆ Zd, a distinguished city p0 ∈ P , two integer
parameters ν and α, a boolean parameter β, a polynomial-time-computable successor
function succ, a positive integer k, and a trivial bound ∆ encoded in unary.

Question: Does there exist a valid trajectory T = (c1, . . . , ck) of length k that visits
all the cities in P , with pos(c1) = pos(ck) = p0 and speed(c1) = speed(ck) = 0.

The role of parameter ∆ is to guarantee that the length of the optimal trajectory is
polynomially bounded in the size of the input. Without it, an instance of even two cities
could be artificially hard due to the sole distance between them [55, 42]. As we will see,
one can always find a (possibly sub-optimal) solution trajectory of poly(L) configurations,
where L is the maximum distance between two points in any dimension, and similarly, a
solution trajectory must have length at least

√
L. Therefore, writing ∆ = unary(b

√
Lc)

in the input is sufficient. The optimization version is defined analogously.

Definition 25. VectorTSP (optimization version)

Input: A set of n cities (points) P ⊆ Zd, a distinguished city p0 ∈ P , two integer
parameters ν and α, a boolean parameter β, a polynomial-time-computable successor
function succ, and a trivial bound ∆ encoded in unary.
Output: Find a valid trajectory T = (c1, . . . , ck) of minimum length visiting all the
cities in P , with pos(c1) = pos(ck) = p0 and speed(c1) = speed(ck) = 0.

Tour vs. trajectory (terminology): In the Euclidean TSP, the term tour denotes both the
visit order and the actual path realizing the visit, because both coincide. In VectorTSP,
a given visit order could be realized by many possible trajectories. To avoid ambiguities,
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we always refer to a visit order (i.e., a permutation π of P ) as a tour, while reserving
the term trajectory for the actual sequence of racetrack configurations. Furthermore, we
denote by racetrack(π) an optimal (i.e., min-length) racetrack trajectory realizing a
given tour π (irrespective of the quality of π).

Default setting: In the rest of the chapter, we call default setting the 9-successor model
in two dimensional discrete space (S = Z2), with unrestricted visit speed (ν = ∞),
zero visit distance (α = 0), and non-restricted vector completion (β = false). Most of
the results are however transposable to other values of the parameters and to higher
dimensions.

4.3 Preliminary results

In this section we make general observations about VectorTSP, some of which are used
in the subsequent sections. In particular, we highlight those properties which are distinct
from Euclidean TSP.

Fact 8. The starting city has an impact on the cost of an optimal solution.

1 2
3

45
6

1
2

34
5

6
7

Figure 4.3: Minimal example showing the starting point has an impact on the solution.
On the left, the starting point is the leftmost city, while on the right, the starting point
is the middle city.

Example. This can be seen on a small example (see Figure 4.3), with P = {(0, 0), (1, 0), (2, 0)}
in the default setting. Starting at (0, 0), a solution exists with 7 configurations (i.e., 6
vectors), namely T = (((0, 0),(0, 0)), ((1, 0),(1, 0)), ((2, 0),(1, 0)), ((2, 0),(0, 0)), ((1, 0),(−1, 0)),
((0, 0),(−1, 0)), ((0, 0),(0, 0))). In contrast, if the tour starts at (1, 0), the vehicle will have
to decelerate three times instead of two, which gives a trajectory of 8 configurations (7
vectors).

This fact is the reason why an input instance of VectorTSP is also parameterized
by a starting city p0 ∈ P . More generally, the cost of traveling between two given cities is
impacted by the previous and subsequent positions of the vehicle and cannot be captured
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p0 p0

Figure 4.4: Small example showing racetrack(π) (on the left, using 22 vectors) may
not be an optimal solution (on the right, using 20 vectors).

by a fixed cost, which is why VTSP does not straightforwardly reduce to classical TSP.
The following fact strengthens the distinctive features of VTSP, showing that it does
not straightforwardly reduce to ETSP either.

Lemma 10. Let I be a VTSP instance on a set of cities P , in the default setting. Let π be
an optimal tour for an ETSP instance on the same set of cities P , then racetrack(π)

may not be an optimal solution to I.

Proof. Consider the example given in Figure 4.4, where the trajectories alternate between
dashed red and plain blue vectors. On the left picture, the trajectory corresponds to an
optimal realization of the optimal ETSP tour π, starting and ending at p0 (whence the
final deceleration loop). It it not hard to see that this trajectory is indeed optimal for π.
In contrast, an optimal VTSP trajectory visiting the same cities (right picture) would
use two configurations less, based on a non-optimal tour π′ for ETSP. This lemma is also
true if maximum visiting speed ν = 0 (see Figure 4.5).

Hence, solving VTSP does not reduce to optimizing the trajectory of an optimal ETSP
solution: the visit order is impacted. Furthermore, we observe the following two properties
on Figure 4.4 and Figure 4.5 respectively, distinguishing VectorTSP even further from
EuclideanTSP.

Fact 9. An optimal VTSP solution may self-cross.

Fact 10. The clockwise or counter-clockwise visit order may not be an optimal VTSP
solution for cities placed on the vertices of a convex hull.
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p0

p0

Figure 4.5: Small example showing racetrack(π) (on the left, using 28 vectors) may
not be an optimal solution (on the right, using 26 vectors), even if maximum visiting
speed ν = 0.

4.3.1 The configuration space can be bounded

The spirit of the racetrack model is to focus on acceleration only, without bounding
the speed. Nonetheless, we show here that a VectorTSP trajectory in general (and
an optimal one in particular) can always be found within a certain subgraph of the
configuration graph, whose size is polynomially bounded in the size of the input. These
results are formulated in the default setting for any discrete d-dimensional space.

Lemma 11 (Bounds on the solution length). Let P be a set of cities and L be the
largest distance in any dimension (over all d dimensions) between two cities of P . Then
a solution trajectory must contain at least

√
L configurations. Furthermore, there always

exists a solution trajectory of O(Ld) configurations.

Proof. The lower bound follows from the fact that it takes at least
√
L configurations to

travel a distance of L (starting at speed 0), the latter being a lower bound on the total
distance to be traveled. The upper bound can be obtained by exploring all the points
of the d-dimensional rectangular hull containing the cities in P at unit speed, which
amounts to O(Ld) configurations.

Lemma 12 (Bounds on the configuration graph). An (optimal) trajectory for VTSP
can be found in a subgraph of the configuration graph with polynomially many vertices
and edges (in the size of the input), namely O(L(d2)).
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Proof. First observe that if there exists a trajectory of O(Ld) configurations, then this
bound also applies to an optimal trajectory. Now, we know that a trajectory corresponds
to a path in G(C), thus an optimal trajectory can be found within the subgraph of G(C)
induced by the vertices at distance at most O(Ld) from the starting point, which consists
of O(L(d2)) vertices in total.

4.3.2 A glimpse at computational complexity

Here, we present polynomial time transformations from VectorTSP to other NP-hard
problems and vice versa. Even after significant time spent trying to obtain a natural
reduction from a closely related NP-hard problem, e.g. EuclideanTSP or DubinsTSP,
no such a result was found. At some point we tried to adapt Le Ny et al.’s proof of
DubinsTSP’s NP-hardness (see [65]), where the authors use Papadimitrou’s proof of
EuclideanTSP’s NP-hardness as somewhat of a black box. However, it turns out that a
key property of Le Ny et al.’s proof is that an optimal EuclideanTSP tour is of cost (or
distance) at most the cost of an optimal tour of DubinsTSP, which unfortunately is not
the case for VectorTSP. Eventually, we adapted Papadimitrou’s proof directly, in which
we establish a reduction from ExactCover, which is less natural, as well as technical
and lengthy. Our main modifications of Papadimitriou’s work are the careful repositioning
and distancing of cities so as to force the VectorTSP trajectory to use an exact amount
of vectors between some pairs of cities, and to avoid the VectorTSP trajectory being
able to visit other cities than the predetermined visit order using the same amount of
vectors. Through this, we establish NP-hardness of a particular parameterization of
VectorTSP (and thus, of the general problem) where the visit speed ν is zero.

We also present a general reduction from VectorTSP to GroupTSP. This reduction
relies crucially on Lemma 12 above.

4.3.2.1 NP-hardness of VectorTSP

The proof goes through a number of intermediate steps before ending in the main theorem
stating VectorTSP is NP-hard, being Theorem 10.

Let us first recall the definition of ExactCover. Let U be a set of m elements (the
universe), the problem ExactCover takes as input a set F = {Fi} of n subsets of
U , and asks if there exists F ′ ⊆ F such that all sets in F ′ are disjoint and F ′ covers
all the elements of U . For example, if U = {1, 2, 3} and F = {{1, 2}, {3}, {2, 3}}, then
F ′ = {{1, 2}, {3}} is a valid solution, but {{1, 2}, {2, 3}} is not.
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Given an instance I of ExactCover, the proof shows how to construct an instance I’
of VTSP such that I admits a solution if and only if there is a valid trajectory visiting
all the cities of I’ using at most a certain number of configurations. We first give the
high-level ideas of the proof, which are in common with that of Papadimitriou’s proof for
ETSP. Then, we explain the details of the adaptation to VTSP (with visit speed ν = 0).

The instance I ′ is composed of several types of gadgets, representing respectively the
subsets Fi ∈ F and the elements of U (with some repetition). For each Fi, a subset
gadget Ci is created which consists of a number of cities placed horizontally (wavy
horizontal segments in Figure 4.6). For now, it is sufficient to know that each gadget
can be traversed optimally in exactly two possible ways (without considering direction),
which ultimately corresponds to including (traversal 1) or excluding (traversal 2) subset
Fi in the ExactCover solution. The Ci’s are located one below the other, starting with
C1 at the top. Between every two consecutive gadgets Ci and Ci+1, copies of element
gadgets are placed for each element in U , thus the element gadgets Hij are indexed by
both 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m (see Figure 4.6). The element gadgets are also made
of a number of cities, whose particular organization is described later on. Finally, every
subset gadget Ci above or below an element gadget representing element j is slightly
modified in a way that represents whether Fi contains element j or not.

Intuitively, a tour visiting all the cities must choose between inclusion or exclusion of
each Fi (i.e., traversal 1 or 2 for each Ci). An element j ∈ U is considered as covered
by a subset Fi if Ci does not visit any of the adjacent element gadgets representing j.
Each element gadget Hi,j must be visited either from above (from Ci) or from below
(from Ci+1). Now, the number of subset gadget is n, the number of element gadgets
for each element is n− 1 (one between every two consecutive subset gadgets), and the
construction guarantees that at most one element gadget for each element j ∈ U is visited
from a subset gadget Ci (or the tour is non-optimal). These three properties collectively
imply that for each element j ∈ U , there is exactly one subset gadget Ci that does not
visit any of the element gadgets representing j.

In summary, the tour proceeds from the top left corner through the Cis (in order),
visiting all the Hi,j through local detours. So long as a Ci visits a Hi,j (thus, from
above), this means that element j has not yet been selected in the ExactCover solution.
Element j is covered by subset Fi in the ExactCover solution if Ci is the first subset
gadget that does not visit the corresponding Hi,j (which must eventually happen), after
which all the Hi,k<j will necessarily be visited (i.e. not covered again) from below by the
corresponding Ck+1. The details of the construction specify the internal organization of
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C2

C3
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Cn−1

Cn

H11 H12 H1m
...

H21 H22 H2m
...

H31 H32 H3m
...

H(n−1)1 H(n−1)2 H(n−1)m...

Figure 4.6: Papadimitriou’s high-level construction

each gadget (positions of the cities composing it), and the spacing between the cities,
in such a way that a tour is optimal if and only if it obeys this global traversal without
shortcutting in non-authorized ways. In particular, the local configuration of Ci above or
below element gadgets makes it impossible for Ci to avoid the visit of Hi,j unless j ∈ Fi

(or unless j has already been covered by another subset, i.e. Hi−1,j is not yet visited).

Setting the visiting speed ν = 0 is crucial for controlling (almost canceling) the impact
of acceleration, so as to force the optimal trajectory to follow the same pattern as in
Papadimitriou’s proof. Admittedly, the spirit of the VTSP problem is undermined by
such a proof, which remains unsatisfatory and motivates Open question 7 in Chapter 6.
The details of our adaptation specify the corresponding intra-gadget spacing between
cities and the spacing between the gadgets. Most of the consecutive cities in the tour
are actually separated by only one or two space units, which cancels out the benefits of
accelerating. The few exceptions are between subset gadgets and the adjacent element
gadgets, where the speed can get arbitrarily large depending on the distance chosen. We
choose a distance close to the original distance of 20 units, resulting in a maximum speed
of 5 space units. The proportions in the spacing imply that this has no impact on the
visit order w.r.t. Papadimitriou’s tour.
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4.3.2.2 Technical aspects

This section describes how to reduce an ExactCover instance to a VTSP instance
with visit speed ν = 0. For simplicity, it is first formulated in the 5-successor model, i.e.,
the speed can change only in one dimension at a time (Theorem 9). This constraint is
subsequently relaxed to the default settings, including the 9-successor racetrack model,
through a geometrical trick, resulting in Theorem 10.

The following definitions are from Papadimitriou [77]. A subset P ′ of the set of
cities is an a-component if for all p ∈ P ′ we have min(cost(p, p′) : p′ 6∈ P ′) ≥ a and
max(cost(p, p′) : p′ ∈ P ′) < a, and P ′ is maximal w.r.t. these properties. A k-trajectory
for a set of cities is a set of k, not closed trajectories visiting all cities. A valid trajectory for
a VTSP instance is thus a closed (or cyclic) 1-trajectory. A subset of cities is a-compact
if, for all positive integers k, an optimal k-trajectory has cost less than the cost of an
optimal (k + 1)-trajectory plus a. Note that a-components are trivially a-compact.

Lemma 13 (Papadimitriou [77]). Suppose we have N a-components P1, ..., PN ∈ P ,
such that the cost to connect any two components through a trajectory is at least 2a, and
P0, the remaining part of P , is a-compact. Suppose that any optimal 1-trajectory of this
instance does not contain any vectors between any two a-components. Let K1, ...,KN

be the costs of the optimal 1-trajectories of P1, ..., PN and K0 the cost of the optimal
(N + 1)-trajectory of P0. If there is a 1-trajectory T of P consisting of the union of an
optimal (N+1)-trajectory of P0, N optimal 1-trajectories of P1, ..., PN and 2N trajectories
of cost a connecting a-components to P0, then T is optimal. If no such 1-trajectory exists,
the optimal 1-trajectory of P has a cost greater than K = K0 +K1 + ...+KN + 2Na.

Consider the 1-chain structure presented in Figure 4.7. This structure is composed of
cities positioned on a line, at distance one from one another. 1-chains can bend at 90
degrees angles, and only one optimal 1-trajectory exists, with a cost of 2(n− 1) vectors
for a 1-chain of length n.

Next, consider the structure in Figure 4.8, referred to as a 2-chain. The distance
between the leftmost (or rightmost) city and its nearby cities is

√
2. The closest distance

between other cities is 2. The important thing to notice here is there exists only two
distinct optimal 1-trajectories, denoted as mode 1 and mode 2, both of a cost of 3n+ 11
for a 2-chain of length n.

Observation 3. Among all 1-trajectories for H (see Figure 4.9) having as endpoints
two of the cities A,A′, B,B′, C, C ′, D,D′, there are 4 optimal 1-trajectories, namely those
with endpoints (A,A′), (B,B′), (C,C ′), (D,D′), which all have a cost of 77 vectors.
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Figure 4.7: 1-chain structure which turns 90◦ twice. The distance between consecutive
cities is 1. The optimal visit order is shown in (b). We abbreaviate a 1-chain schematically
as shown in (c).

...
2

(a)
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...

(c)

Ci

(d)

Figure 4.8: 2-chain structure (a). A 2-chain has precisely two optimal 1-trajectories, (b)
and (c). We abbreviate a 2-chain schematically as shown in (d).

We are now ready to prove Theorem 9 using the above definitions and gadgets.

Theorem 9. ExactCover reduces in polynomial time to VectorTSP with default
settings, with maximum visiting speed ν = 0 and the 5-successor model.

Proof. The aforementioned structures are combined to construct a VTSP instance from
a given Exact Cover instance. Construct the structure shown in Figure 4.10, where n
is the number of subsets given in the corresponding Exact Cover instance, and m the
number of elements in the universe.

The 2-chains represent the subsets in Exact Cover, and H structures indirectly
represent the elements in the universe. Finally, for every 2-chain Ci, replace the cities
positioned directly above or below an H, by one of two structures, depending on the
elements in Ci’s corresponding subset. If the subset contains the element corresponding
to the above (or below) H, then replace by structure A (see Figure 4.11), otherwise
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A A’B B’

C C’D D’

2

4

12

(a)

A A’B B’

C C’D D’

(b)

Hij

(c)

Figure 4.9: Structure H. The distance between A and B is 2, between A and C 14, and
between A and A′ 16. An optimal 1-trajectory in H is shown in (b). We abbreviate an H
structure schematically as shown in (c).

replace by structure B (see Figure 4.12). The idea is to make it costly to visit an H

above or below from a structure A traversed in mode 1.

We observe that now the optimal cost to connect two k-paths between some 2-chain
Ci and some Hij (or H(i−1)j) is 10 vectors, whereas the optimal cost to connect any two
k-paths between two Hij , is at least 40 vectors. Also, this optimal cost of 10 vectors
between some 2-chain Ci and some Hij , can only be attained by a trajectory on a straight
vertical line, thanks to the precise distance of 25. Deviating even the slightest bit from
the vertical line would result in a non-optimal cost. The construction of the VTSP
instance is now complete. It should be clear that an optimal 1-trajectory must have Q
and R as endpoints. This construction meets the hypotheses of Lemma 13 with a = 10,
N = m(n− 1), K1 = ... = KN = 77 and K0 = 1257mn+ 4m+ 557n+ 24p+ 1464, where
p is the sum of cardinalities of all given subsets of the Exact Cover instance.
We examine when this structure has an optimal 1-trajectory T , as described in the
lemma. T traverses all 1-chains in the obvious way, and all 2-chains in one of the two
traversals. Since its portion on P0 has to be optimal, T must visit a component H from
any configuration B encountered, and it must return (by Observation 3) to the symmetric
city of B, since its portion on H must be optimal, too. If T encounters a configuration A
and the corresponding chain is traversed in traversal 2, T will also visit a component H.
However, if the corresponding chain is traversed in traversal 1, T will traverse A without
visiting any configuration H, since all trajectories connecting P0 and H components must
be of cost a. Moreover this must happen exactly once for each column of the structure,
since there are n− 1 copies of H and n structures A or B in each column. Hence, if we
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Q

R

... ... ...

C1

C2

C3

Cn

...

804

402

40229

27
H11 H12 H1m

...

H21 H22 H2m
...

H31 H32 H3m
...

H(n−1)1 H(n−1)2 H(n−1)m...

Figure 4.10: Construction of the VTSP instance.

consider the fact that Cj is traversed in traversal 1 (resp. traversal 2) to mean that the
corresponding subset is (resp. is not) contained in the Exact Cover solution, we see
that the existence of a 1-trajectory T , as described in Lemma 13, implies the Exact
Cover instance admits a solution. Conversely, if the Exact Cover instance admits
a solution, we assign, as above, traversals to the chains according to whether or not
the corresponding subset is included in the solution. It is then possible to exhibit a
1-trajectory T meeting the requirements of Lemma 13. Hence the structure at hand has
a 1-trajectory of cost no more than K = 1354mn − 93m + 557n + 24p + 1464 if and
only if the given instance of Exact Cover is solvable. Finally, to obtain a valid VTSP
trajectory, connect both endpoints Q and R in Figure 4.10 with a 1-chain, and increase
K accordingly.

Theorem 10. ExactCover reduces in polynomial time to VectorTSP with default
settings, except for maximum visiting speed ν = 0.

Proof. The proof for the 9-successor model is the same as for the 5-successor model,
except that the whole created VTSP instance I ′ is tilted by 45◦ (the direction does not
matter), and distances are scaled by

√
2. The value of K is unchanged. This modification

transposes the limitations of the 5-successor model to the 9-successor model. Indeed,
due to the careful choice of distances involved, if one wishes to remain optimal while
visiting the cities, one needs to only consider the outermost accelerations (diagonals) of
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... ...
4

(a)

... ...

(b)

...

... ...

...

(c)

Figure 4.11: Structure A (see (a)). Visiting structure A in mode 1 makes it costly to visit
an H structure above or below (see (b)). Visiting structure A in mode 2 however, makes
it less costly to visit an H structure above (see (c)) or below.

the 9-successor version, as well as the null speed before turning (since different diagonals
in the 9-successor model cannot directly succeed one another).

Note that a similar geometrical trick might be used to adapt the proof to further
settings, such as continuous space with the continuous d-sphere successor function, such
as depicted in Figure 4.1 (for R2). Also, intuitively, one may simply remove the null
vectors, so as to consider a maximum visiting speed ν = 1.

4.3.2.3 Transformation from VectorTSP to GroupTSP

Here, we show that VectorTSP admits a natural polynomial-time reduction to the
so-called GroupTSP (also known as SetTSP or GeneralizedTSP), where the input
is a set of cities partitioned into groups, and the goal is to visit at least one city in each
group.

Lemma 14. VectorTSP admits a natural polynomial-time reduction to GroupTSP.

Proof. Let I be the original VTSP instance and n the number of cities in I. Each city
in I can be visited in a number of different ways, each corresponding to a different
configuration in C (the set of all possible configurations). The strategy is to create a city
in I’ for each configuration that visits at least one city in I, and group them according
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... ...12

(a)

...

...

...

...
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...

...

...

...

(c)

Figure 4.12: Structure B (see (a)). Visiting structure B in any mode makes it advantageous
to visit an H structure above or below (see (b) and c).

to which city of I they visit (the other configurations are discarded). Thus, visiting
a city in each group of I’ corresponds to visiting all cities in I. Depending on the
parameters of the model (visit speed, visit distance, vector completion), it may happen
that a same configuration visits several cities in I, which implies that the groups may
overlap; however, Noon and Bean show in [73] that a GTSP instance with overlapping
groups can be transformed into one with mutually exclusive groups at the cost of creating
k copies of a city when it appears originally in k different groups. Thus we proceed
without worrying about overlaps. Let X be the set of cities in I, and C(x) ⊆ C be the
configurations which visit city x ∈ X. Instance I’ is defined by creating a city for each
configuration in ∪x∈XC(x) and a group for each C(x). An arc is added between all couples
(c1, c2) of cities in I’ such that c1 and c2 belong to different groups; the weight of this
arc is the distance between c1 and c2 in the configuration graph. Thus, a trajectory using
k configurations to visit all the cities in I corresponds to a tour of cost k visiting at
least one city in each group in I’. The fact that the reduction is polynomial (both in
time and space) results from the facts that (1) there is a polynomial number of relevant
configurations (Lemma 12), each one being copied at most n times; and (2) the distance
between two configurations in the configuration graph can be computed in polynomial
time (Observation 2).
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Note that this reduction is general in terms of the parameters: any combination ν, α,
and β only impacts the set of vectors that visit each city. Lemma 14 implies the following
corollary.

Corollary 2 (Through [73]). VectorTSP admits a natural polynomial-time reduction
to AsymmetricTSP.

Indeed, Noon and Bean [73] present a polynomial time reduction from GTSP to
ATSP. This is done by adding arcs of cost zero inside every group, creating a cycle
visiting all nodes in the group. Suppose w.l.o.g. the created cycle x1, x2, ..., xk, x1, then for
all arcs (xi, yj), with yj some node in another group, replace by arcs (xi−1, yj). Outgoing
arcs of node x1 get replaced on node xk. This effectively shifts all outgoing arcs in each
group, such that an optimal tour is forced to visit all nodes in a group before visiting
another. In turn, we have the following corollary.

Corollary 3 (Through [58]). VectorTSP admits a natural polynomial-time reduction
to SymmetricTSP.

Kanellakis and Papadimitriou proved any asymmetric TSP instance such as we can
obtain in Corollary 2, can be transformed into a symmetric TSP instance. The main
idea is to simulate an ATSP as follows. Add three nodes i1, i2 and i3 for every node i in
the ATSP. Add (undirected) edges (i1, i2) and (i2, i3) of cost 0 to i2. Add (undirected)
edges (i3, j1) if (i, j) ∈ E of the ATSP, with the same cost. This transformation triples
the amount of nodes of the instance. This was later improved to only double the amount
of nodes, first by Jonker and Volgenant [57] and later by Kumar and Li [63].

4.4 Algorithms

In this section, we present an algorithmic framework for finding acceptable solutions to
VTSP in practical polynomial time. It is based on an interaction between a high-level
part that decides the visit order (tour), and a trajectory oracle that evaluates its cost.

4.4.1 Exploring visit orders (FlipVTSP)

A classical heuristic for ETSP is the so-called 2-opt algorithm [33], also known as Flip.
It is a local search algorithm which starts with an arbitrary tour π. In each step, all the
possible 2-permutations (i.e., swaps of two cities, or simply flips) of the current tour π are
generated. If such a flip π′ improves upon π, it is selected and the algorithm recurses on
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π′. Eventually, the algorithm finds a local optimum whose quality is commonly admitted
to be of reasonable quality, albeit without guarantees (the name 2-opt does not reflects
an approximation ratio, it stands for 2-permutation local optimality). Adapting this
algorithm seems like a natural option for the high-level part of our framework.

The main differences between our algorithm, called FlipVTSP, and its ETSP analogue
are that (1) the cost of a tour is not evaluated in terms of distance, but in terms of the
required number of racetrack configurations (through calls to the oracle); (2) the tours
involving self-crosses are not discarded (see Fact 9); and (3) the number of recursions is
polynomially bounded because new tours are considered only in case of improvement,
and the length of a trajectory is itself polynomially bounded (Lemma 11). The resulting
tour is a local optimum with respect to 2-permutations, also known as a 2-optimal tour.
For completeness, the algorithm is given by Algorithm 5.

Algorithm 5 : 2-opt.
Input: a set P of cities.
Output: a 2-optimal tour w.r.t. the racetrack model.

1: πopt ← init(P )
2: Copt ← oracle(πopt) . Without limited view (optimal)
3: improved← true
4: while improved do
5: improved← false
6: for each city i (except starting city) do
7: for each other city j (except starting city) do
8: πtest ← flip(πopt, i, j)
9: Ctest ← oracle(πtest) . With limited view (faster)

10: if Ctest < Copt then
11: πopt ← πtest

12: Copt ← Ctest

13: improved← true
14: break
15: if improved then
16: break
17: return πopt

Theorem 11. One can find a 2-optimal tour for VTSP in time O(n2Ldτ(n,L)), where n
is the number of cities, L the largest distance between cities in a dimension, d the number
of dimensions, and τ(n,L) the running time complexity of the oracle for computing the
cost of an optimal racetrack trajectory visiting the n cities.
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Proof. As explained in (the proof of) Lemma 11, if the visit order is not imposed, then
one can easily find a trajectory of length O(Ld) that visits all the cities, through walking
over the entire area (rectangle hull containing the cities). Let π be the order in which
the cities are visited by such a walk, shifted circularly so as to set the starting city to
the desired one. This tour is the one returned by the init() function. Then Copt is
accordingly initialized with cost O(Ld) in line 2. The factor Ld in the complexity formula
then follows from the fact that the main loop iterates only if a shorter trajectory is found,
which can occur at most as many times as the length of the initial trajectory. Then, in
each iteration, up to O(n2) flips are generated (at constant time), with a nested call to
the oracle. All the other operations take constant time under the standard arithmetic
abstractions.

4.4.2 Optimal racetrack given a fixed visit order (Multipoint A*)

Here, we discuss the problem of computing an optimal racetrack trajectory that visits a set
of points in a given order. A previous work of interest is Bekos et al. [12], which addresses
the problem of computing an optimal racetrack trajectory in a so-called “Indianapolis”
track, where the track has a certain width and right-angle turns. This particular setting
limits the maximum speed at the turns, which makes it possible to decompose the
computation in a dynamic programming fashion. In contrast, the space is open in VTSP,
with no simple way to bound the maximum speed. Therefore, we propose a different
strategy based on searching for an optimal path in the configuration graph using A*.

The problem: Given an ordered sequence of points π = (p1, p2, . . . , pn), compute (the cost
of) an optimal trajectory realizing π, i.e., visiting the points in order, starting at p1 and
ending at pn at zero speeds. (In the particular case of VTSP, p1 and pn coincide.)

Finding the optimal trajectory between two configurations already suggests the use of
path-finding algorithms like BFS, Dijkstra, or A* (see e.g. [83] and [12]). The difficulty
in our case is to force the path to visit all the intermediary points in order, despite the
fact that the space is open. Our contribution here is to design a cost function that guides
A* through these constraints. In general, A* explores the search space by generating a
set of successors of the current “position” (in our case, configuration) and estimate the
cost of each successor using a problem-specific function. The successors are then inserted
into a data structure (in general, a priority queue) which makes it easy to continue
exploration from the position which is globally the best estimated. The great feature of
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A* is that it is guaranteed to find an optimal path, provided that the cost function does
not over-estimate the actual cost, and so, is as fast as the estimation is precise.

4.4.2.1 Cost estimation

For simplicity, we first present how the estimation works relative to the entire tour. Then
we explain how to generalize it for estimating an arbitrary intermediate configuration in
the trajectory (i.e. one that has already visited a certain number of cities and is located at
a given position with given velocity). The key insight is that the optimal trajectory, what-
ever it be, must obey some pattern in each dimension. Consider, for example, the tour π =
{(5, 10), (10, 12), (14, 7), (8, 1),
(3, 5), (5, 10)} shown on Figure 4.13. In the x-dimension, the vehicle must move at
least from 1 to 3, then stop at a turning point, change direction, and travel towards 5,
then stop and change direction again, and travel back to 1. Thus, any trajectory realizing
π can be divided into at least three subtrajectories in the x-dimension, whose cost is
at least the cost of traveling along these segments, starting and ending at speed 0 at
the turning points. Thus, in the above example, the vehicle must travel at least along
distances 9, 11, and 2 (with zero speed at the endpoints), which gives a cost of at least 16
(i.e., 6, 7, and 3, respectively). The same analysis can be performed in each dimension;
then, the actual cost must be at least the maximum value among these costs, which is
therefore the value we consider as estimation.

5

4

3

2

1

Figure 4.13: Projection in each dimension.

In general, the configurations whose estimation is required by A* are more general
than the above case. In particular, it has an arbitrary position and velocity, and the
vehicle may have already visited a number of cities. Therefore, the number of visited
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cities is stored along a configuration, and the dimensional cost is evaluated against the
remaining sub-tour. The only technical difference is that one must carefully take into
account the current position and velocity when determining where the next turning point
is in the dimensional projection, which however poses no significant difficulty. Concretely,
a case-based study of the initial configuration with respect to the first turning point,
allows one to self-reduce the estimation to the particular case that the initial speed is
zero (possibly at a different starting position). Consequently, the total cost amounts to a
sum of costs between consecutive pairs of turning points with zero speed at these points.

Lemma 15. The cost estimation of a subtour π′ = c, pi, ..., pn, where c is the current
configuration and pi, . . . , pn is a suffix of π can be computed in O(n) time.

Proof. As explained, the subtour is first reduced to a subtour π′′ = pi−1, pi, . . . , pn. The
turning points in π′′ are easily identified through a pass over π′′. Their number is at
most n because they are a subset of the points in π′′. Finally, the cost between each pair
of selected turning points can be computed in constant time [12] (if one neglects the
encoding size of an integer representing a coordinate).

The reader is referred to [12] for more on computing the cost between two configura-
tions in one dimension. Let us now discuss the running time complexity of the resulting
algorithm. In general, A* can have an exponential running time in the solution depth
(thus, length of the trajectory). It is however possible, in our case, to make it polynomial.

Theorem 12. The A* oracle runs in polynomial time, more precisely in time Õ(L(d2)n2).

Proof. A “configuration” of the A* algorithm (let us call it a state, to avoid ambiguity)
is made of a racetrack configuration c together with a number k of visited cities. There
are at most O(L(d2)) configurations (Lemma 12) and n cities, thus A* will perform at
most O(L(d2)n) iterations, provided that it does not explore a state twice. Given that
the states are easily orderable, the later condition can be enforced by storing all the
visited states in an ordered collection that is searchable and insertable in logarithmic time
(whence the Õ notation). Finally, each state is estimated in O(n) time (Lemma 15).

The combined use of FlipVTSP and Multipoint A* thus runs in polynomial time
(Theorem 11 and Theorem 12). We follow with the details of computing a cost in 1
dimension, and afterwards we present a way to make the oracle algorithm even faster if
one is willing to trade optimality for performance.
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4.4.2.2 Uni-dimensional cost estimation

We present here how to efficiently compute an exact cost between projections in one
dimension x and x′.

Lemma 16. The exact cost from x to x′, with initial speed dx = 0, can be computed in
constant time.

Proof. Suppose w.l.o.g. x ≤ x′. One basically has some distance d = x′ − x to cross,
starting and stopping at zero speed. Consider only vectors that accelerate in the first
half of the segment of length d, and only vectors that decelerate in the second half, such
as shown in Figure 4.14. If the corresponding trajectories line up perfectly in the middle
of the segment, the combined trajectories is trivially an optimal trajectory w.r.t. the
number of vectors used. Note this would have been the case for Figure 4.14 if distance d
was 12, instead of 13. If this does not line up perfectly however, consider the distance d′

separating the last vectors before attaining the middle of the segment (so in Figure 4.14,
d′ = 1). If it is possible to cross this distance with one vector that isn’t too small w.r.t.
adjacent vectors, then doing so will trivially result in an optimal trajectory. If the vector
is too small however, then one can insert it somewhere else in the trajectory (see the
green vector in Figure4.14). The resulting trajectory is again trivially optimal. If the
distance d′ is too large to cross with only 1 vector, respecting adjacent vectors’ lengths,
then 2 vectors should suffice, and can again be inserted in the trajectory. Indeed, through
a proof by contradiction, at most 2 vectors should be necessary to cross distance d′, or
else one could have added one more accelerating vector to the left trajectory, and one
more decelerating vector to the right trajectory. Return the total cost, without forgetting
the last "self-looping" vector, needed to stop at zero speed (in Figure 4.14, this last
self-looping vector is shown in green as well).

This can be done in time O(
√
n) with a simple while loop, although one can do better

(in constant time), through Algorithm 6.

We found that the computation of this cost with dx = 0, w.r.t. distance d, seems to
correspond with the integer sequence A027434, found on the On-line Encyclopedia of
Integer Sequences [67]. An elegant closed form of this sequence is given as d2

√
de.

Corollary 4. The exact cost going from x to x′, with initial speed dx, can be computed
in constant time.
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x x′

↓

x x′

Figure 4.14: Example on d = x′ − x = 13 on how to compute a partial cost. Vectors are
presented as arcs for visibility.

Algorithm 6 : one-dimensional cost computation

Input: a distance d = x′ − x
Output: an optimal cost for traversing d, starting and stopping at zero speed.

1: if d == 0 then
2: return 0
3: r ← b

√
4d+1−1

2 c
4: d′ ← d− r(r + 1)
5: if d′ == 0 then
6: return 2r + 1
7: if d′ <= r + 1 then
8: return 2r + 2
9: return 2r + 3

Proof. Considering different speeds doesn’t add much difficulty. Indeed, all cases can
be reduced to a case with speed dx = 0 (treated in Lemma 16). If dx < 0, slow down
to zero speed, add the necessary amount of vectors to do so, −dx, to the cost, and
compute the rest of the cost from this new x = x− dx(dx−1)

2 position with speed dx = 0. If
dx > 0 and very large (large enough to bypass x′, even when continuously decelerating),
then also slow down to zero speed. Lastly, if dx > 0, but not so large as to bypass x′

by only decelerating, add −dx to the cost, and compute the rest of the cost with new
x = x− dx(dx+1)

2 position and dx = 0.

4.4.2.3 A faster heuristic using limited views.

Our presented A* algorithm always finds the optimum, but in practice, it only scales up
to medium-sized instances (see Section 4.5). If one is willing to lose some precision, then a
simple trick (also used in the indianapolis case [12]) can be used to scale linearly with the
number of cities. The idea is to compute limited sequential sections of the trajectory and

Jason Schoeters — University of Bordeaux, LaBRI 104



CHAPTER 4. VECTORTSP 4.5. EXPERIMENTS

glue them together subsequently. Concretely, given a tour π = p1, ..., pn, the limited view
heuristic runs A* on a sliding window of fixed length l (typically 5 or 6) over π. For each
offset i of the window, the trajectory is computed from pi to pi+l (pn, if less than l cities
remain). Then, of the computed trajectory, only the subtrajectory Ti from pi to pi+1 is
retained, the offset advances to i+ 1 and A* is run again, using the last configuration of
Ti as initial configuration. Finally, the algorithm returns the concatenation of the Tis.

4.5 Experiments

In this section, we present a few experiments with the goal to (1) validate the algorithmic
framework described in Section 4.4, and (2) motivate the VTSP problem itself, by
quantifying the discrepancy between ETSP and VTSP. The instances were generated by
distributing cities uniformly at random within a given square area. For each instance,
Concorde [6] was used to obtain the reference optimal ETSP tour π. The optimal
trajectory T realizing this tour was computed using Multipoint A* (with complete
view). Then, FlipVTSP explored the possible flips (with limited view) until a local
optimum is found. An example is shown on Figure 4.15 (right), resulting from 2 flips on
an optimal ETSP tour (left). Finding these flips is left as an exercise.

(a) Optimal realization of an optimal ETSP tour
(128 vectors)

(b) Local optima in FlipVTSP (120 vectors)

Figure 4.15: Example of tour improvement.

Such an outcome is not rare. Figures 4.16, 4.17 and 4.18 show some measures when
varying (1) the number of cities in a fixed area; (2) the size of the area for a fixed number
of cities; and (3) both at constant density. The plots show the likelihood of at least one
improving flip happening, as well as the average number of flips, tested on 100 random
instances. For performance, only the flips which did not deteriorate the EuclideanTSP
tour distance by too much were considered (15 %, empirically). Thus, the plots tend
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to under-estimate the impact of VTSP (they already do so, by considering only local
optima, and limited view in the flip phase).

The results suggest that an optimal ETSP tour becomes less likely to be optimal for
VTSP as the number of cities increases (in a fixed area). The size of the area for a fixed
number of cities (here, 10) does not seem to have a significant impact. Somewhat logically,
scaling both parameters simultaneously (at constant density) seems to favor VTSP as
well. Further experiments should be performed for a finer understanding. However, these
results are sufficient to confirm that VTSP is a specific problem.

Figure 4.16: Varying the number of cities within a fixed 100× 100 area.

Figure 4.17: Varying the size of the area, considering 10 cities.
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Figure 4.18: Varying the number of cities and the size of the area, but keeping constant
density of 1 city per 1000 unit2.

4.6 Conclusion

We explored a new version of the Traveling Salesman Problem in which we added mobility
constraints so as to represent a highly mobile entity needing to visit a set of locations.
We call this problem VectorTSP. The constraints are taken from a pencil-and-paper
game named Racetrack, which aptly represents acceleration, speed and inertia forces of
the visiting vehicle through a set of simple and discrete rules. We gave some insights
into this problem, some of which distinguish it from the EuclideanTSP. VectorTSP
is shown NP-hard through a reduction from Exact Set Cover, and reversely, we gave
a natural reduction from VectorTSP to multiple other TSP. In terms of algorithms,
we adapted a simple heuristic known as 2-opt, which uses an oracle. We proposed as
an implementation for this oracle, a multi-point A* algorithm for which we give an
admissible cost estimation function which computes exact uni-dimensional costs. Finally,
experiments seem to imply that VectorTSP becomes more and more distinguished
from EuclideanTSP as the number of cities grows larger, although more experiments
should be performed for a better understanding. We hope that the results from this work
will motivate future investigations on this problem.

Open questions and future work are discussed in Chapter 6.

4.6.1 Transition between chapters

In the next chapter, we remove the visiting of a given set of cities, and instead of
considering one mobile entity, we consider multiple entities which together need to induce
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some desired temporal graph property on the induced temporal communications graph.
The next chapter is thus where the two domains of temporal graph theory from Chapter 3,
and motion planning from this chapter, interact strongly in the form of a mobile ad hoc
network or MANET.
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Chapter 5

Temporal properties induced by
collective mobility

I spend almost as much time figuring out what’s wrong with my
computer as I do actually using it.

— Clifford Stoll
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2 https://github.com/jschoete/mobilitymodels
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CHAPTER 5. TEMPORAL PROPERTIES INDUCED BY COLLECTIVE MOBILITY 5.1. MOTIVATION

In this chapter, we are interested in proposing a software package allowing the
generation of temporal graphs containing (or excluding) certain temporal properties,
induced through the collective mobility of a swarm of mobile agents (also referred to
as a MANET). More precisely, we provide a number of mobility models that control
how the agents move, each model inducing a particular set of properties. This package
relies on JBotSim [23], a Java simulation library for distributed algorithms in dynamic
networks. We first present the motivation surrounding this subject, before presenting our
proposed mobility models. We finish with some examples on how a user may wish to use
this package.

5.1 Motivation

We first define all temporal graph properties, and give some context surrounding each
property. In particular, some distributed algorithms rely heavily on the presence of
certain properties. We’ll then explain how the collective mobility of a MANET induces
an interaction graph (also called communications graph or simply graph when
the context is clear), which, if the mobility is significant, is in fact a temporal graph.
Controlling this mobility to ensure certain temporal properties in turn creates, among
other uses, testing environments for distributed algorithms.

5.1.1 Properties and context

In this subsection, we review in detail some of the main temporal properties (or classes)
identified in temporal graphs (some of these are already presented in Section 2.2.2).
In [21], a dozen temporal properties were identified that have been effectively exploited in
the distributed computing and networking literature. These were extended more recently
in [18], and renamed using mnemonic symbols (see Figure 5.1). These in turn define
several classes of temporal graphs in which these properties are satisfied.

We focus on recurrent temporal properties because distributed algorithms typically
execute over networks of infinite lifetime. Going from the more general properties, and
working our way up to the more precise classes, we have:

• T CR: Every vertex can reach all others starting at any time (although it might
take a while to do so). Arguably the most basic recurrent property, it allows for
previously mentioned problems to be solved at any time in such a temporal graph.
This property is often assumed to be present in mobile ad hoc networks, as it

Jason Schoeters — University of Bordeaux, LaBRI 110



CHAPTER 5. TEMPORAL PROPERTIES INDUCED BY COLLECTIVE MOBILITY 5.1. MOTIVATION

C∩ C∗ CR PR

α-T CB T CB T CR

EP EB ER

KR

T C	 T C J 1∀

K E1∀ J ∀1

finiterecurrent

Figure 5.1: Hierarchy surrounding temporal connectivity (figure from [18]). (Same Figure
as used in Chapter 2.)

captures the basic ability for the nodes to influence each other recurrently. Note
that the footprint of a graph inducing property T CR is connected, and since all
the following properties are included in the class T CR, all of these classes’ graphs
will have connected footprints as well.

• T CB: Every vertex can reach all others in a bounded period of time, infinitely often.
This class corresponds in essence to classical assumptions made in static distributed
computing, in particular when the communication is asynchronous.

• α-T CB: Every vertex can reach all others, by a journey which stops at most α time
steps at each intermediate vertex. This property manifests with high probability in
a wide range of edge-markovian temporal graphs, and it’s a sufficient condition to
stop re-transmission after some time in a parsimonious broadcast.

• KR: All vertices are connected by some time edge to all other vertices, infinitely
often. KR may be used to represent population protocols’ communication schedules.

• ER: Appearing edges reappear infinitely often. This class has strong connections
with classes EB and EP and as a consequence results on these classes are often
related. In [1], Aaron et al. show that the dynamic map visitation problem is
inapproximable in ER, approximable in EB, and tractable in EP . Casteigts et al.
also present several relations of foremost, shortest and fastest broadcasts with these
classes in [20].

• EB: Appearing edges reappear infinitely often, each in a bounded time period.

• EP : Appearing edges reappear infinitely often, in a periodic time period.
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• PR: For all pairs of vertices, there will always be a future snapshot in which they
are connected by a path. In [80], Ramathan et al. show some (un)feasability results
related to T CR, PR, and CR, depending on the knowledge of the temporal graph
the vertices have.

• CR: There will always be a future snapshot which is connected (in the static sense).

• C∗: Every snapshot is connected. This is a sufficient condition for information
dissemination from any vertex to all, in an optimal amount of rounds.

• C∩: For all time windows of some given length T , there exists a persistent connected
subgraph, i.e. the graph is connected through some subgraph of edges which do
not disappear during this time window. This property creates some stability, which
allows for the speeding up of many distributed algorithms, some by a factor of up
to T , as shown by Kuhn et al. in [62].

Some other classes which are of interest include the classes studied by Gomez-Calzado et
al. in [48] where some latency function was considered on the edges of the graph. Also,
recently Altisen et al. in [4] introduced the class T CQ which is positioned somewhere
between T CR and T CB, and which proved to be useful for characterizing some conditions
on their self-stabilizing algorithms. Classes of temporal graphs may also be defined by
restricting the footprint to belong to a particular class of (standard) graphs, which was
done in [90].

In the above list of classes, one might differentiate classes considering strict journeys
and non-strict journeys respectively, depending on the context. Concerning our proposed
mobility models, the two are practically the same, so we will not differentiate between
these classes.

Remark 5. Two inclusion relations are missing from Figure 5.1. We leave this as an
exercice for the reader.

5.1.2 Properties through mobility

In the setting of Mobile Ad Hoc Networks (MANET or simply swarms), mobility of the
swarm’s entities play a significant role in the structure of the communications graph,
since these simple entities often have a short communication range (see Figure 5.2).

As shown, the inclusion of an agent a inside of another agent b’s communication range,
makes it so agent b can send messages to agent a. In this document, the communication
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1

2

3

(a) Entities 1 and 2 pass each other and are
able to communicate. Entity 3 is not in range
to communicate.

1

2

3

(b) Corresponding communication
graph. Vertices 1 and 2 are connected,
while 3 is isolated.

Figure 5.2: Some mobile entities with limited communication range, with the graph of
communication.

ranges for agents are considered to be identical for all agents, meaning that if one agent
is able to send messages to some other agent, then the reverse is true also. In this case,
we say agents are able to communicate.

The communications graph is constructed by creating a vertex per agent, and adding an
edge between vertices when their corresponding agents are able to communicate. Edges
disappear when agents exit each other’s communication range. Note how this graph is in
fact a temporal graph due to the possible appearance and disappearance of edges over
time. For example, in Figure 5.2 surely edge {1, 2} will disappear, and edge {1, 3} appear
in the near future. Such a communications graph is also known as a unit disk graph.

Mobility models are defined as an algorithm controlling mobile agents according to
their mobility constraints, to achieve a certain objective, such as exploration, surveillance,
delivery or other typical robot or swarm objectives. Our use of mobility models has as
objective to create, as well as maintain some recurrent temporal properties on the graph.

A multitude of mobility models are present in the literature under various names (such
as mobility strategies), and for various purposes. See for example [81, 34, 14, 88, 43] as
well as some control theory papers [38, 68]. In fact, one paper already gives a mobility
model for ensuring C∗, namely Michael et al.’s control theory based distributed mobility
model for mobile robot networks [68].
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To obtain temporal properties on the graph through a mobility model, we use an algorithm
which has access to all mobile agents, at all points in time, and may order these agents
to move as it pleases (obeying only some given mobility constraints).

Remark 6. Due to the inclusions shown in the temporal connectivity hierarchy (see
Figure 5.1), one may technically only need to construct mobility models for the most
specialized properties KR, EP , α-T CB and C∩ (the leftmost ones), since these are included
in all other properties. We however create mobility models for intermediate classes (such
as EB) which ensure that any more precise property (so EP for EB) are not present in
the graph. Outside of the added challenge, this may be justified as a security measure,
for example maybe one would like EB to be present in the MANET’s graph for some
algorithm to function correctly, however the presence of EP would allow some adversary
to corrupt the MANET.

5.2 Proposed models

Before actually presenting our mobility models for MANET, we first present what we
call “atomic blocks” in the following, which are very basic mobility models for individual
agents. These can also be seen as states for agents to be in. Afterwards, we construct
mobility models for MANET by manipulating agents through these atomic blocks.
We then present our mobility models, leaving out implementation details. We prove
correctness of the mobility models concerning the property they induce (and exclude).
We finish by discussing the different mobility constraints which we choose to implement
in the software package.

5.2.1 Atomic blocks

We define three atomic blocks (see Figure 5.3), which are meant to be basic mobility
models which should be executable by the agents, independently from any mobility
constraints one may impose on the agents. They are defined as follows on the plane:

• Messenger: the agent makes straight for its destination d. If the agent is already
arrived at d, the agent simply comes to a stop for as long as it is in this state and
its destination d does not change.

Variations include limiting the maximum speed at which the agent moves towards
its destination. Also, messenger may be used to keep agents at a stop, by simple
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d

(a) Messenger.

c

r

(b) Roundabout.

c

r

(c) Swarm.

Figure 5.3: The three atomic blocks used for our mobility models. The path or trajectory
of an agent is shown as a green arrow.

setting their destination to their current position (taking into account possible
inertia forces at play).

• Roundabout: the agent turns (clockwise or counterclockwise) in circles of radius
r around center c. Any agent not already at distance r from c first makes for some
destination which is (through messenger).

Variations include forcing a certain low speed on the turning vehicle. Stops are
simulated through messenger.

• Swarm: The movement of a swarm agent is random, as long as it remains within
distance r from the swarm’s center c. Any agent outside of the swarm first makes
for a destination inside the swarm (through messenger).

Variations include different forms of swarms, so not necessarily a disk.

5.2.2 Mobility models

Due to Remark 6, in the following, whenever we present a mobility model for some class
P, it should be understood as a mobility model for P \ P ′ for all (identified) subclasses
P ′ of P, unless stated otherwise.

We present mobility models inducing properties T CR, KR, CR, PR, C∗, T CB, EP , EB, and
ER (in this order) for MANET composed of agents with communication range comrange.
Only one mobility model per property will be presented in this document, although some
properties have multiple mobility models.

We often start mobility models by initializing agents. With this, we mean to arrange
the agents in a certain position (and/or atomic block) so as to start the mobility model.
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If the mobility model has the power to do so before communication between agents starts,
then the resulting graph admits the desired property. If however the mobility model does
not have control of the starting position of the agents (for example the MANET starts
at some precise position corresponding to a warehouse or some other practical starting
position), then we use the messenger atomic block to move each agent to its initial
position. Properties may then not be valid on the graph as a whole, due to unavoidable
interactions at the start, but in this case we ensure the properties are satisfied eventually.

Definition 26. A property P is eventually present in temporal graph G = (G0, G1, ...),
if there exists a time t such that the temporal subgraph G′ = (Gt, Gt+1, ...) respects
property P.

Concerning eventual inclusion, ER has the following useful property, due to which all
presented mobility models ensure inclusion in ER eventually.

Fact 11. Any T CR graph is eventually in ER.

The reader may like to visualize the presented mobility models through our software
package, available here3. This is not necessary, as the explanations below should suffice.
If the reader wishes to visualize the mobility models, we recommend executing:
1 public static void main(String[] args) {

2 new MobilityModel(new TCR_swarm(), new Racetrack());

3 }

Once executed, this will open up a window with the created MANET, which by default
is paused. To resume, use the right click menu. The agents will start moving according
to their mobility model. One may at any point accelerate or slow down JBotSim’s clock
speed through the right click menu as well.

The reader may afterwards modify TCR_swarm() for other properties presented. For now,
Racetrack() may be left untouched, as it is a constraint, presented in Section 5.2.3.

5.2.2.1 Swarm mobility model

First, let’s take a look at a mobility model for arguably the most basic of temporal
properties, namely T CR. Although this class has the most subclasses which we would like

3 https://www.labri.fr/perso/jschoete/index.php?id=mobility-models
or https://github.com/jschoete/mobilitymodels
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to exclude, the mobility model we present is fairly straightforward. The swarm mobility
model for T CR (denoted T CR-swarm):

1. Initialize half of the agents in the swarm atomic block with some center c and some
radius r. We refer to this swarm as swarm 1.

2. Initialize the other half in the swarm atomic block also, but with center c′ such that
||c− c′||4 > 2(r + comrange), and radius r. We refer to this swarm as swarm 2.

3. Initialize one agent in swarm 1 as the messenger atomic block, with destination
d = c′. Refer to this agent as the messenger.

4. Whenever the messenger attains its destination, it stays in the corresponding swarm
for a random amount of time, before setting its destination to the other swarm’s
center.

Lemma 17. T CR-swarm induces a temporal graph with property T CR.

Proof. Due to the infinite lifetime of the MANET, and the (possibly small) chance to
either directly interact with an agent in one’s own swarm, or indirectly interact send
a message through the messenger to the other swarm, T CR is maintained. Since the
messenger is allowed to stay in a swarm indefinitely long, T CB is not present between
agents from different swarms. The precise distancing of the swarms makes PR impossible
between agents from different swarms. The swarm mobility model does however respect
ER, which is something we wanted to avoid. A simple rule may be added so as to keep
two messengers instead of one up to a certain point in time, after which only one remains,
but this seemed somewhat of an artificial rule. Also, due to Fact 11, any mobility model
will not avoid eventual inclusion in ER.

A first very simple modification to this swarm mobility model, so as to obtain a mobility
model for KR, is to remove one of the swarms completely, as well as the messenger. This
is the KR-swarm mobility model.

Lemma 18. KR-swarm induces a temporal graph with property KR.

Proof. Due to all agents moving randomly in the swarm, and the infinite lifetime of the
MANET, all possible pairs of agents will communicate infinitely often.

4 The Euclidean distance between pi and po.
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Next is a modification of T CR-swarm which induces CR in the communications graph.
Simply move the swarms closer together, so that 2r + comrange < ||c − c′|| ≤ 2(r +
comrange) (i.e., the swarms’ boundaries are separated by distance d with comrange <
d ≤ 2comrange). The result is CR-swarm.

Lemma 19. CR-swarm induces a temporal graph with property CR.

Proof. Whenever the messenger moves in between swarms, there’s a chance it may
connect the whole graph in some snapshots. This (possibly small) chance is sufficient
to ensure CR, although one may add additional rules so as to increase the odds of this
happening. C∗ is not satisfied here, since the graph is disconnected most of the time.

Take CR-swarm and add a third swarm. Make sure all three swarms are still all distanced
from each other as stated for CR-swarm. This is possible in the plane with disk-shaped
swarms, for example in a triangular fashion. Suppose a third of all agents are in each
swarm. Now, instead of going back and forth between only two swarms, the messenger
has a choice to make (at random) as to which of the other two swarms it visits. We refer
to this mobility model as PR-swarm.

Lemma 20. PR-swarm induces a temporal graph with property PR.

Proof. Similarly to CR-swarm, the messenger may connect the subgraph induced by the
two swarms it moves between, and thus create paths between all vertices corresponding
to the agents. Since the messenger has the possibility to do this between any pair of the
three swarms, PR is ensured in the graph. We ensure CR is not satisfied, since the graph
may never be connected as a whole in any given snapshot, due to the messenger only
being able to connect two of the three swarms. Also, we ensure KR is not present in the
graph (this is the missing inclusion from Remark 5). Even though paths between all pairs
of vertices occur infinitely often, edges between all pairs of vertices do not, as no edges
appear between vertices representing agents from different swarms.

Remark 7. It is possible to extend PR-swarm by considering four swarms (possibly
needing to alter the form of the swarms). In two dimensions however, four is the limit of
the amount of swarms, as in two dimensions this mobility model can be modelized as a
planar complete graph in which the vertices represent swarms and the edges represent
almost-touching boundaries of swarms. As is known, for all n ≥ 5, the complete graph on
n vertices is non-planar. Allowing for swarms in three dimensions solves this problem,
and allows for any number of swarms.
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5.2.2.2 Grid swarm mobility model

The following mobility models are greatly inspired from the swarm mobility models
presented, and are basically an adaptation so as to ensure some structure inside of
swarms. The grid swarm mobility model for C∗ (denoted C∗-gridswarm):

1. Initialize agents in the swarm atomic block with some center c and some radius r.

2. Place a stationary agent at c (so in the messenger atomic block with destination c).

3. While the area of the swarm is not covered by stationary agents’ combined commu-
nication range, add stationary agents at distance comrange to the left, right, top
and bottom of already stationary agents (if not already present).

4. Allow passing swarm agents to replace stationary agents.

Lemma 21. C∗-gridswarm induces a temporal graph with property C∗.

Proof. The graph is always connected thanks to the stationary agents which induce a
connected subgraph which covers the swarm’s area, thus connecting to all the swarm’s
agents. This thus results in an always connected and spanning induced graph. The
replacing of stationary agents by swarm agents is to make sure C∩ is not satisfied through
this mobility model.

As somewhat of a combination between the two swarms with the messenger in T CR-
swarm, and C∗-gridswarm, the next mobility model ensures T CB. Give both swarms an
connected grid of stationary agents, and don’t allow for the messenger agent to indefinitely
stay in one swarm.

Lemma 22. T CB-gridswarm induces a temporal graph with property T CB.

Proof. If each swarm in itself induces a temporal subgraph in T CB, then forbidding the
messenger to remain in a swarm indefinitely would have been sufficient for the whole
mobility model to induce a graph in T CB. However, due to our assumption that mobility
is random inside swarms, each swarm may not induce a temporal subgraph in T CB (even
though a probabilistic bound may exist). Adding the cover of connected stationary agents
solves this issue, as now each swarm is in T CB, say with time bound b. The overall time
bound for the whole mobility model’s induced temporal graph would then be at most
2(b + t), where t is the time it takes for the messenger to go from one boundary of a
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swarm to the other swarm’s boundary (this bound may not be tight, but still counts as a
valid bound).

One may allow the replacement of stationary agents by passing swarm agents to allow
for more mobility, although this is not a necessary condition for T CB.

5.2.2.3 Token mobility model

To address the remaining properties (EP , EB, and ER), we present the following mobility
models, in which a token is passed between interacting agents. Only the agent with the
token is able to move. The token mobility model for EP (denoted EP -token):

1. Initialize agents in rows and columns, in a grid-like formation, distanced by some
distance d > comrange. Denote this position as pi for each agent.

2. Offset agents on the top row by d−comrange
2 to the left.

3. Offset agents on the leftmost column by d−comrange
2 to the top (except for the top

left agent).

4. Offset other agents by d−comrange
2 to the left, or to the top, at random.

5. Denote each agent’s position as po for each agent.

6. Give the top left agent, denoted a0, a token.

7. Agents with the token move according to the roundabout atomic block, clockwise
or counterclockwise (decided at random), at a constant speed (not necessarily the
same speed as other agents), with center c = pi, and radius r = ||po − pi||.

8. Whenever agents communicate, the token is exchanged. One agent then loses the
token and thus comes to a stop, while the other gains the token and thus starts
moving.

Lemma 23. EP-token induces a temporal graph with property EP .

Proof. The token mobility model passes around a token between agents. Due to the
careful positioning of the agents, all agents will at some point in time receive the token
either from their top neighbor, or from their left neighbor (depending on po). One may
observe that the token’s owner follows a pattern which is repeated over time. Indeed,
the second time that a0 has the token and attains its position po, all agents’ positions
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are again po, and so the token is passed again through the MANET, in the exact same
manner it was already passed. The time taken for the token to come back to a0 at position
po corresponds to the period at which edges appear in the communications graph.

The token mobility model may easily be adapted for EB by allowing agents to change
speed in the roundabout atomic block, instead of forcing them to keep the same individual
speed. However, to keep a bound on edges’ appearances, one must define a minimum
speed. Let’s refer to this modified token mobility model as EB-token.

Lemma 24. EB-token induces a temporal graph with property EB.

Proof. The bound on the interactions reoccurring is the time it would take for a0 to
reach po again if all agents turn at minimum speed. Also, EP is not satisfied due to the
random speed changes.

Through a similar argument, modifying EB-token, by allowing agents to randomly come
to a stop, even while having the token, gives ER-token.

Remark 8. The communications graph created through the token mobility models is a
temporal tree (the footprint, as well as the eventual footprint is a tree). Due to the random
offset assigned to the agents, the created temporal tree is random as well.

One may have some arguments against the token mobility model. First of, maybe it isn’t
mobile enough, in the sense that at any given point in time only one agent can move,
while all others are at a stop. Also, most of the time, agents are at a stop, waiting for the
token. Secondly, only a sparse amount of edges (n− 1 edges, to be precise) appear in the
communications graph. The next mobility model is very similar to the token mobility
models, but allows for constant mobility of the agents after some time. We discuss and
resolve the second argument later in Remark 9.

5.2.2.4 Roundabout mobility model

As somewhat of an extension of the token mobility model, the next mobility models aim
to ensure the same properties while keeping agents mobile a majority of the time. The
roundabout mobility model for ER (denoted ER-roundabout):

1. Initialize agents as in the token mobility model, denoted as position pi for every
agent.
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2. Offset the agents as in the token mobility model, denoted as position po for every
agent.

3. The top left agent moves according to the roundabout atomic block, clockwise
or counterclockwise (decided at random), at some speed, with center c = pi, and
radius r = ||po − pi||.

4. When agents communicate, they move according to the roundabout atomic block,
clockwise or counterclockwise (decided at random), at some fixed random speed,
with center c = pi, and radius r = ||po − pi|| (if they do not already do so).

5. All agents may be put to a stop at random points in time, for a random amount of
time.

Lemma 25. ER-roundabout induces a temporal graph with property ER.

Proof. Agents will communicate infinitely often with all of their adjacent neighbors,
simply because there is a (possibly small) chance for agents to find themselves close
enough to do so, due to the random stops and speed changes allowed, and due to the
lifetime of the MANET being theoretically infinite. EB isn’t satisfied though, since no
bound may be put on the communications’ reappearance, due to the agents being able
to stop for any amount of time.

Removing the last rule of ER-roundabout results in EP -roundabout. Both may even
be adapted for EB-roundabout, although some technical details arise in this case,
depending on the constraints, which we will not cover in this document.

Remark 9. The repeated trajectory of agents in the roundabout mobility models is
necessary for our results, however the explicit roundabout shape of the trajectory is not.
In other words, one may have considered other trajectories, such as a 45◦ tilted square
shape, and the results would still hold. In fact, as a stronger statement, any repeated
trajectory would do, as long as the agents induce a connected footprint (which is ensured
in our model through the initial conditions). This may a priori induce graphs of arbitrary
density, as opposed to our proposed mobility models inducing sparse graphs.

5.2.3 Mobility constraints

Two mobility constraints have been implemented, namely Racetrack and the discrete
model used for the robot in Figure 2.11, referred to here as Gridwalk. Since our mobility
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models are composed entirely of three atomic blocks, only these atomic blocks had to be
implemented for each constraint.

Readers using the software package to visualize mobility models may now switch between
mobility constraints Racetrack() and Gridwalk().

The main differences between the two are as follows.

• The Racetrack constraints allow for faster movement compared to grid walk, due
to the possibility of attaining a greater velocity at each time step, whereas grid
walk is stuck with a constant speed. To counterbalance this, one could consider for
grid walk either a larger grid unit or an increased JBotSim internal clock speed.
We choose the latter solution.

• In the Racetrack constraints, the roundabout atomic block was implemented in
a square form as opposed to the circular form, for convenience. As discussed in
Remark 9, this doesn’t affect the induced properties.

• In the grid walk constraints, agents in the swarm atomic block seem almost reluctant
to diffuse from the center area of the swarm. This is especially true when compared
to swarm agents in the Racetrack constraints, which seem to prefer the outer sides
of the swarm.

Remark 10. Constant speed mobility constraints (such as grid walk) may at first not
seem adaptable for our mobility models, since some rely on changes of speed. However,
some of these constant speed mobility constraints may be able to simulate speed changes
if one allows the agent a null speed option (a stop). Indeed, “lower” speeds may then be
simulated by inserting some periodic stops in the trajectory of the agent. However, higher
speeds may not.

Other mobility constraints are possible, as long as the three atomic blocks may be
implemented according to the constraints. Although JBotSim is by definition discrete, it
is still possible to simulate continuous mobility constraints, such as Random Waypoint,
presented in [23].
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5.3 Usage examples

5.3.1 Testing environment

Users may use our mobility models to visualize and test their distributed algorithms.
JBotSim proposes the option to extend the Node class, which represents the agents in
the MANET (or the vertices in the communications graph). We give two examples of
simple distributed algorithms (which are already present in the software package). The
first is a naive broadcasting algorithm, known as flooding.
4 public class FloodNode extends Node {

5 @Override

6 public void onStart() {

7 super.onStart();

8 if (this.getID() == 0)

9 this.setColor(Color.GREEN);

10 }

11

12 @Override

13 public void onClock() {

14 if (this.getColor() != null)

15 this.sendAll(new Message());

16 }

17

18 @Override

19 public void onMessage(Message message) {

20 super.onMessage(message);

21 this.setColor(Color.GREEN);

22 }

23 }

To test this distributed algorithm with a mobility model, execute:
24 public static void main(String[] args) {

25 Class node = FloodNode.class;

26 new MobilityModel(new EP_token(), new Gridwalk(), node);

27 }

As can be observed, over time agents become green, meaning they received the message.
As all mobility models induce a T CR graph, all agents (or nodes) will at some point in
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time receive the message. Ensuring some bound on the completion of the algorithm may
be achieved only in some particular classes however (such as T CB).

As a second example, consider the following election algorithm, which only works correctly
if KR is satisfied. The remaining green agent then represents the elected agent. Outside
of the KR mobility models, C∗-gridswarm ensures KR as well.
28 public class EliminationNode extends Node {

29 @Override

30 public void onStart() {

31 super.onStart();

32 this.setColor(Color.GREEN);

33 }

34

35 @Override

36 public void onLinkAdded(Link link) {

37 super.onLinkAdded(link);

38 Node n0 = link.endpoint(0);

39 Node n1 = link.endpoint(1);

40 if (n0.getColor().equals(Color.GREEN))

41 n1.setColor(Color.RED); //elimination

42 }

43 }

In general, our mobility models can serve as a testing environment for any distributed
algorithms which depend on some temporal property. They can even serve so as to find
such a property given the distributed algorithm. Also, all mobility models presented
contain some form of randomness, which allows users to use our mobility models to
construct random temporal graphs, which may induce/exclude some temporal property.

5.4 Conclusion

In this chapter, we explored an approach on how to control a MANET’s mobile entities
so as to induce some desired property in the induced temporal graph. We ended up
creating a variety of mobility models which ensure and/or exclude most of the temporal
properties present in the literature. This is done through a proposed framework allowing
for the separation of the given mobility constraints and the desired temporal property, by
using atomic mobility models for individual agents which depend solely on the mobility
constraints, and which are then used so as to create a mobility model for the MANET

Jason Schoeters — University of Bordeaux, LaBRI 125



CHAPTER 5. TEMPORAL PROPERTIES INDUCED BY COLLECTIVE MOBILITY 5.4. CONCLUSION

which depends solely on the temporal property. This work was published in the form of a
Java package using the JBotSim library, and can be used as a testing environment for
distributed algorithms.

Future work and possible extensions are discussed in Chapter 6.
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Chapter 6

Conclusion

I guess I’ve been working so hard, I forgot what it’s like to be
hardly working.

— Michael Scott

Following are some concluding remarks from this document’s chapters.

In Chapter 3, we established that sparse temporal spanners always exist in temporal
cliques, proving constructively that one can find O(n logn) edges that suffice to preserve
temporal connectivity. Our results hold for non-strict journeys with single or multiple
labels on each edge, and strict journeys with single or multiple labels on each edge with
the property that there is a subset of locally exclusive single labels. Our results give the
first positive answer to the question of whether any class of dense graphs always has
sparse temporal spanners.

To prove our results, we introduced several techniques (pivotability, delegation, dismount-
ability and k-hop dismountability, forward and backward fireworks, partial delegation,
and layered delegations), all of which are original and some of which might be of inde-
pendent interest. Whether some of these techniques can be used for more general classes
of graphs is an open question. Delegation and dismounting rely explicitly on the graph
being complete; however, refined versions of these techniques like partial delegation might
have wider applicability.

Next, in Chapter 4, we introduced a new version of TSP, with the aim of adding
some sort of acceleration constraints to the well-known classical problem. This was done
through the addition of a simple set of acceleration rules, inspired from the pen and
pencil game Racetrack.
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Several insights have been shown, some which prove the problem is distinct from the
classical Euclidean TSP. We also gave some polynomial-time reductions from and to
well-known problems, resulting in the problem being NP-complete in general. We also
presented an algorithm resulting in a 2-optimal solution, through the adaptation of a
TSP algorithm which uses an A* oracle for cost computation. Some experiments further
pushed the VectorTSP as a stand-alone problem, distinct not only in theory, but thus
also in practice, from classical TSP.

We finished in Chapter 5 with a software package of mobility models which induce
(and/or exclude) several temporal properties on the underlying communications graph.
These were implemented in Java using the JBotSim library, and use a framework allowing
the separation of desired properties and constraints thanks to the manipulation of simple
atomic blocks.

6.1 Open questions and future work

In this thesis, we’ve covered multiple results. However, several questions are still open
concerning our presented work, and thus several subjects for future work remain. In this
section, we list these subjects. For more background and details on some questions, the
reader is referred to [25] and [27].

6.1.1 Temporal cliques admit sparse spanners

Experimental evidence shows temporal cliques may always admit a spanner of size 2n− 3
or 2n− 4 edges. The latter is in fact a lower bound originally from gossip theory (see e.g.,
Facts F29 through F32 in [52]). In fact, in these experiments, many instances were found
which are neither pivotable (see Section 3.2.3) nor k-hop dismountable (see Section 3.3),
and yet admit a spanner of size 2n− 3 or 2n− 4. This suggests further investigation to
understand the structure of simple temporal cliques. In particular:

Open question 1. Do simple temporal cliques always admit Θ(n)-sparse temporal
spanners?

Open question 2. Do simple temporal cliques always admit temporal spanners with at
most 2n− 3 edges?

A first step towards answering these questions has been made in a probabilistic manner
(following our work) in [29], where the authors consider an Erdős-Rényi random graph
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Gn,p with a uniformly random presence time on every edge. They show, among other
thresholds, that at threshold p = 4 logn/n, the graph asymptotically almost surely (a.a.s.)
admits a spanner with 2n−4 edges, based among others on the pivotability technique. As
a corollary, random temporal cliques a.a.s. admit a spanner with 2n− 4 edges. One open
question which still remains to be answered in a probabilistic manner, is the following.

Open question 3. Are random simple temporal cliques a.a.s. (k-hop) dismountable?

Finally, a natural question is whether a more general class than complete graphs may
admit sparse spanners, and what is the role of density per se. The family of counter-
examples from Axiotis and Fotakis [11] have asymptotic density 1/9, which leaves a
significant gap between this family and that of complete graphs.

Open question 4. Is there a larger class of dense graphs than complete graphs that
always admit o(n2)-sparse temporal spanners?

6.1.2 VectorTSP: A Traveling Salesperson Problem with Racetrack-
like acceleration constraints

Concerning VectorTSP, a first open question is if Fact 10 can be generalized for any
maximum visiting speed.

Open question 5. For cities placed on the vertices of a convex hull, does VectorTSP
admit the clockwise or counterclockwise visit order as an optimal visit order if ν 6= 0?

Our example presented in Figure 4.5 seems to be adaptable for ν = 1 (by simply removing
unnecessary self loops), although proving it for any ν > 1 may not be as simple.

Another question which remains open due to us considering a fixed maximum visiting
speed ν = 0, is the NP-hardness of the problem.

Open question 6. Is VectorTSP NP-hard, even if ν 6= 0?

In particular, does the bounding of the maximum visiting speed even matter concerning
the problem’s hardness, i.e. is the problem NP-hard still if the visiting speed is not
bounded?

Open question 7. Is VectorTSP NP-hard, even if ν =∞?

Intuitively, our proof of NP-hardness may be adapted to consider visiting speed ν = 1,
again by removing unnecessary self loops, although adapting it further to other visiting
speeds, let alone no bounded visiting speed, does not seem as straightforward.
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Another natural question is whether VectorTSP could be proved NP-hard through a
direct reduction from ETSP, rather than from ExactCover.

Open question 8. Does there exist a direct (natural) reduction from ETSP to VTSP?

Another direction left open is the approximability of VectorTSP. Indeed, although
EuclideanTSP is known to be approximable to a factor of 1.5, no such result was
proven for VectorTSP.

Open question 9. Is VectorTSP approximable, and if so, what is the approximation
factor?

6.1.3 Temporal properties induced by collective mobility

Concerning our work on mobility models inducing temporal properties, multiple options
to extend the software package are possible. One might be interested in developing
distributed mobility models, in which mobility models are executed by agents and
have only access to information inside of their communication range. It is indeed more
realistic to assume that agents with a short communication range should not be able to
communicate with (or rather be controlled by) a centralized algorithm, which in principle
isn’t located in this communication range. Many of our proposed models were originally
designed (as well as implemented) as distributed mobility models instead of centralized
ones. However, not all properties may be satisfiable through a distributed mobility model.

Open question 10. Which properties are (or are not) satisfiable through a distributed
mobility model?

If some property isn’t satisfiable through a distributed mobility model with no global
knowledge, one may look into what global knowledge does allow the agents to satisfy the
property (such as the number of agents in the MANET, the dimensions of the topology,
etc.).

Other future work may include implementing more mobility models, in particular ones for
classes α-T CB, and C∩. Another option is implementing other mobility constraints. One
may also be interested in allowing easy initialization or modification of the parameters
of mobility models, so as to obtain mobility models which are more adaptable. Indeed,
at the moment our mobility models execute on a fixed amount of agents, in a fixed
area, starting in a fixed position and a fixed state or atomic block, etc.. Lastly, one may
consider adding typical MANET missions such as delivery, exploration, etc. on top of
ensuring temporal properties.
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6.2 In the next few years

I think it’s appropriate for me to state here as well what I would like to accomplish for
myself in the not so distant future.
First of all, now that my defense has passed, I can proudly say I have applied, and have
been accepted, for a postdoc position in which I will have the opportunity to continue
working on temporal graph theory. There’s one or two problems which I have noted down
which may be of interest, in addition to my soon-to-be boss already having some ideas of
his own for us to work on.
After this postdoc, I would probably apply for a second postdoc somewhere abroad for a
year or two (or more?), so as to discover not only the world but different researchers and
their corresponding mind sets and teams as well. The subject itself doesn’t matter too
much to me at the moment, since I’m interested in a wide variety of domains, and more
than willing to learn about different subjects. I prefer to see a “Jack of all trades, master
of none” as a potentially positive quality, especially if it turns out it’s possible to in fact
become a “Jack of all trades, master of some”!
I haven’t thought about things much further than that. A permanent post in a permanent
location and lab, is a decision which should be made carefully, and not set in stone too
early. If at some point there’s a possibility to apply for such a post, I will decide at that
time. I’m curious to see where this journey will end.
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