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Résumé

Le déploiement des installations synchrotron à haute énergie de 4e génération (ESRF-EBS et
les projets APS-U, HEPS, PETRA-IV et SPring-8 II) et des lasers à électrons libres (Eu-XFEL,
SLAC) allié aux récents développements d’optiques réfractives « free-form » de haute qualité
visant à conditionner le faisceau de rayons X, a ravivé l’intérêt pour les lentilles réfractives
composées (CRL) permettant la propagation du faisceau, ou son conditionnement pour la micro
et la nano-analyse, ou encore pour les applications d’imagerie. Dans ce contexte, l’ESRF a
repris en 2018 la fabrication et les tests de lentilles bi-concaves en aluminium à focalisation
2D. Les optiques réfractives actuelles, commerciales ou non, présentent des aberrations qui
détériorent leurs performances finales. Aussi, une modélisation précise incluant des données
de métrologie est nécessaire pour évaluer la dégradation du front d’onde afin de proposer des
stratégies d’amélioration.

En optique physique, les éléments faiblement focalisant sont généralement simulés comme
un seul élément mince dans l’approximation de projection. Alors qu’une seule lentille rayons X
dans des conditions de fonctionnement typique peut souvent être représentée de cette manière,
la simulation d’une CRL entière avec une approche similaire conduit à un modèle idéalisé qui
manque de polyvalence. Ce travail propose de décomposer une CRL en ses lentilles élémentaires
séparées par une propagation en espace libre, comme dans la technique dite de multi-coupes
(multi-slicing - MS) déjà utilisées dans les simulations optiques. L’attention est portée sur la
modélisation de la lentille élémentaire en lui ajoutant des degrés de liberté supplémentaires
permettant de simuler des désalignements typiques ou des erreurs de fabrication. Des polynômes
orthonormaux décrivant les aberrations optiques ainsi que des données de métrologie obtenues
avec les rayons X sont également utilisés pour obtenir des résultats de simulation réalistes, qui
sont présentés dans plusieurs simulations cohérentes et partiellement cohérentes tout au long
de ce travail. Les résultats ainsi obtenus se comparant qualitativement bien avec les données
expérimentales, sont utilisés pour évaluer l’effet des imperfections optiques sur la dégradation
du faisceau de rayons X partiellement cohérent ainsi que la pertinence de facteurs de mérite
communs. Contrairement à d’autres travaux, la modélisation présentée ici peut être utilisée
de façon transparente avec l’un des codes les plus populaires pour la conception de lignes de
faisceaux de rayons X, "Synchrotron Radiation Workshop" (SRW), et est disponible sur GitLab.

Les imperfections optiques mesurées avec une haute résolution spatiale peuvent être ajoutées
à la représentation MS d’une CRL pour simuler avec précision de vraies lentilles rayons X. Le suivi
vectoriel du speckle des rayons X (XSVT) est une technique polyvalente qui permet d’obtenir
facilement les erreurs de forme des lentilles rayons X dans l’approximation de projection avec
une haute résolution spatiale. Elle a été utilisée pour caractériser les lentilles 2D-beryllium
qui sont ensuite utilisées dans les modélisations présentées ici. Cette thèse présente une revue
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des concepts les plus pertinents de l’imagerie basée sur le speckle des rayons X appliquée à la
métrologie des lentilles.

La mise en œuvre du modèle MS d’une CRL incluant des données de métrologie permet
d’extraire les erreurs cumulées résultantes de l’empilement des lentilles ainsi que le calcul des
corrections de phase. Cette thèse se termine par la présentation d’une méthodologie de calcul
du profil des correcteurs de réfraction, qui est appliquée pour produire des plaques de phase
ablatées en diamant. Les premiers résultats expérimentaux montrent une amélioration du profil
du faisceau, mais l’alignement transversal de la plaque est un facteur limitant. Des améliorations
concernant la métrologie des lentilles et des plaques de correction, ainsi que les protocoles
d’alignement seront nécessaires optimiser les performances de ces correcteurs optiques.
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Abstract

The advent of the 4th generation high-energy synchrotron facilities (ESRF-EBS and the planned
APS-U, HEPS, PETRA-IV and SPring-8 II) and free-electron lasers (Eu-XFEL, SLAC) allied with
the recent demonstration of high-quality free-form refractive optics for beam shaping and optical
correction has reinforced interest in compound refractive lenses (CRLs) as optics for beam
transport, probe formation in X-ray micro- and nano-analysis as well as for imaging applications.
Within this context, in 2016, the ESRF resumed the fabrication and tests of 2D focusing bi-
concave aluminium X-ray lenses. Current refractive optics, commercial or otherwise, have
non-negligible aberrations which deteriorate their final performance and accurate modelling
with input from metrology is necessary to evaluate the wavefront degradation and in order to
propose mitigation strategies.

In physical optics, weakly focusing elements are usually simulated as a single thin element in
the projection approximation. While a single X-ray lens at typical operation conditions can often
be represented in this way, simulating a full CRL with a similar approach leads to an idealised
model that lacks versatility. This work proposes decomposing a CRL into its lenslets separated by
a free-space propagation, which resembles the multi-slicing techniques (MS) already used for
optical simulations. Attention is given to modelling the single lens element by adding additional
degrees of freedom allowing the modelling of typical misalignments and fabrication errors.
Orthonormal polynomials for optical aberrations as well as at-wavelength metrology data are
also used to obtain realistic simulation results, which are presented in several coherent- and
partially-coherent simulations throughout this work. They compare qualitatively well with
the experimental data and are used to evaluate the effect of optical imperfections on partially
coherent X-ray beam and the suitability of common figures of merit. Unlike other works, the
modelling presented here can be used transparently with one of the most popular codes for X-ray
beamline design, "Synchrotron Radiation Workshop" (SRW), and is publicly available on GitLab.

Optical imperfections measured with high spatial resolution can be added to the MS
representation of a CRL to accurately represent real X-ray lenses. X-ray speckle vector tracking
(XSVT) is a versatile technique that conveniently obtains the figure errors of X-ray lenses in the
projection approximation with high spatial resolution and is used in this work for characterising
lenses to be used in the modelling presented here. This thesis presents a review of most relevant
concepts of X-ray speckle based imaging applied to lens metrology.

Implementing the MS model of a CRL using metrology data allows extraction of the
accumulated figure errors of stacked lenses and enables the calculation of phase corrections.
Finally, this thesis presents a methodology for calculating the profile of refractive correctors,
which is applied to produce phase plates ablated from diamond. Early experimental results
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show an improvement on the beam profile, but the transverse alignment of the phase-plate is
a limiting factor. Further improvements to the metrology of lenses and correction plates and
alignment protocols are necessary to optimise the performance of these optical correctors.
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Préface

L’amélioration de la qualité des sources de rayons X modernes impose des optiques pour rayons
X de qualité considérablement accrue, permettant de conserver la brillance de la source même
focalisée. Pour cela, il faut réduire au minimum la perturbation du front d’onde des rayons X, les
effets néfastes sur les points focaux et les pertes d’intensité. Pour y parvenir avec des lentilles
rayons X, elles doivent présenter une fidélité de forme, des surfaces lisses et une structure interne
homogène et pure.

Ce projet de doctorat visait à déterminer l’effet des erreurs de forme des lentilles réfractives,
de la rugosité de surface et des impuretés sur un faisceau de rayons X partiellement cohérent
ayant des caractéristiques similaires à celles d’une ligne de lumière avec onduleur après la mise
à niveau de l’ESRF-EBS. Sur la base de développements récents, l’atténuation des erreurs de
forme des lentilles à l’aide d’optiques correctives a également été étudiée. Pour atteindre les
objectifs proposés, ce projet reposait sur deux piliers : théorique et expérimental, avec des
aspects techniques liés aux deux. Ce projet a abordé des aspects importants du programme de
R&D en optique des rayons X de l’ESRF-EBS, tel qu’il est défini dans le plan stratégique de mise
à niveau (Orange book).

Le volet théorique du travail a consisté à étudier les limites de la modélisation actuelle et
les approximations utilisées dans la plupart des codes de simulation pour traiter les éléments
optiques. Après avoir évalué la validité des outils existants, des propositions d’extension et de
nouveaux développements ont été proposés. Les objectifs étaient également, d’une part, d’ajouter
aux simulations la capacité de traiter les données de métrologie et de développer un cadre pour la
conception d’optiques réfractives correctives, et d’autre part, d’intégrer les modèles de simulation
à des simulations cohérentes et partiellement cohérentes pour obtenir de manière réaliste l’effet
des imperfections optiques sur un faisceau de rayons X et de comparer les résultats avec la
littérature et les données expérimentales. Les objectifs techniques liés à cette partie théorique
comprenaient le développement de bibliothèques Python permettant d’utiliser facilement la
modélisation nouvellement développée avec le code "Synchrotron Radiation Workshop" (SRW)
pour la conception des lignes de faisceaux. Une partie de ce développement a été mené
en collaboration avec O. Chubar (auteur du SRW) au cours de deux visites scientifiques au
Brookhaven National Lab. aux États-Unis. Cette nouvelle bibliothèque Python est disponible
pour une intégration dans des interfaces graphiques utilisateur telles que OrAnge SYnchrotron
Suit (OASYS).

Afin d’obtenir des résultats de simulation réalistes, des techniques de détection de front
d’onde en champ proche basées sur le speckle des rayons X ont été utilisées pour caractériser
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les lentilles produites en interne, les lentilles et optiques de type « free-form » dans le cadre de
collaborations scientifiques, et les lentilles commerciales récemment acquises. La métrologie
dite « en longueur d’onde » a été effectuée sur la ligne de lumière BM05 de l’ESRF jusqu’à son
arrêt début décembre 2018, puis sur la ligne 1-BM de l’APS à Chicago en 2019 et enfin sur la
ligne ID06 pendant la période de mise en service de l’ESRF-EBS. Outre la mesure de composants
optiques pour rayons X et la création d’une base de données de métrologie pour les lentilles
rayons X, les objectifs techniques de cette partie expérimentale étaient de former le doctorant
pour le rendre autonome et compétant dans la mise en œuvre du dispositif expérimental sur une
ligne de lumière, mais aussi dans l’acquisition et le traitement des données. Le développement
de protocoles d’alignement, de standardisation des mesures et d’analyse des données étaient
également attendus.

Par la suite, l’étude de récents développements concernant les techniques de fabrication ad-
ditive et soustractive pour la réalisation d’éléments de correction optique s’est avérée nécessaire.
C’est donc naturellement que cette formation doctorale s’est achevée par la conception d’un
premier correcteur de phase suivi d’expériences pour évaluer ses performances sur le faisceau de
rayons X à l’ESRF.

Aperçu
Ce travail est divisé en six chapitres, une conclusion et une annexe résumant les publications

pertinentes de l’auteur au cours de ce projet de doctorat :

Chapitre 1 - On a new kind of rays est le premier de deux chapitres essentiellement théoriques.
Le titre est un clin d’œil au titre de la publication qui relate la découverte des rayons X en 1895.
Il commence par introduire les concepts de brillance et les relie aux sources de rayons X basées
sur les accélérateurs. Les sources de rayons X à haute brillance sont ensuite présentées et le
concept de rayons X latéralement cohérents est illustré. L’optique physique est ensuite présentée
comme la description la plus appropriée des champs (partiellement) cohérents. La propagation
en espace libre et l’approximation paraxiale sont expliquées et la propagation des rayons X à
travers la matière est modélisée par l’introduction de l’élément de transmission. Une brève
discussion sur la cohérence optique et la présentation de quelques concepts de base sont faites à
la fin de cette section. Ce chapitre se termine par une discussion sur les simulations, méthodes
et approches pour optiques des rayons X.

Chapitre 2 - X-rays as a branch of optics, en référence au discours de A. Compton lauréat
du prix Nobel. Ce chapitre s’ouvre sur un récit historique des débuts de la science des rayons
X montrant les étapes qui ont conduit à la compréhension des rayons X comme branche de
l’optique. Un bref examen des développements de l’optique de focalisation des rayons X en
fonction des phénomènes optiques est donné pour contextualiser l’évolution récente de l’optique
réfractive. La modélisation d’une lentille rayons X idéale et celle d’un empilement idéal, basé sur
des techniques de type multi-coupes, sont présentés. Avec peu de modifications, ce modèle peut
accepter des cartographies d’erreurs arbitraires pour tenir compte des imperfections optiques.
Des mesures déterminantes pour l’évaluation des performances de CRL sont introduites et les
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conditions de tolérance des aberrations sont présentées. Ce chapitre conclut la présentation des
aspects théoriques nécessaires à cette thèse.

Chapitre 3 - Modelling optical imperfections in refractive lenses se concentre sur la modéli-
sation d’une lentille rayons X. En ajoutant des degrés de liberté latéraux et angulaires aux faces
avant et arrière des éléments focalisants, il est possible d’imiter les désalignements et les erreurs
de fabrication typiques rencontrés dans les lentilles réelles. Dans les cas où ces degrés de liberté
paramétrés ne suffisent pas, une modélisation d’erreurs de forme plus complexe est possible
en utilisant les polynômes orthonormaux Zernike ou 2D Legendre, ou encore des données de
métrologie. Ce chapitre se termine par le détail des bibliothèques Python implémentées pour la
modélisation des imperfections de phase pour les lentilles rayons X.

Chapitre 4 - Measuring optical imperfections in refractive lenses présente une description
complète de la technique de suivi des vecteurs de speckle en champ proche par rayons X (XSVT)
employée pour inspecter les lentilles utilisées dans cette thèse. Il commence par décrire la
diversité des techniques de métrologie en longueur d’onde et explique pourquoi la technique
XSVT est la plus appropriée pour ce travail. Un examen des principaux aspects du dispositif
expérimental, de l’acquisition, du traitement et de l’analyse des données est présenté et une
discussion sur la métrologie des lentilles rayons X par rapport aux empilements de lentilles clôt
ce chapitre.

Chapitre 5 - Effect of optical imperfections on an X-ray beam traite les effets induits par
les imperfections optiques sur la dégradation du faisceau de rayons X en présentant de nom-
breuses simulations des caustiques du faisceau, de la fonction d’étalement du point et du profil
du faisceau à des positions déterminées le long de l’axe optique pour différentes configurations
optiques. Une étude comparative des simulations de la métrologie des lentilles individuelles par
rapport aux lentilles empilées est présentée, suivie d’une discussion sur l’effet des imperfections
optiques et la pertinence du rapport de Strehl pour les lentilles rayons X. Quelques commentaires
sur les temps de simulation concluent le chapitre.

Chapitre 6 - Correcting optical imperfections in refractive lenses est le dernier chapitre
et conclut ce voyage qui a commencé dans le Chapitre 2 par la modélisation des lentilles idéales,
en passant par la modélisation des lentilles aberrantes dans le Chapitre 3, en mesurant leurs
imperfections dans le Chapitre 4 et en comprenant leurs effets sur un faisceau de rayons X
dans le Chapitre 5. Ce chapitre commence par énumérer les étapes importantes des techniques
extrêmement précises de fabrication additive et soustractive qui ont permis de produire des
optiques « free-form » très précises pour la correction des aberrations optiques. Un récapitulatif
des stratégies de correction des imperfections optiques pour les rayons X est donné et une
approche méthodique du calcul de la plaque réfractive de correction de phase est présentée. Les
outils de simulation développés pour cette thèse ont permis d’évaluer la performance attendue de
la plaque corrective ainsi que les tolérances d’alignement. Un prototype en diamant est présenté
et une première expérience sur une ligne de lumière démontre une amélioration qualitative
du profil du faisceau de rayons X. Une longue discussion sur la conception et les performances
attendues confrontées aux résultats expérimentaux obtenus avec la plaque corrective sur le
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faisceau de rayons X est présentée à la fin de ce chapitre.

Chapitre 7.fr - Conclusion résumant la signification, les implications, les contributions et
les limites de cette thèse et exposant les orientations futures.

Annexe A - Publication list liste les publications réalisées par le doctorant au cours de ce
projet.
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Prelude

Improvements in the quality of modern X-ray sources place increasingly stringent demands
upon the quality of X-ray optics, which ideally when interacting with X-ray beams should not
degrade the X-ray source brilliance. To achieve this, the perturbation of the X-ray wavefront,
adverse effects on the focal spots, and intensity losses all need to be minimised. To achieve that
with refractive optics, X-ray lenses shape fidelity, smooth surfaces and a homogeneous internal
structure are of particular importance.

This PhD project aimed at determining the effect of refractive lens shape errors, surface
roughness and impurities on a partially coherent X-ray beam the characteristics of a typical
undulator beamline after the ESRF-EBS upgrade. Based on recent developments, the mitigation
of lens shape error employing corrective optics was also investigated. To achieve the proposed
goals, this project was based on two pillars: a theoretical one and an experimental one, with
technical aspects related to both. This project addressed important aspects of the ESRF-EBS
X-ray optics R&D programme as laid out in the strategic upgrade plan (Orange book).

The theoretical facet of the work involved studying the limitations of current modelling and
approximations used in most simulation codes for dealing with the optical elements. After evalu-
ating the validity of the existing tools, extensions and new developments were proposed. Adding
to such simulations the capability of handling metrology data and developing a framework for
the design of refractive corrective optics was also targeted. A subsequent aim was to incorporate
such modelling into coherent- and partially-coherent X-ray beam propagation simulations to
predict the effect of optical imperfections on an X-ray beam and compare the results with the
literature and experimental data. The technical goals related to this theoretical part included the
development of Python libraries for straightforward use of the newly developed modelling with
"Synchrotron Radiation Workshop" (SRW) code for beamline design. Part of this implementation
was developed in collaboration with O. Chubar (SRW author) during two scientific visits to the
Brookhaven National Lab. in the U.S.A. This newly-developed Python library was the base for
further integration in user graphical interfaces like OrAnge SYnchrotron Suit (OASYS).

To obtain realistic results for the simulations, near-field X-ray speckle-based wavefront sens-
ing techniques were used to characterise in-house produced lenses; lenses and free-form optics
in the context of scientific collaborations; and newly-acquired commercial lenses. Measurement
campaigns for at-wavelength metrology were routinely conducted at the BM05 beamline at the
ESRF before its shutdown in early December 2018, the 1-BM beamline at the APS in Chicago
during the year of 2019 and at the ID06 beamline, during the ESRF-EBS commissioning period
in 2020. Besides the measurement of X-ray optics and curation of a metrology database for X-ray
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lenses, the technical goals of this experimental part were training the PhD candidate to be able
to conduct X-ray experiments with understanding, proficiency and autonomy: the setting up the
experimental setup at the beamline, data acquisition and data processing. Developing internal
measurement protocols in terms of probe alignment and standardising the measurements and
data analysis were also expected.

At a later stage, investigating recent developments in additive and subtractive manufacturing
techniques for the manufacturing of optical correction was also required. Designing and testing
the performance on an X-ray beam of the first phase correctors at the ESRF was performed as a
natural way of concluding the PhD.

Outline
This work is divided into six chapters, a conclusion and one appendix summarizing the

author’s relevant publications during this PhD project:

Chapter 1 - On a new kind of rays is the first of two predominantly theoretical chapters.
The title is a reference to the title of the publication reporting the discovery of X-rays in 1895.
It begins by introducing the concepts of brilliance and connecting it to accelerator-based X-ray
sources. High-brilliance X-ray sources are then presented and the concept of laterally coherent
X-rays are explained. Physical optics is then presented as the most appropriate description of
(partially-) coherent fields. Free-space propagation and the paraxial approximation are explained
and the propagation of X-ray though matter is modelled through the introduction of the trans-
mission element. A short discussion on optical coherence with the presentation of some basic
concepts is done at the end of this section. This chapter concludes with a discussion on X-ray
optical simulations, methods and approaches.

Chapter 2 - X-rays as a branch of optics, a reference to A. Compton’s Nobel lecture, opens
with a historical recount of the early days of X-ray science showing the milestones that led
to the understanding of X-rays as a branch of optics. A short review of the developments in
X-ray focusing optics divided by optical phenomena is given for contextualising the relative
novelty of refractive optics. The modelling of the ideal X-ray lenses and the ideal lens stacks
based on multi-slicing-like techniques are presented. With little modification, this model can
accept arbitrary 2D figure error maps to account for optical imperfections. Important metrics
for evaluating the CRL performance are introduced and tolerance conditions for aberrations are
presented. This chapter concludes the presentation of the theoretical aspects necessary for this
dissertation.

Chapter 3 - Modelling optical imperfections in refractive lenses focuses on modelling the
X-ray lenslet. By adding to the front- and back- focusing surfaces lateral- and angular- degrees
of freedom, it is possible to mimic typical misalignments and fabrication errors encountered in
real lenses. For the cases where the newly parametrised degrees of freedom are not enough, the
modelling of more intricate shape errors is enabled by employing the Zernike or 2D Legendre
orthonormal polynomials or metrology data. This chapter finishes with the details of the Python
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libraries implemented for modelling phase imperfections in X-ray lenses.

Chapter 4 - Measuring optical imperfections in refractive lenses presents a complete de-
scription of the X-ray near field speckle vector tracking (XSVT) technique used to inspect the
lenses used in this thesis. It begins by describing the wide variety of at-wavelength metrology
techniques which have been demonstrated in the X-ray regime and indicates why XSVT is the
most appropriate technique to be used in this work. A review of the main aspects of the exper-
imental setup, data acquisition, processing and analysis is presented and a discussion on the
metrology of X-ray lenses vs. lens stacks closes this chapter.

Chapter 5 - Effect of optical imperfections on an X-ray beam discusses the effect of op-
tical imperfections on the X-ray beam degradation by presenting an extensive collection of
simulations of beam-caustics, the point-spread function and the beam profile at selected posi-
tions along the optical axis for several optical setups. A discussion on the metrology of individual
lenses vs. stacked lenses from the point of view of the simulations are presented, followed by a
discussion on the effect of optical imperfections and the adequacy of the Strehl ratio for X-ray
lenses. Some comments on the simulation time conclude the chapter.

Chapter 6 - Correcting optical imperfections in refractive lenses is the last chapter and
concludes the journey that began in Chapter 2 with the modelling of ideal lenses, passing
through the modelling of aberrated lenses in Chapter 3, measuring the very same imperfections
in Chapter 4 and understanding the their effects on an X-ray beam in Chapter 5. This chapter
begins by listing important milestones in extremely accurate additive and subtractive manufactur-
ing techniques that enabled producing very accurate free-form optics for the correction of optical
aberrations. A review on strategies for correcting optical imperfections in X-ray optics is given
and a methodical method for the refractive correction phase plate calculation is given. Using the
simulations tools developed for this thesis, the expected performance of the correction plate can
be calculated and alignment tolerances can be drawn. A prototype diamond correction plate is
presented and an early test on an aberrated X-ray beam is shown to demonstrate a qualitative
improvement on the beam profile. A discussion on the design and expected performance versus
the early phase plate tests on an X-ray beam is presented at the end of this chapter.

Chapter 7.en - Conclusion summarising the significance, implications, contributions and
limitations of this thesis and laying out future directions.

Appendix A - Publication list of the works produced by the PhD candidate during this project.
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1On a new kind of rays

Hard X-rays are electromagnetic radiation with wavelength below1 2 Å. From their discovery in
1895 by W. C. Röntgen [Röntgen, 1896b], the first observation of synchrotron radiation (SR) in
1947 [Elder et al., 1947], the first (late 1950s and early 1960s), second (late 1970s and early
1980s), third (end of 1980s and early 1990s) and the fourth generation (late 2000s and early
2010s) of accelerator-based X-ray sources, the brilliance and consequently, the coherent fraction
has increased out-passing Moore’s law [Robinson, 2015]. This chapter is divided into three main
parts. The first part introduces the concept of brilliance and relates it to the coherent fraction of
synchrotron radiation emission, presenting undulators as the mains source of coherent X-rays
in synchrotron radiation facilities. In the second part of this chapter, the scalar wave theory
is presented as a framework for modelling X-ray propagation through free-space and optical
elements. Some definitions regarding optical coherence are also presented. The last part of
this chapter deals with simulation strategies based on the degree of spatial coherence of the
radiation.

1.1 From the Crookes-Hittorf tube to the ESRF-EBS
Since the discovery2 of X-rays in late November 1895 by W. C. Röntgen [Röntgen, 1896b]

up to the concept and implementation of the fourth generation high-energy synchrotron light
sources in the second half of the 2010s [Eriksson, 2016], there has been an Herculean amount
of effort directed towards increasing a key energy-dependent quality parameter of x-ray sources,
called brilliance3:

B0 = ϕ

4π2εhεv
, (1.1)

where ϕ is the X-ray photon flux for a given bandwidth ∆E/E = 0.001 centred at energy E, given
in (photons/s/0.1%bw.). Both εh and εv refer to the photon-beam emittances in the horizontal
and vertical planes, respectively. The photon beam emittance is defined as:

εh,v ≡ Σh,v · Σ′h,v. (1.2)

Here Σh,v stands for the beam size and Σ′h,v is the photon-beam divergence. The usual unit
used for the beam size is (mm) and for beam divergence is (mrad), hence brilliance is commonly
given in (ph/s/0.1%bw./mm2/mrad2) [Kim, 1986]. It is clear from Eq. 1.1 that increasing

1The choice of wavelength or energy to limit soft-, tender- and hard- X-rays is rather arbitrary. The conversion of
energy to wavelength in practical unit is given by E(keV) = 12.3984/λ(Å).

2W. C. Röntgen has published his first notes on the discovery of X-rays in January 1896 [Röntgen, 1896b]. In March
the same year, Röntgen went on to publish some additional notes on his discovery [Röntgen, 1896a]. Further
observations of the X-ray properties were later published [Röntgen, 1897].

3Although a common jargon in X-ray science and technology, the term brilliance is not unanimously agreed upon.
For an insightful discussion on the terminology, please refer to the discussion in [Mills et al., 2005] and to the
Chapter 3.9 and Table 3.1 in [Talman, 2006]. Eq. 1.1 is an approximate result. For an accurate calculation of the
brilliance, please, refer to [Walker, 2019].
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the brilliance means increasing the spectral photon flux ϕ and/or reducing the photon-beam
emittance in both horizontal and vertical directions (εh and εv), i.e. having a smaller and more
collimated X-ray source.

1.1.1 X-ray sources

Two main processes are responsible for generating X-rays: acceleration of charged particles,
for example, electrons; and the change of an electron state from a higher atomic or ionic energy
level to a lower one.

In the very early X-ray sources4 such as the Crookes-Hittorf tube used by Röntgen5

or any modern X-ray tube (electron-impact X-ray sources) both processes generate X-rays:
Bremsstrahlung by rapid deceleration of fast electrons, generating a broad-band smooth spec-
trum; and characteristic radiation (X-ray fluorescence), responsible for narrow spikes in the
spectrum. Although modern sources can focus the electron-beam into the target (anode),
reducing the source size considerably, the emission of X-rays happens in a large solid angle,
4π (steradians). The emission angle, in conjunction with the fact that the X-ray flux is limited by
the low current of electrons due to target heating, makes X-ray tubes relatively low brilliance
sources [Michette and Buckley, 1993, §1.6 & §2].

In accelerator-based X-ray sources, more specifically, storage-ring-like facilities6, (ultra-
relativistic7) electrons are usually chosen for generating X-rays as they are simple to generate
using a thermionic source and their low rest mass means that they emit by far the most radiation
for given particle energy. Charged particles in storage rings are subjected to a magnetic field
perpendicular to the direction of motion and this causes the particle to move in a circular
trajectory (centripetal acceleration). If the particle is non-relativistically accelerated, the emitted
radiation is described by the Larmor pattern (torus-shaped profile), which shows no radiation
in the direction of acceleration as the radiation goes out transverse to the direction of motion.
However, for a particle in the ultra-relativistic regime, the Lorentz-transformed radiation pattern
shows that the (synchrotron) radiation pattern is very peaked in the forward direction with a
narrow angular divergence (cf. Fig. 1.18) [Jackson, 1998].

4This works focuses only on artificial X-ray sources, most specifically storage-rings. X-rays and synchrotron radiation
also occur in nature with astrophysical sources of synchrotron radiation, which exist across the full electromagnetic
spectrum, being of extremely scientific relevance [Ginzburg and Syrovatskii, 1965; Wielebinski, 2006].

5On the opening sentence of his most important work "On a new kind of rays", Röntgen mentions that X-rays can be
produced by [sic.] "an electric discharge passing through a Hittorf ’s tube or a well-exhausted Lenard’s or Crook’s
tube" [Röntgen, 1896b].

6Linear accelerators are also used as a source of intense X-rays, in particular in free-electron lasers (XFELs) [Huang
and Kim, 2007].

7At an energy of ∼11.43 MeV, the electron reaches v/c = 99.9% and at roughly 36.13 MeV the ratio is v/c = 99.99%,
where v is the particle velocity and c is the speed of light. Storage rings dedicated to synchrotron radiation operate
at least above a few hundred MeV.

8This illustration, Fig. 1.1, is an oversimplification of the real spectra and emission profiles, showing general trends.
Depending on strength of the magnetic field applied to the electron beam and the magnetic period, the spectrum
of a wiggler can be spiky. The increase in flux relative to bending magnet radiation is partly due to field strength,
and partly due to having a number of dipole-like sources adding up along the line of sight. In an undulator, odd
harmonics involve transverse motion and thus forward radiation, while even harmonics involve longitudinal
motion and thus sideways radiation that is relativistically contracted to a hollow ring in the forward direction.
The even harmonics are weak on axis with moderately low emittance, and zero with diffraction-limited emittance,
but their angle integrated flux is much stronger than shown.
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Fig. 1.1.: Sketch of the three main sources of synchrotron radiation. On the left-hand side the photon-flux
ϕ as a function of energy E is shown. The right-hand side shows the electron (e−) trajectory
and the accompanying emission profile. Figure adapted from Figs. 5.1-5.3 in [Attwood, 1999]
and Fig. 1.2 from [Clarke, 2004].

There are two main families of X-ray sources in a synchrotron facility: bending magnets
(BM’s) and insertion devices (IDs). Bending magnets are necessary magnetic structures in
the storage ring to deflect the electron-beam transversely to its motion direction and keep
it in a closed trajectory by applying a constant magnetic field or gradient. They produce a
smooth broad-band spectrum and the photon-beam footprint is very large as both the source
and divergence sizes are very large. Historically, BMs have been used as the primary source of
X-rays in first- and second-generation light-sources9. The bending magnet radiation spectrum
and profile are shown in Fig. 1.1(a). Storage rings generally a multi-edge polygon where at
each vertex sits a bending magnet gently deflecting the electron-beam keeping the electrons in a
closed loop. The distance between two adjacent dipole magnets is called a straight section and
is where insertion devices can be placed.

9The first generation of synchrotron light sources is usually attributed to the parasitic use of high-energy physics
accelerators. The second-generation marks the beginning of fully-dedicated machines for synchrotron radiation.
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Insertion devices (IDs) are generally periodic magnetic structures that sinusoidally deflect
the electron-beam transversely to its direction of motion10. IDs can be sub-grouped into two
categories based on the amplitude of the electron motion inside them and their magnetic period:
wigglers have a higher magnetic field applied to the electron-beam causing the amplitude of
electron motion to be large. This generates a broad-band spectrum several times more intense
than that of a bending magnet (higher flux) - wigglers are also called wavelength shifters. The
beam footprint is also very large: in the transverse direction the source size is enlarged and the
beam has a high divergence. Figure 1.1(b) shows the spectrum and emission profile of a wiggler
insertion device. The second member of the ID family is the undulator. In it, the amplitude of
the transverse electron oscillations is much smaller than inside a wiggler. This is because in the
undulators a less intense magnetic field is applied to the electrons and because the magnetic
period is usually smaller than the one of a wiggler. The small excursion of the electrons inside
the undulator accounts for a small photon source size with low divergence. Due to the low
electron-motion amplitude, constructive interference between the emitted radiation occurs and
the spectrum of an undulator is composed of narrow-band peaks called undulator harmonics11.
This is possible because, in an undulator, the electron excursion is smaller than the X-ray cone
emission. Figure 1.1(c) shows the spectrum and emission profile of an undulator. A very useful
metric used for summarising the effects of the and ultimately classifying an ID as a wiggler or an
undulator is the dimensionless deflection parameter K given by

K = B0e

m0c

Λ
2π , (1.3)

where B0 is the magnetic field, e is the electron charge, m0 is the electron rest mass, c is the light
speed in vacuum and Λ is the magnetic period. It is generally accepted that IDs with K >> 1
are classified as wigglers, while undulators have a K < 1 leaving a grey area where K is in the
range of 1 to 10 and the radiation may exhibit some features of the wiggler or the undulator
[Clarke, 2004, §3.1].

The advent of storage rings especially designed to accommodate ID’s marks the third
generation of synchrotron light sources, from which the ESRF - European Synchrotron Research
Facility (1994) in France is the pioneering machine, followed by the APS - Advanced Photon
Source (1996) in the USA and the SPring-8 - Super Photon ring-8 GeV (1999) in Japan.

1.1.2 High brilliance X-ray sources

The small photon source size and low divergence of the X-rays emitted by an undulator make
it a great candidate for generating high-brilliance X-ray beams. As Eq. 1.1 suggests, increasing
the brilliance for a given storage ring energy can be done by two different strategies: increasing
the photon flux, which is done by increasing the electron current in the storage ring; and/or by
reducing the photon-beam emittance.

10It is important to acknowledge the existence of exotic ID designs that are not strictly periodic magnetic structures,
namely the quasi-periodic undulator family [Onuki and Elleaume, 2013, §7.2].

11For diffraction-limited photon-beam emittances, if the observer is on-axis with the electron motion, only odd
harmonics are observed. Away from the emission axis, even harmonics start being observed [Clarke, 2004, §4.2].
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The radiation profile (beam sizes and divergences) emitted by an undulator is given by the
convolution between the electron-beam profile and the radiation pattern specific to the X-ray
source12:

Σh,v = σeh,v ∗ σuh,v , (1.4a)

Σ′h,v = σ′eh,v ∗ σ
′
uh,v . (1.4b)

Here Σh,v and Σ′h,v are the already defined photon-beam size and divergence. The σeh,v and σ′eh,v
represent the electron-beam size and divergence. Lastly, σuh,v and σ′uh,v are the specific radiation
pattern size and divergence of the insertion device - these are then obtained by calculating the
emission of a single-electron or a filament electron-beam (negligible dimension and divergence)
passing through the magnetic field of the insertion device. Once designed, the specific radiation
pattern of an undulator13 is considered to be a fundamental wavelength-dependent property of
the insertion device14.

A closer look into Eqs. 1.4 allows one to suppose three distinct regimes for the photon-beam
characteristics: a) εeh,v � εuh,v in this regime, the photon-beam characteristics are dominated by
the electron-beam, which is well approximated by a Gaussian distribution. This is usually the
case for horizontal emittance in third-generation synchrotrons; b) an intermediate state where
the electron-beam emittance εeh,v is comparable to εuh,v leading to a photon-beam profile with
clear contributions from both the electron-beam and specific radiation pattern of the undulator;
c) the electron-beam emittance can be further reduced so that εeh,v � εuh,v and the photon-beam
profile is dominated by the undulator’s specific radiation pattern. Since εuh,v is a fundamental
limit, efforts to reducing the electron-beam beyond that limit will not have any impact in the
photon-beam profile. Mathematically, the three emittance regimes can be expressed as:

εh,v
∣∣∣
εeh,v�εuh,v

'
(
σeh,v ∗ δuh,v

)(
σ′eh,v ∗ δuh,v

)
= σeh,vσ

′
eh,v , (1.5a)

εh,v
∣∣∣
εeh,v∼εuh,v

'
(
σeh,v ∗ σuh,v

)(
σ′eh,v ∗ σ

′
uh,v

)
= Σh,vΣ′h,v, (1.5b)

εh,v
∣∣∣
εeh,v�εuh,v

'
(
δeh,v ∗ σuh,v

)(
δeh,v ∗ σ

′
uh,v

)
= σuh,vσ

′
uh,v . (1.5c)

Where δ represents the Dirac function. The electron-beam emittance matching to the undulator’s
specific radiation pattern is shown in Fig. 1.2. Fourth-generation synchrotron storage-ring-based

12This is true for any accelerator-based X-ray source - cf. chapter "3.10 - Photon beam features inherited from the
electron beam" in [Talman, 2006].

13The specific radiation pattern of an undulator is a function of its magnetic period, number of periods, magnetic
field, storage ring energy and X-ray emission-wavelength.

14In the literature, there is a variety of formulae for calculating the specific radiation pattern size and divergence [Kim,
1986, 1989; Tanaka and Kitamura, 2009; Onuki and Elleaume, 2013]. Different assumptions, approximations
and fits are done on their derivation. It is important to state that those are approximations and should not be
regarded as fundamental results - please, refer to the discussion in [Walker, 2019]. The exact calculation of the
radiation pattern can be done by computing the electric field of an electron subjected to an arbitrary magnetic
field - cf. [Chubar, 1995, 2001] or by calculating the Wigner-function for synchrotron radiation [Bazarov, 2012]
as in [Tanaka, 2014].
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Fig. 1.2.: Matching of the electron-beam emittance to the undulator specific radiation pattern to increase
the photon-beam brilliance, where σ stands for beam size and σ′ for beam divergence. Adapted
from Fig. 21.20 in [Wiedemann, 2015].

light-sources15 use emittance-matching - Eq. 1.5(b) mainly, but ideally Eq. 1.5(c) - as the main
source of increasing the X-ray brilliance16 [Wiedemann, 2015, §21.8.1].

1.1.3 Undulators as a primary source of coherent X-rays

Let’s consider the case of a filament electron-beam passing through a planar undulator. The
associated emission at a resonant photon energy is almost symmetric and σuh ≈ σuv = σu and
σ′uh = σ′uv = σ′u [Kim, 1989]. Because the electron bunch has negligible emittance εe in both
horizontal and vertical directions, the photon-beam emittance is given by εh,v = σuσ

′
u = εu. The

associated brilliance of such a filament beam is given by:

B0 = ϕ

4π2ε2u
(1.6)

Since the emission of a filament electron-beam is fully-coherent, it makes sense to define a
coherent photon flux of a zero-electron-emittance-beam:

ϕcoh. = 4π2ε2uB0 =
(
λ

2

)2

B0. (1.7)

15The fourth-generation synchrotron light sources or ultra-low emittance machines have been proposed as early as the
1990s [Einfeld et al., 1996, 2014], but were deemed to be technologically unfeasible for high-energy storage rings
[Ropert et al., 2000; Elleaume and Ropert, 2003]. Overcoming the technological barriers [Borland et al., 2014]
was essential in paving the way for high energy storage rings with ultra-low emittance [Bei et al., 2010; Eriksson,
2016]. The first machines to come online using the multi-bend-achromat design (MBA) are the MAX-IV in Sweden
(2016) and the SIRIUS in Brazil (2019) - the former operating with two storage rings: 1.5 GeV and 3 GeV and the
latter operating at 3 GeV. The ESRF upgrade programme has opted for a hybrid-multi-bend-achromat (HMBA)
magnetic lattice for its new storage ring [Biasci et al., 2014] and it is the first of its kind to operate at high-energies
(6 GeV). The lattice concept behind the Extremely Brilliant Source (ESRF-EBS) has its origins in 2006 with the
SuperB project for an electron-positron collider [P. Raimondi, 2017] and in early 2020 has produced the first
X-rays.

16This is because, with the new storage-ring designs (multi-bend-achromat and its variations), the electron-beam
emittance can be routinely reduced by one to two orders of magnitude, when compared to current third-generation
light sources. To obtain equivalent gain in brilliance by just increasing the electron-beam current is very challenging
in function of collective effects (coherent and incoherent). On top of that, there are thermal load issues on the
vacuum system and on the beamline optics, that is, the X-ray transport system to the sample. This footnote is the
result of discussions with Pedro F. Tavares (MAX-IV, Sweden) and Boaz Nash (RadiaSoft LLC, USA).
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Although Eq. 1.7 implies that εu = σuσ
′
u = λ/4π, it has been demonstrated that the non-Gaussian

behaviour of the undulator emission makes the photon-beam emittance approach asymptotically
λ/2π instead [Onuki and Elleaume, 2013; Tanaka and Kitamura, 2009]. However, it is important
to mention that the right-hand side of Eq. 1.7 is valid for any symmetric electric field distribution
at any value of undulator detuning and it does not depend on a Gaussian approximation of the
undulator specific radiation pattern [Walker, 2019]. One can define the coherent fraction as
the ratio between the coherent flux ϕcoh. (Eq. 1.7) and the nominal photon-flux ϕ = 4π2εhεvB0

(Eq. 1.1):

ζ = ϕcoh.
ϕ

= ε2u
εhεv

. (1.8)

Eq. 1.8 allows to deduce that by reducing the electron-beam emittance, the coherence fraction
is increased (cf. Eqs. 1.5). An important conclusion to be drawn is that emittance-matching as a
form of increasing the photon-beam brilliance in fourth-generation synchrotrons increases the
X-ray beam transverse (spatial) coherence17.

Temporal Coherence

Lastly, the temporal coherence18 of the synchrotron radiation emitted by storage rings should
be addressed. Without further conditioning, the radiation emitted on the X-ray region exhibits
low temporal coherence for high energies. Spectral filtering with monochromators increases the
temporal coherence at the expense of photon-flux reduction. Compressing the electron bunch
length also offers an increased temporal coherence for X-rays, as coherent synchrotron radiation
(CSR) naturally appears when the electron-beam bunch length is comparable to the observed
radiation wavelength - cf. [Chubar, 2006], [Talman, 2006, §3.8 & §13] and [Wiedemann, 2015,
§21.7].

Recommended literature

The correct description of the electron-beam inside each different source of X-rays in a
storage ring is of primary importance for accurate modelling of the radiation spectrum and
photon spatial distribution, with consequences for X-ray optical design. An extensive review on
particle accelerator physics is given by [Duke, 2000] and by [Wiedemann, 2015]. An in-depth
look into X-rays from accelerator sources can be found in [Clarke, 2004], in [Talman, 2006] and
in [Onuki and Elleaume, 2013].

The accurate calculation of the brilliance from undulators in low-emittance accelerators and
the coherence properties of the emitted X-rays is an active area of research topic and a deeper
look into it is offered by [Bazarov, 2012; Tanaka, 2014; Geloni et al., 2015, 2008; Walker, 2019;
Khubbutdinov et al., 2019]. See also [Singer and Vartanyants, 2014].

17Please, refer to §1.2.3 - Optical coherence for a definition of spatial and temporal coherence.
18See footnote 17.
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Fig. 1.3.: Hierarchical optical theories. Optical modelling in the X-ray regime can be accurately rep-
resented in the realms of wave optics for most cases where coherence effects are present.
Adapted from Fig. 1.0-1 in [Saleh and Teich, 2019].

1.2 Physical optics

The increasing coherent fraction of X-rays from fourth-generation storage rings requires an
appropriate framework for their representation. Light can be described by an electromagnetic
wave phenomenon governed by the Maxwell equations - cf. [Born et al., 1999, §1.1]:

∇ · E = ρ

ε
(Gauß’s law), (1.9a)

∇ · B = 0 (Gauß’s law for magnetism), (1.9b)

∇× E = − ∂

∂t
B (Faraday’s law), (1.9c)

∇× B = µ

(
J + ε

∂

∂t
E

)
(Ampère’s law modified by Maxwell). (1.9d)

Where E ≡ E(x, y, z, t) is the electric field, B ≡ B(x, y, z, t) is the magnetic induction, ε ≡
ε(x, y, z, t) and µ ≡ µ(x, y, z, t) are the electric permittivity and magnetic permeability, ρ ≡
ρ(x, y, z, t) is the charge density and J ≡ J(x, y, z, t) is the current density. The operator ∇ · •
denotes the divergence of a vectorial field (scalar function) and ∇ × • is the curl operator
(vectorial function), where • is a generic vectorial field. The Cartesian coordinates (x, y, z) and
time t have been omitted in favour of a more compact notation. Although electromagnetic optics
provides the most complete framework for classical optical phenomena, it is possible to move
away from the vectorial treatment of light towards a scalar wave theory in order treat a large
variety of relevant optical phenomena. This simplified treatment of light is commonly referred
to scalar wave optics or physical optics (cf. Fig. 1.3 for the hierarchical representaion of optical
theories). X-ray wave-fields in free-space are discussed in §1.2.1 - Free-space propagation and
their transmission through generic refractive optical elements is discussed in §1.2.2 - Transmission
elements.

1.2.1 Free-space propagation

In order to describe wave-fields in free-space under the scalar theory, one usually starts19

by obtaining the Maxwell equations for free-space (vacuum). This is done considering that the

19The developments in §1.2.1 - Free-space propagation are inspired by the derivations from [Paganin, 2006, §1] and
[Goodman, 2017, §3 & §4].
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medium where the wave-fields exist are uncharged and non-conducting, which is done by letting
ρ = 0 and J = 0 in Eqs. 1.9a and 1.9d:

∇ · E = 0, (1.10a)

∇× B = µ0ε0
∂

∂t
E. (1.10b)

Where ε0 and µ0 are the vacuum electric permittivity and magnetic permeability. Direct conse-
quences of deriving the scalar theory for waves in vacuum is that the medium is assumed to be
linear (permittivity is linear), isotropic (permittivity is independent of polarisation direction),
homogeneous (permittivity is constant within the region of propagation), nondispersive (permit-
tivity is independent of wavelength throughout the region of interest) and, finally, nonmagnetic
(the magnetic permeability constant and equal to µ0) [Goodman, 2017, §3.2].

The wave-equation

The d’Alembert wave-equation for the electric field can be obtained by applying the curl
operator ∇× • to both sides of Faraday’s law, using the vector calculus identity ∇× (∇× •) =
∇(∇ · •)−∇2• to the electric field E, and making use of the Maxwell equations for free-space
(Eqs. 1.9 and 1.10): (

ε0µ0
∂2

∂t2
−∇2

)
E = 0. (1.11)

The same reasoning can be applied to the magnetic induction B:(
ε0µ0

∂2

∂t2
−∇2

)
B = 0. (1.12)

Each vectorial component of E and B satisfies individually a scalar form of the wave-equation and
each of the individual components are uncoupled from each other - cf. [Paganin, 2006, §1.1]. It
is possible to define a (complex) scalar field u(x, y, z, t) representing any of the components of E
or B such that: (

1
c2
∂2

∂t2
−∇2

)
u = 0. (1.13)

with c = 1/√ε0µ0 (speed of light in vacuum). This complex scalar solution of the d’Alembert
equation can be spectrally decomposed as a superposition of monochromatic fields using the
Fourier transform:

u(x, y, z, t) = 1√
2π

∞∫
−∞

U(x, y, z) exp (−iωt) dω (1.14)

The argument of the integral in Eq. 1.14 implies that the monochromatic field can be written
down as a product of a spatial dependent function and a time dependent function (separation of
variables) [Paganin, 2006, §1.2]. Plugging Eq. 1.14 in Eq. 1.13:

(∇2 + k2)U(x, y, z) = 0, (1.15)

where k = ω/c = 2π/λ is the wavevenumber and λ, the associated wavelength. Eq. 1.15 is
know as the Helmholtz equation. Given a volume in space and boundary conditions, the scalar
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diffraction theory consists in finding the solutions to q. 1.15 [Paganin, 2006, §1.2]. One of the
simplest solutions to the Helmholtz equation in free-space is the so-called plane-wave:

U(r) = A exp(−ik · r) = A exp[−i(kxx+ kyy + kzz)], (1.16)

where A is a complex constant (complex envelope), k = (kx, ky, kz) is the wavevector such as
|k| = k and r = (x, y, z). A second solution is a spherical wave:

U(r) = A

r
exp(−ikr), (1.17)

here |r| = r =
√
x2 + y2 + z2 is the distance from the origin of the wavefront. Defining

henceforth the z−axis as the optical axis, the paraboloidal wave is given by:

U(r) = A

z
exp(−ikz) exp

(
− ikx

2 + y2

2z

)
, (1.18)

Eq. 1.18 is a paraxial20 approximation of the spherical wave defined by Eq. 1.17. The paraboloidal
wave does not, however, formally satisfy the Helmholtz equation as defined by Eq. 1.15. It does
obey a paraxial form of the Helmholtz wave-equation21. This assumes a plane wave as defined
in Eq. 1.16 can be modulated by a complex envelope A(r) that slowly varies along a distance
λ = 2π/k along the optical axis z. It can be shown22 that plugging this modulated plane-wave in
the Helmholtz equation (Eq. 1.15) leads to:(

i2k ∂
∂z
−∇2

T

)
A = 0. (1.19)

where ∇2
T ≡ ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace operator. Eq. 1.19 is the paraxial

Helmholtz equation [Saleh and Teich, 2019, §2.2]. Determining the evolution in space of the
solutions to the Helmholtz equation (Eq. 1.15) or the paraxial Helmholtz equation (Eq. 1.19) is
the core of what is called scalar diffraction theory.

Fresnel diffraction

Consider a Cartesian coordinate system where the z−axis is the optical axis (cf. Fig 1.4),
suppose a transverse component of a wave-field complying with Eq. 1.15 can be completely
described at a position z0, that is, U(x, y, z0) is known for all the xy−plane. The wave-field

20Consider a spherical wave with r = (x, y, z) and that |r| = r =
√
x2 + y2 + z2 and take a sufficiently large

coordinate along the z−axis (optical axis). The paraxial approximation of the spherical wave can be obtained
by choosing points in the xy−plane near enough to the z−axis so that

√
x2 + y2 � z holds. It follows that

r = z
√

1 + (x2 + y2)/z2 can be expanded in a Taylor series: r ≈ z + (x2 + y2)/2z and directly plugged into
the exponent in Eq. 1.17 leading to Eq. 1.18 [Saleh and Teich, 2019, §2.2]. The paraxial approximation of the
spherical wave is also called the Fresnel approximation.

21The Gaussian beam is another very common solution of the paraxial Helmholtz equation. Consider the paraboloidal
wave as defined by Eq. 1.18. Evaluating it along the optical axis at a position z+ = z + ∆z also yields a solution
to the paraxial Helmholtz equation (cf. Eq. 1.19) even if ∆z is a purely imaginary number [Saleh and Teich, 2019,
Exercise 2.2-2]. The Gaussian beam can be obtained from the paraboloidal wave by substituting z in Eq. 1.18 by
z − iz0, for a real z0 [Saleh and Teich, 2019, §3.1]

22The complete derivation of the paraxial wave-equation can be found in [Saleh and Teich, 2019, §2.2.C].
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Fig. 1.4.: Scalar diffraction problem geometry. Σ represents the input plane, where the electric field is
completely defined, that is, U(x0, y0, z0) is known for all (x0, y0, z0), ` is a orthonormal vector
to Σ. Scalar diffraction theory concerns the calculation of an electric field U(x1, y1, z1) in the
output plane with the knowledge of it in the input plane.

distribution in a parallel plane at a position z1 of the optical axis can be calculated using the first
Rayleigh-Sommerfeld diffraction equation [Goodman, 2017, Eq. 3-42]:

U(r1) = k

i2π

x

Σ
U(r0)exp (ik|r1 − r0|)

|r1 − r0|
cos (θ) ds, (1.20)

where r0 = (x0, y0, z0), r1 = (x1, y1, z1), ~̀ is a normal vector parallel to the optical axis, θ is the
angle between −~̀ and the vector r1− r0; and Σ is the xy−plane in z0 where the integration takes
place - cf. Fig 1.4. Eq. 1.20 assumes that |r1 − r0| � λ and is often referred to as the Huygens-
Fresnel principle23 [Goodman, 2017, §3.7]. In the paraxial approximation cos (θ) ≈ 1 and
|r1− r0| =

√
(x1 − x0)2 + (y1 − y0)2 + L2 ≈ L+ [(x1− x0)2 + (y1− y0)2]/2L, where L = z1− z0

with L� |x1 − x0| and L� |y1 − y0|. The latter is know as the Fresnel approximation. Using
this, Eq. 1.20 can be expressed as:

U(x1, y1, z1) = k exp (ikL)
2πiL

∞x

−∞
U(x0, y0, z0) exp

{
ik

2L
[
(x1 − x0)2 + (y1 − y0)2]} dx0dy0,

(1.21)
which is know as the Fresnel diffraction integral [Goodman, 2017, §4.2]. The accuracy of Eq. 1.21
is limited by the Taylor expansion of |r1−r0| = L

√
1 + ρ2/L2, where ρ =

√
(x1 − x0)2 + (y1 − y0)2,

which is usually usually truncated on the linear term24, provided that the phase induced by the
quadratic term of the expansion is much less than the Rayleigh’s quarter-wave criterion, which
limits the maximum phase error to π/4 radians [Born et al., 1999, §9.3]. Neglecting high-order
terms in the approximation of the square-root in Eq. 1.21 can be done if:

3

√
ρ4

λ
� z. (1.22)

23Eq. 1.20 expresses the wave-field evaluated in r1, that is, U(r1) as a sum of spherical wave-fronts originating from
a secondary sources modulated by U(x0, y0, z0) at each point r0 within the aperture Σ.

24The Taylor series expansion in teh vicinity of v = 0 is
√

1 + v = 1 + v
2 −

v2

8 + v3

16 + O(v4) and it converges for
|v| < 1.
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Fraunhofer diffraction

Still analysing Eq. 1.21, the quadratic term in the exponential part of the integrand can be
expanded and rearranged:

U(x1, y1, z1) = k exp (ikL)
2πiL exp

[
ik

2L(x2
1 + y2

1)
]
·

·
∞x

−∞
U(x0, y0, z0) exp

[
ik

2L
(
x2

0 + y2
0 − 2x1x0 − 2y1y0)

]
dx0dy0. (1.23)

Applying the Rayleigh’s quarter-wave criterion to the k(x2
0 + y2

0)/2L term in Eq. 1.23:

4x
2
0 + y2

0
λ

� z, (1.24)

which allows to further simplify Eq. 1.21 into:

U(x1, y1, z1) = k exp (ikL)
2πiL exp

[
ik

2L(x2
1 + y2

1)
]
·

·
∞x

−∞
U(x0, y0, z0) exp

[
− ik

L

(
x1x0 + y1y0)

]
dx0dy0, (1.25)

Eq. 1.25 is known as the Fraunhofer diffraction integral.

Numerical computation of the Fresnel and Fraunhofer diffraction

The numerical calculation of the diffraction integrals is a vast subject and has been addressed
by many authors [D’Arcio et al., 1994], [Kelly, 2014], [Goodman, 2017, §5], [Buitrago-Duque
and Garcia-Sucerquia, 2019] and [Chubar and Celestre, 2019], among others. This arises from
the fact that unless the resulting field U(x1, y1, z1) has an analytical representation, numerically
calculating the integrals in Eq. 1.21 and Eq. 1.25 will forcefully result in tackling issues like
replicas and aliasing. This comes from the fact that the diffraction integrals are intimately
connected with the Fourier analysis.

Upon closer inspection, it is apparent that the Fresnel diffraction integral (Eq. 1.21) is a
two-dimensional convolution type integral [Goodman, 2017, §2.1]:

g(x, y) ∗ h(x, y) =
∞x

−∞
g(u, v)h(x− u, y − u) dudv, (1.26)

which can be computed by invoking the convolution theorem:

g(x, y) ∗ h(x, y) = F−1{F{g(x, y)} · F{h(x, y)}
}
, (1.27)
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ROI

(c)
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(d)

Fig. 1.5.: Replicas and aliasing from numeric calculations of the diffraction integrals. (a) analytical
solution of the integrals have no signal replicas. Sampling the input plane signal will introduce
replicas in the output plane [Kelly, 2014]. (b) appropriate sampling - cf. Eq. 5 in [Chubar and
Celestre, 2019] - makes the unavoidable replicas appear far enough so that cross-talk between
them is negligible within the region of interest (ROI). (c) coarser sampling brings replicas
closer together to a point that (d) replicas are so close that aliasing is apparent (red signal).

where F{•} is the two-dimensional Fourier transform and F−1{•} denotes inverse Fourier
transform:

F{g(x, y)} =
∞x

−∞
g(x, y) exp

[
− i2π(fxx+ fyy)

]
dxdy (1.28a)

F−1{G(fx, fy)} =
∞x

−∞
G(fx, fy) exp

[
i2π(fxx+ fyy)

]
dfxdfy. (1.28b)

It is common to represent the Fourier analysis and syntheses as F{g(x, y)} ≡ G(fx, fy) and
F−1{G(fx, fy)} ≡ g(x, y), where (fx, fy) are generally referred to as frequencies. The Fresnel
diffraction integral in Eq. 1.21 can be rewritten as a convolution (Eq. 1.27) where the kernel,
that is F{h(x, y)}, has an analytical solution:

k

2πiLF{h(x, y)} = k

2πiLF
{

exp
[
ik

2L
(
x2 + y2)]} = exp

[
− i2Lπ2

k

(
f2
x + f2

y

)]
, (1.29)

This formulation allows to calculate the Fresnel diffraction integral (Eq. 1.21) by means of the
convolution theorem (Eq. 1.27) by applying a Fourier transform to the input field, multiplying
it by an analytical kernel and applying an inverse Fourier transform to the result. It is also
evident that the Fraunhofer diffraction integral (Eq. 1.25) is a Fourier type integral, differing
from Eq. 1.28a by a multiplicative factor outside the integrand.
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It should be clear, then, that the paraxial diffraction equations are intertwined with Fourier
analysis. Numerically computation of the Fresnel or Fraunhofer diffraction implies a-) sampling
the input plane U(x0, y0, z0) and b-) limiting its extent by either defining an aperture of finite
extent or simply by cropping (truncating) the input field. It follows from sampling theory and
the discrete Fourier transform (DFT) [Bracewell, 2000, §10 & §11] that sampling the input field
causes replicas of the main signal to appear (cf. Fig. 1.5). Generally, the finer the sampling in
the input plane, the further apart the replicas. Consequently, the coarser the mesh, the closer
they become until the replicas are close enough to each other that they start cross-talking. The
interaction between the main signal and its replicas is called aliasing. Due to the finite extent
of the input plane (either by limiting the signal with an aperture or by simply truncating it), it
is inevitable that power from neighbouring replicas leaks into each other. Sampling should be
sufficiently high to make this inevitable cross-talk negligible [Kelly, 2014]. On the other hand,
a very dense sampling leads to very inefficient calculations largely because of the size of the
input and output planes - cf. considerations in [Goodman, 2015, §5]. Efforts towards memory
and CPU efficient computation of the Fresnel free-space propagator in Fourier optics have been
reported in [Chubar and Celestre, 2019].

1.2.2 Transmission elements

The propagation of X-rays in the presence of matter can also be modelled with the Maxwell
equations (Eqs. 1.9). It is possible to derive a Helmholtz equation in the presence of scatterers
with a similar treatment given in the previous section, albeit considerably more algebraic - a
detailed account of the derivation is given by [Paganin, 2006, §2.1]. Restricting the analysis
to linear isotropic non-magnetic materials where both the electric permittivity and magnetic
permeability are independent of time (static medium) and considering again that the waves exist
in a uncharged and non-conducting material, that is, ρ = 0 and J = 0:[

ε(x, y, z)µ0
∂2

∂t2
−∇2

]
E(x, y, z, t) = 0, (1.30a)

[
ε(x, y, z)µ0

∂2

∂t2
−∇2

]
B(x, y, z, t) = 0. (1.30b)

considering that the scatterers are sufficiently slowly varying when compared to the radiation
wavelength - cf. Eqs. 2.18-2.21 in [Paganin, 2006]. Eqs. 1.30 resemble the vectorial wave-
equations 1.11 and 1.12. This enables application of the same scalar treatment used for deriving
the Helmholtz equation in free-space, that is, to propose a scalar field u(x, y, z, t) such as:

[
ε(x, y, z)µ0

∂2

∂t2
−∇2

]
u = 0, (1.31)

and spectrally decompose u in its monochromatic Fourier components U(x, y, z) exp (−iωt) (cf.
Eq. 1.14):

u(x, y, z, t) = 1√
2π

∞∫
−∞

U(x, y, z) exp (−iωt) dω
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Fig. 1.6.: (a) arbitrary-shaped scattering volume in free-space. (b) transmission element representation
of said scatterer. The 3D model was taken from the 3D shapes library in the Paint 3D software
from the Microsoft Corporation.

This Fourier integral can be substituted into Eq. 1.31, giving the Helmholtz equation in the
presence of scatterers25: [

∇2 + k2n2(x, y, z)
]
U(x, y, z) = 0, (1.32)

where n is the wavelength-dependent refractive index such that n(x, y, z)2 ≡ ε(x, y, z)/ε0. This
version of the Helmholtz equation for a inhomogeneous medium can rarely be solved exactly
and approximations are necessary to handle it [Paganin, 2006, §2.1]. The same argument used
to derive the paraxial Helmholtz equation (Eq. 1.19) can be applied here. Assuming a plane
wave (Eq. 1.16) modulated by a complex envelope A(r) slowly varying along a distance λ and
substituting it into Eq. 1.32 yields:{

2ik ∂
∂z
−∇2

T + k2[n2(x, y, z)− 1
]}
A = 0. (1.33)

which is known as the paraxial Helmholtz equation in matter. Eq. 1.33 is compatible to the
treatment used for propagating the wave-fields in free-space - cf. [Paganin, 2006, Eq. 2.33].
Notice that Eq. 1.33 reduces to Eq. 1.19 for n = 1.

The projection approximation

Consider an arbitrary-shaped scattering volume as shown in Fig. 1.6(a). Suppose that such
scatterer is completely confined within a region z0 ≤ z ≤ z1 and outside that there is vacuum.
Let this sample be illuminated by a plane-wave moving along the positive direction of the optical

25cf. [Paganin, 2006, Eq. 2.28].
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axis (z−axis). In the absence of the scatterer, the gradient between the z = z0 and z = z1 planes
is very well defined and parallel to the optical axis, as shown in Fig. 1.6(b-i). It follows from
[Paganin, 2006, §2.2] that if the scatterer is sufficiently weak as to minimally disturb the path
that the wave-field would have taken in its absence, cf. Fig. 1.6(b-ii), the transmission of a
wave-field through this sample is given by:

U(x, y, z1) ≈ exp
{
− ik

2

z=z1∫
z=z0

[
1− n2(x, y, z)

]
dz
}
U(x, y, z0). (1.34)

Eq. 1.34 shows that the effect of a weak scatterer can be accounted by a multiplicative complex
transmission element represented by the complex exponential. In the X-ray regime the index
of refraction is typically very close to unity and often expressed as n = 1 − δ + i · β [Als-
Nielsen and McMorrow, 2011, §1.6], which allows for the approximation 1 − n(x, y, z)2 ≈
2
[
δ(x, y, z) + i · β(x, y, z)

]
that can be substituted in Eq. 1.34. The z−dependence of δ and β is

abandoned in the projection approximation, hence the complex transmission element in Eq. 1.34
can be reduced to:

T(x, y, z) = exp
{
− ik

z=z1∫
z=z0

[
δ(x, y) + i · β(x, y)

]
dz
}

= exp
{
− ik

[
δ(x, y) + i · β(x, y)

]
∆z(x, y)

}
,

T
[
∆z(x, y)] =

√
TBL(x, y) exp

[
iφ(x, y)

]
. (1.35)

and:

TBL(x, y) = exp
[
− 2kβ(x, y)∆z(x, y)

]
(1.36a)

= exp
[
− µ(x, y)∆z(x, y)

]
,

φ(x, y) = −kδ(x, y)∆z(x, y). (1.36b)

∆z is the projected thickness along the z−axis and it depends on the transverse coordinates
(x, y), which can be dropped out for a more concise representation.

Because of the multiplicative nature of the transmission element, Eq. 1.35 can be put in
operator26 form:

T(∆z) • =
√

TBL(∆z) exp [iφ(∆z)] • . (1.37)

Eq. 1.36a shows the absorption experienced by the wave-field when passing through matter
(Beer-Lambert law) and Eq. 1.36b shows the phase-shift experienced by the wave-field. The
coefficient µ multiplying ∆z in TBL (Eq. 1.36a) is known as the linear attenuation coefficient µ
[Als-Nielsen and McMorrow, 2011, §1.6].

26Using the operator formulation was inspired by discussions with David Paganin (Monash University, Australia) and
Vincent Favre-Nicolin (ESRF, France).
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The multi-slice approximation

For the cases where the projection approximation may not be adequate to correctly represent
the scattering volume in question, multi-slicing techniques27 (MS) can be used for describing the
wave-field propagation inside an arbitrary-shaped scattering volume - cf. discussion in [Paganin,
2006, §2.7], [Li et al., 2017] and [Munro, 2019].

Consider the scatterer depicted in Fig. 1.6(a). If its presence considerably disturbs the path
that the wave-field would have taken in its absence, cf. Fig. 1.6(b-iii), it is possible to section the
sample into a number N of parallel slabs until the projection approximation is valid between
two adjacent slices - Fig. 1.6(b-iv). The projected thickness ∆z to be used in Eq. 1.35 is the one
in between slices, which are ∆S = (z1 − z0)/N apart from each other. Each slice represented
as a thin element in projection approximation is separated by vacuum. The propagation of a
wave-field propagation through this sample is done step-wise, where each step is composed of
a multiplication by a complex transmission element in projection approximation (cf. Eq. 1.35)
and a Fresnel free-space propagation (Eq. 1.21) over a distance ∆S . The output field from this
operation is again multiplied by complex transmission element in projection approximation
followed by a free-space propagation from the plane ψj to the ψj+1 - refer to Fig. 1.6(b-iv).
This operation is done recursively N times until the wave-field emerges from the sample. The
multi-slicing transmission operator can be written in operator form as:

TMS =
N∏
j=1
D(∆S)

[
Tj(∆z) •

]
(1.38)

where
∏

indicates concatenation of operators to be performed from right to left, D(∆S) is the
operator formulation of the Fresnel free-space propagation over a distance ∆S:

D(∆S) • = k exp (ik∆S)
2πi∆S

∞x

−∞
• exp

{
ik

2∆S

[
(x1 − x)2 + (y1 − y)2]} dxdy, (1.39)

and Tj(∆z) is the j−th complex transmission element operator in projection approximation
associated with the j−th slice given by Eq. 1.37.

– On the validity of the Fresnel approximation for short propagation distances28

A case of particular importance for X-ray optical design is the application of the Fresnel
propagators in real or reciprocal space to very short propagation distances (from millimetres
to hundreds of micrometres) at hard X-ray energies (wavelength of the order of the Ångstrom)
with physical apertures of the order of the millimetre. For situations of practical interest such as
the one just described, Eq. 1.22 is generally very restrictive. This section presents conditions
under which this constraint can be relaxed and even overlooked.

27This technique was first described in the context of the scattering of electrons by atoms and crystals [Cowley and
Moodie, 1957].

28The author acknowledges the fruitful discussions with David Paganin (Monash University, Australia), Peter Munro
(University College London, England), Oleg Chubar (Brookhaven National Lab., USA) and Chris Jacobsen (North-
western University/Argonne National Lab., USA) when investigating the application of the Fresnel approximation
for short propagation distances.
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Consider an X-ray wavefield with wavelength λ = 1 Å fully illuminating an aperture
A = 500 µm situated at z = z0 along the optical axis as shown in Fig. 1.4. The X-rays passing
through such an aperture will illuminate an identical aperture A at a distance z1 − z0 = L.
Suppose one wants to place the second aperture at a distance L such that it is possible to
calculate the field distribution in z1 using the Fresnel diffraction integral in Eq. 1.21. Using
Eq. 1.22 with the extreme points29 given by (x0 = −A/2, y0 = 0) and (x1 = A/2, y1 = 0), one
concludes that L� 86 mm. However, if one wants to place the second aperture at a distance of
L = 1 mm and still be able to safely apply Eq. 1.21 to calculate the field distribution in z0, the
apertures should be reduced to A� 18 µm according to Eq. 1.22. The situation just described is
at odds with the employment of the Fresnel propagator for very short propagation distances at
hard X-ray energies with physical apertures of the order of the millimetre. Yet, with the exception
of [Ali and Jacobsen, 2020], that explicitly uses the Huygens-Fresnel principle [Goodman, 2017,
§3.7] in its reciprocal form for the wavefield propagation30, authors make extensive use of the
Fresnel propagator for multi-slicing applications under these conflicting conditions [Li et al.,
2017; Munro, 2019; Celestre et al., 2020]. Possibly one of the few explicit mentions of the
propagation distance relation to the transverse plane size applied to multi-slicing techniques
is given by Eq. 15 in [Ishizuka and Uyeda, 1977]. It turns out that, indeed, Eq. 1.22, when
applied to a collimated beam (either a plane-wave or a slowly diverging/converging wave), is
too restrictive and can be overlooked when applied to MS modelling of weak scatterers.

In [Southwell, 1981] the Fresnel diffraction integral (Eq. 1.21) is directly compared with
the Huygens-Fresnel integral (Eq. 1.20) in terms of amplitude and phase, it was shown that
the Fresnel approximation has good accuracy: within 2% in amplitude and 0.02 rad in phase,
when compared to the Huygens-Fresnel integral. The findings hold even for very high Fresnel
numbers31 along the optical axis within the projected aperture, that is, ∀ (x, y) ∈ A - [cf. Figs. 1–
4 ibid.]. However, for points outside that region (∀ (x, y) /∈ A) at very high Fresnel numbers
(shadow region), the approximation breaks down: although the amplitude calculation retains
good agreement, the phase errors become unacceptably high [cf. Fig. 10 ibid.].

Another study that confirms the validity of the Fresnel approximation for a collimated beam
being propagated over a very short distance is presented by [Rees, 1987]. This work not only
confirms the numerical findings in [Southwell, 1981] but also provides physical explanations,
some analytical formulations and derives quantitatively the shape of the region where the Fresnel
approximation is valid. By applying directly Eq. 1.22 and Eq. 1.24, one obtains the the regions
of validity for both Fresnel and Fraunhofer integrals as shown in Fig. 1.7(a), in which case,
zFresnel is given by Eq. 1.22 - cf. Eq. 7 in [Rees, 1987]. The relaxing of such constraints is done
by invoking the concept of Fresnel zones32 and how much contribution they have to the total
amplitude and phase of the propagated beam. Considering that the first zone is unobstructed by

29For simplicity, the 1D case is analysed, but the conclusions are easily translated to a 2D system if U(x, y) =
U(x)U(y).

30cf. Eq. 22 or procedure PropShort in Algorithm 1 from [Ali and Jacobsen, 2020].
31The Fresnel number is defined as NF = a2/λL, where a is the half aperture, λ is the wavelength and L is the

propagation distance. A high Fresnel number indicates the region known as near-field, while the far-field region
is known for its low Fresnel numbers. In [Southwell, 1981], it is reported that even for L < a good agreement
between the Fresnel approximation and the Huygens-Fresnel integral is found for a point within the projected
aperture.

32cf. [Hetch, 2017, §10.3.1]
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(a) (b)

Fig. 1.7.: The Fresnel and Fraunhofer approximations region of validity according to the (a) Eqs. 1.22
and 1.24. For a gently divergent, convergent or plane wavefield the constraints can be
relaxed, increasing the region o applicability of said approximations. Region I represents the
shadow zone, where neither approximations are valid. Region II is where only the Fresnel
approximation is valid. In region III, both approximations coexist, the Fraunhofer being
advantageous computationally. Region IV illustrates an area where only the Fraunhofer
approximation is valid - this counter-intuitive result is discussed in [Rees, 1987], but is out
of the scope here. The boundaries between regions I and II have been exaggerated for clarity.
This figure is adapted from Fig. 4 and Fig. 5 in [Rees, 1987].

the aperture A, which is the case for all points not within the shadow region, the distance where
the Fresnel diffraction integral starts to be accurate can be as low as zFresnel = 2λ - cf. Eq. 9 in
[Rees, 1987]. This more relaxed regime is represented in Fig. 1.7(b).

Based on the results from [Southwell, 1981] and [Rees, 1987], it is possible to affirm that
provided the object is illuminated with a plane wave and the output field is calculated in the
vicinity of the projected aperture, the application of the Fresnel diffraction integral to very short
propagation distances for hard X-ray optics modelling with MS techniques is not limited to
the constraints imposed by Eq. 1.22. Cases of interest often have non-plane-wave illumination
and require special handling to ensure MS with the Fresnel diffraction integral yields accurate
results. Approaches that rely on spherical-to-plane-wave conversion are often employed to
avoid such accuracy issues: the angular spectrum of plane waves decomposition [Paganin, 2006,
§1.3]33, the Fresnel-scaling theorem [Paganin, 2006, §A], the divergent-beam-to-plane-wave
transformation from [Munro, 2019] and the analytical treatment of the quadratic phase term
[Chubar and Celestre, 2019], which is of particular interest within the context of this work, as it
is the chosen method for the free-space wavefront propagation simulations presented here.

– Real and reciprocal space Fresnel propagators at short propagation distances

Because of the equivalency of the Fresnel diffraction integral (Eq. 1.21) and the convolution
integral (Eq. 1.26), one can define the kernel of the Fresnel transform in real-space as:

h(x, y) = exp
[
iπ

λL

(
x2 + y2)], (1.40)

33Also in [Goodman, 2017, §3.10 & §4.2.4].
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while the kernel of the Fresnel transform in reciprocal-space is given by:

H(fx, fy) = exp
[
− iπλL

(
f2
x + f2

y

)]
. (1.41)

The Eqs. 1.40 and 1.41 are related by: H(fx, fy) = i/(λL) · F{h(x, y)} (cf. Eq. 1.29). When
propagating a wave-field over a very small distance L with the Fresnel diffraction integral, the
argument of the exponential function in the transformation kernel in real-space becomes very
large and the kernel becomes less well-behaved due to fast oscillations, consequently small
propagation distances are better represented in the reciprocal space. This hints to the fact that
when numerically evaluating the Fresnel transform for short propagation distances, methods
using the reciprocal-space are more advantageous than in real-space and constrains like the
Eq. 1.22 can be overlooked provided the non-paraxial components of the Fourier spectrum of
the input wavefield is negligible.

– The analytical treatment of the of the quadratic radiation phase term34

Consider an uncollimated wave-field U(x0, y0, z0) in free-space (eg. Eq. 1.17). The phase
term of such wave has quadratic terms with radii of curvature in the horizontal and vertical
planes Rx and Ry and the transverse coordinates of the centre point (xc, yc). It is possible to
rewrite U(x0, y0, z0) as:

U(x0, y0, z0) = F (x0, y0, z0) exp
{
ik

2

[
(x0 − xc)2

Ry
+ (y0 − yc)2

Ry

]}
, (1.42)

where F (x0, y0, z0) is the residual wavefront after the quadratic phase term is factorised.
This residual wave-field satisfies the necessary conditions for the compliance with the Fresnel
propagation of collimated beams through very short propagation distances as required by
[Southwell, 1981] and [Rees, 1987]. Substituting Eq. 1.42 in the Fresnel diffraction integral
(Eq. 1.21):

U(x1, y1, z1) = k exp (ikL)
2πiL

∞x

−∞
F (x0, y0, z0)·

· exp
{
ik

2

[
(x1 − x0)2 + (y1 − y0)2

L
+ (x0 − xc)2

Ry
+ (y0 − yc)2

Ry

]}
dx0dy0, (1.43)

which can be conveniently expressed as:

U(x1, y1, z1) = F (x1, y1, z1) exp
{
ik

2

[
(x1 − xc)2

Ry + L
+ (y1 − yc)2

Ry + L

]}
, (1.44)

34The analytical treatment of the of the quadratic radiation phase terms was introduced in 2007 for the SRW code
[Chubar et al., 2008] (cf. §1.3.2 in §1.3 - X-ray optical simulations). A more detailed description of the memory
and CPU efficient computation of the Fresnel free-space propagator in Fourier optics simulations is given by
[Chubar and Celestre, 2019], from which this section is partially based on.
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with:

F (x1, y1, z1) = k exp (ikL)
2πiL

∞x

−∞
F (x0, y0, z0)·

· exp
{
ik

2L

[
Rx + L

Rx

(
Rxx1 + Lxc
Rx + L

− x0

)2

+ Ry + L

Ry

(
Ryy1 + Lyc
Ry + L

− y0

)2]}
dx0dy0. (1.45)

It is evident that much like Eq. 1.21, Eq. 1.45 is a convolution-type integral with analytical Fourier
transform of the convolution kernel, hence the discussion presented in Numerical computation of
the Fresnel and Fraunhofer diffraction in §1.2.1 - Free-space propagation is still applicable and the
advantages of the wave propagation at very short distances in reciprocal space are maintained.
The analytical treatment of the quadratic radiation phase term reduces significantly the required
transverse sampling of the wave-field without compromising the accuracy of calculation, as the
oscillations of the residual electric field are less rapid and require less dense sampling. Another
advantage of such rewriting of the Fresnel diffraction integral is that the convolution shown
in Eq. 1.45 takes place with respect to the scaled transverse coordinates x1 ·Rx/(Rx + L) and
y1 ·Ry/(Ry + L). When using the convolution-theorem formulation of free-space propagation
(cf. Eqs. 1.26 and 1.27), the scaled coordinates re-scale without any additional re-sampling nor
interpolation the output plane by ∆x1 = ∆x0 ·(Rx+L)/Rx and ∆y1 = ∆y0 ·(Ry+L)/Ry, where
∆x0 and ∆y0 are the input plane dimensions. The formulation shown in Eqs. 1.44 and 1.45 has
singularities at Rx + L = 0 and Ry + L = 0, which happens when calculating the propagation of
a wavefront after a focusing element at the image plane. The singularities can be dealt with by
simply applying a R′x 6= 0 and R′y 6= 0 such as they are near Rx and Ry, but avoid the singularity.
Using R′x 6= 0 and R′y 6= 0 still reduces the required transverse sampling and re-scales the output
plane when propagating the wave-field by using the convolution-theorem formulation. The
free-space propagation presented throughout this work is numerically calculated considering the
analytical treatment of the quadratic radiation phase term as described in this section.

1.2.3 Optical coherence

Within the context of accelerator-based X-ray sources, more specifically, undulators in storage
rings, it has been shown previously that increasing the brilliance of the X-rays by emittance
matching (cf. Eq. 1.5 and Fig.1.2) implies increasing the coherent fraction of the emitted X-rays
(Eq. 1.8). Later on, this increased coherent flux was used to justify using physical optics among
the optical theories (Fig. 1.3) to provide a framework for describing X-rays propagation in
free-space and within matter. The word coherence, be it temporal or spatial, has been used
throughout this work but without a clear definition. This section should clarify its concept in the
context of synchrotron radiation and provide some basic definitions35.

Mutual coherence function and cross-spectral density

Emission of synchrotron radiation is a fundamentally random process and as such, it should
be treated probabilistically. It has been demonstrated that although SR is intrinsically not

35The developments shown in this section are based on [Mandel and Wolf, 1995, §4].
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stationary36 nor homogeneous37, under realistic conditions (practical cases of interest) SR can
be considered quasi-stationary and quasi-homogeneous thus the formalism of statistical optics
can be applied [Geloni et al., 2008].

Consider an arbitrary complex scalar wave-field u(r, t), where r = (x, y, z), satisfying the
wave-equation 1.13. The correlation between the spatial and temporal fluctuations of u(r, t) at
two different positions in space, that is r1 = (x1, y1, z1) and r2 = (x2, y2, z2), and separated by a
time delay38 τ = t2 − t1 is given by the mutual coherence function39 (MCF):

Γ(r1, r2, τ) =
〈
u∗(r1, t)u(r2, t+ τ)

〉
, (1.46)

where •∗ indicates the complex conjugate. The normalised form of this cross-correlation function
(Eq. 1.46) is called the complex degree of coherence40 (CDC):

γ(r1, r2, τ) = Γ(r1, r2, τ)√
Γ(r1, r1, 0)Γ(r2, r2, 0)

, (1.47)

where the averaged intensity at a point r is given by:
〈
I(r, t)

〉
=
〈
u∗(r, t)u(r, t)

〉
= Γ(r, r, 0).

The absolute value of Eq. 1.47 is limited: 0 ≤ |γ(r1, r2, τ)| ≤ 1, where |γ| = 0 means total
uncorrelation and |γ| = 1 denotes full correlation of the fluctuations at positions r1 = (x1, y1, z1)
and r2 = (x2, y2, z2) temporally separated by τ [Saleh and Teich, 2019, §11]. The extreme cases
of |γ(r1, r2, τ)| = 0 and |γ(r1, r2, τ)| = 1 for all possible combinations of r1 and r2 are known as
fully-incoherent and fully-coherent cases and all values in between those imply partially coherent
radiation. Eq. 1.47 is connected to the cross-spectral density (CSD) by a Fourier transform41

with respect to τ :

W (r1, r2, ω) =
∞∫
−∞

Γ(r1, r2, τ) exp (−iωt) dτ . (1.48)

The normalised cross-spectral density function42 is given by:

µ(r1, r2, ω) = W (r1, r2, ω)√
W (r1, r1, ω)W (r2, r2, ω)

. (1.49)

Eq. 1.49 is known as the spectral degree of coherence (SDC) and much like the absolute value
of Eq. 1.47, it is bounded by 0 ≤ |µ(r1, r2, ω)| ≤ 1. Although the mutual coherence function
(Eq. 1.46) and the cross-spectral density (Eq. 1.48) are connected by a Fourier transform, the
complex degree of coherence (Eq. 1.47) and the spectral degree of coherence (Eq. 1.49) are not
[Mandel and Wolf, 1995, §4.3.2].

A well known result from coherence theory and the cross-spectral density representation of
the mutual coherence function is the coherent mode representation of partially coherent fields

36A statistical process is stationarity if all ensemble averages are independent of time, which is not the case for
synchrotron radiation. The averaging brackets 〈•〉 indicate average over the bunches instead.

37Homogeneity implies a constant ensemble-averaged intensity along the transverse direction.
38The dependency of Γ on τ and not explicitly on (t1, t2) comes from the "wide-sense stationary" characteristic of the

wave-field [Geloni et al., 2008].
39cf. Eq. 4.3-6 in [Mandel and Wolf, 1995].
40cf. Eq. 4.3-12a in [Mandel and Wolf, 1995].
41Wiener–Khinchin theorem - cf. §2.4 in [Mandel and Wolf, 1995].
42cf. Eq. 4.3-47a in [Mandel and Wolf, 1995].
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in free-space [Mandel and Wolf, 1995, §4.7.1]. It is possible to decompose the CSD in a infinite
sum of coherent modes43:

W (r1, r2, ω) =
∞∑
j=1

αj(ω)Φ∗j (r1, ω)Φj(r2, ω), (1.50)

where αj(ω) are the weights (eigenvalues) of the corresponding modes (eigenfunctions) Φj(r, ω).
The modes described in Eq. 1.50 form an orthonormal set and maximise the CSD, that is,
0 ≤ αj+1(ω) < αj(ω), making the truncation optimal. If the wave-field is completely coherent,
it can be represented by a single mode [Mandel and Wolf, 1995, §4.7]. Equation 1.50 bares
the same formalism as the density matrix representation via ensemble average in quantum
mechanics [Bazarov, 2012]. Defining the mode occupancy as:

ηm = αm(ω)
∞∑
j=1

αj(ω)
, (1.51)

allows to define the coherent fraction as the occupancy of the first mode η1 (cf. Eq. 1.8) [Glass
and Sanchez del Rio, 2017].

Spatial coherence

In the quasi-monochromatic regime44 Eqs. 1.46 and 1.47 can be approximated as:

Γ(r1, r2, τ) ≈ J(r1, r2) exp
(
iω0τ

)
, (1.52)

γ(r1, r2, τ) ≈ j(r1, r2) exp
(
iω0τ

)
. (1.53)

The aforementioned approximations are valid given that |τ | � 1/∆ω, where ∆ω is the radiation
bandwidth and ω0 is its centre. The quantities J(r1, r2) ≡ Γ(r1, r2, 0) and j(r1, r2) ≡ γ(r1, r2, 0)
are known as the equal-time-correlation functions45. J(r1, r2) is called the mutual optical
intensity (MOI) and j(r1, r2) is the complex degree of spatial coherence. The transverse coherence
length can be arbitrarily defined as a ∆cl⊥ = |r2 − r1| to which j(r1, r2) falls below a certain
threshold46. Alternatively, the transverse coherence length can be approximated by the van-
Cittert-Zernike theorem47 - cf. [Mandel and Wolf, 1995, §4.4.4] and [Saleh and Teich, 2019,
§11.3.C]. The experiment in classical optics mostly associated with the spatial coherence is the
Young’s double slit experiment [Goodman, 2015, §5.2.1].

43cf. Eq. 4.7-9 in [Mandel and Wolf, 1995].
44Conditions for the quasi-monochromatic regime in the context of SR are discussed in [Geloni et al., 2008, §2.3].
45cf. Eqs. 4.3-31–4.3-35 in [Mandel and Wolf, 1995].
46Threshold values are arbitrary, but commonly encountered metrics are: 1/2, 1/e or 1/e2 of the normalised peak

intensity.
47The applicability of the van-Cittert-Zernike theorem to SR is discussed in [Geloni et al., 2008, §4].
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Temporal coherence

Alternatively, Eqs. 1.46 and 1.47 can be evaluated at a fixed position r, giving rise to to the
(temporal) coherence function and the complex degree of (temporal) coherence, respectively:
Γ(r, r, τ) and γ(r, r, τ):

Γ(r, r, τ) =
〈
u∗(r, t)u(r, t+ τ)

〉
, (1.54)

γ(r, r, τ) = Γ(r, r, τ)
Γ(r, r, 0) . (1.55)

The Fourier transform of Eq. 1.54 with respect to τ , F
{
Γ(r, r, τ)

}
≡ S(r, ω), is called the

spectrum density of the wave-field. Similarly, a longitudinal coherence length can be arbitrarily
defined as a ∆cl‖ = cτ to which γ(r, r, τ) falls below a certain threshold. The experiment in
classical optics mostly associated with the temporal coherence is the Michelson’s interferometer
experiment [Goodman, 2015, §5.1.1].

Recommended literature

A comprehensive introduction to the scalar-wave-theory is presented by [Paganin, 2006,
§1 & §2] and [Goodman, 2017]. The concept of degree of coherence and its applications to
optical problems is presented in [Zernike, 1938] and for a deeper look into statistical optics and
partially-coherent fields, please, refer to [Mandel and Wolf, 1995, §4], [Born et al., 1999, §10]
or [Goodman, 2015, §5].

1.3 X-ray optical simulations

There are several software packages for optical design in the X-ray range48: SHADOW
[Cerrina, 1984], RAY [Schäfers, 2008], McXtrace [Bergbäck Knudsen et al., 2013] and xrt
[Klementiev and Chernikov, 2014] among others for ray-tracing calculations; and PHASE
[Bahrdt, 1997], SRW [Chubar and Elleaume, 1998], WISEr [L. Raimondi and Spiga, 2010] and
xrt [Chernikov and Klementiev, 2017] to name a few wave-propagation codes. From those,
SHADOW (ray-tracing49) and SRW (wave-propagation) are by far the most widely used and
bench-marked [Sanchez del Rio, 2013; Chubar, 2014]. The choice of technique for optical
beamline50 simulation is based on several criteria, but is usually intimately connected to the
expected physical effects to be observed, the degree of coherence of the X-rays and the required
accuracy [Sanchez del Rio et al., 2019].

48As opposed to the optical systems design for the visible range, X-ray optical systems can often use strongly off-axis
configurations with grazing incidence angles for reflective optics, crystals and other niche-specific optical elements.
X-ray sources also differ from common visible light sources and often require special models (bending magnets,
wigglers, undulators). Consequently, traditional approaches and commercial software for visible light are often
ill-suited for X-ray optical simulations.

49Phase ray-tracing - cf. [Lee and Zhang, 2007; Sanchez del Rio et al., 2011].
50In accelerator-based X-ray physics, the optical system transporting the radiation from the accelerator to the sample

is called beamline.
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(c) partially-coherent simulation

Fig. 1.8.: X-ray beamline optical simulation methods based on the degree of spatial coherence. A beamline
is composed of drift-spaces (free-space) and optical elements (OE). (a) ray tracing methods
are more adequate for cases where the degree of spatial coherence is low

(
|j(r1, r2)| ≈ 0

)
. (b)

When the degree of coherence is close to unity
(
|j(r1, r2)| ≈ 1

)
wave-propagation methods are

better suited, as they account for diffraction effects. (c) partially-coherent simulation surpasses
the accuracy of pure ray tracing or wave-propagation for cases where 0� |j(r1, r2)| � 1.

In general51 synchrotron radiation has very poor temporal coherence properties52, that is,
|γ(r, r, τ)| ≈ 0. It follows that any reference to coherence in this thesis (or lack thereof) implies
spatial coherence.

1.3.1 Ray-tracing

For the cases where synchrotron radiation has low spatial coherence, that is, the complex
degree of spatial coherence |j(r1, r2)| ≈ 0 for a pair of points near opposed edges of the beam
footprint, ray-tracing techniques are often employed. The radiation source is simulated by
Monte-Carlo sampling of the photon-beam phase-space53 described by specific numerical models
[Canestrari et al., 2013] and each photon sampled from the source is transported through the
beamline using geometrical optics54. The propagated rays are accumulated at the observation

51For typical electron-bunch lengths larger than ∼ 30 ps, high energies and normal monochromatisation conditions
[Geloni et al., 2008].

52A poor temporal coherence, typical of synchrotron radiation, is connected by a Fourier transform to the broad-band
nature of such radiation. See also [Mandel and Wolf, 1995, §4.4.3].

53Three spatial coordinates, two transverse angles to describe direction, and the electron-beam energy - the electrons
in a storage ring have a Gaussian distribution around the central design energy. The statistical emission of photons
is the cause of a change of electron energy leading to energy spread within the electron beam [Wiedemann, 2015,
8.3.1].

54Geometric optics is the limit of the physical optics theory when λ goes to zero [Saleh and Teich, 2019, §1.3.C &
§2.3]. In free-space rays propagate in a straight line and have their direction changed by interacting with optical
elements. By adding to this pure geometrical model some physical properties, namely, polarisation, intensity
and wavelength, it is possible to account for several optical elements based on specular reflection, refraction and
diffraction.
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plane. To generate enough statistics and allow the method to converge, several thousands of
rays are typically used - cf. Fig. 1.8(a). Ray-tracing is a simple, fast and extremely powerful
technique for calculating the main characteristics of the photon beam (size, divergence, photon
distribution) at every plane along the beamline when diffraction effects are negligible.

1.3.2 Wave propagation

The other extreme is the fully coherent case, that is |j(r1, r2)| ≈ 1 for any two pair of points
r1 and r2 inside the beam footprint. This regime is often prone to diffraction effects and the
framework for dealing with those is best given by wave-propagation, which follows physical
optics principles - cf. §1.2 - Physical optics. The X-ray source can be simply approximated by
any solution of the Helmholtz equation (Eq. 1.15) or its paraxial form given by Eq. 1.19. The
most commonly used solutions are the plane wave (Eq. 1.16), the spherical wave (Eq. 1.17),
the parabolic wave (Eq. 1.18) and the Gaussian beam (not covered here). Alternatively, the
wavefront emerging from any accelerator-based X-ray source described by an arbitrary magnetic
field can be calculated [Chubar, 1995, 2001]. This wave-field can then be propagated in the
free-space between the optical elements using the diffraction integrals (cf. Eqs. 1.20, 1.21 or
1.25). The interaction between the wave and optical elements in the beamline is done by the
calculation of the appropriate transmission element55. After the said wave is propagated to the
observation plane, the intensity and phase can be calculated.

1.3.3 Partially coherent simulations

When performing optical design for X-ray beamlines in synchrotron radiation facilities,
there are several cases of interest that are neither well approximated by |j(r1, r2)| ≈ 0 nor
by |j(r1, r2)| ≈ 1 for a pair of points near opposed edges of the beam footprint. Using pure
ray-tracing or a single-wave-field propagation to those partially-coherent cases may lead to
inaccurate results [Sanchez del Rio et al., 2019]. With varying accuracy, several methods can
account for partial-coherence effects.

Hybrid methods

One class of methods is based on the so-called hybrid methods mixing elements of ray-
tracing and wave propagation simulations [Semichaevsky and Testorf, 2001]. One common
approach is to simulate the geometric effects from optical elements with ray-tracing and their
diffraction contributions56 with wave optics. The diffraction caused by the optical elements is
then integrated into ray-tracing by numerical convolution and sampling the calculated wave-front
with rays [Shi et al., 2014]. Another approach is to take into account the optical path followed
by individual rays and asserting to them a phase and interpreting them as a localised phase of
the wave-front. If sampling is sufficiently high, it is possible to reconstruct a wave-front. These

55In addition to the theory describing the propagation of X-rays in the matter (§1.2.2 - Transmission elements) a
variety of optical elements can be simulated within the wave optics by being able to describe them adequately as
transmission elements, similar to a transfer function in signals and systems theory - cf. [Canestrari et al., 2014; Li
et al., 2017].

56Diffraction contributions are usually due to beam clipping by either physical acceptance of an optical element or
slits and optical errors.
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special rays are propagated through the beamline using ray-tracing techniques and are added
coherently57 at the observation plane [Keller, 1962].

Physical-optics-based methods

A second class of methods involves purely wave-front propagation methods. The radiation
from the X-ray source can be decomposed in orthogonal modes. These can be propagated though
the beamline using the physical optics principles described in §1.2 - Physical optics. Once the
modes are propagated to the observation plane, they can be added in intensity58. X-rays from
undulators are commonly decomposed into Gaussian-Schell modes [Coïsson and Marchesini,
1997; Singer and Vartanyants, 2011], which becomes less accurate when dealing with ultra-low
emittance machines. More recently, different factorisations have been proposed to accurately
represent beams in low-emittance machines [Lindberg and Kim, 2015; Glass and Sanchez del Rio,
2017].

Alternatively, the fact that for high energies the emission from the electrons is uncorrelated
can be explored. Each individual electron in a bunch has a different initial condition in terms
of position s = (xe, ye, ze), direction s′ = (x′e, y′e) and energy γe. These electrons spread in
the 6D phase-space according to a probabilistic distribution59 f(s, s′, γe) in phase-space such
as
∫
f(s, s′, γe) dxedyedzedx′edy′edγe = 1. The multi-electron-emission method for partially

coherent simulations is based on individually calculating the synchrotron radiation emission of
several electrons subjected to the initial conditions sampled from f(s, s′, γe) passing through an
arbitrary magnetic field describing the X-ray source [Chubar, 1995]. Each resulting electric field
is then propagated through the beamline until the observation point, where the contributions
from different electrons are added in intensity. The function f(s, s′, γe) should be statistically
well-sampled (Monte-Carlo methods) to guarantee convergence. This multi-electron-emission
method was first proposed and implemented by [Chubar et al., 2011]. This method is shown in
Fig. 1.8(c).

Other methods

A third class of methods is based on the propagation of the correlation functions60 through
the beamline with methods resembling the ones from physical optics. The theory for such is
described in [Parrent, 1959] and [Mandel and Wolf, 1995, §4.4]. However, these methods are,
at the time of this writing, not very commonly applied to X-ray optical simulations due to being
very computationally expensive [Meng et al., 2015, 2017; Ren et al., 2019; Nash et al., 2021]
and are certainly not made available on any common software for X-ray optical simulations. �
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57Taking into account their relative phase.
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60cf. §1.2.3 - Optical coherence.
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2X-rays as a branch of optics

In the late 1920s, not much longer after their discovery in late 1895, X-rays were already
consolidated as a branch of optics. This chapter opens up with a brief account of the early days of
X-ray optics and main focusing optical element families. Compound refractive lenses (CRLs), the
main topic of this work, are then presented at length and the modelling of ideal CRLs accounting
for their thick-element nature is derived. Some figures of merit for their optical performance are
also discussed.

2.1 The early days of X-ray optics
Upon reporting the discovery of X-rays [Röntgen, 1896], Röntgen describes several proper-

ties, among them: a) that refraction cannot be conclusively observed and if the tested materials1

do refract the X-rays, their index of refraction cannot be larger than 1.05 [cf. §7 ibid.]; b) there
is no noticeable regular reflection of the rays on any of the substances2 examined [cf. §8 ibid.];
c) there are no observable interference phenomena [cf. §15 ibid.]; d) and finally, that the X-rays
cannot be polarised3 by the usual means [cf. §17c ibid.]. At the time of the discovery of the
X-rays, their only apparent similarity to visible was that they propagated in a straight line in
free-space. It took about 30 years for this appreciation to change.

Between the years of 1904 and 1906 polarisation in X-rays was observed and described
by C. Barkla [Barkla, 1904, 1905, 1906]. Speculations and experiments regarding diffraction
of X-rays start as early as the 1900s [Haga and Wind, 1903; Walter and Pohl, 1908, 1909],
but it was not until the early 1910s that diffraction was successfully described [Laue, 1912],
observed [Friedrich et al., 1912] and modelled by what came to be known as the Bragg law of
diffraction [W. H. Bragg and W. L. Bragg, 1913]. Early experiments aiming direct observation
of refraction failed but helped to narrow the estimation of the index of refraction for the X-ray
regime4 to 0.999995 ≤ n ≤ 1.000005 [Barkla, 1916]. Further experimental observations of
Bragg’s law started showing small deviations between expected and obtained values. These
were first reported by Stenström in 19195 and were attributed to the refraction of the X-rays
as they penetrate the crystal6, limiting the index of refraction to n . 1 [Stenström, 1919, §3].

1The materials used were water, carbon disulfide, mica, ebonite and aluminium.
2Platinum, lead, zinc and aluminium.
3In fact, this observation is not accompanied by any experimental observation described in his manuscript, but it

comes from him speculating about the X-rays nature: "If one asks oneself what the X-rays [...] actually are [...]. If
the X-rays were to be ultraviolet light, this light should have the property: [...] c) that it cannot be polarised by the
usual means;" [Röntgen, 1896, §17].

4C. Barkla’s experiment aimed to measure the refractive index of potassium bromide for radiation of wavelength in
the neighbourhood of 0.5 Å.

5The same kind of discrepancies were also observed and reported by Duane and Patterson in 1920 and Siegbahn in
1920 and 1921.

6This was met by criticism from Knipping in 1920 (Knipping, 1920). However, as pointed out by A. Compton - cf.
[Compton, 1923], theoretical calculations made by Ewald in 1920 showed good agreement between experimental
observations and the refraction hypothesis [Ewald, 1920].
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The experimental proof of the refraction of X-rays came in the mid-1920s with [Larsson et al.,
1924]. Being able to detect refraction was very important, as it directly allows to assume the
existence of reflection which can only occur in a boundary surface if there is a discontinuity in
the indexes of refraction between the two media. If one of these phenomena is present, then
the other one must too exist [Compton, 1928]. Based on earlier reports about the discrepancies
observed on the Bragg’s law of refraction, A. Compton was able to estimate the glancing angles
for polished surfaces of several materials and demonstrate the total external reflection of X-rays
[Compton, 1923; Prins, 1927]. In fact, by the end of the 1920s, all fundamental characteristics7

of light have been found to be present for X-rays, making them undoubtedly a branch of optics
[Compton, 1928].

2.1.1 X-ray focusing optics

Parallel to the early observation of the phenomena that showed that X-rays are a branch of
optics, came the development of optical elements exploiting diffraction, reflection and refraction
for focusing of X-rays8.

Diffractive optics

The early optical elements based on diffraction for focusing of X-rays were curved crystals
operating on the Bragg diffraction condition [Gouy, 1916; Seemann, 1916]. The use of curved
crystals9 for focusing X-rays came in context of optimising the performance of spectrographs
(spectrometers) with major contributions from [Johann, 1931; Johansson, 1933; Hámos, 1933,
1937]. Other historical milestones are multi-layer mirrors [Gaponov et al., 1983; Aristov et al.,
1986; Underwood et al., 1986]10, monochromators [Smith, 1941; DuMond, 1950] and gratings
monochromators [Namioka et al., 1976; McKinney and Howells, 1980; Tonner and Plummer,
1980] and zone-plates11 [Baez, 1960; Schmahl and Rudolph, 1969; Kirz, 1974]. More recent
developments include (multi-layer12) Laue lenses [Maser et al., 2004; Kang et al., 2005; Liu et al.,
2005], diffractive elements for beam-shaping [Vogt et al., 2006; Jefimovs et al., 2008; Rebernik
Ribič et al., 2017; Rösner et al., 2017; Marchesini and Sakdinawat, 2019] and corrective optics
for focusing elements [Probst et al., 2020].

Reflective optics

Using total external reflection for focusing X-rays started around the late 1940s with
[Ehrenberg, 1947; Kirkpatrick and Baez, 1948; Ehrenberg, 1949; Kirkpatrick, 1950] in the

7Reflection, refraction, diffraction, polarisation, diffuse scattering, emission and absorption spectra and the photo-
electric effect are the essential characteristics of light considered by A. Compton in [Compton, 1928].

8This recount of the early days of X-ray focusing optics is oriented to accelerator-based X-rays. The field of X-ray
optics for astronomy is very rich but is not covered here. A review is available in [Gorenstein, 2010].

9Several early works on curved crystals often refer to "systems operating on Bragg reflection", which is actually an
euphemism for diffraction [Hart, 1971].

10In multi-layer mirrors it is not the total external reflection effect that reflects the X-rays, but Bragg diffraction from
the periodic arrangement of the layered structture on the mirror surface [Morawe and Osterhoff, 2010].

11Often referred to X-ray lenses up until the early 1990s, when refractive X-ray lenses were demonstrated for the first
time [Snigirev et al., 1996].

12For more on multi-layer optics, refer to [Aristov et al., 1988].
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context of direct imaging and X-ray microscopy13, moving away from the spectroscopy application
of the previous decades. Soon after, several X-ray mirror designs emerged [Wolter, 1952; Montel,
1957] and continue to do so today [Matsuyama et al., 2017; Yamada et al., 2019, 2020]. X-ray
mirrors have very wide use in X-ray optics and general reviews can be found in [Howells, 1993;
Susini, 1993].

Refractive optics

Finally, the group of optical elements based on refraction of X-rays for focusing light should
be presented. Refractive X-ray optics comprises mainly lenses [Snigirev et al., 1996], kinoform
lenses14 [Snigireva, Snigirev, Rau, et al., 2001; Snigireva, Snigirev, Kuznetsov, et al., 2001;
David et al., 2004], prisms in several arrangements [Cederström et al., 2000; Jark et al., 2004]
and most recently, free-form objects mainly for optical correction and beam-shaping [Seiboth
et al., 2017; Zverev et al., 2017; Márkus et al., 2018; Seiboth et al., 2019, 2020; Dhamgaye
et al., 2020]. From those, compound refractive lenses (CRLs) - as X-ray lenses are called - are by
far the dominating refractive optical element in use throughout synchrotrons. In retrospective,
they are the least mature, dating from the mid-1990s, while the use of diffractive focusing optics
dates to the early 1930s and reflective optics to the late 1940s.

- A bit of history15

X-ray lenses were long believed to be unfeasible: low refraction index leads to unpractical
focal lengths and the transmission of X-rays through matter faces strong absorption. In one of
the early works on focusing and imaging with X-ray optics, P. Kirkpatrick and A. Baez stated that:
"about one hundred lens surfaces in series would be required to bring the focal length down to one
hundred meters. This would produce a cumbersome and very weak lens system of poor transparency.
These discouraging considerations incline us toward other methods"16 [Kirkpatrick and Baez, 1948].
On the following year, Kirkpatrick went on to say: "Although the X-ray lens is thus possible it has
the disadvantages of high absorption and strong chromatic aberration, and so would probably be
generally inferior to mirror systems" [Kirkpatrick, 1949].

It was not before 1991 that X-ray lenses would be reconsidered: in a scientific correspon-
dence to the journal Nature, a Japanese group headed by S. Suehiro proposed the use of such
elements for the forthcoming third-generation light sources [Suehiro et al., 1991]. Such idea was
not met with enthusiasm by the X-ray optics community, who still considered such technologies
to be impractical for focusing X-rays as it was made clear by A. Michette, who had written
Nature a reply to Suehiro’s communication. The text entitled "No X-ray lens" criticises the idea
of refractive optics for X-rays and lists the reasons why those were considered them unsuitable
for focusing X-rays [Michette, 1991]. In "Fresnel and refractive lenses for X-rays" by B. X. Yang,

13Early works on "X-ray microscopy" are based on imaging of the reciprocal space with the necessity of Fourier
transformations to recover the image in the direct space [W. L. Bragg, 1939, 1942].

14Kinoform lenses are a way of thinning refractive optics, thus reducing absorption. The lens thickness is obtained by
removing redundant material causing optical path differences of 2π rad or its integer multiples [Jordan et al.,
1970; Ognev, 2005]. Depending on the degree of coherence from the illumination, diffraction effects appear
when kinoform lenses are operated outside designed energy or present figure errors.

15This was originally published as §3.1 - Prelude in [Celestre, 2017].
16Using f = R/δ, where f is the focal length and R is the refractive surface radius (cf. Eq 2.3). The estimation shows

values for R = 1cm, using beryllium lens at λ = 0.71Å, Kα line of molybdenum Kirkpatrick and Baez, 1948.
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written in 1992 and published in 1993, Yang revisited S. Suehiro’s idea and proposed ways to
overcome the strong absorption of such lenses by using a Fresnel lenses shape instead [Yang,
1993], however, those were of complicated fabrication and were not given too much attention.

The birth of the X-ray refractive lens as known today can be traced back to 1994, when
T. Tomie filed a patent for X-ray lenses in Japan [Tomie, 1994] - patents were also filed in
US and Germany on the following year. His concept for X-ray lenses was introduced to the
scientific community as a poster on the XRM’96, Int. Conf. X-ray Microscopy and Spectroscopy,
held in Würzburg, Germany, in 1996. The concept was simple, but innovative: a series of drilled
holes into a single substrate along a straight line. The proposed design increased mechanical
robustness, overcame alignment issues, reduced absorption by placing the drilled holes close
to each other and was relatively simple to be manufactured - although T. Tomie never went
on to produce them [Tomie, 2010]. Shortly after the presentation of the refractive lens to the
scientific community at the XRM’96, the breakthrough came: A. Snigirev and other colleagues
produced the first compound refractive lens and demonstrated its efficiency in focusing hard
X-rays. It was only 100 years after the discovery of the X-rays that their focusing by refraction was
experimentally demonstrated. This first experiment was performed at the European Synchrotron
Research Facility (ESRF) in Grenoble, France [Snigirev et al., 1996]. The group used a very
similar approach to the one proposed by Tomie. The early lenses had a cylindrical or spherical
shape. This limited their wide-spread application. A significant advancement to refractive X-ray
optics came in 1999, when parabolic lenses were first demonstrated by B. Lengeler and his group
[Lengeler et al., 1999, 2001]. Refractive optics have subsequently entered into widespread use
in applications ranging from tabletop sources to large facilities [Snigirev and Snigireva, 2008].

Recommended literature
An interesting account of the early days of X-ray optics is presented by [Compton, 1928,

1931], while a more general account of the history of X-ray optics and science leading up to
modern days is presented by [Willmott, 2019, §1] and [Jacobsen, 2019, §2]. A good review on
focusing X-ray optics is available in [Ice et al., 2011; Macrander and Huang, 2017].

2.2 The compound refractive lenses (CRL)
X-ray lenses may have different surface shapes: in initial experiments, a cylindrical surface

was used [Snigirev et al., 1996; Protopopov and Valiev, 1998], which was soon replaced by
a parabolic shape that almost completely removes geometrical aberrations [Elleaume, 1998;
Lengeler et al., 1999]. Parabolic lenses are the most used X-ray lenses in CRL as they can focus
in 1D (cylinder with parabolic section) or 2D (paraboloid of revolution) - cf. Fig. 2.1. It is worth
noting, that although less usual, X-ray lenses can assume other shapes: an elliptical profile when
focusing collimated beams [Evans-Lutterodt et al., 2003], or a Cartesian oval for point-to-point
focusing [Sanchez del Rio and Alianelli, 2012]. However, parabolic shapes always present a very
good approximation to geometric focusing and reduce the geometrical aberrations to levels that
are smaller than contributions from the fabrication errors and diffraction effects.
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Fig. 2.1.: 1D (left) and 2D focusing (right) X-ray lenses. The top row shows a 3D rendering of such
lenses with emphasis on the parabolic profile - shaded in purple is the vertical profile and in
green, the horizontal profile. Bottom row shows scanning electron microscope (SEM) images
of two Be lenses. Due to the limited field of view, image (c) is stitched, which explains the
colour discontinuation on the left side of the image.
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Fig. 2.2.: Refraction and total external reflection in the X-ray regime.

2.2.1 Lens materials and the index of refraction

X-rays are electromagnetic radiation and as such, will primarily interact with the electron
clouds in the atoms. When shone in matter, X-rays can either be scattered, absorbed or not
interact at all. Scattering can be elastic (Thomson) when there is no energy transfer from the
photon to an electron; or inelastic (eg. Compton), where the scattered photon has some energy
loss. The absorption process occurs when a photon is absorbed by the atom with a corresponding
emission of an electron [Als-Nielsen and McMorrow, 2011, §1.2-§1.3]. From the point of view
of optical design, there is rarely the need to go into too much depth regarding how X-rays
interact with matter17 and such interactions can be macroscopically described by either the
index of refraction in the case of reflection and refraction; or by interference theory in the case
of refraction by an ordered array of atoms (Bragg diffraction) or any well-defined geometric
structure (physical optics). The index of refraction is commonly written in the X-ray regime as:

n(λ) = 1− δ(λ) + i · β(λ), (2.1)

with δ being the refraction index decrement and β, the absorption index. This is the formulation
already in use in The projection approximation from §1.2.2 - Transmission elements. Both δ and β

17The interactions of X-ray with matter are presented with greater depth by [Als-Nielsen and McMorrow, 2011, §1]
and [Attwood and Sakdinawat, 2016, §1 - §3].
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are positive real numbers much smaller than unity and when observing real part of the index of
refraction <{n} = 1− δ one notices that the index of refraction of the lens material is less than
that of the vacuum. As a consequence, when applying the law of refraction18:

n1 sin(θ1) = n2 sin(θ2), (2.2)

to an X-ray in vacuum (n1) penetrating the lens material (n1) with incidence angle θ1 will refract
away from the normal to the surface (θ2 > θ1) as shown in Fig.2.2(a). This is the reason why
a focusing lens in the X-ray regime has a concave parabolic section - see Fig.2.1 and Fig. 2.4.
The fact that n1 > n2 in the X-ray regime also explains the total external reflection in the X-ray
regime - see Fig.2.2(b)-(c).

From a simplistic point of view, the choice of material for an X-ray lens is guided by
maximising the δ/β ratio for a given energy. This means choosing a material that will maximise
refraction and minimise absorption within the lens [Serebrennikov et al., 2016; Roth et al., 2017].
This is largest for the lightest elements. On a further step, knowledge about the material inner
structure is also very relevant and minimising small-angle scattering from the lenses, speckle
formation and unwanted diffraction becomes relevant [Roth et al., 2014; Chubar et al., 2020;
Lyatun et al., 2020]. Ultimately, the choice of material is also connected to the manufacturing
process of the lenses. Commonly19 used materials are aluminium and beryllium, which are
usually associated with pressed lenses [Lengeler et al., 1999, 2002; Schroer et al., 2002]; nickel
and SU-8 polymer for deep X-ray lithography and LIGA [Nazmov et al., 2004, 2005; Nazmov
et al., 2007]; SU-8 and other polymeric materials are also associated with 3D printed lenses
[Petrov et al., 2017; Sanli et al., 2018; Barannikov et al., 2019]; silicon and diamond for
lithography and dry etching [Aristov et al., 2000; Nöhammer, David, et al., 2003; Nöhammer,
Hoszowska, et al., 2003; Schroer et al., 2003]; and more recently, diamond for laser ablated
lenses [Kononenko et al., 2016; Polikarpov et al., 2016; Antipov, 2020; Medvedskaya et al.,
2020]. Figure 2.3 shows δ, β and the ratio δ/β for energies ranging from 5 keV to 100 keV for
aluminium, beryllium, diamond and SU-8.

18The observation of refraction, i.e. bending of light as it changes medium, is as old as time, with one of the earliest
written references from ca 150 B.C.E. in a philosophical poem "De Rerum Natura" by Titus Lucretius Caro [Wilk,
2004]. The first documented attempt to systematic describe refraction with a mathematical formulation and
experimental data can be attributed to Claudius Ptolemy of Alexandria. His work, found in "Optics" (from ca.
150 C.E.), presents studies on refraction at air-glass and air-water interfaces and arrives at a fairly accurate
mathematical formulation for rays close to the optical axis (small-angle approximation) [Kwan et al., 2002], but
still not the sine law found in any physics textbook. The sine law found in most physics course books (Eq. 2.2) is
commonly attributed to either Willebrord van Roijen Snell (obtained in 1621, but only published after his death
by Christiaan Huygens on "Dioptrica", 1703) or René Descartes (published in "La Dioptrique", annex to "Discours de
la méthode" - 1637). The understanding and mathematical formulation can be traced back down to Abu Said
al-Ala Ibn Sahl with "On the burning instruments", 984 [Rashed, 1990]; in a private communication between
Johannes Keppler and Thomas Harriot, the latter discloses to Johannes Keppler he knew the sine law as early as
of 1602 [Kwan et al., 2002; Lohne, 1959]. In this work, equation 2.2 will be referred to as the law of refraction.

19A more broad overview on fabrication processes used for refractive X-ray lenses and materials is presented in
Table I from the supplementary materials in [Roth et al., 2017].
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Fig. 2.3.: (a) refraction index decrement, (b) absorption index and (c) the δ/β ratio for energies ranging
from 5 keV to 100 keV for aluminium, beryllium, diamond and SU-8. Figures obtained using
the xraylib library [Brunetti et al., 2004; Schoonjans et al., 2011].

2.2.2 CRL anatomy

Ideal parabolic X-ray lenses20 are usually defined by a small set of parameters as shown
in Fig. 2.4(a). These are a) material, which, in conjunction with the operation energy defines
the complex index of refraction n; b) apex radius of curvature (Rx and Ry for horizontal and
vertical radii21, respectively); c) lens thickness (L) or geometrical aperture (A); and d) distance
between the apices of the parabolas (twall)22.

Firstly, one should start by defining the optical power F = f−1 of a single refracting surface
of radius R, where f is its focal length. With the X-ray beam moving along the positive z-direction
on Fig. 2.4, the refracting power of the vacuum/lens interface is given by:

F ≡ 1
f

= n2 − n1
−R

= δ

R
, (2.3)

where n1 = 1 and n2 = <{1− δ + i · β}. Equation 2.3 considers only the real part of the indices
of refraction as this is the part that governs the focusing effect of the lenses. As illustrated by
Fig. 2.4(a), lenses are typically formed by two refracting surfaces of nominally the same radii.
From paraxial optics, the total optical power of refracting surfaces in intimate contact is the
sum of their powers. The same is valid for the cases where the distance between them can be
ignored. Typical materials used for X-ray lenses have 10−8 < δ < 10−4 for their usual application
energies [Serebrennikov et al., 2016]. To overcome the weak refraction of a single element,
several X-ray lenses are stacked [Tomie, 1994; Snigirev et al., 1996]. Still, under the assumption
of thin elements:

fthin CRL = R

2Nδ , (2.4)

where the 2N comes from stacking N lenslets with two refracting surfaces each, as shown in
Fig. 2.4(b). A correction factor can be added to Eq. 2.4 in order to account for the thick-element

20Throughout this work, a single X-ray lens will be called a lenslet and two or more stacked lenses are referred to as
compound refractive lens (CRL).

21For a 1D focusing lens, one of the radii goes to infinity on the non-curved surface. For a 2D focusing lens, the
manufacturing goal is generally to produce lenses with Ry = Ry = R to avoid astigmatism.

22The web thickness (twall) is directly linked to the absorption and transmission of a X-ray lens, having no useful
optical function. It should be kept as small as possible as to minimise absorption but as thick as necessary as
to maintain the lenslet mechanical integrity. The exaggerated thinning of the web thickness leads to the risk
of breaking the lens in brittle materials and shape deformation in ductile materials, deteriorating the lenslet
performance [Lengeler et al., 1998].
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Fig. 2.4.: (a) Sagittal cut of an X-ray lens showing its main geometrical parameters. This concave lens
focuses X-rays in the y-direction if n1 > n2. (b) A single X-ray lens refracts very weakly. To
overcome this drawback - pointed out as early as the late 1940s [Kirkpatrick and Baez, 1948] -
lenses are usually stacked, hence "compound" in compound refractive lenses. (c) N-stacked
lenses to form a CRL.

nature of the CRL, as proposed in [V. Kohn et al., 2003]. The corrected focal length for a thick
CRL is given by:

fCRL = R

2Nδ + LCRL

6 . (2.5)

This focal distance is taken from the middle of the CRL and LCRL is the CRL longitudinal size,
that is, distance from the front surface of the first optical element to the back surface of the last
lens - cf. Fig. 2.4(c). The number of lenslets stacked in a CRL is mainly limited by absorption of
the X-rays propagating within the lenses.

Another design parameter for an X-ray lens is the geometrical aperture A, as it provides an
upper bound for the numerical aperture of the system and, ultimately, to the theoretical optical
resolving power. Assuming a parabolic profile of the refracting surface, the lens geometrical
aperture can be calculated as:

A = 2
√

(L− twall)R, (2.6)

where L is the lenslet thickness and twall is the distance between the apices of the parabolas,
commonly referred to as web thickness. For a 1D-focusing lenslet, the aperture related to
the uncurved surface is limited only by manufacturing constraints and not the intrinsic lens
parameters. Depending on the process used for lens production, it is convenient to isolate L in
Eq. 2.6:

L = A2

4R + twall. (2.7)

It is clear from Eqs. 2.6 and 2.7 that for a parabolic surface, A and L are intertwined. More
often than not, the maximum aperture A is limited by the absorption from the lens thickness
on the edge of the parabolic surface (lens active area). The geometrical aperture defined in
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Fig. 2.5.: (a) Normalised intensity transmission and (b) accumulated profile thickness for a CRL com-
posed of (i) 1, (ii) 10 and (iii) 20 2D-beryllium lenses with nominal radius R = 50 µm,
geometric aperture A� = 445 µm and twall = 20 µm at different photon energies (for the
intensity profiles). Vertical dashed line represents the lens geometrical half-aperture. The
triangles in (a) indicate the full width at half maximum (fwhm) for the cases where this value
lies within the geometrical aperture.

Eq. 2.6 is greater than or equal to the effective lens aperture23 as indicated by [V. G. Kohn,
2017]. Figure 2.5 shows the transmitted intensity profile of a CRL composed of a different
numbers of 2D-beryllium lenses with nominal radius R = 50 µm and circular geometric aperture
A� = 445 µm at several energies. Unlike visible optics, where the transmitted intensity profile
within the aperture, closely follows that of the illumination, the transmitted profile through a
(stack of) X-ray lens(es) has strong absorption towards the edge, which defines the CRL as an
apodised optical system.

2.2.3 CRL modelling

Ideal thin lens and single-lens equivalent

At any point inside the geometric aperture of a single (bi-concave) paraboloidal X-ray lens,
the projected thickness ∆z can be calculated as:

∆z(x, y) =


x2

Rx
+
y2

Ry
+ twall, ∀ (x, y) ∈ A,

L, otherwise.

(2.8)

If the lens being modelled is a 1D focusing element, that is a cylinder with parabolic section, one
of the radii goes to infinity to account for the non-curved surface. The geometric aperture in this
direction is not given by Eq. 2.6, but arbitrarily chosen (cf. Fig. 2.1). Eq. 2.8 can be substituted

23There are several reported ways of defining the effective lens aperture - [V. G. Kohn, 2017] discusses and compares
some of the different definitions.
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Fig. 2.6.: Hierarchical depiction of the CRL. (a) illustrates a single thin element equivalent of several
lenslets. This representation accounts for net refraction and absorption in one transmission
element but ignores intra-lens spacing. (b) multi-slice representation of a CRL. Here each lens
of the stack is represented individually by one transmission element. Those are separated by a
drift space corresponding to the typical distance between elements (∆s). (c) Not only can the
CRL be represented as a series of thin elements separated by drift spaces, but also figure errors
can be added. They are placed directly after the thin element representing a single X-ray lens.

into Eqs. 1.36a and 1.36b to retrieve the complex transmission element expression for an X-ray
lens:

Tsingle lens(∆z) • = exp
(
− 2π

λ
β∆z

)
× exp

(
− i2π

λ
δ∆z

)
• . (2.9)

Eq. 2.9, the single lens model, accounts for the absorption (first exponential) and phase shift
(second exponential) 24. The complex transmission representing a CRL composed of N elements
is, thus, represented by:

TCRL(∆z) • =
[
Tsingle lens(∆z)

]N•, (2.10)

which is equivalent to multiplying ∆z by N in Eq. 2.9. The model represented by Eq. 2.10
will be referred to as the single lens equivalent. This model represents a lens stack by a single
transmission element with equivalent focal distance and the projected thickness of all the N
single lenses as shown in Fig. 2.6(a).

Multi-slicing representation

For a CRL composed of a very high number of lenslets, the single-lens equivalent approxi-
mation (Eq. 2.10) may not be adequate to correctly represent such optical systems mainly due to

24The constant phase shift induced by twall in Eq. 2.9 (cf. Eq. 2.8) can often be disregarded, as it impinges a constant
phase to the wave-field.

50 Chapter 2 X-rays as a branch of optics



the thick25 nature of the stack - evidenced by Eq. 2.5; and due to the progressive focusing inside
the CRL [Schroer and Lengeler, 2005] - exaggerated in Fig. 2.4. For such cases, it is possible to
adapt the multi-slicing (MS) techniques26 for the calculation of the transmission of a wavefront
through a CRL. Unlike the methods described by [D. Paganin, 2006] and most recently, by [Li
et al., 2017] and [Munro, 2019], where a single weakly-scattering optical element is sliced
into several slabs, it is sufficient for most practical cases to break down a CRL into its lenses
as shown in Fig. 2.6(b). This can be justified by the fact that at their typical operation energy,
the individual lenslets act as weak focusing elements where the projection approximation holds
[Protopopov and Valiev, 1998]. The complex transmission representation of a CRL based on the
MS approach is given by:

TCRL-MS(∆z) • = Tsingle lens(∆z) ·
[
D(∆s) · Tsingle lens(∆z)

]N−1•, (2.11)

where D(∆s) is the operator formulation of the Fresnel free-space propagation over a distance
∆s (distance between the centres of two adjacent lenses) - cf. Eqs. 1.38 and 1.39.

Eq. 2.11 represents a wavefront • modified by a single lens complex transmission Tsingle lens,
followed by free-space propagation D(∆s) over a distance ∆s with the multiplication of the
resulting electric field by the transmission element and subsequent free-space propagation done
(N − 1) times until the N th lens is reached and the last element of the lens stack is accounted for.

Optical imperfections measured with high spatial resolution can be readily converted into
a transmission element by direct application of Eq. 1.37 to the height profile, provided it is a
2D map of the phase defects. In this case, the height profile will be the projected thickness of
∆z(x, y) in the preceding equations. The MS model introduced earlier in this section can then be
adapted to account for the phase errors of the individual lenses:

TCRL-MS(∆z) • = Timperfect lens(∆z) ·
[
D(∆s) · Timperfect lens(∆z)

]N−1•, (2.12)

with:
Timperfect lens(∆z) = Tfigure errors(∆z) · Tsingle lens(∆z). (2.13)

This extended version of the MS model is shown in Fig. 2.6(c). In fact, the modelling of optical
elements by means of Eq. 2.12 allows for the description of inhomogenities in the index of
refraction within the lens as differences in material density and grain size [Lyatun et al., 2020],
inclusions and voids [Roth et al., 2014], and even include effects of diffuse scattering/SAXS for
a 2D map with very high spatial resolution [D. M. Paganin and Morgan, 2019].

2.2.4 CRL performance

Diffraction limited focal spot

Even an ideal and the aberration-free finite optical element is not able to image a point-
source to a point-like image. Limiting the extent of the focusing element by defining an aperture
will induce diffraction effects on the wavefront and these will limit the smallest reachable focus
25In terms of optical element modelling.
26cf. The Multi-slice approximation in §1.2.2 - Transmission elements.
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spot size. The normalised response of the optical system to this point-like source input is called
the point-spread-function (PSF). For a system with circular aperture and uniform amplitude
across the exit pupil, the intensity of such focused beam at the image plane is proportional to
a squared first-order Bessel function of the first kind (Airy pattern). The FWHM of the central
cone is given by:

d = 1.22λ(1−M)fCRL

A
, (2.14)

where the M is the magnification of the system, which goes to zero for a plane wave or a very
distant source. Systems with nonuniform illumination at the pupil exit, as typically observed for
apodised systems such as CRLs, may present a different PSF shape depending on the truncation
imposed by the aperture. A very weakly truncated focusing system will have a Gaussian-shaped
focal spot as little to no cropping occurs and therefore diffraction effects can be neglected.
Increasing the truncation of the beam enhances diffraction effects from the geometric aperture.
A strongly truncated focusing system will have a PSF that resembles the diffraction pattern in
the far-field associated with the aperture of the system27 [Mahajan, 1986].

Tolerance conditions for aberrations

Introducing errors to the optical system will reduce the peak intensity in the PSF [Mahajan,
2011, §8.2]. The ratio between the peak intensities of the aberrated- and non-aberrated PSF of
a system with the same aperture and focal length is referred to as the Strehl ratio - cf. §9.1.3
in [Born et al., 1999]. The optical aberrations on the exit pupil of an optical system can be
described by the aberration function Φ(x, y), with the dimension of metres, which represents
any deviation in shape from an ideal profile. For small aberration values, the Strehl ratio can be
approximated28 by:

Sratio a = Iaberrated

Iaberration free
≈ 1−

(2π
λ

)2
∆Φ2, (2.15)

where ∆Φ is the standard deviation of the aberration function Φ(x, y). An important conse-
quence of Eq. 2.15 is that the reduction in the peak intensity on the focal plane does not depend
on the type of aberration nor the focal length of the optical system, but on its standard deviation
across the exit pupil of the optical system [Born et al., 1999]. Alternative expressions to Eq. 2.15
are available in §8.3 of [Mahajan, 2011], namely:

Sratio b ≈
[
1−

(2π
λ

)2 ∆Φ2

2

]2
, (2.16)

known as the Maréchal expression and:

Sratio c ≈ exp
[
−
(2π
λ

)2
∆Φ2

]
, (2.17)

27The far-field diffraction pattern of a circular aperture is a squared first-order Bessel function profile while a square
aperture will produce a 2D sinc-squared pattern [Guasti and Heredia, 1993].

28Eqs. 2.15-2.17 were obtained using a fully-coherent illumination of the optical system, however, defining the Strehl
ratio as the ratio between the peak intensities of the aberrated- and non-aberrated optical under study transcends
the nature of the illumination. A more complete derivation of the Strehl ratio (Eq. 2.15) can be found in §9.1.3 -
A relation between the intensity and the average deformation of wave-fronts in [Born et al., 1999].
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an empiric expression that fits better numerical results [Wetherell, 1980]. However, for strong
aberrations, there is no simple analytic expression to describe the relation between the Strehl
ratio and the standard deviation of the aberration function Φ(x, y) [Kessler, 1981].

It is possible to define an arbitrary minimum acceptable value to the Strehl ratio when
evaluating an optical element quality (tolerancing). This value depends on the final application
and the desired performance. However, a value of Sratio ≥ 0.8 is commonly found throughout
literature as an indicator of a well-corrected optical system29. Inserting Sratio ≥ 0.8 in Eq. 2.15,
one obtains:

|∆Φ| ≤ λ

14 , (2.18)

which is known as the Maréchal criterion for optical quality. Equations 2.16 and 2.17 give
similar limits: λ/13.67 and λ/13.30, respectively. In order to apply Eq. 2.18 to the case of an
X-ray lens, one makes use of Eq. 1.36b with ∆φ = 2π

λ δσz = 2π
λ |∆Φ|, where ∆φ is the standard

deviation of the phase, and replaces the projected thickness30 ∆z with the standard deviation of
the projected figure error σz:

σz ≤
λ

14δ . (2.19)

Equation 2.19 gives an upper limit to the standard deviation of accumulated figure errors for
X-ray lenses in order to comply with the Maréchal criterion of tolerable wavefront aberrations,
or in other words, to sustain a Sratio ≥ 0.8. For a more complete discussion on the aberrated
PSF, Strehl ratio and tolerance conditions for primary aberrations, refer to §9 from [Born et al.,
1999] and §8 from [Mahajan, 2011]. The limitations and applicability of the Maréchal criterion
is presented in [Ross, 2009].

Chromatic aberrations

The optical properties of the X-ray lenses are strongly dependent on the wavelength as both
δ and β have an energy dependency - see Fig. 2.3. This energy-dependency causes chromatic
aberrations and limitations on the optical performance of the CRL under an X-ray beam with
finite bandwidth. The X-ray lens performance focusing degradation due to chromatic aberrations
is shown schematically Fig. 2.7. An X-ray lens focusing a beam with a narrow bandwidth ∆E
centred around the energy E0 will have an associated focal length f0. The lower-energy part of
the spectrum, that is, E0 −∆E has a higher δ than δE0 , which is associated with a shorter focal
length f0−∆f as shown in Eq. 2.5. The same reasoning can be applied to the higher-energy part
of the spectrum. A beam with energy E0 + ∆E has a δ < δE0 and consequently, a larger associated
focal length f0 + ∆f . A sufficiently large bandwidth can cause the change in focal length to be
significant, resulting in a blurring of the beam waist. This results in apparent increase of the
focal spot and a shift in the apparent focal length. X-ray lenses in storage rings are often used
after a monochromator - eg. Si(111) with ∆E/E ≈ 10−4. Under such conditions the effects of
the beam bandwidth can often be neglected, which is not the case for the white- or pink-beam
from bending magnets and undulators [Seiboth et al., 2014]. The chromaticity of X-ray lenses

29This comes from historic reasons: both Rayleigh’s λ/4 criterion for spherical aberrations (1879) and the extended
Maréchal criterion for optical quality (1943) yield in a Strehl ratio of ∼ 0.8 [Born et al., 1999].

30cf. The projection approximation in §1.2.2 - Transmission elements.
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can, however, be used favourably for X-ray harmonic rejection from insertion devices and coarse
X-ray spectrum filtering [Vaughan et al., 2011; Polikarpov et al., 2014]. �

z

f0–△f

f0

f0+△f

feff

Fig. 2.7.: Chromatic aberrations of an X-ray lens. Lower energy X-rays have a shorter focal length, while
more energetic beams focus further away from the lens. If the beam bandwidth is sufficiently
large, this causes an increase in the beam waist and a shift in the apparent focal length.
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3Modelling optical imperfections in
refractive lenses

To understand the impact of CRL on the optical design of complete beamlines, it is necessary
to be able to simulate them realistically. The basic implementation of X-ray lenses is already
available on the two most widespread beamline simulation tools: SHADOW [Sanchez del Rio
et al., 2011] and SRW [Chubar and Elleaume, 1998]. Both implementations, although based
on different schemes, ray tracing [Alianelli et al., 2007] and wave optics [Baltser et al., 2011]
respectively, are based on an ideal model combining refraction and absorption for the stacked
lenses. Much has been done in terms of refining the modelling of ideal X-ray lenses [Umbach
et al., 2008; Sanchez del Rio and Alianelli, 2012; Osterhoff et al., 2013; Simons et al., 2017;
Pedersen et al., 2018] and, to a certain extent, the modelling of optical imperfections [Pantell
et al., 2001; Andrejczuk et al., 2010; Gasilov et al., 2017; Osterhoff et al., 2017]. Except for
the work presented in [Roth et al., 2014], investigating and simulating the inner structure of
X-ray lenses, the present models consider mainly the lens shape and departure from a perfect
parabolic shape. The majority of these models, however, is not publicly available, nor are
readily compatible with standard beamline simulations suites like SHADOW and SRW. Another
bottle-neck to the current literature or computer codes for simulating CRLs is that they do not
include the data from real lens metrology, as is routinely done for X-ray mirrors simulations
[Sanchez Del Rio et al., 2016], which renders more difficult the inclusion of CRLs in simulations
of complete beamline configurations in combination with other optical elements.

The modelling and functions presented here1 are based on the framework of physical
optics (cf. §1.2 - Physical optics) and are tailored to be used transparently with SRW [Chubar
and Elleaume, 1998], which already provides a model for the CRL [Baltser et al., 2011]
- this basic ideal model combines refraction and absorption for the stacked lenses; optical
imperfections from material inhomogeneities (voids, impurities) were later added [Roth et
al., 2014]. Expanding this model, we present the optical imperfections in refractive lenses in
three different groups: i-) misalignments of a single X-ray lens - Fig. 3.1(b)-(c); ii-) commonly
encountered fabrication errors such as transverse offsets as well as tilts of the individual parabolic
sections - Fig. 3.1(d)-(g); iii-) and other sources of deviations from the parabolic shape modelled
with either polynomial decomposition of error functions or by using metrology data - Fig. 3.9.
Each newly added feature is accompanied by a calculation of the residual thickness error, its
impact on focusing by CRL and the beam caustic in the vicinity of the focal spot. The Strehl
ratios for the different misalignments, fabrication errors and other sources of deviations from the
parabolic profile are summarised in Fig. 3.12. Calculations presented in this chapter are merely
illustrative and a systematic evaluation is presented in §5 - Effect of optical imperfections on an
X-ray beam. All simulations shown throughout this chapter have similar conditions, that is, they
model misalignments, fabrication errors or arbitrary residual errors of a single 2D-Beryllium lens

1This chapter is partially based on the work originally published in [Celestre, Chubar, et al., 2020].
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Fig. 3.1.: (a) ideal lens for reference. Lens typical misalignments are the (b) transverse offset and the (c)
tilt or a combination of both. Common fabrication errors include the (d) longitudinal offset of
the parabolic section, (e) transverse offset of the parabolic section and (f)-(g) tilted parabolic
sections.

with nominal radius R = 50 µm, geometric aperture A� = 440 µm and twall = 20 µm at 8 keV
in fully-coherent simulations. The optical layout used for the simulations is shown in Fig. 3.2.
The code main functions implementing the ideal CRL and describing optical imperfections in
refractive lenses are subsequently presented. The metrology technique used to measure the
phase errors that arise from material inhomogeneities (voids, impurities) and/or figure errors
from the lens forming process, namely, X-ray speckle tracking, is discussed in §4 - Measuring
optical imperfections in refractive lenses.

3.1 Optical imperfections in refractive lenses
In the paraxial approximation, the parabolic shape for a refracting surface is generally

regarded as the ideal shape2 for minimising aberrations. It is legitimate, then, to define as
errors any deviation from this ideal parabolic form3 regardless of their origin. The phase errors
induced by an ideal lens misalignment will be presented first, then the typical fabrication errors
of bi-concave lenses will be presented shortly after. The misalignment and fabrication errors
presented in this section were derived from the accumulated experience in handling beryllium
and aluminium bi-concave embossed lenses, which are the most available throughout beamlines
in diverse synchrotron facilities. However, the modelling presented here is generic and can be
applied to a wide-range of CRL from diverse fabrication processes4.

The optical layouts used throughout this chapter for all simulations is shown in Fig. 3.2.
The emitted radiation is modelled by a filament-electron-beam passing through a CPMU18

2The shape of a focusing refracting surface can be derived from the Fermat’s principle, but the parabolic shape is
generally regarded as a good approximation. Large apertures are often necessary when very small focused beams
are required, but increasing the geometric aperture of the optical element causes the parabolic approximation to
under-perform. Several aspheric surface shapes for different focusing conditions were reported in [Sanchez del
Rio and Alianelli, 2012, Fig 4]. For a deeper discussion on aspheric surfaces in the context of optics, please, refer
to [Schulz, 1988].

3Such definition, however, leaves out discrepancies in the radius of curvature R (designed vs. de facto) and the
associated defocus it may cause. Discrepancies between designed and executed lenses may render them to be
labelled as out-of-specification and may cause the system to under-perform, but are not deviations of the parabolic
shape, provided the ideal parabolic shape takes into account the de facto radius of curvature. Accounting for such
discrepancies can be done using the ideal model described by the transmission element Tsingle lens(∆z) (cf. Eq. 2.9)
using the de facto radius of curvature.

4cf. Table 1 from the supplementary material relative to [Roth et al., 2017].
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Fig. 3.2.: top row: optical setup used for calculating the residual phase and thickness. bottom row:
setup for phase-contrast radiography, PSF and beam caustics. The illumination is from a
filament electron beam passing through an undulator shown in (a). An (b) ideal parabolic
phase element is placed to give the illumination a near-plane phase. Downstream of this
ideal lens, the (c) X-ray lens is placed. An (d) ideal parabolic phase element can be placed
downstream the probe in order to obtain the residual phase. Other measurements require other
optical layouts. A (e) slit is put downstream the X-ray lens in order to contain the background
and limit the beam to the lens geometric aperture. The phase-contrast image in can be obtained
(f) downstream the lens and the beam-caustic range is shown in (g). At the centre of (g) the
PSF is calculated.

undulator with 111 magnetic periods with Λ = 18 mm on-axis magnetic period and magnetic
field B = 0.9863 T - cf. §1.1.2 - High brilliance X-ray sources. The electron-beam parameters
are those corresponding to the ESRF-EBS upgrade [Dimper et al., 2014]. An ideal parabolic
phase-element with focal length f = −60 m is placed 60 m downstream the radiation source.
This is done to give the illumination a plane phase - cf. Eq. 1.16. Immediately downstream the
ideal lens, the X-ray lens being modelled is placed and any changes to the wave-field after it
can be directly attributed to the model studied. A second ideal parabolic phase element can be
placed downstream the probe to collimate the beam. This removal of the focusing phase term
allows obtaining the residual phase, which can be used to recover a residual thickness error by
using Eq. 1.36b5. The optical layout for phase-contrast image, beam-caustics and the PSF do
not make use of this second ideal element. For reference and to allow subsequent comparison,
Fig. 3.3 shows the focusing of a single ideal 2D-beryllium lens with nominal radius R = 50 µm,
geometric aperture A� = 440 µm and twall = 20 µm at 8 keV using the basic modelling described
in Eq. 2.9.

3.2 Misalignments
Misalignments of optical systems are not optical errors per se as they can be mitigated by

ensuring proper alignment is done; they will, however, cause changes to the ideal parabolic
phase profile if left uncorrected and will affect the optical performance of the system. Although
aligning a CRL stack is possible6, the individual lenslets usually cannot be aligned to each other,
hence the interest in modelling such misalignments.

5Since the residual accumulated thickness translates directly into residual accumulated phase, both terms can be
used interchangeably.

6The possibility of realignment of the CRL depends on where and how they are installed in the beamline. If their
installation is on a bulky transfocator [Vaughan et al., 2011], their realignment is more difficult to be performed.
However, when used as a final focusing element, enclosed in small casings or compact transfocators - cf. Fig. 3
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Fig. 3.3.: Simulations of a single ideal 2D-beryllium lens with nominal radius R = 50 µm, geometric
aperture A� = 440 µm and twall = 20 µm at 8 keV - cf. Fig 3.1(a). (a) phase-contrast image
150 mm downstream the ideal lens, (b) point-spread function with cuts centred in (0, 0) and
(c) the vertical beam caustics from −250 mm to 250 mm with respect to the focal plane at
f = 4.701 m.

3.2.1 Transverse offset

Displacing a single element a transverse distance (∆x,∆y) can be simply done by calculating
∆z(x − ∆x, y − ∆y) in Eq. 2.8. The shifted element is depicted in Fig. 3.1(b). For a pair of
coordinates (x, y):

∆z(x−∆x, y −∆y) =


(x−∆x)2

Rx
+

(y −∆y)2

Ry
+ twall, ∀ (x−∆x, y −∆y) ∈ A,

L, otherwise.

(3.1)

Eq. 3.1 is the ideal parabolic profile of a bi-concave lens given by Eq. 2.8 with its vertices centred
around (∆x,∆y). While a single transversely shifted lens considered on its own is innocuous,
piling up several shifted lenses has impacts on the overall accumulated phase parabolic shape
and resulting geometric aperture. Although the exact effect of relative misalignments between
individual lenses on the phase of the wave-field depends on the distance between lenslets, the
energy, footprint and divergence of the X-ray beam, some insight can be gained by considering
the individual focusing elements as thin-optical elements in intimate contact. Consider N
stacked lenses transversely misaligned with their transverse distance to the optical axis given
by (∆xj ,∆yj ), with j = 1, 2, ..., N . Within the intersection of their geometric apertures, the
accumulated thickness is given by:

∆zΣ(x, y) =
N∑
j=1

∆z(∆xj ,∆yj )

=
N∑
j=1

x2

Rxj
+ y2

Ryj︸ ︷︷ ︸
(I)

− 2x
∆xj

Rxj
− 2y

∆yj

Ryj︸ ︷︷ ︸
(II)

+
∆2
xj

Rxj
+

∆2
yj

Ryj
+ twallj︸ ︷︷ ︸

(III)

. (3.2)

The first term in Eq. 3.2, (I) is a quadratic term and it indicates ideal focusing as in Eq. 2.8. The
residual terms (II) and (III) are a linear term in x and y and a constant offset term, respectively.
The first residual term, i.e. (II), adds a linear phase to the wave-front and acts like a prism,

in [Lengeler et al., 1999] and [Kornemann et al., 2017; Narikovich et al., 2019], their realignment can be done
more easily.
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Fig. 3.4.: Simulations of an ideal lens shifted by ∆y = 5 µm - cf. Fig 3.1(b). (a) Residual thickness, (b)
phase-contrast image of the lens, (c) point spread function with cuts centred in (0, 0) and (c)
the vertical beam caustics from −250 mm to 250 mm with respect to the focal plane.

not deforming the monochromatic wave-field, but redirecting it. At the focal plane, the image
position is transversely shifted but no change to the intensity and phase profiles is added.
Symmetrically shifted lenses7 make (II) go to zero. The residual terms in (III) add a constant
phase offset to the transmitted beam in addition to absorption. The effects of the transverse
offset to a single X-ray lens are shown in Fig. 3.4.

3.2.2 Tilted lens
When rotating a lens in space as shown in Fig. 3.1(c) and calculating its projected thickness,

it is helpful to decouple the rotation of the front and back surfaces. This can be done by defining
a point cloud in Cartesian coordinates:

zfront surface(x−∆x, y −∆y) = ∆z(x−∆x, y −∆y)
2 , (3.3a)

zback surface(x−∆x, y −∆y) = −∆z(x−∆x, y −∆y)
2 (3.3b)

where ∆z(x−∆x, y −∆y) is given by Eq. 3.1. The projected thickness is given by:

∆z(x, y) = zfront surface(x, y)− zback surface(x, y), (3.4)

provided those are calculated on the same grid (x, y). A tilted lens can be described by rotation
matrices in three dimensions. In a system where the position is represented8 as (x, y, z, 1) The
transformation matrices allowing a rotation θx,y,z around each of the Cartesian axis are [House
and Keyser, 2016]:

Rθx =


1 0 0 0
0 cx −sx 0
0 sx cx 0
0 0 0 1

 , Rθy =


cy 0 sy 0
0 1 0 0
−sy 0 cy 0

0 0 0 1

 , Rθz =


cz −sz 0 0
sz cz 0 0
0 0 1 0
0 0 0 1

 , (3.5)

where cθ = cos(θ) and sθ = sin(θ). Rθx denotes a rotation around the x−axis, Rθy around the
y−axis and, finally, Rθz around the z−axis. Matrix multiplication is associative, which implies

7That is ∆xm = −∆xn or ∆ym = −∆yn for m,n ∈ (1, 2, ..., N).
8Expressing the 3D coordinates as (x, y, z, 1) comes from homogeneous coordinates systems often used in projective

geometry [House and Keyser, 2016].
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Fig. 3.5.: Simulations of an ideal lens tilted by θx = 1◦ - cf. Fig 3.1(c). (a) Residual thickness, (b)
phase-contrast image of the lens, (c) point spread function with cuts centred in (0, 0) and (c)
the vertical beam caustics from −250 mm to 250 mm with respect to the focal plane.

that if multiple rotations are involved, that is Rθx , Rθy and Rθz are applied to a set of points
(x, y, z), an equivalent rotation matrix Rθ = RθzRθyRθx can be calculated and then, applied to
those points is space:

[xθ, yθ, zθ, 1]T = RθzRθyRθx [x, y, z, 1]T,

= Rθ[x, y, z, 1]T, (3.6)

where (xθ, yθ, zθ) are the transformed (x, y, z) coordinates after the Rθ = RzRyRx rotation
and the T in Eq. 3.6 represents transposed matrices. The rotations given by Rθ have to be
applied to both the front and back surfaces of the lens independently, with their respective point
clouds given by Eqs. 3.3. In order to calculate the projected thickness along the optical axis, the
rotated front and back surfaces have to be recalculated on a common grid, which is done by
two-dimensional interpolation of (xθ, yθ, zθ) to the original (x, y) grid. The associative property
allows for considerable computation time reduction, as the rotation can be done applying a
single equivalent rotation matrix as opposed to three individual rotations. On the other hand,
matrix multiplication is not commutative and the order of operations matter and should be
specified9,10 when rotating a point cloud. Equations 3.5 have their pivot point centred in the
origin of their axis, that is, around (x, y, z) = (0, 0, 0) in Cartesian coordinates. It is possible to
define arbitrary pivot points with a combination of translations and rotations. Tilting an optical
element in space will introduce aberrations to the beam propagation and its focusing11. This is
apparent in the residual accumulated thickness in projection approximation shown in Fig. 3.5.
The profile shown in Fig. 3.5(a) is proportional to the 4th power of the lateral coordinates in
the direction of the shift. This contributes for the elongation of the beam along the propagation
direction and shift on the focal plane position as shown in Fig. 3.5(d), which is a typical sign
of spherical aberrations. It is also possible to see how the two surfaces (back and front) do not
overlap, causing a slight reduction in the geometric aperture area, which gives rise to the the
discontinuities in Fig. 3.5(a).

9The implementation of the affine transformations for rotating CRLs in space follow the order: rotation around the
x−axis (Rx), rotation around the y−axis (Ry) and then, rotation around the z−axis (Rz).

10For a deeper discussion on the properties of the affine transformations and coordinates systems, please refer to
appendices C-E in [House and Keyser, 2016].

11The interest in tilted optical elements and compensation is an active field, as evidenced by the literature on that
subject - cf. [Guizar-Sicairos et al., 2011; Zhou et al., 2019; Ali and Jacobsen, 2020].
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Fig. 3.6.: (a) Simulated and (b) measured phase-contrast image of a single of a 2D-beryllium lens with
nominal radius R = 50 µm with designed geometric aperture A� = 440 µm. The scale bar in
(b) is 200 µm wide.

3.3 Fabrication errors
Modelling the typical misalignment of X-ray lenses implies calculating the lateral displace-

ments and rotations in space of an ideal X-ray lens. However, bi-concave lenses may also present
misalignments between the front and back focusing surfaces, which are closely related to the
manufacturing processes involved in the lens production. Here, the front and back focusing
surfaces are treated independently, allowing to model longitudinal and transverse misalignments
as well as tilts of the front and back focusing surface concerning the optical axis.

3.3.1 Longitudinal offset of the parabolic section

Longitudinal offsets of the parabolic portions of a bi-concave X-ray lens appear when, for
the same radius of curvature R, one parabolic portion reaches deeper into the lens disc than the
other one - cf. Fig. 3.1(d). The first eminent observation is that front and back surfaces will have
different geometric apertures along the focusing direction. The new geometric aperture of the
longitudinally offset parabolic profile can be calculated as:

Aoffset = 2
√

[L− (twall + 2 · offset)]R, (3.7)

where a positive offset increases the apparent web thickness of the half lens to twall/2 + offset
and decreases the geometric aperture for a fixed lens thickness. The aperture given by Aoffset

and the apparent web thickness are used in Eq. 3.4 (cf. Eqs. 3.1 and 3.3) when calculating the
projected thickness. Longitudinal offsets do not affect the parabolic accumulated shape of a
single lens within Aoffset and, consequently, do not impose any optical imperfection to an optical
system based on such lenses. However, they are often encountered in real lenses12 and merit the
implementation in the lens modelling. Fig. 3.6 shows the simulated profile and a radiography of
a real lens showing the effects of the longitudinal offset of the parabolic section.

3.3.2 Transverse offset of the parabolic section

Although parallel to the optical axis, it is possible that the parabolic surfaces axes are not
collinear. This is shown in Fig. 3.1(e). The modelling of the transverse offset of the front
or/and back surfaces of a lens concerning the optical axis is done by calculating the net offset
of each surface, that is the sum of lens transverse offset with the front or/and back surface

12Especially in embossed lenses, where different penetration depths of the punches often lead to asymmetric lenses.
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Fig. 3.7.: Simulations of a lens with front focusing parabolic section shifted by ∆y = −2 µm and back
focusing shifted by ∆y = −3 µm - cf. Fig 3.1(e). (a) Residual thickness, (b) phase-contrast
image of the lens, (c) point spread function with cuts centred in (0, 0) and (c) the vertical beam
caustics.

transverse offset, and applying it to Eqs. 3.3 when calculating Eq. 3.4. The effects on the residual
accumulated phase of non-collinear parabolic surfaces are the same as the one described in the
section §3.2.1 - Transverse offset, that is, the presence in the residual phase of a linear and a
constant term, which can be seen in Fig. 3.7.

3.3.3 Tilted parabolic section
When the axes of the parabolic front or/and back surfaces are not parallel to the optical

axis, the lens active area appears to be tilted as shown in Figs. 3.1(f) and (g). Similarly to
what was introduced in the section §3.2.2 - Tilted lens, both front and back surfaces are rotated
according to the rotation matrices described in Eqs. 3.5 and the procedure described by Eq. 3.6.
There are two subtle differences: the rotation angles from front and back surfaces can be chosen
independently and the rotation is only applied to the curved part of the lens, and not to the whole
front and back surfaces including the flat parts. The independent rotations allow for different
regimes: one where both imprints are tilted with the same angle as in shown in Fig. 3.1(f),
which yields a residual phase similar to the one discussed in §3.2.2 - Tilted lens; and one where
front and back surfaces are tilted with different angles, which yields an asymmetric residual
phase as shown in Fig. 3.8. By not applying the rotation to the plane region the lens projected
thickness L is not changed. A close inspection of Fig. 3.8 shows that while the symmetric case
has a residual phase proportional to the 4th power of the lateral coordinates in the direction of
the tilt, elongating the beam focusing in the propagation direction and shifting it on the same
direction - typical of spherical aberrations, the residual phase of the anti-symmetric case has
residual phase proportional to the 3rd power of the lateral coordinates in the direction of the
tilt and has a PSF typical of coma-aberrated systems. The behaviour of the anti-symmetric case
resulting in coma aberrations is commonly encountered in tilted one-sided kinoform lenses and
zone-plates as reported in [Guizar-Sicairos et al., 2011; Ali and Jacobsen, 2020].

3.4 Other sources of deviations from the parabolic shape
So far, the modelling described here relies on translations and rotations of an ideal parabolic

surface and investigating the residual phase. Another equally valid approach is to manipulate
directly the residual phase and add it to the phase of an ideal focusing lens, which can be done
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Fig. 3.8.: Simulations of a lens with front and back focusing parabolic sections independently tilted as
shown in Fig 3.1(f) and (g). The (a) residual thickness, (b) phase-contrast image, (c) point
spread function and (c) the vertical beam caustics of the symmetric tilt are shown on the top
row. The (e) residual thickness, (f) phase-contrast image, (g) point spread function and (h) the
vertical beam caustics for the anty-symmetric case with the same conditions is presented in the
bottom row.

fitting arbitrary surfaces or by introducing data from metrology of the optical element to be
simulated.

3.4.1 Orthornormal polynomials

A widespread form of representing optical aberrations of arbitrary shapes is by decomposing
them into an orthonormal base. Perhaps the most ubiquitous set of aberration functions is
given by the Zernike polynomials for a circular aperture, first described in [Zernike, 1934].
Their appeal comes from the fact that not only they are directly related to Seidel (primary),
Schwarzschild (secondary) and tertiary-aberrations13 but also include piston and tilts; they form
an orthonormal base, which means that the value of the coefficients is not affected by the removal
of a particular term [Mahajan and Dai, 2007]. Another advantage of the Zernike polynomial
decomposition is that each orthonormal aberration coefficient is the standard deviation for that
particular aberration over the exit pupil, which is valuable when evaluating the optical system
compliance with the Maréchal criteria and calculating the Strehl ratio [Mahajan, 1983].

For the aforementioned decomposition of the aberration function in an orthonormal base
to retain its properties, the application of the circular Zernike polynomials must be limited to
circular apertures. Other shapes of apertures with- or without obscuration can be obtained by

13This jargon comes from a power-series expansion of the aberration function. There are five primary aberrations,
nine secondary aberrations and fourteen aberration terms for the tertiary aberrations. They all involve spherical
aberration, coma, astigmatism, field curvature, distortion and variations of thereof [Mahajan, 2013].
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Fig. 3.9.: Comparison of the decomposition of errors in Zernike circle polynomials for beryllium, alu-
minium and diamond 2D lenses. First row: Be lens with (a) projected profile with RMS
value σz = 1.4 µm; (b) polynomial decomposition of the profile in (a); (c) the reconstruction
based on those coefficients with RMS value σz = 1.3 µm; and (d) the residual profile after the
fit. Middle row: Al lens (e) projected profile with RMS value σz = 2.6 µm; (f) polynomial
decomposition of the profile in (e); (g) the reconstruction based on those coefficients with
RMS value σz = 2.5 µm; and (h) the residual profile after the fit. Bottom row: diamond lens
with (i) projected profile with RMS value σz = 1.8 µm; (j) polynomial decomposition of the
profile in (i); (k) the reconstruction based on those coefficients with RMS value: σz = 1.6 µm;
and (d) the residual profile after the fit.

Gram-Schmidt orthonormalisation and weighting of the Zernike circle polynomials [Swantner
and Chow, 1994; Mahajan, 1995]. X-ray optics systems often have a rectangular aperture
and two sets of polynomials are of particular interest in optical design: the set of orthonormal
Zernike polynomials for a rectangular aperture [Mahajan and Dai, 2007; Mahajan, 2012] and
the 2D-Legendre polynomial set for a rectangular aperture [Mahajan, 2010]. Preferentially14,
the Zernike circle polynomials are applied to 2D focusing lenses with a circular aperture. For
2D focusing X-ray lenses with square aperture, low aspect ratio between horizontal and vertical
apertures and not strongly astigmatic focusing, e.g. crossed planar X-ray lenses, the Zernike
rectangular polynomials are preferred. The 1D focusing lens is better fit by the 2D Legendre
polynomial set15. Analysing and describing refractive X-ray optics using circular Zernike and 2D
Legendre polynomials were first presented by [Koch et al., 2016].

Fitting a surface to a given set of orthonormal polynomials is very useful as it allows to
characterise and classify optical systems based on the types of aberrations it presents, which can
be useful when mitigation strategies are being drawn (balancing aberrations). In addition to
that, surfaces mimicking optical can be generated by asserting coefficients to a given polynomial
set. This can be used to understand and isolate the effects of a given type of aberration or be
used to represent a real surface when the coefficients for a particular optical element are known.
Profiles generated by Zernike circle polynomials are shown in Fig. 3.9. They were generated

14Prof. V. Mahajan (University of Arizona, USA) and Prof. H. Gross (University of Jena, Germany) are acknowledged
for discussions on orthonormal polynomials in wavefront analysis and pointing out relevant literature.

15Please, refer to [Ye et al., 2014] for a comparison between 2D orthonormal sets for square apertures.

70 Chapter 3 Modelling optical imperfections in refractive lenses



−200 0 200
(µm)

−200

0

200

(µ
m

)
-2.50

0.00

2.50

(a) profile

−10 0 10
(µm)

−10

0

10

(µ
m

)

0.0

0.5

1.0

0.0 0.5 1.0

(b) PSF

−200 0 200
(mm)

−20

−10

0

10

20

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(c) vertical caustics

Simulations using the metrology data

−200 0 200
(µm)

−200

0

200

(µ
m

)

-2.50

0.00

2.50

(d) profile

−10 0 10
(µm)

−10

0

10

(µ
m

)

0.0

0.5

1.0

0.0 0.5 1.0

(e) PSF

−200 0 200
(mm)

−20

−10

0

10

20

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(f) vertical caustics

Simulations using the Zernike circle polynomials

Fig. 3.10.: Simulations of a single 2D-beryllium lens with nominal radius R = 50 µm, geometric aperture
A� = 440 µm and twall = 20 µm at 8 keV. top row: (a) metrology profile, (b) point-spread
function with cuts centred in (0, 0) and (c) vertical beam caustics from -250 mm to 250 mm
with respect to the focal plane. bottom row: (d) profile generated by the Zernike circle
polynomials coefficients, (e) PSF and (f) beam caustics.

using coefficients obtained from metrology data. The fit profiles resemble the metrology profiles
they are based on - cf. left-hand side of Fig. 3.9. A comparison between the effects on a coherent
X-ray beam for both profiles is shown in Fig. 3.10. The difference between both simulation
sets is almost imperceivable, whuch can be explained by the similarity between both figure
error profiles and the fact that the difference between the figure errors RMS value is almost
negligible: σz = 1.3 µm (Zernike polynomial reconstruction) against σz = 1.4 µm (metrology
data), while the Maréchal criterion calculated for beryllium lenses illuminated at 8 keV requires
the accumulated projected figure errors to be σz ≤ 2.08 µm, which makes the impact in the
reduction in intensity at the focal position is almost negligible - cf. Eqs. 2.15-2.19 for the Maréchal
criteria and Strehl ratio in Tolerance conditions for aberrations from §2.2.4 - CRL performance.
Fig. 3.11 shows the same kind of comparison in Fig. 3.9, but with a less similar fit fit. Simulations
still show good agreements, showing the same features: side-lobes (typical of trefoil aberration),
elongated tail upstream the focal plane and ’Y’-shaped profile cut downstream.

3.4.2 Metrology data

Any (unintentional) deviation from the parabolic shape can be considered as a manufactur-
ing error. Each manufacturing process has some type of (signature) error associated to it and
with the increasing number of exotic - or unconventional - designs and tailored manufacturing
strategies, it is unreasonable to create a model that could parametrise all sources of deviations
from the parabolic shape. To circumvent that and to accurately model phase imperfections in

3.4 Other sources of deviations from the parabolic shape 71



−200 −100 0 100 200
(µm)

−200

−100

0

100

200

(µ
m

)

-8.00

0.00

8.00

(a) profile

−1 0 1
(µm)

−1

0

1

0.0

0.5

1.0

0.0 0.5 1.0

(b) PSF

−10 −5 0 5 10
(mm)

−2.5

0.0

2.5

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(c) vertical caustics

Simulations using the metrology data

−200 −100 0 100 200
(µm)

−200

−100

0

100

200

(µ
m

)

-8.00

0.00

8.00

(d) profile

−1 0 1
(µm)

−1

0

1

0.0

0.5

1.0

0.0 0.5 1.0

(e) PSF

−10 −5 0 5 10
(mm)

−2.5

0.0

2.5

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(f) vertical caustics

Simulations using the Zernike circle polynomials

Fig. 3.11.: Simulations of 10 stacked 2D-beryllium lenses with nominal radius R = 50 µm, geometric
aperture A� = 440 µm and twall = 20 µm at 8 keV. top row: (a) metrology profile, (b)
point-spread function with cuts centred in (0, 0) and (c) vertical beam caustics from -10 mm
to 10 mm with respect to the focal plane. bottom row: (d) profile generated by the Zernike
circle polynomials coefficients, (e) PSF and (f) beam caustics.

compound refractive lenses, metrology data can also be used for optically imperfect X-ray lenses
[Celestre, Berujon, et al., 2020; Chubar et al., 2020]. Fig. 3.9 shows three examples of lens figure
errors from (a)-(d) a commercial pressed beryllium lens, (e)-(h) an in-house pressed aluminium
lens and a (i)-(l) in-development laser-ablated diamond lens from a commercial partner. The
figure errors were measured with at-wavelength metrology16 and can be directly plugged into
simulations [Celestre, Berujon, et al., 2020]. The effects of optical imperfections from metrology
data on a coherent X-ray beam are shown in Fig. 3.10 and Fig. 3.11. The systematic use of
metrology data for modelling optical imperfections in compound refractive lenses is explored
in depth in §5 - Effect of optical imperfections on an X-ray beam. The chapter §6 - Correcting
optical imperfections in refractive lenses exemplifies how the framework developed to model such
experimentally determined phase errors also opens the avenue to calculating the effects of any
arbitrary phase modifying element.

3.5 Implementation

The implementation of the modelling of X-ray lenses with their typical misalignments,
fabrication errors and other sources of optical imperfections is presented in the Python library

16cf. §4.1 - At wavelength-metrology.
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Fig. 3.12.: Strehl ratio of the vertical cut at x = 0 summarising the results from the diverse models
presented.

barc4RefractiveOptics, available on GitLab17,18 under a CC BY-SA 4.0 license, where more in-
formation on the implemented functions can be found. This library contains three main modules,
namely: projected_thickness.py, wavefront_fitting.py and barc4RefractiveOptics.py.

The module projected_thickness.py is responsible for the calculation of the thickness in
projection approximation for the ideal lens (Eq. 2.9); lenses with the misalignments discussed
in §3.2 - Misalignments; with the fabrication errors presented in §3.3 - Fabrication errors;
and other sources of deviations from the parabolic profile described in §3.4.1 - Orthornormal
polynomials, which are based on Zernike (circular and rectangular) polynomials or the 2D
Legendre polynomials19. To generate an arbitrary profile the user can either use a list with the
coefficients or enter an RMS value for their sum, in which case, the coefficients will be randomly
calculated and will add up to the RMS value limited by the user input. The fit of a wavefront to
a set of orthonormal polynomials is a very important diagnostic tool for optical modelling and
is available within the wavefront_fitting.py module, which currently supports the Zerkine
circle and rectangular as well as the 2D Legendre polynomial sets.

17https://gitlab.esrf.fr/celestre/barc4RefractiveOptics
18An OASYS (OrAnge SYnchrotron Suite) distribution to be used with SRW, SHADOW and SHADOW-hybrid mode is

being prepared. For updates on that, please, refer to the project GitHub page: https://github.com/oasys-kit/
oasys-barc4ro. The OASYS implementation of barc4RefractiveOptics is being lead by Luca Rebuffi (Argonne
National Lab. USA).

19The functions used to generate the 2D circular Zernike polynomials contain pieces of codes from the module
libtim-py from Tim van Werkhoven, that had to be brought to Python 3.7 and in some places, small bugs had to
be fixed - this module has a Creative Commons Attribution-Share Alike license. The 2D rectangular Zernike was
originally inspired by the analytical formulation from the module opticspy from Xing Fan, which has an MIT
license. The formulation from the module was based on the equations from [Mahajan and Dai, 2007], but had to
be corrected with the errata published in [Mahajan, 2012]. The 2D Legendre polynomials were implemented
based on the formulations in [Mahajan, 2010]. A lot of effort was done in bringing all these three distinct libraries
into a homogeneous and concise module.
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The modules just described generate 2D projected thickness maps and in conjunction with
the metrology data (2D height profiles) are interfaced to SRW20 by barc4RefractiveOptics.py.
This module is written to be used transparently with the optical element class SRWLOpt de-
scribed in the module srwlib.py from SRW. Each function representing either an X-ray lens
or its figure errors returns a class SRWLOptT representing a generic transmission element
storing amplitude transmission and optical path difference as a function of transverse co-
ordinates. The main calculations for generating the X-ray lens transmission element is per-
formed by the function srwl_opt_setup_CRL. The generation of the residual phase errors
based on the polynomial expansion of the aberration function in the exit pupil is done by
srwl_opt_setup_CRL_errors. This function is used in conjunction with srwl_opt_setup_CRL
as modelled in Eq. 2.13. The generation of a surface based on the metrology data is done by
srwl_opt_setup_CRL_metrology. The metrology data should be saved as an ASCII file (.dat)
as defined by the function srwl_uti_save_intens_ascii from the module srwlib.py. The
function srwl_opt_setup_CRL_metrology can be used to simulate figure errors, in which case,
much like srwl_opt_setup_CRL_errors it requires the use of srwl_opt_setup_CRL or it can be
used to simulate a full measured profile.

Separating the calculation of the projected thickness ∆z from the interface to SRW allows
the module projected_thickness.py to be used in any X-ray optical simulation code based on
physical optics as the transmission elements can be directly calculated from the 2D surface maps
by using the Eq. 1.37. �
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4Measuring optical imperfections in
refractive lenses

Surface metrology methods commonly applied to X-ray mirrors [Alcock et al., 2016; Vivo et
al., 2019] are not broadly employed for the metrology of X-ray lenses mainly due to their
small apertures and steep parabolic surfaces (cf. Fig. 3.3) [I. I. Lyatun et al., 2015]. Non-
destructive methods using X-rays are often more appropriate for X-ray lens metrology. This
section presents some of the commonly used at-wavelength metrology methods, with emphasis
on X-ray speckle vectorial tracking (XSVT), the experimental technique used throughout this
work. The metrology of single- and stacked 2D-beryllium lens with R = 50 µm is presented and
the results are compared. The experimental data shown in this chapter were acquired during
several beamtimes1 at the BM05 beamline - ESRF [Ziegler et al., 2004] (from 2017 to 2018 -
before the ESRF long shutdown for the EBS upgrade), at the 1-BM beamline - APS [Macrander
et al., 2016] (during the ESRF long shutdown in 2019) and the ID06 beamline - ESRF [Kutsal
et al., 2019] (in 2020 during the commissioning period of the ESRF-EBS upgrade).

4.1 At wavelength-metrology
Surface metrology of X-ray optical elements is often done using the visible spectral range

[Alcock et al., 2016; Vivo et al., 2019] even if, ultimately, they will be employed in a different
spectral range. At-wavelength metrology is an umbrella term for measurements of optical
elements at photon energies closer to the ones they will be ultimately used - in the case of
X-ray lenses, in the range of few to several kilo-electron-volts. What follows is a non-exhaustive
description of commonly used techniques for quality control applied to X-ray lenses and their
compliance to a parabolic shape. Other relevant at-wavelength characterisations of X-ray lenses
such as X-ray small-angle scattering [Roth et al., 2014; Chubar et al., 2020] or the impact of
material micro-structures or shape errors on imaging [Chubar et al., 2020; I. Lyatun et al., 2020]
are not covered here. A more complete survey on characterisation methods for X-ray lenses is
presented in the supplementary material from [Roth et al., 2017].

The simplest at-wavelength techniques consist of the direct imaging of a lens with X-rays by
propagation-based phase-contrast imaging [Endrizzi, 2018] since absorption contrast imaging
only generates a reduced contrast for a single lens and a low signal to noise ratio. With such
simple techniques, 2D shapes and distances can be measured (e.g. radiographs for controlling
the distance and alignment between the parabolic surfaces of X-ray lenses). Still based on
propagation based-imaging techniques, X-ray laminography [Helfen et al., 2011; Roth et al.,
2014] and X-ray tomography [Landis and Keane, 2010; Narikovich et al., 2017] of X-ray

1Acknowledgements to Sébastien Bérujon and Ruxandra Cojocaru (BM05-ESRF); Xianbo Shi, Zhi Qiao, Michael
Wojcik and Lahsen Assoufid (1-BM-APS); and to Carsten Detlefs (ID06-ESRF) for the help during the experimental
sessions.
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lenses provide a 3D reconstruction of the lens volume with high spatial resolution information.
These techniques provide data on the shape of the refracting surfaces and the internal features
(inhomogeneities) and can be used for modelling optical imperfections in refractive lenses.

Another large family of experimental techniques used for lens metrology and aiming at
quantitative optical characterisation can be grouped under the wave-front sensing branch2.
Wavefront-sensing is often employed as a beam-diagnostics tool for highly coherent sources
[Seaberg et al., 2019]. Two conceptual approaches are often used: i-) absolute wavefront
metrology at a specific point of the beam path measures the global state of the wavefront or ii-)
differential measurements are done with and without the optical element under investigation,
the differences in the wavefront being attributed to the optical contribution of the element under
test. Current wavefront-sensing techniques used so far in the community for evaluating the
phase errors of CRLs (or individual X-ray lenses) are: i-) the Ronchi test, an interferometric
technique that provides qualitative3 information on third-order optical aberrations [Nilsson et al.,
2012; Uhlén et al., 2014]; ii-) the use of X-ray Shack–Hartmann sensors [Mayo and Sexton,
2004; Mercere et al., 2005; Mikhaylov et al., 2020]; iii-) the ptychographic reconstruction of
the wavefront emerging from a strongly focusing optics [Schropp et al., 2013; Sala et al., 2017;
Seiboth et al., 2017]; iv-) grating interferometry and its variations [David et al., 2012; Koch et al.,
2016; Grizolli et al., 2017]; v-) and the near-field-speckle-imaging-based (SBI) methods [Berujon
et al., 2013; M.-C. Zdora et al., 2018; Berujon et al., 2020a]. The latter is the main experimental
technique used in this project primarily due to its easy experimental implementation and high
spatial resolution. The remainder of this chapter will focus more deeply on its theoretical and
experimental aspects.

4.1.1 X-ray (near field) speckle vector tracking (XSVT)

The X-ray near-field-speckle-imaging is currently the chosen technique for systematic at-
wavelength metrology of X-ray lenses at the ESRF4 and is available at the BM05 beamline
[Berujon et al., 2020a] and more recently, at the ID06 beamline. The principal reasons for this
choice are: i-) the low requirements on transverse- and longitudinal coherence [Zanette et al.,
2014; M. C. Zdora et al., 2015; Wang et al., 2016]; ii-) no requirement of specially tailored optics
(nor accompanying complicated alignment procedures) [Morgan et al., 2012; Wang et al., 2016];
iii-) successful benchmark against more established wave-front sensing techniques [Kashyap
et al., 2016; Romell et al., 2017]; and iv-) its versatility as a metrology tool being able to measure
mirrors, single- and stacked lenses [Berujon et al., 2020a]. Although the basic principles of the
several X-ray near-field-speckle-based techniques are the same, the focus is given here to the
X-ray (near field) speckle vector tracking (XSVT) as implemented and used for the metrology
of single- and stacked X-ray lenses used in this work [Berujon et al., 2020a,b]. An interesting

2With the advent of more coherent sources of X-rays as encapsulated by the emergence of 4th-generation synchrotrons
and free-electron lasers, the topic of wavefront sensing has seen increased attention [Seaberg et al., 2019].

3It has been demonstrated that the Ronchi test can also retrieve quantitative information [Lee and Guizar-Sicairos,
2010], but it has not yet been applied to X-ray lenses metrology.

4Other synchrotron facilities also offer X-ray lens metrology with the X-ray near field speckle imaging technique:
1-BM at the APS in the U.S.A. [Qiao, Shi, Wojcik, et al., 2020] and the B16 beamline at the Diamond Light Source
in the U.K. [Sawhney et al., 2013].
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review of different techniques using X-ray near-field speckle imaging is given by [M.-C. Zdora,
2018] and [Berujon et al., 2020b].

4.1.2 Foundation

Near-field speckle is a manifestation in intensity of the summation of several complex
electric fields when the amplitudes and phases of such fields have random values. The resulting
intensities may be locally high due to constructive interference or low, due to destructive
interference [Goodman, 2020, §1]. For a speckle pattern over a defined region of interest, the
speckle contrast (or visibility) can be defined5 as:

v = σI

I
, (4.1)

where σI is the standard deviation and I is the mean value of the intensity value of the speckle
pattern. In the X-ray regime, it appears when a sufficiently coherent X-ray beam is transmitted
through matter with random spatial variation of δ and β, where the local optical path length
varies significantly when compared to the scale of the wavelength.

For a static random modulation of the wavefield (stationary scatterer6), it has been demon-
strated that the speckle-grains7 preserve shape and size for free-space propagation distances
limited to:

z < ∆cl⊥ξk, (4.2)

where ∆cl⊥ is transverse coherence length8 and ξ is the typical transverse length of the modulator,
that is, the region where the spatial variation of δ and β is negligible [Cerbino et al., 2008].
For propagation distances smaller than the imposed limit in Eq. 4.2, speckles can be used as a
wavefront marker, since the transverse position of the speckle grains in two parallel planes along
the propagation direction can be inferred geometrically. The near-field regime is of particular
interest for the X-ray energy range, as very low wavelengths lead to an extended near-field
regime. A stationary scatterer and the associated speckle-pattern are shown in Fig. 4.1.

Based on the uniqueness of each speckle grain, speckle-imaging-based techniques rely on
identifying similar patterns in two different images or image sets: a reference image and an
image in the presence of the probe (perturbed) - cf. Fig. 4.2. The numerical implementations
used for tracking the lateral displacement of the speckle grains in the detector plane can be
several: cross-correlation peak calculation [Bérujon et al., 2012; Morgan et al., 2012] and
least-square-minimisation [Zanette et al., 2014; M. C. Zdora et al., 2017] based approaches are
the two most used methods9,10. The lateral displacement of the speckle grain in the detector

5Other definitions are commonly found in the literature: v = Imax−Imin
Imax+Imin

and v = Imax−Imin
2I

, where Imax and Imin are
the maximum and minimum intensities found in the region of interest [M.-C. Zdora, 2018].

6As opposed to time-varying modulation of the speckle-field as in [Morgan et al., 2010; Goikhman et al., 2015].
7Continous regions in space with a slowly-varying intensity that can be visually clustered together.
8cf. Spatial coherence in §1.2.3 - Optical coherence.
9Recently, an Euclidean-distance minimisation of the wavelet-transform method has been reported. Compared to

correlation-based techniques it is less computationally demanding and more robust to noise [Qiao, Shi, Celestre,
et al., 2020].

10Regardless of the tracking method, the displacement vector ν must be equivalent, as it is linked to the sample
shape and material.
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Fig. 4.1.: (a) SEM image of the cellulose acetate membrane filters with mean pore size of 1.2 µm
used as the stationary diffuser. The white bar in (b) represents 50 µm and (b) associated
speckle-pattern measured at 17 keV at 800 mm downstream the membrane with visibility
v ∼ 0.19.

Fig. 4.2.: Tracking of speckle grains. The highlighted grains in yellow and red are inside the sample and
have their transverse position changed. The highlighted grain in blue is outside the lens active
area and has no apparent shift in the transverse position. The speckle grains in the image of
the sample have their intensity reduced due to absorption of the bulk material. The sample is a
single 2D-beryllium lens with nominal radius R = 50 µm, geometric aperture A� ∼ 440 µm.
The data were collected ∼800mm downstream of the speckle-membrane at 17 keV.

plane between the reference and the disturbed image is defined by the displacement vector
ν = (∆x,∆y), where ∆x and ∆y are the respective horizontal and vertical displacements of the
speckle grain in the presence of the sample - cf. Fig. 4.3. With knowledge of the distance between
sample and detector d, it is possible to calculate the deflection angle α = (αx, αy) ≈ ν/d. The
deflection angle, the wave-field phase φ(x, y) and wavefrontW(x, y) are linked together by the
relationship:

k
ν

d
≈ kα = ∇φ(x, y) = k∇W(x, y). (4.3)

The beam phase φ(x, y) or wavefrontW(x, y) can hence be retrieved by numerical integration
of the phase gradients obtained experimentally.

4.1.3 Experimental setup

X-ray speckle imaging (SBI) can be implemented in several geometries depending on the
metrology subject (mirrors, strong focusing mirrors, lenses, stacked lenses) and mode (absolute
or differential) - cf. [Berujon et al., 2020a]. In this section the X-ray (near field) speckle vector
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Fig. 4.3.: Generic speckle-based imaging measurement geometry for the XSVT technique and the origin
of the displacement vector ν arising from the lens refraction. From left to right: X-ray beam,
speckle-membrane, sample and 2D imaging detector. The distance between sample and detector
is noted d, the deflection angle is α and the transverse displacement vector in the detector
plane is ν.

tracking (XSVT) in the differential mode, as originally implemented at BM05 and shown in
Figs. 4.3, 4.4 and 4.5 is described.

Illumination

Unlike other wavefront sensing techniques, speckle-based metrology has low requirements
on transverse and longitudinal coherence11 as demonstrated by [Zanette et al., 2014; M. C. Zdora
et al., 2015; Wang et al., 2016]. The degree of lateral coherence of the illumination is intimately
connected with two important factors: the speckle contrast (cf. Eq. 4.1) and the propagation
distance where shape and size of the speckle grains are preserved (cf. Eq. 4.2). X-rays with lower
transverse coherence will produce speckle with low visibility (appearing thus as a smeared out or
blurred image) and the numerical process of tracking signals will lose some of its accuracy. For
metrology applications, a minimum contrast of 0.1 (Eq. 4.1) is expected [Berujon et al., 2020a]
for the algorithms to show an acceptable accuracy. A reduced propagation distance d between
the sample and the detector (cf. Fig. 4.3 and 4.4) arising from a reduced coherence length
∆cl⊥ (Eq. 4.2) diminishes the angular sensitivity and will impact on the residual height error
measurement sensitivity. When selecting an X-ray source, a higher degree of transverse coherence
is preferred. Nonetheless, bending magnets12 are readily well suited for speckle-imaging-based
metrology since their beam usually offer the necessary minimum transverse coherence.

11Phase-contrast imaging with low-coherence sources has been demonstrated [Cloetens et al., 1996; Wilkins et al.,
1996; Pfeiffer et al., 2006; Munro et al., 2012].

12At BM05, a bending magnet was the X-ray source used in this project until the ESRF-EBS upgrade long shutdown
(December 2018). The BM05 bending magnet in place since the opening of the ESRF in 1994 was decommissioned
in favour of a much shorter and brighter 2-pole wiggler, installed early 2020. All the data collected at BM05 and
presented hereafter were collected before this upgrade.
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Fig. 4.4.: Generic speckle-based imaging experimental setup as originally implemented at the BM05
beamline of the ESRF. right to left: an X-ray source (bending magnet) delivers a beam whose
large spectral bandwidth is reduced with a Si(111) double crystal monochromator down to
∆E/E ≈ 10−4. The now monochromatic beam hits the speckle-generator at a distance RS from
the source. The stationary diffuser is composed of several stacked cellulose acetate membrane
filters with a mean pore size of 1.2 µm. The membranes are mounted on a (piezoelectric)
nano-positioner transverse translation stage so that the membranes can be scanned in the
xy−plane. At a distance l downstream of the membrane, the sample is placed and aligned
on the optical axis. Further downstream the probe, at a distance d, a scintillator converts the
X-rays into visible light. The scintillator is imaged into a 2D imaging sensor, which is coupled
with a microscope objective to reach a small pixel size. Such experimental setup, without any
structural change, was later on used at the 1-BM (APS) and ID06 (ESRF) beamlines. Conversely
to what depicted here, the X-ray source at the ID06 is an undulator and not a bending magnet.

Choosing the optimal experiment energy13 for X-ray lens metrology is about reaching a
compromise between several competing constraints. For a fixed distance d, the energy should be
high enough so that the speckle grains being transmitted through the lens geometric aperture
are not excessively deformed by focusing at the detection plane - the higher the energy, the
longer the focal length of an X-ray lens is (cf. Eq. 2.4) - on the other hand, lower energy gives
larger refraction angles, which increases the sensitivity of the experimental technique. Excessive
deformation of the detected speckle field, however, causes the tracking to fail in delivering
credible results. Higher energy is also beneficial when considering the limit to the distance d
imposed by Eq. 4.2. On the other hand, increasing the energy decreases the coherent fraction
of the emitted beam, which in turn reduces the speckle visibility14. Lastly, the source spectrum
(Fig. 1.1) and detector efficiency have also to be considered, as a higher photon flux allows for
shorter acquisition time, meaning that experiments require less time and possible instabilities
(vibrations, long time drifts and other external perturbations) have a lower impact on the
acquired data. Requirements on the illumination monochromaticity are not stringent for SBI,
but the metrology of X-ray lenses requires narrow bandwidths as these optics display intrinsic

13The energy chosen for most metrology experiments was E = 17 keV with ∆E/E ≈ 10−4 by using a Si(111) DCM.
This energy was originally set at BM05 due to the source higher flux at this energy and the good compromise
between absorption and sensitivity such working wavelength offer. Later, this same energy was also adopted for
experiments at other beamlines to facilitate direct comparison during the data-analysis.

14Slitting down the beam and increasing the propagation distance from the source to the speckle-membrane (Rs
in Fig. 4.4) both help to increase the coherence length at the expense of photon flux - cf. van-Cittert-Zernike
theorem in [Mandel and Wolf, 1995, §4.4.4] or the applicability to SR in [Geloni et al., 2008, §4].
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Fig. 4.5.: (a) image inside the experimental hutch of the ESRF BM05. The picture highlights the
three main components shown schematically in Fig. 4.3: the detector in the back-plane, the
sample-holder specially designed to hold up to 10 lenslets for batch measurements and the
speckle-membrane mounted in a (piezoelectric) nano-positioner in the first plane. (b) typical
lenslets mounted on the holder designed to provide easy alignment of the lenses in the X-
ray beam and ensure repeatable positioning in the lens mount. This holder is designed for
single-lens measurement. (c) box required for the mounting of stacked lenses to be measured
together.

strong chromatic aberrations. In order to achieve a good lateral resolution, a Si(111) double
crystal monochromator (DCM)15 is usually used to bring down the bandwidth to ∆E/E ≈ 10−4.

Speckle membrane

Unlike other wavefront techniques that require specially tailored optics that may need
laborious alignment procedures such as reference phase-objects (Siemens star) or gratings,
SBI requires a transmission element with transversely randomly distributed small features.
The random optical path differences generated by these objects or grains must be capable of
producing speckles that cover a few pixels (<10 pixels) at the detector with visibility of v > 0.1
[Berujon et al., 2020a, §2.3]. Early experiments were done by stacking commercially available
abrasive paper (sandpaper) until the desired speckle pattern was obtained16 [Morgan et al.,
2012; Wang et al., 2016]. The choice of a modulator depends on the experiment energy and
the detector, but often, static granular materials, sandpaper of diverse grits and filters with

15Yet, an experimental comparison between the metrology data obtained with a Si(111) DCM with ∆E/E ≈ 10−4 and
a multi-layer monochromator with ∆E/E ≈ 10−2 showed very good agreement between both data-sets [Berujon
et al., 2020a, §3.3.3].

16More recent guidelines helping to choose the appropriate sandpaper grain size (grit) for an experimental setup
were published by [Tian et al., 2020].
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micrometric pore-sizes can be used17. Low transmission, poor time stability and/or the presence
of strong diffraction are characteristics that should be avoided when choosing a speckle generator.
Due to the random nature of the wavefront (static) modulation, the membrane does not require
any precise alignment with the beam.

XSVT is a scanning technique and usually18 N reference images are taken at N different
transverse positions of the speckle generator with respect to the optical axis. The sample is
put into the beam and another set of N images are taken with the speckle generator located
at the exact previous N positions - cf. orange arrows in Fig. 4.3. The reproducibility of the
speckle generator transverse positions is of key importance as the difference in the speckle grain
positions from reference to sample image is attributed to the modulation of the beam. To make
sure that during the collection of the jth (j ∈ [1, 2, ..., N ]) pair of images the position of the
speckle generator is repeated with precision as good as a fraction of effective pixel size, the
modulator is mounted on a precise (piezoelectric) nano-positioner with a travel range of a few
hundred micrometres.

Sample

X-ray speckle vectorial tracking is a very attractive technique as it can measure weakly-
focusing optics as well as very strong focusing systems with minor modifications of the setup - cf.
[Berujon et al., 2020a] for some examples. Typically, two types of optical elements are today
routinely measured at the ESRF: individual lenses and moderately focusing CRLs. Figure 4.5(b)
and (c) shows typical lenses in their holder. Single lenses are mounted in an in-house-designed
holder conceived to hold up to 10 lenslets next to each other, allowing serial measurements
and minimising manual intervention to change samples. Stacked lenses are measured in typical
casings. The lens holder has to be mounted on a motorised support that can move transversely
to the beam (xy−plane) and has yaw, pitch, and roll rotations19 to compensate for the residual
phase errors generated from misalignments - cf. §3.2 - Misalignments.

Detection

Although subpixel resolution for XSVT has been recently reported [Qiao, Shi, Celestre, et al.,
2020], generally, the lateral resolution of the 2D surface maps obtained with XSVT is limited to
the detector effective pixel size. This makes the use of a 2D high-resolution imaging detectors
common for speckle-based imaging. In real-space imaging with X-rays, since high resolution over
a large field of view is usually wished, it is common to use indirect detection. Converting X-rays
into visible-light and subsequently imaging it onto a pixelated detector allows one to access to
smaller pixel sizes thanks to the use of magnifying optics and small pixel sensors designed for
visible-light detection.

17Experiments showed here used a stack of cellulose acetate membrane filters with a mean pore size of 1.2 µm used
as the stationary diffuser.

18More details in data acquisition are provided by §4.1.4 - Data acquisition, processing and analysis.
19Yaw was defined in our case as the rotation around the z−axis, the pitch is around the y−axis and roll, the x−axis.
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A typical detection system20 is composed of three main parts: i-) the scintillator, which is
responsible for converting the X-rays into visible light. Its choice is a compromise between the
yield in converting X-ray photons in visible photons and image resolution: a thin scintillator will
generally result in a higher spatial resolution image, but at a cost of reduced photon flux, while a
thicker one will generate more light, but due to scattering in the bulk material, a low-resolution
image will result; ii-) the transport optics that magnify and images the scintillator onto the
sensor plane, but also may introduce aberrations to the system, this can be calibrated with the
XSVT technique - cf. [Berujon et al., 2020a, §2.2]; and iii-) the imaging sensor, which ideally
should be a low-noise 2D pixelated sensor with fast read-out. The final effective pixel size is a
convolution of the contributions from the choice of scintillator, magnification and point spread
function of the transport optics and the imaging device.

4.1.4 Data acquisition, processing and analysis

Data acquisition & analysis

The first implementations of X-ray speckle-tracking (XST) for metrology consisted of ac-
quiring solely two images: the reference- and the sample-image with the same speckle pattern
(cf. Fig. 4.2). The algorithms used to match the patterns in both images relied in setting in the
reference image a small window around a pixel of interest wreference(xl, ym) and searching for
it (possibly distorted) in a larger window in the sample image: wprobe(xl, ym). The reference
window is rastered through the whole sample image (L×M pixels from the whole image) to
reconstruct two 2D displacement maps (horizontal and vertical) with lateral resolution limited
to the speckle-grain size. In order to improve the limited resolution of XST, XSVT relies on
transversely scanning21 the speckle-generator across the X-ray beam and taking images at the
N different points of the scan. Once the reference data-set is taken, the sample is inserted in
the beam and the scan is repeated at the exact same diffuser position. Each data set (reference
and probe) contains NL×M images where the jth (j ∈ [1, 2, ..., N ]) image in each stack indicates
the same transverse coordinates of the scatterer scan - cf. Fig. 4.6. For a sufficiently large N , a
vector is obtained by sampling each jth image of the reference data-set around a pixel coordinate
(xl, ym) with l ∈ [1, 2, ..., L] and m ∈ [1, 2, ...,M ]. This reference signal Ireference(xl, ym, j) is
shown in green in Fig. 4.6. A ROI centred around (xl, ym) is set in the sample data-set and
for each pixel coordinate within this ROI, that is (xl+∆l, ym+∆m), a corresponding intensity
vector is obtained: Iprobe(xl+∆l, ym+∆m, j) - cf. magenta and orange signals in Fig. 4.6. The
Ireference(xl, ym, j) vector is compared22 individually to each of the Iprobe(xl+∆l, ym+∆m, j) vec-
tors. Fig. 4.7 shows the normalised cross-correlation values for a particular lens, which are

20The detection systems use at the ESRF are composed of a 10 µm thick LSO:Tb scintillator that is imaged onto an
sCMOS PCO Edge 4.2 or a FReLoN E2V CCD camera (2048 × 2048 pixels), coupled with a 10× magnification
microscope objective to reach a theoretical pixel size of about ∼ 0.62× 0.62 µm2. At the APS, the scintillator used
was a 100 µm thick LuAG:Ce imaged into an Andor Neo sCMOS camera with 2560 × 2180 pixels also with a 10×
magnification resulting in a pixel size of ∼ 0.65× 0.65 µm2.

21The nature of the scan is not particularly relevant for the data analysis in this particular metrology mode.
22Which can be either using a cross-correlation peak calculation [Bérujon et al., 2012; Morgan et al., 2012], a

least-square-minimisation [Zanette et al., 2014; M. C. Zdora et al., 2017] or an Euclidean-distance minimisation
of the wavelet-transform of the reference- and probe- vectors [Qiao, Shi, Celestre, et al., 2020]. In this work
the cross-correlation peak calculation is the preferred method for speckle-vector tracking [Bérujon et al., 2012;
Morgan et al., 2012].
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Fig. 4.6.: X-ray (near field) speckle vector tracking (XSVT). In the differential mode, two data-sets are
taken: the reference and the one with the imaged sample. Each of the jth image pair of the
data-set is taken at a different transverse scan position of the speckle-generator across the
X-ray beam. However, for a particular jth image-pair (reference and probe) the exact same
diffuser position must be maintained. A reference intensity vector Ireference(xl, ym, j) (green) is
searched in the sample stack,in a ROI centred around (xl, ym, j), where Iprobe(xl+∆l, ym+∆m, j)
vectors are probed for a matching value. The purple signal is a well matched signal, while the
orange signal shows the neighbouring-pixel intensity vector Iprobe(xl−2, ym−2, j).

used to evaluate the convergence of the tracking method. By repeating this procedure for all
L×M pixels, it is possible to obtain two 2D displacement maps (vertical and horizontal) with
lateral resolution down to the ∼ effective-pixel-size of the detector at the expense of an increased
data-collection and data-processing time [Berujon and Ziegler, 2016; Berujon et al., 2020b].

Surface reconstruction & analysis

The phase gradients ∇φ(x, y) can be obtained from the two displacement maps by multiply-
ing them by the wavenumber k and dividing the product by the distance between the sample and
detector (d) - cf. Eq. 4.3. An example of the horizontal and vertical gradient for a 2D-beryllium
lens with R = 50 µm measured at 17 keV with d = 800 mm and pixel size ∆pixel = 0.63 µm
is shown in Fig. 4.8(a)-(b) where the mismatch between front- and back- focusing surfaces is
obvious - cf. Fig. 4.7. An ideal lens has phase gradients with linear dependencies on the focusing
direction. From Eq. 1.36b and Eq. 2.8:

∇φ(x, y) =
(
∂φ(x, y)
∂x

,
∂φ(x, y)
∂y

)
= −2kδ

(
x

Rx
,
y

Ry

)
, (4.4)
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Fig. 4.7.: (a) radiography of a 2D-beryllium lens with R = 50 µm measured at 17 keV with d = 800 mm
and pixel size ∆pixel = 0.63 µm. The different penetration depths of the parabolic profiles
cause the reduction of the geometric aperture, evidenced by the two concentric rings. (b)
the normalised cross-correlation peak for the vector tracking algorithm. Regions with darker
colours have lower correlation peaks.

which is a linear function with the slope of the linear phase-gradient in the focusing direction
inversely proportional to the radius of curvature of the X-ray lens. This information can be
experimentally retrieved with the knowledge of the X-ray energy used and the lens material
(refraction index decrements). The phase gradient residues (or errors) are accessible by removing
a linear fit from the gradients, which is shown in Fig. 4.8(c)-(d). In order to recover the thickness
profile in projection approximation from the phase gradient (or from the residual phase gradient),
the main step is the numerical 2D integration23 of the differential fields, which is done using
either the Frankot-Chelappa method [Frankot and Chellappa, 1988] or the Harker-O’Leary
method (grad2surf) [Harker and O’Leary, 2015]. The profile resulting from the 2D integration
of the (residual) phase gradients can be converted into thickness in projection approximation by
(cf. Eq. 1.36b):

∆z(x, y) = −φ(x, y)
kδ

. (4.5)

Equation 4.5 is based on the assumption that the X-ray lens has a refractive index decrement
δ with no variations in (x, y, z). Eq. 4.5 also justifies the use of a monochromator in the
experimental setup (cf. Fig. 4.4) since δ has a significant energy dependency. The figure errors
from a lens can be obtained by two approaches: i-) by first integrating the phase gradients,
then fit and remove from the resulting surface either a cylinder with a parabolic section or a
paraboloid of revolution depending on whether the lens is a 1D or 2D focusing element. The
treatment shown in Eq. 4.5 is applied to this residual phase; or by ii-) directly integrating the
residual phase gradients and application of Eq. 4.5 to the integrated field. The residual thickness
in projection approximation for the previous lens is shown in Fig. 4.9(a). Valuable information
such as the RMS value of the figure errors; the decomposition of the wavefront into orthonormal
polynomials (cf. §3.4.1 - Orthornormal polynomials) for the systematic study of the optical
imperfections; and the power spectral density (PSD) of horizontal- and vertical- profile cuts
showing the spatial frequency distribution of the optical errors can all be obtained from the
residual thickness profile as shown in Fig. 4.9. The recovered thickness profile in Fig. 4.9(a) can
be later used as a ∆z(x, y) map in Eq. 1.37 to simulate the effects of optical imperfections in
X-ray lenses as discussed in §3.4.2 - Metrology data.

23More on numerical integration of gradient fields in [Huang et al., 2015] and [Agrawal et al., 2006].
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Fig. 4.8.: Phase gradients and respective gradient residues for a 2D-beryllium lens with R = 50 µm
measured at 17 keV with d = 800 mm and a pixel size ∆pixel = 0.63 µm - cf. Fig. 4.7.
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Fig. 4.9.: (a) Recovered figure errors in projection approximation of a 2D-beryllium lens with R = 50 µm
measured at 17 keV with d = 800 mm and pixel size ∆pixel = 0.63 µm, (b) Zernike circle
polynomial fit of the figure errors and (c) the residues from the fit. The coefficients of the fit
are shown in (d). (e) Horizontal and vertical power spectrum density of the lens.
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Measurement sensitivity

Finally, some considerations on the measurement sensitivity are presented. Supposing an
ideal detection system with effective pixel size ∆pixel, the minimum measurable deflection angle
is:

αmin = η
∆pixel

d
, (4.6)

where η is a factor accounting for the ability of the algorithm to track a displacement vector with
subpixel accuracy. Consider that the probe can be laterally sampled with the detector spatial
resolution ∆pixel as shown in Fig. 4.10(a). Each projected pixel will have a mean height value
and the minimum detectable height difference between two adjacent pixels is ∆zmin. The angle
αmin can be attributed to refraction caused by the local slope ϑ between two adjacent projected
pixel - cf. Fig. 4.10(b). A ray that is parallel to the optical axis will intercept this local slope at
an angle θ1 = ϑ and will be refracted with an angle θ2 = ϑ+ αmin. With the law of refraction
(Eq. 2.2) it is possible to estimate24 the longitudinal sensitivity of the XSVT as25:

∆zmin = ∆pixel ·
sin(αmin)

1
1− δ − cos(αmin)

. (4.7)

Figure 4.11 shows the XSVT longitudinal sensitivity (∆zmin) based on Eq. 4.7 for beryllium,
one of the most common materials for refractive optics manufacturing. From Eq. 4.7, it is
clear that longitudinal resolution of the XSVT technique depends on several factors: distance
between speckle-generator and detector d; material and experiment energy expressed as index of
refraction decrement δ; and the effective pixel size ∆pixel, which is directly impacted by the PSF
of the magnifying optics of the detector system. Other factors that contribute to the reduction in
lateral resolution (increase of η): i-) the thickness of the scintillator used (blurring from thicker
materials), ii-) temporal beam-instabilities as they may reduce the apparent transverse coherence
if the integration time of the detector is longer than the instabilities period; iii-) vibrations of the
sample holder with amplitudes larger than half of the pixel size and faster than the acquisition
time; iv-) a low reproducibility of the speckle-generator membrane positioning.

Equation 4.7 is a geometric approximation of the problem and does not take into ac-
count propagation of uncertainties associated with the different components in the experiment,
template-matching accuracy of the tracking routines nor numerical errors associated with the

24From Fig. 4.7(a) one obtains: tan(ϑ) =
∆zmin

∆pixel
. Using n1 = 1, n2 = 1 − δ, θ1 = ϑ and θ2 = ϑ + αmin in the law

of refraction: sin(ϑ) = (1 − δ) sin(ϑ + αmin). Writing sin(ϑ + αmin) = sin(ϑ) cos(αmin) + sin(αmin) cos(ϑ) and
collecting terms, one obtains Eq. 4.7. Similar reasoning can be applied to a model with two refracting surfaces
giving very similar numerical results.

25It is also possible to derive an approximate expression by using physical-optics arguments. The accumulated phase
of a wave passing through a material with thickness ∆z and index of refraction n = 1− δ+ i ·β is φ(x, y) = kδ∆z

as shown in Eq. 1.36b. The gradient of this phase is: ∇φ(x, y) =

(
kδ

∂

∂x
∆z; kδ

∂

∂y
∆z

)
. The partial derivatives

(local slopes) can be calculated as:
∂

∂x
∆z =

∂

∂y
∆z =

∆z

∆pixel
as a first approximation for a square pixel. With the

help of Eq. 4.3 and Eq. 4.6 one arrives at: ∆zmin = ∆pixel ·
αmin

δ
.
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Fig. 4.10.: Sketch for aiding the calculation of the XSVT longitudinal sensitivity. The lateral resolution to
which the probe is sampled generates a local slope between adjacent pixels (red dashed line
with inclination given by ϑ). A beam parallel to the optical axis (purple) hits the sample is
refracted with an angle θ2.
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Fig. 4.11.: X-ray speckle vectorial tracking longitudinal sensitivity (∆zmin) for beryllium. The solid red
line indicates the performance of the method at 10 keV, while the solid green line for 30 keV.
The dashed purple line indicates the experimental performance at 17 keV (used energy for
such experiments in this work.). Black point-dashed line indicates the nominal pixel size of
the imaging detector ∆pixel = 0.65 µm.

wavefront reconstruction as described by [Fried, 1977; Southwell, 1980]. Those can be globally
estimated by applying the XSVT data analysis routine to two different reference data-sets taken
under the exact same experimental conditions. These two 2D deflection angle maps allow to
obtain the angular sensitivity lower threshold and to estimate η under the conditions imposed by
the experimental setup. Figure 4.12 shows an example of such calculation with data taken at
17 keV with d = 875 mm and pixel size ∆pixel = 0.63 µm. The horizontal and vertical gradients
RMS values for this particular experiment is 0.026 µrad and 0.025 µrad, respectively. Using
Eq. 4.6, one can infer the η > 0.036. Those gradient maps can be integrated to obtain the phase
noise level (see Eq. 4.3) and an associated thickness can be estimated by using Eq. 4.5.

4.2 X-ray lens metrology

Since early 2017, metrology of individual X-ray lenses has been systematically performed
at the ESRF. Measurements have been applied to quality control of commercially acquired
X-ray lenses for assessing the optical quality of already purchased lenses and for verifying
if newly-purchased lenses meet specifications. The metrology profiles extracted from such
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Fig. 4.12.: X-ray speckle vectorial tracking angular sensitivity calculated by applying the XSVT routine to
two distinct sets of reference images taken taken shortly after each other. The experiment
was performed at 17 keV with d = 875 mm and pixel size ∆pixel = 0.63 µm.

measurements have been used in X-ray beamline simulations26 [Celestre et al., 2020]. More
recently, metrology started to be used to aid manufacturing of X-ray lenses produced in-house27

or as a co-development with external lens developers as it can offer insight into the relation
between production parameters and their effects on the lens profile.

4.2.1 Single lens measurements

Tables 4.1 and 4.2 show a compilation of radii, figure errors and useful geometric aperture
for two sets of ten 2D-beryllium lenses with nominal radius R = 50 µm and geometric aperture
A� = 440 µm measured individually and as stacks. These are the lenslets used in the optical
simulations shown in §5 - Effect of optical imperfections on an X-ray beam and §6 - Correcting
optical imperfections in refractive lenses. The figure errors are divided in full profile, Zernike
circle polynomial fit (low frequency - LF) and residues from the fit (high-frequency - HF). For
the particular case of the 2D-beryllium lenses, Zernike circle polynomials until the 37th order
(3rd order spherical aberration) were used. In the context of this work, the low-frequencies
(LF) span from ∼ 500 µm or 2 × 103 m−1 (geometrical aperture of a lenslet) to ∼ 50 µm or
2×104 m−1, while the mid- and high-frequencies span from ∼ 50 µm or 2×104 m−1 to ∼ 0.5 µm
or 2× 106 m−1, which is obtained from the Nyquist frequency28 of the measured data.

Individually measured lenses can be artificially stacked to study the effects of pilling up
lenses and to be later compared to the measurement of stacked lenses. This artificial stacking
can be done by propagating a plane wave through the CRL using the model described by Eq. 2.12
and extracting any developed quadratic phase term at the exit pupil - Fig. 4.13 shows a typical
optical setup for artificially stacking lenses. The phase can be readily converted into a thickness
profile in projection approximation with the aid of Eq. 1.36b. The accumulated29 profiles for the
stacks 1 and 2 are shown in Figs. 4.14 and 4.16 and compiled in Tables 4.1 and 4.2.

26Simulations using optical metrology of X-ray lenses have been reported in [Chubar et al., 2020].
27See [Celestre, 2020].
28Nyquist frequency is defined as one over twice the effective pixel size ∆pixel = 0.65 µm.
29The progressive increase of figure errors for the full-, fit- and residual- profiles is shown in Fig. 5.9 from §5.5.1 -

Metrology of individual lenses vs. stacked lenses
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z

(b) (c)(a) (d)

Fig. 4.13.: Optical setup used for artificially stacking lenses and calculating the phase errors. (a) The
illumination is the emission of a filament electron beam. An (b) ideal parabolic phase element
is used to give this illumination a plane phase. The stacked X-ray lenses are shown in (c). They
follow the model described by Eq. 2.12, that is, the CRL multi-slicing with figure errors added.
An (d) ideal parabolic phase element with a radius of curvature matching the developed
quadratic term is then added and the residuals (phase errors) can be extracted.

4.2.2 Stacked lenses measurements
Being able to measure stacked lenses is of high interest as it allows not only to predict

the performance of such focusing compound elements in conditions relatively similar to their
employment in beamlines but also enables the design of optical corrections for an aberrated
system [Seiboth et al., 2017, 2020]. The values for radii, figure errors and useful geometric
aperture for the two stacks used in this work are shown in Tables 4.1 and 4.2 and Figs. 4.15
and 4.17. The stacks, composed of the lenses described in §4.2.1 - Single lens measurements can
be compared with the artificially accumulated profiles as shown in Figs. 4.14 and 4.16, which
shows reasonable qualitative agreement - improving the agreement between the two types of
measurements is important as it allows the prediction of performance and correction of a CRL
composed of an arbitrary set of already measured and catalogued lenses. �
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Tab. 4.1.: Compilation of radii, figure errors and clear aperture for lenses L01 to L10 (stack 1) obtained
with XSVT metrology.

lens radius figure errors† (r.m.s) µm useful aperture
number µm full profile pol. fit residues µm

L01 48.77 0.57 0.45 0.35 439
L02 48.24 0.80 0.69 0.43 442
L03 48.76 0.77 0.55 0.54 432
L04 49.20 1.05 0.92 0.51 435
L05 48.41 0.81 0.67 0.44 440
L06 48.70 1.07 0.72 0.79 443
L07 48.91 0.70 0.53 0.46 442
L08 49.23 0.84 0.62 0.56 447
L09 48.09 0.93 0.79 0.49 434
L10 48.10 0.88 0.76 0.44 431

accumulated: 4.84 4.36 2.18 400
Stack 01: 5.46 5.75 5.20 2.47 399

† values given for A� = 400 µm
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Fig. 4.14.: Individually measured and artificially stacked lenses forming the stack 1. The individual
lenses parameters are shown in Table 4.1. Profiles calculated for a geometric aperture of
A� = 400 µm.
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Fig. 4.15.: Measurement of a CRL composed of the lenses L01-L10 described in Table 4.1 (stack 1).
Profiles calculated for a geometric aperture of A� = 400 µm.
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Tab. 4.2.: Compilation of radii, figure errors and useful aperture for lenses L11 to L20 (stack 2) obtained
with XSVT metrology.

lens radius figure errors† (r.m.s) µm useful aperture
number µm full profile pol. fit residues µm

L11 49.05 0.71 0.57 0.43 440
L12 49.27 0.80 0.68 0.44 460
L13 48.98 0.94 0.75 0.56 435
L14 48.26 1.06 0.95 0.47 452
L15 48.25 1.44 1.36 0.46 444
L16 49.25 0.69 0.55 0.42 443
L17 48.94 0.72 0.61 0.39 433
L18 48.30 1.22 1.15 0.42 439
L19 47.78 1.24 1.21 0.25 419
L20 48.62 0.80 0.72 0.36 456

accumulated 6.28 6.10 1.62 400
Stack 02: 5.67 6.47 5.97 2.49 407

† values given for A� = 395 µm
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Fig. 4.16.: Individually measured and artificially stacked lenses forming the stack 2. The individual
lenses parameters are shown in Table 4.2. Profiles calculated for a geometric aperture of
A� = 400 µm.
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Fig. 4.17.: Measurement of a CRL composed of the lenses L11-L20 described in Table 4.2 (stack 2).
Profiles calculated for a geometric aperture of A� = 400 µm.
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5Effect of optical imperfections on an
X-ray beam

The effects of the optical imperfections modelled and measured in Chapter 4 to an X-ray beam are
presented in this chapter in terms of fully- and partially- coherent simulations were done with the
SRW code and the specially developed Python library for refractive optics (barc4RefractiveOptics)
presented in Chapter 3. The fully-coherent simulations include the beam-caustics and the point-
spread function (PSF - intensity and phase) for the system being modelled. Partially-coherent
simulations comprise the beam characteristics at the image plane and the beam profile at
selected positions along the optical axis. These simulations are used to extensively evaluate the
performance of commercially available Be lenses; compare the validity of individually measured
and artificially stacked lenses against the stack measurement; and the different effects of distinct
spatial frequency ranges in figure errors to the optical performance of the CRL.

5.1 Lenses and lens stacks
The modelled lenses are 2D-Be lenses with a nominal radius of R = 50 µm chosen as

representative of lenses used widely at beamlines at many synchrotrons - see Fig. 2.1(b) and (d).
Such lenses have typically 1 mm thickness and are held in a 2 mm thick lens frame (newer ones
1.6 mm thick), which delimits the spacing ∆s = 2 mm between individual lenses in Eq. 2.12.
Those lenses can be manufactured with wall thickness in the range of ∼ 30 to 40 µm. Applying
Eq. 2.6, one obtains A� ≤ 440µm. At 8 keV, the energy used for the simulations, the index of
refraction for beryllium is n = 1− 5.318× 10−6 + i · 2.071× 10−9 and the corresponding intensity
transmission of this lenslet is shown in Fig. 2.5(a). Applying Eq. 2.4 with N = 1, one obtains
the focal length for a single lens: flens = 4.701 m. The lens stacks used are composed of N = 10
lenses, except for the stacks used in the simulations shown in Fig. 5.5, where the number of
lenses N varies (N = 1, 5, 10). The lens stack focal distance can be obtained by applying Eq. 2.5
with N = 10 and L = (N − 1) · 2 mm = 18 mm: fCRL = 473 mm, giving a magnification of
approximately 126 : 1 (M ≈ 8× 10−3 for a source 60 m away from the centre of the CRL) and a
diffraction-limited spot size (Eq. 2.14) of ∼ 200 nm. The error profiles used for the simulations
have been described in §4.2.1 - Single lens measurements when measured individually and in
§4.2.2 - Stacked lenses measurements when measured as a 10-element stack.

The comparison between the simulations using 10 different individually measured lenses
against simulations using metrology from a lens stack composed of those very same lenses is
shown in Fig. 5.3 for lenses L01-L10 and in Fig. 5.4 for the lenses L11-L20. Simulations of a
single lens (L01), five stacked lenses (L01-L05) and ten stacked lenses (L01-L10) are used to
investigate the deterioration of the X-ray beam profile upon stacking lenses. These can be seen
in Fig. 5.5. The effect of different spatial frequency ranges in the X-ray beam is shown in Fig. 5.6,
where the performance of the accumulated figure error profile of lenses L01-L10 is compared
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Fig. 5.1.: top row: beamline used for §5.3 - Fully coherent simulations. bottom row: beamline used
for §5.4 - Partially coherent simulations. (a) shows the X-ray source: a CPMU18 undulator.
An (b) ideal parabolic phase element with radius of curvature R = −60 m is placed 60 m
downstream the radiation source to give the illumination a near-plane phase - cf. Eq. 1.16. This
ideal element is only present for the fully-coherent simulations. The lenses being studied are
shown in (c). They are immediately followed by a set of (d) slits to ensure the same geometric
aperture for all simulations and aid direct calculation of the Strehl ratio. For the fully-coherent
simulations, the beam-caustic range is shown in (e) and the PSF is calculated at the centre of
it. For the partially-coherent simulations, the beam profile evolution along the optical axis is
shown in (f) and the beam characteristics at the focal position are calculated at its centre.

against the performance of its decomposition in Zernike circular polynomials and the residues of
such fit. Finally, the lens stack formed by individually measured lenses L01-L10 is meticulously
studied under fully- and partially-coherent illumination. Figure 5.7 shows transverse cuts along
the optical axis, the beam caustics, PSF (intensity and phase) and the demagnified image of the
X-ray source (CPMU181).

5.2 Software and computing infrastructure

All simulations presented here were done using the "Synchrotron Radiation Workshop"
(SRW) [Chubar and Elleaume, 1998]2, as it conveniently offers the possibility of fully- and
partially-coherent calculations3, and presents parallelisation with the MPI standard [Chubar
et al., 2011]. Fully coherent calculations were done using a single CPU of an Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz, while partial coherent simulations used 28 CPUs of the same type
(NICE OAR cluster at the ESRF). The specially developed python library for dealing with the
refractive lenses with the addition of optical imperfections (barc4RefractiveOptics) presented in
Chapter 3 was also used in the simulations.

5.3 Fully coherent simulations

For this set of simulations, the X-ray source is a filament electron-beam passing through
a CPMU18 undulator with 111 magnetic periods, Λ = 18 mm magnetic period and magnetic
field B = 0.9863 T emitting a 1st harmonic photon beam at 8 keV (resonance). The photon
source size and divergence are given by the specific radiation pattern size and divergence of

1Cryogenic Permanent Magnet Undulator.
2Available at https://github.com/ochubar/srw
3See §1.3.2 - Wave propagation and §1.3.3 - Partially coherent simulations.
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the insertion device and the emission is fully coherent4 - see §1.1.2 - High brilliance X-ray
sources. At 60 m away from the source, the beam footprint5 is large enough to illuminate the full
geometric aperture of a lens with A� ≤ 440µm with an intensity variation of 2% (centre to the
edge). The illumination profile in conjunction with the transmission profile of the lenses being
modelled (Fig. 2.5) allows classifying such systems as apodised. In the paraxial approximation,
the radiation phase for this source is dominated by a quadratic phase term [Chubar et al., 1999,
2001; Chubar and Celestre, 2019]. At the position along the optical axis where the intensity is
calculated, this quadratic phase term can be compensated by placing an ideal lens with focal
length f = −60 m. This ensures a plane-wave illumination (Eq. 1.16) downstream the ideal
element, which is used to illuminate the different CRL models being studied. The lens stack and
imperfect lenses are modelled using the CRL multi-slice approach with errors added described
by Eq. 2.12 and shown in Fig. 2.6(c) in §2.2.3 - CRL modelling. The evaluation of the effect of
optical imperfections on an X-ray beam is performed at the image plane of the focusing system
and in its vicinity. The beamline used for the fully-coherent simulations is shown in Fig. 5.1.

Tab. 5.1.: Summary of the beam sizes in FWHM for various CRL models. The extended source image sizes
are taken from the partially coherent simulations averaging the intensity of 104 wavefronts.

PSF (nm) source image (nm)
lens model hor. ver. hor. ver.

analytic equations 223.3 603.8 241.7
ideal CRL 217.5 218.7 626.4 247.5

Fig. 5.3 L01-L10 208.8 210.1 680.1 254.4
stack 01 206.2 219.5 692.0 254.1

Fig. 5.4 L11-L20 194.7 197.5 835.1 374.8
stack 02 192.1 203.1 748.6 268.9

Fig. 5.5 single ideal lens 1959.4 - -
L01 1954.0 1957.3 - -

five ideal stacked lenses 401.3 - -
L01-L05 384.5 399.0 - -

Fig. 5.6 LF L01-L10 214.8 206.0 731.4 263.7
HF L01-L10 225.1 231.6 637.5 246.1

5.3.1 The PSF: ideal focusing

After passage through the CRL model being studied, the plane wave used for illuminating
the optical system will develop a quadratic phase term that has a curvature radius equivalent
to the effective focal distance of the optical system, which is given by Eq. 2.5. The propagation
of the wavefront from the exit pupil of the CRL to the image plane located at a focal length
distance is equivalent to an optical 2D-Fourier transform of the system pupil function. The PSF
of the optical system corresponds to the squared modulus of this Fourier transform, which is
the wavefront intensity at the focal plane, considering a plane wave illumination [Goodman,
2017, §2.3.1 & §6.2]. The phase of the propagated field at the focal position, the normalised
PSF and relative intensities of the aberrated PSF normalised to the ideal case (Strehl ratio) are
shown in Figs. 5.3-5.4(b-c) and (e); Fig. 5.5(b)-(d); Fig. 5.6(b-c) and (e); and Fig. 5.7(d)-(e).

4cf. §1.2.3 - Optical coherence.
5Although commonly approximated by Gaussian distributions, undulator emission does not possess Gaussian

distribution not even at resonance. Please, refer to footnote 14 in §1.1.2 - High brilliance X-ray sources for a deeper
discussion on the emission profile of undulator radiation and for further references.
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Tab. 5.2.: Comparison of the Strehl ratio for the simulated models in Figs. 5.3-5.7

lens model σz (µm) Sa (Eq. 2.15) Sb (Eq. 2.16) Sc (Eq. 2.17) Sratio coh. Sratio part.-coh.
Fig. 5.3 L01-L10 4.84 0.067 0.285 0.393 0.394 0.409

stack 01 5.75 - 0.054 0.215 0.374 0.375
Fig. 5.4 L11-L20 6.28 - 0.007 0.160 0.185 0.211

stack 02 6.48 - 0.001 0.142 0.243 0.247
Fig. 5.5 L01 0.57 0.985 0.985 0.985 0.981 -

L01-L05 2.67 0.669 0.696 0.718 0.684 -
Fig. 5.6 LF L01-L10 4.36 0.116 0.311 0.413 0.335 0.359

HF L01-L10 2.18 0.779 0.791 0.802 0.796 0.778

The calculated FWHM of the central lobe of the PSF for the simulated models presented in
Figs. 5.3-5.7 are displayed on Table 5.1 and the respective Strehl ratio, compiled in Table 5.2.

5.3.2 The beam caustics

The beam characteristics at the image plane are very important and the PSF simulations in
Figs. 5.3 to 5.7 show obvious differences between ideal and aberrated focusing of CRLs. It is
necessary, however, to complement this with investigations of the effect of optical imperfections
away from the focal position, especially because several experimental applications may use a
defocused beam for obtaining a larger footprint. To get an overview of the beam evolution
up- and downstream of the focal position, one can propagate the wavefront along the optical
axis and for each position extract a cross-section of the beam. This will be referred to as the
beam caustic6. The beam caustics are shown in Figs. 5.3-5.6(a); and Fig. 5.7(c). The beam
cross-section for selected positions along the beam optical axis can be seen in Fig. 5.7(b). The
vertical cuts were taken at x = 0. The zero position along the optical axis is given by the distance
from the centre of the CRL to the image plane, position where the PSF is calculated. To calculate
the beam caustics, the wavefront was propagated from 10 mm upstream of the focal position to
10 mm downstream in 4001 equally spaced steps along the optical axis.

5.4 Partially coherent simulations
The PSF and beam caustic simulations presented previously are both fully-coherent calcula-

tions. They present the focusing of a perfect plane wavefront to a diffraction-limited spot. This
shows the intrinsic limitations of the optical system, but inherently neglects the effects of an
extended and partially coherent source.

5.4.1 X-ray source

The emission of a single electron passing through an undulator (filament beam) is fully co-
herent. By changing the electron initial conditions (positions, direction and energy), propagating
the emission of this electron through the beamline and adding up intensities, one can simulate

6Strictly speaking, the beam caustic is the envelope of light rays after passing through an optical element - see p. 60
[Lawrence, 1972]. A more comprehensive theory of caustics in optics is given by [Kravstov and Orlov, 1999; Nye,
1999].
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Fig. 5.2.: Horizontal (j(r1, 0)) and vertical (j(0, r2)) cuts of the complex degree of coherence function
immediately before the CRL - see §5.4.1 - X-ray source. The vertical dashed lines indicate the
geometric aperture used for the simulations.

partially coherent radiation if the electron beam phase space (5D) is sufficiently sampled as
discussed in §1.3.3 - Partially coherent simulations - see also [Chubar et al., 2011].

For this section, a hypothetical beamline operating on the new Extremely Brilliant Source
(ESRF-EBS) magnetic lattice [Dimper et al., 2014] is implemented. This beamline is shown in
Fig.5.1. The beamline sits on a straight section and has a CPMU18 undulator as an insertion
device. The undulator was tuned to its first harmonic at 8 keV for all simulations. The photon
source size is ∼ 71.9 × 12.4 µm2 and its divergence ∼ 17.7 × 14.7 µrad2 (FWHM, horizontal
vs. vertical). The first optical element was placed 60 m downstream of the centre of the
undulator to ensure a beam footprint larger than the geometric aperture of the CRL being
studied (A� ∼ 440 µm) and a constant intensity over it. The transverse coherence length ∆cl⊥

at the entrance of the optical system is estimated to be ∼ 60 × 448 µm2 (FWHM, horizontal
vs. vertical), from the calculation of the complex degree of spatial coherence7 j(r1, r2) - see
Fig. 5.2. This difference between the horizontal and vertical transverse coherence length is a
direct consequence of the photon-source size asymmetry and the van-Cittert-Zernike theorem
[Geloni et al., 2008, §4]. If there is no spatial filtering, the horizontal direction is less coherent
than in the vertical, leading to stronger blurring of the image in the less coherent direction
[Goodman, 2017, §7.5].

On the convergence of the simulations

In a conservative approach, the partially coherent simulations presented here were done
using 104 wavefronts to ensure convergence. The convergence of the partially-coherent simula-
tions is connected to the sampling of the electron distribution f(s, s′, γe), where each electron
in a bunch has a different initial condition in terms of position s = (xe, ye, ze = 0), direction
s′ = (x′e, y′e) and energy γe - see Physical-optics-based methods in §1.3.3 - Partially coherent
simulations. Commonly used criteria for evaluating the quality of the sampling of the electron
distribution are i-) smooth and homogeneous illumination at the aperture of the first optical
element; ii-) the beamline overall transmission; and iii-) the smoothness of the beam profile at
the end of the optical system prior to taking into account optical imperfections [Sanchez del Rio
et al., 2019].

7see Spatial coherence in §1.2.3 - Optical coherence.
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5.4.2 Beam characteristics at the focal position
The image of the extended X-ray source is similar to the convolution between the geomet-

rically demagnified image of the source and the 2D-PSF of the imaging system, provided the
beam is not strongly cropped anywhere in the beamline being simulated. For the cases being
studied here, the beam footprint at the entrance pupil of the CRL system is several times larger
than the geometric aperture of a single lens and this convolution approach is not valid, hence
the necessity of the partially-coherent simulations for imaging the source in the centre of the
CPMU18. Figures 5.3-5.4(e), Fig. 5.6(e) and Fig. 5.7(f) show the normalised demagnified image
of the undulator photon source while Table 5.1 presents the horizontal and vertical FWHM
for those simulations. Figures 5.3-5.4(f) and Fig. 5.6(f) show graphical representation of the
intensity profiles of the different focusing conditions on a normalised scale where the ideal
diffraction-limited focusing peak intensity is 1. Consequently, the peak intensities of the other
profiles give the Strehl irradiance ratios for the corresponding configuration. These values are
compiled in Table 5.2.

5.4.3 Beam profile evolution along the optical axis
Calculating the full beam caustic with partially-coherent simulations is impractical using

current simulation methods and computers/clusters especially if: i-) the beamline does not
present a very high degree of coherence, thus requiring a very large number of wavefronts to
accurately simulate the partial-coherence; ii-) the beamline has a low transmission (strong beam
cropping, diffraction orders outside apertures); or iii-) the sampling along the optical axis is
high. Still, many applications require to operate up- or downstream of the focal position and
assessing the beam quality on such positions is essential. Figure 5.7(a) shows the beam profile
evolution spanning 20 mm along the optical axis for selected positions up- and downstream the
image plane. Images are displayed showing their relative intensity to the beam in the focal plane.
The positions chosen were the same as in Fig. 5.7(b), selected cuts along the beam caustics, so
direct comparison between fully- and partially-coherent simulations can be done.
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Fig. 5.3.: Comparison between individually-measured lenses L01-L10 against the stack metrology of
the same lenses. top row: ideal CRL, upper middle row: L01-L10 artificially stacked lenses
measured individually. lower middle row: lenses measured as a stack. bottom row: horizon-
tal (solid lines) and vertical (dashed lines) intensity cuts for coherent- and partially-coherent
simulations. The simulated CRLs are composed of 10 2D-beryllium lens with nominal radius
R = 50 µm, geometric aperture A� = 440 µm and twall = 20 µm at 8 keV. The error profiles
used are the measured ones shown in Fig. 4.14 and 4.15.
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Fig. 5.4.: Comparison between individually-measured lenses L11-L20 against the stack metrology of
the same lenses. top row: ideal CRL, upper middle row: L11-L20 artificially stacked lenses
measured individually. lower middle row: lenses measured as a stack. bottom row: horizon-
tal (solid lines) and vertical (dashed lines) intensity cuts for coherent- and partially-coherent
simulations. The simulated CRLs are composed of 10 2D-beryllium lens with nominal radius
R = 50 µm, geometric aperture A� = 440 µm and twall = 20 µm at 8 keV. The error profiles
used are the measured ones shown in Fig. 4.16 and 4.17.
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Fig. 5.5.: Effects of artificially stacking individually measured lenses. top row: single L01 lens perfor-
mance). middle row: L01-L05 artificially stacked lenses. bottom row L01-L10 artificially
stacked lenses. The simulated CRLs are composed of 2D-beryllium lens with nominal radius
R = 50 µm, geometric aperture A� = 440 µm and twall = 20 µm at 8 keV.
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Fig. 5.6.: Effects of different spatial frequencies ranges on a X-ray beam. top row: full accumulated
profile of individually measured and artificially measured L01-L10 lenses. second row: Zernike
circle polynomial reconstruction of the accumulated profile. third row: residual profile from
the fit added to ideal lenses. bottom row:(−) horizontal (solid lines) and vertical (dashed
lines) intensity cuts for coherent- and partially-coherent simulations. The simulated CRLs
are composed of 10 2D-beryllium lens with nominal radius R = 50 µm, geometric aperture
A� = 440 µm and twall = 20 µm at 8 keV. The error profiles used are shown in Fig. 4.14.
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Fig. 5.7.: Lens stack formed by individually measured lenses L01-L10 studied under fully- and partially-
coherent illumination. (a) partially-coherent simulations show the beam profile up- and
downstream the focal position averaging 104 wavefronts to simulate the radiation emitted by
an undulator; (b) the coherent simulations show the beam profile of a plane wavefront being
focused; (c) beam propagation near the focal position (beam caustics) for a fully coherent
beam (horizontal cut around y = 0); (d) phase and (e) intensity of the PSF calculated focusing
a plane-wavefront; (f) demagnified image of the undulator photon-source (extended source).
The simulated CRLs are composed of 10 2D-beryllium lens with nominal radius R = 50 µm,
geometric aperture A� = 440 µm and twall = 20 µm at 8 keV. The error profiles used are
shown in Fig. 4.14.
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5.5 Discussion
The main results drawn from the simulations presented previously are discussed in this

section. Firstly, some considerations on the effect of optical imperfections on a (partially)
coherent X-ray beam are drawn. The merit of using the Strehl ratio for X-ray lens tolerancing is
also discussed. Finally, some comments on the simulation times are presented.

5.5.1 Metrology of individual lenses vs. stacked lenses
The metrology of single lenses and that of lens stacks was already discussed in §4.2 - X-ray

lens metrology. The qualitative agreement between the obtained profiles from the measurement
of a lens stack and the individually measured and artificially stacked lenses is shown in Figs. 4.14-
4.17 and Tables 4.1 and 4.2. This qualitative agreement is confirmed by the simulations as
shown in Figs. 5.3 and 5.4. Both sets of simulations, that is L01-L10 vs. stack 1 and L11-L20
vs. stack 2, show good agreement for the beam caustic, PSF and source image. The lenses
L11-L20 and stack 2 show a lower degree of similarity in the partially-coherent simulation as
shown in Fig. 5.4(d). This can be attributed to the differences in the relative alignment of the
lenses in the stack versus the lens holder in the individual measurements when performing the
lenses metrology and subsequent software stacking. Figure 5.8 shows the Strehl ratio for both
coherent and partially-coherent simulations for both stacks. The coherent Strehl ratio shows very
good agreement in terms of beam profile for both sets, despite the difference in intensity for the
L11-L20 simulations. The L01-L10 simulations preserve the agreement on the partially-coherent
simulations, but the L11-L20 set shows more difference between the individually measured
lenses and the stack - see also Fig. 5.4(d), but the general beam profile is maintained. When
comparing the results in Fig. 5.8 with the predicted Strehl ratios in Table 5.2, a large discrepancy
between the simulations of the L01-L10 lenses (individually measured and stack) is observed. It
is predicted that the simulations using the metrology data from the lens stack (as opposed to the
individually measured lenses) would have a much lower intensity due to a higher figure error
value across the pupil, which is not observed. Although a deeper discussion on the Strehl ratio is
presented in §5.5.3 - The Strehl ratio for X-ray lenses, it is worth noting that the probable cause
for this comes from the fact that the Strehl ratio predictions from Eqs. 2.15-2.17 were applied
without weighing the errors with the beam transmission for this system - see Fig. 2.5. The stack
measurement has a smaller effective aperture due to the absorption and phase-contrast effects.
The values of the figure errors towards the edge of the effective aperture are large and tend to
be misrepresented when providing a single metric such as an RMS value for the figure error σz
over the full aperture. This, however, does not seem to be the case for the lens stack 2.

The effect on the resulting aberrations of stacking X-ray lenses has been modelled and
discussed in depth by [Osterhoff et al., 2017]. The progressive increase in the resulting figure
errors from artificially stacked lenses is shown in Fig. 5.9, which shows the evolution of the (a)
full figure errors, (b) the polynomial fit of the full profile and (c) the residuals when stacking
lenses. The simulations in Fig. 5.5 show the progressive deterioration of an X-ray beam by adding
the figure errors to the simulations by showing three scenarios: a single lens, five lenses and ten
lenses, representing a low-, a moderate- and a high-aberrated system. This sensitivity study is
only possible because the metrology of individual lenses is available. Using the metrology of
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Fig. 5.8.: Horizontal (solid lines) and vertical (dashed lines) intensity cuts for coherent- and partially-
coherent simulations for the profiles in Figs. 4.14-4.15 (top row) and the for the profiles in
Figs. 4.16 and 4.17 (bottom row) at 8 keV.
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Fig. 5.9.: Progressive increase of figure errors for the (a) full-, (b) fit- and (c) residual- profiles. The
green-diamond shaped marker indicates the artificially stacked lenses from the stack 1, while
the magenta triangles, the stack 2. The black markers indicate the corresponding measured
stack. Figure errors calculated for a geometric aperture of A� = 400 µm.

a full-stack and scaling it would not adequately represent the system due to the existence of
correlated- and uncorrelated figure errors as pointed out by [Osterhoff et al., 2017] and shown
in Fig. 5.9.

5.5.2 The effect of optical imperfections

Applying the Maréchal criterion (Eq. 2.18) calculated for beryllium lenses illuminated at
8 keV requires the accumulated projected figure errors to be σz ≤ 2.08 µm. Tables 4.1 and
4.2 show that the accumulated thickness for both stacks is larger and that the optical system
is operating far from ideal as the system exceeds the limit imposed by the Maréchal criterion.
The decomposition of the figure error profiles into orthonormal polynomials and their resulting
residuals is convenient because it allows investigating the effects of specific frequency ranges in
the X-ray beam degradation. Following [Harvey et al., 1995], the figure errors of the lenses can
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be specified in terms of their spatial frequency, as they often have different effects on the image
quality. Three regions are commonly used for that: low-, mid- and high-spatial-frequencies. The
low-spatial frequencies (LF) are responsible for changing the beam profile and reducing the peak
intensity. They are related to the conventional optical aberrations [Born et al., 1999, §9.1-3]
and they can be described by a set of orthonormal polynomials, which has been described in
§3.4.1 - Orthornormal polynomials. Mid- and high-spatial frequencies (HF) are responsible for
scattering the light around the (focused) beam and have potential for broadening it, together
with the expected reduction of the Strehl ratio. In this work, the mid- and high- frequencies
are the residuals from the polynomial fit of the aberrated profile. The full profile comprises all
spatial frequencies and is referred to as FF. From the analysis of the experimental data from
2D-beryllium lenses with nominal radius R = 50 µm and geometric aperture A� = 440 µm,
Zernike circle polynomials until the 37th order (3rd order spherical aberration) were used. Which
causes the low-frequencies (LF) to span from ∼ 500 µm or 2× 103 m−1 (geometrical aperture of
a lenslet) to ∼ 50 µm or 2× 104 m−1, while the mid- and high-frequencies span from ∼ 50 µm
or 2× 104 m−1 to ∼ 0.5 µm or 2× 106 m−1, which is obtained from the Nyquist frequency of the
measured data. Figure 5.6 shows the effects of different spatial frequencies ranges on an X-ray
beam.

The addition of the mid- and high-spatial frequency errors to an ideal CRL model is
related to scattering around the focused beam, contributing thus to increasing background
and consequently reducing the peak intensity following [Harvey et al., 1995]. Using a linear
scale, both the ideal PSF and the demagnified source image in Figs. 5.3(c)-(d) are almost
indistinguishable from their aberrated counterparts in Figs. 5.6(c)-(d), which is because the
accumulated figure error complies to the Maréchal criterion. As pointed out by [Cocco, 2015;
Cocco and Spiga, 2019], a high Strehl ratio does not guarantee a homogeneous beam profile up-
and downstream of the focal position. This is apparent in the beam caustic shown in Fig. 5.6.
The profile shown in Fig. 4.15(c) is not random and presents some concentric rings. This comes
from the tooling of the punches used in the hot-embossing process of the Be lens fabrication. A
more diverse profile, such as the one shown in Fig. 5.10, which also comes from the metrology
of real Be lenses artificially stacked, allows to simulate the effects of a random HF error profile in
the beam shape and its contribution to the scattering of light outside the beam envelope defined
by the ideal beam caustics - this is shown in Fig. 5.11. Comparing these simulations with the
ones in Fig. 5.7 permits to say that the high-frequency errors lead to scattering of the beam and
speckles, but generally, do not change the beam shape even away from the focal position.

When considering the low-spatial-frequency figure errors, however, the beam shape starts
to change more drastically even at the focal position. The appearance of satellite peaks becomes
pronounced in the PSF and the demagnified source image. The beam caustics start presenting an
elongated tail-like structure upstream of the focal position and a ring-like structure downstream.
The elongation of the beam along the optical axis and the presence of homogeneous concentric
rings on the PSF are a classical signature of spherical aberration, which is a major component of
the LF figure errors - cf. Z11 in Figs. 4.15(d)-4.16(d). The predominance of spherical aberration
on 2D parabolic Be lenses has already been observed; see Fig. 6.14 of [Seiboth, 2016]. The
PSF due to spherical aberration can be seen also in Figs. 8.5 and 8.6 from [Mahajan, 2011].
In the partially-coherent simulations, the satellite peaks around the main lobe seen at the PSF
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Fig. 5.10.: Artificially stacked high frequency error profile from 10 individually measure 2D-beryllium
lens with nominal radius R = 50 µm, geometric aperture A� = 440 µm and twall = 20 µm
used in the simulations shown in Fig. 2.15 and Fig. 5.11. The profile has a σz = 1.74 µm and
the colour bar scale is in µm.

simulations are stretched horizontally to the point that their visibility is maintained vertically, but
horizontal cuts (Fig. 5.6(d)) show almost no trace of them, due to the reduction in transverse
horizontal coherence (blurring effect). Small misalignments between the lenslets and some
residual tilt from the LF errors contribute to a lateral displacement of the beam in the image
plane. Using the full-frequency-range figure errors yields a combined effect that is analogous
to the superposition of the HF and LF figure errors. The complete set of simulations of the
lenses L01-L10 using the CRL-MS modelling given by Eq. 2.12 can be seen in Fig. 5.7. The
diffraction effects from the aperture of the CRL are not easily observable because the system
has an apodised Gaussian intensity at the exit pupil [Mahajan, 1986], but they contribute to the
concentric ring structures seen on the ideal lenses simulation in Fig. 5.7. In terms of wavefront
preservation, X-ray lenses are more susceptible to the low-frequency figure errors, as they are
the ones that change the beam profile up- and downstream the focal position. Fortunately, the
low frequencies are those that can be readily corrected by the fitting of corrective optics - which
will be discussed in §6 - Correcting optical imperfections in refractive lenses.

The simulations shown in Figs. 5.3 to 5.7 paint a very consistent picture of the beam shape
along the optical axis. Upstream of the image plane, a persistent central lobe is observed,
albeit much less intense, with a high background around it thus reducing the signal to noise
ratio. Downstream, the beam has a drop in intensity in the middle, looking like a doughnut
when a cut transverse the optical axis is made. This behaviour is observed both on fully- and
partially-coherent simulations and is more evident in the simulations shown in Fig. 5.7 (beam
profiles). Such beam caustics have been extensively reported by experimental groups working
under high coherent conditions, with similar optics and ptychographic reconstruction of X-ray
beams - cf. Fig. 3 in [Schropp et al., 2013], Fig. 2 in [Seiboth et al., 2016], Fig. 3 in [Gasilov
et al., 2017] and Fig. 4 in [Seiboth et al., 2020].
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Fig. 5.11.: High frequency error profile studied under fully- and partially-coherent illumination. (a)
partially-coherent simulations show the beam profile up- and downstream the focal position
averaging 104 wavefronts to simulate the radiation emitted by an undulator; (b) the coherent
simulations show the beam profile of a plane wavefront being focused; (c) beam propagation
near the focal position (beam caustics) for a fully coherent beam (horizontal cut around
y = 0); (d) phase and (e) intensity of the PSF calculated focusing a plane-wavefront; (f)
demagnified image of the undulator photon-source (extended source). The simulated CRLs
are composed of 10 2D-beryllium lens with nominal radius R = 50 µm, geometric aperture
A� = 440 µm and twall = 20 µm at 8 keV. The error profile used is shown in Fig. 5.10.

5.5.3 The Strehl ratio for X-ray lenses

The Strehl ratio for the CRL models is presented in Table 5.2. In the numerical simulations,
the intensity at the centre of the beam is normalised to the intensity obtained by the ideal model.
What is generally observed is that for values lower than the Maréchal criterion (Eq. 2.18), the
analytic equations Eqs. 2.15-2.17 show a good agreement and can be used to estimate the
performance of an optical system close to the ideal performance. However, for moderate or
strong values of aberrations the approximations used to derive those equations start to break
down and other factors have to be taken into account, such as spatial distribution of the error
profile and the transmission profile across the exit pupil. The values shown on Table 5.2 do
not show a clear trend when it comes to the Strehl ratio and the RMS value of the figure error
across the exit pupil of the system. In order to understand the numerically dependence of the
Strehl ratio on the height error, each individual profile used to generate the profile shown in
Fig. 5.10 was scaled by a constant value to allow for a scanning of the total projected figure
error σz. The results in Figure 5.12 show the expected Strehl ratio as a function of the projected
figure errors σz for different analytical approximations (Eqs. 2.15-2.17) and for the numerical
calculations with a fully- and partially-coherent illumination - these numerical calculations are
also shown in Fig. 5.13. All approaches show very good agreement up to Sratio > 0.8, when they
start diverging. The expressions for Sratio a (Eq. 2.15) and Sratio b (Eq. 2.16) can be considered as
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Fig. 5.12.: Strehl ratio from numerical simulations and from the application of different approximations
(Eqs. 2.15-2.17) as a function of the figure error σz from a lens stack made of beryllium
illuminated at 8 keV. The vertical dashed black line indicates the maximum tolerable thickness
error (Eq. 2.19) for complying with the Maréchal criterion (Eq. 2.18), that is, σλ/14 ≈ 2.08 µm.

approximations for Sratio c (Eq. 2.17), therefore are only expected to be valid over a restricted
range (large Sratio). A fit of the simulation data (coral rhombuses and blue squares in Fig. 5.12)
give:

Sratio coh. ≈ exp
(
− 2.32 · 1010σ2

z − 6.13 · 104σz + 2.54 · 10−2), (5.1a)

Sratio part.-coh. ≈ exp
(
− 2.28 · 1010σ2

z − 5.07 · 104σz + 2.29 · 10−2). (5.1b)

Unfortunately, due to the nature of the projected figure errors (in the range of few micrometres
r.m.s.), it is not possible to discard the non-quadratic terms. Equations 5.1 can be rewritten as:

Sratio simulation ≈ exp
[
−
(2π
λ

)2(
κ1∆Φ

)2 − 2π
λ
κ2∆Φ− κ3

]
, (5.2)

where κ are scaling constants that, in principle, depend on the number of elements, lens material,
energy and, mostly importantly, the spatial distribution of the accumulated errors over the optical
element aperture. For our particular examples, κ1 = 0.71, κ2 = 0.28 and κ3 = 2.54 · 10−2 for
the coherent case and κ1 = 0.70, κ2 = 0.24 and κ3 = 2.29 · 10−2 for the partially-coherent case.
When comparing Eq. 5.2 with Eq. 2.17, a κ < 1 suggests that there is some weighting of the
phase errors reducing their effect, but simply multiplying the accumulated thickness errors (cf.
Figs. 4.15-4.16) with the normalised optical system transmission (cf. Fig. 2.5) does not allow
prediction of κ and this is still as an open question at the time of writing, which strengths the
case for the simulation framework developed for this thesis.

5.5.4 Simulation time
Increasing the complexity of the simulation model comes at the expense of increasing the

overall simulation time, but as long as the transverse wavefront sampling is maintained, memory
consumption is not affected from one model to another. The time increase in the simulations is
mainly due to: i) increase in the number of drift spaces and the number of optical elements; ii)
from reading the densely sampled metrology data. Table 5.3 presents the typical simulation times
for this work. Those are particularly high because the transverse sampling of the wavefronts
is several times larger than the nominal minimal sampling necessary to mitigate artefacts or
under-resolved features on the wavefront. Employing 104 wavefronts for the partially coherent
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Fig. 5.13.: Intensity cuts as a function of the figure error σz from a lens stack made of beryllium
illuminated at 8 keV. The accumulated profile used presents predominantly the high-frequency
content and is shown in Fig. 5.10. The associated Strehl ratio are shown in Fig. 5.12. This
spatial frequency range is related to scattering around the focused beam, contributing thus to
increased background and consequently reducing the peak intensity.

simulations is also exaggerated but was done to ensure that any changes on the simulation come
from the change of model being studied and not from statistical nature of the sampling of the
electron-beam phase-space. The simulation times presented on Table 5.3 can be certainly be
reduced without loss of accuracy by adopting a more sensible sampling. �

Tab. 5.3.: Summary of the simulation times for different CRL models. From the most simple one (single
lens equivalent) up to the more complex multi-slicing (MS) with figure errors. Simulations
were performed on a Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz cluster at the ESRF.
Partially coherent calculations were done using 28 cores in parallel.

model fully coherent partially coherent caustics
single lens equivalent (Eq. 2.10) 33 s 2 h 44 min 1 h 32 min

multi-slicing (Eq. 2.11) 58 s 5 h 12 min 1 h 33 min
MS + figure errors (Eq. 2.12) 2 min 48 s 5 h 42 min 1 h 35 min

(1 wavefront) (104 wavefronts) (4001 pts.)
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6Correcting optical imperfections in
refractive lenses

The interest and possibility of arbitrarily manipulating the X-ray wavefront has been teased since,
at least, the early 2000s [Chubar et al., 1999, 2001]. It was not until the advent of extremely
accurate additive and subtractive manufacturing techniques [Stöhr et al., 2015; M. Polikarpov,
Kononenko, et al., 2016; Petrov et al., 2017; Roth et al., 2018; Sanli et al., 2018; Seiboth et al.,
2019; Abrashitova et al., 2020; Antipov, 2020; Lin et al., 2020; Medvedskaya et al., 2020]
that the demonstration of free-form X-ray refractive optics1 was done [Sawhney et al., 2016;
Seiboth et al., 2017; Laundy et al., 2019; Seiboth et al., 2020; Dhamgaye et al., 2020]. The
possibility of producing very accurate free-form optics for the correction of optical aberrations
has brought renewed interest in wavefront sensing [Berujon et al., 2015; Seaberg et al., 2019]
and optical design simulations [Laundy et al., 2020]. This chapter presents the early results
on correcting optical imperfections in refractive lenses obtained at the ESRF. The design and
expected performance is based on the lenses presented in §4.2.1 - Single lens measurements and
the simulations shown in Chapter 5 - Effect of optical imperfections on an X-ray beam.

6.1 Corrective optics
Correcting optical imperfections can be done by actively reshaping an optical element

(adaptive optics) [Sutter et al., 2012; Alcock et al., 2013] or by inserting a static (passive) optical
element specially fitted to compensate the deviations from a perfect profile or the wavefront error
in relation to an idealised intensity [Donato et al., 2020] or phase profile. Phase manipulation
for wavefront manipulation can be done with diffractive elements [Probst et al., 2020] or with
refractive elements [Sawhney et al., 2016; Seiboth et al., 2017; Laundy et al., 2019; Seiboth
et al., 2020; Dhamgaye et al., 2020]. As indicated by the vast literature, refractive optics is the
most popular method for correcting phase errors in partially-coherent X-ray beams. This section
presents the design of refractive optical correctors for refractive lens stacks.

6.1.1 Design
Formally, the computation of the phase correction2 for any optical system is done by

assuming that the wave-field will develop a specific phase φexit(x, y) distribution after passing
through an arbitrary optical system. Perfect focusing of a wave-field to a point-source at a
distance r from the exit pupil requires that the developed phase arg[Uexit(x, y)] to be that of
a spherical-wave as in Eq. 1.17 [Chubar et al., 1999]. Given the typical geometric apertures

1Although not discussed here, significant work for producing novel wavefronts has also been done using diffractive
optics. Please, refer to Diffractive optics in §2.1.1 - X-ray focusing optics for references to diffractive optics for
wavefront manipulation.

2The design of optical correctors for synchrotron radiation was first described in [Chubar et al., 1999, §2], revisited
in [Chubar et al., 2001] and first implemented for a 2D CRL in [Seiboth et al., 2017].
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Fig. 6.1.: Schematic for residual phase extraction. (a) an arbitrary X-ray source delivers a (b) wave-field
Uillum.(x, y) immediately before the (c) optical system being studied. The wave-field exits the
optical system and can be propagated a (d) distance ∆zpp from the exit pupil. At this position,
the (e) extraction of the ideal phase from Uexit(x, y) is done according to Eq. 6.2.

and focal distances of a CRL composed of a few individual lenses3, it is possible to use the
phase of the paraxial approximation of Eq. 1.17, that is, the parabolic-phase of the wavefront
in Eq. 1.18. If the wavefront illuminating the optical system is given by Uillum.(x, y), then, after
passing through an aberrated lens system, Uexit(x, y) is given by:

Uexit(x, y) = D(∆zpp) · [TCRL-MS(∆z) · Uillum.(x, y)] , (6.1)

where D(∆zpp) is a free-space propagation from the exit pupil of the optical system to the position
along the optical axis where the phase correction is performed (Eq. 1.39) and TCRL-MS(∆z) is
the operator description of a lens stack given by Eq. 2.12. The phase shift necessary to correct
such wavefront can be calculated as:

φcorrection(x, y) = arg

 exp
(
− ik x

2+y2

2zf

)
Uexit(x, y)

 . (6.2)

Where zf is the distance from the phase corrector to the image plane [Seiboth et al., 2017]. This
phase extraction procedure is illustrated in Fig. 6.1. A phase corrector based on refractive optics
can be calculated directly from the phase obtained in Eq. 6.2 and the transmission element in
projection approximation phase-thickness relationship described by Eq. 1.36b:

∆pp(x, y) = −φcorrection(x, y)
kδpp(x, y) . (6.3)

Where ∆pp(x, y) is the local phase plate thickness in projection approximation and δpp is the
refraction index decrement of the material used for correcting φexit(x, y). The resulting cor-
rection plate described by Eq. 6.3 is directly proportional to the phase errors at each (x, y)
coordinate pair. Typical error maps are shown in Figs. 3.9, 4.9, 4.14-4.17. Current micro- and
nanofabrication techniques used for manufacturing X-ray optics are capable of reproducing such
intricate shapes with high spatial and depth resolution, however the use of such correction plate
in an experimental setup is rather impractical due to the several degrees of freedom concerned
when aligning it against the aberrated optical system. Furthermore, it has been observed that
2D lenses produced by (hot) embossing are dominated by spherical aberration terms (primary,
secondary, tertiary...) and other azimuathally symmetric errors due to intrinsic manufacturing
processes [Schropp et al., 2013; Uhlén et al., 2014; Seiboth et al., 2016, 2017; Celestre et al.,

3Assuming that the focusing inside the CRL is negligible - cf. [Schroer and Lengeler, 2005] and [Seiboth et al., 2018,
§6].
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2020; Seiboth et al., 2020] - see also the Zernike polynomial bar plots (orange bars) in Figs. 3.9,
4.9, 4.14-4.17. Trading some of the correction accuracy for more practicality when employing
the correction plate in a beamline, it is possible to obtain a correction profile by azimuthally
averaging ∆pp(x, y):

∆pp(r) =

2π∫
0

∆pp(r, θ)rdθ

2π∫
0

rdθ

, (6.4)

where r =
√
x2 + y2 and θ = arctan

(
y/x

)
are the transformation from Cartesian to polar

coordinates. The correction plate as calculated by Eqs. 6.3 and 6.4 is tailored for a specific set
of lenses operating at a defined energy, due to the dispersion properties of δpp. Although true
that a correction plate design is suited to a specific lens combination, for a moderate number of
lenses where the focusing inside the CRL can be neglected, it has been demonstrated that the
correction plate can be used over a range of energies around the design energy Edesign as the
index of refraction decrement δ is proportional to λ2 [Seiboth et al., 2018, §6]. This can be done
by shifting the plate along the optical axis closer or further away from the design position ∆zpp if
the new operation energy is lower or higher than Edesign. The same considerations on the beam
chromaticity in Chromatic aberrations in §2.2.4 - CRL performance apply to the phase correctors.

Materials

It is natural to envision adopting the same materials used in X-ray lenses for the phase
correctors. As for the lenses, the material used for the phase plate is intimately connected
to the manufacturing process. Phase plates for optical correction have been produced using
fused silica [Seiboth et al., 2017], diamond [M. Polikarpov, Kononenko, et al., 2016; Antipov,
2020] and sapphire [Lin et al., 2020], manufactured with laser ablation or ion-beam lithography
[Medvedskaya et al., 2020] (subtractive manufacturing); and polymeric resists such as SU-8
(commonly used in LIGA [Nazmov et al., 2004] and other polymeric lenses [Stöhr et al., 2015])
and the proprietary IP-S used in additive manufacturing via two-photon polymerisation [Petrov
et al., 2017; Sanli et al., 2018; Abrashitova et al., 2020; Lin et al., 2020].

6.1.2 Correction phase plate calculation
Applying the correction plate design methodology (Eqs. 6.1-6.4) to the individually mea-

sured and artificially stacked lenses L01-L10, which have been studied in depth - see Table. 4.1
and Figs. 4.14, 5.3 and 5.7; it is possible to recover a phase plate that will improve the perfor-
mance of that particular optical system. An optical corrector to be used 10 mm downstream of
the last lens of the stack, made of diamond and designed to operate at 8 keV is shown (cut) in
Fig. 6.2. Due to the process described by Eq. 6.4, the profile of the corrective plate is smooth
and does not have high spatial-frequency components. The obtained profile is similar to the
ones reported in [Seiboth et al., 2017, 2018, 2020], which were obtained for stacks composed
of similar lenses. The correction plate was designed using diamond due to its relatively large
refractive index decrement δC* at the expense of a higher absorption, good thermal and mechan-
ical properties and volume homogeneity which translates into low X-ray small-angle scattering
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Fig. 6.2.: Profile cut of a diamond corrective plate for the lenses L01-L10 at 8 keV - cf. Fig. 4.14. The
correction plate was calculated 10 mm downstream of the exit pupil of the CRL.
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Fig. 6.3.: Schematic for residual thickness error calculation after phase correction. (a) shows an arbitrary
X-ray source. An (b) ideal parabolic phase element is placed downstream the radiation source
to give the illumination a plane phase. The stacked X-ray lenses are placed immediately
downstream. Any changes to the wave-field after (c) can be directly attributed to the model
under study. The phase plate is placed in (d) to correct the accumulated phase errors. An (e)
ideal parabolic phase element with a radius of curvature matching the developed quadratic
term is then added and the residues (phase errors) can be extracted.

when compared to beryllium lenses [Chubar et al., 2020]. These properties make diamond a
very interesting material for (refractive) X-ray optics [M. Polikarpov, V. Polikarpov, et al., 2016;
Shvyd’Ko et al., 2017].

Using the optical setup shown in Fig. 6.3, it is possible to recover the residual figure error
profile after the correction plate, as shown in Fig. 6.4(a) and described in Table 6.1. The
profiles in Fig. 6.4(b)-(c) are substantially changed from the Fig. 4.14(b)-(c). The polynomial
fit in Fig. 6.4(b) has virtually no spherical aberration terms. The concentric rings from the
pressing tool apparent in Fig. 4.14(c) are completely removed from the residual errors in
Fig. 6.4(c). Figure 6.3(d) reinforces the observation of the reduction in the figure errors by
the use of a azimuthally symmetric phase plate. The radially symmetric components (orange
bars) in Fig. 6.3(d) are almost completely removed, while the purple bars remain almost
unchanged. Finally, Fig. 6.3(e) shows a residual profile that is several times smaller than the one
in Fig. 4.14(e).

Tab. 6.1.: Residual figure error profile r.m.s. value for L01-L10 (Fig. 4.14) and for the corrected system
(Fig. 6.4).

figure errors† (r.m.s) µm
full profile pol. fit residues

L01-L10: 4.84 4.36 2.18
L01-L10 + PP: 3.27 2.84 1.63

† values given for A� = 400 µm

Expected performance

By reproducing the simulations from §5.3 - Fully coherent simulations and §5.4 - Partially
coherent simulations to the corrected optical system as shown in Fig. 6.5, it is possible to evaluate
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Fig. 6.4.: Residual thickness error of the individually measured and artificially stacked lenses L01-L10
corrected with the diamond phase plate displayed in Fig. 6.2.

Tab. 6.2.: Comparison of the Strehl ratio for aberrated system composed of L01-L10 and the corrected
system as shown in Fig. 6.7.

σz (µm) Sa (Eq. 2.15) Sb (Eq. 2.16) Sc (Eq. 2.17) Sratio coh. Sratio part.-coh.
Fig. 6.7 L01-L10 4.84 0.067 0.285 0.393 0.394 0.409

L01-L10 + PP 3.27 0.503 0.545 0.608 0.595 0.671

the correction plate performance and predict its effect in a coherent- and partially-coherent
X-ray beam. Figure 6.6 summarises the simulations and can be directly compared to Fig. 5.7
as it shows the beam profile at selected positions up- and downstream the focal plane for a (a)
partially- and for a (b) coherent beam. The beam caustic is shown in Fig. 6.6(c), while the (d)
phase and (e) amplitude of the PSF, as well as the (f) source image, are shown right next to it.
A graphical representation of the Strehl ratio for the aberrated system and corrected system is
shown in Fig. 6.7 for the coherent and partially-coherent cases.

Tolerancing4

The expected performance of the correction plate shown in Figs. 6.6 and 6.7 and compiled
in the Tables 6.1 and 6.2 always assumes that the phase plate is perfectly centred in respect to
the optical axis, at the designed distance ∆zpp from the CRL and that it presents no tilt in relation
to the optical axis. However, when mounting the phase-plate in a real experimental setup, these
are very difficult to reproduce. To understand and establish the precision to which the alignment
has to be done, a series of scans is presented in Fig. 6.8, which shows the simulations of a
(a) longitudinal, a (b) transverse and an angular scan of the phase plate around its nominal
(designed) position. The transverse alignment is clearly very important. The longitudinal
alignment is, to a lesser extent, also important. The plate shows a relative insensitivity to angular
misalignments. Although Fig. 6.8 shows only coherent simulations, it is believed that the results
can be applied to a moderately partially-coherent X-ray beam without great loss.

4This section came to be after some discussions with Andreas Schropp and Frank Seiboth (DESY, Germany) on the
phase plate sensitivity to the alignment precision.
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(d)

Fig. 6.5.: top row: beamline used for §5.3 - Fully coherent simulations. bottom row: beamline used
for §5.4 - Partially coherent simulations. (a) shows the X-ray source. An (b) ideal parabolic
phase element is placed downstream the radiation source to give the illumination plane phase.
This ideal element is only present for the fully-coherent simulations. The lenses being studied
are shown in (c), which are followed by the (d) the correction plate. A set of (e) slits to
ensure the same geometric aperture for all simulations. For the fully-coherent simulations,
the beam-caustic range is shown in (f) and the PSF is calculated at the centre of it. For the
partially-coherent simulations, the beam profile evolution along the optical axis is shown in (g)
and the beam characteristics at the focal position are calculated at its centre.

(a) partially-coherent simulations

0 mm +1 mm +2 mm +5 mm +10 mm–1 mm–2 mm–5 mm–10 mm

(b) coherent simulations

0 mm +1 mm +2 mm +5 mm +10 mm–1 mm–2 mm–5 mm–10 mm

(c) beam caustics (d) phase (rad) (e) PSF (f) source image

Fig. 6.6.: Expected performance of the diamond phase corrector. (a) partially-coherent simulations show
the beam profile up- and downstream the focal position averaging 104 wavefronts to simulate
the radiation emitted by an undulator; (b) the coherent simulations show the beam profile of a
plane wavefront being focused; (c) beam propagation near the focal position (beam caustics)
for a fully coherent beam (horizontal cut around y = 0); (d) phase and (e) intensity of the PSF
calculated focusing a plane-wavefront; (f) demagnified image of the undulator photon-source
(extended source). The phase-plate was designed in diamond and a cut is shown in Fig. 6.3.
The residual error profile after the correction is shown in Fig. 6.2.
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Fig. 6.7.: Visual representation of the Strehl ratio for the aberrated and corrected optical system. Coherent
simulations are shown in (a) and partially-coherent simulations in (b) at 8 keV.
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Fig. 6.8.: Study of the precision requirements on longitudinal, transverse and angular alignment of the
phase plate based on the optimisation of the Strehl ratio for a fully-coherent beam.
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(a) typical lens casing (b) lens in the frame (c) 1st gen. correction plate (d) 2nd gen. correction plate

Fig. 6.9.: Typical lens casing, lens frame and both generation of correction plates.

6.2 Prototype
A series of phase plates designed to correct the accumulated figure error of 10 Be lenses

(L01-L10) was commissioned based on the profile shown in Fig. 6.2, which was calculated to
be placed 10 mm downstream the last lens of the stack and to correct the errors at 8 keV. The
plates were ablated from diamond (HPHT IIb) by a femtosecond laser (515 nm, 3 W, 60 kHz,
200 fs) by a third-party company. The refractive phase plates produced by such technique have
a surface roughness of ∼700 nm, but the company offers polishing, which lowers the surface
roughness down to ∼100 nm, at the expense of removing some high-spatial frequency features
of the correctors, but it is possible to account for the uneven material removal during polishing
on the design of the phase plate5 [Antipov, 2020]. Regardless of the surface finishing, a high
shape fidelity to the profile in Fig. 6.2 is expected from the prototypes. Lastly, to facilitate the
use of the phase correctors, it was requested that the phase plates come in frames compatible
with those used for X-ray lenses - see Fig. 6.9. The phase-plate should be precisely centred in the
� = 12 mm aluminium-bronze disk, so it can be easily installed in the lens housing minimising
the performance degradation from misalignments shown in Fig. 6.8.

6.2.1 Early tests on an X-ray beam

So far, only two generations of correction plates were produced - see Fig. 6.9. The first
generation of phase-plates was received and measured in Dec. 2019 with the XSVT technique
described in §4 - Measuring optical imperfections in refractive lenses. This first iteration did not aim
to produce useful plates, but it allowed to gain useful insights for the production of the second
generation correctors, which was delivered in June 2020 - this time to be used for correction
of optical imperfections in real CRLs. The phase-plates from the second generation design
were chosen to demonstrate some of the preliminary results correcting optical imperfections in
refractive lenses available at the ESRF.

The second generation of phase plates consisted of a set of three correction plates (PP01.v1
to PP01.v3) based on the design shown in Fig. 6.2. The difference among the three plates is the
script used for laser ablation and the presence or not of surface post-processing. The v1 refers
to an undisclosed laser polishing, while v2 and v3 have no post-processing. The PP01.v3 plate
uses a different script for surface removal [Antipov, 2020]. Figure 6.10 shows the retrieved

5At the time of this writing this has not yet been tested.
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Tab. 6.3.: Residual figure error profile r.m.s. value for L01-L10 (Fig. 4.14) and for the corrected system
(Fig. 6.4).

figure errors† (r.m.s) µm
full profile pol. fit residues

stack 01: 4.89 4.73 1.41
stack 01 + PP01.v1: 3.03 2.91 1.66
stack 01 + PP01.v2: 4.26 3.95 1.51
stack 01 + PP01.v3: 3.44 3.10 1.44

† values given for A� = 320 µm

profile using the XSVT technique and experimental setup described in §4 - Measuring optical
imperfections in refractive lenses. The profiles are very similar among each other and no strong
effect in the surface shape of the polished phase-plate can be observed with XSVT. For the
phase-plate PP01.v2, the manufacturer provided visible light metrology (scanning confocal
laser microscopy), which is shown in Fig. 6.11. The surface roughness of the non-polished
plate is evident in Fig. 6.11(c). Figure 6.12 shows a profile cut of the retrieved thicknesses
measured with XSVT and visible-light metrology against the designed profile, showing a initial
good agreement for the central part of the phase plate and lesser agreement towards the edge of
the geometric aperture.

Once measured individually, the phase plates were added directly to the lens casing relying
on the assumption that the phase-plates were perfectly centred within their frames and thus,
would ideally be perfectly aligned to the lens stack - see Fig. 6.9. The lens stack with the
correction plate was then re-measured with the XSVT. For comparison, the lens stack without
any correction was also measured under the very same conditions. The metrology is shown in
Fig. 6.13 and summarised in Table 6.3. It is evident that the correction plates are not centred
within the lateral tolerance defined by Fig. 6.8(c)-(d) as no significant improvement in the
residual profile can be seen.

To be able to test the correction effectiveness and performance, it was decided to mount a
phase-plate outside the lens case so at least the transverse alignment could be done. The phase-
plate chosen for these tests was the PP01.v2 due to its good agreement with he designed profile
in Fig. 6.2. The simplest alignment of the phase plate is based on maximising the peak intensity
at the image plane. This approach, however, could not be employed due to the saturation of the
detector at the image plane even after a set of attenuators was used. Instead, the alignment of
the phase-corrector was done trying to visually optimise, in terms of homogeneity, the far-field
beam-profile several tens of millimetres downstream the focal plane. Once the best transverse
position was found, a series of 2D images up- and downstream the optical axis was taken with
the same 2D imaging detector used for the XSVT (pixel size of ∼0.63 µm). The beam caustics can
be obtained from this series of images and it is shown in Fig. 6.14 for the aberrated and corrected
system. Due to the saturation in the vicinity of the focal plane, a quantitative assessment of the
improvement cannot be done, however, a clear qualitative improvement on the beam profile up-
and downstream the focal plane is seen.
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Fig. 6.10.: Phase-plate metrology using the XSVT as described in §4 - Measuring optical imperfections in
refractive lenses.
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Fig. 6.11.: Scanning confocal laser microscopy of the PP01.v2 phase-plate provided by the manufacturer.
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Fig. 6.12.: Profile cuts of the correction plates P01.v1-v3 measured with the XSVT metrology and from
the P01.v2 plate measured with the visible-light metrology.
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Fig. 6.13.: top row: thickness error of lens stack 01. centre-top to bottom row: residual thickness after
installation of the correction plates PP01.v1, PP01.v2 and PP01.v3 respectively.

6.2 Prototype 129



−20 0 20
(µm)

−20

0

20

(µ
m

)

(a) -40 mm

−20 0 20
(µm)

−20

0

20

(b) -30 mm

−20 0 20
(µm)

−20

0

20

(c) -20 mm

−20 0 20
(µm)

−20

0

20

(d) -10 mm

−20 0 20
(µm)

−20

0

20

(e) +10 mm

−20 0 20
(µm)

−20

0

20

(f) +20 mm

−20 0 20
(µm)

−20

0

20

(g) +30 mm

−20 0 20
(µm)

−20

0

20

0.00

0.25

0.50

0.75

1.00

(h) +40 mm

−100 −50 0 50 100
(mm)

−100

−50

0

50

100

(µ
m

)

(i) beam caustics

−25 0 25
(mm)

−40

−20

0

20

40

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(j) zoomed beam caustics

aberrated system

−20 0 20
(µm)

−20

0

20

(µ
m

)

(a) -40 mm

−20 0 20
(µm)

−20

0

20

(b) -30 mm

−20 0 20
(µm)

−20

0

20

(c) -20 mm

−20 0 20
(µm)

−20

0

20

(d) -10 mm

−20 0 20
(µm)

−20

0

20

(e) +10 mm

−20 0 20
(µm)

−20

0

20

(f) +20 mm

−20 0 20
(µm)

−20

0

20

(g) +30 mm

−20 0 20
(µm)

−20

0

20

0.00

0.25

0.50

0.75

1.00

(h) +40 mm

−100 −50 0 50 100
(mm)

−100

−50

0

50

100

(µ
m

)

(i) beam caustics

−25 0 25
(mm)

−40

−20

0

20

40

(µ
m

)

0.00

0.25

0.50
0.75
1.00

(j) zoomed beam caustics

corrected system

Fig. 6.14.: Experimental beam caustics taken at 10.6 keV for the aberrated and corrected system.

6.3 Discussion

6.3.1 Design and expected performance

The concept and design of optical correction for the aberrated system are quite simple and
can be represented by the Eq. 6.3. Although current micro- and nano-manufacturing techniques
can reproduce such intricate profiles, its alignment on a beamline can be cumbersome and render
the correction plate impractical. A successful compromise for 2D focusing CRLs is the adoption
of a radially symmetric correction plate described by Eq. 6.4 - these have been demonstrated to
work by other groups [Seiboth et al., 2017, 2018, 2020; Dhamgaye et al., 2020].

Using the approach guided by Eq. 6.4, a design to compensate for the accumulated errors
from lenses L01-L10 (see Fig. 4.14) was calculated and it is shown in Fig. 6.2. Placing this
ideal diamond phase-plate on the simulations and extracting the residual profile allows gaining
some insight into the expected performance of the corrected system. Although most, if not all
spherical aberration was removed, there is still a high content on non-symmetric aberrations as
shown in Figure 6.4(d), which will still degrade the beam focusing quality, but to a lesser extent.
Figure 6.4(e) shows a (much reduced) residual profile, which indicates that the correction plate
should be calculation over a few iterations until the azimuthally averaged profile goes below
what is currently possible to be manufactured. Table 6.1 shows that the overall figure error r.m.s.
value over the exit pupil is reduced to ∼68% of the L01-L10 figure error. The low-frequencies
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are more affected, being reduced to 65% its original value. The high frequencies are reduced to
75% of the value before the correction. This reduction in the figure errors is accompanied by
an increase in the Strehl ratio as evidenced by Table 6.2 and Fig. 6.7. The improvement of the
Strehl ratio for the coherent case differs from the one for the partially-coherent case. Figure 5.12
already showed a very small difference between both cases, but it was deemed to be insignificant.
This difference shows the necessity of further studying the impact of the optical correction for
moderate- and low-coherence systems.

The expected improvements brought by the optical correction also apply to the beam up-
and down-stream the image plane as the several cuts along the beam caustics in Fig. 6.6 show.
The elongated tail before the image plane and the doughnut shape from Fig. 5.7 are no longer
present, however, at the image plane vicinity, satellite structures are seen around the main
lobe. The image plane is greatly improved for both the fully- and partially-coherent simulations
with great suppression of the side lobes, showing some similarities with the beam performance
predicted in Fig. 5.11. In fact, the better the correction plate is, the closer the system will behave
as in Fig. 5.11, a result of the high-frequency profile shown in Fig. 5.10. The performance
of very well corrected systems will be limited by the high-frequency content, which does not
significantly changes the main-lobe, but significantly increases the background around it, as
shown in Fig. 5.13.

It is important to point out that the expected performance and all previously improvements
are only obtained for the perfectly aligned phase-plate. Tolerance simulations were done to
narrow down the most critical degrees of freedom when aligning the phase-plate in respect to
the CRL to be corrected. The longitudinal scan is a useful tool when operating the phase plate
outside the design energy. Figure 6.8(a)-(b) shows that a longitudinal scan of a phase-plate
operating at its designed energy. Bringing the plate upstream of the nominal position ∆zpp

degrades its performance, but going downstream moderately improves it. This is probably due
to the higher absorption towards the edge of the plate and a smaller footprint of the beam. The
transverse alignment is by far the most sensitive degree of freedom and a moderate misalignment
may compromise the correction, bringing the Strehl ratio to the same value the aberrated system
originally had. Figure 6.8(c)-(d) reinforces what has been observed by other groups [Seiboth,
2016, Fig. 5.12]. Finally, in terms of the Strehl ratio, the phase-plate is not too much influenced
by the angular alignment, provided it is kept reasonably small. A tilt is introduced to the system,
which laterally shifts the focused beam, but its intensity remains largely unchanged.

6.3.2 Early phase plate tests on an X-ray beam

The early tests with the second generation of phase-plate are encouraging and help delineate
strategies for further development of phase correctors to be used with the CRLs. Three phase
plates were produced trying to replicate the shape in Fig. 6.2 with differences in the scripts used
for engraving the diamond slab and with post polishing or not. Figures 6.10 and 6.11 show a very
similar profile for all three plates where the low-frequencies are well represented, but the residues
from the polynomial fit show a clear limitation of XSVT in showing the difference between a
polished and non-polished plate. Although the effects of polishing are noticeable in the far-field
(presence of small-angle scattering and speckle), XSVT cannot show the surface roughness as
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visible-light metrology does - Fig. 6.11. This makes the case for using complementary metrology
methods for a complete characterisation of the phase-plates. When overlapping the profile cuts,
as in Fig. 6.12, the difference in the profiles becomes more evident. Visible light metrology and
designed plate have a more similar profile, while the data collected with XSVT show lower height
values towards the edges of the phase-plate. The differences may come from the processing
of the phase-gradients from the XSVT, small inaccuracies when measuring the distances in the
experimental setup or a difference between the tabled index of refraction/density and the real
index of refraction from the plate - something similar has been speculated in [Seiboth et al.,
2020, §3.2] for justifying differences between design and measured phase-plates produced using
IP-S resist, a much less studied material than diamond.

One of the key aspects of the commissioned phase-plates is that they come perfectly centred
in a frame compatible to the ones used for encasing X-ray lenses - Fig. 6.9(b) and (c), which is
done to circumvent the degradation in performance from the lateral misalignment in Fig. 6.8(c)-
(d). Unfortunately, the phase plates of the current generation do not yet meet such requirements
as the metrology of the CRL with the correction plates suggests - see Fig. 6.13; improvements in
the centring of the phase plates are expected from the partner company, but are also separately
under way within the X-ray optics group at the ESRF.

Aligning the phase-plate to the CRL also revealed a very important aspect: the lack of an
internal protocol for alignment. Ideally, one would scan the phase-plate transversely at each
position of the scan, the residual wavefront would be calculated and the minimisation of figure
errors would be sought. This approach is impractical for the XSVT due to the data acquisition
and processing time, not to mention the very large data-set it would generate. This highlights
the necessity to re-implement speckle-tracking based on only two images (XST)6 for a fast
evaluation of the figure errors at the expense of a lower spatial resolution. This technique was
less frequently used within the X-ray Optics Group due to the many advantages of XSVT [Berujon
et al., 2020], but there is a necessity to use XST for a faster characterisation.

Trying to align the phase-plate by maximising the peak intensity was the next obvious step.
However, these particular experiments took place at the ID06 beamline after the ESRF-EBS
upgrade, an undulator beamline that naturally has a very high photon flux at the harmonics
when compared to the typical emission of bending magnets7. This increase in photon flux is
welcome for the metrology but causes the imaging detector to saturate at the image plane even
after attenuators were placed in the beam. As an alternative to the optimisation of the peak
intensity, the qualitative improvement of the beam profile downstream the focal plane was done.
The phase plate was scanned transversely while the far-field was registered. The final position
of the phase plate was where the beam was more homogeneous and the doughnut shape less
evident. The drawing of general guidelines for the alignment of the phase-plates and metrics to
evaluate it are the topic of future work8.

The beam caustics and profiles shown in Fig. 6.14 for the aberrated beam confirm the results
from the modelling presented in the chapter 5 - Effect of optical imperfections on an X-ray beam

6Refer to §4.1.2 - Foundation in §4 - Measuring optical imperfections in refractive lenses.
7Refer to §1.1.1 - X-ray sources.
8With the resumption of the ESRF user service mode, more access to beamtime is expected. The ESRF reopened to

the public on the 25th of August 2020, despite the COVID-19 pandemic [Cho, 2020].

132 Chapter 6 Correcting optical imperfections in refractive lenses



25 50 75 100
keV

2.140

2.145

Diamond/Be

(a)

25 50 75 100
keV

0.710

0.715

SU-8/Be

(b)

25 50 75 100
keV

1.62

1.63

1.64 SiO2/Be

(c)

Fig. 6.15.: (a) diamond, (b) SU-8 and (c) fused silica (SiO2) refraction index decrement ratio against
beryllium. Figures obtained using the xraylib library [Brunetti et al., 2004; Schoonjans et al.,
2011].

and published in [Celestre et al., 2020]. The presence of the tail upstream of the focal plane and
the doughnut shape downstream are clearly present. A direct comparison with the simulations is
not possible due to the limited caustic step and detector pixel size, but the main elements and
trends are present. Once the phase-plate is inserted and aligned, an improvement in the beam
profile homogeneity is seen, although quantification is not possible, due to the saturation of the
detector. The central tail is reduced, although still present upstream the image plane. More
remarkable is the suppression of the doughnut shape. The performance of the correction plate is
better near the image plane, but that could be from the low spatial resolution of the detector.

The experiments were conducted at 10.6 keV, while the design of the phase-plate was
optimised for 8 keV. As mentioned previously, the correction plates can be used outside the
designed energy if they were calculated for a modest number of lenses by shifting them along the
optical axis as described by [Seiboth et al., 2018, §6]. Figure 6.15 shows the ratio of the index
of refraction decrement and the δ of beryllium, which confirms an almost negligible variation
over such a small energy difference. Figure 6.15 reinforces the conclusions in [Seiboth et al.,
2018, §6] for commonly used phase plate materials.

The correction performance is, at the moment, far from the expected simulated performance
or the reported performance from other groups [Seiboth et al., 2017, 2018, 2020; Dhamgaye
et al., 2020]. These are the performance of second-generation phase plates and with beamtime
availability. Addressing the aforementioned issues with alignment, wavefront-sensing and
protocols for evaluating the performance of the phase-plates, improvements in the design and
fabrication of phase plates are expected. �
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7.enConclusion

The new 4th generation of storage rings puts stringent requirements on the quality of optical
elements as to minimise the degradation of the X-ray beam [Schroer and Falkenberg, 2014;
Yabashi et al., 2014]. The aim of this thesis, namely investigating and modelling the effect of
optical imperfections in compound refractive lenses on a partially-coherent X-ray beam, addresses
important aspects of the ESRF-EBS X-ray optics R&D programme as laid out in the Orange book
[Dimper et al., 2014].

Based on the physical optics concepts presented in Chapter 1 and the already implemented
optical elements in SRW [Baltser et al., 2011], an expanded model for a thick ideal CRL was
presented. This model is similar to the multi-slicing technique already used for optical modelling
[Li et al., 2017; Ali and Jacobsen, 2020], where each lens is considered to be a slice of the CRL.
The complex transmission element representing a thick CRL is given by Eq. 2.11 and shown in
Fig. 2.6(b). This ideal model of a thick CRL can be modified to account for optical imperfections
when a 2D map of the figure errors of each lens is available. This model is shown in Fig. 2.6(c)
and described by Eq. 2.12. This modelling of CRL as a thick optical element becomes more
relevant when the lens stack is composed of a large number of lenslets and there is significant
focusing inside the CRL [Schroer and Lengeler, 2005]. The extended modelling of CRLs was
published in [Celestre, Berujon, et al., 2020].

Once the framework for the modelling of thick CRLs was defined, the attention was directed
towards modelling individual lenses. Typical misalignments and fabrication errors commonly
present in embossed X-ray lenses (Fig. 3.1) were parametrised by allowing more degrees of free-
dom to the ideal model for a single lens described in [Baltser et al., 2011]. This parametrisation
is general enough to apply to lenses produced by other techniques, but this modelling could
profit from adding the choice of the conic section to be used, currently limited to the parabolic
case, as already implemented by [Sanchez del Rio and Alianelli, 2012; Andrejczuk et al., 2010]
for ray-tracing. Some groups have already experimented with non-parabolic shapes for focusing
X-rays [Alianelli et al., 2007; Evans-Lutterodt et al., 2003; Alianelli et al., 2015; Sutter and
Alianelli, 2017] and the availability of simulation tools could revive the interest in non-orthodox
designs. It would be amiss not to mention the similarities between the modelling presented
here and the work presented by [Andrejczuk et al., 2010], where the modelling of the role of
single element errors in X-ray lenses is implemented for ray-tracing, but the analysis is limited to
the beam width and intensity in the image plane. The modelling of more intricate shape errors
was enabled by employing the Zernike or 2D Legendre orthonormal polynomials. This was
done by unifying some already existing parts of Python libraries, adding new polynomial sets
and interfacing them to be compatible with the framework already described. This unified and
expanded Python library was used throughout the thesis for fitting the figure errors presented
throughout Chapters 3-6. The modelling of shape errors by either allowing more degrees of
freedom to the ideal lens model or by directly generating the shape errors through orthonormal
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polynomials is a useful tool for delineating tolerances on the manufacturing of X-ray lenses,
which is of particular relevance for the ESRF in-house fabricated Al-lens project. Any arbitrary 2D
map of surface imperfections (eg. metrology data or free-form surfaces for beam shaping) can
also be incorporated in the simulations using this framework. Several authors have developed
tools with different degrees of complexity for simulating X-ray lenses and their aberrations.
However, not only are those tools not available to the public but also the modelling is often not
compatible with already existing wide-spread simulation tools for X-ray optical design such as
SHADOW (ray-tracing) and SRW (wavefront propagation). The modelling presented here is
open source, tailored to be used transparently with SRW and is currently available in a public
repository in GitLab until the eventual merge with the SRW official distribution. Parallel to it,
the code is being incorporated in the OASYS toolkit [Rebuffi and Sanchez del Rio, 2017] to be
made available for their distributions of SHADOW, hybrid ray-tracing and SRW. These recent
developments on X-ray lenses modelling were presented in [Celestre, Chubar, et al., 2020] and
used in some of the simulations from [Chubar et al., 2020].

Ultimately, for simulations with realistic levels of imperfections, the modelling of the figure
errors on individual X-ray lenses was done with metrology data from 2D maps of local deviations
of the parabolic profile. The experimental metrology technique used for this thesis was the
X-ray vectorial speckle tracking (XSVT). In addition to being relatively simple to implement, this
technique has a high lateral resolution and good sensitivity. Furthermore, it delivers a 2D map of
figure errors in projection approximation, which can conveniently be used with the wave-optical
simulations. Several measurement campaigns at the ESRF, APS and ESRF-EBS were performed
to assess the quality of in-house produced lenses; lenses and free-form optics in the context
of scientific collaborations; and newly-acquired commercial lenses. As a result, a large and
diverse database of metrology files was built. After some curation, a possible expansion of the
DABAM (database for X-ray mirrors metrology) [Sanchez Del Rio et al., 2016] is envisioned.
Making the metrology data of X-ray lenses available through an open-source database would
help the consolidation of the framework developed here since DABAM is also distributed and
interfaced by OASYS. Before that, however, more effort has to be put into making the metrology
of single lens and subsequent stacking by software converge with the metrology of a lens
stack composed by those same lenslets. The current state show some qualitative agreement
(Fig. 4.14-4.17), which is transferred to the simulations shown in Figs. 5.3-5.4 and Fig. 5.8.
This is sufficient for preliminary studies but leaves room for improvements and delineation
of protocols for the metrology both in terms of sample alignment and data processing - these
should be the aim of future work. The major importance of reliably being able to artificially
stack individually measured lenses is the possibility of evaluating the performance of a CRL
composed of any arbitrary selection of lenses off-line, with immediate application to the design
of optical correctors. The experience gained in the metrology campaigns and advancements
in the post-processing of the acquired data resulted in modest contributions to [Berujon et al.,
2020a,b; Qiao et al., 2020].

A subset of lenses in the database was chosen to showcase the effect of optical imperfections
on partially coherent X-ray beam degradation. The simulations, shown in the first part of
Chapter 5 and summarised by Fig. 5.7, show a beam caustic that has been reported several
times in literature for the same type of X-ray lenses [Schropp et al., 2013; Seiboth et al., 2017,
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2020]. The experimental measurement of the beam caustics for this lens stack also shows
similarity to what was predicted by the simulations - cf. Fig. 6.14. The similarity between the
simulations and experimental data helps to validate the framework presented in this thesis and
it is believed that they allow to qualitatively assess the effects of optical imperfections on the
degradation of the X-ray beam profile. The simulations also allow investigating the adequacy
of the Strehl ratio as a figure of merit for the optical design of systems operating far from the
Maréchal criterion for optical quality. Generally, the equations used for estimating the Strehl
ratio tend to underestimate the system performance in that region (Fig. 5.12). The failed attempt
in obtaining simple replacement equations (cf. Eq. 5.2) indicate that the most straightforward
way to evaluate the Strehl ratio is by optical simulation of the system using realistic figure
errors. It is also relevant to mention that although fully- and partially coherent simulations
do not differ significantly, it is premature to generalise this behaviour as the partially-coherent
simulations were done for a hypothetical undulator beamline operating at the upgraded ESRF
magnetic lattice. Another result from the simulations is the prediction that the systems with high
spatial frequency figure errors do not present a broadening of the beam size at the focal plane,
instead, the intensity is reduced by the scattering of photons around the main lobe, increasing
the background level - Fig. 5.13. The effects of high-spatial-frequency figure errors are important
as well-corrected optical systems would have them as a predominant source of shape errors. This
analysis was published in [Celestre, Berujon, et al., 2020].

The multi-slice modelling of a CRL including the metrology data of individually measured
lenses (Eq. 2.12) allows the extraction of the accumulated figure errors of a lens stack. This
was used to model a phase-plate in diamond to correct for those errors at the exit pupil of
the system. Due to the limitations of the phase-plate alignment in a beamline, the symmetric
design is preferred in detriment to the correction performance - reported results show excellent
performance even with this trade-off [Seiboth et al., 2020; Dhamgaye et al., 2020]. The beam
profile shown in Fig. 6.6 is more homogeneous up- and downstream the image plane and
resembles the simulations for a system with predominantly high-spatial frequencies in Fig. 5.10.
However, when analysing the Strehl ratio, the performance of the modelled phase-plate is limited
and beyond what other groups have reported. The main reasons for such discrepancies are
the fact that the profile to be corrected (Fig. 4.14) has significant non-symmetric components
(trefoil aberration) in addition to the classical predominance of spherical aberrations. The lack
of asymmetry found by other groups is likely connected to the fact that a larger number of lenses
are used in their stacks and the addition of correlated errors of randomly rotated lenses would act
to give a more symmetric shape to the accumulated errors by averaging out the non-symmetric
components. Randomly rotating the lenses in the simulations could help to improve the expected
Strehl ratio and similar procedure could be applied to the lens stack in an experiment. The
designed phase-plates were commissioned from a commercial partner and they were ablated
from diamond by a femtosecond laser. Initial tests on an X-ray beam showed that the phase
plates were not centred in the frame within the calculated tolerances, which is crucial for their
performance. The phase-plate had to be aligned concerning the lens stack, which posed an
initial problem, as at the time no alignment protocols were delineated. This also brought to the
surface the necessity of re-implementation of faster wavefront sensing techniques which were
discontinued in favour of a higher spatial resolution. Other issues such as overexposure of the
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detector even after strong attenuation of the beam limited the tests that could be done with the
correction plate, so no quantitative value was generated to evaluate the correction performance,
however, a beam caustic could be recorded for the aberrated and corrected system (Fig. 6.14)
qualitatively showing a more homogeneous beam especially in the vicinity of the focal plane,
with a better performance downstream.

The early results are promising but show the necessity of further beamtimes aimed to looking
for alternative ways for rapidly extracting the residual wavefront and aligning the correction
plate, measuring the beam-caustics and quantitatively evaluating the correction performance.
Exploring additive manufacturing for designing the corrective optics in other materials should
also be investigated as an alternative to diamond and lowering the prototyping costs. �
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La quatrième génération d’anneaux de stockage, récemment lancée, impose des exigences strictes
quant à la qualité des éléments optiques afin de minimiser la dégradation du faisceau de rayons
X [Schroer and Falkenberg, 2014; Yabashi et al., 2014]. Cette thèse, dont l’objectif consiste à
étudier et à modéliser l’effet des imperfections optiques des lentilles réfractives composées sur
un faisceau de rayons X partiellement cohérent, aborde des aspects importants du programme
de R&D en optique des rayons X de l’ESRF-EBS, tel qu’il est exposé dans le Orange book [Dimper
et al., 2014].

Basé sur les concepts d’optique physique présentés au chapitre 1 et les éléments optiques
disponibles dans SRW [Baltser et al., 2011] un modèle étendu à une lentille réfractive composée
(CRL) idéale et épaisse a été présenté. Ce modèle s’apparente à la technique de découpage
multi-coupes déjà utilisée pour la modélisation optique [Li et al., 2017; Ali and Jacobsen, 2020],
où chaque lentille est considérée comme une tranche de la CRL. L’élément de transmission
complexe représentant une CRL épaisse est donné par Eq. 2.11 et illustré par la Fig. 2.6(b). Ce
modèle idéal d’une CRL épaisse peut être modifié pour prendre en compte des imperfections
optiques lorsqu’une cartographie 2D des erreurs de forme de chaque lentille est disponible. Il est
illustré par la Fig. 2.6(c) et décrit par Eq. 2.12. Cette modélisation de la CRL en tant qu’élément
optique épais devient plus pertinente lorsque l’empilement est composé d’un grand nombre de
lentilles et que la focalisation au sein du CRL est importante [Schroer and Lengeler, 2005]. La
modélisation étendue des CRL a été publiée dans [Celestre, Berujon, et al., 2020].

Les erreurs de fabrication couramment présentes dans les lentilles rayons X en relief (Fig. 3.1)
ont été paramétrées en offrant plus de degrés de liberté au modèle idéal pour une seule lentille
comme décrit dans [Baltser et al., 2011]. Ce paramétrage est assez général pour s’appliquer
aux lentilles produites par d’autres techniques, mais cette modélisation pourrait être améliorée
en offrant le choix de la section conique à utiliser, actuellement limitée au cas parabolique,
comme cela a déjà été implémenté pour le ray-tracing par [Sanchez del Rio and Alianelli, 2012;
Andrejczuk et al., 2010]. Certains groupes ont déjà expérimenté des formes non paraboliques
pour la focalisation des rayons X [Alianelli et al., 2007; Evans-Lutterodt et al., 2003; Alianelli
et al., 2015; Sutter and Alianelli, 2017] et la disponibilité d’outils de simulation pourrait raviver
l’intérêt pour les conceptions non orthodoxes. Il serait inconvenant de ne pas mentionner les
similitudes entre la modélisation présentée ici et les travaux présentés par [Andrejczuk et al.,
2010], où la modélisation du rôle des erreurs d’un seul élément dans les lentilles à rayons X
est utilisée dans le ray-tracing, l’analyse étant cependant limitée à la largeur et à l’intensité du
faisceau dans le plan image. La modélisation d’erreurs de forme plus complexes a été rendue
possible par l’utilisation des polynômes orthonormaux de Zernike ou de Legendre 2D. Cela a
été fait en unifiant certaines parties déjà existantes des bibliothèques Python, en ajoutant de
nouveaux ensembles de polynômes et en les interfaçant pour les rendre compatibles avec le cadre
déjà décrit. Cette bibliothèque Python unifiée et étendue a été utilisée tout au long de la thèse
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pour ajuster les erreurs de forme présentées tout au long des chapitres 3-6. La modélisation des
erreurs de forme réalisée soit en accordant plus de degrés de liberté au modèle de lentille idéal,
soit en générant directement les erreurs de forme par des polynômes orthonormaux, est un outil
utile pour définir les tolérances de fabrication des lentilles rayons X, ce qui est particulièrement
pertinent pour le projet de fabrication en interne de lentilles en aluminium. Toute cartographie
arbitraire des imperfections de surface (par exemple issue de données de métrologie ou de
surfaces free-form pour la mise en forme du faisceau) peut également être intégrée dans les
simulations. Plusieurs auteurs ont développé de nombreux outils avec différents degrés de
complexité pour simuler les lentilles rayons X et leurs aberrations. Toutefois, non seulement
ces outils ne sont pas accessibles au public, mais la modélisation n’est souvent pas compatible
avec les outils de simulation déjà largement répandus pour la conception des optiques rayons
X, tels que SHADOW (ray-tracing) et SRW (propagation du front d’onde). La modélisation
présentée ici est de type open source, pouvant être utilisée de manière transparente avec SRW et
est actuellement disponible dans un dépôt public sur GitLab jusqu’à la fusion éventuelle avec la
distribution officielle de SRW. Parallèlement, le code est incorporé dans la boîte à outils OASYS
[Rebuffi and Sanchez del Rio, 2017] qui sera disponible pour les distributions de SHADOW, du
ray-tracing hybride et de SRW. Ces développements récents sur la modélisation des lentilles
rayons X ont été présentés dans [Celestre, Chubar, et al., 2020] et utilisés dans certaines des
simulations de [Chubar et al., 2020].

Finalement, pour réaliser les simulations avec des niveaux d’imperfections réalistes, la
modélisation des erreurs de forme sur les lentilles rayons X individuelles a été faite avec des
données de métrologie sous forme de cartographie des déviations locales du profil parabolique.
La technique de métrologie utilisée pour cette thèse était le XSVT (X-ray vectorial speckle
tracking). En plus d’être relativement simple à mettre en œuvre, cette technique possède une
résolution latérale élevée et une bonne sensibilité. De plus, elle fournit une cartographie des
erreurs de forme dans l’approximation de la projection, qui peut être facilement utilisée avec
les simulations de front d’ondes. Plusieurs campagnes de mesures ont été effectuées à l’ESRF, à
l’APS et à l’ESRF-EBS pour évaluer la qualité des lentilles produites en interne, des lentilles et
des optiques free-form dans le cadre de collaborations scientifiques et des lentilles commerciales
nouvellement acquises. En conséquence, une base de données importante et diversifiée de
fichiers de métrologie a été constituée. Une expansion possible de DABAM (base de données
pour la métrologie des miroirs rayons X) [Sanchez Del Rio et al., 2016] est envisagée. La mise à
disposition des données de métrologie des miroirs rayons X par le biais d’une base de données
open-source aiderait à consolider le projet développé ici puisque DABAM est également distribuée
et interfacée par OASYS. Auparavant, il faudra cependant parvenir à la convergence des résultats
de metrologie obtenus sur un empilement de lentilles avec celui du calcul logiciel réalisé à
partir de la métrologie des lentilles qui le composent. L’état actuel montre un certain accord
qualitatif (Fig. 4.14-4.17)), qui est transféré aux simulations présentées dans les Figs. 5.3-5.4 et
Fig. 5.8. Cela est suffisant pour les études préliminaires mais laisse une marge de manœuvre pour
améliorer et délimiter les protocoles de métrologie, tant en termes d’alignement des échantillons
que de traitement des données - ce qui devrait être l’objectif de futurs études. L’intérêt majeur
de pouvoir empiler de manière fiable des lentilles mesurées individuellement étant de pouvoir
évaluer les performances d’une CRL composée d’une sélection arbitraire de lentilles, et concevoir
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les correcteurs optiques nécessaires. L’expérience acquise lors des campagnes de métrologie et
les progrès réalisés dans le traitement des données acquises ont permis d’apporter de modestes
contributions à [Berujon et al., 2020a,b; Qiao et al., 2020].

Les simulations, présentées dans la première partie du chapitre 5 et résumées par la figure
5.7„ montrent une caustique du faisceau qui a été mentionnée plusieurs fois dans la littérature
pour le même type de lentilles rayons X [Schropp et al., 2013; Seiboth et al., 2017, 2020].
La mesure expérimentale de la caustique du faisceau pour cet empilement de lentilles montre
également une similarité avec ce qui a été prédit par les simulations - cf. Fig. 6.14. L’accord entre
simulations et données expérimentales contribue à valider l’approche du sujet de cette thèse et
on estime que les simulations permettent d’évaluer qualitativement les effets des imperfections
optiques sur la dégradation du profil du faisceau de rayons X. Elles permettent également
d’étudier la pertinence du rapport de Strehl comme facteur de qualité pour la conception de
systèmes optiques fonctionnant loin du critère de Maréchal pour la qualité optique. En général,
les équations utilisées pour estimer le rapport de Strehl tendent à sous-estimer la performance du
système dans cette région (Fig. 5.12). L’impossibilité d’obtenir des équations de remplacement
simples (cf. Eq. 5.2) indique que la manière la plus simple d’évaluer le rapport de Strehl est
la simulation optique du système en utilisant des erreurs de forme réalistes. Il faut également
souligner que bien que les simulations entièrement et partiellement cohérentes ne diffèrent pas
de manière significative, il est prématuré de généraliser ce comportement car les simulations
partiellement cohérentes sont basées sur une hypothétique ligne de lumière fonctionnant avec le
réseau magnétique ESRF amélioré. Un autre résultat des simulations est la prédiction que les
systèmes avec des erreurs de forme à haute fréquence spatiale ne présentent pas un élargissement
de la taille du faisceau au plan focal, mais que l’intensité est plutôt réduite par la diffusion des
photons autour du lobe principal, ce qui augmente le bruit de fond - Fig. 5.13. Les effets des
erreurs de forme à haute fréquence spatiale sont importants, car pour des systèmes optiques bien
corrigés ils seraient une source prédominante d’erreurs de forme. Cette analyse a été publiée
dans [Celestre, Berujon, et al., 2020].

La modélisation multi-coupes d’une CRL incluant les données métrologiques des lentilles
mesurées individuellement (Eq. 2.12) permet l’extraction des erreurs de forme cumulées d’un
empilement de lentilles. Ceci a été utilisé pour modéliser une plaque de phase en diamant
destinée à corriger ces erreurs en sortie du système. Afin de faciliter l’alignement de cette plaque,
celle-ci est conçue de façon symétrique au détriment de la performance corrective - les résultats
rapportés montrent une excellente performance malgré ce compromis [Seiboth et al., 2020;
Dhamgaye et al., 2020]. Le profil du faisceau illustré par la figure 6.6 est plus homogène en
amont et en aval du plan image et ressemble aux simulations pour un système à prédominance
de hautes fréquences spatiales - figure 5.10. Cependant, lors de l’analyse du rapport de Strehl,
la performance de la plaque de phase modélisée est limitée et dépasse ce que d’autres groupes
ont rapporté. Les principales raisons de ces divergences sont le fait que le profil à corriger
(Fig. 4.14) comporte des composantes non symétriques importantes (aberration en trèfle) en
plus de la prédominance classique des aberrations sphériques. L’absence d’asymétrie constatée
par d’autres groupes est probablement liée au fait qu’un plus grand nombre de lentilles sont
utilisées dans leurs empilements, ainsi les erreurs corrélées des lentilles dont la position en
rotation est aléatoire seraient rendues plus symétriques par rapport aux erreurs accumulées par
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un effet de moyennage des composantes non symétriques. La rotation aléatoire des lentilles dans
les simulations pourrait contribuer à améliorer le rapport de Strehl attendu et une procédure
similaire pourrait être appliquée à l’empilement de lentilles dans le cadre d’une expérience. Les
plaques de phase conçues ont été commandées à un partenaire commercial et sont obtenues par
ablation du diamant avec un laser femtoseconde. Les premiers essais sur un faisceau de rayons X
ont montré que le centrage des plaques de phase dans leur cadre ne respectait pas les tolérances
calculées, ce qui est crucial pour leur performance. En l’absence de protocole d’alignement
lors des premiers essais, cela a posé un problème, la plaque de phase devant être alignée par
rapport à la pile de lentilles. Cela a également mis en évidence la nécessité de réimplémenter des
techniques de détection de front d’onde plus rapides, qui ont été abandonnées au profit d’une
résolution spatiale plus élevée. D’autres problèmes tels que la surexposition du détecteur, même
après une forte atténuation du faisceau, ont limité les tests qui pouvaient être effectués avec la
plaque corrective, de sorte qu’aucune valeur quantitative n’a pu être obtenue pour évaluer la
performance de la correction. Cependant, une caustique du faisceau a pu être enregistrée pour
le système aberré et corrigé (Fig. 6.14) montrant qualitativement un faisceau plus homogène
surtout au voisinage du plan focal, avec une meilleure performance en aval. Les premiers
résultats sont prometteurs mais nécessitent de programmer de nouvelles expériences sur ligne
de lumière, de trouver des moyens d’extraire rapidement le front d’onde résiduel et d’aligner
la plaque de correction, de mesurer la caustique du faisceau et d’évaluer quantitativement
les performances de la correction. L’exploration de la fabrication additive pour la conception
d’optiques correctives dans d’autres matériaux devrait également être étudiée comme alternative
au diamant et pour réduire les coûts de prototypage. �
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Résumé: En optique physique, les
éléments faiblement focalisés sont
généralement simulés comme un seul
élément mince. Alors qu’une seule
lentille à rayons X dans des con-
ditions de fonctionnement typiques
peut souvent être représentée de
cette manière, la simulation d’une
pile de lentilles complète avec une
approche similaire manque de poly-
valence. Ce travail propose de
décomposer un LCR en ses pe-
tites lentilles séparées par une prop-
agation en espace libre, comme le
font les techniques de découpage en
plusieurs tranches déjà utilisées pour
les simulations optiques. Une at-
tention particulière est accordée à
la modélisation de l’élément lentille
unique en ajoutant des degrés de
liberté supplémentaires permettant
la modélisation des désalignements
typiques et des erreurs de fabri-
cation. Des polynômes orthonor-
maux pour les aberrations optiques
ainsi que des données de métrologie

obtenues avec le suivi vectoriel du
speckle des rayons X (XSVT) sont
également utilisés pour obtenir des
résultats de simulation réalistes, qui
sont présentés dans plusieurs sim-
ulations cohérentes et partiellement
cohérentes tout au long de ce tra-
vail. La mise en œuvre d’un
modèle de lentilles à rayons X util-
isant des données de métrologie per-
met d’extraire les erreurs de chiffres
accumulées et de calculer les correc-
tions de phase. Enfin, cette thèse
présente une méthodologie pour le
calcul du profil des correcteurs de
réfraction, qui est appliquée pour
produire des plaques de phase ab-
lationnées au diamant. Les pre-
miers résultats expérimentaux mon-
trent une amélioration du profil du
faisceau. Ce projet a abordé des
aspects importants du programme
ESRF-EBS d’optique des rayons X
R&D tel que défini dans le plan de
mise à niveau stratégique (Orange
book ).

Title: Investigations of the effect of optical imperfections on partially coherent
X-ray beam by combining optical simulations with wavefront sensing experi-
ments

Keywords: Optical simulations, X-ray lenses, at-wavelengh metrology, physi-
cal optics

Abstract: In physical optics, weakly
focusing elements are usually simu-
lated as a single thin element. While
a single X-ray lens at typical operation
conditions can often be represented
in this way, simulating a full lens stack
with a similar approach lacks versa-
tility. This work proposes decompos-
ing a CRL into its lenslets separated
by a free-space propagation, similar
to the multi-slicing techniques already
used for optical simulations. Atten-
tion is given to modelling the single
lens element by adding additional de-
grees of freedom allowing the mod-
elling of typical misalignments and
fabrication errors. Orthonormal poly-
nomials for optical aberrations as well
as metrology data obtained with X-
ray speckle vector tracking (XSVT)

are also used to obtain realistic sim-
ulation results, which are presented
in several coherent- and partially-
coherent simulations throughout this
work. Implementing a model of X-
ray lenses using metrology data al-
lows extraction of the accumulated
figure errors and enables the calcu-
lation of phase corrections. Finally,
this thesis presents a methodology
for calculating the profile of refractive
correctors, which is applied to pro-
duce phase plates ablated from di-
amond. Early experimental results
show an improvement on the beam
profile. This project addressed im-
portant aspects of the ESRF-EBS X-
ray optics R&D programme as laid out
in the strategic upgrade plan (Orange
book).
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