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GENERAL INTRODUCTION 

In the pharmaceutical industry, around 56% of the marketed drugs are chiral 
compounds.1 Around 80% are formulated as racemic mixtures, i.e. equimolar 
mixtures of both enantiomers.2 The US Food and Drug Administration (FDA) 
recommends the assessment of the biological activity of each antipode since their 
biological activities (e.g. toxicity) can be different.3 Due to these requirement, the 
interest of obtaining pure enantiomers of chiral drugs is growing rapidly. The goal 
is to obtain effective and safer drugs.4 The single-enantiomer drug sales reached 
$225 billion dollars worldwide in 2005.5 It was estimated that this class of drugs 
would grow at an average annual rate of 11.4%.6 This leads us to the research 
objective of the CORE Network to jointly construct an industrial toolbox on 
continuous resolution that provides next generation tools, approaches and 
methods to industry. This thesis will provide a novel approach for the use of 
continuous enantioselective crystallization processes on racemic compounds.  

Different methods exist for the separation of enantiomers, and can be classified 
in four categories: 

i. Chiral enzymatic separation using stereoselective biological activity.7 
ii. Separation of racemic compounds using columns with chiral stationary 

phases (chiral chromatography).8  
iii. Direct asymmetric synthesis of optically pure compounds using catalyst 

or chiral precursors.9  
iv. Crystallization methods, sometimes combined with the racemization of 

the undesired enantiomer (i.e. the distomer),10 are further classified into 
two subcategories:  

a. A straightforward method used to separate enantiomers without 
any external additives, known as Preferential Crystallization (PC). 

b. An indirect method based on using chiral or non-chiral additives 
or solvents, such as formation of a diastereomeric salts or 
solvates or cocrystals.  

Between the methods, crystallization techniques are preferred at industrial 
scale. They offer high selectivity, low cost, easy recycling of the solvent, low waste 
streams, and efficiency. These techniques are also environmentally friendly.  

It is stated that PC is only applicable if the racemic mixture crystallizes as a 
conglomerate11 (i.e. a physical mixture of homochiral particles, each enantiomer 
crystallizes separately). Direct PC in stable racemic compound forming systems 
(i.e. the crystal contains a lattice with a regular arrangement of both enantiomers 
in equal amounts) is therefore challenging in view of the much higher probability 
to form a racemic compound versus conglomerate.  
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The aim of this research is to investigate the possibility of using PC for the 
separation of enantiomers in a stable racemic compound system. PC will be used 
via two novel approaches: 

i. Via a metastable conglomerate. An example in literature has shown that 
it is possible to perform PC in a stable racemic compound system by 
selecting the suitable solvent that enables access to an unforeseen 
metastable conglomerate.12 The encouraging data enables to envisage 
that PC could be performed in more systems than previously thought.  

ii. Via the use of a cocrystal obtained through the conversion of the racemic 
compound into a conglomerate system. 

First, the fundamental prerequisites of this work, together with a literature review 
and a presentation of the work strategy, are presented in Chapter 1.   

The solid-state characterization and the chiral resolution of PXL by PC under 
kinetic control is described in Chapter 2 and 3 respectively. A screening 
methodology of different critical parameters needed to successfully apply PC on 
racemic compounds is also presented. 

The results obtained during the cocrystal screening of PXL are presented in 
Chapter 4. The thorough characterization of the monohydrated cocrystal between 
PXL and salicylic acid is also discussed, together with its resolution by PC. 

The conclusions and the perspectives close this manuscript. 
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CHAPTER 1: LITERATURE REVIEW & 
PRESENTATION OF THE STRATEGICAL 

APPROACHES 

1.1 Chirality 

Chirality is the property of handedness, and it is a phenomenon of great 
importance in biology and chemistry. If you attempt to superimpose your right hand 
on top of your left, the two do not match up (Figure 1.1). Any object can have this 
property, including molecules. In other words, an object that is chiral is an object 
that is not superimposable to its mirror image. If the object is superimposable to its 
mirror image, it is achiral. 

 

Figure 1.1 A pair of chiral objects (hands): enantiomers. 

The chiral object and its mirror image are called enantiomers, the word 
enantiomer being derived from the Greek word “εναντιοζ” (enantios) meaning 
“opposite”. Chirality often comes from the presence of an asymmetric atom, which 
is called the chiral center or the stereogenic center.13 Both enantiomers of a 
molecule are designated according to Cahn-Ingold-Prelog convention which 
assigns the letters R or S  (from the Latin rectus = right and sinister = left) to the 
chiral center.14 One of the two enantiomers rotates the plane of polarized light 
clockwise, therefore it is assigned to the optical descriptor (+) or D (dextrorotatory), 
while the other is described as (-) or L (levorotatory), which corresponds to the 
anticlockwise rotation (Figure 1.2). Two enantiomers have identical physical and 
chemical properties but may behave differently in chiral media, giving rise to 
different biological properties.15 
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Figure 1.2 Enantiomers classified based on their opposite specific rotation 
used to distinguish between the (R) and (S) enantiomers. 

Measurement of enantiomeric purity of a mixture of enantiomers is often 
evaluated by the enantiomeric excess (ee). It describes the excess of one 
enantiomer of the other. For example, the ee of a 1:1 substance is 0%, and is 
called racemic, while an ee of 100% refers to an enantiopure sample. ee is 
calculated using the following equation: 

Enantiomeric excess (ee) (%) = 
׀[𝑆]−[𝑅]׀

[𝑅]+[𝑆]
 x 100          (1) 

With [R] and [S], the amounts of enantiomer (R) and (S) respectively. 

1.2 Application of chirality in pharmaceutical industry 

In the pharmaceutical industry, 56% of the drugs currently in use are chiral and 
88% of these molecules are marketed as racemic compounds (consisting of an 
equimolar mixture of two enantiomers).16 Also, most agrochemicals (insecticides, 
herbicides…), fragrances, flavors and food are chiral molecules.17 On the other 
hand, almost all-natural compounds found in nature are under pure enantiomeric 
form. For example, sugar like deoxyribose and ribose in DNA and RNA are right-
handed, and all proteins are made exclusively from L α-amino acids. Actually, 

without such a uniform chirality, current life could not exist.  

Manufacturers became interested in marketing chiral solids under their pure 
enantiomeric form. This is called ‘chiral switching’18 and it has been claimed that it 
will bring clinical benefits in terms of improved efficacy, more predictable 
pharmacokinetics or reduced toxicity.19 Many examples exist in literature 
describing toxicity of many chiral drugs like ketamine (anesthetic), penicillamine20 
(chelating agent), ethambutol21 (antitubercular agent) exclusively because of their 
distomer. For example, only R-(-)-ketamine (distomer) is responsible for agitation, 
hallucination, restlessness, in contrast to S-(+)-ketamine (i.e., the eutomer).22 
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The quest to enantiopurity is now at the center of academic and industrial 
concerns due to Food and Drug Administration and other agencies regulations,23 
which requires the development of new chiral drugs as single enantiomers.  

1.3 Solid state of chiral molecules 

1.3.1 Solid state and solid-liquid phase equilibrium 

Different methods are used to identify the crystallization behavior of a chiral 
racemic mixture. Binary or ternary phase diagrams are widely used to establish 
the solid-liquid phase behavior of a mixture of two enantiomers. In 1981, Collet et 
al.24 described the three fundamental racemic systems: racemic conglomerate, 
racemic compound and solid solution. These systems and their distinctive solid 
packing and binary phase diagrams are schematically described in Figure 1.3. 

A racemic conglomerate is a racemic physical mixture of the two enantiomers,25 
with only a single enantiomer in each crystal (Figure 1.3 - a). Powder diffractogram 
of a racemic conglomerate is superimposable to that of the pure enantiomer. 

Racemic compound forming systems represent the main category of racemic 
mixtures with 90-95% of cases. It is a 1:1 stoichiometric compound with a 
centrosymmetric arrangement of the enantiomers. The phase diagram is 
characterized by two eutectic points that are symmetric with reference to the 
racemic composition. X-ray diffraction patterns of the racemic compound is 
different from those of a pure enantiomer (Figure 1.3 - b).  

The third type of chiral systems are solid solutions. It occurs when no chiral 
discrimination between (+) and (-) enantiomers occurs in the packing: they coexist 
in a completely random distribution in the crystal lattice.24 Three types can exist in 
such a system (type I, II and III) depending on the melting point of the pure 
enantiomers versus that of the racemic solid (Figure 1.3 - c). 

In addition to these different solid-state behaviors, one can also add the possible 
occurrence of polymorphs which further complicate the phase diagrams. From a 
pharmaceutical development perspective, the solid-state landscape can also be 
extended to solvates, cocrystals, salts or even amorphous form. The complexity of 
all possible situation is summarized in Figure 1.4. Polymorphs, solvates/hydrates 
and cocrystals will be described in the next section. 
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Figure 1.3 Schematic presentation of a) conglomerate, b) racemic crystal 
forms and c) solid solution.  

 

Figure 1.4 Diversity of solid forms of crystalline APIs. 

1.3.2 Polymorphism 

If a compound can exist in more than one crystalline solid form, those different 
forms are referred to as polymorphs and the phenomenon is known as 
polymorphism (Figure 1.5).26 Different polymorphs may be formed as function of 
the crystallization conditions or of temperature, pressure, relative humidity, 
etc....27,28 Different polymorphs of the same compound exhibit different properties 
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(solubility, melting point, density, crystal shape and arrangement, optical and 
electrical property, etc.).29  

Changing the crystal form of a pharmaceutical ingredient will modify the 
physicochemical properties (e.g. solubility, stability, dissolution rate, etc.) for that 
drug.30–32 Thus it is important to understand the behavior of polymorphs and their 
thermodynamic stability. 

Two types of polymorphism exist: (i) conformational polymorphism33 and (ii) 
packing polymorphism.34,35 The first one occurs when relatively flexible molecules 
adopt different conformations in different crystal structures.36 If polymorphism 
occurs only because of packing differences, the polymorphism is called packing 
polymorphism.37    

 

Figure 1.5 Packing polymorphism: different crystalline forms of the same 
substance. 

Two polymorphs can be enantiotropically or monotropically related as a function 
of the thermodynamic behavior as represented in Figure 1.6.38–40  

If the two polymorphs A and B are enantiotropically related to each other (Figure 
1.6 - a), polymorph A is stable below the transition temperature Tt, it has less free 
energy GA than the polymorph B. Polymorph B is more stable above this 
temperature Tt because its free energy GB becomes less than GA. Transition from 
one polymorph to the other occurs at Tt, the free energy curves of A and B cross 
at this point before the melting point is reached.41,42 Each polymorph has its 
stability domain. 

The two polymorphs A and B are monotropically related (Figure 1.6 - b) 43,44 if 
only one polymorph A is more stable at all temperature below the melting point, 
since its free energy (GA) is less than the other polymorph B (GB). The other 
polymorph B is unstable since it has the highest free energy. Given that the free 
energy curves of A and B do not cross, there is no reversible transition below the 
melting point.35 Form B can still be attained via metastable equilibria. 
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Figure 1.6 a) Enantiotropic system and b) Monotropic system. A and B: two 

polymorphs, L: liquid, Hi : enthalpy, Δ𝑯𝒊
𝒇
: enthalpy of fusion, 𝑻𝒊

𝒇
: melting 

temperature, ΔHt: enthalpy of transformation between two polymorphs, Tt: 
transition temperature between two polymorphs, Gi: Gibbs energy. 

Several methods exist to characterize polymorphs and their transitions,45,46 
such as observing the morphology changes of the crystals by microscopic 
methods,47–49 or by studying the phase transition by thermal analysis50–53 and  
Differential Scanning Calorimetry (DSC).54,55 Other methods are also employed to 
characterize polymorphs, like vibrational spectroscopy56–58 (Infrared and Raman 
spectroscopy) or  solid-state NMR59–61. Crystallographic methods are also very 
common, in particular X-ray diffraction (single crystal and/or powder diffraction).62–

64  

1.3.3 Solvates and Hydrates 

Solvates are crystals that result from the co crystallization of the compound with 
a solvent molecule. These compounds are called hydrates if the solvent is water 
(Figure 1.7). On a survey of the Cambridge Structural Database, about 50% of the 
entries for solvates are hydrates.65 The structure is scaffolded by means of weak 
interactions, usually hydrogen bond in case of hydrates. Formation of a solvate 
most often results in a different crystal structure with reference to that of the 
anhydrous. 
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As a result, the solvate of a pharmaceutical compound displays different 
physical, chemical and mechanical properties than those of the anhydrous form(s), 
e.g. stability, solubility, dissolution rate, particle size distribution and 
bioavailability.66,67 Several drugs such as cephalexin,68 ampicillin,69 cromolyn 
sodium (disodium cromoglycate),70 and others are being developed or are 
currently marketed as hydrates. The discussion about solvate formation in this 
thesis will focus primarily on crystal hydrates and their dehydration mechanism.   

 

Figure 1.7 Solvate solid forms and their polymorphs. 

In 1999 Morris classified hydrates into three categories depending on the 
structural aspects and on the interaction between the water molecule and the 
different entities in the crystal lattice.71 

 Class I of hydrates represents systems with isolated hydrate site(s), i.e. water 
molecules have not connected with each other by direct hydrogen bonding. 
Instead, the water molecules form bonds only with the drug molecules.72  

Hydrates classified as Class II are referred to as channel hydrates. The water 
molecule in this class interacts with an adjacent water molecule while also forming 
noncovalent bonds with the APIs.73 It results in the occurrence of channel of water 
molecules throughout the structure. 

Crystals characterized as Class III hydrates are also known as ion-coordinated 
site hydrates. In this case, the water molecules form ion-water bonds that are 
stronger than hydrogen bonds.74  

Complementary to Morris classification, Petit et al.75 proposed a classification 
concerning dehydration/desolvation mechanism. The mechanisms are related to 
the possible filiation of structural information and are divided in two categories: 
Class I, associated with the absence and class II mechanisms correspond to the 
presence of structural filiation. Each class is divided into several subclasses 
according to the process of release of water molecules (cooperative or destructive) 
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and to the eventual process of reorganization (cooperative or through a nucleation 
and growth process). This classification will be used in this thesis and will be stated 
as Rouen96 model. 

1.3.4 Cocrystals and properties modification 

The United States Food and Drug Administration (FDA) describes cocrystals as  
‘solids that are crystalline single-phase materials composed of two or more 
different molecular and/or ionic compounds generally in a stoichiometric ratio 
which are neither solvates nor simple salts’76 (Figure 1.8). It is worth noting that 
cocrystals can also be polymorphic and many examples can be found in 
literature.77–79  

 

Figure 1.8 Two different polymorphs of a cocrystal between an API and a 
coformer. 

Cocrystals gained interest due to large potential applications in 
agrochemicals,80 photonic application,81 semiconductors,82 explosive 
materials83,84 and especially in the pharmaceutical field.85–87 Indeed, 
cocrystallization can improve the physical and chemical properties of an API 
(solubility, dissolution rate, stability, compressibility, etc.88–91) without changing its 
molecular structure nor its pharmacological behavior. It gives the opportunity to 
generate intellectual properties (each new co-crystal of an API is potentially 
patentable).  

It is worth to mention that cocrystals can also incorporate solvent from the 
solution into their crystal lattice to form cocrystal solvates/hydrates. In some cases, 
solvent molecules can stabilize crystal structures when there is an imbalance in 
the number of acceptors and donors.92 Characterization of cocrystals involves both 
structural (studied by infrared spectroscopy, single crystal X-ray crystallography 
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and powder X-ray diffraction) and physical properties (studied by differential 
scanning calorimetry, thermogravimetric analysis, etc.). 

1.4 Methods of Enantiomeric Separation: Description and 
Constraints 

1.4.1 Overview 

Several techniques are used to obtain enantiopure compounds for chiral APIs: 

• Asymmetric synthesis93 

• Kinetic resolution94/Dynamic kinetic resolution95 

• Diastereomeric crystallization96 

• Chiral chromatography97  

• Viedma Ripening10  

• Preferential crystallization98 

The first option is the conversion of a prochiral substrate by asymmetric 
synthesis. It can be performed either by using a catalysis,99 an enzyme,100 or by 
chiral auxiliary,101 e.g. chiral additive. The reactions are often complex which limits 
their industrial applications. While this technique is effective and capable of 
producing high ee in some situations, application is limited due to extensive 
development times, availability and price of chiral additive materials (catalysts or 
enzymes).102 

Kinetic resolution (KR) is based on the different reaction rates between a chiral 
substance and two enantiomers of a racemic mixture: one enantiomer will react 
faster allowing the easy separation of the formed chiral substance from the 
unreacted remaining enantiomer. Dynamic Kinetic Resolution (DKR) makes use 
of chiral catalyst to overcome the limitation of maximum 50% yield in a classic 
KR.103  

The third method, diastereomeric resolution by crystallization also known as 
Pasteurian Resolution96 is the most common method due to its simplicity and is 
widely used in the production of pharmaceutical APIs. However, this method 
suffers from low theoretical yield and large amount of waste produced if no 
recycling is implemented. Also, an additional step is needed to recover the API at 
the end of the process, this step is also needed in case of resolution of a cocrystal.  

Chromatographic methods gained considerable interest due to an ever 
increasing range of stationary phases allowing the separation of racemic 
mixtures.104 The limitation of this technique resides in the high costs of stationary 
phases, equipments and the use of large quantities of solvent. 

Viedma ripening enables access to enantiopure products in a reliable way, 
simply through grinding a suspension of racemic conglomerate crystals in 
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combination with racemization in solution, resulting in complete deracemization of 
the solid phase. The scope of Viedma ripening has so far remained limited due to 
the lack of suitable racemization strategies.10   

1.4.2 Preferential Crystallization (PC) 

Preferential crystallization105 (PC) is one of the most straightforward and 
efficient separation and purification process. It has many advantages, involving low 
costs and permits access to highly pure product. However, it is now commonly 
stated that to perform a PC process, the mixture of enantiomer should crystallize 
as a conglomerate.106 In the very common case that the racemic mixture is a 
racemic compound (90-95% of cases), a screening of solid phase is usually 
performed up to the formation of a stable conglomerate. Yet, PC on metastable 
conglomerates remains achievable.12 Hereafter, we will discuss this type of chiral 
resolution process. 

1.4.2.1 Forewords about Nucleation and Metastable Zone Width 

As in every crystallization process, PC is governed by the fundamental 
mechanisms of crystallization: nucleation, growth, aggregation, etc.  

In a supersaturated clear solution, nucleus can be formed spontaneously by 
primary nucleation only if the upper limit of the metastable zone is reached.107 But 
if foreign particles are present in the solution, it is possible for the nuclei to form on 
those surfaces, this process is called heterogeneous nucleation. On the other 
hand, nucleation is secondary if the crystals of the same material act as attrition 
agents or secondary nuclei, in this case nuclei form even at low supersaturation. 
Let us consider a solution supersaturated with a single compound. The solution 
necessarily exhibits a metastable zone, which is the range of supersaturation 
attainable without spontaneous nucleation of the system.108 The diagram shown in 
Figure 1.9 exemplifies a cooling crystallization procedure and illustrates this 
concept. At point A the solution is homogeneous, the temperature is higher than 
the equilibrium temperature (the solution is undersaturated). Cooling down to point 
B gives rise to a saturated solution. The solution remains clear until the point C 
although the solution is then supersaturated: this is the metastable zone. Below 
this temperature (i.e. the metastable limit), nucleation occurs spontaneously. In the 
metastable zone, nucleation is unlikely but can be triggered by seeding. Indeed, 
the width of the zone is influenced by many factors such as the cooling rate,109 the 
agitation,110 presence of foreign particles (dust, impurity, additives…) acting as 
nuclei,111,112 viscosity,113 type of solvent, etc.114  
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Figure 1.9 General solubility curve showing A: undersaturated solution, B:  
saturated solution, C: metastable limit and D: zone of spontaneous nucleation. 

The success of PC relies on the out-of-equilibrium crystallization of a single 
enantiomer from the racemic or quasi racemic solution while the other enantiomer 
remains in solution without nucleating. Measuring the Induction Time (ti) and 
Metastable Zone Width (MSZW) associated to the crystallization of pure 
enantiomers from their solution provides valuable data for the design of a robust 
PC process and help the selection of solvents and experimental conditions such 
as supersaturation, temperature, cooling profile, etc.  

1.4.2.2 PC process 

Conducting PC consists in managing the crystallization kinetics of each 
enantiomer from their racemic (or quasi racemic solution) supersaturated solution: 
the crystallization of one enantiomer is triggered while the nucleation of the 
counter-enantiomer is delayed. This is therefore an out-of-equilibrium process 
which must be carefully designed and controlled to prevent the spontaneous 
nucleation of the undesired enantiomer. For a good efficiency of this process, it is 
well known that enantiomers must crystallize as a conglomerate and no solid 
solution should occur between the enantiomers.  

Different variation of PC process are described in the literature: seeded 
isothermal preferential crystallization (SIPC), seeded polythermic programmed 
preferential crystallization (S3PC), auto-seeded polythermic programmed 
preferential crystallization (AS3PC).98,115  

Concentration

Stable zone:
Crystals cannot 
nucleate and grow

A

B

C

D

Unstable zone:
Crystals can nucleate 
and grow spontaneously
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The concept of SIPC is best represented schematically as visualized in Figure 
1.10. At first, we consider a supersaturated clear solution below the solubility lines 
at the crystallization temperature Tc represented by point A. At this point the system 
is artificially enriched with one of the two enantiomers (R). The solution is seeded 
with a known amount of crystals of the pure enantiomer present in excess in the 
solution (R). As a result, (R) starts to crystallize due to secondary nucleation and 
crystal growth and its concentration decreases in the solution that follows the route 
from A to B. 

 

Figure 1.10 Schematic representation of the SIPC process via two isotherms 
of the ternary system between two enantiomers (R and S) and a solvent. 

Thus, the crystallized enantiomer should be collected before the crystallization 
of the counter enantiomer occurs. After filtration, a mass of racemic mixture 
corresponding to the mass of pure enantiomer crystallized is added to the solution 
to compensate, the temperature is increased to obtain a clear solution and then 
decreased to Tc (B → C), seed crystals of (S) are added at this point, the 
entrainment of (S) starts and the solution becomes enriched with (R) (C → D). After 
filtration, the process can be repeated after compensation of the solution with the 
suitable amount of racemic mixture (D → A).  

It is worth to mention that the process is controlled by the fact that it performs in 
the MSZW, graphically illustrated in grey in Figure 1.10. As stated above, this zone 
should be evaluated in order to assess the duration of entrainment without 
spontaneous nucleation of the counter enantiomer.  
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Practically, this is best performed by conducting test runs during which the 
enantiomeric excess of the solution is monitored. While crystallization of the 
seeded enantiomer (e.g. the (+) enantiomer) occurs, the enantiomeric excess of 
the solution gets progressively enriched in (-). Upon spontaneous nucleation of the 
counter enantiomer, the evolution of the enantiomeric excess of the liquor re-
increases up to 0 % ee. The “filtration windows” is set before that event. 

The Seeded Polythermic Programmed PC procedure (S3PC) is a variant of the 
SIPC process. The difference lies in the fact that entrainment occurs during a 
programmed cooling of the solution. In this process, the system is at the 
thermodynamic equilibrium at the beginning: the racemic solution is saturated. 
After seeding, the driving force of the crystallization is kept under control by using 
an adequate cooling profile.  

Figure 1.11 - b shows an isoplethal section showing the experimental principle 
of S3PC: the initial composition of the solution is given by point A (Figure 1.11- a), 
the medium is cooled down to Thomo. At this temperature the solution becomes 
saturated and remains clear. Seeds (R enantiomer) are introduced in the medium 
and a controlled cooling profile is applied to initiate the crystal growth. The liquid 
phase composition follows the solubility curve HL and the equilibrium is maintained 
between the temperatures TA to TL. Between TL and TF, the counter enantiomer 
can crystallize at any moment. The temperature program should therefore be 
adjusted on a case by case basis to promote soft  crystal growth and secondary 
nucleation of the crystallized enantiomer.115 The liquid phase will contain an 
excess of the S-enantiomer and therefore S-enantiomer is non-equilibrated, and 
R-enantiomer is in metastable equilibrium. As in SIPC mode, the medium will be 
filtered and an amount of racemic mixture equal to the amount of crystallized solid 
is added and the process is then repeated. 

AS3PC is an improvement of S3PC: seeds are indeed needed for each 
experiment in the cyclic operation of SIPC and S3PC. AS3PC can be described as 
a two-step process: first in situ crystallization of the enantiomer present in excess 
is performed by cooling the system at TB in the domain “R+saturated solution”, the 
starting composition in this case is given by point EB in Figure 1.11- b. At this point 
R-enantiomer crystallizes naturally and the resulting slurry is in equilibrium with its 
saturated solution: these crystals will act as seeds for the PC process. A controlled 
cooling ramp from TB to TL is applied and the system remains close to equilibrium 
moving along the metastable solubility curve BL and down to F (similarly to S3PC). 
After filtration, the liquid phase contains an excess of the counter enantiomer and 
the system is compensated with racemic mixture and a new operation can be 
started again.  

In all PC modes, the recycling of the mother liquor between each run prove that 
this technique is at least economical, and it is theoretically possible to resolve any 
amount of racemic mixture due to the successive recycling. 
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Figure 1.11 a) T-R-Y isoplethal section from a ternary phase diagram showing 
the principle of b) Seeded Programmed Polythermic Preferential Crystallization 
(S3PC) and c) Auto-Seeded Programmed Polythermic Preferential Crystallization 
(AS3PC). 115  

1.4.2.3 Preferential crystallization of hydrates in a ternary system 

Fundamentally, no difference is found between the entrainment of a 
solvate/hydrate or a non-solvated crystal form. However, experimental conditions 
(solvent nature, temperature, pressure, humidity, etc.) may affect the chemical 
characteristics and the behavior of the hydrate. For example, it might be necessary 
to store the seeds under specific conditions to avoid dehydration or decomposition 
of the solid phase that will be used for the stereoselective nucleation and crystal 
growth in the system. 

1.5 PC in the case of racemic compound forming systems: the 
case of Diprophylline  

One of the starting point of this thesis work is based on the work of Brandel et 
al..12 They have reported that the chiral compound Diprophylline (Figure 1.12, DPL 
hereafter)12 exhibits a rich solid state landscape with four crystal forms: a stable 
racemic compound, two metastable solid solutions and a metastable 
conglomerate. In that study, it was found that a solution of racemic DPL in polar 
solvents such as water, DMSO and DMF can remain highly supersaturated for 
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several hours before any spontaneous nucleation. This large MSZW hindered the 
nucleation of the stable racemic compound (and any other form) which allowed the 
crystallization of the pure enantiomer when the solution was seeded with 
homochiral seeds in DMF. It was also stated that this behavior is due to the 
conformational diversity of DPL in the solvated state which is related to the 
conformational flexibility of the molecule. The conformation(s) adopted by the 
molecule at the solvated state was proposed as the reason why primary nucleation 
was so difficult.116 

 

Figure 1.12 Chemical structure of (RS)-DPL.  

This study suggested that the key parameter for the successful implementation 
of PC is not necessarily associated to the presence of a stable conglomerate and 
could be also the use of a solvent which delays spontaneous nucleation of racemic 
compounds. This assumption enlarges the use of PC in some cases of racemic 
compounds forming system.  Indeed, a large MSZW allows the use of the 
metastable equilibria of the conglomerate, whereas the stable equilibria of the 
racemic compound can be overpassed. In such a situation, the solubility of the 
conglomerate is larger than that of the racemic compound. Therefore, the 
concentration of the solution should be high enough to reach a sufficient 
supersaturation value with respect to the conglomerate (PC should not be held in 
the grey zone but should take place in the green zone of Figure 1.13).  

Assuming that a solvent fulfilling the above criteria is identified, PC might be 
applied for any chiral molecule crystallizing as a stable racemic compound. This 
would considerably expand the scope of chiral resolution by PC. Therefore, the 
strategy presented by Brandel et al. should involve a screening procedure 
(adopted in this work) based on the measurement of induction times.116 This aims 
to identify a solvent in which a large MSZW can be reached.   
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Figure 1.13 Isothermal section of a ternary phase diagram representing a 
stable racemic system (red lines) and its metastable conglomerate (dashed 
lines). 

1.6 Methodology to implement preferential crystallization in 
unfavorable cases 

The starting assumption of the present work was that PC can be performed 
despite the presence of a stable racemic compound between the enantiomers. In 
the work of Brandel et al., implementation of PC was made possible by the 
selection of a suitable solvent (i.e. dimethylformamide) and did not required the 
addition of any external impurities.12 Seeding the supersaturated solution with the 
pure enantiomer enabled the stereoselective crystallization via secondary 
nucleation and crystal growth. A careful analysis of the system revealed that the 
nucleation inhibition of the racemic compound is most likely due to conformation 
blockage at the solvated state which hamper its primary nucleation from that 
solvent.116 

During this work, two systematic experimental plans were designed aiming to 
develop a more general approach to be applied for different racemic compound 
forming system (Figure 1.14).   

Racemic compound
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Figure 1.14 Schematic structure of the experimental plan. 

The first work plan (in blue in Figure 1.14) was derived with the aim of identifying 
more candidates for that type of unconventional PC processes. Experimentally, 
this implies: (i) measurement of the solubility and the nucleation properties 
(induction time (ti)) of different racemic compounds in different solvents. (ii) Those 
showing large ti were further investigated and the polymorphic landscape was 
established using phase diagrams and (iii) these data have been used to design 
PC.  

The second plan shown in red in Figure 1.14 explores the possibility to perform 
PC from conglomerate obtained by cocrystallization of the candidate. 
Experimentally, this implies: (i) a screening of co-crystal, (ii) if a new conglomerate 
solid phase is detected, (iii) a suitable solvent for PC is identified before (iv) 
applying the resolution process under the right conditions.  

These two ways for chiral resolution were particularly explored in this work. The 
choice of model molecule to implement this procedure was based on criteria 
deducted from the successful case of DPL.12  
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1.6.1 Criteria for Compound Selection for the First Work Plan 

Concerning the first work plan, the following criteria for compound selection 
were identified: 

- The mixture of enantiomer must obviously exist as a stable racemic 
compound. The knowledge about the presence of any metastable 
conglomerate was not mandatory. However, we favored systems for which 
the melting point of the racemic compound was lower compared to that of 
the pure enantiomer. By consequence, the melting temperatures of the 
conglomerate and the racemic compound are in the same range. (Figure 
1.15). 

- As for DPL molecule, the selected molecule must have a flexible 
conformation since this feature might favor the occurrence of nucleation 
blockage.12 

 

Figure 1.15 Schematic representation of a) the melting temperature of the 
racemic compound and the conglomerate are in the same range and b) the 
melting temperature of the conglomerate and the racemic compound are not in 
the same range.  

The solubility of twenty chiral racemic compounds and their nucleation behavior 
in twenty-two different solvents was explored (the list of the used racemic 
compounds and solvents can be found in the Annex A section). Two compounds 
were selected, i) proxyphylline (PXL hereafter, Figure 1.16 - a) which belongs to a 
series of theophylline derivatives, same as DPL and ii) 3-(2-propylphenoxy)-
propane-1,2-diol (P3D hereafter, Figure 1.16 - b). They were chosen for further 
investigations because they fulfill the aforementioned criteria especially the 
flexibility of their moiety substituent. 

As mentioned before, the preliminary step for the design of PC was to carefully 
establish the solid-state landscape of the selected molecules. Trials to apply PC 
on P3D molecule failed and thus this molecule was directly discarded. 
Nevertheless, the solid-state study of P3D was done and can be found in the 
Annex B section.  
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By consequence, PXL will be the main studied molecule in this thesis. The next 
chapters will discuss the solid-state diversity of PXL and its resolution through the 
two experimental plans (Figure 1.14) respectively. 

 

Figure 1.16 Chemical structure of a) PXL and b) P3D. The star indicates the 
chiral center.  
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CHAPTER 2: CHARACTERIZATION OF THE 
SOLID-STATE LANDSCAPE OF 7-(2-

HYDROXYPROPYL) THEOPHYLLINE (PXL) 

All the details of experimental set-up and procedures used during this work are 
gathered in Annex A. 

2.1. Study of the binary phase diagram between PXL 
enantiomers   

2.1.1 Introduction and state of art of the compound 

Proxyphylline (PXL hereafter, Figure 2.1) is a xanthine derivative that acts as a 
cardiac stimulant, vasodilator and bronchodilator. It’s used for relief of acute 
bronchial asthma and for reversible bronchospasm associated with chronic 
bronchitis and emphysema.117 

 Some information about the solid state of racemic PXL were available from the 
literature. In 1974, Kuhnert Brandstatter et al.118 suggested the existence of two 
“modifications” (i.e., Polymorphs) of PXL: Mod I with a melting points of 134-136 
°C and Mod II at 115-117 °C. In 1977, Eckert and Muller119 suspected the existence 
of at least five forms based on DSC and hot stage microscopy (HSM) 
investigations with the following melting points: 132.5-134.5 °C for Mod I, 117-121 
°C for Mod II and III, and 112-114 °C for Mod IV and V. Griesser et al.120 (2000) 
reported, mainly from HSM and DSC, that Mod I melts between 133 and 136 °C, 
Mod II can be obtained by annealing the supercooled melt (SCM) of racemic PXL 
between 75 and 95 °C, the melting point of Mod II was observed between 113 and 
116 °C. A third modification, Mod III, was obtained by annealing the SCM of 
racemic PXL between 55 and 65 °C. Mod III has a melting around 82-85 °C. These 
data are summarized in Table 2.1. No studies were conducted on the 
polymorphism of the pure enantiomer of PXL.   

In this chapter, solid‐state characteristics of PXL will be investigated by a 
combination of suitable experimental techniques (thermochemical study, single 
crystal and powder X-ray diffraction). The crystal forms are named with roman 
numerals in order of their melting point.  
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Figure 2.1 Chemical structure of PXL. The star indicates the chiral center. 

Table 2.1 Solid forms of (RS)-PXL described in the literature. 

 Preparation technique Melting temperature 

Mod I Commercial 

134-136 °C118  

132.5-134.5 °C119 

133-136 °C120 

Mod II 

/ 115-117 °C118 

DSC and hot stage 

microscopy 
117-121 °C119 

annealing the SCM of (RS)-

PXL between 75 and 95 °C 
113-116 °C120 

Mod III 

DSC and hot stage 

microscopy 
117-121 °C119 

annealing the SCM of (RS)-

PXL between 55 and 65 °C 
82-85 °C120 

Mod IV and Mod V 
DSC and hot stage 

microscopy 
112-114 °C119 

2.1.2 Identification and characterization of the different forms in 
the binary system   

The binary system between PXL enantiomers were re-investigated during this 
work. The stable racemic form of PXL (Mod I) was purchased from TCI EUROPE. 
The stable enantiopure form (PE I) was synthesized according to a published 
procedure as detailed in Annex A.121   

Three metastable racemic forms of PXL were obtained:  

• Mod II is a physical racemic mixture manually prepared by manual grinding 
between (R) and (S)-PXL. 

• Mod III was obtained by crystallization experiments from different solvents 
(chloroform, toluene, water, cyclohexane, heptane) and could be also prepared 
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by annealing the supercooled melt (SCM) of racemic PXL ((RS)-PXL) for 30 
minutes at 80 °C 

• Mod IV was prepared by annealing the SCM of (RS)-PXL at 80 °C for 10 
minutes.     

Solvent crystallization of the enantiopure form of PXL (PE-PXL) always lead to 
the formation of the stable form PE I, whatever the used solvent or conditions. A 
metastable enantiomeric form PE II was detected by means of DSC after heating 
the SCM of the pure enantiomer at 10 °C/min from 25 to 200 °C. A third form, PE 
III was prepared by annealing the SCM of the pure enantiomer at 80 °C for 30 
minutes.    

2.1.2.1 Characterization by X-ray powder diffraction 

All the accessible phases were characterized by XRPD. The patterns of the 
stable and metastable racemic and enantiopure forms of PXL are presented in 
Figure 2.2.   

Mod III and Mod IV were prepared directly on the XRD sample plate holder by 
annealing the SCM of (RS)-PXL at 80 oC for 30 minutes and 10 minutes, 
respectively.  

The pattern of the metastable form PE III was obtained by melting the stable 
form PE I on an XRD sample plate holder and annealing its melt for 30 minutes at 
80 oC. Due to the metastability of PE II, it was impossible to detect its X-ray pattern 
since it transforms directly to the stable form PE I.   

For these analyses, it can be stated that PE I and Mod II share the same pattern 
(Figure 2.2 - b and Figure 2.2 – e) : Mod II could be identified as a metastable 
conglomerate. On the other hand, PE III and Mod IV have the same XRPD. Thus, 
Mod IV could be a conglomerate, or it represents the racemic composition of a 
total solid solution of PE III (Figure 2.2 - d and Figure 2.2 - f).    
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Figure 2.2 Experimental XRPD patterns of stable and metastable racemic and 
enantiopure forms of PXL, a) Mod I, b) Mod II, c) Mod III, d) Mod IV, e) PE I and f) 
PE III.  

2.1.2.2 Crystal structure  

Trials to grow single crystals were carried out in order to access the crystal 
structure of the various forms and to understand the relationships between the 
different forms of PXL at the molecular scale. All attempts to grow single crystal of 
racemic PXL with good quality suitable to be studied by Single crystal X-Ray 
diffraction failed.   

Only single crystals of PE I could be obtained by slow evaporation at room 
temperature of a solution of pure enantiomer in ethanol/isobutyl alcohol (1:1). The 
crystallographic data of PE I is represented in Table 2.2. Diffraction analysis of PE 
I at room temperature shows the structure to be orthorhombic P212121. 

The asymmetric unit is composed of two molecules of PXL (Figure 2.3). Along 
a, the continuous sequence of the intermolecular hydrogen bonds (HB) binds the 
alcohol group of one molecule with the amino group of a second molecule, and the 
alcohol group of the second molecule to the carboxyl group of the first one. This 
arrangement leads to the formation of periodic bond chain (Table 2.3 and Figure 
2.4). These chains are packed along b and c through weak interactions (vdW) as 
seen in Figure 2.5.   
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Table 2.2 Crystallographic data and refinement parameters of PE I. 

 PE I 

Chemical Formula C10H14N4O3 

Molecular Weight / g.mol-1 238.25 

Crystal System Orthorhombic 

Space Group P212121 

Z , Z’ (asymmetric units per unit cell) 8, 2 

a / Å 7.7763(1) 

b / Å 17.133(3) 

c / Å 17.171(3) 

 / ° 90 

 / ° 90 

 / ° 90 

V / Å3 2287.7(6) 

dcalc / g.cm-3 1.383 

Table 2.3 Hydrogen bond table. Distance in Å. And angle in °. 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

O(1)-H(1)...N(2A)#1 0.82 2.03 2.841(5) 169.9 

O(1A)-H(1A4)...O(3)#2 0.82 1.94 2.756(5) 170.4 

 

Figure 2.3 Asymmetric unit in thermal ellipsoidal representation of the 
orthorhombic structure of PE I, with atom labels. 
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Figure 2.4 a) Molecular bond chains formed by the hydrogen bonds and b) 
Projection along a of one periodic bond chain. 

 

Figure 2.5 a) Projection along b and b) projection along a. 

2.1.2.3 Thermal analyses 

Thermogram of the pure stable racemic form Mod I (Figure 2.6 - a) (heating rate 
of 5 K/min) shows only one endothermic event (ΔfusH = 26.0 KJ/mol), 
corresponding to the melting of this form at Tonset=134.9 °C. The DSC curve 
confirms that the substance is stable and do not decompose under these 
experimental conditions. Thermogram of Mod II represented in Figure 2.6 - b 
shows one endothermic event at 116.2 °C (ΔfusH = 25.1 KJ/mol). Since Mod II is a 
physical mixture of both enantiomers, it can already be suggested that this 
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temperature correspond to the eutectic melting of the metastable conglomerate 
between PE I enantiomers.  

Mod III and Mod IV present an endothermic peak (corresponding to their 
melting) at 112.0 °C and 89.5 °C respectively, followed by an exothermic event 
(corresponding to recrystallization). The recrystallized form was Mod I since the 
melting of that form was detected upon further hearing. (Figure 2.6 - c and Figure 
2.6 - d). We can note that we never obtained a fifth solid form (Mod V) during this 
study.  

According to the thermal behavior, Mod I is the only thermodynamic stable form 
for the racemic section: Mod II, III and IV are monotropically related to Mod I. 

 The thermogram of the pure stable enantiomeric form PE I shows a single 
melting endotherm at 149.5 °C with an enthalpy of fusion of 29.1 kJ.mol-1 (Figure 
2.7 - a).  While heating the SCM of PE-PXL at 10 K/min, and after an exothermic 
peak due to recrystallization event, a small melting endotherm at 114.8 °C was 
detected (although markedly compensated by the exothermic recrystallization of 
PE I). It was associated to the melt of the metastable enantiopure form PE II 
(Figure 2.7 - b). Similarly, while heating the SCM of PE-PXL at 5K/min, an 
exothermic peak due to recrystallization was detected and followed by the melt of 
another form, PE III at 98.4 °C (Figure 2.7 - c). Again, this melting was 

calorimetrically compensated by the concomitant recrystallization of PE I. Due to 
the high metastability of PE II and PE III it was not possible to reliably measure 
any heat of fusion. Only one enantiopure solid form is thermodynamically stable 
(PEI). PE II and PE III are monotropically related to PE I.  

 

Figure 2.6 Differential scanning calorimetry (DSC) study at a heating rate of 5 
K/min of racemic PXL: a) Mod I, (b) Mod II, (c) Mod III and d) Mod IV.  
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Figure 2.7 Differential scanning calorimetry (DSC) study at a heating rate 5 
K/min of the pure enantiomer of PXL: a) PE I (synthesized) at 5 K/min, (b) PE II 
(SCM) at 10 K/min and c) PE III (SCM annealed at 80 °C for 30 min) at 5 K/min.  

2.1.2.4 Binary phase diagram between PXL enantiomers 

As a preliminary step, the theoretical binary phase diagram between PXL 
enantiomers was constructed using the Schröder-Van Laar (to establish the 
liquidus of PE I) and Prigogine–Defay (to establish the liquidus of Mod I) 
equations.24  The results are presented by black lines (for the stable equilibrium) 
and black dashed lines (for the metastable equilibrium) in Figure 2.8. By these 
calculations two invariants can be predicted: one at 129 oC (stable equilibrium) and 

one at 116.2 oC (metastable equilibrium). The phase equilibrium between PE II, 

PE III, Mod III and Mod IV cannot be experimentally investigated due to their 
metastability. As previously reported during XRPD analyses, a conglomerate may 
be present between Mod IV and PE III (they show the same XRPD, Figure 2.2). It 
is worth to note that the eventual presence of a solid solution is not forgotten but 
this situation is not presented on the phase diagram for clarity.  

Since the starting stable solid phases could be isolated, six different 
composition mixtures between Mod I and PE I were prepared and analyzed by 
DSC (Figure 2.9). PE I and Mod I presents a melting peak at 149.5 °C and 134.9 

°C respectively. For mixture containing 67%, 80% and 90% of PE I, the thermal 

behavior is the same: one endothermic peak at 130 °C associated to eutectic 

transformation presented by grey rhombus in Figure 2.8) and a variable liquidus 
peak depending on the composition (Tpeak was taken in this case). For the sample 
with 60% of PE I the behavior is different: the first endothermic peak seems 
associated to a metastable equilibrium and the second one to the stable liquidus. 
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All these experimental points are in good agreement with the theoretical 
calculation.   

 

Figure 2.8 Binary phase diagram for the stable and metastable equilibrium 
between the pure enantiomers of PXL.  

 

Figure 2.9 DSC curves obtained at a heating rate of 5 K/min of Mod I and PE I 
mixtures. The compositions are indicated in the thermogram.  
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2.2. Discussion 

The determination of the binary phase diagram between PXL enantiomers has 
demonstrated the existence of a double polymorphism (i.e., polymorphism of both 
racemic mixture and of the pure enantiomer). PXL enantiomers can crystallize 
either as a stable racemic compound, a metastable racemic compound and two 
metastable conglomerates and/or solid solution. This system exhibits a rich 
crystallization behavior, similar to the DPL molecule. Even if we could not get any 
data about the molecular organizations in the solid state, this behavior certainly 
results from the flexibility of these molecules as for DPL. 

The existence of two conglomerates (even metastable) in this system, implies 
that the self-stereorecognition of PXL enantiomers is efficient and is a favorable 
criterion for the design of PC process. 

Such preliminary work and assessment of the solid-state behavior is of 
fundamental importance as it establishes a clear understanding of the 
thermodynamic stability of each form and provides a solid basis for the work 
presented in the next chapter.  
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CHAPTER 3: DIRECT PREFERENTIAL 
CRYSTALLIZATION APPLIED TO PXL 

The main results of this work were already published: Harfouche, L. C.; Brandel, 
C.; Cartigny, Y.; ter Horst, J. H.; Coquerel, G.; Petit, S. Enabling Direct Preferential 
Crystallization in a Stable Racemic Compound System. Mol. Pharm. 2019, 16 (11), 
4670–4676. 

3.1 Introduction 

This chapter reports on the application of direct PC in the binary system of PXL 
enantiomer despite the existence of a stable racemic compound. This work based 
on the strategy presented in 1.6 describes a basic process design including a 
solvent selection procedure as well as an approach to identify optimal process 
conditions. Resolution is enabled through the careful selection of a solvent in which 
all possible phases have low nucleation rates. From solvents, Mod III, Mod IV, PE 
II and PEIII are not accessible and will not be considered further in this section, 
“reducing” the solid-state landscape of PXL to the stable racemic compound (Mod 
I) and to the metastable conglomerate (Mod II).  

3.2 Solvent selection: solubility study and isotherms 

The starting assumption of this work is that the key parameter for the successful 
implementation of PC for a stable racemic compound-forming system such as the 
one between PXL enantiomers, is the selection of a solvent in which the 
spontaneous nucleation of the stable crystal form as well as the metastable 
conglomerate are kinetically inhibited.  

If a highly supersaturated solution can be maintained for a sufficiently long 
period of time in this solvent, seeding with a single enantiomer would mainly 
promote its growth whereas the stable racemic compound or the counter 
enantiomer would not nucleate. Obviously, in the case of a racemic forming 
system, PC can only be envisaged if the solution is also supersaturated with 
reference to the metastable conglomerate.   

In a preliminary step, a large collection of solvents was tested for suitable 
solubility (s*). Those solvents for which the PXL solubility at 20 °C lies between 2 
and 50 w% were further investigated by determining induction time ti at 1 mL scale 
using the Crystal 16 apparatus (see Annex C).  

For samples showing large ti values at 1 mL scale, tests were made at larger scale 
(10 or 20 mL), at a supersaturation ratio 1.5≤β≤2.5 in respect to the stable racemic 



40 

 

compound (Mod I hereafter) (Table 3.1). Spontaneous nucleation of Mod I 
occurred much more rapidly at larger scale and this type of dependency of the 
nucleation has been discussed elsewhere.122 

Table 3.1 Solubility (s*) data and induction time values of Mod I in 
different solvents at 20 °C at a20 mL scale or b10 mL scale. 

Solvents Tc (°C) s* (w%) βc ti  (minutes) 

Acetone 20 4.4 2 10a 

Chloroform 20 21.8 2 25b 

1,4-dioxane 20 6.6 1.5 15a 

Propan-1-ol 20 3.2 2 100b 

n-butyl acetate 20 1.2 1.5 / 

Dimethyl sulfoxide 20 21.4 2 5a 

N,N-dimethylformamide 20 29.4 / 20b 

THF 20 5.6 1.5 5b 

Methyl tert-butyl ether 20 non-soluble / / 

Methanol 20 11.7 1.5 20b 

Acetonitrile 20 6.0 2 15a 

Toluene 20 non-soluble / / 

Ethyl acetate 20 1.8 1.7 2b 

Ethanol 20 5.5 1.5 20a 

Water 20 47.7 2.5 180b 

DCM 20 12.2   

Butan-2-ol 20 4.6 2.3 20a 

Cyclohexane 20 non-soluble / / 

n-heptane 20 non-soluble / / 

Methyl isobutyl ketone 20 3.3 1.5 5b 

Isopropyl alcohol 20 2.7 2.3 15b 

Isobutyl alcohol 10 2.1 2.3 60a 

Isobutyl alcohol 20 2.9 2.3 60a 

[a]20 mL scale, [b] 10 mL scale, [c] maximum supersaturation ratio tested. 

Despite ti values larger than 180 and 100 minutes found in water and 1-propanol 
respectively, preliminary PC attempts were unsuccessful due to the primary 
heterogeneous nucleation and crystallization of the stable racemic compound 
immediately after seeding with crystals of pure enantiomer. This spontaneous 
crystallization was detected by means of X-ray powder diffraction (XRPD) of the 
solid phase sampled during the experiment.  

These solvents were therefore discarded. This shows that a large metastable 
zone width is necessary but not sufficient to ensure the success of PC under these 
particular circumstances. Based on the promising ti results, it was chosen to further 
investigate the resolution process in isobutyl alcohol (IBA). 
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3.3 Solubility measurements and ternary isotherms 

Knowledge of the ternary phase diagram between PXL enantiomers and the 
solvent is needed in order to rationalize any resolution procedure by PC. In 
presence of a solvent, PXL crystallizes either as a stable racemic compound (Mod 
I) or as a metastable conglomerate (Mod II) between pure enantiomer PE I. The 
solubility values of the three crystal forms (Mod I, Mod II and PE I) in the solvent 
IBA are shown in Table 3.2 and Figure 3.1. To evaluate the error of the solubility 
data obtained with the isothermal method, repeated measurements were made 
and the standard deviation (s.d.) was calculated. Results are shown in Table 3.2.   

As expected, the s* of the metastable conglomerate Mod II in IBA is higher than 
that of the racemic compound Mod I and the solubility difference substantially 
increases with temperature. For instance, at 10°C s* of Mod II is 1.3 times higher 
than that of Mod I and roughly twice that of PE I. At 40 °C the s* of Mod II becomes 
twice higher than that of Mod I and trice that of PE I.   

Table 3.2 Average and standard deviation (s.d.) of solubility data of the 
pure enantiomer PE I, racemic compound Mod I and metastable 
conglomerate Mod II in IBA. (n: number of experiments, 𝝁: mean value).  

 

Ts (°C) PE I(w%) s.d.a
(PE I) 

Mod 
I(w%) 

s.d.a
(Mod I) 

Mod II 
(w%) 

s.d.a
(Mon II) 

5 1.4 0.22 1.8 0.13 / / 
10 1.5 0.40 2.1 0.05 2.7 1.62 
25 2.2 0.29 3.5 0.34 5 1.11 
30 / / / / 6.8 0.05 
35 4.0 0.65 5.0 0.12 / / 
40 5.3 0.28 7.3 0.43 15.4 0.08 
50 / / 15.4 0.09 / / 
60 10.2 0.53 / / / / 

as.d. = √
𝟏

𝒏−𝟏
 (∑ (𝑿𝒊 − 𝝁𝒏

𝒊=𝟏 )𝟐  

𝝁 = 
∑ 𝑿𝒊

𝒏
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Figure 3.1 Solubility curves of the three crystal forms of PXL in IBA as function 
of temperature. PE I: pure enantiomer of PXL, Mod I: stable racemic compound, 
Mod II: metastable conglomerate.  

These solubility data were used for the construction of the ternary isothermal 
sections at 10 and 25 °C (Figure 3.2) (temperature used for PC processes) and to 
plot the metastable solubility lines representing the virtual crystallization limits 
(experimental detain can be found in Annex A, A.2.14). The slope of the solubility 
curves of the enantiomers can be described using the molar solubility ratio αmol, 
defined as the solubility of the racemic conglomerate divided by the solubility of 
the pure enantiomer. As discussed by Jacques et al.,24 the PC process is less 
efficient when αmol is higher than 2. In the present case, αmol ratio drops from 2.8 
at 40°C to 1.8 at 10°C which indicates that PC of Mod I in IBA is more favorable at 
lower temperature.  

Based on the ternary isothermal sections, two processes of PC have been used 
to resolve PXL in IBA: Seeded Isothermal Preferential Crystallization (SIPC) and 
Seeded Programmed Polythermic Preferential Crystallization (S3PC).98 In Figure 
3.2 the initial concentration of Mod I in IBA (Co) used in this work is represented 
with black and red triangles respectively for SIPC and S3PC modes. Under these 
conditions, the solution is supersaturated at the crystallization temperature (10 or 
20°C) regarding both Mod I and Mod II. 
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Figure 3.2 A: Ternary solubility phase diagram including the metastable 
solubility lines (dashed lines) for PE I (R) and (S) in IBA at 10 and 25 °C used as 
Tc for SIPC and S3PC respectively (W is for weight fraction). B: Performance of 
PC process for enantioseparation in SIPC mode, C: Performance of PC process 
in S3PC mode. Signification of (a,b,c,d and e) is described in the text. 

3.4 Preferential Crystallization of PXL by SIPC  

As evidenced in Table 3.1, a supersaturated solution of racemic PXL in IBA with 
a supersaturation ratio of β = 2.3 at 20 mL scale and at 10 °C takes at least 1h to 

crystallize spontaneously as Mod I which prompted us to perform a resolution 
procedure using the SIPC mode.  

Four SIPC experiments were monitored as function of time with various seed 
mass using the conditions in Table 3.3. The principle of SIPC, is presented in 
Figure 3.2 - B which depicts the envisaged evolution of the composition of the 
mother liquor during the process (it is exemplified by the SIPC experiment using 
150 mg of seeds).  

The starting solution saturated with Mod I at Ts=35 °C (s*=5 w%) is indicated as 
a black triangle in Figure 3.2. After rapid cooling to Tc=10 °C (s*=2.1 w%, β = 2.3 
with reference to Mod I and 1.8 with reference to Mod II), the supersaturated 
solution is seeded with 150 mg of fine particles of the pure R enantiomer. This 
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induces the stereoselective crystallization of this enantiomer while the 
enantiomeric excess of the mother liquor evolves from eea = 0 % (point a in Figure 
3.2 – B) to eeb = (-) 5.10 % (point b in Figure 3.2 – B) within 20 minutes.  

At (b), the system is filtered resulting in, 212.2 mg of crystals with an 
enantiomeric purity of 91.3%. The liquor is then compensated with 47.73 mg of 
Mod I and with solvent, thus moving from point b to point c (eec = (-) 3.80 %).  

After homogenization of the system at 35 °C, the liquor, enriched in PE I (S) 
enantiomer is cooled to 10 °C and seeded with 150 mg of PE I (S) to complete the 
cycle and move from (-) 3.15 % eec to (-) 0.15 % eed (point d in Figure 3.2 - B) 
within 30 minutes, 201.0 mg of solid was collected with an ee of (+) 89.7 %.  

To move from point d to point e (Figure 3.2 - B), the liquor is again compensated 
with 30.29 mg of Mod I and solvent, homogenized at 35 °C then cooled down to 
10 °C to start a new cycle. The process can thus be continuously cyclized.   

Table 3.3 Starting Experimental Conditions for SIPC. mIBA: mass of 
isobutyl alcohol, mMod I: initial mass of Mod I dissolved in solvent, Co: 
initial total concentration of the solution, Ts: initial saturation temperature, 

Tc: constant crystallization temperature, sMod I10°C

* : solubility of Mod I at 

10°C in IBA, sMod II10°C

* : solubility of Mod II at 10°C in IBA.    

Conditions SIPC 

mIBA (g) 17 

mMod I (mg) 894 
Co (w%) 5.0 
Ts (°C) 35 
Tc (°C) 10 

s𝑀𝑜𝑑 𝐼10 C

*  2.1 

sMod II10 C
*  2.7 

Ytheo a (%) 20 

                                                     a Ytheo: theoretical yield defined as 
Co− CMod II10oC

2 C0
( x100).      

In order to determine the suitable balance between seed mass and duration 
before filtration, the impact of the seed amount on the entrainment effect was 
assessed by using various amounts of seeds ranging from 50 to 150 mg. The 
enantiomeric excess values in the solution as a function of time are shown in 
Figure 3.3 - a. After seeding with (S) enantiomer seed crystals, the solution is 
progressively enriched in the counter (R) enantiomer. This is a clear indication that 
an out-of-equilibrium stereoselective crystallization of PE I (S) is occurring despite 
the existence of the stable racemic compound. 
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Figure 3.3 Evolution of enantiomeric excess of preferential crystallization in 
SIPC mode starting from racemic conditions monitoring (a): the liquid phase 
enriched with PE I (S) after seeding with 50 mg, 80 mg, 100 mg and 150 mg of PE 
I (S) and (b) the solid phase with 80 mg of PE I (S)-seeds. The vertical green line 
crossing the point t = 20 minutes taken as filtration window shows the time 
required to produce PE I (S) with good purity while steadily increasing the excess 
of PE I (R) in the liquid phase.  

One can also see that the higher the seed mass, the higher and the faster the 
liquor gets enriched in the opposite enantiomer until the seed mass reaches 100 
mg. This can be either because PE I (S) enantiomer crystallize faster from solution 
due to larger seed crystal surface area, or because less Mod I is formed when 
more seeds are added, so that less PE I (R) is removed from solution.  

In the profile given in Figure 3.3 - a (red curve), one can see that the entrainment 
starts after seeding with 80 mg of PE I (S)-seeds, yet after 60-70 minutes the ee 
of the liquid phase decreases. This probably results from the heterogeneous 
nucleation of Mod I, and possibly of the counter enantiomer. Therefore, one could 
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expect that the filtration window of the process could be as high as 60 to 80 minutes 
since the enantiomeric excess of the liquor is then maximized.123 However, the 
optical purity in the solid phase in Figure 3.3 - b indicates a gradual decrease of 
the crystal enantiomeric purity with process time.  

XRPD analyses of the crystals filtered at 15- and 30-minutes reveals that this is 
due to the spontaneous crystallization of the racemic compound Mod I after 
approximately 20 minutes (Figure 3.4) This shows that the introduction of PE I 
facilitates the formation of Mod I crystals, probably through a heterogeneous 
nucleation mechanism. Consequently, the filtration window was set at 20 or 30 
minutes rather than 60-80 min to compromise between the purity and the mass of 
the collected solid.  

 

Figure 3.4 X-ray Diffraction analyses of the crystals filtered before and after 
the filtration window. 

The experimental results for 4 consecutive SIPC cycles are given in Table 3.4 
and shows that PC of PXL is successful in these conditions since high 
enantiomeric purity crops can be produced. These results indicate that the 
increase in seed mass increases the deposition rate of the pure enantiomer, which 
is the amount of crystalline material in units of gram/second that is deposited, due 
to the higher surface area offered by the larger amount of seeds and also to the 
slow nucleation kinetics of Mod I during the 20 first minutes.  

This significantly increases the enantiomeric excess of the liquid phase, thus 
accelerating the resolution process.  Herein, it can be concluded that the seed 
mass affects the resolution rate and the yield of the produced solid in a SIPC mode. 
It can also be deduced from these data that the crystallization behavior of PXL 
during the SIPC process is mainly driven by the crystal growth of the seeds rather 
than secondary nucleation of PE I. This prompted us to perform the resolution by 
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implementing a controlled cooling profile with the aim of improving the efficiency 
of the process. 

Table 3.4 Experimental results of the SIPC cycles in IBA at 10 °C. eeo 
(%): initial enantiomer excess in the liquid phase, Wseeds: mass of seeds, 
tend: duration time in minutes, Wc.s and e.e.c.s: weight and enantiomeric 
excess of the collected solid with seeds included, WP.E.: weight of 
produced pure enantiomer, Yexp: experimental yield, eef (%): enantiomeric 
excess of the liquid phase at the end of the process. 

Nb 
eeo  
(%) 

Wseeds  
(mg) 

tend 

(min) 
Wc.s. 

(mg) 
e.e.c.s.  

(%) 
WP.E.  

(mg) 
Yexp (%) eef (%) 

1 0.00 (R) 50 20 65.5 (R) 89.3 8.49 4.74 (S) 1.30 
2 (S) 1.00 (S) 50 30 57.6 (S) 90.7 2.60 1.45 (R) 0.30 
3 0.00 (R) 80 20 108.0 (R) 92.9 19.86 11.10 (S) 2.25 
4 (S) 1.70 (S) 80 30 110.5 (S) 90.2 18.87 10.55 (R) 0.11 
5 0.00 (R) 100 20 145.3 (R) 91.7 32.84 18.36 (S) 4.29 
6 (S) 3.64 (S) 100 30 140.6 (S) 91.6 28.38 15.87 (R) 0.20 
7 0.00 (R) 150 20 212.2 (R) 91.3 43.73 24.45 (S) 5.10 
8 (S) 3.80 (S) 150 30 201.0 (S) 89.7 30.29 16.94 (R) 0.15 

3.5 Preferential crystallization by S3PC 

Compared to SIPC, the S3PC process is assumed to provide advanced control 
over the supersaturation profile and therefore to favor a gentler crystallization 
behavior, reducing the likelihood of spontaneous nucleation. Figure 3.2 - C depicts 
a cyclic operation of the PC process in S3PC mode to produce both enantiomers 
for the first two runs. A supersaturated solution was prepared at 25 °C (Co = 8 w%), 
resulting in a supersaturation ratio of β = 2.3 at 25°C for the racemic compound 
Mod I which is identical to that applied for SIPC. Therefore, the supersaturation 
with reference to Mod II is 1.6, slightly lower than that employed for SIPC 
(βSIPC=1.8) which creates a moderate variation of ca. 10 % compared to SIPC. 

Starting at a lower supersaturation for Mod II constitutes an advantage for S3PC 
and thus the driving force of the crystallization is controlled by the cooling profile.  

The data of two successive S3PC cycles carried out by recycling the mother 
liquor are reported in Table 3.5. Based on our SIPC results we have chosen seed 
masses in the range of 80-100 mg. In the first cycle and starting from a racemic 
composition (point (a) in Figure 3.2 - C) the solution is seeded with 100 mg PE I 
(PE I (R)) and linearly cooled down to 10 °C. A cooling rate of 0.75 °C/min was 
applied. The solution moves from eea = 0% (point a in Figure 3.2 - C) to eeb = 3.3% 
(point b in Figure 3.2 - C) and is then filtered to collect 160.0 mg of crude crops 
with optical purity of 92.0%. After compensation with 47.0 mg of Mod I and with 
solvent, a new run can be per-formed (points c, d and e in Figure 3.2 - C) with a 
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cooling profile of 0.375 °C/min.  A slower cooling profile was adapted in this case 
because we found that at least 40 minutes of cooling are required in order to get a 
solution enriched with the opposite enantiomer (i.e. the required starting condition 
for the next run). Such a slow cooling profile, however, systematically resulted in 
the concomitant spontaneous nucleation of Mod I. Compared to SIPC for which 
the nucleation of Mod I was sufficiently delayed at 10 °C, the higher nucleation rate 
of this phase in S3PC might be related to the higher concentration in solution (8 
w% for S3PC vs 5 w% for SIPC as Co).  

Table 3.5 Two successive S3PC cycles of PXL in IBA. eeo (%): initial 
enantiomer excess in the liquid phase, Wseeds: mass of seeds, tend: 
duration time in minutes,  Wc.s. and e.e.c.s.: weight and enantiomeric excess 
of the collected solid with seeds included, WP.E.: weight of produced pure 
enantiomer, Yexp: experimental yield calculated compared to the 
theoretical yield of 33.125%, eef (%): enantiomeric excess of the liquid 
phase at the end of the process. 

Nb 
eeo 
(%) 

Wseed 

(mg) 
tend 

(min) 
Wc.s. 

(mg) 
e.e.c.s.  

(%) 
WP.E. 

(mg) 
Yexp (%) 

eef 

(%) 

1 0.00 100 (R) 20 160.0 (R) 92.0 47.20 9.96 (S) 3.30 
2 (S) 2.30 100 (S) 40 210.2 (S) 81.1 70.47 14.97 (R) 1.53 
3 (R) 1.40 80 (R) 40 134.2 (R) 81.2 28.57 6.02 (S) 0.40 
4 (S) 0.20 100 (S) 40 156.0 (S) 82.6 28.85 6.08 (R) 1.85 

 

This shows that the used conditions are not suited for S3PC. Additional 
experiments should be designed to implement this process under smoother 
conditions in order to assess the enantiomeric selectivity of S3PC and to reach an 
advanced control over the primary heterogeneous nucleation of Mod I. 

3.6 Discussion  

This chapter showed the results obtained using our first work plan described in 
Figure 1.14 and demonstrated that, as in the case of DPL, the major limitation of 
PC (i.e. the requirement of a stable conglomerate) can be overcome using this 
strategy. Even though scale-up was not performed and various experimental 
parameters might still be optimized, this study provides a second proof of concept 
for implementation of PC in a system that crystallizes as a stable racemic 
compound. During the implementation of the PC process using both isothermal 
and polythermal modes, several critical factors were identified: (i) large MSZW that 
should exceed the ratio of solubility of conglomerate and racemic compound, and 
thus the absence of spontaneous nucleation of the racemic compound after 
seeding (ii) fast growth rate of enantiopure compound, (iii) optimal mass and 
quality of seeds. 



49 

 

Our study showed that a large MSZW is necessary but is not the only factor 
enabling PC in this type of system since seeding with pure enantiomer can also 
trigger the primary heterogeneous nucleation of the racemic compound. Therefore, 
process optimization is mandatory for successful implementation of the method 
proposed here, and further studies are required to optimize process parameters 
such as stirring mode, supersaturation, temperature, cooling profile, mixture of 
solvents, and also seed quality. The present work therefore open doors for new 
perspectives toward a possible enlargement of the application field of PC but also 
suggests that the SIPC method should be preferred when using that strategy owing 
to the results obtained for S3PC. 

In the next chapter the second complementary approach for chiral resolution of 
PXL via a conglomerate cocrystal will be presented and the work strategy will be 
detailed. 
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CHAPTER 4: RESOLUTION OF PXL VIA THE 
FORMATION OF CHIRAL COCRYSTALS 

This part is based on two publications: 

1. Harfouche L., Cartigny Y., Brandel C., Petit S., Coquerel G. (2020). Discovering 
of New Proxyphylline Chiral Cocrystals: Solid State and Dehydration 
Mechanism. Submitted to Crystal Growth and Design (under review, January 
2020). SMS laboratory, University of Rouen, Mont saint Aignan, France. 

2. Harfouche L., Cartigny Y., Brandel C., Petit S., Coquerel G. (2020). Resolution 
by Preferential Crystallization of Proxyphylline by using its Salicylic 
Monohydrate Co-crystal. Chem. Eng. Technol. Accepted manuscript. SMS 
laboratory, University of Rouen, Mont saint Aignan, France. 

4.1 Introduction 

In this chapter we conduct a study aiming at converting racemic PXL into a 
conglomerate by cocrystallization procedure. This phase could be an intermediate 
for preferential crystallization (for experimental plan see Figure 1.14). To the best 
of our knowledge, no cocrystal of PXL has ever been reported in the literature. In 
this study, we describe the discovery of 10 solid forms with a 1:1 stoichiometry 
between PXL and the cocrystal formers and the study of the solid-state landscape 
of four cocrystals between PXL and salicylic acid (SA). One of these phases 
crystallize as a conglomerate, the PC of this chiral cocrystal was then envisaged. 

4.2 Cocrystal screening 

Cocrystals were prepared by grinding or by dissolution/evaporation. All 
experiments were carried out with a 1:1 stoichiometric ratio of PXL and coformer. 
Grinding (in dry conditions or by liquid assisted grinding (LAG) was performed at 
room temperature using a Retsch Mixer Mill model MM400 with 10 mL zirconium 
oxide grinding jars containing one 12 mm zircon grinding ball at a rate of 20 Hz for 
20 min. LAG experiments were performed by adding ca. 10-20 μl of a selected 
solvent to the solid mixture prior to grinding.  

Water, acetone, ethanol, methanol, isopropanol (IPA), n-hexane, 
dichloromethane (DCM), and chloroform (CHCl3) were used for the LAG 
experiments. For the same stoichiometric mixture, a dry grinding was also 
performed. Cocrystals were also prepared by complete evaporation of solvent after 
dissolution of a 1:1 stoichiometric mixture of PXL and a chosen coformer in a 
minimum amount of solvent (approximately 5-10 mL) followed by slow evaporation 
of the solvent at room temperature. 
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The seven coformers presented in Figure 4.1 induced the crystallization of new 
solid phases with PXL. Nuclear magnetic resonance (1H NMR) analyses confirmed 
the 1:1 stoichiometry and showed that no mechanochemistry occurred (Annex C). 
The preparation method of the first six new cocrystals are introduced in Table 4.1, 
their XRPD and DSC data can be found in Annex C. The produced cocrystals from 
PXL and salicylic acid (SA) are further studied below.  

 

Figure 4.1 Molecular formula of the seven coformers that produced new solid 
phases with PXL.  
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Table 4.1 Preparation methods to obtain new cocrystal forms of PXL 
with six different coformers. 

Coformer 
Neat 

Grinding 
LAG Evaporation 

Oxalic acid (OA) + Acetone, IPA, DCM, CHCl3 / 
Acetylsalicylic acid (AA) + Acetone, heptane, DCM, MeOH, EtOH MeOH 
Anthranilic acid (Ant) + Acetone, EtOH, MeOH, DCM / 

3-hydroxybenzoic acid 
(HBA) 

/ MeOH / 

3,4-dimethoxycinnamic 
acid (DMCA) 

+ / / 

2,5-dichlorobenzoic acid 
(DClBA) 

+ / Heptane 

+ : cocrystal formation                / : no new solid phase was identified 

4.3 Preparation and identification of PXL:SA phases 

Crystallization of racemic PXL and SA in 1:1 ratio resulted in different cocrystal 
forms. (i) The first form was obtained by slow complete evaporation from 
methanol/water (3:7 v:v) solution or by liquid assisted grinding (LAG, 10 μl of 
methanol/water). (ii) The second form was prepared by wet milling (20 μl of 
heptane/EtOH (1:1)) and (iii) the third form was obtained by annealing the second 
form at ca. 98 °C for 15 min or directly from LAG (10 μl EtOH). These cocrystals 
are kinetically stable when placed in an open environment at room temperature.  

Using gravimetric measurements (annealing at 70 °C for 10-15 minutes), it was 
deduced that the first form is a monohydrate labeled (R)/(S)-H hereafter, whereas 
the two other forms are anhydrous ((R)/(S)-A1 and (RS)-A2 respectively). The 
product obtained after the dehydration of (R)/(S)-H by annealing procedure was 
found to be a third anhydrous form (R)/(S)-A3. Figure 4.2 shows the X-Ray powder 
diffraction (XRPD) patterns of the different racemic cocrystals obtained between 
PXL and SA.   



56 

 

 

Figure 4.2 Comparison of PXRD patterns of the cocrystal samples obtained 
with 1:1 PXL and SA.  

Table 4.2 summarizes the SHG results of the four racemic cocrystals. The signal 
identified for (R)/(S)-H, A1 and A3 indicates that they are non-centrosymmetric 
crystals while (RS)-A2 is a centrosymmetric solid phase. One can reasonably 
suppose that (R)/(S)-H, (R)/(S)-A1 and (R)/(S)-A3 are conglomerates.  

Table 4.2 SHG activity for the solid form obtained after 1:1 molar ratio 
mixture of Mod I and SA. 

Coformer 
SHG 

signal 
SHG 

intensity 
Suspected nature of the racemic solid 

(R)/(S)-H + 35000 Non-centrosymmetric  
(R)/(S)-A1 + 36000 Non-centrosymmetric 

(RS)-A2 - - Racemic compound 
(R)/(S)-A3 + 38000 Non-centrosymmetric 

In order to confirm the suspected nature of the studied solids, trials to grow 
single crystals were carried out. Up to now all attempts to grow single crystal of 
(R)/(S)-A1 and (R)/(S)-A3 with sufficient quality for Single crystal X-Ray diffraction 
(SC-XRD) analysis failed. Only single crystals of (R)/(S)-H and (RS)-A2 were 
obtained, the crystal structure of each form was studied to verify the chiral nature 
of these solid forms, the molecular conformations and their packings. 
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4.4 Single crystal X-ray diffraction studies 

Crystallographic data for (R)/(S)-H and (RS)-A2 are summarized in Table 4.3.  

Table 4.3 Crystallographic data for (R)/(S)-H and (RS)-A2. 

Chemical  
Formula 

[C10H14O3N4] 
[C7H6O3],H2O 

[C10H14O3N4] 
[C7H6O3] 

 (R)/(S)-H RS-A2 
Crystal System Monoclinic Triclinic 
Space Group P21  P1̅ 

Z, Z’ (asymmetric units per unit cell) 2,1 2,1 
a / Å 7.289(1) 9.652(2) 
b / Å 11.952(2) 10.216(2) 
c / Å 10.886(1) 10.435(2) 

 / ° 90 65.538(4) 

 / ° 95.175(3) 81.132(5) 

 / ° 90 79.862(4) 

V / Å3 944.6(2) 918.3(3) 

R indices on I >2I 
R1=0.0742 

wR2=0.1791 
R1=0.0564 

wR2=0.1104 

Independent reflexions / with I> I >2I 3668/2061 3584/1606 

 

Single crystal X-ray analysis of (R)/(S)-H obtained by evaporation from aqueous 
solution shows that the solid is a monohydrate cocrystal crystallizing in the P21 

space group and forming a conglomerate. The asymmetric unit is composed of 
one molecule of PXL, one molecule of SA and one water molecule (Figure 4.3). 
No hydrogen atom is exchanged between the salicylic acid and the proxyphylline 
molecule. 

The different entities establish strong interactions through intermolecular 
hydrogen bonding. The water molecule establishes a hydrogen bond network with 
three PXL molecules that hold this structure altogether.  

Along c, the water molecule is intercalated between two molecules of PXL 
establishing hydrogen bonds. These two molecules generate a periodic bond 
chains spreading along c. SA molecules are connected to these periodic bond 
chains (PBC) by a third H-bond (Figure 4.4, Table 4.4). A hydrogen bond is also 
depicted between adjacent PBC along the b direction that leads to molecular layers 
in bc. The overall crystal packing also features 𝜋𝜋 stacking interactions ensuring 
the cohesion of the packing (distance ~3.6/3.7Å from the centroid of the aromatic 
ring of SA and the center of the C1-C6 bond in PXL) (Figure 4.5).   

The description of this structure clearly demonstrates the importance of water 
molecules in the crystal structure cohesion. The possibility of creating isomorphic 
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desolvated form (i.e. made of about the same packing of the PXL and SA 
molecules as in the solvate) seems to be not accessible. To confirm this 
hypothesis, the preparation and the study of single crystals of the desolvated form 
is required. 

 

Figure 4.3 Asymmetric unit of (R)/(S)-H in ellipsoidal representation with 
atoms labelled. (Carbon atoms are displayed in grey for PXL and in yellow for 
SA) 

 

Figure 4.4 Periodic bond chain spreading along the c axis. The water molecule 
(in green) is intercalated between two consecutive PXL along c, the SA molecules 
are connected to this molecular chain. The intra-chain H-bonds are displayed as 
pink dashed lines. 
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Table 4.4 Hydrogen bond table in (R)/(S)-H.  

D-H...A d(H...A) 

Intra chain H-bond –pink lines 

OW-H(2O)...O(2) 1.92(6) 
O(3)-H(3)...OW 1.90(6) 

O(3S)-H(3S1)...O(3) 1.81(7) 

Inter chain H-bond- blue lines 

OW-H(1O)...N(3) 2.12(7) 

 

Figure 4.5 Two molecular layers stacked along a, the 𝝅𝝅 interactions are 
featured in dashed green lines. (The H-bonds are displayed in dashed pink lines 
when intra PBC and dashed blue lines when inter PBC).  

For (RS)-A2, a single crystal was obtained by leaving a supersaturated solution 
of the (R)/(S)-H in ethanol at 10 °C. The crystal data confirm that it is a racemic 

compound with a P1̅ space group. The asymmetric unit is composed of one PXL 
molecule and one SA molecule (Figure 4.6 - a). Interestingly, the conformations of 
PXL and SA from the asymmetric unit of (R)/(S)-H and (RS)-A2 are similar (Figure 
4.6 - b) but the structural features of the two crystal lattices do not indicate any 
structural filiation.  
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Figure 4.6 a) Asymmetric unit of (RS)-A2 in ellipsoid representation with atom 
labels. (Carbon atoms are displayed in grey for PXL and in yellow for SA) and b) 
Conformational similarity between the PXL molecules from the asymmetric unit 
of Form-H (Blue) and Form-A2 (Pink).  

The molecular entities establish strong hydrogen bonds (Table 4.5). These 
interactions lead to a centrosymmetric dimer (PXL-SA) (Figure 4.7). The cohesion 
is ensured by 𝜋𝜋 interactions along c axis (Figure 4.8). The combination of H-
bonds and this first type of 𝜋𝜋 interactions (d~3.5 Å) give rise to dimers and 

generate PBC in the [101̅] direction (Figure 4.9). Adjacent PBC establish a second 

type of 𝜋𝜋 interactions (d~3.6Å) that give rise to molecular layers in ac (Figure 4.9). 
The cohesion between the layers is ensured by van der Waals interactions.    

Table 4.5 Hydrogen bond in (RS)-A2.  

D-H...A d(H...A) 

O(3)-H(3)...O(2) 2.02(3) 
O(3A)-H(3A1)...N(4) 1.87(3) 
O(1A)-H(1A)...O(2A) 1.84(3) 
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Figure 4.7 Molecular block built from hydrogen bond interactions (dashed 
pink lines). (The black dot represents an inversion center). 

 

Figure 4.8 Periodic bond chain formed through 𝝅𝝅 interactions (C2A to C1, 
d~3.5Å and C2A to N4, d~3.6Å) in dashed green line. 

 

Figure 4.9 Projection along [10𝟏̅] of several periodic bond chains (represented 

in blue, red or standard) interacting though a second type of 𝝅𝝅 interactions in 
dashed blue lines. (C1A to C3, d~3.6Å). 
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4.5 Study of the dehydration behavior of the monohydrate 
cocrystal 

Using DSC/TGA, X-Ray Diffraction and DVS we examined the dehydration 
behavior of the monohydrate cocrystal under its racemic ((R)/(S)-H) and 
enantiomeric pure form (PE-H). It should be mentioned that (PE-H) was obtained 
from the same procedure as that used to prepare (R)/(S)-H by using the pure 
enantiomer of PXL instead of the racemic mixture.  

4.5.1 Nonisothermal Dehydration Analysis 

Figure 4.10 shows the DSC and TGA profiles of (a) (R)/(S)-H and (b) PE-H 
obtained with a heating rate of 10 K/min. The thermograms show a broad 
endotherm (black curves in Figure 4.10 - a and b, with a peak at ca. 80 °C attributed 
to the dehydration. The associated weight loss of 4.3% corresponds to one 
molecule of water per molecule of cocrystal (theoretical value = 4.7%). After the 
dehydration process, a sharp endotherm is observed at 90.4 °C in both cases, 
followed by another broad endotherm ending at ca. 112 °C. The shape of these 
two endothermic peaks is consistent with the occurrence of an invariant 
phenomenon and a liquidus line respectively. The thermogravimetric profile shows 
a second weight loss that begins at about 125 °C and which can be explained by 
the loss of SA by evaporation. This was further confirmed by XRPD experiments 
performed separately at different temperatures.  

 

Figure 4.10 DSC and TGA curves of the monohydrate cocrystal (a) (R)/(S)-H 
and (b) PE-H. 

To get a better understanding of the dehydration process, samples of (R)/(S)-H 
and PE-H were analyzed by XRPD at room temperature after annealing the solid 
for 10 minutes at different temperatures ranging from 60 to 130 °C. The XRPD 
patterns of the dehydration products are compared in Figure 4.11 highlighting the 
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impact of the annealing temperature on the final product. It should be mentioned 
that the experiments conducted on samples of (R)/(S)-H and PE-H give rise to the 
same patterns during heating until melting (Figure 4.11 - e to Figure 4.11 - h) and 
to different solid phases after annealing the melt at high temperature (Figure 4.11 
- i and j).  

The dehydration product at 60 °C (Figure 4.11 - e) consists of the coexistence 
of the hydrate and the anhydrous form A3. At 85 °C (Figure 4.11 - f) the dehydration 
is complete and A3 is the only obtained form, whatever the starting phase ((R)/(S)-
H and PE-H). This confirms the result obtained by SHG (Table 4.2) indicating that 
(R)/(S)-A3 is a racemic conglomerate. In both cases, the XRPD pattern collected 
at 90 °C (Figure 4.11 - g) shows the existence of A3 and the pure enantiomer of 
PXL (PE I), indicating a partial decomposition of the cocrystal due to sublimation 
of a small fraction of SA (collected on the cover lid).  

This behavior confirms the decomposition of the cocrystal at this temperature 
due to a peritectic transition (i.e. E-A3(s)  PE I(s) + Liquid). No pattern is seen at 
115 °C due to melting of the solid material (small peaks can still be detected due 
to the presence of small amounts of PE I in equilibrium with the melt). Leaving the 
obtained melt for 24h at 130 °C leads to the total evaporation of SA and the 
recrystallization of PXL under its racemic or enantiopure form depending on the 
nature of the starting material (Figure 4.11 - i and j respectively).    

 

Figure 4.11 XRPD reference patterns of (a) (R)/(S)-H or (E-H), (b) (R)/(S)-A3 or 
E-A3, (c) PE I, (d) Mod I and XRPD patterns of (R)/(S)-H and E-H dehydrated by 10 
minutes annealing at (e) 60 °C, (f) 85 °C, (g) 90 °C, (h)115 °C, 130 °C for (i) E-H and 
(j) (R)/(S)-H. All patterns were collected at room temperature.  
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4.5.2 Gravimetric Vapor Sorption Analysis  

Dynamic moisture sorption-desorption isotherms (T = 25 °C) were performed 
on both (R)/(S)-H and PE-H. Interpretation of the curves will only be given for 
(R)/(S)-H solid, because the same results were obtained for E-H (Figure 4.12). 
Before the first sorption step, the solid was exposed to a dry atmosphere (0% RH) 
leading to the total dehydration of the solid. During the first sorption up to 95%RH, 
the mass uptake increased to a maximal value of 3%wt, which is inferior to the 
theoretical expected value for a monohydrate stoichiometry (4.7 w%).  

The desorption 1 highlights the stability of the hydrate if RH>10%. Under dry 
conditions, a mass loss of ca. 8.0 % indicates that the departure of water in these 
conditions is accompanied by another departure of matter. During the subsequent 
sorption/desorption 2 a similar behavior is recorded: the cocrystal (under RH ˃ 75 
%) undergoes an incomplete rehydration (2.6 wt% mass uptake) and an excessive 
mass loss is recorded during the drying step.  

 

Figure 4.12 Mass change versus relative humidity (%) recorded at 25 °C for 
(R)/(S)-H.  

The difference in the uptake/loss mass during the successive 
sorption/desorption cycles is consistent with a concomitant 
dehydration/decomposition of the cocrystal. This was confirmed by two 
experimental complementary information: (i) XRPD analyses (under ambient RH) 
of (R)/(S)-H samples after DVS experiments indicates that the resulting solid is a 
mixture of (R)/(S)-A3, (R)/(S)-H and Mod I with no trace of SA (Figure 4.13) and 
(ii) DVS experiments made on solid SA lead to a continuous mass loss under dry 
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conditions related to a sublimation phenomenon. (Figure 4.14). Besides, PXL 
samples (racemic or enantiopure forms) are stable under variable humidity (no 
hydration, no degradation, data not shown). 

 

Figure 4.13 XRPD patterns of a) (R)/(S)-H, b) (R)/(S)-A3, c) PE I, d) Mod I, e) PE-
H after two sorption-desorption cycles in the DVS and f) (R)/(S)-H after two 
sorption-desorption cycles in the DVS.  

 

Figure 4.14 Sorption-desorption cycle performed at 25 °C for SA with DVS 
vacuum. Mass change (%) is referred to the mass at the end of the first drying 
step.  
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From this experiment, it can be deduced that during the gravimetric vapor 
sorption experiments, the departure of water molecules during dehydration 
(leading to the (R)/(S)-A3 phase) is irreversibly associated to SA sublimation. 
Nevertheless, due to kinetic reasons, the total decomposition of (R)/(S)-A3 (into 
PE I) is not reached and the rehydration of the remaining solid is made possible 
by increasing relative humidity.   

4.5.3 Hot stage microscopy observations  

Microscopy observation carried out on a single crystal of the monohydrated 
cocrystal under a heating rate of 1 °C/min are presented in Figure 4.15. The 
opacity of the crystal increases during the dehydration step starting at 45 °C 
without losing its external morphology. At around 70 °C, the water starts to be 
evacuated from the crystal, through what seem to be canals (photos at 77 and 82 
°C). The shape of the single crystal is altered and becomes rough up to 96-111 
°C. Upon further heating, melting occurs concomitantly with the crystallization of a 
solid from the inner part of the initial crystal. This new solid form (photo at 131 °C) 
appears to be the pure enantiomer of PXL (PE I), because its melting point was 
seen to be between 151-153 °C.   

 

Figure 4.15 Hot stage microscopy observation of a monohydrate single crystal 
at 1 °C/min at different temperature.  
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4.6 Study of the binary system between (R) and (S)-anhydrous 
cocrystal 

In order to study the binary system, the pure enantiomer of the anhydrous forms 
was prepared between PE I (R) or (S) and SA according to the different described 
methods suitable for the preparation of the racemic anhydrous cocrystals. A single 
anhydrous pure enantiomer form (PE-A1) was obtained and identified by XRPD 
showing the same pattern as (R)/(S)-A1 indicating that this phase is a racemic 
conglomerate (confirming the hypothesis surmised after SHG measurements, 
Table 4.2). Figure 4.16 displays the DSC curve for the racemic conglomerate 
(R)/(S)-A1, the racemic compound (RS)-A2 and the pure enantiomer PE-A1 
obtained at a heating rate of 5 K/min in the temperature range of 20 to 200 °C. The 
DSC curve of (R)/(S)-A1 shows one melting event at 84 °C (Figure 4.16 - a) and a 
recrystallization (exothermic peak happening directly after melting) followed by the 
endothermic melting at 103 °C. This melting temperature corresponds to that of 
(RS)-A2 with ΔfusH = 41.3 kJ/mol (Figure 4.16 - b). The recrystallization of (R)/(S)-
A1 into (RS)-A2 after melting was confirmed by XRPD at room temperature (RT) 
after annealing the melt for 10 minutes at 95°C (Figure 4.17). Therefore, one can 
deduce that the racemic conglomerate (R)/(S)-A1 is metastable referred to the 
racemic compound (RS)-A2. For the PE-A1 solid form, only one endotherm is 
detected at 101.4 °C with ΔfusH = 43.3 kJ/mol. (Figure 4.16 - c).  

 

Figure 4.16 Thermograms of the anhydrous forms a) (R)/(S)-A1 (red profile), b) 
(RS)-A2(blue profile) and c) PE-A1 (black profile).  
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Figure 4.17 XRPD patterns of (R)/(S)-A1, (RS)-A2, PE-A1 and the obtained solid 
after annealing (R)/(S)-A1 at 95 oC.  

By using the data collected from DSC measurements, the binary system 
displayed on Figure 4.18 could be proposed. The liquidus of the binary phase 
diagram was calculated by using Schröder-Van Laar24 and Prigogine–Defay 
equations24. In order to propose a full description of the solid-state landscape, one 
can add to Figure 4.18, the existence of the phases (R)/(S)-A3 and PE-A3. 
Contrary to the other phases of the system, the indicated temperature on this figure 
does not correspond to a melting point but to a decomposition point (peritectic 
transition) since the anhydrous cocrystal A3 is associated to the presence of PXL 
above this temperature. 

 



69 

 

 

Figure 4.18 Binary phase diagram between the anhydrous cocrystal 
enantiomers. Stable equilibria are shown by solid lines whereas the metastable 
equilibria are indicated by dashed lines.  

4.7 Discussion on cocrystal forms 

The preparation routes of the different solid forms of cocrystals formed between 
proxyphylline (PXL) and salicylic acid (SA) are summarized in Figure 4.19. 

Among the various solid phases of PXL-SA cocrystals characterized during this 
study, it can be claimed that a stable conglomerate could be stabilized via the 
crystallization of a monohydrated form. Figure 4.20 - a aims at representing the 
quaternary phase diagram under isobaric and isothermal conditions of the system: 
PE I (R)/PE I (S)/SA/Water. In this system, the ternary isoplethal section Cocrystal 
(PE I (R)/SA) / Cocrystal (PE I (S)/SA) / Water (in grey in Figure 4.20 - a and b) 
shows the stable conglomerate forming system. This situation paves the way for 
PXL resolution by using preferential crystallization which will be considered as the 
next step.  
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Figure 4.19 Summary of experimental conditions required to crystallize: the 
monohydrate in a) racemic form ((R)/(S)-H) and b) enantiopure form (R-H) and the 
anhydrous forms a) racemic compound (RS-A2) and the conglomerate 
compound ((R)/(S)-A1) and b) the enantiopure form (R-A1) of the cocrystal 
between PXL and SA.  
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Figure 4.20 a) representation of an isobaric and isothermal section of the 
quaternary phase diagram between water, the enantiomers of PXL and SA, b) 
isoplethal section representing the ternary section between water and the 
enantiomers of the cocrystal between PXL and SA.  

The dehydration mechanism of (R)/(S)-H phase is quite peculiar since the 
departure of water molecule leads to a metastable cocrystal phase ((R)/(S)-A3) 
which can decompose by increasing temperature or under drying conditions 
(0%RH or reduced pressure). All these observations prove that the dehydration 
process is irreversibly associated to a decomposition of the cocrystal (due to 
departure of SA), and the anhydrous form A3 is thermodynamically metastable. 
However, experimental investigations proposed in this study by working in kinetic 
conditions (short time to avoid complete departure of SA), show that the 
dehydration/rehydration mechanism of PXL-SA monohydrated cocrystals can be 
classified as destructive/reconstructive-class I process according to Rouen96 
model75 as already observed in the ciclopirox-olamine system published by Renou 
et al.124 During the dehydration, the disruption of H-bonds due to the departure of 
water molecules likely induce a collapse of the crystal lattice. This may cause an 
easier departure of SA molecules.  

One can note that the (R)/(S)-A3 phase was never observed by classical 
crystallization routes (solution or grinding) : this phase seems to be only accessible 
via the initial formation of the monohydrated form as in the Rimonabant case.125 
These assumptions could be confirmed by a thorough description of the 
relationship between crystallographic features of (R)/(S)-H and (R)/(S)-A3. 
Unfortunately attempts to obtain (R)/(S)-A3 single crystals were unsuccessful up 
to now. 

From a chiral discrimination point of view, this study shows the existence of 
three conglomerate forming systems between PXL and SA: two metastable 
anhydrous forms (A1 and A3) and one stable hydrated form (H) in water at RT. 
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The chiral resolution of PXL via PC of the monohydrated form will be discussed in 
the next section. 

4.8 Solubility study of the monohydrate cocrystal 

As explained and exemplified in the previous chapters, the selection of a 
suitable solvent (or mixture of solvents) for an effective preferential crystallization 
(PC) operation is crucial in order to achieve a successful resolution. In the scope 
of our first strategy (Figure 1.14 and chapter 3), solvent selection was based on 
their capacity to inhibit the nucleation of a stable racemic compound. In the scope 
of the second strategy (which is considered in the present chapter), the selected 
solvent should also be able to inhibit nucleation in order to retain the undesired 
enantiomer in solution for as long as possible. It was found that a solution of 
(R)/(S)-H in a mixture of ethanol and water in a 7:3 volume ratio with a 
concentration of 50.0 w % remains supersaturated for at least 8 h if cooled down 

to 10 °C (s* = 30.0 w %, β = 1.67). Moreover, at the investigated scale of 10 mL, 

this persistent metastable equilibrium is highly reproducible. This mixture of 
solvents, labeled V hereafter, was therefore selected for the resolution of (R)/(S)-
H.  

Table 4.6 presents the solubility data of the pure enantiomer of the cocrystal, 
(+)-H, and of the racemic mixture, (R)/(S)-H, in V at different temperatures. The 
molar solubility ratio αmol, calculated from the ratio of the solubility of the racemic 
mixture over that of the pure enantiomer (both expressed in mole fraction)126, 127 
are between 1.5 and 1.8 for the studied isotherms. It is usually stated that the 
efficiency of PC is favored for systems where αmol  is lower than 2.   

Table 4.6 Solubility “s*” and standard deviation (s.d.) of (+)-H and 
(R)/(S)-H in V at different temperatures. 

Ts (°C) 
(+)-H 

s* (w %) 
s.d.a

((+)-H)  (R)/(S)-H 
s* (w %) 

s.d.a
((R)/(S))-H)  

5 15.1 0.01 27.0 0.02 
10 19.8 0.01 30.0 0.02 
20 27.9 0.01 45.3 0.01 
25 32.0 0.01 53.8 0.004 

as.d. = √
𝟏

𝒏−𝟏
 (∑ (𝑿𝒊 − 𝝁𝒏

𝒊=𝟏 )𝟐  

𝝁 = 
∑ 𝑿𝒊

𝒏
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4.9 Resolution by preferential crystallization 

The process of PC and the different operating modes have been thoroughly 
described in a number of publications.98,123 SIPC and S3PC were described in 
Chapter 3, AS3PC will be described hereafter. The enantio-enriched solution in 
AS3PC mode is first heated to TB < Thomo (Figure 1.11) where a single enantiomer 
is in thermodynamic equilibrium with its saturated solution. The system is then auto 
seeded and progressively cooled down to TF. At the end of the process, the 
suspension is filtered before the spontaneous nucleation of the counter 
enantiomer. Then, the solution is compensated by the same mass of racemic 
mixture as the mass of the crude crops and by solvent, and re-heated so that a 
new run can start to afford crops of the opposite enantiomer. 

4.9.1 Seeded Isothermal Preferential Crystallization (SIPC) 

A racemic solution of (R)/(S)-H (7.57 g) in V (Co = 47 w %) was first heated up 
to 50 °C to ensure that even the smallest crystals are dissolved before cooling 
down to TF=10 °C (where s* = 30.0 w %, β=1.6). Once TF is reached, both 
enantiomers are supersaturated and are within their metastable zone. This 
supersaturated solution is then seeded by introducing manually 120 mg of ground 
dry crystals of (+)-H in the solution. 

Figure 4.21 presents the evolution of the enantiomeric excess of the liquor 
(black squares) and of the solid in suspension (red circles) during an optimization 
PC run. After seeding the racemic (R)/(S)-H supersaturated solution with pure (+)-
H, the enantiomeric excess of the liquor decreases progressively as the solution 
gets enriched in (-)-H while the out-of-equilibrium stereoselective crystallization of 
(+)-H occurs. After 4h of entrainment the ee of the solution tends to zero towards 
the racemic composition and the monitoring of the ee of the solid phase also 
presents a marked drop after this threshold. This is due to the spontaneous 
crystallization of (-)-H which gets more and more supersaturated as PC proceeds. 
In order to collect (+)-H with maximum yield and optimal enantiomeric purity, it is 
therefore necessary to filter the suspension before reaching the critical solution 
concentration after which (-)-H crystallizes.  
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Figure 4.21 Monitoring of the SIPC process starting from racemic mixture and 
seeding with (+)-H.  

Based on this monitoring, three successive PC runs have been performed. The 
first run started with a racemic solution (ee = 0 %). The solution was filtered after 
180 minutes of entrainment and the crystals were washed with pure cold water. 
After drying, 1.5 g of solid were isolated with an optical purity of 91.0 % and the 
productivity of this run was 41.5 g.h-1.L.-1. The enantiomeric excess in the filtered 
liquor was (-) 20.7 %. The medium was compensated with 1.3 g of racemic mixture, 
warmed at 50 °C, and cooled back to 10 °C, thus affording a solution with an ee = 
-16.3 %. The solution was then seeded with (-)-H to trigger a new stereoselective 
crystallization. The results obtained during the next runs are gathered in Table 4.7. 
When starting from enriched solutions, the filtration window could be increased to 
210 min since monitoring (data not shown) indicated that nucleation of the counter 
enantiomer was further delayed under these conditions. Table 4.7 shows that the 
productivity is also enhanced to ca. 57.7 g.h-1.L.-1 when the process starts from an 
enriched liquid phase. Table 4.7 highlights that the liquid phase achieves unusually 
high ee (a literature overview indicates that the average value attained in the 
mother liquor is of ca. 7 – 12 % ee) and that the final crystals are obtained with 
high optical purity.  
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Table 4.7 Results of the SIPC mode. eeo [%]: initial enantiomer excess 
in the liquid phase, tend: duration time in minutes,  Wc.s. and e.e.c.s: weight 
and enantiomeric excess of the collected solid including seeds, WP.E.: 
weight of produced pure enantiomer, eef (%): enantiomeric excess of the 
liquid phase at the end of the process, Pr : calculated productivity in g.h-

1L-1. Mass of seeds is 120 mg.  

Run 
Num. 

ee 
(%) 

tend 

(min) 
Wc.s. 
(g) 

e.e.c.s. 

(%) 

WP.E. 

(g) 
eef 
(%) 

Pr 
(g.h-1.L-1) 

1 0.0 180 1.5 (+) 91.0 1.3 (-) 20.7 41.5 
2 (-) 16.3 210 2.2 (-) 91.6 1.9 (+) 14.2 54.1 
3 (+) 10.8 210 2.4 (+) 89.2 2.1 (-) 23.3 57.7 

4.9.2 Seeded Polythermic Preferential Crystallization (S3PC) 

S3PC provides more control on supersaturation upon cooling from Thomo to TF. 
For this reason, the process can be operated at higher initial concentrations 
compared to SIPC and can therefore afford a higher mass of pure enantiomer. The 
yield and the productivity of PC are thus improved. A racemic solution with a 
concentration of Co = 52 w % (9.24 g of (R)/(S)-H in V) was used: after heating to 
T = 50 °C (i.e. well above the saturation temperature), the clear racemic solution 
was rapidly cooled down to 20 °C (i.e. slightly below the saturation temperature 
where β=1.14), seeded with 120 mg of enantiopure crystals and then cooled down 
to 5°C (where s* = 27.0 w %) with a cooling rate of 0.15 °C/min.   

The evolution of the compositions in the liquid and solid phases after seeding 
the racemic solution alongside the selected temperature profile are shown in 
Figure 4.22. The evolution of the composition of the solid phase is similar to the 
case of the SIPC process. However, the composition of the mother liquor shows a 
more damped evolution which highlights a gentler control on the driving force 
during the entrainment. For the first run, the ee of the solid and liquid phases when 
TF was reached were of 88.7 and (-) 14.5 % respectively. Similar to SIPC, two 
other runs were performed by recycling the liquors after filtration and the results 
are summarized in Table 4.8. Compared to SIPC, the productivity is enhanced to 
67.3 g.h-1.L-1 during the first run, although the enantiomeric excess of the liquid 
phase at the end of the process is lower (14.5 % in S3PC compared to 20.7% in 
SIPC). For the second and third run, one can see that the polythermal mode 
delivers slightly higher amounts of crude crops but a lower productivity due to much 
longer process time.   
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Figure 4.22 Evolution of the ee (%) in the liquid phase (black curve), in the 
solid phase (blue squares) and temperature profile (red line) for S3PC process 
after seeding with (+)-H crystal.  

Table 4.8 Results of the S3PC mode. eeo [%]: initial enantiomer excess 
in the liquid phase, tend: duration time in minutes,  Wc.s. and e.e.c.s: weight 
and enantiomeric excess of the collected solid including seeds, WP.E.: 
weight of produced pure enantiomer, eef (%): enantiomeric excess of the 
liquid phase at the end of the process, Pr : calculated productivity in g.h-

1.L-1. Mass of seeds is 120 mg.  

Run 
Num. 

ee 
(%) 

tend 

(min) 
Wc.s. 

(g) 
e.e.c.s. 

(%) 
WP.E. 

(g) 
eef 
(%) 

Pr 
(g.h-1.L-1) 

1 0.0 100 1.4 (+) 88.7 1.2 (-) 14.5 67.3 
2 (-) 11.6 250 2.4 (-) 90.1 2.2 (+) 12.2 49.0 
3 (+) 8.8 250 2.8 (+) 87.6 2.5 (-) 21.8 55.9 

4.9.3 Auto Seeded Polythermic Preferential Crystallization (AS3PC) 

The benefit of using AS3PC compared to the two previous methods is that the 
system does not require manual seeding and because it gives a better control on 
the crystallization, its scale up is much easier. Indeed, it starts from a domain in 
the (R)-H/(S)-H/V ternary phase diagram where a single enantiomer is already in 
equilibrium with its saturated solution whereas, the other enantiomer is 
undersaturated at this temperature (i.e., TB).  To the starting racemic mixture of 
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9.24 g (R)/(S)-H in V (Co = 52 w %), 120 mg of pure (+)-H were added. The system 
was equilibrated at TB=24.1 °C affording a suspension of 99 mg (+)-H in equilibrium 
with a (+) 0.23 % ee solution. Then, the temperature was progressively decreased 
to 5 °C with a 0.191 °C/min cooling rate in order to induce PC of the (+)-H crystals. 
For this run, Figure 4.23 shows the evolution of the enantiomeric compositions in 
the liquid and solid phases upon cooling and it can be seen that the counter 
enantiomer remains in solution (i.e., no decrease of the enantiomeric excess in the 
solid phase was detected before filtration). 1.3 g of crystals were collected with an 
optical purity of 98.1 % ee. The filtered liquor, now enriched in (-) enantiomer, was 
compensated with 1.3 g of racemic mixture and was equilibrated for 90 minutes at 
TB. From there, a new experiment was launched by decreasing the temperature to 
5 °C with a cooling rate of 0.0764 °C/min. 

 

Figure 4.23 Evolution of the ee (%) in the liquid phase (black curve), in the 
solid phase (blue squares) and temperature profile (red line) for AS3PC process 
after seeding with (+)-H crystal.  

The main data are summarized in Table 4.9. The marked influence of the 
cooling rate is revealed by comparison between the two first runs. Using AS3PC, 
a mean optical purity of ca. 94 % for the crude product is obtained, this value is 
higher than that obtained with S3PC (88.8 %) and SIPC (90.6 %) modes.   
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Table 4.9 Results of the AS3PC mode. eeo (%): initial enantiomer excess 
in the liquid phase, tend: duration time in minutes,  Wc.s. and e.e.c.s: weight 
and enantiomeric excess of the collected solid including seeds, WP.E.: 
weight of produced pure enantiomer, eef (%): enantiomeric excess of the 
liquid phase at the end of the process, Pr : calculated productivity in g.h-

1.L-1.  

Run 
Num. 

ee 
(%) 

tend 

(min) 
Wc.s. 
(g) 

e.e.c.s. 
(%) 

WP.E. 

(g) 
eef 
(%) 

Pr 
(g.h-1.L-1) 

1 (+) 0.23 100 1.3 (+) 98.1 1.2 (-) 14.3 76.5 
2 (-) 11.0 250 2.3 (-) 92.1 2.2 (+) 12.1 50.8 
3 (+) 9.4 250 2.6 (+) 93.4 2.5 (-) 18.4 58.3 

4.9.4 Recovery of PXL pure enantiomer  

It should be noted that the X-ray diffraction patterns of the crude crops at the 
end of each run in all modes showed characteristic peaks of the monohydrate 
cocrystal (Figure 4.24) which indicates the robustness of the process. In addition, 
a single recrystallization of the solid collected from any PC experiment (example: 
2.8 g, eesolid = 87.6 %) in a mixture of methanol and water (1:1) led to almost 
enantiopure solid with a yield of up to 92 % (2.3 g, eesolid = 99.2 %). Upon annealing 
of the monohydrate cocrystal at 130 °C, dehydration occurs, followed by melting 
of the anhydrous form concomitantly with the evaporation of salicylic acid. This led 
to the isolation of pure PXL: 2.5 g of (+)-H, ee = 99.8 %) were left for 75 h at 130 
°C, and, as expected, almost 1 g of (+)-PXL have been obtained with the same 
chemical purity as the starting material.   
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Figure 4.24 Experimental XRPD patterns of the monohydrate cocrystal (black 
pattern) and of the solid collected at the end of PC processes (red pattern). 
During all PC experiments the collected solid at the end of the process shows 
the same XRPD pattern.  

4.10 Discussion about applying PC on a conglomerate cocrystal    

The results obtained during the implementation of PC to the monohydrate 
cocrystal conglomerate are presented using isothermal (SIPC) and polythermal 
(S3PC and AS3PC) modes. Even if these non-optimized tests have been run at 
an unfavorable small scale (notably by using a magnetic bar as a stirrer) the 
interesting feature of these results is the unusually high enantiomeric excess 
attained in the solution at the end of every PC mode. This phenomenon can 
reasonably be associated to the long induction times required for spontaneous 
nucleation in the selected mixture of solvents. Although further experimental 
analyses are required to investigate on the molecular origin of such inhibitions, it 
can be suggested that the establishment of the molecular interactions required to 
nucleate the opposite enantiomer (and by extension, any other phase) is hindered, 
possibly due to the cocrystal nature of the system. Moreover, the recovery of the 
pure enantiomer of PXL obtained after preferential crystallization might be simply 
achieved by dehydration followed by sublimation of SA molecules.  

These preliminary experimental results highlight the promising potential of using 
cocrystal conglomerates for the development of PC processes. Indeed, this 
example could be linked to another conglomerate which has a double salt-
cocrystal character and for which the enantiomeric excess in the liquid phase at 
the end of the entrainment was reported above 20 %.128  
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CONCLUSIONS AND PERSPECTIVES 

1. Conclusions  

The objective of this work was to develop new strategies based on new “out of 
the box” ideas, to extend the use of preferential crystallization (PC) to racemic 
forming systems. This aim was systematically achieved through two novel 
approaches (as shown in Figure 1.14):  

I. Chiral resolution via a metastable conglomerate. 
II. Chiral resolution via a conglomerate cocrystal.  

To enable PC on a racemic system, it was necessary to identify a suitable model 
compound which could meet the requirements of the process. Some specific 
criteria were proposed in this work, based on previous research conducted on 
diprophylline:12  

i. The compound should crystallize as a stable racemic system. 
ii. The molecule should have a conformational flexibility: this may lead to new 

bonding, and thus to different conformations in the solvated state. Some of 
these can make the spontaneous nucleation more difficult. 
Conformationally flexible molecules and the ability to form hydrogen bonds 
are essential in cocrystal formation.  

iii. The melting point of the racemic compound should be lower than that of the 
pure enantiomer. Thus, the accessibility of a metastable conglomerate 
would be facilitated. 

Nineteen racemic compounds were screened (Table A.1). Only proxyphylline 
(PXL) was selected for the study. 

Solid phase characterization of PXL showed diversity in the crystallization 
behavior of this system. In this work, the binary phase diagram was constructed 
between the enantiomers. It revealed that PXL can crystallize as a stable racemic 
compound, a metastable racemic compound and two metastable conglomerates. 
Such a versatile behavior may result from the conformational flexibility of this 
molecule. The occurrence of a metastable conglomerate implied that PC may be 
performed on the racemic PXL. 

PC of PXL was first attempted via a metastable conglomerate (the first proposed 
approach). Based on the induction time (ti) measurements of PXL in different 
solvents, enantioseparation by PC was achieved by working in isobutyl alcohol 
(IBA), and despite the existence of a stable racemic compound. Enantioseparation 
was achieved by inhibiting the nucleation of the undesired forms and by seeding 
the supersaturated solution in the metastable zone with the pure enantiomer. 

These results show the potential of using PC on stable racemic systems, under 
certain conditions. Even though this approach is not currently attractive for the 
pharmaceutical industry, it opens new perspectives for the application of PC.  
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The second approach was performed in two steps. Firstly, a cocrystal was 
screened using dry or solvent assisted grinding and evaporation methods. This 
step yielded 10 new cocrystal forms between PXL and different coformers (Table 
A.1), including three anhydrous cocrystals and one monohydrated conglomerate 
forming system with salicylic acid (SA). The dehydration mechanism of the hydrate 
was investigated. The results suggested the presence of a destructive mechanism, 
due to the concomitant loss of water and SA. Secondly, the PC was applied on the 
conglomerate monohydrate cocrystal between PXL and SA. It was successfully 
resolved by crystallization from a water/ethanol mixture. Thanks to the 
fundamental work done for the cocrystal, PXL was collected at the end of the 
process as a pure enantiomer, by a simple annealing experiment.  

The process proposed in the second approach is robust and reproducible, with 
a high yield and high process productivity. This proposed approach, possibly 
attractive to the pharmaceutical industry, can be used to widen the applicability of 
PC to cocrystal systems. A disadvantage may be the supplementary step required 
to access the pure active pharmaceutical ingredient (API) at the end of the 
process. 

Two basic investigations were used in both proposed approaches (Scheme 1):  

i. The thermodynamic study of the compound including the solid-state 
landscape evaluation (polymorphism formation, phase diagram study).  

ii. The kinetic aspects represented by the induction time measurements.  

 

Scheme 1 General procedure to separate enantiomers of a racemic 
compound, based on the control of thermodynamic and kinetic parameters. 

2. Perspectives  

The yield obtained through the first approach was relatively low. The chosen 
necessary criteria should be re-evaluated as follows: 

(i) The long ti is a necessary condition, but not a sufficient one. PC applied on 
racemic PXL was unsuccessful in water and 1-propanol, even though a long ti was 
detected in both solvents. This indicates that seeding with a pure enantiomer can 
also trigger the primary heterogeneous nucleation of the racemic compound. The 
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reason may be the low growth rate due to slow surface integration on seed crystals 
in the work conditions.  

• It would be interesting to improve the crystal growth kinetics, by changing 
the parameters of the growth environment (such as temperature, 
supersaturation, pH, solvent nature, seeds nature (solid or in suspension), 
etc.). 
 

• A future study on the effect of these parameters on the crystallization 
behavior can provide further insight into the process.   

 (ii) The formation of a crystal structure depends on the conformational 
preference of the molecules in the chosen solvent. But one should consider that 
conformational dynamics of molecules may be reduced by the intramolecular 
hydrogen bonds, and by the rigidity of some of their groups. Moreover, the 
crystallization of metastable racemic compounds and/or solid solutions cannot be 
avoided. These situations may arise and may limit the access to a metastable 
conglomerate.  

• The solution may be to model the forces between the molecules in the 
solvated state (solid-solid and solid-liquid) and to exploit the result to predict 
the crystal structures. This is hardly envisageable from an experimental point 
of view (including screening). However, it may be achieved through a 
theoretical approach first evaluated in simulation. 
 

• Another idea is to study the behavior of intra- and intermolecular hydrogen 
bonding systems before and after nucleation. These studies may be carried 
out using spectroscopic methods (IR, Raman, UV-visible).  

(iii) Regarding the choice of a racemic compound with a melting point lower than 
that of the pure enantiomer: the eutectic composition of the system should also be 
considered. The closer it is to the racemic compound, the higher the chance of 
detecting a metastable conglomerate. 

• The identification of other conditions which enable nucleation blockage can 
be an attractive subject for future work.   

The application of PC on a conglomerate cocrystal is a significant contribution 
to the PC field. This may be the first work where cocrystallization is used to achieve 
enantioseparation by PC. These results enable the future development of a robust 
process in this context. Nevertheless, the optimization of such a system is still 
required. It should be also noted that these tests were run at a small scale. Further 
trials should be extended to larger scales. The PC process enhanced by co-
crystallization should be further studied since the obtained yield and productivity 
were higher than envisaged. Understanding the role of the co-former in the 
crystallization behavior (i.e. the presence of the co-former may avoid the 
simultaneous crystallization of the two enantiomers?) is an attractive subject for 
future research.  
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ANNEX A: EXPERIMENTAL SET-UP AND 
MATERIALS 

 

Chemicals, materials and experimental techniques employed in this work are 
reported in the present chapter. 

 
A.1 Chemical materials 

Racemic PXL was purchased from TCI EUROPE (Zwijndrecht-Belgium) with a 
chemical purity higher than 98.0 % and used as received without any further 
purification.  

The stable pure enantiomer of PXL (PE I hereafter, Figure A.1) was 
synthesized by analogy with a published procedure.121 A mixture of anhydrous 
theophylline (chemical purity: 99%) (5 g, 27.75 mmol), (R)-propylene oxide 
(chemical purity 99 %, ee 97%) (5 g, 86.08 mmol, 6 mL) and a catalytic amount of 
triethylamine (1 g, 7.17 mmol, 1 mL) in methanol (40 mL) was stirred for 3 h at 
reflux until complete dissolution. After cooling the mixture, the solvent was 
evaporated under reduced pressure. Then, 20 mL of methanol were added, and 
the flask was stored in the fridge (-18 °C) for 4 h until crystallization. The obtained 
solid was filtered off and washed with cold ethanol (15 mL) yielding the desired 
product (S)-7-(2-Hydroxypropyl) theophylline, PE I (S), as a white crystalline solid 
(4 g, 16.78 mmol, yield = 61%) - mp 149.5 °C {Ref.129 142-150 °C and Ref.130 
150.5-151.5 °C}; [α]D20 = – 53° (c = 1.00 mg/mL, CHCl3) {Ref.121 : [α]D20 = – 54° (c 
= 1.00 mg/mL, CHCl3), 98% ee}. ee HPLC = (-) 99.9 %.   

 

Figure A.1 Chemical structure of (RS)-PXL. 

The stable racemic and enantiopure form of 3-(2-propylphenoxy)-propane-
1,2-diol (P3D) (Figure A.2), were synthesized according to a published 
procedure.131 The racemic 3-chloropropane-1,2-diol (chemical purity: 98%) and 
(R)-(-)- 3-chloropropane-1,2-diol (chemical purity: 97% and optical purity: 98%) 
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and 2-propylphenol (chemical purity: 98%) were purchased from Sigma-Aldrich 
and used without any further purification.  

A solution of NaOH (2 g, 50 mmol) in 7 mL water was added drop by drop to a 
mixture of 2-propylphenol (4.2 g, 30 mmol) in ethanol (18 mL) and the medium was 
stirred and heated under reflux for 60 min. Then a solution of racemic or scalemic 
3-chloropropane-1,2-diol (4 g, 40 mmol) in 6 mL ethanol was added drop by drop 
to the reactional medium, and the mixture was left under reflux for 3h. the solvent 
was evaporated under reduced pressure followed by addition of 20 mL water and 
extraction with chloroform (3 X 100 mL). the organic phase was concentrated and 
purified by recrystallization from a mixture of solvent (pentane: diethyl ether 95:5 
v:v). Racemic P3D was obtained with a 70% yield, mp 52.3-52.8 °C (Ref 132: mp = 
52.5-53.5 °C). 1H NMR, δ = 0.94-0.99 (3H, t, CH3-CH2), 1.56-1.68 (2H, m, CH2-
CH3), 2.52 (2H, OH, s), 2.58-2.63 (2H, t, CH2-CH2), 3.76-3.89 (2H, m, O-CH2), 4.05 
(1H, m, CH-O), 4.14 (2H, m, CH2-O), 6.84-6.95 (2H, m, CH2Ar), 7.14-7.19 (2H, m, 
CH2Ar). In the other hand, (R)-P3D was prepared with 75% yield, mp 66-67 °C (Ref 
132: mp = 67-69 °C), [α]D20 = +12.9 (c 10.0, MTBE).  

 

Figure A.2 Chemical structure of (RS)-P3D. 

Seventeen chiral racemic compounds and twenty coformers were used in this 
research, purity and suppliers list are presented in Table A.1.  

A list of solvent was used in this work: acetone, chloroform, 1,4-dioxane, 
propan-1-ol, n-butyl acetate, dimethyl sulfoxide, N,N-dimethyl formamide, 
tetrahydrofuran, t-butyl methyl ether, methanol, acetonitrile, toluene, ethyl acetate, 
ethanol, water, dichloromethane, butan-2-ol, cyclohexane, n-heptane, isopropyl 
alcohol, methyl isobutyl ketone, isobutyl alcohol. All solvents are analytical grade 
and purchased from Sigma Aldrich and were used as received.   
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Table A.1 Purity and suppliers list of the used chemicals. 

Chiral racemic compound Purity Supplier 

Malic acid ˃ 99% Acros Organics 

Phenyl alanine ˃ 99% Sigma Aldrich 

Methionine ˃ 99% Acros Organics 

Parahydroxy phenylglycine ˃ 99% Sigma Aldrich 

Norleucine ˃ 98%  Sigma Aldrich 

Arginine ˃ 95% Sigma Aldrich 

Tyrosine ˃ 99% Sigma Aldrich 

Tryptophan ˃ 99% Sigma Aldrich 

Menthol ˃ 99% Alfa Aesar 

Alanine ˃ 99% Sigma Aldrich 

Modafinil / Non-commercial 

2-amino pimelic acid ˃ 99% Sigma Aldrich 

2-amino adipic acid ˃ 99% Merck 

Phenylsuccinic acid ˃ 99% Acros Organics 

Leucine ˃ 99% Merck 

Histidine ˃ 98% Acros Organics 

Tartaric acid ˃ 98% Lancaster 

   

Coformer Purity Supplier 

4-methoxybenzoic acid ˃ 98% Alfa Aesar 

3-chlorobenzoic acid ˃ 99% Acros Organics 

4-dimethylaminobenzoic acid ˃ 98% Acros organics 

3-hydroxy-4-nitrobenzoic acid ˃ 98% Acros organics 

3,4-dichlorobenzoic acid ˃ 99% Acros organics 

2,6-dichlorobenzoic acid ˃ 98% Acros organics 

Benzamide ˃ 98% Alfa Aesar 

Urea ˃ 98% VWR Chemicals 

Adipic acid ˃ 99% Alfa Aesar 

Saccharin ˃ 98% Acros organics 

Stearic acid ˃ 97% Acros organics 

Methyl urea ˃ 97% Acros organics 

Citric acid ˃ 98% Acros organics 

Salicylic acid ˃ 99% Acros organics 

Acetylsalicylic acid ˃ 99% Acros organics 

Anthranilic acid ˃ 99% Merck 

Oxalic acid ˃ 98% Alfa Aesar 

3,4-dimethoxycinnamic acid ˃ 99% Alfa Aesar 

2,5-dichlorobenzoic acid ˃ 97% Acros Organics 

3-hydroxybenzoic acid ˃ 99% Acros organics 
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A.2 Analytical methods assisting chiral characterization and chiral 
resolution  

All crystallization experiments performed in this work were monitored by off-line 
methods, allowing analysis of solid or liquid phase. They will be described in the 
next sections.   

A.2.1 Powder X-ray diffraction and Single crystal X-ray diffraction 

X-ray Powder Diffraction (XRPD) is a non-destructive method employed to 
study the solid state of crystalline samples from phase identification from the 
diffraction patterns to the determination of unit cell dimensions. These X-rays are 
collimated and directed onto the sample; the intensity of the reflected X-rays is 
recorded. When the geometry of the incident X-rays impinging the sample satisfies 
Bragg’s law, constructive interference occurs and a peak in intensity occurs. A 
detector records and processes this X-ray signal and converts the signal to a count 
rate which is then output to a device such as a computer monitor. 

d = λ/ (2sinθ)            

d is the interplanar distance, λ is the wavelength of the incident wave and θ is 
the diffraction angle 

In this work, the analyzed materials were finely ground and homogenized before 
analysis. Analyses of these samples were performed at room temperature using a 
D8 Discover diffractometer (Bruker analytic X-ray Systems, Germany) with Bragg-
Brentano geometry. The instrument is equipped with a copper anticathode (40 kV, 
40 mA, Kα radiation (λ =1.5418 Å)), and a Lynx Eye linear detector. The diffraction 
patterns were recorded with a scan rate of 0.04° (2θ) in the angular range of 3-30° 
2θ, with a counting time of 4s per step with no rotation applied to the sample.   

The X-ray single crystal experiments were carried out on a Bruker SMART 
APEX diffractometer equipped with a CCD area detector with a Molybdenum 
cathode-ray tube (Kα1 λ=0.71071 Å). The cell parameters and the orientation 
matrix of the crystal were preliminary determined by using SMART Software.133 
Data integration and global cell refinement were performed with SAINT 
Software.133 Intensities were corrected for Lorentz, polarisation, decay and 
absorption effects (SAINT and SADABS Software) and reduced to FO. The 
Program package WinGX134 was used for space group determination, structure 
solution and refinement. 

A.2.2 Thermal and thermogravimetry analysis 

Differential scanning calorimetry (DSC) is a powerful thermo-analytical 
technique to determine the thermal behavior and the solid properties of a material 
as a function of temperature: melting point, heat of fusion, phase transition, glass 
transition, etc... DSC analysis measures the amount of energy absorbed or 
released by a sample when it is heated or cooled, providing quantitative and 
qualitative data on endothermic (heat absorption) and exothermic (heat evolution) 
processes. 
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All thermal investigations were performed on a Netzsch DSC 214 Polyma 
apparatus in sealed or pierced aluminum pans. DSC runs were performed with ~ 
4-5 mg of solid sample and using heating rates of 5 and 10 K.min-1. The 
atmosphere of the analyses was regulated by a nitrogen flux (40 mL/min). The 
Netzsch Proteus Software was used for data Processing.  

Thermal gravimetric analysis (TGA) was performed with a Netzsch STA 449 C 
instrument. Approximately 4-5 mg of solid was used. The samples were heated at 
a constant heating rate of 10 K.min-1. The measurement cell was continuously 
purged with a stream of flowing helium throughout the experiment. Proteus® 
Software (Netzsch) was used for data treatment. This analysis allows us to 
determine simultaneously the weight and the enthalpy changes of a solid sample, 
more precisely to determine the existence of a solvate/hydrate, detect evaporation, 
decomposition, oxidation and other effects of temperature change that cause mass 
changes.  

A.2.3 Dynamic Vapor Sorption 

Dynamic Vapor Sorption (DVS) is a gravimetric sorption technique that 
measures how quickly and how much of a solvent is absorbed by a solid sample 
upon varying the vapor concentration surrounding the sample (e.g., such as a dry 
powder absorbing water). Mass change using an ultra-sensitive microbalance is 
recorded during the analysis.  

The behavior of the obtained solvate under variable relative humidity (RH) was 
studied by gravimetric measurements using a DVS apparatus (DVS vacuum, 
Surface Measurements System, UK). This equipment consists of a microbalance 
(precision 0.1 μg) set under reduced pressure in an incubator accurately regulated 

in terms of temperature (precision 0.1 °C) and partial vapor pressure of water. 

Cocrystal samples were subjected to increasing or decreasing humidity (RH) at 
room temperature.  

A.2.4 Chiral HPLC 

The enantiomeric purity of the samples was determined with a chiral high-
performance liquid chromatography (C-HPLC) using a CHIRALPAK IC column 
(DAICEL group, Chiral Technologies Europe), 250 × 4.6 mm. The mobile phase 
was a heptane:ethanol mixture (7.5:2.5, v:v), and the flow rate was 1 mL/min. The 
used wavelength for UV detection was 273 nm at 20 °C. Under these conditions, 
retention times of 15 and 18 min were obtained for PE I (R) and PE I (S) 
respectively. An offline C-HPLC analysis was used to monitor the enantiomeric 
excess (ee) of the liquid phase and of the solid phase as function of time during 
the preferential crystallization (PC) processes.  

A.2.5 1H NMR Spectroscopy 

NMR or nuclear magnetic resonance spectroscopy is a technique used to 
determine a compound’s molecular structure. It identifies the carbon-hydrogen 
framework of an organic compound. Using this method, it is possible to determine 
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the entire structure of a molecule. Even though there are many other types of NMR 
including 13C-NMR and 15N-NMR, 1H-NMR is the method used hereafter to 
characterize the structure of the compounds after syntheses. The 1H NMR spectra 
(300 MHz) were recorded on a Bruker Spectro spin apparatus in CDCl3 with the 
solvent as the internal standard.  

A.2.6 Second Harmonic Generation 

SHG technique is used to verify the formation of non-centrosymmetric 
crystals,135 and thus used as a prescreening method for conglomerate detection. 
A Nd:YAG Q-switched laser (Quantel) operating at 1.06 μm was used to deliver 
360 mJ pulses of 5 ns duration with a repetition rate of 10 Hz. An energy 
adjustment device made up of two polarizers (P) and a halfwave plate (λ/2) allowed 
the incident energy to be varied from 0 to ca. 200 mJ per pulse. An RG1000 filter 
was used after the energy adjustment device to remove light from the laser flash 
lamps. According to Kurtz and Perry’s SHG powder method,136 the SHG signal 
intensities of the samples were compared to the signal of a reference compound 
(α-quartz, 45 μm average size). In order to qualitatively compare the samples 
among each other, an equivalent mass of each solid was used for every analysis 
(ca. 200 mg). 

A.2.7 Solubility measurements 

Solubility of solute according to IUPAC “Gold Book” is defined as the analytical 
composition of a saturated solution, expressed in terms of the proportion of a 
designated solute in a designated solvent.137 In other word, solubility is the 
property of a chemical substance to dissolve in a solvent or mixture of solvents to 
form a homogeneous solution depending on temperature and pressure. The 
solubilities of the solid in different solvents were measured at a constant 
temperature by the standard gravimetric method.138  

A suspension of the solid was prepared in a chosen solvent and stirred at 700 
rpm. Temperature was controlled using a thermostated double-jacket glass 
vessels. After equilibration for more than 2 hours, the suspension was filtered, the 
solid phase in equilibrium with the solution was verified by XRPD and the saturated 
liquid phase was weighed before and after evaporation. The solubility s* was 
calculated in weight percent (w%) with m the mass of the dissolved solid and ms 
the mass of the saturated solution: 

s* = 
𝑚

𝑚𝑠 
 x 100 (w%)  

A.2.8 Induction time measurements 

The induction time (ti) i.e. the time required to detect spontaneous crystallization 
in a supersaturated solution, was determined at different supersaturation ratios 
and in different solvents. For each solvent/supersaturation couple, a suitable mass 
of racemic compound was dissolved in a suitable mass of solvent by heating. The 
solution was then introduced in 4 different 1.5 mL glass vials equipped with 
magnetic stirrers. The vials were then placed in a Crystal16 (Technobis, The 
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Netherlands)116 and stirred (800 rpm) 10 °C above their saturation temperature for 
at least 90 min. The clear solutions were then cooled down to 20 °C with a cooling 
rate of 5 °C/min. The moment at which the set temperature (20 °C) was reached 
is taken as time zero (t0). The vials were kept at 20 °C until spontaneous 
crystallization was detected via the decrease of light transmission through the 
sample. The difference between the moment when the transmissivity started to 
decrease and t0 was taken as ti. Once the different samples crystallized, the vials 
were reheated above their clear point and the procedure was repeated to ensure 
statistical reproduction.  

The solvents that gave the longest ti values were also tested at a larger scale of 
10-20 mL. For this purpose, a suitable amount of solvent was added to a known 
amount of racemic compound and the mixture was stirred for at least 1h at high 
temperature to ensure complete dissolution. Then the solution was cooled down 
to the crystallization temperature Tc (10 or 20 °C) and the ti value was taken as the 
time lapse between the moment at which the solution reached Tc and the moment 
at which spontaneous crystallization occurred, detected visually. Each 
measurement was repeated at least three times using the same solution. 

A.2.9 Infrared and Raman spectroscopy 

Infrared and Raman spectra could be used for identifying the polymorphic form 
of an API. The molecular interaction in the crystal unit cell between polymorphs is 
different, which leads to changes in the observed spectra including changes in the 
frequencies, relative intensities and the wavenumber. Vibrations of one or many 
molecules will change from one polymorph to the other and thus can change the 
number of bands and shift their frequencies.139 Each polymorph is characterized 
and identified by his recognizable vibrational spectrum. These experiments were 
done during a secondment at Max Planch Institute in Magdeburg.  

ATR FT-IR-spectra in the frequency range 4000-400 cm-1 at 4 cm-1 resolution 
measures in the transmittance mode using an FT-IR spectrometer with a platinum-
ATR diamond and a RT-DLATGS detector. The spectra were averaged over 24 
scans. The Raman spectra were recorded in the range 30-3500 cm-1 at 4 cm-1 
resolution using FT-Raman spectrometer. The excitation source was at power 
level of 1000 mW.  

A.2.10 Polarimeter  

Polarimeter is used to measure the angle of rotation caused by passing a 
monochromatic polarized light through an optically active substance loaded in a 
measurement cell (a 10 cm long cylinder). Opposite optical properties are used to 
differentiate between enantiomers. When deviate light to the right (clockwise), they 
are called dextrogyre and noted (+). When light is deviated to the left 
(anticlockwise), they are levogyre and noted (-).  

A deviation of the plane of this light occurs at an angle 𝛼𝜆
𝑇 The enantiomeric 

excess can be deduced by this equation: 
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ee = 
𝛼𝜆

𝑇 

[𝛼𝜆
𝑇 ]°.𝑐.𝑙

 

𝑙 is the length of the cell and c is the concentration (g.L-1) of the sample and 

[𝛼𝜆
𝑇 ]° is the specific optical rotation of the sample.  

Optical rotations of the pure enantiomers of PXL and P3D after synthesis were 
measured on a JASCO P2000 polarimeter. Value of specific rotation is given in 
deg.mL.g-1.dm-1, and the concentration of solutions c appears in g.L-1. 

A.2.11     Hot stage microscopy (HSM) 

HSM measurements were performed in a THMS 600 hot-stage (Linkham) 
coupled with a Nikon Eclipse LV100 microscope (maximum magnification: ×1000) 
connected to a computer for image capture via a CCD camera. The temperature 
was regulated via the Linksys32 software. 

A.2.12 Grinding experiments 

Cocrystals were prepared by grinding or by dissolution/evaporation. All 
experiments were carried out with a 1:1 stoichiometric ratio of PXL and coformer. 
Grinding (in dry conditions or by liquid assisted grinding (LAG) was performed at 
room temperature using a Retsch Mixer Mill model MM400 with 10 mL zirconium 
oxide grinding jars containing one 12 mm zircon grinding ball at a rate of 20 Hz for 
20 min. LAG experiments were performed by adding ca. 10-20 μl of a selected 
solvent to the solid mixture prior to grinding. Water, acetone, ethanol, methanol, 
isopropanol (IPA), n-hexane, dichloromethane (DCM), and chloroform (CHCl3) 
were used for the LAG experiments. For the same stoichiometric mixture, a dry 
grinding was also performed.  

A.2.13 Binary phase diagram 

Binary phase diagrams between enantiomers were constructed using data 
collected during DSC measurements. The samples (pure compounds or mixtures) 
were prepared by manual grinding to obtain a fine powder loaded into the DSC 
aluminum pan and subjected to a heating/cooling program with a heating rate of 
5oC/min. For PXL and P3D molecules, the samples were first heated to 200 and 
80oC respectively then cooled down to -20 oC followed with a second heat to 200 
and 80oC respectively. The liquidus of the binary phase diagrams were also 
theoretically calculated by Schröder-Van Laar24 and Prigogine–Defay equations.24 

A.2.14 Determination of ternary isotherms between (R)-PXL, (S)-PXL 
and isobutyl alcohol 

In order to determine isothermal ternary phase diagrams, the solubility values 
were determined in isobutyl alcohol at 25 and 10 °C using the regular gravimetric 
method for (i) the stable racemic compound of PXL (Mod I), (ii) the pure enantiomer 
(R)-PXL, (iii) the doubly saturated solution containing  (R)-PXL and Mod I, and (iv) 
the equimolar mixture of (R)- and (S)-PXL (i.e., the metastable conglomerate (Mod 
II)). Concerning (iii), the enantiomeric composition of the dry extract was measured 
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by chiral HPLC. For (iv), the solubility of the metastable conglomerate was 
determined by stirring an equimolar mixture of (R) and (S)-PXL (prepared 
manually) in a small volume of isobutyl alcohol for a few minutes under a controlled 
constant temperature. The solid phase in equilibrium with the saturated solution 
was verified systematically by XRPD. 

 

A.3 Preferential crystallization 
 

A.3.1 Experimental Set-Up 

All PC experiments were performed in 30 mL glass tube crystallizers. Magnetic 
stirring was set at 800 rpm. For each PC process, a known amount of the racemic 
solid was dissolved in 10 mL of pure solvent or solvent mixture. Prior to 
entrainment (i.e. cycles of temperature), the prepared racemic solutions were 
heated above their saturation temperatures to make sure all solid is dissolved. The 
clear solutions were then cooled down to TF for SIPC and Thomo for S3PC and 
seeded to start the entrainment. For SIPC, the temperature was kept constant at 
TF.  For S3PC, a cooling profile from Thomo to TF was adopted immediately. For 
AS3PC, the initial system contains an enantiomeric excess of one of the two 
enantiomers. The solution is heated at a calculated temperature TB so that only 
the counter enantiomer in default is completely dissolved. Thus, the slurry is 
composed of crystals of the enantiomer in excess and in thermodynamic 
equilibrium with its saturated solution. The system is thus self-seeded by crystals 
of the pure enantiomer. The temperature was decreased from TB to TF using a 
suitable cooling program and stirring mode without any additional seeds so that 
the crystal growth is favored over secondary nucleation (Figure 1.11). 

The monitoring of the entrainment was performed by sampling the liquor at 
different time intervals to determine the evolution of the enantiomeric excess of the 
liquid phase and to evaluate the nucleation kinetics of the counter enantiomer. 
During the processes, the experiment was stopped before crystallization of the 
counter enantiomer and the solid was filtered and washed with pure cold solvent 
(heptane or water). C-HPLC was used to monitor the evolution of the enantiomeric 
excess (ee %) of the liquid phases and the purity of the collected solid.  

To quantify the processes (SIPC, S3PC and AS3PC), the process productivity 
“Pr” expressed in g.h-1.L-1, was calculated using the following equation: 

Pr =
(𝑚 (𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑜𝑙𝑖𝑑) ∗ 𝑒𝑒 (%)) − 𝑚 (𝑠𝑒𝑒𝑑𝑠)

𝑡 (𝑝𝑟𝑜𝑐𝑒𝑠𝑠) ∗ 𝑉 (𝑠𝑜𝑙𝑣𝑛𝑡)
       

With “m” the mass in gram (g), “t” the process time in hours (h) (the dead time 
including the time needed for preparation, filtration and cleaning was not taken into 
account in this case) and “V” the volume of the solvent in litters (L). 
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ANNEX B: SOLID-STATE LANDSCAPE OF 3-
(2-PROPYLPHENOXY)-PROPANE-1,2-DIOL 

(P3D) 

B.1 Introduction and state of the art of the compound 

The terminal aryl glycerol ether is rather common in the family of lipids.140 Many 
physiologically active substances, including registered drugs like fungicide 
chlorphenesin, expectorant guaifenesin, muscle relaxant mephenesin, belong to 
the series of aryl glycerol ethers.132 The solid state landscape of 3-(2-
propylphenoxy)-propane-1,2-diol (P3D) was already investigated by Bredikhin et 
al. showing that P3D belongs to the racemic forming system group representing 
only one stable racemic compound and one enantiopure forms.141  During this 
study, the solid‐state characteristics of P3D (Figure A.2) will be re-investigated by 
a combination of suitable experimental techniques (thermal study, single crystal 
and powder X-ray diffraction, FTIR, Raman and solubility measurements). To the 
best of our knowledge, the occurrence of polymorphism of this molecule was not 
mentioned before in literature.  

 

B.2 Identification and characterization of the different forms in the 
binary system 

The stable racemic form (Form I) and the stable enantiopure form (EI) of P3D, 
were synthesized as described in Annex A. A metastable racemic form (Form II) 
was obtained by crystallization experiments from different solvents (propan-1-ol, 
n-butyl acetate, THF, methanol, acetonitrile, ethyl acetate, dichloromethane, 
butan-2-ol, isopropanol). This form is thermodynamically less stable than Form I. 
In the other hand, the recrystallization of the enantiopure form and regardless of 
the used solvent or condition, always leads to the formation of the stable form EI. 
A metastable enantiopure form (EII) can be produced by cooling down the melt of 
EI to room temperature or to 4 °C. 

B.2.1 Characterization by X-ray powder diffraction 

Form I and Form II of the racemic P3D were identified by XRPD (Figure B.1- a). 
XRPD pattern of Form I is similar to the one reported by Bredikhin et al. (ref. 
ZOCNUC).141 Diffractograms of EI, EII and the one reported in literature (ref. 
ZOCPEO)141 are represented in Figure B.1- b. A shifting of XRD peaks is seen 
between the patterns of EI and ZOCPEO between 3° and 15°, the difference 

between the two patterns become more obvious at higher angles (>20°).  

The pattern of the metastable form EII was obtained by melting the stable form 
EI directly on an XRD sample plate holder and recording the solid pattern once the 
liquid phase recrystallizes at room temperature. However, leaving the solid for few 
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minutes at room temperature after its formation will lead to a phase transition into 
the more stable form EI.  

    

Figure B.1 Experimental XRPD patterns of a) Form I, Form II and the calculated 
pattern from literature and b) EI, EII and and the calculated pattern from literature. 

B.2.2 FTIR and FT-Raman spectroscopy 

The polymorphs of the racemic form can be clearly detected by FTIR 
measurements (Figure B.2). It is easy to differentiate the polymorphic forms in the 
fingerprint region of OH. The infrared band at 3180 cm-1 characterize the most 
stable racemic form (Form I), whereas this band is shifted to 3370 cm-1 after the 
formation of Form II. There are many small pattern differences in the IR spectra 
below 1500 cm-1.  

The Raman spectra for Form I and Form II of the racemic form have similarities, 
but also shows differences in the frequency of the bands in the range between 
1700 and 400 cm-1 and in the intensity in almost all the spectral range (Figure B.2).  
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Figure B.2 a) Infrared spectra and b) Raman spectra of Form I and Form II. 

The spectra of EI and EII exhibit a difference in the OH stretching bands (Figure 
B.3 - a) (3220 cm-1 for EI and 3420 cm-1 for EII). There are several relative intensity 
differences in the C=C infrared fingerprint region bellow 1700 cm-1.  

The Raman spectrum (Figure B.3 - b) of the two polymorphs EI and EII are 
different in the CH stretching region at around 3000 cm-1 and many pattern 
differences in the Raman spectra below 1400 cm-1. 

These observations indicate that the alcohol group participates in hydrogen 
bonding in the crystal lattice of the racemic and enantiopure forms.  

  

Figure B.3 a) Infrared spectra and b) Raman spectra of EI and EII. 

B.2.3 Thermal characterization 

Data concerning calorimetric properties of the different forms of P3D using DSC 
are summarized in Table B.1. Thermogram of the pure stable racemic form Form 
I (Figure B.4 - a) obtained at a heating rate of 5 K/min shows only one endothermic 
event (ΔfusH = 32.4 KJ/mol), corresponding to the melting of this form at Tonset=53.0 
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°C, which confirms that the substance is stable and do not decompose under these 
conditions.  

After recrystallization in the DSC pan, the sample is re-heated and a small 
exothermic event (ΔfusH = 1.8 KJ/mol) is detected at 46.3 °C, rapidly followed by 
the melting of Form I (Figure B.4 - b). It is confirmed that the supercooled melt 
(SCM) give rises to the crystallization of Form II but this form converts into Form I 
upon heating at 5 K/min. For this reason, a quantity of racemic Form II was 
prepared directly in the DSC crucible pan using a Koffler bench and was heated at 
20 K/min, it gave a melting temperature at Tonset=49.5 °C with a ΔfusH of 22.2 
KJ/mol (Figure B.4 - c). 

The same thermal experiments were performed with the pure enantiomer EI, 
the first run shows a single melting endotherm at Tonset=66.6 °C with ΔfusH = 32.0 
kJ.mol-1 (Figure B.5 - a). While heating the SCM, a melting endotherm at 
Tonset=58.6 °C indicates the melt of a metastable enantiopure form (EII) with an 
ΔfusH = 23.4 kJ.mol-1 (Figure B.5 - b).  

Based on Burger and Ramberger’s142 heat of fusion rule, if the higher melting 
point form has the higher heat of fusion, the two forms are usually monotropic.  

Table B.1 Thermochemical Data Obtained for the Different Forms by DSC. 

 Racemic forms Enantiopure forms 

 Form I Form II EI EII 

Thermodynamic stability Stable Metastable Stable Metastable 
Tonset (°C) 53.0 49.5 66.6 58.6 

ΔfusH (KJ/mol) 32.4 22.2 32.0 23.4 
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Figure B.4 Differential scanning calorimetry (DSC) study of a) Form I, (b) 
heating the super cooled melt of (RS)-P3D and c) Form II. All runs were performed 
at 5 K/min. 

 

Figure B.5 Differential scanning calorimetry (DSC) study of E-P3D: a) melting 
endotherm of EI, (b) heating the super cooled melt of E-P3D. All runs were 
performed at 5 K/min. 

B.2.4 Crystal structure of the different forms of P3D 

Single crystals of Form I were obtained by slow evaporation of a racemic 
solution in pentane at room temperature. Single crystals of EI were obtained by a 
similar procedure using enantiopure P3D. Attempts to grow single crystal of the 
metastable forms failed.   

The single crystal of the racemic Form I shows the same crystal structure as the 
one published in literature141 in 2014 (Ref. ZOCNUC), the solid crystallizes in the 
space group P21/n. On the other hand, diffraction analysis of EI at room 
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temperature shows the structure to be orthorhombic P212121. A monoclinic 
structure of the pure enantiomer calculated at low temperature (150 K) was 
reported in another publication (Ref. ZOCPEO) which indicates the presence of a 
phase transition upon cooling.141 The difference in the crystallographic data and 
refinement parameters between the crystal form at 300 K and 150 K are 
summarized in the table below (Table B.2). 

The change in the cell parameters upon cooling shows a small expansion along 
a and a small contraction along c, the most significant change even though it is not 
very big is the contraction along b. In the other hand, the symmetry changes from 
orthorhombic to monoclinic coincide with a reduction in the cell volume. Whereas 
there are two molecules of P3D in the asymmetric unit of the monoclinic structure, 
there is only one in the orthorhombic structure. The three independent molecules 
differ almost insignificantly, mainly in the propyl moiety (Figure B.6).   

Hydrogen bonds in the orthorhombic structure are established along b axis, 
wrapping molecules around 21 screw axes (Figure B.7 - a). This first type of 
hydrogen bonds gives rise to molecular chains spreading along c. A second type 
of Hydrogen bonds ensured the cohesion between adjacent molecular bond 

chains. Along a, some  interactions (d~3.7Å) are reinforcing this second type of 
hydrogen bonds (Figure B.7 – b) (Table B.3).  
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Table B.2 Crystallographic data and refinement parameters for EI, 
ZOCPEO and ZOCNUC in CSD. 

Solid nature Enantiopure form Racemic form 

 This work (EI) ZOCPEO ZOCNUC 

Chemical Formula C12H18O3 C12H18O3 C12H18O3 

Temperature / K 300 150 150 

Crystal System Orthorhombic Monoclinic Monoclinic 

Space Group P212121 P21 P21/n 

Z , Z’ (asymmetric units per unit cell) 4,1 4, 2 4, 1 

a / Å 4.9427(8) 5.0077(9) 4.984(4) 

b / Å 32.342(5) 30.877(6) 7.525(5) 

c / Å 7.5348(12) 7.468(1) 31.24(2) 

 / ° 90 90 90 

 / ° 90 90.117(2) 92.61(1) 

 / ° 90 90 90 

V / Å3 1204.5(3) 1154.79 1170.4(14) 

dcalc / g.cm-3 1.160 1.209 1.193 

F(000) / e- 456 456 456 

Table B.3 Hydrogen bond table. 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

O(1)-H(1)...O(2)#2 0.82 1.9 2.716(2) 170.4 

O(2)-H(2A)...O(1)#1 0.82 1.89 2.711(2) 176.2 
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Figure B.6 a) Asymmetric unit in thermal ellipsoidal representation of the 
orthorhombic structure, with atom labels and b) superimposition with the two 
molecules from the asymmetric unit of ZOCPEO (yellow and blue). 

 

Figure B.7 a) First type of hydrogen bonds (dashed pink lines) established 
between O(1)-H..O2 generates molecular chains wrapping around 21 screw axis, 
spreading along c and b) A second type of Hydrogen bonds (pink dashed lines) 
interconnects the molecular chains along a, that leads to molecular layers, in this 
direction some 𝝅𝝅 interactions (orange dashed lines) reinforced the cohesion 
(d~3.7Å).  

Intermolecular interactions give rise to channels in both cases. But there is one 
type of unidirectional channel in the orthorhombic structure rather than two in the 
monoclinic model. In both cases a first link connects the same asymmetric units 
between themselves (linker 1 Figure B.8). Only in monoclinic structure a second 
type of linker binds the independent molecules together. (Linker 2 in Figure B.8). 
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Figure B.8 Comparison of the monoclinic and orthorhombic structures for 
pure enantiomer of P3D (EI) with the independent molecules identified by colors 
(monoclinic model is taken from literature single-crystal diffraction experiments: 
ZOCPEO). 

B.2.5 Construction of the binary phase diagram between P3D 
enantiomers 

As a preliminary step, the theoretical binary phase diagram between P3D 
enantiomers was constructed using the Schröder-Van Laar (to establish the 
liquidus of EI and EII) and Prigogine–Defay (to establish the liquidus of Form I and 
Form II) equations.24 The equations were parametrized with the thermochemical 
data  shown in Table B.1. 

The binary phase diagram was experimentally investigated by characterizing 
the stable equilibrium between the stable Form I and EI. Physical mixtures 
between the relevant forms were prepared and analyzed by DSC (Figure B.9). The 
results are presented by blue crosses (for the stable equilibrium) in Figure B.10. 
These data are in good agreement with the theoretical predictions which suggest 
that the system behave ideally.  

 

                     Monoclinic (P21)                                                                    Orthorhombic (P212121) 
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The observation of two forms for the racemic compound as well as for pure 
enantiomers depicts a situation of double polymorphism similar to diprophylline 
case and raises the question about the type of the phase relationship between the 
different solid forms. Experiments did not provide any evidence of the existence of 
a relationship between Form II and EI nor between Form I and EII. But theoretically 
speaking we can depict a possibility of a metastable equilibrium between these 
phases. An extrapolation of the liquidus line of EI and EII can give an idea of the 
melting point of two metastable conglomerate (round black dot and round purple 
dot in Figure B.10), but these points were never detected experimentally, thus the 
presence of a metastable conglomerate was not proved which would explain the 
reason why PC could not be applied successfully on this system.  

 

Figure B.9 DSC curves of different mole percent of EI. Heating rate: 5K/min.  
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Figure B.10 Binary phase diagram for the stable and metastable equilibrium 
between the pure enantiomers of P3D.  
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ANNEX C: CHARACTERIZATIONS OF 
COCRYSTALS BETWEEN PXL AND 

DIFFERENT COFORMERS 

XRPD and DSC of the different new cocrystals obtained between PXL and the 
different coformers can be found from Figure C.1 to Figure C.6. 

The 1H NMR for these solid phases including the cocrystal between PXL and 
SA can be found in Figure C.7 to Figure C.13.  

 

 

Figure C.1 a) XRPD for racemic PXL, oxalic acid (OA) and PXL-coformer 
crystal and b) DSC melting curve of the obtained cocrystal. 
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Figure C.2 a) XRPD for racemic PXL, pure enantiomer of PXL, acetyl salicylic 
acid (AA) and PXL-coformer crystal and b) DSC melting curve of the obtained 
cocrystal. 

 

Figure C.3 a) XRPD for racemic PXL, anthranilic acid (Ant) and PXL-coformer 
crystal and b) DSC melting curve of the obtained cocrystal. 
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Figure C.4 a) XRPD for racemic PXL, hydroxybenzoic acid (HBA) and PXL-
coformer crystal and b) DSC melting curve of the obtained cocrystal. 

 

Figure C.5 a) XRPD for racemic PXL, dichlorobenzoic acid (DClBA) and PXL-
coformer crystal and b) DSC melting curve of the obtained cocrystal. 
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Figure C.6 a) XRPD for racemic PXL, dimethoxy cinnamic acid (DMCA) and 
PXL-coformer crystal and b) DSC melting curve of the obtained cocrystal. 

 

Figure C.7 1H NMR of the cocrystal obtained between PXL and OA in MeOD. 
Hydrogens of OA were not detected by NMR in MeOD. 
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Figure C.8 1H NMR of the cocrystal between PXL and AA in CDCl3.  

 

Figure C.9 1H NMR of the cocrystal between PXL and Ant in CDCl3.  
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Figure C.10 1H NMR of the cocrystal between PXL and HBA in (CD3)2SO.  

 

Figure C.11 1H NMR of the cocrystal between PXL and DMCA in MeOD.  
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Figure C.12 1H NMR of the cocrystal obtained between PXL and DClBA.  

 

Figure C.13 1H NMR of the cocrystal obtained between PXL and SA in CDCl3.   
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ANNEX D: INDUCTION TIME STUDY  

We report the nucleation rates of (RS)-PXL in different solvents using Crystal16 
apparatus during a secondment at Strathclyde university-Glasgow. These rates 
are determined from cumulative probability distributions of induction times in many 
measurements at a constant supersaturation at a given constant temperature (20 
°C) in 1 mL agitated solution. 

The probability P(t) to detect crystals at time t can be determined by this 
equation: 

P(t) = 1 – exp (-JV (ti-tg)) 

To detect the formed nuclei, it should grow to appreciable sizes before they can 
be detected, this causes a delay tg (the growth time). The induction time “ti” is the 
period of time between the achievement of a constant supersaturation and the 
detection of crystals. V is volume and J is the stationary nucleation rate. 

For M isolated experiments, the probability P(t) to measure an induction time 
between zero and time t is defined in: 

P(t) = 
M+(t)

M
 

M+(t) is the number of experiments in which crystals are detected at time t. The 
experimentally determined probability distribution P(t) of the induction time can be 
described by the cumulative probability distribution function, leading to the 
determination of nucleation rate J and growth time tg. 

D.1 Proxyphylline (PXL) 

   ti measurements were performed at 20 °C for β = 1.5, 2, 2.3, and 3 in 1mL 

scale in different solvents. At each supersaturation ratio, several numbers of ti 
measurements were done in 1 mL vials (Table D.1 and Table D.2). The empty 
boxes in the tables refer to no crystal nucleation occurring.  

As expected, the ti values show a large variation at one supersaturation. In case 
of small samples, the stochastic aspect of nucleation is usually observed, because 
a single crystal or a small number of crystals are used as a detection criterion of 
nucleation. The different solvents presented in Table D.1 and Table D.2 were also 
investigated on larger scale to study the effect of sample volume on ti results (Table 
3.1). For large samples, the stochastic aspect was not observed in actual 
experiments because a small number of crystals are rather difficult to detect when 
the sample is large.  

It should be noted that ti of PXL was not measured in some solvents, like, 
acetone, chloroform, n-butyl acetate, dimethyl sulfoxide, water, DCM, IBA due to 
the high solubility of PXL in the solvent or to the low evaporation temperature of 
the solvent or its unavailability in the laboratory during the time of experiments.  
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Table D.1 Induction time data for Proxyphylline in different solvents at 
a) β = 1.5 and b) β = 2.  

a) 

1,4-
dioxane 

THF MeOH Acetonitrile EtOH 
Butan-

2-ol 
MIBK 

Ethyl 
acetate 

131 113 153 72 63 95 170 70 
51 91 237 25 83 104 70 186 

230 73 252 59 284 198 70 178 
 87  219 157 24 186  
 295  105  126 178  
 46  27  146 131  
 40    45   
     94   
     101   
     276   

b) 
1,4-

dioxane 
THF Acetonitrile Propan-1-ol EtOH Butan-2-ol 

Ethyl 
acetate 

57 25 303 202 42 29 50 
18 26 135 59 11 38  
27 40 244 216 15 222  

  75     
  169     
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Table D.2 Induction time data for Proxyphylline in different solvents at 
a) β = 2.3 and b) β = 3.  

a) 

Propan-1-ol Butan-2-ol Ethyl acetate 

41 52 520 
353 136 56 
61 33 47 
76 24 27 

 157 11 
 186 60 
 483 71 
 189 10 
 195 82 
  24 
  19 
  110 
  56 

b) 

MeOH Propan-1-ol EtOH Butan-2-ol 

262 52 123 45 
183 43 163 94 
101 149 235 101 

 263 306 276 
 176 136 16 
   239 

 

For a supersaturation β = 3, nucleation of PXL was hindered in ethanol for an 

average of 3 hours. Ethanol was then chosen for further study. With the total 
number of M = 192 induction times, only in 114 samples crystals were detected. 
The probability distribution P(t) of the induction time can be determined (Figure 
D.1).  
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Figure D.1 Probability distribution of the induction times of 192 experimental 
data points for PXL in ethanol at β = 3. 

From the fitted line in Figure D.1, we can calculate a nucleation rate J = 41.8 ± 
0.45 m-3 s-1 and a growth time tg = 1874.2 ± 91 s. 
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Abstract: Many active pharmaceutical ingredients are chiral compounds. The two enantiomers of the 
corresponding molecules exhibit identical chemical and physical properties, but the desired biological activity 
is often provided by only one enantiomer. The strict regulations forced the pharmaceutical industry to develop 
new ways to produce pure enantiomers. Among separation methods, Preferential Crystallization (PC), is a 
technique with relatively high productivity and low cost. It consists of the out-of-equilibrium alternative 
crystallization of both enantiomers. It is thought that the application of PC is only possible when the 
enantiomers crystallize as a conglomerate, i.e. a physical mixture of homochiral particles. Yet, only ca 5-10% 
of the racemic species crystallize as a conglomerate, which strongly limits the applicability of PC. The work 
investigates how to perform PC in the remaining 90-95% of cases, for enantiomers crystallizing as racemic 
compounds, i.e. a 1:1 stoichiometric compound made with both enantiomers. Following an adequate 
screening procedure based on physico chemical and molecular considerations, one racemic chiral molecule 
was selected as model compound, namely “proxyphylline” (PXL). After the construction of the binary phase 
diagram between the enantiomer of PXL reveals a rich polymorphism (double polymorphism for enantiomer 
and racemic), PXL has been resolved by two approaches: 
 
(a) via an unforeseen metastable conglomerate, by inhibiting the spontaneous crystallization and growth of 
the undesired forms and by achieving a wide metastable zone width due to the selection of a suitable solvent. 
The obtained results extend the applicability of PC to the racemic forming system with specific thermodynamic 
(melting temperature) and kinetic (wide metastability) characteristics.  
 
(b) via a stable monohydrated conglomerate prepared by cocrystallization with salicylic acid. It was resolved 
by PC from a water/ethanol mixture with high productivity. This may be the first report of PC applied to such 
a cocrystal system. 
 
Keywords: chirality, preferential crystallization, nucleation inhibition, enantiomeric resolution, racemic 
compounds, chiral cocrystal, phase diagram. 
 

Resumé: De nombreux principes actifs pharmaceutiques sont des composés chiraux. Les deux énantiomères 
des molécules correspondantes présentent des propriétés chimiques et physiques identiques mais l’activité 
biologique est souvent associée à un seul des deux. Les réglementations strictes ont obligé l'industrie 
pharmaceutique à développer de nouvelles méthodes pour produire des énantiomères purs. Parmi les 
méthodes de séparation, la cristallisation préférentielle (CP) est une technique ayant une productivité 
relativement élevée et un faible coût. Elle consiste en une cristallisation alternative hors équilibre des deux 
énantiomères. Il est communément admis que la CP peut uniquement être appliquée lorsque les deux 
énantiomères cristallisent sous forme d’'un conglomérat, i.e. un mélange physique de particules homochirales. 
Pourtant, seulement 5-10% des espèces racémiques cristallisent sous forme de conglomérat ce qui limite 
fortement l'applicabilité de la CP. Le travail de cette thèse vise à étudier comment réaliser la CP dans les 90-
95% restants, pour les énantiomères cristallisants sous forme de composés racémiques, i.e. un composé 
défini stœchiométrique (1 :1). À la suite de l’identification de critères spécifiques (physico-chimique et 
moléculaires) la « Proxyphylline » (PXL) a été sélectionnée comme molécule chirale modèle pour cette étude. 
Après une construction du diagramme de phase entre énantiomères de la PXL, laissant apparaître un riche 
paysage polymorphique, la PXL a été résolue par selon approches :  

(a) via la présence d’un conglomérat métastable et en inhibant la nucléation et la croissance du composé 
racémique (qui présente une large zone de métastabilité dans un solvant donné). Les résultats obtenus 
étendent l’efficacité de la CP aux systèmes présentant des composés racémiques et qui ont des 
caractéristiques thermodynamiques (température de fusion) et cinétiques (large zone de métastabilité) 
particulières. 

(b) via un conglomérat monohydraté préparé par cocristallisation avec l’acide salicylique. La résolution par 
CP a été effectuée dans un mélange eau/éthanol avec une certaine efficacité. Cette étude est une des 
premières à rapporter la mise en place de la CP appliqué à des cocristaux chiraux.  

 
Mots-clés : chiralité, cristallisation préférentielle, inhibition de la nucléation, résolution énantiomérique, 
composés racémiques, cocristal chiral, diagramme de phases.  

  
  


