
THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Manh-Dung NGUYEN

Thèse dirigée par Roland GROZ, Professeur
et codirigée par Sebastien BARDIN, CEA Paris-Saclay
et Matthieu LEMERRE

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Guidage du test en frelatage de codes
binaires pour la détection de vulnérabilités
logicielles complexes

Binary-level directed fuzzing for complex
vulnerabilities

Thèse soutenue publiquement le 30 mars 2021,
devant le jury composé de :

Monsieur AURELIEN FRANCILLON
PROFESSEUR ASSOCIE, EURECOM, Rapporteur
Monsieur JACQUES KLEIN
PROFESSEUR, Université du Luxembourg, Rapporteur
Madame MARIE-LAURE POTET
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES,
Président
Madame VALERIE VIET TRIEM TONG
PROFESSEUR, ESE CESSON, Examinatrice
Monsieur ROLAND GROZ
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES,
Directeur de thèse

To my respectable grandfather, my
first ever teacher and my longtime
friend Van-Liem NGUYEN

iii

iv

Acknowledgements

First, I would like to thank my advisors, Prof. Roland Groz (Université Grenoble Alpes),
Dr. Sébastien Bardin & Dr. Matthieu Lemerre (CEA LIST), and Dr. Richard Bonichon
(Tweag I/O), for their constant encouragement and guidance through my doctoral work.
Thank you for giving me this opportunity to pursue my research interests on fuzzing and
your kind support in many aspects of my PhD journey in France. I really appreciate your
supervision and have learned much from you, such as how to conduct a research project,
formal writing styles and Ocaml programming language.

Second, I feel greatly privileged to have met, discussed and learnt from many talented
colleagues at CEA LIST/LSL in the Binsec group, especially Dr. Benjamin Farinier,
Frédéric Recoules, Mathilde Ollivier, Yaëlle Vinçont, Lesly-Ann Daniel, Olivier Nicole,
Grégoire Menguy, Guillaume Girol, Dr. Michaël Marcozzi, Soline Ducousso and Charles
B Mamidisetti. I would like to thank Dr. Josselin Feist for his insightful discussions, his
thesis and his static analyzer that inspired me to follow this research direction. Also, I had
a great time discussing fuzzing research and collaborating with Yaëlle, Prof. Christophe
Hauser and Wei-Cheng Wu.

Third, this doctoral work could not be complete without the evaluation of my thesis
examiners, Prof. Aurélien Francillon, Prof. Jacques Klein, Prof. Marie-Laure Potet and
Prof. Valérie Viet Triem Tong. I would like to thank them for their time for serving on
the committees of my thesis defend, the careful reading and the constructive comments.
I would also like to thank Prof. Olivier Levillain for the mid-term evaluation and his
insightful suggestions on my thesis proposals.

Fourth, I would like to thank my supervisors, my collaborators and my friends at
National University of Singapore where I started my research career: Prof. Joxan Jaffar,
Prof. Abhik Roychoudury, Dr. Duc-Hiep Chu, Prof. Van-Thuan Pham, Prof. Marcel
Böhme, Prof. Sergey Mechtaev, Dr. Yannic Noller, Dr. Naipeng Dong, Dr. Quang-Trung
Ta and Duc-Than Nguyen, just to name a few. I also feel lucky to be able to work with
great fuzzing researchers such as Marcel and Thuan.

Last, but not least, I want to express my gratitude to my beloved family who has been
an endless source of love, motivation and encouragement for me: my grandfather Van-Liem,
my parents Manh-Quan and Hong-Tham, my younger brother Manh-Quang, my wife Hoai-
Thuong, my son Nhat-Minh (Bean thoi) and also many other great friends in France. I
dedicate this doctoral work to my grandfather Van-Liem and my son Nhat-Minh.

v

vi

Abstract

Fuzzing is a popular security testing technique consisting in generating massive amount of
random inputs, very effective in triggering bugs in real-world programs. Although recent
research made a lot of progress in solving fuzzing problems such as magic numbers and
highly structured inputs, detecting complex vulnerabilities is still hard for current feedback-
driven fuzzers, even in cases where the targets are known (directed fuzzing). In this thesis,
we consider the problem of guiding fuzzing to detect complex vulnerabilities such as Use-
After-Free (UAF), as bug-triggering paths must satisfy specific properties of those bug
classes. UAF is currently identified as one of the most critical exploitable vulnerabilities
and has serious consequences such as data corruption and information leaks. Firstly, we
provide a detailed survey on Directed Greybox Fuzzing, which is the core technique of
this thesis, aiming to perform stress testing on predefined targets like recent code changes
or vulnerable functions. Secondly, we propose new directed fuzzing techniques tailored to
detecting UAF vulnerabilities in binary code that we have proven effective and efficient in
both bug reproduction and patch testing. Thirdly, we show that our directed techniques
can be fruitfully generalized to other typestate bugs like buffer overflows. Finally, our
proposed techniques have been implemented in the open-source tools Binsec/UAFuzz
and Binsec/TypeFuzz, helping to find security vulnerabilities in real-world programs
(39 new bugs, 17 CVEs were assigned and 30 bugs were fixed).

Keywords: Automated vulnerability detection, Greybox fuzzing, Directed fuzzing,
Bug reproduction, Patch testing, Use-After-Free.

vii

viii

Résumé

Le test en frelatage (fuzz testing ou fuzzing) est une technique de test de sécurité populaire
consistant à générer une quantité massive d’entrées aléatoires, très efficace pour déclencher
des bogues dans des programmes du monde réel. Bien que des recherches récentes aient
permi beaucoup de progrès dans la résolution de problèmes de fuzzing tels que les nombres
magiques et les entrées hautement structurées, la détection de vulnérabilités complexes est
toujours difficile pour les fuzzers actuels, même si les cibles sont connues (fuzzing dirigé).
Dans cette thèse, nous considérons le problème du guidage du fuzzing pour détecter des
vulnérabilités complexes telles que Use-After-Free (UAF), car les chemins de déclenchement
de tels bogues demandent de satisfaire des propriétés très spécifiques. Le bogue UAF est
actuellement identifié comme l’une des vulnérabilités exploitables les plus critiques et a des
conséquences graves telles que la corruption des données et les fuites d’informations. Tout
d’abord, nous fournissons une étude détaillée sur le Directed Greybox Fuzzing, qui est la
technique de base de cette thèse, visant à effectuer des tests de résistance sur des cibles
prédéfinies comme les changements récents ou les fonctions vulnérables. Deuxièmement,
nous proposons de nouvelles techniques de fuzzing dirigées adaptées à la détection des
vulnérabilités UAF au niveau du binaire que nous avons prouvées efficaces et efficientes à la
fois pour la reproduction de bogues et le test de correctifs. Troisièmement, nous montrons
que nos techniques dirigées peuvent être généralisées avec succès à d’autres bogues qui
violent les propriétés comme les débordements de tampon. Enfin, les techniques que nous
avons proposées ont été implémentées dans les outils open-source Binsec/UAFuzz and
Binsec/TypeFuzz, aidant à trouver des vulnérabilités de sécurité dans les programmes
du monde réel (39 nouveaux bogues, 17 CVEs ont été attribués et 30 bogues ont été
corrigés).

Mots-clés: Détection automatisée des vulnérabilités, Test en frelatage, Fuzzing dirigé,
Reproduction de bogues, Test de correctifs, Use-After-Free.

ix

Contents

Acknowledgements v

Abstract vii

Résumé ix

Contents xii

List of Figures xiv

Listings xv

List of Tables xvii

1 Introduction 1
1.1 Context . 1
1.2 Challenges and Objectives . 4
1.3 Contributions . 8

1.3.1 Scientific contributions . 8
1.3.2 Technical contributions . 9
1.3.3 Publications and talks . 10

1.4 Outline . 11

2 Background 13
2.1 Memory Corruption Vulnerabilities . 13
2.2 Automated Vulnerability Detection . 15

2.2.1 Dynamic Symbolic Execution . 16
2.2.2 Search-based Software Testing . 16
2.2.3 Coverage-guided Greybox Fuzzing 17
2.2.4 Hybrid Fuzzing . 20

2.3 Conclusion . 21

3 A Survey of Directed Greybox Fuzzing 23
3.1 Introduction . 23

3.1.1 Formalization of the Directed Fuzzing Problem 24

x

3.1.2 Applications of Directed Fuzzing 25
3.1.3 Differences between Directed and Coverage-based Fuzzing 26

3.2 Overview . 26
3.2.1 Workflow . 26
3.2.2 Core Algorithm . 27

3.3 Input Metrics . 28
3.3.1 Distance metric . 28
3.3.2 Covered function similarity metric 30

3.4 Differences between Source- and Binary-based Directed Fuzzing 30
3.5 Limitations & Future Directions . 31
3.6 Conclusion . 32

4 Binary-level Directed Fuzzing for Use-Afer-Free Vulnerabilities 33
4.1 Introduction . 34
4.2 Motivation . 35
4.3 The UAFuzz Approach . 37

4.3.1 Bug Trace Flattening . 38
4.3.2 Seed Selection based on Target Similarity 40
4.3.3 UAF-based Distance . 42
4.3.4 Power Schedule . 44
4.3.5 Postprocess and Bug Triage . 46

4.4 Experimental Evaluation . 47
4.4.1 Research Questions . 47
4.4.2 Evaluation Setup . 47
4.4.3 UAF Bug-reproducing Ability (RQ1) 49
4.4.4 UAF Overhead (RQ2) . 53
4.4.5 UAF Triage (RQ3) . 56
4.4.6 Individual Contribution (RQ4) . 57
4.4.7 Patch Testing & Zero-days . 58
4.4.8 Threats to Validity . 61

4.5 Related Work . 62
4.5.1 Directed Greybox Fuzzing . 62
4.5.2 Coverage-based Greybox Fuzzing 62
4.5.3 UAF Detection . 62
4.5.4 UAF Fuzzing Benchmark . 63

4.6 Conclusion . 64

5 Implementation 65
5.1 Introduction . 65
5.2 Preprocessing . 67

5.2.1 Bug trace generation . 67
5.2.2 BinIda Plugin . 68

5.3 Core Fuzzing Engine . 70

xi

5.3.1 Debugging with afl-showmap . 70
5.3.2 Overhead . 70

5.4 Examples . 71
5.4.1 Application 1: Bug Reproduction 71
5.4.2 Application 2: Patch Testing . 75

5.5 Conclusion . 76

6 Typestate-guided Directed Fuzzing 79
6.1 Introduction . 79
6.2 The TypeFuzz Approach . 81

6.2.1 Different Bug Characteristics . 81
6.2.2 Adapted Techniques . 82

6.3 Evaluation . 83
6.3.1 Research Questions . 83
6.3.2 Evaluation Setup . 84
6.3.3 Bug-reproducing Ability (RQ1) . 85
6.3.4 Crash Triage (RQ2) . 86
6.3.5 Target Reaching (RQ3) . 87

6.4 Patch Testing . 89
6.5 Conclusion . 89

7 Conclusion 91
7.1 Summary . 91

7.1.1 Research problems . 91
7.1.2 Scientific contributions . 92
7.1.3 Technical contributions . 93

7.2 Perspectives . 93

Acronyms 97

Bibliography 99

xii

List of Figures

1.1 Number of UAF bugs in NVD [nvd20] . 5

2.1 Typestate for Use-After-Free and Double-Free bugs. 14
2.2 Different approaches of exploring the input space, where • are selected inputs

to be mutated, × are generated inputs and shaded area are interesting space
[BAS+19]. 15

3.1 Workflow of Directed Greybox Fuzzing (DGF) (different components com-
pared to Coverage-guided Greybox Fuzzing (CGF) are in gray). 27

3.2 Difference between node distance defined in terms of arithmetic mean versus
harmonic mean. Node distance is shown in the white circles. The targets
are marked in gray [BPNR17]. 29

4.1 Overview of UAFuzz. 37
4.2 Bug trace of CVE-2018-20623 (UAF) produced by Valgrind. 38
4.3 Reconstructed Dynamic Calling Tree (DCT) from CVE-2018-20623 (bug

trace from Figure 4.2). The preorder traversal of this tree is simply 0 →
1→ 2→ 3(nalloc)→ 4(nfree)→ 5→ 6(nuse). 39

4.4 Precision lattice for Target Similarity Metrics. 41
4.5 Example of a call graph. Favored edges are in red. 43
4.6 Summary of fuzzing performance (RQ1). 49
4.7 TTE in seconds of 4 fuzzers except for subjects marked with “(m)" for

which the unit is minute (lower is better). AQ, AG, HK and UF denote
AFL-QEMU, AFLGoB, HawkeyeB and UAFuzz, respectively. 51

4.8 Fuzzing queue of UAFuzz for yasm-issue-91. Selected inputs to be mu-
tated are highlighted in brown. Potential inputs are in the horizontal dashed
line. 52

4.9 Summary of fuzzing performance of 4 fuzzers against our benchmark, except
CVE-2017-10686 due to compilation issues of AFLGo. 52

4.10 Global overhead (RQ2). 54
4.11 Average instrumentation time in seconds (except CVE-2017-10686 due to

compilation issues of AFLGo). 54
4.12 Average instrumentation time in seconds. 54
4.13 Total executions done in all runs. 55
4.14 Average triaging time in seconds. 56

xiii

4.15 Summary of bugs triage (RQ3). 57
4.16 Impact of each components (RQ4). 58
4.17 The bug trace of CVE-2018-6952 (Double Free) produced by Valgrind. . 61

5.1 Overview of UAFuzz workflow. 66
5.2 Code structure of UAFuzz. 66
5.3 DCT of the program mjs generated by our preprocessing script. 67
5.4 Formats of the files extracted using IDA Pro. 68
5.5 A basic block of mjs_mkstr() in the program mjs. 69
5.6 UAFuzz shared memory – extended layout (x86-64) 71
5.7 The identified (non-) cut edges of this example given the bug trace. C, N

denotes cut and non-cut, respectively. 72
5.8 DCT of this example. 73
5.9 The stack traces of this example produced by Valgrind. 73
5.10 Call graph and important CFGs (only show the first instruction of each

basic block) of this example produced by the BinIda plugin. 74
5.11 The user interface of UAFuzz. 75

6.1 Overview of TypeFuzz. 80
6.2 The stack trace of CVE-2016-4488 produced by Valgrind. 81
6.3 DCT of CVE-2016-4488. 82
6.4 Summary of fuzzing performance (RQ1). 86

xiv

Listings

2.1 Code snippet illustrating a UAF bug. 14
3.1 Call pattern 1. 30
3.2 Call pattern 2. 30
4.1 Motivating example. 36
4.2 Code fragment of GNU patch pertaining to the UAF vulnerability

CVE-2018-6952. 60
5.1 Outputs of afl_showmap. 70
5.2 A simple example. 73
5.3 UAFuzz’s output when fuzzing the latest version of GNU Patch with the

timeout 6 hours. 75
6.1 The expected bug trace of CVE-2016-4488. 82

xv

List of Tables

2.1 Overview of recent greybox fuzzers classified by technique and publication
date. S, B and S&B represent respectively source code, binary and both
levels of analysis (based on benchmarks). À: complex structure problem,
Á: code coverage problem, Â: complex bugs, Ã: directedness problem, Ä:
human interaction, Å: parallel fuzzing, Æ: anti-anti-fuzzing and Ç: seed
generation. 18

4.1 Summary of existing greybox fuzzing techniques. 34
4.2 Overview of main techniques of greybox fuzzers. Our own implementations

are marked with ?. 47
4.3 Overview of our evaluation benchmark. 48
4.4 Summary of bug reproduction of UAFuzz compared to other fuzzers against

our fuzzing benchmark. Statistically significant results Â12 ≥ 0.71 are
marked as bold. 49

4.5 Bug reproduction on 4 fuzzers against our benchmark. Statistically signif-
icant results Â12 ≥ 0.71 are marked as bold. Factor measures the perfor-
mance gain as the µTTE of other fuzzers divided by the µTTE of UAFuzz. 50

4.6 Bug reproduction of AFLGo against our benchmark except
CVE-2017-10686 due to compilation issues of AFLGo. Numbers in
red are the best µTTEs. 53

4.7 Average number of triaging inputs of 4 fuzzers against our tested subjects.
For UAFuzz, the TIR values are in parentheses. 56

4.8 Bug reproduction on 4 fuzzers against our benchmark. Â12A and Â12U de-
note the Vargha-Delaney values of AFLGoB and UAFuzz. Statistically
significant results for Â12 (e.g., Â12A ≤ 0.29 or Â12U ≥ 0.71) are in bold.
Numbers in red are the best µTTEs. 58

4.9 Summary of zero-day vulnerabilities reported by our fuzzer UAFuzz (32
new bugs including 13 new UAF bugs, 10 CVEs were assigned and 23
bugs were fixed). 59

4.10 Summary of existing benchmarks. 63
4.11 Detailed view of our evaluation benchmark. 64

5.1 Detailed results of BinIda in processing our evaluation benchmark in Ta-
ble 4.3. 69

xvi

6.1 Overview of our evaluation benchmark. 85
6.2 Summary of bug reproduction of TypeFuzz compared to other fuzzers

against our fuzzing benchmark. Statistically significant results Â12 ≥ 0.71
are marked as bold. 86

6.3 Average number of correct crashing inputs of 4 fuzzers against our tested
subjects. Numbers in red are the best values. 87

6.4 Average TTR of 4 fuzzers against our tested subjects, given only one target
basic block. Numbers in red are the best µTTRs. 88

6.5 Average TTR in seconds of 4 fuzzers against our tested subjects, given a full
bug trace. Numbers in red are the best µTTRs. The difference values of 3
directed fuzzers compared to Table 6.4 are in parentheses. 88

6.6 Summary of zero-day vulnerabilities reported by our fuzzer TypeFuzz.
HBO, NPD denote heap buffer overflow and NULL pointer dereference, re-
spectively. 89

xvii

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Challenges and Objectives . 4
1.3 Contributions . 8

1.3.1 Scientific contributions . 8
1.3.2 Technical contributions . 9
1.3.3 Publications and talks . 10

1.4 Outline . 11

“If you know the enemy and know
yourself, you need not fear the result
of a hundred battles ...”

— Sun Tzu, The Art of War

1.1 Context
Context In the era of automation technologies, software controls every aspect of our life,
from daily needs to a big human dream of exploring the universe like NASA’s Mars 2020
Perseverance Rover [nas20]. However, programs are written by human beings and therefore
they contain bugs, which can in turn become security vulnerabilities. A simple bug like the
one that has negative impacts on user experience (e.g., a wrong user interface display) can
be harmless from a security perspective. More severely, a logical vulnerability can cause
a program crash (e.g., denial-of-service attacks) or can be exploitable, allowing attackers
to inject and execute malicious code to obtain high privileges. In this case, these vulnera-
bilities cause serious damages from significant financial losses to even people’s deaths. For
example, Heartbleed (CVE-2014-0160) [hea20] – a very well-known critical vulnerability in
the popular OpenSSL cryptographic software library – caused by an implementation defect
can leak secret keys and compromise the integrity of communications of web services. On

1

April 2019, Israel failed to land an unmanned spacecraft on the moon’s surface due to a
software bug with its engine system [ber20]. Even worse, due to the same reason, four
crew members died and two were injured in an air force cargo plane that crashed on a test
flight in Spain [air20]. The accident could be more catastrophic if the similar vulnerability
exists in a civil aircraft. Furthermore, there is still much controversy on the ethical issues of
automated decision-making Artificial Intelligence (AI) systems like self-driving cars [eth20]
when put into use in reality.

All the examples above raise a question: How can we avoid the serious consequences
brought by software defects? One answer is simple and obvious, by testing software pro-
grams and testing them in a very careful and systematic manner.

Software testing plays an important role in multiple phases through the software devel-
opment life cycle, from high-level design testing to low-level source code testing and also in
the maintenance after the software is released. Concretely, software security testing aims to
generate test cases that show the vulnerability, a.k.a., Proof-of-Concept (PoC), if it actually
exists. Once developers have more clues on the bugs, they can debug the buggy software
to find the root cause and eventually fix them. Indeed, Google and Facebook have paid
$6.5 million [goo20] and $2.2 million [fac20] to external security researchers who discovered
and submitted bugs in their products in 2019 alone respectively. Moreover, hackers have
earned $100 million in bug bounties on the number one hacker-powered security platform
HackerOne [hac20].

Existing automated vulnerability analysis Finding bugs early is indeed crucial in the
vulnerability management process. Security experts usually perform a manual code audit
or employ automated approaches with the help of more powerful computing resources to
hunt vulnerabilities. With the growth of the complexity of software systems, manual testing
becomes much more challenging, tedious and time-consuming. In contrast, automated
testing has been widely used and have common techniques as follows.

Static analysis approaches [CKK+12,BBC+10,cod20] perform the analysis without ex-
ecuting the Program Under Test (PUT). Although these approaches have shown their
effectiveness in proving the presence of program bugs, only potential buggy locations are
provided to the developers. Apart from high false positive rate, another common weakness
of all static detectors is therefore their inability to infer concrete test cases triggering the
bugs. Consequently, some extra efforts are still needed for developers to investigate and
verify whether reports produced by static tools are actually real bugs.

Formal methods, such as abstract interpretation [CC77], which are common techniques
used by software engineers to design safety-critical systems, are historically not designed
to find bugs. Hence, similar to static testing approaches, formal methods produce pos-
sible false positives and cannot generate a concrete PoC (only model-based buggy pro-
gram traces). Furthermore, the scalability issues limit the practical usefulness of for-
mal method techniques on large programs. More recent approaches, like bounded model
checking [KT14] and Symbolic Execution (SE) (e.g., KLEE [CDE+08], S2E [CKC11] and
SymCC [PF20]), are able to find bug-triggering inputs, but still suffer from scalability

2

issues.
Dynamic testing approaches, such as fuzz testing (a.k.a., fuzzing) [MFS90,pea20,afl20i],

run the PUT and generate inputs as witnesses for program bugs, making the debugging
phase easier and less error-prone. While those dynamic approaches can indeed find PoCs,
they are either not automated (e.g., standard testing), require manual intervention (e.g.,
for property checking [CH11]), or remain at a too shallow blackbox level, such as random
testing [Ham02]. Yet, recent so-called greybox fuzzing [afl20a] methods can find PoCs,
trigger deep bugs and work on binary code.

Greybox fuzzing Fuzzing [MFS90], which was first introduced by Miller et al. in 1990
to test the reliability of UNIX tools is a simple yet very effective testing technique for
automated detection of vulnerabilities. On one hand, from an input generation perspective
(e.g., by using mutation operators or input models), fuzzing techniques can be classified
as mutation- or generation-based fuzzing. On the other hand, fuzzing techniques can be
categorized in three (3) parts depending on the degree of program analysis: blackbox fuzzing,
greybox fuzzing and whitebox fuzzing. The blackbox fuzzing simply considers the PUT as a
black box, thus this technique does not require any program analysis but rather mutates
inputs blindly. In contrast to the blackbox fuzzing, the whitebox fuzzing mainly employs
heavy-weight program analysis such as SE to systematically discover as many feasible paths
as possible of the PUT. However, the whitebox fuzzing has a scalability issue due to the
well-known path explosion problem.

The recent rise of greybox fuzzing [MHH+19, BCR21] in both academia and indus-
try, such as Springfield [Mic20] and OneFuzz [one20] of Microsoft, AFL [afl20i], OSS-
Fuzz [oss20a] and ClusterFuzz [clu20] of Google, shows its ability to find a large number
of bugs in real-world applications [afl20d]. The greybox fuzzing, which is placed in be-
tween the blackbox fuzzing and the whitebox fuzzing, employs light-weight program anal-
ysis and uses feedback information to effectively guide the fuzzers at runtime. Technically,
Coverage-guided Greybox Fuzzing (CGF), such as AFL [afl20i] and libFuzzer [lib20a],
leverages code coverage information in order to guide input generation toward new parts of
the PUT, exploring as many program states as possible in the hope of triggering crashes.
For example, libFuzzer is able to trigger the Heartbleed vulnerability within several
seconds [lib20b].

Directed greybox fuzzing In some cases where the vulnerable code is known (e.g.,
from bug reports or in dangerous functions like string copy operations or relevant buggy
code on other platforms), an ideal fuzzer should spend its time budget on quickly reaching
target locations without wasting efforts exploring unrelated or well-tested code. To address
this limitation, the concept of Directed Greybox Fuzzing (DGF) [BPNR17,CXL+18,WZ20]
was introduced in 2017. For instance, if OpenSSL’s developers performed directed fuzzing
as soon as the commit was submitted to the code base, then the Heartbleed vulnera-
bility would have been found as it was introduced. While the main goal of coverage-
guided fuzzing is to cover as many program states as possible in a limited time, directed

3

fuzzing aims to perform stress testing on pre-selected potentially vulnerable target loca-
tions. DGF has therefore many applications to different security contexts: (1) bug repro-
duction [JO12, PNRR15,BPNR17,CXL+18], (2) patch testing [MC13, PLL+19, BPNR17]
or (3) static analysis report verification [CMW16,LZY+19]. Depending on the application,
target locations are originated from bug stack traces, patches or static analysis reports.

Problems Despite tremendous progress in many aspects in the past few years (e.g., magic
bytes comparison [laf20,LCC+17,LS18,ASB+19], deep execution [SGS+16,RJK+17,CC18],
lack of directedness [BPNR17, CXL+18] and complex file formats [BAS+19, YWM+19,
PBS+19,FDC19], etc.), current (directed or not) greybox fuzzers still have a hard time find-
ing complex vulnerabilities. For example, OSS-Fuzz [oss20a,oss20b] or recent greybox
fuzzers [BPNR17,RJK+17,YWM+19] only found a small number of Use-After-Free (UAF).
Moreover, in cases where the vulnerable events of a UAF bug are identified (e.g., from the
bug report), existing directed fuzzers are too generic and lack of specific design strategies
to effectively detect this type of bug.

Finding bugs is hard, finding complex vulnerabilities is even harder as bug-triggering
paths may satisfy very specific properties of specific bug classes. Böhme [Böh19] had
a vision about several types of complex bugs for current software testing techniques in
general and fuzzing in particular: non-interference, flaky bugs, bugs outside the fuzzer’s
search space or due to extremely rare program behaviors. In this case, further analysis is
required to better understand characteristics of the target bugs and adapt software testing
techniques, especially random ones like (directed) fuzzing, to boost the directedness to
meet complex bug-triggering conditions.

Scope In the scope of this thesis, we focus on mutation-based (directed) greybox fuzzing
techniques, which are behind the success of many recent vulnerability detection tools. More
specifically, we aim to tackle the issues of directed fuzzing discussed above by first investi-
gating specific properties of “hard-to-detect” vulnerabilities and carefully tuning several of
key components of directed fuzzing to the specifics of these bug classes.

My thesis was performed in collaboration with two laboratories: my hosting laboratory
CEA LIST – the Safety and Security Lab of the Commissariat à l’Énergie Atomique et aux
energies alternatives and the LIG (Laboratoire d’Informatique de Grenoble) of Université
Grenoble Alpes in the VASCO team – Validation de Systèmes, Composants et Objets
logiciels. My research work was supported by the H2020 project C4IIoT under the Grant
Agreement No 833828 and the FUI project CAESAR.

1.2 Challenges and Objectives
Complex vulnerabilities Classic memory corruptions identified by Common Weak-
ness Enumeration (CWE) like buffer overflows (CWE-121, CWE-122) [CPM+98,HSNB13],
NULL pointer dereference (CWE-476) [HP07, FMRS12] or integer overflows (CWE-
190) [WWLZ09,MLW09, DLRA15] have been well studied. In contrast, recent vulnera-

4

2019201820172016201520142013
0

200

400

600

Nu
mb

er
of

UA
F
bu

gs

All
High CVSS2 Severity (7-10)

Figure 1.1: Number of UAF bugs in NVD [nvd20]

bility classes such as UAF (CWE-415, CWE-416) or type confusion have not received
much attention in the literature.

Our insight is that several vulnerabilities can be considered as the violation of types-
tate properties [SY86]. Typestate properties can aid program understanding, define type
systems [DF04] that prevent programmers from causing typestate errors or even derive
static analysis [FGRY03, FYD+08] to verify whether a given program violates typestate
properties, especially in formal verification. For example, the sequence of finite-state ma-
chine 〈alloc→ free→ use〉 is a witness of triggering the UAF bug. In other words, UAF
bug-triggering paths in the program must satisfy the given typestate property. Hua et
al. proposed Machine Learning (ML)-guided typestate analysis for static UAF detection
by leveraging ML techniques to tackle the problem of high overhead of typestate analysis,
making it scalable to real-world programs [YSCX17].

Indeed, there are recently more fuzzing work targeting uncommon, complex bug classes:
performance bugs [PZKJ17, LPSS18], UAF [WXL+20], concurrency bugs [muz20], mem-
ory consumption bugs [WWL+20], hypervisor bugs [SAA+17] and Database Management
System (DBMS) bugs [ZCH+20]. They share the same conclusion: vulnerability-oriented
greybox fuzzers have better fuzzing performance than general ones in detecting specific bug
classes. Those fuzzers bring insights for our research work and we aim to develop new
fuzzing techniques to effectively detect typestate vulnerabilities.

In the same vein of existing vulnerability-oriented fuzzers, we focus on UAF bugs. They
appear when a heap element is used after having been freed. Figure 1.1 shows that the
numbers of UAF bugs has increased in the National Vulnerability Database (NVD) [nvd20].
According to the Project Zero team at Google, 63% of exploited 0-day vulnerabilities fall
under memory corruption, with half of those memory corruption bugs being UAF vulnera-
bilities in 2019 [rev20]. They are currently identified as one of the most critical exploitable
vulnerabilities due to the lack of mitigation techniques compared to other types of bugs
such as buffer overflows. They may have serious consequences such as data corruption,
information leaks and denial-of-service attacks. However, fuzzers targeting the detection
of UAF bugs confront themselves with the following challenges.

• Complexity – Exercising UAF bugs require to generate inputs triggering a sequence
of 3 events – alloc, free and use – on the same memory location, spanning multiple

5

functions of the PUT, whereas buffer overflows only require a single out-of-bound
memory access. This combination of both temporal and spatial constraints is ex-
tremely difficult to meet in practice;

• Silence – UAF bugs often have no observable effect, such as segmentation faults. In
this case, fuzzers simply observing crashing behaviors do not detect that a test case
triggered such a memory bug. Sadly, popular profiling tools such as AddressSanitizer
(ASan) [SBPV12] or Valgrind [NS07] cannot be used in a fuzzing context. While
ASan not only requires the source code but also involves high runtime overhead, there
are still no practical lightweight approach to fuzz binaries with Valgrind due to its
heavyweight instrumentation.

Hypotheses We make the following assumptions in the remainder of this thesis:

• Tested binaries are typically compiled from C/C++ programs using a classic compiler
to avoid obfuscated binaries;

• We assume that there exists stack traces of known vulnerabilities that we aim to
reproduce, so that our fuzzers can take them as input to guide the dynamic strategies;

• The architecture of the tested binaries is the Intel x86, yet our techniques can be
easily adapted to work on other architectures or even at source level;

• Anti-fuzzing techniques [GAAH19,JHS+19] are not considered in our work;

• For the sake of simplicity we suppose that all the transition systems that we study
are deterministic, which implies that non-deterministic or flaky bugs are out of the
scope of this thesis.

Directed greybox fuzzing Actually, current state-of-the-art directed fuzzers, namely
AFLGo [BPNR17] and Hawkeye [CXL+18], fail to address these challenges. First, they
are too generic and therefore do not cope with the specificities of UAF such as temporality
– their guidance metrics do not consider any notion of sequenceness. Second, they are
completely blind to UAF bugs, requiring to send all the many generated seeds to a profiling
tool for an expensive extra check. Finally, current implementations of source-based DGF
fuzzers typically suffer from an expensive instrumentation step [afl20f], e.g., AFLGo spent
nearly 2 hours compiling and instrumenting cxxfilt (Binutils). Our main goal is therefore
to develop an effective directed fuzzing technique towards UAF vulnerabilities in different
security contexts.

Bug reproduction. We focus mainly on reproducing bugs, which is the most common
practical application of DGF [JO12,BPNR17,YZC+17,CXL+18, LZY+19]. It consists in
generating PoC inputs of disclosed vulnerabilities given bug report information. It is
especially needed since only 54.9% of usual bug reports can be reproduced due to missing
information and users’ privacy violation [MCY+18]. Even with a PoC provided in the bug

6

report, developers may still need to consider all corner cases of the bug in order to avoid
regression bugs or incomplete fixes. In this situation, providing more bug-triggering inputs
becomes important to facilitate and accelerate the repair process.

Patch testing. Another interesting use case is to check if an existing vulnerability is
corrected in a more recent version. The main idea is to use bug stack traces of known UAF
bugs to guide testing on the patched version of the PUT – instead of the buggy version as
in bug reproduction. The benefit from the bug hunting point of view [gpz20] is both to try
finding buggy or incomplete patches and to focus testing on a priori fragile parts of the
code, possibly discovering bugs unrelated to the patch itself. For instance, an incomplete
fix for a NULL pointer dereference CVE-2017-15023 led to a new bug of the same type
CVE-2017-15939 in GNU Binutils 2.29 [cve20a].

Static reports verification. We are interested in investigating the effectiveness and
efficiency of a hybrid testing technique combining static analysis and directed fuzzing to
detect UAF bugs. While the two aforementioned applications may rely on information
of disclosed bugs to address the low reproducibility problem and test relevant code, this
application justifies reports produced by static analyzers and subsequently generates PoCs
in case the bug actually exists with no prior information. In this setting, static reports allow
to narrow the fuzzing search space and effectively focus the fuzzer’s effort on potentially
vulnerable components. However, the bug-finding performance of the hybrid approach may
depend on the quality of static reports (e.g., including real buggy locations).

Binary-level analysis It is indeed more important to find bugs at binary level since
the source code of some critical programs is not always available or relies on third-party
libraries. Furthermore, two different compilers can produce two different binaries with
different behaviors due to the undefined behaviors of the language. Thus, the ability of
analyzing and testing software at binary level allows us to mitigate and take into account
the expected interpretation of these undefined behaviors. It also brings more flexibility in
selecting the PUT.

Fuzzing benchmarks Existing widely-used fuzzing benchmarks which contain either
artificial common vulnerabilities [DGHK+16, RPDGH18, rod20, cgc20] or artificial pro-
grams [NIS20] raise a strong need of having a suitable benchmark for evaluation of com-
plex vulnerability-oriented fuzzers. Actually, Rode0day [rod20], a continuous bug finding
competition, recognizes that fuzzers should aim to cover new bug classes like UAF in the
future [FLDGB19], moving further from the widely-used LAVA [DGHK+16] synthetic bug
corpora which only contains buffer overflows. Furthermore, FuzzBench [fuz20], which is a
free service that evaluates fuzzers at large scale on a wide variety of real-world benchmarks
including Google Fuzzer Testsuite [gft20], currently supports only coverage-guided fuzzers.

Open-source projects & Zero-day vulnerabilities While automated vulnerability
detection has been an active research area, the security community still lacks available so-
lutions as some tools are still closed-source. By making our tools and benchmark available

7

as open-source projects, we hope to facilitate future fuzzing work in general and com-
plex vulnerability-oriented (directed) fuzzing in particular. Furthermore, finding zero-day
vulnerabilities in real-world programs shows that our proposed techniques works well in
different security contexts. Finally, by reporting new bugs of open-source projects, it allows
the developers to analyze and fix the bugs, especially critical vulnerabilities, as early as
possible to make the software more robust.

1.3 Contributions
Overall, our contributions in this thesis are at several levels. For science contributions, we
had three (3) main contributions, which are a survey of directed fuzzing and the design,
implementation and evaluation of two directed fuzzers targeting complex vulnerabilities
in binary code. For technical contributions, we released our new directed fuzzers, our
UAF fuzzing benchmark and also contributed to the open-source binary analysis platform
Binsec [bin20]. To sum up, our contributions led to 3 research articles, 4 talks and 39
new bugs with 17 CVEs.

1.3.1 Scientific contributions

A survey of directed fuzzing Chapter 3 introduces a detailed survey on DGF focusing
on its security applications, formal definitions, challenges, existing solutions, current limi-
tations and promising future directions. We discuss in details directed fuzzing techniques
proposed in the state-of-the-art to provide a better understanding on the core techniques
of DGF behind our contributions in this thesis.

Directed fuzzing for UAF vulnerabilities We design the first directed greybox
fuzzing technique tailored to UAF bugs in Chapter 4. Especially, we systematically re-
visit the three (3) main ingredients of directed fuzzing including selection heuristic, power
schedule and input metrics and specialize them to UAF. It is worth noting that we aim
to find an input fulfilling both control-flow (temporal) and runtime address (spatial) con-
ditions to trigger the UAF bug. We solve this problem by bringing UAF characteristics
into DGF in order to generate more potential inputs reaching targets in sequence w.r.t.
the UAF expected bug trace.

• We propose three (3) dynamic seed metrics specialized for UAF vulnerabilities de-
tection. The distance metric approximates how close a seed is to all target locations,
and takes into account the need for the seed execution trace to cover the three UAF
events in order. The cut-edge coverage metric measures the ability of a seed to take
the correct decision at important decision nodes. Finally, the target similarity metric
concretely assesses how many targets a seed execution trace covers at runtime;

• Our seed selection strategy favors seeds covering more targets at runtime. The power
scheduler determines the energy for each selected seed based on its metric scores

8

during the fuzzing process;

• Finally, we take advantage of our previous metrics to pre-identify likely-PoC inputs
that are sent to a profiling tool (here Valgrind) for bug confirmation, avoiding
many useless checks.

Directed fuzzing for typestate vulnerabilities As we start with a bug trace that is
actually a sequence of method calls in bug reproduction, the ordering of target locations
is indeed important. Overall, similar to the directed fuzzer UAFuzz, TypeFuzz is made
out of several components including seed selection, power schedule and crash triage. It is
worth noting that different bugs have different characteristics in terms of bug traces and
runtime behaviors. Thus, we adapt the ordering-based input metrics initially tailored to
UAF bugs to find other widespread typestate vulnerabilities, such as buffer overflow or
NULL pointer dereference, in a more general context, in Chapter 6.

Evaluation on practical applications To evaluate the effectiveness of the pro-
posed techniques, we compare our fuzzers UAFuzz and TypeFuzz with state-of-the-art
coverage-guided and directed greybox fuzzers against the popular fuzzing benchmarks and
also known bugs of real-world security-critical programs.

Bug reproduction. Our evaluation demonstrates that our fuzzers are highly effective
and significantly outperform state-of-the-art competitors. In addition, our fuzzers enjoy
both low instrumentation and runtime overheads. Furthermore, we also show that im-
provements of each key ingredient of UAFuzz are proven complementary and contribute
to the final fuzzing performance in finding UAF vulnerabilities.

Patch testing. Our fuzzers are also proven effective in patch-oriented testing, leading
to the discovery of 39 unknown bugs (17 CVEs) in widely-used projects like GNU Binutils,
GPAC, MuPDF and GNU Patch (including 4 buggy patches). So far, 30 bugs have been
fixed. Interestingly, by using the stack trace of the Double-Free CVE-2018-6952, UAFuzz
successfully discovered an incomplete bug fix CVE-2019-20633 [dfp20] in the same bug
class in the latest version of GNU Patch with a slight difference of the bug stack trace.

1.3.2 Technical contributions

Open-source toolchains We develop open-source toolchains on top of the state-of-the-
art greybox fuzzer AFL [afl20a] and the binary analysis platform Binsec [bin20], named
UAFuzz [uaf20b] in Chapters 4 and 5 and TypeFuzz in Chapter 6, implementing the
above method for directed fuzzing over binary codes and enjoying small overhead. We have
implemented a Binsec plugin computing statically distance and cut-edge information,
consequently used in the instrumentation of our fuzzers – note that Call Graph (CG) and
Control Flow Graph (CFG) are retrieved from the IDA Pro [ida20] binary database. On
the dynamic side, we have modified AFL-QEMU to track covered targets, dynamically
compute seed scores and power functions. Finally, a small script automates bug triaging.

9

UAF fuzzing benchmark We construct and openly release a fuzzing benchmark ded-
icated to UAF [uaf20a], comprising 30 real bugs from 17 widely-used projects (including
the few previous UAF bugs found by existing directed fuzzers), in the hope of facilitating
future UAF fuzzing evaluation.

1.3.3 Publications and talks

Our contributions above led to the writing of the following research outputs in security
conferences:

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “Binary-level Directed Fuzzing for Use-After-Free Vulnerabilities”,
The 23nd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’20), 2020.

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “About Directed Fuzzing and Use-After-Free: How to Find Com-
plex & Silent Bugs? ”, Black Hat USA, 2020.

This thesis was presented in the PhD Student Symposium of several security workshops
in French as follows:

• Manh-Dung Nguyen, “Directed Fuzzing for Use-After-Free Vulnerabilities Detec-
tion”, Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes
d’Information (RESSI ’20 – Session doctorants), 2020.

• Manh-Dung Nguyen, “Directed Fuzzing for Use-After-Free Vulnerabilities Detec-
tion”, 19èmes Approches Formelles dans l’Assistance au Développement de Logiciels
(AFADL ’20 – Session doctorants), 2020.

We currently submitted the following journal article that presents all major contribu-
tions of this thesis.

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “Binary-level Directed Fuzzing for Complex Vulnerabilities”, un-
der submission to IEEE Transactions on Software Engineering (TSE), 2021.

Before my PhD, I contributed to the seminal work on directing greybox fuzzing, which
is the core technique discussed systematically in this thesis.

• Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, Abhik Roychoudhury,
“Directed Greybox Fuzzing”, Conference Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17), 2017.

10

1.4 Outline
This thesis is split into seven (7) chapters as follows:

• Chapter 1 first introduces the overview of my thesis including context, challenges,
objectives and contributions;

• Chapter 2 presents software vulnerabilities, especially memory corruption bugs and
then provides some background about greybox fuzzing in general;

• Chapter 3 introduces our first principle contribution by providing a comprehensive
survey on DGF, focusing on its formal definitions, challenges, existing solutions,
current limitations and promising future directions;

• Chapter 4 introduces our second principle contribution by proposing UAFuzz, which
is the first binary-level directed fuzzer to detect UAF bugs with detailed evaluations
of two practical applications: bug reproduction and patch testing;

• Chapter 5 discusses the implementation of our fuzzer UAFuzz and show its usage
via examples;

• Chapter 6 introduces our third principle contribution by showing the generality of
our directed fuzzing techniques to detect typestate bugs in Chapter 6 with some
detailed experiments;

• Chapter 7 concludes this thesis with a discussion on our research problems, our
contributions and possible future extensions of this work.

11

12

Chapter 2

Background

Contents
2.1 Memory Corruption Vulnerabilities . 13
2.2 Automated Vulnerability Detection . 15

2.2.1 Dynamic Symbolic Execution 16
2.2.2 Search-based Software Testing 16
2.2.3 Coverage-guided Greybox Fuzzing 17
2.2.4 Hybrid Fuzzing . 20

2.3 Conclusion . 21

This chapter presents a background on software bugs, especially memory related ones
and common existing automated vulnerability detection techniques. Here we focus on
dynamic testing techniques, especially Coverage-guided Greybox Fuzzing (CGF), that can
provide concrete bug-triggering inputs to help developers understand the root cause of the
bugs and fix them.

2.1 Memory Corruption Vulnerabilities

Memory safety violations [SLR+19] which are among the most severe security vulnerabil-
ities in C/C++ programs have been studied extensively in the literature. These vulnera-
bilities cause programs to crash, allowing their exploitation to lead to serious consequences
such as information leakage, code injection, control-flow hijacking and privilege escalation.

Spatial safety violations, such as buffer overflows, happen when dereferencing a pointer
out of the bounds of its intended pointed object. Temporal safety violations occur when
dereferencing a pointer to an object which is no longer valid (i.e., the pointer is dangling).
Observing a good stack discipline is usually easy and suffices to avoid bugs involving pointer
to stack objects. Thus, the most serious temporal memory violation involve pointers to
objects allocated on the heap; those are called Use-After-Free (UAF) bugs.

Furthermore, typestate analysis [SY86, FYD+08] represents another approach for de-
tecting statically temporal memory safety violations. The typestates of an object are

13

livealloc dead error
free

use

free : DF

use : UAF

Figure 2.1: Typestate for Use-After-Free and Double-Free bugs.

tracked by statically analyzing all the statements that affect the state transitions along all
the feasible paths in the program [YSCX17]. Typestate bugs often indicate violations to
certain safety conditions or security properties. Common memory corruption vulnerabili-
ties can be seen as typestate bugs. For example, 〈nullify → dereference〉 is a witness for
triggering a NULL pointer dereference. Similarly, 〈alloc → free → use〉 is the sequence
of states violating typestate property of UAF bugs, as illustrated in Figure 2.1. In other
words, a UAF warning for an object o is reported when a free call free(p) reaches a use
call use(q), which denotes a memory access on the same object pointed by q, along a
control-flow path, where ∗p and ∗q are aliases (i.e., p and q point to o).

Use-After-Free Use-After-Free (UAF) bugs happen when dereferencing a pointer to
a heap-allocated object which is no longer valid (i.e., the pointer is dangling), as shown
in Listing 2.1. Note that Double-Free (DF) is a special case, where the dangling pointer is
used to call free() again.

1 char *buf = (char *) malloc(BUF_SIZE);
2 ...
3 free(buf); // pointer buf becomes dangling
4 ...
5 strncpy(buf , argv[1], BUF_SIZE -1); // Use -After -Free

Listing 2.1: Code snippet illustrating a UAF bug.

UAF-triggering conditions Triggering a UAF bug requires to find an input whose
execution covers in sequence three UAF events : an allocation (alloc), a free and a use
(typically, a dereference), violating typestate property in Figure 2.1, all three referring to
the same memory object. Furthermore, this last use generally does not make the execution
immediately crash, as a memory violation crashes a process only when it accesses an address
outside of the address space of the process, which is unlikely with a dangling pointer. Thus,
UAF bugs go often unnoticed and are a good vector of exploitation [You15,LSJ+15]. For
instance, attackers can overwrite a return address when the dangling pointer is an escaped
pointer to a local variable and points to the stack [SPWS13].

14

2.2 Automated Vulnerability Detection
Existing automated vulnerability detection techniques can be considered as search over the
input space of the Program Under Test (PUT) to identify bug-triggering inputs. As the
input space of real-world programs is usually large, we aim to wisely search for interesting
inputs that trigger new program behavior (e.g., new code lines or new paths). The intuition
behind the search is that the more new states we explore, the more error states or bugs we
can find.

Definition 1. The goal of automated vulnerability detection is to find states s0 ∈ S0 such
that s0 →∗ Ω, where S0 is a set of initial states, Ω denotes the error state and→ describes
the transitions between states.

(a) In a random manner (b) With some guidance

Figure 2.2: Different approaches of exploring the input space, where • are selected inputs
to be mutated, × are generated inputs and shaded area are interesting space [BAS+19].

We focus on dynamic approaches. We can classify automated testing techniques de-
pending on the manner they explore the input space. Random techniques, like blackbox
fuzzing, explore the input space blindly. They mostly generate inputs near the initial seeds
and are therefore unable to explore new interesting space or new program features, as
shown in Figure 2.2a. To address this problem, semi-random techniques, like Search-based
Software Testing (SBST) or CGF, still involve randomness but also provide feedback or
dynamic guidance to decide which inputs are interesting to be kept in the extended corpus.
The criteria of selecting interesting inputs (e.g., scoring function in SBST or code coverage
in CGF) depend on the final goal of the testing phase. This strategy allows to gradually
explore the new input space that is far from the initial corpus and consequently discover
new paths of the PUT, as illustrated in Figure 2.2b.

However, due to randomness, these approaches shown in Figure 2.2 cannot make any
guarantees that the PUT is free of errors after the testing process. Systematic approaches,
like Symbolic Execution (SE), is even though costly but also more powerful as they can
systematically explore the input space by targeting specific program paths and generating
inputs covering these paths with the help of Satisfiability Modulo Theories (SMT) solvers.

15

Theoretically, given enough time, this strategy provides deterministic guarantees as being
able to explore all feasible paths in the program. However, it is less practical, especially
for real-world complex programs, due to the scalability issues and current limitations of
SMT solvers.

We will introduce dynamic automated vulnerability detection techniques and their no-
table work: Dynamic Symbolic Execution (DSE) (§2.2.1), SBST (§2.2.2), CGF (§2.2.3)
and hybrid methods particularly between CGF and other techniques (§2.2.4).

2.2.1 Dynamic Symbolic Execution

Similar to fuzzing, DSE or “concolic” execution [CS13] aims to generate new interesting
inputs from existing corpus, but in a systematic way. First, it runs the program with the
initial input and collects the path constraints on the input representing the execution path.
For instance, assume we have an input variable x, we execute the program with the sym-
bolic value x = α like normal SE and also the concrete value x = 1. Then, it negates one of
those path constraints to represent an alternate path. Finally it employs a SMT constraint
solver like Z3 [DMB08] to produce a satisfying input for the new path. Recently, there are
more hybrid techniques that combine the efficiency of CGF and the effectiveness of DSE.
Stephens et al. [SGS+16] designed Driller – the first hybrid fuzzing framework to over-
come fuzzing roadblocks such as magic-bytes comparisons. QSYM [YLX+18] tackled the
performance bottleneck of existing concolic executors by tightly integrating the symbolic
emulation with the native execution using dynamic binary translation, making it possible
to scale to find bugs in real-world software.

2.2.2 Search-based Software Testing

The key idea of SBST [McM04,McM11] is to employ local search algorithms for generating
test data. Some real-world SBST tools for unit test generation are AUSTIN [LHG13]
and EvoSuite [FA11]. Naturally, the concept of SBST is suitable in the fuzzing context.
For instance, Szekeres et al. [Sze17] proposed Search-based Fuzzing (SBF) combining the
scalability of fuzzers and the directionality of symbolic execution via several stochastic
local search strategies directly on the target to find coverage-increasing inputs. [JC19]
leverages Machine Learning (ML) to create a useful fitness function in the context of
searching for executions satisfying a specific property particularly crash reproduction using
fuzzing. We discuss the following key components of SBST, allowing to apply a search-
based optimization technique in software testing.

Fitness function The principal role of the fitness function is to guide the search toward
promising areas of the search space by scoring candidate solutions. The fitness function is
problem-specific as it evaluates different points in the search space with respect to their
interestingness for a specific goal. One of the most prominent examples of a fitness function
is to reach and cover a target branch [WBS01]. In the fuzzing context [afl20a], a fitness
function can evaluate the code coverage (e.g., lines, branches or functions are covered

16

by an input) at runtime to identify promising inputs to be mutated during the fuzzing
loop. Furthermore, VUzzer [RJK+17] evaluates the fitness of an input depending on the
interestingness of its execution paths (e.g., the number of covered non-error-handling basic
blocks).

Search strategies Common search algorithms of SBST [Bac96] are Hill Climbing, Ge-
netic Algorithms, or Simulated Annealing. Existing greybox fuzzers also use these algo-
rithms to design their power schedules which determine how much “energy” (or fuzzing
time) is assigned to a given input during fuzzing [BPR16].

Hill Climbing starts at a random input and evaluates its neighboring inputs in the
search space using the fitness function. If a better candidate is found, Hill Climbing jumps
to this new input and continues this process, until the neighborhood of the current input
offers no better solutions (a.k.a., local optimum). In case where the found local optimum is
not the global optimum, the strategy restarts the search again from a new initial position in
the search space. AFLSmart [PBS+19] implements a Hill Climbing power schedule that
assigns more energy to inputs with a higher degree of validity regarding the input format.

Simulated Annealing is similar to Hill Climbing, except that the movement around
the search space is more stochastic. Particularly, it also takes random moves towards
inputs with lower fitness scores (or worse solutions) with some probability to avoid getting
stuck in local minimum. This algorithm uses the temperature parameter to regulate the
acceptance of worse solutions. AFLGo [BPNR17] designs a Simulated Annealing-based
power schedule that assigns more energy to a seed that is closer to the targets.

Genetic Algorithms are slightly different from the aforementioned local search strate-
gies. While local search algorithms move from one point in the search space and always keep
track of only one best solution, Genetic Algorithms maintain multiple solutions at the same
time. Actually, state-of-the-art greybox fuzzers like AFL [afl20a] or libFuzzer [lib20a],
employ Genetic Algorithms to increase code coverage.

2.2.3 Coverage-guided Greybox Fuzzing

While original approaches were completely blackbox and more or less akin to random
testing, recent CGF [afl20a, lib20a] leverages lightweight program analysis to guide the
search – typically through coverage-based feedback. As the name suggests, CGF is geared
toward covering code in the large, in the hope of finding unknown vulnerabilities. Table 2.1
which classifies recent researches on CGF based on their techniques is representative rather
than exhaustive (a more complete version could be found in the Systemization of Knowledge
(SOK) paper [MHH+19]).

Code coverage Fuzzers aim to execute and observe the behavior of the programs with
a huge number of inputs. To improve the performance of coverage-guided fuzzers, the
primary goal is on getting this feedback as fast as possible at runtime. There are two
common methods by which fuzzers can obtain the code coverage information. First, for

17

Table 2.1: Overview of recent greybox fuzzers classified by technique and publication
date. S, B and S&B represent respectively source code, binary and both levels of analysis
(based on benchmarks). À: complex structure problem, Á: code coverage problem, Â:
complex bugs, Ã: directedness problem, Ä: human interaction, Å: parallel fuzzing, Æ:

anti-anti-fuzzing and Ç: seed generation.

Name Article Core techniques Level of Open Directionanalysis source

AFL [afl20a] 2015 State-of-the-art CGF S&B 3 Á

libFuzzer [lib20a] 2017 State-of-the-art CGF S 3 Á

AFLFast [BPR16] CCS’16 AFL + power schedule S 3 Á

SlowFuzz [PZKJ17] CCS’17 libFuzzer + new mutation strategies S 3 Â

PerfFuzz [LPSS18] ISSTA’18 AFL + new mutation strategies S 3 Â

FairFuzz [LS18] ASE’18 AFL + new mutation strategies S 3 Á

MOpt [LJZ+19] UseSec’19 AFL + new mutation mechanisms S 3 Á

TortoiseFuzz [WJL+] NDSS’19 AFL + new coverage measurements S 3 ÁÆ

Driller [SGS+16] NDSS’16 AFL ↔ SE B 3 Á

Munch [OHPP18] SAC’18 AFL → SE & SE → AFL S 3 Á

T-Fuzz [PSP18] S&P’18 AFL + program transformation + SE B 3 Á

QSym [YLX+18] UseSec’18 Hybrid fuzzing & DSE for binaries B 3 Á

DigFuzz [ZDYX19] NDSS’19 Hybrid fuzzing & DSE S 7 Á

Pangolin [HYW+20] S&P’20 AFL + Qsym + polyhedral path abstraction S 7 Á

VUzzer [RJK+17] NDSS’17 AFL-like + DTA + SA B 3 ÀÁ

Angora [CXL+18] S&P’18 AFL-like + DTA + gradient descent S 3 Á

TIFF [JRGB18] ACSAC’18 VUzzer + type-inference B 7 À

Matryoshka [CLC19] CCS’19 Angora + DTA for deeply nested branches S 7 Á

GreyOne [GZC+20] UseSec’19 Data flow sensitive fuzzing via DTA S 7 Á

Steelix [LCC+17] FSE’17 AFL + SA + instrumented comparison B 7 À

AFLGo [BPNR17] CCS’17 AFL + SA + power schedule S 3 Ã

CollAFL [GZQ+18] S&P’18 AFL + SA S 7 Á

Hawkeye [CXL+18] CCS’18 AFL-like + SA + power schedule S 7 Ã

Nezha [PTS+17] S&P’17 libFuzzer + SA + differential testing S 3 Á

ParmeSan [ÖRBG20] UseSec’20 libFuzzer + S 3 Ã

Augmented-AFL [RBS17] arxiv AFL + several neural models S 7 Á

Learn&Fuzz [GPS17] ASE’17 Seq2seq model S 7 À

Neuzz [SPE+18] SP’19 novel feed-forward Neural Networks S 3 Á

EnFuzz [CJM+19] UseSec’19 Ensemble diverse fuzzers B 3 Á

FuzzGuard [ZLW+] UseSec’20 AFLGo+ predict unreachable inputs S 7 Ã

HaCRS [SWD+17] CCS’17 Human-in-the-loop for binaries B 7 Ä

IJON [ASAH] S&P’20 AFL + an annotation mechanism S 3 Ä

perf-fuzz [XKMK17] CCS’17 libFuzzer+ 3 new operating primitives S 3 Å

PAFL [LJC+18] FSE’18 AFL + a new parallel mechanism S 7 Å

Skyfire [WCWL17] S&P’17 Data-driven highly-structured seeds generation S 3 Ç

the static instrumentation, the compiler adds special code (e.g., an unique random number
for AFL [afl20j]) at the start of each basic block to store the coverage information. This
method is therefore fast and widely used in popular coverage-guided fuzzers like AFL,
libFuzzer, etc. Second, in case where the source code is not available, fuzzers employ
Dynamic Binary Instrumentation (DBI) to obtain such coverage information. For example,
VUzzer and Steelix use PIN-based instrumentation [LCM+05], while Driller and T-Fuzz

18

rely on the QEMU-based instrumentation. Specifically, AFL supports various dynamic
instrumentation mechanisms for DBI, such as QEMU, PIN [afl20g], DynamoRIO [afl20b],
and Dyninst [afl20c]. However, this method suffers from the runtime overhead issues,
consequently is slower than the static instrumentation method.

AFL Here, we discuss in details the state-of-the-art AFL [afl20j], which led to a signifi-
cant amount of research on coverage-guided fuzzers.

• Edge coverage. Existing CGF mostly relies on the edge coverage. To track this
coverage, AFL [afl20a] associates to each basic block a unique random ID during
instrumentation. The coverage of the PUT on an input is collected as a set of pairs
(edge ID, edge hits), where edge ID of an edge A → B is computed as IDA→B ,
(IDA >> 1)⊕ IDB. Practically, edge hits values are bucketized to small powers of 2
(e.g., 1, 2, 3, 4-7, 8-15, 16-31, 32-127, and 128-255 times).

• Seed prioritization. A seed (input) is favored (selected) when it reaches under-
explored parts of the code, and such favored seeds are then mutated to create new
seeds for the code to be executed on.

• Power schedule. At the start of a new cycle, each input in the fuzzing queue is as-
signed an energy (a.k.a., fuzzing budget), which determines how many times each
input is to be modified and executed. Particularly, AFL’s power schedule employs
several fitness heuristics depending on inputs’ characteristics (e.g., input size, execu-
tion time with respect to the average or discovery time). For example, AFL doubles
the assigned energy of an input exercising a new path.

Directions for fuzzing research We can distinguish eight (8) kinds of directions for
improving fuzzing performance as follows:

1. Complex structure The randomness behind fuzzing means that it has a low prob-
ability of finding a solution to hard code such as magic byte comparisons or parsing,
which usually depend on the input.

2. Code coverage In direct relation to the previous problem, fuzzing sometimes ex-
plores no more than the surface of the program or cannot explore deep paths in the
PUT which are likely to trigger more interesting bugs.

3. Complex bugs Although CGF shows their ability to find various types of bugs (e.g.,
buffer overflows), complex bugs [Böh19] like UAF or non-deterministic bugs are still
a big challenge for existing fuzzers.

4. Directedness CGF lacks the ability to drive the execution towards user-specified
targets in the PUT – something useful for various testing scenarios such as patch
testing or bug reproduction.

19

5. Human interaction Even though fuzzing is easy to setup and run, it is still hard
for normal users or even developers to be actively involved in the fuzzing process
(e.g., providing some dynamic guidance in case the fuzzers get stuck or a better
visualization of fuzzing progress).

6. Parallel fuzzing Existing greybox fuzzers [afl20a,lib20a] support fuzzing in parallel
to take advantage of powerful hardware resources. However, the proposed master-
slave mechanism simply runs multiple instances and synchronizes coverage-increasing
inputs. Consequently, this strategy is less efficient due to overlapped work between
multiple fuzzing instances.

7. Anti-anti-fuzzing Recent anti-fuzzing techniques, such as Antifuzz [GAAH19] and
Fuzzification [JHS+19], are proposed to hinder the fuzzing process from adversaries
as much as possible. There is a very few work considering those advanced techniques
in the fuzzing context. In other words, existing fuzzers may perform worse when
fuzzing protected binaries.

8. Seed generation Seed generation is crucial for the efficiency of fuzzing, especially
for highly-structured input format as random inputs produced by CGF are usually
unable to pass the semantic checking. We aim to tackle the problem of generating a
high quality test suite to improve the fuzzing performance.

2.2.4 Hybrid Fuzzing

To address the fuzzing research problems, existing work has improved internal components
of greybox fuzzers. For example, AFLFast [BPR16] favors test cases covering rarely taken
paths of the PUT, then introduces a power schedule to determine the time required to fuzz
selected test cases. FairFuzz [LS18] introduces a mutation masking technique and changes
test case selection strategy to increase code coverage. Lyu et al. [LJZ+19] proposes MOpt,
a novel mutation scheduling scheme using Particle Swarm Optimization (PSO) algorithm,
allowing mutation-based fuzzers to hunt bugs more efficiently. Moreover, [XKMK17] de-
signs and implements three fuzzer-agnostic operating primitives to solve fuzzing perfor-
mance bottlenecks and improve its scalability and performance on multi-core machines.
Furthermore, existing work shows the effectiveness and efficiency of combining CGF with
the following techniques.

Hybrid static analysis & fuzzing Static analysis can be used to gain general informa-
tion about the PUT before running it. For example, Steelix [LCC+17] uses static analysis
and a modified instrumentation to find magic bytes and mutate test cases according to com-
parisons present in the program. CollAFL [GZQ+18] improves greybox fuzzers’ coverage
accuracy with new hash algorithms for blocks.

20

Hybrid DSE & fuzzing DSE can be used to generate new test cases or afterwards
to check crashes. Driller [SGS+16] does the former by using SE and a SMT solver like
Z3 [DMB08] to generate test cases leading to new parts of the program when the fuzzer
gets stuck. T-Fuzz [PSP18], on the other hand, applies semantic-preserving transformation
to the program – which leads to false positives – then reproduces crashes on the original
PUT using SE.

Hybrid dynamic taint analysis & fuzzing Dynamic Taint Analysis (DTA) can be
used to gain information at runtime, especially about the execution of a given test case. For
example, VUzzer [RJK+17] employs DTA to extract control and data flow features from the
PUT to guide input generation. Angora [CC18] uses byte-level taint tracking and gradient
descent to track unexplored branches and solve path constraints. Matryoshka [CLC19]
employs taint analysis that allows fuzzers to explore deeply nested conditional statements.

Hybrid machine learning & fuzzing Recent research work explores how ML has been
applied to address principal challenges in fuzzing for vulnerability detection [WJLL19,
SRDK19]. Learn&Fuzz [GPS17] proposes a Recurrent Neural Network approach to au-
tomatically generate complex structured inputs like pdf files and increase the code coverage.
NEUZZ [SPE+18] employs a dynamic neural program embedding to smoothly approximate
a PUT’s branch behavior.

Hybrid human-in-the-loop fuzzing Recently, the human-in-the-loop approach gained
the attention of the fuzzing community. For example, Shoshitaishvili et al. [SWD+17]
introduces the system HaCRS that allows humans to interact with the target application
by analyzing the target and providing a list of strings relevant to the PUT’s behavior.
IJON [ASAH] leverages source-based annotations from a human analyst to guide the fuzzer
to overcome roadblocks. Additionally, VisFuzz [ZWL+19] proposes an interactive tool for
better understanding and intervening fuzzing process via runtime visualization.

2.3 Conclusion
In this chapter, we introduce common memory corruption bugs, especially typestate vulner-
abilities such as UAF. Different dynamic testing techniques have been proposed in related
work and each technique has its own pros and cons in terms of finding memory corruption
bugs. Finally, we provide an overview about CGF with the state-of-the-art AFL, which is
behind hundreds of high-impact vulnerability discoveries of real-world projects.

21

22

Chapter 3

A Survey of Directed Greybox Fuzzing

Contents
3.1 Introduction . 23

3.1.1 Formalization of the Directed Fuzzing Problem 24
3.1.2 Applications of Directed Fuzzing 25
3.1.3 Differences between Directed and Coverage-based Fuzzing . . . 26

3.2 Overview . 26
3.2.1 Workflow . 26
3.2.2 Core Algorithm . 27

3.3 Input Metrics . 28
3.3.1 Distance metric . 28
3.3.2 Covered function similarity metric 30

3.4 Differences between Source- and Binary-based Directed Fuzzing 30
3.5 Limitations & Future Directions . 31
3.6 Conclusion . 32

This chapter aims to introduce a detailed survey on Directed Greybox Fuzzing (DGF)
focusing on its security applications, formal definitions, challenges, existing solutions, cur-
rent limitations and promising future directions. This chapter is indeed important to
provide a better understanding of the core techniques of DGF behind our contributions in
this thesis.

3.1 Introduction

As previously discussed in §2.2.3, there are several research directions aiming to boost
fuzzing performance of greybox fuzzing. One interesting direction is DGF [BPNR17,
CXL+18] which aims at reaching a pre-identified potentially buggy part of the code from
a target (e.g., patch, static analysis report), as often and fast as possible, since existing
greybox fuzzers cannot be effectively directed. In particular, directed fuzzers follow the
general principles and architecture of Coverage-guided Greybox Fuzzing (CGF), but adapt

23

the key components to their goal, essentially favoring seeds “closer” to the target rather
than seeds discovering new parts of code.

DGF is indeed important to guide the search towards vulnerable code to reduce the
fuzzing time budget and wisely use the hardware infrastructures for both developers and
attackers. From the developers’ point of view, they want to perform stress testing on new
components instead of spending time to test well-tested or bug-free components again.
From the attackers’ point of view, starting with a recent bug fix or a list of potentially
vulnerable functions as attack vectors gives them more chance to find bugs quickly in the
target applications. Furthermore, according to Shin et al. [SW13], only 3% files of the large
code base in Mozilla Firefox are buggy, thus covering all code paths of the large software
is impossible and ineffective in practice.

3.1.1 Formalization of the Directed Fuzzing Problem

Definition 2 (Transition system). A transition system is a tuple 〈S0, S,→〉, where S0 is
a set of initial states, S is the set of all states, and →∈ S × S describes the admissible
transitions between states.

As mentioned in the hypotheses in Chapter 1, we assume that all the transition systems
that we study are deterministic, which implies that non-deterministic or flaky bugs are out
of the scope of this thesis. A deterministic transition system is a transition system where
the transition → is right-unique (i.e., the successor state is completely determined by the
predecessor state, and → is a partial function).

Definition 3 (Complete state trace). A complete state trace is a sequence 〈s0, . . . , sn〉 of
states (i.e., a pair of method calls and a memory state) such that

∀i : 0 ≤ i < n⇒ si → si+1

Assuming determinacy, the execution depends on an input, which is the set of all the
values fed to the program. An instruction trace of an input is the sequence of program
locations (e.g., addresses or lines of code) in a complete state trace. An execution trace of an
input is the complete sequence of states executed by the program on this input. Clearly,
the final goal of automated vulnerability detection in general and (directed) fuzzing in
particular is to find an input whose execution trace ends with a visible error (e.g., a crash).
Furthermore, by inspection of the state of a process when it crashes, we can extract a stack
trace, which is the sequence of call stacks in a complete state trace.

Definition 4 (Reachability). A reachable state s is a state such that

∃s0 ∈ S0 : s0 →∗ s

Definition 5 (Matching input). We say that s0 matches a target instruction trace t or
callstack trace T (e.g., written s0 � t) if the execution starting from s0 passes through all
the program locations in t or callstacks in T , respectively.

24

Automated vulnerability detection can be considered as a search problem over the input
space to satisfy a specific condition. While existing directed symbolic execution approaches
cast the reachability problem as iterative constraint satisfaction problem [CDE+08,MC13],
as the state-of-the-art DGF, AFLGo [BPNR17] casts the reachability of target locations
as an optimization problem and adopts a meta-heuristic to prioritize potential inputs.
Depending on the application, a target, which is originated from bug stack traces, patches
or static analysis reports, could be a sequence of method calls, a sequence of basic blocks
or only one instruction. Note that not all target traces are actual traces, for instance a
target trace containing dead code. Formally, we define the problem of directed fuzzing as:

Definition 6 (Directed fuzzing). The goal of a directed fuzzer is, given a target t, to find
a matching input s0 for t.

Proposition 1. Let s be a reachable state. Let Σ be the callstack of s. Then, Σ is an
instruction trace.

Proof. By construction.

Proposition 2. Let s be a reachable state. Let ` be the current program location of s.
Then, ` is an instruction execution trace.

Proof. By construction, and considering that program locations are isomorphic to se-
quences of length 1.

3.1.2 Applications of Directed Fuzzing

Bug reproduction DGF is useful to reproduce disclosed bugs without the Proof-of-
Concept (PoC). For example, due to concerns such as privacy, some applications (e.g.,
Microsoft’s products) are not allowed to send the bug-triggering inputs. Thus, the devel-
opers can employ DGF to reproduce the crash based on the limited information provided,
such as the method calls in the stack traces and some system configurations.

Patch testing A directed fuzzer can be used to test whether a patch is complete. Thus,
directed fuzzing towards recent changes or patches has a higher chance of exposing newly-
introduced bugs or incomplete bug fixes.

Static analysis report verification Static analysis can be leveraged to limit the search
space in the testing and enhance directedness. In this setting, DGF can generate test inputs
that show the vulnerability if it actually exists.

Information flow detection To detect data leakage vulnerabilities, a directed fuzzer
can be used to generate executions that exercise sensitive sources containing private infor-
mation and sensitive sinks where data becomes visible to the outside world.

25

Knowledge involvement It is possible to leverage the knowledge from developers or
other techniques to provide more information to. For example, developers can help to iden-
tify the critical modules or potentially buggy functions based on the previous experience
to drive fuzzing toward vulnerable parts.

3.1.3 Differences between Directed and Coverage-based Fuzzing

Target selection For DGF, a set of target locations must be identified manually or
automatically in advance to guide the fuzzing process. Therefore, the target selection has
a high impact on the performance of DGF. For example, selecting critical sites, such as
malloc() and free(), as targets is more likely to allow DGF to detect heap-based memory
corruption bugs.

Seed selection Since CGF aims to maximize the code coverage, CGF only retains inputs
covering new paths and prioritizes an input simply based on its execution trace (e.g.,
quicker executions, larger traces, etc.). In contrast, DGF aims to reach specific predefined
targets, it therefore prioritizes seeds that are “closer” to the targets using distance-based
seed metric.

Exploration-exploitation For DGF, the whole fuzzing process is divided into two
phases: the exploration phase and the exploitation phase. In the exploration phase, like
existing coverage-guided fuzzers, DGF aims to explore as many paths as possible. Then,
in the exploitation phase, DGF gives more chances of mutation to “closer” seeds that are
more likely to generate inputs to reach the target. The intuition is that we should gradually
assign more “energy” to a seed that is “closer” to the targets than to a seed that is “further
away”.

Triage In some settings such as bug reproduction, we need to verify whether a directed
fuzzer triggers the expected bug with the expected stack traces in the triage step. Differ-
ently, for CGF, all unique crashing inputs are interesting.

3.2 Overview

3.2.1 Workflow

Figure 3.1 depicts the workflow of DGF. Overall directed fuzzers are built upon three
main steps: (1) instrumentation (distance pre-computation), (2) fuzzing (including seed
selection, power schedule and seed mutation) and (3) triage.

26

1○Instrumentation

2○Fuzzing Loop

3○Triage

Seeds Seed
Selector

Power
Scheduler Mutants

Run
Instrumented PUT

Queue of
Interesting Inputs

Crashing Inputs Static
Calculator

CG CFGsTarget

PUT

Figure 3.1: Workflow of DGF (different components compared to CGF are in gray).

3.2.2 Core Algorithm

The standard core algorithm of DGF is presented in Algorithm 1 (the different parts
compared to CGF are in gray). Given a program P , a set of initial seeds S0 and a target
T , the algorithm outputs a set of bug-triggering inputs S ′. The fuzzing queue S is initialized
with the initial seeds in S0 (line 1).

1. DGF first performs a static analysis (e.g., target distance computation for each basic
block) and insert the instrumentation for dynamic coverage or distance information
(line 2);

2. The fuzzer then repeatedly mutates inputs s chosen from the fuzzing queue S (line 4)
until a timeout is reached. An input is selected either if it is favored (i.e., believed to
be interesting) or with a small probability α (line 5). Subsequently, DGF assigns the
energy (a.k.a, the number M of mutants to be created) to the selected seed s (line 6).
Then, the fuzzer generates M new inputs by randomly applying some predefined
mutation operators on seed s (line 8) and monitors their executions (line 9). If the
generated mutant s′ crashes the program, it is added to the set S ′ of crashing inputs
(line 11). Also, newly generated mutants are added to the fuzzing queue1 (line 13);

3. Finally, DGF returns S ′ as the set of bug-triggering inputs (triage does nothing in
standard DGF) (line 14).

1This is a general view. In practice, seeds regarded as very uninteresting are already discarded at this
point.

27

Algorithm 1: Directed Greybox Fuzzing
Input : Program P ; Initial seeds S0; Target locations T
Output: Bug-triggering seeds S′

1 S′ := ∅; S := S0; . S: the fuzzing queue

2 P ′ ← preprocess(P, T) ; . phase 1: Instrumentation
3 while timeout not exceeded do . phase 2: Fuzzing
4 for s ∈ S do
5 if is_favored(s) or rand() ≤ α then

. seed selection, α: small probability

6 M := assign_energy(s) ; . power schedule
7 for i ∈ 1 ... M do
8 s′ := mutate_input(s); . seed mutation
9 res := run(P ′, s′, T);

10 if is_crash(res) then
11 S′ := S′ ∪ {s′}; . crashing inputs

12 else
13 S := S ∪ {s′};

14 S′ = triage(S, S′); . phase 3: Triage
15 return S′;

3.3 Input Metrics

AFLGo [BPNR17] was the first to propose a CGF-based distance to evaluate the proximity
between a seed execution and multiple targets, together with a simulated annealing-based
power schedule. Hawkeye [CXL+18] keeps the CGF-based view but improves its accu-
racy2, brings a seed selection heuristic partly based on target coverage (seen as a set of
locations) and proposes adaptive mutations. In the following we describe in detail how
existing directed fuzzers compute the most important score which is the seed distance.

3.3.1 Distance metric

Function level distance We define df (n, Tf) as follow:

df (n, Tf) =

undefined if R(n, Tf) = ∅[∑
tf∈R(n,Tf)

df (n, tf)
−1
]−1

otherwise
(3.1)

where df (n, tf) is the Dijkstra shortest distance between two functions n and tf .

2Possibly at the price of both higher pre-computation costs due to more precise static analysis and
runtime overhead due to complex seed metrics.

28

2

2+2
2

2

3+1
2

t1

2

1+3
2

t2

(a) Arithmetic Mean

1

1
1
2
+ 1

2

3
4

1
1
3
+ 1

1

t1

3
4

1
1
1
+ 1

3

t2

(b) Harmonic Mean

Figure 3.2: Difference between node distance defined in terms of arithmetic mean versus
harmonic mean. Node distance is shown in the white circles. The targets are marked in

gray [BPNR17].

Basic block level distance We define db(m,Tb) as follows:

db(m,Tb) =

0 if m ∈ Tb
c · min
n∈N(m)

(df (n, Tf)) if m ∈ T[∑
t∈T

(db(m, t) + db(t, Tb))
−1
]−1

otherwise

(3.2)

where db(m, t) is the Dijkstra shortest distance between two basic blocks m and t ; df (n, Tf)
is the function level distance between function n and Tf in the call graph; N(m) is the set
of functions called by basic block m such that ∀n ∈ N(m).R(n, Tf) 6= ∅ where R(n, Tf) is
the set of all target functions that are reachable from n in Call Graph (CG); T is the set
of basic blocks in CGF such that ∀m ∈ T.N(m) 6= ∅; c is a constant approximating the
length of a trace between two functions. The harmonic mean allows to better measure the
distance between two nodes to multiple targets, as illustrated in Figure 3.2.

Seed distance Let ξ(s) be the execution trace of a seed s containing the exercised basic
blocks. The distance ds(s, Tb) of a seed s to Tb as

ds(s, Tb) =

∑
m∈ξ(s) db(m,Tb)

|ξ(s)|
(3.3)

Call graph edge weight While AFLGo uses the original CG whose edge weight wAFLGo
is always 1, Hawkeye proposes the Augmented Adjacent-Function Distance (AAFD) by
augmenting the edge weight wHawkeye based on the immediate call relation between the
caller and the callee. For example, if fb appears in both if and else branches in fa as shown
in Listing 3.1, df (fa, fb) should be smaller than df (fa, fc) if there is only one call of fc in

29

fa (same for Listing 3.2).

void fa (int i) {
if (i > 0) {

fb(i);
} else {

fb(i * 2);
fc();

}
}

Listing 3.1: Call pattern 1.

void fa (int i) {
if(i > 0) {

fb(i);
fb(i * 2);

} else {
fc();

}
}

Listing 3.2: Call pattern 2.

3.3.2 Covered function similarity metric

Furthermore, Hawkeye also proposes the covered function similarity metric which mea-
sures the similarity between the seed execution trace and the target execution trace on
the function level. The intuition is that seeds covering more functions in the expected bug
trace will have more chances to be mutated to reach the targets.

Finally, Hawkeye employs a fairness of traces based power schedule, that is calculated
based on those seed metrics, to balance the effect of shorter traces and the longer traces
that could reach the targets.

3.4 Differences between Source- and Binary-based Di-
rected Fuzzing

Target locations We can extract target locations from the bug reports produced
by the profiling tools, such as AddressSanitizer (ASan) or Valgrind at source and
binary level respectively. Different levels of analysis have different formats of tar-
get locations. Concretely, while the target location is represented in the format
“source_file:line_of_code” at source level, binary-based DGF takes targets in the for-
mat “function:address_of_block”. In both cases, different formats have the similar goal
of representing a function call appeared in the stack traces of the bug report. Furthermore,
it is clear that manually providing target locations at source level (e.g., only by reading
the source code without running any tools like a disassembler) is a bit easier for users than
at binary level.

Preprocessing It is worth noting that all proposed seed metrics, including the most
important distance-based one, have some computations on CG and CGFs of the tested
program. Different levels of analysis have different methods of pre-computing the static in-
formation. While existing source-based DGF currently relies on Low-Level Virtual Machine
(LLVM)’s analysis tools to generate graphs, binary-based directed fuzzers first employ a
binary disassembler, for example IDA Pro, to obtain those important graphs of the tested
binary in the preprocessing phase.

30

Triaging Different levels of analysis rely on different profiling tools to triage inputs pro-
duced by the fuzzer in the final step. In practice, we often instrument the Program Under
Test (PUT) with ASan such that source-based fuzzers can detect memory corruption bugs
when they are triggered instead of silently corrupting some memory region. In case where
the source code of PUT is not available, we employ Valgrind, which is the state-of-the-art
binary-only memory checker in the triaging phase. To the best of our knowledge, there is
no practical approach to fuzz binaries with Valgrind Memcheck due to its heavyweight
instrumentation. Therefore, Valgrind is more suitable for triaging inputs.

3.5 Limitations & Future Directions

Limitations DGF’s limitations inherit from CGF as both techniques share the same
workflow and key fuzzing components. Apart from those similar problems, such as complex
input structures or hard-to-detect bugs, as discussed in §2.2.3, DGF has its own limitations
that come from its existing solutions and implementation. We will discuss in brief DGF’s
significant limitations, some promising directions and revisit the thesis’s main goals to close
gaps in the state-of-the-art DGF.

1. High instrumentation overhead The distance computation is the first step
in DGF’s workflow. However, apart from some implementation issues [afl20f] of
AFLGo, this process takes too long in some cases (e.g., several hours for Binutils)
to calculate the distances and instrument them before use. Also, we may need to
re-compute distances and instrument them again each time the targets are changed.

2. Incomplete graphs As distance metric plays an important role in examining the
affinity between current input and the targets, the accuracy of Control Flow Graph
(CFG) and especially CG majorly affect the calculation of the trace distance and
also the whole fuzzing process. However, these graphs extracted at both source-
or binary-level are incomplete due to indirect calls or indirect jumps. Dynamically
updating the graphs at runtime may boost the fuzzing performance.

3. Binary-level support Existing directed fuzzers are mostly source-based approaches.
One of the very few binary-based directed fuzzers is 1dVul [PLL+19] that discovers
1-day vulnerabilities via binary patches by leveraging a hybrid approach of distance-
based directed fuzzing and dominator-based directed symbolic execution. Developing
fuzzers that are able to handle binary code in different security applications becomes
increasingly necessary.

4. Human-in-the-loop Overall it is not easy for testers or developers to intervene with
the directed fuzzing process. First, for the source-based directed fuzzers, the target
(lines of code, e.g., “main.c:10”) could be manually provided by users in some cases.
However, for binary-based directed fuzzers, it is more tedious and challenging as the
target is now a set of virtual addresses. Second, like CGF, users still have difficulties

31

in controlling the directed fuzzing at runtime, for example select targets back and
forth without stopping the fuzzing process since existing directed fuzzers may need
to repeat the instrumentation process when modifying the targets.

3.6 Conclusion
In this chapter, we present a survey of DGF. By introducing the core techniques of recent
DGF in many aspects, we hope to provide a background for readers to follow the later
technical chapters.

Revisit our goal Having described in brief the existing automated vulnerability
detection methods, their classification based on search space exploration techniques,
practical dynamic approaches like (directed) greybox fuzzing and their problems, we
finally turn our focus towards designing a solution to address some of the aforementioned
limitations.

Our goal is to develop effective directed fuzzing techniques to detect
complex typestate vulnerabilities, such as Use-After-Free (UAF), at binary level
in diverse security applications with a low overhead.

32

Chapter 4

Binary-level Directed Fuzzing for
Use-Afer-Free Vulnerabilities

Contents
4.1 Introduction . 34
4.2 Motivation . 35
4.3 The UAFuzz Approach . 37

4.3.1 Bug Trace Flattening . 38
4.3.2 Seed Selection based on Target Similarity 40
4.3.3 UAF-based Distance . 42
4.3.4 Power Schedule . 44
4.3.5 Postprocess and Bug Triage . 46

4.4 Experimental Evaluation . 47
4.4.1 Research Questions . 47
4.4.2 Evaluation Setup . 47
4.4.3 UAF Bug-reproducing Ability (RQ1) 49
4.4.4 UAF Overhead (RQ2) . 53
4.4.5 UAF Triage (RQ3) . 56
4.4.6 Individual Contribution (RQ4) 57
4.4.7 Patch Testing & Zero-days . 58
4.4.8 Threats to Validity . 61

4.5 Related Work . 62
4.5.1 Directed Greybox Fuzzing . 62
4.5.2 Coverage-based Greybox Fuzzing 62
4.5.3 UAF Detection . 62
4.5.4 UAF Fuzzing Benchmark . 63

4.6 Conclusion . 64

In this chapter, we introduce UAFuzz, a binary-level directed fuzzer specializing to
detect CWE-415 Double-Free (DF) and CWE-416 Use-After-Free (UAF). We evaluate the
effectiveness and efficiency of our proposed techniques on real-world programs against the
state-of-the-art (directed) greybox fuzzers via several research questions. UAFuzz is also

33

applicable in both applications: bug reproduction and patch testing.

4.1 Introduction

Proposal We propose UAFuzz, the first (binary-level) directed greybox fuzzer tailored
to UAF bugs. A quick comparison of UAFuzz with existing greybox fuzzers in terms of
UAF is presented in Table 4.1. While we follow mostly the generic scheme of directed
fuzzing, we carefully tune several of its key components to the specifics of UAF:

• the distance metric favors shorter call chains leading to the target functions that
are more likely to include both allocation and free functions – where state-of-the-art
directed fuzzers rely on a generic Control Flow Graph (CFG)-based distance;

• seed selection is now based on a sequenceness-aware target similarity metric – where
state-of-the-art directed fuzzers rely at best on target coverage;

• our power schedule benefits from these new metrics, plus another one called cut-edges
favoring prefix paths more likely to reach the whole target.

Table 4.1: Summary of existing greybox fuzzing techniques.

AFL AFLGo Hawkeye UAFuzz
Directed fuzzing approach 7 3 3 3
Support binary 3 7 7 3
UAF bugs oriented 7 7 7 3
Fast instrumentation 3 7 7 3
UAF bugs triage 7 7 7 3

Finally, the bug triaging step piggy-backs on our previous metrics to pre-identifies seeds as
likely-bugs or not, sparing a huge amount of queries to the profiling tool for confirmation
(Valgrind [NS07] in our implementation).

Contributions Our contribution is the following:

• We design the first directed greybox fuzzing technique tailored to UAF bugs directed
fuzzing (selection heuristic, power schedule, input metrics) and specialize them to
UAF. These improvements are proven beneficial and complementary;

• We develop a toolchain on top of the state-of-the-art greybox fuzzer AFL [afl20a] and
the binary analysis platform Binsec [bin20], named UAFuzz [uaf20b], implementing
the above method for UAF directed fuzzing over binary codes and enjoying small
overhead;

34

• We construct and openly release [uaf20a] the largest fuzzing benchmark dedicated
to UAF, comprising 30 real bugs from 17 widely-used projects (including the few
previous UAF bugs found by directed fuzzers), in the hope of facilitating future UAF
fuzzing evaluation;

• We evaluate our technique and tool in a bug reproduction setting (Section 4.4),
demonstrating that UAFuzz is highly effective and significantly outperforms state-
of-the-art competitors: 2× faster in average to trigger bugs (up to 43×), +34% more
successful runs in average (up to +300%) and 17× faster in triaging bugs (up to
130×, with 99% spare checks);

• Finally, UAFuzz is also proven effective in patch testing (§4.4.7), leading to the
discovery of 32 unknown bugs (13 UAFs, 10 CVEs) in projects like GNU Binutils,
GPAC, MuPDF and GNU Patch (including 4 buggy patches). So far, 17 have been
fixed.

UAFuzz is the first directed greybox fuzzing approach tailored to detecting UAF vulner-
abilities (in binary) given only bug stack traces. UAFuzz outperforms existing directed
fuzzers on this class of vulnerabilities for bug reproduction and encouraging results have
been obtained as well on patch testing. We believe that our approach may also be useful
in slightly related contexts, for example partial bug reports from static analysis or other
classes of vulnerabilities.

4.2 Motivation
The toy example in Listing 4.1 contains a UAF bug due to a missing exit() call, a common
root cause in such bugs (e.g., CVE-2014-9296, CVE-2015-7199). The program reads a file
and copies its contents into a buffer buf. Specifically, a memory chunk pointed at by p is
allocated (line 12), then p_alias and p become aliased (line 15). The memory pointed by
both pointers is freed in function bad_func (line 11). The UAF bug occurs when the freed
memory is dereferenced again via p (line 19).

Bug-triggering conditions The UAF bug is triggered iff the first three bytes of the
input are ‘AFU’. To quickly detect this bug, fuzzers need to explore the right path through
the if part of conditional statements in lines 13, 5 and 18 in order to cover in sequence
the three UAF events alloc, free and use respectively. It is worth noting that this UAF
bug does not make the program crash, hence existing greybox fuzzers without sanitization
will not detect this memory error.

Coverage-based greybox fuzzing Starting with an empty seed, AFL quickly generates
3 new inputs (e.g., ‘AAAA’, ‘FFFF’ and ‘UUUU’) triggering individually the 3 UAF events.
None of these seeds triggers the bug. As the probability of generating an input starting
with ‘AFU‘ from an empty seed is extremely small, the coverage-guided mechanism is not

35

1 int *p, *p_alias;
2 char buf [10];
3 void bad_func(int *p) {free(p);} /* exit() is missing */
4 void func() {
5 if (buf[1] == ’F’)
6 bad_func(p);
7 else /* lots more code ... */
8 }
9 int main (int argc , char *argv []) {

10 int f = open(argv[1], O_RDONLY);
11 read(f, buf , 10);
12 p = malloc(sizeof(int));
13 if (buf[0] == ’A’){
14 p_alias = malloc(sizeof(int));
15 p = p_alias;
16 }
17 func();
18 if (buf[2] == ’U’)
19 *p = 1;
20 return 0;
21 }

Listing 4.1: Motivating example.
effective here in tracking a sequence of UAF events even though each individual event is
easily triggered.

Directed greybox fuzzing Given a bug trace (14 – alloc, 17, 6, 3 – free, 19 – use)
generated for example by ASan, Directed Greybox Fuzzing (DGF) prevents the fuzzer
from exploring undesirable paths, e.g., the else part at line 7 in function func, in case
the condition at line 5 is more complex. Still, directed fuzzers have their own blind spots.
For example, standard DGF seed selection mechanisms favor a seed whose execution trace
covers many locations in targets, instead of trying to reach these locations in a given order.
For example, regarding a target (A, F, U), standard DGF distances [BPNR17,CXL+18]
do not discriminate between an input s1 covering a path A → F → U and another input
s2 covering U → A → F . The lack of ordering in exploring target locations makes UAF
bug detection very challenging for existing directed fuzzers. Another example: the power
function proposed by Hawkeye [CXL+18] may assign much energy to a seed whose trace
does not reach the target function, implying that it could get lost on the toy example in
the else part at line 7 in function func.

A glimpse at UAFuzz We rely in particular on modifying the seed selection heuristic
w.r.t. the number of targets covered by an execution trace (§4.3.2) and bringing target
ordering-aware seed metrics to DGF (§4.3.3).

On the toy example, UAFuzz generates inputs to progress towards the expected target
sequences. For example, in the same fuzzing queue containing 4 inputs, the mutant ‘AFAA’,
generated by mutating the seed ‘AAAA’, is discarded by AFL as it does not increase code

36

coverage. However, since it has maximum value of target similarity metric score (i.e., 4
targets including lines 14, 17, 6, 3) compared to all 4 previous inputs in the queue (their
scores are 0 or 2), this mutant is selected by UAFuzz for subsequent fuzzing campaigns.
By continuing to fuzz ‘AFAA’, UAFuzz eventually produces a bug-triggering input, e.g.,
‘AFUA’.

Evaluation AFLGo (source-level) cannot detect the UAF bug within 2 hours12, while
UAFuzz (binary-level) is able to trigger it within 20 minutes. Also, UAFuzz sends a
single input to Valgrind for confirmation (the right Proof-of-Concept (PoC) input), while
AFLGo sends 120 inputs.

4.3 The UAFuzz Approach
UAFuzz is made out of several components encompassing seed selection (§4.3.2), input
metrics (§4.3.3), power schedule (§4.3.4), and seed triage (§4.3.5). Before detailing these
aspects, let us start with an overview of the approach.

Binary

Targets

CG

CFGs

Computation UAF-based Distance

Cut-edge Coverage

Target Similarity

Input Metrics

Seed
Selection

Power
Schedule

UAF
Triage

UAF bugs

Instrumentation Fuzzing Triage

Figure 4.1: Overview of UAFuzz.

We aim to find an input fulfilling both control-flow (temporal) and runtime (spatial)
conditions to trigger the UAF bug. We solve this problem by bringing UAF characteristics
into DGF in order to generate more potential inputs reaching targets in sequence w.r.t.
the UAF expected bug trace. Figure 4.1 depicts the general picture. Especially:

• We propose three dynamic seed metrics specialized for UAF vulnerabilities detection.
The distance metric approximates how close a seed is to all target locations (§4.3.3),
and takes into account the need for the seed execution trace to cover the three UAF
events in order. The cut-edge coverage metric (§4.3.4.1) measures the ability of a
seed to take the correct decision at important decision nodes. Finally, the target
similarity metric concretely assesses how many targets a seed execution trace covers
at runtime (§4.3.2.2);

1AFL-QEMU did not succeed either.
2Hawkeye is not available and thus could not be tested.

37

• Our seed selection strategy (§4.3.2) favors seeds covering more targets at runtime.
The power scheduler determining the energy for each selected seed based on its metric
scores during the fuzzing process is detailed in §4.3.4;

• Finally, we take advantage of our previous metrics to pre-identify likely-PoC inputs
that are sent to a profiling tool (here Valgrind) for bug confirmation, avoiding
many useless checks (§4.3.5).

4.3.1 Bug Trace Flattening

Bug trace As stack traces provide (partial) information about the sequence of pro-
gram locations leading to a crash, they are extremely valuable for bug reproduction
[JO12, BPNR17, CXL+18, LZY+19]. Yet, as crashes caused by UAF bugs may happen
long after the UAF happened, standard stack traces usually do not help in reproducing
UAF bugs. Hopefully, profiling tools for dynamically detecting memory corruptions, such
as ASan [SBPV12] or Valgrind [NS07], record the stack traces of all memory-related
events: when they detect that an object is used after being freed, they actually report
three stack traces (when the object is allocated, when it is freed and when it is used after
being freed). We call such a sequence of three stack traces a UAF bug trace. When we
use a bug trace as an input to try to reproduce the bug, we call such a bug trace a target.

// Stack trace for the bad Use
==4440== Invalid read of size 1
==4440== at 0x40A8383: vfprintf (vfprintf.c:1632)
==4440== by 0x40A8670: buffered_vfprintf (vfprintf.c:2320)
==4440== by 0x40A62D0: vfprintf (vfprintf.c:1293)
==4440== by 0x80AA58A: error (elfcomm.c:43)
==4440== by 0x8085384: process_archive (readelf.c:19063)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

// Stack trace for the Free
==4440== Address 0x421fdc8 is 0 bytes inside a block of size 86 free’d
==4440== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==4440== by 0x80857B4: process_archive (readelf.c:19178)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

// Stack trace for the Alloc
==4440== Block was alloc’d at
==4440== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
==4440== by 0x80AC687: make_qualified_name (elfcomm.c:906)
==4440== by 0x80854BD: process_archive (readelf.c:19089)
==4440== by 0x8085A57: process_file (readelf.c:19242)
==4440== by 0x8085C6E: main (readelf.c:19318)

Figure 4.2: Bug trace of CVE-2018-20623 (UAF) produced by Valgrind.

A bug trace is a sequence of stack traces, i.e. it is a large object not fit for the

38

Algorithm 2: Bug Trace Flattening
1 Let 〈Σ1, . . . ,Σn〉 be a callstack trace. The algorithm has two steps:

• Consider all callstacks as paths in a tree, and reconstitute the tree corresponding to
these paths (the dynamic call tree)

• Traverse the tree in preorder.

For instance, the flattening of 〈〈`1, `2, `3〉, 〈`1, `2, `4〉〉 is 〈`1, `2, `3, `4〉.

lightweight instrumentation required by greybox fuzzing. The most valuable information
that we need to extract from a bug trace is the sequence of basic blocks (and functions)
that were traversed, which is an easier object to work with. We call this extraction bug
trace flattening. The operation works as follows. First, each of the three stack-traces is
seen as a path in a call tree; we thus merge all the stack traces to re-create that tree. Some
of the nodes in the tree have several children; we make sure that the children are ordered
according to the ordering of the UAF events (i.e. the child coming from the alloc event
comes before the child coming from the free event). Figure 4.3 shows an example of a tree
for the bug trace given in Figure 4.2.

0: 0x8085C6E
(main)

1: 0x8085A57
(process_file)

2: 0x80854BD
(process_archive)

3: 0x80AC687
(make_qualified_name)

4: 0x80857B4
(process_archive)

5: 0x8085384
(process_archive)

6: 0x80AA58A
(error)

Figure 4.3: Reconstructed Dynamic Calling Tree (DCT) from CVE-2018-20623 (bug
trace from Figure 4.2). The preorder traversal of this tree is simply

0→ 1→ 2→ 3(nalloc)→ 4(nfree)→ 5→ 6(nuse).

Proposition 3. The result of flattening a callstrack trace is an instruction trace.

Proof. It suffices to show that the real execution going through the callstack trace also
goes through the instruction trace. This is not that trivial: for instance, a naive flattening
that would flatten 〈〈`1, `2, `3〉, 〈`1, `2, `4〉〉 into 〈`1, `2, `3, `1, `2, `4〉 could not result in an
instruction trace.

39

Proposition 4. Let the initial state s0 and the target callstack trace T such that s0
matches T (or s0 � T). Let the instruction trace t be the flattening of T . Then, s0 � t.

Proposition 5. There exists s0, t, T such that t is the flattening of T , s0 � t and s0 2 T .

Proof. This can happen even if we flatten a single callstack. Consider the following pro-
gram:

void f1(int a){ l1: f2(a); if(a == 1) { l2: f3(); }}
void f2(int a){ if(a == 0){ l3:f3();} }
void f3() { l4:assert(false); }

If the target callstack trace is T = 〈〈`1, `3, `4〉〉, then only the input a==0 will match
this target. But if we flatten it to an instruction trace t = 〈`1, `3, `4〉, then both the inputs
a==0 and a==1 will match the target.

The propositions above mean that callstack traces are more precise targets than the
corresponding intruction traces. Finally, we perform a preorder traversal of this tree to get
a sequence of target locations (and their associated functions), which will used to guide
the fuzzer at runtime in the following algorithms.

4.3.2 Seed Selection based on Target Similarity

Fuzzers generate a large number of inputs so that smartly selecting the seed from the
fuzzing queue to be mutated in the next fuzzing campaign is crucial for effectiveness. Our
seed selection algorithm is based on two insights. First, we should prioritize seeds that are
most similar to the target bug trace, as the goal of a directed fuzzer is to find bugs covering
the target bug trace. Second, target similarity should take ordering (a.k.a. sequenceness)
into account, as traces covering sequentially a number of locations in the target bug trace
are closer to the target than traces covering the same locations in an arbitrary order.

4.3.2.1 Seed Selection

Definition 7 (Max-reaching input). A max-reaching input is an input s whose execution
trace is the most similar to the target bug trace T so far, where most similar means “having
the highest value as compared by a target similarity metric t(s, T)”.

Algorithm 3: is_favored
Input : A seed s
Output: true if s is favored, otherwise false

1 global tmax = 0; . maximum target similar metric score
2 if t(s) ≥ tmax then tmax = t(s); return true; . update tmax

3 else if new_cov(s) then return true; . increase coverage
4 else return false;

40

We mostly select and mutate max-reaching inputs during the fuzzing process. Never-
theless, we also need to improve code coverage, thus UAFuzz also selects inputs that cover
new paths, with a small probability α (Algorithm 1). In our experiments, the probabil-
ity of selecting the remaining inputs in the fuzzing queue that are less favored is 1% like
AFL [afl20a].

4.3.2.2 Target Similarity Metrics

A target similarity metric t(s, T) measures the similarity between the execution of a seed s
and the target UAF bug trace T . We define 4 such metrics, based on whether we consider
ordering of the covered targets in the bug trace (P), or not (B) – P stands for Prefix, B
for Bag; and whether we consider the full trace, or only the three UAF events (3T):

• Target prefix tP (s, T): locations in T covered in sequence by executing s until first
divergence;

• UAF prefix t3TP (s, T): UAF events of T covered in sequence by executing s until
first divergence;

• Target bag tB(s, T): locations in T covered by executing s;

• UAF bag t3TB(s, T): UAF events of T covered by s.

For example, using Listing 4.1, the 4 metric values of a seed s ‘ABUA’ w.r.t. the UAF bug
trace T are: tP (s, T) = 2, t3PT (s, T) = 1, tB(s, T) = 3 and t3TB(s, T) = 2.

These 4 metrics have different degrees of precision. A metric t is said more precise than
a metric t′ if, for any two seeds s1 and s2: t(s1, T) ≥ t(s2, T) ⇒ t′(s1, T) ≥ t′(s2, T).
Figure 4.4 compares our 4 metrics w.r.t their relative precision.

Prefix (P)

UAF Prefix (3TP) Bag (B)

UAF Bag (3TB)

Figure 4.4: Precision lattice for Target Similarity Metrics.

4.3.2.3 Combining Target Similarity Metrics

Using a precise metric such as P allows to better assess progression towards the goal. In
particular, P can distinguish seeds that match the target bug trace from those that do not,
while other metrics cannot. On the other hand, a less precise metric provides information
that precise metrics do not have. For instance, P does not measure any difference between
traces whose suffix would match the target bug trace, but who would diverge from the
target trace on the first locations (like ‘UUU’ and ‘UFU’ on Listing 4.1), while B can.

41

To take benefit from both precise and imprecise metrics, we combine them using a
lexicographical order. Hence, the P-3TP-B metric is defined as:

tP−3TP−B(s, T) , 〈tP (s, T), t3TP (s, T), tB(s, T)〉 (4.1)

This combination favors first seeds that cover the most locations in the prefix, then
(in case of tie) those reaching the most number of UAF events in sequence, and finally
(in case of tie) those that reach the most locations in the target. Based on preliminary
investigation, we default to P-3TP-B for seed selection in UAFuzz.

4.3.3 UAF-based Distance

One of the main component of directed greybox fuzzers is the computation of a seed
distance, which is an evaluation of a distance from the execution trace of a seed s to the
target. The main heuristic here is that if the execution trace of s is close to the target,
then s is close to an input that would cover the target, which makes s an interesting seed.
In existing directed greybox fuzzers [afl20e, CXL+18], the seed distance is computed to
a target which is a single location or a set of locations. This is not appropriate for the
reproduction of UAF bugs, that must go through 3 different locations in sequence. Thus,
we propose to modify the seed distance computation to take into account the need to reach
the locations in order.

4.3.3.1 Zoom: Background on Seed Distances

Existing directed greybox fuzzers [afl20e, CXL+18] compute the distance d(s, T) from a
seed s to a target T as follows.

AFLGo’s seed distance [afl20e] The seed distance d(s, T) is defined as the (arithmetic)
mean of the basic-block distances db(m,T), for each basic block m in the execution trace
of s. The basic-block distance db(m,T) is defined using the length of the intra-procedural
shortest path from m to the basic block of a “call” instruction, using the CFG of the func-
tion containing m; and the length of the inter-procedural shortest path from the function
containing m to the target functions Tf (in our case, Tf is the function where the use event
happens), using the call graph.

Hawkeye’s enhancement [CXL+18] The main factor in this seed distance computa-
tion is computing distance between functions in the call graph. To compute this, AFLGo
uses the original call graph with every edge having weight 1. Hawkeye improves this com-
putation by proposing the augmented adjacent-function distance (AAFD), which changes
the edge weight from a caller function fa and a callee fb to wHawkeye(fa, fb). The idea is to
favor edges in the call graph where the callee can be called in a variety of situations, i.e.
appear several times at different locations.

42

4.3.3.2 Our UAF-based Seed Distance

Previous seed distances [afl20e,CXL+18] do not account for any order among the target
locations, while it is essential for UAF. We address this issue by modifying the distance
between functions in the call graph to favor paths that sequentially go through the three
UAF events alloc, free and use of the bug trace. This is done by decreasing the weight
of the edges in the call graph that are likely to be between these events, using lightweight
static analysis.

This analysis first computes Ralloc, Rfree, and Ruse, i.e., the sets of functions that can
call respectively the alloc, free, or use function in the bug trace – the use function is the
one where the use event happens. Then, we consider each call edge between fa and fb
as indicating a direction: either downward (fa executes, then calls fb), or upward (fb is
called, then fa is executed). Using this we compute, for each direction, how many events
in sequence can be covered by going through the edge in that direction. For instance,
if fa ∈ Ralloc and fb ∈ Rfree ∩ Ruse, then taking the fa → fb call edge possibly allows
to cover the three UAF events in sequence. To find double free, we also include, in this
computation, call edges that allow to reach two free events in sequence.

main

f2 f1 falloc

f3 f4

fuse

ffree

Figure 4.5: Example of a call graph. Favored edges are in red.

Then, we favor a call edge from fa to fb by decreasing its weight, based on how many
events in sequence the edge allows to cover. Figure 4.5 presents an example of call graph
with edges favored using the above ΘUAF function. In our experiments, we use the following
ΘUAF (fa, fb) function, with a value of β = 0.25:

ΘUAF (fa, fb) ,

{
β if fa → fb covers more than 2 UAF events in sequence
1 otherwise

(4.2)

Finally, we combine our edge weight modification with that of Hawkeye:

wUAFuzz(fa, fb) , wHawkeye(fa, fb).ΘUAF (fa, fb) (4.3)

Like AFLGo, we favor the shortest path leading to the targets, since it is more likely
to involve only a small number of control flow constraints, making it easier to cover by
fuzzing. Our distance-based technique therefore considers both calling relations in general,
via wHawkeye, and calling relations covering UAF events in sequence, via ΘUAF .

43

4.3.4 Power Schedule

Coverage-guided fuzzers employ a power schedule (or energy assignment) to determine the
number of extra inputs to generate from a selected input, which is called the energy of the
seed. It measures how long we should spend fuzzing a particular seed. While AFL [afl20a]
mainly uses execution trace characteristics such as trace size, execution speed of the PUT
and time added to the fuzzing queue for seed energy allocation, recent work [BPR16,
RJK+17, LXC+19] including both directed and coverage-guided fuzzing propose different
power schedules. AFLGo employs simulated annealing to assign more energy for seeds
closer to target locations (using the seed distance), while Hawkeye accounts for both
shorter and longer traces leading to the targets via a power schedule based on trace distance
and similarity at function level.

We propose here a new power schedule using the intuitions that we should assign more
energy to seeds in these cases:

• seeds that are closer (using the seed distance, §4.3.3.2);

• seeds that are more similar to the target (using the target similarity, §4.3.2.2);

• seeds that make better decisions at critical code junctions (we define hereafter a new
metric to evaluate the latter case in §4.3.4.1).

4.3.4.1 Cut-edge Coverage Metric

To track progress of a seed during the fuzzing process, a fine-grained approach would
consist in instrumenting the execution to compare the similarity of the execution trace of
the current seed with the target bug trace, at the basic block level. But this method would
slow down the fuzzing process due to high runtime overhead, especially for large programs.
A more coarse-grained approach, on the other hand, is to measure the similarity at function
level as proposed in Hawkeye [CXL+18]. However, a callee can occur multiple times from
different locations of single caller. Also, reaching a target function does not mean reaching
the target basic blocks in this function.

Thus, we propose the lightweight cut-edge coverage metric, hitting a middle ground
between the two aforementioned approaches by measuring progress at the edge level but
on the critical decision nodes only.

Definition 8 ((Non-) Cut edge). A cut edge between two basic blocks source and sink is
an outgoing edge of a decision node so that there exists a path starting from source, going
through this edge and reaching sink. A non-cut edge is an edge which is not a cut-edge,
i.e. for which there is no path from source to sink that go through this edge.

Algorithm 4 shows how cut/non-cut edges are identified in UAFuzz given a tested
binary program and an expected UAF bug trace. The main idea is to identify and ac-
cumulate the cut edges between all consecutive nodes in the (flattened) bug trace. For
instance in the bug trace of Figure 4.3, we would first compute the cut edges between 0

44

Algorithm 4: Accumulating cut edges
Input : Program P ; dynamic calling tree T of a bug trace
Output: Set of cut edges Ecut

1 Ecut ← ∅;
2 nodes← flatten(T);
3 for n ∈ nodes ∧ pn the node before n in T do
4 if n.func == pn.func then
5 ce ← calculate_cut_edges(n.func, pn.bb, n.bb);

6 else if pn is a call to n.func then
7 ce ← calculate_cut_edges(n.func, n.func.entry_bb, n.bb);

8 Ecut ← Ecut ∪ ce;
9 return Ecut;

Algorithm 5: calculate_cut_edges inside a function
Input : A function f ; Two basic blocks bbsource and bbsink in f
Output: Set of cut edges ce

1 ce← ∅;
2 cfg ← get_CFG(f);
3 decision_nodes← {dn : ∃ a path bbsource →∗ dn→∗ bbsink in cfg}
4 for dn ∈ decision_nodes do
5 outgoing_edges← get_outgoing_edges(cfg, dn);
6 for edge ∈ outgoing_edges do
7 if reachable(cfg, edge, bbsink) then
8 ce← ce ∪ {edge};

9 return ce;

and 1, then those between 1 and 2, etc. As the bug trace is a sequence of stack traces,
most of the locations in the trace are “call” events, and we compute the cut edge from the
function entry point to the call event in that function. However, because of the flattening,
sometimes we have to compute the cut edges between different points in the same function
(e.g. if in the bug trace the same function is calling alloc and free, we would have to
compute the edge from the call to alloc to the call to free).

Algorithm 5 describes how cut-edges are computed inside a single function. First we
have to collect the decision nodes, i.e. conditional jumps between the source and sink basic
blocks. This can be achieved using a simple data-flow analysis. For each outgoing edge of
the decision node, we check whether they allow to reach the sink basic block; those that
can are cut edges, and the others are non-cut edges. Note that this program analysis is
intra-procedural, so that we do not need construct an inter-procedural CFG.

Our heuristic is that an input exercising more cut edges and fewer non-cut edges is
more likely to cover more locations of the target. Let Ecut(T) be the set of all cut edges of
a program given the expected UAF bug trace T . We define the cut-edge score es(s, T) of

45

seed s as

es(s, T) ,
∑

e∈Ecut(T)

b(log2 hit(e) + 1)c − δ ∗
∑

e/∈Ecut(T)

b(log2 hit(e) + 1)c (4.4)

where hit(e) denotes the number of times an edge e is exercised, and δ ∈ (0, 1) is the
weight penalizing seeds covering non-cut edges. In our main experiments, we use δ = 0.5
according to our preliminary experiments. To deal with the path explosion induced by
loops, we use bucketing [afl20a]: the hit count is bucketized to small powers of two.

4.3.4.2 Energy Assignment

We propose a power schedule function that assigns energy to a seed using a combination
of the three metrics that we have proposed: the prefix target similarity metric tP (s, T)
(§4.3.2.2), the UAF-based seed distance d(s, T) (§4.3.3.2), and the cut-edge coverage met-
ric es(s, T) (§4.3.4.1). The idea of our power schedule is to assign energy to a seed s
proportionally to the number of targets covered in sequence tP (s, T), with a corrective
factor based on seed distance d and cut-edge coverage es. Indeed, our power function
(corresponding to assign_energy in Algorithm 1) is defined as:

p(s, T) , (1 + tP (s, T)) × ẽs(s, T) × (1− d̃s(s, T)) (4.5)

Because their actual value is not as meaningful as the length of the covered prefix,
but they allow to rank the seeds, we apply a min-max normalization [afl20e] to get a
normalized seed distance (d̃s(s, T)) and normalized cut-edge score (ẽs(s, T)). For example,
d̃s(s, T) = ds(s,T)−minD

maxD−minD where minD, maxD denote the minimum and maximum value of
seed distance so far. Note that both metric scores are in (0, 1), i.e. can only reduce the
assigned energy when their score is bad.

4.3.5 Postprocess and Bug Triage

Since UAF bugs are often silent, all seeds generated by a directed fuzzer must a priori
be sent to a bug triager (typically, a profiling tool such as Valgrind) in order to confirm
whether they are bug triggering input or not. Yet, this can be extremely expensive as
fuzzers generate a huge amount of seeds and bug triagers are expensive.

Fortunately, the target similarity metric allows UAFuzz to compute the sequence of
covered targets of each fuzzed input at runtime. This information is available for free for
each seed once it has been created and executed. We capitalize on it in order to pre-identify
likely-bug triggering seeds, i.e. seeds that indeed cover the three UAF events in sequence.
Then, the bug triager is run only over these pre-identified seeds, the other ones being
simply discarded – potentially saving a huge amount of time in bug triaging.

46

4.4 Experimental Evaluation

4.4.1 Research Questions

To evaluate the effectiveness and efficiency of our approach, we investigate four principal
research questions:

RQ1. UAF Bug-reproducing Ability Can UAFuzz outperform other directed
fuzzing techniques in terms of UAF bug reproduction in executables?

RQ2. UAF Overhead How does UAFuzz compare to other directed fuzzing approaches
w.r.t. instrumentation time and runtime overheads?

RQ3. UAF Triage How much does UAFuzz reduce the number of inputs to be sent to
the bug triage step?

RQ4. Individual Contribution How much does each UAFuzz component contribute
to the overall results?

We will also evaluate UAFuzz in the context of patch testing, another important appli-
cation of directed fuzzing [BPNR17,CXL+18,PLL+19].

4.4.2 Evaluation Setup

Evaluation fuzzers We aim to compare UAFuzz with state-of-the-art directed fuzzers,
namely AFLGo [afl20e] and Hawkeye [CXL+18], using AFL-QEMU as a baseline
(binary-level coverage-based fuzzing). Unfortunately, both AFLGo and Hawkeye work
on source code, and while AFLGo is open source, Hawkeye is not available. Hence,
we implemented binary-level versions of AFLGo and Hawkeye, coined as AFLGoB and
HawkeyeB. We closely follow the original papers, and, for AFLGo, use the source code
as a reference. AFLGoB and HawkeyeB are implemented on top of AFL-QEMU, fol-
lowing the generic architecture of UAFuzz but with dedicated distance, seed selection
and power schedule mechanisms. We discuss in details the implementation of UAFuzz in
Chapter 5. Table 4.2 summarizes our different fuzzer implementations and a comparison
with their original counterparts.

Table 4.2: Overview of main techniques of greybox fuzzers. Our own implementations are
marked with ?.

Fuzzer Directed Binary? Distance Seed Selection Power Schedule Mutation
AFL-QEMU 7 3 – AFL AFL AFL

AFLGo 3 7 CFG-based ∼ AFL Annealing ∼ AFL
AFLGoB? 3 3 ∼ AFLGo ∼ AFLGo ∼ AFLGo ∼ AFLGo
Hawkeye 3 7 AAFD distance-based Trace fairness Adaptive

HawkeyeB? 3 3 ∼ Hawkeye ∼ Hawkeye ≈ Hawkeye ∼ AFLGo
UAFuzz? 3 3 UAF-based Targets-based UAF-based ∼ AFLGo

47

Table 4.3: Overview of our evaluation benchmark.

Bug ID Program Bug #Targets
Project Size Type Crash in trace

giflib-bug-74 GIFLIB 59 Kb DF 7 7
CVE-2018-11496 lrzip 581 Kb UAF 7 12
yasm-issue-91 yasm 1.4 Mb UAF 7 19
CVE-2016-4487 Binutils 3.8 Mb UAF 3 7
CVE-2018-11416 jpegoptim 62 Kb DF 7 5
mjs-issue-78 mjs 255 Kb UAF 7 19
mjs-issue-73 mjs 254 Kb UAF 7 28

CVE-2018-10685 lrzip 576 Kb UAF 7 7
CVE-2019-6455 Recutils 604 Kb DF 7 15
CVE-2017-10686 NASM 1.8 Mb UAF 3 10

gifsicle-issue-122 Gifsicle 374 Kb DF 7 11
CVE-2016-3189 bzip2 26 Kb UAF 3 5
CVE-2016-20623 Binutils 1.0 Mb UAF 7 7

We also evaluate the implementation of AFLGoB and find it very close to the original
AFLGo after accounting for emulation overhead.

UAF fuzzing benchmark The standard UAF micro benchmark Juliet Test
Suite [NIS20] for static analyzers is too simple for fuzzing. No macro benchmark actu-
ally assesses the effectiveness of UAF detectors – the widely used LAVA [DGHK+16] only
contains buffer overflows. Thus, we construct a new UAF benchmark according to the
following rationale:

1. The subjects are real-world popular and fairly large security-critical programs;

2. The benchmark includes UAF bugs found by existing fuzzers [GZQ+18, CXL+18,
BPR16, afl20a] or collected from National Vulnerability Database (NVD) [nvd20].
Especially, we include all UAF bugs found by directed fuzzers;

3. The bug report provides detailed information (e.g., buggy version and the stack
trace), so that we can identify target locations for fuzzers.

In summary, we have 13 known UAF vulnerabilities (2 from directed fuzzers) over 11 real-
world C programs whose sizes vary from 26 Kb to 3.8 Mb. Furthermore, selected programs
range from image processing to data archiving, video processing and web development.
Our benchmark is therefore representative of different UAF vulnerabilities of real-world
programs. Table 4.3 presents our evaluation benchmark.

Evaluation configurations We follow the recommendations for fuzzing evalua-
tions [KRC+18] and use the same fuzzing configurations and hardware resources for all
experiments. Experiments are conducted 10 times with a time budget depending on the
Program Under Test (PUT). We use as input seed either an empty file or existing valid
files provided by developers. We do not use any token dictionary. All experiments were

48

carried out on an Intel Xeon CPU E3-1505M v6 @ 3.00GHz CPU with 32GB RAM and
Ubuntu 16.04 64-bit.

4.4.3 UAF Bug-reproducing Ability (RQ1)

Protocol We compare the different fuzzers on our 13 UAF vulnerabilities using Time-
to-Exposure (TTE), i.e. the time elapsed until first bug-triggering input, and number of
success runs in which a fuzzer triggers the bug. In case a fuzzer cannot detect the bug
within the time budget, the run’s TTE is set to the time budget. Following existing
work [BPNR17, CXL+18], we use the Vargha-Delaney statistic (Â12) metric [VD00] 3 to
assess the confidence that one tool outperforms another. Code coverage is not relevant for
directed fuzzers.

Results Figure 4.6 presents a consolidated view of the results (total success runs and
TTE – we denote by µTTE the average TTE observed for each sample over 10 runs). Ta-
ble 4.4 summarizes the fuzzing performance (details in Table 4.5) of 4 binary-based fuzzers
against our benchmark by providing the total number of covered paths, the total number
of success runs and the max/min/average/median values of Factor and Â12. Table 4.5
provides additional information: detailed statistics per benchmark sample.

Total Success Runs
(higher is better)

0

50

100

150

85 89

67

119

AFL-QEMU AFLGoB HawkeyeB UAFuzz

Total µTTE (h)
(lower is better)

0

5

10

15

20

25

16.1 16.6
18.6

9.0

AFL-QEMU AFLGoB HawkeyeB UAFuzz

Figure 4.6: Summary of fuzzing performance (RQ1).

Table 4.4: Summary of bug reproduction of UAFuzz compared to other fuzzers against
our fuzzing benchmark. Statistically significant results Â12 ≥ 0.71 are marked as bold.

Fuzzer Total
Avg Paths

Success
Runs

Factor Â12

Mdn Avg Min Max Mdn Avg Min Max
AFL-QEMU 10.6K 85 (+40%) 2.01 6.66 0.60 46.63 0.82 0.78 0.29 1.00

AFLGoB 11.1K 89 (+34%) 1.96 6.73 0.96 43.34 0.80 0.78 0.52 1.00
HawkeyeB 7.3K 67 (+78%) 2.90 8.96 1.21 64.29 0.88 0.86 0.56 1.00
UAFuzz 8.2K 119 – – – – – – – –

3Value between 0 and 1, the higher the better. Values above the conventionally large effect size of 0.71
are considered highly relevant [VD00].

49

Table 4.5: Bug reproduction on 4 fuzzers against our benchmark. Statistically significant
results Â12 ≥ 0.71 are marked as bold. Factor measures the performance gain as the

µTTE of other fuzzers divided by the µTTE of UAFuzz.

Bug ID Fuzzer Paths Runs µTTE(s) Factor Â12

giflib-bug-74

AFL-QEMU 196.0 10 290 1.39 0.64
AFLGoB 172.9 9 478 2.29 0.70

HawkeyeB 135.8 7 677 3.24 0.62
UAFuzz 184.0 10 209 – –

CVE-2018-11496

AFL-QEMU 404.0 10 19 1.36 0.81
AFLGoB 339.8 10 22 1.57 0.92

HawkeyeB 323.6 10 57 4.07 1.00
UAFuzz 434.4 10 14 – –

yasm-issue-91

AFL-QEMU 2110.0 8 2611 46.63 1.00
AFLGoB 2018.3 8 2427 43.34 1.00

HawkeyeB 323.2 0 3600 64.29 1.00
UAFuzz 1364.1 10 56 – –

CVE-2016-4487

AFL-QEMU 931.0 4 2661 1.26 0.62
AFLGoB 1359.7 6 2427 1.15 0.57

HawkeyeB 895.6 7 2559 1.21 0.56
UAFuzz 1043.1 6 2110 – –

CVE-2018-11416

AFL-QEMU 21.5 8 744 3.17 0.96
AFLGoB 21.0 10 303 1.29 0.78

HawkeyeB 21.0 10 338 1.44 0.88
UAFuzz 21.0 10 235 – –

mjs-issue-78

AFL-QEMU 1202.4 0 10800 2.57 0.95
AFLGoB 1479.4 4 8755 2.09 0.80

HawkeyeB 730.5 0 10800 2.57 0.95
UAFuzz 867.9 9 4197 – –

mjs-issue-73

AFL-QEMU 1462.5 1 9833 2.01 0.82
AFLGoB 1314.3 0 10800 2.21 0.85

HawkeyeB 741.6 0 10800 2.21 0.85
UAFuzz 862.4 7 4881 – –

CVE-2018-10685

AFL-QEMU 400.3 9 232 1.49 0.60
AFLGoB 388.1 9 305 1.96 0.55

HawkeyeB 316.6 5 500 3.21 0.85
UAFuzz 352.7 10 156 – –

CVE-2019-6455

AFL-QEMU 240.3 6 1149 2.62 0.86
AFLGoB 206.0 5 1213 2.77 0.81

HawkeyeB 205.7 5 1270 2.90 0.86
UAFuzz 169.3 10 438 – –

CVE-2017-10686

AFL-QEMU 2403.5 1 20905 2.08 1.00
AFLGoB 2549.9 3 19721 1.96 0.99

HawkeyeB 1937.4 1 20134 2.00 0.99
UAFuzz 2190.3 10 10040 – –

gifsicle-issue-122

AFL-QEMU 367.1 8 5938 0.60 0.29
AFLGoB 383.4 6 9811 0.96 0.52

HawkeyeB 256.4 4 12473 1.26 0.67
UAFuzz 242.4 7 9853 – –

CVE-2016-3189

AFL-QEMU 117.0 10 149 1.06 0.59
AFLGoB 125.1 10 158 1.12 0.66

HawkeyeB 67.4 10 770 5.46 1.00
UAFuzz 100.1 10 141 – –

CVE-2018-20623

AFL-QEMU 804.0 10 2604 20.34 1.00
AFLGoB 724.2 9 3169 24.76 1.00

HawkeyeB 625.1 8 2889 22.57 1.00
UAFuzz 388.6 10 128 – –

Figure 4.6 (and Tables 4.4 and 4.5) show that UAFuzz clearly outperforms the other
fuzzers both in total success runs (vs. 2nd best AFLGoB: +34% in total, up to +300%)
and in TTE (vs. 2nd best AFLGoB, total: 2.0×, avg: 6.7×, max: 43×). In some specific
cases (see Table 4.5), UAFuzz saves roughly 10,000s of TTE over AFLGoB or goes from
0/10 successes to 7/10. The Â12 value of UAFuzz against other fuzzers is also significantly
above the conventional large effect size 0.71 [VD00], as shown in Table 4.4 (vs. 2nd best
AFLGoB, avg: 0.78, median: 0.80, min: 0.52). Figure 4.7 finally shows UAFuzz to have
more stable performance.

50

AQ AG HK UF

0

500

1,000

1,500

giflib-bug-74
AQ AG HK UF

20

40

60

CVE-2018-11496

AQ AG HK UF

0

1,000

2,000

3,000

yasm-issue-91
AQ AG HK UF

0

1,000

2,000

3,000

CVE-2016-4487
AQ AG HK UF

500

1,000

1,500

CVE-2018-11416

AQ AG HK UF

0

50

100

150

mjs-issue-78 (m)
AQ AG HK UF

0

50

100

150

mjs-issue-73 (m)
AQ AG HK UF

0

200

400

600

800

CVE-2018-10685
AQ AG HK UF

0

500

1,000

1,500

CVE-2019-6455
AQ AG HK

100

200

300

CVE-2017-10686 (m)

AQ AG HK UF
0

100

200

gifsicle-issue-122 (m)
AQ AG HK UF

0

500

1,000

CVE-2016-3189
AQ AG HK UF

0

1,000

2,000

3,000

CVE-2018-20623

Figure 4.7: TTE in seconds of 4 fuzzers except for subjects marked with “(m)" for which
the unit is minute (lower is better). AQ, AG, HK and UF denote AFL-QEMU,

AFLGoB, HawkeyeB and UAFuzz, respectively.

Answer to RQ1: UAFuzz significantly outperforms state-of-the-art directed fuzzers
in terms of UAF bugs reproduction with a high confidence level.

Zoom on yasm-issue-91 We discuss the case of yasm-issue-91, where in all 10 runs,
UAFuzz needs only in a few seconds to reproduce the bug, thus gains a speedup of 43×
over the second best tool AFLGoB with a high confidence (i.e., Â12 is 1 against other
fuzzers). Figure 4.8 depicts the fuzzing queue of our fuzzer UAFuzz for the case study in
one run. We can see that our seed selection heuristic first selects the most promising inputs
among the set of initial test suite (i.e., the most left circle point). As this input also has the
biggest cut-edge score among the initial seeds, UAFuzz spends enough long time to mutate
this input and thus eventually discovers the first potential input whose execution trace is
similar to the expected trace. Then, two first potential inputs covering in sequence all 19
targets are selected to be mutated by UAFuzz during fuzzing. Consequently, UAFuzz
could trigger the bug at the third potential input (i.e., the 954th input in the fuzzing queue).
Overall in 10 runs the first bug-triggering input of UAFuzz is the 1019th on average, while
for AFL-QEMU and AFLGoB they detect the bug much slower, at the 2026th and 1908th
input respectively. The main reason is that other tools spend more time on increasing the
code coverage by going through all initial seeds in the fuzzing queue. In particular, as
AFLGoB aims to first explore more paths in the exploration phase, it is more likely that

51

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

5

10

15

19

Fuzzing Queue

Ta
rg

et
Si

m
ila

r
M

et
ri

c
Sc

or
e

Initial Inputs Fuzzed Inputs Selected Inputs

Figure 4.8: Fuzzing queue of UAFuzz for yasm-issue-91. Selected inputs to be mutated
are highlighted in brown. Potential inputs are in the horizontal dashed line.

directed fuzzers that are mainly based on the seed distance metric like AFLGoB skip or
select the input after long time. Although both AFL-QEMU and AFLGoB could find
the bug in 8 and 10 runs and discover substantially more paths than our fuzzer, the TTE
values of these tools are clearly much more larger than UAFuzz’s TTE.

Comparison between AFLGoB and source-based AFLGo We want to evaluate
how close our implementation of AFLGoB is from the original AFLGo, in order to assess
the degree of confidence we can have in our results – we do not do it for HawkeyeB as
Hawkeye is not available.

AFLGo unsurprisingly performs better than AFLGoB and UAFuzz (Figure 4.9,
Table 4.6). This is largely due to the emulation runtime overhead of QEMU, a well-
documented fact. Still, surprisingly enough, UAFuzz can find the bugs faster than
AFLGo in 4 samples, demonstrating its efficiency.

Total Success Runs
(higher is better)

0

50

100

150

112

87 86

109

AFLGo AFLGoF AFLGoB UAFuzz

Total µTTE (h)
(lower is better)

0

10

20

30

3.7

27.4

10.1
6.2

AFLGo AFLGoF AFLGoB UAFuzz

Figure 4.9: Summary of fuzzing performance of 4 fuzzers against our benchmark, except
CVE-2017-10686 due to compilation issues of AFLGo.

52

Table 4.6: Bug reproduction of AFLGo against our benchmark except CVE-2017-10686
due to compilation issues of AFLGo. Numbers in red are the best µTTEs.

Bug ID AFLGo (source) AFLGoF (source) AFLGoB UAFuzz
Runs µTTE(s) Runs µTTE(s) Runs µTTE(s) Runs µTTE(s)

giflib-bug-74 10 62 10 281 9 478 10 209
CVE-2018-11496 10 2 10 38 10 22 10 14
yasm-issue-91 10 307 8 2935 8 2427 10 56
CVE-2016-4487 10 676 10 1386 6 2427 6 2110
CVE-2018-11416 10 78 7 1219 10 303 10 235
mjs-issue-78 10 1417 3 9706 4 8755 9 4197
mjs-issue-73 9 5207 3 34210 0 10800 7 4881

CVE-2018-10685 10 74 9 1072 9 305 10 156
CVE-2019-6455 5 1090 0 20296 5 1213 10 438

gifsicle-issue-122 8 4161 7 25881 6 9811 7 9853
CVE-2016-3189 10 72 10 206 10 158 10 141
CVE-2018-20623 10 177 10 1329 9 3169 10 128

Total Success Runs 112 87 86 109
Total µTTE (h) 3.7 27.4 10.1 6.2

Yet, more interestingly, Figure 4.9 also shows that once emulation overhead 4 is taken
into account (yielding AFLGoF , the expected binary-level performance of AFLGo), then
AFLGoB is in line with AFLGoF (and even shows better TTE) – UAFuzz even signifi-
cantly outperforms AFLGoF .

Answer to RQ1: Performance of AFLGoB is in line with the original AFLGo once
QEMU overhead is taken into account, allowing a fair comparison with UAFuzz. UA-
Fuzz nonetheless performs relatively well on UAF compared with the source-based
directed fuzzer AFLGo, demonstrating the benefit of our original fuzzing mechanisms.

4.4.4 UAF Overhead (RQ2)

Protocol We are interested in both (1) instrumentation-time overhead and (2) runtime
overhead. For (1), we simply compute the total instrumentation time of UAFuzz and we
compare it to the instrumentation time of AFLGo. For (2), we compute the total number
of executions per second of UAFuzz and compare it AFL-QEMU taken as a baseline.

4We estimate for each sample an overhead factor f by comparing the number of executions per second
in both AFL and AFL-QEMU, then multiply the computation time of AFLGo by f – f varies from 2.05
to 22.5 in our samples.

53

Total Instrumentation Time (min)
(lower is better)

0

50

100

150

200
165.9

11.3

AFLGo UAFuzz

Total Executions Done (M)
(higher is better)

0

50

100

150

115.3 111.3

AFL-QEMU UAFuzz

Figure 4.10: Global overhead (RQ2).

gifl
ib-b

ug-7
4

CVE-
2018

-114
96

yasm
-iss

ue-9
1

CVE-
2016

-448
7

CVE-
2018

-114
16

mjs-
issu

e-78

mjs-
issu

e-73

CVE-
2018

-106
85

CVE-
2019

-645
5

gifs
icle

-iss
ue-1

22

CVE-
2016

-318
9

CVE-
2018

-206
23

100

101

102

103

In
st
ru
m
en
ta
ti
on

T
im

e
(s
)

AFLGo UAFuzz

Figure 4.11: Average instrumentation time in seconds (except CVE-2017-10686 due to
compilation issues of AFLGo).

gifl
ib-b

ug-7
4

CVE-
2018

-114
96

yasm
-iss

ue-9
1

CVE-
2016

-448
7

CVE-
2018

-114
16

mjs-
issu

e-78

mjs-
issu

e-73

CVE-
2018

-106
85

CVE-
2019

-645
5

CVE-
2017

-106
86

gifs
icle

-iss
ue-1

22

CVE-
2016

-318
9

CVE-
2016

-206
23

100

101

102

In
st
ru
m
en
ta
ti
on

ti
m
e
(s
)

AFLGoB HawkeyeB UAFuzz

Figure 4.12: Average instrumentation time in seconds.

54

gifl
ib-b

ug-7
4

CVE-
2018

-114
96

yasm
-iss

ue-9
1

CVE-
2016

-448
7

CVE-
2018

-114
16

mjs-
issu

e-78

mjs-
issu

e-73

CVE-
2018

-106
85

CVE-
2019

-645
5

CVE-
2017

-106
86

gifs
icle

-iss
ue-1

22

CVE-
2016

-318
9

CVE-
2018

-206
23

103

104

T
ot
al

E
xe
cu
ti
on

s
(K

) AFL-QEMU UAFuzz

Figure 4.13: Total executions done in all runs.

Results Consolidated results for both instrumentation-time and runtime overhead are
presented in Figure 4.10 (number of executions per second is replaced by the total number
of executions performed in the same time budget). This figure shows that UAFuzz is an
order of magnitude faster than the state-of-the-art source-based directed fuzzer AFLGo in
the instrumentation phase, and has almost the same total number of executions per second
as AFL-QEMU.

We also provide additional results for RQ2. Figures 4.11 and 4.12 compare the aver-
age instrumentation time between, respectively, UAFuzz and the source-based directed
fuzzer AFLGo; and UAFuzz and the two binary-based directed fuzzers AFLGoB and
HawkeyeB. Figure 4.13 shows the total execution done of AFL-QEMU and UAFuzz for
each subject in our benchmark. Figure 4.14 compares the average triaging time between
UAFuzz and other fuzzers against our benchmark. We now discuss experimental results
regarding overhead in more depth as follows:

• Figures 4.10 and 4.11 show that UAFuzz is an order of magnitude faster than the
state-of-the-art source-based directed fuzzer AFLGo in the instrumentation phase
(14.7× faster in total). For example, UAFuzz spends only 23s (i.e., 64× less than
AFLGo) in processing the large program readelf of Binutils;

• Figures 4.10 and 4.13 show that UAFuzz has almost the same total number of
executions per second as AFL-QEMU (-4% in total, -12% in average), meaning that
its overhead is negligible.

• Figure 4.12 shows that HawkeyeB is sometimes significantly slower than UAFuzz
(2×). This is mainly because of the cost of target function trace closure calculation
on large examples with many functions.

Answer to RQ2: UAFuzz enjoys both a lightweight instrumentation time and a
minimal runtime overhead.

55

Table 4.7: Average number of triaging inputs of 4 fuzzers against our tested subjects. For
UAFuzz, the TIR values are in parentheses.

Bug ID AFL-QEMU AFLGoB HawkeyeB UAFuzz
giflib-bug-74 200.9 177.0 139.9 10.0 (5.31%)
CVE-2018-11496 409.6 351.7 332.5 5.4 (4.08%)
yasm-issue-91 2115.3 2023.0 326.6 37.4 (2.72%)
CVE-2016-4487 933.1 1367.2 900.2 2.5 (0.24%)
CVE-2018-11416 21.5 21.0 21.0 1.0 (4.76%)
mjs-issue-78 1226.9 1537.8 734.6 262.3 (30.22%)
mjs-issue-73 1505.6 1375.9 745.6 252.2 (29.25%)

CVE-2018-10685 414.2 402.1 328.9 12.6 (3.14%)
CVE-2019-6455 243.2 238.1 211.1 6.9 (1.57%)
CVE-2017-10686 2416.9 2517.0 1765.2 214.3 (8.96%)

gifsicle-issue-122 405.0 431.7 378.5 3.3 (0.86%)
CVE-2016-3189 377.9 764.7 126.4 7.1 (1.69%)
CVE-2018-20623 804.0 724.2 625.1 5.4 (1.39 %)

Total 11.1K 11.9K 6.6K 820 (7.25%)

4.4.5 UAF Triage (RQ3)

Protocol We consider the total number of triaging inputs (number of inputs sent to the
triaging step), the triaging inputs rate TIR (ratio between the total number of generated
inputs and those sent to triaging) and the total triaging time (time spent within the triaging
step). Since other fuzzers cannot identify inputs reaching targets during the fuzzing process,
we conservatively analyze all inputs generated by the these fuzzers in the bug triage step
(TIR = 1).

gifl
ib-b

ug-7
4

CVE-
2018

-114
96

yasm
-iss

ue-9
1

CVE-
2016

-448
7

CVE-
2018

-114
16

mjs-
issu

e-78

mjs-
issu

e-73

CVE-
2018

-106
85

CVE-
2019

-645
5

CVE-
2017

-106
86

gifs
icle

-iss
ue-1

22

CVE-
2016

-318
9

CVE-
2018

-206
23

100

101

102

T
ri
ag
in
g
T
im

e
(s
)

AFL-QEMU AFLGoB HawkeyeB UAFuzz

Figure 4.14: Average triaging time in seconds.

Results Consolidated results are presented in Figure 4.15, detailed results in Table 4.7
and Figure 4.14.

56

Total Triaging Inputs (K)
(lower is better)

0

5

10

15

11.1
11.9

6.6

0.8

AFL-QEMU AFLGoB HawkeyeB UAFuzz

Total Triaging Time (s)
(lower is better)

0

500

1,000

1,500
1,286 1,284

763

75

AFL-QEMU AFLGoB HawkeyeB UAFuzz

Figure 4.15: Summary of bugs triage (RQ3).

• The TIR of UAFuzz is 9.2% in total (avg: 7.25%, median: 3.14%, best: 0.24%,
worst: 30.22%) – sparing up to 99.76% of input seeds for confirmation, and is always
less than 9% except for sample mjs;

• Figure 4.14 shows that UAFuzz spends the smallest amount of time in bug triage,
i.e. 75s (avg: 6s, min: 1s, max: 24s) for a total speedup of 17× over AFLGoB (max:
130×, avg: 39×).

Answer to RQ3: UAFuzz reduces a large portion (i.e., more than 90%) of triaging
inputs in the post-processing phase. Subsequently, UAFuzz only spends several seconds
in this step, winning an order of magnitude compared to standard directed fuzzers.

4.4.6 Individual Contribution (RQ4)

Protocol We compare four different versions of our prototype, representing a continuum
between AFLGo and UAFuzz: (1) the basic AFLGo represented by AFLGoB, (2)
AFLGoB–ss adds our seed selection metric to AFLGoB, (3) AFLGoB–ds adds the UAF-
based function distance to AFLGoB–ss, and finally (4) UAFuzz adds our dedicated power
schedule to AFLGoB–ds. We consider the previous RQ1 metrics: number of success
runs, TTE and Vargha-Delaney. Our goal is to assess whether or not these technical
improvements do lead to fuzzing performance improvements.

Results Consolidated results for success runs and TTE are represented in Figure 4.16.
As summarized in Figure 4.16, we can observe that each new component does improve
both TTE and number of success runs, leading indeed to fuzzing improvement. Detailed
results in Table 4.8 with Â12 values show the same clear trend.

57

Table 4.8: Bug reproduction on 4 fuzzers against our benchmark. Â12A and Â12U denote
the Vargha-Delaney values of AFLGoB and UAFuzz. Statistically significant results for
Â12 (e.g., Â12A ≤ 0.29 or Â12U ≥ 0.71) are in bold. Numbers in red are the best µTTEs.

Bug ID AFLGoB AFLGoB–ss AFLGoB–ds UAFuzz
Runs µTTE(s) Â12U Runs µTTE(s) Â12A Â12U Runs µTTE(s) Â12A Â12U Runs µTTE(s) Â12A

giflib-bug-74 9 478 0.70 10 261 0.47 0.66 10 317 0.47 0.67 10 209 0.30
CVE-2018-11496 10 22 0.92 10 14 0.06 0.44 10 23 0.52 1.00 10 14 0.08
yasm-issue-91 8 2427 1.00 10 37 0.00 0.44 10 99 0.00 0.47 10 56 0.00
CVE-2016-4487 6 2427 0.57 5 2206 0.46 0.53 5 2494 0.51 0.59 6 2110 0.43
CVE-2018-11416 10 303 0.78 10 232 0.24 0.50 10 408 0.79 0.88 10 235 0.22
mjs-issue-78 4 8755 0.80 4 7454 0.47 0.72 9 3707 0.22 0.48 9 4197 0.20
mjs-issue-73 0 10800 0.85 3 7651 0.35 0.68 6 5432 0.20 0.56 7 4881 0.15

CVE-2018-10685 9 305 0.57 10 128 0.43 0.47 10 160 0.54 0.67 10 118 0.43
CVE-2019-6455 5 1213 0.81 10 407 0.19 0.48 9 981 0.37 0.75 10 438 0.19
CVE-2017-10686 3 19721 0.99 10 12838 0.07 0.73 10 12484 0.07 0.69 10 10040 0.01

gifsicle-issue-122 8 6210 0.52 3 12702 0.68 0.72 2 13443 0.72 0.77 7 9853 0.48
CVE-2016-3189 10 158 0.66 10 141 0.35 0.55 10 152 0.40 0.55 10 141 0.34
CVE-2018-20623 9 3169 1.00 10 135 0.00 0.10 10 89 0.00 0.18 10 128 0.00

Total Success Runs 89 105 (+18.0%) 111 (+24.7%) 119 (+33.7%)
Total µTTE (h) 15.6 12.3 11.1 9.0
Average Â12A – 0.29 0.37 0.22
Average Â12U 0.78 0.54 0.64 –

Total Success Runs
(higher is better)

0

50

100

150

89
105 111

119

AFLGoB AFLGoB–ss AFLGoB–ds UAFuzz

Total µTTE (h)
(lower is better)

0

5

10

15

20

15.6

12.3
11.1

9.0

AFLGoB AFLGoB–ss AFLGoB–ds UAFuzz

Figure 4.16: Impact of each components (RQ4).

Answer to RQ4: The UAF-based distance computation, the power scheduling and
the seed selection heuristic individually contribute to improve fuzzing performance, and
combining them yield even further improvements, demonstrating their interest and com-
plementarity.

4.4.7 Patch Testing & Zero-days

Patch testing The idea is to use bug stack traces of known UAF bugs to guide testing
on the patched version of the PUT – instead of the buggy version as in bug reproduction.
The benefit from the bug hunting point of view [gpz20] is both to try finding buggy or
incomplete patches and to focus testing on a priori fragile parts of the code, possibly
discovering bugs unrelated to the patch itself.

58

How to We follow bug hunting practice [gpz20]. Starting from the recent publicly dis-
closed UAF bugs of open source programs, we manually identify addresses of relevant call
instructions in the reported bug stack traces since the code has been evolved. We focus
mainly on 3 widely-used programs that have been well fuzzed and maintained by the devel-
opers, namely GNU patch, GPAC and Perl 5 (737K lines of C code and 5 known bug traces
in total). We also consider 3 other codes: MuPDF, Boolector and fontforge (+1,196Kloc).

Table 4.9: Summary of zero-day vulnerabilities reported by our fuzzer UAFuzz (32 new
bugs including 13 new UAF bugs, 10 CVEs were assigned and 23 bugs were fixed).

Program Code Size Version (Commit) Bug ID Vulnerability Type Crash Vulnerable Function Status CVE

GPAC 545K

0.7.1 (987169b) #1269 User after free 7 gf_m2ts_process_pmt Fixed CVE-2019-20628
0.8.0 (56eaea8) #1440-1 User after free 7 gf_isom_box_del Fixed

CVE-2020-115580.8.0 (56eaea8) #1440-2 User after free 7 gf_isom_box_del Fixed
0.8.0 (56eaea8) #1440-3 User after free 7 gf_isom_box_del Fixed
0.8.0 (5b37b21) #1427 User after free 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1263 NULL pointer dereference 3 ilst_item_Read Fixed
0.7.1 (987169b) #1264 Heap buffer overflow 3 gf_m2ts_process_pmt Fixed CVE-2019-20629
0.7.1 (987169b) #1265 Invalid read 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1266 Invalid read 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1267 NULL pointer dereference 3 gf_m2ts_process_pmt Fixed
0.7.1 (987169b) #1268 Heap buffer overflow 3 BS_ReadByte Fixed CVE-2019-20630
0.7.1 (987169b) #1270 Invalid read 3 gf_list_count Fixed CVE-2019-20631
0.7.1 (987169b) #1271 Invalid read 3 gf_odf_delete_descriptor Fixed CVE-2019-20632
0.8.0 (5b37b21) #1445 Heap buffer overflow 3 gf_bs_read_data Fixed
0.8.0 (5b37b21) #1446 Stack buffer overflow 3 gf_m2ts_get_adaptation_field Fixed

GNU patch 7K
2.7.6 (76e7758) #56683 Double free 3 another_hunk Confirmed CVE-2019-20633
2.7.6 (76e7758) #56681 Assertion failure 3 pch_swap Confirmed
2.7.6 (76e7758) #56684 Memory leak 7 xmalloc Confirmed

MuPDF 539K 1.16.1 (6566de7) #702253 Use after free 7 fz_drop_band_writer Fixed CVE-2020-16600

Perl 5 184K

5.31.3 (a3c7756) #134324 Use after free 3 S_reg Confirmed
5.31.3 (a3c7756) #134326 Use after free 3 Perl_regnext Fixed
5.31.3 (a3c7756) #134329 User after free 3 Perl_regnext Fixed
5.31.3 (a3c7756) #134322 NULL pointer dereference 3 do_clean_named_objs Confirmed
5.31.3 (a3c7756) #134325 Heap buffer overflow 3 S_reg Fixed
5.31.3 (a3c7756) #134327 Invalid read 3 S_regmatch Fixed
5.31.3 (a3c7756) #134328 Invalid read 3 S_regmatch Fixed
5.31.3 (45f8e7b) #134342 Invalid read 3 Perl_mro_isa_changed_in Confirmed

Boolector 79K 3.2.1 (3249ae0) #90 NULL pointer dereference 3 set_last_occurrence_of_symbols Won’t fix

fontforge 578K 20200314 (1604c74) #4266 Use after free 3 SFDGetBitmapChar Won’t fix
20200314 (1604c74) #4267 NULL pointer dereference 3 SFDGetBitmapChar Won’t fix

readelf 1.0 M 2.34 (f717994) #25821 Double free 3 process_symbol_table Fixed CVE-2020-16590
nm-new 6.7 M 2.34 (c98a454) #25823 Use after free 3 bfd_hash_lookup Fixed CVE-2020-16592

Results Overall UAFuzz has found and reported 32 new bugs, including 13 new
UAF bugs and 10 new CVEs (details in Table 4.9). At this time, 23 bugs have been
fixed by the vendors. Interestingly, the bugs found in GNU patch and GPAC were actually
buggy patches.

Zoom: GNU Patch buggy patch We use CVE-2018-6952 [cve20b] to demonstrate the
effectiveness of UAFuzz in exposing unknown UAF vulnerabilities. GNU patch [gnu20]
takes a patch file containing a list of differences and applies them to the original file.
Listing 4.2 shows the code fragment of CVE-2018-6952 which is a double free in the latest
version 2.7.6 of GNU patch. Interestingly, by using the stack trace of this CVE as shown
in Figure 4.17, UAFuzz successfully discovered an incomplete bug fix [dfp20] in the latest
commit 76e7758, with a slight difference of the bug stack trace (i.e., the call of savebuf()
in another_hunk()).

59

1 File: src/patch.c
2 int main (int argc , char **argv) {...
3 while (0 < (got_hunk = another_hunk (diff_type , reverse))) {
4 /* Apply each hunk of patch */ ... }
5 ...}
6

7 File: src/pch.c
8 int another_hunk (enum diff difftype , bool rev) { ...
9 while (p_end >= 0) {

10 if (p_end == p_efake) p_end = p_bfake;
11 else free(p_line[p_end]); /* Free and Use event */
12 p_end --;
13 } ...
14 while (p_end < p_max) { ...
15 switch (*buf) { ...
16 case ’+’: case ’!’: /* Our bug CVE -2019 -20633 */ ...
17 p_line[p_end] = savebuf (s, chars_read); ...
18 case ’ ’: /* CVE -2018 -6952 */ ...
19 p_line[p_end] = savebuf (s, chars_read); ...
20 ...}
21 ...}
22 ... }
23

24 File: src/util.c
25 /* Allocate a unique area for a string. */
26 char *savebuf (char const *s, size_t size) { ...
27 rv = malloc (size); /* Alloc event */ ...
28 memcpy (rv , s, size);
29 return rv;
30 }

Listing 4.2: Code fragment of GNU patch pertaining to the UAF vulnerability
CVE-2018-6952.

Technically, GNU patch takes an input patch file containing multiple hunks (line 4)
that are split into multiple strings using special characters as delimiter via *buf in the
switch case (line 15). GNU patch then reads and parses each string stored in p_line that
is dynamically allocated on the memory using malloc() in savebuf() (line 27) until the
last line of this hunk has been processed. Otherwise, GNU patch deallocates the most
recently processed string using free() (line 11). Our reported bug and CVE-2018-6952
share the same free and use event, but have a different stack trace leading to the same
alloc event. Actually, while the PoC input generated by UAFuzz contains two characters
‘!’, the PoC of CVE-2018-6952 does not contain this character, consequently the case in
line 17 was previously uncovered, and thus this CVE had been incompletely fixed. This
case study shows the importance of producing different unique bug-triggering inputs to
favor the repair process and help complete bug fixing.

60

// Stack trace for the bad Use (here: a free)
==330== Invalid free() / delete / delete[] / realloc()
==330== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==330== by 0x8052E11: another_hunk (pch.c:1185)
==330== by 0x804C06C: main (patch.c:396)

// Stack trace for the Free
==330== Address 0x4283540 is 0 bytes inside a block of size 2 free’d
==330== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==330== by 0x8052E11: another_hunk (pch.c:1185)
==330== by 0x804C06C: main (patch.c:396)

// Stack trace for the Alloc
==330== Block was alloc’d at
==330== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
==330== by 0x805A821: savebuf (util.c:861)
==330== by 0x805423C: another_hunk (pch.c:1504)
==330== by 0x804C06C: main (patch.c:396)

Figure 4.17: The bug trace of CVE-2018-6952 (Double Free) produced by Valgrind.

UAFuzz has been proven effective in a patch testing setting, allowing to find 32 new
bugs (incl. 10 new CVEs) in 8 widely-used programs.

4.4.8 Threats to Validity

Implementation Our prototype is implemented as part of the binary-level code analysis
framework Binsec [DBT+16, DB15], whose efficiency and robustness have been demon-
strated in prior large scale studies on both adversarial code and managed code [BDM17,
RBB+19,DBF+16], and on top of the popular fuzzer AFL-QEMU. Effectiveness and cor-
rectness of UAFuzz have been assessed on several bug traces from real programs, as well
as on small samples from the Juliet Test Suite. All reported UAF bugs have been manually
checked.

Benchmark Our benchmark is built on both real codes and real bugs, and encompass
several bugs found by recent fuzzing techniques of well-known open source codes (including
all UAF bugs found by directed fuzzers).

Competitors We consider the best state-of-the-art techniques in directed fuzzing,
namely AFLGo [BPNR17] and Hawkeye [CXL+18]. Unfortunately, Hawkeye is not
available and AFLGo works on source code only. Thus, we re-implement these technolo-
gies in our own framework. We followed the available information (article, source code if
any) as close as possible, and did our best to get precise implementations. They have both

61

been checked on real programs and small samples, and the comparison against AFLGo
source and our own AFLGoB implementation is conclusive.

4.5 Related Work

4.5.1 Directed Greybox Fuzzing

The state-of-the-art directed fuzzers such as AFLGo [BPNR17] and Hawkeye [CXL+18]
have already been discussed. LOLLY [LZY+19] provides a lightweight instrumentation to
measure the sequence basic block coverage of inputs, yet, at the price of a large runtime
overhead. SeededFuzz [WSZ16] seeks to generate a set of initial seeds that improves di-
rected fuzzing performance. Our fuzzer UAFuzz could therefore benefit from the improved
seed selection and generation techniques of SeededFuzz. SemFuzz [YZC+17] leverages
vulnerability-related texts such as CVE reports to guide fuzzing and automatically gener-
ate PoC exploits for Linux kernel flaws. 1dVul [PLL+19] discovers 1-day vulnerabilities
via binary patches by leveraging a hybrid approach of distance-based directed fuzzing and
dominator-based directed symbolic execution. Different from these works, we use UAF
bug traces to guide the fuzzing to detect specific UAF bugs in software binaries.

UAFuzz is the first directed fuzzer tailored to UAF bugs, and one of the very
few [PLL+19] able to handle binary code.

4.5.2 Coverage-based Greybox Fuzzing

AFL [afl20a] is the seminal coverage-guided greybox fuzzer. Substantial efforts have been
conducted in the last few years to improve over it [BPR16, LS18,GZQ+18]. Also, many
efforts have been fruitfully invested in combining fuzzing with other approaches, such
as static analysis [LCC+17, GZQ+18], dynamic taint analysis [RJK+17, CC18, CLC19],
symbolic execution [SGS+16,PSP18,YLX+18] or machine learning [GPS17,SPE+18].

Recently, UAFL [WXL+20] – another independent research effort on the same prob-
lem, specialized coverage-guided fuzzing to detect UAFs by finding operation sequences
potentially violating a typestate property and then guiding the fuzzing process to trigger
property violations. However, this approach relies heavily on the static analysis of source
code, therefore is not applicable at binary-level.

Our technique is orthogonal to all these improvements, they could be reused within
UAFuzz as is.

4.5.3 UAF Detection

Precise static UAF detection is difficult. GUEB [gue20] is the only binary-level static
analyzer for UAF. The technique can be combined with dynamic symbolic execution to
generate PoC inputs [FMB+16], yet with scalability issues. On the other hand, several
UAF source-level static detectors exist, based on abstract interpretation [CKK+12], pointer

62

analysis [YSCX18], pattern matching [OHLP14], model checking [KT14] or demand-driven
pointer analysis [SX16]. A common weakness of all static detectors is their inability to infer
triggering input – they rather prove their absence.

Dynamic UAF detectors mainly rely on heavyweight instrumentation [CGMN12,NS07,
drm20] and result in high runtime overhead, even more for closed source programs.
ASan [SBPV12] performs lightweight instrumentation, but at source level only.

4.5.4 UAF Fuzzing Benchmark

Table 4.10: Summary of existing benchmarks.

∼: DARPA CGC features crafted codes and bugs, yet they are supposed to be realistic

Benchmark Realistic #Programs #Bugs #UAFProgram Bug
Juliet Test Suite [NIS20] 7 7 366 366 366
LAVA-1 [DGHK+16] 3 7 1 69 0
LAVA-M [DGHK+16] 3 7 4 2265 0

Apocalypse [RPDGH18] 3 7 30 30 0
Rode0day [rod20,FLDGB19] 3 7 44 2103 0
Google Fuzzer TestSuite [gft20] 3 3 24 46 3

FuzzBench [fuz20] 3 3 23 23 0
DARPA CGC [cgc20] ∼ ∼ 296 248 10

UAFuzz Benchmark (evaluation) [uaf20a] 3 3 11 13 13
UAFuzz Benchmark (full) [uaf20a] 3 3 17 30 30

While the Juliet Test Suite [NIS20] (CWE-415, CWE-416)5 contains only too small
programs, popular fuzzing benchmarks [DGHK+16,RPDGH18,rod20,gft20,cgc20] comprise
only very few UAF bugs. Moreover, many of these benchmarks contain either artificial bugs
[DGHK+16, RPDGH18, rod20, cgc20] or artificial programs [NIS20]. Recently, a ground-
truth fuzzing benchmark Magma [HHP20], that contains real bugs in real software, allows
to uniform fuzzer evaluation and comparison. Table 4.10 compares our UAF Fuzzing
benchmarks to existing fuzzing benchmarks. Table 4.11 provides additional details about
our evaluation benchmark, including program executables under test, buggy commits and
fuzzing configurations (test driver, seeds and timeout).

Merging our evaluation benchmark (known UAF) and our new UAF bugs, we provide
the largest fuzzing benchmark dedicated to UAF – 17 real codes and 30 real bugs [uaf20a].

5Juliet is mostly used for the evaluation of C/C++ static analysis tools.

63

Table 4.11: Detailed view of our evaluation benchmark.

Bug ID Program Bug Fuzzing Configuration
Project Size Commit Type Crash Found by Test driver Seeds Timeout # Targets

giflib-bug-74 GIFLIB 59 Kb 72e31ff DF 7 – gifsponge <@@ “GIF" 30m 7
CVE-2018-11496 lrzip 581 Kb ed51e14 UAF 7 – lrzip -t @@ lrz files 15m 12
yasm-issue-91 yasm 1.4 Mb 6caf151 UAF 7 AFL yasm @@ asm files 1h 19
CVE-2016-4487 Binutils 3.8 Mb 2c49145 UAF 3 AFLFast cxxfilt <@@ empty file 1h 7
CVE-2018-11416 jpegoptim 62 Kb d23abf2 DF 7 – jpegoptim @@ jpeg files 30m 5
mjs-issue-78 mjs 255 Kb 9eae0e6 UAF 7 Hawkeye mjs -f @@ js files 3h 19
mjs-issue-73 mjs 254 Kb e4ea33a UAF 7 Hawkeye mjs -f @@ js files 3h 28

CVE-2018-10685 lrzip 576 Kb 9de7ccb UAF 7 AFL lrzip -t @@ lrz files 15m 7
CVE-2019-6455 Recutils 604 Kb 97d20cc DF 7 – rec2csv @@ empty file 30m 15
CVE-2017-10686 NASM 1.8 Mb 7a81ead UAF 3 CollAFL nasm -f bin @@ -o /dev/null asm files 6h 10

gifsicle-issue-122 Gifsicle 374 Kb fad477c DF 7 Eclipser gifsicle @@ test.gif -o /dev/null “GIF" 4h 11
CVE-2016-3189 bzip2 26 Kb 962d606 UAF 3 – bzip2recover @@ bz2 files 30m 5
CVE-2018-20623 Binutils 1.0 Mb 923c6a7 UAF 7 AFL readelf -a @@ binary files 1h 7

4.6 Conclusion
UAFuzz is the first directed greybox fuzzing approach tailored to detecting UAF vulnera-
bilities (in binary) given only the bug stack trace. UAFuzz outperforms existing directed
fuzzers, both in terms of time to bug exposure and number of successful runs. UAFuzz
has been proven effective in both bug reproduction and patch testing.

64

Chapter 5

Implementation

Contents
5.1 Introduction . 65
5.2 Preprocessing . 67

5.2.1 Bug trace generation . 67
5.2.2 BinIda Plugin . 68

5.3 Core Fuzzing Engine . 70
5.3.1 Debugging with afl-showmap . 70
5.3.2 Overhead . 70

5.4 Examples . 71
5.4.1 Application 1: Bug Reproduction 71
5.4.2 Application 2: Patch Testing . 75

5.5 Conclusion . 76

This chapter introduces the detailed implementation of our fuzzer UAFuzz. First, we
discuss an overview of the workflow. Then, we go through each principle component of the
UAFuzz’s workflow, namely the preprocessing step, the BinIda plugin and the guided
fuzzing system built on top of AFL-QEMU. Finally, we provide detailed instructions to
run UAFuzz in two scenarios: bug reproduction and patch testing.

5.1 Introduction

Workflow We have implemented our results in a UAF-oriented binary-level directed
fuzzer, named UAFuzz. Figure 5.1 depicts an overview of the main components of
UAFuzz. The inputs of the overall system are a set of initial seeds, the Program Un-
der Test (PUT) (as a binary executable) and target locations extracted from the bug
trace. The output is a set of unique bug-triggering inputs. The prototype is built upon
AFL 2.52b [afl20a] and QEMU 2.10.0 for fuzzing, and the binary analysis platform Bin-
sec [bin20] for lightweight static analysis. These two components share information such
as target locations, time budget and fuzzing status.

65

Static Analysis

Fuzzing Loop

Triage

Seeds Seed
Selector

Power
Scheduler Mutants

Run
Instrumented PUT

Queue of
Interesting Inputs

Crashing Inputs

UAF Bug
AnalyzerPoCs

Static
Calculator

CG CFGs
UAF

Bug Trace

PUT

Figure 5.1: Overview of UAFuzz workflow.

• We have implemented a Binsec plugin computing statically distance and cut-edge
information, consequently used in the instrumentation of UAFuzz – note that the
call graph and the Control Flow Graph (CFG) are retrieved from the IDA Pro
binary database (IDA Pro version 6.9 [ida20]). The static part takes about 2000
lines of Ocaml code;

• On the dynamic side, we have modified AFL-QEMU to track covered targets, dy-
namically compute seed scores and power functions, by adding another 3000 lines of
C/C++ code;

• In the end, some scripts including 1000 lines of Python code and 1500 lines of Bash
code automate the bug triaging and run the whole toolchain against the UAF fuzzing
benchmark in Section 4.4, respectively.

UAFuzz

binsec/src

ida: a plugin to import and process IDA’s control-flow graphs and call graph

uafuzz: fuzzing code

afl-2.52b: core fuzzing built on top of AFL-QEMU

uafuzz_*.ml(i): a plugin to compute static information and communicate with AFL-QEMU

scripts: some scripts for building and bug triaging

Figure 5.2: Code structure of UAFuzz.

66

Availability We have made UAFuzz open source at https://github.com/
strongcourage/uafuzz. The Github respository contains the source code of UAFuzz
including Ocaml code of Binsec and C code of AFL, as well as the Python scripts that we
used for building the fuzzer and triaging bugs in our experiments. Note that we use Ocaml-
C bindings to call some important fuzzing functions, such as afl-fuzz and afl-showmap,
implemented in AFL from Binsec. The code structure of UAFuzz is organized as in
Figure 5.2.

5.2 Preprocessing

5.2.1 Bug trace generation

(a) The original calling tree. (b) The final calling tree.

Figure 5.3: Dynamic Calling Tree (DCT) of the program mjs generated by our
preprocessing script.

The preprocessing script takes the tested x86 binary executable and the Valgrind’s
bug traces as inputs, then generates the UAF bug trace which is a sequence of target
locations in the format (basic_block_address, function_name). In addition, we also

67

https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafuzz

output the DCT of the tested program, allowing users (e.g., developers) to have a better
visualization of bug-triggering paths and buggy functions where the UAF events happen.
However, there are some corner cases in which paths leading to buggy UAF events are
not clearly identified, such as in mjs-issue-73 in Figure 5.3. In particular, the two paths
leading to alloc and free events share the similar nodes because of the common function
mjs_mk_string is invoked multiple times by different functions, as shown in Figure 5.3a.
We thus add redundant nodes with a suffix “_f” (noting that “_u” if nodes belong to
the use path) in the final calling tree, as shown in Figure 5.3b to clearly distinguish the
three paths and also support the process of bug trace generation by applying the preorder
traversal algorithm on the DCT. Noting that adding redundant nodes in the dynamic
calling tree and also in the bug trace has no impact on the calculation of metrics in the
static analysis phase.

5.2.2 BinIda Plugin

The BinIda plugin is a part of Binsec version 0.3 [bin20]. The goal of this plugin is
to extract information of the input binary in x86 using the disassembler IDA Pro, then
construct the CFG that is represented by the data structure of Binsec. The Ida files
contain the crucial information of the binary like functions, basic blocks and instructions
in the following formats:

Function start_addr; func_name
BasicBlock start_addr; instructions; block_predecessors; block_successors;

caller_call_addr – callee_start_addr – caller_return_addr
Instruction addr; disasm; opcodes; block_start_addr; func_name

Figure 5.4: Formats of the files extracted using IDA Pro.

Concretely, we store the name and the entry point of each function. Then, for each basic
block in a function, we collect the address of its first instruction, a list of its instructions, its
predecessors, its successors and calling information. Finally, each instruction is associated
with a basic block and a function to facilitate further processing. Furthermore, the calling
information is more useful in constructing the interprocedural CFG for static analysis.
As a basic block in CFGs produced by IDA Pro may contain many call instructions,
as illustrated in Figure 5.5, we first need to split it into a sequence of blocks whose last
instruction is a call or jump instruction. This processing step is indeed very important to
make the static analysis relied on CFGs of IDA Pro consistent with the dynamic binary
translation of QEMU, for example to keep track of covered edges or basic blocks during
the fuzzing campaign. However, our tool chain shares the same problem with IDA Pro,
that is the processing graphs are still incomplete due to indirect calls, thereby making our
analysis less accurate.

Table 5.1 presents the detailed results of the plugin BinIda to preprocess the subjects
in our evaluation benchmark in Table 4.3, discussed in Chapter 4. As our benchmark

68

Figure 5.5: A basic block of mjs_mkstr() in the program mjs.

contains programs whose size vary from 26 Kb to 3.8 Mb, the size of the binary databases
and the generated Ida files are relatively proportional to the size and the complexity of
tested subjects. For example, for the most complex subject cxxfilt of Binutils (CVE-
2016-4487), IDA Pro generates a database Idb file with size 24.1 Mb and BinIda outputs
the biggest Ida file with size 29.5 Mb. Overall, the processing phase of BinIda is fast as
BinIda takes less than 15 seconds for this step in the worst case scenario. Consequently,
our tool chain is much faster than existing source-based directed fuzzers in the static
analysis phase.

Table 5.1: Detailed results of BinIda in processing our evaluation benchmark
in Table 4.3.

Bug ID Program’s Size Database’s size Ida size Processing Time (s)
giflib-bug-74 59 Kb 586 Kb 561 Kb 1.8

CVE-2018-11496 581 Kb 5.9 Mb 7.2 Mb 2.4
yasm-issue-91 1.4 Mb 12.3 Mb 12.4 Mb 6.7
CVE-2016-4487 3.8 Mb 24.1 Mb 29.5 Mb 14.2
CVE-2018-11416 62 Kb 523 Kb 293 Kb 1.5

mjs-issue-78 255 Kb 3.0 Mb 3.0 Mb 4.2
mjs-issue-73 254 Kb 3.0 Mb 2.9 Mb 4.5

CVE-2018-10685 576 Kb 5.9 Mb 7.3 Mb 2.7
CVE-2019-6455 604 Kb 6.3 Mb 6.8 Mb 4.6
CVE-2017-10686 1.8 Mb 11.7 Mb 7.4 Mb 7.5
gifsicle-issue-122 374 Kb 3.7 Mb 4.2 Mb 1.4
CVE-2016-3189 26 Kb 191 Kb 97 Kb 1.6
CVE-2018-20623 1.0 Mb 11.7 Mb 11.7 Mb 5.7

69

5.3 Core Fuzzing Engine

5.3.1 Debugging with afl-showmap

afl-showmap is a simple tool that runs the targeted binary and displays the contents of
the trace bitmap in a human-readable form. In our toolchain, we also provide a way
to facilitate the debugging process by invoking afl-showmap. Given a tested binary, a
Valgrind report and an input (e.g., an initial valid input or an input produced by the
fuzzing), we can run the following command to obtain all input metric values of this input,
as shown in Listing 5.1.

$ example.sh uafuzz 60 example.valgrind
...
UAFuzz afl -showmap 2.52b by <lcamtufgoogle.com>
[*] Executing ‘/home/dungnguyen/UAFuzz/tests/example/obj-uafuzz/example’...
– Program output begins –
[parse_distance] addr: 0x804853a, distance: 11.000000
[parse_distance] addr: 0x804852f, distance: 12.000000
[parse_distance] addr: 0x8048513, distance: 13.000000
[parse_distance] addr: 0x80484b5, distance: 13.000000
[parse_uaf_targets] addr: 0x8048513, fname: main
[parse_uaf_targets] addr: 0x804849b, fname: bad_func
[parse_uaf_targets] addr: 0x804854a, fname: main
– Program output ends –
[+] total_distance: 37.000000, total_count: 41.000000, average_distance: 0.902439
[C] 0x804853f -> 0x804854a: 14845 -> hit 1 times
[C] 0x8048500 -> 0x8048513: 32633 -> hit 1 times
[+] nb_cut: 2, nb_uncut: 0
[+] trace_targets: 15, nb_reach: 4
[+] trace_uaf: 7, nb_uaf: 3
[+] Captured 40 tuples in ’out_file’.
[uafuzz:result] status: 0

Listing 5.1: Outputs of afl_showmap.

5.3.2 Overhead

Extended shared memory Since our fuzzer computes the seed metric values of each
input produced at runtime, we extend the shared memory to store important current values,
subsequently reduce the runtime overhead during fuzzing process. Overall, UAFuzz uses
20 additional bytes of the shared memory as shown in Figure 5.6.

In order to make UAFuzz aware of distance to targets, similar to state-of-the-art
source-based directed fuzzer AFLGo, the shared memory that is passed by UAFuzz during
execution is extended by 16 bytes. Let D be the set of distance values corresponding to
each basic block that is executed by the seed. The first eight additional bytes are used
to accumulate the cumulative basic block distance values (i.e.,

∑
d∈D d) as and when the

seed is executed. These are followed by eight bytes that contain the count of accumulated

70

8 bytes 8 bytes 4 bytes
Bit Map ... Cumulative

Distance
Number of
Additions Target Trace

Figure 5.6: UAFuzz shared memory – extended layout (x86-64)

distance values (i.e., |D|). Thus, those additional bytes allow us to compute the arithmetic
mean of the distances of the exercised basic blocks as in Equation 3.3 (i.e.,

(∑
d∈D d

)
/|D|).

The last extra four bytes (or 32 bits) represent the seed target trace for the current
seed. Concretely, for the target similarity metric, as the maximum number of targets in a
bug trace in our benchmarks is smaller than 32, each bit associates to one target and the
bit is set if the current seed trace covers this target basic block. Thus, those four bytes
allow us to quickly compute the target similarity metric of an input.

Furthermore, to compute the cut-edges coverage metric as in Equation 4.4, we can
extract the hit counts of the exercised (non-) cut edges that are logged to the shared
bitmap during execution, in which each byte represents an edge. To sum up, our seed
metrics in UAFuzz were designed to be lightweight at runtime, allowing UAFuzz to have
the same fuzzing speed (i.e., in executions per second) as the fuzzer baseline AFL-QEMU,
as discussed in §4.4.4.

About performance of HawkeyeB in RQ1 HawkeyeB performs significantly worse
than AFLGoB and UAFuzz in §4.4.3. We cannot compare HawkeyeB with Hawk-
eye as Hawkeye is not available. Still, we investigate that issue and found that this
is mostly due to a large runtime overhead spent calculating the target similarity metric.
Indeed, according to the Hawkeye original paper [CXL+18], this computation involves
some quadratic computation over the total number of functions in the code under test.
On our samples this number quickly becomes important (up to 772) while the number
of targets (UAFuzz) remains small (up to 28). A few examples: CVE-2017-10686: 772
functions vs 10 targets; gifsicle-issue-122: 516 functions vs 11 targets; mjs-issue-78:
450 functions vs 19 targets. Hence, we can conclude that on our samples the performance
of HawkeyeB are in line with what is expected from Hawkeye algorithm.

5.4 Examples

In the previous sections, we introduce the technical details of our directed fuzzer UAFuzz.
In this section, we provide detailed instruction to run the whole toolchain in two practical
applications: bug reproduction and patch testing.

5.4.1 Application 1: Bug Reproduction

We consider the simplified version of the motivating example discussed in Section 4.2 to
illustrate the usage of UAFuzz in the bug reproduction. This example in Listing 5.2

71

contains a UAF bug due to a missing exit() call which could be triggered in a corner
case if the first three bytes of the Proof-of-Concept (PoC) input are ‘AFU’. Concretely, the
program reads a file and copies its contents into a buffer buf. A memory chunk pointed
at by p_alias is allocated (line 20), then p_alias and p become aliased (line 21). The
memory pointed by both pointers is freed in function bad_func (line 11). The UAF bug
occurs when the freed memory is dereferenced again via p (line 26).

The corresponding Valgrind’s output of the PoC is in Figure 5.9. Noting that a UAF
bug could be triggered in a different way, for example with an input ‘BFU’ by only ex-
ercising then branches of the last two conditional statements. However, in the bug re-
production setting, our final goal is to reproduce the UAF bug with the expected bug
trace as in Figure 5.9. In other words, the fuzzer needs to generate an input exercising
in sequence then branches of all conditional statements (line 19, 23 and 25). Given the
stack traces, our fuzzer first generates the corresponding DCT as depicted in Figure 5.8.
For instance, from the Valgrind’s output, we know that there is a call of malloc() at
address 0x804851C, thus the root node of the DCT has the address 0x8048513 of a ba-
sic block containing this call instruction. As a result, we obtain the expected bug trace
“(0x8048513,main);(0x804853a,main);(0x804849b,bad_func);(0x804854a,main)”.

Figure 5.10 shows the call graph of the tested binary and CFGs of two important
functions main() and bad_func() in the expected bug trace. From the CFG of main()
and the bug trace, we can extract a list of (non-) cut edges of this example in the for-
mat (type,block_address,successor_block_address), as shown in Figure 5.7. Then,
during the fuzzing process, UAFuzz can easily identify how many (non-) cut edges are
exercised by the current input and the hit counts of each edge from the bitmap, allowing
the fuzzer to evaluate the reaching progress of this input at edge level with relatively low
runtime overhead.

C,0x804853f,0x804854a
N,0x804853f,0x8048555
C,0x8048500,0x8048513
N,0x8048500,0x804852f
C,0x804852f,0x804853a
N,0x804852f,0x804853f

Figure 5.7: The identified (non-) cut edges of this example given the bug trace. C, N
denotes cut and non-cut, respectively.

72

1 # include <stdio.h>
2 # include <stdlib.h>
3 # include <string.h>
4 # include <unistd.h>
5 # include <fcntl.h>
6

7 int *p, *p_alias;
8 char buf [10];
9

10 void bad_func () {
11 free(p); // exit() is missing
12 }
13

14 int main (int argc , char *argv []) {
15 int f = open(argv[1], O_RDONLY);
16 read(f, buf , 10);
17 p = malloc(sizeof(int));
18

19 if (buf[0] == ’A’) {
20 p_alias = malloc(sizeof(int));
21 p = p_alias;
22 }
23 if (buf[1] == ’F’)
24 bad_func ();
25 if (buf[2] == ’U’)
26 *p = 1;
27 return 0;
28 }

Listing 5.2: A simple example.

Figure 5.8: DCT of this example.

// Stack trace for the bad Use
==27559== Invalid write of size 4
==27559== at 0x804854F: main (example.c:26)

// Stack trace for the Free
==27559== Address 0x421d060 is 0 bytes inside a block of size 4 free’d
==27559== at 0x402D358: free (in vgpreload_memcheck-x86-linux.so)
==27559== by 0x80484AE: bad_func (example.c:11)
==27559== by 0x804853E: main (example.c:24)

// Stack trace for the Alloc
==27559== Block was alloc’d at
==27559== at 0x402C17C: malloc (in vgpreload_memcheck-x86-linux.so)
==27559== by 0x804851C: main (example.c:20)

Figure 5.9: The stack traces of this example produced by Valgrind.

73

Call Gdl

bad_func

.free

main

.read .malloc .open

(a) Call graph.

bad_func

0x804849b
push ebp

0x80484af
add esp, 10h

(b) CGF of bad_func().

main

0x80484b5

lea ecx, [esp+4]

0x80484db

add esp, 10h

0x80484f3
add esp, 10h

0x8048500

add esp, 10h

0x8048513

sub esp, 0Ch

0x804852f
movzx eax, ds:buf+1

0x804851d

add esp, 10h

0x804853a

call bad_func

0x804853f
movzx eax, ds:buf+2

0x804854a

mov eax, ds:p

0x8048555

mov eax, 0

(c) CFG of main().

Figure 5.10: Call graph and important CFGs (only show the first instruction of each
basic block) of this example produced by the BinIda plugin.

Figure 5.11 illustrates the user interface of our fuzzer UAFuzz which is similar to
AFL’s. Although the maximum number of paths of the simple example is four (4), in this
case, the total paths found by UAFuzz is five (5), which means there are 5 different inputs
in the fuzzing queue. The reason, which is similar to what we explain in Section 4.2, is that
UAFuzz determines that the fifth input (here ‘AFU’ – the PoC) exercises in sequence the
targets in the expected bug trace. Intuitively, although this kind of input does not increase
the code coverage so far, it is definitely an interesting input that potentially triggers the
desired bug. Thus, we mark all inputs exercising in sequence all target basic blocks in the

74

bug trace with “,all”, and then run them under the profiling tool like Valgrind in the
triage phase to detect the PoC. It should be emphasized that both AFL-QEMU and even
directed fuzzer AFLGo with targets at source-level can not detect this bug within 6 hours,
while UAFuzz can generate a PoC within minutes with the help of a Valgrind’s UAF
report.

Figure 5.11: The user interface of UAFuzz.

5.4.2 Application 2: Patch Testing

We use CVE-2018-6952 of GNU Patch to illustrate the importance of producing different
unique bug-triggering inputs to favor the repair process. There was a double free in GNU
Patch which has been fixed by developers (commit 9c98635). However, by using the stack
traces of CVE-2018-6952 in Figure 4.17, UAFuzz discovered an incomplete bug fix CVE-
2019-20633 of the latest version 2.7.6 (commit 76e7758), with a slight difference of the bug
trace.

Overall, the process is similar to the bug reproduction application, except that some
manual work could be required in identifying the target UAF bug trace. More specifically,
as the code has evolved (e.g., adding new features or fixing bugs), we may not find the
corresponding basic block’s addresses of CVE-2018-6952’s Valgrind output in the latest
version of GNU Patch. What we can do is to automatically identify all call instructions of
relevant buggy functions in the new/patched version as potential targets, and then select
one of them to add to the bug trace. In this example, UAFuzz is able to identify the correct
UAF bug trace of our new bug CVE-2019-20633 from CVE-2018-6952’s stack traces, as
shown in Listing 5.3.
$ CVE -2019 -20633. sh uafuzz 360 CVE -2018 -6952. valgrind

75

[!] Cannot find BB address of (0 x804c06c: main)
[!] Cannot find BB address of (0 x805423c: another_hunk)
[!] Cannot find BB address of (0 x805a821: savebuf)
[!] Cannot find BB address of (0 x804c06c: main)
[!] Cannot find BB address of (0 x804c06c: main)
[+] Alloc path: [[’0x804c38d ’, ’main’], [’0x80555bd ’, ’another_hunk ’], [’

0x805ae62 ’, ’savebuf ’]]
[+] Free path: [[’0x804c38d ’, ’main’], [’0x80531f2 ’, ’another_hunk ’]]
[+] Use path: [[’0x804c38d ’, ’main’], [’0x80531f2 ’, ’another_hunk ’]]
[+] Possible targets:
{(’0x804c06c ’, ’main’): [(’0x804c38d ’, ’main’)],
(’0x8052e11 ’, ’another_hunk ’): [(’0x80546f3 ’, ’another_hunk ’),
(’0x80557e2 ’, ’another_hunk ’),
(’0x805560a ’, ’another_hunk ’),
(’0x8055948 ’, ’another_hunk ’),
(’0x80559fc ’, ’another_hunk ’),
(’0x80559e9 ’, ’another_hunk ’),
(’0x80557f5 ’, ’another_hunk ’),
(’0x80556d9 ’, ’another_hunk ’),
(’0x8053150 ’, ’another_hunk ’),
(’0x80531f2 ’, ’another_hunk ’)],
(’0x805423c ’, ’another_hunk ’): [(’0x805619e ’, ’another_hunk ’),
(’0x8055597 ’, ’another_hunk ’),
(’0x80558a8 ’, ’another_hunk ’),
(’0x80564e7 ’, ’another_hunk ’),
(’0x8054564 ’, ’another_hunk ’),
(’0x80542dc ’, ’another_hunk ’),
(’0x8054167 ’, ’another_hunk ’),
(’0x80555bd ’, ’another_hunk ’)],
(’0x805a821 ’, ’savebuf ’): [(’0x805ae62 ’, ’savebuf ’)]}
[+] UAF bug trace: [’0x804c38d ,main’, ’0x80555bd ,another_hunk ’, ’0

x805ae62 ,savebuf ’, ’0x80531f2 ,another_hunk ’]
...

Listing 5.3: UAFuzz’s output when fuzzing the latest version of GNU Patch with the
timeout 6 hours.

5.5 Conclusion

In this chapter, we have introduced our directed fuzzer UAFuzz at https://github.
com/strongcourage/uafuzz in details, especially its principal components like the pre-
processing component, the core fuzzing engine and also our UAF fuzzing benchmark at
https://github.com/strongcourage/uafbench. Furthermore, we have explained step
by step how to use UAFuzz to detect UAF vulnerabilities in two security applications:
bug reproduction and patch testing.

In the future, we can improve UAFuzz in several directions. First, in the prepro-
cessing phase, we can use other open-source disassemblers like Radare2 [r220] to generate
important graphs, like the call graph and the CFGs, of the tested binary. Second, AFLplus-

76

https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafuzz
https://github.com/strongcourage/uafbench

plus [FMEH20, afl20h] was created initially to incorporate all the best features developed
in the years for the fuzzers in the AFL family, thus, if UAFuzz were built on top of
AFLplusplus, it could boost the fuzzing performance of UAFuzz in general. Finally, com-
bining UAFuzz with the binary-level static analyzer Graphs of Use-After-Free Extracted
from Binary (GUEB) [gue20] in a hybrid manner could detect more UAF vulnerabilities.

77

78

Chapter 6

Typestate-guided Directed Fuzzing

Contents
6.1 Introduction . 79
6.2 The TypeFuzz Approach . 81

6.2.1 Different Bug Characteristics 81
6.2.2 Adapted Techniques . 82

6.3 Evaluation . 83
6.3.1 Research Questions . 83
6.3.2 Evaluation Setup . 84
6.3.3 Bug-reproducing Ability (RQ1) 85
6.3.4 Crash Triage (RQ2) . 86
6.3.5 Target Reaching (RQ3) . 87

6.4 Patch Testing . 89
6.5 Conclusion . 89

In this chapter, we introduce TypeFuzz, a binary-level directed fuzzer built on top of
UAFuzz specializing to detect common typestate vulnerabilities, such as buffer overflows
(CWE-121, CWE-122) and NULL pointer dereference (CWE-476). We then evaluate the
effectiveness and efficiency of TypeFuzz on the benchmarks used in the state-of-the-art
Directed Greybox Fuzzing (DGF) work and real-world programs as well.

6.1 Introduction

Classic memory corruptions identified by Common Weakness Enumeration (CWE) like
buffer overflows (CWE-121, CWE-122) [CPM+98, HSNB13], NULL pointer dereference
(CWE-476) [HP07,FMRS12] or integer overflows (CWE-190) [WWLZ09,MLW09,DLRA15]
have been well studied. In contrast, recent vulnerability classes such as UAF (CWE-415,
CWE-416) or type confusion have not received much attention in the literature. In the pre-
vious chapters, we have introduced our directed fuzzer UAFuzz tailored to complex UAF
bugs, by carefully tuning several of its key components to the bug-triggering conditions of

79

UAF that rely on the sequence of finite-state machine 〈alloc→ free→ use〉. Since other
types of bugs can also be triggered by the violation of typestate properties [SY86], we aim
to investigate the generality of our proposed directed techniques in Chapter 4 against more
popular memory corruption bugs.

Typestate properties can aid program understanding, define type systems [DF04]
that prevent programmers from causing typestate errors or even derive static analy-
sis [FGRY03, FYD+08] to verify whether a given program violates typestate proper-
ties, especially in formal verification. For example, the sequence of finite-state machine
〈nullify → dereference〉 is a witness of triggering the NULL pointer dereference bug.
However, typestate verification problem becomes NP-hard for complex programs, for ex-
ample with maximum aliasing width of three and aliasing depth of two, as shown by Field
et al [FGRY03], preventing it to be practically applicable on large programs. Recent work
proposed new approaches to applying typestate analysis by incorporating it into software
testing techniques. Hua et al. proposed Machine Learning (ML)-guided typestate analy-
sis for static UAF detection by leveraging ML techniques to tackle the problem of high
overhead of typestate analysis, making it scalable to real-world programs [YSCX17]. Re-
cently, UAFL [WXL+20] – another independent research effort specialized coverage-guided
fuzzing to detect UAFs in source code by finding operation sequences potentially violating
a typestate property and then guiding the fuzzing process to trigger property violations.

Overview In general, TypeFuzz is built on top of UAFuzz in the hope of detect-
ing typestate bugs. Similar to UAFuzz, TypeFuzz is made out of several components
including seed selection, power schedule, and crash triage, as illustrated in Figure 6.1.

Binary

Targets

CG

CFGs

Computation Graph-based Distance

Cut-edge Coverage

Target Similarity

Input Metrics

Seed
Selection

Power
Schedule

Crash
Triage

Bugs

Instrumentation Fuzzing Triage

Figure 6.1: Overview of TypeFuzz.

Our intuition behind TypeFuzz is to leverage the relationship among target locations
in the expected bug trace to accelerate detecting complex behavioral bugs. Given the
expected bug trace, we still combine three dynamic ordering-awareness seed metrics to
evaluate an input produced by the fuzzer at runtime at different granularity levels, e.g.,
function, edge and basic block. Our seed selection strategy then favors seeds covering more
targets at runtime and their energy is determined via our power schedule. Finally, we take

80

advantage of our previous metrics to pre-identify likely-Proof-of-Concept (PoC) inputs that
are sent to a profiling tool (e.g., Valgrind [NS07]) for detecting the real PoC.

Contributions We summarize the contributions as follows.

• We study bug-triggering conditions of different typestate bugs and tailor the directed
fuzzing strategies of UAFuzz into TypeFuzz to detect popular memory-related bugs
in the C/C++ programs, such as buffer overflows.

• We evaluate TypeFuzz with real-world programs in two practical settings, demon-
strating that TypeFuzz outperforms state-of-the-art competitors in reproducing
known bugs and in finding new bugs (7 CVEs were assigned and all bugs were fixed).
Furthermore, our evaluations show that TypeFuzz is also effective in reaching a
target basic block, especially in cases where the complete bug trace is given.

6.2 The TypeFuzz Approach

6.2.1 Different Bug Characteristics

Runtime behavior Different bugs have different runtime behaviors. While UAF bugs
usually fail silently without segmentation fault, buffer overflows or NULL pointer derefer-
ence crash programs frequently. Thus, this characteristic affects the triage phase in the
fuzzing workflow.

Bug stack trace Different bugs have different stack traces produced by the profiling
tools, such as AddressSanitizer or Valgrind, given the bug-triggering input. Considering
the CVE-2018-4488 which is a NULL pointer dereference of the Binutils program cxxfilt,
Figure 6.2 illustrates the stack trace produced by Valgrind. Our bug trace that is ex-
tracted from this stack trace, contains a sequence of target locations in the same format
“function,address_of_block” used in UAFuzz, as shown in Listing 6.1.

==32611== Invalid write of size 4
==32611== at 0x813A8E5: register_Btype (cplus-dem.c:4319)
==32611== by 0x8137611: demangle_class (cplus-dem.c:2594)
==32611== by 0x81355D8: demangle_signature (cplus-dem.c:1490)
==32611== by 0x8134D07: internal_cplus_demangle (cplus-dem.c:1203)
==32611== by 0x8134466: cplus_demangle (cplus-dem.c:886)
==32611== by 0x8049A23: demangle_it (cxxfilt.c:62)
==32611== by 0x8049E21: main (cxxfilt.c:227)
==32611== Address 0x0 is not stack’d, malloc’d or (recently) free’d

Figure 6.2: The stack trace of CVE-2016-4488 produced by Valgrind.

81

Figure 6.3: DCT of CVE-2016-4488.

(0x8049e09 ,main);(0 x8049a0d ,demangle_it);(0 x8134458 ,cplus_demangle);
(0x8134cf5 ,internal_cplus_demangle);(0 x81355be ,demangle_signature);
(0x8137604 ,demangle_class);(0 x813a8c5 ,register_Btype)

Listing 6.1: The expected bug trace of CVE-2016-4488.

6.2.2 Adapted Techniques

TypeFuzz takes the tested binary, the expected bug trace and a set of initial test cases
as inputs and produces PoCs that trigger the desired bug. However, as discussed in detail
above, different types of bugs have different characteristics that have impact on our designs
of the key fuzzing components in a more general context. We thus discuss our adaption
of directed fuzzing techniques proposed in Chapter 4 in TypeFuzz. Overall, we need to
slightly modify all three principal phases of DGF to tackle the problem of finding typestate
vulnerabilities.

Instrumentation In the first step, we still employ the plugin BinIda to generate the
important graphs of the tested binary. However, in TypeFuzz, we do not need the bug
trace flattening step (in §4.3.1) because there is only one stack trace produced by Val-

82

grind, as shown in Figure 6.2. Therefore, we consider this unique stack trace as the bug
trace, and also generate Dynamic Calling Tree (DCT) which represents a path starting
from main() and leading to the crashing point (a.k.a, the last location in the bug trace).
Finally, we perform some static analysis to precompute important information for fuzzing,
such as distance values or edges labeling.

Graph-based distance metric In TypeFuzz, we prioritize call trace leading to the
crashing function. In this case, we favor call edges between two functions belonging to
paths that can reach the crashing function in the call graph.

Θ(fa, fb) ,

{
β if fa → fb can reach the crashing function
1 otherwise

(6.1)

In our experiments, we use the following Θ(fa, fb) function, with a value of β = 0.25,
like in UAFuzz. Finally, we define our edge weight:

wUAFuzz(fa, fb) , wHawkeye(fa, fb).Θ(fa, fb) (6.2)

Cut-edge coverage metric This metric is directly applied in TypeFuzz without any
modification, as discussed in §4.3.4.1.

Target similarity metric In UAFuzz, we have two interesting traces: the sequence of
UAF events and the bug trace itself. In contrast, there is only the bug trace in TypeFuzz.
Therefore, in this case, our target similarity metric leverages the combination of Prefix (P)
and Bag (B) values of the current input execution trace towards the expected bug trace.
Hence, the P-B metric is defined as:

tP−B(s, T) , 〈tP (s, T), tB(s, T)〉 (6.3)

Triage As the typestate bugs like buffer overflow and NULL pointer dereference usually
crash the tested program, we are therefore interested in the crashing inputs. In other
words, we only triage the crashing inputs in the /crashes directory. Furthermore, our
target similarity metric allows us to identify inputs in the fuzzing queue that trigger in
sequence all target locations in the expected bug trace. In case where the bugs fail silently,
TypeFuzz still takes advantage of this seed metric to pre-identify likely-PoC inputs and
then only triages such kinds of potential inputs, like in UAFuzz.

6.3 Evaluation

6.3.1 Research Questions

In the bug reproduction setting, to evaluate the effectiveness and efficiency of our approach,
we investigate the following research questions:

83

RQ1. Bug-reproducing Ability Can TypeFuzz outperform other directed fuzzing
techniques in terms of typestate bug reproduction in executables?

RQ2. Crash Triage Can TypeFuzz find more correct crashing inputs than other
fuzzers?

RQ3. Target Reaching Is TypeFuzz effective at reaching a specific target location in
the bug trace?

It is noted that we skip two research questions RQ2 - Overhead and RQ4 - Individ-
ual Contribution in §4.4.1 as the results are straight-forward. First, similar to UAFuzz,
the overhead of TypeFuzz is relatively small as both fuzzers have the same preprocessing
component. Second, TypeFuzz uses the best configurations of UAFuzz. Furthermore,
we add a new research question to evaluate the target reaching ability of existing fuzzers,
as in Hawkeye [CXL+18] and ParmeSan [ÖRBG20].

6.3.2 Evaluation Setup

Evaluation fuzzers Similar to the experiments in Chapter 4, we mainly compare Type-
Fuzz with state-of-the-art directed fuzzers AFLGoB and HawkeyeB and also with
coverage-guided fuzzer AFL-QEMU.

Benchmarks Table 6.1 shows the benchmarks we use in our evaluations for crash repro-
duction. As typestate bugs like buffer overflows can be easily found in comparison with
UAF, our main goal is to evaluate TypeFuzz with diverse real-world programs used in
existing (directed) fuzzing work and various types of bugs to make our evaluations more
thoughtful.

• We reuse the benchmarks for crash reproduction that were used in existing directed
fuzzing work [BPNR17,CXL+18]. Concretely, we first use the GNU Binutils bench-
mark1 in AFLGo’ paper [BPNR17]. Second, we also use several bugs of the restricted
JavaScript engine mjs in Hawkeye’s paper [CXL+18], which contains a single source
file in order to avoid some issues in the instrumentation phase of AFLGo. It is worth
noting that we skip some UAF bugs in these benchmarks that have been used for
evaluations of UAFuzz in Chapter 4;

• As discussed in §4.4.7, UAFuzz reported some typestate bugs when fuzzing programs
to find new UAF bugs in the patch-oriented testing. We thus select some of those
bugs in order to evaluate TypeFuzz;

• Finally, we also collect recent typestate bugs reported by existing coverage-guided
greybox fuzzers, such as Profuzzer [YWM+19], to increase the diversity of our tested
programs (e.g., evix2, openjpeg, libming).

1Here we skipped old CVEs in libpng and we failed to reproduce CVE-2016-4491 due to lack of bug
trace in the bug report.

84

Table 6.1: Overview of our evaluation benchmark.

Bug ID Program Bug
Project Size Type Crash

CVE-2016-4488 Binutils 3.8 Mb Invalid write 3

CVE-2016-4489 Binutils 3.8 Mb Integer overflow 3

CVE-2016-4492 Binutils 3.9 Mb Stack overflow 3

CVE-2016-4493 Binutils 3.9 Mb Invalid read 3

mjs-issue-57 mjs 255 Kb Integer overflow 3

mjs-issue-69 mjs 254 Kb Integer overflow 3

mjs-issue-77 mjs 254 Kb Heap buffer overflow 3

CVE-2019-20629 GPAC 545 Kb Heap buffer overflow 3

CVE-2019-20630 GPAC 545 Kb Heap buffer overflow 3

fontforge-bug-4267 FontForge 578Kb NULL pointer dereference 3

boolector-bug-90 Boolector 79 Kb NULL pointer dereference 3

CVE-2017-17723 exiv2 4.2 Mb Heap buffer overflow 3

CVE-2018-5785 openjpeg 2.1 Mb Heap buffer overflow 3

CVE-2018-5294 libming 1.7 Mb Integer overflow 3

Evaluation configurations Similar to the configurations used in Chapter 4, we follow
the recommendations for fuzzing evaluations [KRC+18] and use the same fuzzing configu-
rations and hardware resources for all experiments. Experiments are conducted 10 times
with a time budget depending on the PUT. We use as input seed either an empty file
or existing valid files provided by developers. We do not use any token dictionary. All
experiments were carried out on an Intel Xeon CPU E3-1505M v6 @3.00GHz CPU with
32GB RAM and Ubuntu 16.04 64-bit.

6.3.3 Bug-reproducing Ability (RQ1)

Protocol We compare the different fuzzers on the popular benchmarks used in existing
work [BPNR17,CXL+18,ÖRBG20] using Time-to-Exposure (TTE), i.e. the time elapsed
until first bug-triggering input, and number of success runs in which a fuzzer triggers the
bug, as in §4.4.3. In case a fuzzer cannot detect the bug within the time budget, the run’s
TTE is set to the time budget. Following existing work [BPNR17,CXL+18], we also use
the Vargha-Delaney statistic (Â12) metric [VD00] to assess the confidence that one tool
outperforms another.

Results Figure 6.4 presents a consolidated view of the results including total success
runs and TTE – we denote by µTTE the average TTE observed for each sample over 10
runs. Table 6.2 summarizes the fuzzing performance of 4 binary-based fuzzers against the
evaluated benchmark by providing the total number of success runs and the max/min/av-
erage/median values of Â12.

Figure 6.4 and Table 6.2 show that UAFuzz outperforms the other fuzzers both in
total success runs (vs. 2nd best HawkeyeB: +42% in total) and in TTE (vs. 2nd best

85

Total Success Runs
(higher is better)

0

50

100

150

70 68 71

101

AFL-QEMU AFLGoB HawkeyeB TypeFuzz

Total µTTE (h)
(lower is better)

0

10

20

30

22.6 22.9 22.6

16.7

AFL-QEMU AFLGoB HawkeyeB TypeFuzz

Figure 6.4: Summary of fuzzing performance (RQ1).

HawkeyeB: 1.4× in total). The Â12 value of UAFuzz against other fuzzers is close to
the conventional large effect size 0.71 [VD00], as shown in Table 6.2, especially vs. AFL-
QEMU with median: 0.72 and max: 1.00.

Table 6.2: Summary of bug reproduction of TypeFuzz compared to other fuzzers against
our fuzzing benchmark. Statistically significant results Â12 ≥ 0.71 are marked as bold.

Fuzzer Success
Runs

Â12

Mdn Avg Min Max
AFL-QEMU 70 (+44%) 0.72 0.65 0.13 1.00

AFLGoB 68 (+46%) 0.57 0.65 0.35 1.00
HawkeyeB 71 (+42%) 0.62 0.66 0.25 1.00
TypeFuzz 101 – – – –

Answer to RQ1: In bug reproduction, TypeFuzz outperforms state-of-the-art di-
rected fuzzers in terms of total success runs and time to bug exposure.

6.3.4 Crash Triage (RQ2)

Protocol As all evaluated bugs in our benchmark (in Table 6.1) cause crashes, we con-
sider only the total number of crashing inputs (not the triaging inputs sent to the triaging
step as discussed in §4.4.5). Note that in the triage phase of bug reproduction, we need to
verify whether a fuzzer triggers the expected bug with the expected bug trace, because a
crashing input may trigger a different bug that we are not interested in to reproduce. Here,
we simply run the buggy program with all crashing inputs under the profiling tool Val-
grind, then compare the Valgrind’s outputs with the expected bug traces to identify
correct PoCs.

Results The detailed results are presented in Table 6.3. Overall, TypeFuzz found more
correct crashing inputs than other fuzzers (e.g., vs. 2nd best AFLGoB: +22% in total).

86

Table 6.3: Average number of correct crashing inputs of 4 fuzzers against our tested
subjects. Numbers in red are the best values.

Bug ID AFL-QEMU AFLGoB HawkeyeB TypeFuzz
CVE-2016-4488 1.3 0.5 0.8 2.3
CVE-2016-4489 1.1 1.6 1.5 1.5
CVE-2016-4492 0.3 0.4 0.2 0.9
CVE-2016-4493 0.3 0.4 0.2 0.9
mjs-issue-57 2.4 2.7 2.5 2.8
mjs-issue-69 0.2 0 0.2 0.8
mjs-issue-77 0.5 0 0.3 1.1

CVE-2019-20629 2.6 3.1 2.5 3.1
CVE-2019-20630 1.3 1.1 0.9 1.9

fontforge-bug-4267 3.1 5.3 5.1 5
boolector-bug-90 3.1 3.5 3.9 3.6
CVE-2017-17723 0 1.1 0 1.4
CVE-2018-5785 1.2 1.4 1 1.1
CVE-2018-5294 1.4 1.6 0.9 1.3

Total 18.7 22.8 20.2 27.8

Furthermore, as the number of crashing inputs produced by all 4 fuzzers is very small,
those fuzzers spent relatively the same time in the triaging phase (in seconds in total).
To summarize, the number of correct crashing inputs is also proportional to the fuzzing
performance of 4 fuzzers, such as the number of success runs, as discussed in RQ1.

Answer to RQ2: TypeFuzz finds more correct crashing inputs, that produce the
correct bug trace, in comparison with other fuzzers.

6.3.5 Target Reaching (RQ3)

In order to trigger the desired bug, the fuzzers first need to reach the buggy location as fast
and often as possible. In other words, reaching quickly specific “hard-to-reach” locations
implies the effectiveness of driving the fuzzer at runtime. Therefore, this metric is also
an important criterion for measuring directed fuzzers’ capabilities. Like existing work
[CXL+18, ÖRBG20], we choose the popular benchmark Google Fuzzer TestSuite [gft20]
that contains various types of bugs of real-world projects. Although this benchmark is
widely used to assess fuzzing effectiveness of coverage-guided fuzzers on code coverage in
the fuzzing literature, it also contains some bugs to test fuzzers’ abilities in term of covering
a target locations. Here we manually target a number of known hard-to-reach locations in
those bug-free programs to indicate that the relevant targets have been reached.

Table 6.4 and Table 6.5 show the average Time-to-Reach (TTR) of 4 fuzzers against
our tested subjects, given only one target basic block and a full bug trace, respectively. In
Table 6.5, we also add the difference values of TTR in two settings of 3 directed fuzzers in
parentheses, as the TTRs of the coverage-guided fuzzer AFL-QEMU remain unchanged
regardless of the number of given targets. Note that while the Time-to-Exposure (TTE)
is relevant to code coverage as complex bugs can only be triggered with special path

87

Table 6.4: Average TTR of 4 fuzzers against our tested subjects, given only one target
basic block. Numbers in red are the best µTTRs.

Bug ID AFL-QEMU AFLGoB HawkeyeB TypeFuzz
CVE-2016-5180 52 25 19 15
CVE-2015-8317 10723 8881 9400 6538
CVE-2014-0160 5673 9632 8274 5890
CVE-2015-3193 245 90 143 145
freetype2-2017 30 25 13 6

libpng-1.2.56-#1 251 265 102 78
libpng-1.2.56-#2 452 267 198 231

libjpeg-turbo-07-2017 9673 6734 7352 10352
lcms-2017-03-21 561 722 1362 1021

libarchive-2017-01-04 4528 7139 7012 5613
Total µTTR (h) 8.9 9.4 9.4 8.3

Table 6.5: Average TTR in seconds of 4 fuzzers against our tested subjects, given a full
bug trace. Numbers in red are the best µTTRs. The difference values of 3 directed

fuzzers compared to Table 6.4 are in parentheses.

Bug ID AFL-QEMU AFLGoB HawkeyeB TypeFuzz
CVE-2016-5180 52 15 (-40%) 14 (-26.3%) 7 (-53.3%)
CVE-2015-8317 10723 8980 (+1.1%) 7443 (-20.8%) 4283 (-34.5%)
CVE-2014-0160 5673 11352 (+17.8%) 7734 (-6.5%) 3734 (-36.6%)
CVE-2015-3193 245 135 (-33.3%) 178 (+19.7%) 188 (+29.6%)
freetype2-2017 30 24 (-4%) 8 (-38.5%) 8 (+33.3%)

libpng-1.2.56-#1 251 195 (-26.4%) 142 (+39.2%) 56 (-28.2%)
libpng-1.2.56-#2 452 263 (-1.5%) 238 (+20.2%) 145 (-37.2%)

libjpeg-turbo-07-2017 9673 5473 (-18.7%) 7342 (-0.1%) 4550 (-56%)
lcms-2017-03-21 561 922 (+27.7%) 1227 (-9.9%) 1025 (+0.4%)

libarchive-2017-01-04 4528 4593 (-35.7%) 7182 (+2.42%) 3612 (-35.6%)
Total µTTR (h) 8.9 8.9 8.8 4.9

conditions, TTR is actually how long a fuzzer spends covering the specific target location
at the first time.

Results In Table 6.4, TypeFuzz’s improvements against other fuzzers in covering a spe-
cific target location are not obvious, and for several cases, it performs worse. In Table 6.5,
we can clearly observe that the acceleration on target reaching ability is significant, as
TypeFuzz outperforms other fuzzers in 8 out of 10 cases with a speed up of 1.8×. One
notable result is libjpeg-turbo-07-2017, as given the bug trace, TypeFuzz saves roughly
56% of the TTR to become the best fuzzer reaching the target in this setting. Those re-
sults show that our dynamic fuzzing strategies are effective in detecting bugs, especially
in cases where we have a complete bug trace. From the results, we can conclude that our
ordering-awareness seed metrics that consider the relationship among target locations are
effective to guide the fuzzer at runtime.

88

Answer to RQ3: Given a full bug trace, TypeFuzz performs better than other fuzzers
in 8/10 cases in reaching a target location, and achieve significantly a speedup of 1.8×
compared to other fuzzers.

6.4 Patch Testing
Similar to patch testing in UAFuzz in §4.4.7, we leverage bug stack traces of known bugs
to guide testing on the more recent version of the Program Under Test (PUT), in the
hope of finding buggy patches and performing stress testing on a priori fragile parts of
the code. Here, we focus mainly on 2 widely-used open-source C/C++ programs that
have been well fuzzed by Google OSS-Fuzz [oss20a] and other fuzzing projects. While
Binutils is a collection of binary analysis tools and has almost one million lines of code,
OpenEXR provides the specification and reference implementation of the EXR file format,
the professional-grade image storage format of the motion picture industry. Both are well-
maintained by the developers.

Results Overall UAFuzz has found and reported 7 new bugs, including 2 buffer over-
flows, 4 NULL pointer dereferences and an invalid read, in critical libraries Binutils and
OpenEXR (details in Table 6.6). All 7 bugs have been fixed by the vendors and 7 CVEs
were assigned as they can cause a denial of service of programs which use those libraries.

Table 6.6: Summary of zero-day vulnerabilities reported by our fuzzer TypeFuzz. HBO,
NPD denote heap buffer overflow and NULL pointer dereference, respectively.

Program Code Size Version (Commit) Bug ID Vulnerability Type Crash Vulnerable Function Status CVE
readelf 1.0 M 2.34 (f717994) #25822 Invalid read 3 process_symbol_table Fixed CVE-2020-16591

addr2line 4.0 M 2.34 (95a5156) #25827 NPD 3 scan_unit_for_symbols Fixed CVE-2020-16593
objdump 5.3 M 2.34 (8e4979a) #25840 NPD 3 debug_get_real_type Fixed CVE-2020-16598
nm-new 6.7 M 2.34 (1619720) #25842 NPD 3 _bfd_elf_get_symbol_version_string Fixed CVE-2020-16599

OpenEXR 187 K 2.3.0 (9410823)
#491 HBO 3 chunkOffsetReconstruction Fixed CVE-2020-16587
#493 NPD 3 generatePreview Fixed CVE-2020-16588
#494 HBO 3 writeTileData Fixed CVE-2020-16589

TypeFuzz has been proven effective in leveraging existing bug traces to find 7 new
bugs in error-prone software libraries that are patched more often than not. All 7 bugs
were quickly fixed by the developers and were assigned CVEs.

6.5 Conclusion
In this chapter, we first have introduced TypeFuzz, which is built on top of UAFuzz by
adapting directed fuzzing techniques proposed in Chapters 4 and 5 in a general context to
detect common typestate vulnerabilities in binary code. Then, we have evaluated its effects
against several state-of-the-art (directed) greybox fuzzers on some popular benchmarks of

89

real-world programs. To summarize, our evaluation has shown that our ordering-awareness
seed metrics are effective not only in guiding the fuzzer to reproduce known bugs given
a bug trace or find new vulnerabilities in critical libraries, but also in reaching a specific
target location.

90

Chapter 7

Conclusion

Contents
7.1 Summary . 91

7.1.1 Research problems . 91
7.1.2 Scientific contributions . 92
7.1.3 Technical contributions . 93

7.2 Perspectives . 93

In this chapter, we summarize the research problems, our proposed techniques, our
achieved results and the limitations of the techniques proposed in this thesis. We also
discuss some interesting follow-up directions in future work.

7.1 Summary

7.1.1 Research problems

Fuzzing, especially Coverage-guided Greybox Fuzzing (CGF), is a popular security test-
ing technique consisting in generating massive amounts of random inputs, very effective
in triggering bugs in real-world programs. On the other hand, Directed Greybox Fuzzing
(DGF) aims to perform stress testing on pre-selected potentially vulnerable target loca-
tions, therefore it has many practical applications to different security contexts, such as
bug reproduction and patch testing. Despite tremendous recent progress to tackle various
fuzzing challenges [BCR21,MHH+19] in the past few years, finding complex vulnerabilities,
such as Use-After-Free (UAF), is still hard for existing (directed or not) greybox fuzzers as
bug-triggering paths may satisfy very specific properties of specific bug classes. In order to
detect specific bugs more efficiently, we first need to perform further analysis to acquire a
better understanding on how to trigger the target bugs, and then propose desired solutions
to satisfy complex bug-triggering conditions. Furthermore, finding bugs in binary code
is also needed since the source code of some critical programs is unavailable or relies on
third-party libraries.

91

In summary, this thesis aims to develop effective directed fuzzing techniques to detect
complex typestate vulnerabilities, like UAF, in binary code of real-world programs in diverse
security applications.

7.1.2 Scientific contributions

A survey on directed fuzzing Our first contribution is to provide a systematic
overview of the state-of-the-art DGF including its applications, its differences compared
to coverage-guided fuzzing, a formal definition of the problem, an overview of existing
solutions and current limitations.

Directed fuzzing for complex vulnerabilities The second principle contribution of
this thesis is the design, implementation and testing of UAFuzz, which is the first directed
greybox fuzzing framework tailored to detecting UAF vulnerabilities in binary given only
the bug stack trace. We have shown that it is possible to bring directedness to greybox
fuzzers at binary level with a very small overhead at both instrumentation-time and run-
time. By specializing standard DGF components to UAF, UAFuzz outperforms existing
directed fuzzers, both in terms of time to bug exposure and number of successful runs in
bug reproduction.

Our final main contribution is the design, implementation and testing of TypeFuzz,
which is built on top of UAFuzz. We have shown that our directed techniques proposed
in UAFuzz are fruitfully generalized to detecting other typestate bugs, like buffer over-
flow and NULL pointer dereference. Concretely, TypeFuzz outperforms existing directed
fuzzers in several fuzzing evaluation metrics, such as time to bug exposure, number of
successful runs and time to reach specific target basic blocks.

Furthermore, both fuzzers UAFuzz and TypeFuzz have been proven effective and
efficient in not only bug reproduction, but also in patch testing. Particularly, by leveraging
bug traces of disclosed bugs, our directed fuzzers were able to detect different types of
unknown vulnerabilities (including incomplete bug fixes) in more recent versions of real-
world programs. In summary, the effectiveness and the scalability of our fuzzing frameworks
have been validated on various real-world programs to both reproduce disclosed bugs and
find new vulnerabilities.

Publications & talks To sum up, our contributions above led to the writing of the
following research outputs in security conferences and talks in the PhD Student Symposium
of several security workshops in French as follows:

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “Binary-level Directed Fuzzing for Use-After-Free Vulnerabilities”,
The 23nd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’20), 2020.

92

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “About Directed Fuzzing and Use-After-Free: How to Find Com-
plex & Silent Bugs? ”, Black Hat USA, 2020.

• Manh-Dung Nguyen, “Directed Fuzzing for Use-After-Free Vulnerabilities Detec-
tion”, Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes
d’Information (RESSI ’20 – Session doctorants), 2020.

• Manh-Dung Nguyen, “Directed Fuzzing for Use-After-Free Vulnerabilities Detec-
tion”, 19èmes Approches Formelles dans l’Assistance au Développement de Logiciels
(AFADL ’20 – Session doctorants), 2020.

• Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre, “Binary-level Directed Fuzzing for Complex Vulnerabilities”, un-
der submission to IEEE Transactions on Software Engineering (TSE), 2021.

7.1.3 Technical contributions

Furthermore, this thesis comes with several contributions to the open-source community
as follows:

• We developed UAFuzz & TypeFuzz [uaf20b], which are new directed greybox
fuzzers dedicated to find typestate vulnerabilities, such as UAF or buffer overflows
at binary-level;

• We constructed UAF Fuzzing Benchmark [uaf20a], which is a new benchmark includ-
ing recent bugs found by existing (directed) greybox fuzzers of real-world programs
for fuzzing evaluations;

• We contributed to the development of the plugin BinIda and the integration of
Graphs of Use-After-Free Extracted from Binary (GUEB) [gue20] into the open-
source binary analysis framework Binsec [bin20];

• We reported 39 unknown vulnerabilities of different open-source projects (17 CVEs
were assigned), which were found by our directed fuzzers presented in this manuscript.
So far, 30 bugs have been acknowledged and fixed by the developers.

7.2 Perspectives

We present below some promising research directions as extensions of the work discussed
in the manuscript.

93

Hybrid directed fuzzing (work in progress) Hybrid directed fuzzing could be more
efficient in finding vulnerabilities as software testing techniques, like symbolic execution,
static analysis or machine learning, can pinpoint target locations to boost directedness and
allow DGF to overcome roadblocks during the search. For example, DrillerGO [KY19]
searches and selects suspicious method call strings in the Control Flow Graph (CFG) in
the static analysis phase, and then runs the concolic execution along with path guiding in
the backward manner from the target to the start of main(). Another natural extension
is to combine DGF with latest advances of CGF or other software testing techniques to
improve the fuzzing performance in general and also tackle common fuzzing problems, such
as magic bytes comparisons or highly-structured file formats.

A hybrid approach, which combines static analysis in GUEB and the directed fuzzer
UAFuzz, could benefit from both sides to detect complex vulnerabilities UAF in binary
code with no prior information. Our goal is to make the combination between two tech-
niques fully-automated, robust and powerful. First, we improve static analysis techniques
proposed in [FMP14,FMB+16] so that it could work with real-world programs in the UAF
fuzzing benchmark (in Chapter 4) and produce high-quality static reports. Second, we
propose binary-aware heuristics combining three (3) different types of derived binary met-
rics including complexity, UAF-oriented and fuzzing-oriented metrics to select the most
suspicious static reports as targets of our directed fuzzer UAFuzz. Finally, at runtime,
the static analyzer and the fuzzer can communicate to each other to exchange important
information, for example target static reports or fuzzing status.

Parallel directed fuzzing In the OSS-Fuzz project [oss20a], Google has been contin-
uously using more than 25,000 machines for fuzzing since 2016 and has found a thousand
of bugs in its own software and open source projects. However, there is a very few research
work on how to effectively use the hardware resources for fuzzing in parallel (e.g., informa-
tion synchronization or task division mechanism) to minimize the overlap and maximize
the code coverage of all fuzzing instances. Directed fuzzing is very suitable in this setting
as each instance will focus only on its assigned task. However, a remaining challenge is
to develop directed fuzzing in a “dynamic” way such that we can continuously update the
graphs to make them more complete and calculate the seed metrics (e.g., distances) on the
fly during the fuzzing process.

Directed fuzzing for exploitable vulnerabilities Fuzzing has been proven to be effec-
tive in finding a huge number of bugs, but only few of them are exploitable. The exploitabil-
ity of heap-based vulnerabilities like UAF could be an attractive research direction as de-
velopers usually pay more attention on fixing exploitable vulnerabilities first. The goal is
to extend the triage step to find potentially exploitable inputs among the crashing ones and
then develop a solution to automatically generate exploits [ACHB11,WZX+18,YKK20].

Human-in-the-loop directed fuzzing Fuzzing is currently easy to install and use,
but very difficult to be intervened at runtime, especially for non-expert users. However,

94

leveraging and integrating the knowledge from developers or testers during the fuzzing
campaign without restarting the process (e.g., provide an input to bypass a magic bytes
comparison or drive the search towards uncovered suspicious functions) can really boost the
fuzzer efficiency. We hope that DGF will soon be integrated in the software development
life cycle like OSS-Fuzz [oss20a] of Google and CI Fuzz [cif20] of Code Intelligence and
eventually become a good testing practice, like writing unit tests.

95

96

Acronyms

AAFD Augmented Adjacent-Function Dis-
tance. 1, 28

AFL American Fuzzy Lop. 1
AI Artificial Intelligence. 1
AVM Alternating Variable Method. 1

CFG Control Flow Graph. 1, 10, 29, 86
CG Call Graph. 1, 29
CGC Cyber Grand Challenge. 1
CGF Coverage-guided Greybox Fuzzing.

xii, 1, 5, 16–18, 25, 28
CVE Common Vulnerabilities and Expo-

sures. 1
CWE Common Weakness Enumeration. 1,

6

DARPA Defense Advanced Research
Projects Agency. 1

DBA Dynamic Bitvector Automata. 1
DBI Dynamic Binary Instrumentation. 1,

18
DBMS Database Management System. 1
DCT Dynamic Calling Tree. xii, xiii, 1, 39,

67, 71, 77, 90, 91
DF Double-Free. 1, 14
DGF Directed Greybox Fuzzing. xii, 1, 5,

11, 17, 23, 25, 28, 85
DSE Dynamic Symbolic Execution. 1, 17,

22

DTA Dynamic Taint Analysis. 1, 22

GUEB Graphs of Use-After-Free Extracted
from Binary. 1, 11, 86

LLVM Low-Level Virtual Machine. 1

ML Machine Learning. 1, 17, 22

NVD National Vulnerability Database. 1,
6, 91

PoC Proof-of-Concept. 1, 4, 70, 71, 73
PSO Particle Swarm Optimization. 1
PUT Program Under Test. 1, 4, 15

SA Static Analysis. 1, 4
SBF Search-based Fuzzing. 1, 17
SBST Search-based Software Testing. 1, 16,

17
SE Symbolic Execution. 1, 4, 16, 17
SMT Satisfiability Modulo Theories. 1, 16,

17
SOK Systemization of Knowledge. 1, 18

TIR Triaging Inputs Rate. 1
TTE Time-to-Exposure. 1

UAF Use-After-Free. 1, 5, 6, 14, 29, 33

VSA Value Set Analysis. 1, 89, 90

97

98

Bibliography

[ACHB11] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brum-
ley. AEG: automatic exploit generation. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011, 2011.

[afl20a] Afl. http://lcamtuf.coredump.cx/afl/, 2020.

[afl20b] Afl-dynamorio. https://github.com/vanhauser-thc/afl-dynamorio,
2020.

[afl20c] Afl-dyninst. https://github.com/talos-vulndev/afl-dyninst, 2020.

[afl20d] Afl vulnerability trophy case. http://lcamtuf.coredump.cx/afl/#bugs,
2020.

[afl20e] Aflgo. https://github.com/aflgo/aflgo, 2020.

[afl20f] Aflgo’s issues. https://github.com/aflgo/aflgo/issues, 2020.

[afl20g] Aflpin. https://github.com/mothran/aflpin, 2020.

[afl20h] Aflplusplus. https://aflplus.plus/, 2020.

[afl20i] American fuzzy lop - a security-oriented fuzzer. https://github.com/
google/AFL, 2020.

[afl20j] Technical "whitepaper" for afl. https://lcamtuf.coredump.cx/afl/
technical_details.txt, 2020.

[air20] Spanish air force cargo plane on test flight crashes near seville
airport. https://www.theguardian.com/world/2015/may/09/
spanish-air-force-cargo-plane-crashes-near-seville-airport/,
2020.

[ASAH] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon:
Exploring deep state spaces via fuzzing.

99

http://lcamtuf.coredump.cx/afl/
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/talos-vulndev/afl-dyninst
http://lcamtuf.coredump.cx/afl/#bugs
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo/issues
https://github.com/mothran/aflpin
https://aflplus.plus/
https://github.com/google/AFL
https://github.com/google/AFL
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://www.theguardian.com/world/2015/may/09/spanish-air-force-cargo-plane-crashes-near-seville-airport/
https://www.theguardian.com/world/2015/may/09/spanish-air-force-cargo-plane-crashes-near-seville-airport/

[ASB+19] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. Redqueen: Fuzzing with input-to-state correspondence. In
26th Annual Network and Distributed System Security Symposium, NDSS,
2019.

[Bac96] Thomas Back. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university
press, 1996.

[BAS+19] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej
Schumilo, Simon Wörner, and Thorsten Holz. Grimoire: synthesizing struc-
ture while fuzzing. In USENIX Security Symposium (USENIX Security 19),
2019.

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few
billion lines of code later: using static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, 2010.

[BCR21] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing: Chal-
lenges and opportunities. IEEE Software, pages 1–9, 2021.

[BDM17] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-bounded
DSE: targeting infeasibility questions on obfuscated codes. In S&P, pages
633–651. IEEE Computer Society, 2017.

[ber20] Israeli moon lander suffered engine glitch before crash. https://www.space.
com/beresheet-moon-crash-engine-glitch.html, 2020.

[bin20] Binsec. https://binsec.github.io/, 2020.

[Böh19] Marcel Böhme. Assurance in software testing: A roadmap. In Proceedings of
the 41st International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’19, 2019.

[BPNR17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roy-
choudhury. Directed greybox fuzzing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS’17),
2017.

[BPR16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1032–1043.
ACM, 2016.

100

https://www.space.com/beresheet-moon-crash-engine-glitch.html
https://www.space.com/beresheet-moon-crash-engine-glitch.html
https://binsec.github.io/

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, 1977.

[CC18] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In 2018
IEEE Symposium on Security and Privacy (SP), volume 00, pages 758–772,
2018.

[CDE+08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In OSDI, volume 8, pages 209–224, 2008.

[cgc20] Darpa cgc corpus. http://www.lungetech.com/2017/04/24/cgc-corpus/,
2020.

[CGMN12] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis, pages 133–143. ACM, 2012.

[CH11] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. Acm sigplan notices, 2011.

[cif20] Ci fuzz - ide plugin for testing source code. https://www.
code-intelligence.com/developers, 2020.

[CJM+19] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin
Zhou, Xun Jiao, and Zhuo Su. Enfuzz: Ensemble fuzzing with seed syn-
chronization among diverse fuzzers. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 1967–1983, 2019.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A plat-
form for in-vivo multi-path analysis of software systems. In ASPLOS XVI,
pages 265–278, 2011.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c. In International Conference on
Software Engineering and Formal Methods, pages 233–247. Springer, 2012.

[CLC19] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: fuzzing deeply nested
branches. arXiv preprint arXiv:1905.12228, 2019.

[clu20] Clusterfuzz. https://google.github.io/clusterfuzz/, 2020.

101

http://www.lungetech.com/2017/04/24/cgc-corpus/
https://www.code-intelligence.com/developers
https://www.code-intelligence.com/developers
https://google.github.io/clusterfuzz/

[CMW16] Maria Christakis, Peter Müller, and Valentin Wüstholz. Guiding dynamic
symbolic execution toward unverified program executions. In Proceedings of
the 38th International Conference on Software Engineering, pages 144–155.
ACM, 2016.

[cod20] Grammatech codesonar. https://www.grammatech.com/products/
codesonar, 2020.

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton.
Stackguard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In USENIX security symposium, volume 98, pages 63–78. San Anto-
nio, TX, 1998.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Communications of the ACM, 56(2):82–90, 2013.

[cve20a] Cve-2017-15939 detail. https://nvd.nist.gov/vuln/detail/
CVE-2017-15939, 2020.

[cve20b] Cve-2018-6952. https://savannah.gnu.org/bugs/index.php?53133, 2020.

[CXL+18] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng
Wu, and Yang Liu. Hawkeye: towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2095–2108. ACM, 2018.

[DB15] Adel Djoudi and Sébastien Bardin. Binsec: Binary code analysis with low-
level regions. In TACAS, pages 212–217, 2015.

[DBF+16] Robin David, Sébastien Bardin, Josselin Feist, Laurent Mounier, Marie-Laure
Potet, Thanh Dinh Ta, and Jean-Yves Marion. Specification of concretization
and symbolization policies in symbolic execution. In ISSTA, pages 36–46.
ACM, 2016.

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin
Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A dynamic sym-
bolic execution toolkit for binary-level analysis. In Software Analysis, Evolu-
tion, and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, volume 1, pages 653–656. IEEE, 2016.

[DF04] Robert DeLine and Manuel Fähndrich. Typestates for objects. In European
Conference on Object-Oriented Programming, 2004.

[dfp20] Double free in gnu patch. https://savannah.gnu.org/bugs/index.php?
56683, 2020.

102

https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://nvd.nist.gov/vuln/detail/CVE-2017-15939
https://nvd.nist.gov/vuln/detail/CVE-2017-15939
https://savannah.gnu.org/bugs/index.php?53133
https://savannah.gnu.org/bugs/index.php?56683
https://savannah.gnu.org/bugs/index.php?56683

[DGHK+16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mam-
bretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale
automated vulnerability addition. In Security and Privacy (SP), 2016 IEEE
Symposium on, pages 110–121. IEEE, 2016.

[DLRA15] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding integer
overflow in c/c++. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 25(1):1–29, 2015.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[drm20] Dr.memory. https://www.drmemory.org/, 2020.

[eth20] Should a self-driving car kill the baby or the grandma? depends on where
you’re from. https://www.technologyreview.com/2018/10/24/139313/
a-global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/,
2020.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software en-
gineering, pages 416–419, 2011.

[fac20] Facebook Paid $22 Million in Bug Bounty Re-
wards in 2019. https://www.securityweek.com/
facebook-paid-22-million-bug-bounty-rewards-2019, 2020.

[FDC19] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. Weizz: Au-
tomatic grey-box fuzzing for structured binary formats. arXiv preprint
arXiv:1911.00621, 2019.

[FGRY03] John Field, Deepak Goyal, G Ramalingam, and Eran Yahav. Typestate ver-
ification: Abstraction techniques and complexity results. In International
Static Analysis Symposium. Springer, 2003.

[FLDGB19] Andrew Fasano, Tim Leek, Brendan Dolan-Gavitt, and Josh Bundt. The
rode0day to less-buggy programs. IEEE Security & Privacy, 17(6):84–88,
2019.

[FMB+16] Josselin Feist, Laurent Mounier, Sébastien Bardin, Robin David, and Marie-
Laure Potet. Finding the needle in the heap: combining static analysis and
dynamic symbolic execution to trigger use-after-free. In Proceedings of the 6th
Workshop on Software Security, Protection, and Reverse Engineering, page 2.
ACM, 2016.

103

https://www.drmemory.org/
https://www.technologyreview.com/2018/10/24/139313/a-global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/
https://www.technologyreview.com/2018/10/24/139313/a-global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/
https://www.securityweek.com/facebook-paid-22-million-bug-bounty-rewards-2019
https://www.securityweek.com/facebook-paid-22-million-bug-bounty-rewards-2019

[FMEH20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. Afl++:
Combining incremental steps of fuzzing research. In 14th {USENIX} Work-
shop on Offensive Technologies ({WOOT} 20), 2020.

[FMP14] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Statically detecting
use after free on binary code. Journal of Computer Virology and Hacking
Techniques, 10(3):211–217, 2014.

[FMRS12] Azadeh Farzan, P Madhusudan, Niloofar Razavi, and Francesco Sorrentino.
Predicting null-pointer dereferences in concurrent programs. In Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, 2012.

[fuz20] Fuzzbench - fuzzer benchmarking as a service. https://github.com/google/
fuzzbench, 2020.

[FYD+08] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 2008.

[GAAH19] Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz. Antifuzz:
Impeding fuzzing audits of binary executables. In 28th {USENIX} Security
Symposium ({USENIX} Security 19), pages 1931–1947, 2019.

[gft20] Google fuzzer testsuite. https://github.com/google/fuzzer-test-suite,
2020.

[gnu20] Gnu patch. https://savannah.gnu.org/projects/patch/, 2020.

[goo20] Google has paid security researchers over $21 million for bug boun-
ties, $6.5 million in 2019 alone. https://venturebeat.com/2020/01/28/
google-has-paid-security-researchers-over-21-million-for-bug-bounties-6-5-million-in-2019-alone/,
2020.

[GPS17] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 50–59. IEEE
Press, 2017.

[gpz20] Sockpuppet: A walkthrough of a kernel exploit for ios
12.4. https://googleprojectzero.blogspot.com/2019/12/
sockpuppet-walkthrough-of-kernel.html, 2020.

[gue20] Gueb: Static analyzer detecting use-after-free on binary. https://github.
com/montyly/gueb, 2020.

104

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/google/fuzzer-test-suite
https://savannah.gnu.org/projects/patch/
https://venturebeat.com/2020/01/28/google-has-paid-security-researchers-over-21-million-for-bug-bounties-6-5-million-in-2019-alone/
https://venturebeat.com/2020/01/28/google-has-paid-security-researchers-over-21-million-for-bug-bounties-6-5-million-in-2019-alone/
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://github.com/montyly/gueb
https://github.com/montyly/gueb

[GZC+20] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong
Wu, and Zuoning Chen. Greyone: Data flow sensitive fuzzing. In
29th USENIX Security Symposium (USENIX Security 20). USENIX As-
sociation, Boston, MA. https://www. usenix. org/conference/usenixsecu-
rity20/presentation/gan, 2020.

[GZQ+18] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl: Path
sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP),
volume 00, pages 660–677, 2018.

[hac20] Hackers Earn Record-Breaking $100 Million on HackerOne.
https://www.businesswire.com/news/home/20200527005320/en/
Hackers-Earn-Record-Breaking-100-Million-on-HackerOne, 2020.

[Ham02] Richard Hamlet. Random testing. Encyclopedia of software Engineering,
2002.

[hea20] The heartbleed bug. https://heartbleed.com/, 2020.

[HHP20] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems, 2020.

[HP07] David Hovemeyer and William Pugh. Finding more null pointer bugs, but
not too many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, 2007.

[HSNB13] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.
Dowser: a guided fuzzer to find buffer overflow vulnerabilities. In Proceedings
of the 22nd USENIX Security Symposium, pages 49–64, 2013.

[HYW+20] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang.
Pangolin: Incremental hybrid fuzzing with polyhedral path abstraction. 2020.

[ida20] Ida pro. https://www.hex-rays.com/products/ida/, 2020.

[JC19] Leonid Joffe and David Clark. Directing a search towards execution properties
with a learned fitness function. In 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pages 206–216. IEEE, 2019.

[JHS+19] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung Lee,
and Taesoo Kim. Fuzzification: Anti-fuzzing techniques. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 1913–1930, 2019.

[JO12] Wei Jin and Alessandro Orso. Bugredux: reproducing field failures for in-
house debugging. In 2012 34th International Conference on Software Engi-
neering (ICSE), pages 474–484. IEEE, 2012.

105

https://www.businesswire.com/news/home/20200527005320/en/Hackers-Earn-Record-Breaking-100-Million-on-HackerOne
https://www.businesswire.com/news/home/20200527005320/en/Hackers-Earn-Record-Breaking-100-Million-on-HackerOne
https://heartbleed.com/
https://www.hex-rays.com/products/ida/

[JRGB18] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. Tiff: using
input type inference to improve fuzzing. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 505–517, 2018.

[KRC+18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 2123–2138. ACM, 2018.

[KT14] Daniel Kroening and Michael Tautschnig. Cbmc–c bounded model checker.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2014.

[KY19] Juhwan Kim and Joobeom Yun. Poster: Directed hybrid fuzzing on binary
code. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2637–2639, 2019.

[laf20] Circumventing fuzzing roadblocks with compiler transfor-
mations. https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2020.

[LCC+17] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang
Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing. In Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 627–637. ACM, 2017.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation.
Acm sigplan notices, 2005.

[LHG13] Kiran Lakhotia, Mark Harman, and Hamilton Gross. Austin: An open source
tool for search based software testing of c programs. Information and Software
Technology, 55(1):112–125, 2013.

[lib20a] Libfuzzer. https://llvm.org/docs/LibFuzzer.html, 2020.

[lib20b] libfuzzer tutorial – heartbleed. https://github.com/google/fuzzing/
blob/master/tutorial/libFuzzerTutorial.md#heartbleed, 2020.

[LJC+18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Ji-
aguang Sun. Pafl: extend fuzzing optimizations of single mode to industrial
parallel mode. In Proceedings of the 2018 26th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 809–814, 2018.

106

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md#heartbleed
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md#heartbleed

[LJZ+19] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song,
and Raheem Beyah. {MOPT}: Optimized mutation scheduling for fuzzers. In
28th {USENIX} Security Symposium ({USENIX} Security 19), pages 1949–
1966, 2019.

[LPSS18] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages
254–265, 2018.

[LS18] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strat-
egy for increasing greybox fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
pages 475–485. ACM, 2018.

[LSJ+15] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,
Long Lu, and Wenke Lee. Preventing use-after-free with dangling pointers
nullification. In NDSS, 2015.

[LXC+19] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei
Xie, Haijun Wang, and Yang Liu. Cerebro: context-aware adaptive fuzzing
for effective vulnerability detection. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 533–544. ACM, 2019.

[LZY+19] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and Lin Jiang. Sequence
coverage directed greybox fuzzing. In Proceedings of the 27th International
Conference on Program Comprehension, pages 249–259. IEEE Press, 2019.

[MC13] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of
software patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 235–245. ACM, 2013.

[McM04] Phil McMinn. Search-based software test data generation: a survey. Software
testing, Verification and reliability, 14(2):105–156, 2004.

[McM11] Phil McMinn. Search-based software testing: Past, present and future. In
2011 IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, pages 153–163. IEEE, 2011.

[MCY+18] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing
Mao, and Gang Wang. Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security Symposium (USENIX Se-
curity 18), pages 919–936, Baltimore, MD, 2018. USENIX Association.

107

[MFS90] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[MHH+19] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. IEEE Transactions on Software Engineering,
2019.

[Mic20] Microsoft. Project springfield. https://www.microsoft.com/en-us/
security-risk-detection/, 2020.

[MLW09] David Molnar, Xue Cong Li, and David A Wagner. Dynamic test genera-
tion to find integer bugs in x86 binary linux programs. In USENIX Security
Symposium, volume 9, pages 67–82, 2009.

[muz20] MUZZ: Thread-aware grey-box fuzzing for effective bug hunting in multi-
threaded programs. In 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, August 2020.

[nas20] Mars 2020 perseverance rover - nasa mars. https://mars.nasa.gov/
mars2020/, 2020.

[NIS20] NIST. Juliet test suite for c/c++. https://samate.nist.gov/SARD/
testsuite.php, 2020.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan, volume 42-6, pages
89–100. ACM, 2007.

[nvd20] Us national vulnerability database. https://nvd.nist.gov/vuln/search,
2020.

[OHLP14] Mads Chr Olesen, René Rydhof Hansen, Julia L Lawall, and Nicolas Palix.
Coccinelle: tool support for automated cert c secure coding standard certifi-
cation. Science of Computer Programming, 91:141–160, 2014.

[OHPP18] Saahil Ognawala, Thomas Hutzelmann, Eirini Psallida, and Alexander
Pretschner. Improving function coverage with munch: a hybrid fuzzing and
directed symbolic execution approach. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, pages 1475–1482, 2018.

[one20] Microsoft announces new project onefuzz framework, an
open source developer tool to find and fix bugs at scale.
https://www.microsoft.com/security/blog/2020/09/15/
microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/,
2020.

108

https://www.microsoft.com/en-us/security-risk-detection/
https://www.microsoft.com/en-us/security-risk-detection/
https://mars.nasa.gov/mars2020/
https://mars.nasa.gov/mars2020/
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://nvd.nist.gov/vuln/search
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/

[ÖRBG20] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Parmesan: Sanitizer-guided greybox fuzzing. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020.

[oss20a] OSS-Fuzz: Continuous Fuzzing Framework for Open-Source Projects. https:
//github.com/google/oss-fuzz/, 2020.

[oss20b] Oss-fuzz: Five months later, and rewarding projects. https://opensource.
googleblog.com/2017/05/oss-fuzz-five-months-later-and.html,
2020.

[PBS+19] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Raz-
van Caciulescu, and Abhik Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, 2019.

[pea20] Peach fuzzer. https://www.peach.tech/, 2020.

[PF20] Sebastian Poeplau and Aurélien Francillon. Symbolic execution with
symcc: Don’t interpret, compile! In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 181–198, 2020.

[PLL+19] Jiaqi Peng, Feng Li, Bingchang Liu, Lili Xu, Binghong Liu, Kai Chen, and
Wei Huo. 1dvul: Discovering 1-day vulnerabilities through binary patches.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 605–616. IEEE, 2019.

[PNRR15] Van-Thuan Pham, Wei Boon Ng, Konstantin Rubinov, and Abhik Roychoud-
hury. Hercules: Reproducing crashes in real-world application binaries. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, volume 1, pages 891–901. IEEE, 2015.

[PSP18] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by pro-
gram transformation. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 697–710. IEEE, 2018.

[PTS+17] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. Nezha: Efficient domain-independent differential testing. In
2017 IEEE Symposium on Security and Privacy (SP), pages 615–632. IEEE,
2017.

[PZKJ17] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. Slow-
fuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2155–2168, 2017.

[r220] Radare2: Libre and portable reverse engineering framework. https://rada.
re/n/, 2020.

109

https://github.com/google/oss-fuzz/
https://github.com/google/oss-fuzz/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.peach.tech/
https://rada.re/n/
https://rada.re/n/

[RBB+19] Frédéric Recoules, Sébastien Bardin, Richard Bonichon Bonichon, Lau-
rent Mounier, and Marie-Laure Potet. Get rid of inline assembly through
verification-oriented lifting. In ASE. IEEE, 2019.

[RBS17] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are equal:
Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[rev20] Detection deficit: A year in review of 0-days used in-the-wild
in 2019. https://googleprojectzero.blogspot.com/2020/07/
detection-deficit-year-in-review-of-0.html, 2020.

[RJK+17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing.
In Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2017.

[rod20] Rode0day. https://rode0day.mit.edu/, 2020.

[RPDGH18] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. Bug syn-
thesis: Challenging bug-finding tools with deep faults. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 224–234.
ACM, 2018.

[SAA+17] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and
Thorsten Holz. Hyper-cube: High-dimensional hypervisor fuzzing. In 27th
Annual Network and Distributed System Security Symposium, NDSS, 2017.

[SBPV12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX Annual
Technical Conference, pages 309–318, 2012.

[SGS+16] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Gio-
vanni Vigna. Driller: Augmenting fuzzing through selective symbolic execu-
tion. In NDSS, volume 16, pages 1–16, 2016.

[SLR+19] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volck-
aert, Per Larsen, and Michael Franz. Sok: sanitizing for security. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1275–1295. IEEE,
2019.

[SPE+18] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and
Suman Jana. Neuzz: Efficient fuzzing with neural program learning. arXiv
preprint arXiv:1807.05620, 2018.

110

https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://googleprojectzero.blogspot.com/2020/07/detection-deficit-year-in-review-of-0.html
https://rode0day.mit.edu/

[SPWS13] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war
in memory. In 2013 IEEE Symposium on Security and Privacy, pages 48–62.
IEEE, 2013.

[SRDK19] Gary J Saavedra, Kathryn N Rodhouse, Daniel M Dunlavy, and Philip W
Kegelmeyer. A review of machine learning applications in fuzzing. arXiv
preprint arXiv:1906.11133, 2019.

[SW13] Yonghee Shin and Laurie Williams. Can traditional fault prediction models
be used for vulnerability prediction? Empirical Software Engineering, pages
25–59, 2013.

[SWD+17] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls,
Ruoyu Wang, Christopher Kruegel, and Giovanni Vigna. Rise of the hacrs:
Augmenting autonomous cyber reasoning systems with human assistance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 347–362, 2017.

[SX16] Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow
refinement. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 460–473. ACM,
2016.

[SY86] Robert E Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software
Engineering, 1986.

[Sze17] László Szekeres. Memory corruption mitigation via hardening and testing.
PhD thesis, Ph. D. Dissertation. Stony Brook University, 2017.

[uaf20a] Uaf fuzzing benchmark. https://github.com/strongcourage/uafbench,
2020.

[uaf20b] Uafuzz. https://github.com/strongcourage/uafuzz, 2020.

[VD00] András Vargha and Harold D Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[WBS01] Joachim Wegener, André Baresel, and Harmen Sthamer. Evolutionary test
environment for automatic structural testing. Information and software tech-
nology, 43(14):841–854, 2001.

[WCWL17] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven seed
generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy
(SP), 2017.

111

https://github.com/strongcourage/uafbench
https://github.com/strongcourage/uafuzz

[WJL+] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao
Wu, and Purui Su. Not all coverage measurements are equal: Fuzzing by
coverage accounting for input prioritization.

[WJLL19] Yan Wang, Peng Jia, Luping Liu, and Jiayong Liu. A systematic re-
view of fuzzing based on machine learning techniques. arXiv preprint
arXiv:1908.01262, 2019.

[WSZ16] Weiguang Wang, Hao Sun, and Qingkai Zeng. Seededfuzz: Selecting and
generating seeds for directed fuzzing. In 2016 10th International Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 49–56. IEEE,
2016.

[WWL+20] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. Memlock: Memory
usage guided fuzzing. In 42nd International Conference on Software Engi-
neering. ACM, 2020.

[WWLZ09] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. Intscope: Automatically
detecting integer overflow vulnerability in x86 binary using symbolic execu-
tion. In NDSS. Citeseer, 2009.

[WXL+20] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu,
Shengchao Qin, Hongxu Chen, and Yulei Sui. Typestate-guided fuzzer for
discovering use-after-free vulnerabilities. In 42nd International Conference
on Software Engineering, 2020.

[WZ20] Pengfei Wang and Xu Zhou. Sok: The progress, challenges, and perspectives
of directed greybox fuzzing. arXiv preprint arXiv:2005.11907, 2020.

[WZX+18] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui
Gong, Bingchang Liu, Kaixiang Chen, and Wei Zou. Revery: From proof-of-
concept to exploitable. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 1914–1927. ACM, 2018.

[XKMK17] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing new
operating primitives to improve fuzzing performance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 2313–2328, 2017.

[YKK20] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic techniques to system-
atically discover new heap exploitation primitives. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[YLX+18] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. Qsym:
A practical concolic execution engine tailored for hybrid fuzzing. In 27th
USENIX Security Symposium (USENIX Security 18), pages 745–761, 2018.

112

[You15] Yves Younan. Freesentry: protecting against use-after-free vulnerabilities due
to dangling pointers. In NDSS, 2015.

[YSCX17] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Machine-learning-
guided typestate analysis for static use-after-free detection. In Proceedings of
the 33rd Annual Computer Security Applications Conference, ACSAC 2017,
pages 42–54, New York, NY, USA, 2017. ACM.

[YSCX18] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal context
reduction: a pointer-analysis-based static approach for detecting use-after-
free vulnerabilities. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 327–337. IEEE, 2018.

[YWM+19] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, Xi-
aoFeng Wang, and Bin Liang. Profuzzer: On-the-fly input type probing for
better zero-day vulnerability discovery. In IEEE Symposium on Security and
Privacy (SP), 2019.

[YZC+17] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian,
and Bin Liang. Semfuzz: Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2139–2154. ACM, 2017.

[ZCH+20] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-
hao Wu. Squirrel: Testing database management systems with language va-
lidity and coverage feedback. arXiv preprint arXiv:2006.02398, 2020.

[ZDYX19] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send hardest problems my
way: Probabilistic path prioritization for hybrid fuzzing. In NDSS, 2019.

[ZLW+] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and
Kai Chen. Fuzzguard: Filtering out unreachable inputs in directed grey-box
fuzzing through deep learning.

[ZWL+19] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, Chengnian Sun, and
Yu Jiang. Visfuzz: understanding and intervening fuzzing with interactive
visualization. In 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 1078–1081. IEEE, 2019.

113

	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	Listings
	List of Tables
	Introduction
	Context
	Challenges and Objectives
	Contributions
	Scientific contributions
	Technical contributions
	Publications and talks

	Outline

	Background
	Memory Corruption Vulnerabilities
	Automated Vulnerability Detection
	Dynamic Symbolic Execution
	Search-based Software Testing
	Coverage-guided Greybox Fuzzing
	Hybrid Fuzzing

	Conclusion

	A Survey of Directed Greybox Fuzzing
	Introduction
	Formalization of the Directed Fuzzing Problem
	Applications of Directed Fuzzing
	Differences between Directed and Coverage-based Fuzzing

	Overview
	Workflow
	Core Algorithm

	Input Metrics
	Distance metric
	Covered function similarity metric

	Differences between Source- and Binary-based Directed Fuzzing
	Limitations & Future Directions
	Conclusion

	Binary-level Directed Fuzzing for Use-Afer-Free Vulnerabilities
	Introduction
	Motivation
	The UAFuzz Approach
	Bug Trace Flattening
	Seed Selection based on Target Similarity
	UAF-based Distance
	Power Schedule
	Postprocess and Bug Triage

	Experimental Evaluation
	Research Questions
	Evaluation Setup
	UAF Bug-reproducing Ability (RQ1)
	UAF Overhead (RQ2)
	UAF Triage (RQ3)
	Individual Contribution (RQ4)
	Patch Testing & Zero-days
	Threats to Validity

	Related Work
	Directed Greybox Fuzzing
	Coverage-based Greybox Fuzzing
	UAF Detection
	UAF Fuzzing Benchmark

	Conclusion

	Implementation
	Introduction
	Preprocessing
	Bug trace generation
	BinIda Plugin

	Core Fuzzing Engine
	Debugging with afl-showmap
	Overhead

	Examples
	Application 1: Bug Reproduction
	Application 2: Patch Testing

	Conclusion

	Typestate-guided Directed Fuzzing
	Introduction
	The TypeFuzz Approach
	Different Bug Characteristics
	Adapted Techniques

	Evaluation
	Research Questions
	Evaluation Setup
	Bug-reproducing Ability (RQ1)
	Crash Triage (RQ2)
	Target Reaching (RQ3)

	Patch Testing
	Conclusion

	Conclusion
	Summary
	Research problems
	Scientific contributions
	Technical contributions

	Perspectives

	Acronyms
	Bibliography

