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Spécialité: Informatique

Intermittent Lévy Walks
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Carola Doerr Examinatrice
Chargée de recherche, CNRS, Sorbonne Université
Emanuele Natale Examinateur
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Merav Parter Examinatrice
Associate Professor, Weizmann Institute
Amos Korman Directeur de thèse
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Résumé

Ces deux dernières décennies, la recherche en éthologie, et plus spécifiquement celle
de l’investigation des comportements des animaux lorsqu’ils traquent de la nour-
riture, ont exhibé qu’une famille de motifs de trajectoires, connue sous le nom de
Motifs de Lévy, est prévalente à travers le règne animal et même au-delà. Dans
ces motifs auto-similaires, la longueur d’un pas en ligne droite suit une distribution
de puissance, d’exposant µ ∈ (1, 3). Ces découvertes ont posé notamment deux
questions: la première est de savoir si ces motifs émergent spontanément, par un
mécanisme interne à l’organisme biologique, ou si ils sont la résultante d’interactions
avec l’environnement (de la même manière que le mouvement Brownien s’explique
par la collision de particules). La seconde est de savoir quelles informations perti-
nentes sur le plan biologique ces motifs, et notamment l’exposant µ, nous révèlent.

À travers cette thèse, j’essaie d’apporter des éléments de réponse à ces ques-
tions complexes en étudiant le modèle des marches de Lévy, des marches aléatoires
dont la longueur des pas est donnée par une loi de puissance, et qui génère, na-
turellement, des motifs de Lévy. Plus particulièrement, je l’étudie dans le contexte
où la détection d’une cible ne peut être faite que de manière intermittente. Dans
le premier chapitre, je parle plus en détail desdites recherches en éthologie, et je
donne les bases mathématiques des modèles probabilistes de cette thèse (châıne de
Markov, marches aléatoires dans les espaces euclidiens et, dans une mesure moins
importante, dans des graphes).

Au second chapitre, je discute des propriétés générales des marches aléatoires
en espace euclidiens: comment obtenir des bornes sur les temps de recherche d’une
marche aléatoire lorsque l’on en connâıt la distribution du marcheur; des bornes sur
la distance parcourue par un marcheur après un certain temps; ainsi qu’une pro-
priété utile de monotonie. En introduction aux preuves plus complexes des chapitres
suivants, j’étudie un modèle de recherche intermittente sur un graphe.

Au troisième chapitre, je montre comment les performances des marches de Lévy,
dans le modèle intermittent de détection, dépend de manière cruciale de la taille des
cibles, et je montre que ces considérations sont opérantes à un niveau biologiquement
pertinent. Ce chapitre est basé sur un travail commun avec Amos Korman, à parâıtre
(Guinard and Korman, 2020a).

L’ultime chapitre est consacré à la question suivante: quelles sont les perfor-
mances d’un agent incapable d’exécuter une marche de Lévy, mais qui peut en
réaliser une approximation en utilisant k différentes longeurs fixées ? De tels modèles
ont été suggérés en biologie avec k = 2, 3, et je montre notamment qu’utiliser seule-
ment trois modes est efficace pour un espace d’une taille biologiquement pertinente.
Ce chapitre est basé sur (Boczkowski et al., 2018a) et (Guinard and Korman, 2020b).
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Summary

Throughout the last two decades, a type of trajectories has been found to be almost
ubiquitous in biological searches: the Lévy Patterns. Such patterns are fractal, with
searches happening in self-similar clusters. Their hallmark is that their step-lengths
are distributed in a power-law with some exponent µ ∈ (1, 3). This discovery lead
to two intriguing questions: first, do these patterns emerge from an internal mech-
anism of the searcher, or from the interaction with the environment? Second, and
independently of the previous question: what do these searchers have in common?
When can we expect to see a Lévy Pattern of exponent µ? And how much does the
knowledge of µ inform on the biological situation?

This dissertation is an attempt at shedding some light on the topic, especially
when the searcher can only detect targets intermittently, by studying the Lévy
Walk model, a random walk model in which the lengths of the steps are drawn
according to a power-law of exponent µ. In the first chapter, I will provide more
background in the foraging literature, especially in the Lévy Foraging literature. I
will also provide the definitions of the probability models – Markov Chains, random
walks on Euclidean spaces and, to a minor extent, on graphs – we will need in the
theoretical analyses.

In Chapter 2, I will present general facts about random walks on Euclidean
spaces: how to analyse their search performances based on pointwise probability
bounds, what is the distance achieved by a random walk with a general step-length
distribution, and a useful monotonicity property. I will also study, as both a pre-
liminary to the more involved proofs of later chapter, and for its own sake, a model
of intermittent search on general graphs.

Chapter 3 returns to the Lévy Walks, and contains an analysis of their efficiency
when detection is intermittent, and targets appear in various sizes. In particular, I
show that the much-debated inverse-square Lévy Walk is uniquely efficient in this
setting. This is based on a joint work with Amos Korman (Guinard and Korman,
2020a), to be published.

The question of how animals can perform Lévy Patterns has been much debated.
Among possible solutions, it has been suggested that animals could approximate a
Lévy distribution by having k different modes of movement, where k = 2, 3. Chapter
4, which condenses (Boczkowski et al., 2018a) and its refinement, (Guinard and
Korman, 2020b), proves tight bounds for the performances of such an algorithm,
and shows, in accordance with the literature, that having k = 3 modes may be
sufficiently efficient in biological scenarios.
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Chapter 1

Foundations

1.1 Motivations

There is one problem faced by all biological organisms: searching. Animals foraging,
cells of the immune system looking for pathogens, people looking for each other in a
crowded market, are basic examples of search. Searches can also occur in the context
of information: searching within a book, or on the web, for a piece of information,
even trying to recall a memory is a kind of search, albeit one whose space is not
visible. Perception itself involves a kind of search: for instance, visual perception in
humans is done by diverse eye movements, that depend, among other parameters,
on the salience of the elements of the scene.

Of course search, understood as a process aiming at acquiring information, can
be found everywhere. A more specific case is that of an agent moving through a
space, aiming at detecting some target. Since moving costs time and energy, the
agent has a strong incentive to find its aim quickly. In Computer Science, the task
of exploring a graph has attracted a lot of attention. The ability of the agents are
crucial in determining its performances: the agent may be able to map the space
while discovering it (map-building), or, on the contrary, they may have no memory
at all, moving at random through space.

It is quite obvious that having a map contributes to fast searches – think of the
popularity of GPS. If you have to find a building that you know is located at most at
5 minutes of walking, and it takes you only one minute to search the precise location
on a map, you will likely do so (unless you want to get to know the surroundings).
The advantage of advanced navigational abilities (self-localization, map-building,
path-planning), perceptual abilities (target detecting) and possibly environmental
clues for searching is quite obvious. However, these complex capacities are not always
fully developed or even could lack entirely in some organisms. What strategies could
such organisms, with minimal search abilities, adopt to perform relatively efficient
searches?

This question is relevant also for more complex organisms. Indeed, it seems
likely that the search strategies of simple ancient organisms would be the founding
blocks of their more complex descendants. Understanding the strategies of simple
organisms would then be a first, perhaps necessary, step to understand those of more
sophisticated nature. Indeed, as we shall see in the next section, there is one model
that seems to be relevant across many species: the Lévy Walks.

7



Chapter 1. Foundations

1.2 Lévy Walks in Biology

Lévy Patterns are everywhere. Considering the diversity of environmental
contexts and navigational abilities, it should be the case that a wide diversity is
observed in the searching strategies of biological organisms, in their corresponding
performances, as well in the emerging patterns of movement. While this is true to
an extent, it is remarkable that one family of patterns has consistently been found
across the biological realm, the Lévy Patterns.

Lévy Walks are random walks that, at each step, choose a direction uniformly at
random, and a length according to a power-law pµ(l) = Θ(l−µ), for a predetermined
µ ∈ (1, 3]. Over time, due to the generalized central limit theorem proved by
the mathematician Paul Lévy, the position of such a walker will follow a Lévy
stable distribution (hence their name), and the trajectories will form patterns I will
call Lévy Patterns. Remarkably, the distribution pµ has an infinite variance. As
a consequence, it is often said that Lévy Walks are scale-free, i.e., they have no
characteristic scale, or, in other words, all scales appear in these walks.

The Lévy Walk with exponent µ = 2, that I will call Cauchy Walk (because they
eventually are distributed according to a Cauchy distribution, which is a particular
Lévy distribution) received special attention, as it is able to balance the local and
global scales of exploration. In fact, that this process quickly escapes regions without
food was the first argument invoked to surmise that Cauchy Walks might be used
by foraging animals (Shlesinger and Klafter, 1986).

A decade after, in 1995, Blaine Cole studied the activity of drosophilia (where
inactivity is evaluated as the fly being immobile for at least some threshold duration),
and found a power-law distribution for the duration of both activity and pauses,
dependent on the threshold defining inactivity (Cole, 1995). Assuming the fly goes
in a ballistic line between pauses, Cole surmised Lévy walks would emerge from such
patterns of activity, and argued by simulations this would be a more efficient way
of searching for food than Brownian motion.

Perhaps the most influential paper in the domain of Lévy Foraging, though,
is (Viswanathan et al., 1999). Therein the authors argued via an approximate
mathematical argument, that Cauchy Walks should be “optimal” for sparse and
patchy resources.1

The combination of the idea that Cauchy Walks are theoretically optimal, and
the central notion of Optimal Foraging Theory, which is that biological organisms
should have been selected to optimize foraging, naturally led to the Lévy Flight
Foraging Hypothesis, namely the hypothesis that evolution should have selected for
Lévy Walks (or, more precisely, Cauchy Walks) in biological organisms.

Inspired by this attractive idea, there have been multiple works showing evidence
of Lévy Patterns (not necessarily of parameter µ = 2) in a myriad of biological sys-
tems. Immune cells (Harris et al., 2012), swarming bacteria (Ariel et al., 2015),
snails (Reynolds et al., 2017), bees (Reynolds et al., 2007; Wolf et al., 2016), deer

1It is to be noted that, in this domain, authors rarely argue for optimality in absolute ; rather, it
is often the case that optimality is conceived only with respect to a limited family of distribution.
Thus, authors have argued that Lévy Walks are “optimal” because there is an exponent (e.g.
µ = 2 in (Viswanathan et al., 1999)) for which Lévy Walks perform better than other Lévy Walks,
or Brownian Motion, without making explicit that no other processes, submitted to the same
constraints, would be able to perform better. I will try to reserve the word “optimal” to refer to
a process that matches tightly, or almost tightly, a proved lower bound.
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1.2. Lévy Walks in Biology

(Focardi et al., 2009), marine predators (Humphries et al., 2010; Sims et al., 2008),
albatrosses (Humphries et al., 2012), primates (Boyer et al., 2006; Raichlen et al.,
2014; Rhee et al., 2011; Murakami et al., 2019), eye movements (Brockmann and
Geisel, 2000; Stephen et al., 2009), all have been reported to show some Lévy Pat-
terns.

Lévy Walks in foraging: trajectory description or behavioural model?
This body of work did attract its criticism (Pyke, 2015). One is that such random
walk models assume uncorrelated directions of distinct steps. However, animals’
paths are generally sinuous, and, in particular, on the scale at which animals take
decisions, this sinuosity cannot be ignored. Furthermore, the Lévy Walks models
apparently make no use of environmental clues. Hence, Lévy Walks would be a
crude model that cannot account for complex animals’ behaviour.

This criticism is not unjustified: indeed the distinction I have proposed here be-
tween Lévy Walks and Lévy Patterns has not always been explicitly used, especially
in earlier studies (Viswanathan et al., 1999), which resulted in some level of confu-
sion between the two. Indeed, it is not because, on the global scale, Lévy Patterns
are observed that, on the local scale, animals perform Lévy Walks (i.e. choose a
length according to pµ) (Benhamou, 2007). It is entirely possible that these patterns
emerge due to interactions with the environment, even if the behaviour of the agents
is deterministic. This alludes to two distinct parts of (foraging) research:

• the phenomenological description of trajectories. Reporting a Lévy Pattern of
stability parameter µ = 2, for instance, is a simple, abridged, description of
an otherwise complex empirical event. This description would be successful
if, for instance, Lévy Patterns of common stability patterns would arise under
common circumstances, or yield comparable search performances.

• the understanding of the local decision rules obeyed by a searching organism.

Both must be compatible. For instance, if a Lévy Pattern of parameter µ = 2 is
observed, then the local model of the agent (and its environment) should account
for that. In fact numerous studies have reported on the possibility for Lévy Patterns
to be emergent phenomena (see (Reynolds, 2015b)).

Let us note that Brownian Motion itself falls into the first category. Indeed,
as suggested by (Einstein, 1911), the erratic behaviour of particles suspended in
fluid is well-explained by their collisions with other particles of high velocity. The
movement of the particles itself is ballistic.2 Hence, Brownian Motion is an empirical
description, and its models (simple random walk, Wiener processes) are not meant
to show the local rules followed by particles. Instead, they are good models to
understand the trajectory of particles in the long-run. In biology, we can surmise,
then, that even if Lévy Walks are not an accurate behavioural description of animals,
they could be employed to understand processes evolving at suitable temporal and
spatial scales, such as foraging and, possibly, the migration of animal population
(Dannemann et al., 2018).

2Similarly, Brownian Patterns in animals can be explained by the interruption of long ballistic
steps by the encounter of targets (de Jager et al., 2014).
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Chapter 1. Foundations

Do the simplest organisms perform Lévy Walks? Of course, one of the
simplest model that can account for Lévy Patterns is Lévy Walks, and this model
might be suitable in some circumstances. Since the Lévy Walk model does not
incorporate interaction with the environment, nor memory, the ideal candidates for
it are organisms of low memory, and having relatively few perceptual and cognitive
skills. This is quite hard to find: even Lévy Patterns found in cells could be the
product of interaction with the environment (Huda et al., 2018). Nevertheless, a
team of biologists managed to show Cauchy Patterns in brain-blocked Drosophila
larvæ, thereby blocking their sensory functions (Sims et al., 2019). In contrast,
non brain-blocked larvæ exhibited Lévy, but not necessarily Cauchy, Patterns of
movement. This is in line with the hypothesis that Cauchy Walks could be a default
behaviour modified by sensory inputs (adaptive Lévy Walks).

Intermittent search. In the very influential (Viswanathan et al., 1999), the agent
was supposed to be able to detect while moving. Unsurprisingly, then, when targets
were sparse and consumed upon encounter, the optimal process was simply a ballis-
tic one, i.e. just always moving in the same direction. This particular assumption,
however, is not necessarily verified, and in fact is unrealistic in many cases. Indeed,
perception usually degrades with motion (Bell, 2012; O’Brien et al., 1990; Kramer
and McLaughlin, 2001). This prompted physicists (Bénichou et al., 2011) to for-
mulate the intermittent model of search. In this setting, the detection of targets is
only possible intermittently, i.e. agents cannot detect targets at all times and must
alternate between exploration phases (typically, a ballistic phase aiming to bring the
searcher far away) and exploitation phases (for instance, detecting while immobile,
or while moving diffusively). Markovian models of intermittent search also assume
that the animal is memoryless, in the sense that after switching its state to a detec-
tion mode, it “forgets” the previous direction, and for its next step it must choose
a direction uniformly at random. While this assumption, used to make the models
analytically tractable, may seem too unrealistic, let us note that it was verified in
desert locusts that, the longer the duration of a pause, the less correlated the direc-
tion of their next step will be with the direction they previously came from (Bazazi
et al., 2012).

Because other terms have been used to refer to intermittent search in the etholog-
ical literature (especially in foraging studies), I feel compelled to provide the reader
with some notes of vocabulary.

Intermittent locomotion, sometimes referred to as stop-and-go or pause-travel, is
the alternation of pauses and moves during an activity, without presuming of the
reason behind the pauses. The phenomenon is observed in a many animals, such
as lizards, birds, flies, medusae, squirrels (Kramer and McLaughlin, 2015). In this
survey, the authors found that the duration of these pauses would fall between 6%
and 94% of the locomotion time of these animals. The reasons for pausing may be
to increase endurance by partial recovery, to avoid being detected by a predator,
or to stabilize the perceptual field. When this alternation of pauses and moves is
absent, the behaviour is sometimes referred to as cruising.

Saltatory foragers are stop-and-go foragers that can detect targets only when
immobile (O’Brien et al., 1989). As such, the terms saltatory and intermittent are
equivalent, although “saltatory” generally applies to empirical evidence (behaviour),
while “intermittent” generally applies to models.
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1.2. Lévy Walks in Biology

Sit-and-wait, or ambush, predators, such as many spiders (Uetz, 1992), typically
move rarely, and instead wait for prey to come to their neighbourhood (even setting
traps for them in the case of spiders). While this behaviour might be seen as an
extreme intermittent search, the energy cost associated with detection (i.e. assessing
the quality of a spot) is the most prevalent factor and, as such, an intermittent
model of search is probably not the best model for this predatory behaviour. In
other words, the intermittent search model is appropriate when detection is neither
very easy or fast (in this case, a non-intermittent model can be used) nor too difficult
or time-consuming.

Truncated Lévy Walks may mean either:

• a Lévy Walk whose step-length distribution is truncated, i.e. pµ,`max = Θ(l−µ)
for l = O(`max), and pµ,`max = 0 for l = Ω(`max).

• a Lévy Walk, in the non-intermittent model of detection, that can stop in
the middle of a jump, upon encountering a target. The name “truncated”
for this second sense comes from the analysis of (Viswanathan et al., 1999),
in which it was approximated that no step of length more than the mean
distance between targets would appear, thus the distribution of the step-length
effectively became a truncated power-law.

This latest sense is quite common, and has also been referred to as prey-targeting
in (Humphries and Sims, 2014). In contrary, the non-intermittent model wherein
the food is consumed when passing over it, but the step is not halted, has received
little attention, to my knowledge. In dimension 2 or more, prey-targeting can be
an inconvenient – when targets are sparse and non-patchy, it is better not to take
the risk to return to a previously visited area – or an advantage – when targets are
sparse and patchy, it is better if the walker is able to explore diffusively the area by
halting frequently its steps.

To avoid confusion, I will prefer the term “prey-targeting” to “truncated”. Note
that, although possible, there is a priori little interest to talk about prey-targeting
in the intermittent detection model, as such models typically assume the detection
to happen while the agent is immobile or moving diffusively. Note also that prey-
targeting is a minimal form of interaction with the environment, of which (memo-
ryless) intermittent searchers are devoid. As such, memoryless intermittent models
represent a model for organisms of minimal abilities, and could represent a good
approximation of the behaviour of ancient animals (Sims et al., 2014).

The acute reader will have remarked that Lévy Walks with truncated step-length
distribution pµ,`max , because they have finite variance, fall under the central limit
theorem and will eventually converge to a normal distribution. However, this con-
vergence is slow (Mantegna and Stanley, 1994) and, as we will see via the short-time
pointwise probability bounds in Chapter 3, can only happen after a time propor-
tional to `max.

Finally, while sometimes both terms are used equivalently, let us highlight the
distinction between Lévy Walks and Lévy Flights. “Lévy Flights” refer to a process
with infinite speed, while “Lévy Walks” are of finite velocity. (Zaburdaev et al.,
2015) Biological processes, of course, are of the second nature, and the term “Lévy
Flights”, when contrasted to “Lévy Walks” in this context, may simply indicate that
the agent is not able to detect targets while moving (because it flies over targets),
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Chapter 1. Foundations

i.e., the search is non-intermittent. I will use the term “Flight” only to denote a
process of infinite speed.

I will return in Chapters 3 and 4 to this notion of intermittent detection, as the
models will be framed within this setting. Specifically, in Chapter 3, I will provide
an optimality result for intermittent Cauchy walk in dimension 2, and in Chapter
4 I will show, in dimension 1, an optimality result for a discretization of the Lévy
Walk.

On the applications of Lévy Walks. The practical-minded reader might be
interested to know potential applications of this Lévy Walks (and Patterns) theory.

In biology, Lévy Patterns were reported for metastatic cancer cells (Huda et al.,
2018). In contrast, simple diffusive patterns were reported for non-metastatic can-
cerous cells. Furthermore, the authors were able to reprogram the trajectories of the
cells from Lévy-like to diffusive by using chemical inhibitors targeting actin-binding
proteins. At best, this may eventually be useful to prevent cancer cells to seed
metastatic cancers, or slow down the process.

Pollen dispersion by honeybees was usually modelled by Brownian motion. How-
ever, if Lévy Walks are a more representative model of honeybees patterns, the
model of Brownian motion leads to underestimate the isolation distance needed to
prevent genetically modified pollens from outcrossing with conventional crops (Val-
laeys et al., 2017).

The understanding that humans trajectories are, at times, well-described by Lévy
Patterns is relevant in modelling the spread of epidemics, although it was argued
in (Fofana and Hurford, 2017) that the choice of a particular model of movement
might not be so crucial to the threshold condition for a disease outbreak.

Inspired by the prevalence of Lévy Patterns in biology, computer scientists in-
troduced Lévy Walks to robotic searches (Krivonosov et al., 2016). Interestingly,
since robots are often equipped with sensors, the implemented algorithms are not
pure Lévy Walks, but involve interaction with the environment. Hence, this field
can in turn inform on biological processes, as it allows to tests search algorithms in
a realistic environment.

1.3 Search Problems in Computer Science

The problem of an agent exploring a space has been extensively studied in Computer
Science and a detailed survey is out of the scope of this dissertation. Instead, I
mention only works which I think can inform the reader on the more general context
of this research.

Deterministic searching and memory requirements. One of the simplest
possible setting is the deterministic searching in the line and in the plane, which
was studied in (Baezayates et al., 1993). An agent searches for a target located at
an unknown distance D. They proved that, on the line, the Linear Spiral Search,
that takes jumps of length 2i alternating right and left, finds the target in time no
more than 9D, which is optimal up to lower order terms. On a two-dimensional
lattice, they showed that a lower bound 2D2 + 4D + 1 holds for any algorithm,
nearly matched by a spiral search.
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The previous scenario assumed that the topology of the space is known to the
searcher. This might not be the case, as in graph exploration problems. Such
problems include the case of an agent wishing to cover a graph, i.e., visit every node
(and, possibly, to go through every edge) of the graph. Since (Rollik, 1980), that
proved that the problem was untractable, on general graphs, for a single agent (or a
constant number of agents) with sublogarithmic (in the size of the graph) memory,
attention was devoted to finding an algorithm with minimal memory requirements,
until (Reingold, 2008) furnished one with a memory only logarithmic. The problem
of which graphs an agent is able to explore with only k bits of memory was also
investigated (Fraigniaud et al., 2008).

The problem can be facilitated with advice or if the agent is able to interact with
the graph. For instance, in (Disser et al., 2019), it was shown that, if the agent has
only constant memory, it can still explore any graph if it is allowed to drop (and
retrieve) Θ(log log n) pebbles on nodes, and this number of pebbles is necessary to
explore any n-node graph. Perhaps surprisingly, multiple agents do not perform
significantly better than a single agent with pebbles, as a number Θ(log log n) of
agents is also necessary and sufficient to solve the exploration problem. In some
settings, however, it is more interesting to pre-process the graph. Indeed, it was
shown that adding only 3 labels in a pre-processing stage can enable a searcher with
constant memory to explore any graph (Cohen et al., 2008).

Searching with randomness. If the agent can make use of random moves, the
problem is altogether different. Indeed, it is known that any simple random walk
(that moves, at each step, to a neighbour of the current node, selected uniformly at
random among all neighbours), on a simple connected graph with n nodes and m
edges, will visit every vertex in time at most 2m(n−1) (Aleliunas et al., 1979), and,
in the worst case, the cover time is 4/27n3 +O(n5/2) (Feige, 1995). The hitting and
cover times of simple random walks on graphs and graph families have, in fact, been
studied extensively, including in Erdos-Renyi random graphs (Barlow et al., 2010)
and in random regular graphs (Cooper et al., 2009).

Extensions of the random walk. The simple random walks on graphs uses
only local information, however it is possible to improve appreciably the time perfor-
mances of the algorithm by allowing the agent to know the degrees of the neighbours
of the current vertex. Specifically, (Ikeda et al., 2009) proved that a random walk on
a graph selecting node x with a probability proportional to deg(x)−1/2, covers any
graph in time at most O(n2), which is an Ω(n) improvement on the worst case of
the simple random walk. See also (Nonaka et al., 2010) for a random walk achieving
better cover time.

Multiple agents and space-time tradeoffs. Another way to extend the simple
random walks is to consider multiple agents, which is a relevant scenario for robotics
and biology. See (Elsässer and Sauerwald, 2009) for multiple simple random walks,
and (Clementi et al., 2020) for multiple Lévy walks in the plane. In (Feinerman and
Korman, 2017), multiple agents search for a treasure in the plane. Starting from
their nests, they perform ballistic steps of length given by a power-law distribution,
explore the region by a (deterministic) spiral search and, in case of failure, return
to their nests to begin anew. Feinerman and Korman also showed lower bounds
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on the memory of agents, as well as the estimation by the agents of their numbers,
that achieve certain time performances. In general graphs, families of algorithms
achieving some space-time tradeoff were also obtained by simulating multiple walkers
(Broder et al., 1994). An improvement using the random walks of Nonaka et al.
was built by (Kosowski, 2013), proposing randomized global algorithms achieving a
space-time tradeoff of roughly n2 at worst.

Random walk models for collective navigation by ants. Finally, let us re-
mark that models based on random walks were used to study, with success, collec-
tive animals’ navigation. Specifically, the collective transport of large food items
was studied in crazy longhorn (Paratrechina longicornis) ants (Fonio et al., 2016)
by a team of physicists and computer scientists. The authors showed that ants that
bear a large food item are guided by the pheromone marks left by surrounding ants.
They demonstrated this by verifying that this transport was well modelled by a ran-
dom walk with unreliable advice. However, the scent trail can be at times wrong,
as the larger food items can be blocked by obstacles single ants can go through.
This explains why the motion of the load could deviate from the scent trail. This
work was followed by (Gelblum et al., 2020), which established that these ants, in a
labyrinth, achieve performances that outperform known lower bounds on the time
performance of bias random walkers evolving in a percolated grid. Gelblum et al.
showed theoretically and empirically that this speed-up was due to ants using their
numbers to collectively extend their sensing range.

1.4 Mathematical background

1.4.1 Notations

Asymptotic notations. For two real-valued functions f and g, defined on N or
R+, we write:

• f = O(g) if there are a constant c > 0 and x0 such that, for all x ≥ x0, we
have f(x) ≤ cg(x),

• f = Ω(g) if g = O(f),

• f = Θ(g) if f = O(g) and g = O(f),

• f = o(g) if for any ε > 0, there is a x0 such that, for all x ≥ x0, we have
f(x) ≤ εg(x).

The symbols Õ, Θ̃ mean that we omit polylogarithmic factors, in other words f =
Õ(g) if there is some constant c > 0 such that f(x) log(x)c = O(g(x)).

Spaces. A graph G = (V,E) is given by a set of nodes V , and a set of edges
E. Unless mentionned otherwise, our graphs will be simple (i.e., without multiple
edges), without loops, nor weights.

Given a positive integer ∆, we denote by T∆
n the (continuous) ∆-dimensional

torus of volume n. When needed, we will identify T∆
n and the ∆−dimensional cube

[−n1/∆/2, n1/∆/2]∆ ⊂ R∆. We will denote by Cn the discrete cycle of length n.

14



1.4. Mathematical background

Probability notations. For a real-valued random variable X, we denote by E(X)
its expectation and σ(X) its standard deviation. For x in a probability space, we will
denote by δx the Dirac distribution, given, for any measurable set A, by δx(A) = 1
if x ∈ A, otherwise δx(A) = 0. We will denote by 1A the indicator function of A,
i.e., 1A(y) = 1 if y ∈ A and 1A(y) = 0 otherwise.

1.4.2 Some reminders about probability theory

I will assume some basic familiarity with discrete probability theory. The reader
can refer to (Mitzenmacher and Upfal, 2005) for a simple introduction to discrete
probability theory, with applications to computer science. I will also use some
concepts from measure-theoretical probability Theory in Chapter 3, although I will
keep the use of these notions to a minimum. In fact, I will almost only use the
following definition.

Definition 1.1. A probability density function (p.d.f.) for a random variable X on
Ω ∈ {R∆,T∆

n } is an integrable function f such that, for any measurable set A in Ω,
we have

P(X ∈ A) =

∫
A

f(x)dx. (1.1)

For a random variable X, we will denote by pX the p.d.f. of X, if it admits one.
The reader who ignores what is a measurable set is not to feel afraid; all of our

sets will be measurable, as they will be balls, or their unions. An integrable function
f is one that is measurable (which is the case if f is piecewise continuous) and that
verifies

∫
Ω
|f | < ∞. Likewise, this integrability condition will be obvious for the

power-law functions we will study.
I recall also some basic inequalities of probability theory.

Theorem 1.2 (Markov’s inequality). Let X be a real-valued, positive random vari-
able. Then, for any a > 0,

P(X ≥ aE(X)) ≤ 1

a
. (1.2)

Theorem 1.3 (Chebyshev’s inequality). Let X be a random variable with finite
mean and finite variance. Then for any a > 0,

P(|X − E(X)| ≥ aσ(X)) ≤ 1

a2
(1.3)

Theorem 1.4 (Kolmogorov’s inequality). Let (Xi)1≤i≤n be real-valued independent
random variables, of common zero mean, and all admitting a finite variance. Then,
for any a > 0,

P( max
1≤i≤n

|X1 + · · ·+Xn| ≥ a) ≤ 1

a2

n∑
i=1

E(X2
i ). (1.4)

1.4.3 Memoryless processes: Markov Chains, Random Walks

In the remaining of this chapter, I recall basic definitions of probability theory,
Markov Chains and random walks. I begin by a brief account on the origins of
random walks.
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Historical roots of random walks

Random walks, in general, can be said to date back to more than a century ago.
Perhaps the first mathematical example of a random walk we have, is the study of the
error arising from a combination of multiple, uncorrelated, error terms. One of the
first treatise on modern probability, Pierre-Simon de Laplace’s Théorie Analytique
des Probabilités (1812), includes a discussion on this matter, and a derivation of
what we know today as the central limit theorem.

One century later, and in the two-dimensional setting, the bio-statistician Karl
Pearson inquired, in a 1905 letter to Nature, about a walker in the plane, going to
a pre-determined, fixed, distance at each step, a process he termed random walk.
In the same year, the mathematician Lord Rayleigh answered to Pearson’s letter by
referring to a 1880 work of his in the domain of acoustics, that solves the problem
when the number of steps is large. The 1905 letter also prompted the mathematician
J.C. Kluyver to provide an exact, albeit impractical, form for the distribution of the
walk after any number of steps. In 1906, Pearson applied these ideas in an article
entitled A Mathematical Theory of Random Migration. He was motivated by the
problem of the distribution of a species composed of N individuals, after n number
of steps, each individual pursuing their own random walk. In the same work, Karl
Pearson also endeavoured to apply his theory to the study of the infiltration of
mosquitoes into cleared areas.

While Pearson’s problem was in a discrete-time setting, the continuous-time,
one-dimensional, equivalent was also studied by Louis Bachelier in his 1900s thesis
Théorie de la Spéculation. Bachelier investigated the variations of stock prices in
the financial market. Five years later, in 1905, Albert Einstein, aiming to prove the
existence of atoms, published two articles on the theory of brownian motion, i.e.,
the random motion of particles immersed in fluid, described, among others, by the
botanist Robert Brown in 1827. As often, it would take many more years before
mathematicians develop a fully rigorous account of these continuous-time models of
Brownian motion, the first of which was formulated by Norbert Wiener, in 1923.
At this time, the random walk model was already a common object of study, and a
particular example of the chains introduced by Andrei Markov in 1906.

Markov Chains

Going in the reverse direction of history, I will first present the more general model of
(discrete-time) Markov Chains, and then define random walks on Euclidean spaces
and graphs.

Definition 1.5. A Markov Chain (Xn)n∈N on a a probability space Ω (called the
state space) is a sequence of random variables on Ω such that, for any (a0, . . . , an−1) ∈
Ωn, the three following variables admit the same law:

• Xn conditioning on the past values Xn−1 = an−1, . . . , X0 = a0, whenever
P(Xn−1 = an−1, . . . , X0 = a0) > 0,

• Xn conditioning on the single past value Xn−1 = an−1, whenever P(Xn−1 =
an−1) > 0,

• Xm conditioning on the single past value Xm−1 = an−1, for every m ≥ 1 for
which P(Xm−1 = an−1) > 0.
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1.4. Mathematical background

Sometimes authors call the equivalence between the first two items as Markov
property (or memoryless property), and the additional information brought by the
second equivalence as the time-homogeneous property. Since I will only study time-
homogeneous processes, I will refer to the combination of these equivalences as the
Markov property (which is not uncommon, see, e.g., (Levin et al., 2008)).

Remark 1.6. Whenever the space Ω is finite, these equivalences can be formulated as
follows: (Xn)n∈N is a Markov Chain on Ω if and only if there is a probability matrix
P ∈ [0, 1]Ω

2
such that, for any (a0, . . . , an) ∈ Ωn for which P(Xn = an, Xn−1 =

an−1, . . . , X0 = a0) > 0, we have:

P(Xn = an | Xn−1 = an−1, . . . , X0 = a0 ) = P(Xn = an | Xn−1 = an−1)

= Pan−1,an . (1.5)

P is called the transition matrix.

When X is a Markov Chain on Ω and x ∈ Ω, we will denote by Xx the Markov
Chain with same evolution law as X, starting at x, i.e., Xx(0) = x.

An easy example of Markov Chain is called Coupon Collecting. A collector wishes
to collect all n types of coupons found in cereal boxes. Each box contains only one
coupon and all coupons are equally likely to be found in a box. If X(m) is the
number of distinct coupons obtained by the collector after buying m boxes (with
X(0) = 0), then the sequence (X(m))m is a Markov Chain. Indeed, if for m ≥ 0
and 0 ≤ k ≤ n, X(m) = k, then the law of X(m+ 1) is determined. Specifically, as
all coupons are equally likely, and there are n − k new possible coupons to obtain,
among n, the law of X(m+ 1) | X(m) = k is given by:

P(X(m+ 1) = k + 1 | X(m) = k) =
n− k
n

and P(X(m+ 1) = k | X(m) = k) =
k

n
,

which define, respectively, Pk,k+1 and Pk,k.

Random walks. Another example of Markov Chains, and a very important one,
is the random walk. I will provide two definitions, depending on the state space
being a graph or an Euclidean space. Intuitively, an agent walking on a graph is
simply an agent that, at each step, goes from one node to an adjacent node. The
walk is random if the agent chooses uniformly at random the edge it will be going
through. For technical reasons, I introduce also a parameter p, that governs whether
the agent decides to move or not.

Definition 1.7. A random walk X on a graph G is a Markov Chain on G with
transition matrix P given by

P(x, y) =


0 if (x, y) /∈ E
p if x = y

1−p
deg(x)

if (x, y) ∈ E
. (1.6)

The parameter p is called the laziness of X. X is said to be non-lazy if p = 0.

In a vector space, a random walk is simply an additive process of increments
given by some common distribution P. In other words, at each step, the agent goes
to a direction, and in a certain length, according to P.
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Definition 1.8. A random walkX on Ω ∈ {R∆,T∆
n } is a random variable (X(m))m∈N

verifying, for every m ∈ N:

X(m+ 1) = X(m) + V (m+ 1), (1.7)

where (V (m + 1))m∈N is a sequence of i.i.d. variables chosen according to some
distribution P. X is called unbiased if the directions of the incremental vectors
(V (m))m are chosen uniformly at random. Otherwise, X is biased.

Unless explicitly specified, subsequently, random walks will be unbiased. Note
that X is unbiased if, and only if, P is radial, i.e., for any measurable set A and any
rotation rotθ of angle θ ∈ [0, 2π], P(A) = P(rotθ(A)). When P admits a p.d.f. F ,
this means that F is radial, i.e., there is a function f on R such that, for any x ∈ Ω,
F (x) = f(‖x‖).

When X is unbiased, we will denote by p the distribution of the lengths of the
step.

Examples of unbiased random walks include:

• The simple random walk on Z∆, where the step-length distribution is δ1, i.e.,
all steps have unit length.

• Its continuous-space equivalent, where the step-length distribution is a gaus-
sian distribution with mean zero and unit variance.

• Lévy Walks, for which pµ(x) = Θ(x−µ), for µ ∈ (1, 3].

• Truncated Lévy Walks, for which pµ,`max(x) = Θ(x−µ) for µ ∈ (1, 3] and
x = O(`max), and pµ,`max(x) = 0 for x = Ω(`max).

• k-Scales random walks, that can use only k distinct lengths (i.e., the support
of p has cardinal k). The Weierstrassian Walks are a particular example, with
step-length distribution

∑k
i=0 piδbi , with pi proportional to a−i for some a > 1

and b > 1. In words, a step of length bi is chosen with probability pi.

Convergence. What does a Markov Chain look like in the long run? Since a
Markov Chain evolves according to some distribution P, it is expected that, if the
Markov Chain converges, it will converge to a distribution invariant under P. This
motivates the following definition.

Definition 1.9. The stationary distribution is the distribution π such that, if X(0)
is distributed according to π, thenX(1) (and thus, allX(m) form ≥ 0) is distributed
according to π.

The unicity of the stationary distribution is not necessarily assured. For instance,
imagine a random walk X on the graph composed of just two nodes x, y, with no
edge. The distributions δx and δy are both stationary. This motivates the following
definition:

Definition 1.10. An irreducible Markov Chain X on a countable space Ω is one
such that any state y is accessible starting from any initial state X(0) = x, i.e.
P(Xx(m) = y) > 0 for some m > 0.
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Remark 1.11. All random walks evolving on a simple connected graph are irre-
ducible.

Remark 1.12. If X is irreducible, then its stationary distribution, if it exists, is
unique.

Remark 1.13. When G is a finite connected graph, the stationary distribution (of a
random walk on G) exists and is given by

π : x ∈ G 7→ deg(x)

2|E|
∈ [0, 1], (1.8)

where deg(x) is the degree of the node x.

In many cases, such as random walk on graphs, the stationary distribution is
rather easy to compute. The true unknown, then, is how much time is needed
before the Markov Chain is mixed. This question is often found in practice; think,
for instance, of how many times you must shuffle a deck so as that it will be well
mixed.

The mixing time is the (expected) time before a chain is approximately dis-
tributed according to the stationary distribution. There are several possible defini-
tions according to how we understand this approximation; we will use the following
one.

Definition 1.14. For an irreducible Markov Chain, the (total variation) mixing
time ((Levin et al., 2008, Section 4.5)) is defined as:

mmix = min

{
m ≥ 1 : max

x

∑
y

|P(Xx(m) = y)− π(y)| ≤ 1

2

}
,

where π is the stationary distribution.

Hitting time. Let us return to the Coupon Collector example. The collector
might be interested in a specific coupon, and would like to know how much boxes
they will have to buy before finding it. This is an example of the hitting time of a
Markov Chain.

Definition 1.15. For a (measurable) set A ⊂ Ω, we say that X visits A at step m
if and only if X(m) ∈ A.

Definition 1.16. Let Ω be a probability space, S ⊆ Ω be measurable, and X be a
Markov chain on Ω. The (random) hitting time mX

hit(S) of S is equal to the number
of steps before S is visited, i.e.

mX
hit(S) = min{m s.t. X(m) ∈ S},

where we consider that min ∅ = +∞, i.e., if the set S is never reached, then the
random hitting time of S is infinite.

When S = {x}, we write mX
hit(x).

The hitting time mX
hit of X is the maximal expected time between two states of Ω,

starting from any node x to reach any node y, i.e. it is equal to maxx,y E(mXx

hit (y)).
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In the case of the coupon collector, all coupons are equally likely, therefore the
obtention of a specific coupon is governed by a Bernoulli process, of chance of success
p = 1

n
. Let us recall briefly why the expectation before getting a success is p−1 = n.

For this, remark that the probability that the coupon is not obtained in the steps
1, 2, . . . ,m is equal to the probability that any other coupon was chosen at each of
these steps, i.e., is equal to (1− p)m. Therefore,

E(mX
hit(x)) =

∞∑
m=0

P(mX
hit(x) ≥ m) =

∞∑
m=0

(1− p)m =
1

1− 1− p
=

1

p
. (1.9)

Cover time. A slightly more complicated question, for the Coupon Collector, is
to determine how many boxes they will have to buy before they complete their
collection. This is known as the cover time of the coupon collector process, and is
defined generally as follows.

Definition 1.17. The random cover time mcov(X
x) of a Markov Chain X, on a

finite probability space Ω, starting from x ∈ Ω, is a random variable equal to the
time before every state of Ω has been visited. The cover time of X is the maximal
expected cover time, where the maximum is taken with respect to the initial location
x ∈ Ω, i.e., maxx∈Ω E(mcov(X

x)).

The cover time of a random walk on a disconnected graph is infinite. Indeed, a
random walk on a graph stays within the connected component of its initial state.

In the case of the Coupon Collector, the cover time is nHn, whereHn =
∑n

k=1 k
−1 =

log n+Θ(1). The derivation of this result is rather easy. When there are k ∈ [0, n−1]
coupons obtained by the collector, the probability at each step to get a new coupon is
n−k
n

, as explained above. Therefore, the expected number of steps mk between the k-

th and the k+1-th coupon is n
n−k . By summation, the cover time is

∑n−1
k=0 mk = nHn.

Matthew’s upper bound. The cover time is always at least the hitting time of
any node. The following bound indicates that the reverse is true, up to a logarithmic
factor.

Theorem 1.18 (Matthew’s upper bound). For any Markov Chain on a state space
Ω of size n, we have

E (mcov) ≤ (1 + log n) ·mX
hit,

The proof of Matthew’s upper bound is simple and elegant. I provide it as an
introduction to the more involved proofs that will come later.

Proof. We will proceed in a similar manner to that of the Coupon Collector problem.
Let x0 be the initial state, and denote by x1, x2, . . . , xn−1 the other states of Ω. Now,
choose an enumeration xσ(1), . . . , xσ(n−1) uniformly at random, and independently
from the Markov Chain, among all possible enumerations. (This is equivalent to
choosing a random permutation σ.)

For k ∈ [1, n − 1], let Ak be the event that the states xσ(1), . . . , xσ(k) have been
visited. Let mk be the random number of steps between the achievement of Ak−1

and that of Ak. We have mcov =
∑n−1

k=1 mk. Note that mk > 0 only if xσ(k) is
visited after the k− 1 states xσ(1), . . . , xσ(k−1). Remarkably, because we have chosen
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a random ordering of the states, this happens with probability exactly 1
k
. Hence, we

may write
E(mk) = 0 + P(Ak)E(mk | Ak).

Next, bound E(mk | Ak) by the hitting time mhit = maxx0,x E
(
mXx0

hit (x)
)
, and use

the linearity of expectation to obtain:

E (mcov(X
x0)) ≤ mX

hit

n−1∑
k=1

1

k
,

and use that
∑n−1

k=1
1
k

= Hn−1 ≤ 1 + log n. To conclude, observe that since this
bound holds for any initial point x0, it holds in particular for the worst-case starting
point.

21



Chapter 2

Properties of general random
walks

In this chapter, I provide some properties of Markov Chains, and random walks
on R∆ or T∆

n with a general distribution p. After providing some supplementary
definitions, including a definition of the time of the process (with constant speed),
I show in Sections 2.2 and 2.3, how bounds on the hitting times of a Markov Chain
can be obtained by studying its pointwise probability. Next, I show in Section
2.4 a monotonicity property. In Section 2.5, I provide asymptotics on the distance
achieved by a random walk of step-length distribution p. Finally, I introduce in
Section 2.6 the Walk or Probe problem, as a model of intermittent search defined on
general graphs, and provide an analysis of the performances of a simple algorithm.

2.1 Definitions

Recall from Chapter 1 that an unbiased random walk X on Ω ∈ {R∆,T∆
n } is a

random variable (Xm)m∈N verifying, for every m ∈ N:

X(m+ 1) = X(m) + V (m+ 1),

where (Vm)m≥1 are i.i.d., the direction of the vector Ym is chosen uniformly at ran-
dom, and ‖Vm‖ follows a probability distribution p. Denote by τ and σ the mean
and standard deviation of p (when they are defined).

Definition 2.1. To a random walk X defined on the torus T∆
n by Eq. (1.7), we

associate an extension Z to R∆, defined by:

Z(0) = X(0), and Z(m+ 1) = Z(m) + V (m+ 1) (2.1)

In this case, X is the projection of Z on T∆
n .

Definition 2.2. For an integer m, the (random) time, T (m), taken by the walk X
(or Z) up to step m is

T (m) =
m∑
s=1

‖V (s)‖ . (2.2)

Remark 2.3. The usual terminology of Markov Chains, presented in Chapter 1, also
use the word “time”, e.g. “hitting time” or “stopping time”. In order to avoid
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2.2. From hitting time to hitting step

confusion, I will use the word step when talking about the Markov Chain (X(m))m.
Hence, if m? is a stopping step for (X(m))m, the corresponding stopping time is
t? = T (m?).

Let us denote bymhit(S) the random hitting step of S, and thit(S) = E(T (mhit(S))
the expected hitting time of S. As we shall see in the next section, there is a simple
link between the two.

2.2 From hitting time to hitting step

Indeed, we establish that the hitting time is simply obtained by multiplying the
hitting step by the expected time of one step.

Claim 2.4. Let X be a (possibly biased) random walk on T∆
n that does not always

stay in place (i.e. p 6= δ0). Let S be a subset of T∆
n , such that, with positive

probability, X(0) /∈ S. We have

tXhit(S) = E(mX
hit(S)) · τ,

where τ is the expected time of a step.

Claim 2.4 reminds of Wald’s identity with respect to the lengths (‖V (s)‖)s. How-
ever, Wald’s identity cannot be applied directly because mX

hit(S) is not a stopping
step for the sequence (‖V (s)‖)s. Instead, we prove the claim by the Martingale
Stopping Theorem (that can also be used to prove Wald’s identity).

Proof. To prove the claim, note that we can suppose that τ <∞ and E(mX
hit(S)) <

∞. Indeed, if τ = ∞, then even one step takes an infinite expected time. With
some positive probability X(0) /∈ S, hence at least one step must be done to visit S,
and thus tXhit(S) =∞. If E(mX

hit(S)) =∞, then, since p(0) < 1, there is at each step
a positive probability δ to do a step of length at least ε. Therefore, after m steps,
where m is large, there are roughly δm steps of length at least ε. Hence, if there is
an infinite number of steps, then with probability 1 there is an infinite number of
steps of length (and hence, time) at least ε. In this case, we have again tXhit(S) =∞,
and the equality is verified. In what follows we therefore assume that both τ < ∞
and E(mX

hit(S)) <∞.
We start the proof by defining:

W (m) :=
∑
s≤m

(‖V (s)‖ − τ).

The claim is proven by showing first that (W (m))m is a martingale with respect
to (X(m))m. Then, as mX

hit(S) is a stopping step for (X(m))m (i.e., the event
{mX

hit(S) = m} depends only on X(s), for s ≤ m), we can apply the Martingale
Stopping Theorem which gives

∑
s≤mXhit(S)(‖Vs‖−τ) = 0. In more details, recall, e.g.,

from (Mitzenmacher and Upfal, 2005)[Definition 12.1], that a sequence of random
variables (W (m))m is a martingale with respect to the sequence (X(m))m if, for all
m ≥ 0, the following conditions hold:

• W (m) is a function of X(0), X(1), . . . , X(m),
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Chapter 2. Properties of general random walks

• E(|W (m)|) <∞,

• E(W (m+ 1) | X(0), . . . , X(m)) = W (m).

I first claim that W (m) is a martingale with respect to X(0), X(1), . . .. Indeed, since
V (s) = X(s)−X(s−1), the first condition holds. Since E(|W (m)|) ≤

∑
s≤m E(|Vs−

τ |) ≤ 2τm < ∞, the second condition holds. Finally, since W (m + 1) = W (m) +
‖V (m+ 1)‖−τ , we have E(W (m+1) | X(0), . . . , X(m)) = W (m)+E(‖V (m+ 1)‖)−
τ = W (m), and hence the third condition holds as well.

Next, recall the Martingale Stopping Theorem (e.g., (Mitzenmacher and Up-
fal, 2005)[Theorem 12.2]) which implies that E(W (M)) = E(W (0)), whenever the
following three conditions hold:

• W (0),W (1), . . . is a martingale with respect to X(0), X(1), . . . ,

• M is a stopping step for X(0), X(1), . . . such that E(M) <∞, and

• there is a constant c such that E(|W (m+ 1)−W (m)| | X(0), . . . , X(m)) < c.

Let us prove that the conditions of the Martingale Stopping theorem hold. We
have already seen that the first condition holds. Secondly, we have E(mX

hit(S)) <∞
by hypothesis. Finally, we need to prove that E(|W (m+1)−W (m)| | X(0), . . . , X(m)) <
c for some c independent of m. Since W (m+1)−W (m) = ‖V (m+ 1)‖−τ , we have
E(|W (m+ 1)−W (m)| | X(0), . . . , X(m)) = E(

∣∣ ‖V (m+ 1)‖− τ
∣∣) ≤ 2τ . Therefore,

the conditions hold and the theorem gives:

E(W (mhit(S))) = E(W (0)) = 0.

Hence,

0 = E(W (mX
hit(S))) = E

−mX
hit(S)τ +

∑
s≤mXhit(S)

‖V (s)‖


= −E(mX

hit(S))τ + E

 ∑
s≤mXhit(S)

‖Vs‖


= −E(mX

hit(S))τ + tXhit(S),

which establishes Claim 2.4.

2.3 Linking hitting step to pointwise probabilities

With the next two claims, we provide an explicit way of computing the expected
hitting step of a random walk, by means of the study of the pointwise probability
of the process Z, i.e. P(Z(m) = x) for m and x. First, we prove that, once we know
that, with at least some probability, S is visited before step m, then we can obtain
an upper bound on the hitting step of S.

Claim 2.5. Let Z be a Markov Chain on a probability space G and S be a (mea-
surable) subset of G. Denote by Zx the process Z starting at Z(0) = x. If, for any
x ∈ G, we have P(mZx

hit(S) ≤ m) ≥ q then E(mZ
hit(S)) ≤ mq−1.
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2.3. Linking hitting step to pointwise probabilities

Proof of Claim 2.5. Define a Bernoulli variable χ as follows. Consider m steps of
the process and define χ to be “success” if and only if the process hits S within
these m steps. Note that χ has probability at least q to be “success” regardless of
where the process starts, by hypothesis. Hence, the expected number of trials until
χ succeeds is at most 1/q. This translates to E(mX

hit(S)) ≤ mq−1, and establishes
Claim 2.5.

Next, we prove a link between the pointwise probability of a Markov Chain and
its hitting time. It involves the number NS =

∑2m0

m=m0
P(Z(m) ∈ S) of visits to S

between m0 and 2m0 and the oversample OS =
∑m0

m=0 P(Zz0(m) ∈ S), starting from
the worst point z0, of Z with respect to S. We establish that the probability that
S is visited before time 2m0 is at least VS/OS.

Claim 2.6. Consider a Markov Chain Z on a domain G. Let S be a measurable
subset of G (resp. a subset of G), with Z(0) /∈ S. For any m0 > 0, we have

P(mZ
hit(S) ≤ 2m0) ≥

∑2m0

m=m0
P(Z(m) ∈ S)

supz0∈S
∑m0

m=0 P(Zz0(m) ∈ S)
. (2.3)

Proof. In order to prove Eq. (2.3), we rely on the following identity (see also (Adler
et al., 2003)[Proposition 2] and (Kanade et al., 2016)). If N is a non-negative random
variable then:

P(N ≥ 1) =
E(N)

E(N | N ≥ 1)
. (2.4)

We employ this identity for the random variable NS(m0, 2m0) which is the num-
ber of times Z visits S between steps m0 and 2m0 included. Note that this quantity
is positive if and only if S is visited during this interval by Z, therefore

P(mZ
hit(S) ≤ 2m0) ≥ P (NS(m0, 2m0) ≥ 1) . (2.5)

Note that NS(m0, 2m0) =
∑2m0

m=m0
1Z(m)∈S, so that

E(NS(m0, 2m0)) =

2m0∑
m=m0

P(Z(m) ∈ S). (2.6)

Note also that the denominator in Eq. (2.4) applied to NS(m0, 2m0) verifies

E (NS(m0, 2m0) | NS(m0, 2m0) ≥ 1) = E (NS(m0, 2m0) | Z(m) ∈ S for some m ∈ [m0, 2m0])

≤ E (NS(m0, 2m0) | Z(m0) ∈ S)

≤ sup
z0∈S

E (NS(0,m0) | Z(0) = z0) ,

where the first inequality comes from the fact that visiting S earlier (i.e., for m = m0

instead of m > m0) can only increase the number of returns to S, and the second
inequality is a consequence of the Markov property. Finally, write, as above,

E (NS(0,m0) | Z(0) = z0) =

m0∑
m=0

P(Zz0(m) ∈ S). (2.7)
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Chapter 2. Properties of general random walks

Therefore, when applied to NS(m0, 2m0), Eq. (2.4), combined with Eqs. (2.5), (2.6)
and (2.7), implies that

P0(mX
hit(S) ≤ 2m0) ≥

∑2m0

m=m0
P(Z(m) ∈ S)

supz0∈S
∑m0

m=0 P(Zz0(m) ∈ S)
.

This establishes Eq. (2.3), and thus completes the proof of Claim 2.6.

Combining the two previous claims, we are able to formulate the following lemma:

Lemma 2.7. Consider a Markov Chain Z on a probability space Ω. Let m0 ≥ 1
and S be a measurable subset of G. Define

q :=
infx∈Ω

∑2m0

m=m0
P(Zx(m) ∈ S)

supz0∈S
∑m0

m=0 P(Zz0(m) ∈ S)
. (2.8)

Then we have

E(mZ
hit)(S) = O

(
m0 · q−1

)
. (2.9)

Remark 2.8. If m0 is such that there is a constant c > 0 for any m ≥ m0, we have
P(Z(m) ∈ S) ≥ cπ(S), then

E(mZ
hit)(S) = O

(
π(S)−1

m0∑
m=0

sup
z0∈S

P(Zz0(m) ∈ S)

)
.

This happens, in particular, in finite Markov Chains, when m0 ≥ 4mmix, with c = 1
2

(Aldous and Fill, 2002)[Lemma 4.11], and this m0 is known as the separation time.

Remark 2.9. If Z is a random walk defined on R∆ (resp. Z) and X is its projection
on the torus T∆

n (resp. the discrete cycle Cn), and S is a measurable subset of T∆
n

(resp. Cn), then, if q is defined by Eq. (2.8) (with the process Z), we have

tZhit(S) = O
(
m0 · q−1 · τ

)
. (2.10)

Indeed, if Z ∈ S, then X ∈ S, therefore mX
hit(S) ≤ mZ

hit(S), and by Claim 2.4 the
bound is obtained by multiplying by the average time of a step τ .

2.4 Monotonicity

A function f on R∆ is called radial if there is a function f̃ on R+ such that for any
x ∈ R∆, f(x) = f̃(‖x‖). In this case we say that f is non-increasing if f̃ is. The
goal of this section is to prove the following.

Claim 2.10. Let X and Y be two independent random variables with values in
R∆, admitting probability density functions respectively f and g. Let h be the
probability density functions of X+Y . If f and g are both radial and non-increasing
functions then so is h.

I shall soon show the claim, but first, let me give a corollary, assuming the claim
is true.
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2.4. Monotonicity

Corollary 2.11 (Monotonicity). Let Z be a random walk process on R∆, starting at
Z(0) = 0, with admits a p.d.f. f . If f is non-increasing, then for any m ≥ 1 the pd.f.
pZ(m) of the distribution of Z(m) is radial and non-increasing. In particular, for any
x, x′ points in R2 with ‖x‖ ≤ ‖x′‖, we have pZ(m)(x′) ≤ pZ(m)(x). Furthermore, for
any x ∈ R2 and any m ≥ 1, pZ(m)(x) ≤ 1

c∆‖x‖2
, where c∆ is the measure of the unit

ball in R∆.

Proof of Corollary 2.11. The fact that pZ(m) is radial and non-increasing follows
from Claim 2.10 by induction. Indeed, the step-length vectors V (1), V (2), . . . are
independent and, by hypothesis, admit a radial, non-increasing p.d.f. Hence so does
Z(m) = V (1) + V (2) + · · · + V (m). The upper bound on pZ(m)(x) follows easily.
Indeed, for x ∈ R2 \ {(0, 0)}, consider the ball B of radius ‖x‖ and centred at 0.
We have

∫
B

pZm(y)dy ≤ 1, and by the monotonicity,
∫
B

pZm(y)dy ≥ pZm(x)|B| =

pZm(x) · c∆ ‖x‖2.

Proof of Claim 2.10. Let θ ∈ [0, 2π). For x ∈ R2, denote by rotθ(x) the point
obtained by rotating x around the center 0 with an angle of θ. Then, by a change
of variable, we have:

h(rotθ(x)) =

∫
y∈R2

f(rotθ(x)− y)g(y)dy

=

∫
y∈R2

f(rotθ(x)− rotθ(y))g(rotθ(y))dy

=

∫
y∈R2

f(x− y)g(y)dy = h(x),

where we used in the last equality the radiality of f and g. This establishes the
fact that h is radial. Next, we prove, in a manner inspired by (Adler et al., 2003),
that h(x) is non-increasing with ‖x‖. Since h is radial, we can restrict the study
to points of the non-negative y-axis. Let us fix x = (0, x2) ∈ R × R≥0, and x′ =
(0, x′2) ∈ R× R≥0 with x′2 ≥ x2. Our goal is to show that h(x) ≥ h(x′).

Let γ =
x′2−x2

2
. Note that f(0, x2 + y) ≥ f(0, x′2 − y) for every y ∈ (−∞, γ].

Define, for y = (y1, y2) ∈ R2, the function Hx,y1(y2) = f(x − y)g(y). When y1 is
clear from the context, we shall write Hx(y2) instead of Hx,y1(y2) for simplicity of
notation. Now write, beginning with the change of variable y2 7→ −y2,

h(x) =

∫
y1∈R

∫
y2∈R

Hx(−y2)dy1dy2 =

∫
y1∈R

∫
y2∈R

Hx(−y2 − γ)dy1dy2

=

∫
y1∈R

(∫
y2≥0

Hx(−y2 − γ)dy2 +

∫
y2≤0

Hx(−y2 − γ)dy2

)
dy1

=

∫
y1∈R

∫
y2≥0

Hx(−y2 − γ) +Hx(y2 − γ)dy2dy1,
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and

h(x′) =

∫
y1∈R

∫
y2∈R

Hx′(y2)dy1dy2

=

∫
y1∈R

∫
y2≥γ

Hx′(y2) +

∫
y2≤γ

Hx′(y2)dy1dy2

=

∫
y1∈R

(∫
y2≥0

Hx′(y2 + γ)dy2 +

∫
y2≤0

Hx′(y2 + γ)dy2

)
dy1

=

∫
y1∈R

(∫
y2≥0

Hx′(y2 + γ) +Hx′(−y2 + γ)dy2

)
dy1

Hence, we have that h(x)− h(x′) is equal to∫
y1∈R

∫
y2≥0

f(−y1, x2 + y2 + γ)g(y1,−y2 − γ) + f(−y1, x2 − y2 + γ)g(y1, y2 − γ)

− f(−y1, x
′
2 − y2 − γ)g(y1, y2 + γ)− f(−y1, x

′
2 + y2 − γ)g(y1, γ − y2)dy1dy2

Since g is radial, we have g(y1,−y2−γ) = g(y1, y2+γ) and g(y1, γ−y2) = g(y1, y2−γ).
Furthermore, using that x2 + γ = x′2 − γ, we obtain that h(x)− h(x′) is equal to:∫

y1∈R

∫
y2≥0

(f(−y1, x2 + y2 + γ)− f(−y1, x2 − y2 + γ))

· (g(y1, y2 + γ)− g(y1, y2 − γ)) dy1dy2

In this summation, since x2 ≥ 0, γ ≥ 0 and y2 ≥ 0, we have |x2 + y2 + γ| ≥
|x2 − y2 + γ| and |y2 + γ| ≥ |y2 − γ|. Since f and g are radial and non-increasing,
both factors of the integrand are non-negative, hence the integrand is non-negative
and h(x)− h(x′) ≥ 0.

2.5 Propagation of random walks

In this section I show the following claim that gives a lower bound on the number
of steps needed for a random walk to achieve a certain distance. See also (Comtet
and Majumdar, 2005) for more precise asymptotics (in one-dimension).

Claim 2.12. Consider an unbiased random walk X on Ω ∈ {T∆
n ,R∆}. Let σ′ be the

standard deviation of a projected step-length of X over one coordinate. We have:

• The expected maximal distance achieved in m steps is O(
√
mσ′).

• The expected number of steps needed to reach a distance d is Ω( d
σ′2

).

• The time needed to reach a distance d is Ω( dτ
σ′2

). In particular, if L is the
maximal length in the support of p, then the expected time needed to go to a
distance d is Ω(d

2

L
).

This claim may appear crude in some situations, for instance in Lévy Walks, for
which the variance is infinite. However, as we shall see in the next chapter, simply
conditioning by the event that all steps are sufficiently small (e.g., no steps have
length more than d) allows to yield satisyfying results.
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Proof of Claim 2.12. Denote by md the (random) number of steps needed to reach
a distance at least d. We are interested in E(md).

If X is defined on T∆
n , let Z be its extension to R∆. Since the distance between

Z(m) and Z(0), in R2, is always at least that of X(m) and X(0), in Tn, the number
of steps needed to go to distance d in Tn is at least as high as in R2. Hence, we may
analyse the process Z instead of X. (If X is defined on R∆ then take Z = X.)

Define dmax(m) as the maximal distance (from the initial point) that the process
reached from step 0 up to step m, i.e.,

dmax(m) = max
s≤m
‖Z(0)− Z(s)‖ .

Now write Z = (Z1, Z2, . . . , Z∆), let p′ be the distribution of the projected step-
lengths (i.e. the distribution of the step-lengths of Z1), and let τ ′ and σ′ be respec-
tively its mean and standard deviation.

Next, let di,max(m) be the maximal distance reached by the projection on coor-
dinate i ∈ {1, . . . ,∆}. Since steps are independent, the standard deviation of Zi(s),
for s ≤ m, is

√
sσ′ ≤

√
mσ′.

By Kolmogorov’s inequality (Theorem 1.4), we have for any λ > 0, P(di,max(m) ≥
λ
√
mσ′) ≤ 1

λ2 . Furthermore, since dmax(m) ≤
√

∆ maxi{di,max(m)}, we have by a
union bound argument, for any λ > 0,

P(dmax(m) ≥ λ
√
mσ′) ≤ ∆P

(
d1,max(m) ≥ λ√

∆

√
mσ′

)
≤ ∆2

λ2
.

We thus obtain the first part of the claim:

E(dmax(m)) =

∫ ∞
s=0

P (dmax(m) ≥ s) ds ≤
∞∑
λ=0

∫ √mσ′
λ′=0

P
(
dmax(m) ≥ λ

√
mσ′ + λ′

)
dλ′

≤
√
mσ′

(∑
λ≥0

P(dmax(m) ≥ λ
√
mσ′)

)
= O

(√
mσ′

)
. (2.11)

For the second part, note that for m ≥ md, we have dmax(m) ≥ dmax(md) ≥ d.
Therefore, by Markov’s inequality (Theorem 1.2),

E(dmax(2E(md))) ≥ E(dmax(2E(md)) | md < 2E(md)) · P(md < 2E(md)) ≥ d · 1

2
.

(2.12)
Now using Eq. (2.11) with m = 2E(md), we have E(dmax(2E(md))) = O(

√
E(md)σ

′)
and hence, by Eq. (2.12),

E(md) = Ω

(
d2

σ′2

)
,

which is as stated. Finally, to compute the expected time Td = E(T (md)) needed
to reach distance d, let Sd be the set containing all points at distance more than d.
We now use Claim 2.4 with respect to Sd to obtain:

Td = E(md)τ = Ω

(
d2

σ′2
· τ
)
.

To conclude, simply remark that

σ′2 =

∫ L

0

p′(`)`2d` ≤
∫ L

0

p′(`)` · Ld` = Lτ ′ ≤ Lτ, (2.13)
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where the last inequality is justified by the fact that the projection reduces distances.

2.6 Walk or Probe

In this section, I use the previous results in order to study a model of intermittent
random walks defined on graphs. This model, and its study, was presented in
(Boczkowski et al., 2018a).

Consider a simple random walker that walks on a connected graph G and aims
to probe all nodes in G as quickly as possible. The walker at a node is unable to
detect whether it has previously probed it. At this point it needs to decide whether
to continue the walk or probe it and then continue the walk. Crucially, probing a
node is time consuming, and can potentially be very slow with respect to the time
required to move between neighbours. Specifically, let us assume that each edge
traversal costs 1 unit of time, while probing a node costs C ≥ 0 time units, where
C can be a function of several parameters of G (e.g., the number of nodes, edges,
or maximal degree).

The Walk or Probe problem aims to find a strategy that balances the time spent
in walking vs. probing so as to minimize the probing cover time, that is, the expected
time until all nodes are probed.

2.6.1 Results

Let G = (V,E) be a connected graph with n nodes. Denote by mcov (resp. mmix)
the cover time (resp. mixing time) of a random walk on G. The most naive strategy
is to probe after each step, in which case we get a probing cover time of:

(C + 1) ·mcov. (2.14)

I show that there exists another simple strategy whose running time depends on
mmix, which can be much more efficient in some cases. Let us call t-strategy the
tactic that consists in probing only once every t steps. Let G = (V,E) be an n-node
connected graph.

Theorem 2.13. The probing cover time of the
√
mmix-strategy is

O ((C +
√
mmix) · |E| log n) . (2.15)

And if G is regular, the probing cover time of the
√
mmix-strategy is

O ((C +
√
mmix) · n log n) . (2.16)

Note that, by taking C = 0, we can recover from Theorem 2.13 the following
bounds. The first one appears also in (Kanade et al., 2016, Theorem 1.4).

Corollary 2.14. For any n-node connected graph G = (V,E),

mcov =

{
O(
√
mmixn log n) if G is regular

O(
√
mmix|E| log n) otherwise.

(2.17)
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In comparison to the upper bound, since the search should cover every node and
probe every node of G, we have the following trivial lower bound for the probing
cover time:

mcov + C · n. (2.18)

Let us compare this lower bound to the upper bounds on the probing cover time of
the 1- and

√
mmix-strategies, given by Eq. (2.14) and (2.16), in the case of regular

graphs.

One family of instances consists of regular graphs for which Eq. (2.17) is tight
(up to poly-logarithmic factors). In this case Eq. (2.16) becomes, up to poly-
logarithmic factors, Cn + mcov, and so the

√
mmix-strategy is near optimal. This

happens, for example, if the mixing time is poly-logarithmic (e.g. cliques and all
expander graphs, such as random r-regular graphs (Friedman, 2004)) and in such
cases, by Eq. (2.14), the 1-strategy is also near optimal since the cover time is almost
linear as Eq. (2.17) shows. On the other hand, Eq. (2.17) is also tight for the path
and the cycle, on which the mixing time and cover time are Θ(n2). Hence, in this
case the

√
mmix-strategy significantly outperforms the trivial 1-strategy when C is

large.

If Eq. (2.17) is not tight then the
√
mmix-strategy may not be optimal. An

example where this happens is the torus of dimension d ≥ 2: Indeed, the mixing
time of such a torus is Θ(n2/d), while the cover time is almost linear (Levin et al.,
2008, Sections 5.3.2 and 10.4). In this case the 1-strategy has probing cover time
near optimal by Eq. (2.14), but the

√
mmix-strategy, which needs at least

√
mmixn

steps (because it must probe at least n times), is not optimal.

Finally, regarding the general bound in Eq. 2.15 (for not-necessarily regular
graphs), let us look at Erdos-Renyi random graphs G(n, p) with p = c/n for a
constant c > 1. In this case the mixing time is a.a.s. Θ(log2 n) (Benjamini et al.,
2014, Theorem 1.1) and the cover time is a.a.s. Θ(n log2 n) (Cooper and Frieze,
2008, Theorem 2.(a)), and the number of vertices is a.a.s. linear in n. Therefore,
by Eq. (2.15), the

√
mmix-strategy has probing cover time O(Cn log n + n log2 n),

while the 1-strategy, by Eq. (2.14), takes time (C+1)n log2 n, and hence the former
strategy gains a logarithmic factor in the number of probes.

2.6.2 Proof of Theorem 2.13

Since the probing cover time can only be increased by adding laziness, we will
suppose that X is lazy with laziness 1

2
. Proving Theorem 2.13, then, is equivalent to

proving a bound on the cover time of the Markov chain (Y (m))m≥0, where Y (m) =
Xm

√
mmix . Indeed, if the agent probes only at steps 0, t, 2t, . . . , then, each t steps

cost C + t. Furthermore, the agent has probed the whole graph whenever the chain
Y has visited every vertex. Hence, the probing cover time of the t-strategy is exactly

(C + t)mY
cov. (2.19)

Next, consider m0 =
√
mmix and define N = miny0∈G

∑2m0

m=m0
P(Y y0(m) = x)

and O = maxx∈G
∑m0

m=0 P(Y x(m) = x). By Lemma 2.5, we have that the cover time
of Y is mY

cov = O(m0 ·O/N).
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Lower bound on N . I first recall some basic results about mixing time, defined
in Chapter 1 as:

mmix = min

{
m ≥ 1 : max

y0

∑
x∈G

|P(Xy0(m) = x)− π(x)| ≤ 1

2

}
,

where π is the stationary distribution. Lemmas 4.5 and 4.7 in (Aldous and Fill,

2002) imply that, for m ≥ 4mmix, P(Xy0(m) = x) ≥ π(x)
2

. Since π(x) = deg(x)/2|E|,
where deg(x) is the degree of node x, for m ≥ 4mmix, we have:

P(Xy0(m) = x) ≥ deg(x)

4|E|
. (2.20)

By Eq. (2.20) we thus have:

c
√
mmix∑
m=0

P(Xy0

4mmix+m
√
mmix

= x) ≥ c
√
mmix

deg(x)

4|E|
,

and since this lower bound holds for any starting point y0, it holds also for N .

Upper bound on O. We next use the following bounds on the probability of
returns. For any x ∈ G,

P(Xx(m) = x) ≤ 5/
√
m if m ≤ 5n2 and G is regular, (2.21)

≤ deg(x)/
√
m if m ≤ |E|2 − 1. (2.22)

The bound for regular graphs is taken from Proposition 6.18 in (Aldous and Fill,
2002), while the general bound follows from the more elaborate bound in Lemma
3.4 in (Lyons, 2005). Since X is lazy with parameter 1

2
, we have that P(Xx(m) = x)

is non-increasing with m, hence we can write these bounds as:

P(X(m) = x) ≤ βx√
t

with βx = O(1) if G is regular, and βx = O(deg(x)) otherwise, valid for m = O(n2)
and, respectively, m = O(|E|2).

Note that we can use these bounds for m ≤ mmix, since mmix ≤ 3mcov ((Levin
et al., 2008, Eq. (10.24))) and, in connected graphs mcov ≤ 2|E|(n − 1) ≤ 2|E|2
((Aleliunas et al., 1979, Theorem)), while in regular graphs we have mcov ≤ 2n2

((Feige, 1994, Corollary 6)). Thus, using that
∑t

k=1
1√
k
≤ 2
√
t, we have:

√
mmix∑
m=0

P(Xx
m
√
mmix

= x) ≤ 1 +
βx

m
1
4
mix

√
mmix∑
m=1

1√
k
≤ 1 + 2βx,

and since this upper bound stands for any x ∈ G, it stands also for O.

Conclusion. Hence, we have

mY
hit(x) = O(m0 ·O/N) = O

(
√
mmix

4|E|
deg(x)

1 + 2βx√
mmix

)
= O (γ) ,

where γ = n if G is regular and γ = |E| otherwise. By Matthew’s bound (Theorem
1.18), we have mY

cov = O(mY
hit log n) and the probing cover time is thus given by

Eq. (2.19) O((C +
√
mmix)γ log n), as announced by Theorem 2.13.
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2.6. Walk or Probe

2.6.3 Discussion

The bounds obtained show that there is room for improvement, especially in gen-
eral graphs. Simulations seem to indicate that the cover time of (X(mt))m≥0 on a
connected graph G follows the law a + b/t, where a + b = mcov(G), obtained for
t = 1, and a = tcc(G), obtained for t = ∞, where tcc(G) is a generalized coupon
collector time, i.e. the time to get all coupons when they are given according to the
stationary distribution π (Anceaume et al., 2015). It would be of interest to prove
(or disprove) this conjecture.

The strategy probes once every t steps exactly. Another strategy, related more
directly to Lévy Walks, would be to select t according to a power-law, truncated at
tmax = mα

mix where α might depend on the chosen power-law.
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Chapter 3

Lévy Walks perform differently
according to target sizes

This chapter is based on an incoming article (Guinard and Korman, 2020a) which
is a joint work with Amos Korman. I discuss the optimality of the Cauchy Walk
in the non-intermittent detection model, and show that the Cauchy Walk performs
quasi-optimally when targets are sparse and have varied sizes.

3.1 Lévy Walks: In search of lost optimality

As was discussed in Chapter 1 (to which I refer the reader for the terminology), Lévy
Patterns are ubiquitous (but not universal) in biological searches scenario. Since
evolution should have favoured efficient foragers, a natural question thus arises:
under which circumstances is it advantageous for a forager to adopt a behaviour
that will result in a Lévy Pattern of exponent µ?

Performances of Lévy Walks in the prey-targeting setting The first theo-
retical argument for the efficiency of Lévy Walks appeared in the influential paper
(Viswanathan et al., 1999). In a non-intermittent model, Viswanathan et al. argued
that when food resources are scarce and revisitable (i.e., targets are not depleted
once found), Cauchy Walk should perform much better than other Lévy Walks.
While the result was analytically proved in one-dimensional topologies (Buldyrev
et al., 2001), it was shown in (Levernier et al., 2020) to be an exaggeration in higher
dimensions. Indeed, Levernier et al. proved, in the same setting, and in dimension
d ≥ 2 that there is only a constant difference of mean capture rate between Lévy
Walks. 1 Not only this, in fact, their simulations seem to indicate that the constant
dependency on α is not very high, and, in any cases, the Cauchy Walk is not the
optimal algorithm in all settings, depending on the distribution of targets.

Other authors, however, have used extensive simulations to show that Cauchy
Walks in the non-intermittent setting are, nonetheless, appreciably more efficient
than Brownian Motion or other Lévy Walks (Humphries and Sims, 2014). It is,
in fact, in the prey-targeting scenarios that the difference in performances between
algorithms is the most obvious (essentially because the ballistic and exponential

1This result is perhaps not that surprising, in fact, since the hitting time of the simple random
walk on a torus (of dimension 2) is Θ(n log n) where n is the volume of the torus (Levin and Peres,
2017)[Eq (11.11)], which stands in contrast to the Θ(n2) performance on a cycle of length n.
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3.1. Lévy Walks: In search of lost optimality

walks perform very badly in these cases). We can note also that Cauchy Walks
seem to perform relatively well in all scenarios, even when they are not the optimal
algorithm (a feature also present in the simulations of (Levernier et al., 2020)). This
stands in contrast with, e.g., ballistic walks or other Lévy walks which performances
are more affected by the setting.

The 2D and 3D topologies were studied in (Reynolds, 2015a). In this work,
Reynolds argued, on the basis of an approximate theoretical heuristic, supported
by simulations, that (non-intermittent) Lévy Walks are an efficient strategy when
targets are large compared to the perceptual range of the searcher. However, when
targets are small, Reynolds argued that ballistic movement is better. Cauchy Walks,
the author argued, are the most efficient, comparatively to other Lévy Walks, when
targets are large and sparse.

Finally, in dimension 2, and independently from the work presented here, com-
puter scientists studied the search efficiency of multiple agents performing Lévy
Walks. (Clementi et al., 2020). The common goal of the agents is to find in the
minimal time a unique target, located at an unknown distance. The agents are
able to detect the target while performing their ballistic steps (i.e., the detection
is not intermittent). Interestingly, they proved that performances of Lévy Walks
with exponent µ ∈ (1, 2] are comparable. In contrast, the search time, as well as
the optimal number of agents, of the Lévy Walks with exponent µ ∈ [2, 3] depend
polynomially on µ.

Performances of Lévy Walks in the intermittent setting The theoretical
evidence of the efficiency of the Cauchy Walk is very limited in the intermittent
scenario.

In (Reynolds, 2006), the author argued, on the basis of simulations, that Cauchy
Walks could be optimal in the intermittent scenario. This was confirmed analytically
in (Lomholt et al., 2008). However, both studies are limited to one-dimensional
topologies.

Many biological searches, of course, happen on 2D and 3D topologies. The lack
of result in this setting is inconvenient because it represents searchers of minimal
abilities: without memory, interaction with the environment, nor the ability to
detect while moving. As discussed in Chapter 1, this may apply to ancient organisms
and, as such, may be the founding blocks of the strategies of more complex animals.

Performance of Lévy Flights as a prey strategy Adler et al. proved in (Adler
et al., 2003) that Lévy Flights are an efficient strategy for a rabbit aiming to escape
a hunter on the discrete cycle of length n, whatever the strategy used by the hunter.
The more precise setting can be described as the following turn-by-turn game. The
goal of the hunter is to find the rabbit (i.e., be at some step at the same node as
the rabbit) in the minimal (expected) time, while the rabbit wants to be caught
in the maximal (expected) time. The hunter can only move through edges of the
graph, while the rabbit is able to teleport (i.e., can go from any node to any other
node in one step only). It is then proved that the rabbit, when choosing to move
according to a Cauchy Flight, is able to escape the hunter for at least Ω(n log n)
steps, whatever the strategy employed by the hunter. This is optimal, as the hunter
has a strategy that allows them to capture the rabbit in O(n log n) time.

Note that (Adler et al., 2003) differs from previously mentioned studies as the
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Chapter 3. Lévy Walks perform differently according to target sizes

aim of the agent is to escape a predator (which seems to be opposite to a goal of
search efficiency). However, this result is valid for a Lévy Flight (i.e., the prey must
be able to go much faster than the predator), and the search operates in a bounded
one-dimensional domain. While the first assumption seem to be necessary, it would
be interesting to study the process in 2D and 3D topologies. This is especially
relevant as few studies on the effect of predation on Lévy Walks’ efficiency exist
and they show no conclusive evidence for optimality or sub-optimality of Brownian
Motion nor Lévy Walks. (Reynolds, 2010; Abe and Shimada, 2015)

Target sizes in foraging animals Like (Reynolds, 2015a), I will investigate the
influences of target sizes on the efficiency of Lévy Walks, albeit in the intermittent
mode of detection. This is motivated by the fact that searching for targets that
significantly vary in size prevails in multiple contexts, including ones for which Lévy
patterns have been reported. To name a few examples, this occurs when marine
predators search for patches of fish (Sims et al., 2008), bees search for assemblages
of flowers (Wolf et al., 2016), swarming bacteria search for food concentrations
(Ariel et al., 2015), immune cells search for bacterial infections (Harris et al., 2012),
and even when the eye scans the visual field (Brockmann and Geisel, 2000). Among
saltatory foragers, but that have not been shown to have Lévy Patterns of movement,
the influence of target sizes has been studied in plovers (Pienkowski, 1983) and white
crappies (O’Brien et al., 1989).

In principle, as larger targets often entail higher rewards, an animal could ben-
efit from optimizing the search with respect to such targets (O’Brien et al., 1989).
However, tuning the intermittent search for larger targets may potentially cause
inefficiency with respect to finding smaller, possibly more abundant, targets. For
example, in the non-intermittent setting, the ballistic strategy seems to find (small)
targets the fastest (Viswanathan et al., 1999; Reynolds, 2015a). However, as I shall
show, in the intermittent setting, while this strategy is efficient at finding very large
targets it is highly inefficient at finding small targets. Conversely, an intermittent
walk with very small steps is close to a Brownian motion, and is hence very slow at
going far away, and thus, as I shall show, inefficient at finding large targets. Overall,
when targets appear in unpredictable sizes and detection is intermittent, it is unclear
which strategy is best to employ. I will prove that, in two-dimensions, the Cauchy
Walks represent an optimal memoryless strategy, in the sense that it matches (up
to a logarithmic factor) an unconditional lower bound.

3.2 Model

Consider a searcher that aims to quickly find a single target in a finite two-dimensional
terrain. This is modelled as a continuous two-dimensional square torus Tn whose
area is parametrized by n, identified as [−

√
n/2,

√
n/2]2 ⊂ R2. For x = (x1, x2) in

Tn or R2, I define ‖x‖ =
√
x2

1 + x2
2.

The searcher starts the search at a point of the torus, denoted X(0), which is
either fixed, or chosen uniformly at random (u.a.r), and then moves according to
some strategy.

A Lévy walk Zµ on R2, or Xµ on Tn, for a given µ ∈ (1, 3] and maximal step-
length `max > 1 (possibly `max =∞), is the random walk process whose step-lengths
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are distributed according to

pµ,`max(`) =


aµ,`max if ` ≤ 1

aµ,`max`
−µ if ` ∈ (1, `max)

0 if ` ≥ `max

, (3.1)

where aµ,`max = (1 +
∫ `max

1
`−µd`)−1 > 0 is the normalization factor. We denote

by Xcauchy = X2 the Cauchy Walk.
For all processes, speed is assumed to be constant. Specifically, doing a step of

length ` necessitates ` time units.
A target S is a connected subset of the torus. An intermittent searcher can detect

S only in-between steps. That is, S is detected if, at the end of a ballistic step, it is
located within distance 1 — the sensing range — from the current location of the
searcher. See Figure 3.1(a). Detecting S is therefore equivalent to visiting a point of
the “extended set” B(S), containing all points at distance at most 1 from S. (Note
that B(S) is measurable.)

The detection time of a process X with respect to S, denoted tXdetect(n, S), is the
expected time until X detects S for the first time.

As I shall show, it turns out that the important parameter governing the de-
tection time is not the area of S, but rather its diameter D, namely, the maximal
distance between any two points of S. Since the detection radius is 1, finding tar-
gets of diameter less than 1 takes roughly the same time, hence, in what follows we
assume that D ≥ 1.

Competitive analysis. To evaluate the efficiency of X with respect to a certain
target S, I compare tXdetect(n, S) to opt(n, S), namely, the best achievable detection
time of S. Importantly, when computing this optimal value, there is no restriction
on the search strategy, allowing it to detect while moving (i.e., be non-intermittent),
use infinite memory, and, furthermore, be tuned to the shape and the diameter of
the target. The following tight bound holds for every connected target S whose
diameter is D ∈ [1,

√
n/2]:

opt(n, S) = Θ (n/D) . (3.2)

The proof of Eq. (3.2) appears in Section 3.6.1. A sketch of the lower bound is given
in Fig 3.1(b).

I define the competitiveness of X with respect to a target S of diameter 1 ≤
D ≤

√
n/2, as an indicator of how well X performs in comparison to the optimal

algorithm:

CompX(S) =
tXdetect(S)

opt(n, S)
= Θ

(
tXdetect(S) · D

n

)
.

The competitiveness of X with respect to a given diameter 1 ≤ D ≤
√
n/2 is then

defined as the worst competitiveness, taken over all connected targets of diameter
D, that is,

CompX(n,D) = sup{CompX(n, S) | S is of diameter D}. (3.3)

To demonstrate the definition of competitiveness, let us consider the intermittent
process X in which all step lengths are some pre-determined integer `. Note that
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Chapter 3. Lévy Walks perform differently according to target sizes

(a) (b)

Figure 3.1: (a) Intermittent Lévy walk. The target S is marked in dark blue. The
extended target B(S) ⊃ S is marked in both light and dark blue. The Lévy searcher
starts at the yellow point, and moves in discrete steps. A red circle signifies the area
inspected at the end of a step - the ball B(x) of radius 1 around the location x. The
target S is detected on the 12th step of the process. (b) Illustration of the lower bound
proof of Eq. (3.2). Consider a target S (colored blue) of diameter D (of any given shape).
Color roughly n/(3D + 2)2 discs gray, so that each has radius D + 1 and is located at a
distance of D from its neighboring discs. Furthermore, align this structure so that the
extended target B(S) is located in one of the discs. Since the initial location of the searcher
is uniform in the torus, with probability 1

2 , at least half of the discs need to be visited before
detecting S. The time required to visit a new disc is at least the smallest distance between
two discs, i.e., D. The detection time is therefore at least roughly D ·n/(3D+ 2)2 ≈ n/D.
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the case ` = 1 corresponds to the simple random walk, and that taking ` = Θ(
√
n)

may be viewed as a ballistic strategy.

Claim 3.1. If X is a random walk on Tn with step-length distribution p = δ`, for
some fixed `, and targets have diameter D ∈ [1, Dmax], then the competitiveness of
X with respect to either D = 1 or D = Dmax is Ω(

√
Dmax).

Proof. Consider a disc target of diameter D <
√
n/2. Since the searcher starts

at a random point, with constant probability, the target is located at a distance of at
least

√
n/4 from the initial location of the searcher. In this case, merely traversing

this distance by the random walk process requires expected Ω(n/`2) steps and hence
consumes Ω(n/`) time on expectation. This implies that CompX(n,D) = Ω(D/`).
Furthermore, as illustrated in Figure 3.1, there are Ω(n/D2) possible locations of
the target. Since the agent must, in average, visit half of those, it will overall need
Ω(n`/D2) time to find the target, since each step takes ` time. Thus, we also have
CompX(n,D) = Ω(`/D).

Altogether, these arguments imply that CompX(n,D) = Ω(max{`/D,D/`}).
While ` can be tuned to optimize the competitiveness w.r.t. a specific value of
D, if we know only an upper bound Dmax on the value of D then the competitive-
ness would be large w.r.t. either D = 1 or D = Dmax. Specifically, for D = 1 we have
CompX(n, 1) = Ω(`), while for D = Dmax, we have CompX(n,Dmax) = Ω(Dmax/`).
Hence, for at least one value of D among the two, we obtain CompX(n,D) =
Ω(max{

√
Dmax}). �

3.3 Results

3.3.1 Analytical results

The Cauchy Walk at step m is (roughly) uniform in the ball of radius m.
Let Z be the (truncated) Cauchy Flight on R2 that starts at the origin. I establish
lower and upper bounds on its distribution at step m. Roughly speaking, I show that
the location of this process at step m is more or less uniform in the ball of radius m
around the origin.2 Since the expected duration of a Cauchy Walk step is Θ(log n),
this is also true for the Cauchy Walk. I suggest this explains why the Cauchy Walk
is so efficient (indeed, the proof for the competitiveness of the Cauchy Walk uses
only these properties, and would therefore hold for any Markovian process for which
they are true). Indeed, for a Markovian searcher, sampling uniformly at each step
leads to a hitting time Θ(n/|B(S)|) which is optimal. When agents have a constant
speed, however, going at each time at a position chosen uniformly at random would
be very costly for them, as each step needs Θ(

√
n) time to be executed. The Cauchy

Walk, that imitates at time m the behaviour of the uniform distribution on a ball of
radius Θ̃(m), while keeping the expected time of a jump to Θ(log n)), balances well
the tradeoff between local exploitation and global exploration.(Hills et al., 2015)

Specifically, I provide first the following lower bound on the probability density
function of the Cauchy Flight Z(m).

2I believe a similar statement would hold for the Lévy Flight of exponent µ ∈ (1, 3): Zµ(m) is

more or less uniform in the ball of radius m
1

µ−1 . See also (Comtet and Majumdar, 2005).
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Lemma 3.2. For any constant α > 0, there exists a constant c > 0 such that for
any integer m ∈ [1, α`max], and any x ∈ R2, with ‖x‖ ≤ m, we have pZ(m)(x) ≥ c

m2 .

I then complement this lower bound with an upper bound on the probability
that Z(m) detects x.

Lemma 3.3. For any constant α > 0, there exists a constant c′ > 0 such that, for

any integer m ∈ [2, α`max] and any x ∈ R2, we have P(‖Z(m)− x‖ ≤ 1) ≤ c′ log2 m
m2 .

The Cauchy walk is polylogarithmic-competitive w.r.t. any diameter.
We next study the intermittent Cauchy process Xcauchy on the torus Tn, and use
the lower and upper bounds in Lemmas 3.2 and 3.3 to establish an upper bound on
its detection time.

Theorem 3.4. Consider the Cauchy walk Xcauchy on the torus Tn starting at 0,
with cut-off `max =

√
n/2. The detection time of Xcauchy with respect to a target S

of diameter D is tX
cauchy

detect (n, S) = O
(
n log3 n
D

)
. Consequently, for every 1 ≤ D ≤

√
n

2
,

the competitiveness of Xcauchy is

CompX(n,D) = O(log3 n).

Lower bounds. I prove that for 1 < µ < 2, the competitiveness of the intermittent
Lévy WalkXµ is large with respect to small diameter targets, and that for 2 < µ < 3,
the competitiveness is large with respect to large diameter targets.

Theorem 3.5. Let µ ∈ (1, 2) and D ∈ [1,
√
n/2]. Write µ = 2 − ε. The competi-

tiveness of the Lévy Walk Xµ w.r.t. D is:

Comp(Xµ, D) = Ω(nε/2/D). (3.4)

In a few words, in these cases, the average step length is already polynomial in n,
implying that the process is slow at finding small targets. Note that, in particular,
with respect to constant diameters, the competitiveness is nε/2. The proof of this
theorem, and of the following one, are given in Section 3.6.2

Theorem 3.6. Let µ ∈ [2, 3] and D ∈ [2,
√
n/6 − 1]. Write µ = 2 + ε where

0 ≤ ε ≤ 1. The competitiveness of Xµ with respect to D is:

Comp(Xµ, D) =


Ω(logD) if µ = 2,

Ω(Dε) if µ = 2 + ε, where 0 < ε < 1,

Ω( D
logD

) if µ = 3.

These lower bounds stem from the fact that such processes take a long time
to reach faraway locations. Hence, in comparison to the optimal strategy, these
strategies are slow at finding large faraway targets. Note that taking D = nδ for
some 0 < δ < 1/2 would give polynomial competitiveness for Lévy walks with
2 < µ ≤ 3.

Altogether, the intermittent Cauchy walk is O(log3 n)-competitiveness w.r.t any
diameter, while for any Lévy walk with µ 6= 2, there is a large range of diameters
for which the competitiveness is polynomial in n.
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(a) n = 302 (b) n = 3002

Figure 3.2: Detection time of the Lévy Walk Xµ (cut-off `max =
√
n/2) on Tn, as a

function of µ, for various ball targets of diameter D, with detection range equal to
1. To facilitate comparisons, the detection time of the Cauchy Walk X2 is scaled to
1.

3.3.2 Simulations

I used computer simulations to verify, first, if the results could be seen even for small
values of n and D, and second to measure the influence of considering that the agent
has a probability p > 0 to detect while moving. As in the theoretical scenario, the
search happens in Tn and the initial location of the searcher is chosen uniformly at
random in the torus. The searcher performs a Lévy walk with step-lengths from a
discrete Pareto distribution of exponent µ, truncated at `max =

√
n/2. The detection

mode depends on the scenario.

Do the results stand for small n values? This setting is identical to that of the
theoretical results: the detection can only happen between steps, and the target is
detected if it is at distance at most 1 from the searcher. In Fig. 3.2, we can see that
even for a relatively small n, this intermittent setting advantages a Cauchy Walker.
When n is multiplied by 100 (hence,

√
n/2 is multiplied by 5), the difference is even

more pronounced (note that the lower values attained in both graphs are around
0.8, while the upper values are, respectively, 1.6 and 5).

Biologically speaking, it is doubtful whether very large values of D would be
relevant. However, the simulations indicate that even for plausible target diameters
(e.g., D ∈ [1, 4]), the Cauchy Walk is favoured. This tends to indicate that, if targets
have very similar sizes, a Brownian motion could be slightly more advantageous
than a Cauchy Walk. However, as target sizes become more diverse, a Cauchy Walk
becomes increasingly better.

On the impact of weak detection: intermittent vs. non-intermittent. The
optimal lower bound opt(n,D) = Θ(n/D) holds in the non-intermittent setting, and
since the intermittent setting is the more restrictive scenario of the two, the upper
bound O(log3 n) I gave for the Cauchy Walk also holds in the non-intermittent
scenario. Furthermore, the lower bounds given for 2 ≤ µ ≤ 3 also hold in the
non-intermittent setting, as they depend only on the time needed to go far. For
1 < µ < 2, however, these bounds do not hold, as now steps can be halted mid-way.
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Figure 3.3: On the torus Tn with n = 3002, we study the influence of p on detection
time. The walker has probability p to detect S, a ball of diameter D, for each unit
of time spent within a distance 1 of the target. In-between steps, the detection
probability is 1.

To study the influence of detection while moving on the results, I simulated the
search with the following mode of detection. While moving, for each unit of time
that the searcher spends at distance at most 1 from the target, it detects it with
probability p. In-between steps, the target is detected (w.p. 1) if it is at distance 1
from the searcher.

I compared the competitiveness of the Cauchy walk to those of other Lévy walks
in the semi-intermittent setting (Fig. 3.3(a)) and the fully non-intermittent setting
(Fig. 3.3(b)). As expected, we see that with respect to µ > 2 and large targets,
the gap remains very large.3 Also as expected, in the fully non-intermittent detec-
tion mode, the best strategy consists in doing ballistic steps (this is in line with
(Viswanathan et al., 1999), since searching for a single target in a large torus can
be seen as searching for a sparse target destroyed upon encounter). Note, however,
that the performances of all Lévy Walks with µ ∈ (1, 2) are comparable, a feature
also encountered in (Clementi et al., 2020) in the context of multiple Lévy Walkers
searching in the plane, in the non-intermittent regime of detection.

In the semi-intermittent setting, the performances of the Lévy Walks with ex-
ponent µ < 2 also become significantly better than in the intermittent regime. The
value of p, however, was not taken to represent a specific biological process. Thus,
it would be of interest to simulate a more realistic model, where detection (range
and, possibly, probability) would depend on the speed of the searcher.

3.3.3 Implications

As implied by Eq. (3.2), all connected targets of a given diameter share a common
lower bound for their detection time. More surprisingly, Theorem 3.4 implies that
such targets are found by roughly this time by the Cauchy strategy. These results

3Note, however, that all these Lévy Walks do not have the same expected step-length, which is
an advantage to the Lévy Walks with µ ≤ 2 in the non-intermittent setting. A way of improving
the Lévy Walks with parameter µ > 2, then, would be to allow them to do steps only bigger than
some `min.
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suggest that, at least asymptotically, the right parameter to consider is indeed the
diameter of the target and not, e.g., its area. This seems rather surprising, as,
in contrast to the non-intermittent searcher, crossing the target’s boundary by an
intermittent searcher does not suffice for detection. Hence, for example, a ball-
shaped target appears to be, at least at a first glance, significantly more susceptible
for detection than its one dimensional perimeter. A consequence of this insight is
that a large prey aiming to hide from an efficient searcher would benefit by organizing
itself in a bulging shape that minimizes its diameter.

Perhaps the most impressive feature of the Cauchy walk, though, is that it
manages to perform almost optimally for all target shapes and sizes, without the
need for any a priori information about the target. Furthermore, contrarily to the
simple deterministic algorithm I have built in the lower bound (see Section 3.6), the
Cauchy walk will find efficiently a target even if it appears after some time, or if it
moves.

Animals might have more navigational abilities than the minimal ones assumed
here, as they may have memory, or may adapt their search to their environment,
and, as a consequence, may behave in a more complicated manner. However, the
optimality of the Cauchy Walk shows that the gain incurred by such abilities is
relatively modest – i.e., not polynomial. Of course, even constant improvements
may be critical for biological organisms, but this improvement comes with the energy
cost associated with higher perceptual and cognitive abilities.

Early studies on white crappies (O’Brien et al., 1989) and plovers (Pienkowski,
1983), who are saltatory foragers, have shown that they predate first on larger
preys. While the interpretations of the authors is that these animals ignore at first
small, but more common, preys, and progressively become more acceptive of smaller
preys, it seems also possible that smaller targets are simply not detected as quickly
as larger targets. Hence, it is not clear whether or not there really is a behavioural
mode switch when no large targets are found, especially as the Cauchy Walk (which,
in this case, may model the eye path of plovers when they are paused and try to
detect prey) performs quasi optimally.

In conclusion, the theorems presented here suggest to experimentally study the
correlation between the distribution of target sizes (Sims et al., 2008) and the de-
tection ability of animals presenting Lévy Patterns. Specifically, I expect that when
detection abilities are low (as, e.g., in some insects (Reynolds, 2015a)) and target
vary in sizes, Cauchy Patterns of movement will be encountered. Furthermore, if
detection abilities are improved, then Lévy Patterns could be observed, of exponent
µ ∈ (1, 2), with exponent going increasingly closer to 1 as detection becomes more
efficient.

3.4 Semi-formal proof of the upper bound

In this section, I provide the outline of the proof of Theorem 3.4, i.e., we prove
that the detection time of X = Xcauchy with respect to a target S of diameter D is

tX
cauchy

detect (n, S) = O
(
n log3 n
D

)
, for any diameter D ≤

√
n/2. More precisely, the formal

proof of Theorem assuming Lemmas 3.2 and 3.3 is given, and before that, a sketch
of the proof of these lemmas is drawn.

Theorem 3.4 concerns the Cauchy walk on the two-dimensional torus. As the one-
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dimensional Cauchy walk is relatively well understood (Adler et al., 2003; Lomholt
et al., 2008; Zaburdaev et al., 2015), it is tempting to analyze the two-dimensional
walk by projecting it on the two axes and using the projected walks. However,
this approach needs to somehow handle the fact that these projections are not
independent of each other. As A. Korman and I could not find a way to overcome
this dependency issue, let us prove Theorem 3.4 by extending the one-dimensional
arguments of (Adler et al., 2003) to the dimension 2.

Let Z be the extension of X to R2. Given a set S, recall that B(S) is the set
of points at distance at most 1 from S, and that Z(m) detects S if and only if
Z(m) ∈ B(S).

We have seen in Chapter 2 the general technique for linking the hitting time of
B(S) to the pointwise probabilities of the process. If, for some m0,

N = inf
x∈Tn

2m0∑
m=m0

P(Zx(m) ∈ B(S))

and

O = sup
z0∈B(S)

m0∑
m=0

P(Zz0(m) ∈ B(S)),

then, since the average time of a jump is τ = Θ(log n), we have, by Remark 2.9,

tdetect(S) = thit(B(S)) = O(m0 ·ON−1 · log n). (3.5)

We then use Lemmas 3.2 and 3.3, which are formally proved in Section 3.7, to
obtain bounds on N and O. Let us give here a sketch of the proofs of both lemmas.

3.4.1 Sketch proof of Lemma 3.2

Recall that in Chapter 2, we proved that, since the step-length distribution of our
process is non-increasing, Z(m) is non-increasing, and its p.d.f. verifies:

pZ(m)(x) ≤ 1

π||x||2
. (3.6)

Using the monotonicity property, the lower bound stated in Lemma 3.2 follows
once we prove that with at least some constant probability, the process at step m
belongs to the ring {x | ‖x‖ ∈ [m, cm]} for some constant c > 1. This is because
the area of this ring is roughly m2, and each point in it is further from 0 than x,
and hence, by monotonicity, less likely to be visited at step m. In order to establish
the lower bound on the probability to be in the ring at step m, we first prove that
with some constant probability, at some step before m, the walk goes to a distance
at least 2m.

Next, conditioning on that event, we prove that with constant probability, the
walk does not get much further away, i.e., it stays at a distance of at least m. To
prove the latter claim, we use Claim 2.12 that implies that the distance travelled in
m steps is governed by

√
mσ′ where σ′ is the standard deviation of the projected

step-lengths. Here the standard deviation is too large (roughly `max =
√
n), however,

we can reduce it by conditioning on the event that none of the m step-lengths are
significantly larger than m, which occurs with constant probability. Finally, we prove

44



3.4. Semi-formal proof of the upper bound

that by taking a sufficiently large constant c, it can be guaranteed that with a large
constant probability, the walk at step m is at most at distance cm. Making sure
that all these constant probability events happen simultaneously, we then establish
the desired constant lower bound on the probability to be in the aforementioned
ring at step m.

3.4.2 Sketch proof of Lemma 3.3

For the proof of the upper bound in Lemma 3.3, we first remark that because of the
monotonicity property, it is sufficient to prove that the probability to detect 0 at
step m is small, i.e., that

P(‖Z(m)‖ ≤ 1) = O

(
log2m

m2

)
.

Intuitively, to establish this, we first argue that with high probability in m, at some
step before step m, the process has gone to a distance d = Ω( m

logm
). By Eq. (3.6),

the probability density function at any point in B(0) would then be at most O( 1
d2 ),

which is the desired bound.

3.4.3 Formal proof of the theorem, assuming the lemmas

Replacing S by a “cylinder” S ′. Given the connected set S of diameter D ≥ 1,
we first construct a subset S ′, containing Θ(D) isolated points of S that stretch over
distance of roughly D, as follows. Take two points u = (u1, u2) and v = (v1, v2) in S
that are at distanceD from each other, so that max{|u1−v1|, |u2−v2|} ≥ D/2. Let us
assume, without loss of generality, that v1−u1 ≥ D/2. Since S is connected, for every
z ∈ [u1, v1], there exists φ(z) such that (z, φ(z)) ∈ S. Let d = dv1 − u1e = Θ(D).
For integer i ∈ {0, 1, . . . , bdc}, define

s(i) = (u1 + i, φ(u1 + i)),

and let S ′ = {s(i) | i = 0, 1, . . . , bdc}. Note that |S ′| = Θ(D). Since S ′ ⊆ S, an
upper bound on the detecting time of S ′ is an upper bound on the detecting time of
S. It is therefore sufficient to restrict attention to S ′ and upper bound its detecting
time. For that purpose we need to bound the time until visiting a point in B(S ′),
the set of points of distance at most 1 from S ′. Note that the area of B(S ′) is
|B(S ′)| = Ω(D). We also remark, that although B(S ′) may not be connected, it
may help the reader to imagine B(S ′) as a horizontal cylinder of length Θ(D) and
radius 1, i.e., to consider that φ(u1 + i) does not depend on i. Indeed, we will not
require any condition on the y-coordinates of the s(i)’s.

Now, let us take m0 =
√
n. Note that 2m0 ≤ α`max for α = 4. Hence, we will

be able to use Lemmas 3.2 and 3.3 (with `max =
√
n/2). Define

N ′ = inf
x∈Tn

2m0∑
m=m0

P(Zx(m) ∈ B(S ′)),

and

O′ = sup
z0∈B(S)

m0∑
m=0

P(Zz0(m) ∈ B(S ′)).
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By Remark 2.9, we have:

tdetect(S) ≤ tdetect(S
′) = O(m0 ·O′N ′−1 · log n). (3.7)

Lower bound on N ′. Let us begin with the lower bound. With this setting of
m0, any x ∈ B(S ′) ⊆ B(Tn) ⊆ [−

√
n/2− 1,

√
n/2 + 1]2 trivially satisfies ‖x‖ ≤ m,

for any m ≥ m0 + 1, and we can apply Lemma 3.2 to get:

2m0∑
m=m0+1

P(Z(m) ∈ B(S ′)) =

2m0∑
m=m0+1

∫
x∈B(S′)

pZm(x)dx ≥
2m0∑

m=m0+1

c

m2
|B(S ′)| = Ω

(
D√
n

)
.

Note that, since this is true for any connected set S of diameter D starting from
0, it is then also true starting from a node x ∈ Tn (by translation of the location of

the target). Hence, we have N ′ = Ω
(
D√
n

)
.

Upper bound on O′. Let z0 ∈ B(S ′). We have:

m0∑
m=0

P(Zz0(m) ∈ B(S ′)) ≤ 2 +

m0∑
m=2

P(Zz0(m) ∈ B(S ′)). (3.8)

Clearly, the probability density function pZ
z0 (m) of Zz0(m) is obtained by a trans-

lation from pZ(m). Thus, by the monotonicity property Eq. (3.6), we have for any
y ∈ R2, pZ

z0 (m)(y) ≤ 1
‖y−z‖2 . In particular, for y such that ‖y − z0‖ ≥ 2,

P(Zz0(m) ∈ B(y)) ≤ 1

(‖y − z0‖ − 1)2
, (3.9)

since every w ∈ B(y) satisfies ‖w − z0‖ ≥ ‖y − z0‖ − 1 ≥ 0.
Next, as z0 ∈ B(S ′), consider an index iz ∈ {0, . . . , d−1} for which z0 ∈ B(s(iz)).

Let

rm =
m√
c logm

with c being the constant c′ mentioned in Lemma 3.3. To exploit Eq. (3.9), we define

I = {i ∈ {0, . . . , d− 1} | |s(i)1 − s(iz)1| = |i− iz| ≤ rm + 2},

and Ic = {0, . . . , d− 1} \ I. We proceed with the following decomposition:

P(Zz0(m) ∈ B(S ′)) ≤
∑
i∈I

P (Zz0(m) ∈ B(s(i))) +
∑
i∈Ic

P (Zz0(m) ∈ B(s(i))) .

(3.10)

By construction, |I| ≤ 2(rm + 2) + 1. Hence, using Lemma 3.3, the first sum in the
r.h.s of Eq. (3.10) is at most:

∑
i∈I

P(Zz0(m) ∈ B(s(i))) ≤ |I|
r2
m

= O

(
1

rm

)
.
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Next, we aim to upper bound the sum on Ic. By the triangle inequality, for any
i ∈ Ic, we have ‖s(i)− z0‖ ≥ ‖s(i)− s(iz)‖ − 1 ≥ |i − iz| − 1 > 1. Hence, by
Eq. (3.9), we get:∑

i∈Ic
P(Zz0(m) ∈ B(s(i))) ≤

∑
i∈Ic

1

(‖s(i)− z0‖ − 1)2

≤
∑
i∈Ic

1

(|i− iz| − 2)2

≤
∑

k∈Z,|k|≥drme

1

k2
= O

(
1

rm

)
,

where we used in the last line that i ∈ Ic ⊂ {iz +k | k ∈ Z and |k| > rm+ 2}. Thus,
by Eq. (3.10):

P(Zz0(m) ∈ B(S ′)) = O

(
1

rm

)
,

which stands for any z0 ∈ B(S ′). Plugging this in Eq. (3.8), together with the
definition rm = m√

c logm
, and the fact that m0 =

√
n, we get:

m0∑
m=0

P(Zz0(m) ∈ B(S ′)) = 2 +O

(
m0∑
m=2

logm

m

)
= O(log2 n).

Since this is true for any starting point z0 ∈ B(S ′), we have O′ = O(log2 n).

Conclusion. By the previous bounds on N ′ and O′, Eq. (3.7) becomes:

tdetect(S) = O

(√
n · log2 n

√
n

D
· · log n

)
= O

(
n log3 n

D

)
.

This concludes the proof of Theorem 3.4 assuming Lemmas 3.2 and 3.3.

3.5 Preliminaries to lower and upper bounds proofs

3.5.1 Expectations and variances of step-lengths

Claim 3.7. Consider the Lévy walk Xµ with maximal step length `max. The average
length of a step (and hence the average time to take a step) is

τ =


Θ(`2−µ

max) if µ ∈ (1, 2)

Θ(log `max) if µ = 2

Θ(1) if µ ∈ (2, 3]

, (3.11)

where the asymptotics are with respect to `max, and the variance σ2 and second
moment M of a step-length are

σ2 = Θ(M) =

{
Θ(`3−µ

max) if µ ∈ (1, 3)

Θ(log `max) if µ = 3
. (3.12)
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Proof. Given the definition of pµ,`max , the expected step-length is

τ =

∫ 1

0

aµ,`max`d`+

∫ `max

1

aµ,`max`
1−µd`.

The first term is
aµ,`max

2
, a constant with respect to `max, as aµ,`max ∈ [µ−1

µ
, 1]. The

second term is Θ(`2−µ
max) if µ 6= 2, and Θ(log `max) if µ = 2. The second moment M

is computed likewise:

M =

∫ `max

0

`2pµ(`)d` =

∫ 1

0

aµ,`max`
2d`+

∫ `max

1

aµ,`max`
2−µd`.

We have
∫ 1

0
aµ,`max`

2d` = a
3

for the first term, and for the second term

∫ `max

1

`2−µd` =

{
Θ(`3−µ

max) if µ < 3

Θ(log(`max)) if µ = 3
.

Now remark that τ 2 = o(M), so that σ2 = Θ(M).

3.5.2 Projections of 2-dimensional Lévy walks are also Lévy

Consider a Lévy walk Zµ with parameter µ on R2, that has maximal step length `max
(including the case `max =∞). The goal of this section is to prove that its projection
on each of the axes is also a Lévy walk with parameter µ. The conservation of the
power-law distribution under projection was also established in (Sims et al., 2008).
I nevertheless provide a proof here, for completeness purposes, and also because
(Sims et al., 2008) does not examine the case `max <∞.

Because the walk is unbiased, we may, without loss of generality, consider only
the projection Zµ

1 on the x-axis. Hence, we aim to prove the following.

Theorem 3.8. The projection Zµ
1 of Zµ is a Lévy walk on R with parameter µ, in

the sense that the p.d.f. of the step-lengths of Xµ
1 is p(`) ∼ 1/`µ, for ` ∈ [1, `max

2
].

Furthermore, the variance of Xµ
1 is

σ′2 =

{
Θ(`3−µ

max) if µ ∈ (1, 3)

Θ(log `max) if µ = 3
.

Proof. It is clear that Zµ
1 is also a random walk that moves incrementally, with the

increments between Zµ
1 (m) and Zµ

1 (m + 1) being the projection Z1(m + 1) of the
chosen 2-dimensional vector V (m + 1) = Zµ(m + 1) − Zµ(m). These projections
are i.i.d. variables as the vectors (V (m))m are i.i.d. variables, and their signs are ±
with equal probability. Hence, all that needs to be verified is that l1 := |V1(1)| has
a Lévy distribution with parameter µ.

Let V be one step-length drawn according to a Lévy distribution pµ. Recall that

pµ(`) =


aµ if ` ≤ 1

aµ`
−µ if ` ∈ [1, `max)

0 if ` ≥ `max

,
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where aµ is the normalization factor, with aµ = 1

1+
∫ `max
1 `−µd`

= 1

1+
1−`1−µmax
µ−1

∈ [1 − 1
µ
,.

Hence the distribution of V = (V1, V2) ∈ R2 is

pV (x) =
1

2π

1

‖x‖
pµ(‖x‖) =


aµ
2π
‖x‖−1 if ‖x‖ ≤ 1

aµ
2π
‖x‖−µ−1 if ‖x‖ ∈ [1, `max)

0 if ‖x‖ ≥ `max

. (3.13)

For x1 ∈ (0, `max), we have

pl1(x1) = 2

∫ √`2max−x2
1

0

pV (x1, x2)dx2

=
2aµ
2π

∫ √`2max−x2
1

0

1‖x‖<1
1

‖x‖
+ 1‖x‖≥1

1

‖x‖1+µdx2,

where x = (x1, x2). If |x1| ≥ 1, then ‖x‖ ≥ 1 for any x2 ∈ R, so that

pl1(x1) =
aµ
π

∫ √`2max−x2
1

0

1

(x2
1 + x2

2)
1+µ

2

dx2

=
aµ
π

1

xµ1
I(x1),

where

I(x1) :=

∫ √
`2max
x2
1
−1

0

1

(1 + y2)
1+µ

2

dy.

For any x1 ∈ (1, `max), we have I(x1) ≤
∫∞

0
1

(1+y2)
1+µ

2
dy = O(1) since 1

(1+y2)
1+µ

2
=

Θ(y−µ), for large y, and this function of y is integrable as µ > 1. Furthermore, if

|x1| ≤ `max/2, we have I(x1) ≥
∫ 1

0
1

(1+y2)
1+µ

2
dy which is a positive constant. Hence,

if |x1| ∈ (1, `max/2), we have

pl1(x1) = Θ

(
1

xµ1

)
, (3.14)

and for `max/2 ≤ x1 ≤ `max, we have

pl1(x1) = O

(
1

xµ1

)
. (3.15)

Hence, the projection of the Lévy walk on the axes are Lévy-like, in the sense that
their step-lengths distributions generally follow a power-law of same exponent µ.
The expected length, second moment and variance of one projected step are com-
puted as in Claim 3.7. Indeed write, for i ∈ {1, 2},∫ `max

0

xi1p
l1(x1)dx1 = Θ

(∫ 1

0

xi1p
l1(x1)dx1 +

∫ `max/2

1

xi−µ1 dx1 +

∫ `max

`max/2

xi1p
l1(x1)dx1

)
.

We have
∫ 1

0
xi1p

l1(x1)dx1 ≤ 1. Also, it is easy to verify from Eq. (3.14) and (3.15) that

the third term is dominated by the second term, which in turn, is Θ(
∫ `max

1
xi−µ1 dx1).

Hence, the expected length, second moment and variance of one projected step are
of the same order as those of the non-projected steps given by Claim 3.7, which
concludes the proof of Theorem 3.8.
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Chapter 3. Lévy Walks perform differently according to target sizes

3.6 Proofs of the lower bounds

3.6.1 A general lower bound

Let us begin with a general proposition that holds for any search process X on the
torus whose speed is constant (i.e., it takes O(`) units of time to do a ballistic step
of length `). We may assume without loss of generality that the speed is normalized
to 1.

I next define a quantity, termed Td, which will be used to lower bound the time
needed to detect an extended target B(S) at distance d or more. Formally, we
distinguish between two cases, according to the given process X.

• If X is an intermittent random walk, we let Td be the expected time needed
before the end point of a step is at distance at least d from the initial location.

• Otherwise, we simply define Td = d.

Note that Claim 2.12 from Chapter 2 gives a lower bound on Td for an intermit-
tent random walk.

Claim 3.9. Let X be any search process on the torus. Consider any target S of
diameter D <

√
n/6− 1. The expected time to detect S is Ω(nTD

D2 ).

The proof of Claim 3.9 is illustrated in Figure 3.1

Proof. Consider a target S of diameter D and of an arbitrary shape. Instead of
considering that S is fixed and that the initial location X(0) is chosen u.a.r, we may
assume without loss of generality that X(0) is fixed, say at the origin, and that the
center of mass u? of S is chosen uniformly at random in the torus.

Let us first construct an s× s grid, where s = b
√
n/(3D + 2)c. Note that since

D <
√
n/6 − 1, we have s ≥ 2. To make the grid symmetric, we let the distance

between two neighboring points be precisely
√
n/s. We next align the grid so that

u? is a point of the grid, and construct a disc of radius D + 1 around each node.
Note that the number of discs is M = s2 = Ω(n/D2), and that the distance between
any two discs is at least D. See Figure 1(b). Furthermore, note that the disc U?

corresponding to u? fully contains the extended target B(S). Let us therefore lower
bound the time until visiting U? for the first time. This will serve as the desired
lower bound for detecting S.

Assume that the information about the collection of discs is given to the searcher.
We may assume this, since it can only decrease the best detection time. Because the
location of S in chosen u.a.r in the torus, from the perspective of the searcher, each
of the discs has an equal probability to be U?. It follows that with probability 1/2,
at least half of the discs are visited, before the searcher visits U?. Since the discs
are separated by distance of at least D, we immediately get that the expected time
until visiting U? is Ω(MD) = Ω(n/D), which is the desired claim when X is not an
intermittent random walk (and hence TD = D).

Let us next consider the case that X is an intermittent random walk. The
arguments are similar, yet slightly more subtle. We aim to lower bound the time
until visiting U? for the first time, where by visiting a disc, I mean that the end of a
ballistic step of X is in that disc. For this purpose, we may assume that the process
terminates when it visits U?. Let U1, U2, . . . denote the newly visited discs, in order
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of visitation, with all the Ui distinct. Let Ai be the event that U? /∈ {U1, . . . , Ui}.
Note that P(Ai) = 1− i

M
. Let ti denote the time from visiting Ui (for the first time)

until visiting Ui+1 (for the first time), in the event that Ai occurs. If the event Ai
does not occur, let us say that ti = 0. The time before visiting U? can therefore
be written as

∑M−1
i=1 ti. Furthermore, we have E(ti) = E(ti | Ai)P(Ai). Hence, the

expected time before visiting U? is:

M−1∑
i=1

E(ti | Ai)P(Ai).

Now recall that X is an intermittent Markovian process, and that Ai corresponds to
an event that is relevant up to (and including) the detection of Ui. Hence, E(ti | Ai)
is lower bounded by the minimal expected time that the intermittent random walk
X, starting at some point u ∈ Ui, visits another disc, where the minimization is
taken w.r.t u ∈ Ui. Since discs are separated by distance of at least D, the process
starting at any such u needs to visit a disc at distance at least D. It therefore follows
that E(ti | Ai) ≥ TD. Altogether, the expected time to detect S is at least:

M−1∑
i=1

TDP(Ai) =
M−1∑
i=1

TD(1− i/M) = Ω(TDM) = Ω

(
n
TD
D2

)
,

as desired.

Corollary 3.10. For every 1 ≤ D ≤
√
n/2, the best possible detection time is

Θ(n/D), when we allow the strategy to be non-intermittent, unrestricted in terms
of its internal computational power and navigation abilities, and fully tuned to the
diameter. In other words, opt(n,D) = Θ(n/D).

Proof. The fact that opt(n,D) = Ω(n/D) for every D <
√
n/6 − 1 follows imme-

diately from Claim 3.9 and the fact that TD ≥ D. For
√
n/6 − 1 < D ≤

√
n/2

the bound Ω(n/D) = Ω(
√
n) follows simply because with constant probability, the

target is at distance Ω(
√
n) from the initial location of the searcher.

In order to see why opt(n,D) = O(n/D), let us tile the torus with horizontal
and vertical lines partitioning the torus into squares of size D/2 × D/2 each. In
the case that

√
n is not a multiple of D/2, we might have few of these squares

smaller than D/2×D/2. It is clear that this can be constructed while maintaining
that the number of horizontal and vertical lines is O(

√
n/D). For any connected

target S of diameter D, the set B(S) must intersect at least one of these lines. Now
consider a deterministic strategy that repeatedly walks over this tiling exhaustively,
without doing much repetition in each exhaustive search. E.g., by first walking on
the horizontal lines exhaustively (with occasional steps to move between horizontal
lines) and then walking on the vertical lines exhaustively. It is easy to see that such
a strategy exists and requires at most O(

√
n/D ·

√
n) = O(n/D) time to pass over

all the lines, and hence to detect the target. This establishes the required upper
bound.

Claim 3.9, applied with D = 1, also yields the following corollary, by remarking
that for intermittent random walk processes, TD, namely, the expected time until
the end point of a step is at a distance of at least D is at least the expected time
for one step τ , i.e., TD ≥ τ .
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Corollary 3.11. Consider an intermittent random walk strategy X on the torus Tn.
The detection time of any target of diameter D is Ω(nτ/D2).

3.6.2 Lower bounds for Lévy walks

Let Xµ be the intermittent Lévy walk on the torus Tn. The goal of this section is
to prove lower bounds on the competitiveness and scale-sensitivities of Lévy walks
other than Cauchy. We start by analysing the detection times of small targets by
Lévy walk corresponding to 1 < µ < 2.

Theorem 3.5. Let µ ∈ (1, 2) and D ∈ [1,
√
n/2]. Write µ = 2 − ε. The competi-

tiveness of the Lévy Walk Xµ w.r.t. D is:

Comp(Xµ, D) = Ω(nε/2/D). (3.4)

Proof. By Corollary 3.11, the detection time of a target S with diameter D is
Ω(nτ/D2) where τ is the expected step length. Using that `max = Θ(

√
n), Claim

3.7 implies that this expected step length is:

τ = Θ(n1−µ
2 ) = Θ(nε/2),

writing µ = 2−ε for 0 < ε < 1. Hence, the detection time Xµ for a target of diameter
D is Ω(n1+ε/2/D2). Dividing this by the unconditional optimal time Θ(n/D), we
get the desired lower bound.

Theorem 3.5 implies that the competitiveness of a Lévy walk Xµ for 1 < µ < 2
is very large with respect to small targets, i.e, when D � nε/2. We next aim to
prove that the competitiveness of a Lévy walk Xµ for 2 < µ ≤ 3 is very large with
respect to large targets. Towards proving this, we first establish the following.

Claim 3.12. Let Xµ be an intermittent Lévy walk process on the torus Tn, for
µ ∈ [2, 3], with `max =

√
n/2. The expected time required to reach a distance of

d ≥ 1 from the starting point is:

Td =


Ω(d log d) if µ = 2

Ω(dµ−1) if µ ∈ (2, 3)

Ω( d2

log d
) if µ = 3

.

Proof. We may suppose that d ∈ [1,
√
n/4]. Denote by md the random number of

steps before the process reaches a distance of at least d. Let us define m0 = ddµ−1e,
and say that a step is small if it has length at most d. Define the event A that all the
steps 1, 2, . . . ,m0 are small. Note that since d ≤ `max/2, the probability for any given

step not to be small is q =
∫ `max
d

a
`µ
d` ≥ c

dµ−1 for some constant c ∈ (0, 1). Hence,
the probability for a step to be small is 1− q, and since the steps are independent,
we have:

P(A) = (1− q)m0 = exp(m0 log(1− q)) ≥ exp(dµ−1 log(1− cd1−µ)).

We have:

exp(dµ−1 log(1− cd1−µ)) = exp(dµ−1(−cd1−µ + o(d1−µ)) = exp(−c+ o(1)),
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which is a positive constant. Since this is a continuous, strictly positive, function of
d ∈ [1,∞), we have P(A) ≥ c′ for some constant c′ > 0 independent of d.

Next, note that

E(T (md)) ≥ P(A) · E(md | A) = c′ · E(T (md) | A).

Hence, for the purposes of obtaining a lower bound, it is sufficient to examine the
process when conditioned on A. This is a Lévy process of parameter µ, with cut-off
`max = d. The expected length τ of a jump is given by Claim 3.7:

τ =

{
Θ(log d) if µ = 2

Θ(1) if µ ∈ (2, 3]
, (3.16)

and the variance σ′2 of the step-length of a jump projected onto one of the axes is
given by Theorem 3.8:

σ′2 =

{
Θ(d3−µ) if µ ∈ (1, 3)

Θ(log d) if µ = 3
.

To conclude, combine these values with Claim. (2.12):

Td = Ω

(
d2

σ′2
· τ
)

=


Ω(d log d) if µ = 2

Ω(dµ−1) if µ ∈ (2, 3)

Ω( d2

log d
) if µ = 3

.

This concludes the proof of Claim 3.12.

Combining Claim 3.12 with the fact that the expected time to detect a target of
diameter D is Ω(nTD

D2 ), as established by Claim 3.9, and comparing to the uncondi-
tional optimal detection time Θ(n/D) for targets of diameter D, we obtain Theorem
3.6.

3.7 Proof of the pointwise probabilty bounds of

Z(m)

I provide the proofs of Lemma 3.2 in Section 3.7.2, and of Lemma 3.3 in Section
3.7.3. Before presenting these proofs, let us first establish lower and upper bounds
on the distance travelled by the walk at step m.

3.7.1 Superdiffusive properties of the Cauchy walk on R2

We first remark that the probability to choose a length in a given interval is easily
computed from Eq. (3.1):

Observation 3.13. The probability to do a step of length at most ` > 0 is a2,`max`
if ` ≤ 1 and a2,`max(2 − 1

`
) if ` ∈ (1, `max). For integers `max ≥ `2 ≥ `1 ≥ 1, the

probability to choose a length in [`1, `2] is a2,`max(
1
`1
− 1

`2
).
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The next claim quantifies the probability that the Cauchy process goes to a
distance of at least d after m steps. In particular, it shows that in step m, the process
is at a distance of Ω(m) with constant probability, and that it is at a distance of
Ω(m/ logm) with high probability in m.

Claim 3.14. For any integer m ≥ 2 and any real d ∈ [1, `max
3

] we have,

P (∃s ≤ m s.t. ‖Z(s)‖ ≥ d) ≥ 1− e−cm/d,

for some constant c > 0. In particular this lower bound is at least

• 1−O(m−2) if d = c′ m
logm

with c′ > 0 a small enough constant,

• Ω(1) if d = c′m for any constant c′ > 0 with c′m ≤ `max/3.

Proof. By Observation 3.13, the probability that a given step has a length at least
2d is a2,`max(

1
2d
− 1

`max
) ≥ a2,`max

6d
. Since the steps are independent, the probability of

the event A that at least one of the steps 1, . . . ,m has a length at least 2d is

P(A) ≥ 1−
(

1− a2,`max

6d

)m
.

Writing (1− a2,`max/6d)m = em log(1−
a2,`max

6d
) ≤ e−cm/d, for some constant c > 0, we

get
P(A) ≥ 1− e−cm/d.

To conclude, it suffices to show that A implies that there exists a step s ≤ m for
which ‖Z(s)‖ ≥ d. Indeed, suppose that A occurs and let s ≤ m be the first step of
length 2d or more. Then,

• Either ‖Z(s− 1)‖ ≥ d, in which case we are done.

• Or ‖Z(s− 1)‖ < d. In this case, as Z(s) = Z(s−1)+V (s), we have ‖Z(s)‖ ≥
‖V (s)‖ − ‖Z(s− 1)‖ > 2d− d = d.

This concludes the proof of Claim 3.14.

Claim 3.14 asserts that, with some probability, the walk goes far from 0. Con-
versely, the next claim says that with some constant probability, the walk does not
get too far.

Claim 3.15. • For any constant c > 0, there exists a constant δ > 0 such that,
for any two integers 1 ≤ s ≤ m, we have P(‖Z(s)‖ ≤ cm) ≥ δ.

• For any constant 0 < δ < 1, there exists a (large enough) constant c > 0 such
that, for any two integers 1 ≤ s ≤ m, we have P(‖Z(s)‖ ≤ cm) ≥ δ.

Proof. Fix an integer m ≥ 1 and let c′′ be a constant, to be chosen later. Let A
denote the event that each of the first m steps has length at most ` = c′′m. We
have, for any integer s ≤ m, and any constant c > 0,

P(‖Z(s)‖ ≤ cm) ≥ P(A) · P(‖Z(s)‖ ≤ cm | A). (3.17)

We shall study separately each term in the r.h.s of Eq. (3.17), and establish the
following:
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• For the first item of Claim 3.15, we shall take c′′ > 0 so that both factors are
constants (hence their multiplication is at least some constant δ),

• For the second item of Claim 3.15, where the bound δ is given, we will show
that both terms can be made at least

√
δ by choosing c and c′′ appropriately.

Proceeding with the first term in the r.h.s of Eq. (3.17), by Observation 3.13, we
have:

P(A) =


(a2,`maxc

′′m)m if c′′m ≤ 1

(2a2,`max)
m(1− 1

2c′′m
)m if c′′m ∈ [1, `max]

1 if c′′m ≥ `max

.

For 1 ≤ m ≤ 1
c′′

, we have (a2,`maxc
′′m)m ≥ (a2,`maxc

′′m)
1
c′′ as a2,`maxc

′′m ≤ c′′m ≤ 1,

and (a2,`maxc
′′m)

1
c′′ ≥ (a2,`maxc

′′)
1
c′′ as m ≥ 1.For the second item, note that the

function (1− α
x
)x = ex log(1−α

x
) is increasing in x ≥ α and thus, for x ≥ 2α, we have

(1 − α
x
)x ≥ 2−2α. Applying this with α = 1

2c′′
, we have, (1 − 1

2c′′m
)m ≥ 2−

1
c′′ , for

m ≥ 1
c′′

. Overall, using 2a2,`max ≥ 1, we get

P(A) ≥


( c
′′

2
)

1
c′′ if c′′m ≤ 1

2−
1
c′′ if c′′m ∈ [1, `max]

1 if c′′m ≥ `max

.

Hence,

• P(A) = Ω(1) for any given c′′ > 0.

• Furthermore, with respect to the second item of Claim 3.15 where 0 < δ < 1
is given, we can choose c′′ large enough (in particular, we take c′′ ≥ 1 so that

c′′m ≥ 1), to ensure that P(A) ≥ 2−
1
c′′ ≥

√
δ.

We are now ready to lower bound the second factor in Eq. (3.17), namely, P(‖Z(s)‖ ≤
cm | A). We begin with a notation: if X is a random variable, let us write XA for
the random variable X conditioned on the occurrence of A. Our first goal is to
prove that

P(
∥∥ZA(s)

∥∥ ≤ cm) ≥ 1−
8sE(

∥∥V B∥∥2
)

c2m2
, (3.18)

where V B = (V B1 , V
B

2 ) is one step-vector of the walk on R2, conditioned on the event
B that it is at most c′′m. Eq. (3.18) will be established by applying Chebyshev’s
inequality on each of the projections on the axes and using a union bound argument.
Specifically, decomposing the walk Z on the two axes, by writing Z = (Z1, Z2), we
first use a union bound to obtain:

P(
∥∥ZA(s)

∥∥ > cm) ≤ P(∃i = 1, 2 s.t. |ZAi (s)| > cm/2)

≤ P(|ZA1 (s)| > cm/2) + P(|ZA2 (s)| > cm/2)

≤ 2P(|ZA1 (s)| > cm/2),

where we used the symmetry to deduce that Z1 and Z2 share the same distribution.
Hence,

P(
∥∥ZA(s)

∥∥ ≤ cm) ≥ 1− 2P(|ZA1 (s)| > cm/2).
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Next, we aim to lower bound the r.h.s. Relying on the fact that the expectation of
ZA1 (s) is 0 for any s, by Chebyshev’s inequality, we have:

P(|ZA1 (s)| > cm/2) ≤ 4Var(ZA1 (s))

c2m2
.

Since ZA1 (s) is the sum of s independent steps that follow the same law as V B1 , we
have:

Var(ZA1 (s)) = sVar(V B1 ).

As the expectation of V B1 is zero, we have Var(V B1 ) = E((V B1 )2). Furthermore, since
|V B1 | ≤

∥∥V B∥∥, we obtain:

Var(ZA1 (s)) ≤ sE(
∥∥V B∥∥2

),

which concludes the proof of Eq. (3.18). Next, let us estimate E(
∥∥V B∥∥2

). If, on the
one hand, c′′m ≤ 1, then, when conditioning on A, the length of a step is chosen
uniformly at random in [0, c′′m]. Thus, its second moment is

E(
∥∥V B∥∥2

) =

∫ c′′m

0

`2 d`

c′′m
=

(c′′m)2

3
. (3.19)

On the other hand, if c′′m ≥ 1, then V B is a Cauchy walk with cut off `max = c′′m.
Hence, its second moment is

E(
∥∥V B∥∥2

) = a′
∫ 1

0

`2d`+ a′
∫ c′′m

1

`2`−2d`

≤ a′
∫ c′′m

0

1d` = a′c′′m ≤ c′′m. (3.20)

Overall, by Eqs. (3.18), (3.19) and (3.20) we find that, for s ≤ m,

P(
∥∥ZA(s)

∥∥ ≤ cm) ≥

{
1− 8sc′′2

3c2
if c′′m ≤ 1

1− 8sc′′

c2m
if c′′m ≥ 1

≥

{
1− 8c′′

3c2
if c′′m ≤ 1

1− 8c′′

c2
if c′′m ≥ 1

.

We then conclude the proof of Claim 3.15 by observing the following.

• For the first item of Claim 3.15, we have proved that P(A) = Ω(1) for
any constant c′′ > 0. Hence, we may now choose c′′ small enough so that
P(
∥∥ZA(s)

∥∥ ≤ cm) = Ω(1).

• For the second item of Claim 3.15, we have already chosen c′′ to be large (in
order to have P(A) ≥

√
δ, but we are free to choose c large enough so that

P(
∥∥ZA(s)

∥∥ ≤ cm) ≥
√
δ.
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3.7.2 Proof of Lemma 3.2 (lower bound)

In this section we prove the following:

Lemma 3.2. For any constant α > 0, there exists a constant c > 0 such that for
any integer m ∈ [1, α`max], and any x ∈ R2, with ‖x‖ ≤ m, we have pZ(m)(x) ≥ c

m2 .

Proof. First note that for m = 1, the lemma holds by the definition of the Lévy
process. Let us therefore consider an integer m ≥ 2.

By the monotonicity property (Corollary 2.11), it is enough to prove that there
is some constant c′ > 1 such that,

P(m ≤ ‖Z(m)‖ ≤ c′m) = Ω(1). (3.21)

Indeed, if this holds, then, since the area of the ring {y ∈ R2 s.t. m ≤ ‖y‖ ≤ c′m}
is Θ(m2), then we would have that for at least one point u in this ring, pZ(m)(u) =
Ω(m−2). Then, by monotonicity, for x ∈ R2 such that ‖x‖ ≤ m, we would have
pZ(m)(x) ≥ pZ(m)(u) = Ω(m−2) which is the desired lower bound.

We thus proceed to prove Eq. (3.21). For this, let us define, for a given m ∈
[2, α`max], the event

Afar = ∃s ≤ m s.t. ‖Z(s)‖ ≥ 2m.

We next prove the following claim.

Claim 3.16. P(Afar) = Ω(1), where the constant in lower bound does not depend
on m.

Proof of Claim 3.16. By Claim 3.14, we immediately get that the claim holds for
any m ∈ [2, `max/6]. I next show that the claim holds also for m ∈ [`max/6, α`max].
Intuitively, we prove this using a constant number of iterations. Each iteration
consists of at most m′ = α′`max steps, with α′ a small constant, during which we
are guaranteed to go a distance of `max/3 with constant probability. Because the
direction is chosen uniformly at random, at the cost of reducing this probability by
a constant factor, we can further impose that the x-coordinate increases by a factor
of, say, `max/5. As these iterations are independent, and since α is a constant, we
can guarantee that up to step m = α`max, the process goes away to a distance of at
least 2α`max with constant probability.

Formally, first notice that we can take α > 1 without loss of generality. Note
now that since m ∈ [`max/6, α`max], the second item in Claim 3.14 implies that:

P
(
∃s ≤ m

10α
s.t. ‖Z(s)‖ ≥ `max

3

)
≥ c′α,

for some constant c′α > 0. As a consequence, since the direction of Z(s) is distributed
uniformly at random, we have:

P
(
∃s ≤ m

10α
,Z1(s) ≥ `max

4

)
≥ cα, (3.22)

for some constant cα > 0. When this occurs, let s1 ≤ m
10α

be such that Z1(s1) ≥ `max
4

.
By the Markov property, starting from step s1, we can then apply again (3.22) to
show that with probability cα, there is a s2 ≤ s1 + m

10α
≤ 2 m

10α
such that Z1(s2) ≥
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Z1(s1) + `max
4
≥ 2 `max

4
. Overall, this happens with probability c2

α. Repeating this
d9αe times, we finally get:

P
(
∃s ≤ d9αe m

10α
,Z1(s) ≥ d9αe`max

4

)
≥ cd9αeα ,

which is a positive constant. Because α > 1, this implies P(∃s ≤ m,Z1(s) ≥
2α`max) = Ω(1). As 2α`max ≥ 2m and ‖Z‖ (s) ≥ |Z1(s)|, this, in turn, implies
P(Afar) = Ω(1), completing the proof of Claim 3.16.

Next, conditioning on Afar, we write:

P(‖Z(m)‖ ≥ m | Afar) ≥ min
s≤m

P(‖Z(m)‖ ≥ m | ‖Z(s)‖ ≥ 2m) (3.23)

≥ min
s≤m

P(‖Z(m− s)‖ ≤ m), (3.24)

where we used the Markov property, and the spatial homogeneity of the process,
in the latter inequality. In words, in the r.h.s. of Inequality (3.23), we examine the
probability to be at a high distance (i.e., m), knowing that the process was even
further (at some point x at distance at least 2m). In Inequality (3.24) we bound
this by the probability of staying within distance m.

By the first item of Claim 3.15, the r.h.s of Inequality (3.24) is at least some
positive constant (again, independent of m). Overall, for any m ≥ 2, we have:

P(‖Z(m)‖ ≥ m) ≥ P(‖Z(m)‖ ≥ m | Afar) · P(Afar) ≥ γ,

for some constant γ > 0 (independent of m). Next, using the second item of Claim
3.15, with δ = 1− γ

2
, we get that there exists a large enough constant c′ > 0 (again,

independent of m), such that:

P(‖Z(m)‖ ≤ c′m) ≥ δ. (3.25)

Hence, using a union bound argument, we have:

P(m ≤ ‖Z(m)‖ ≤ c′m) ≥ P(‖Z(m)‖ ≥ m) + P(‖Z(m)‖ ≤ c′m)− 1

≥ γ + δ − 1 =
γ

2
> 0.

This establishes Eq. (3.21) and thus concludes the proof of Lemma 3.2.

3.7.3 Proof of Lemma 3.3 (upper bound)

Recall the statement of the lemma:

Lemma 3.3. For any constant α > 0, there exists a constant c′ > 0 such that, for

any integer m ∈ [2, α`max] and any x ∈ R2, we have P(‖Z(m)− x‖ ≤ 1) ≤ c′ log2 m
m2 .

Proof. Let α > 0 and m ∈ [2, α`max]. Due to the monotonicity property stated in
Corollary 2.11, it is sufficient to prove this result for x = 0. Indeed, for any x ∈ R2,
the sets B(0) \B(x) and B(x) \B(0) have the same area A, and

P (Z(m) ∈ B(x) \B(0)) ≤ A max
y∈B(x)\B(0)

{p‖Z(m)‖(y)}

≤ A min
y∈B(0)\B(x)

|{p‖Z(m)‖(y)}

≤ P (Z(m) ∈ B(0) \B(x)) ,
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where the second inequality is due to the monotonicity property and the fact that
any point in B(x) \ B(0) is at distance more than 1 from the origin, and hence,
further from 0 than any point in B(0) \ B(x). This shows that P(Z(m) ∈ B(x)) ≤
P(Z(m) ∈ B(0)), hence it is sufficient to prove the required upper bound for x = 0.

Intuitively, to establish this, we say that with high probability, there is some
step s ≤ m for which Z(s) is “distant” (at least cm/ logm). Conditioning on
this, the probability to be located in B(0) at step m is found out to be small, due
to the monotonicity of the process (Corollary 2.11). Formally, consider a (small)
positive constant c, and let A be the event that there is some s ≤ m for which
‖Z(s)‖ ≥ cm/ logm.

Consider B(0) the ball of radius 1 with center 0. Write

P(Z(m) ∈ B(0)) = P(Z(m) ∈ B(0) ∩ A) + P(Z(m) ∈ B(0) ∩ ¬A)

≤ P(Z(m) ∈ B(0) | A) + P(¬A), (3.26)

By the first item of Claim 3.14, taking c to be sufficiently small, we have

P(¬A) = O(m−2).

In order to express the remaining term of Eq. (3.26), we will denote in the following
equation Zx the Cauchy process on R2 with cut off `max starting with Z(0) = x.
Since our process was defined to start at 0, we have Z = Z0. Remark that the law
of Zx is obtained by a translation of that of Z0. With this notation in mind, we
have, using the Markov property for the second inequality:

P(Z0(m) ∈ B(0) | A) ≤ max
s≤m

P(Z0(m) ∈ B(0) |
∥∥Z0(s)

∥∥ ≥ cm/ logm)

≤ max
s≤m

sup
‖x‖≥cm/ logm

P(Zx(m− s) ∈ B(0))

= max
s≤m

sup
‖x‖≥cm/ logm

P(Zx(s) ∈ B(0))

= max
s≤m

sup
‖x‖≥cm/ logm

P(Z0(s) ∈ B(−x))

= max
s≤m

sup
‖x‖≥cm/ logm

P(Z(s) ∈ B(x))

Use now Corollary 2.11 that gives pZ(m)(x) ≤ 1
π‖x‖2 . Hence, for any x ∈ R2 with

‖x‖ > 1, we have

P(Z(m) ∈ B(x)) =

∫
B(x)

pZ(m)(y)dy ≤
∫
B(x)

1

π(‖x‖ − 1)2
dy =

1

(‖x‖ − 1)2
.

Let m(c) be the largest integer m > 0 such that cm/ logm ≤ 2. For m > m(c), we
have

P (Z(s) ∈ B(x)) ≤ max
s≤m

1

(cm logm− 1)2
=

1

(cm logm− 1)2

Overall, we find that, for m > m(c)

P (Z(m) ∈ B(0)) ≤ 1

(cm/ logm− 1)2
+

c′

m2
,
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which we can bound by c2 log2 m
m2 for some constant c2 > 0. Since m(c) is a constant,

there is some other constant c3 > 0 for which, for any m ∈ [2,m(c)], we have

P(Z(m) ∈ B(0)) ≤ c3 log2m
m2 . We then obtain, for any m ≥ 2,

P(Z(m) ∈ B(0)) ≤ max{c2, c3} log2m

m2
,

which concludes the proof of Lemma 3.3.
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Chapter 4

On the efficiency of discrete
approximations of the Cauchy
Walk

In this chapter, based on (Boczkowski et al., 2018a) and (Guinard and Korman,
2020b), I discuss the efficiency of random walks when the agent is capable of using k
different modes of search, each characterized by a typical length scale. I will review
the significance of this model in biology, and prove formally that one model, known
as the (truncated) Weierstrassian Walk, performs optimally, among models with k
modes, in one-dimension.

4.1 Introduction

Searchers alternating modes of movement. In many biological settings, it
was observed that organisms appear to execute different modes of search. This may
happen as a response to environment (cue-driven search), or simply be an internal
mechanism of the forager (internal search). For instance, elks were found to execute
long steps when resources are sparse, and shorter sinuous moves when resources
are abundant (Fryxell et al., 2008), although this may also be explained if steps are
halted by the encounter of food. In order to study the internal search, i.e., performed
in the absence of external stimuli, the movement of desert locusts (Schistocerca gre-
garia) was studied when they are placed in isolation in a homogeneous experimental
arena, and they were shown to alternate between local search behaviour and reloca-
tion behaviour. (Bazazi et al., 2012) In the microscopic word, restriction enzymes
targeting a DNA site were shown to have the possibility of either diffusing along the
DNA (a one-dimensional search), or detaching, doing an excursion in the ambient
fluid and relocating at another DNA site (Coppey et al., 2004).

Models of searches alternating modes. One of the most common model in
the foraging literature is motivated by such examples. It is the Composite (Ran-
dom) Walk, or Composite Brownian Walk, in which the searcher alternates ballistic
and diffusive steps. The switch can happen either due to interaction with the en-
vironment, or happens with some distribution dependent on the mode of search.
The first one was investigated by simulations, in (Benhamou and Collet, 2015), in
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Chapter 4. On the efficiency of discrete approximations of the Cauchy Walk

a semi-intermittent detection regime, i.e., when there is a low, but non-zero, prob-
ability to detect while moving. In comparison to the Lévy Walk model, which just
halts its step and then begins a new one, they found better performances for their
Composite Walk model, which, they argued, uses information from patch-discovery
more rationally.

The internal model of search, where the switch between modes happens ran-
domly, was also studied in detail in the (fully) intermittent detection regime, where
one mode is devoted to moving, and another is used to detect targets, see the re-
view (Bénichou et al., 2011). Both phases have durations that follow an exponential
distribution with some rate dependent on the phase. These models follow a setting
minimal in terms of agents’ abilities: the detection is intermittent, there is no mem-
ory (setting aside the question of how the agent stops a ballistic step), and there is no
tactical change according to external or internal stimuli. In one-dimension, (Lomholt
et al., 2008) proved that such a model with two modes would find a target in a cycle
of length n in time roughly n4/3, which represents a considerable improvement over
the quadratic time n2 of the simple random walk. However, when the lengths of the
ballistic step follow a Cauchy distribution, Lomholt et al. found that the detection
time fell down to quasi-linear. This lead my co-authors and me, in (Boczkowski
et al., 2018a; Guinard and Korman, 2020b) to enquire how the time performances
depended on the number of (exponentially distributed) modes of movement.

Weierstrassian Walks: a discretization of the Lévy Walk. Let us consider
in more detail a specific model with k modes, the Weierstrassian Walk model, first
introduced in (Hughes et al., 1981) as a discrete approximation to Lévy Walks. This
random walk has distribution of step-lengths

pW =
k∑
i=0

piδbi ,

where pi = caa
−i, for some a, b > 1 and ca = 1−a−1

1−a−(k+1) . Note that, if we discretize

a Lévy Walk of exponent µ by assigning to every ` ∈ [bi, bi+1) the value bi, the
probability of bi is∫ bi+1

bi
`−µd` =

1

µ− 1
(bi)1−µ − (bi+1)1−µ = Θ(a−i),

for a = bµ−1. And inversely, when a and b go to 1, and k = ∞, this distribution
converges to a Lévy Walk with parameter µ = 1+log(a)/ log(b) (Hughes et al., 1981).
This explains in what sense Weierstrassian Walks are discrete equivalents of the Lévy
Walks. In particular, the Weierstrassian Walk with a = b is the discrete equivalent
of the Cauchy Walk. In Figure 4.1, I illustrated the trajectories of Weierstrassian
and Lévy Walks. They look very similar. Since both distributions are truncated,
after some time they begin to look like a Brownian Motion (Fig. 4.1(b)).

Weierstrassan Patterns in animals. In biology, tri-modal Weierstrassian Walks
were used to model the movement patterns of mussels (Reynolds, 2014), mud snails
(Reynolds et al., 2017), the Australian desert ant Melophorus bagoti (Reynolds et al.,
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(a) tmax = `max (b) tmax = 20`max

Figure 4.1: Patterns of movement. Cauchy Walk (yellow), compared with Weier-
strassian Walks (blue: discrete steps of length exactly 1 and b ; orange: Hyperex-
ponential steps) with k = 2 modes, of lengths 1 and b = 100, and probability to do
a step of length b p1 = Θ(b−1). All walks are truncated with `max = 1000 and were
run until the first step for which the time exceeded tmax.

Figure 4.2: Probability density functions of the Truncated Pareto distribution (of
exponent 2) and the Truncated Hyperexponential Weierstrassian distribution, with
`max = 1000. The exponential distribution has mean L0 = 72, chosen to minimize
the multiplicative ratio between it and the Pareto distribution. The hyperexponen-
tial distributions are Weierstrassian, with b = n2/(2k−1), as suggested by Theorem
4.3.
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Chapter 4. On the efficiency of discrete approximations of the Cauchy Walk

2014), and even extinct 50 My-old sea urchins (Sims et al., 2014). More precisely,
these model follow an hyperexponential distribution

phW =
k∑
i=0

piebi ,

where ebi is the exponential distribution with mean bi, and pi = cbb
−i. Since the

mean step-lengths are a geometric series, as in the (discrete) Weierstrassian distri-
bution, I will refer to phW as a hyperexponential Weierstrassian distribution. In the
aforementioned papers, Reynolds argue that using several exponential modes allow
animals to approach a (truncated) Lévy Walk, and in this sense, Composite Brown-
ian Walk models are not as opposed to Lévy Walk models as was previously believed
(Lévy Walks model had earlier been described as “strange kinetics” (Benhamou and
Collet, 2015)). Figure 4.2 illustrates how such hyperexponential weierstrassian dis-
tribution can approximate a (truncated) Pareto distribution. Note how close the
4-modal hyperexponential distribution is to the Pareto distribution.

If the argument that Weierstrassian Walks approximate Lévy Walks is certainly
true for a large number of modes, it was not clear what was the connection between
the number of modes k and the search performances, especially when k is small. Nei-
ther was it proved that, among all possible walks with k modes, the Weierstrassian
Walk represented an optimal. In this chapter, I will provide answers to this question
by showing that, in a cycle of length n, a Weierstrassian Walk tuned to the size n

finds a target in time roughly n1+ 1
2k−1 , which is optimal.

One-dimensional search in biology. The one-dimensional cycle was chosen
mainly because, analytically speaking, it is simpler than higher-dimensional spaces.
This is due to the fact that the simple random walk on a cycle of length n find a
target in quadratic time, while the Lévy Walk finds a target in quasi-linear time;
hence, it was to be expected that a random walk that uses k lengths would perform
in time nf(k). In contrast, on 2 and 3-dimensional tori, the random walk already
finds a target in almost linear space, and it is typically harder to get the constants
and logarithmic factors associated to a quasi-linear time performance, than it is to
get a bound of the form Θ(nf(k)) for some function f(k). However, a one-dimensional
search is not completely irrelevant to biology. Indeed, it can serve as a model to
long and narrow topologies. As noted above, it is also relevant for modelling the
search of DNA binding proteins (Berg et al., 1981; Coppey et al., 2004; Bénichou
et al., 2011).

4.2 Theorem statements

4.2.1 Definitions

Let us model the one-dimension space as a discrete, n-node, cycle, termed Cn. For
an integer k, define the random walks process with k step lengths as follows.

Definition 4.1 (k-scales search). A random walk process X is called a k-scales
search on Cn if the support of its step-length distribution p has cardinal k. In this
case, we will denote by L0, L1, . . . , Lk−1 this support, and pi = p(Li) the probability
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of length Li. Weierstrassian Walks are the k-scales random walk with Li = bi for
some integer b ≥ 2, with pi = cbb

−i.

The goal of this chapter is to show upper and lower bounds on the cover time of a
k-scales search, that is, the expected time to visit every node of the ambient graph
Cn. The parameters n and k are omitted when clear from the context.

4.2.2 The Lower Bound

I begin with the statement of the lower bound. The formal proof is given in Section
4.4.

Theorem 4.2. Let k and n be positive integers. The cover time of any k-scales
search X on Cn is

Ω(n1+ 1
2k−1 · k−1).

The proof of the lower bound implies also that, in order to be efficient, a k-scales
search should have ratios Li/Li−1 small. In fact, in the proof, the best situation is
when they are all equal – which corresponds to a Weierstrassian Walk.

4.2.3 The Upper Bound

The following theorem implies that up to lower order terms, the cover time of the
Weierstrassian random walk matches the lower bound of the cover time of any k-
scales search, as given by Theorem 4.2, for 2 ≤ k ≤ log n, i.e., for all potential scales.

Theorem 4.3. Let k be an integer such that 2 ≤ k ≤ log2 n. The Weierstrassian

random walk with parameter b = bn
2

2k−1 c is a k-scales search that achieves a cover
time of:

n1+ 1
2k−1 ·O

(
k2 log2 n

)
.

Observe that combining Theorems 4.2 and 4.3 we obtain the best cover time

Covk,n achievable by a k-scales search on Cn, which is Θ̃
(
n1+ 1

2k−1

)
for any 2 ≤ k ≤

log n. For particular values of k, we thus have:

k 1 2 3 4 5 . . . log n

Covk,n Θ(n2) Θ̃(n
4
3 ) Θ̃(n

6
5 ) Θ̃(n

8
7 ) Θ̃(n

10
9 ) . . . O(n log3 n)

In practice, when n = 1000, then log2(n) = 10. The ratios n
2k

2k−1

n
= n

1
2k−1 , which

indicate roughly the time performance of a Weierstrassian Walk in comparison to
a Lévy Walk, are, for k = 1, 2, 3, 4, 5, 6, respectively, 1000, 10, 3.98, 2.7, 1.87, 1.70.
We can observe a sharp decrease in time performances from the Brownian motion
(k = 1) to a composite walk with two or three modes.

Theorem 4.3 follows immediately from the following more general theorem, by

taking b = n
2

2k−1 .

Theorem 4.4. Let b, k, n be integers such that bk−1 < n ≤ bk. The cover time of
the Weierstrassian random walk on Cn with parameter b is

O

(
nmax

{
bk

n
,
n

bk−1

}
· k2 · log b · log n

)
= Õ

(
max

{
bk,

n2

bk−1

})
.
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The formal proof of Theorem 4.4 is deferred to Section 4.6. In Section 4.5 I
provide a sketch of the proof.

As mentioned, Theorem 4.4 using the particular value b = n
2

2k−1 gives a tight
upper bound for k-scales search. As a side note, the lower bounds from Section 4.4,
when applied to the Weierstrassian random walk on Cn, show that its cover time is

at least Ω̃
(

max{n
√
b, n2

bk−1}
)
. This is quite close to the bound Õ

(
max

{
bk, n2

bk−1

})
of the theorem. Indeed if n ≥ bk−

1
2 , both bounds match, up to logarithmic terms.

If n ≤ bk−
1
2 , the ratio of the bounds is bk−

1
2

n
.

4.3 Discussion

The idea that lengths appear in all scales has been recognized as fundamental to the
efficiency of Lévy Walks. Nevertheless, it had never been proved exactly that, if one
scale is missing, then the search efficiency is deteriorated, and, more importantly,
by how much the efficiency would be decreased. With lower and upper bounds
combined, I suggest that using a Weierstrassian Walk with two modes drastically
improves the efficiency, compared to a Brownian Motion or, in a more moderate
manner, compared to using only the two modes. This may suggest that indeed,
for animals, using only three modes may be efficient enough (note that hyperexpo-
nential Weierstrassian Walks can be expected to perform better than the discrete
Weierstrassian Walks studied here). This is compatible with (Sims et al., 2014)
that found that a three-modal hyperexponential walk modelled well the patterns of
movement found in fossil trails.

When combined with appropriate empirical measurements, the lower bound can
potentially be used to indirectly show that a given one-dimensional intermittent
process uses strictly more than a certain number of step lengths. For example, if
the process is empirically shown as a random walk, of constant speed, whose cover
time is almost linear, then Theorem 4.2 implies that it must use roughly logarithmic
number of step lengths. From a methodological perspective, such a result would be of
particular appeal as demonstrating lower bounds in biology through mathematical
arguments is extremely rare (Boczkowski et al., 2018b; Feinerman and Korman,
2013).

4.4 Proof of the lower bound

The goal of this section is to establish the lower bound in Theorem 4.2. For this
purpose, consider a k-scales search X on the cycle Cn and denote (Li)

k−1
i=0 its step

lengths with Li < Li+1 for all i ∈ [k − 2]. For convenience of writing let us also set
Lk = n, but it should be clear that it is actually not a step length of the walk. Let
pi denote the probability of taking the step length Li.

The theorem will follow from the combination of the following lemma, with
our Claim 2.12 on the maximal distance achieved by a random walk. Specifically,
this claim implies that the expected maximal distance achieved after m steps by
a random walk with maximal length L is O(

√
mL), and the time needed to go to

distance d is at least Ω(d2L−1). Lemma 4.5 stems from the analysis of the number
of nodes that can be visited during Li+1 time steps. It forces L0L1 as well as the

66



4.4. Proof of the lower bound

ratios Li+1/Li for all 1 ≤ i ≤ k−1 to be small enough in order to have a small cover
time. Claim 2.12 forces Lk−1 to be big enough to have a small cover time.

Lemma 4.5. The cover time of X is at least

• E(tcov) = Ω(n
√
L0L1).

• E(tcov) = Ω
(
n
k

√
Li+1

Li

)
for any 1 ≤ i ≤ k − 1.

Proof of Lemma 4.5. Semi-formal proof. I sketch here the ideas behind the proof
of the first part, namely, that the cover time is at least of order n

√
L0L1 (the second

part is similar). Essentially, we count the expected number of nodes N that can be
visited in a time duration of L1, which we call a phase. A jump of length Li ≥ L1

will not contribute to visiting a new node during this time duration. Thus, we may
suppose that there are only jumps of length L0. Since L1 ≤ n, the process does not
do a turn of the cycle and, therefore, it can be viewed as a walk on Z. Furthermore,
since every jump has length L0, we can couple this walk by a corresponding simple
random walk, that does steps of length 1, during a time duration of L1/L0. The
expected number of nodes visited during a phase is thus of order

√
L1/L0. It follows

that we need at least n/(
√
L1/L0) such phases before covering the cycle. Since a

phase lasts for L1 time, the cover time is at least of order n
√
L0L1.

Formal proof. In what follows, note that we will count the time and not the
number of moves. Fix an index 0 ≤ i < k. We divide time into consecutive i-phases,
each of time-duration precisely Li+1 (the last one may be shorter). We next prove
the following.

Claim 4.6. The expected number of nodes visited during the `’th i-phase is

• For i = 0, E(N`) = O
(√

L1

L0

)
.

• For 0 < i < k, E(N`) = O
(
k
√
Li · Li+1

)
.

Proof of Claim 4.6. Fix an index i and consider the i-phases. As the last i-phase
may be shorter and intermediate i-phases may start when the process is executing
a jump, the value of E(N`) is at most E(N1), namely, the expected number of nodes
that are visited during the first i-phase. Let us therefore concentrate on upper
bounding E(N1). The first i-phases lasts during the time period [0, Li+1). Since
only endpoints of jumps are visited, if during the i-phase the process starts any
jump of length at least Li+1, then the number of nodes does not increase. Thus, to
get an upper bound on E(N1), we may consider only trajectories that do not use
such large jumps, i.e., we may restrict the process to jumps of length Lj, for j ≤ i.

Denote by D the maximal distance achieved by the process in the time interval
[0, Li+1). We have N1 ≤ 2D + 1. In this phase of duration Li+1, there are at most
Li+1

Lj
steps of length Lj that can be made, for j ≤ i, because a jump of length Lj

takes Lj time. Let Dj be the maximal distance travelled by the jumps of length
Lj (when ignoring jumps of length different than Lj). We have D ≤

∑
j≤iDj. By

Claim 2.12, we have:

E(Dj) = O

(√
Li+1

Lj
· Lj

)
.
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Thus,

E(N1) ≤ 2E(D) + 1 = O

(∑
j≤i

√
Li+1Lj

)
= O

(
k
√
LiLi+1

)
.

This establishes the second item in the claim.
Bounding the number of visited nodes N1 by the distance D, as was done above,

is not very precise, since there may be non-visited points between jumps. In order
to establish the first item in the claim, i.e., the case where i = 0, let us be more
precise. In this case, we may replace the equation N1 ≤ 2D+ 1 by the more precise
inequality

N1 ≤ 2
D

L0

+ 1.

Indeed, since there are only jumps of length L0, and there is no time to do a full
turn of the cycle in the duration L1, we visit only multiples of L0. Thus, when i = 0,
we have:

E(N1) = O

(√
L1L0

L0

)
= O

(√
L1

L0

)
,

as desired. This completes the proof of Claim 4.6. �
Let us end the proof of Lemma 4.5. By Claim 4.6, the number of nodes visited

during the s first i-phases is

E

(
s∑
`=1

N`

)
≤ s ·O (Ei) .

where E0 =
√

L1

L0
and Ei =

√
LiLi+1 for 1 ≤ i ≤ k − 1. Next, let us set s1 := n · c

·Ei
for a sufficiently small constant c, such that the previous bound becomes less than
n/2. Using Markov’s inequality, we get

P

(
s1∑
`=1

N` ≥ n

)
<

1

2
.

Therefore, with probability at least 1/2, the process needs at least s1 phases before
visiting all nodes. Since the duration of a phase is Li+1, the cover time is at least

s1 · Li+1 = Ω

(
n · Li+1

Ei

)
,

which is Ω(n ·
√
L1L0) if i = 0 and Ω(n ·

√
Li+1

Li
) otherwise. This completes the proof

of Lemma 4.5.

Next, it remains to show how Theorem 4.2 follows by combining Claim 2.12 and
Lemma 4.5. First, as the process needs to go to distance at least n/3 in order to cover

the cycle, by Claim 2.12, the cover time is at least Ω(n2/Lk−1). If Lk−1 ≤ n1− 1
2k−1

then the bound in Theorem 4.2 immediately follows. Let us therefore assume that

Lk−1 > n1− 1
2k−1 .

Define α0 = L0L1 and αi = Li+1

Li
for i ∈ {1, 2, . . . , k − 2}. As
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k−2∏
i=0

αi = L0Lk−1,

there must exists an index 0 ≤ i ≤ k − 2 such that αi ≥ (L0Lk−1)
1

k−1 . Thus, by
Lemma 4.5, the cover time is at least

Ω
(n
k

(L0Lk−1)
1

2(k−1)

)
.

Since Lk−1 > n1− 1
2k−1 = n

2k−2
2k−1 and L0 ≥ 1, we conclude that the cover time is at

least

E(tcov) = Ω
(n
k
· n

1
2k−1

)
,

as desired. This completes the proof of Theorem 4.2.

4.5 Proof of the upper bound

In this section, I give the key ideas of the proof of Theorem 4.4. The detailed,
formal, proof is the object of the next section.

In more details, let us consider the Weierstrassian walk on Cn, termed X, starting
at X(0) = 0. We can assume that X is lazy with parameter 1

2
, as this only multiplies

the cover time by a factor 2. The average length of a step of X is τ = cbk/2 = Θ(k).
For some m0 to be fixed later, and any x ∈ Cn, consider Nx =

∑2m0

m=m0
P(X(m) = x)

and O =
∑m0

m=0 P(X(m) = 0). By combining Lemma 2.5, and Matthew’s bound
(Theorem 1.18), we have that the cover time is at most

O(m0 ·Omax
x
{N−1

x } · k · log n). (4.1)

In order to simplify the presentation, assume first that n = bk. Let us view the
k-lengths Weierstrassian random walks as k (dependent) random walks, by grouping
together the jumps of the same length (see Figure 4.3). Define Si(m) as the algebraic
count of the jumps of lengths bi. E.g., if, by step m, there are exactly four positive
jumps of length bi, and one negative, then Si(m) = 3. We have:

X(m) =
k−1∑
i=0

Si(m)bi.

Define also the following decomposition of Cn.

Definition 4.7 (Base b decomposition). For any x ∈ Cn, we may decompose x in
base b as

x =
k−1∑
i=0

xib
i,

with 0 ≤ xi < b. We call xi the i-th coordinate of x (in base b).
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Figure 4.3: The first two graphs represent, in different node disposition, the Weier-
strassian walk on C12 with parameter b = 4. There are k = 2 jump lengths, L0 = 1
(blue edges) and L1 = b = 4 (red, dotted edges). To the right, I show the decompo-
sition of C12 as C4 × C3. For instance the node x = 7 ∈ C12 will be represented by
x0 = 3 ∈ C4 and x1 = 1 ∈ C3.

It follows from Euclidean division, and the fact that n = bk, that the base b
decomposition is well-defined and unique for every x ∈ Cn. This decomposition is
illustrated in Figure 4.3 (where we have taken n = n̂bk−1 to anticipate the more
general case to follow).

Note that X(m) = x in Cn if and only if∑
i

(Si(m)− xi)bi = 0 mod n. (4.2)

By taking Eq. (4.2) modulo bi, for i ≤ k − 1, it is easy to show that Eq. (4.2) is
equivalent to

Si(m) = yi mod b,

for yi := xi − b−i
∑

j<i(Sj(m)− xj)bj mod b.
Thus, X(m) = x is equivalent to Ri(m) = yi for all i, where Ri = Si mod b is

a random walk on Cb that moves with probability pi
2

. This process is illustrated in
Figure 4.3, where X(m) = 7 is equivalent to R0(m) = 3 and R1(m) = 2.

Unfortunately, the Ri’s and the yi’s are not independent, due to the fact that
only one of the Ri can change between steps m and m+ 1, however, let us overlook
this issue in this informal outline. We then have:

P(X(m) = x) ≈
k−1∏
i=0

P(Ri(m) = yi). (4.3)

Recall that Ri is a random walk over Cb that moves with probability pi/2. The
following is a well-known property of the random walk a cycle (see, e.g., Example
5.7 and Proposition 6.18 in (Aldous and Fill, 2002)):

Claim 4.8. For a simple random walk R on Cb that moves with probability 1
2
, and

any y ∈ Cb,

P (R(m) = y) =

{
O (1/

√
m) if m < b2

b−1(1± εm) if m ≥ b2,
(4.4)

with εm = O(e−cmb
−2

) where c > 0.
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Considering that Ri moves with probability pi
2

= Θ(b−i), we can expect that, at
step m, Ri(m) has the same distribution as the lazy random walk with mpi steps
that moves with probability 1

2
. This is proved formally in the next section. Hence,

by substituting m with mpi in Claim 4.8, we obtain:

P (Ri(m) = yi) =

{
O
(
1/
√
mpi

)
if m < bi+2

b−1(1± εmpi) if m ≥ bi+2.
(4.5)

Theorem 4.4 then follows from Eq. (4.1), Eq. (4.3) and Eq. (4.5). Essentially, to
cover Cn, we need that each Ri(m) is mixed, i.e., has some significant probability to
visit any node yi in Cb, which happens, as shown by Eq. (4.5), for m > bk−1+2 = bk+1.
Let us now define:

m0 := bk+1.

We first establish a lower bound on V =
∑2m0

m=m0
P(X(m) = x). By Eq. (4.3) and

Eq. (4.5), we have, for m > m0,

P(X(m) = x) ≈
∏

0≤i≤k−1

b−1 (1− εmpi) = Θ
(
b−k
)
,

where the last equality is justified in the full proof. Thus,

2m0∑
m=m0

P(X(m) = x) = Ω
(
m0b

−k) = Ω (b) .

We need also to upper bound the oversample O =
∑m0

m=0 P(X(m) = 0). To do this,
we shall use the short-time bounds of Eq. (4.5).

Let us decompose the aforementioned sum as follows.

m0∑
m=0

P(X(m) = 0) = 1 +
1

2
+

k−1∑
j=0

bj+1∑
m=1+bj

P(X(m) = 0) +

m0∑
m=1+bk

P(X(m) = 0). (4.6)

Fix j, such that 1 ≤ j ≤ k−1 and let m ∈ (bj, bj+1]. By Eq. (4.3), in order to upper
bound P(X(m) = 0) it is enough to bound P(Ri(m) = yi) for every i ≤ k − 1. For
i > j, we bound P(Ri(m) = yi) by 1. For i ≤ j−2, we use Eq. (4.5) to upper bound
P(Ri(m) = yi) by b−1(1 + εmpj). For i = j − 1 and i = j, we bound P(Ri(m) = yi)
by O

(
1/
√
mpj−1

)
and O

(
1/
√
mpj

)
, respectively. We thus obtain, by Eq. (4.3),

P(X(m) = x) = O

(
1

√
mpj−1

· 1
√
mpj

·
∏

0≤i≤j−2

b−1
(
1 + εmpj

))

= O

(
b−(j−1) ·

√
bbj−1

m

)
= O

(√
b

m

)
,

where we justify in the full proof that
∏

0≤i≤j−2(1 + εmpj) = O(1). Hence, we get:

bj+1∑
m=1+bj

P(X(m) = 0) = O(
√
b log b), (4.7)
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by using that
∑bj+1

m=1+bj m
−1 = Θ

(∫ bj+1

m=bj
u−1du

)
= Θ(log b). For the case j = 0, we

bound P(Ri(m) = yi) by 1 for i > 1 and P(R0(m) = y0) by O(m−
1
2 ), so that, by

Eq. (4.3), P(X(m) = 0) = O( 1√
m

). Hence, we get:

b∑
m=2

P(X(m) = 0) = O
(√

b
)
. (4.8)

Similarly, for m ∈ (bk, bk+1], P(Ri(m) = yi) is bounded by b−1(1+εmpi) for i ≤ k−2,
and by 1√

mpk−1
for i = k − 1. Thus, for m ∈ (bk, bk+1],

P(X(m) = 0) = O

(
1

√
m
√
bk−1

)

and, since
∑bk+1

m=1+bk
1√
m

= O
(∫ bk+1

bk
1√
u
du
)

= O
(√

bk+1
)

, we get:

bk+1∑
m=1+bk

P(X(m) = x) = O

(√
bk+1

√
bk−1

)
= O(b). (4.9)

In total, by Eq. (4.6), combining Eqs. (4.7), (4.8) and (4.9), we find that the expected
number of returns to the origin up to step bk+1 is

O =

m0∑
m=0

P(X(m) = 0) = O
(
k
√
b log b+ b

)
= O (kb log b) .

Hence, by Eq. (4.1), we have:

tcov = O(m0 · k log b · k log n) = O(bk+1k2 log b log n) = O(nbk2 log b log n), (4.10)

as claimed by Theorem 4.4, for the case where n = bk.
Consider now a more general case, in which n is a multiple of bk−1. Here, we

can write n = n̂bk−1, where n̂ ∈ (0, b] is an integer. What changes in this case is
that the last coordinate, Rk−1, is now a random walk over Cn̂ instead of over Cb, as
depicted in Figure 4.3. Rk−1 is thus mixed after number of steps:

n̂2p−1
k−1 = Θ(bk−1n̂2) = Θ(n2/bk−1).

On the other hand, after Θ(bk−2+2) = Θ(bk) steps, the other coordinates are mixed.
Thus, the number of steps needed before every coordinate Ri is mixed is:

m0 = Θ
(
max{bk, n2/bk−1}

)
, (4.11)

which is again the order of magnitude of the cover time of X, up to polylogarithmic
factors. Note that when n = bk, Eq. (4.11) recovers the cover time of order Θ̃(bk+1).
Furthermore, the ratio of the cover time for n = bk and n = n̂bk−1 is of order

bk+1

max{bk,bk−1n̂2} = min{b, b2
n̂2}. When b is large (which corresponds to k being small),

this can be significant. Hence, naively bounding n̂ from above by b would not suffice
to yield an optimal bound.
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The general case, when n is not necessarily a multiple of bk−1, needs to be treated
with more care. What changes in this case is that we can no longer decompose X
as k dependent random walks on Cb× · · · ×Cb×C n

bk−1
, since n

bk−1 is not an integer.

Instead, we define Z as the process that does the same jumps as X, but on the
infinite line Z, and we also define

n̂ := bn/bk−1c.

Then, we use almost the same decomposition, where Z is viewed as k dependent
random walks over Cb×· · ·×Cb×Z. The process corresponding to the last coordinate,
Rk−1, is now a random walk on Z, and we are interested especially on the probability
of the event Rk−1(m) = xk−1 for xk−1 ∈ [0, n̂]. As the coordinate Rk−1 is not
restricted to [0, n̂], we need to pay attention that the walk does not go too far.

4.6 Proof of the upper bound (formal)

In this section, I prove the following theorem.

Theorem 4.4. Let b, k, n be integers such that bk−1 < n ≤ bk. The cover time of
the Weierstrassian random walk on Cn with parameter b is

O

(
nmax

{
bk

n
,
n

bk−1

}
· k2 · log b · log n

)
= Õ

(
max

{
bk,

n2

bk−1

})
.

4.6.1 Preliminaries

We may assume that X is lazy with laziness 1
2
. We define:

Z(m) =
m∑
s=1

ξs · Vs, X(m) = Z(m) mod n, (4.12)

where Vs and ξs ar, respectively, the length and the sign of the s-th jump, i.e., Vs
is a random variable taking value bi with probability pi = cbb

−i for every i ≤ k − 1,
and ξs takes value 0, 1 or −1, with probabilities 1

2
, 1

4
, 1

4
, and the variables (Vs)s∈N

and (ξs)s∈N are independent.
The time it takes to accomplish the first m moves, denoted T (m), is then:

T (m) =
m∑
s=1

|ξs| · Vs. (4.13)

For some m0 to be fixed later, and any x ∈ {0, . . . , n − 1}, consider Nx =∑2m0

m=m0
P(Z(m) = x) and O =

∑m0

m=0 P(Z(m) = 0). Remark that the average step
length of X is

k−1∑
i=0

bipi/2 =
k−1∑
i=0

cb/2 = cbk/2 = Θ(k),

since cb = 1−bk
1−b = Θ(1), as b ≥ 2. By combining Remark 2.9 with Matthew’s bound

(Theorem 1.18), we have that the cover time is at most

O(m0 ·O max
x∈{0,...,n−1}

{N−1
x } · k · log n). (4.14)
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4.6.2 From k-scales search on Z to k (dependent) random
walks on Cb × · · · × Cb × Z

This section is the conceptual core of the proof. I show how the Weierstrassian
walk with k scales Z can be studied as k dependent random walks on the space
Cb × · · · × Cb × Z. For this we first define in Section 4.6.2 the k random walks
Z0, . . . , Zk−1 on Cb × · · · × Cb × Z. Then, in Section 4.6.2, we establish how the
pointwise probabilities of Z can be obtained by the pointwise probabilities of the
Zi.

Definitions and Notations

Definitions. Define, for any i ∈ [k − 1]:

Si(m) :=
m∑
s=1

ξs · 1Vs=bi ,

the simple (unitary) random walk on the line corresponding to the steps of length
bi, and

Ji(m) := biSi(m),

the sum of the steps of length bi. Note that

Z(m) =
∑
i≤k−1

Ji(m) =
∑
i≤k−1

Si(m)bi. (4.15)

Define also:

J ′i(m) :=
i−1∑
j=0

Jj,

the sum of the steps of length at most bi−1.

Base b decomposition. Define, for any x ∈ Z, the (truncated) base b decompo-
sition of x as:

x =
k−1∑
i=0

xib
i,

with xi ∈ [0, b − 1] for any i ∈ [0, k − 2] and xk−1 ∈ Z. This decomposition exists
for any x ∈ Z and is unique.

Remark 4.9. For any x ∈ Z, and any i ∈ [0, k− 2], we have xi = bxb−ic mod b. We
have also xk−1 = bxb−(k−1)c. To see why, note that for any i ∈ [0, k − 2], xb−i =∑

j≤k−1 xjb
j−i =

∑
j≤i−1 xjb

j−i + xi +
∑

j∈[i+1,k−1] xjb
j−i, so that bxb−ic mod b =

xi+b
∑

j≤i−1 xjb
j−ic mod b. Since 0 ≤ xj ≤ b−1, we have 0 ≤

∑
j≤i−1 xjb

j ≤ bi−1,

hence bxb−ic mod b = xi. For i = k− 1, the proof is similar, except we do not need
to take modulo b (as xk−1 ∈ Z).
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Decomposition of Z in the base b. In this base, let us denote by Zi the i-th
coordinate of Z, so that:

Z(m) =
k−1∑
i=0

Zi(m)bi.

By Remark 4.9 and Eq. (4.15), we have, for i ≤ k − 2,

Zi(m) = Z(m)b−i mod b =
∑
j≤k−1

Si(m)bj−i mod b =
∑
j≤i

Si(m)bj−i mod b

= Ri(m) +Ni(m) mod b

where we define, for i ≤ k − 2,

Ri(m) := Si(m) mod b,

and

Ni(m) :=

⌊(∑
j≤i−1

Sj(m)bj

)
b−i

⌋
mod b = bJ ′i(m)b−ic mod b.

Similary, we decompose Zk−1(m) as the sum of Rk−1(m) = Sk−1(m) and

Nk−1(m) = bJ ′k−1(m)b−(k−1)c. (4.16)

Ri corresponds to the steps of length bi and is a lazy random walk on Cb that moves
with probability pi

2
. Ni can be thought of as the noise from smaller coordinates. For

instance, if Zi−1(m) is b − 1 and a step of length bi−1 is done, then Ni(m) will be
incremented of one. Note that N0(m) = 0 always, and that the k − 1’st coordinate
is defined on Z, thus Rk−1 and Nk−1 are not defined modulo b.

So far, we have decomposed Z as a linear combination of k−1 simple, dependent,
random walks. Now we will define additional variables that will allow to control the
dependencies between the Zi.

Number of steps of length bi. Denote by Mi(m) the number of steps of length
bi done up to move m, i.e.,

Mi(m) =
∑
s≤m

1Vs=bi .

This random variable follows a binomial distribution with parameter pi = cbb
−i, and

is thus concentrated around its mean:

µi := mpi = cbmb
−i = Θ(mb−i).

Precisely, I will show that Mi(m) is likely to belong to the interval:

Qi :=

{
[1
2
µi,

3
2
µi], for i > 0, and

[1
4
m,m] for i = 0.

(4.17)
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From Z to the Zi

Fixing the number of steps Mi(m). Here, we look at what happens when we
fix the number of steps of length bi, Mi(m), to be qi. I start with the following
important remark.

Remark 4.10. In general, the variablesRi(m) andNi(m) are dependent. For example
if M1(1) = 1, then M0(1) = 0, since we choose only one step-length between 0 and 1.
However, once we condition on Mi(m) = qi, Ri(m) and Ni(m) become independent
and Ri(m) has then the law of a lazy (with parameter 1

2
) random walk after qi steps.

I.e., we have, for any y ∈ Cb, or y ∈ Z if i = k − 1, and any qi ≤ m,

P (Ri(m) = y |Mi(m) = qi) = pGiqi (y) (4.18)

where

Gi =

{
Cb if i ∈ [0, k − 2]

Z if i = k − 1,

and pGqi(y) is the law of a lazy (with parameter 1
2
) random walk on G ∈ {Z, Cb},

that starts at 0, to visit the node y at step qi.

Considering this remark, we write, with m ≥ 0 and x =
∑k−1

j=0 xjb
j ∈ Z,

P(Z(m) = x) =
∑

q0+···+qk−1=m

Px,q · Mq, (4.19)

where q = (q0, . . . , qk−1),

Px,q = P (Z(m) = x | ∀t ≤ k − 1,Mt(m) = qt) ,

and
Mq = P (∀t ≤ k − 1,Mt(m) = qt) .

Since the base b decomposition is unique, we have Z(m) = x if and only if Zs(m) = xs
for all s ≤ k − 1. Hence,

Px,q =
k−1∏
s=0

P (Zs(m) = xs | As,x,q) ,

where As,x,q denotes the event (∀j < s, Zj(m) = xj) ∩ (∀t ≤ k − 1,Mt(m) = qt).
Since Zi(m) = Ri(m) +Ni(m) = xi if and only if Ri(m) = xi− y and Ni(m) = y

for some y ∈ Cb (Z if i = k − 1), using Remark 4.10, we have:

Px,q =
k−1∏
s=0

∑
y

P (Rs(m) = xs − y | As,x,q) · P (Ns(m) = y | As,x,q.) . (4.20)

Using Eq. (4.18), we have:

P (Rs(m) = xs − y | As,x,q) = pGsqs (xs − y).

Inserting this in Eq. (4.20), we obtain that

Px,q =
k−1∏
s=0

∑
y

pGsqs (xs − y) · P (Ns(m) = y | As,x,q) . (4.21)
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Hence, in Eq. (4.19), we have:

P(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGsqs (xs − y) · P (Ns(m) = y | As,x,q) .

(4.22)

Bounds on pointwise probabilities of Z taking dependencies between the
coordinates into account. Recall, with Eq. (4.14), that we need only bounds
on P(Z(m) = 0) and P(Z(m) = x) for x ∈ [n] to estimate the cover time of the
Weierstrassian random walk on Cn. In the following two lemmas, I show how such
bounds can be obtained by the independent study of:

• the distributions of Mi(m), studied in Section 4.6.3

• the probability pGiq (y). It is given in Section 4.6.3, and

• the noise in the last coordinate, Nk−1(m), studied in Section 4.6.3.

Note that, when neglecting the dependencies between the coordinates, and as-
suming that Mi(m) is exactly its expected value mpi, we have, as detailed in the
main text,

P(Z(m) = x) =
k−1∏
s=0

P(Rs(m) = xs) =
k−1∏
s=0

pGsmps(xs).

Note also that we have
∏k−1

s=0 pGsmps(xs) ≤
∏i

s=0 pGsmps(xs) for any i ≤ k − 1. This
is useful in particular when mpi+1 ≤ 1 ≤ mpi, i.e. when m ∈ [cbb

i, cbb
i+1]. The

following two lemmas provide the additional components that appear when taking
into account the noise and the fact that the number of steps Mi(m) does not always
equal its expected mean mpi. We shall first prove the following upper bound.

Lemma 4.11. For any m ≥ 0 and any i ≤ k − 1,

P(Z(m) = 0) ≤
i∏

s=0

max
y,qs∈Qs

pGsq (y) +
i∑

j=0

(
P(Mj(m) /∈ Qj)

j−1∏
s=0

max
y,qs∈Qs

pGsq (y)

)
(4.23)

We will prove in Section 4.6.4, that the dominating term of this upper bound is

i∏
s=0

max
y,qs∈Qs

pGsq (y),

as is hinted by the intuition. We will also prove the following lower bound. It uses the
event Ak−1,x,q that we recall as (∀j ≤ k−2, Zj(m) = xj)∩ (∀t ≤ k−1,Mt(m) = qt).

Lemma 4.12. For any m ≥ 0, any x ∈ Z, and any I interval of Z,

P(Z(m) = x) ≥ min
∀i,qi∈Qi

P(Nk−1(m) ∈ I | Ak−1,x,q) (4.24)

· min
y∈I,q∈Qk−1

pZ
q (xk−1 − y) ·

k−2∏
s=0

min
y∈Cb,q∈Qs

pCbq (y)

· P(∀j ≤ k − 1,Mj(m) ∈ Qj).
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We will prove in Section 4.6.4, that the dominating term of this lower bound,
whenm ≥ bk, is the second one, namely, miny∈I,q∈Qk−1

pZ
q (xk−1−y)·

∏k−2
s=0 miny∈Cb,q∈Qs pGsq (y).

Indeed, with I well-chosen, and for m ≥ bk, I will prove that the first and last factors
are Ω(1), in Sections 4.6.3 and 4.6.3, respectively.

Proof of Lemma 4.11. We start with Eq. (4.22)

P(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGsqs (xs − y) · P (Ns(m) = y | As,x,q)

≤
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

max
y

pGsqs (y)
∑
y

P (Ns(m) = y | As,x,q)

≤
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

max
y

pGsqs (y), (4.25)

where we used in the last inequality that
∑

y ·P (Ns(m) = y | As,x,q) = 1. As the

number of steps of length bj, Mj(m), is likely to belong to Qj (defined by Eq. (4.17)),
we make the following decomposition of the sum in Eq. (4.25), for any i ≤ k − 1:∑

q0+···+qk−1=m

=
∑

q0+···+qk−1=m
q0∈Q0,...,qi∈Qi

+
i∑

j=0

∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

(4.26)

The intuition behind this decomposition is that when q0, . . . , qi ∈ Q0 × · · · × Qi,
we may obtain a good bound on the pointwise probability of the coordinates 0 to
i, giving an upper bound on

∏k−1
s=0 maxy pGsqs (y) (bounding the factors for s > i by

1). When for some j ≤ i, q0 ∈ Q0, . . . , qj−1 ∈ Qj−1, qj /∈ Qj, we have such a bound

for the coordinates 0 to j − 1, yielding a (weaker) bound on
∏k−1

s=0 maxy pGsqs (y). To
compensate for this weaker bound, we use that the event Mj(m) /∈ Qj is unlikely,
to get a bound on Mq.

Let us first consider the inner sum in the second sum of Eq. (4.26). We have:∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

Mq ·
k−1∏
s=0

max
y

pGsqs (y)

≤

(
j−1∏
s=0

max
y,qj∈Qs

pGsqs (y)

)
·

∑
q0+···+qk−1=m

q0∈Q0,...,qj−1∈Qj−1,qj /∈Qj

Mq

≤

(
j−1∏
s=0

max
y,qs∈Qs

pGsqs (y)

)
· P (M0(m) ∈ Q0, . . . ,Mj−1(m) ∈ Qj−1,Mj(m) /∈ Qj)

≤

(
j−1∏
s=0

max
y,qs∈Qs

pGsqs (y)

)
· P (Mj(m) /∈ Qj) .

By similar computations, we bound the first sum:∑
q0+···+qk−1=m
q0∈Q0,...,qi∈Qi

Px,q · Mq ≤
i∏

s=0

max
y,qs∈Qs

pGsqs (y).
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Inserting into Eq. (4.25), we get:

P(Z(m) = x) ≤
i∏

s=0

max
y,qs∈Qs

pGsq (y) +
i∑

j=0

P(Mj(m) /∈ Qj)

j−1∏
s=0

max
y,qs∈Qs

pGsqs (y),

as desired.

Proof of Lemma 4.12. Let us recall Eq. (4.22):

P(Z(m) = x) =
∑

q0+···+qk−1=m

Mq ·
k−1∏
s=0

∑
y

pGsqs (xs − y) · P (Ns(m) = y | As,x,q)

≥
∑

q0+···+qk−1=m
q0∈Q0,...,qk−1∈Qk−1

Mq ·
k−1∏
s=0

∑
y∈Is

pGsqs (xs − y) · P (Ns(m) = y | As,x,q) ,

where Is = Cb for s ≤ k− 2 and Ik−1 = I is any interval of Z. We then lower bound
pGsqs (xs − y) by miny∈Is pGsqs (xs − y), and use that

∑
y∈Is P (Ns(m) = y | As,x,q) =

P(Ns(m) ∈ Is | As,x,q), which is 1 for s ≤ k − 2, and P(Nk−1(m) ∈ I | Ak−1,x,q) for
s = k − 1, to get:

P(Z(m) = x) ≥
∑

q0+···+qk−1=m
q0∈Q0,...,qk−1∈Qk−1

Mq · P (Nk−1(m) ∈ I | Ak−1,x,q) ·
k−1∏
s=0

min
y∈Is

pGsqs (xs − y)

≥ min
∀i,qi∈Qi

{
P (Nk−1(m) ∈ I | Ak−1,x,q) ·

k−1∏
s=0

min
y∈Is

pGsqs (xs − y)

}
·

∑
q0+···+qk−1=m

q0∈Q0,...,qk−1∈Qk−1

Mq

To conclude, we use the definition of Mq to see that∑
q0+···+qk−1=m

q0∈Q0,...,qk−1∈Qk−1

Mq = P (M0(m) ∈ Q0, . . . ,Mk−1(m) ∈ Qk−1) .

4.6.3 Estimating the terms in Lemmas 4.11 and 4.12

In order to estimate the terms in Lemmas 4.11 and 4.12, we need to understand

• the distribution of Mi(m),

• the distribution pGsq .

• the distribution of the noise Nk−1(m),

They will be studied in Sections 4.6.3, 4.6.3, and 4.6.3, respectively. But first, let
us start with a very technical claim.
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Preliminary technical computations

In what follows, we will use several times the following technical claim.

Claim 4.13. For any i ≥ 0, and any constants c ∈ (0, 1) and c′ > 0, we have

i∏
s=0

(
1− ce−c′bi−s

)
= Θ(1), and

i∏
s=0

(
1 + ce−c

′bi−s
)

= Θ(1).

Proof. Let us consider the first product. Remark that it is upper bounded by 1.
For the lower bound, as c < 1 all terms are positive and we can take its logarithm,

i∑
s=0

log
(

1− ce−c′bi−s
)
,

which is negative as c > 0. To lower bound it, we upper bound its absolute value.
For this, we use that e−c

′bi−s ≤ e−c
′
< 1 and − log(1− t) = O(t) for t ∈ (0, e−c

′
) to

get:

−
i∑

s=0

log
(

1− ce−c′bi−s
)

= O

(
i∑

s=0

e−c
′bi−s

)
.

Then, use that e−c
′t = O(t−1) for any t > 0 to get:

−
i∑

s=0

log
(

1− ce−c′bi−s
)

= O

(
i∑

s=0

bs−i

)
= O

(
i∑

s=0

b−s

)
= O(1).

Taking the opposite of this, and then the exponential, proves the first part of
Claim 4.13. The second part is done similarly. �

Concentration of Mi(m) around its mean mpi

For any i ≤ k − 1, and any m ≥ 1, Mi(m) follows a binomial distribution with
parameter pi and is thus concentrated around its mean mpi. Since Qi = [1

2
mpi,

3
2
mpi]

for i > 0 and Q0 = [1
4
m,m], we can use Chernoff’s bound (Theorems 4.4 and 4.5 in

(Mitzenmacher and Upfal, 2005)) to obtain:

P (Mi(m) /∈ Qi) ≤ e−cmpi = e−ccbmb
−i
, (4.27)

for some constant c > 0. This is the basis for the following lemma, which will
essentially ensure that, for m ≥ bk, we can suppose that, for all i ≤ k−1, Mi(m) ∈ Qi

Lemma 4.14. There are positive constants c′ and c′′ such that for m ≥ c′bk,

P(∀i ≤ k − 1,Mi(m) ∈ Qi) > c′′.

80



4.6. Proof of the upper bound (formal)

Proof of Lemma 4.14. Using the union bound and Eq. (4.27), we get:

P(∃i ≤ k − 1,Mi(m) /∈ Qi) ≤
∑
i≤k−1

P(Mi(m) /∈ Qi)

≤
∑
i≤k−1

e−ccbmb
−i ≤

∑
i≤k−1

e−ccbc
′bk−i

≤ 1

ecc′cb

∑
i≤k−1

1

bk−i

≤ 1

ecc′cb

1− b−k

b− 1
≤ 2

ecc′
,

where we used that m ≥ c′bk and e−t = O(1
t
) for t > 0. For c′ well-chosen, this is

less than 1− c′′ with c′′ > 0. Hence, we have:

P(∀i ≤ k − 1,Mi(m) ∈ Qi) = 1− P(∃i ≤ k − 1,Mi(m) /∈ Qi) ≥ c′′,

as claimed by Lemma 4.14.

Random walks distributions

I need to recall estimations for the distribution of a random walk over the infinite
line, and over the cycle Cb. Since the random walk over the cycle is obtained by
projecting the random walk on Z modulo b, let us first state the results on Z.

Claim 4.15. For a 1
2
-lazy random walk on Z that begins at 0, we have, for any

q ≥ 1, and any y ∈ Z, the probability to visit y at step q is:

pZ
q (y) ≤ cq−

1
2 ,

with c > 0 some constant. Furthermore, for any constant c′′ > 0, there is a constant
c′ > 0 such that for any y ∈ [−c′′√q, c′′√q], we have

pZ
q (y) ≥ c′q−

1
2 .

Proof. It is easy to prove that, due to the laziness of parameter 1
2
, we have

pZ
q (y) ≥ pZ

q (y+ 1) for any y ≥ 0. Hence we can restrict what follows to y = O(
√
q).

In this case, the bounds in (Lawler and Limic, 2010)[Proposition 2.5.3] show that

the distribution of a non-lazy random walk on Z is of order Θ(q−
1
2 ). Going from

there to a lazy random walk that moves with probability 1
2
, we just need to apply

again a concentration argument for a Bernoulli variable. This allows to link the
behaviour of the lazy random walk with m steps with that of the non-lazy random
walk with Θ(m) steps.

�

Claim 4.16. For a 1
2
-lazy random walk on Cb that begins at 0, we have, for any

q ≥ 1, and any y ∈ Cb:

pCbq (y) ≤

{
cq−

1
2 , q ≤ b2

b−1(1 + ce−c
′qb−2

), q ≥ b2
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where c and c′ are positive constants. Furthermore there are constants c′′ ∈ (0, 1)
and c′′′ > 0 such that for any q ≥ b2,

pCbq (y) ≥ b−1(1− c′′e−c′′′qb−2

).

Note that c′′ < 1 ensures that this lower bound (which holds for all q ≥ b2) is at
least Ω(1

b
). Proof. First, the upper bound simply follows as a particular case of the

distribution of a random walk in regular graphs (Aldous and Fill, 2002)[Prop 6.18].
The lower bound requires more explanation. Informally, it stems from the mixing

properties of the cycle. Recall that the mixing time of the cycle is Θ(b2), which means
that after this time, the nodes have probability roughly 1

b
to be visited. In what

follows, we make this statement more precise.
Define the separation distance as:

s(q) = min
y∈Cb
{1− b · pCbq (y)} = inf{s : pCbq (y) ≥ 1− s

b
,∀y ∈ Cb},

and the total variation distance as:

d(q) =
1

2

∑
y∈Cb

|pCbq (y)− 1

b
|.

We have, as a consequence of the mixing time of the cycle being less than b2, that
d(q) ≤ ε for q ≥ b2 log(ε−1) (see (Levin et al., 2008)[5.3.1 and Eq. (4.36)]). Fur-
thermore, by (Levin et al., 2008)[Lemma 19.3 and Eq. (4.24)], we have s(2q) ≤
1 − (1 − 2d(q))2 for any q ≥ 1. Hence, for q ≥ 2b2 log(ε−1), we have s(q) ≤
1 − (1 − 2ε)2 = 4ε − 4ε2 < 4ε. That is, when q ≥ 2b2 log(ε−1), we have, for any
y ∈ Cb:

pCbq (y) ≥ 1

b
(1− 4ε).

With the change of variable ε = exp (− q
2b2

), we have

pCbq (y) ≥ 1

b
(1− 4 exp (− q

2b2
)),

which is not meaningful (as the bound is negative) when q ≤ 2b2. In fact, we
will use this bound only for q ≥ Cb2, with C = 2 log(8) > 1. This ensures that
1− 4 exp (− q

2b2
) ≥ 1

2
which makes for a more useful lower bound.

Now, for b2 ≤ q ≤ Cb2, we can lower bound pCbq (y) by pZ
q (y), and use Claim 4.15,

to show that pCbq (y) ≥ C ′ 1
b

for some C ′ ∈ (0, 1). Altogether, we have pCbq (y) ≥ 1
b
F (q)

for any q ≥ b2, where:

F (q) :=

{
C ′ for q ∈ [b2, Cb2]

1− 4 exp (− q
2b2

) for q ≥ Cb2.

To conclude, we need to verify that we can bound F (q) from below, for all q ≥ b2,
by (1 − c′′e−c′′′qb−2

), for a good choice of c′′ ∈ (0, 1) and c′′′ > 0. This is equivalent
to: establishing that:{

c′′e−c
′′′qb−2 ≥ 1− C ′ for q ∈ [b2, Cb2]

c′′e−c
′′′qb−2 ≥ 4 exp (− q

2b2
) for q ≥ Cb2,
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which is in turn equivalent to:{
c′′e−c

′′′qb−2 ≥ 1− C ′ for q ∈ [b2, Cb2]

c′′eqb
−2( 1

2
−c′′′) ≥ 4 for q ≥ Cb2.

Since we are looking for c′′ < 1, for the second condition to be true, we need that
c′′′ < 1

2
(otherwise, it is obvious that the condition will not hold for q →∞). Given

c′′′ < 1
2
, the left hand side of the second equation is increasing with q ≥ Cb2 and

thus it is enough to verify the condition at q = Cb2. Similarly, the left hand side of
the first equation is decreasing with q and thus it is enough to verify the condition
at q = Cb2. The system is thus equivalent to:{

c′′e−c
′′′C ≥ 1− C ′

c′′eC( 1
2
−c′′′) ≥ 4

,

which is in turn equivalent to the condition c′′e−c
′′′C ≥ M for M := max{1 −

C ′, 4e−
C
2 }. Since C = 2 log 8, we have M := max{1 − C ′, 1

2
}. Since M < 1, we

may take c′′ = 1+M
2

< 1. Then it suffices to take c′′′ small enough, e.g., c′′′ =
1
C

log(1
2

+ 1
2M

) > 0. With these parameters, we have proved:

pCbq (y) ≥ 1

b
F (q) ≥ 1

b
(1− c′′e−c′′′qb−2

),

for any q ≥ b2, and with c′′ < 1. This concludes the proof of Claim 4.16. �
With Claims 4.15 and 4.16, we can obtain the following Lemma. Intuitively,

Lemma 4.17 gives the distribution of (R0, . . . , Rk−1) when they are approximated as
independent. As I will show, the bounds of Lemma 4.17 are good approximations
of the distributions of P(Z(m) = 0).

Lemma 4.17. We have, for any m ≥ bk, any x ∈ Z,

k−2∏
s=0

min
y∈Cb,q∈Qs

pGsq (xs) = Ω(b−(k−1)). (4.28)

We have also, for any i ≤ k − 1, m ∈ (bi, bi+1],

j∏
s=0

max
y,q∈Qs

pGsq (y) =


O(b−j−1) if j ≤ i− 2,

O
(

1√
mbi−1

)
if j = i− 1,

O(
√
b
m

) if j = i,

(4.29)

and, for any m ≥ bk,

k−1∏
s=0

max
y,q∈Qs

pGsq (y) = O

(
1√

mbk−1

)
. (4.30)

Proof. Let us show first Eq. (4.28). For j ≤ k − 2, q ∈ Qj and m ≥ bk, we have
q = Θ(mpi) = Θ(mb−i) = Ω(b2). Applying the lower bound in Claim 4.16, we have,
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for some constants c ∈ (0, 1) and c′,

k−2∏
j=0

min
y∈Cb,q∈Qj

pGjq (xj) ≥
k−2∏
j=0

min
q∈Qj

(
b−1(1− ce−c′qb−2

)
)

≥ b−(k−1)

k−2∏
j=0

(
(1− ce−c′cbmbi−2

)
)
≥ b−(k−1)

k−2∏
j=0

(
(1− ce−c′cbbk−2−i

).
)

We conclude by applying Lemma 4.13 to show that
∏k−2

j=0(1− ce−c′cbbk−2−i
) = Ω(1).

To prove Eq. (4.29), we proceed similarly. Let i ≤ k−1 and m ∈ (bi, bi+1]. Using
this time the upper bound from Claim 4.16, we have, for j ≤ i− 2,

j∏
s=0

max
y∈Cb,q∈Qs

pGsq (y) ≤
j∏
s=0

max
q∈Qs

(
b−1(1 + c′′e−c

′′′qb−2

)
)

= O(b−j−1) (4.31)

where the last equality is justified as above. For the cases j = i − 1, by the upper

bound in Claim 4.16, for q ∈ Qi−1, we have maxy p
Gi−1
q (y) = O(

√
bi−1

m
). Using

Eq. (4.31), we then have

i−1∏
s=0

max
y∈Cb,q∈Qs

pGsq (y) = O

(
b−(i−1)

√
bi−1

m

)
= O

(
1√
mbi−1

)
. (4.32)

For j = i, with the upper bound in Claim 4.16 (or Claim 4.15 if i = k − 1), we

have maxy p
(i−1)
q (y) = O(

√
bi

m
), which, gives, with Eq. (4.32):

i∏
s=0

max
y∈Cb,q∈Qs

pGsq (y) = O

(√
bi

m
· 1√

mbi−1

)
= O

(√
b

m

)
.

Finally, for m ≥ bk, we use again Claims 4.15 and 4.16 to show that

max
y,q∈Qs

pGsq (y) ≤ b−1 max
q∈Qs

(1 + c′′e−c
′′′qb−2

),

for s ≤ k − 2, and

max
y,q∈Qk−1

pZ
q (y) = O

(
max

qk−1∈Qk−1

1
√
qk−1

)
= O

(√
bk−1

m

)
.

Hence, we have with Lemma 4.13,

k−1∏
s=0

max
y,q∈Qs

pGsq (y) = O

(
b−(k−1)

√
bk−1

m

)
= O

(
1√

bk−1m

)
.

This concludes the proof of Lemma 4.17.
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Noise in the last coordinate

Recall that the last coordinate Zk−1 of Z verifies Zk−1(m) = Rk−1(m) + Nk−1(m).
Since Rk−1 is a walk on Z that moves with probability pk−1/2 = Θ(bk−1), we can
expect that |Rk−1(m)| ≈

√
m
bk−1 .

With the following Lemma, we show that, when considering that the variables
Mi(m) are close to their mean, we have Nk−1(m) = O(

√
m
bk

) with at least constant
probability, and hence the noise Nk−1(m) is of lesser order than Rk−1(m), at least
with constant probability.

Lemma 4.18. There is a constant c′ > 0 such that, for any m ≥ bk, with I = (−u, u)
and u = c′

√
m
bk

,

min
∀i,qi∈Qi

P(Nk−1(m) ∈ I | Ak−1,x,q) = Ω(1). (4.33)

Proof. It is enough to prove that there is a constant c′′ > 0 such that, for any u > 0,
and any q = (q0, . . . , qk−1) ∈ Q0 × · · · ×Qk−1,

Nx,q := P (|Nk−1(m)| < u | Ak−1,x,q) ≥ 1− c′′
√

m
bk

u− 1
. (4.34)

Since, by Eq. (4.16), Nk−1(m) = bJ ′k−1(m)b−(k−1)c, we have |Nk−1(m)| ≤ 1 +
|J ′k−1(m)|b−k+1. Thus, defining u′ = (u− 1)bk−1, we have:

Nx,q ≥ P
(
|J ′k−1(m)| < u′ | Ak−1,x,q

)
By Markov’s inequality, we have P

(
|J ′k−1(m)| ≥ u′ | Ak−1,x,q

)
≤ E

(
|J ′k−1(m)| | Ak−1,x,q

)
·

1
u′

and hence:

Nx,q ≥ 1− E
(
|J ′k−1(m)| | Ak−1,x,q

) 1

u′
.

Since J ′k−1(m) =
∑

i≤k−2 b
iSi(m), we have |J ′k−1(m)| ≤

∑
i≤k−2 b

i|Si(m)|, therefore:

E
(
|J ′k−1(m)| | Ak−1,x,q

)
≤
∑
i≤k−2

biE (|Si(m)| | Ak−1,x,q) .

Hence,

Nx,q ≥ 1−
∑

i≤k−2 b
iE (|Si(m)| | Ak−1,x,q)

u′
. (4.35)

Our next goal is to bound E (|Si(m)| | Ak−1,x,q). Recall that conditioning onAk−1,x,q,
Si(m) is a lazy (with laziness 1

2
) random walk on Z with qi (possibly lazy) steps, and

we have Zi(m) = xi for every i ≤ k − 2. Thus, for every i ≤ k − 2, Si(m) + Ni(m)
mod b = Zi(m) = xi. Conditioning on the value yi ∈ Cb taken by Ni(m), we have
Si(m) = xi − yi mod b and are in the setting of the following claim.

Claim 4.19. Let Sq be a lazy (with parameter 1
2
) random walk on Z at step q ≥ b2,

and x ∈ [b]. Then there is a constant c > 0 such that:

E(|Sq| | Sq = x mod b) ≤ c
√
q.

The claim essentially says that the conditioning on Sq = x mod b, for any
x ∈ [0, b− 1], does not change significantly the distance travelled by the walk up to
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step q. Let us delay the proof of Claim 4.19 and assume it for now. Then, by Claim
4.19, for any yi ∈ Cb,

E(|Si(m)| | Ak−1,x,q ∩Ni(m) = yi) ≤ c
√
qi.

Hence, E(|Si(m)| | Ak−1,x,q) ≤ c
√
qi, and thus, by Eq. (4.35):

Nx,q ≥ 1− c

u′

∑
i≤k−2

bi
√
qi.

Since qi ∈ Qi, we have qi = Θ(mb−i). Hence∑
i≤k−2

bi
√
qi = Θ(

√
m
∑
i≤k−2

√
b
i
) = Θ(

√
m
√
b
k−2

).

Thus, for some constant c′′ > 0, we have

Nx,q ≥ 1− c′′

u′
√
m
√
b
k−2

.

Replacing u′ yields Eq. (4.34) and thus establishes Lemma 4.18, assuming Claim
4.19.

We next proceed to prove Claim 4.19. [. Proof of Claim 4.19] Let x ∈ {0, . . . , b−
1}. By definition,

E(|Sq| | Sq = x mod b) =
1

P(Sq = x mod b)

∑
k≥1

kP(|Sq| = k ∩ Sq = x mod b)

=
1

P(Sq = x mod b)

∑
k≥1

∑
l∈Z

kP(|Sq| = k ∩ Sq = x+ lb)

=
1

P(Sq = x mod b)

∑
k≥1

∑
l∈Z

k(P(Sq = k = x+ lb) + P(Sq = −k = x+ lb))

=
1

P(Sq = x mod b)
(θx + γx) . (4.36)

where θx =
∑

l≥0(x+ lb)P(Sq = x+ lb) and γx =
∑

l≥1(lb− x)P(Sq = −lb+ x). We

will prove that γx + θx is of order
√
q

b
. For this, note that

b−1∑
y=0

θy + γy = E(|Sq|) = O(
√
q). (4.37)

Next, let us prove that θy + γy does not significantly depend on y ∈ [b], for q ≥ b2.
First, by symmetry of the process, for any y ∈ {0, . . . , b−1}, we have γy =

∑
l≥1(lb−

y)P(Sq = lb− y) =
∑

l≥0(lb+ b− y)P(Sq = lb+ b− y) = Θb−y. Thus,∑
y

θy + γy = 2
∑
y

θy = O(
√
q) (4.38)
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Furthermore, as S is lazy with parameter 1
2
, we have P(Sq = z) ≥ P(Sq = z + 1) for

any q > 0 and z ≥ 0. Hence,

θy ≤
∑
l≥0

(y + lb)P(Sq = lb) ≤
∑
l≥0

(b+ lb)P(Sq = lb) ≤ bP(Sq = 0 mod b) + θ0.

(4.39)
Using the same monotony property of the process, we have

θy ≥
∑
l≥0

lbP(Sq = (l + 1)b) =
∑
l≥0

(l + 1)bP(Sq = (l + 1)b)− b
∑
l≥0

P(Sq = (l + 1)b)

≥ θ0 − bP(Sq = 0 mod b).

By Claim 4.16, we have, for q ≥ b2, P(Sq = 0 mod b) = Θ(1
b
). Hence

θy = θ0 ±Θ(1)

and, by summing, we have ∑
y

θy = bθ0 ±Θ(b).

Since
∑

y θy = O(
√
q), and q ≥ b2, this implies θ0 = O(

√
q

b
), and hence, θy = O(

√
q

b
).

Combined with Eq. (4.36), we have, for q ≥ b2,

E(|Sq| | Sq = x mod b) = O

(
1

P(Sq = x mod b)

√
q

b

)
= O

(
b

√
q

b

)
= O (

√
q) ,

where in the last equality we use again Claim 4.16. This proves Claim 4.19. �

4.6.4 Estimating the number of visits to 0 and x

Recall, with Eq. (4.14), that we want to find p > 0 and m0 such that, for any
x ∈ {0, . . . , n− 1},

Nx

O
=

∑2m0

m=m0
P(Z(m) = x)∑m0

m=0 P(Z(m) = 0)
≥ p

with m0p
−1 as small as possible, since the cover time is then Õ(m0p

−1), by Eq. (4.14).
Let us explain intuitively how we find the right m0. We want any x ∈ [0, n− 1]

to have a reasonable chance to be visited by Z(m0). As x = x0 + · · ·+xk−1b
k−1 ≤ n,

with nonnegative xi, we have xk−1 ≤ n̂, where we define:

n̂ := b n

bk−1
c.

Hence, we are interested in the behaviour of Z0, . . . , Zk−2, Zk−1 on Cb×· · ·×Cb×[0, n̂].
To ensure that any x ∈ [0, n − 1] has a reasonable chance to be visited, we require
that every coordinate Ri, for i ≤ k − 2, should be mixed. As Ri is a random walk
on Cb which moves with probability pi/2, this happens after Θ(p−1

i b2) = O(p−1
k−2b

2)
steps. We also require that the coordinate Rk−1 has gone to distance at least n̂,
which needs about n̂2p−1

k−1 = Θ( n2

bk−1 ) steps. This leads us to define:

m0 := max{p−1
k−2b

2, n̂2p−1
k−1} = c−1

b bk−1 max{b, n̂2} = Θ

(
max{bk, n

2

bk−1
}
)
,

as the minimal number of steps such that both of these conditions are satisfied. Note
that m0 ∈ [c−1

b bk, c−1
b bk+1], with c−1

b = p−1
0 ∈ (1, 2) as is explicit in the definition of

the Weierstrassian process.
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Estimating the expected number of visits to x

Lemma 4.20. The expected number of visits to x in between steps m0 and 2m0 is:

Nx =

2m0∑
m=m0

P(Z(m) = x) = Ω

(√
m0

bk−1

)
. (4.40)

Proof. To lower bound P(Z(m) = x), we use Eq. (4.24) with m ∈ [m0, 2m0], and
I = (−u, u) with u = m

bk−2 > 1. Let us write Eq. (4.24) as the product of four terms:

P(Z(m) = x) ≥ T1T2T3T4.

• The first term is:

T1 := min
∀i,qi∈Qi

P(Nk−1(m) ∈ I | ∀i(Zi(m) = xi) ∩ (Mi(m) = qi)) = Ω(1).

where the last inequality is by Lemma 4.18.

• The second term of Eq. (4.24) is

T2 := min
y∈I,q∈Qk−1

pZ
q (xk−1 − y),

in which, as q ∈ Qk−1, we have q = Θ(mpk−1) = Θ( m
bk−1 ). As |xk−1| ≤ n̂ =

b n
bk−1 c and |y| < u = 1 + c′m

bk
, we have |xk−1 − y| = O( n

bk−1 + m
bk

) = O( n
bk−1 )

where we verify the last equality easily by using the fact that m ∈ [m0, 2m0].
Thus, |xk−1 − y| = O(n̂). As in addition, q = Θ( m

bk−1 ) = Ω(n̂2) and pZq is the
distribution of a lazy random walk on the line, which is given by Claim 4.15,
we have:

T2 = Ω

(
1
√
q

)
= Ω

√bk−1

m0

 .

• The third term of Eq. (4.24) verifies, by Lemma 4.17,

T3 :=
k−2∏
j=0

min
y∈Cb,q∈Qj

pjq(y) = Ω
(
b−(k−1)

)
.

• Finally, the fourth term of Eq. (4.24) verifies, by Lemma 4.14,

T4 := P(∀j ≤ k − 1,Mj(m) ∈ Qj) = Θ(1).

Altogether, we obtain:

P(Z(m) = x) = Ω(T1T2T3T4) = Ω

(
1√

bk−1m0

)
,

which implies that the total expected number of visits to x between steps m0 and
2m0 is

2m0∑
m=m0

P(Z(m) = x) = Ω

(√
m0

bk−1

)
,

as claimed by Lemma 4.20.
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4.6. Proof of the upper bound (formal)

Estimating the expected number of returns to the origin

We want to bound the expected number of returns to 0 up to step m0. Ideally,
we would like to match the upper bound, found in Lemma 4.20, on the expected
number of visits to x, which is O(

√
m0b−(k−1)). The following Lemma shows this is

nearly the case, up to a factor of k log b.

Lemma 4.21. The expected number of returns to 0 up to step m0 is

O =

m0∑
m=0

P(Z(m) = 0) = O

(√
m0

bk−1
k log b

)
.

Proof. To estimate O, the strategy, as presented in the sketch of the proof, starts
with the following decomposition:

O =

m0∑
m=0

P (Z(m) = 0) = 1 +
1

2
+

k−1∑
i=0

bi+1∑
m=1+bi

P (Z(m) = 0) +

m0∑
m=1+bk

P (Z(m) = 0) .

The main idea is to use that, for i ≤ k − 1, between the steps bi and bi+1, the
coordinates 0 to i − 2 are mixed, and that we know short-time probability bounds
for the coordinates i− 1 and i.

Precisely, let i ∈ [1, k − 1] and m ∈ (bi, bi+1]. Recall that Lemma 4.11 states
that:

P(Z(m) = 0) ≤
i∑

j=0

(
P(Mj(m) /∈ Qj)

j−1∏
s=0

max
qs∈Qs

pGsq (0)

)
+

i∏
s=0

max
qs∈Qs

pGsq (0). (4.41)

By Eq. (4.29) in Lemma 4.17 and Eq. (4.27), we have:

P(Z(m) = 0) = O

(
i−1∑
j=0

(
e−cmb

−j
b−j
)

+ e−cmb
−i 1
√
m ·
√
bi−1

+

√
b

m

)
. (4.42)

Using that, for any t > 0, e−t ≤ 2t−2, we have

i−1∑
j=0

(
e−cmb

−j
b−j
)
≤

i−1∑
j=0

(
2

c2m2b−2j
b−j
)

= O

(
1

m2

i−1∑
j=0

bj

)
= O

(
bi

m2

)
= O

(
1

m

)
,

where we used in the last equality that m ≥ bi. For the middle term of Eq. (4.41),

we use that e−t ≤ t−1 for any t > 0. Hence, e−cmb
−i 1√

m·
√
bi−1

= O(
√
b
m

). Altogether,

we have

P(Z(m) = 0) = O

(√
b

m

)
(4.43)

We now sum Eq. (4.43) for m between bi and bi+1:

bi+1∑
m=1+bi

P(Z(m) = 0) = O

 bi+1∑
m=1+bi

√
b

m

 = O

(∫ bi+1

bi

√
b

u
du

)

= O

(√
b log

(
bi+1

bi

))
= O

(√
b log b

)
. (4.44)
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Chapter 4. On the efficiency of discrete approximations of the Cauchy Walk

Summing Eq. (4.44) for i = 1, . . . , k − 1, we have:

bk∑
m=1+b

P(Z(m) = 0) = O
(
k
√
b log b

)
. (4.45)

For m ∈ [2, b], by Lemma 4.11 and Eq. (4.27) applied with i = 0, and Claim 4.16,
we have P(Z(m) = 0) = O(e−ccbm + 1√

m
) = O( 1√

m
). Thus,

b∑
m=2

P(Z(m) = 0) = O(
b∑

m=2

m−
1
2 ) = O(

√
b). (4.46)

Finally, let us bound the expected number of returns to the origin between steps bk

and m0. We use Eq. (4.23) (with i = k − 1), Eq. (4.27) and Lemma 4.17 to obtain,
for m ≥ bk,

P(Z(m) = 0) = O

(
k−1∑
j=0

(
e−cmb

−j
b−j
)

+
1√

bk−1
√
m

)
= O

(
1√

bk−1
√
m

)
,

where in the last equality, we use again that e−t ≤ t−2, and m ≥ bk. Summing this
for m ∈ (bk,m0], we use again a comparison to an integral:

m0∑
m=1+bk

P(Z(m) = 0) = O

 m0∑
m=1+bk

1√
bk−1
√
m

 = O

(∫ m0

bk

1√
bk−1
√
u
du

)

= O

(√
m0

bk−1

)
. (4.47)

Combining Eqs. (4.45), (4.46) and (4.47), we have:

m0∑
m=0

P(Z(m) = 0) = O

(
k
√
b log b+

√
m0

bk−1

)
= O

(√
m0

bk−1
k log b

)
,

where we used in that last inequality that m0 ≥ bk and hence
√

m0

bk−1 ≥
√
b. This

concludes the proof of Lemma 4.21.

4.6.5 Concluding the Proof of Theorem 4.4

Now we have by Lemmas 4.20 and 4.21:∑2m0

m=m0
P(Z(m) = x)∑m0

m=0 P(Z(m) = 0)
= Ω

(√
m0

bk−1
· 1√

m0

bk−1k log b

)
= Ω

(
1

k log b

)
,

and, by Eq. (4.14), the cover time of the Weierstrassian random walk with parameter
b on Cn is:

O (m0 · k log b · k log n) = O
(
m0k

2 log b log n
)
.

Since we have defined

m0 = Θ
(
bk−1 max{b, n̂2}

)
= Θ

(
bk−1 max{b, n2

b2(k−1)
}
)

= Θ

(
nmax{b

k

n
,
n

bk−1
}
)
,

this concludes the proof of Theorem 4.4.
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Chapter 5

Conclusion

Summary of the results. Throughout this dissertation, I have analysed theo-
retical models of search when the navigational abilities of the agent are minimal,
i.e., the agent has to pause to detect targets and, after such a pause, has lost its
previous orientation; more generally, the agent cannot remember information on the
environment, nor does it respond to external or internal stimuli. Such a setting is
highly restrictive; however I have shown that, if the agent is at least able to do
ballistic steps of length given by a probability distribution p, then it can search a
two-dimensional space highly effectively. More precisely, I have shown in Chapter
3 that when p is a truncated power-law pµ,`max of exponent µ, truncated at an ap-
propriately chosen `max, and targets appear in different sizes, then µ close to 1 is
not efficient for small targets, while µ close to 3 is not efficient for large targets.
In contrast, the middle value µ = 2, which gives rise to Cauchy Walks, perform
almost optimally (at most a multiplicative factor O(log3 n) on the unconditional
lower bound Θ(n/D)) for all target sizes.

Furthermore, with Chapter 4, I have shown that if the agent is able only to
approximately reproduce p2,`max , then the search efficiency is still appreciably im-
proved in comparison to a Brownian motion. Precisely, I considered a model in
which an agent is able to use k distinct lengths. I have then shown that the discrete
approximation, called Weierstrassian Walk, to a Cauchy Walk, performs optimally

(in time roughly n
2k

2k−1 ) among all random walks that utilize k lengths; furthermore,
I have suggested, by a lower bound, that such an algorithm, to be efficient, must
resemble a Weierstrassian Walk.

Implications in the foraging literature. As discussed in Chapter 1, there is
some ongoing debate as to whether Lévy Walks are just descriptions of the trajec-
tories, or if they can be, at least in some instances, appropriate behavioural models
of searchers. Moreover, in both cases, it was not clear under which setting a Lévy
Pattern (or Walk) of exponent µ is expected. While the definite answers to these
questions are out of the scope of this thesis, I do hope that the results presented here
shed some light on the problem. Indeed, I expect simple organisms with minimal
navigational abilities to adopt strategies leading to Cauchy Patterns – and there is
some evidence that they do, since (Sims et al., 2014) showed in extinct sea urchins
the presence of three-modal Weierstrassian Patterns, which, I have argued, are op-
timal in comparison to other walks utilizing three step lengths. This is relevant for
the study of more complex animals since the algorithms of early species could be
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the founding blocks of later species’ search strategies.
For instance, more complex animals might be able to adapt the exponent µ of

their step-length distribution to their environment. I have suggested in Chapter 3
how the dependency on µ could evolve according to the target sizes. When targets
appear in various sizes, a Cauchy Pattern could emerge. Interestingly, a deviation
from this result, biased to smaller µ, could represent an indicator of how much
animals prefer to find large targets rather than small targets.

Open problems. I have shown that Cauchy Walks are surprisingly good at ex-
ploring an Euclidean space. Although such spaces are natural, in many cases the
space can be crowded, i.e., full of obstacles. Hence, the question arises whether these
walks also perform efficiently in percolated grids. More generally, the Walk or Probe
problem, introduced in Chapter 2 as the extension of the intermittent, memoryless,
search problem on general graphs, has not been solved completely, and has natural
ties with the theory of random walks on graphs. In particular, it would be of interest
to see if a strategy where the waiting time between two probes follow a power-law
distribution would perform reasonably well in general. If the answer is positive,
it would yield a search algorithm in general graphs, attractive by its simplicity of
implementation. If the answer is negative, it would be interesting to see whether the
bad-case graphs could arise in a biological situation, and, if so, how animals respond
when confronted to such topologies. Such a methodology has recently been fruitful
(Gelblum et al., 2020), and it is my hope that it continues to be so.
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hunter-gatherers. Proceedings of the National Academy of Science, 111:728–
733.

Reingold, O. (2008). Undirected connectivity in log-space. J. ACM, 55.

Reynolds, A. (2006). On the intermittent behaviour of foraging animals.
http://dx.doi.org/10.1209/epl/i2006-10157-x, 75.

Reynolds, A. (2010). Balancing the competing demands of harvesting and safety
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