Combinatorics of singularities of some special curves and hypersurfaces

Ali Abbas

To cite this version:

Ali Abbas. Combinatorics of singularities of some special curves and hypersurfaces. Discrete Mathematics [cs.DM]. Université d'Angers, 2017. English. NNT: 2017ANGE0098 . tel-03239539

HAL Id: tel-03239539
https://theses.hal.science/tel-03239539
Submitted on 27 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse de Doctorat

Ali Abbas

Mémoire présenté en vue de l'obtention du grade de Docteur de l'Université d'Angers sous le sceau de l'Université Bretagne Loire

École doctorale : Sciences et technologies de l'information, et mathématiques
Discipline : Mathématiques et leurs interactions, section CNU 25
Unité de recherche : Laboratoire Angevin de Recherche en Mathématiques (LAREMA)
Soutenue le 11 Septembre 2017

Combinatoire des singularités de certaines courbes et hypersurfaces

Rapporteurs :	M. Antonio Campillo, Professeur, Université de Valladolid, Espagne
	M. Mark Spivakovsky, Professeur, Université Paul Sabatier Toulouse 3
Examinateurs :	M. Michel Granger, Professeur, Université d'Angers
	M. Hussein Mourtada, Maître de conférences, Université Paris VII
	M. Guillaume Rond, Maître de Conférences HDR, Université d'Aix Marseille
	$\mathbf{M}^{\text {me }}$ Monique Lejeune-Jalabert, Directeur de recherche au CNRS, Université de Versailles-Saint Quentin
Directeur de thèse :	M. Abdallah Assı, Maître de Conférences HDR, Université d'Angers

ThÈSE

pour obtenir le grade de

Docteur ès Mathématiques

présentée à l'Université d'Angers par

Ali Abbas

Combinatoire des singularités de certaines courbes et hypersurfaces

soutenue le 11 Septembre 2017 devant le jury composé de :

M. Mark Spivakovsky	Professeur à l'Université de Paul Sabatier Toulouse 3	Rapporteur
M. Antonio Campillo	Professeur à l'Université de Valladolid	Rapporteur
M. Michel Granger	Professeur à l'Université d'Angers	Examinateur
M. Hussein Mourtada	Maître de conférences à l'Université de Paris VII	Examinateur
M. Guillaume Rond	Maître de conférences HDR à l'Université d'Aix Marseille	Examinateur
Mme. Monique Lejeune-Jalabert	Directeur de recherche au CNRS	Examinateur
M. Abdallah Assi	Maître de Conférences HDR à l'Université d'Angers	Directeur de thèse

Remerciements

I would like to thank my advisor, Abdallah Assi for all his help and guiding through these years which led me to accomplish this work.

I would like to thank the committee members for their discussions and comments through this process.
I would like to thank my amazing family for all their support.
I'd like to thank all my friends especially Bachar Moughayt. I am very grateful for his help since the moment i arrived in Angers.

I would like to thank the soul of Dostoyevsky and other writers for what they gave to humanity. I undoubtedly could not have done anything in my life without them.

Finally, I would like to dedicate this thesis to my father and teacher in life, Hussein Abbas.

Table des matières

Remerciements 5
1 Introduction 9
2 Free polynomials 15
2.1 G-adic Expansion and Approximate roots 15
2.1.1 Expansion of integers 15
2.1.2 G-adic expansion of a polynomial 16
2.1.3 Tschirnhausen Transform 17
2.2 Affine semigroups 21
2.2.1 Free affine semigroups 21
2.2.2 Standard representation and the Frobenius vector 21
2.3 Quasi-Ordinary Polynomials 24
2.3.1 Abhyankar-Jung theorem 24
2.3.2 Characteristic monomials of a quasi-ordinary polynomial 25
2.3.3 Field extensions. 28
2.3.4 Semi-roots and approximate roots of a quasi-ordinary polynomial. 30
2.4 Free polynomials 35
2.4.1 Line Free Cones. 35
2.4.2 Fractional power series solutions 38
2.4.3 Characteristic exponents 42
2.4.4 The initial form of the minimal polynomial of $y_{<m_{i}}$ 46
2.4.5 The initial form of the approximate roots of f 50
3 Canonical bases of modules over one dimensional \mathbb{K}-algebras 55
3.1 Numerical semigroups and ideals. 55
3.1.1 Numerical semigroups 55
3.1.2 Ideals of numerical semigroups 58
3.2 Basis of \mathbb{K}-Algebra 60
3.3 Modules over \mathbb{K}-Algebras 63
3.4 Curves with one place at infinity. 66
3.5 Kahler Differentials 70
Bibliography 81

Introduction

The thesis is made up of two parts. In the first part we generalize the Abhyankar-Moh theory to a special kind of polynomials, called free polynomials. These polynomials generalize to $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]$ the well known results about polynomials of $\mathbb{K}[[x]][y]$, where \mathbb{K} is an algebraically closed field of characteristic zero. More precisely, consider a polynomial :

$$
f=y^{n}+a_{1}(x) y^{n-1}+\cdots+a_{n}(x)
$$

in $\mathbb{K}[[x]][y]$, and assume that f is irreducible. The Newton-Puiseux theorem [25, 27] says that f admits a solution $y\left(x^{\frac{1}{n}}\right)$ in the ring of fractional power series $\mathbb{K}\left[\left[x^{\frac{1}{n}}\right]\right]$. Moreover, we have :

$$
f\left(x^{n}, y\right)=\prod_{i=1}^{n}\left(y-y\left(w_{i} x\right)\right)
$$

where w_{1}, \ldots, w_{n} are the n-th roots of unity in \mathbb{K}. Furthermore, Abhyankar $[2,4]$ has proved that we can associate with f a sequence of integers $\left\{m_{1}, \ldots, m_{h}\right\}$ derived from the exponents of some root $y=\sum_{p} c_{p} x^{p}$ of $f\left(x^{n}, y\right)=0$, and this sequence is independent of the choice of the solution. This set of integers is called the set of Newton-Puiseux exponents of f, and is constructed as follows : $m_{0}=n=d_{1}$, and for all $k \geq 1$:

$$
m_{k}=\inf \left\{p \in \mathbb{N} \text {, such that } c_{p} \neq 0 \text {, and } d_{k} \text { does not divide } p\right\}, d_{k+1}=g c d\left(d_{k}, m_{k}\right)
$$

Then h is such that $d_{h+1}=1$. We can also associate with f its semigroup of values which is defined to be the set :

$$
\Gamma(f)=\left\{\operatorname{int}(f, g)=O_{x}\left(g\left(x^{n}, y(x)\right)\right), g \in \mathbb{K}[[x]][y] \backslash(f)\right\}
$$

where $O_{x}\left(g\left(x^{n}, y(x)\right)\right)$ denotes the smallest integer among the exponents of the power series $g\left(x^{n}, y(x)\right)$. This semigroup is generated by the elements $r_{0}, r_{1}, \ldots, r_{h}$, defined by $r_{0}=m_{0}=n, r_{1}=m_{1}$, and for all $2 \leq k \leq h$:

$$
r_{k}=\frac{d_{k-1}}{d_{k}} r_{k-1}+m_{k}-m_{k-1}
$$

Abhyankar proved in [4] that there exists a special king of polynomials $\left\{G_{1}, \ldots, G_{h}\right\}$, namely pseudo-roots of f, such that $\operatorname{deg}\left(G_{i}\right)=\frac{n}{d_{i}}$ and $O\left(f, G_{i}\right)=r_{i}$. Moreover, he proves that $O\left(f, g_{i}\right)=r_{i}$ for all $i \in\{1, \ldots, h\}$ where $\left\{g_{1}, \ldots, g_{h}\right\}$ are the approximate roots of f (see Definition 4).
More generally let $f=y^{n}+a_{1}\left(x_{1}, \ldots, x_{e}\right) y^{n-1}+\cdots+a_{n}\left(x_{1}, \ldots, x_{e}\right)$ be a polynomial in y with coefficients $a_{i}\left(x_{1}, \ldots, x_{e}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$, the ring of formal power series in several variables, for all $1 \leq i \leq n$. Then, f is said to be quasi-ordinary if its discriminant $\Delta_{y}(f)$, which is defined to be the resultant in y of f and its y derivative f_{y}, is of the form $\Delta_{y}(f)=x_{1}^{\alpha_{1}} \cdots x_{e}^{\alpha_{e}} \varepsilon\left(x_{1}, \ldots, x_{e}\right)$, where $\varepsilon\left(x_{1}, \ldots, x_{e}\right)$ is a unit in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$. If f
is irreducible then by the Abhyankar-Jung theorem $[3,18] f$ admits a solution $y\left(x_{1}, \ldots, x_{e}\right)$ in $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$. Moreover we have :

$$
f\left(x_{1}^{n}, \ldots, x_{e}^{n}, y\right)=\prod_{i=1}^{n}\left(y-y_{i}\left(x_{1}, \ldots, x_{e}\right)\right)
$$

where $y_{i}\left(x_{1}, \ldots, x_{e}\right)=y\left(\beta_{1}^{i} x_{1}, \ldots, \beta_{e}^{i} x_{e}\right)$ are conjugates of y, where β_{j}^{i} is an n-th root of unity for all $1 \leq i \leq n$, $1 \leq j \leq e$. Now let $y=\sum_{\left(p_{1}, \ldots, p_{e}\right)} c_{\left(p_{1}, \ldots, p_{e}\right)} x_{1}^{p_{1}} \cdots x_{e}^{p_{e}}$ be a root of $f\left(x_{1}^{n}, \ldots x_{e}^{n}, y\right)=0$, and define the support of f to be the set $\operatorname{Supp}(f)=\left\{p \in \mathbb{N}^{e}\right.$, such that $\left.c_{p} \neq 0\right\}$. In [19], Lipman has proved that there exists a sequence of elements $m_{1}, \ldots, m_{h} \in \operatorname{Supp}(y)$ such that:
(i) $m_{1}<m_{2}<\cdots<m_{h}$ coordinate-wise.
(ii) If $m \in \operatorname{Supp}(f)$, then $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$
(iii) $m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j<i} m_{j} \mathbb{Z}$ for all $i=1, \ldots, h$.

The semigroup of f is defined to be the set $\Gamma(f)=\left\{O(f, g), g \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y] \backslash(f)\right\}$, where $O(f, g)$ is the lexiographical order of the the initial form of $g\left(x_{1}^{n}, \ldots, x_{e}^{n}, y\left(x_{1}, \ldots, x_{e}\right)\right)$. Define the \underline{D}-sequence of f to be $D_{1}=n^{e}$, and for all $1 \leq i \leq h, D_{i}$ to be the gcd of the $e \times e$ minors of the matrix $\left[n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}\right]$, where T denotes the transpose of the vector. We have $D_{1}>\ldots>D_{h+1}=n^{e-1}$. We define the \underline{e}-sequence to be $e_{i}=\frac{D_{i}}{D_{i+1}}$ for all $1 \leq i \leq h$, the \underline{r}-sequence $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}$ to be :

$$
r_{i}=e_{i-1} r_{i-1}+m_{i}-m_{i-1}
$$

for all $1 \leq i \leq h$, and $r_{0}^{1}, \ldots, r_{0}^{e}$ to be the canonical basis of \mathbb{Z}^{e}. The sequence $\left\{r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}\right\}$ forms a system of generators of $\Gamma(f)$. Gonzàlez Pérez in [16] proved that for all $i \in\{1, \ldots, h\} f$ admits an i-th semiroot, that is a polynomial g of degree $\frac{n}{d_{i}}$ such that $g\left(\underline{x}^{n}, y(\underline{x})\right)=\underline{x}^{r_{i}} \varepsilon$ for some ε unit in $\mathbb{K}[[\underline{x}]]$. Moreover, he proved that for all $i \in\{1, \ldots, h\}$ the d_{i}-th approximate root of f is an i-th semi-root of f.

In sections 2 and 3 of the thesis we recall some preliminary facts about G-adic expansions, approximate roots, and affine semigroups. In section 4 we recall the Abhyankar-Jung theorem and the construction of the characteristic monomials of a quasi-ordinary branch done by Lipman [19], and the study of the semi-roots and approximate roots of a quasi-ordinary branch done by Gonzàlez Pérez in [16].

The aim of the first part of the thesis is to generalize these results from quasi-ordinary to a wider class of polynomials. Let $f\left(x_{1}, \ldots, x_{e}, y\right)$ be a polynomial in y with coefficients in the polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{e}\right]$, McDonald proved in [21] that f admits a root in the ring of Puiseux power series with support in strongly convex polyhedral cone. Gonzàlez Pérez in [15] extended this result to polynomials with coefficients in the ring of Puiseux power series with support in a strongly convex polyhedral cone. Moreover, Aroca and Ilardi in [6] generalized McDonald results. Given $\omega \in \mathbb{R}^{n}$, they proved that the field of ω-positive Puiseux series is algebraically closed, where a ω-positive Puiseux series is a Puiseux series with support in a translate of a strongly convex rational polyhedral cone with $\omega \cdot v \geq 0$ for all v in this cone.
In this work we take a polynomial $f=y^{n}+a_{1}\left(x_{1}, \ldots, x_{e}\right) y^{n-1}+\cdots+a_{n}\left(x_{1}, \ldots, x_{e}\right)$ in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]$ with a y-discriminant $\Delta_{y}(f)$ (where the y-discriminant is defined to be the y-resultant of f and its y-derivative). By a preliminary change of variables we may assume that the homogeneous component of smallest degree of $\Delta_{y}(f)$ contains a power of x_{1}. Now by taking the change of variables:

$$
x_{1}=X_{1}, x_{2}=X_{2} X_{1}, \ldots, x_{e}=X_{e} X_{1}
$$

we get a new polynomial $F\left(X_{1}, \ldots, X_{e}, y\right)$, which is quasi-ordinary, hence it has a root $y_{N} \in \mathbb{K}\left[\left[X_{1}^{\frac{1}{n}}, \ldots, X_{e}^{\frac{1}{n}}\right]\right]$. By taking the preimage we get a solution y of $f\left(x_{1}, \ldots, x_{e}, y\right)=0$, such that the support of y is in some line free cone C (where a line free cone C is a cone such that for all $x \in C$ we have $-x \notin C$). Thus y is in the set of fractional power series with exponents in the line free cone C, denoted by $\mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ (assuming that f is irreducible in $\left.\mathbb{K}_{C}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]\right)$. This set forms a ring under the usual addition and multiplication of
power series, moreover it is an integral domain.
The main idea of the birational change of variables above is the following : if f is irreducible in $\mathbb{K}_{C}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]$ then F is an irreducible quasi-ordinay polynomial (see Theorem 4 and Lemma 17).
Since C is a line free cone, there exists an additive order \leq on C which is compatible with C, i.e $\forall p \in C \cap \mathbb{Z}^{e}$ we have $p \geq(0, \ldots, 0)$. In particular every set $S \subseteq C \cap \mathbb{Z}^{e}$ has a minimal element with respect to this order, and so if we consider the support of y, then it can be arranged in an increasing order with respect to this order.
Let L be the fraction field of $\mathbb{K}_{C}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$, and let $L_{n}=L\left(x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right)$ be the field obtained by adjoining $x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}$ to L, then a conjugate y_{i} of y is an element $\theta(y)$ for some automorphism θ of L_{n} over L. Note that y_{i} belongs to $\mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ also. We define the set of characteristic exponents of f to be :

$$
\left\{O\left(y_{i}-y_{j}\right), \text { such that } y_{i}, y_{j} \text { are distinct roots of } f\right\}
$$

where $O\left(y_{i}-y_{j}\right)$ is the smallest element in $\operatorname{Supp}\left(y_{i}-y_{j}\right)$ with respect to the order compatible with C. Similarly, for every $y_{i} \neq y_{j}$ let $M_{i j}$ be the initial monomial of $y_{i}-y_{j}$. The obtained set $\left\{M_{i j}\right\}$ is called the set of characteristic monomials of f. Moreover, we prove that $L(y)=L\left(M_{1}, \ldots, M_{h}\right)$.
Obviously the set of characteristic exponents of f is a finite subset in $C \cap \mathbb{Z}^{e}$, hence we can arrange them in an increasing order and write them as :

$$
m_{1} \leq \cdots \leq m_{h} .
$$

Moreover we prove that :
(i) For all $m \in \operatorname{Supp}(y), m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$
(ii) $m_{i} \notin\left(n \mathbb{Z}^{e}\right)+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$

Let $D_{1}=n^{e}$, and define D_{i+1} to be the gcd of the $e \times e$ minors of the matrix $\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}\right.$) for all $1 \leq i \leq h$, and set $e_{i}=\frac{D_{i}}{D_{i+1}}$. We obtain that $D_{1}>\cdots>D_{h+1}$, and that the degree of extension of $L\left(M_{1}, \ldots, M_{i}\right)$ over $L\left(M_{1}, \ldots, M_{i-1}\right)$ is equal to e_{i}. Consider the sequence $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}$ by taking $r_{0}^{1}, \ldots, r_{0}^{e}$ to be the canonical basis of $(n \mathbb{Z})^{e}$, and $r_{i}=e_{i-1} r_{i-1}+m_{i}-m_{i-1}$, then set $d_{i}=\frac{D_{i}}{n^{e-1}}$. Now define the semigroup of f to be the set $\Gamma(f)=\left\{O(f, g), g \in \mathbb{K}_{C}\left[\left[x_{1}, \ldots, x_{e}\right]\right][[y]] \backslash(f)\right\}$, where $O(f, g)$ is the smallest element in $\operatorname{Supp}\left(g\left(x_{1}^{n}, \ldots, x_{e}^{n}, y\left(x_{1}, \ldots, x_{e}\right)\right)\right)$ with respect to the chosen order. As in the quasi-ordinary case, $\Gamma(f)$ is generated by $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}$. Furthermore, there exists a special set of polynomials g_{1}, \ldots, g_{h} (approximate roots of f), such that $O\left(f, g_{i}\right)=r_{i}$ for all $i=1, \ldots, h$.

In the second part of this theis we consider numerical semigroups and their ideals and we study their applications on one dimensional \mathbb{K}-algebras and the module of differentials of plane algebraic curves parametrized by polynomials. The aim of this part is to characterize these curves in terms of invariants such as Milnor number and Tjurina number.
A subset S of \mathbb{N} is said to be a numerical semigroup if $0 \in S$ and for all $a, b \in S$ we have $a+b \in S$, and such that the set $G(S)=\mathbb{N} \backslash S$ is finite. Given a numerical semigroup S, we define the Frobenius number of S, denoted by $F(S)$, to be the maximum of the set $G(S)$. Note that every numerical semigroup admits a finite system of generators, that is, there exists $s_{1}, \ldots, s_{h} \in S$ such that for all $s \in S$

$$
s=\lambda_{1} s_{1}+\ldots+\lambda_{h} s_{h}
$$

for some $\lambda_{1}, \ldots, \lambda_{h} \in \mathbb{N}$. In this part we will be interested in a special class of numerical semigroups, called free numerical semigroups. Free numerical semigroups appear in the theory of singularities of algebraic plane curves and also in the theory of algebraic plane curves with one place at infinity. We aim to use the techniques developed in the theory of numerical semigroups and their ideals in order to characterize rational algebraic plane curves with one place at infinity with respect to invariants such as Milnor number and Tjurina number. Let S be a numerical semigroup and let I be a subset of \mathbb{N}, then I is said to be a relative ideal of S if $I+S \subseteq I$ and for some $\alpha \in \mathbb{Z}$ we have $\alpha+I \subseteq S$. Note that for a relative ideal I there exists a set $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq I$ such that $I=\bigcup_{i=1}^{l}\left(a_{i}+S\right)$. This set is called a system of generators of I.

Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a set of elements in the polynomial ring $\mathbb{K}[t]$ and let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$, where \mathbb{K} is a field. For every element $f \in \mathbb{K}[t]$ we denote by $d(f)$ the degree of f in t. Consider the set $d(A)=\{d(f), f \in A\}$ and suppose that the length $l(\mathbb{K}[t] / A)<+\infty$. Then $d(A)$ is a numerical semigroup. We say that $\left\{f_{1}, \ldots, f_{s}\right\}$ is a canonical basis of A if $\left\{d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\}$ generates $d(A)$. It is proven that any \mathbb{K}-algebra A admits a canonical basis, moreover a basis can be obtained algorithmically form the elements f_{1}, \ldots, f_{s} (see [10]).
Let $\left\{F_{1}, \ldots, F_{r}\right\}$ be a set of non zero elements in $\mathbb{K}[t]$, and let $M=\sum_{i=1}^{r} F_{i} A$ be the A-module generated by F_{1}, \ldots, F_{r}. Set

$$
d(M)=\{d(F), F \in M \backslash\{0\}\}
$$

Then $d(M)$ is a relative ideal of $d(A)$. We say that $\left\{F_{1}, \ldots, F_{r}\right\}$ is a canonical basis of M if $\left\{d\left(F_{1}\right), \ldots, d\left(F_{r}\right)\right\}$ is a system of generators of $d(M)$. Note that a basis of M can be obtained algorithmically from $\left\{F_{1}, \ldots, F_{r}\right\}$.

Let $\left\{f_{1}, \ldots, f_{r}\right\}$ be a set of polynomials of $\mathbb{K}[t]$. For all $i \in\{1, \ldots, r\}$ let $F_{i}=f_{i}^{\prime}$ be the derivative of f_{i} with respect to t. Set $M=F_{1} A+\ldots+F_{r} A$, then $I=d(M)$ is a relative ideal of $S=d(A)$. Note that if $g \in A$, then $g^{\prime} \in M$, and so if $s \in d(A)$, then $s-1 \in d(M)$. This leads to the definition of the set of non-exact elements of M, denoted by $N E(M)$, which is

$$
N E(M)=\{a \in I, a+1 \notin S\}
$$

We define $n e(M)$ to be the cardinality of $N E(M)$.
Suppose that $r=2$, that is $A=\mathbb{K}[X(t), Y(t)]$ for some $X(t), Y(t) \in \mathbb{K}[t]$, and let $f(X, Y)$ be the smallest degree algebraic relation satisfied by $X(t)$ and $Y(t)(f(X, Y)$ is the monic generator of the kernel of the morphism $\mathbb{K}[X, Y] \longmapsto \mathbb{K}[t], \phi(X)=X(t), \phi(Y)=Y(t))$. Then f has one place at infinity (see [4]). Denote $d(A)$ by $\Gamma(f)$ and $F(\Gamma(f))$ by F. We can construct a set of generators $\left\{r_{0}, \ldots, r_{h}\right\}$ of $\Gamma(f)$ by taking the set of ranks of the vector spaces $\frac{\mathbb{K}[X, Y]}{(f, g)}$ where g runs over the set of approximate roots of f.
For all $i \in\{0, \ldots, h\}$ let $d_{i+1}=g c d\left(r_{0}, r_{1}, \ldots, r_{i}\right)$ and let $e_{i}=\frac{d_{i}}{d_{i+1}}$ for all $i \in\{1, \ldots, h\}$. Then $d_{1}>d_{2}>\cdots>$ $d_{h+1}=1$ and $e_{i} r_{i} \in\left\langle r_{0}, \ldots, r_{i-1}\right\rangle$ for all $i \in\{1, \ldots, h\}$. That is $\Gamma(f)$ is free with respect to the arrangement $\left(r_{0}, \ldots, r_{h}\right)$. Let f_{X}, f_{Y} be the derivatives of f with respect to X, Y. Let $\mu(f)=\operatorname{dim}_{\mathbb{K}} \frac{\mathbb{K}[X, Y]}{\left(f_{X}, f_{Y}\right)}$ be the milnor number of f and $\nu(f)=\operatorname{dim}_{\mathbb{K}} \frac{\mathbb{K}[X, Y]}{\left(f, f_{X}, f_{Y}\right)}$ be the Tjurina number of f. We use semigroup techniques in order to prove that $\mu(f)=\nu(f)$ if and only if $n e(M)=0$, that is, every element of M is exact if and only if there exists an isomorphism $\mathbb{K}[X, Y] \mapsto \mathbb{K}[W, Z]$ such that the image of f by this isomorphism is of the form $W^{n}-Z^{m}$, with $\operatorname{gcd}(n, m)=1$ (Theorem 15, see also [7]). This theorem generalizes the local result of Saito for curves in [30] and also the result of Zariski in [31].

Suppose that $\mu(f)>\nu(f)$, that is $n e(M)>0$. We prove in this case that $n e(M)>2^{h-1}$ (see Proposition 66). Moreover we prove that if $n e(M)=1$, then $S=<m, n>$ and $N E(M)=\{F-1\}$. Moreover, if $n e(M)=2$, then we have the following two cases (see Theorem 16) :
(i) $h=1$ with $\Gamma(f)=<m, n>$ and we either have:
$\bullet N E(M)=\{F-1, F-m-1\}$ or

- $N E(M)=\{F-1, F-n-1\}$.
(ii) $h=2$ with $\Gamma(f)=<m, n, r_{2}>$ and we either have :
- $N E(M)=\{F-1, F-n-1\}$ or,
- $N E(M)=\{F-1, F-m-1\}$ or,
- $N E(M)=\left\{F-1, F-r_{2}-1\right\}$.

Finally we give a characterization of the semigroup $\Gamma(f)$ in case $n e(M)=1$ or $n e(M)=2$.

Free polynomials

2.1 G-adic Expansion and Approximate roots

In this section we introduce the notion of G-adic expansion of a polynomial with respect to a set of polynomials. We also introduce the notion of Tschirnhausen transform and that of approximate root of a polynomial. These notions will be used later in order to characterize the set of generators of the semigroup of a free polynomial.

2.1.1 Expansion of integers

Let $\left(m_{0}, \ldots, m_{h}\right)$ be an $(h+1)$-tuple of integers with $h \geq 1$. We set: $d_{1}=m_{o}, d_{2}=\operatorname{gcd}\left(m_{0}, m_{1}\right), \ldots, d_{i}=\operatorname{gcd}\left(m_{0}, \ldots, m_{i-1}\right)=\operatorname{gcd}\left(d_{i-1}, m_{i-1}\right)$, where gcd stands for the greatest common divisor. Suppose that $d_{1}>d_{2}>\ldots>d_{h+1}$, and let $e_{i}=\frac{d_{i}}{d_{i+1}}$ for all $i=1, \ldots, h$.

Definition 1 Let $\underline{m}=\left(m_{0}, m_{1}, \ldots, m_{h}\right)$ be a finite sequence of integers. A strict linear combination of \underline{m} is an integer of the form :

$$
a_{0} m_{0}+a_{1} m_{1}+\cdots+a_{h} m_{h}
$$

where $a_{0} \in \mathbb{Z}$ and $0 \leq a_{i}<e_{i}$ for all $i=1, \ldots, h$.
Proposition 1 With the above notation, a given integer n can be expressed in at most one way as a strict linear combination $n=\sum_{i=0}^{h} a_{i} m_{i}$.

Proof : Suppose $n=\sum_{i=0}^{h} a_{i} m_{i}=\sum_{i=0}^{h} b_{i} m_{i}$ with $a_{0}, b_{0} \in \mathbb{Z}$ and $0 \leq a_{i}, b_{i}<e_{i}$ for all $i=1, \ldots, h$. It is required to prove that $a_{i}=b_{i}$ for all i. Suppose to the contrary that it is not true, then there exists some j such that $a_{j} \neq b_{j}$, and $a_{i}=b_{i} \forall j<i \leq h$. Suppose that $a_{j}>b_{j}$. We have $\sum_{i=0}^{h} a_{i} m_{i}-\sum_{i=0}^{h} b_{i} m_{i}=\sum_{i=0}^{j}\left(a_{i}-b_{i}\right) m_{i}=0$ with $0<a_{j}-b_{j}<e_{j}$, and so $\left(a_{j}-b_{j}\right) m_{j}=\sum_{i=0}^{j-1}\left(b_{i}-a_{i}\right) m_{i}$.
Since d_{j} divides m_{i} for all $i=0, \ldots, j-1$, then d_{j} divides $\left(a_{j}-b_{j}\right) m_{j}$, and so e_{j} divides $\left(a_{j}-b_{j}\right) \frac{m_{j}}{d_{j+1}}$, but e_{j} and $\frac{m_{j}}{d_{j+1}}$ are coprime, then e_{j} divides $a_{j}-b_{j}$, which is a contradiction since $a_{j}-b_{j}<e_{j}$. As a corollary we get the following :

Corollary 1 Let u_{1}, \ldots, u_{h} be an h-tuple of distinct positive integers such that u_{i} divides u_{i+1} for all
$1 \leq i \leq h-1$. If $\sum_{i=1}^{h} a_{i} u_{i}=\sum_{i=1}^{h} b_{i} u_{i}$ with $0 \leq a_{i}<\frac{u_{i+1}}{u_{i}}$ and $0 \leq b_{i}<\frac{u_{i+1}}{u_{i}}$ for all $i=1, \ldots, h-1$ and a_{h}, b_{h} are non negative integers, then $a_{i}=b_{i}$ for all $1 \leq i \leq h$.

Proof: Set $m_{0}=u_{h}, m_{1}=u_{h-1}, \ldots, m_{h-1}=u_{1}$, and let $d_{i}=\operatorname{gcd}\left(m_{0}, \ldots, m_{i-1}\right)$, then $d_{1}=u_{h}, \ldots, d_{h}=u_{1}$. Now let $e_{i}=\frac{d_{i}}{d_{i+1}}$ for all $i=1, \ldots, h-1$, then $a_{1} u_{1}+\cdots+a_{h} u_{h}=a_{h} m_{0}+a_{h-1} m_{1}+\cdots+a_{1} m_{h-1}$ with $0 \leq a_{h-1}<\frac{u_{h}}{u_{h-1}}=\frac{d_{1}}{d_{2}}=e_{1}, \ldots, 0 \leq a_{1}<\frac{u_{2}}{u_{1}}=\frac{d_{h-1}}{d_{h}}=e_{h-1}$ is a strict linear combination of (m_{0}, \ldots, m_{h-1}). By Proposition 1 this representation is unique, and so $a_{i}=b_{i}$ for all $1 \leq i \leq h$.

2.1.2 G-adic expansion of a polynomial

Let $R[Y]$ be the polynomial ring in one variable, where R is a commutative unitary ring. For every element f in $R[Y]$, let $\operatorname{deg}(f)$ be the degree of f in Y, with the convention that $\operatorname{deg}(0)=-\infty$.
Let $G=\left(G_{1}, \ldots, G_{h}\right)$ be an h-tuple of polynomials in $R[Y]$ satisfying the following conditions :
(i) The polynomial G_{i} is monic with $\operatorname{deg}\left(G_{i}\right)>0$ for all $1 \leq i \leq h$.
(ii) $\operatorname{deg}\left(G_{i}\right)$ divides $\operatorname{deg}\left(G_{i+1}\right)$ for all $1 \leq i \leq h-1$, and $\operatorname{deg}\left(G_{1}\right)=1$.

Let $u_{i}=\operatorname{deg}\left(G_{i}\right)$ for $i=1, \ldots, h$, and define the elements $n_{1}=\frac{u_{2}}{u_{1}}=u_{2}, n_{2}=\frac{u_{3}}{u_{2}}, \ldots, n_{h-1}=\frac{u_{h}}{u_{h-1}}$ and let $n_{h}=+\infty$. Let

$$
A(G)=\left\{a=\left(a_{1}, \ldots, a_{h}\right) \in \mathbb{N}^{h}, 0 \leq a_{i}<n_{i} \forall 1 \leq i \leq h\right\}
$$

and associate with each element a in $A(G)$ the polynomial $G^{a}=G_{1}^{a_{1}} \ldots G_{h}^{a_{h}}$.
Definition 2 Let f be a polynomial in $R[Y]$ and suppose that f can be written in the form $f=\sum_{a \in A(G), f_{a} \in R} f_{a} G^{a}$ for a finite number of a 's. The expression $\sum_{a \in A(G)} f_{a} G^{a}$ is said to be a G-adic expansion of f.

For every element $f=\sum_{a \in A(G)} f_{a} G^{a}$ we define $\operatorname{supp}_{G}(f)=\left\{a \in A(G), f_{a} \neq 0\right\}$.
Proposition 2 Let $R\left[G^{A}\right]$ be the R-submodule of $R[Y]$ generated by $G^{A}=\left\{G^{a}, a \in A(G)\right\}$. Then $R\left[G^{A}\right]$ is a free R-submodule.

Proof : It is obvious that G^{A} is a system of generators of $R\left[G^{A}\right]$, and so it is required to prove that elements in G^{A} are linearly independent over R.
First of all, note that if a, b are distinct elements in $A(G)$, then $\operatorname{deg}\left(G^{a}\right) \neq \operatorname{deg}\left(G^{b}\right)$. In fact if $\operatorname{deg}\left(G^{a}\right)=$ $\operatorname{deg}\left(G^{b}\right)$, then $\sum_{i=1}^{h} a_{i} u_{i}=\sum_{i=1}^{h} b_{i} u_{i}$, and so by Corollary 1 we get that $a=b$.
For linearly independence, suppose that $f=\sum_{a \in A(G)} f_{a} G^{a}=0$ for some elements f_{a} in R, and suppose to the contrary that for some $a \in A(G)$ we have $f_{a} \neq 0$. Let $c \in \operatorname{supp}_{G}(f)$ be such that $\operatorname{deg}\left(G^{c}\right)=$ $\max \left\{\operatorname{deg}\left(G^{a}\right), a \in \operatorname{Supp}(f)\right\}$, then $\operatorname{deg}(f)=\operatorname{deg}\left(f_{c} G^{c}\right)$. If $c=0$ in \mathbb{N}^{h}, then $f=f_{c} G^{c}=f_{c}=0$, which contradicts our assumption. Otherwise, if $c \neq 0$, then $\operatorname{deg}\left(G^{c}\right)=\operatorname{deg}(f)$ is strictly positive, and so $f \neq 0$ which is impossible. Hence elements in G^{A} are linearly independent, and so G^{A} is a free R-basis of $R\left[G^{A}\right]$. From the above Proposition we conclude that if a polynomial $f \in R\left[G^{A}\right]$, then its G-adic expansion is unique. Moreover, there exists a unique $c \in \operatorname{supp}_{G}(f)$ such that $\operatorname{deg}(f)=\operatorname{deg}\left(G^{c}\right)=\max \left\{\operatorname{deg}\left(G^{a}\right), a \in \operatorname{supp}_{G}(f)\right\}$.

Lemma 1 Let $a=\left(a_{1}, \ldots, a_{h}\right)$ be an element of $A(G)$. Suppose that $a_{j} \neq 0$ for some $1 \leq j \leq h$, and $a_{i}=0$ for $i=j+1, \ldots, h$. Then $u_{j} \leq \operatorname{deg}\left(G^{a}\right)<u_{j+1}$.

Proof: Since $a_{i} \geq 0$ for all $1 \leq i<j$ and $a_{j}>0$, then $a_{j}-1 \geq 0$ and $a_{1} u_{1}+\ldots+\left(a_{j}-1\right) u_{j} \geq 0$, and so $\operatorname{deg}\left(G^{a}\right)=\sum_{i=1}^{j} a_{i} u_{i} \geq u_{j}$. Concerning the right hand side of the inequality, we have $a_{1}<n_{1}$ and so $a_{1} u_{1}<n_{1} u_{1}=u_{2}$. Now suppose that up to $j-1$ we have the inequality $\sum_{i=1}^{j-1} a_{i} u_{i}<u_{j}$, and consider $\sum_{i=1}^{j} a_{i} u_{i}$. We have $\sum_{i=1}^{j} a_{i} u_{i}=\sum_{i=1}^{j-1} a_{i} u_{i}+a_{j} u_{j}$ and $a_{j}<n_{j}$, and so $\sum_{i=1}^{j} a_{i} u_{i}<\left(a_{j}+1\right) u_{j} \leq n_{j} u_{j}=u_{j+1}$. Finally $u_{j} \leq \operatorname{deg}\left(G^{a}\right)<u_{j+1}$.

Lemma 2 Let f be a non-constant polynomial in $R\left[G^{A}\right]$, then there exists some $j \in\{1, \ldots, h-1\}$ such that $u_{j} \leq \operatorname{deg}(f)<u_{j+1}$. Moreover, for all $a \in \operatorname{supp}_{G}(f)$, a can be written as $a=\left(a_{1}, \ldots, a_{j}, 0, \ldots, 0\right)$ with $0 \leq a_{i}<n_{i}$ for all $1 \leq i \leq j$.

Proof : Let a be a non-zero element in $\operatorname{supp}_{G}(f)$, then $a=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$ for some $1<k \leq h$ and $a_{k} \neq 0$. Let $c=\left(c_{1}, \ldots, c_{j}, 0, \ldots, 0\right)$, with c_{j} non zero, be the unique element in $\operatorname{supp}_{G}(f)$ such that $\operatorname{deg}(f)=\operatorname{deg}\left(G^{c}\right)$, then by Lemma 1 we have $u_{j} \leq \operatorname{deg}(f)<u_{j+1}$. Also by Lemma 1 we have $u_{k} \leq \operatorname{deg}\left(G^{a}\right)<u_{k+1}$, but $\operatorname{deg}\left(G^{a}\right)<\operatorname{deg}\left(G^{c}\right)$, then $u_{k}<u_{j+1}$, and so $k \leq j$.

Proposition 3 Let $G=\left(G_{1}, \ldots, G_{h}\right)$ be a set of polynomials in $R[Y]$, such that $\operatorname{deg}\left(G_{1}\right)=1$ and $\operatorname{deg}\left(G_{i}\right)$ divides $\operatorname{deg}\left(G_{i+1}\right)$ for all $i=1, \ldots, h-1$, then every element f in $R[Y]$ is also in $R\left[G^{A}\right]$. In particular this expansion is unique.

Proof: We will prove this by induction on the degree of f. If $\operatorname{deg}(f)=0$ or 1 , then the assertion is clear. Suppose it is true for all polynomials h in $R[Y]$ with $\operatorname{deg}(h)<n$, and let f be a polynomial of degree n. By Lemma 2, there exists some $j \in\{1, \ldots, h\}$ such that $u_{j} \leq \operatorname{deg}(f)<u_{j+1}$. Since $u_{j+1}=n_{j} u_{j}$, then there exists some k, with $0<k<n_{j}$, such that $k u_{j} \leq \operatorname{deg}(f)<(k+1) u_{j}$. Now dividing f by G_{j}^{k} we get $f=q G_{j}^{k}+r$ with $\operatorname{deg}(r)<\operatorname{deg}\left(G_{j}^{k}\right)=k u_{j} \leq \operatorname{deg}(f)$, and so by the induction hypothesis, r admits a G-adic expansion. It remains to prove that $q G_{j}^{k}$ admits a G-adic expansion. Since $\operatorname{deg}(f)=\operatorname{deg}\left(q G_{j}^{k}\right)$, then $\operatorname{deg}(q)=\operatorname{deg}(f)-$ $k u_{j}<\operatorname{deg}(f)$, hence q admits such an expansion, say $q=\sum_{a \in A(G)} q_{a} G^{a}, q_{a} \in R$, and so:

$$
\begin{aligned}
q G_{j}^{k}=\sum_{a \in \operatorname{supp}(q)} q_{a} G^{a} G_{j}^{k} & =\sum_{a \in \operatorname{supp}(q)} q_{a} G_{1}^{a_{1}} \ldots G_{h}^{a_{h}} G_{j}^{k} \\
& =\sum_{a \in \operatorname{supp}(q)} q_{a} G_{1}^{a_{1}} \ldots G_{j-1}^{a_{j-1}} G_{j}^{a_{j}+k} G_{j+1}^{a_{j+1}} \ldots G_{h}^{a_{h}}
\end{aligned}
$$

Since $\operatorname{deg}(q)<u_{j}$, then by the Lemma 2 every element $a \in \operatorname{Supp}_{G}(q)$ has the form $a=\left(a_{1}, \ldots, a_{j-1}, 0, \ldots, 0\right)$, and so $\operatorname{supp}_{G}\left(q G_{j}^{k}\right)=\left\{\left(a_{1}, \ldots, a_{j-1}, k, 0, \ldots, 0\right), a_{1}<n_{1}, \ldots, a_{j-1}<n_{j-1}, k<n_{j}\right\}$, hence $\sum q_{a} G^{a} G_{j}^{k}$ is a G-adic expansion of $q G_{j}^{k}$, and so f admits a G-adic expansion.
From Proposition 2 we can easily see that the G-adic expansion of f is unique.

2.1.3 Tschirnhausen Transform

Let $g \in R[Y]$ be a monic polynomial with degree $m>1$, and let $G=\left(G_{1}, G_{2}\right)$, where $G_{1}=Y$ and $G_{2}=g$. Let the notation be as before. In particular we have $n_{1}=m=\operatorname{deg}(g), n_{2}=\infty$ and $A(G)=\left\{a=\left(a_{1}, a_{2}\right)\right.$, such that $0 \leq a_{1}<m$ and $\left.a_{2} \in \mathbb{N}\right\}$.
According to Proposition 3 every polynomial $f(Y)$ in $R[Y]$ can be written in a unique way as follows :

$$
f(Y)=\sum c_{i, j} Y^{i} g(Y)^{j}, 0 \leq i<m, c_{i, j} \in R .
$$

Now for each j let $f_{j}(Y)=\sum_{i=1}^{m_{j}} c_{i, j} Y^{i}$, then f can be expressed as :

$$
f=\sum_{j} f_{j}(Y) g(Y)^{j}
$$

where $f_{j}(Y)$ are all zero except for a finite number of them and $\operatorname{deg}\left(f_{j}(Y)\right)<m$ for all j. Note that this expression is unique so that if f can be written as $\sum_{k} h_{k} g^{k}$ with $\operatorname{deg}\left(h_{k}\right)<\operatorname{deg}(g)$, then $h_{j}=f_{j}$ for all j. This unique expansion of f in terms of g is called the g-adic expansion of f.

Lemma 3 Let f be a monic polynomial in $R[Y]$ and consider another polynomial g such that g is monic and $\operatorname{deg}(g)$ divides $\operatorname{deg}(f)$, then the g-adic expansion of f is of the form :

$$
f=g^{d}+\sum_{i=0}^{d-1} c_{f}^{(i)}(Y) g^{i}, \text { where } d=\frac{\operatorname{deg}(f)}{\operatorname{deg}(g)}
$$

Proof : Let $f=\sum_{i=1}^{l} c_{i} g^{i}$, where $c_{i} \in R[Y]$ and $\operatorname{deg}\left(c_{i}\right)<\operatorname{deg}(g)$ for all $i=1, \ldots, l$, be the g-adic expansion of f with respect to g. For all $i=1, \ldots, l-1$ we have :

$$
\operatorname{deg}\left(c_{i} g^{i}\right)=\operatorname{deg}\left(c_{i}\right)+i \operatorname{deg}(g) \leq \operatorname{deg}\left(c_{i}\right)+(l-1) \operatorname{deg}(g)<l \operatorname{deg}(g) \leq \operatorname{deg}\left(c_{l} g^{l}\right)
$$

and so $\operatorname{deg}(f)=\operatorname{deg}\left(c_{l} g^{l}\right)$. Now write $\operatorname{deg}(f)=d \cdot \operatorname{deg}(g)$ for some strictly positive integer d. We have $\operatorname{deg}\left(c_{l}\right)+l \cdot \operatorname{deg}(g)=d \cdot \operatorname{deg}(g)$, but $0 \leq \operatorname{deg}\left(c_{l}\right)<\operatorname{deg}(g)$, hence $\operatorname{deg}\left(c_{l}\right)=0$ and $c_{l} \in R$. Moreover $l=d$. We have $\operatorname{deg}(f)=\operatorname{deg}\left(c_{d} g^{d}\right)$ and $\operatorname{deg}\left(f-c_{d} g^{d}\right)<\operatorname{deg}(f)$. But f and g are monic, then $c_{d}=1$, and so the g-adic expansion of f with respect to g is :

$$
f=g^{d}+\sum_{i=0}^{d-1} c_{f}^{(i)} g^{i}
$$

Definition 3 Let f be a non-constant polynomial in $R[Y]$, let g be a monic polynomial such that $\operatorname{deg}(f)=$ d. $\operatorname{deg}(g)$ for some integer d, and let $f=g^{d}+\sum_{i=0}^{d-1} c_{f}^{(i)} g^{d-i}$ be the g-adic expansion of f. Assume that $d^{-1} \in R$. The Tschirnhausen transform of g with respect to f is defined to be

$$
\tau_{f}(g)=g+d^{-1} c_{f}(g)
$$

where $c_{f}(g)=c_{f}^{(d-1)}$ is the coefficient of g^{d-1} in the g-adic expansion of f; it is called the Tschirnhausen coefficient.

Note that the Tschirnhausen transform is a monic polynomial with $\operatorname{deg}\left(\tau_{f}\right)(g)=\operatorname{deg}(g)$ since $\operatorname{deg}\left(c_{f}(g)\right)<$ $\operatorname{deg}(g)$, and so we can define recursively by induction the i-th Tschirnhausen transform of g to be :

$$
\tau_{f}^{i}(g)=\tau_{f}\left(\tau_{f}^{(i-1)}(g)\right)
$$

Now let $f=g^{d}+c_{f}(g) g^{d-1}+\sum_{i=0}^{d-2} c_{f}^{i} g^{i}$ be the g-adic expansion of f as above, and suppose that $c_{f}(g)$ is different from zero. Then $\operatorname{deg}\left(f-g^{d}\right)=\operatorname{deg}\left(c_{f}(g) g^{d-1}\right)=\operatorname{deg}\left(c_{f}(g)\right)+(d-1) \operatorname{deg}(g)$, and so

$$
\operatorname{deg}\left(c_{f}(g)\right)=\operatorname{deg}\left(f-g^{d}\right)-(d-1) \operatorname{deg}(g)
$$

Proposition 4 Let the notation be as above, and let $\tau_{f}(g)=g+d^{-1} c_{f}(g)$ be the Tschirnhausen transform of g with respect to f. Then $\operatorname{deg}\left(c_{f}\left(\tau_{f}(g)\right)\right)<\operatorname{deg}\left(c_{f}(g)\right)$.

Proof: Let $n=\operatorname{deg}\left(c_{f}(g)\right)$ and $h=\tau_{f}(g)=g+d^{-1} c_{f}(g)$, then $h^{d}=g^{d}+c_{f}(g) g^{d-1}+r$, where $r=$ $\sum_{i=2}^{d} C_{d}^{i} c_{f}(g)^{i} g^{d-i}$, and C_{d}^{i} represents the number of all i-combinations of d-elements. Now for all $2 \leq i \leq d$ write $i=j+2,0 \leq j \leq d-2$ then :

$$
\begin{aligned}
\operatorname{deg}\left(\left(c_{f}(g)\right)^{i} g^{d-i}\right)=i \cdot n+(d-i) \operatorname{deg}(g) & =(j+2) n+(d-2-j) \operatorname{deg}(g) \\
& =2 n+(d-2) \operatorname{deg}(g)+j(n-\operatorname{deg}(g))
\end{aligned}
$$

but $n<\operatorname{deg}(g)$, and so $\operatorname{deg}\left(c_{f}(g)^{i} g^{d-i}\right) \leq 2 n+(d-2) \operatorname{deg}(g)<n+(d-1) \operatorname{deg}(g)$, hence $\operatorname{deg}(r)<$ $n+(d-1) \operatorname{deg}(g)$.
We have $f-h^{d}=f-g^{d}-c_{f}(g) g^{d-1}-r=\sum_{i=0}^{d-2} c_{f}^{i} g^{i}-r$, but $\sum_{i=0}^{d-2} c_{f}^{i} g^{i}$ is the g-adic expansion of $f-g^{d}-c_{f}(g) g^{d-1}$, hence :

$$
\operatorname{deg}\left(\sum_{i=0}^{d-2} c_{f}^{i} g^{i}\right)=\operatorname{deg}\left(c_{f}^{d-2}\right)+(d-2) \operatorname{deg}(g)<(d-1) \operatorname{deg}(g) \leq n+(d-1) \operatorname{deg}(g)
$$

Finally we got that $\operatorname{deg}\left(\sum_{i=0}^{d-2} c_{f}^{i} g^{i}\right)<n+(d-1) \operatorname{deg}(g)$ and $\operatorname{deg}(r)<n+(d-1) \operatorname{deg}(g)$, hence $\operatorname{deg}\left(f-h^{d}\right)<$ $n+(d-1) \operatorname{deg}(g)$. Since $\operatorname{deg}\left(c_{f}\left(\tau_{f}(g)\right)\right)=\operatorname{deg}\left(f-h^{d}\right)-(d-1) \operatorname{deg}(h)$ and $\operatorname{deg}(g)=\operatorname{deg}(h)$, then

$$
\operatorname{deg}\left(c_{f}\left(\tau_{f}(g)\right)\right)<n=\operatorname{deg}\left(c_{f}(g)\right)
$$

Definition 4 Let f be a monic polynomial in $R[Y]$ of degree n, and let d be a divisor of n, a polynomial g in $R[Y]$ of degree $\frac{n}{d}$ is said to be a d-th Approximate root of f if $\operatorname{deg}\left(f-g^{d}\right)<n-\frac{n}{d}$. It is denoted by $A p p_{d}(f)$.

Proposition 5 Let f be a monic polynomial of degree n in $R[Y]$, and let d be a divisor of n. A monic polynomial g is an approximate root of f if and only if $\operatorname{deg}(g)=\frac{n}{d}$ and $c_{f}(g)=0$.

Proof: Suppose that g is an approximate root of f. We have $\operatorname{deg}(f)=n$ and $\operatorname{deg}\left(f-g^{d}\right)<n-\frac{n}{d}<n$, then $\operatorname{deg}\left(g^{d}\right)=\operatorname{deg}(f)=n$ and so $\operatorname{deg}(g)=\frac{n}{d}$. Since $\operatorname{deg}(g)$ divides $\operatorname{deg}(f)$, then by Lemma 3 the g-adic expansion of f is of the form :

$$
f=g^{d}+\sum_{i=0}^{d-1} c_{f}^{(i)} g^{i}, \text { with } 0 \leq \operatorname{deg}\left(c_{f}^{i}\right)<\operatorname{deg}(g) \forall i=1, \ldots, d-1 .
$$

Since the g-adic expansion of a polynomial is unique and $\operatorname{deg}\left(c_{f}^{(i)}\right)<\operatorname{deg}(g)$ for all $i=1, \ldots, d-1$, then $\sum_{i=0}^{d-1} c_{f}^{(i)} g^{i}$ is the g-adic expansion of $f-g^{d}$. If $c_{f}^{d-1}=c_{f}(g) \neq 0$, then $\operatorname{deg}\left(f-g^{d}\right)=\operatorname{deg}\left(c_{f}(g)\right)+(d-1) \operatorname{deg}(g)$, and so $(d-1) \operatorname{deg}(g) \leq \operatorname{deg}\left(f-g^{d}\right)$. But this is impossible because $\operatorname{deg}\left(f-g^{d}\right)<n-\frac{n}{d}=(d-1) \operatorname{deg}(g)$, hence $c_{f}(g)=0$.
Conversely suppose that $\operatorname{deg}(g)=\frac{n}{d}$ and $c_{f}(g)=0$, then the g-adic expansion of f is of the form

$$
f=g^{d}+\sum_{i=0}^{d-2} c_{f}^{i} g^{d-i}
$$

and so $\sum_{i=0}^{d-2} c_{f}^{i} g^{d-i}$ is the g-adic expansion of $f-g^{d}$, then :

$$
\operatorname{deg}\left(f-g^{d}\right)=\operatorname{deg}\left(c_{f}^{d-2}\right)+(d-2) \operatorname{deg}(g)<(d-1) \operatorname{deg}(g)=(d-1) \frac{n}{d}=n-\frac{n}{d}
$$

and so g is a d-th approximate root of f.

Proposition 6 Let f be a monic polynomial of degree n in $R[Y]$, and let d be a divisor of n. Then f admits a d-th approximate root and this approximate root is unique. In particular $\operatorname{App}_{d}(f)=\tau_{f}^{\frac{n}{d}}(g)$.

Proof : Let g be any monic polynomial in $R[Y]$ of degree $\frac{n}{d}$. By Proposition 4 we have $\operatorname{deg}\left(c_{f}\left(\tau_{f}(g)\right)\right)<$ $\operatorname{deg}\left(c_{f}(g)\right)$, and so for all $i \geq 2$ we get $\operatorname{deg}\left(c_{f}\left(\tau_{f}^{i}(g)\right)\right)<\operatorname{deg}\left(c_{f}\left(\tau_{f}^{i-1}(g)\right)\right)<\operatorname{deg}(g)=\frac{n}{d}$. In particular if we take $i=\frac{n}{d}$, then $c_{f}\left(\tau_{f}^{i}(g)\right)=0$. But $\operatorname{deg}\left(\tau_{f}(g)\right)=\operatorname{deg}(g)$, then by Proposition $5 \tau_{f}^{i}(g)$ is an approximate root of f.
For uniqueness, let g_{1} and g_{2} be two d-th approximate roots of f with $\operatorname{deg}\left(g_{1}\right)=\operatorname{deg}\left(g_{2}\right)=\frac{n}{d}$. We have $\operatorname{deg}\left(f-g_{1}^{d}\right)<n-\frac{n}{d}$ and $\operatorname{deg}\left(f-g_{2}^{d}\right)<n-\frac{n}{d}$, and so :

$$
\operatorname{deg}\left(g_{1}^{d}-g_{2}^{d}\right) \leq \max \left\{\operatorname{deg}\left(f-g_{1}^{d}\right), \operatorname{deg}\left(f-g_{2}^{d}\right)\right\}<n-\frac{n}{d}
$$

But $g_{1}^{d}-g_{2}^{d}=\left(g_{1}-g_{2}\right) \sum_{i+j=d-1} g_{1}^{i} g_{2}^{j}$. If $g_{1} \neq g_{2}$, then :

$$
\operatorname{deg}\left(g_{1}^{d}-g_{2}^{d}\right)=\operatorname{deg}\left(g_{1}-g_{2}\right)+\operatorname{deg}\left(\sum_{i+j=d-1} g_{1}^{i} g_{2}^{j}\right) \geq \operatorname{deg}\left(g_{1}^{i} g_{2}^{j}\right)=(i+j) \frac{n}{d}=(d-1) \frac{n}{d}=n-\frac{n}{d}
$$

which is a contradiction, and so $g_{1}=g_{2}$, and the d-th approximate root of f is unique
Proposition 7 Let f be a polynomial of of degree n in $R[y]$, and let $d_{1}>\ldots>d_{h+1}$ be a set of divisors of n. For all $i \in\{1, \ldots, h\}$ set $e_{i}=\frac{d_{i}}{d_{i+1}}$. Then for all $i=1, \ldots, h-1$ we have $\operatorname{App}_{d_{i}}(f)=\operatorname{App}_{e_{i}}\left(\operatorname{App}_{d_{i+1}}(f)\right)$.

Proof: Let $i \in\{1, \ldots, h-1\}$. Set $g_{i}=\operatorname{App}_{d_{i}}(f), g_{i+1}=\operatorname{App}_{d_{i+1}}(f)$, and $G_{i}=\operatorname{App}_{e_{i}}\left(g_{i+1}\right)$. Note that $\operatorname{deg}_{y}\left(g_{i}\right)=\frac{n}{d_{i}}, \operatorname{deg}_{y}\left(g_{i+1}\right)=\frac{n}{d_{i+1}}$ and $\operatorname{deg}_{y}\left(G_{i}\right)=\frac{n}{d_{i}}$. Since $G_{i}=\operatorname{App}_{e_{i}}\left(g_{i+1}\right)$ then the G_{i}-adic expansion of g_{i+1} is of the form :

$$
g_{i+1}=G_{i}^{e_{i}}+\alpha_{2} G_{i}^{e_{i}-2}+\ldots+\alpha_{e_{i}-1} G_{i}+\alpha_{e_{i}}
$$

Where $\alpha_{j} \in R[y]$ for all $j=2, \ldots, e_{i}$ such that $\operatorname{deg}_{y}\left(\alpha_{j}\right)<\frac{n}{d_{i}}$. consider the g_{i+1}-adic expansion of f

$$
f=g_{i+1}^{d_{i+1}}+\beta_{2} g_{i+1}^{d_{i+1}-2}+\ldots+\beta_{d_{i+1}}
$$

Where $\beta_{k} \in R[y]$ for all $k \in\left\{2, \ldots, d_{i+1}\right\}$ such that $\operatorname{deg}_{y}\left(\beta_{k}\right)<\frac{n}{d_{i+1}}$. Substituting the above value of g_{i+1} in the equation of f, by an easy calculation we can prove that $f=G_{i}^{d_{i}}+\psi$ where ψ is a polynomial in $R[y]$ such that $\operatorname{deg}_{y}(\psi)<\operatorname{deg}_{y}\left(G_{i}^{d_{i}-1}\right)=\left(d_{i}-1\right) \frac{n}{d_{i}}$, and so the G_{i}-adic expansion of f is of the form

$$
f=G_{i}^{d_{i}}+\gamma_{2} G_{i}^{d_{i}-2}+\ldots+\gamma_{d_{i}}
$$

With $\operatorname{deg}_{y}\left(\gamma_{l}\right)<\frac{n}{d_{i}}$ for all $l \in\left\{2, \ldots, d_{i+1}\right\}$. It follows that $G_{i+1}=\operatorname{App}_{d_{i}}(f)=g_{i}$.

2.2 Affine semigroups

This section aims to give some general results about affine semigroups. These results will be used constantly in the next sections, since the semigroup associated with a free polynomial is an affine semigroup.

2.2.1 Free affine semigroups

Definition 5 A Semigroup is a set S equipped with an associative binary operation + , such that for every x, y in S we have $x+y \in S$.

A semigroup S is said to be finitely generated if there exists a finite number of elements v_{1}, \ldots, v_{e} in S such that for every $v \in S$, we have $v=\lambda_{1} v_{1}+\cdots \lambda_{e} v_{e}$ with $\lambda_{1}, \ldots, \lambda_{e} \in \mathbb{N}$, in this case $\left\{v_{1}, \ldots, v_{e}\right\}$ is said to be a system of generators of S.

Definition 6 A semigroup S is said to be an Affine Semigroup if it is a finitely generated semigroup of \mathbb{Z}^{e} for some $e \in \mathbb{N}^{*}$.

Definition $7 A$ set $C \subset \mathbb{R}^{e}$ is said to be a cone if $\forall m \in C$ and $\lambda \geq 0$ we have $\lambda . m \in C$.

If there exist some vectors v_{1}, \ldots, v_{n} in \mathbb{R}^{e} such that $C=\left\{\lambda_{1} \cdot v_{1}+\ldots+\lambda_{n} . v_{n}, \lambda_{i} \geq 0, \forall 1 \leq i \leq n\right\}$, then we say that C is finitely generated. Furthermore if the generating set $\left\{v_{1}, \ldots, v_{n}\right\}$ is a subset of \mathbb{Z}^{e} then the cone is said to be rational. From now on all the considered cones are supposed to be rational finitley generated cones.
Let $\underline{v}=\left(v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{e+h}\right)$ be a set of nonzero elements of \mathbb{Z}^{e} and let

$$
\Gamma(\underline{v})=\left\{\sum_{i=1}^{e+h} a_{i} v_{i}, a_{i} \in \mathbb{N}\right\}, \quad G(\underline{v})=\left\{\sum_{i=1}^{e+h} a_{i} v_{i}, a_{i} \in \mathbb{Z}\right\}
$$

be the subsemigroup of \mathbb{N}^{e} generated by \underline{v}, and the subgroup of \mathbb{Z}^{e} generated by \underline{v} respectively. Moreover, for every $0 \leq k \leq h$ let $G_{k}=\left\{\sum_{i=1}^{e+k} a_{i} v_{i}, a_{i} \in \mathbb{Z}\right\}$ be the subgroup of \mathbb{Z}^{e} generated by $v_{1}, \ldots, v_{e+k}, \Gamma_{k}=$ $\left\{\sum_{i=1}^{e+k} a_{i} v_{i}, a_{i} \in \mathbb{N}\right\}$ be the semigroup generated by v_{1}, \ldots, v_{e+k}, and cone $\left(v_{1}, \ldots, v_{e}\right)$ the convex cone generated by v_{1}, \ldots, v_{e}. More precisely

$$
\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)=\left\{\sum_{i=1}^{e} a_{i} v_{i}, a_{i} \in \mathbb{R}_{+}\right\}
$$

Assume that the dimension of $\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$ is equal to e, i.e $\left\{v_{1}, \ldots, v_{e}\right\}$ generates \mathbb{R}^{e} and that $v_{e+1}, \ldots, v_{e+h} \in$ $\operatorname{cone}\left(v_{1}, \ldots, v_{e}\right)$.
Let D_{1} be the determinant of the matrix $\left(v_{1}^{T}, \ldots, v_{e}^{T}\right)$, where v_{i}^{T} denotes the transpose of the vector v_{i}, and for all $i=2, \ldots, h+1$, let D_{i} be the $g c d$ of the $e \times e$ minors of the matrix $\left[v_{1}^{T}, \ldots, v_{e}^{T}, v_{e+1}^{T}, \ldots, v_{e+i-1}^{T}\right]$. For all $i=1, \ldots, h$ set $e_{i}=\frac{D_{i}}{D_{i+1}}$.

Definition 8 Let $v_{1}, \ldots, v_{e+h} \in \mathbb{Z}^{e}$ and let $S=\Gamma\left(v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{e+h}\right)$. Then S is said to be a free affine semigroup if the following two conditions are satisfied :
(i) $D_{1}>D_{2}>\cdots>D_{h+1}$, equivalent to saying that for all $i=1, \ldots, h, v_{e+i}$ is not in the group generated by $v_{1}, \ldots, v_{e}, v_{e+1}, \ldots, v_{e+i-1}$.
(ii) For each $i=1, \ldots, h$ we have $e_{i} v_{e+i} \in \Gamma\left(v_{1}, \ldots, v_{e+i-1}\right)$.

2.2.2 Standard representation and the Frobenius vector.

Proposition 8 Let $0 \leq k \leq h$ and $v \in G_{k}$. There exist unique integers $\lambda_{1}, \ldots, \lambda_{e}, \lambda_{e+1}, \ldots, \lambda_{e+k}$ such that $v=\sum_{i=1}^{e+k} \lambda_{i} v_{i}$ with $0 \leq \lambda_{e+i}<e_{i}$ for all $i=1, \ldots, k$.

Proof : Since $v \in G_{k}$, then $v=\sum_{i=1}^{e+k} c_{i} v_{i}$ where $c_{i} \in \mathbb{Z}$ for all $1 \leq i \leq e+k$. If $k=0$, then the assertion is clear. Assume that $k \geq 1$, and that $c_{e+k}<0$. Write $c_{e+k}=p e_{k}+\bar{c}_{e+k}$ with $0 \leq \bar{c}_{e+k}<e_{k}$, then

$$
v=\sum_{i=1}^{e+k-1} c_{i} v_{i}+\left(p e_{k}+\bar{c}_{e+k}\right) v_{e+k}
$$

Since $e_{k} v_{e+k} \in G_{k-1}$ then so is for $p e_{k} v_{e+k}$ and so we can write v as $v=\sum_{i=1}^{e+k-1} \tilde{c}_{i} v_{i}+\bar{c}_{e+k} v_{e+k}$ with $0 \leq \bar{c}_{e+k}<e_{k}$, and $\tilde{c}_{i} \in \mathbb{Z}$ for all $1 \leq i \leq e+k-1$. Now $\sum_{i=1}^{e+k-1} \tilde{c}_{i} v_{i} \in G_{k-1}$, and so we get the result by induction on k, hence the expression exists.
To prove the uniqueness, let $v=\sum_{i=1}^{e+k} a_{i} v_{i}=\sum_{i=1}^{e+k} b_{i} v_{i}$ where $0 \leq a_{e+i}, b_{e+i}<e_{i}$ for all $i=1, \ldots, k$, and let α be the greatest integer such that $a_{\alpha}-b_{\alpha} \neq 0$. Suppose that $\alpha=e+j$ for some $j \geq 1$, and also that $a_{\alpha}-b_{\alpha}>0$, then :

$$
\left(a_{e+j}-b_{e+j}\right) v_{e+j}=\sum_{i=1}^{e}\left(b_{i}-a_{i}\right) v_{i}+\left(b_{e+1}-a_{e+1}\right) v_{e+1}+\ldots+\left(b_{e+j-1}-a_{e+j-1}\right) v_{e+j-1} \in G_{j-1}
$$

and $0<a_{j}-b_{j}<e_{j}$, which contradicts the hypothesis.
Definition 9 Let v be a vector in G_{k}, The standard representation of v is defined to be $v=\sum_{i=1}^{e+k} \lambda_{i} v_{i}$ with $0 \leq \lambda_{e+i}<e_{i}$ for all $i=1, \ldots, k$.

Proposition 9 Let $0 \leq k \leq h$, and consider a vector $v \in G_{k}$. Let

$$
v=\sum_{i=1}^{e+k} \lambda_{i} v_{i}
$$

be its standard representation with respect to the vectors v_{1}, \ldots, v_{e+k}. The vector $v \in \Gamma_{k}$ if and only if $\lambda_{i} \geq 0$ for all $i=1, \ldots, e$.

Proof: If $\lambda_{i} \geq 0$ for all $i=1, \ldots, e$, then obviously $v \in \Gamma\left(v_{1}, \ldots, v_{e+k}\right)$. Conversely suppose that $v \in$ $\Gamma\left(v_{1}, \ldots, v_{e+k}\right)$, then $v=\sum_{i=1}^{e+k} a_{i} v_{i}$ where $a_{i} \geq 0$ for all $1 \leq i \leq e+k$. If $0 \leq a_{e+i}<e_{i}$ for all $i=1, \ldots, k$, then it is over. Otherwise, take j such that $a_{e+j} \geq e_{j}$ and $0 \leq a_{e+i}<e_{i}$ for all $i>j$. Write a_{e+j} as $a_{e+j}=m e_{j}+b_{j}$, where $m \in \mathbb{N}^{*}$ and $0 \leq b_{j} \leq e_{j}$. But $e_{j} v_{e+j} \in \Gamma\left(v_{1}, \ldots, v_{e+j-1}\right)$, and so $e_{j} v_{e+j}=\sum_{i=1}^{e+j-1} c_{i} v_{i}$, where $c_{i} \geq 0$ for all $1 \leq i \leq e+j-1$. Hence :

$$
\begin{aligned}
v & =\sum_{i=1}^{e+j-1} a_{i} v_{i}+\left(m e_{j}+b_{j}\right) v_{e+j}+\sum_{i=e+j+1}^{k} a_{i} v_{i} \\
& =\sum_{i=1}^{e+j-1}\left(a_{i}+m c_{i}\right) v_{i}+b_{j} v_{e+j}+\sum_{i=e+j+1}^{k} a_{i} v_{i}
\end{aligned}
$$

Proceeding like this we can construct the standard representation of v, with $v=\sum_{i=1}^{e+k} \alpha_{i} v_{i}$, and $\alpha_{i} \geq 0$ for all $i=1, \ldots, e$

Definition 10 Let $\underline{v}=\left(v_{1}, \ldots, v_{e+h}\right)$ be a set of non-zero vectors of \mathbb{Z}^{e}, and let the notation be as above. Let C be the topological interior of cone $\left(v_{1}, \ldots, v_{e}\right)$, i.e $C=\left\{\lambda_{i} v_{i}, \lambda_{i} \in \mathbb{R}_{+}^{*} \forall 1 \leq i \leq e\right\}$. The Frobenius vector of \underline{v} is defined to be an element $w \in$ cone $\left(v_{1}, \ldots, v_{e}\right)$ such that $w \notin \Gamma(\underline{v})$, and for all $v \in w+(C-\{\underline{0}\})$ we have :

$$
v \in G(\underline{v}) \Longrightarrow v \in \Gamma(\underline{v})
$$

Theorem 1 Let the notation be as above with $\underline{v}=\left(v_{1}, \ldots, v_{e+h}\right)$, and C the interior of cone $\left(v_{1}, \ldots, v_{e}\right)$. The frobenius vector of \underline{v} is equal to :

$$
F(\underline{v})=\sum_{k=1}^{h}\left(e_{k}-1\right) v_{e+k}-\sum_{i=1}^{e} v_{i}
$$

Proof: It is clear that $\sum_{k=1}^{h}\left(e_{k}-1\right) v_{e+k}-\sum_{i=1}^{e} v_{i}$ is a standard representation, but the coefficients of v_{1}, \ldots, v_{e} are negative. By Proposition 9 we get that $F(\underline{v}) \notin \Gamma(\underline{v})$.
Now let $u \in C-\{\underline{0}\}$, and consider the vector $v=F(\underline{v})+u$. Assume that $v \in G(\underline{v})$, and let $v=\sum_{k=1}^{e+h} \alpha_{k} v_{k}$ be the standard representation of v with $0 \leq \alpha_{e+k}<e_{k}$ for all $k=1, \ldots, h$. We have :

$$
v=F(\underline{v})+u \Longrightarrow \sum_{k=1}^{h}\left(e_{k}-1-\alpha_{e+k}\right) v_{e+k}+u=\left(\alpha_{1}+1\right) v_{1}+\ldots+\left(\alpha_{e}+1\right) v_{e}
$$

and since $\sum_{k=1}^{h}\left(e_{k}-1-\alpha_{e+k}\right) v_{e+k}+u \in C$, then $\alpha_{k}+1>0$ for all $k=1, \ldots, e$, and so $\alpha_{k} \geq 0$ for all $k=1, \ldots, e$. By Proposition 9 we obtain $v=F(\underline{v})+u \in \Gamma(\underline{v})$.

2.3 Quasi-Ordinary Polynomials

In this section we recall the notion of a quasi-ordinary polynomial and how to associate a semigroup to such a polynomial.

2.3.1 Abhyankar-Jung theorem

Definition 11 Let $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $g=b_{m} x^{m}+\ldots+b_{1} x+b_{0}$ be two polynomials of degree n and m, respectively, in $R[x]$, where R is an arbitrary ring. The resultant of f and g, denoted by $R(f, g)$ is defined to be the determinant of the $(m+n) \times(m+n)$ matrix given by :

$$
\left(\begin{array}{cccccccccc}
a_{n} & a_{n-1} & \cdots & \cdots & a_{1} & a_{0} & 0 & \cdots & \cdots & 0 \\
0 & a_{n} & a_{n-1} & \cdots & \cdots & a_{1} & a_{0} & 0 & \cdots & 0 \\
\vdots & & & & & & & & & \vdots \\
0 & \cdots & 0 & a_{n} & \cdots & \cdots & \cdots & \cdots & a_{1} & a_{0} \\
b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & b_{m} & \cdots & & b_{1} & b_{0} & 0 & \cdots & \cdots & 0 \\
\vdots & & & & \vdots & & & & & \vdots \\
0 & \cdots & & 0 & b_{m} & b_{m-1} & \cdots & & b_{1} & b_{0}
\end{array}\right)
$$

where from the second row up to row m we shift the coefficients a_{n}, \ldots, a_{0} of f one step to the right and zero elsewhere, and we do the same for b_{m}, \ldots, b_{0} the coefficients of g from row $m+2$ up to row $m+n$.

Proposition 10 Let \mathbb{K} be an arbitrary field. Let $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $g=b_{m} x^{m}+\ldots+b_{1} x+b_{0}$ be polynomials in $\mathbb{K}[x]$ of degrees n and m, respectively. The resultant of f and g is given by :

$$
R(f, g)=a_{n}^{m} b_{m}^{n} \prod_{i=1}^{n} \prod_{i=1}^{m}\left(y_{i}-z_{j}\right)
$$

where y_{1}, \ldots, y_{n} are the roots of f, and z_{1}, \ldots, z_{m} are the roots of g in some extension field $\overline{\mathbb{K}}$ of \mathbb{K}.
Definition 12 Let $f=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ be a polynomial of degree n in $\mathbb{K}[x]$, and let y_{1}, \ldots, y_{n} be its roots in some extension field of \mathbb{K}. The discriminant of f is defined to be :

$$
\Delta(f)=a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(y_{i}-y_{j}\right)^{2}
$$

Note that we can also define the discriminant of f using the resultant of f and f_{x}, where f_{x} is the derivative of f with respect to x, more precisely we can prove that :

$$
\Delta(f)=(-1)^{\frac{n(n-1)}{2}} \cdot a_{n}^{-1} R\left(f, f_{x}\right)
$$

Let \mathbb{K} be an algebraically closed field of characteristic 0 , and let $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$ be the ring of formal power series in x_{1}, \ldots, x_{e}. For simplicity we write \underline{x}^{α} Instead of $x_{1}^{\alpha_{1}} \cdots x_{e}^{\alpha e}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{e}\right) \in \mathbb{N}^{e}$.
Similarly for each $n \in \mathbb{N}^{*}$ we can define a ring of formal power series over \mathbb{K} with fractional exponents denoted by $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$. For simplicity we write $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ instead of $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ and $\mathbb{K}[[\underline{x}]]$ instead of $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$. Note that an element in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ is of the form $y(\underline{x})=\sum_{m \in \mathbb{N}^{e}} c_{m} \underline{x}^{\frac{m}{n}}$, where $c_{m} \in \mathbb{K}$ and $\underline{x}^{\frac{m}{n}}=x_{1}^{\frac{m_{1}}{n}} \ldots x^{\frac{m_{e}}{n}}$, where $m=\left(m_{1}, \ldots, m_{e}\right) \in \mathbb{N}^{e}$.

Definition 13 Let $f=y^{n}+a_{1}(\underline{x}) y^{n-1}+\cdots+a_{n-1}(\underline{x}) y+a_{n}(\underline{x})$ be a monic polynomial in $\mathbb{K}[[\underline{x}]][y]$, and suppose that $a_{i}(0)=0$ for all $i=1, \ldots, n$ (such a polynomial is called a Weierstrass polynomial). Then f is said to be a quasi-ordinary polynomial if its discriminant in $y, \Delta_{y}(f)$ is of the form $x_{1}^{N_{1}} \cdots x_{e}^{N_{e}} u\left(x_{1}, \ldots, x_{e}\right)$, where $N_{1}, \ldots, N_{e} \in \mathbb{N}$ and $u(\underline{x})$ is a unit in $K[[\underline{x}]]$, i.e $u(\underline{x})=c+v(\underline{x})$ for some formal power series $v(\underline{x})$ satisfying $v(\underline{0})=0$, and a constant $c \neq 0$.

Theorem 2 Abhyankar-Jung Theorem Let $f(\underline{x}, y)$ be a quasi-ordinary polynomial in $\mathbb{K}[[\underline{x}]][y]$. There exists a formal power series $y\left(x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right)$ in $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ such that $f\left(\underline{x}, y\left(x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right)\right)=0$ for some $n \in \mathbb{N}$. Furthermore if f is an irreducible polynomial of degree n, we have :

$$
f\left(x_{1}^{n}, \ldots, x_{e}^{n}, y\right)=\prod_{i=1}^{n}\left(y-y\left(w_{1}^{i} x_{1}, \ldots, w_{e}^{i} x_{e}\right)\right)
$$

where $\left(w_{1}^{i}, \ldots, w_{e}^{i}\right)_{1 \leq i \leq n}$ are distinct elements of $\left(U_{n}\right)^{e}$, where U_{n} is the set of n-th roots of unity in \mathbb{K}.
Definition 14 Let $y(\underline{x})=\sum_{p \in \mathbb{N}^{e}} c_{p} \underline{x}^{\frac{p}{n}} \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, for some integer n. We define the support of y, denoted $\operatorname{Supp}(y)$, to be the set $\operatorname{Supp}(y)=\left\{p \in \mathbb{N}^{e}, c_{p} \neq 0\right\}$.

Note that if f is a polynomial in $\mathbb{K}[[\underline{x}]][y]$ that admits a root $y(\underline{x})=\sum_{p \in \mathbb{N}^{e}} c_{p} \underline{x}^{\frac{p}{n}} \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, then for every $w_{1}, \ldots, w_{e} \in U_{n}, \operatorname{Supp}\left(y\left(w_{1}^{i} x_{1}, \ldots, w_{e}^{i} x_{e}\right)\right)=\operatorname{Supp}(y)$. We define the support of f to be $\operatorname{Supp}(f)=\operatorname{Supp}(y)$ for some root y of f.
Given $a=\left(a_{1}, \ldots, a_{e}\right), b=\left(b_{1}, \ldots, b_{e}\right) \in \mathbb{N}^{e}$, we say that $a \leq b$ (respectively $a<b$) coordinate-wise if $a_{i} \leq b_{i}$ (respectively $a_{i}<b_{i}$) for all $1 \leq i \leq n$.

2.3.2 Characteristic monomials of a quasi-ordinary polynomial

Proposition 11 Let f be an irreducible quasi-ordinary polynomial of degree n, and let $\left\{y_{i}\right\}_{1 \leq i \leq n}$ be the set of roots of f. For all $i \neq j$ we have $y_{i}-y_{j}=M_{i j} \varepsilon_{i j}$ for some monomial $M_{i j} \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ and a unit $\varepsilon_{i j}$ in $\mathbb{K}[[\underline{x}]]$.

Proof : Let $\Delta(f)$ be the discriminant of f, then :

$$
\Delta(f)=\prod_{i \neq j}\left(y_{i}-y_{j}\right)=M . h
$$

where $M=x_{1}^{\frac{m_{1}}{n}} \ldots x_{e^{\frac{m_{e}}{n}}}$ and h is unit in $\mathbb{K}\left[\left[x^{\frac{1}{n}}\right]\right]$, i.e $h(\underline{0}) \neq 0$. Since $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ is a unique factorization domain, and $x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}$ are irreducible elements in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ then for each $1 \leq i, j \leq n$ with $i \neq j$ we have $y_{i}-y_{j}=$ $x_{1}^{\frac{\alpha_{1}}{n}} \ldots x_{e}^{\frac{\alpha_{e}}{n}} \varepsilon_{i j}=M_{i j} \varepsilon_{i j}$, where $0 \leq \alpha_{k} \leq m_{k}$ are positive integers for all $1 \leq k \leq e$ that depends on y_{i} and y_{j}, and $\varepsilon_{i j}$ a unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$.

Definition 15 Let the notation be as above with f a quasi-ordinary polynomial and $\left\{M_{i j}\right\}_{i \neq j}$ the set of monomials such that $y_{i}-y_{j}=M_{i j} \varepsilon_{i j}$ for some $\varepsilon_{i j}$ unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. The set $\left\{M_{i j}\right\}_{i \neq j}$ is said to be the set of characteristic monomials of f.

Moreover, let $y=y_{1}$ be one of the roots of f, and let $M_{i j}$ be one of the characteristic monomials of f. There exists some conjugate y_{k} of y such that $y-y_{k}=M_{i j}$.

Definition 16 Let f be a quasi-ordinary polynomial in $\mathbb{K}[[\underline{x}]][y]$, and let $y(\underline{x}) \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ be a root of f. The element y is said to be a quasi-ordinary branch. We define the set of characteristic monomials of y to be the set of characteristic monomials of f.

Note that if a quasi-ordinary branch $y \in \mathbb{K}[[\underline{x}]]$, then it has no characteristic monomials. If $y \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ for some $n>1$ and z is a conjugate of y, then they both define the same set of characteristic monomials $\left\{M_{1}=\underline{x}^{\frac{m_{1}}{n}}, \ldots, M_{h}=\underline{x}^{\frac{m_{h}}{n}}\right\}$ with $h \in \mathbb{N}$. The set $\left\{m_{1}, \ldots, m_{h}\right\} \subset \mathbb{N}^{e}$ is called the set of characteristic exponents of y.

Proposition 12 Let f be an irreducible quasi-ordinary polynomial of degree n in $\mathbb{K}[[\underline{x}]][y]$ with a root $y \in$ $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. The set of characteristic exponents of f is ordered with respect to the componentwise order.

Proof : Let m_{1}, m_{2} be two characteristic exponents of f, and let $M_{1}=\underline{x}^{\frac{m_{1}}{n}}, M_{2}=\underline{x}^{\frac{m_{2}}{n}}$ be the associated characteristic monomials, then there exists y_{i}, y_{j} two conjugates of y in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ such that $y-y_{i}=M_{1} \varepsilon_{1}$ and $y-y_{j}=M_{2} \varepsilon_{2}$ for some $\varepsilon_{1}, \varepsilon_{2}$ units in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, and so $y_{i}-y_{j}=\left(y-y_{j}\right)-\left(y-y_{i}\right)=M_{2} \varepsilon_{2}-M_{1} \varepsilon_{1}$. By definition there exists a characteristic monomial $M_{i j}$ such that $y_{i}-y_{j}=M_{i j} \varepsilon_{i j}$ with $\varepsilon_{i j}$ is a unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, and we get that $M_{2} \varepsilon_{2}-M_{1} \varepsilon_{1}=M_{i j} \varepsilon_{i j}$, hence M_{2} divides M_{1} or M_{1} divides M_{2}, and so $m_{1}<m_{2}$ or $m_{2}<m_{1}$ component-wise. We finally conclude that the set of characteristic exponents of y can be arranged as $m_{1}<\cdots<m_{h}$ component-wise.

Remark 1 Let $f=y^{n}+a_{1}(\underline{x}) y^{n-1}+\cdots+a_{1}(\underline{x}) y+a_{0}(\underline{x})$ be a quasi-ordinary polynomial in $\mathbb{K}[[\underline{x}]][y]$. We have :

$$
f(\underline{0}, y)=\prod_{i=1}^{n}\left(y-y_{i}(0)\right)=y^{n}
$$

Hence $y_{i}(0)=0$, and so the conjugate y_{i} is a non unit in $k\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ for all $1 \leq i \leq n$.
Conversely if y is a non-unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, and for every y_{i} conjugate of y we have $y-y_{i}=M_{i} \varepsilon_{i}$ for some monomial $M_{i} \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ and some unit ε_{i}, then for all $1 \leq j, k \leq n$ we will have $y_{j}-y_{k}=M_{j k} \varepsilon_{j k}$ for some $M_{j k}$ monomial and $\varepsilon_{j k}$ unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. Take $f=\prod_{i}\left(y-y_{i}\right)$, then

$$
\Delta(f)=\prod_{j \neq k}\left(y_{j}-y_{k}\right)=\prod_{j \neq k} M_{j k} \prod_{j \neq k} \varepsilon_{j k}=M . \varepsilon
$$

where M is a monomial and ε is a unit, and so f is a quasi-ordinary polynomial.
From now on L denotes the fraction field of $\mathbb{K}[[\underline{x}]]$, and $L_{n}=L\left(x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right)$. It is well known that L_{n} is a Galois extension of L.

Proposition 13 Let f be an irreducible quasi-ordinary polynomial in $\mathbb{K}[[x]][y]$, and let y be one of its roots in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ with characteristic monomials $\left\{M_{1}, \ldots, M_{h}\right\}$. The field extensions $L(y)$ and $L\left(M_{1}, \ldots, M_{h}\right)$ coincide.

Proof : Any automorphism of L_{n} over L that fixes y fixes all the monomials of y. In particular it fixes the characteristic monomials of y since they appear as terms in y, and so $L\left(M_{1}, \ldots, M_{h}\right) \subset L(y)$. On the other hand if an automorphism θ of L_{n} over L fixes all the characteristic monomials of y, then $\theta(y)=y$. Indeed if $\theta(y)-y \neq 0$, then $\theta(y)-y=\underline{x}^{\frac{m}{n}}$. unit for some $m \in \mathbb{N}^{e}$, hence $\underline{x}^{\frac{m}{n}}$ is a characteristic monomial of y with $\theta\left(\underline{x}^{\frac{m}{n}}\right) \neq \underline{x}^{\frac{m}{n}}$ which contradicts our hypothesis. Hence $L(y)=L\left(M_{1}, \ldots, M_{h}\right)$.

Lemma 4 Let L be a field, and let α be an algebraic element over L. Then $L(\alpha)=L[\alpha]$.
Proof : Since $L[\alpha] \subseteq L(\alpha)$ and $L(\alpha)$ is the smallest field containing α and L, it is enough to prove that $L[\alpha]$ is a field in order to deduce the equality.
Let f be the minimal polynomial of α over L, and suppose that $\operatorname{deg}(f)=n$. Consider any nonzero polynomial $g \in L[x]$ with $\operatorname{deg}(g)<n$. Since f is irreducible in $L[x]$, then f and g are coprime, and so there exists $h_{1}(x), h_{2}(x) \in L[x]$ such that $h_{1}(x) f(x)+h_{2}(x) g(x)=1$, hence $h_{2}(\alpha) g(\alpha)=1$, and so $g(\alpha)$ has a multiplicative inverse in $L[\alpha]$. If $\operatorname{deg}(g)>n$, then dividing g by f we get $g=f . q+r$ for some $q, r \in L[x]$ with $\operatorname{deg}(r)<n$. Obviously $g(\alpha)=r(\alpha)$, hence $g(\alpha)$ admits a multiplicative inverse in $L[\alpha]$, and so $L[\alpha]$ is a field. We finally get $L[\alpha]=L(\alpha)$.
More generally, let $\alpha_{1}, \ldots, \alpha_{h}$ be algebraic elements over L. By Lemma 4 we have $L\left(\alpha_{1}\right)=L\left[\alpha_{1}\right]$. Suppose that $L\left(\alpha_{1}, \ldots, \alpha_{i}\right)=L\left[\alpha_{1}, \ldots, \alpha_{i}\right]$ with $i<h$, then $L\left(\alpha_{1}, \ldots, \alpha_{i+1}\right)=L\left(\alpha_{1}, \ldots, \alpha_{i}\right)\left(\alpha_{i+1}\right)=L\left(\alpha_{1}, \ldots, \alpha_{i}\right)\left[\alpha_{i+1}\right]=$ $L\left[\alpha_{1}, \ldots, \alpha_{i}\right]\left[\alpha_{i+1}\right]=L\left[\alpha_{1}, \ldots, \alpha_{i+1}\right]$, and so $L\left(\alpha_{1}, \ldots, \alpha_{h}\right)=L\left[\alpha_{1}, \ldots, \alpha_{h}\right]$.

Proposition 14 Let f be an irreducible quasi-ordinary polynomial with a root $y(\underline{x})$ as above, and a sequence of characteristic exponents m_{1}, \ldots, m_{h} in Supp (f) such that $m_{1}<m_{2}<\cdots<m_{h}$ coordinatewise. We have:
(i) If $m \in \operatorname{Supp}(f)$, then $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$.
(ii) $m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j<i} m_{j} \mathbb{Z}$ for all $i=1, \ldots, h$.

Proof : Let $M=\underline{x}^{\frac{m}{n}}$ be a monomial of y with $m \in \mathbb{Z}^{e}$, where $y \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ is a root of f, then $M \in L(y)$, but $L(y)=L\left(M_{1}, \ldots, M_{h}\right)=L\left[M_{1}, \ldots, M_{h}\right]$. Hence $M=g\left(M_{1}, \ldots, M_{h}\right)$ for some $g=\frac{f_{1}}{g_{1}} M_{1}^{\alpha_{1}^{1}} \ldots M_{h}^{\alpha_{h}^{1}}+\cdots+$ $\frac{f_{l}}{g_{l}} M_{1}^{\alpha_{1}^{l}} \ldots M_{h}^{\alpha_{h}^{l}}$, with $f_{1}, \ldots, f_{l}, g_{1}, \ldots, g_{l} \in \mathbb{K}[[\underline{x}]]$ and $l \in \mathbb{N}^{*}$, and so :

$$
g_{1} \ldots g_{l} M=f_{1} g_{2} \ldots g_{l} M_{1}^{\alpha_{1}^{1}} \ldots M_{h}^{\alpha_{h}^{1}}+\cdots+f_{l} g_{1} \ldots g_{l-1} M_{1}^{\alpha_{1}^{l}} \ldots M_{h}^{\alpha_{h}^{l}}
$$

Comparing both sides we can easily see that $M=\underline{x}^{\frac{m}{n}}=x_{1}^{a_{1}} \cdots x_{e}^{a_{e}} M_{1}^{p_{1}} \cdots M_{h}^{p_{h}}$ for some $a_{1}, \ldots, a_{e}, p_{1}, \ldots, p_{h} \in$ \mathbb{Z}, hence $\frac{m}{n} \in \mathbb{Z}^{e}+\sum_{i=1}^{h} \frac{m_{i}}{n} \mathbb{Z}$, and obviously $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$.
Now for the second part of the proposition, consider the characteristic monomial $M_{i}=\underline{x}^{\frac{m_{i}}{n}}$ of y, then by definition there exists an automorphism θ of L_{n} over L such that $y-\theta(y)=M_{i} \varepsilon_{i}$ with ε_{i} unit in $\mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. Hence $\theta\left(M_{j}\right)=M_{j}$ for all $j=1, \ldots, i-1$. On the other hand $\theta\left(M_{i}\right) \neq M_{i}$, thus M_{i} does not lie in $L\left(M_{1}, \ldots, M_{i-1}\right)$, hence $m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j<i} m_{j} \mathbb{Z}$.

Remark 2 In general let $M_{i}=\underline{x}^{\frac{m_{i}}{n}}$ with $i=1, \ldots, t$ be a set of monomials with fractional exponents, and $t \leq$ h. Let $M=\underline{x}^{\frac{m}{n}}$ be an arbitrary monomial. Then $\underline{x}^{\frac{m}{n}}$ lies in $L\left(M_{1}, \ldots, M_{t}\right)$ if and only if $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{t} m_{i} \mathbb{Z}$.
Let glex be the well-ordering on \mathbb{N}^{e} defined as follows : $\underline{\alpha}<_{\text {glex }} \underline{\beta}$ if and only if $|\alpha|=\sum_{i=1}^{e} \alpha_{i}<|\beta|=\sum_{i=1}^{e} \beta_{i}$ or $|\alpha|=|\beta|$ and $\alpha<_{\text {lex }} \beta$ (where lex denotes the lexicographical order).
Definition 17 Let $u=\sum_{p} c_{p} \underline{x}^{p}$ in $\mathbb{K}[[\underline{x}]]$ be a non-zero formal power series. Let $u=u_{d}+u_{d+1}+\ldots$ be the decomposition of u into a sum of homogeneous components. We define the initial form of u to be $\operatorname{In}(u)=u_{d}$.

We set $O_{x}(u)=d$; this quantity is called the \underline{x}-order of u. We denote by $\exp _{\text {glex }}(u)$ the smallest exponent of u with respect to $g l e x$. We denote by inco $_{\text {glex }}(u)$ the coefficient $c_{\text {exp }}^{\text {glex }}$, and we call it the initial coefficient of u. We finally set $M_{\text {glex }}(u)=\operatorname{inco}_{\text {glex }}(u) x^{e x p_{g l e x}(u)}$, and we call it the initial monomial of u.
Remark 3 Let $u(\underline{x})$ be a non-zero formal power series. Let \prec be another well-ordering of \mathbb{N}^{e}. Define the leading exponent of u to be the leading exponent of $\operatorname{In}(u)$ with respect to \prec. In this way we get a different notion of leading exponent (resp. initial coefficient, resp. initial monomial) of u.

Let g be a non-zero element of $R[Y]$. The order of g with respect to f, denoted by $O_{g l e x}(f, g)$, is defined to be $\exp _{\text {glex }}\left(g\left(x_{1}^{n}, \ldots, x_{e}^{n}, y(\underline{x})\right)\right.$. Note that it is independent of the choice of the root $y(\underline{x})$ of $f\left(x_{1}^{n}, \ldots, x_{e}^{n}, y\right)=$ 0 . Indeed if y^{\prime} is another root of f, then there exists some automorphism θ such that $\theta(y)=y^{\prime}$. Hence $g\left(\underline{x}^{n}, y^{\prime}(\underline{x})\right)=g\left(\underline{x}^{n}, \theta(y(\underline{x}))\right)=\theta\left(g\left(\underline{x}^{n}, y(\underline{x})\right)\right)$, and so $g\left(\underline{x}^{n}, y^{\prime}(\underline{x})\right)$ and $g\left(\underline{x}^{n}, y(\underline{x})\right)$ have the same support.
Definition 18 The semigroup of f, denoted by $\Gamma(f)$, is the subsemigroup of \mathbb{Z}^{e} defined by :

$$
\Gamma(f)=\left\{O_{g l e x}(f, g) \mid g \in \mathbb{K}[[\underline{]}][y], g \notin(f)\} .\right.
$$

Proposition 15 Let $n \in \mathbb{N}^{*}$ and let $Y(\underline{x})=\sum_{p} c_{p} \underline{x}^{\frac{p}{n}} \in \mathbb{K}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, and suppose that there exists a finite sequence of elements m_{1}, \ldots, m_{h}, of $\operatorname{Supp}(Y(\underline{x}))$ such that the following holds :
(i) $m_{1}<m_{2}<\ldots<m_{h}$ componentwise.
(ii) If $p \in \operatorname{Supp}(Y(\underline{x}))$, then $p \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$.
(iii) $m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j<i} m_{j} \mathbb{Z}$ for all $i=1, \ldots, h$.
(iv) If $p \in \operatorname{Supp}(Y)$ such that $p \in \mathbb{Z}^{e}+\sum_{i=1}^{j} m_{i} \mathbb{Z}$ and $p \notin \mathbb{Z}^{e}+\sum_{i=1}^{j-1} m_{i} \mathbb{Z}$ for some $j \in\{1, \ldots, h\}$ then $m_{j} \leq p$ coordinate wise.
Then $Y(\underline{x})$ is a quasi-ordinary branch.

Proof: For each $i=1, \ldots, h$ define the set $G_{i}=M_{i} \backslash M_{i-1}$ and $G_{0}=(n \mathbb{Z})^{e} \cap \operatorname{Supp}(Y)$, and define for each $i=0, \ldots, h$ the power series $H_{i}=\sum_{m \in G_{i}} c_{m} \underline{x}^{\frac{m}{n}}$, then $Y(\underline{x})$ can be written as $Y(\underline{x})=H_{0}+H_{1}+\ldots+H_{h}$. If $m \in G_{i}$, then $m \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ and $m \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$, hence by condition (iv) $m_{i} \leq m$, and so H_{i} can be written as $H_{i}=M_{i} \varepsilon_{i}$ with $M_{i}=\underline{x}^{\frac{m_{i}}{n}}$ and $\varepsilon_{i}(0) \neq 0$. Note that an automorphism θ of L_{n} over L fixes H_{0}, \ldots, H_{i} if and only if it fixes the monomials M_{1}, \ldots, M_{i}. In fact if θ fixes H_{j} then it will obviously fix all monomials M of H_{j}, in particular it fixes M_{j}. On the other hand suppose that θ fixes all the monomials M_{1}, \ldots, M_{i} and let $M=\underline{x}^{\frac{m}{n}}$ be a monomial of H_{j} for some $1 \leq j \leq i$, then $m \in G_{j}$, and it follows from Remark 2 that $M \in L\left(M_{1}, \ldots, M_{j}\right)$ but θ fixes M_{1}, \ldots, M_{j} then it will fix M, hence H_{j} is fixed by θ. Now if θ is an automorphism that does not fix $y=H_{0}+\ldots+H_{h}$, then θ does not fix all H_{1}, \ldots, H_{h}, and so there exists some $i \geq 0$ such that θ fixes H_{0}, \ldots, H_{i} and does not fix H_{i+1}, hence $Y-\theta(Y)=M_{i+1} \varepsilon$ where $\varepsilon_{i}(0) \neq 0$. It follows from Remark 1 that Y is a quasi-ordinary branch.

2.3.3 Field extensions.

Lemma 5 Let m_{1}, \ldots, m_{e}, m be $(e+1)$ vectors in \mathbb{Z}^{e}, and let D be the determinant of the matrix $M=$ $\left(m_{1}^{t}, \ldots, m_{e}^{t}\right)$ and D_{i} be the determinant of the matrix $M_{i}=\left(m_{1}^{t}, \ldots, m_{i-1}^{t}, m^{t}, m_{i+1}^{t}, \ldots, m_{e}^{t}\right)$ for all $i \in$ $\{1, \ldots, e\}$. Then m can be written as $m=x_{1} m_{1}+\ldots+x_{e} m_{e}$ for some $x_{1}, \ldots, x_{e} \in \mathbb{Z}$ if and only if D divides D_{i} for all $1 \leq i \leq e$.

Proof: Let X_{i} be the matrix obtained by replacing the $i-t h$ column of the identity ($e \times e$) matrix I_{e} by the vector x^{t} where $x=\left(x_{1}, \ldots, x_{e}\right)$, then we will have $M \cdot X_{i}=M_{i}$. Calculating the determinants we get $\operatorname{Det}(M) \cdot \operatorname{Det}\left(X_{i}\right)=\operatorname{Det}\left(M_{i}\right)$, but the determinant of X_{i} is obviously x_{i}, hence $D \cdot x_{i}=D_{i}$, and so the equation $m=x_{1} m_{1}+\ldots+x_{e} m_{e}$ admits a solution if and only if $D \neq 0$, and the obtained solution will be $x_{i}=\frac{D_{i}}{D}$ for all $1 \leq i \leq e$. In particular $x_{i} \in \mathbb{Z}$ if and only if D divides D_{i} for all $1 \leq i \leq e$.

Lemma 6 Let M be a subgroup of $(n \mathbb{Z})^{e}$ generated by the elements $\left(B_{1}, \ldots, B_{e}\right)$. Consider another system of generators $\left\{v_{1}, \ldots, v_{e}\right\}$ of M. Then $\operatorname{Det}\left(B_{1}^{t}, \ldots, B_{e}^{t}\right)=\operatorname{Det}\left(v_{1}^{t}, \ldots, v_{e}^{t}\right)$.

Proof: Consider the two matrices $V=\left(v_{1}^{t}, \ldots, v_{e}^{t}\right)$ and $B=\left(B_{1}^{t}, \ldots, B_{e}^{t}\right)$. For each of the e columns B_{i}^{t} of B, there exists a vector $x \in \mathbb{Z}^{e}$ such that $B_{i}^{t}=V \cdot x$, so there exists an $(e \times e)$ integer matrix U such that $B=V \cdot U$. Similarly, there exists an $(e \times e)$ integer matrix U^{\prime} such that $V=B \cdot U^{\prime}$, hence $B=V \cdot U=B\left(U^{\prime} \cdot U\right)$, and so $B^{T} B=\left(U^{\prime} U\right)^{T} B^{T} B\left(U^{\prime} U\right)$ where B^{T} is the transpose of B.
Taking determinants, we get that $\operatorname{Det}\left(B^{T} B\right)=\left(\operatorname{Det}\left(U^{\prime} U\right)\right)^{2} \operatorname{Det}\left(B^{T} B\right)$, and so $\operatorname{Det}\left(U^{\prime} U\right)^{2}=1$. Since U and U^{\prime} are integer matrices, then $\operatorname{Det}\left(U^{\prime} U\right)=\operatorname{Det}\left(U^{\prime}\right) \operatorname{Det}(U)= \pm 1$, and so $\operatorname{Det}(U)= \pm 1$. It follows that $\operatorname{Det}(B)=\operatorname{Det}(V) \operatorname{Det}(U)=\operatorname{Det}(V)$.
We start with a technical Lemma :
Lemma 7 Consider $M_{0}=(n \mathbb{Z})^{e}$ with its canonical basis A_{1}, \ldots, A_{e}, let $A_{e+1} \in \mathbb{Z}^{e}$ be an arbitrary vector, and consider the group $M_{1}=(n \mathbb{Z})^{e}+A_{e+1} \mathbb{Z}$. Then M_{1} is a free group of rank e. Let D_{1} be the GCD of the $(e \times e)$ minors of the matrix $A=\left(A_{1}, \ldots, A_{e}, A_{e+1}\right)$, denoted by $G C D M\left(A_{1}, \ldots, A_{e}, A_{e+1}\right)$ or $G C D M(A)$, and let D be the absolute value of the determinant of the matrix $\left(v_{1}, \ldots, v_{e}\right)$, where v_{1}, \ldots, v_{e} is a basis of M_{1}. Then $D=D_{1}$.

Proof: We have $(n \mathbb{Z})^{e} \subseteq M_{1} \subseteq \mathbb{Z}^{e}$, but \mathbb{Z}^{e} and $(n \mathbb{Z})^{e}$ are free abelian groups of rank e, then M_{1} is a free abelian group of rank e. It is well known that a basis for M_{1} is obtained by applying the following elementary operations on the columns of the matrix A :
(i) $A_{i} \leftarrow A_{i}+k A_{j}$, adding a multiple of a column to another column.
(ii) $A_{i} \leftrightarrow A_{j}$, interchanging two columns.

Each operation of the above will not affect the GCD of the minors of the obtained matrix, so at the end of the procedure we will obtain a matrix $C=\left(B_{1}, \ldots, B_{e}, \underline{0}\right)$ where B_{1}, \ldots, B_{e} is a basis of M_{1} and $G C D M(A)=$ $G C D M(C)=\operatorname{Det}\left(B_{1}, \ldots, B_{e}\right)$, which is equal to D by Lemma 6 .

Definition 19 Let f be a quasi-ordinary polynomial, and m_{1}, \ldots, m_{e} be its set of characteristic exponents. Let $\underline{m}_{0}=\left(m_{0}^{1}, \ldots, m_{0}^{e}\right)$ be the canonical basis of $\left(n \mathbb{Z}^{e}\right)$, and I_{e} the unit $e \times e$ matrix. The \underline{D}-sequence of f, D_{1}, \ldots, D_{h+1}, is defined to be the set of integers : $D_{1}=n^{e}$, and D_{i+1} the gcd of the $e \times e$ minors of the matrix $\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}\right)$.

Proposition 16 Let $M_{i}=(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$, and consider a nonzero vector v in \mathbb{Z}^{e}. Let \tilde{D} be the $g c d$ of the $e \times e$ minors of the matrix $\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}, v^{T}\right)$. We have the following :
(i) $v \in M_{i}$ if and only if $\tilde{D}=D_{i+1}$.
(ii) $\frac{D_{i+1}}{\tilde{D}} \cdot v \in M_{i}$ and if $D_{i+1}>\tilde{D}$ then for all $1 \leq k<\frac{D_{i+1}}{\tilde{D}}, k . v \notin M_{i}$.

Proof : Let v_{1}, \ldots, v_{e} be a basis of M_{i}, then obviously :
$v \in M_{i}$ if and only if $v=\alpha_{1} v_{1}+\ldots+\alpha_{e} v_{e}$, where $\alpha_{i} \in \mathbb{Z} \forall i=1, \ldots, e$.
Now let $D_{1}^{\prime},\left(D_{2}^{\prime}, \ldots, D_{e}^{\prime}\right)$ be the determinant of the matrix $\left(v, v_{2}, \ldots, v_{e}\right)\left(\left(v_{1}, v, \ldots, v_{e}\right), \ldots,\left(v_{1}, \ldots, v_{e-1}, v\right)\right)$ respectively, and D the determinant of the matrix $\left(v_{1}, \ldots, v_{e}\right)$. It follows from Lemma 7 that $D=D_{i+1}$, and that \tilde{D} is equal to the $G C D$ of the minors of the matrix $\left(v_{1}, \ldots, v_{e}, v\right)$.
By Proposition 5 we have : $v=\alpha_{1} v_{1}+\ldots+\alpha_{e} v_{e}$ if and only if D divides D_{k}^{\prime} for all $1 \leq k \leq e$, if and only if D_{i+1} divides D_{k}^{\prime} for all $1 \leq k \leq e$ which is equivalent to say $\tilde{D}=G C D\left(D_{i+1}, D_{1}^{\prime}, \ldots, D_{e}^{\prime}\right)=D_{i+1}$.
Concerning part (ii), let $1 \leq k \leq \frac{D_{i+1}}{D}$, and consider the vector $k . v$. Let A be the matrix $\left(v_{1}, \ldots, v_{e},(k . v)\right)$. The determinant of the minors of this matrix are clearly $k . D_{1}^{\prime}, \ldots, k . D_{e}^{\prime}, D_{i+1}$. Let \bar{D} to be the $G C D$ of the minors of the matrix A. If $k=\frac{D_{i+1}}{\bar{D}}$, then :

$$
\bar{D}=G C D\left(D_{i+1} \frac{D_{1}^{\prime}}{\tilde{D}}, \ldots, D_{i+1} \frac{D_{e}^{\prime}}{\tilde{D}}, D_{i+1}\right)=D_{i+1} G C D\left(\frac{D_{1}^{\prime}}{\tilde{D}}, \ldots, \frac{D_{e}^{\prime}}{\tilde{D}}, 1\right)=D_{i+1}
$$

and so we can conclude that $k . v \in M_{i}$ from the first part. Now suppose that $D_{i+1}>\tilde{D}$, and let $1 \leq k<\frac{D_{i+1}}{\tilde{D}}$. If $k . v \in M_{i}$, then from part (i) we can conclude that $\bar{D}=D_{i+1}$, then D_{i+1} divides $k D_{1}^{\prime}, \ldots, k D_{e}^{\prime}, D_{i+1}$, hence it divides $k . D_{1}^{\prime}, \ldots, k . D_{e}^{\prime}, k . D_{i+1}$ and consequently divides $G C D\left(k D_{1}^{\prime}, \ldots, k D_{e}^{\prime}, k D_{i+1}\right)$ but $G C D\left(k D_{1}^{\prime}, \ldots, k D_{e}^{\prime}, k D_{i+1}\right)=$ $k . G C D\left(D_{1}^{\prime}, \ldots, D_{e}^{\prime}, D_{i+1}\right)=k . \tilde{D}$, which is a contradiction since $k . \tilde{D}<D_{i+1}$ by assumption
Now define the sequence $\left(e_{i}\right)_{1 \leq i \leq h}$ to be $e_{i}=\frac{D_{i}}{D_{i+1}}$ for all $1 \leq i \leq h$, which is called the \underline{e}-sequence associated with f. Let $M_{0}=(n \mathbb{Z})^{e}$ and $M_{i}=(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ for all $1 \leq i \leq h$, where m_{1}, \ldots, m_{h} are the characteristic monomials of f, then $M_{0} \subset M_{1} \subset \cdots \subset M_{h} \subset \mathbb{Z}^{e}$ are free abelian subgroups of rank e for all $1 \leq i \leq h$.
Remark 4 We have $m_{i+1} \notin M_{i}$, then by Proposition 16 we deduce that $D_{i+2}>D_{i+1}, e_{i+1} m_{i+1} \in M_{i}$, and $k m_{i+1} \notin M_{i}$ for all $1 \leq k<e_{i+1}$.
Let $F_{0}=K((\underline{x}))$ and let $F_{k}=F_{k-1}\left(\underline{x}^{\frac{m_{k}}{n}}\right)$ for all $k=1, \ldots, h$. Obviously we have

$$
F_{0} \subset F_{1} \subset \ldots \subset F_{0}\left(\underline{x}^{\frac{m_{1}}{n}}, \ldots, \underline{x}^{\frac{m_{h}}{n}}\right)=F_{h} .
$$

Lemma 8 For all $i=1, \ldots, k$ the minimal polynomial of $\underline{x}^{\frac{m_{k}}{n}}$ over F_{k-1} is equal to $h_{k}=y^{e_{k}}-\underline{x}^{e_{k} \frac{m_{k}}{n}}$.
Proof : The polynomial h_{k} belongs to $F_{k-1}[y]$, since $e_{k} m_{k} \in(n \mathbb{Z})^{e}+m_{1} \mathbb{Z}+\cdots m_{k-1} \mathbb{Z}$. obviously $h_{k}\left(\underline{x}^{\frac{m_{k}}{n}}\right)=0$. Suppose to the contrary that h_{k} is not the minimal polynomial of $\underline{x}^{\frac{m_{k}}{n}}$. Then there exists some monic polynomial $f \in F_{k-1}[y]$ of degree $\alpha<e_{k}$ such that $f\left(\underline{x}^{\frac{m_{k}}{n}}\right)=0$. Write $f=y^{\alpha}+a_{\alpha_{-} 1} y^{\alpha-1}+\cdots+a_{0}$ where $a_{i} \in F_{k-1}$ for all $i=0, \ldots, \alpha-1$. We have $f\left(\underline{x}^{\frac{m_{k}}{n}}\right)=0$, and so :

$$
\underline{x}^{\alpha_{k}} \frac{m_{k}}{n}+a_{\alpha-1} \underline{x}^{(\alpha-1) \frac{m_{k}}{n}}+\cdots+a_{1} \underline{x}^{\frac{m_{k}}{n}}+a_{0}=0
$$

Hence there exists some $i \in\{0, \ldots, \alpha-1\}$ such that one of the monomials of $a_{i} \underline{x}^{i \frac{m_{k}}{n}}$ is equal to $\underline{x}^{\alpha \frac{m_{k}}{n}}$. Let $\underline{x}^{\frac{a}{n}}$ be such monomial. Then $a=b+i m_{k}$ for some $b \in \mathbb{Z}^{e}+\sum_{j=1}^{k-1} m_{j} \mathbb{Z}$, and so $\alpha m_{k}=b+i m_{k}$, hence $(\alpha-i) m_{k}=b \in \mathbb{Z}^{e}+\sum_{j=1}^{k-1} m_{j} \mathbb{Z}$. But $0<\alpha-i<e_{i}$, which is a contradiction.

Proposition 17 Let the notation be as above. We have the following :
(i) For all $k=1, \ldots, h, F_{k}$ is an algebraic extension of degree e_{k} of F_{k-1}.
(ii) For all $k=1, \ldots, h, F_{k}$ is an algebraic extension of degree $e_{k} \cdot e_{k-1} \ldots e_{1}$ of F_{0}.
(iii) $n=\operatorname{deg}_{y}(f)=e_{1} \ldots e_{h}=\frac{D_{1}}{D_{h+1}}=\frac{n^{e}}{D_{h+1}}$. In particular $D_{h+1}=n^{e-1}$.

Proof: (i) By Lemma 8 we have that for all $1 \leq k \leq h$, the polynomial $h_{k}=y^{e_{k}}-\underline{x}^{e_{k} \frac{m_{k}}{n}}$ is the minimal polynomial of $\underline{x}^{\frac{m_{k}}{n}}$ over F_{k-1}, which is a polynomial of degree e_{k}. Hence F_{k} is an algebraic extension of degree e_{k} of F_{k-1}.
(ii) It follows from part (i) that F_{k} is an algebraic extension of F_{k-1} of degree e_{k} for all $1 \leq k \leq h$, and so F_{k} is an algebraic extension of F_{0} of degree $e_{k} \ldots e_{1}$.
(iii) By Proposition 13, we have $F_{h}=F_{0}(y)$, but $\left[F_{0}(y) ; F_{0}\right]=\operatorname{deg}(f)=n$, then $\left[F_{h}, F_{0}\right]=n$. By part (ii) we have that F_{h} is an algebraic extension of degree $e_{h} \ldots e_{1}$ of F_{0}, and so $n=\operatorname{deg}_{y}(f)=e_{1} \ldots e_{h}=\frac{D_{1}}{D_{2}} \cdots \frac{D_{h}}{D_{h+1}}=$ $\frac{D_{1}}{D_{h+1}}=\frac{n^{e}}{D_{h+1}}$. It follows that $D_{h+1}=n^{e-1}$.

2.3.4 Semi-roots and approximate roots of a quasi-ordinary polynomial.

Let f, g be two non zero polynomials, of degrees n, m respectively, in $\mathbb{K}[[x]][y]$ such that $f . g$ is a quasiordinary polynomial. Then $\Delta_{y}(f . g)=\underline{x}^{\lambda} \cdot \epsilon$ for some ϵ unit in $\mathbb{K}[[\underline{x}]]$. It follows that f and g are quasi ordinary polynomials. Let $\left\{y_{i}\right\}_{i=1, \ldots, n}$ and $\left\{z_{j}\right\}_{j=1, \ldots, m}$ be the roots of f and g respectively. Then by Proposition 11 for all $i=1, \ldots, n$ and $j=1, \ldots, m$ we have $y_{i}-z_{j}=\underline{x}^{\lambda_{i j}} \varepsilon_{i j}$ where $\varepsilon_{i j}$ is a unit. Moreover the exponents $\lambda_{i j}$ are ordered with respect to the component-wise order. In this case we say that f and g are comparable. This leads to the following definition.

Definition 20 Let f and g be two comparable polynomials with $\left\{\lambda_{i j}\right\}_{i=1, \ldots, n}^{j=1, \ldots, m}$ as above. The order of coincidence of f and g is defined to be the largest element $\lambda_{i j}$ where $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$ with respect to the component-wise order.

We define the sequence $\left(d_{1}, d_{2}, \ldots, d_{h+1}\right)$ by $d_{i}=\frac{D_{i}}{D_{h+1}}$, in particular $d_{1}=n$ and $d_{h+1}=1$. This sequence is called the \underline{d}-sequence associated with f. Let $\left(r_{0}^{1}, \ldots, r_{0}^{e}\right)=\left(m_{0}^{1}, \ldots, m_{0}^{e}\right)$ be the canonical basis of $(n \mathbb{Z})^{e}$ and define the sequence $\left(r_{k}\right)_{1 \leq k \leq h}$ by $r_{1}=m_{1}$ and :

$$
r_{k+1}=e_{k} r_{k}+m_{k+1}-m_{k}
$$

For all $1 \leq k \leq h-1$. We call $\left(r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}\right)$ the \underline{r}-sequence associated with f.
Remark 5 Each of the sequences $\left(m_{k}\right)_{1 \leq k \leq h}$ and $\left(r_{k}\right)_{1 \leq k \leq h}$ determines the other. More precisely $m_{1}=r_{1}$ and $r_{k} d_{k}=m_{1} d_{1}+\sum_{j=2}^{k}\left(m_{j}-m_{j-1}\right) d_{j}\left(\right.$ resp $\left.m_{k}=r_{k}-\sum_{j=1}^{k-1}\left(e_{j}-1\right) r_{j}\right)$ for all $2 \leq k \leq h$. Hence we have $M_{k}=(n \mathbb{Z})^{e}+\sum_{j=1}^{k} m_{j} \mathbb{Z}=(n \mathbb{Z})^{e}+\sum_{j=1}^{k} r_{j} \mathbb{Z}$ and $e_{k} r_{k} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{k-1} r_{j} \mathbb{Z}$ for all $k=1, \ldots, h$.

Definition 21 Let y be a quasi-ordinary branch, and let $\left(r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}\right)$ be the \underline{r}-sequence associated to y. The semigroup of y is defined to be $(n \mathbb{N})^{e}+\sum_{i=1}^{h} r_{i} \mathbb{N}$, and denoted by Γ_{y}.

From now on we denote by $\Gamma_{0}=(n \mathbb{N})^{e}$ and $\Gamma_{j}=(n \mathbb{N})^{e}+\sum_{i=1}^{j} r_{i} \mathbb{N}$ for all $j=1, \ldots, h$.
Lemma 9 Let the notation be as above. Then we have the following:
(1) $e_{i} r_{i}<r_{i+1}$ for all $i=1, \ldots, h-1$ (where $<$ means \leq component wise but not equal).
(2) For all $i \in\left\{1, \ldots\right.$, h\}. If $u \in M_{j} \cap \mathbb{N}^{e}$, then $u+e_{j} r_{j} \in \Gamma_{j}$.
(3) $e_{i+1} r_{i+1} \in \Gamma_{i}$ for all $i=1, \ldots, h-1$, that is Γ_{y} is a free affine semigroup.

Proof: (1) We have $r_{j+1}=e_{j} r_{j}+\left(m_{j+1}-m_{j}\right)$. Then

$$
\begin{aligned}
e_{j+1} r_{j+1}-e_{j} r_{j} & =e_{j+1} e_{j} r_{j}+e_{j+1}\left(m_{j+1}-m_{j}\right)-e_{j} r_{j} \\
& =e_{j}\left(e_{j+1}-1\right) r_{j}+e_{j+1}\left(m_{j+1}-m_{j}\right) \\
& >\left(e_{j+1}-1\right)\left(e_{j} r_{j}+m_{j+1}-m_{j}\right) \\
& =\left(e_{j+1}-1\right) r_{j+1}
\end{aligned}
$$

It follows that $e_{j} r_{j}<r_{j+1}$.
(2) For $i=1$, it is obvious. Suppose that it is true up to $j-1$ and let $u \in M_{j} \cap \mathbb{N}^{e}$. Then u can be written in a unique way as $u=\alpha r_{j}+u^{\prime}$ with $0 \leq \alpha<e_{j}$ and $u^{\prime} \in M_{j-1}$. Let $v=u^{\prime}+e_{j} r_{j}-e_{j-1} r_{j-1}$. since $e_{j} r_{j} \in M_{j-1}$, then $v \in M_{j-1}$. On the other hand $e_{j} r_{j}-e_{j-1} r_{j-1}>\left(e_{j}-1\right) r_{j} \geq \alpha r_{j}$ component wise, and so $e_{j} r_{j}-e_{j-1} r_{j-1}=\alpha r_{j}+\omega$ for some $\omega \in \mathbb{N}^{e}$, then $v=u^{\prime}+e_{j} r_{j}-e_{j-1} r_{j-1}=u^{\prime}+\alpha r_{j}+\omega=u+\omega \in \mathbb{N}^{e}$, hence $v \in M_{j-1} \cap \mathbb{N}^{e}$, then by the induction hypothesis $v+e_{j-1} r_{j-1}=u^{\prime}+e_{j} r_{j} \in \Gamma_{j-1}$. But $u+e_{j} r_{j}=$ $\alpha r_{j}+\left(u^{\prime}+e_{j} r_{j}\right)$, and so it belongs to Γ_{j}.
(3) For all $i=1, \ldots, h-1$ we have $e_{i+1} r_{i+1}=e_{i+1} e_{i} r_{i}+e_{i+1}\left(m_{i+1}-m_{i}\right)$. But $m_{i+1}-m_{i} \in \mathbb{N}^{e}$ since $m_{i} \leq m_{i+1}$ coordinate wise, and $e_{i+1} m_{i+1} \in M_{i}$, then $e_{i+1}\left(m_{i+1}-m_{i}\right) \in M_{i} \cap \mathbb{N}^{e}$. Hence by part (2) we get $e_{i} r_{i}+e_{i+1}\left(m_{i+1}-m_{i}\right) \in \Gamma_{i}$, whence $e_{i+1} r_{i+1} \in \Gamma_{i}$.
Let d_{1}, \ldots, d_{h+1} be the \underline{d} sequence associated to y. Note that for all $i=1, \ldots, h$ we have $e_{i}=\frac{d_{i}}{d_{i+1}}$, and so $d_{i}=d_{i+1} e_{i}=\ldots=d_{h+1} e_{h} \ldots e_{i}=e_{i} \ldots e_{h}$. Hence $\frac{n}{d_{i}}=\frac{e_{1} \ldots e_{h}}{e_{i} \ldots e_{h}}=e_{1} \ldots e_{i-1}$.
Definition 22 Let the notation be as above, and let $i \in\{1, \ldots, h\}$. A polynomial $g \in \mathbb{K}[[\underline{x}]][y]$ is said to be an i-th semi-root of f if $\operatorname{deg}_{y}(g)=\frac{n}{d_{i}}$ and $g\left(\underline{x}^{n}, y\right)=\underline{x}^{r_{i}} \varepsilon$ for some ε unit in $\mathbb{K}[[\underline{x}]]$.

Remark 6 Let $\sigma=\left\langle a^{1}, \ldots, a^{e}\right\rangle$ be a cone in $\mathbb{R}_{>0}^{e}$ with $a^{i}=\left(a_{1}^{i}, \ldots, a_{e}^{i}\right) \in \mathbb{N}^{e}$ for each $i=1, \ldots, e$. This cone defines a homomorphism of rings $\psi: \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right] \mapsto \mathbb{K}\left[\left[t_{1}, \ldots, t_{e}\right]\right]$ defined by :

$$
\begin{gathered}
x_{1} \mapsto t_{1}^{a_{1}^{1}} \cdots t_{e}^{a_{1}^{e}} \\
x_{2} \mapsto t_{1}^{a_{2}^{1}} \cdots t_{e}^{a_{2}^{e}} \\
\quad \cdots \\
x_{1} \mapsto t_{1}^{a_{e}^{1}} \cdots t_{e}^{a_{e}^{e}}
\end{gathered}
$$

Let $M=x_{1}^{\alpha_{1}} \cdots x_{e}^{\alpha_{e}}=\underline{x}^{\alpha}$ be a monomial, then $\psi(M)=t_{1}^{\beta_{1}} \cdots t_{e}^{\beta_{e}}$ is a monomial, with $\left(\beta_{1}, \ldots, \beta_{e}\right)=(<$ $\left.a^{1}, \alpha>, \ldots,<a^{e}, \alpha>\right)$ and denoted by $\psi(\alpha)$, where $\left\langle a, b>\right.$ is the dot product of two vectors in \mathbb{R}^{e}. Also ψ extends to a homomorphism from $\mathbb{K}[[\underline{x}]][y]$ to $\mathbb{K}[[\underline{t}]][y]$, by sending each $g=a_{n} y^{n}+\cdots+a_{1} y+a_{0}$ in $\mathbb{K}[[\underline{x}]][y]$ to $\psi(g)=\psi\left(a_{n}\right) y^{n}+\cdots+\psi\left(a_{1}\right) y+\psi\left(a_{0}\right)$ in $\mathbb{K}[[t]][y]$. It is easy to see that ψ sends a unit to another unit.

Lemma 10 Let $f \in \mathbb{K}[[\underline{x}]][y]$ be an irreducible quasi-ordinary polynomial of degree n and let $\left\{m_{1}, \ldots, m_{h}\right\}$ be its set of characteristic exponents. Then $\psi(f)$ is an irreducible quasi-ordinary polynomial in $\mathbb{K}[[t]][y]$ and $\left\{\psi\left(m_{i}\right)\right\}_{i=1, \ldots, h}$ is its set of characteristic exponents.

Proof : Since f is a quasi-ordinary polynomial then $\Delta_{y}(f)=\underline{x}^{m}$.unit. But $\Delta_{y}(\psi(f))=\psi\left(\Delta_{y}(f)\right)$, then $\Delta_{y}(\psi(f))=\psi\left(\underline{x}^{m}\right)$.unit, hence $\psi(f)$ is a quasi-ordinary polynomial. Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be the roots of f, then $\left\{\psi\left(y_{1}\right), \ldots, \psi\left(y_{n}\right)\right\}$ are the roots of $\psi(f)$. By definition the characteristic exponents of $\psi(f)$ are obtained by taking the difference of its roots. In particular $\psi\left(y_{i}\right)-\psi\left(y_{j}\right)=\psi\left(y_{i}-y_{j}\right)=\psi\left(\underline{x}^{m_{i}} \cdot u n i t\right)=\psi\left(\underline{x}^{m_{i j}}\right) \cdot$ unit $=$ $\underline{x}^{\psi\left(m_{i j}\right)}$.unit where $m_{i j}$ is a characteristic exponent of f. Then the characteristic exponents of $\psi(f)$ are the images of the characteristic exponents of f by ψ.

Remark $\mathbf{7}$ we can rewrite the \underline{r} sequence of f as :

$$
\begin{aligned}
r_{k} & =m_{k}+\left(e_{k-1}-1\right) m_{k-1}+\left(e_{k-2}-1\right) e_{k-1} m_{k-2}+\ldots+\left(e_{1}-1\right) e_{2} \ldots e_{k-1} m_{1} \\
& =n \frac{m_{k}}{n}+n\left(e_{k-1}-1\right) \frac{m_{k-1}}{n}+n\left(e_{k-2}-1\right) e_{k-1} \frac{m_{k-2}}{n}+\ldots+n\left(e_{1}-1\right) e_{2} \ldots e_{k-1} \frac{m_{1}}{n} \\
& =e_{1} \ldots e_{k-1}\left[e_{k} \ldots e_{h} \frac{m_{k}}{n}+e_{k} \ldots e_{h}\left(e_{k-1}-1\right) \frac{m_{k-1}}{n}+\cdots+e_{k} \ldots e_{h}\left(e_{1} e_{2} \ldots e_{k-1}-e_{2} \ldots e_{k-1}\right) \frac{m_{1}}{n}\right] \\
& =e_{1} \ldots e_{k-1}\left[d_{k} \frac{m_{k}}{n}+\left(d_{k-1}-d_{k}\right) \frac{m_{k-1}}{n}+\cdots+\left(d_{1}-d_{2}\right) \frac{m_{1}}{n}\right]
\end{aligned}
$$

for all $k=1, \ldots, h$.
Definition 23 Let $y=\sum c_{p} \underline{x}^{p}$ be a formal power series in $\mathbb{K}[[\underline{x}]]$. The Newton polyhedron of y is defined as the convex hull of the set $H=\bigcup_{p \in \operatorname{Supp}(y)}\left(p+\mathbb{N}^{e}\right)$, that is the smallest convex subset of \mathbb{R}^{e} containing H, and it is denoted by $N(y)$.

Let f be a quasi-ordinary polynomial, and let $g \in \mathbb{K}[[\underline{x}]][y]$. If y_{1}, y_{2} are two roots of f, then $\operatorname{supp}\left(y_{1}\right)=$ $\operatorname{supp}\left(y_{2}\right)$. Consequently $N\left(g\left(\underline{x}, y_{1}\right)\right)=N\left(g\left(\underline{x}, y_{2}\right)\right)$. Moreover if g is quasi-ordinary of degree m, and $\left\{z_{1}=\right.$ $\left.z, z_{2}, \ldots, z_{m}\right\}$ are its roots. Then :

$$
\begin{equation*}
N\left(\prod_{i=1}^{n} g\left(\underline{x}, y_{i}\right)\right)=\operatorname{deg}(f) N(g(\underline{x}, y))=N\left(\prod_{j=1}^{m}\left(f\left(\underline{x}, z_{j}\right)\right)\right)=\operatorname{deg}(g) N(f(\underline{x}, z))=N\left(\operatorname{Res}_{y}(f, g)\right) \tag{2.1}
\end{equation*}
$$

Proposition 18 Let g be an irreducible quasi-ordinary polynomial in $\mathbb{K}[[\underline{x}]][y]$ of degree $m=\frac{n}{d_{i}}(i \in\{1, \ldots, h\})$. Then g is an $i-$ th semi root of f if and only if the order of coincidence between f and g is equal to $\frac{m_{i}}{n}$.

Proof : Let $\left\{z_{1}, \ldots, z_{m}\right\}$ be the roots of g. We have $g(\underline{x}, Z)=\prod_{j=1}^{m}\left(Z-z_{j}\right)$. Now suppose that g is an i-th semi root, then by definition we have $g(\underline{x}, y(\underline{x}))=\underline{x}^{r_{i}} \varepsilon$ for some unit ε. Since $N\left(\prod_{i=1}^{n} g\left(\underline{x}, y_{i}(\underline{x})\right)\right)=$ $\operatorname{deg}(f) N(g(\underline{x}, y(\underline{x})))$ and $g(\underline{x}, y(\underline{x}))=\prod_{j=1}^{m}\left(y(\underline{x})-z_{j}\right)$, then $y_{i}(\underline{x})-z_{j}(\underline{x})=\underline{x}^{\alpha_{i j}} \varepsilon_{i j}$ for some unit $\varepsilon_{i j}$, for all $i=1, \ldots, n$ and $j=1, \ldots, m$. Hence the order of coincidence between f and g is defined. Let α be the order of coincidence between f and g, and suppose without loss of generality that $y(\underline{x})-z(\underline{x})=\underline{x}^{\alpha} \omega$ for some unit ω. Remember that $\left\{m_{1}, \ldots, m_{h}, \alpha\right\}$ is an ordered set with respect to the component wise order because $f . g$ is quasi ordinary. Now let m_{k} be the greatest characteristic exponent of z which is smaller than α (which is also a characteristic exponent of y). For all $r=1, \ldots, h$ we have $y_{r}(\underline{x})-z(\underline{x})=\left(y_{r}(\underline{x})-y(\underline{x})\right)+(y(\underline{x})-z(\underline{x}))$, and so $y_{r}(\underline{x})-z(\underline{x})=\underline{x}^{\alpha}$.unit if and only if $y_{r}(\underline{x})-y(\underline{x})=\underline{x}^{\frac{m_{j}}{n}} \cdot($ unit $)$ for some $j>k$, that is y_{j} is the image of y by some automorphism of $L(y)$ over L that fixes $\underline{x}^{\frac{m_{1}}{n}}, \ldots, \underline{x}^{\frac{m_{k}}{n}}$. The number of roots satisfying this property is equal to $\left[L(y): L\left(\underline{x}^{\frac{m_{1}}{n}}, \ldots, \underline{x}^{\frac{m_{k}}{n}}\right)\right]$ which is equal to $e_{k+1} \ldots e_{h}=d_{k+1}$. Moreover for all $j=1, \ldots, k$ we have :

$$
\left.\left.\left.\begin{array}{rl}
\#\left\{y_{j}, y_{j}-z=\underline{x}^{\frac{m_{j}}{n}} . u n i t\right\} & =\#\left\{y_{j}, y_{j}-y=\underline{x}^{\frac{m_{j}}{n}} . u n i t\right\} \\
& =\left[L(y): L\left(\underline{x}^{\frac{m_{1}}{n}}, \ldots, \underline{x}_{\frac{m}{j-1}^{n}}^{n}\right.\right.
\end{array}\right)\right]-\left[L(y): L\left(\underline{x}^{\frac{m_{1}}{n}}, \ldots, \underline{x}^{\frac{m_{j}}{n}}\right)\right]\right\} \text {. }
$$

Since g_{i} is an i-th semi-root, by equation (2.1) and similary to Remark 7 we get

$$
\begin{equation*}
r_{i}=e_{1} \ldots e_{i-1}\left[\left(d_{1}-d_{2}\right) \frac{m_{1}}{n}+\cdots+\left(d_{k}-d_{k+1}\right) \frac{m_{k}}{n}+d_{k+1} \alpha\right] \tag{2.2}
\end{equation*}
$$

If $k+1>i$, then from Remark 7 we get $r_{i}>r_{i}$, which is a contradiction and so $k+1 \leq i$. If $k+1<i$ or $\alpha \leq$ all the characteristic exponents of z, we deduce that $\alpha \geq \frac{m_{i}}{n}$, and so $\frac{m_{i-1}}{n}<\alpha$ and $\frac{m_{i-1}}{n}$ is a characteristic exponent of z, which is a contradiction. Hence $k+1=i$, and so by Remark 7 we easily deduce that $\alpha=\frac{m_{i}}{n}$. Conversely if the order of coincidence between f and g is equal to $\frac{m_{i}}{n}$, then it follows easily from equation (2.2) that g is an i-th semi root of f

In what follows we will prove that every j-th semi-root of f is irreducible.
Definition 24 Let $y \in \mathbb{K}[[\underline{x}]]$ and let $N(y)$ be its Newton polyhedron. The Newton initial polynomial of y is defined to be the sum of the terms of y lying on the compact faces of $N(y)$, and is denoted by $\mathrm{in}_{N}(y)$.

Recall that Γ_{j} represents the semigroup generated by $\left(r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{j}\right)$. Let $\mathbb{K}\left[\Gamma_{j}\right]$ be the ring of polynomials $f=\sum_{p} c_{p} \underline{x}^{p}$, with $\operatorname{supp}(f)$ a finite subset of Γ_{j}.
Proposition 19 Let the notations as before. Let g be a polynomial in $\mathbb{K}[[\underline{x}]][y]$. If deg $(g)=0$, then in $\left(g\left(\underline{x}^{n}, y\right)\right) \in$ $\mathbb{K}\left[\Gamma_{0}\right]$. Otherwise for all $j=1, \ldots, h$ if $\operatorname{deg}(g)<e_{1} \ldots e_{j}=\frac{n}{d_{j+1}}$, then in $\left(g\left(\underline{x}^{n}, y\right)\right) \in \mathbb{K}\left[\Gamma_{j}\right]$.

Proof : If $\operatorname{deg}(g)=0$, then $g=a(\underline{x})$ for some $a(\underline{x}) \in \mathbb{K}[[\underline{x}]$, and so $g(\underline{x}, y)=a(\underline{x})$, then obviously $\operatorname{in}(g(\underline{x}, y)) \in$ $\mathbb{K}\left[\Gamma_{0}\right]$. Suppose that the assumption is true for polynomials of degrees $<e_{1} \ldots e_{j-1}$ and let g be a polynomial of degree $<e_{1} \ldots e_{j}$. Consider g_{j} to be a j-th semi-root of f, and let

$$
g=a_{0}+a_{1} g_{j}+\cdots+a_{d_{j}} g_{j}^{d j}
$$

be the g_{j}-adic expansion of g. where $a_{i} \in \mathbb{K}[[\underline{x}]][y]$ and $\operatorname{deg}\left(a_{i}\right)<\frac{n}{d_{j}}=e_{1} \ldots e_{j-1}$ for all $i=0, \ldots, d_{j}$. By induction hypothesis we have $\operatorname{in}\left(a_{i}(\underline{x}, y)\right) \in \mathbb{K}\left[\Gamma_{j-1}\right]$ for all $i=0, \ldots, d_{j}$. Since terms of the polynomials $a_{l} \underline{x}^{l r_{i}}$ and $a_{k} \underline{x}^{k r_{i}}$ can not cancel each other for all $0 \leq l \neq k \leq d_{j}$, then the terms of the polynomial $i n(g)$ are terms of the polynomials $a_{l} \underline{x}^{l r_{j}}, j=0, \ldots, d_{j}$. Hence $i n(g) \in \mathbb{K}\left[\Gamma_{j}\right]$.

Proposition 20 Let f be a quasi-ordinary polynomial and let $g \in \mathbb{K}[[\underline{x}]][y]$ be an $i-$ th semi root of f. Then g is an irreducible polynomial.

Proof: suppose to the contrary that g is not irreducible then there exists $g_{1}, g_{2} \in \mathbb{K}[[\underline{x}]][y]$ such that $g=g_{1} \cdot g_{2}$ with $\operatorname{deg}\left(g_{j}\right)<\frac{n}{d_{i}}$ for $j=1,2$. By Proposition 19 we have $\operatorname{in}\left(g_{j}\right) \in \mathbb{K}\left[\Gamma_{i-1}\right]$ for $j=1,2$. But r_{i} is an exponent in the polynomial $\operatorname{in}\left(g_{1}\right)+i n\left(g_{2}\right)$, then $r_{i} \in \mathbb{K}\left[\Gamma_{i-1}\right]$. This is a contradiction.

Lemma 11 Let the notation be as above with f a quasi-ordinary polynomial. Then for all $i=1, \ldots, h, f$ admits an i-th semiroot.

Proof : Let y be a root of f, and write $y=H_{0}+H_{1}+\cdots+H_{h}$ as in Proposition 15. For each $i=1, \ldots h$, let g_{i+1} be the minimal polynomial of $H_{0}+\cdots+H_{i}$. Then g_{i} is a quasi-ordinary polynomial with characteristic exponents $\left\{m_{1}, \ldots, m_{i}\right\}$, and it is obviously irreducible. We have $\operatorname{deg}\left(g_{i}\right)=\left[L\left(M_{1}, \ldots, M_{i}\right): L\right]=e_{1} \ldots e_{i}=\frac{n}{d_{i+1}}$. Obviously the order of coincidence between f and g_{i+1} is equal to $\frac{m_{i+1}}{n}$, then by Proposition $18 g_{i+1}$ is an $(i+1)$-st semi-root of f

Proposition 21 Let the notation be as above with f an irreducible quasi-ordinary polynomial. For each $i=1, \ldots, h+1$ let $g_{i}=\operatorname{App}_{d_{i}}(f)$ be the d_{i}-th approximate root of f. Then g_{i} is an $i-$ th semi root of f.

Proof: For $i=h+1, g_{i}=\operatorname{App}_{d_{h+1}}(f)=f$ and so the assumption is true since $f\left(\underline{x}^{n}, y\right)=0$ and $r_{h+1}=\infty$. Suppose that the assumption is true for $i+1$ and let us prove it for i. We have $\operatorname{App}_{d_{i}}(f)=\operatorname{App}_{e_{i}}\left(\operatorname{App}_{d_{i+1}}(f)\right)$. Let g be a polynomial of degree $\frac{n}{d_{i}}$, then by Proposition 6, we have $\operatorname{App}_{d_{i}}(f)=\tau_{g_{i+1}}^{\frac{n}{d_{i}}}(g)$, where τ represents the Tschirnhausen transform. In order to prove that g_{i} is an $i-t h$ semi-root, it is enough to prove that if g is an i-th semi-root then $\tau_{g_{i+1}}(g)$ is an i-th semi-root. Now suppose that g is an i-th semi-root, and let

$$
g_{i+1}=g^{e_{i}}+a_{1} g^{e_{i}-1}+\cdots+a_{e_{i}}
$$

be the g-adic expansion of g_{i+1} with $a_{i} \in \mathbb{K}[[\underline{x}]][y]$ and $\operatorname{deg}\left(a_{i}\right)<\operatorname{deg}(g)$ for all $i=1, \ldots, e_{i}$. By the induction hypothesis we have $g_{i+1}\left(\underline{x}^{n}, y\right)=\underline{x}^{r_{i+1}}$.unit. It follows that

$$
N\left(a_{1}\left(\underline{x}^{n}, y\right) g^{e_{i}-1}\left(\underline{x}^{n}, y\right) \subseteq N\left(g_{i+1}\left(\underline{x}^{n}, y\right)\right)\right.
$$

But g is an i-th semi-root of f, and so $g\left(\underline{x}^{n}, y\right)=\underline{x}^{r_{i}}$.unit. Hence if m is an exponent of $i n\left(a_{1}\left(\underline{x}^{n}, y\right)\right)$, then $m+\left(e_{i}-1\right) r_{i} \in N\left(g_{i+1}\left(\underline{x}^{n}, y\right)\right)$, and so $m+\left(e_{i}-1\right) r_{i} \geq r_{i+1}$. Finally we get that $m \geq r_{i+1}-\left(e_{i}-1\right) r_{i}>r_{i}$. Hence $\tau_{g_{i+1}} g\left(\underline{x}^{n}, y\right)=g\left(\underline{x}^{n}, y\right)+\frac{1}{e_{i}} a_{1}\left(\underline{x}^{n}, y\right)=\underline{x}^{r_{i}}$. unit, that is $\tau_{g_{i+1}}(g)$ is an i-th semi root.

Proposition 22 Let the notation be as above with f an irreducible quasi-ordinary polynomial. Let g be an i-th semi-root of f with $i \in\{1, \ldots, h\}$. Then g is a quasi-ordinary polynomial.

Proof: Let $\Delta_{Y}(g)$ be the discriminant of g, and let $N\left(\Delta_{y}(g)\right)$ be its newton polyhedron. Let $\sigma=\left\langle a^{1}, \ldots, a^{e}\right\rangle$ be a regular cone such that $\sigma \subseteq \mathbb{R}_{\geq 0}^{e}$ and σ is compatible with $\mathbb{N}\left(\Delta_{y}(g)\right)$. That is there exists a unique $\omega \in N\left(\Delta_{y}(g)\right)$ such that :

$$
\left\langle a^{i}, \omega\right\rangle=\inf _{v \in N\left(\Delta_{y}(g)\right)}\left\langle a^{i}, v\right\rangle .
$$

for all $i \in\{1, \ldots, e\}$. Now let the notations be as in Remark 6, then the discriminant of $\psi(g)$ is $\psi\left(\Delta_{y}(g)\right)$. Moreover if $\underline{x}^{v}=x_{1}^{v_{1}} \ldots x_{e}^{v_{e}}$ is a monomial of $\Delta_{y}(g)$ for some $v \in \mathbb{N}^{e}$, then $\psi\left(\underline{x}^{v}\right)=x_{1}^{<a^{1}, v>} \ldots x_{e}^{<a^{e}, v>}$ is a monomial of $\psi\left(\Delta_{y}(g)\right)$. Furthermore, $\psi\left(\underline{x}^{\omega}\right)=x_{1}^{\left.<a^{1}, \omega\right\rangle} \ldots x_{e}^{\left.<a^{e}, \omega\right\rangle}$, but $\left\langle a^{i}, \omega\right\rangle \leq\left\langle a^{i}, v\right\rangle$ for all $i \in\{1, \ldots, e\}$. It follows that the discriminant $\psi\left(\Delta_{y}(g)\right)$ of $\psi(g)$ is of the form

$$
\psi\left(\Delta_{y}(g)\right)=\underline{x}^{\psi(\omega)} . \text { unit. }
$$

It follows that $\psi(g)$ is a quasi-ordinary polynomial. Since f is a quasi-ordinary irreducible polynomial, then by Lemma 10 we get that $\psi(f)$ is a quasi-ordinary irreducible polynomial. Moreover, the set of characteristic exponents of $\psi(f)$ is $\left\{\psi\left(m_{1}\right), \ldots, \psi\left(m_{h}\right)\right\}$. Since $\psi(g)$ is the the i-th semi root of $\psi(f)$, then by Proposition 20 we get that $\psi(g)$ is irreducible, and by Proposition 18 we get that the order of coincidence between $\psi(f)$ and $\psi(g)$ is $\psi\left(m_{i}\right)$. Now since $\psi(g)$ is an irreducible quasi-ordinary polynomial, it admits some root $z(\underline{x})$ and its set of characteristic exponents is equal to $\left\{\psi\left(m_{1}\right), \ldots, \psi\left(m_{i-1}\right)\right\}$.
It follows that the element ω does not depend on the chosen cone σ since it is determined by the characteristic exponents m_{1}, \ldots, m_{i-1} of f. Hence $N\left(\Delta_{y}(g)\right)$ has a unique vertex. Thus g is a quasi-ordinary polynomial.

Proposition 23 Let the notation be as above with f an irreducible quasi-ordinary polynomial. Let g be an approximate root of f. Then g is an irreducible quasi-ordinary polynomial.

Proof : Since g is an approximate root of f, then by Proposition 21 we get that g is a semi root of f. It follows from Proposition 20 and Proposition 22 that g is an irreducible quasi-ordinary polynomial.

2.4 Free polynomials

In this section we generalize the results of section 4 to a free polynomial (see Definition 29). We also show that we can generalize Abhyankar-Moh theory to such a polynomial.

2.4.1 Line Free Cones.

The material of this subsection can be found in [24].
In this subsection we will consider the set of formal power series with exponents in some line free cone C with a non-empty interior, denoted by $\mathbb{K}_{C}[[\underline{x}]]$, and we will prove that this set is a ring. Also we will prove that we can find some order on $C \cap \mathbb{Z}^{e}$ such that for each element $y \in \mathbb{K}_{C}[[\underline{x}]]$, the exponents of y can be written in increasing order.

Definition 25 Let C be a cone, then C is said to be a line-free cone if $\forall v \in C-\{0\}$ we have $-v \notin C$.
Lemma 12 (Dickson's lemma) Let S be a subset of \mathbb{N}^{e}. Then there exists a finite set of elements $H=$ $\left\{s_{1}, \ldots, s_{k}\right\}$ in S such that $S \subseteq \bigcup_{i=1}^{k}\left(s_{i}+\mathbb{N}^{e}\right)$.

Proof: We will proceed by induction on e. For $e=1 S$ is a subset of \mathbb{N}, so take s to be the minimal element of S, then in this case $H=\{s\}$, and lemma is true for $e=1$.
Suppose that the lemma is true up to $e-1$ and consider a subset S of \mathbb{N}^{e}. Let $c=\left(c_{1}, \ldots, c_{e}\right)$ be any element in S. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{e}\right) \in S$ with $\alpha_{i} \geq c_{i}$ for all $1 \leq i \leq e$, then $\alpha \in\left(c+\mathbb{N}^{e}\right)$. Otherwise there exists some $1 \leq i \leq e$ such that $\alpha_{i} \leq c_{i}$. For each $1 \leq i \leq e$ and $0 \leq a \leq c_{i}$ define the set $A_{i, a}=\left\{\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{e}\right) \in \mathbb{N}^{e-1}\right.$ such that $\left.\left(\alpha_{1}, \ldots, \alpha_{i-1}, a, \alpha_{i+1}, \ldots, \alpha_{e}\right) \in S\right\}$. By the induction hypothesis there exists a finite subset $B_{i, a} \subseteq A_{i, a}$ such that for every $\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{e}\right) \in A_{i, a}$ there exists $\left(\beta_{1}, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_{e}\right) \in B_{i, a}$ with $\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{e}\right) \in\left(\beta_{1}, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_{e}\right)+\mathbb{N}^{e-1}$. Hence $\left(\alpha_{1}, \ldots, \alpha_{i-1}, a, \alpha_{i+1}, \ldots, \alpha_{e}\right) \in\left(\beta_{1}, \ldots, \beta_{i-1}, a, \beta_{i+1}, \ldots, \beta_{e}\right)+\mathbb{N}^{e}$, and so the desired finite subset is $H=\{c\} \cup\left\{\left(\beta_{1}, \ldots, \beta_{i-1}, a, \beta_{i+1}, \ldots, \beta_{e}\right)\right.$, with $\left(\beta_{1}, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_{e}\right) \in B_{a, i}, 1 \leq i \leq e$ and $\left.0 \leq a \leq c_{i}\right\}$

Lemma 13 Fix a line-free cone C in \mathbb{R}^{e} with a non-empty interior. Let S be any subset of $C \cap \mathbb{Z}^{e}$. Then there exists a finite subset $F=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of S such that $S \subseteq \bigcup_{i=1}^{n}\left(\alpha_{i}+C\right)$.

Proof : Consider a set of generators $\left\{v_{1}, \ldots, v_{k}\right\}$ of the cone C where $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{e}$. Let $s \in S$. The element s can be written as $s_{1} v_{1}+\ldots+s_{k} v_{k}$ for some $s_{1}, \ldots, s_{k} \in \mathbb{R}^{+}$. Since $s \in \mathbb{Z}^{e}, s_{1}, \ldots, s_{k}$ are non negative elements in \mathbb{Q}. Define the set

$$
B=\left\{b_{1} v_{1}+\ldots+b_{k} v_{k}, b_{i} \in[0,1] \forall 1 \leq i \leq k\right\}
$$

Since B is bounded, $B \cap \mathbb{Z}^{e}$ is finite. Say $B=\left\{c_{1}, \ldots, c_{l}\right\}$ for some $l \in \mathbb{N}$. Then every $s=s_{1} v_{1}+\ldots+s_{k} v_{k} \in S$ can be written as $s=a_{1} v_{1}+\ldots+a_{k} v_{k}+c_{i}$ where $a_{j} \in \mathbb{N}$ is the integer part of s_{j} for all $j \in\{1, \ldots, k\}$ and c_{i} is some element in B. Now for each $1 \leq i \leq l$, let N_{i} be the set of elements $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{e}$ such that $a_{1} v_{1}+\ldots+a_{k} v_{k}+c_{i} \in S$ for some $1 \leq i \leq l$. By Dickson's Lemma there exists a finite set $H_{i} \subseteq N_{i}$ such that for every $\left(a_{1}, \ldots, a_{k}\right) \in N_{i}$ there is some $\left(h_{1}, \ldots, h_{k}\right) \in H_{i}$ such that $\left(a_{1}, \ldots, a_{k}\right) \in\left(h_{1}, \ldots, h_{k}\right)+\mathbb{N}^{e}$, and so $\left(a_{1}-h_{1}\right) v_{1}+\ldots+\left(a_{k}-h_{k}\right) v_{k} \in C$ since $\left(a_{i}-h_{i}\right) \geq 0$ for all $1 \leq i \leq k$, hence $a_{1} v_{1}+\ldots+a_{k} v_{k}+c_{i} \in$ $h_{1} v_{1}+\ldots+h_{k} v_{k}+c_{i}+C$, then the desired set F is equal to

$$
\bigcup_{i=1}^{l}\left\{h_{1} v_{1}+\ldots+h_{k} v_{k}+c_{i},\left(h_{1}, \ldots, h_{k}\right) \in H_{i}\right\}
$$

which is obviously finite, say $F=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for some $n \in \mathbb{N}$. We finally get $S \subseteq \bigcup_{i=1}^{n}\left(\alpha_{i}+C\right)$.
Definition 26 Let \leq be a total order on \mathbb{Z}^{e}. The order \leq is said to be additive if for all $m, n, k \in \mathbb{Z}^{e}$ we have : $m \leq n \Longrightarrow m+k \leq n+k$.

Let \leq be an additive order on a cone $C \subset \mathbb{R}^{e}$. The order \leq is called compatible with C if for all $m \in C \cap \mathbb{Z}^{e}$ we have $m \geq \underline{0}$, where $\underline{0}:=(0, \ldots, 0)$. Note that if we have an additive order \leq, then for all $m, n \in \mathbb{Z}^{p}$ with $m, n \geq \underline{0}$, we get $a m+b n \geq \underline{0}$ for all $a, b \in \mathbb{N}$.

Proposition 24 Let C be a line-free cone of dimension e. Then there exists an additive total order \leq which is compatible with C.

Proof: Consider any vector $x=\left(x_{1}, \ldots, x_{e}\right) \in \mathbb{R}^{e}$ such that its components are linearly independent over \mathbb{Q}, and define the order on \mathbb{Z}^{e} as follows : for $m, n \in \mathbb{Z}^{e}, n \leq_{x} m \Longleftrightarrow n \cdot x \leq m \cdot x$, where "." refers to the scalar product on \mathbb{R}^{e}. It is clear that this is an additive total order on \mathbb{Z}^{e} since if $n \cdot x \leq m \cdot x$, then $\left(n+n^{\prime}\right) \cdot x \leq\left(m+n^{\prime}\right) \cdot x$ for any $n^{\prime} \in \mathbb{Z}^{e}$, and so $n+n^{\prime} \leq m+n^{\prime}$. It is antisymmetric since the coordinates of x are linearly independent over \mathbb{Q}, indeed for all $m=\left(m_{1}, \ldots, m_{e}\right), n=\left(n_{1}, \ldots, n_{e}\right) \in \mathbb{Z}^{e}$ if we have $m \leq_{x} n$ and $n \leq_{x} m$, then $n \cdot x=m \cdot x$, and we get $\left(n_{1}-m_{1}\right) x_{1}+\ldots+\left(n_{e}-m_{e}\right) x_{e}=0$, and so $n_{i}=m_{i}$ for all $1 \leq i \leq e$ hence $m=n$.
To prove that there exists some order relation which is compatible with C, we have to prove that there exists some $x \in \mathbb{R}^{e}$ such that $0 \leq_{x} n$ for all $n \in C$. Since C is a line-free cone it is enough to choose x to be in the dual cone of C. This proves our assertion.

Proposition 25 Let C be a cone, and let \leq be an additive total order which is compatible with C. Then \leq is a well-founded order on $C \cap \mathbb{Z}^{e}$, i.e, every subset of $C \cap \mathbb{Z}^{e}$ contains a minimal element with respect to the chosen order. Moreover this minimal element is unique.

Proof : Let $S \subset C \cap \mathbb{Z}^{e}$. By Lemma 13, we can find a finite subset $\left\{s_{1}, \ldots, s_{n}\right\}$ of S such that $S \subset \bigcup_{i=1}^{n}\left(s_{i}+C\right)$. Since \leq is compatible with C it follows that for every $m, n \in \mathbb{Z}^{e}$ such that $m \in n+C$, then $m \leq n$. So the minimal element of S is the minimal element of the set $\left\{s_{1}, \ldots, s_{n}\right\}$ which exists since \leq is a total order.
Let \mathbb{K} be an algebraically closed field. Consider infinite formal power series in several variables of the form $y(\underline{x})=\sum c_{a} \underline{x}^{a}$, where $c_{a} \in \mathbb{K}$, and $a=\left(a_{1}, \ldots, a_{e}\right)$ ranges in \mathbb{Z}^{e}, and \underline{x}^{a} denotes the monomial $x_{1}^{a_{1}} \cdots x_{e}^{a_{e}}$. We set $\operatorname{Supp}(y(\underline{x}))=\left\{a, c_{a} \neq 0\right\}$.
If we consider any two series y, z of this form, then $y+z$ is naturally defined, while their multiplication does not exist in general. For that reason the support of these series should be restricted to be in the same line-free cone.

Definition 27 Let C be a line-free cone in \mathbb{R}^{e}. We define the set of formal power series with exponents in C to be $\mathbb{K}_{C}[[\underline{x}]]:=\left\{y(\underline{x})=\sum_{p \in \mathbb{Z}^{e}} c_{p} \underline{x}^{p}, \operatorname{Supp}(y(\underline{x})) \subseteq C\right\}$

Proposition 26 Let C be a cone, and let \leq be an additive order on \mathbb{Z}^{e}. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a set of generators of $C . C$ is compatible with \leq if and only if $v_{i} \geq 0$ for all $i=1, \ldots, k$.

Proof : If C is compatible with \leq, then $v \geq 0$ for all $v \in C$. In particular $v_{i} \geq 0$ for all $1 \leq i \leq k$. On the other hand, suppose that $v_{i} \geq 0$ for all $1 \leq i \leq k$, and let $v \in C \cap \mathbb{Z}^{e}$, then $v=a_{1} v_{1}+\cdots+a_{e} v_{e}$ for some $a_{1}, . ., a_{e} \in \mathbb{R}^{+}$. Since \leqis an additive order then $v=a_{1} v_{1}+\cdots+a_{e} v_{e} \geq 0$. Hence $v \geq 0$ for all $v \in C$.

Remark 8 Let \leq be an additive order on \mathbb{Z}^{e}, and consider two cones C, C^{\prime} in \mathbb{Z}^{e} which are compatible with \leq. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a set of generators of C, and let $\left\{w_{1}, \ldots, w_{h}\right\}$ be a set of generators of C^{\prime}. By Proposition $26 v_{i}, w_{j} \geq 0$ for all $1 \leq i \leq k$ and $1 \leq j \leq h$. But $\left\{v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{h}\right\}$ is a set of generators of $C+C^{\prime}$, hence by Proposition 26, $C+C^{\prime}$ is compatible with \leq.

In what follows we shall give some results in order to prove that $\mathbb{K}_{C}[[\underline{x}]]$ is a ring, where C is a line free cone in \mathbb{Z}^{e}.

Proposition 27 Let $K \subseteq \mathbb{R}^{e}$ be a closed and convex set. The set K is unbounded if and only if there exists some $u \in K$ and a non zero vector $v \in \mathbb{R}^{e}$, such that the ray $R=\{u+\lambda v\}_{\lambda \geq 0} \subseteq K$. Moreover for all $u, u^{\prime} \in K$ we have $\{u+\lambda v\}_{\lambda \geq 0} \subseteq K \Longleftrightarrow\left\{u^{\prime}+\lambda v\right\}_{\lambda \geq 0} \subseteq K$.

Proof : If K contains a ray then it is obvious that K is unbounded.
Now suppose that K is unbounded. Let $u \in K$, and let S be the unit sphere in \mathbb{R}^{e} centered at the origin. For each $\lambda>0$ consider the map $\pi: u+\lambda S \rightarrow u+S$ defined by $\pi(u+x)=u+\frac{x}{\|x\|}$ and define the family of sets $\left\{P_{\lambda}=\pi((u+\lambda S) \cap K)\right\}_{\lambda>0}$. Since π is continuous and bijective. $u+\lambda S$ is homeomorphic to $u+S$, and so $u+\lambda S$ is closed and bounded, hence compact. Since K is closed, $K \cap(u+\lambda S)$ is compact and so P_{λ} is compact for all $\lambda>0$. Since K is unbounded, we have $P_{\lambda} \neq \phi$ for all $\lambda>0$.
For all $\lambda^{\prime} \leq \lambda$ we have $P_{\lambda} \subset P_{\lambda^{\prime}}$. Indeed, let $u+s=\pi(u+\lambda s) \in P_{\lambda}$ for some $s \in S$. As $\lambda \geq \lambda^{\prime}$ we have $t=\frac{\lambda-\lambda^{\prime}}{\lambda} \geq 0$, and so $u+\lambda^{\prime} s=t u+(1-t)(u+\lambda s)$ belongs to the segment $[u, u+\lambda s]$. Since K is convex we have $u+\lambda^{\prime} s \in K$, hence $u+s=\pi\left(u+\lambda^{\prime} s\right) \in P_{\lambda^{\prime}}$, and so $P_{\lambda} \subset P_{\lambda^{\prime}}$. Now the family $\left\{P_{\lambda}\right\}_{\lambda>0}$ is a decreasing nested sequence of non-empty compact subsets. By Cantor's intersection theorem :

$$
\bigcap_{\lambda>0} P_{\lambda} \neq \phi .
$$

Let p be any vector in this intersection. For all $\lambda>0$ there exists $s_{\lambda} \in S$ such that $u+\lambda s_{\lambda} \in K$ and $p=\pi\left(u+\lambda s_{\lambda}\right)=u+s_{\lambda}$, and so $s_{\lambda}=p-u$ for all $\lambda>0$, hence by letting $v=p-u$ we will have $R=\{u+\lambda v\}_{\lambda \geq 0} \subseteq K$.
Concerning the last statement of the Proposition, let $u \in K$ be such that $\{u+\lambda v\}_{\lambda \geq 0} \subseteq K$, and let u^{\prime} be another point in K. We want to prove that $u^{\prime}+\lambda v \in K$ for all $\lambda \geq 0$. Fix $\lambda \geq 0$, and for each $n \in \mathbb{N}^{*}$, consider the point $x_{n}=\left(1-\frac{1}{n}\right) u^{\prime}+\frac{1}{n}(u+\lambda n v)$. Since $u^{\prime}, u+(\lambda n) v \in K$ and $\frac{1}{n} \in[0,1]$, and by the fact that K is convex, we get that $x_{n} \in K$ for all $n \in \mathbb{N}^{*}$. On the other hand $x_{n}=\left(1-\frac{1}{n}\right) u^{\prime}+\frac{1}{n} u+\lambda v$ converges to $u^{\prime}+\lambda v$ as $n \rightarrow \infty$, but K is closed then $u^{\prime}+\lambda v \in K$. Hence $u^{\prime}+\lambda v \in K$ for all $\lambda \geq 0$.

Lemma 14 Let $C \subset \mathbb{R}^{e}$ be a line free cone, and let B be a closed and convex set in \mathbb{R}^{e} such that $C \cap B=\{0\}$. Then for all $k \in \mathbb{R}^{e}$ the set $C \cap(k+B)$ is bounded.

Proof : Let $A=C \cap(k+B)$ for some $k \in \mathbb{R}^{e}$. Since C and $k+B$ are closed and convex, A is closed and convex. Suppose that A is unbounded, then by Proposition 27, there exists $u \in A$ and a non zero vector $v \in \mathbb{R}^{e}$ such that $\{u+\lambda v\}_{\lambda \geq 0} \subseteq A$.
Since $u \in A$, then $u \in C$. But $0 \in C$. Applying Proposition 27 to u and 0 we get

$$
\{u+\lambda v\}_{\lambda \geq 0} \subseteq C \Longleftrightarrow\{\lambda v\}_{\lambda \geq 0} \subseteq C
$$

and so $\lambda v \in C$ for all $\lambda \geq 0$. In particular $v \in C$ for $\lambda=1$.
On the other hand $u \in A$, and so $u \in k+B$. But $k \in k+B$ since $0 \in B$. Applying Proposition 27 to u and k we get

$$
\{u+\lambda v\}_{\lambda \geq 0} \subseteq k+B \Longleftrightarrow\{k+\lambda v\}_{\lambda \geq 0} \subseteq k+B
$$

hence $k+v \in k+B$, and so $v \in B$.
We obtained that $v \in C \cap B$, which is a contradiction since $v \neq 0$. Therefore A is bounded.
Remark 9 Let C be a line free cone in \mathbb{Z}^{e} and let $k \in \mathbb{Z}^{e}$. We have $C \cap-C=\{0\}$, where $-C=\{-x, x \in C\}$. By Lemma 14 we get that $C \cap(k-C)$ is a bounded set in \mathbb{Z}^{e}, and so it is finite.

Remark 10 Let C be a line free cone and let \leq_{x} be the total additive order compatible with C given by Propostion 24. Then for all $i \in C$ the set of elements $j \in C$ such that $j \leq_{x} i$ is finite. Indeed, let $B=\{\alpha \in$ $\left.\mathbb{R}^{e}, \alpha \cdot x \leq 0\right\}$. Since $j \leq{ }_{x} i$, then $j=i+\alpha$ for some $\alpha \in B$, and so $j \in i+B$. For all $a \in C$ we have $a \cdot x \geq 0$, then $C \cap B=\{0\}$. It follows from Proposition 14 that $C \cap(i+B)$ is bounded in \mathbb{R}^{e}, and so $C \cap(i+B) \cap \mathbb{Z}^{e}$ is finte. Hence the set of elements $j \in C$ such that $j \leq_{x} i$ is finite.

Proposition 28 Let C be a line-free cone in \mathbb{R}^{e}. The set $K_{C}[[\underline{x}]]$ is a ring.
Proof: The neutral elements 0 and 1 are obviously in $K_{C}[[x]]$. It is easy to see that addition is well defined. Concerning the multiplication, let $f(\underline{x})=\sum_{i} a_{i} \underline{x}^{i}$ and $g(\underline{x})=\sum_{j} b_{j} \underline{x}^{j}$ be two elements of $K_{C}[[\underline{x}]]$, the natural definition of multiplication of f and g is :

$$
f(\underline{x}) \cdot g(\underline{x})=\sum_{k}\left(\sum_{i+j=k} a_{i} b_{j}\right) \underline{x}^{k}
$$

Each k in $\operatorname{Supp}(f . g)$ is of the form $i+j$ for some $i \in \operatorname{supp}(f)$ and $j \in \operatorname{Supp}(g)$, and since $\operatorname{Supp}(f)$ and $\operatorname{Supp}(g)$ are both in the same cone C then $i+j=k \in C$ also, hence $\operatorname{Supp}(f . g) \subset C$. In order to show that multiplication is well defined, the coefficient of each \underline{x}^{k} which is $\sum_{i+j=k} a_{i} b_{j}$ must be a finite sum. By Remark 9 we get that for each k in $\operatorname{Supp}(f . g)$ the set $C \cap(k-C)$ contains only a finite number of points in \mathbb{Z}^{e}, hence the sum is finite.

Lemma 15 (Principle of Noetherian Induction) : Let C be a set and let \leq be a well founded order on C. To prove that a property $p(x)$ is true for all $x \in C$. It is enough to prove that $p(x)$ is true for minimal elements and for every $x \in C$ we have

$$
(I): p(y) \text { is true for all } y<x \Longrightarrow p(x) \text { is true }
$$

Proof: Suppose to the contrary that (I) is true but $p(z)$ is not true for some $z \in C$. Let N be the set of all elements such that $p(z)$ is false. Since \leq is a well founded order on C and N is a non empty set, then N admits a minimal element, say m. Now let $y \in C$ such that $y<m$. Since m is a minimal element in N, then $y \notin N$, and so $p(y)$ is true. We get that $p(y)$ is true for all $y<m$. It follows from our hypothesis (I) that $p(m)$ is true. This is a contradiction.

Theorem 3 Let $y(\underline{x})=\sum_{a} c_{a} \underline{x}^{a}$ be an element of $\mathbb{K}_{C}[[\underline{x}]]$, where C is a line free cone in \mathbb{R}^{e}. There exists $z(\underline{x}) \in \mathbb{K}_{C}[[\underline{x}]]$ such that $y(\underline{x}) . z(\underline{x})=1$ if and only if $c_{0} \neq 0$.

Proof: In fact if $c_{0}=0$, it is impossible to find a multiplicative inverse for y, since for any $z(\underline{x})=\sum_{i} d_{i} \underline{x}^{i} \in$ $\mathbb{K}_{C}[[\underline{x}]]$, the constant term of $y(\underline{x}) z(\underline{x})$ will be $c_{0} d_{0}=0$ while it should be equal to 1 .
Conversely if $c_{0} \neq 0$, then we can construct a power series $z(\underline{x})=\sum_{i} d_{i} \underline{x}^{i}$, with $d_{0}=\frac{1}{c_{0}}$. Now consider an additive order \leq on \mathbb{Z}^{e} that is compatible with, which exists since C is line free-cone, then it is a well founded order on C. We will prove our statement by noetherian induction. Suppose that the coefficients d_{i} of $z(\underline{x})$ can be chosen in a unique way for all $i<k$, and let us prove that d_{k} can be chosen in a unique way. We have :

$$
y(\underline{x}) z(\underline{x})=\sum_{k}\left(\sum_{i, j \in C, i+j=k} c_{i} d_{j}\right) \underline{x}^{k}
$$

So the coefficient of \underline{x}^{k} is equal to $\sum_{i+j=k} c_{i} d_{j}=c_{0} d_{k}+\sum_{i \neq 0} c_{i} d_{k-i}$. Let $i>0$, then $-i<0$ since the order is additive. It follows that $j=k-i<k$, and so by the induction hypothesis d_{k-i} are obtained in a unique way. Since the coefficient of \underline{x}^{k} should be equal to zero, then it is enough to take $d_{k}=-\frac{1}{c_{0}} \sum_{i \neq 0} c_{i} d_{k-i}$.
It follows from the principle of noetherian induction that for all $k \in C$ we can choose d_{k} in a unique way. Hence we get the result.
As we can see, $\mathbb{K}[[\underline{x}]]$ is a special case of $\mathbb{K}_{C}[[\underline{x}]]$ when C is the cone generated by the canonical basis of \mathbb{N}^{e}, and the properties of $\mathbb{K}[[\underline{x}]]$ generalize to rings of the form $\mathbb{K}_{C}[[\underline{x}]]$ for any line-free cone C.

2.4.2 Fractional power series solutions

We will define a kind of polynomials, namely free polynomials. They are polynomials in $\mathbb{K}_{C}[[\underline{x}]][y]$ that admit a fractional power series solution in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, where C is some line free cone, and n is the degree of the polynomial. We will prove also that a polynomial f of degree n in $\mathbb{K}[[x]][y]$ admits a fractional power series solution in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ after some change of variables. Hence it is free.
Consider the polynomial :

$$
f\left(x_{1}, \ldots, x_{e}, y\right)=f(\underline{x}, y)=y^{n}+a_{1}(\underline{x}) y^{n-1}+\cdots+a_{n-1}(\underline{x}) y+a_{n}(\underline{x}) .
$$

Then f is a polynomial in y with coefficients in the multivariate formal power series ring $\mathbb{K}[[\underline{x}]]$, where \mathbb{K} is an algebraically closed field of characteristic zero. Let Δ be the discriminant of f in y, and write $\Delta\left(x_{1}, \ldots, x_{e}\right)=\sum_{p \in \mathbb{N}^{e}} c_{\left(p_{1}, \ldots, p_{e}\right)} x_{1}^{p_{1}} \ldots x_{e}^{p_{e}} \in K[[\underline{x}]]$. Set :

$$
\operatorname{Supp}(\Delta)=\left\{p=\left(p_{1}, \ldots, p_{e}\right) \in \mathbb{N}^{e}, c_{\left(p_{1}, \ldots, p_{e}\right)} \neq 0\right\} .
$$

Write $\Delta=\sum_{d \geq 0} u_{d}\left(x_{1}, \ldots, x_{e}\right)$ where $u_{d}\left(x_{1}, \ldots, x_{e}\right)=\sum_{p_{1}+\ldots+p_{e}=d} c_{\left(p_{1}, \ldots, p_{e}\right)} x_{1}^{p_{1}} \ldots x_{e}^{p_{e}}$ is the homogeneous component of Δ of degree d. Let $a=\inf \left\{d, u_{d} \neq 0\right\}$. Note that if $a=0$, then f is a quasi-ordinary polynomial. Suppose that $a \neq 0$. Then u_{a} is a non constant polynomial in $\mathbb{K}[[\underline{x}]]$, say $u_{a}=\sum \lambda_{\left(a_{1}, \ldots, a_{e}\right)} x_{1}^{a_{1}} \ldots x_{e}^{a_{e}}$. Moreover, suppose without loss of generality that x_{1} appears in u_{a}.

Remark 11 Consider the mapping

$$
\xi: \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right] \mapsto \mathbb{K}\left[\left[X_{1}, \ldots, X_{e}\right]\right]
$$

defined by $\xi\left(x_{1}\right)=X_{1}$ and $\xi\left(x_{i}\right)=X_{i}+t_{i} X_{1}$ for all $i \in\{2, \ldots, e\}$, where t_{i} is a parameter to be determined. For all $y=\sum c_{a} x_{1}^{a_{1}} \ldots x_{e}^{a_{e}}$ in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$ we have $\xi(y)=y\left(X_{1}, X_{2}+t_{2} X_{1}, \ldots, X_{e}+t_{e} X_{1}\right)=\sum c_{a} X_{1}^{a_{1}}\left(X_{2}+\right.$ $\left.t_{2} X_{1}\right)^{a_{2}} \ldots\left(X_{e}+t_{e} X_{1}\right)^{a_{e}}$. It is obvious that ξ is a homomorphism of rings. Morover consider the mapping $\phi: \mathbb{K}\left[\left[X_{1}, \ldots, X_{e}\right]\right] \mapsto \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$ defined by $\phi(Y)=Y\left(x_{1}, x_{2}-t_{2} x_{1}, \ldots, x_{e}-t_{e} x_{1}\right)=\sum a_{p} x_{1}^{p_{1}}\left(x_{2}-\right.$ $\left.t_{2} x_{1}\right)^{p_{2}} \ldots\left(x_{e}-t_{e} x_{1}\right)^{p_{e}}$ for all $Y(\underline{X})=\sum a_{p} X_{1}^{p_{1}} \ldots X_{e}^{p_{e}}$, then

$$
\xi \circ \phi(Y)=\sum a_{p} X_{1}^{p_{1}}\left(X_{2}-t_{2} X_{1}+t_{2} X_{1}\right)^{p_{2}} \ldots\left(X_{e}-t_{e} X_{1}+t_{e} X_{1}\right)^{p_{e}}=\sum a_{p} X_{1}^{p_{1}} X_{2}^{p_{2}} \ldots X_{e}^{p_{e}}=Y .
$$

It follows that for all $y(\underline{x}) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$ and $Y(\underline{X}) \in \mathbb{K}\left[\left[X_{1}, \ldots, X_{e}\right]\right]$ we have $\phi \circ \xi(y)=y$ and $\xi \circ \phi(Y)=Y$. Hence ϕ is the inverse of ξ and so ξ is an isomorphism.

Let $\psi: \mathbb{K}[[\underline{x}]][y] \mapsto \mathbb{K}[[\underline{X}]][y]$ be the extension of the map ξ in Remark 11 . That is for all $f=$ $a_{n}(\underline{x}) y^{n}+\ldots+a_{1}(\underline{x}) y+a_{0}(\underline{x})$ in $\mathbb{K}[[\underline{x}]][y]$ we have $\psi(f)=\xi\left(a_{n}(\underline{x})\right) y^{n}+\ldots+\xi\left(a_{1}(\underline{x})\right) y+\xi\left(a_{0}(\underline{x})\right)$. Then ψ is an isomorphism between $\mathbb{K}[[\underline{x}]][y]$ and $\mathbb{K}[[\underline{X}]][y]$.

Now let the notation be as above and let $\Delta(\psi(f))$ be the discriminant of $\psi(f)$. Then

$$
\Delta(\psi(f))=\sum c_{\left(p_{1}, \ldots, p_{e}\right)} X_{1}^{p_{1}}\left(X_{2}+t_{2} X_{1}\right)^{p_{2}} \ldots\left(X_{e}+t_{e} X_{1}\right)^{p_{e}} .
$$

Moreover, $\Delta(\psi(f))=\sum_{d \geq 0} u_{d}\left(X_{1}, X_{2}+t_{2} X_{1}, \ldots, X_{e}+t_{e} X_{1}\right)$. For all $d \geq 0$ let $v_{d}\left(X_{1}, \ldots, X_{e}\right)=u_{d}\left(X_{1}, X_{2}+\right.$ $\left.t_{2} X_{1}, \ldots, X_{e}+t_{e} X_{1}\right)$. Then

$$
\begin{aligned}
& v_{d}\left(X_{1}, \ldots, X_{e}\right)=\sum_{p_{1}+\ldots+p_{e}=d} c_{\left(p_{1}, \ldots, p_{e}\right)} X_{1}^{p_{1}}\left(X_{2}+t_{2} X_{1}\right)^{p_{2}} \ldots\left(X_{e}+t_{e} X_{1}\right)^{p_{e}} \\
&=\varepsilon_{d}\left(t_{2}, \ldots, t_{e}\right) X_{1}^{p_{1}+\ldots+p_{e}}+v_{d}^{\prime}\left(X_{1}, \ldots, X_{e}\right)=\varepsilon_{d}\left(t_{2}, \ldots, t_{e}\right) X_{1}^{d}+v_{d}^{\prime}\left(X_{1}, \ldots, X_{e}\right)
\end{aligned}
$$

where v_{d}^{\prime} is a homogeneous polynomial of degree d, and $\varepsilon_{d}\left(t_{2}, \ldots, t_{e}\right)$ is a polynomial in t_{2}, \ldots, t_{e}. Since \mathbb{K} is an infinite field, we can choose $t_{2}, \ldots, t_{e} \in \mathbb{K}$ such that $\varepsilon_{d}\left(t_{2}, \ldots, t_{e}\right) \neq 0$.
Note that $\epsilon_{d}\left(t_{2}, \ldots, t_{e}\right)=\sum_{p_{1}+\ldots+p_{e}=d} c_{\left(p_{1}, \ldots, p_{e}\right)} t_{2}^{p_{2}} \ldots t_{e}^{p_{e}}$, hence this polynomial cannot be identically zero. This is clear if $u_{d}\left(x_{1}, \ldots, x_{e}\right)$ is a monomial. Otherwise, since $p_{1}+\ldots+p_{e}=d$ for all $\left(p_{1}, \ldots, p_{e}\right) \in \operatorname{Supp}\left(u_{d}\right)$, all elements in $\operatorname{Supp}\left(\epsilon_{d}\right)$ are pairwise distinct.

Example 1 Let $\Delta=x_{1} x_{2}-x_{1} x_{3}$. Then the change of variables $X_{1}=X_{1}, X_{2}=X_{1}+X_{2}, x_{3}=X_{1}+X_{3}$ gives us the new polynomial $X_{1}\left(X_{1}+X_{2}\right)-X_{1}\left(X_{1}+X_{3}\right)=X_{1} X_{2}-X_{1} X_{3}$. This justifies the above use of the variables t_{2}, \ldots, t_{e} since we need the new discriminant to contain a power of X_{1}

Let $a=\inf \left\{d: u_{d} \neq 0\right\}$. By the above change of variables we may assume that the following condition holds :
(1) The polynomial u_{a} contains x_{1}^{a} with a nonzero constant.

From now on we suppose that f is a polynomial in $\mathbb{K}[[\underline{x}]][y]$ that satisfies the above condition.
Theorem 4 Consider a polynomial $f(\underline{x}, y)$ in $K[[\underline{x}][y]$ and assume that f satisfies condition (1). Then the polynomial

$$
F\left(X_{1}, \ldots, X_{e}, y\right)=f\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}, y\right)
$$

Proof: Let $\Delta=\sum_{p} c_{\left(p_{1}, \ldots, p_{e}\right.} x_{1}^{p_{1}} \ldots x_{e}^{p_{e}}$ be the discriminant of f. Consider the change of variables :

$$
x_{1}=X_{1}, x_{2}=X_{2} X_{1}, \ldots, x_{e}=X_{e} X_{1}
$$

The new discriminant Δ_{N} of $F\left(X_{1}, \ldots, X_{e}, y\right)=f\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}, y\right)$ is $\Delta_{N}=\Delta\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}\right)$. Write $\Delta=\sum_{d \geq 0} u_{d}$, where u_{d} is the homogeneous component of degree d of Δ. Let $a=\inf \left\{d: u_{d} \neq 0\right\}$. By hypothesis $u_{a}=c_{a} x_{1}^{a}+\ldots$ with $c_{a} \neq 0$. Then

$$
u_{a}\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}\right)=x_{1}^{a}\left(c_{a}+\epsilon_{a}\left(X_{1}, \ldots, X_{e}\right)\right)
$$

with $\epsilon(0, \ldots, 0)=0$. On the other hand, if $u_{d}=\sum c_{\left(d_{1}, \ldots, d_{e}\right)} x_{1}^{d_{1}} \ldots x_{e}^{d_{e}}$ then

$$
u_{d}\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}\right)=X_{1}^{d} u_{d}\left(1, X_{2}, \ldots, X_{e}\right)=X_{1}^{d} \varepsilon_{d}\left(X_{1}, \ldots, X_{e}\right)
$$

with $\epsilon_{d}\left(X_{1}, \ldots, X_{e}\right) \neq 0$. We finally obtain that

$$
\Delta_{N}=X_{1}^{a}\left(c+\varepsilon\left(X_{1}, \ldots, X_{e}\right)\right)
$$

with $c \neq 0$ and $\varepsilon(0, \ldots, 0)=0$. That is, F is a quasi-ordinary polynomial.
In the following we will introduce a line free cone which is independent of the choice of the polynomial f. However, we should keep in mind that in order to use this cone, the given polynomial should satify condition (1).

Proposition 29 Let the notation be as above. Consider the set C defined by :

$$
C=\left\{\left(c_{1}, \ldots, c_{e}\right) \in \mathbb{R}^{e}, c_{1} \geq-\left(c_{2}+\ldots+c_{e}\right), c_{i} \geq 0 \forall 2 \leq i \leq e\right\}
$$

Then C is a line free convex cone.
Proof : Let $c=\left(c_{1}, \ldots, c_{e}\right) \in C$ and $\lambda \geq 0$, then $c_{1} \geq-\left(c_{2}+\ldots+c_{e}\right)$ and $c_{i} \geq 0$ for all $2 \leq i \leq e$, and so $\lambda c_{1} \geq-\lambda\left(c_{2}+\ldots+c_{e}\right)=-\left(\lambda c_{2}+\ldots+\lambda c_{e}\right)$ and $\lambda c_{i} \geq 0$ for all $i \in\{2, \ldots, e\}$. It follows that $\lambda . c \in C$, hence C is a cone. Now consider $c=\left(c_{1}, \ldots, c_{e}\right), c^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{e}^{\prime}\right) \in C$, then $c_{i}+c_{i}^{\prime} \geq 0$ for all $2 \leq i \leq e$ and $c_{1}+c_{1}^{\prime} \geq-\left(c_{2}+c_{2}^{\prime}+\ldots+c_{e}+c_{e}^{\prime}\right)$, and so $c+c^{\prime} \in C$. In particular, if $c, c^{\prime} \in C$ and $0 \leq \lambda \leq 1$, then $\lambda c+(1-\lambda) c^{\prime} \in C$, and so C is a convex cone.
Finally to prove that C is a line free cone, let $c=\left(c_{1}, \ldots, c_{e}\right) \in C$ such that $c \neq \underline{0}$, and let us prove that $-c=\left(-c_{1}, \ldots,-c_{e}\right) \notin C$. We have $c_{i} \geq 0$ for all $i \in\{2, \ldots, e\}$. If $c_{i}>0$ for some $i \in\{2, \ldots, e\}$, then obviously $-c=\left(-c_{1}, \ldots,-c_{e}\right) \notin C$. If $c_{i}=0$ for all $i \in\{2, \ldots, e\}$, then $c_{1} \geq-\left(c_{2}+\ldots+c_{e}\right)=0$, but $c \neq \underline{0}$, then $c_{1}>0$, and so $-c=\left(-c_{1}, 0, \ldots, 0\right) \notin C$. Hence C is a line free cone.
From now on C denotes the cone defined in Proposition 29 unless otherwise specified.
Lemma 16 Let $Y\left(X_{1}, \ldots, X_{e}\right)$ be an element of $\mathbb{K}[[\underline{X}]]=\mathbb{K}\left[\left[X_{1}, \ldots, X_{e}\right]\right]$. Consider :

$$
y\left(x_{1}, \ldots, x_{e}\right)=Y\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right)
$$

We have $y \in \mathbb{K}_{C}[[\underline{x}]]$.
Proof: Write $Y\left(X_{1}, \ldots, X_{e}\right)=\sum_{\left(a_{1}, \ldots, a_{e}\right)} \gamma_{\left(a_{1}, \ldots, a_{e}\right)} X_{1}^{a_{1}} \ldots X_{e}^{a_{e}}$. We have :

$$
\begin{aligned}
y\left(x_{1}, \ldots, x_{e}\right) & =\sum_{\left(a_{1}, \ldots, a_{e}\right)} \gamma_{\left(a_{1}, \ldots, a_{e}\right)} x_{1}^{a_{1}}\left(x_{2} x_{1}^{-1}\right)^{a_{2}} \ldots\left(x_{e} x_{1}^{-1}\right)^{a_{e}} \\
& =\sum_{\left(a_{1}, \ldots, a_{e}\right)} \gamma_{\left(a_{1}, \ldots, a_{e}\right)} x_{1}^{a_{1}-\left(a_{2}+\ldots+a_{e}\right)} x_{2}^{a_{2}} \ldots x_{e}^{a_{e}}
\end{aligned}
$$

Let $\operatorname{Supp}(Y)$ be the support of Y, then

$$
\operatorname{Supp}(y)=\left\{\left(a_{1}-\left(a_{2}+\ldots+a_{e}\right), a_{2}, \ldots, a_{e}\right),\left(a_{1}, \ldots, a_{e}\right) \in \operatorname{supp}(Y)\right\} .
$$

Now let $q=\left(q_{1}, q_{2}, \ldots, q_{e}\right)=\left(a_{1}-\left(a_{2}+\ldots+a_{e}\right), a_{2}, \ldots, a_{e}\right)$ be an element of $\operatorname{Supp}(y)$, where $\left(a_{1}, \ldots, a_{e}\right) \in$ $\operatorname{supp}(Y)$. Since $Y(\underline{X}) \in \mathbb{K}[[\underline{X}]]$, then $\left(a_{1}, \ldots, a_{e}\right) \geq \underline{0}$ componentwise. Hence $q_{1}=a_{1}-\left(a_{2}+\ldots+a_{e}\right) \geq$ $-\left(a_{2}+\ldots+a_{e}\right)=-\left(q_{2}+\ldots+q_{e}\right)$ and $q_{i}=a_{i} \geq 0$ for all $2 \leq i \leq e$, and so $q \in C$. It follows that $y \in \mathbb{K}_{C}[[\underline{x}]]$.

Definition 28 Let $n, e \in \mathbb{N}^{*}$. We define the ring $\mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$, denoted by $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, to be the set of formal power series of the form $\sum_{p=\left(p_{1}, \ldots, p_{e}\right) \in C} c_{p} \underline{x}^{\frac{p}{n}}=\sum_{p=\left(p_{1}, \ldots, p_{e}\right)} c_{p} x_{1}^{\frac{p_{1}}{n}} \ldots x_{e^{\frac{p_{e}}{n}}}$.

Lemma 17 Let f be a polynomial in $\mathbb{K}\left[[\underline{x}]\left[[y]\right.\right.$. Then f is irreducible in $\mathbb{K}_{C}[[\underline{x}]][y]$ if and only if $F\left(x_{1}, \ldots, x_{e}, y\right)=$ $f\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right)$ is irreducible in $\mathbb{K}[[x]][y]$, where polynomials are considered as polynomials in the variable y.

Proof : Suppose that f is irreducible in $\mathbb{K}_{C}[[\underline{x}]][y]$ and suppose to the contrary that F is reducible in $\mathbb{K}[[\underline{x}]][y]$. There exists some monic polynomials $G, H \in \mathbb{K}[[\underline{x}]][y]$ such that $F=G . H$ and $0<\operatorname{deg}_{y}(G), \operatorname{deg}_{y}(H)<n$. But $f\left(x_{1}, \ldots, x_{e}, y\right)=F\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$. Then :

$$
f\left(x_{1}, \ldots, x_{e}, y\right)=G\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right) \cdot H\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)
$$

Let $g(\underline{x}, y)=G\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$ and $h(\underline{x}, y)=H\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$. Let $m=\operatorname{deg}_{y}(G)$ and write $G(\underline{x}, y)=y^{m}+a_{1}(\underline{x}) y^{m-1}+\ldots+a_{m}(\underline{x})$, where $\left.a_{i}(\underline{x}) \in \mathbb{K}[\underline{x}]\right]$ for all $i=1, \ldots, m$. Then :

$$
g(\underline{x}, y)=y^{m}+a_{1}\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right) y^{m-1}+\ldots+a_{m}\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right)
$$

Since $a_{i}(\underline{x}) \in \mathbb{K}[[\underline{x}]]$ for all $i=1, \ldots, m$, then by Lemma 16 we get that $a_{i}\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right) \in \mathbb{K}_{C}[[\underline{x}]]$ for all $i=1, \ldots, m$. It follows that $g \in \mathbb{K}_{C}[[\underline{x}]][y]$. Similarly we can prove that $h \in \mathbb{K}_{C}[[\underline{x}]][y]$. Hence $f=g$. h with $0<\operatorname{deg}_{y}(g)=\operatorname{deg}_{y}(G)<n$ and $0<\operatorname{deg}_{y}(h)=\operatorname{deg}_{y}(H)<n=\operatorname{deg}_{y}(f)$, and so f is reducible in $\mathbb{K}_{C}[[\underline{x}]][y]$, which is a contradiction. It follows that F is irreducible in $\mathbb{K}[[\underline{x}]][y]$.
Conversely Let F be an irreducible polynomial in $\mathbb{K}[[\underline{x}]][y]$, and let $f=F\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$. Since $F \in \mathbb{K}[[\underline{x}]][y]$, then F is a polynomial in y with coefficients in $\mathbb{K}[[\underline{x}]]$. It follows from lemma 16 that f is a polynomial in y with coefficients in $\mathbb{K}_{C}[[\underline{x}]]$, and so $f \in \mathbb{K}_{C}[[\underline{x}]][y]$. Now suppose to the contrary that f is reducible in $\mathbb{K}_{C}[[\underline{x}]][y]$, that is there exists $h_{1}, h_{2} \in \mathbb{K}_{C}[[\underline{x}]][y]$ such that $f=h_{1} h_{2}$ with $\operatorname{deg}_{y}\left(h_{1}\right)$, $\operatorname{deg}_{y}\left(h_{2}\right)<$ $\operatorname{deg}_{y}(g)$.
Now let $a\left(x_{1}, \ldots, x_{e}\right)=\sum c_{a} x_{1}^{a_{1}} \ldots x_{e}^{a_{e}}$ be an element in $\mathbb{K}_{C}[[\underline{x}]]$, then

$$
a\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}\right)=\sum c_{a} x_{1}^{a_{1}}\left(x_{2} x_{1}\right)^{a_{2}} \ldots\left(x_{e} x_{1}\right)^{a_{e}}=\sum c_{a} x_{1}^{a_{1}+a_{2}+\ldots+a_{e}} x_{2}^{a_{2}} \ldots x_{e}^{a_{e}}
$$

Since $a(\underline{x}) \in \mathbb{K}_{C}[[\underline{x}]]$, then $a_{1} \geq-\left(a_{2}+\ldots+a_{e}\right)$ for all $\left(a_{1}, \ldots, a_{e}\right) \in \operatorname{Supp}(a(\underline{x}))$. It follows that $a_{1}+a_{2}+\ldots+$ $a_{e} \geq 0$ for all $\left(a_{1}, \ldots, a_{e}\right) \in \operatorname{Supp}(a(\underline{x}))$. Hence, $a\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}\right) \in \mathbb{K}[[\underline{x}]]$. Then $h_{1}\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right)$, $h_{2}\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right) \in \mathbb{K}[[\underline{x}]][y]$. But

$$
F\left(x_{1}, \ldots, x_{e}, y\right)=f\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right)=h_{1}\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right) h_{2}\left(x_{1}, x_{2} x_{1}, \ldots, x_{e} x_{1}, y\right) .
$$

Hence F is reducible in $\mathbb{K}[[x]][y]$, which is a contradiction.
Definition 29 Let f be a polynomial of degree n in $\mathbb{K}_{C}[[\underline{x}]][y]$. Then f is said to be a free polynomial if f is irreducible in $\mathbb{K}_{C}[[\underline{x}]][y]$ and if it admits a solution in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$.
Theorem 5 Let $f(\underline{x}, y)=y^{n}+a_{1}(\underline{x}) y^{n-1}+\cdots+a_{n-1}(\underline{x}) y+a_{n}(\underline{x})$ be a polynomial of $\mathbb{K}[[\underline{x}]][y]$ that satisfies condition (1). Suppose that f is irreducible in $\mathbb{K}_{C}[[\underline{x}]][y]$, then f is free.
Proof: By Theorem 4 the polynomial F defined by

$$
F\left(X_{1}, \ldots, X_{e}, y\right)=f\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}, y\right)
$$

is a quasi-ordinary polynomial of $\mathbb{K}[[\underline{X}]][y]$.
By Lemma 17 we get that F is an irreducible quasi-ordinary polynomial in $\mathbb{K}[[\underline{X}]][y]$ of degree n, then by the Abhyankar-Jung theorem there exists a formal power series $Z\left(X_{1}, \ldots X_{e}\right)=\sum_{\left(a_{1}, \ldots, a_{e}\right)} \gamma_{\left(a_{1}, \ldots, a_{e}\right)} X_{1}^{\frac{a_{1}}{n}} \ldots X_{e^{\frac{a_{e}}{n}}}$ in $\mathbb{K}\left[\left[X_{1}^{\frac{1}{n}}, \ldots, X_{e}^{\frac{1}{n}}\right]\right]$ such that $F\left(X_{1}, \ldots, X_{e}, Z\left(X_{1}, \ldots, X_{e}\right)\right)=0$. But :

$$
F\left(X_{1}, \ldots, X_{e}, Z\left(X_{1}, \ldots, X_{e}\right)\right)=f\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}, Z\left(X_{1}, \ldots, X_{e}\right)\right)
$$

Then $f\left(x_{1}, x_{2}, \ldots, x_{e}, Z\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right)\right)=0$. It follows that $Z\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right)$ is a solution of $f\left(x_{1}, \ldots, x_{e}, y\right)=0$. Since $Z\left(X_{1}, \ldots, X_{e}\right) \in \mathbb{K}\left[\left[\underline{X}^{\frac{1}{n}}\right]\right]$, then by Lemma 16 we deduce that $Z\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}\right)$ belongs to $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. This proves our assertion.

Proposition 30 Let the notation be as above, with f a free polynomial of degree n in $\mathbb{K}[[x]][y]$ that satisfies condition (1). Let d be a divisor of n. Then the d-th approximate root of f is free.

Proof : By Theorem 4 and Lemma 17 the polynomial F defined by

$$
F\left(X_{1}, \ldots, X_{e}, y\right)=f\left(X_{1}, X_{2} X_{1}, \ldots, X_{e} X_{1}, y\right)
$$

is a quasi-ordinary irreducible polynomial of $\mathbb{K}[[\underline{X}]][y]$. Let G be the d-th approximate root of F, and let

$$
F=G^{d}+C_{1}(\underline{X}, y) G^{d-1}+\ldots+C_{d}(\underline{X}, y)
$$

be the G-adic expansion of F, with $\operatorname{deg}_{y}\left(C_{i}\right)<\frac{n}{d}$ for all $i \in\{1, \ldots, d\}$. Since G is the d-th approximate root of F, then by Proposition 5 we get that $C_{1}(\underline{X}, y)=0$. Hence :

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{e}, y\right) & =F\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right) \\
& =g^{d}(\underline{x}, y)+C_{2}^{\prime}(\underline{x}, y) g^{d-1}(\underline{x}, y)+\ldots+C_{d}^{\prime}(\underline{x}, y)
\end{aligned}
$$

Where $g(\underline{x}, y)=G\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$ and $C_{i}^{\prime}(\underline{x}, y)=C_{i}\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$ for all $i \in\{2, \ldots, d\}$. By Lemma 16 we have $g \in \mathbb{K}_{C}[[\underline{x}]][y]$ and $C_{i}^{\prime} \in \mathbb{K}_{C}[[\underline{x}]][y]$ for all $i \in\{2, \ldots, n\}$. Since $\operatorname{deg}_{y}\left(C_{i}^{\prime}\right)<\frac{n}{d}$ for all $i \in\{2, \ldots, d\}$ and $\operatorname{deg}_{y}(g)=\frac{n}{d}$, then again by Proposition 5 we get that g is the d-th approximate root of f in $\mathbb{K}_{C}[[\underline{x}]][y]$. By Proposition $6, f$ admits a unique d-th approximate root in $\mathbb{K}_{C}[[\underline{x}]][y]$, but $f \in \mathbb{K}[[\underline{x}]][y]$ and $\mathbb{K}[[\underline{x}]][y] \subseteq \mathbb{K}_{C}[[\underline{x}]][y]$, then g is the d-th approximate root of f in $\mathbb{K}[[\underline{x}]][y]$.
Since G is the approximate root of an irreducible quasi-ordinary polynomial then by Proposition 23 it is an
 But $g(\underline{x}, y)=G\left(x_{1}, x_{2} x_{1}^{-1}, \ldots, x_{e} x_{1}^{-1}, y\right)$, then by a similar discussion as in Theorem 5 we get that g admits a root in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{d}}\right]\right]$. Moreover g is irreducible in $\mathbb{K}_{C}[[\underline{x}]][y]$ by Lemma 17 . Hence g is free with respect to C.

2.4.3 Characteristic exponents

Let the notation be as above where $f \in \mathbb{K}_{C}[[\underline{x}]][y]$ is a free polynomial with a root $y \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. We will study a special set of exponents of y, namely the set of characteristic exponents, with their properties.
Let L be the field of fractions of $\mathbb{K}_{C}[[x]]$. Moreover set :

$$
L_{1}=L\left(x_{1}^{\frac{1}{n}}\right), L_{2}=L_{1}\left(x_{2}^{\frac{1}{n}}\right), \ldots, L_{n}=L_{n-1}\left(x_{e}^{\frac{1}{n}}\right)=L\left(x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right)
$$

The field L_{i} is obtained by adjoining the root $x_{i}^{\frac{1}{n}}$ of the irreducible polynomial $Y^{n}-x_{i}$ to L_{i-1}, and L_{n} is a Galois extension of L of degree n^{e}. Let U_{n} be the set of $n^{\text {th }}$ roots of unity in \mathbb{K}. The conjugates of $x_{i}^{\frac{1}{n}}$ over L are $\omega \cdot x_{i}^{\frac{1}{n}}$ with $\omega \in U_{n}$.
Definition 30 Let $z(\underline{x})=\sum c_{p} \underline{x}^{\frac{p}{n}} \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. The support of z, denoted by $\operatorname{Supp}(z)$, is defined to be the set $\left\{p \in \mathbb{Z}^{e}, c_{p} \neq 0\right\}$. Obviously $\operatorname{Supp}(z) \subseteq C \cap \mathbb{Z}^{e}$.
Let $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$. For all $i=1, \ldots, e$ we have $\theta\left(x_{i}^{\frac{1}{n}}\right)=\omega_{i} x_{i}^{\frac{1}{n}}$ for some $\omega_{i} \in U_{n}$. Then :

$$
\theta\left(\underline{x}^{\frac{p}{n}}\right)=\theta\left(x_{1}^{\frac{1}{n}}\right)^{p_{1}} \ldots \theta\left(x_{e}^{\frac{1}{n}}\right)^{p_{e}}=\omega_{1}^{p_{1}} x_{1}^{\frac{p_{1}}{n}} \ldots \omega_{e}^{p_{e}} x_{e}^{\frac{p_{e}}{n}}=\omega_{1}^{p_{1}} \ldots \omega_{e}^{p_{e}} \underline{x}^{\frac{p}{n}}=k \cdot \underline{x}^{\frac{p}{n}}
$$

where k is a non-zero element in \mathbb{K}.
Now let $\operatorname{Roots}(f)=\left\{y_{i}\right\}_{1 \leq i \leq n}$ be the conjugates of y over L, with the assumption that $y_{1}=y=\sum c_{p} \underline{x}^{\frac{p}{n}}$. Then for all $2 \leq i \leq n$ there exists some automorphism $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$ such that $y_{i}=\theta(y)$. Hence :

$$
y_{i}=\theta(y)=\theta\left(\sum c_{p} \underline{x}^{\frac{p}{n}}\right)=\sum c_{p} \theta\left(\underline{x}^{\frac{p}{n}}\right)=\sum c_{p} k_{p} \underline{x}^{\frac{p}{n}}, k_{p} \in \mathbb{K}^{*} .
$$

Since $k_{p} \in \mathbb{K}^{*}$ for all $p \in \operatorname{Supp}(y)$, we have $\operatorname{Supp}(y)=\operatorname{Supp}\left(y_{i}\right)$ for all $i=1, \ldots, h$.
By Proposition 24 , there exists an order \leq on \mathbb{Z}^{e} which is compatible with C. Hence for all $z(\underline{x})$ in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, $\operatorname{Supp}(z(\underline{x}))$ can be arranged as an increasing sequence. We define the following notion : the order of z to be : $O(z)=\inf (\operatorname{Supp}(z))$ if $z \neq 0$, and $O(z)=\infty$ for $z=0$. We set $L M(z)=\underline{x}^{\frac{p}{n}}$ where $p=O(z)$, and we call it the leading monomial of z. We set $L C(z)=c_{O(z)}$ and we call it the leading coefficient of z.

Definition 31 Let the notation be as above with $\left\{y_{1}, \ldots, y_{n}\right\}=\operatorname{Roots}(f)$ and $y_{1}=y$. The set of Characteristic exponents of y is defined by :

$$
\left\{O\left(y_{i}-y_{j}\right), y_{i}, y_{j} \in \operatorname{Roots}(f) \text { and } y_{i} \neq y_{j}\right\} .
$$

Similarly we define the set of Characteristic monomials of y to be: $\left\{L M\left(y_{i}-y_{j}\right), y_{i} \neq y_{j}\right\}$. Note that this set depends on the order that we are using.

Proposition 31 Let the notation be as above. Then the set of Characteristic exponents of y is equal to the set $\left\{O\left(y_{k}-y\right), y_{k} \neq y\right\}$.

Proof: For every $1 \leq i \neq j \leq n$ let $c_{i j}=L C\left(y_{i}-y_{j}\right)$ and $M_{i j}=L M\left(y_{i}-y_{j}\right)$, then :

$$
y_{i}-y_{j}=c_{i j} M_{i j}+\epsilon_{i j}
$$

where $\epsilon_{i j} \in L_{n}$ with $O\left(\epsilon_{i j}\right)>O\left(M_{i j}\right)$. Now let $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$ be the automorphism such that $\theta\left(y_{j}\right)=y$. Then $\theta\left(y_{i}\right)=y_{k}$ for some $1 \leq k \leq n$, and $\theta\left(y_{i}-y_{j}\right)=\theta\left(y_{i}\right)-\theta\left(y_{j}\right)=y_{k}-y=c_{k 1} M_{k 1}+\epsilon_{k 1}$ with $O\left(\epsilon_{k 1}\right)>O\left(M_{k 1}\right)$. On the other hand $\theta\left(y_{i}-y_{j}\right)=\theta\left(c_{i j} M_{i j}+\epsilon_{i j}\right)=c_{i j} \alpha M_{i j}+\theta\left(\epsilon_{i j}\right)$ with $\alpha \neq 0$ and $O\left(\theta\left(\epsilon_{i j}\right)\right)>O\left(M_{i j}\right)$. Hence $M_{k 1}=M_{i j}=L M\left(y_{i}-y_{j}\right)$, and so we get :

$$
\left\{O\left(y_{i}-y_{j}\right), y_{i} \neq y_{j} \text { are conjugates of } y\right\}=\left\{O\left(y_{k}-y\right), y_{k} \neq y\right\} \text {. }
$$

It follows from Proposition 31 that the set of characteristic monomials of y is given by :

$$
\left\{L M\left(y_{i}-y_{j}\right), y_{i} \neq y_{j}\right\}=\left\{M_{k}=L M\left(y_{k}-y\right), k=2, \ldots, n\right\}=\left\{L M(\theta(y)-y), \theta(y) \neq y, \theta \in \operatorname{Aut}\left(L_{n} / L\right)\right\} .
$$

Note that if $n \geq 2$, then the characteristic monomial M_{k} does not belong to L for all $k=2, \ldots, n$. Indeed, for each M_{k} there exists an element $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$ such that $\theta(y)-y=c_{k} M_{k}+\epsilon_{k}$ where c_{k} is a non zero constant in \mathbb{K} and $O\left(\epsilon_{k}\right)>O\left(M_{k}\right)$. Since $\operatorname{Supp}(y)=\operatorname{Supp}(\theta(y))$ then M_{k} is a monomial of y. Moreover we have :

$$
y=p+c M_{k}+q
$$

where c is a non zero constant and p, q are in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ such that $O(p)<O\left(M_{k}\right)<O(q)$, then $\theta(y)-y=$ $(\theta(p)-p)+c\left(\theta\left(M_{k}\right)-M_{k}\right)+(\theta(q)-q)$. It follows that $\theta(p)-p=0$ and $\theta\left(M_{k}\right)-M_{k} \neq 0$, hence $\theta\left(M_{k}\right) \neq M_{k}$ and so $M_{k} \notin L$.
Now we write the characteristic monomials in an increasing order and we reindex them as :

$$
M_{1}<M_{2}<\ldots<M_{h}
$$

Proposition 32 Let the notation be as above with $\left\{M_{1}, \ldots, M_{h}\right\}$ the set of characteristic monomials of y. The two field extensins $L(y)$ and $L\left(M_{1}, \ldots, M_{h}\right)$ are equal.

Proof : Let $\theta \in \operatorname{Aut}\left(L_{n} / L(y)\right)$, then θ is an L-automorphism of L_{n} with $\theta(y)=y$. But if $\theta(y)=y$ then $\theta(y)=\theta\left(\sum c_{p} \underline{x}^{\frac{p}{n}}\right)=\sum c_{p} \theta\left(\underline{x}^{\frac{p}{n}}\right)=\sum c_{p} k_{p} \underline{x}^{\frac{p}{n}}=y=\sum c_{p} \underline{x}^{\frac{p}{n}}$, with $k_{p} \neq 0 \forall p \in \operatorname{supp}(y)$, and so $\theta\left(\underline{x}^{\frac{p}{n}}\right)=\underline{x}^{\frac{p}{n}}$. Hence $\underline{x}^{\frac{p}{n}} \in L(y) \forall p \in \operatorname{supp}(y)$. In particular M_{1}, \ldots, M_{h} are monomials of y, then $M_{1}, \ldots, M_{h} \in L(y)$, and so $L\left(M_{1}, \ldots, M_{h}\right) \subset L(y)$.
Conversely $y \in L\left(M_{1}, \ldots, M_{h}\right)$. Since if $\theta \in \operatorname{Aut}\left(L_{n} / L\left(M_{1}, . ., M_{h}\right)\right)$, i.e if θ is an L automorphism of L_{n} such that $\theta\left(M_{i}\right)=M_{i} \forall i=1, \ldots, h$, then $\theta(y)=y$. In fact if $\theta(y) \neq y$ then $\theta(y)-y=c M_{i}+\epsilon_{i}$ for some characteristic monomial M_{i}, hence for this i we have $\theta\left(M_{i}\right) \neq M_{i}$ which contradicts the hypothesis. Then $L(y) \subset L\left(M_{1}, \ldots, M_{h}\right)$, and so $L(y)=L\left(M_{1}, \ldots, M_{h}\right)$.
Note that for all $k=1, \ldots, h$ the characteristic monomials of y are of the form $M_{k}=\underline{x}^{\frac{m_{k}}{n}}$ for some $m_{k} \in C$. Moreover $\underline{x}^{\frac{m_{k}}{n}}$ is a root of the polynomial $Y^{n}-\underline{x}^{m_{k}}$ which belongs to $L[Y]$ since $\underline{x}^{m_{k}} \in L$, and so M_{k} is algebraic over L. Hence $L\left(M_{1}, \ldots, M_{i}\right)=L\left[M_{1}, \ldots, M_{i}\right]$ for all $i=1, \ldots, h$.

Proposition 33 Let the notation be as above with $\left\{m_{1}, \ldots, m_{h}\right\}$ the set of characteristic exponents of y. Let $m \in \mathbb{Z}^{e}$ be an element of $\operatorname{Supp}(y)$, then $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$.

Proof: Write $M=\underline{x}^{\frac{m}{n}}$. Since M is a monomial of y, then $M \in L(y)=L\left(M_{1}, \ldots, M_{h}\right)=L\left[M_{1}, \ldots, M_{h}\right]$. Hence :

$$
M=\frac{f_{1}}{g_{1}} M_{1}^{\alpha_{1}^{1}} \ldots M_{h}^{\alpha_{h}^{1}}+\ldots+\frac{f_{l}}{g_{l}} M_{1}^{\alpha_{1}^{l}} \ldots M_{h}^{\alpha_{h}^{l}}
$$

for some $f_{1}, \ldots, f_{l}, g_{1}, \ldots, g_{l} \in \mathbb{K}_{C}[[\underline{x}]]$ and $l \in \mathbb{N}^{*}$, and so :

$$
g_{1} \ldots g_{l} M=f_{1} g_{2} \ldots g_{l} M_{1}^{\alpha_{1}^{1}} \ldots M_{h}^{\alpha_{h}^{1}}+\ldots+f_{l} g_{1} \ldots g_{l-1} M_{1}^{\alpha_{1}^{l}} \ldots M_{h}^{\alpha_{h}^{l}}
$$

Comparing both sides we get that $L M\left(g_{1} \ldots g_{l} M\right)=\underline{x}^{a} M_{1}^{\alpha_{1}^{i}} \ldots M_{h}^{\alpha_{h}^{i}}$ for some $i \in\{1, \ldots, l\}$ and $a \in \mathbb{Z}^{e}$. Now write $L M\left(g_{1} \ldots g_{l}\right)=\underline{x}^{b}$ for some $b \in \mathbb{Z}^{e}$, then $n b+m=n a+\alpha_{1}^{i} m_{1}+\ldots+\alpha_{h}^{i} m_{h}$, and so $m=$ $n(a-b)+\alpha_{1}^{i} m_{1}+\ldots+\alpha_{h}^{i} m_{h}$. It follows that $m \in(n \mathbb{Z})^{e}+\sum_{i=1}^{h} m_{i} \mathbb{Z}$.

Now we define the following fields :

$$
\begin{aligned}
F_{0} & =L \\
F_{i} & =L\left[M_{1}, \ldots, M_{i}\right]=F_{i-1}\left[M_{i}\right] \text { for all } i=1, \ldots, h .
\end{aligned}
$$

We also set :

$$
G_{i}=(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}
$$

for all $i=1, \ldots, h$, and we write $G_{0}=(n \mathbb{Z})^{e}$. Similar to Proposition 33 we can prove that for any monomial $M=\underline{x}^{\frac{m}{n}}$ with $m \in C$, we have $M \in F_{i} \Leftrightarrow m \in G_{i}$.

Definition 32 Let the notation be as above with $y=\sum c_{p} \underline{x}^{\frac{p}{n}}$ a root of f in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. Let $\left\{m_{1}, \ldots, m_{h}\right\}$ be the set of characteristic exponents of y. We define the following sequences :

- The $G C D$-sequence $\left\{D_{i}\right\}_{1 \leq i \leq h+1}$, with $D_{1}=n^{e}$ and for all $i \in\{2, \ldots, h\} D_{i+1}=\operatorname{gcd}\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}\right)$, the gcd of the (e, e) minors of the $e \times(e+i)$ matrix $A=\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}\right)$, where I_{e} is the identity $e \times e$ matrix.
- The d-sequence $\left\{d_{i}\right\}_{1 \leq i \leq h+1}$ with $d_{i}=\frac{D_{i}}{D_{h+1}}$.
- The e-sequence $\left\{e_{i}\right\}_{1 \leq i \leq h}$ with $e_{i}=\frac{D_{i}}{D_{i+1}}=\frac{d_{i}}{d_{i+1}}$.
- The r-sequence $\left\{r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{h}\right\}$ by $\left(r_{0}^{1}, \ldots r_{0}^{e}\right)$ the canonical basis of $(n \mathbb{Z})^{e}, r_{1}=m_{1}$, and for all $k \in$ $\{1, \ldots, h-1\} r_{k+1}=e_{k} \cdot r_{k}+m_{k+1}-m_{k}$.
Note that we also have the following

$$
\begin{aligned}
r_{k+1} \cdot D_{k+1} & =D_{k+1} \cdot e_{k} \cdot r_{k}+\left(m_{k+1}-m_{k}\right) \cdot D_{k+1}=D_{k} \cdot r_{k}+\left(m_{k+1}-m_{k}\right) \cdot D_{k+1} \\
& =m_{1} \cdot D_{1}+\sum_{i=2}^{k+1}\left(m_{i}-m_{i-1}\right) D_{i} .
\end{aligned}
$$

Proposition 34 Let the notation be as in Definition 32 and let v be a non zero vector in \mathbb{Z}^{e}. Let \tilde{D} be the gcd of the $e \times e$ minors of the matrix $\left(n I_{e}, m_{1}^{T}, \ldots, m_{i}^{T}, v^{T}\right)$. Then $v \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ if and only if $\tilde{D}=D_{i+1}$. Moreover, $\frac{D_{i+1}}{\tilde{D}} \cdot v \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ and if $D_{i+1}>\tilde{D}$ then for all $1 \leq k<\frac{D_{i+1}}{D}, k . v \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$.

Proof : Same as the proof of Proposition 16.

Definition 33 Let $a, b \in C$. We say that $\underline{x}^{\frac{a}{n}}<\underline{x}^{\frac{b}{n}}$ if $a<b$.

Proposition 35 For all $i=1, \ldots, h-1$ let H_{i} be the algebraic extension of L obtained by adjoining all the monomials M of y such that $M<M_{i+1}$ then :
(i) $F_{i}=H_{i}$ and M_{i} does not belong to F_{i-1}
(ii) The degree $\left[F_{i}: F_{i-1}\right]$ of the field extension $F_{i-1} \subset F_{i}$ is equal to e_{i}.

Proof: (i) Since $m_{j}<m_{i+1}$ for all $j=1, \ldots, i$, then $M_{1}, \ldots, M_{i} \in H_{i}$, and so $F_{i} \subseteq H_{i}$. In order to prove that $H_{i} \subseteq F_{i}$, consider a monomial M of y such that $M<M_{i+1}$. For each $\theta \in \operatorname{Aut}\left(L_{n} / F_{i}\right), \theta$ is an L automorphism of L_{n} and $\theta\left(M_{j}\right)=M_{j}$ for all $j<i+1$. Hence $L M(\theta(y)-y) \geq M_{i+1}$, and so $\theta(M)=M$ for all $M<M_{i+1}$, hence $M \in F_{i}$. Finally we get that $H_{i}=F_{i}$. Now to prove that $m_{i} \notin F_{i-1}$, let $\theta \in \operatorname{Aut}\left(L_{n} \backslash L\right)$ such that $\theta(y)-y=c M_{i}+\varepsilon$ with $O(\varepsilon)>m_{i}$ and c a non zero constant (such θ obviously exists since M_{i} is a characteristic monomial of y), then $\theta\left(M_{j}\right)=M_{j}$ for all $j=1, \ldots, i-1$ and $\theta\left(M_{i}\right) \neq M_{i}$, and so $\theta \in \operatorname{Aut}\left(L_{n} \backslash F_{i-1}\right)$ with $\theta\left(M_{i}\right) \neq M_{i}$, hence M_{i} does not belong to F_{i-1}.
Note that (i) is equivalent to say that between all the exponents m of y, m_{i} is the samllest one which does not belong to G_{i-1}.
(ii) Since $M_{i} \notin F_{i-1}$, then $m_{i} \notin G_{i-1}$, and so $D_{i}>D_{i+1}$. Moreover $e_{i} m_{i} \in G_{i-1}$ and for all $0<\alpha<e_{i}$ we have $\alpha \cdot m_{i} \notin G_{i-1}$. Now let $g=y^{l}+a_{1} y^{l-1}+\ldots+a_{l}$ with $a_{k} \in F_{i-1}$ for all $i=1, \ldots, l$ be the minimal polynomial of M_{i} over F_{i-1} and suppose that $l<e_{i}$. Since $g\left(M_{i}\right)=0$, then there exists some $k \in\{0, \ldots, l-1\}$ such that $\underline{x}^{l \frac{m_{i}}{n}}=\underline{x}^{\frac{\alpha}{n}} \cdot \underline{x}^{\frac{k m_{i}}{n}}$ for some $\alpha \in G_{i-1}$, and so $(l-k) m_{i}=\alpha \in G_{i-1}$ with $0<l-k<e_{i}$ which is a contradiction. Hence the degree of the minimal polynomial of m_{i} is at least e_{i}. It follows easily that $Y^{e_{i}}-x^{e_{i} \cdot \frac{m_{i}}{n}}$ is the minimal polynomial of $x^{\frac{m_{i}}{n}}$ over F_{i-1}, hence $\left[F_{i}: F_{i-1}\right]=e_{i}$.

Proposition 36 Let f be a free polynomial of degree n, and let $\left\{m_{1}, \ldots, m_{h}\right\},\left\{r_{1}, \ldots, r_{h}\right\}$ and $\left\{e_{1}, \ldots, e_{h}\right\}$ be its sequence of characteristic exponents, its r-sequence, and its e-sequence respectively. Then for all $i \in\{1, \ldots, h\}$ we have $e_{i} r_{i} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j} \mathbb{Z}$ and $\alpha r_{i} \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j} \mathbb{Z}$ for all $1 \leq \alpha<e_{i}$.

Proof: Note that each of the sequences $\left(m_{k}\right)_{1 \leq k \leq h}$ and $\left(r_{k}\right)_{1 \leq k \leq h}$ can be obtained from the other. In particular the r-sequence can be rearranged in the following way : $r_{1}=m_{1}, r_{2}=e_{1} \cdot r_{1}+m_{2}-m_{1}=e_{1} \cdot m_{1}+m_{2}-m_{1}=$ $m_{2}+m_{1}\left(e_{1}-1\right)$ and so we get that $r_{k}=m_{k}+m_{k-1}\left(e_{k-1}-1\right)+m_{k-2}\left(e_{k-2}-1\right) e_{k-1}+\ldots+m_{1}\left(e_{1}-1\right) e_{2} \ldots e_{k-1}$. Hence $(n \mathbb{Z})^{e}+\sum_{j=1}^{i} r_{j} \mathbb{Z} \subseteq(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ for all $i \in\{1, \ldots, h\}$.
On the other hand we have $m_{1}=r_{1}$ and $m_{2}=r_{2}-\left(e_{1}-1\right) r_{1}$. Suppose that $m_{k}=r_{k}+\left(e_{k-1}-1\right) r_{k-1}+$ $\ldots+\left(e_{1}-1\right) r_{1}$ up to some k with $k \geq 2$, and let us prove it for $k+1$. We have

$$
\begin{aligned}
r_{k+1} & =e_{k} r_{k}+m_{k+1}-m_{k} \\
& =m_{k+1}+\left(e_{k}-1\right) r_{k}+\left(e_{k-1}-1\right) r_{k-1}+\ldots+\left(e_{1}-1\right) r_{1} .
\end{aligned}
$$

Hence $m_{k+1}=r_{k+1}-\left(e_{k}-1\right) r_{k}+\ldots+\left(e_{1}-1\right) r_{1}$, and so it is true for all $k \in\{2, \ldots, h\}$. It follows that $(n \mathbb{Z})^{e}+\sum_{j=1}^{i} r_{j} \mathbb{Z}=(n \mathbb{Z})^{e}+\sum_{j=1}^{i} m_{j} \mathbb{Z}$ for all $i \in\{1, \ldots, h\}$.
We have proved that for any $\alpha \in \mathbb{N}$ we have $\alpha m_{i}=\alpha r_{i}-\alpha\left(e_{i-1}-1\right) r_{i-1}-\ldots-\alpha\left(e_{1}-1\right) r_{1}$ and that $(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}=(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j-1} \mathbb{Z}$. It follows easily that $\alpha r_{i} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j} \mathbb{Z}$ if and only if $\alpha m_{i} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$.
Now let $i \in\{1, \ldots, h\}$ and let $M_{i}=\underline{x}^{\frac{m_{i}}{n}}$ be the characteristic monomials. We have $m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$. Otherewise, we will get that $m_{i}=\alpha_{1} m_{0}^{1}+\ldots+\alpha_{e} m_{0}^{e}+\beta_{1} m_{1}+\ldots+\beta_{i-1} m_{i-1}$ for some $\alpha_{1}, \ldots, \alpha_{e}, \beta_{1}, \ldots, \beta_{e} \in$ \mathbb{Z}. It follows that $\underline{x}^{\frac{m_{i}}{n}}=x_{1}^{\alpha_{1}} \ldots x_{e}^{\alpha_{e}} M_{1}^{\beta_{1}} \ldots M_{i-1}^{\beta_{i-1}} \in L\left(M_{1}, \ldots, M_{i-1}\right)$. Which is a contradiction. It follows from Proposition 34 that $e_{i} m_{i}=\frac{D_{i}}{D_{i+1}} m_{i} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$ and $\beta m_{i} \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$ for all $1 \leq \beta<e_{i}$. It follows directly that $e_{i} r_{i} \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j} \mathbb{Z}$ and $\alpha r_{i} \notin(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} r_{j} \mathbb{Z}$ for all $1 \leq \alpha<e_{i}$

Remark 12 Since $[L(y): L]=n$, it follows from Proposition 35 that $[L(y): L]=e_{1} \ldots e_{h}=\frac{D_{1}}{D_{h+1}}$. But $[L(y): L]=n$ and $D_{1}=n^{e}$, hence $D_{h+1}=n^{e-1}$. Moreover $d_{1}=n$ and $d_{h+1}=1$.

Now we define the following sets :

$$
\begin{aligned}
Q(i) & =\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \text { such that } O(y-\theta(y))<m_{i}\right\} \\
R(i) & =\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \text { such that } O(y-\theta(y)) \geqslant m_{i}\right\} \\
S(i) & =\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \text { such that } O(y-\theta(y))=m_{i}\right\}
\end{aligned}
$$

Proposition 37 Let the notation be as above with $\left\{D_{i}\right\}_{i}$ the $G C D$-sequence associated to y, then $\# S(i)=$ $D_{i}-D_{i+1}$, where $\# S(i)$ is the cardinality of the set $S(i)$.

Proof: Since L_{n} is an extension of degree n^{e} of L, then $\# A u t\left(L_{n} / L\right)=\left[L_{n}: L\right]=n^{e}$. We have

$$
\theta \in R(i) \Leftrightarrow O(y-\theta(y)) \geqslant m_{i} \Leftrightarrow \theta\left(M_{j}\right)=M_{j} \forall j<i \Leftrightarrow \theta \in \operatorname{Aut}\left(L_{n} / L\left(M_{1}, \ldots, M_{i-1}\right)\right)
$$

Hence $\# R(i)=\# \operatorname{Aut}\left(L_{n} / L\left(M_{1}, \ldots, M_{i-1}\right)\right)=\left[L_{n}: L\left(M_{1}, \ldots, M_{i-1}\right)\right]=\left[L_{n}: F_{i-1}\right]$. By Proposition 35 we have :

$$
\begin{aligned}
{\left[F_{i-1}: L\right] } & =\left[F_{i-1}: F_{i-2}\right] \cdots\left[F_{1}: L\right]=e_{i-1} \cdots e_{1} \\
& =\frac{D_{1}}{D_{2}} \cdot \frac{D_{2}}{D_{3}} \cdots \frac{D_{i-1}}{D_{i}}=\frac{D_{1}}{D_{i}}=\frac{n^{e}}{D_{i}}
\end{aligned}
$$

$\operatorname{But}\left[L_{n}: L\right]=\left[L_{n}: F_{i-1}\right] \cdot\left[F_{i-1}: L\right]=n^{e}$, then $\left[L_{n}: F_{i-1}\right]=D_{i}$, and so $\#(R(i))=D_{i}$. Now let $\theta \in R(i+1)$, then $O(y-\theta(y)) \geqslant m_{i+1}$, but $m_{i+1}>m_{i}$, then $O(y-\theta(y)) \geqslant m_{i}$, and so $\theta \in R(i)$, hence $R(i+1) \subset R(i)$. Moreover $\theta \in S(i)$ if and only if $O(y-\theta(y))=m_{i}$ if and only if $\theta \in R(i)$ and $\theta \notin R(i+1)$. It follows that $\# S(i)=\# R(i)-\# R(i+1)$, and so $\# S(i)=D_{i}-D_{i+1}$.

2.4.4 The initial form of the minimal polynomial of $y_{<m_{i}}$

Let f be a free polynomial of degree n in $\mathbb{K}_{C}[[x]][y]$, and let $y=\sum c_{p} \underline{x}^{\frac{p}{n}} \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ be a root of f. Let $\left\{m_{1}, \ldots, m_{h}\right\}$ and $\left\{r_{1}, \ldots, r_{h}\right\}$ be the set of characteristic exponents and the r-squence of y respectively. For all $i \in\{1, \ldots, h\}$ we will define a specific polynomial G_{i} called the $i-$ th pseudo-root of f. We will prove that $O\left(G_{i}(\underline{x}, y(\underline{x}))\right)=r_{i}$. Moreover, we will prove that G_{i} is a free polynomial in $\mathbb{K}_{C}[[\underline{x}]][y]$ for all $i \in\{1, \ldots, h\}$, and we will find the relation between the characteristic exponents of f and those of G_{i}.

Definition 34 Let the notation be as above, and let m be one of the exponents of y. Then an m-truncation of y is defined to be $y_{<m}:=\sum_{p<m} c_{p} \underline{x}^{\frac{p}{n}}$ with $p \in \operatorname{Supp}(y)$.
By $p<m$ we mean that $p \leq m$ with respect to the defined order on C and $p \neq m$. Note that since C is a line free cone, $y_{<m}$ is a finite sum of monomials, and it is obviously an element in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right] \subset L_{n}$.

Definition 35 Let the notation be as above with $\left\{m_{1}, \ldots, m_{h}\right\}$ the set of characteristic exponents of y. For all $i=1, \ldots, h$ let $y_{<m_{i}}$ be the m_{i}-truncation of y, then the i-th pseudo-root of f is defined to be the minimal polynomial of $y_{<m_{i}}$ over L.

Proposition 38 Let the notation be as above. For all $i=1, \ldots, h$ let G_{i} be i-th pseudo-root of f, then $\operatorname{deg}_{y}\left(G_{i}\right)=\frac{n^{e}}{D_{i}}=\frac{n}{d_{i}}$.

Proof: By Proposition 35 we have $L\left(y_{<m_{i}}\right)=L\left(M_{1}, . ., M_{i-1}\right)$. By a similar argument as in the proof of Proposition 37, we get :

$$
\operatorname{deg}_{y}\left(G_{i}\right)=\left[L\left(y_{<m_{i}}\right): L\right]=\left[L\left(M_{1}, \ldots, M_{i-1}\right): L\right]=\frac{n^{e}}{D_{i}} .
$$

For all $i=1, \ldots, h$ the $i-t h$ pseudo-root G_{i} splits completely in L_{n}. Moreover the conjugates of $y_{<m_{i}}$ over L are $\theta\left(y_{<m_{i}}\right)$, with $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$, which are elements of $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$, then G_{i} has $\frac{n^{e}}{D_{i}}$ roots in $\mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$. Let $z_{1}, \ldots, z_{\frac{n^{e}}{D_{i}}}$ be the roots of G_{i}, then

$$
G_{i}=\prod_{i=1}^{\frac{n^{e}}{D_{i}}}\left(y-z_{i}\right) \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right][y]
$$

but $G_{i} \in L$, hence $G_{i} \in \mathbb{K}_{C}[[\underline{x}]][y]$.
Proposition 39 Let the notation be as above with f a free polynomial of degree n and $y=y\left(\underline{x}^{\frac{1}{n}}\right)$ a root of f, then :

$$
f(\underline{x}, Y)^{n^{e-1}}=\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}(Y-\theta(y))
$$

Proof: Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be the conjugates of y over L. For all $i=1, . ., n$ set :

$$
A_{i}=\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \theta(y)=y_{i}\right\} \text { and } a_{i}=\#\left(A_{i}\right) .
$$

We have $\theta \in A_{1}$ if and only if $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$ and $\theta(y)=y_{1}=y$ if and only if $\theta \in \operatorname{Aut}\left(L_{n} / L(y)\right)$, hence :

$$
\#\left(A_{1}\right)=\# \operatorname{Aut}\left(L_{n} / L(y)\right)=\left[L_{n}: L(y)\right] .
$$

But $\left[L_{n}: L(y)\right][L(y): L]=\left[L_{n}: L\right]$ with $\left[L_{n}: L\right]=n^{e}$ and $[L(y): L]=\operatorname{deg}(f)=n$, then $\left[L_{n}: L(y)\right]=\frac{n^{e}}{n}=$ n^{e-1} and so $a_{1}=\#\left(A_{1}\right)=n^{e-1}$.
Write $A_{1}=\left\{\beta_{1}, \ldots, \beta_{n^{e-1}}\right\}$ and we want to prove that $\#\left(A_{i}\right)=\#\left(A_{1}\right)=n^{e-1}$ for all $i=1, \ldots, n$. Let y_{i} be a conjugate of y other than y. Since L_{n} / L is a normal extension then there existes some $\alpha_{i} \in \operatorname{Aut}\left(L_{n} / L\right)$ such that $\alpha_{i}(y)=y_{i}$. For all $i=1, \ldots, n^{e-1}$ we have $\alpha_{i} \circ \beta_{j}(y)=\alpha_{i}(y)=y_{i}$ and so $\alpha_{i} \circ \beta_{j} \in A_{i}$. Moreover, if $j \neq k$, then $\alpha_{i} \circ \beta_{j} \neq \alpha_{i} \circ \beta_{k}$, hence $a_{i}=\#\left(A_{i}\right) \geq \#\left(A_{1}\right)=a_{1}=n^{e-1}$. If $a_{l}>a_{1}=n^{e-1}$ for some $l=2, \ldots, n$, then $\sum_{l=1}^{n} a_{l}>n^{e}$, but $\sum_{l=1}^{n} a_{l}=n^{e}$, this is a contradiction. It follows that for all $i=1, \ldots, n$ we have $a_{i}=a_{1}=n^{e-1}$. Hence for all $i=1, \ldots, n A_{i}$ can be written as

$$
A_{i}=\left\{\theta_{i}^{j}, 1 \leq j \leq n^{e-1}\right\}
$$

Hence :

$$
\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}(Y-\theta(y))=\prod_{j=1}^{n^{e-1}} \prod_{i=1}^{n}\left(Y-\theta_{i}^{j}(y)\right)=\prod_{j=1}^{n^{e-1}} \prod_{i=1}^{n}\left(Y-y_{i}\right)=\prod_{j=1}^{n^{e-1}} f=f^{n^{e-1}}
$$

Hence the proof is completed.

Proposition 40 Let the notation be as above. For all $i=1, \ldots, h$ let $G_{i}(\underline{x}, Y)$ be the i-th pseudo root of f. Then

$$
\left(G_{i}(\underline{x}, Y)\right)^{D_{i}}=\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}\left(Y-\theta\left(y_{<m_{i}}\right)\right)
$$

Proof : Let $y_{1}, \ldots, y_{\frac{n^{e}}{D_{i}}}$ be the conjugates of $y_{<m_{i}}$ with $y_{1}=y_{<m_{i}}$. For all $i=1, \ldots, \frac{n^{e}}{D_{i}}$ set :

$$
A_{j}=\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \theta\left(y_{<m_{i}}\right)=y_{j}\right\} \text { and } a_{j}=\# A_{j}
$$

For each $j=1, \ldots, \frac{n^{e}}{D_{i}}$ there exists $\alpha_{j} \in \operatorname{Aut}\left(L_{n} / L\right)$ such that $\alpha_{j}\left(y_{1}\right)=y_{j}$, so we define the set $\left\{\alpha_{j} \circ \theta, \theta \in A_{1}\right\}$ and we denote it by $\alpha_{j} \circ A_{1}$. We want to prove that $A_{j}=\alpha_{j} \circ A_{1}$.
Let $\theta \in A_{1}$, we have $\theta\left(y_{1}\right)=y_{1}$, hence $\alpha_{j} \circ \theta\left(y_{1}\right)=\alpha_{j}\left(y_{1}\right)=y_{j}$. But $\alpha_{j}, \theta \in \operatorname{Aut}\left(L_{n} / L\right)$, then $\alpha_{j} \circ \theta \in$ $\operatorname{Aut}\left(L_{n} / L\right)$, and so $\alpha_{j} \circ \theta \in A_{j}$ this implies that $\alpha_{j} \circ A_{1} \subset A_{j}$.
Now let $\beta \in A_{j}$, then $\beta\left(y_{1}\right)=y_{j}$. Write $\beta=\alpha_{j} \circ\left(\alpha_{j}^{-1} \circ \beta\right)$. Then :

$$
\alpha_{j}\left(\left(\alpha_{j}^{-1} \circ \beta\right)\left(y_{1}\right)\right)=\beta\left(y_{1}\right)=y_{j}=\alpha_{j}\left(y_{1}\right)
$$

But α_{j} is injective, then $\left(\alpha_{j}^{-1} \circ \beta\right)\left(y_{1}\right)=y_{1}$, hence $\alpha_{j}^{-1} \circ \beta \in A_{1}$. It follows that $\beta=\alpha_{j} \circ\left(\alpha_{j}^{-1} \circ \beta\right) \in \alpha_{j} \circ A_{1}$. Then $A_{j} \subset \alpha_{j} \circ A_{1}$. Finally we get that $A_{j}=\alpha_{j} \circ A_{j}$.
Now $A_{1}=\left\{\theta \in \operatorname{Aut}\left(L_{n} / L\right), \theta\left(y_{<m_{i}}\right)=y_{<m_{i}}\right\}=\operatorname{Aut}\left(L_{n} / L\left(y_{<m_{i}}\right)\right)=\operatorname{Aut}\left(L_{n} / L\left(M_{1}, \ldots, M_{i-1}\right)\right)$ by Proposition 35. Hence $a_{1}=\# A_{1}=\# \operatorname{Aut}\left(L_{n} / L\left(M_{1}, \ldots, M_{i-1}\right)\right)=D_{i}$ but since $\forall \theta_{1}, \theta_{2} \in A_{1}$ and $\theta_{1} \neq \theta_{2}$ we have $\alpha_{j} \circ \theta_{1} \neq \alpha_{j} \circ \theta_{2}$ then $a_{j}=\# A_{j}=\# A_{1}=a_{1}=D_{i}$. Write $A_{j}=\left\{\theta_{j}^{k}, 1 \leq k \leq D_{i}\right\}$, we get :

$$
\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}\left(Y-\theta\left(y_{<m_{i}}\right)\right)=\prod_{k=1}^{D_{i}} \prod_{j=1}^{\frac{n^{e}}{D_{i}}}\left(Y-\theta_{j}^{k}\left(y_{<m_{i}}\right)\right)=\prod_{k=1}^{D_{i}} \prod_{j=1}^{\frac{n^{e}}{D_{i}}}\left(Y-y_{j}\right)=\prod_{k=1}^{D_{i}} G=G^{D_{i}} .
$$

Lemma 18 Let the notation be as above with $y \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ a root of a free polynomial $f \in \mathbb{K}_{C}[[\underline{x}]][y]$, and let $\left\{m_{1}, \ldots, m_{h}\right\}$ be the set of characteristic exponents of y and $\left\{D_{1}, \ldots, D_{h+1}\right\}$ be its $G C D$ sequence. For all $1 \leq i \leq h$ set $S_{i}=m_{1} \cdot D_{1}+\sum_{j=1}^{i}\left(m_{j}-m_{j-1}\right) D_{j}$ then we have:

$$
O\left(\prod_{\theta \in Q(i)}(y-\theta(y))\right)=S_{i-1}-m_{i-1} \cdot D_{i} .
$$

Proof: We have $\theta \in Q(i)$ if and only if $O(y-\theta(y))<m_{i}$ if and only if $O(y-\theta(y))=m_{j}$ for some $j \in\{1, \ldots, i-1\}$. It follows that $Q(i)=\cup_{j=1}^{i-1} S(j)$. Hence

$$
\prod_{\theta \in Q(i)}(y-\theta(y))=\prod_{j=1}^{i-1} \prod_{\theta \in S(j)}(y-\theta(y)) .
$$

By Proposition 37 we have $\#(S(j))=D_{j}-D_{j+1}$, and so for all $j=1, \ldots, i-1$ we have :

$$
O\left(\prod_{\theta \in S(j)}(y-\theta(y))\right)=\left(D_{j}-D_{j+1}\right) m_{j} .
$$

Hence :

$$
\begin{aligned}
O\left(\prod_{\theta \in Q(i)}(y-\theta(y))\right) & =\left(D_{1}-D_{2}\right) m_{1}+\left(D_{2}-D_{3}\right) m_{2}+\ldots+\left(D_{i-1}-D_{i}\right) m_{i-1} \\
& =D_{1} m_{1}+D_{2}\left(m_{2}-m_{1}\right)+\ldots+D_{i-1}\left(m_{i-1}-m_{i-2}\right)+D_{i} m_{i-1} \\
& =S_{i-1}-m_{i-1} \cdot D_{i} . ■
\end{aligned}
$$

Definition 36 Let y be a formal power series in $\mathbb{K}_{C}[[\underline{x}]]$. Let \leq be an order which is compatible with C, and let $L M(y)$ and $L C(y)$ be the leading monomial and the leading coefficient of y with respect to this order. The initial form of y with respect to this order is defined to be : Info $(y):=L C(y) \cdot L M(y)$.

Definition 37 Let the notation be as above with $\left\{m_{1}, \ldots, m_{h}\right\}$ the set of characteristic exponents of y, and $Z \neq 0$ an indeterminate. Let $i \in\{1, \ldots, h\}$, by an (i, Z)-deformation of y we mean an element $y^{*} \in$ $\mathbb{K}^{\prime}(Z)_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ where \mathbb{K}^{\prime} is an overfield of \mathbb{K}, such that Info $\left(y^{*}-y_{<m_{i}}\right)=Z \cdot \underline{x}^{m_{i}}$. Note that the initial form is taken with respect to the chosen order on C.

Proposition 41 Let f be a free polynomial with a root y. Let $\left\{m_{1}, \ldots, m_{h}\right\}$ be the set of characteristic exponents of y, and for all $1 \leq i \leq h$ let G_{i} be the i-th pseudo root of f and y^{*} be an (i,Z) deformation of y. Then :

$$
\operatorname{Info}\left(G_{i}\left(\underline{x}, y^{*}\right)\right)=c \cdot Z \cdot \underline{x}^{\frac{r_{i}}{n}} .
$$

Where $c \in \mathbb{K}$ is a non zero constant.
Proof: By Proposition 40 we have :

$$
G_{i}\left(\underline{x}, y^{*}\right)^{D_{i}}=\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right) .
$$

Since $\operatorname{Aut}\left(L_{n} / L\right)$ is the disjoint union of $R(i)$ and $\left.Q(i)\right)$, then :

$$
\begin{aligned}
\operatorname{Info}\left(G_{i}\left(\underline{x}, y^{*}\right)\right)^{D_{i}} & =\operatorname{Info}\left(\prod_{\theta \in \operatorname{Aut}\left(L_{n} / L\right)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)\right) \\
& =\operatorname{Info}\left(\prod_{\theta \in Q(i))}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)\right) \cdot \operatorname{Info}\left(\prod_{\theta \in R(i)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)\right) .
\end{aligned}
$$

Consider the equation :

$$
y^{*}-\theta\left(y_{<m_{i}}\right)=\left(y^{*}-y_{<m_{i}}\right)+\left(y_{<m_{i}}-y\right)+(y-\theta(y))+\left(\theta(y)-\theta\left(y_{<m_{i}}\right)\right)
$$

For all $\theta \in \operatorname{Aut}\left(L_{n} / L\right)$ we have $O\left(\theta(y)-\theta\left(y_{<m_{i}}\right)\right)=O\left(\theta\left(y-y_{<m_{i}}\right)\right)=O\left(y-y_{<m_{i}}\right)=m_{i}$, also by the definition of the deformation y^{*}, we have $O\left(y^{*}-y_{<m_{i}}\right)=m_{i}$. Then :
(i) If $\theta \in Q(i)$, we have $\operatorname{Info}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)=\operatorname{Info}(y-\theta(y))$, and using Lemma 18 we get :

$$
\begin{equation*}
\text { Info } \prod_{\theta \in Q(i)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)=\operatorname{Info} \prod_{\theta \in Q(i)}(y-\theta(y))=\lambda \cdot \underline{x}^{\frac{S_{i-1}-m_{i-1} D_{i}}{n}} \tag{2.3}
\end{equation*}
$$

Where λ is a non zero constant in \mathbb{K}.
(ii) If $\theta \in R(i)$, then $\theta\left(y_{<m_{i}}\right)=y_{<m_{i}}$, and so $\operatorname{Info}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)=\operatorname{Info}\left(y^{*}-y_{<m_{i}}\right)=Z \cdot \underline{x}^{\frac{m_{i}}{n}}$. But $\operatorname{card}(R(i))=D_{i}$, then $:$

$$
\text { Info } \prod_{\theta \in R(i)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)=\prod_{\theta \in R(i)} \operatorname{Info}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right)=\prod_{i=1}^{D_{i}}\left(Z \cdot \underline{x}^{\frac{m_{i}}{n}}\right)=Z^{D_{i}} \cdot \underline{x}^{\frac{m_{i} D_{i}}{n}}
$$

Combining (i) and (ii) we get :

$$
\begin{aligned}
\operatorname{Info}\left(G_{i}\left(\underline{x}, y^{*}\right)\right)^{D_{i}} & =\operatorname{Info} \prod_{\theta \in Q(i)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right) \cdot \operatorname{Info} \prod_{\theta \in R(i)}\left(y^{*}-\theta\left(y_{<m_{i}}\right)\right) \\
& =\lambda \cdot \underline{x}^{\frac{S_{i-1}-m_{i-1} D_{i}}{n}} \cdot Z^{D_{i}} \cdot \underline{x}^{\frac{m_{i} D_{i}}{n}} \\
& =\lambda \cdot Z^{D_{i}} \cdot \underline{x^{\frac{S_{i-1}-m_{i-1} D_{i}+m_{i} D_{i}}{n}}}=\lambda \cdot Z^{D_{i}} \cdot \underline{x}^{\frac{S_{i}}{n}}=\lambda \cdot Z^{D_{i}} \cdot \underline{x}^{\frac{r_{i} D_{i}}{n}}
\end{aligned}
$$

Hence $\operatorname{Info}\left(G_{i}\left(\underline{x}, y^{*}\right)\right)=c \cdot Z \cdot \underline{x}^{\frac{r_{i}}{n}}$ for some $c \in \mathbb{K}^{*}$. Moreover, $O\left(G_{i}\left(\underline{x}, y^{*}\right)\right)=r_{i}$.
As a corollary of Proposition 41 we get the following :

Corollary 2 Let the notation be as in Proposition 41. We have $O\left(G_{i}(\underline{x}, y(x))\right)=r_{i}$.

Proof: In fact, $y(\underline{x})=\left.y^{*}(\underline{x})\right|_{Z=1}$. Hence the result follows.

Proposition 42 Let f be a free polynomial in $\mathbb{K}_{C}[[\underline{x}]][y]$, and let G_{i} be the i-th pseudo root of f, where $i \in\{1, \ldots, h\}$. Then G_{i} is a free polynomial. In particular its root $y_{<m_{i}} \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{a_{i}}}\right]\right]$ and its characteristic exponents are $\frac{m_{1}}{d_{i}}, \ldots, \frac{m_{i-1}}{d_{i}}$.

Proof : We want to prove that $y_{<m_{i}} \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n_{i}}}\right]\right]$. Let $\underline{x}^{\frac{\lambda}{n}}$ be a monomial of $y_{<m_{i}}$, then $\lambda \in(n \mathbb{Z})^{e}+\sum_{j=1}^{i-1} m_{j} \mathbb{Z}$. Let D be the $g c d$ of the minors of the matrix $\left(m_{0}^{1}, \ldots, m_{0}^{e}, m_{1}, \ldots, m_{i-1}, \lambda\right)$, then by Proposition 16 we have $D=D_{i}$. For all $l \in\{1, \ldots, e\}$ the matrix $A_{l}=\left(m_{0}^{1}, \ldots, m_{0}^{l-1}, \lambda, m_{0}^{l+1}, \ldots, m_{e}\right)$ is one of the minors of the matrix $\left(m_{0}^{1}, \ldots, m_{0}^{e}, m_{1}, \ldots, m_{i-1}\right)$, then D_{i} divides $\operatorname{Det}\left(A_{l}\right)$ for all $l \in\{1, . ., e\}$. Write $\lambda=\left(\lambda_{1}, \ldots, \lambda_{e}\right)$, then obviously $\operatorname{Det}\left(A_{l}\right)=n^{e-1} \lambda_{l}$, and so D_{i} divides $n^{e-1} \lambda_{l}$ for all $l \in\{1, \ldots, e\}$. It follows that D_{i} divides $n^{e-1} \lambda$, and so $\frac{n^{e-1} \lambda}{D_{i}}=\frac{\lambda}{d_{i}} \in \mathbb{Z}^{e}$. Moreover, since $\lambda \in C$, and $\frac{1}{d_{i}} \geq 0$, then $\frac{\lambda}{d_{i}} \in C$. It follows that $\underline{x}^{\frac{\lambda}{n}}=\underline{x}^{\frac{\lambda^{\prime}}{d_{i}}}$ where $\lambda^{\prime}=\frac{\lambda}{d_{i}}$, and so $\underline{x}^{\frac{\lambda}{n}} \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n_{i}}}\right]\right]$.
Let $\theta\left(y_{<m_{i}}\right)$ be a conjugate of $y_{<m_{i}}$, then obviously $L M\left(\theta\left(y_{<m_{i}}\right)-y_{<m_{i}}\right)=\underline{x}^{\frac{m_{j}}{n}}$ for some $j \in\{1, \ldots, i-1\}$. But $\frac{m_{j}}{n}=\frac{\frac{m_{j}}{d_{i}}}{\frac{n}{d_{i}}}$, hence the set of characteristic monomials of $y_{<m_{i}}$ is $\left\{\frac{m_{1}}{d_{i}}, \ldots, \frac{m_{i-1}}{d_{i}}\right\}$.

2.4.5 The initial form of the approximate roots of f

Let the notation be as above with f a free polynomial of degree n in $\mathbb{K}_{C}[[\underline{x}]][y]$ and let $y(\underline{x}) \in \mathbb{K}_{C}[[\underline{x}]]$ be a root of $f\left(\underline{x}^{n}, y\right)=0$. Let $g \in \mathbb{K}_{C}[[\underline{x}]][y]$ such that f does not divide g. From now on we will write $O(f, g)$ for the smallest element in the set $\operatorname{Supp}\left(g\left(\underline{x}^{n}, y(\underline{x})\right)\right)$ with respect to the given order on the cone. Note that if $z(\underline{x})$ is another root of f, then $z=\theta(y)$ for some $\theta \in \operatorname{Aut}\left(L_{n} \backslash L\right)$, and so $g\left(\underline{x}^{n}, z(\underline{x})\right)=g\left(\underline{x}^{n}, \theta(y(\underline{x}))\right)=$ $\theta\left(g\left(\underline{x}^{n}, y(\underline{x})\right)\right)$. But $\operatorname{Supp}\left(g\left(\underline{x}^{n}, y(\underline{x})\right)\right)=\operatorname{Supp}\left(\theta\left(g\left(\underline{x}^{n}, y(\underline{x})\right)\right)\right)$. It follows that $O(f, g)$ does not depend on the choice of the root of f. Note also that if g_{1}, g_{2} are nonzero elements of $\mathbb{K}_{C}[[\underline{x}]][y]$, which are not divisible by f, then $O\left(f, g_{1} g_{2}\right)=O\left(f, g_{1}\right)+O\left(f, g_{2}\right)$.
Now for each polynomial g such that f does not divide g, we will consider $O(f, g)$. We will prove that the set of such elements form a semigroup. Moreover, if $\operatorname{deg}_{y}(g)<\frac{n}{d_{i}}$, then $O(f, g) \in<r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{i-1}>$. For all $i \in\{1, \ldots, h\}$ we will take g_{i} to be the d_{i}-th approximate root of f, where $\left\{d_{1}, \ldots, d_{h}\right\}$ is the d-sequence of f. We will prove that $r_{i}=O\left(f, g_{i}\right)$ for all $i \in\{1, \ldots, h\}$. The following Proposition shows that $O\left(f, G_{i}\right)=r_{i}$ if G_{i} is the i-th pseudo-root of f.

Proposition 43 Let $i \in\{1, \ldots, h\}$ and let G_{i} be the i-th pseudo-root of f. We have $O\left(f, G_{i}\right)=r_{i}$.
Proof: This is an immediate consequence of Corollary 2.
Proposition 44 Let f be a free polynomial of degree n in $\mathbb{K}_{C}[[\underline{x}]][y]$, and let $\left\{G_{1}, \ldots, G_{h}\right\}$ be the set of pseudo roots of f. Let $i \in\{1, \ldots, h\}$, then we have $O\left(G_{i}, G_{j}\right)=\frac{r_{j}}{d_{i}}$ for all $j \in\{1, \ldots, i-1\}$.

Proof: Let $y \in \mathbb{K}_{C}\left[\left[\underline{x}^{\frac{1}{n}}\right]\right]$ be a root of f, and let $\left\{m_{1}, \ldots, m_{h}\right\}$ be its set of characteristic exponents, and let $\left\{d_{1}, \ldots, d_{h}\right\}$ be its d-sequence. For all $j=1, \ldots, i-1$ the $\frac{m_{j}}{d_{i}}$ truncation of $y_{<m_{i}}$ is obviously $y_{<m_{j}}$. By Proposition 42 we have that $\frac{m_{1}}{d_{i}}, \ldots, \frac{m_{i-1}}{d_{i}}$ are the characteristic exponents of G_{i}. It follows directly that the pseudo-roots of G_{i} are $\left\{G_{1}, \ldots, G_{i-1}\right\}$. Let $D_{1}^{\prime}, \ldots, D_{i}^{\prime}$ be the $G C D$-sequence of G_{i}. Then

$$
D_{j}^{\prime}=G C D\left(\frac{r_{0}^{1}}{d_{i}}, \ldots, \frac{r_{0}^{e}}{d_{i}}, \frac{m_{1}}{d_{i}}, \ldots, \frac{m_{i-1}}{d_{i}}\right)=\frac{1}{d_{i}} D_{j}
$$

for all $j \in\{1, \ldots, i\}$. Let $\left\{e_{j}^{\prime}\right\}_{1 \leq j \leq i-1}$ be the e-sequence of G_{i}. We have $d_{j}^{\prime}=\frac{D_{j}^{\prime}}{D_{i}^{\prime}}=\frac{\frac{D_{j}}{d_{i}}}{\frac{D_{i}}{d_{i}}}=\frac{D_{j}}{D_{i}}$. Hence $e_{j}^{\prime}=\frac{D_{j}^{\prime}}{D_{j+1}^{\prime}}=\frac{D_{j}}{D_{j+1}}=e_{j}$. Let $\left\{\alpha_{0}^{1}, \ldots, \alpha_{0}^{e}, r_{1}^{\prime}, \ldots, r_{i-1}^{\prime}\right\}$ be the r-sequence of G_{i} where $\left\{\alpha_{0}^{1}, \ldots, \alpha_{0}^{e}\right\}$ is the canonical basis of $\left(\frac{n}{d_{i}} \mathbb{Z}\right)^{e}$. Then $\alpha_{0}^{1}=\frac{r_{0}^{1}}{d_{i}}, \ldots, \alpha_{0}^{e}=\frac{r_{0}^{e}}{d_{i}}$ and $r_{1}^{\prime}=m_{1}^{\prime}=\frac{m_{1}}{d_{i}}=\frac{r_{1}}{d_{i}}$. Suppose that $r_{k}^{\prime}=\frac{r_{k}}{d_{i}}$ for $k=1, \ldots, j$, then

$$
r_{j+1}=e_{j}^{\prime} r_{j}^{\prime}+m_{j+1}^{\prime}-m_{j}^{\prime}=e_{j} \frac{r_{j}}{d_{i}}+\frac{m_{j+1}}{d_{i}}-\frac{m_{j}}{d_{i}}=\frac{1}{d_{i}}\left(e_{j} r_{j}+m_{j+1}-m_{j}\right)=\frac{r_{j+1}}{d_{i}} .
$$

It follows that the r-sequence of G_{i} is equal to $\left\{\frac{r_{0}^{1}}{d_{i}}, \ldots, \frac{r_{0}^{e}}{d_{i}}, \frac{r_{1}}{d_{i}}, \ldots, \frac{r_{i-1}}{d_{i}}\right\}$. Finally by Proposition 43 we get $O\left(G_{i}, G_{j}\right)=\frac{r_{j}}{d_{i}}$ for all $j \in\{1, \ldots, i-1\}$.
Recall that for all $H \in \mathbb{K}_{C}[[x]][y]$ the expansion of H with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$ is given by :

$$
H=\sum_{\underline{\theta}} c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}} f^{\theta_{h+1}}
$$

Where $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{h+1}\right)$ with $0 \leq \theta_{i}<e_{i}=\frac{d_{i}}{d_{i+1}}$ for all $i=1, \ldots, h$ and $\theta_{h+1} \in \mathbb{N}$. Moreover we have the following proposition :

Lemma 19 Let f a free polynomial in $\mathbb{K}_{C}[[\underline{x}]][y]$, and let $g \in \mathbb{K}_{C}[[\underline{x}]][y]$ be such that g is not a multiple of f. Let $g=\sum_{\underline{\theta}} c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}} f^{\theta_{h+1}}$ be the expansion of g with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$. Then there exists a unique $\underline{\theta} \in A$ such that $O(f, g)=O\left(f, c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}} f^{\theta_{h+1}}\right)$.

Proof : Note that the expansion of g with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$ is given by $g=\sum_{\underline{\theta}} c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}} f^{\theta_{h+1}}$ with $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{h+1}\right) \in A=\left\{\left(\beta_{1}, \ldots, \beta_{h+1}\right), \quad 0 \leq \beta_{j}<e_{j} \forall j=1, \ldots, h, \theta_{h+1} \in \mathbb{N}\right\}$. Let $c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}}$, $c_{\underline{\theta}^{\prime}}(\underline{x}) G_{1}^{\theta_{1}^{\prime}} \ldots G_{h}^{\theta_{h}^{\prime}}$ be two distinct elements of g, and let $\underline{\theta}_{0}=O\left(f, c_{\underline{\theta}}(\underline{x})\right)$ and $\underline{\theta}_{0}^{\prime}=O\left(f, c_{\underline{\theta}^{\prime}}(\underline{x})\right)$. Suppose that $O\left(f, c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}}\right)=O\left(f, c_{\underline{\theta}^{\prime}}(\underline{x}) G_{1}^{\theta_{1}^{\prime}} \ldots G_{h}^{\theta_{h}^{\prime}}\right)$, that is $\underline{\theta}_{0}+\sum_{i=1}^{h} \theta_{i} r_{i}=\underline{\theta}_{0}^{\prime}+\sum_{i=1}^{h} \theta_{i}^{\prime} r_{i}$ and let j be the greatest element such that $\theta_{j} \neq \theta_{j}^{\prime}$, and suppose that $\theta_{j}>\theta_{j}^{\prime}$. Then

$$
\left(\theta_{j}-\theta_{j}^{\prime}\right) r_{j}=\left(\underline{\theta}_{0}^{\prime}-\underline{\theta}_{0}\right)+\sum_{k=1}^{j-1}\left(\theta_{k}^{\prime}-\theta_{k}\right) r_{k}
$$

with $0<\theta_{j}-\theta_{j}^{\prime}<e_{j}$, which is a contradiction because e_{j} is the smallest positive integer α such that $\alpha r_{j} \in(n \mathbb{Z})^{e}+\sum_{k=1}^{j-1} r_{k} \mathbb{Z}$ (see Proposition 36). Now If $\theta_{h+1} \neq 0$ for all $\underline{\theta}$ with $c_{\underline{\theta}}(\underline{x}) \neq 0$, then $g=h . f$ for some $h \in \mathbb{K}_{C}[[\underline{x}]][y]$, and so f divides g which contradicts the hypothesis. It follows that there exists at least an element $\underline{\theta} \in A$ with $c_{\underline{\theta}}(\underline{x}) \neq 0$ which is of the form $\left(\theta_{1}, \ldots, \theta_{h}, 0\right)$, and by the above discussion we conclude that there exists a unique $c_{\gamma}(\underline{x}) G_{1}^{\gamma_{1}} \ldots G_{h}^{\gamma_{h}}$ such that

$$
O(f, g)=O\left(f, c_{\gamma}(\underline{x}) G_{1}^{\gamma_{1}} \ldots G_{h}^{\gamma_{h}}\right)=\gamma_{0}+\sum_{i=1}^{h} \gamma_{i} r_{i}=\inf \left\{O\left(f, c_{\underline{\theta}} G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}}\right), c_{\underline{\theta}} \neq 0\right\}
$$

by the additive property of O, where $\gamma_{0}=O\left(f, c_{\gamma}(\underline{x})\right)=\sum_{i=1}^{e} \lambda_{0}^{i} r_{0}^{i}$ for some $\lambda_{0}^{1}, \ldots, \lambda_{0}^{e} \in \mathbb{Z}$.
Remark 13 Note that Lemma 19 is equivalent to saying that if f is a free polynomial and f does not divide g, there exist unique $\lambda_{0}^{1}, \ldots, \lambda_{0}^{e}, \lambda_{1}, \ldots, \lambda_{h} \in \mathbb{Z}$ such that $O(f, g)=\sum_{i=1}^{e} \lambda_{0}^{i} r_{0}^{i}+\sum_{i=1}^{h} \lambda_{i} r_{i}$ with $0 \leq \lambda_{i}<e_{i}$ for all $i \in\{1, \ldots, h\}$.

Proposition 45 Let the notation be as above, and consider a non zero polynomial F in $\mathbb{K}_{C}[[\underline{x}]][y]$ such that $\operatorname{deg}_{y}(F)<\frac{n}{d_{i}}$ for some $1 \leq i \leq h$. Then $O(f, F) \in(n \mathbb{Z})^{e}+r_{1} \mathbb{N}+\ldots+r_{i-1} \mathbb{N}$.

Proof : Since $\operatorname{deg}_{y}(F)<\frac{n}{d_{i}}$, then the expansion of F with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$ is given by :

$$
F=\sum_{\underline{\theta}} c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{i-1}^{\theta_{i-1}}
$$

Where $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{i-1}\right) \in B=\left\{\left(\beta_{1}, \ldots, \beta_{i-1}\right), \quad 0 \leq \beta_{j}<e_{j}=\frac{d_{j}}{d_{j+1}} \forall j=1, \ldots, i-1\right\}$. Similar to Lemma 19, we can prove that there exists a unique $c_{\gamma}(\underline{x}) G_{1}^{\gamma_{1}} \ldots G_{i-1}^{\gamma_{i-1}}$ such that

$$
O(f, F)=O\left(f, c_{\gamma}(\underline{x}) G_{1}^{\gamma_{1}} \ldots G_{i-1}^{\gamma_{i-1}}\right)=\gamma_{0}+\sum_{i=1}^{i-1} \gamma_{i} r_{i}=\inf \left\{O\left(f, c_{\underline{\theta}} G_{1}^{\theta_{1}} \ldots G_{i-1}^{\theta_{i-1}}\right), c_{\underline{\theta}} \neq 0\right\}
$$

where $\gamma_{0}=O\left(f, c_{\gamma}(\underline{x})\right)=\sum_{i=1}^{e} \lambda_{0}^{i} r_{0}^{i}$ for some $\lambda_{0}^{1}, \ldots, \lambda_{0}^{e} \in \mathbb{Z}$. Hence we get the result
Proposition 46 Let the notation be as above with $\left\{G_{1}, \ldots, G_{h}\right\}$ the set of pseudo-roots of f. Let $g \in \mathbb{K}_{C}[[\underline{x}]][y]$ such that $\operatorname{deg}_{y}(g)<\frac{n}{d_{i}}$ for some $i \in\{1, \ldots, h\}$. Then $O(f, g)=d_{i} O\left(G_{i}, g\right)$.

Proof : Let $g=\sum_{\theta} c_{\underline{\theta}}(\underline{x}) G_{1}^{\theta_{1}} \ldots G_{h}^{\theta_{h}} f^{h+1}$ be the expansion of g with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$. Since $d e g_{y}(g)<$ $d e g_{y}\left(G_{i}\right)=\frac{n}{d_{i}}$, then the expansion of g with respect to $\left(G_{1}, \ldots, G_{h}, f\right)$ coincides with the expansion of g with respect to $\left(G_{1}, \ldots, G_{i-1}\right)$. In particular for all $\underline{\theta}$ such that $c_{\underline{\theta}}(\underline{x}) \neq 0$ we have $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{i-1}, 0, \ldots, 0\right)$. Since $d e g_{y}(g)<\frac{n}{d_{i}}$, then by Proposition 45 there exists a unique $c_{\underline{\theta}^{0}}(\underline{x}) G_{1}^{\theta_{1}^{0}} \ldots G_{i-1}^{\theta_{i-1}^{0}}$ such that :

$$
O(f, g)=O\left(f, c_{\underline{\theta}^{0}}(\underline{x}) G_{1}^{\theta_{1}^{0}} \ldots G_{i-1}^{\theta_{i-1}^{0}}\right)=O\left(f, c_{\underline{\theta}^{0}}(\underline{x})\right)+\sum_{j=1}^{i-1} \theta_{j}^{0} r_{j}
$$

Also by Proposition 45 we have

$$
O\left(G_{i}, g\right)=\inf \left\{O\left(G_{i}, c_{\underline{\theta}} G_{1}^{\theta_{1}} \ldots G_{i-1}^{\theta_{i-1}}\right), c_{\underline{\theta}} \neq 0\right\}
$$

By Proposition 44 we have $O\left(G_{i}, G_{j}\right)=\frac{r_{j}}{d_{i}}$ for all $j \in\{1, \ldots, i-1\}$, also we have $O\left(G_{i}, c_{\underline{\theta}}(\underline{x})\right)=\frac{1}{d_{i}} O\left(f, c_{\underline{\theta}}(\underline{x})\right)$, then $O\left(G_{i}, g\right)=O\left(G_{i}, c_{\underline{\theta}^{0}}(\underline{x})\right)+\sum_{j=1}^{i-1} \theta_{j} \frac{r_{j}}{d_{i}}=\frac{1}{d_{i}}\left(O\left(f, c_{\underline{\theta}}(\underline{x})\right)+\sum_{j=1}^{i-1} \theta_{j} r_{j}\right)=\frac{1}{d_{i}} O(f, g)$.
Let f be a polynomial of degree n in $\mathbb{K}_{C}[[x]][y]$, and let $d_{1}>\ldots>d_{h+1}$ be the set of divisors of n. For all $i \in\{1, \ldots, h\}$ set $e_{i}=\frac{d_{i}}{d_{i+1}}$. Let $i \in\{1, \ldots, h\}$ and consider a monic polynomial G_{i} of degree $\frac{n}{d_{i}}$. Let

$$
f=G_{h}^{d_{h}}(\underline{x}, y)+C_{1}(\underline{x}, y) G_{h}^{d_{h}-1}(\underline{x}, y)+\ldots+C_{d_{h}}(\underline{x}, y) .
$$

be the G_{i}-adic expansion of f. Recall that, with the notation and results of Section 2.3, the Tshirnhausen transform of G_{i} with respect to f, denoted by $\tau_{f}\left(G_{i}\right)$ is the polynomial

$$
\tau_{f}\left(G_{i}\right)=G_{i}+\frac{1}{d_{i}} C_{1}
$$

Obviously $\operatorname{deg}_{y}\left(\tau_{f}\left(G_{i}\right)\right)=\frac{n}{d_{i}}$. Hence we can define for all $j \geq 2$, the $j-t h$ Tshirnhausen transform of G_{i} with respect to f, denoted by $\tau_{f}^{j}\left(G_{i}\right)=\tau_{f}\left(\tau_{f}^{j-1}\left(G_{i}\right)\right)$.
Also recall that for all $i \in\{1, \ldots, h\}$, there exists a unique polynomial g_{i} of degree $\frac{n}{d_{i}}$ such that $\operatorname{deg}\left(f-g_{i}^{d_{i}}\right)<$ $n-\frac{n}{d_{i}}$, this polynomial is called the d_{i}-th approximate root of f, and denoted by $A p p_{d_{i}}(f)$. Moreover, recall that, by Proposition $6 A p p_{d_{i}}(f)$ exists and it is unique for all $i \in\{1, \ldots, h\}$.

Proposition 47 Let f be a free polynomial of degree n in $\mathbb{K}_{C}[[x]][y]$, and let $\left\{d_{i}\right\}_{1 \leq i \leq h}$ and $\left\{r_{i}\right\}_{1 \leq i \leq h}$ be its d-sequence and r-sequence respectively. Let $\left\{g_{1}, \ldots, g_{h}\right\}$ be the set of approximate roots of f. Then for all $i \in\{1, \ldots, h\}$ we have $O\left(f, g_{i}\right)=r_{i}$.

Proof : Let $\left\{G_{1}, \ldots, G_{h}\right\}$ be the set of pseudo-roots of f. Let $i=h$ and consider the G_{h}-adic expansion of f :

$$
f=G_{h}^{d_{h}}(\underline{x}, y)+C_{1}(\underline{x}, y) G_{h}^{d_{h}-1}(\underline{x}, y)+\ldots+C_{d_{h}}(\underline{x}, y) .
$$

where $C_{k}(\underline{x}, y) \in \mathbb{K}_{C}[[\underline{x}]][y]$ with $\operatorname{deg}_{y}\left(C_{k}(\underline{x}, y)\right)<\frac{n}{d_{h}}$ for all $k=1, \ldots, d_{h}$. Consider the Tschirnhausen transform of G_{h} with respect to f

$$
\tau_{f} G_{h}(\underline{x}, y)=G_{h}(\underline{x}, y)+d_{h}^{-1} C_{1}(\underline{x}, y) .
$$

We have $O\left(f, G_{h}\right)=r_{h}$. We want to prove that $O\left(f, C_{1}\right)>r_{h}$. Taking $C_{0}=1$ we get that $f(\underline{x}, y)=$ $\sum_{k=0}^{d_{h}} C_{k}(\underline{x}, y) \cdot G_{h}(\underline{x}, y)^{d_{h}-k}$.
For all $\alpha \neq k \in\left\{0, \ldots, d_{h}-1\right\}$ we have $O\left(f, C_{\alpha} G_{h}^{d_{h}-\alpha}\right) \neq O\left(f, C_{k} G_{h}^{d_{h}-k}\right)$. In fact, suppose that $O\left(f, C_{\alpha} G_{h}^{d_{h}-\alpha}\right)=$ $O\left(f, C_{k} G_{h}^{d_{h}-k}\right)$, that is $O\left(f, C_{\alpha}\right)+\left(d_{h}-\alpha\right) r_{h}=O\left(f, C_{k}\right)+\left(d_{h}-k\right) r_{h}$. Suppose that $\alpha>k$, then $(\alpha-k) r_{h}=$ $O\left(f, C_{\alpha}\right)-O\left(f, C_{k}\right)$. But $\operatorname{deg}_{y}\left(C_{\alpha}\right), \operatorname{deg}_{y}\left(C_{k}\right)<\frac{n}{d_{h}}$, then by proposition 45 we get $O\left(f, C_{\alpha}\right), O\left(f, C_{k}\right) \in$ $(n \mathbb{Z})^{e}+r_{1} \mathbb{Z}+\ldots+r_{h-1} \mathbb{Z}$, and so $(\alpha-k) r_{h} \in(n \mathbb{Z})^{e}+r_{1} \mathbb{Z}+\ldots+r_{h-1} \mathbb{Z}$, with $0<\alpha-k<d_{h}$. But by Remark 12 we have $d_{h+1}=1$, and so $e_{h}=\frac{d_{h}}{d_{h+1}}=d_{h}$, hence $0<\alpha-k<e_{h}$. Which is a contradiction since $j r_{h} \notin(n \mathbb{Z})^{e}+r_{1} \mathbb{Z}+\ldots+r_{h-1} \mathbb{Z}$ for all $0<j<e_{h}$ (see Proposition 36).
Similarly, for all $k \in\left\{1, \ldots, d_{h}-1\right\}$ we have $0 \leq d_{h}-k<d_{h}=e_{h}$ and $O\left(f, C_{k}\right) \in(n \mathbb{Z})^{e}+r_{1} \mathbb{Z}+\ldots+r_{h-1} \mathbb{Z}$. Hence $O\left(f, C_{k} G_{h}^{d_{h}-k}\right)=O\left(f, C_{k}\right)+\left(d_{h}-k\right) r_{h} \neq O\left(f, C_{d_{h}}\right)$, otherwise we will get that $\left(d_{h}-k\right) r_{h}=$ $O\left(f, C_{d_{h}}\right)-O\left(f, C_{k}\right) \in(n \mathbb{Z})^{e}+r_{1} \mathbb{Z}+\ldots+r_{h-1} \mathbb{Z}$, which is a contradiction again by Proposition 36. For all $k \in\left\{0, \ldots, d_{h}\right\}$ Let $M_{k}=L M\left(C_{k} G_{h}^{d_{h}-k}\left(\underline{x}^{n}, y(\underline{x})\right)\right)$ and suppose that for some $l \in\left\{1, \ldots, d_{h}-1\right\}$ we have $0 \neq M_{l}<M_{d_{h}}$. Moreover suppose that M_{l} is the smallest element in the set $M_{1}, \ldots, M_{d_{h}-1}$. Since $M_{l} \neq M_{k}$ for all $k \in\left\{0, \ldots, d_{h}\right\}$ with $k \neq l$, it follows that $M_{l}=\operatorname{LM}\left(f\left(\underline{x}^{n}, y(\underline{x})\right)\right)$, but $f\left(\underline{x}^{n}, y(\underline{x})\right)=0$, which is a contradiction. Hence $M_{1}<M_{k}$ for all $k \in\left\{1, \ldots, d_{h}-1\right\}$, but $f\left(\underline{x}^{n}, y(\underline{x})\right)=0$, and so $M_{1}=M_{d_{h}}$. It follows that

$$
O\left(f, G_{h}^{d_{h}}\right)=O\left(f, C_{d_{h}}\right) \text { and } O\left(f, G_{h}^{d_{h}}\right)<O\left(f, C_{k} G_{h}^{d_{h}-k}\right) \forall k \in\left\{1, \ldots, d_{h}-1\right\}
$$

In particular $O\left(f, G_{h}^{d_{h}}\right)=d_{h} r_{h}<O\left(f, C_{1} G_{h}^{d_{h}-1}\right)=O\left(f, C_{1}\right)+\left(d_{h}-1\right) r_{h}$, and so $O\left(f, C_{1}\right)>r_{h}$. It follows that

$$
O\left(f, \tau_{f} G_{h}\right)=O\left(f, G_{h}+\frac{1}{d_{h}} C_{1}\right)=O\left(f, G_{h}\right)=r_{h} .
$$

Applying the same process as above to f and $\tau_{f}\left(G_{h}\right)$ instead of f and G_{h} we get that $O\left(f, \tau_{f}^{2} G_{h}\right)=r_{h}$. Repeating this process consecutively, we get that $O\left(f, \tau_{f}^{\lambda} G_{h}\right)=r_{h}$ for all $\lambda \geq 1$. But $g_{h}=\operatorname{App}_{d_{h}}(f)=$ $\tau_{f}^{d_{h}}\left(G_{h}\right)$. Hence we get that $O\left(f, g_{h}\right)=r_{h}$.
Now suppose that $O\left(f, g_{i+1}\right)=r_{i+1}, \ldots, O\left(f, g_{h}\right)=r_{h}$, and let us prove that $O\left(f, g_{i}\right)=r_{i}$. By Proposition 7 we have that $g_{i}=\operatorname{App}_{e_{i}}\left(g_{i+1}\right)$. Since $\operatorname{deg}_{y}\left(G_{i}\right)=\frac{n}{d_{i}}=\frac{\operatorname{deg}_{y}\left(g_{i+1}\right)}{e_{i}}$, then $g_{i}=\operatorname{App}_{e_{i}}\left(g_{i+1}\right)=\tau_{g_{i+1}}^{e_{i}}\left(G_{i}\right)$. Let

$$
\begin{equation*}
g_{i+1}=G_{i}^{e_{i}}(\underline{x}, y)+\beta_{1}(\underline{x}, y) G_{i}^{e_{i}-1}(\underline{x}, y)+\ldots+\beta_{e_{i}}(\underline{x}, y) \tag{2.4}
\end{equation*}
$$

be the G_{i}-adic expansion of g_{i+1}. We are given that $O\left(f, G_{i}\right)=r_{i}$ since G_{i} is a pseudo-root. Then by a similar discussion as above, and since we have by our hypothesis that $O\left(f, g_{i+1}\right)=r_{i+1}$ and $r_{i+1} \notin<$ $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{i}>$. We get that $O\left(f, G_{i}^{e_{i}}\right)=O\left(f, \beta_{e_{i}}\right)=e_{i} r_{i}$ and $O\left(f, \beta_{1} G_{i}^{e_{i}-1}\right)>O\left(f, G_{i}^{e_{i}}\right)=e_{i} r_{i}$. Hence $O\left(f, \beta_{1}\right)+\left(e_{i}-1\right) r_{i}>e_{i} r_{i}$, and so $O\left(f, \beta_{1}\right)>r_{i}$. It follows that

$$
O\left(f, \tau_{g_{i+1}}\left(G_{i}\right)\right)=O\left(f, G_{i}+\frac{1}{e_{i}} \beta_{1}\right)=r_{i}
$$

Applying the same process to f and $\tau_{g_{i+1}}\left(G_{i}\right)$ instead of f and G_{i}. We get that $O\left(f, \tau_{g_{i+1}}^{2}\left(G_{i}\right)\right)=r_{i}$. Repeating the same process we get that $O\left(f, g_{i}\right)=O\left(f, \tau_{g_{i+1}}^{e_{i}}\left(G_{i}\right)\right)=r_{i}$. It follows that $O\left(f, g_{i}\right)=r_{i}$ for all $i \in\{1, \ldots, h\}$. This completes the proof.

Definition 38 Let $f \in \mathbb{K}_{C}[[x]][y]$ be a free polynomial. The semigroup of f is defined to be the set :

$$
\Gamma(f)=\left\{O(f, g), g \in \mathbb{K}_{C}[[\underline{x}]][y], f \text { does not divide } g\right\} .
$$

The fact that this set is a semigroup follows from the additive property of the order O.
Proposition 48 Let $f \in \mathbb{K}_{C}[[x]][y]$ be a free polynomial, and let $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{e}$ be the \underline{r}-sequence associated to f. Then $\Gamma(f)$ is generated by the elements $r_{0}^{1}, \ldots, r_{0}^{e}, r_{1}, \ldots, r_{e}$.

Proof : Let $g \in \mathbb{K}_{C}\left[[\underline{[x]}][y]\right.$ be a polynomial which is not a multiple of f, and let $g=\sum_{\theta} c_{\underline{\theta}}(\underline{x}) g_{1}^{\theta_{1}} \ldots g_{h}^{\theta_{h}} f^{\theta_{h+1}}$ be the expansion of g with respect to $\left(g_{1}, \ldots, g_{h}, f\right)$, where $\left\{g_{1}, \ldots, g_{h}\right\}$ is the set of approximate roots of f. Then similar to Proposition 45, we can prove that there exists a unique $\lambda_{0}^{1}, \ldots, \lambda_{0}^{e}, \lambda_{1}, \ldots, \lambda_{h}$ such that $O(f, g)=\sum_{i=1}^{e} \lambda_{0}^{i} r_{0}^{i}+\sum_{i=1}^{h} \lambda_{i} r_{i}$ with $0 \leq \lambda_{i}<e_{i}$ for all $i \in\{1, \ldots, h\}$.

Canonical bases of modules over one dimensional \mathbb{K}-algebras

3.1 Numerical semigroups and ideals.

3.1.1 Numerical semigroups.

Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of non-negative integers, and let $b \in \mathbb{N}$. Numerical semigroups arise in a natural way in the study of non-negative integer solutions to Diophantine equations of the form :

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

Note that x_{1}, \ldots, x_{n} is a solution of the above Diophantine equation if and only if x_{1}, \ldots, x_{n} is a solution of the Diophantine equation $\frac{a_{1}}{d} x_{1}+\cdots+\frac{a_{n}}{d} x_{n}=\frac{b}{d}$, where $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ is the greatest common divisor of a_{1}, \ldots, a_{n}. Hence the problem of finding solutions to Diophantine equations is reduced to the case where $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.
Definition 39 Let S be a subset of \mathbb{N}. The set S is a submonoid of \mathbb{N} if the following holds :
(i) $0 \in S$.
(ii) If $a, b \in S$, then $a+b \in S$.

Clearly, $\{0\}$ and \mathbb{N} are submonoids of \mathbb{N}. Also, if a is an element of S, then $\lambda a \in S$ for all $\lambda \in \mathbb{N}$. Hence if $S \neq\{0\}$, then S is an infinite set.
Definition 40 Let S be a submonoid of \mathbb{N}, and let $G=\left\{\sum_{i=1}^{s} \lambda_{i} a_{i}, \lambda_{i} \in \mathbb{Z}, a_{i} \in S\right\}$ be the subgroup of \mathbb{Z} generated by S. If $1 \in G$, then we say that S is a numerical semigroup.

Proposition 49 Let S be a submonoid of \mathbb{N}. Then S is a numerical semigroup if and only if $\mathbb{N} \backslash S$ is a finite set.

Proof : Let S be a numerical semigroup, and let $G=\left\{\sum_{i=1}^{s} \lambda_{i} a_{i}, \lambda_{i} \in \mathbb{Z}, a_{i} \in S\right\}$ be the subgroup generated by S in \mathbb{Z}. In order to prove that $\mathbb{N} \backslash S$ is a finite set, its enough to find some integer m such that for all $n \geq m$, $n \in S$. Since S is a numerical semigroup then there exist some integeres $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{Z}^{*}$ and $a_{1}, \ldots, a_{k} \in S$ such that $1=\sum_{i=1}^{k} \lambda_{i} a_{i}$. Without loss of generality, suppose that $\lambda_{1}, \ldots, \lambda_{h}<0$ and $\lambda_{h+1}, \ldots, \lambda_{k}>0$, and let $s=\sum_{i=1}^{h}\left(-\lambda_{i} a_{i}\right)$. Obviously $s \in S$, and $s+1=\sum_{i=h+1}^{k} \lambda_{i} a_{i} \in S$. Now take $m=(s-1)(s+1)$, and let n be any integer such that $n \geq m$, and write $n=q s+r$ with $r<s$. Since $r \leq s-1$ and $n=q s+r \geq m=(s-1) s+(s-1)$, then $q \geq s-1$, and so $q \geq r$. But $n=q s+r=q s-r s+r s+r=(q-r) s+r(s+1)$. Hence $n \in S$ for all $n \geq m$, and so $\mathbb{N} \backslash S$ is a finite set.
Conversely, suppose that $\mathbb{N} \backslash S$ is a finite set, then there exists some $s \in S$ such that $s+1 \in S$. Hence $1=s+1-s \in G$.

Definition 41 Let S be a numerical semigroup. The set of gaps of S is defined to be the set $\mathbb{N} \backslash S$, denoted by $G(S)$. Moreover the cardinality of $G(S)$ is called the genus of S, and denoted by $g(s)$.

We set $F(S)=\operatorname{Max}(G(S))$, and we call it the Frobenius number of S. We define $C(S)=F(S)+1$. Note that $C(S)$ is the smallest integer in S, such that for all $n \geq C(S)$, we have $n \in S$. Finally we define $m(S)=\inf (S \backslash\{0\})$ to be the least positive integer in S which is called the multiplicity of S.
Even though any numerical semigroup S has infinitely many elements, there exists a finite number of elements in S, such that any other element in S can be written as a linear combination with non-negative integer coefficients in terms of theses elements.

Definition 42 Let S be a numerical semigroup. A subset \boldsymbol{A} of S is said to be a system of generators of S, written as $S=\langle\boldsymbol{A}\rangle$, if for all $s \in S$ there exists $\lambda_{1}, \ldots, \lambda_{h} \in \mathbb{N}$ and $a_{1}, \ldots, a_{h} \in \boldsymbol{A}$ such that $s=\sum_{i=1}^{h} \lambda_{i} a_{i}$.

Moreover, S is said to be finitely generated if there exists a finite subset $\mathbf{A}=\left\{a_{1}, \ldots, a_{h}\right\}$ of S, such that $S=\langle\mathbf{A}\rangle=\left\langle a_{1}, \ldots, a_{h}\right\rangle$.

Proposition 50 Let S be a numerical semigroup. Then S is finitely generated.
Proof : Let A be any system of generators of S, and note that such a system of generators always exist since S is a system of generators of itself. Let m be the multiplicity of S, then obviously $m \in \mathbf{A}$ since its the least non zero element in S. Let a be an element of \mathbf{A}, and let b be any element of \mathbf{A} which is congruent to a modulo m with $b>a$, then $b=k m+a$ for some $k \in \mathbb{N}^{*}$, and so we can find a new system of generators of S by excluding all such elements b from A. At the end of this process we will have at most one element in each congruence class modulo m. Hence we obtain a finite system of generators of S.
Let $\left\{a_{1}, \ldots, a_{h}\right\}$ be a system of generators of a numerical semigroup S. We say that $\left\{a_{1}, \ldots, a_{h}\right\}$ is a minimal system of generators of S if $a_{i} \notin\left\langle a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{h}\right\rangle$ for all $i=1, \ldots, h$.

Definition 43 Let S be a numerical semigroup, and let $n \in S^{*}$. The Apéry set of S with respect to n, denoted by $A p(S, n)$, is defined to be the set:

$$
A p(S, n)=\{s \in S, s-n \notin S\} .
$$

Proposition 51 Let S be a numerical semigroup and let $n \in S^{*}$. For all $i=1, \ldots, n$ let $\omega(i)$ be the smallest element of S such that $\omega(i) \equiv i \bmod n$. Then :

$$
A p(S, n)=\{0, \omega(1), \ldots, \omega(n-1)\} .
$$

Proof: Let $i \in\{1, \ldots, n\}$. By definition $\omega(i) \in S$ and $\omega(i)=\lambda n+i$ for some $\lambda \in \mathbb{N}$, then $\omega(i)-n=(\lambda-1) n+i$, and so $\omega(i)-n \equiv i \bmod n$, but $\omega(i)-n<\omega(i)$, then $\omega(i)-n \notin S$. Hence $\omega(i) \in A p(S, n)$ for all $i=1, \ldots, n$. Since $\omega(i)+(\lambda-1) n \in S$ for all $\lambda>0$, then $\omega(i)+\lambda n \notin A p(S, n)$ for all $\lambda>0$. Now let $\alpha \in A p(S, n)$, then $\alpha \in S$, and $\alpha=\omega(i)+\lambda n$ for some $\lambda \geq 0$ and $i \in\{0, \ldots, n-1\}$, hence $\lambda=0$, and so $\alpha=\omega(i)$. Finally we get the equality.
Moreover for all $n \in S^{*}, S$ is generated by the set $A=\langle n, \omega(1), \ldots, \omega(n-1)\rangle$.

Proposition 52 Let S be a numerical semigroup and let $n \in S^{*}$. Then $F(S)=\max (A p(S, n))-n$.
Proof : Since $\max (\operatorname{Ap}(S, n))$ is an element in $\operatorname{Ap}(S, n)$, then $\max (\operatorname{Ap}(S, n))-n \notin S$. Now let $x \in \mathbb{N}$ with $x>\max (\operatorname{Ap}(S, n))-n$ then $x+n>\max (\operatorname{Ap}(S, n))$. Let us prove that $x \in S$. Write $x+n=k n+i$ with $k \in \mathbb{N}$ and $i \in\{0, \ldots, n-1\}$, and let $\omega(i) \in A p(S, n)$ be the smallest element of S which is congruent to i modulo n, then $\omega(i)=\lambda n+i$ for some $\lambda \in \mathbb{N}$, and so $x+n=k n+i=(k-\lambda) n+\lambda n+i=(k-\lambda) n+\omega(i)$, but $x+n>\omega(i)$, then $k-\lambda>0$. Hence $x=(k-\lambda-1) n+\omega(i)$ with $(k-\lambda-1) \in \mathbb{N}$, and so $x \in S$. Consider the set $\{x \in \mathbb{N}, x \leq F(S)\}$. The cardinality of this set is obviously equal to $F(S)+1$. Let $n(S)$ be the cardinality of the set $\{s \in S, s \leq F(S)\}$. We deduce the following Lemma :

Lemma 20 Let S be a numerical semigroup, then $n(S) \leq g(S)$. Moreover we have $g(S) \geq \frac{F(S)+1}{2}$.

Proof: Let $s \in S$, then $F(S)-s \notin S$. Indeed, suppose that $F(s)-s \in S$, then we get $(F(S)-s)+s=F(S) \in S$ which is a contradiction. We conclude that $n(S)$ is smaller than or equal to $g(S)$. But $n(S)+g(S)=F(S)+1$, hence $g(S) \geq \frac{F(S)+1}{2}$.

Definition 44 Let the notation be as above. Then a numerical semigroup S is said to be symmetric if $g(S)=\frac{F(S)+1}{2}$.

We will be interested in a special class of numerical semigroups, namely free numerical semigroups. The definition is as follows.

Definition 45 Let $S=\left\langle r_{0}, r_{1}, \ldots, r_{h}\right\rangle$ be a numerical semigroup, and let $d_{i+1}=\operatorname{gcd}\left(r_{0}, r_{1}, \ldots, r_{i}\right)$ for all $i \in\{0, \ldots, h\}$ (in particular $d_{1}=r_{0}$ and $d_{h+1}=1$), and let $e_{i}=\frac{d_{i}}{d_{i+1}}$ for all $i \in\{1, \ldots, h\}$. We say that S is free for the arrangement $\left(r_{0}, \ldots, r_{h}\right)$ if the following conditions hold :
(i) $d_{1}>d_{2}>\cdots>d_{h+1}=1$.
(ii) $e_{i} r_{i} \in\left\langle r_{0}, \ldots, r_{i-1}\right\rangle$ for all $i \in\{1, \ldots, h\}$.

Note that the notion of freeness depends on the arrangement of the generators. For example, $S=\langle 4,6,13\rangle$ is free for the arrangement $(4,6,13)$ but it is not free for the arrangement $(13,4,6)$.

If S is a numerical semigroup generated by a_{0}, \ldots, a_{n}, then an element $s \in S$ may be expressed in different ways as a linear combination with integer coefficients in terms of a_{0}, \ldots, a_{n}. While if S is free with respect to the arrangement $\left(a_{0}, \ldots, a_{n}\right)$, then each element in S has a unique representation in terms of this system in case we impose some bounds on the coefficients. This representation is called the standard representation. The following Lemmas are special cases of the Lemmas proved in the section about Affine Semigroups.

Lemma 21 Let S be a free numerical semigroup with respect to the arrangement $\left(a_{0}, \ldots, a_{h}\right)$. Then for all $x \in \mathbb{Z}, x$ can be written in a unique way as :

$$
x=\lambda_{0} a_{0}+\cdots+\lambda_{h} a_{h}
$$

where $0 \leq \lambda_{k}<e_{k}$ for all $k=1, \ldots, h$ and $\lambda_{0} \in \mathbb{Z}$.
Lemma 22 Let S be a free numerical semigroup for the arrangement $\left(a_{0}, \ldots, a_{h}\right)$. Let $x \in \mathbb{N}$ and let $\sum_{k=0}^{h} \lambda_{k} a_{k}$ be its standard representation. Then $x \in S$ if and only if $\lambda_{0} \geq 0$.

Proposition 53 Suppose that S is a free numerical semigroup with respect to the arrangement $\left(a_{0}, \ldots, a_{h}\right)$. Then we have :
(i) $F(S)=\sum_{k=1}^{h}\left(e_{k}-1\right) a_{k}-a_{0}$
(ii) S is symmetric, that is $g(S)=\frac{F(S)+1}{2}$.

Proof: (i) Let $r=\sum_{k=1}^{h}\left(e_{k}-1\right) a_{k}-a_{0}$. Obviously $r \notin S$. Let $s>r$ and write $s=\lambda_{0} a_{0}+\lambda_{1} a_{1}+\cdots+\lambda_{h} a_{h}$ with $0 \leq \lambda_{i}<e_{i}$ for all $i=1, \ldots, h$ and $\lambda_{0} \in \mathbb{Z}$. Since $s>r$, then $\left(\lambda_{0}+1\right) a_{0}>\sum_{k=1}^{h}\left(e_{k}-1-\lambda_{k}\right) a_{k}$, but $\lambda_{k} \leq e_{k}-1$ for all $k=1, \ldots, h$, then $\left(\lambda_{0}+1\right) a_{0}>0$, and so $\lambda_{0}+1>0$ and $\lambda_{0} \geq 0$. Hence $s \in S$, thus the frobenius number $F(S)$ of S is equal to $\sum_{k=1}^{h}\left(e_{k}-1\right) a_{k}-a_{0}$.
(ii) Let $a, b \in \mathbb{N}$ such that $a+b=F(S)$, and let us prove that if $a \notin S$ then $b \in S$. Write $a=\alpha_{0} a_{0}+\alpha_{1} a_{1}+$ $\cdots+\alpha_{h} a_{h}$ and $b=\beta_{0} a_{0}+\beta_{1} a_{1}+\cdots+\beta_{h} a_{h}$ with $\alpha_{0}, \beta_{0} \in \mathbb{Z}^{e}$ and $0 \leq \alpha_{i}, \beta_{i}<e_{i}$ for all $i=1, \ldots, h$. We have $\left(\alpha_{0}+\beta_{0}\right) a_{0}+\sum_{i=1}^{h}\left(\alpha_{i}+\beta_{i}\right) a_{i}=-a_{0}+\sum_{i=1}^{h}\left(e_{i}-1\right) a_{i}$. suppose that $\alpha_{h}+\beta_{h} \geq e_{h}$, then $e_{h} \leq \alpha_{h}+\beta_{h} \leq 2 e_{h}-2$, and so $\alpha_{h}+\beta_{h}=e_{h}+\gamma_{h}$ for some $0 \leq \gamma_{h} \leq e_{h}-2$. Hence $a+b=\gamma_{0} a_{0}+\sum_{i=1}^{h} \gamma_{i} a_{i}$ with $\gamma_{0} \in \mathbb{Z}, 0 \leq \gamma_{i}<e_{i}$ for all $i=1, \ldots, h-1$ and $0 \leq \gamma_{h} \leq e_{h}-2$, which is a contradiction since $a+b=-a_{0}+\sum_{i=1}^{h}\left(e_{i}-1\right) a_{i}$ and this representation is unique. Hence $\alpha_{h}+\beta_{h}=e_{h}-1$. Similarly, we can prove that $\alpha_{i}+\beta_{i}=e_{i}-1$ for all $i=1, \ldots, h$ and $\alpha_{0}+\beta_{0}=-1$. If $a \notin S$ then $\alpha_{0}<0$ but $\alpha_{0}+\beta_{0}=-1$, then $\beta_{0} \geq 0$, and so $b \in S$.
Now let $n(S)$ be the cardinality of the set $\{s \in S, s \leq F(S)\}$. By our discussion, we have proved that $g(S) \leq n(S)$, but $n(S) \leq g(S)$ by Lemma 20. It follows that $n(S)=g(S)$, but $n(S)+g(S)=F(S)+1$. Hence $g(S)=\frac{F(S)+1}{2}$.

3.1.2 Ideals of numerical semigroups

Definition 46 Let S be a numerical semigroup, and let I be a subset of \mathbb{Z}. The set I is said to be a relative ideal of S if for all $a \in I$ and $s \in S$ we have $a+s \in I$ (in short $I+S \subseteq I$), and there exists some $d \in \mathbb{Z}$ such that $d+I \subseteq S$. The second condition implies that I has a minimum.

Definition 47 Let I be a relative ideal of a numerical seimgroup S, and let $A \subseteq I$. The set A is said to be a system of generators of I if $I=A+S$. Moreover I is said to be finitely generated if it admits a system of generators A which is finite.

Let $a \in \mathbb{Z}$, we write $a+S$ to represent the sum $\{a\}+S$. The following proposition shows that every relative ideal is finitely generated :

Proposition 54 Let S be a numerical semigroup, and let I be a relative ideal of S, then there exists a finite set $\left\{a_{1}, \ldots, a_{l}\right\} \subseteq I$ such that $I=\cup_{i=1}^{l}\left(a_{i}+S\right)$.

Proof : Since I is a relative ideal of S, then $I+S \subseteq I$, but $I \subseteq I+S$, then $I+S=I$, and so I is a system of generators of I. Let $C(S)$ be the conductor of the semigroup S, and let m be the minimal element of I. For all $a \in I$ such that $a>m+C(S)$, we have $a=m+C(S)+n$ for some $n \geq 1$. Since $C(S)+n>C(S)$ then $C(S)+n \in S$, hence $a \in m+S$. Define the set $A=\{a \in I, a<m+C(S)\}$. Since I has a minimum then A is a finite set, say $A=\left\{a_{1}=m, a_{2}, \ldots, a_{l}\right\}$. Finally we get $I=\cup_{i=1}^{l}\left(a_{i}+S\right)$.
Let I be a relative ideal of S with a system of generators $\left\{a_{1}, \ldots, a_{l}\right\}$. If furthermore $a_{k} \notin \cup_{i \neq k}\left(a_{i}+S\right)$, then we say that a_{1}, \ldots, a_{l} is a minimal system of generators of I.

Remark 14 Obviously any relative ideal I admits a minimal system of generators. Moreover, let \leq_{S} be the order defined on S as $a \leq_{S} b$ if $b=a+s$ for some $s \in S$, then $\operatorname{Min}_{\leq_{S}}(I)$ is a minimal set of generators of I. Indeed, let $m(S)$ be the multiplicity of the semigroup S, and define for $i=0, \ldots, m(S)-1$ the integer a_{i} to be the smallest integer in I which is congruent to i, which obviously exist. Let $a+s$ be an element in I, with $a \in I$ and $s \in S$, then there exists some $0 \leq i \leq m(S)-1$ and $\lambda \in \mathbb{N}$ such that $a=\lambda m(S)+a_{i}$, then $a+s=a_{i}+(\lambda m(S)+s) \in a_{i}+S$. Hence $I=\cup_{i=0}^{m(S)-1}\left(a_{i}+S\right)$. If for some $0 \leq j \leq m(S)-1$ $a_{j} \notin \operatorname{Min}_{\leq s}\left\{a_{0}, \ldots, a_{m(S)-1}\right\}$, then $a_{j}=a_{i}+s$ for some $i \neq j$ and $s \in S$, and so $a_{j}+S \subseteq a_{i}+S$. We conclude that the set $\operatorname{Min}_{\leq s}\left\{a_{0}, \ldots, a_{m(S)-1}\right\}$ is a minimal set of generators of I.

Corollary 3 Let I and J be two relative ideals of a numerical semigroup S, then $I \cap J$ is a relative ideal.
Proof: It is required to prove that $(I \cap J)+S \subseteq I \cap J$. Let $a \in I \cap J$, and let $s \in S$. Since I, J are relative ideals of S then $a+s \in I$ and $a+s \in J$, and so $a+s \in I \cap J$. Hence $I \cap J$ is a relative ideal.
In particular, given $a, b \in \mathbb{N},(a+S) \cap(b+S)$ is a relative ideal. Assume that $\left\{a_{1}, \ldots, a_{r}\right\}$ is the set of minimal generators of $(a+S) \cap(b+S)$. We set

$$
R(a, b)=\left\{\left(a_{k}-a, a_{k}-b\right), k=1, \ldots, r\right\}
$$

Example 2 Let $S=\langle 3,4\rangle=\{0,3,4,6,7, \rightarrow\}$, and let $a=3, b=5$. We have $3+S=\{3,6,7,9,10, \rightarrow\}$ and $5+S=\{5,8,9,11,12, \rightarrow\}$. Hence $(3+S) \cap(5+S)=\{9,11,12, \rightarrow\}=(9+S) \cup(11+S)$. Note that $\{9,11\}$ is the set of minimal elements of $(3+S) \cap(5+S)$ with respect to \leq_{S} and that $R(3,5)=\{(6,4),(8,6)\}$.

Let $S=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ be a numerical semigroup, and let I be a relative ideal of S. Let $\left\{a_{1}, \ldots, a_{r}\right\}$ be a minimal system of generators of I. Let \mathbb{K} be a field and consider the algebra $A=\mathbb{K}\left[t^{\alpha_{1}}, \ldots, t^{\alpha_{n}}\right]=\mathbb{K}[S]$. Let $M=t^{a_{1}} A+\cdots+t^{a_{r}} A$ and let

$$
\phi: A^{r} \mapsto M, \quad \phi\left(f_{1}, \ldots, f_{r}\right)=t^{a_{1}} f_{1}+\cdots+t^{a_{r}} f_{r} .
$$

The kernel $\operatorname{ker}(\phi)$ is a submodule of A^{r}. The following result gives explicitly a generating system for $\operatorname{ker}(\phi)$.

Theorem 6 Let the notation be as above where I is the relative ideal generated by $\left\{a_{1}, \ldots, a_{r}\right\}$. For all $1 \leq i, j \leq r$ with $i \neq j$ write $R\left(a_{i}, a_{j}\right)=\left\{\left(\alpha_{k}^{i j}, \beta_{k}^{i j}\right), 1 \leq k \leq c_{i j}\right\}$. Then $\operatorname{ker}(\phi)$ is generated by $\left\{t^{\alpha_{k}^{i j}} e_{i}-\right.$ $\left.t^{\beta_{k}^{i j}} e_{j}, 1 \leq i \neq j \leq r, 1 \leq k \leq c_{i j}\right\}$, where $\left\{e_{1}, \ldots, e_{r}\right\}$ denotes the canonical basis of A^{r}.

Proof: Let $\left(f_{1}, \ldots, f_{r}\right) \in \operatorname{ker}(\phi)$, then $\sum_{i=1}^{r} t^{a_{i}} f_{i}=0$. Let $s_{i}=\operatorname{deg}\left(f_{i}\right)$ denotes the degree of f_{i} in t which obviously belongs to S for all $i=1, \ldots, r$, and let $s=\max \left\{\operatorname{deg}\left(t^{a_{i}} f_{i}\right), i=1, \ldots, r\right\}$, then there exists at least $i, j \in\{1, \ldots, r\}$ with $i \neq j$ and $s=a_{i}+s_{i}=a_{j}+s_{j}$. Without loss of generality suppose that $s=a_{1}+s_{1}=\cdots=a_{h}+s_{h}$ for some $2 \leq h \leq r$ and $s \neq a_{i}+s_{i}$ for all $h<i \leq r$. For all $i=1, \ldots, h$ write $f_{i}=c_{i} t^{s_{i}}+\overline{f_{i}}$ with $\operatorname{deg}\left(\bar{f}_{i}\right)<s_{i}$, then

$$
\sum_{i=1}^{h} c_{i} t^{a_{i}} t^{s_{i}}=0
$$

There exists some $\left(\alpha^{12}, \beta^{12}\right) \in R\left(a_{1}, a_{2}\right)$ and $s_{12} \in S$ such that $\left(a_{1}+s_{1}, a_{2}+s_{2}\right)=\left(a_{1}+s_{12}+\alpha^{12}, a_{2}+s_{12}+\beta^{12}\right)$, Hence :

$$
c_{1} t^{s_{1}} t^{a_{1}}+c_{2} t^{s_{2}} t^{a_{2}}=c_{1} t^{s_{12}}\left(t^{\alpha^{12}} t^{a_{1}}-t^{\beta^{12}} t^{a_{2}}\right)+\left(c_{2}+c_{1}\right) t^{s_{2}} t^{a_{2}}
$$

Now we restart with $\left(c_{2}+c_{1}\right) t^{s_{2}} t^{a_{2}}+\sum_{i=3}^{h} c_{i} t^{s_{i}} t^{a_{i}}$, which is obviously equal to 0 . We finally get that :

$$
\sum_{i=1}^{h} c_{i} t^{s_{i}} t^{a_{i}}=\sum_{i, j} \bar{c}_{i j} t^{s_{i j}}\left(t^{\alpha^{i j}} t^{a_{i}}-t^{\beta^{i j}} t^{a_{j}}\right)
$$

where for all $(i, j),\left(\alpha^{i j}, \beta^{i j}\right) \in R\left(a_{i}, a_{j}\right)$. We have :

$$
\sum_{i=1}^{r} t^{a_{i}} f_{i}=\sum_{i, j} \bar{c}_{i j} t^{s_{i j}}\left(t^{\alpha^{i j}} t^{a_{i}}-t^{\beta^{i j}} t^{a_{j}}\right)+\sum_{i=1}^{h} t^{a_{i}} \bar{f}_{i}+\sum_{i=h+1}^{r} t^{a_{i}} f_{i}
$$

with $\sum_{i=1}^{h} t^{a_{i}} \bar{f}_{i}+\sum_{i=h+1}^{r} t^{a_{i}} f_{i}=0$ and $\max _{i, \bar{f}_{i} \neq 0}\left(\operatorname{deg}\left(\bar{f}_{i}+a_{i}\right)\right)<s$ and $\operatorname{deg}\left(\sum_{i=h+1}^{r} t^{a_{i}} f_{i}\right)<s$. Then we restart with $\sum_{i=1}^{h} t^{a_{i}} \bar{f}_{i}+\sum_{i=h+1}^{r} t^{a_{i}} f_{i}$. This process will eventually stop, proving our assertion.

Example 3 Let $S=\langle 3,4\rangle$ and let $I=(3+S) \cup(5+S)$. Let $A=\mathbb{K}\left[t^{3}, t^{4}\right]$ and consider $\phi: A^{2} \mapsto$ $t^{3} \mathbb{K}\left[t^{3}, t^{4}\right]+t^{5} \mathbb{K}\left[t^{3}, t^{4}\right]$, defined by $\phi\left(f_{1}, f_{2}\right)=t^{3} f_{1}+t^{5} f_{2}$. Then ker (ϕ) is generated by $\left(t^{6},-t^{4}\right),\left(t^{8},-t^{6}\right)$.

3.2 Basis of \mathbb{K}-Algebra

Let \mathbb{K} be a field and let $f_{1}(t), \ldots, f_{s}(t)$ be s polynomials of $\mathbb{K}[t]$. Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ be a subalgebra of $\mathbb{K}[t]$, and assume, without loss of generality, that f_{i} is monic for all $i=1, \ldots, s$. Given $f(t)=\sum_{i=0}^{p} c_{i} t^{i} \in A$, with $c_{p} \neq 0$, we set $d(f)=p$ and $M(f)=c_{p} t^{p}$, the degree and leading monomial, respectively.
Let f be a polynomial in $\mathbb{K}[t]$, we define the support of f to be the set $\operatorname{supp}(f)=\left\{i, c_{i} \neq 0\right\}$. The set $d(A)=\{d(f), f \in A\}$ is a submonoid of \mathbb{N}. We shall assume that $l(\mathbb{K}[t] / A)<\infty$. In this case $d(A)$ is a numerical semigroup.

Definition 48 Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ be a subalgebra of $\mathbb{K}[t]$. $\left\{f_{1}, \ldots, f_{s}\right\}$ is said to be a basis of A if $\left\{d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\}$ generates the numerical semigroup $d(A)$.

Let $\mathbb{K}[M(f), f \in A]$ be the polynomial ring generated by the leading monomials of the polynomials in A, then clearly $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A if and only if $\mathbb{K}[M(f), f \in A]=\mathbb{K}\left[M\left(f_{1}\right), \ldots, M\left(f_{s}\right)\right]$.

Proposition 55 Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ be a subalgebra of $\mathbb{K}[t]$. Consider $f(t) \in \mathbb{K}[t]$, then there exist $g(t) \in A$ and $r(t) \in \mathbb{K}[t]$ such that the following conditions hold :
(i) $f(t)=g(t)+r(t)=\sum_{\underline{\alpha}} c_{\alpha} f_{1}^{\alpha_{1}} \cdots f_{s}^{\alpha_{s}}+r(t)$, with $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}^{s}$.
(ii) If $g(t) \neq 0$ (respectively $(r(t)) \neq 0)$, then $d(g) \leq d(f)($ respectively $d(r) \leq d(f)$)
(iii) If $r(t) \neq 0$, then $\operatorname{supp}(r(t)) \subseteq \mathbb{N} \backslash\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$.

Proof: If $f \in \mathbb{K}$, then the assertion is clear. Suppose that $f \notin \mathbb{K}$, and let $f(t)=\sum_{i=0}^{p} c_{i} t^{i}$ with $p=d(f)>0$. If $p \notin\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, then we set $g^{1}=0, r_{1}=c_{p} t^{p}$ and $f^{1}=f-c_{p} t^{p}$. Otherwise if $p \in\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, then there exists $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{N}^{s}$ such that $p=\theta_{1} d\left(f_{1}\right)+\cdots+\theta_{s} d\left(f_{s}\right)$, and so $c_{p} t^{p}=c_{\theta} M\left(f_{1}\right)^{\theta_{1}} \cdots M\left(f_{s}\right)^{\theta_{s}}$ with $c_{\underline{\theta}} \in \mathbb{K}$ (Note that this expression is not unique). In this case we set $g^{1}=c_{\underline{\theta}} f_{1}^{\theta_{1}} \cdots f_{s}^{\theta_{s}}, r^{1}=0$ and $f^{1}=\bar{f}-g^{1}$.
Finally we get $f=f^{1}+g^{1}+r^{1}$, with $g^{1} \in A$ and the following conditions hold :
(1) If $r^{1} \neq 0$, then $\operatorname{supp}\left(r^{1}\right) \subseteq \mathbb{N} \backslash\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$.
(2) If $f^{1} \notin \mathbb{K}$, then $d\left(f^{1}\right)<d(f)$.

Then we restart with f^{1} and apply the same process. In each step we will obtain $f^{i+1}=f^{i}+g^{i}+r^{i}$, with $g^{i} \in A$ and f^{1}, r^{1} satisfying the above two conditions. Since $d\left(f^{i+1}\right)<d\left(f^{i}\right)$, then clearly there exists some $k \geq 1$ such that $d\left(f^{k}\right)=0$, and so $f^{k} \in \mathbb{K}$. We set $g=g^{1}+\cdots g^{k}+f^{k}$ and $r=r^{1}+\cdots+r^{k}$, which proves our assertion
The polynomial $r(t)$ obtained in the above proposition is called the remainder of f with respect to $\left\{f_{1}, \ldots, f_{s}\right\}$, and it is not unique. We denote this polynomial by $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$.

Proposition 56 Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ be a subalgebra of $\mathbb{K}[t]$, then $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A if and only if $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $f \in A$.
Proof: Suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A. Let $f \in A$, then $f(t)=g(t)+r(t)$ where $g(t)$ and $r(t)=$ $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$ are as in Proposition 55, and so $r(t) \in A$. If $r \neq 0$ then $d(r) \in\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, because f_{1}, \ldots, f_{s} is a basis of A. This is a contradiction.
Conversely, suppose that $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $f \in A$. Take $f \neq 0$, if $d(f) \notin\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, then by Proposition 55 we have $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right) \neq 0$, which is a contradiction.

Proposition 57 Let the notation be as above and let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a basis of A. Let $f \in \mathbb{K}[t]$, then $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)$ is unique.

Proof : Let $f \in \mathbb{K}[t]$, and suppose that $f=g_{1}+r_{1}=g_{2}+r_{2}$, where g_{1}, g_{2} and r_{1}, r_{2} are as in Proposition 55. Suppose that $r_{1} \neq r_{2}$. We have $r_{2}-r_{1}=g_{1}-g_{2} \in A$, then $d\left(r_{2}-r_{1}\right) \in\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, which is a contradiction since $\operatorname{supp}\left(r_{i}\right) \subseteq \mathbb{N} \backslash\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$ for $i=1,2$.
Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$, and consider the homomorphism :

$$
\phi: \mathbb{K}\left[X_{1}, \ldots, X_{s}\right] \mapsto \mathbb{K}[t], \phi\left(X_{i}\right)=M\left(f_{i}\right), \quad \text { for all } i=1, \ldots, s
$$

Let $\left\{F_{1}, \ldots, F_{r}\right\}$ be a system of generators of the kernel of ϕ, then F_{i} is a binomial for all $i=1, \ldots, r$. To each $F_{i}=X_{1}^{\alpha_{1}^{i}} \cdots X_{s}^{\alpha_{s}^{i}}-X_{1}^{\beta_{1}^{i}} \cdots X_{s}^{\beta_{s}^{i}}$ in $\operatorname{ker}(\phi)$, we associate the polynomial $S_{i}=f_{1}^{\alpha_{1}^{i}} \cdots f_{s}^{\alpha_{s}^{i}}-f_{1}^{\beta_{1}^{i}} \cdots f_{s}^{\beta_{s}^{i}}$. The polynomials S_{1}, \ldots, S_{r} are called the S - polynomials associated with $\left\{f_{1}, \ldots, f_{s}\right\}$. Since $F_{i} \in \operatorname{ker}(\phi)$ for all $i=1, \ldots, r$, then obviously $\sum_{k=1}^{s} \alpha_{k}^{i} d\left(f_{k}\right)=\sum_{k=1}^{s} \beta_{k}^{i} d\left(f_{k}\right)=d$, and so $d\left(S_{i}\right)<d$.

Theorem 7 let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ and let $\left\{S_{i}\right\}_{i=1, \ldots, r}$ be the $S-$ polynomials associated to $\left\{f_{1}, \ldots, f_{s}\right\}$. Then $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A if and only if $R\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $i=1, \ldots, r$.

Proof : Suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A, then $R\left(f,\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $f \in A$. In particular $S_{i} \in A$ for all $i=1, \ldots, r$, then $R\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$.
Conversely suppose that $R\left(S_{i},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $i=1, \ldots, r$, and let us prove that $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A. Let $f \in A$, and suppose to the contrary that $d(f) \notin\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$. Write :

$$
f=\sum_{\underline{\theta}} c_{\underline{\theta}} f_{1}^{\theta_{1}} \cdots f_{s}^{\theta_{s}}
$$

For all $\underline{\theta}=\left(\theta_{1}, \ldots, \theta_{s}\right)$ such that $c_{\underline{\theta}} \neq 0$, we set $p_{\underline{\theta}}=d\left(f_{1}^{\theta_{1}} \cdots f_{s}^{\theta_{s}}\right)=\sum_{i=1}^{s} \theta_{i} d\left(f_{i}\right)$. Let $p=\max \left\{p_{\underline{\theta}}, c_{\underline{\theta}} \neq 0\right\}$, then there exists $\left\{\underline{\theta}^{1}, \ldots, \underline{\theta}^{l}\right\}$ with $c_{\underline{\theta}^{i}} \neq 0$ and $d\left(f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}\right)=p$ for all $i=1, \ldots, l$. Obviously $\sum_{i=1}^{l} c_{\underline{\theta}^{i}} M\left(f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}\right)=$ 0 , otherwise we will have $d(f)=\bar{p} \in\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$, which contradicts our hypothesis. Hence : $\sum_{i=1}^{l} c_{\theta^{i}} M\left(f_{1}\right)^{\theta_{1}^{i}} \cdots M\left(f_{s}\right)^{\theta_{s}^{i}}=0$, and so $\sum_{i=1}^{l} c_{\theta^{i}} X_{1}^{\theta_{1}^{i}} \cdots X_{s}^{\theta_{s}^{i}} \in \operatorname{ker}(\phi)$. Then :

$$
\sum_{i=1}^{l} c_{\underline{\theta}^{i}} X_{1}^{\theta_{1}^{i}} \cdots X_{s}^{\theta_{s}^{i}}=\sum_{k=1}^{r} \lambda_{k} F_{k}
$$

with $\lambda_{k} \in \mathbb{K}\left[X_{1}, \ldots, X_{s}\right]$ and $d\left(\lambda_{k} F_{k}\right)=p$ for all $k=1, \ldots, r$. Substituting f_{i} in X_{i} for all $i=1, \ldots, r$ we get :

$$
\sum_{i=1}^{l} c_{\underline{\theta}^{i}} f_{1}^{\theta_{1}^{i}} \cdots f_{s}^{\theta_{s}^{i}}=\sum_{k=1}^{r} \lambda_{k}\left(f_{1}, \ldots, f_{s}\right) S_{k}
$$

with $d\left(S_{k}\right)+d\left(\lambda_{k}\right)<p$ for all $k=1, \ldots, r$. By hypothesis, we have $R\left(S_{k},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0$ for all $k=1, \ldots, r$, then by Proposition $55 S_{k}$ can be written as :

$$
S_{k}=\sum_{\underline{\beta}} c_{\underline{\beta}} f_{1}^{\beta_{1}} \cdots f_{s}^{\beta_{s}}
$$

with $d\left(f_{1}^{\beta_{1}} \cdots f_{s}^{\beta_{s}}\right) \leq d\left(S_{k}\right)$ for all $\underline{\beta}$ such that $c_{\underline{\beta}} \neq 0$. Hence we can write :

$$
f=\sum_{\underline{\theta}^{\prime}} c_{\underline{\theta}^{\prime}} f_{1}^{\theta_{1}^{\prime}} \cdots f_{s}^{\theta_{s}^{\prime}}
$$

with $\max \left\{d\left(f_{1}^{\theta_{1}^{\prime}} \cdots f_{s}^{\theta_{s}^{\prime}}\right), c_{\theta^{\prime}} \neq 0\right\}<p$. We apply the same process to the new expression of f. After applying this process more than p times, we will get a contradiction.
The following algorithm explains how to find a basis for an algebra $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$.

```
Algorithm 1
Let \(A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]\), and let \(S_{1}, \ldots, S_{r}\) be the \(S\)-polynomials associated to \(\left\{f_{1}, \ldots, f_{s}\right\}\). Then :
(1) If \(R\left(S_{k},\left\{f_{1}, \ldots, f_{s}\right\}\right)=0\) for all \(k=1, \ldots, r\), then \(\left\{f_{1}, \ldots, f_{s}\right\}\) is a basis of \(A\).
(2) If \(r(t)=R\left(S_{k},\left\{f_{1}, \ldots, f_{s}\right\}\right) \neq 0\) for some \(1 \leq k \leq r\), then we set \(f_{s+1}=r(t)\), and we restart with
\(\left\{f_{1}, \ldots, f_{s+1}\right\}\). We will have \(\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle \subsetneq\left\langle d\left(f_{1}\right), \ldots, d(f), d\left(f_{s+1}\right)\right\rangle\).
Since \(\mathbb{N} \backslash\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle\) is finite, then this process will stop obtaining a subset \(\left\{f_{1}, \ldots, f_{s}, f_{s+1}, \ldots, f_{s+h}\right\}\) of \(A\). If \(\left\{S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right\}\) are the \(S\)-polynomials of \(\left\{f_{1}, \ldots, f_{s+h}\right\}\), then we have \(R\left(S_{i}^{\prime},\left\{f_{1}, \ldots, f_{s+h}\right\}\right)=0\) for all \(i=1, \ldots, n\). Obviously we have \(A=\mathbb{K}\left[f_{1}, \ldots, f_{s+h}\right]\). Finally by Theorem 7 we get that \(\left\{f_{1}, \ldots, f_{s+h}\right\}\) is a basis of \(A\).
Definition 49 Let \(A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]\) where \(\left\{f_{1}, \ldots, f_{s}\right\}\) is a basis of \(A\). Then \(\left\{f_{1}, \ldots, f_{s}\right\}\) is said to be a minimal basis of \(A\) if \(\left\{d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\}\) is a minimal system of generators of the semigroup \(d(A)\). Moreover we say that \(\left\{f_{1}, \ldots, f_{s}\right\}\) is a reduced basis of \(A\) if \(\operatorname{supp}\left(f_{i}(t)-M\left(f_{i}\right)\right) \subseteq \mathbb{N} \backslash d(A)\) for all \(i=1, \ldots, s\).
```

An algebra A can have many different bases, since if $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A, then if we take any polynomial $f \in A$ with $f \neq f_{i}$ for all $i=1, \ldots, s$, then obviously $\left\{f_{1}, \ldots, f_{s}, f\right\}$ is also a basis of A. Now suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ is a basis of A. If $d\left(f_{i}\right) \in\left\langle d\left(f_{1}\right), \ldots, d\left(f_{i-1}\right), d\left(f_{i+1}\right), \ldots, d\left(f_{s}\right)\right\rangle$ for some $i \in\{1, \ldots, s\}$, then $\left\{f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{s}\right\}$ is also a basis of A. After repeating this process we obtain a minimal basis of A, which is not unique.

Remark 15 Suppose that $\left\{f_{1}, \ldots, f_{s}\right\}$ and $\left\{g_{1}, \ldots, g_{t}\right\}$ are two minimal basis of A. The two sets $\left\langle d\left(f_{1}\right), \ldots, d\left(f_{s}\right)\right\rangle$ and $\left\langle d\left(g_{1}\right), \ldots, d\left(g_{t}\right)\right\rangle$ are minimal sets of generators of the numerical semigroup $d(A)$, which is unique. Then $s=t$ and for each $i \in\{1, \ldots, s\}$ there exists a unique $j \in\{1, \ldots, s\}$ such that $M\left(f_{i}\right)=M\left(g_{j}\right)$. Thus two minimal basis of A have the same cardinality. The following corollary shows that a minimal reduced basis of A is unique.

Corollary 4 Let the notation be as above. Then A has a unique minimal reduced basis up to constants.
Proof : Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a minimal basis of A. Applying the division process of Proposition 55 to $f_{i}-M\left(f_{i}\right)$ for each $i \in\{1, \ldots, s\}$, we will obtain a reduced minimal basis of A. For uniqueness, let $\left\{f_{1}, \ldots, f_{s}\right\}$ and $\left\{g_{1}, \ldots, g_{t}\right\}$ be two minimal reduced basis of A, moreover we can suppose that these polynomials are monic. By Remark 15 , we have $s=t$. Without loss of generality suppose that $M\left(f_{i}\right)=M\left(g_{i}\right)$ for all $i=1, \ldots, s$. We have $d\left(f_{i}\right)=d\left(g_{i}\right)$, if $f_{i}-g_{i} \neq 0$, then $d\left(f_{i}-g_{i}\right) \in d(A)$. But $d\left(f_{i}-g_{i}\right) \subseteq \operatorname{supp}\left(f_{i}(t)-M\left(f_{i}\right)\right) \cup \operatorname{supp}\left(g_{i}(t)-M\left(g_{i}\right)\right)$. This is a contradiction since the bases are reduced. Finally we get $f_{i}=g_{i}$ for all $i=1, \ldots, s$, and so A admits a unique minimal reduced basis.

Example 4 Let $f_{1}=t^{4}+t^{2}$ and $f_{2}=t^{3}$, and compute the reduced minimal basis of $A=\mathbb{K}\left[f_{1}, f_{2}\right]$. First we start by computing the kernel of $\phi_{1}: \mathbb{K}\left[X_{1}, X_{2}\right] \mapsto \mathbb{K}[t]$, with $\phi_{1}\left(X_{1}\right)=t^{4}$ and $\phi_{1}\left(X_{2}\right)=t^{3}$. The kernel of ϕ_{1} is generated by $F_{1}=X_{1}^{3}-X_{2}^{4}$. Hence we check the $S-$ polynomial $S_{1}=f_{1}^{3}-f_{2}^{4}=3 t^{10}+3 t^{8}+t^{6}$. We get $R\left(S_{1},\left\{f_{1}, f_{2}\right\}\right)=0$. Then $\left\{f_{1}, f_{2}\right\}$ is a reduced basis of A and $d(A)=\langle 3,4\rangle$.

Example 5 Let $f_{1}=t^{4}+5 t^{3}$ and $f_{2}=t^{2}$, and compute the reduced minimal basis of $A=\mathbb{K}\left[f_{1}, f_{2}\right]$. First we start by computing the kernel of $\phi_{1}: \mathbb{K}\left[X_{1}, X_{2}\right] \mapsto \mathbb{K}[t]$, with $\phi_{1}\left(X_{1}\right)=t^{4}$ and $\phi_{1}\left(X_{2}\right)=t^{2}$. The kernel of ϕ_{1} is generated by $F_{1}=X_{1}-X_{2}^{2}$. Hence we check the S-polynomial $S_{1}=f_{1}-f_{2}^{2}=5 t^{3}$. We get $R\left(S_{1},\left\{f_{1}, f_{2}\right\}\right)=5 t^{3}$. Then we add $f_{3}=t^{3}$ to obtain a new generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$. Hence $A=\mathbb{K}\left[f_{1}, f_{2}, f_{3}\right]=\mathbb{K}\left[t^{4}+5 t^{3}, t^{2}, t^{3}\right]=\mathbb{K}\left[t^{2}, t^{3}\right]$
Now we consider ϕ_{2} : $\mathbb{K}\left[X_{1}, X_{2}\right] \mapsto \mathbb{K}[t]$, defined by $\phi_{2}\left(X_{1}\right)=t^{3}, \phi_{2}\left(X_{2}\right)=t^{2}$. We get $\operatorname{ker}\left(\phi_{2}\right)=$ $\left(F_{2}=X_{2}^{3}-X_{1}^{2}\right)$. The associated S-polynomial to F_{2} is $S_{2}=0$. Hence $\left\{t^{2}, t^{3}\right\}$ is a reduced basis of A and $d(A)=\langle 2,3\rangle$.

3.3 Modules over \mathbb{K}-Algebras

Let $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ be the subalgebra of $\mathbb{K}[t]$ generated by $\left\{f_{1}, \ldots, f_{s}\right\}$. Let F_{1}, \ldots, F_{r} be a set of nonzero elements of $\mathbb{K}[t]$, and consider the \mathbf{A}-module \mathbf{M} generated by F_{1}, \ldots, F_{r} :

$$
M=\sum_{i=1}^{r} F_{i} A .
$$

We set $d(M)=\{d(F), F \in \mathbf{M} \backslash\{0\}\}$ and $d(A)=\{d(f), f \in \mathbf{A} \backslash\{0\}\}$. Let $i \in d(M)$ and $s \in d(A)$, then $i=d(F)$ and $s=d(f)$ for some $F \in M$ and $f \in A$. Write $F=\sum_{i=1}^{r} F_{i} g_{i}$ for some $g_{1}, \ldots, g_{r} \in A$, then $F . f=\sum_{i=1}^{r} F_{i}\left(g_{i} f\right) \in M$. It follows that $i+s=d(F)+d(f)=d(F+f) \in d(M)$. Hence $d(M)+d(A) \subseteq d(M)$, and so $d(M)$ is a relative ideal of $d(A)$. From now on we denote by I the relative ideal $d(M)$, and by S the numerical semigroup $d(A)$.

Definition 50 Let the notation be as above. Then $\left\{F_{1}, \ldots, F_{r}\right\}$ is said to be a basis of \boldsymbol{M} if $I=\cup_{i=1}^{r}\left(d\left(F_{i}\right)+\right.$ $S)$. In other words $\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M if $\left\{d\left(F_{1}\right), \ldots, d\left(F_{r}\right)\right\}$ is a basis of the relative ideal I of S.

Theorem 8 Let $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$ and consider the A-module $M=\sum_{i=1}^{r} F_{i} A$. Let F be a non zero element in $\mathbb{K}[t]$, then there exists $g_{1}, \ldots, g_{r}, R \in A$ satisfying the following conditions :
(1) $F=\sum_{i=1}^{r} g_{i} F_{i}+R$.
(2) For all $i=1, \ldots, r$, if $g_{i} \neq 0$, then $d\left(g_{i}\right)+d\left(F_{i}\right) \leq d(F)$.
(3) If $R \neq 0$, then $d(R) \leq d(F)$ and $d(R) \in \mathbb{N} \backslash \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$.

Proof : If $F \in \mathbb{K}$, then the assertion is clear. Let F be a non constant polynomial in $\mathbb{K}[t]$ with $d(F)=p>0$, and write $F=\sum_{i=0}^{p} c_{i} t^{i}$. If $p \notin \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$, then we set $g^{1}=\ldots=g^{r}=0, r^{1}=c_{p} t^{p}$ and $F^{1}=F-c_{p} t^{p}$. Otherwise if $p \in \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$, then $p \in d\left(F_{i}\right)+S$ for some $i \in\{1, \ldots, r\}$, and so $p=d\left(F_{i}\right)+s_{i}$ for some $s_{i} \in S$, hence $c_{p} t^{p}=c t^{s_{i}} M\left(F_{i}\right)$ with $c \in \mathbb{K}$. Choose some $g \in A$ such that $M(g)=c t^{s_{i}}$ which obviously exists. Set $g_{i}^{1}=g$ and $g_{j}^{1}=0$ for all $j \neq i, R^{1}=0$ and $F^{1}=F-g F_{i}$. Now we have $F=F^{1}+\sum_{i=1}^{r} g_{i}^{1} F_{i}+R^{1}$, and the following conditions hold :
(1) $g_{i}^{1} \in A$ for all $i \in\{1, \ldots, r\}$.
(2) If $R^{1} \neq 0$, then $\operatorname{supp}\left(R^{1}\right) \subseteq \mathbb{N} \backslash \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$.
(3) If $F^{1} \notin \mathbb{K}$, then $d\left(F^{1}\right)<d(F)=p$.

Now we apply the same procedure for F^{1} as in the case of F. In each step we will obtain F^{k} such that $d\left(F^{k+1}\right)<d\left(F^{k}\right)$, and so there exists some $k \geq 1$ such that $F^{k} \in \mathbb{K}$. We set $g_{i}=g_{i}^{1}+\cdots+g_{i}^{k}$ for all $i \in\{1, \ldots, r\}$ and $R=R^{1}+\cdots+R^{k}+F^{k}$.
From now on we denote the polynomial R of Theorem 8 by $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)$.
Proposition 58 Let $M=F_{1} A+\cdots+F_{r} A$ with $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$. Then $\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M if and only if $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in M$.

Proof: Suppose that $\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M. Let $F \in M$, then by Theorem $8 F=\sum_{i=1}^{r} g_{i} F_{i}+R$ where g_{1}, \ldots, g_{r}, R satisfies the conditions of that theorem. We have $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=R=F-\sum_{i=1}^{r} g_{i} F_{i} \in M$. If $R \neq 0$, then $d(R) \in \mathbb{N} \backslash \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$, which is a contradiction.
Conversely suppose that $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in M$. Let $F \in M$, and suppose to the contrary that $d(F) \notin \cup_{i=1}^{r}\left(d\left(F_{i}\right)+S\right)$, then by Theorem 8 we have $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right) \neq 0$. This is a contradiction. Let the notation be as before with $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$. Assume without loss of generality that F_{1}, \ldots, F_{r} are monic, and let $M\left(F_{i}\right)=t^{a_{i}}$ for all $i=1, \ldots, r$. Consider the homomorphism of A-modules ϕ defined by :

$$
\phi: A^{r} \mapsto M=F_{1} A+\cdots+F_{r} A, \phi\left(f_{1}, \ldots, f_{r}\right)=\sum_{i=1}^{r} f_{i} M\left(F_{i}\right)
$$

Let $\left(s_{i}, s_{j}\right) \in R\left(a_{i}, a_{j}\right)$, then $s_{i}, s_{j} \in d(A)$ with $a_{i}+s_{i}=a_{j}+s_{j}$. Hence there exists some $g_{i}, g_{j} \in A$ with $d\left(g_{i}\right)=s_{i}$ and $d\left(g_{j}\right)=s_{j}$ (note that these polynomials are not unique). Write $M\left(g_{i}\right)=c_{g_{i}} t^{s_{i}}$ and $M\left(g_{j}\right)=c_{g_{j}} t^{s_{j}}$. Obviously we have $t^{s_{i}} M\left(F_{i}\right)-t^{s_{j}} M\left(F_{j}\right)=0$, and so $t^{s_{i}} e_{i}-t^{s_{j}} e_{j} \in \operatorname{ker}(\phi)$ where $\left\{e_{1}, \ldots, e_{r}\right\}$ is the canonical basis of A^{r}. Set :

$$
F=c_{g_{j}} g_{i} F_{i}-c_{g_{i}} g_{j} F_{j}
$$

Since $M\left(c_{g_{j}} g_{i} F_{i}\right)=M\left(c_{g_{i}} g_{j} F_{j}\right)$, then $d(F)<d\left(g_{i} F_{i}\right)=a_{i}+s_{i}=d\left(g_{j} F_{j}\right)=a_{j}+s_{j}$. We call F an S-polynomial of $\left(F_{1}, \ldots, F_{r}\right)$. Every element of $\operatorname{Ker}(\phi)$ gives rise to an S-polynomial. The set of all S-polynomials is denoted by $S P\left(F_{1}, \ldots, F_{r}\right)$ and is constructed in the above way.
Theorem 9 Let the notation be as above, in particular $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$ and $M=\sum_{i=1}^{r} F_{i} A$. Then $\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M if and only if $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in S P\left(F_{1}, \ldots, F_{r}\right)$.
Proof: Suppose that $\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M, then $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in M$. But $S P\left(F_{1}, \ldots, F_{r}\right) \subseteq M$, then $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in S P\left(F_{1}, \ldots, F_{r}\right)$.
Conversely, let $F \in M-\{0\}$ and suppose to the contrary that $R=R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right) \neq 0$. Since $R \in M$, then there exists $g_{1}, \ldots, g_{r} \in A$ such that $R=g_{1} F_{1}+\cdots+g_{r} F_{r}$. Let

$$
p=\max _{i, g_{i} \neq 0}\left(d\left(g_{i}\right)+d\left(F_{i}\right)\right) .
$$

Since $R \neq 0$, then by Theorem $8 d(R) \notin \cup_{i=1}^{r}\left(d\left(F_{i}\right)+d(A)\right)$, and so $p \neq d(R)$. In particular $p>d(R)$. Suppose without loss of generality that $p=d\left(g_{i}\right)+d\left(F_{i}\right)$ for $i=1, \ldots, l$ and $p>d\left(g_{i}\right)+d\left(F_{i}\right)$ for $i=l+1, \ldots, r$. Clearly $l \geq 2$. We shall prove by induction on l that we can rewrite R as $R=g_{1}^{\prime} F_{1}+\cdots+g_{r}^{\prime} F_{r}$ with $p>\max _{i, g_{i}^{\prime} \neq 0}\left(d\left(g_{i}^{\prime}\right)+d\left(F_{i}\right)\right)$.
(i) Suppose that $l=2$, that is $d\left(g_{1}\right)+d\left(F_{1}\right)=d\left(g_{2}\right)+d\left(F_{2}\right)=p$ and $d\left(g_{i}\right)+d\left(F_{i}\right)<p$ for all $i=3, \ldots, r$. Let $M\left(g_{1}\right)=c_{g_{1}} t^{\alpha_{1}}, M\left(g_{2}\right)=c_{g_{2}}{ }^{\alpha_{2}}$. By our hypothesis, we have $M\left(g_{1} f_{1}\right)=-M\left(g_{2} f_{2}\right)$ and so $c_{g_{2}}=-c_{g_{1}}$ and $a_{1}+\alpha_{1}=a_{2}+\alpha_{2} \in\left(a_{1}+S\right) \cap\left(a_{2}+S\right)$, and so there exists $\left(s_{1}, s_{2}\right) \in R\left(a_{1}, a_{2}\right)$ such that $\alpha_{1}=s+s_{1}$ and $\alpha_{2}=s+s_{2}$. hence we have :

$$
c_{g_{1}} t^{\alpha_{1}} t^{a_{1}}+c_{g_{2}} t^{\alpha_{2}} t^{a_{2}}=t^{s}\left(c_{g_{1}} t^{s_{1}} t^{a_{1}}-c_{g_{1}} t^{s_{2}} t^{a_{2}}\right)
$$

The polynomial $t^{s}\left(c_{g_{1}} t^{s_{1}} t^{a_{1}}-c_{g_{1}} t^{s_{2}} t^{a_{2}}\right)$ gives rise to the S-polynomial

$$
h=\tilde{g}_{1} F_{1}+\tilde{g}_{2} F_{2}
$$

with $\tilde{g}_{1}, \tilde{g}_{2} \in A$ such that $M\left(\tilde{g}_{1}\right)=c_{g_{1}} t^{s_{1}}$ and $M\left(\tilde{g}_{2}\right)=c_{g_{2}} t^{s_{2}}=-c_{g_{1}} t^{s_{1}}$. We have $d\left(\tilde{g}_{1} F_{1}\right)=d\left(\tilde{g}_{2} F_{2}\right)=$ $s_{1}+a_{1}=\alpha_{1}+a_{1}-s=p-s$ and $M\left(\tilde{g}_{1} F_{1}\right)=-M\left(\tilde{g}_{2} F_{2}\right)$, and so $d(h)<p-s$. Since h is an S-polynomial, then by our hypothesis $R_{A}\left(h,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$, then h can be written as

$$
h=\bar{g}_{1} F_{1}+\cdots+\bar{g}_{r} F_{r}
$$

with $d\left(\bar{g}_{i} F_{i}\right) \leq d(h)<p-s$ for all $i=1, \ldots, r$. Hence

$$
\begin{aligned}
R & =g_{1} F_{1}+g_{2} F_{2}+t^{s} \tilde{g}_{1} F_{1}-t^{s} \tilde{g}_{1} F_{1}+t^{s} \tilde{g}_{2} F_{2}-t^{s} \tilde{g}_{2} F_{2}+\sum_{i=3}^{r} g_{i} F_{i} \\
& =\left(g_{1}-t^{s} \tilde{g}_{1}\right) F_{1}+\left(g_{2}-t^{s} \tilde{g}_{2}\right) F_{2}+t^{s}\left(\tilde{g}_{1} F_{1}+\tilde{g}_{2} F_{2}\right)+\sum_{i=3}^{r} g_{i} F_{i}
\end{aligned}
$$

Since $d\left(\left(g_{1}-t^{s} \tilde{g}_{1}\right) F_{1}\right)<p$ and $d\left(\left(g_{2}-t^{s} \tilde{g}_{2}\right) F_{2}\right)<p$ and $d\left(t^{s}\left(\tilde{g}_{1} F_{1}+\tilde{g}_{2} F_{2}\right)\right)=d\left(t^{s} \sum_{i=1}^{r} \tilde{g}_{i} F_{i}\right)<s+p-s=p$, then R is of the form $R=\sum_{i=1}^{r} \hat{g}_{i} F_{i}$ with $d\left(\hat{g}_{i} F_{i}\right)<p$ for all $i \in\{1, \ldots, r\}$.
(ii) Suppose that the hypothesis is true up to $l-1$, and let us prove it for l. For all $i=1, \ldots, r$ set $M\left(g_{i}\right)=c_{g_{i}} t^{s_{i}}$. Write:

$$
R=\sum_{i=1}^{r} g_{i} F_{i}=g_{1} F_{1}-\frac{c_{g_{1}}}{c_{g_{2}}} g_{2} F_{2}+\left(\frac{c_{g_{1}}}{c_{g_{2}}}+1\right) g_{2} F_{2}+\sum_{i=3}^{r} g_{i} F_{i}
$$

The polynomial $g_{1} F_{1}-\frac{c_{g_{1}}}{c_{g_{2}}} g_{2} F_{2}$ satisfies the conditions of part (i), and so there exists $\bar{g}_{1}, \ldots, \bar{g}_{r} \in A$ such that $g_{1} F_{1}-\frac{c_{g_{1}}}{c_{g_{2}}} g_{2} F_{2}=\bar{g}_{1} F_{1}+\cdots+\bar{g}_{r} F_{r}$ with $\max _{i, \bar{g}_{i} \neq 0} d\left(\bar{g}_{i} F_{i}\right)<p$. Hence R can be written as $R=\tilde{g}_{1} F_{1}+\cdots+\tilde{g}_{r} F_{r}$ with $\tilde{g}_{1}=\bar{g}_{1}$ and where the set $\left\{i, d\left(\tilde{g}_{i} F_{i}\right)=p\right\}$ has at most $l-1$ elements. It follows from the induction hypothesis that

$$
\tilde{g}_{1} F_{1}+\sum_{i=2}^{r} \tilde{g}_{i} F_{i}=\tilde{g}_{1} F_{1}+\sum_{i=1}^{r} \hat{g}_{i} F_{i}
$$

with $d\left(\hat{g}_{i} F_{i}\right)<p$ for all i such that $\hat{g}_{i} \neq 0$ and we have that $d\left(\tilde{g}_{1} F_{1}\right)<p$. This proves our assertion.

Algorithm 2
 Let the notation be as above. In particular $M=\sum_{i=1}^{r} F_{i} A$.

(1) If $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)=0$ for all $F \in S P\left(F_{1}, \ldots, F_{r}\right)$, then by Theorem $9\left\{F_{1}, \ldots, F_{r}\right\}$ is a basis of M.
(2) If $R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right) \neq 0$ for some $F \in S P\left(F_{1}, \ldots, F_{r}\right)$, then we set $F_{r+1}=R_{A}\left(F,\left\{F_{1}, \ldots, F_{r}\right\}\right)$ and we restart with $\left\{F_{1}, \ldots, F_{r}, F_{r+1}\right\}$.

Since the set $\mathbb{N} \backslash \cup_{i=1}^{r}\left(d\left(F_{i}+S\right)\right)$ is finite, then the process (2) in the algorithm cannot be infinite. Hence we get a basis of M, after a finite number of steps.

3.4 Curves with one place at infinity.

Let \mathbb{K} be an algebraically closed field of characteristic zero, and let $\mathbb{K}((x))$ denote the field of meromorphic series in x.

Theorem 10 (Newton Puiseux Theorem) Let $f(x, y) \in \mathbb{K}((x))[y]$ be a polynomial in y with coefficients in $\mathbb{K}((x))$ and suppose that f is irreducible. Then there exists an element $y(t) \in \mathbb{K}((t))$ such that $f\left(t^{n}, y(t)\right)=0$. Moreover:
(i) $f\left(t^{n}, y\right)=\prod_{\omega^{n}=1}(y-y(\omega t))$.
(ii) $y(\omega t) \neq y\left(\omega^{\prime} t\right)$ for all ω, ω^{\prime} distinct n-th roots of unity.
(iii) $\operatorname{gcd}(n, \operatorname{Supp}(y(t)))=1$.

To an irreducible polynomial $f \in \mathbb{K}((x))[y]$, we will associate a special sequences of integers, namely the characteristic sequences of f. Suppose that f is of degree n, then by Newton Puiseux theorem there exists an element $y(t) \in \mathbb{K}((t))$ such that $f\left(t^{n}, y(t)\right)=0$. Write $y(t)=\sum_{p} c_{p} t^{p}$. Let $d_{1}=n=\operatorname{deg}_{y}(f)$ and set :

$$
m_{1}=\inf \left\{p \in \operatorname{Supp}(y(t)), d_{1} \nmid p\right\} \quad \text { and } d_{2}=g c d\left(d_{1}, m_{1}\right) .
$$

Suppose we have defined m_{1}, \ldots, m_{i-1} and d_{1}, \ldots, d_{i} and set:

$$
m_{i}=\inf \left\{p \in \operatorname{Supp}(y(t)), d_{i} \nmid p\right\} \quad \text { and } d_{i+1}=g c d\left(d_{i}, m_{i}\right) .
$$

Then there exists some $h \geq 1$ such that $d_{h+1}=1$. This sequence $\underline{m}=\left(m_{1}, \ldots, m_{h}\right)$ is called the set of Newton-Puiseux exponents of f. Now for all $i=1, \ldots, h$ we set $e_{i}=\frac{d_{i}}{d_{i+1}}$. Finally we define the $\underline{r}=\left(r_{0}, \ldots, r_{h}\right)$ sequence associated to f as follows :

$$
\begin{aligned}
r_{0} & =n, r_{1}=m_{1} \\
r_{i} & =e_{i-1} r_{i-1}+m_{i}-m_{i-1} \quad \text { for all } i=2, \ldots, h .
\end{aligned}
$$

The sequences $\underline{m}, \underline{r}$ and $\underline{d}=\left(d_{1}, \ldots, d_{h+1}\right)$ are the characteristic sequences associated to f.
Moreover the set of Newton-Puiseux exponents of f can be defined in a similar manner to that in the case of quasi-ordinary polynomials.
Now for all $y \in \mathbb{K}((t))$, let $O_{t}(y)$ represent the order of y in t, that is the smallest element in $\operatorname{supp}(y)$, which is obviously in \mathbb{Z}.
Lemma 23 Let f be an irreducible polynomial in $\mathbb{K}((x))[y]$ of degree n, and let $y(t) \in \mathbb{K}((t))$ be such that $f\left(t^{n}, y(t)\right)=0$. Let $\left\{m_{1}, \ldots, m_{h}\right\}$ be the set of characteristic exponents of f. Then :
(i) $\left\{m_{1}, \ldots, m_{h}\right\}=\left\{\operatorname{ord}_{t}(y(t)-y(\omega t)), \omega^{n}=1\right.$ and $\left.\omega \neq 1\right\}$
(ii) The cardinality of the set $\left\{y(\omega t), \operatorname{ord}_{t}(y(t)-y(\omega t))>m_{k}\right\}$ is equal to d_{k+1}.
(iii) The cardinality of the set $\left\{y(\omega t), \operatorname{ord}_{t}(y(t)-y(\omega t))=m_{k}\right\}$ is equal to $d_{k}-d_{k+1}$.

Definition 51 Let f be as above with $y(t) \in \mathbb{K}((t))$ such that $f\left(t^{n}, y(t)\right)=0$. Consider a nonzero polynomial g in $\mathbb{K}((x))[y]$. The intersection multiplicity of f and g, denoted by $\operatorname{int}(f, g)$, is defined to be $\operatorname{int}(f, g)=$ $\operatorname{ord}_{t}\left(g\left(t^{n}, y(t)\right)\right)$.

Note that if ω is an n-th root of unity in \mathbb{K}, then $\operatorname{ord}_{t}\left(g\left(t^{n}, y(t)\right)\right)=\operatorname{ord}_{t}\left(g\left(t^{n}, y(\omega t)\right)\right)$. Thus the definition of intersection multiplicity of f with a polynomial g is independent of the choice of the root of $f\left(t^{n}, y\right)=0$.

Theorem 11 Let the notation be as above, and let $\underline{d}=\left(d_{1}, \ldots, d_{h+1}\right)$ be the gcd-sequence associated to f. For all $i=1, \ldots$, h let $\operatorname{App}_{d_{i}}(f)$ be the d_{i}-th approximate root of f, then $\operatorname{int}\left(f, \operatorname{App}_{d_{i}}(f)\right)=r_{i}$.

For all $i=1, \ldots, h$ let $g_{i}=\operatorname{App}_{d_{i}}(f)$, which is obviously a monic polynomial of degree $\frac{n}{d_{i}}$. Let $g \in \mathbb{K}((x))[y]$ and remember that the expansion of g with respect to $\left(g_{1}, \ldots, g_{h}, f\right)$ is defined to be :

$$
g=\sum_{\theta} c_{\theta}(x) g_{1}^{\theta_{1}} \ldots g_{h}^{\theta_{h}} \cdot f^{\theta_{h+1}}
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{h+1}\right) \in \mathbb{N}^{h+1}$ with $0 \leq \theta_{k}<e_{k}$ for all $k=1, \ldots, h$, and $c_{\theta}(x) \in \mathbb{K}((x))$.

Proposition 59 Let the notation be as above, and let $g \in \mathbb{K}((x))[y]$ such that $g \notin(f)$. Then int $(f, g)=$ $\sum_{k=0}^{h} \lambda_{k} r_{k}$ for some $\lambda_{0} \in \mathbb{Z}$ and $0 \leq \lambda_{i}<e_{k}$ for all $k=1, \ldots, h$.

Lemma 24 Let the notation be as above. Then for all $i=1, \ldots, h$ we have :

$$
e_{i} r_{i}=\sum_{j=0}^{i-1} \lambda_{j} r_{j}
$$

with $\lambda_{j} \in \mathbb{N}$ for all $j=0, \ldots, i-1$.
Now suppose that f is an irreducible polynomial in $\mathbb{K}[[x]][y]$, then $\operatorname{App}_{d_{i}}(f) \in \mathbb{K}[[x]][y]$ for all $i=1, \ldots, h$. Moreover, $r_{i}=\operatorname{int}\left(f, \operatorname{App}_{d_{i}}(f)\right) \in \mathbb{N}$ for all $i=1, \ldots, h$.

Definition 52 Let f be as above. The semigroup of values of f is defined to be:

$$
\Gamma(f)=\{\operatorname{int}(f, g), g \notin(f)\} .
$$

Proposition 60 Let f be an irreducible polynomial in $\mathbb{K}[[x]][y]$, and let $\underline{r}=\left(r_{0}, \ldots, r_{h}\right)$ be its associated \underline{r}-sequence. Then $\Gamma(f)$ is a numerical seimgroup generated by r_{0}, \ldots, r_{h}. Moreover it is free with respect to the $\overline{\text { arrangement }}\left(r_{0}, \ldots, r_{h}\right)$ and $e_{k} r_{k}<r_{k+1}$ for all $k=1, \ldots, h$ where $e_{k}=\frac{d_{k}}{d_{k+1}}$.

Theorem 12 Let the notation be as above with f an irreducible polynomial in $\mathbb{K}[[x]][y]$, and $\Gamma(f)$ its free semigroup. Let $C(\Gamma(f))$ be the conductor of $\Gamma(f)$, then int $\left(f_{x}, f_{y}\right)=C(\Gamma(f))$.

Proof: Let f_{x}, respectively f_{y}, be the derivative of f with respect to x, respectively y. Write

$$
f_{y}=H_{1}^{\alpha_{1}} \ldots H_{s}^{\alpha_{s}}
$$

where H_{i} is irreducible of degree n_{i} for all $i \in\{1, \ldots, s\}$. By the Newton-Puiseux theorem $H_{i}=\prod_{j=1}^{n_{i}}\left(y-z_{j}^{i}(t)\right)$, where $z_{j}^{i} \in \mathbb{K}((t))$ for all $i \in\{1, \ldots, s\}$ and $j \in\left\{1, \ldots, n_{i}\right\}$. Using the chain rule of derivatives, we get that for all $i \in\{1, \ldots, s\}$ we have :

$$
\frac{d}{d t} f\left(t^{n_{i}}, z_{1}^{i}\right)=\frac{d f}{d x}\left(t^{n_{i}}, z_{1}^{i}(t)\right) \cdot\left(n_{i} t^{n_{i}-1}\right)+\frac{d f}{d y}\left(t^{n_{i}}, z_{1}^{i}(t)\right)\left(z^{\prime}(t)\right)=\frac{d f}{d x}\left(t^{n_{i}}, z_{1}^{i}(t)\right) \cdot\left(n_{i} t^{n_{i}-1}\right)
$$

Hence $\operatorname{int}\left(f, H_{i}\right)-1=\operatorname{int}\left(f_{x}, H_{i}\right)+n_{i}-1$ for all $i \in\{1, \ldots, s\}$. It follows that:

$$
\begin{aligned}
\operatorname{int}\left(f, f_{y}\right) & =\operatorname{int}\left(f, H_{1}^{\alpha_{1}} \ldots H_{s}^{\alpha_{s}}\right) \\
& =\sum_{i=1}^{s} \alpha_{i} \operatorname{int}\left(f, H_{i}\right)=\sum_{i=1}^{s} \alpha_{i} \operatorname{int}\left(f_{x}, H_{i}\right)+\sum_{i=1}^{s} \alpha_{i} n_{i} \\
& =\sum_{i=1}^{s} \operatorname{int}\left(f_{x}, H_{1}^{\alpha_{1}} \ldots H_{s}^{\alpha_{s}}\right)+\operatorname{deg}\left(f_{y}\right)=\operatorname{int}\left(f_{x}, f_{y}\right)+n-1 .
\end{aligned}
$$

Now write $f\left(t^{n}, y\right)=\prod_{i=1}^{n}\left(y-y_{i}(t)\right)$. Then $f_{y}\left(t^{n}, y\right)=\sum_{i=1}^{n} \prod_{k \neq i}\left(y-y_{k}(t)\right)$, and so $f_{y}\left(t^{n}, y_{1}(t)\right)=$ $\prod_{k=2}^{n}\left(y_{1}(t)-y_{k}(t)\right)$. Hence

$$
\operatorname{int}\left(f, f_{y}\right)=\sum_{k=2}^{n} \operatorname{ord}_{t}\left(y_{1}(t)-y_{k}(t)\right)=\sum_{k=1}^{h}\left(d_{k}-d_{k+1}\right) m_{k}=\sum_{k=1}^{h}\left(e_{k}-1\right) r_{k}=\operatorname{int}\left(f_{x}, f_{y}\right)+n-1 .
$$

It follows that $\operatorname{int}\left(f_{x}, f_{y}\right)=\sum_{k=1}^{h}\left(e_{k}-1\right) r_{k}-n+1$. But $C(\Gamma(f))=\sum_{k=1}^{h}\left(e_{k}-1\right) r_{k}-n+1$ since $\Gamma(f)$ is free, and so $C(\Gamma(f))=\operatorname{int}\left(f_{x}, f_{y}\right)$.
Consider a polynomial $f(x, y) \in \mathbb{K}[x][y]$ of degree n and assume that after a change of variable, f can be written as

$$
f=y^{n}+\sum_{i, j, i+j<n} c_{i j} x^{i} y^{j}
$$

Definition 53 Let the notation be as above and let $C=\{f=0\}$ be the curve defined by f in \mathbb{K}^{2}. The projective closure of C is defined to be the curve $\bar{C}=\left\{H_{f}=0\right\}$ in $\mathbb{P}_{\mathbb{K}}^{2}$, where $H_{f}=y^{n}+\sum c_{i j} u^{n-i-j} x^{i} y^{j} \in$ $\mathbb{K}[u, x, y]$.

Definition 54 Let the notation be as above. Then f is said to be a curve with one place at infinity if $f_{\infty}(u, y)=H(u, 1, y)$ is irreducible in $\mathbb{K}[[u]][y]$.

To every polynomial $f \in \mathbb{K}[x][y]$ we associate the polynomial $F(x, y)=f\left(x^{-1}, y\right)$. Obviously $F(x, y) \in$ $\mathbb{K}\left[x^{-1}\right][y] \subseteq \mathbb{K}((x))[y]$.

Proposition 61 Let the notation be as above. Then $F\left(x, x^{-1} y\right)=x^{-n} f_{\infty}(x, y)$, moreover f has one place at infinity if and only if $F(x, y)$ is irreducible in $\mathbb{K}((x))[y]$.

Proof: Write $f=y^{n}+\sum_{i+j<n} c_{i j} x^{i} y^{j}$, then $F(x, y)=f\left(x^{-1}, y\right)=y^{n}+\sum_{i+j<n} c_{i j} x^{-i} y^{j}$, Hence :

$$
\begin{aligned}
F\left(x, x^{-1} y\right) & =\left(x^{-1} y\right)^{n}+\sum_{i+j<n} c_{i j} x^{-i}\left(x^{-1} y\right)^{j}=x^{-n} y^{n}+\sum_{i+j<n} c_{i j} x^{-i-j} y^{j} \\
& =x^{-n}\left(y^{n}+\sum_{i+j<n} c_{i j} x^{n-(i+j)} y^{j}\right)=x^{-n} f_{\infty}(x, y) .
\end{aligned}
$$

Now we want to prove that f_{∞} is irreducible in $\mathbb{K}[[x]][y]$ if and only if $F(x, y)$ is irreducible in $\mathbb{K}((x))[y]$. Suppose that f_{∞} is not irreducible in $\mathbb{K}[[x]][y]$, then there exists $f_{1}, f_{2} \in \mathbb{K}[[x]][y]$ such that $f_{\infty}=f_{1} . f_{2}$ and $\operatorname{deg}\left(f_{i}\right)=n_{i}<\operatorname{deg}\left(f_{\infty}\right)$ for $i=1,2$. We have

$$
F\left(x, x^{-1} y\right)=x^{-n} f_{\infty}(x, y)=x^{-\left(n_{1}+n_{2}\right)} f_{1}(x, y) \cdot f_{2}(x, y)=x^{-n_{1}} f_{1}(x, y) \cdot x^{-n_{2}} f_{2}(x, y) .
$$

Hence :

$$
F(x, y)=x^{-n_{1}} f_{1}(x, x y) \cdot x^{-n_{2}} f_{2}(x, x y) .
$$

Setting $F_{1}=x^{-n_{1}} f_{1}(x, x y)$ and $F_{2}=x^{-n_{2}} f_{2}(x, x y)$, we get that $F=F_{1} . F_{2}$ with $F_{1}, F_{2} \in \mathbb{K}((x))[y]$ and $\operatorname{deg}\left(F_{i}\right)<\operatorname{deg}(F)$ for $i=1,2$, hence F is not irreducible in $\mathbb{K}((x))[y]$. Similarly we can prove that if F is not irreducible in $\mathbb{K}((x))[y]$, then f_{∞} is not irreducible in $\mathbb{K}[[x]][y]$.

Definition 55 Let the notation be as above. The semigroup of F is defined to be the set

$$
\Gamma(F)=\left\{\operatorname{int}(F, G)=O_{t} G\left(t^{n}, y(t)\right), G(x, y) \in \mathbb{K}\left[x^{-1}\right][y]\right\}
$$

Now let $f, g \in \mathbb{K}[x][y]$. Note that the intersection multiplicity between f and g is the rank of the \mathbb{K}-vector space $\frac{\mathbb{K}[x, y]}{(f, g)}$, and its denoted by $\operatorname{Int}(f, g)$.

Theorem 13 Let the notation be as above with $f=y^{n}+\sum_{i+j<n} a_{i j} x^{i} y^{j}$. Consider a polynomial $g \in \mathbb{K}[x, y]$, and suppose that g can be written as $g=y^{p}+\sum_{i+j<p} x^{i} y^{j}$ and let $F(x, y)=f\left(x^{-1}, y\right)$ and $G(x, y)=g\left(x^{-1}, y\right)$, then $\operatorname{Int}(f, g)=-\operatorname{int}(F, G)$.
Proof : Let $y(t)$ be a root of $F\left(t^{n}, y(t)\right)=0$. By Proposition 61 we have :

$$
f_{\infty}(x, y)=x^{n} F\left(x, x^{-1} y\right) \text { and } g_{\infty}(x, y)=x^{p} G\left(x, x^{-1} y\right)
$$

Hence $f_{\infty}\left(t^{n}, t^{n} y(t)\right)=t^{n^{2}} F\left(t^{n}, t^{-n} t^{n} y(t)\right)=t^{n^{2}} F\left(t^{n}, y(t)\right)=0$, and so $t^{n} y(t)$ is a root of $f_{\infty}\left(t^{n}, y\right)=0$. Hence :

$$
\begin{aligned}
\operatorname{int}\left(f_{\infty}, g_{\infty}\right) & =\operatorname{ord}_{t} g_{\infty}\left(t^{n}, t^{n} y(t)\right)=\operatorname{ord}_{t}\left(\left(t^{n}\right)^{p} G\left(t^{n}, t^{-n} t^{n} y(t)\right)\right) \\
& =\operatorname{ord}_{t}\left(t^{n p}\right)+\operatorname{ord}_{t}\left(G\left(t^{n}, y(t)\right)\right)=n p+\operatorname{int}(F, G) .
\end{aligned}
$$

On the other hand by Bezout's Theorem we have :

$$
\operatorname{int}\left(f_{\infty}, g_{\infty}\right)+\operatorname{Int}(f, g)=n p
$$

Comparing both equations we get $\operatorname{Int}(f, g)=-\operatorname{int}(F, G)$.
More generally we can prove that if f is a curve with one place at infinity, then $\operatorname{Int}(f, g)=-\operatorname{int}(F, G)$ for all $g \in \mathbb{K}[x, y]$ where $F(x, y)=f\left(x^{-1}, y\right)$ and $G(x, y)=g\left(x^{-1}, y\right)$.

Definition 56 Let the notation be as above with $f \in \mathbb{K}[x, y]$ a curve with one place at infinity. The semigroup of f is defined to be :

$$
\Gamma(f)=\{\operatorname{Int}(f, g), g \in \mathbb{K}[x, y] \text { and } g \notin(f)\}
$$

Proposition 62 Let f be a polynomial in $\mathbb{K}[x, y]$ with one place at infinity, and let $F(x, y)=f\left(x^{-1}, y\right)$. Let $\left(r_{0}, \ldots, r_{h}\right)$ be the \underline{r}-sequence associated to F, then according to the previous propositions $\Gamma(f)$ is a free numerical semigroup with respect to the arrangement $\left(r_{0}, \ldots, r_{h}\right)$.

3.5 Kahler Differentials

Let $\left\{f_{1}, \ldots, f_{r}\right\}$ be a set of polynomials of $\mathbb{K}[t]$, and let $A=\mathbb{K}\left[f_{1}, \ldots, f_{r}\right]$ be the algebra generated by f_{1}, \ldots, f_{r}. Set :

$$
S=d(A)=\{d(f), f \in A\}
$$

We shall assume that S is a numerical semigroup. For all $i=1, \ldots, r$ set $F_{i}(t)=f_{i}^{\prime}(t)$, the derivative of f_{i} with respect to t, and let $M=F_{1} A+\ldots+F_{r} A$. Now let $I=d(M)=\{d(F), F \in M\}$, then obviously I is a relative ideal of S. Moreover, let $g \in A$, then $g=\sum_{\alpha} c_{\alpha} f_{1}^{\alpha_{1}} \ldots f_{r}^{\alpha_{r}}$, and so $g^{\prime}=\sum_{\alpha} c_{\alpha}\left(\sum_{i=1}^{r} \alpha_{i} f_{1}^{\alpha_{1}} \ldots f_{i}^{\alpha_{i}-1} \ldots f_{r}^{\alpha_{r}} f_{i}^{\prime}\right)$, hence $g^{\prime} \in M$. Note that $d\left(g^{\prime}\right)=d(g)-1$. It follows that for all $s \in S$ we have $s-1 \in I$. This leads to the following definition :

Definition 57 Let the notation be as above. An element $s \in I$ is said to be an exact element if $s+1 \in S$. Other elements are called non exact elements of I, and they are denoted by $N E(M)$, i.e

$$
N E(M)=\{i \in I, i+1 \notin S\} .
$$

Note that if $s \in N E(M)$, then $s+1 \in G(S)$ where $G(S)$ is the set of gaps of S. Since S is a numerical semigroup, then $G(S)$ is a finite set, and so the number of non exact elements in I is finite. We denote the cardinality of the set $N E(M)$ by $n e(M)$. It follows that:

$$
n e(M) \leq g(s)
$$

In what follows we will be interested in the case where $r=2$. We will also use the notation of $x(t), y(t)$ for $f_{1}(t), f_{2}(t)$.
Now write $x(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}$ and $y(t)=t^{m}+b_{1} t^{m-1}+\ldots+b_{m}$, and suppose without loss of generality that $m<n$. Consider the map :

$$
\psi: \mathbb{K}[X, Y] \mapsto \mathbb{K}[t], \psi(X)=x(t), \psi(Y)=y(t)
$$

and let $f \in \mathbb{K}[X, Y]$ be the monic generator of the kernel of this map. Then f is a curve with one place at infinity. In this case we will denote $S=d(A)=d(\mathbb{K}[x(t), y(t)])$ by $\Gamma(f)$. Note that for any nonzero polynomial $g(X, Y) \in \mathbb{K}[X, Y]$, the element $\operatorname{deg}_{t}(g(x(t), y(t)))$ of $\Gamma(f)$ coincides with the rank over \mathbb{K} of the \mathbb{K}-vector space $\frac{\mathbb{K}[X, Y]}{(f, g)}$.
Let \mathbb{K} be an algebraically closed field, and let $f(X, Y)$ be an irreducible plane curve in $A=\mathbb{K}[X, Y]$, where A is the ring of polynomials in two variables over \mathbb{K}. Let $\Theta=\frac{\mathbb{K}[X, Y]}{(f)}$ be the coordinate ring of f, and let $\phi: \mathbb{K}[X, Y] \mapsto \frac{\mathbb{K}[X, Y]}{(f)}$ be the canonical homomorphism defined by f. Let $x=\phi(X)$ and $y=\phi(Y)$, then $\Theta \cong \mathbb{K}[x, y]$.

Definition 58 The module of Kahler differentials of Θ is defined to be the Θ-module generated by dx and $d y$ and subject to the relation $f_{x} d x+f_{y} d y=0$, where f_{x}, respectively f_{y} represents the partial derivative of f with respect to x, respectively y. This module is denoted by $\Theta d \Theta$.

Note that elements in $\Theta d \Theta$ are of the form $g d x+h d y$ for some $g, h \in \mathbb{K}[x, y]$. Moreover the module of Kahler differentials associated to f is isomorphic to $M=x^{\prime}(t) A+y^{\prime}(t) A$, where $A=\mathbb{K}[x(t), y(t)]$. From now on we write $l(N)$ for the length of an Θ-module N.

Definition 59 The torsion module of $\Theta d \Theta$ is defined to be the set :

$$
T=\{\omega \in \Theta d \Theta, g \omega=0, \text { for some non zero element } g \in \Theta\}
$$

Definition 60 The Tjurina number of f is defined to be $l\left(\frac{\mathbb{K}[X, Y]}{\left(f, f_{X}, f_{Y}\right)}\right)=l\left(\frac{\Theta}{\left(f_{x}, f_{y}\right)}\right)$, and is denoted by $\nu(f)$. Moreover, the jacobian ideal of Θ is defined as $J:=\Theta f_{x}+\Theta f_{y}$, hence $\nu(f)=l\left(\frac{\Theta}{J}\right)$.

Lemma 25 Define the set $U=\left\{g \in \Theta, g f_{x}=h_{g} f_{y}\right.$ for some $\left.h_{g} \in \Theta\right\}$. Then

$$
l(T)=l\left(\frac{U}{\Theta \cdot f_{y}}\right) .
$$

Proof : Note that for each $g \in U$, there is a unique $h_{g} \in \Theta$ such that $g f_{x}=h_{g} f_{y}$. Hence we can define the Θ-homomorphism :

$$
\varphi: U \mapsto \Theta d \Theta
$$

by setting $\varphi(g)=h_{g} d x+g d y$. For all $g \in U$, we have :

$$
f_{x} \cdot \varphi(g)=f_{x} h_{g} d x+f_{x} g d y=f_{x} h_{g} d x+h_{g} f_{y} d y=h_{g}\left(f_{x} d x+f_{y} d y\right)=0
$$

Similarly we can prove that $f_{y} \cdot \varphi(g)=0$. Supposing that f is non constant then $f_{x} \neq 0$ or $f_{y} \neq 0$, hence $\varphi(g) \in T$.
Conversely let $h d x+g d y \in T$, then there exists some $\lambda \in \Theta$ such that $\lambda(h d x+g d y)=0=k\left(f_{x} d x+f_{y} d y\right)$ for some $k \in \Theta$. Hence $\lambda \cdot h=k \cdot f_{x}$ and $\lambda \cdot g=k \cdot f_{y}$, and consequently $\lambda\left(h \cdot f_{y}\right)=\lambda\left(g \cdot f_{x}\right)=k \cdot f_{x} \cdot f_{y}$. Hence $h \cdot f_{y}=g \cdot f_{x}$, and so $g \in U$ and $\varphi(g)=h d x+g d y$. Whence $\operatorname{Im}(\varphi)=T$.
On the other hand if $g \in \operatorname{Ker}(\varphi)$, then $\varphi(g)=h_{g} d x+g d y=0$, and so $h_{g} d x+g d y=\gamma\left(f_{x} d x+f_{y} d y\right)$ for some $\gamma \in \Theta$, hence $g=\gamma \cdot f_{y} \in \Theta \cdot f_{y}$. Conversely if $g \in \Theta \cdot f_{y}$, then $g=\lambda \cdot f_{y}$ for some $\lambda \in \Theta$, and so $g . f_{x}=\left(\lambda . f_{x}\right) \cdot f_{y}$, hence $\varphi(g)=\lambda . f_{x} d x+g d y=\lambda\left(f_{x} d x+f_{y} d y\right)=0$. Thus $\operatorname{Ker}(\varphi)=\Theta . f_{y}$. Finally we get :

$$
T \cong \frac{U}{\Theta \cdot f_{y}} .
$$

Consequently $l(T)=l\left(\frac{U}{\Theta \cdot f_{y}}\right)$.
Proposition 63 Let the notation be as above, where T is the torsion module of $\Theta d \Theta$. Then

$$
l(T)=\nu(f) .
$$

Proof: Define the following Θ-homomorphisms :

$$
\begin{aligned}
& \psi_{1}: \Theta \mapsto \Theta . f_{x}, \psi(h)=h . f_{x} \forall h \in \Theta . \\
& \psi_{2}: \Theta . f_{x} \mapsto \frac{\Theta \cdot f_{x}}{\Theta \cdot f_{x} \cap \Theta \cdot f_{y}}, \quad \text { to be the canonical surjection. }
\end{aligned}
$$

Since $\frac{\Theta \cdot f_{x}}{\Theta \cdot f_{x} \cap \Theta \cdot f_{y}} \cong \frac{J}{\Theta \cdot f_{y}}$. Then we set the Θ-homomorphism defined by :

$$
\psi=\psi_{2} \circ \psi_{1}: \Theta \mapsto \frac{J}{\Theta . f_{y}}, \quad \text { to be the composition of } \psi_{2} \text { and } \psi_{1} \text {. }
$$

We have $\omega \in \operatorname{Ker}(\psi)$ if and only if $\omega \cdot f_{x}=0$ in $\frac{J}{\Theta \cdot f_{y}}$ if and only if $\omega \cdot f_{x} \in \Theta \cdot f_{y}$ if and only if $\omega \in U$. Hence $\stackrel{\Theta}{U} \cong \frac{J}{\Theta . f_{y}}$. It follows that:

$$
\begin{equation*}
l\left(\frac{\Theta}{U}\right)=l\left(\frac{J}{\Theta \cdot f_{y}}\right) . \tag{3.1}
\end{equation*}
$$

Since $\Theta . f_{y} \subset J \subset \Theta$, then $l\left(\frac{\Theta}{J}\right)=l\left(\frac{\Theta}{\Theta \cdot f_{y}}\right)-l\left(\frac{J}{\Theta \cdot f_{y}}\right)$. Also $\Theta . f_{y} \subset U \subset \Theta$, then $l\left(\frac{\Theta}{U}\right)=l\left(\frac{\Theta}{\Theta \cdot f_{y}}\right)-l\left(\frac{U}{\Theta \cdot f_{y}}\right)$, and so $l\left(\frac{U}{\Theta \cdot f_{y}}\right)=l\left(\frac{\Theta}{\Theta . f_{y}}\right)-l\left(\frac{\Theta}{U}\right)$. It follows from Equation 3.1 that $l\left(\frac{\Theta}{J}\right)=l\left(\frac{U}{\Theta \cdot f_{y}}\right)$. Hence by Lemma 25 we get that $\nu(f)=l\left(\frac{\Theta}{J}\right)=l\left(\frac{U}{\Theta \cdot f_{y}}\right)=l(T)$.
Let $\bar{\Theta}$ be the integral closure of Θ, and let $\bar{\Theta} d \bar{\Theta}$ be the module of kahler differentials of $\bar{\Theta}$ regarded as an Θ - module. Note that if $(x(t), y(t))$ is a parametrization of the curve f, then $\Theta=\mathbb{K}[x(t), y(t)]$. Moreover $\bar{\Theta}=\mathbb{K}[t]$. In this case $\bar{\Theta} d \bar{\Theta}=\mathbb{K}[t] d t$, and an element $h d x+g d y \in \Theta d \Theta$ can be regarded as an element in $\bar{\Theta} d \bar{\Theta}$ by taking $h(x(t), y(t)) d(x(t))+g(x(t), y(t)) d(y(t))$, keeping in mind that $d\left(t^{n}\right)=n t^{n-1} d t$ for all $n \in \mathbb{N}^{*}$. We define the conductor ideal of Θ in its integral closure $\bar{\Theta}$ to be the set $\Im_{f}=\{g \in \bar{\Theta}, g \bar{\Theta} \subset \Theta\}$, and we write c for its length.
Now let $(f-\lambda)_{\lambda \in \mathbb{K}}$ be the family of translates of f, and for all $\lambda \in \mathbb{K}$ let $V(f-\lambda)=\left\{P \in \mathbb{K}^{2},(f-\lambda)(p)=0\right\}$ be the curve of \mathbb{K}^{2} defined by $f-\lambda$.

Definition 61 Let $\lambda \in \mathbb{K}$ and $p=(a, b) \in V(f-\lambda)$. Let M_{p} be the maximal ideal defined by p, that is $M_{p}=(X-a, X-b)$, and let $F=\mathbb{K}[X, Y]_{M_{p}}$ be the localization of $\mathbb{K}[X, Y]$ at M_{p}. The local Milnor number of $(f-\lambda)$ at p, denoted by μ_{p}^{λ}, is defined to be the rank of the \mathbb{K}-vector space $\frac{F}{\left(f_{X}, f_{Y}\right)}$, where $\left(f_{X}, f_{Y}\right)$ is the ideal generated by f_{X}, f_{Y} considered as elements in F.

Note that a point $p \in V(f-\lambda)$ is said to be a singular point of $f-\lambda$ if $\mu_{p}^{\lambda}>0$, otherwise p is a smooth point of $f-\lambda$.

Definition 62 Let $\lambda \in \mathbb{K}$. Then $f-\lambda$ is said to be singular if $\mu_{p}^{\lambda}>0$ for some $p \in V(f-\lambda)$.
In our setting if $f-\lambda$ is singular, then it has only a finite number of singular points. Moreover, there is only a finite number of λ such that $f-\lambda$ is singular. Note that if $\mu(f)=\operatorname{dim}_{\mathbb{K}} \frac{K[X, Y]}{\left(f_{X}, f_{Y}\right)}$ is the Milnor number of f, then $\mu(f)$ is the sum of local Milnor numbers at the singular points of the translates of f. That is

$$
\mu(f)=\sum_{\lambda \in \mathbb{K}} \sum_{p \in V(f-\lambda)} \mu_{p}^{\lambda}
$$

Lemma 26 (Berger's Formula) Let the notations be as above, where Θ is the coordinate ring of f, and $\bar{\Theta}$ its integral closure. Then:

$$
\nu(f)=l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)+\frac{c}{2}=l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)+\frac{\mu(f)}{2} .
$$

Let v denotes the natural valuation on $\bar{\Theta}$. The valuation of an element g in Θ is the valuation of g regarded as an element of $\bar{\Theta}$. Moreover $v(g(t) d h(t))=v(g(t))+v(h(t))-1$. Now we define the following sets : $\Gamma(f)=\{v(g), g$ non constant element in $\Theta\}$, the set of values of elements in the coordinate ring. $\Gamma^{\prime}(f)=\{v(g)-1, g$ non constant element in $\Theta\}$, the set of values of exact differential forms. $\Gamma^{*}(f)=\{v(\omega), \omega \in \Theta d \Theta\}$, the set of values of Kahler differentials.

Theorem 14 Let the notation be as above, where $\nu(f)$ is the Tjurina number of f, and c is the length of the conductor ideal of Θ. Then :

$$
\nu(f) \leq c
$$

Proof : Note that the number of missing integers in $\Gamma(f)$, (cardinality of $\mathbb{N} \backslash \Gamma(f)$), is equal to $l\left(\frac{\bar{\Theta}}{\Theta}\right)=\frac{c}{2}$, which is obviously equal to the cardinality of $\mathbb{N} \backslash \Gamma^{\prime}(f)$. Now consider an integer $s-1=v(g)-1 \in \Gamma^{\prime}(f)$ for some $g \in \Theta$, then $s-1=v(d g)$, but $d g \in \Theta d \Theta$, hence $s-1 \in \Gamma^{*}(f)$, and so $\Gamma^{\prime}(f) \subseteq \Gamma^{*}(f)$. Hence $\mathbb{N} \backslash \Gamma^{*}(f) \subseteq \mathbb{N} \backslash \Gamma^{\prime}(f)$, and consequently :

$$
l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)=\#\left(\mathbb{N} \backslash \Gamma^{*}(f)\right) \leq \#\left(\mathbb{N} \backslash \Gamma^{\prime}(f)\right)=\frac{c}{2}
$$

It follows from Bergers formula that $\nu(f)=l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)+\frac{c}{2} \leq \frac{c}{2}+\frac{c}{2}=c$.
Note that $\nu(f)=c$ if and only if $l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)=\frac{c}{2}$, that is every integer in $\Gamma^{*}(f)$ is of the form $v(g)-1$ for some $g \in \Theta$. Hence if ω is a differential form then there exists some $g_{1} \in \Theta$ such that $v(\omega)=v\left(d g_{1}\right)$, moreover we can choose g_{1} such that $\omega_{1}=\omega-d g_{1}$ satisfies $v\left(\omega_{1}\right)<v(\omega)$, then we choose some $g_{2} \in \Theta$ such that $v\left(\omega_{1}\right)=v\left(d g_{2}\right)$ and $v\left(\omega_{2}=\omega_{1}-d g_{2}\right)<v\left(\omega_{1}\right)$. We finally get a sequence $g_{1}, \ldots, g_{n} \in \Theta$ with $\omega=d\left(g_{1}+\cdots+g_{n}\right)$, hence ω is an exact differential form. Finally we conclude the following proposition :

Proposition 64 Let the notations be as above, with $c=l\left(\Im_{f}\right)$ and $\nu(f)$ the Tjurina number of f. Then $\nu(f)=c$ if and only if every differential form is exact.

Note that if $g(x, y) \in \mathbb{K}[x, y]$, then $\frac{d}{d t} g(x(t), y(t)) \in M$, and so $d\left(\frac{d}{d t} g(x(t), y(t))\right) \in I$. It follows that $\{s-1, s \in$ $\Gamma(f)\} \subseteq I$ and $d\left(\frac{d}{d t} g(x(t), y(t))\right)$ is an exact element. In particular, $l\left(\frac{\bar{\Theta} d \bar{\Theta}}{\Theta d \Theta}\right)$ is the cardinality of the set $\{s \in G(\Gamma(f)), s-1 \notin S\}$. This cardinality is equal to

$$
g(\Gamma(f))-n e(M)=\frac{\mu(f)}{2}-n e(M)
$$

It follows from the Berger's formula that

$$
\nu(f)=\frac{\mu(f)}{2}-n e(M)+\frac{\mu(f)}{2}=\mu(f)-n e(M)
$$

Let the notation be as above with $x(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}$ and $y(t)=t^{m}+b_{1} t^{n-1}+\ldots+b_{n}$, and $\Gamma(f)=d(\mathbb{K}[x(t), y(t)])$. Obviously $n, m \in \Gamma(f)$. Suppose without loss of generality, that $m<n$ and also (by taking the change of variables $t_{1}=t+\frac{b_{1}}{n}$) that $b_{1}=0$. Recall that a set of generators of $\Gamma(f)$ is constructed as follows : $r_{0}=m=d_{1}$ and $r_{1}=n$, then we take $d_{2}=\operatorname{gcd}\left(d_{1}, r_{1}\right)$ and we let $g_{2}=A p p_{d_{2}}(f)$ to be the d_{2}-th approximate root of f, we get that $r_{2}=d\left(g_{2}(x(t), y(t))\right)$. Suppose that $r_{0}, r_{1}, \ldots, r_{i}$ and d_{1}, \ldots, d_{i} are constructed, and let $d_{i+1}=g c d\left(r_{i}, d_{i}\right)$, then we take $g_{i+1}=A p p_{d_{i+1}}(f)$ and $r_{i+1}=d\left(g_{i+1}(x(t), y(t))\right)$. Consequently we get a finite system of generators r_{0}, \ldots, r_{h} such that $\Gamma(f)=\left\langle r_{0}, \ldots, r_{h}\right\rangle$. Moreover, $\Gamma(f)$ is free with respect to this arrangement.

Lemma 27 Let $q(t)=t+\sum_{i \geq 1} c_{i} t^{-i} \in \mathbb{K}((t))$ and consider the map $l: \mathbb{K}((T)) \mapsto \mathbb{K}((t))$ defined by $l(\alpha(T))=\alpha(q(t))$ for all $\alpha(T) \in \mathbb{K}((T))$. In particular $l(T)=q(t)$. Then l is an isomorphism.

Proof: Let $\alpha(T), \beta(T) \in \mathbb{K}((T))$, then clearly we have $l(\alpha(T)+\beta(T))=l(\alpha(T))+l(\beta(T))$ and $l(\alpha(T) \beta(T))=$ $l(\alpha(T)) l(\beta(T))$. Furthermore, $l(1)=1$ and $\operatorname{ker}(l)=\{0\}$. In order to prove that l is an isomorphism we are going to construct the inverse of l. More precisely we are going to prove that $t=l\left(T+b_{1} T^{-1}+b_{2} T^{-2}+\ldots\right)$ for some $T+b_{1} T^{-1}+b_{2} T^{-2}+\ldots \in \mathbb{K}((T))$. We shall prove this by induction on $k \geq 1$. That is for all $k \geq 1$, we shall prove that there exists $b_{k} \in \mathbb{K}$ such that

$$
\operatorname{deg}_{t}\left(t-l\left(T+b_{1} T^{-1}+\ldots+b_{k} T^{-k}\right)\right) \leq-k-1 .
$$

Note that for all $k \in \mathbb{Z}$, we have

$$
l\left(T^{k}\right)=t^{k}+\sum_{i \geq 1} c_{i}^{k} t^{k-i-1}
$$

If $k=1$, then we set $b_{1}=-c_{1}$. We get

$$
\begin{aligned}
t-l\left(T+b_{1} T^{-1}\right) & =t-q(t)-b_{1} l\left(T^{-1}\right) \\
& =t-\left(t+c_{1} t^{-1}+c_{2} t^{-2}+\ldots\right)-b_{1}\left(t^{-1}+c_{1}^{-1} t^{-3}+c_{2}^{-1} t^{-4}+\ldots\right) \\
& =\left(-c_{1}-b_{1}\right) t^{-1}-\sum_{i \geq 1} \gamma_{i}^{1} t^{-1-i}=\sum_{i \geq 1} \gamma_{i}^{1} t^{-1-i} .
\end{aligned}
$$

Where $\gamma_{i}^{1} \in \mathbb{K}$ for all $i \geq 1$. It follows that $\operatorname{deg}\left(t-l\left(T+b_{1} T^{-1}\right)\right) \leq-2$. Hence the assertion is clear for $k=1$. Suppose that the assertion is true for k and let us prove it for $k+1$. By hypothesis we have

$$
t-l\left(T+b_{1} T^{-1}+\ldots+b_{k} T^{-k}\right)=\sum_{i \geq 1} \gamma_{i}^{k} t^{-k-i}
$$

Where $\gamma_{i}^{k} \in \mathbb{K}$ for all $i \geq 1$. Then we set $b_{k+1}=\gamma_{1}^{k}$. But $l\left(T^{-k-1}\right)=t^{-k-1}+\sum_{i \geq 1} c_{i}^{-k-1} t^{-k-i-2}$, and so $b_{k+1} l\left(T^{-k-1}\right)=b_{k+1} t^{-k-1}+\sum_{i \geq 1} b_{k+1} c_{i}^{-k-1} t^{-k-i-2}$. It follows that

$$
\begin{aligned}
t-l\left(T+b_{1} T^{-1}+\ldots+b_{k+1} T^{-k-1}\right) & =t-l\left(T+b_{1} T^{-1}+\ldots+b_{k} T^{-k}\right)-b_{k+1} l\left(T^{-k-1}\right) \\
& =\sum_{i \geq 1} \gamma_{i}^{k} t^{-k-i}-b_{k+1} t^{-k-1}-\sum_{i \geq 1} b_{k+1} c_{i}^{-k-1} t^{-k-i-2} \\
& =\left(\gamma_{1}^{k}-b_{k+1}\right) t^{-k-1}+\sum_{i \geq 2} \gamma_{i}^{k} t^{-k-i}-\sum_{i \geq 1} b_{k+1} c_{i}^{-k-1} t^{-k-i-2} \\
& =\sum_{i \geq 1} \gamma_{i}^{k+1} t^{-k-1-i}
\end{aligned}
$$

Hence $\operatorname{deg}_{t}\left(t-l\left(T+b_{1} T^{-1}+\ldots+b_{k+1} T^{-k-1}\right)\right) \leq-k-2$. This proves the assertion for $k+1$.
Let $q_{1}(T)=T+\sum_{k \geq 1} b_{k} T^{-k}$ and let us define the mapping

$$
l_{1}: \mathbb{K}((t)) \mapsto \mathbb{K}((T))
$$

by setting $l_{1}(\beta(t))=\beta\left(q_{1}(T)\right)$ (in particular $\left.l_{1}(t)=q_{1}(T)\right)$. Since $\operatorname{deg}_{t}\left(t-l\left(q_{1}(T)\right)\right) \leq-k$ for all $k \geq 0$, then $t=l\left(q_{1}(T)\right)$. This proves that l is surjective, hence an isomorphism. Note that $l_{1}=l^{-1}$ because $l\left(l_{1}(t)\right)=t$.

Now let us make the following change of variables, $y(t)=\bar{y}(T)=T^{m}$, that is :

$$
T=t\left(1+b_{2} t^{-2}+\ldots+b_{m} t^{-m}\right)^{\frac{1}{m}}=t\left(1+\frac{1}{m} b_{2} t^{-2}+\ldots\right)=q(t) .
$$

This change of variables defines a map $l: \mathbb{K}((T)) \mapsto \mathbb{K}((t))$, with $l(T)=q(t)$. It follows from Lemma 27 that l is an isomorphism. Let $\bar{x}(T)=x\left(l^{-1}(t)\right)$, then $\bar{x}(T)=T^{n}+\sum_{p<n} c_{p} T^{p}$. Note that for all $g \in \mathbb{K}[X, Y]$ we have $d(g(x(t), y(t)))=d(g(\bar{x}(T), \bar{y}(T)))$. Furthermore the Newton-Puiseux exponents of f are constructed as follows :
Let $m_{1}=-n$, and let $D_{2}=\operatorname{gcd}(n, m)=d_{2}$. Then for all $i \geq 2$ set :

$$
m_{i}=\inf \left\{-p, p \in \operatorname{supp}(\bar{x}(T)) \text { and } D_{i} \nmid p\right\}, \text { and } D_{i+1}=g c d\left(D_{i}, m_{i}\right) .
$$

Note that $D_{h+1}=1$ and $D_{i}=d_{i}$ for all $i=1, \ldots, h$. Moreover, the sequence $\left\{r_{0}, \ldots, r_{h}\right\}$ is related to the Newton-Puiseux exponents of f as follows : $r_{0}=m, r_{1}=n$, and for all $k \geq 1$ we have :

$$
-r_{k+1}=-e_{k} r_{k}+\left(m_{k+1}-m_{k}\right) .
$$

where $e_{k}=\frac{d_{k}}{d_{k+1}}$ for all $i=1, \ldots, h$.
Now write $x(T)=T^{n}+c_{\lambda} T^{\lambda}+\ldots$ and $y(T)=T^{m}$, where $\lambda=\max \left\{p, p<n, c_{p} \neq 0\right\}$ and suppose that $\lambda>-\infty$, that is $x(t)$ is not of the form $x(T)=T^{n}$. Define the following differential form :

$$
W(T)=m x^{\prime}(T) y(T)-n y^{\prime}(T) x(T)
$$

which is equal to :

$$
\begin{aligned}
W(T) & =m T^{m}\left(n T^{n-1}+\lambda c_{\lambda} T^{\lambda-1}+\ldots\right)-n m T^{m-1}\left(T^{n}+c_{\lambda} T^{\lambda}+\ldots\right) \\
& =\left(m n T^{m+n-1}+m \lambda c_{\lambda} T^{m+\lambda-1}+\ldots\right)-\left(n m T^{m+n-1}+n m c_{\lambda} T^{m+\lambda-1}+\ldots\right) \\
& =(\lambda-n) m c_{\lambda} T^{m+\lambda-1}+\text { terms of lower degree. }
\end{aligned}
$$

It follows that if $m+\lambda \notin \Gamma(f)$, then $W(T)$ is a non exact element of M. On the other hand if $m+\lambda \in \Gamma(f)$ we have the following proposition :

Proposition 65 Let the notation be as above, with $W(T)=m x^{\prime}(T) y(T)-n y^{\prime}(T) x(T)$. Suppose that $m+\lambda \in$ $\Gamma(f)$, then $\lambda \neq-m_{2}$. Moreover, $m+\lambda=a n+b m$ for some $a, b \in \mathbb{N}$ with $a \leq 1$.

Proof : Suppose to the contrary that $\lambda=-m_{2}$. In this case $m+\lambda$ is of the form $a n+b m+c r_{2}$ for some $a, b, c \in \mathbb{N}$. We have $-r_{2}=-e_{1} r_{1}+m_{2}-m_{1}$, then $r_{2}=e_{1} r_{1}+m_{1}-m_{2}$, but $r_{1}=-m_{1}$, and so $r_{2}=\left(e_{1}-1\right) r_{1}-m_{2}$ and $-m_{2}=r_{2}-\left(e_{1}-1\right) r_{1}$. Hence $m-m_{2}=m+r_{2}-\left(e_{1}-1\right) r_{1}=a n+b m+c r_{2}$, and so $m-\left(e_{1}-1\right) r_{1}=a m+b m+(c-1) r_{1}$. If $c \geq 1$, then $m-\left(e_{1}-1\right) r_{1} \geq 0$, but $m-\left(e_{1}-1\right) r_{1}=m-\left(e_{1}-1\right) n<0$ since $m<n$, which is a contradiction. It follows that $c=0$ and $m+r_{2}-\left(e_{1}-1\right) r_{1}=a n+b m$, hence $r_{2}=\left(a+e_{1}-1\right) n+(b-1) m$, and so $d_{2}=g c d(n, m)$ divides r_{2} which is a contradiction. We conclude that $\lambda \neq-m_{2}$, and so $\lambda>-m_{2}$ and λ is in the group generated by n, m, hence $m+\lambda=a n+b m$ for some $a, b \in \mathbb{N}$. We have $n>m>\lambda$ and $\lambda=(a-1) n+b m+(n-m)$, so if $a>1$ it follows that $\lambda>n$, which is a contradiction, hence $a \leq 1$.

Theorem 15 Let $x(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}$ and $y(t)=t^{m}+b_{1} t^{m-1}+\ldots+b_{m}$ be the equations of a polynomial curve in \mathbb{K}^{2}, and let f be as above. Let $M=x^{\prime}(t) A+y^{\prime}(t) A$ be the A-module generated by $x^{\prime}(t), y^{\prime}(t)$. Then the following conditions are equivalent:
(i) $\mu(f)=\nu(f)$.
(ii) Every element in $d(M)$ is exact.
(iii) There exists an isomorphism $\mathbb{K}[x, y] \mapsto \mathbb{K}[X, Y]$ thats sends f to the polynomial $X^{m}-Y^{n}$, with $\operatorname{gcd}(m, n)=1$.

Proof : The equivalence between (i) and $(i i)$ is due to the fact that $\mu(f)=C(\Gamma(f))=c(f)$ where $c(f)$ is the length of the conductor ideal, and Proposition 64.
Now let us prove that (ii) is equivalent to (iii). For the necessary condition, suppose that every element in $d(M)$ is exact, and let the notations be as in Proposition 65 with $x(T)=T^{n}+c_{\lambda} T^{\lambda}+\ldots$ and $y(T)=T^{m}$. By assumption we have $W(T)$ is exact, and so $m+\lambda \in \Gamma(f)$, then by Proposition 65 we have $m+\lambda=a n+b m$ for some $a, b \in \mathbb{N}$ with $a \leq 1$. We will distinguish two cases :
(I) Suppose that $a=1$, then $\lambda=n+(b-1) m$. If $b \geq 1$ we will get $\lambda \geq n$ which is not true, hence $b=0$ in this case and $m+\lambda=n$. Now let $\tilde{y}(T)=y(T)+\alpha$ with $\alpha \in \mathbb{K}^{*}$. We have :

$$
\begin{aligned}
\bar{W}(T) & =m x^{\prime}(T) \tilde{y}(T)-n \tilde{y}^{\prime}(T) x(T) \\
& =\left(m \cdot n T^{n-1}+m \lambda c_{\lambda} T^{\lambda-1}+\ldots\right)\left(T^{m}+\alpha\right)-n m T^{m-1}\left(T^{n}+c_{\lambda} T^{\lambda}+\ldots\right) \\
& =\left(\alpha m n+m \lambda c_{\lambda}-n m c_{\lambda}\right) T^{m+\lambda-1}+\ldots \\
& =m\left(\alpha n+c_{\lambda}(\lambda-n)\right) T^{m+\lambda-1}+\ldots
\end{aligned}
$$

Then if we choose $\alpha=\frac{c_{\lambda}(n-\lambda)}{n}$, then $d(\bar{W})<m+\lambda-1$. Now let $\bar{y}=\tilde{T}^{m}=T^{m}+\alpha$, then $\tilde{x}=\tilde{T}^{n}+c_{\lambda_{1}} \tilde{T}^{\lambda_{1}}+\ldots$ with $\lambda_{1}<\lambda$.
(II) Now suppose that $a=0$, then $m+\lambda=b m$, and so $\lambda=(b-1) m$. Consider the change of variables $\bar{x}=x-c_{\lambda} y^{b-1}$ and $\bar{y}=y$. We will get $\bar{x}=\left(T^{n}+c_{\lambda} T^{\lambda}+\ldots\right)-c_{\lambda} T^{(b-1) m}$, hence we will get either $\bar{x}=T^{n}$ or $\bar{x}=T^{n}+c_{\lambda^{\prime}} T^{\lambda^{\prime}}+\ldots$ with $\lambda^{\prime}<\lambda$.
Following these two process we will get a new parametrization (\bar{x}, \bar{y}) with

$$
(\bar{x}, \bar{y})=\left(T^{n}, T^{m}\right) \text { or }(\bar{x}, \bar{y})=\left(T^{n}+c_{\lambda^{\prime}} T^{\lambda^{\prime}}+\ldots, T^{m}\right)
$$

We shall prove that these two processes will eventually stop. In case (I), it is clear since $\lambda=n-m>0$, so we are constructing a decreasing sequence of nonnegative integers. In case (II), if $h \geq 2$, then this is clear since the set of integers in the interval $\left[\lambda,-m_{2}\right]$ is finite. Suppose that $h=1$, that is $\operatorname{gcd}(m, n)=1$. If the process is infinite, then after a finite number of steps we will obtain a new parametrization of the curve of the form $\tilde{x}=T^{n}+\alpha T^{-l}+\ldots, \tilde{y}=T^{m}$ with $l>n m$, which is a contradiction.
It follows that either we will finally get a parametrization $\left(x(T)=T^{n}, y(T)=T^{m}\right)$, or a parametrization $(x(T), y(T))$ such that $W=m x^{\prime}(T) y(T)-n y^{\prime}(T) x(T)$ is non exact. By our assumption we have that every element is exact, and so the new parametrization must be of the form $\left(T^{n}, T^{m}\right)$. Hence the equation of the curve is of the form $X^{m}-Y^{n}$ with $\operatorname{gcd}(m, n)=1$.
For the sufficient condition, suppose that $x(T)=T^{n}$ and $y(T)=T^{m}$. To prove that every element in M is exact it is enough to prove that elements of the form $x^{i} y^{j} x^{\prime}$ and $x^{i} y^{j} y^{\prime}$ are exact for all $i, j \in \mathbb{N}$. We have :

$$
\begin{aligned}
\left(x^{i+1} y^{j}\right)^{\prime} & =\left(T^{n(i+1)} T^{m j}\right)^{\prime}=n(i+1) T^{n(i+1)-1} T^{m j}+m j T^{n(i+1)} T^{m j-1} \\
& =(n(i+1)+m j) T^{n(i+1)+m j-1} \\
& =(n(i+1)+m j)\left(T^{n}\right)^{i}\left(T^{m}\right)^{j} T^{n-1}=\frac{n(i+1)+m j}{n} x^{i} y^{i}\left(n T^{n-1}\right) \\
& =\frac{n(i+1)+m j}{n} x^{i} y^{i} x^{\prime}
\end{aligned}
$$

Hence $x^{i} y^{j} x^{\prime}=\left(\frac{n}{n(i+1)+m j} x^{i+1} y^{j}\right)^{\prime}$, and so it is exact. Similarly we can prove that:

$$
x^{i} y^{j} y^{\prime}=\left(\frac{m}{n i+(j+1) m} x^{i} y^{j+1}\right)^{\prime} .
$$

It follows that every element in M is exact.
Proposition 66 Let the notation be as above with $x(T)=T^{n}+c_{\lambda} T^{\lambda}+\ldots$ and $y(T)=T^{m}$. Suppose that $n e(M)>0$, then $n e(M) \geq 2^{h-1}$.

Proof : Let $\omega=m x^{\prime} y-n y^{\prime} x$, then $d(\omega)=m+\lambda-1$ with $m+\lambda \notin S$. Furthermore $\lambda \geq-m_{2}$. We are going to distinguish two cases
(i) $\lambda=-m_{2}$. Since $m+\lambda \notin S$, then $m+\lambda=m-m_{2}=-a m+b n+c r_{2}$ with $a, b, c \in \mathbb{N}$ and $a>0,0 \leq b<$ $e_{1}, 0<c<e_{2}$. But $-m_{2}=r_{2}-\left(e_{1}-1\right) r_{1}$ and $r_{1}=n$, then $m+r_{2}-\left(e_{1}-1\right) n=-a m+b n+c r_{2}$, and so $(c-1) r_{2}=(a+1) m-\left(e_{1}-1+b\right) n$. If $c \geq 1$, then $d_{2}=\operatorname{gcd}(m, n)$ divides $(c-1) r_{2}$ which is a contradiction since $c<e_{2}$. Hence $c=1$, and $(a+1) m=\left(e_{1}-1+b\right) n$. If $b=0$, then m divides $\left(e_{1}-1\right) n$, which is a contradiction, hence $b \geq 1$, and so $e_{1}-1+b \geq 2$. It follows that we should have $a \geq 2$. Finally we get:

$$
m+\lambda=-a m+b n+r_{2} \text { with } a \geq 2 .
$$

Consider the following elements $g_{3}^{\alpha_{3}} \cdots g_{h}^{\alpha_{h}} w$ of M with $\alpha_{i} \in \mathbb{N}$ and $0 \leq \alpha_{i}<e_{i}$ for all $i=3, \ldots, h$, then $d\left(g_{3}^{\alpha_{3}} \cdots g_{h}^{\alpha_{h}} w\right)+1=m+\lambda+\alpha_{3} r_{3}+\ldots+\alpha_{h} r_{h}=-a m+b n+r_{2}+\alpha_{3} r_{3}+\ldots+\alpha_{h} r_{h}$. Since $a>0$, then $d\left(g_{3}^{\alpha_{3}} \cdots g_{h}^{\alpha_{h}} w\right)+1 \notin S$ for all $\alpha_{3}, \ldots, \alpha_{h}$. Since $e_{i} \geq 2$ for all $i=3, \ldots, h$, then the cardinality of such elements is at least 2^{h-2}.
Moreover $d(y \omega)+1=-(a-1) m+b n+r_{2}$ with $a \geq 2$, then $y \omega$ is not exact. Then we can prove similarly that $y g_{3}^{\alpha_{3}} \cdots g_{h}^{\alpha_{h}} \omega$ are non exact elements, and the cardinality of such elements is at least 2^{h-2}. It follows that $n e(M) \geq 2^{h-1}$.
(ii) $\lambda>-m_{2}$. In this case $m+\lambda=-a m+b n$ with $a, b \in \mathbb{N}, a>0$ and $0 \leq b<e_{1}$. Consider the elements $g_{2}^{\alpha_{2}} \cdots g_{h}^{\alpha_{h}} \omega$ with $\alpha_{i} \in \mathbb{N}$ and $0 \leq \alpha_{i}<e_{i}$ for all $i=2, \ldots, h$. We have $d\left(g_{2}^{\alpha_{2}} \cdots g_{h}^{\alpha_{h}} \omega\right)+1=$ $d(\omega)+1+\alpha_{2} r_{2}+\ldots+\alpha_{h} r_{h}=-a m+b n+\alpha_{2} r_{2}+\ldots+\alpha_{h} r_{h} \notin S$. Since $e_{i} \geq 2$ for all $i=2, \ldots, h$, it follows that the number of such elements is at least 2^{h-1}. Hence $n e(M) \geq 2^{h-1}$.

Corollary 5 Let the notation be as above, and suppose that ne $(M)=1$. Then $S=d(A)=<m, n>$ with $\operatorname{gcd}(m, n)=1$. Moreover let $F(S)$ be the Frobenius number of S, then $N E(M)=\{F(S)-1\}$.

Proof: Suppose that $n e(M)=1$. By Proposition 66 , we have $2^{h-1} \leq n e(M)$, and so $2^{h-1}=1$. It follows that $h=1$ and the $g c d$ sequence of f is $\left(d_{1}=m, d_{2}=1\right)$, and so $S=<m, n>$ with $\operatorname{gcd}(m, n)=d_{2}=1$ and $e_{1}=$ $d_{1}=m$. Let $\omega=m x^{\prime} y-n x y^{\prime}=c T^{m+\lambda-1}+\cdots$. By Theorem 15 we can suppose that $d(\omega)+1=\lambda+m \notin S$. Hence it is of the form $\lambda+m=-a m+b n$ for some $a, b \in \mathbb{N}$ with $a \geq 1$ and $0 \leq b \leq e_{1}-1=m-1$. Note that we have $F(S)=-m+(m-1) n$. Now if $a>1$, then $d(y \omega)+1=-a m+b n+m=-(a+1) m+b n \notin S$, and so $y \omega$ is a non exact element different from ω, which is a contradiction. Hence $a=1$. If $b<m-1$, then $d(x \omega)+1=-a m+b n+n=-m+(b+1) n \notin S$ since $b+1 \leq m-1$, and consequently $x \omega$ is a non exact element different from ω, which is again a contradiction. It follows that $b=m-1$, and so $d(\omega)+1=-a m+b n=-m+(m-1) n=F(S)$. Hence $d(\omega)=F(S)-1$ and $N E(M)=\{F(S)-1\}$.
Suppose that $n e(M)=1$, that is we have one non exact element. In this case $h=1, \Gamma(f)=<m, n>$ with $m<n$ and $g c d(m, n)=1$. Furthermore, $m+\lambda=F(S)=-m+(m-1) n<m+n$ because $\lambda<n$. This implies that $(m-2) n<2 m<2 n$. In particular $m<4$. If $m=2$, then $n=2 p+1$ for some $p \geq 1$. If $m=3$, then $n<2 m=6$ and $n>m=3$ implies that either $n=4$ or $n=5$.

Proposition 67 Let the notation be as above, and suppose that $n e(M)=2$. One of the following two conditions holds :
(i) $h=1$. In this case $S=<m, n>$ with $g c d(m, n)=1$. Moreover $N E(M)=\{F(S)-1, F(S)-m-1\}$ or $N E(M)=\{F(S)-1, F(S)-n-1\}$.
(ii) $h=2$. In this case $S=<m, n, r_{2}>$ with $d_{3}=1$. Moreover we will have $N E(M)=\{F(S)-1, F(S)-$ $\left.r_{2}-1\right\}$ or $N E(M)=\{F(S)-1, F(S)-m-1\}$ or $N E(M)=\{F(S)-1, F(S)-n-1\}$.

Proof : By Proposition 66, we have $2^{h-1} \leq n e(M)$, and so $2^{h-1}=1$ or $2^{h-1}=2$, hence $h=1$ or $h=2$. Let ω be a non exact element with $d(\omega)+1<F(S)$, and let $d(\omega)$ be minimal in $N E(M)$.
(i) $h=1$. Since ω is non exact, then $d(\omega)+1=-a m+b n$ for some $a \geq 1$ and $0 \leq b \leq m-1$. If $a \geq 2$ and $b<m-1$, then $d(y \omega)+1=-(a-1) m+b n \notin S$ and $d(x \omega)=-a m+(b+1) n \notin S$, and so $\omega, x \omega$ and $y \omega$ are three non exact elements, but $n e(M)=2$. This is a contradiction. Hence we have :
(1) $a=1$ and $b<m-1$. Hence, $x \omega, \ldots, x^{m-b-1} \omega$ are non exact elements, but $n e(M)=2$, then $b=m-2$, and so $d(\omega)+1=-m+(m-2) n=F(S)-n$ and $d(x \omega)+1=-m+(m-1) n=F(S)$. Finally we get :

$$
N E(M)=\{d(\omega), d(y \omega)\}=\{F(S)-1, F(S)-n-1\} .
$$

(2) $a \geq 2$ and $b=m-1$. Hence, $y \omega, \ldots, y^{a-1} \omega$ are non exact elements, but $n e(M)=2$, then $a=2$, and so $d(\omega)+1=-2 m+(m-1) n$ and $d(y \omega)+1=-m+(m-1) n=F(S)$. Hence :

$$
N E(M)=\{F(S)-1, F(S)-m-1\} .
$$

(ii) $h=2$. In this case $S=<m, n, r_{2}>$ with $d_{3}=1$. Furthermore $d(\omega)+1=-a m+b n+c r_{2}$ with $a \geq 1$, $0 \leq b \leq e_{1}-1$, and $0 \leq c \leq e_{2}-1$. If $a \geq 3$ then $y \omega$ and $y^{2} \omega$ are non exact elements, and so $n e(M) \geq 3$, which is a contradiction. Hence $a=1$ or $a=2$.
(1) $a=1$. If $b<e_{1}-1$ and $c<e_{2}-1$, then $x \omega$ and $g_{2} \omega$ are non exact elements, which is a contradiction. Hence we have :

- $a=1, b=e_{1}-1$ and $c<e_{2}-1$. By a similar discussion as above, we get that the only possible condition to get $n e(M)=2$ is $c=e_{2}-2$. In this case ω and $g_{2} \omega$ are non exact elements, and $d\left(g_{2} \omega\right)+1=$ $-m+\left(e_{1}-1\right) r_{1}+\left(e_{2}-1\right) r_{2}=F(S)$ and $d(\omega)+1=-m+\left(e_{1}-1\right) r_{1}+\left(e_{2}-2\right) r_{2}=F(S)-r_{2}$. Hence :

$$
N E(M)=\left\{F(S)-1, F(S)-r_{2}-1\right\}
$$

- $a=1, b<e_{1}-1$ and $c=e_{2}-1$. As above we get $b=e_{1}-2$. In this case ω and $x \omega$ are non exact elements with $d(\omega)+1=-m+\left(e_{1}-2\right) n+\left(e_{2}-1\right) r_{2}=F(S)-n$ and $d(x \omega)+1=-m+\left(e_{1}-1\right) n+\left(e_{2}-1\right) r_{2}=F(S)$. Hence :

$$
N E(M)=\{F(S)-1, F(S)-n-1\} .
$$

(2) $a=2$. If $b<e_{1}-1$ or $c<e_{2}-1$, then $y \omega, x \omega$ are non exact, or $y \omega g_{2} \omega$ are non exact, which is a contradiction. We get that $a=2, b=e_{1}-1$ and $c=e_{2}-1$. In this case ω and $y \omega$ are non exact elements with $d(\omega)+1=-2 m+\left(e_{1}-1\right) r_{1}+\left(e_{2}-1\right) r_{2}=F(S)-m$ and $d(y \omega)+1=-m+\left(e_{1}-1\right) r_{1}+\left(e_{2}-1\right) r_{2}=F(S)$. Hence :

$$
N E(M)=\{F(S)-1, F(S)-m-1\}
$$

Let the notations be as above and suppose that $d(M)$ admits two non exact elements. We are going to describe the semigroup S under this condition :

Suppose that $\mathbf{h}=\mathbf{1}$: In this case, $S=<m, n>$ with $m<n$ and $\operatorname{gcd}(m, n)=1$. By Proposition 67 we have $m+\lambda \in\{F(S), F(S)-n, F(S)-m\}$. We distinguish the three different cases :

- If $m+\lambda=F(S)=-m+(m-1) n$, then $\lambda=-2 m+(m-1) n$. But $\lambda<n$, then $-2 m+(m-2) n<0$. We have $-2 m+(m-2) n=m(n-2)-2 n=(n-2)(m-2)-4$, and so $(n-2)(m-2)<4$. It follows that $m=2$ or $m=3$. If $m=2$ then $n=2 k+1$ for some $k \geq 1$ since $\operatorname{gcd}(m, n)=1$. Hence :

$$
S=<2,2 k+1>
$$

If $m=3$, then $(n-2)<4$ and $m<n$ implies that $n=4$ or $n=5$. Hence :

$$
S=<3,4>\text { or } S=<4,5>
$$

- If $m+\lambda=F(S)-m=-2 m+(m-1) n$. Hence $\lambda=-3 m+(m-1) n<n$. It follows that $(n-3)(m-2)<6$, and so $m=2$ or $m=3$ or $m=4$. Similar calculations as above leads to :

$$
S=<2,2 k+1>k \geq 1, \text { or } S=<3,4>\text { or } S=<3,5>\text { or } S=<4,5>
$$

- If $m+\lambda=F(S)-n=-m+(m-2) n$. Similar calculations as above implies that $(n-2)(m-3)<4$, and so $m=2$ or $m=3$ or $m=4$. It follows that:

$$
S=<2,2 k+1>k \geq 1, \text { or } S=<3, n>\text { with } \operatorname{gcd}(m, n)=1, \text { or } S=<4,5>
$$

Suppose that $\mathbf{h}=\mathbf{2}$: Let $S=<m, n, r_{2}>$. In this case $m+\lambda \in\left\{F(S), F(S)-m, F(S)-n, F\left(S-r_{2}\right)\right\}$. We will distinguish the four cases :

- Suppose that $m+\lambda=F(S)=-m+\left(e_{1}-1\right) n+\left(e_{2}-1\right) r_{2}$. Since $e_{2} \neq 1$, then $\lambda=-m_{2}=r_{2}-\left(e_{1}-1\right) n$. Hence :

$$
m+\lambda=m+r_{2}-\left(e_{1}-1\right) n=-m+\left(e_{1}-1\right) n+\left(e_{2}-1\right) r_{2}
$$

and so $\left(e_{2}-2\right) r_{2}=2 m-2\left(e_{1}-1\right) n$, then $d_{2}=\operatorname{gcd}(m, n)$ divides $\left(e_{2}-2\right) r_{2}$. But $d_{2} \nmid i r_{2}$ for all $i=1, \ldots, e_{2}-1$, and so $\left(e_{2}-2\right) r_{2}=0$. It follows that $m=\left(e_{1}-1\right) n$, which is a contradiction.

- If $m+\lambda=F(S)-r_{2}=-m+\left(e_{1}-1\right) n+\left(e_{2}-2\right) r_{2}$. If $e_{2} \neq 2$, then $\lambda=-m_{2}=r_{2}-\left(e_{1}-1\right) n$, and so $m+r_{2}-\left(e_{1}-1\right) n=-m+\left(e_{1}-1\right) n+\left(e_{2}-2\right) r_{2}$. It follows that:

$$
\left(e_{2}-3\right) r_{2}=2 m-2\left(e_{1}-1\right) n
$$

Hence $d_{2}=\operatorname{gcd}(m, n)$ divides $\left(e_{2}-3\right) r_{2}$, but $d_{2} \nmid i r_{2}$ for all $i=1, \ldots, e_{2}-1$. Hence $\left(e_{2}-3\right) r_{2}=0$, which is a contradiction. It follows that $e_{2}=2, d_{2}=e_{2}=2$ and $e_{1}=\frac{d_{1}}{d_{2}}$, then $m+\lambda=-m+\left(e_{1}-1\right) n=-m+\left(\frac{m}{2}-1\right) n$. But $m+\lambda<m+n$. It follows that:

$$
-2 \frac{m}{2}+\left(\frac{m}{2}-2\right) \frac{n}{2}<0
$$

By similar calculations as above we obtain the inequality : $\left(\frac{m}{2}-2\right)\left(\frac{n}{2}-2\right)<4$. Hence $\left(\frac{m}{2}, \frac{n}{2}\right)$ is either $(2,2 k+1)$ with $k \geq 1$, or $(3,4)$ or (3,5). Since $d_{2}=2 \nmid r_{2}$, then r_{2} is odd. Moreover we (m, n, r_{2}) satisfies one of the following conditions :
(i) $m=4, n=4 k+2, r_{2}=2 p+1$ with $2 p+1<8 k+4$
(ii) $m=6, n=8, r_{2}=2 p+1$ and $2 p+1<24$.
(iii) $m=6, n=10, r_{2}=2 p+1$ and $2 p+1<30$.

- If $m+\lambda=F(S)-m=-2 m+\left(e_{1}-1\right) n+\left(e_{2}-1\right) r_{2}$. Since $e_{2} \neq 1$, then $\lambda=-m_{2}=r_{2}-\left(e_{1}-1\right) n$. This implies that $m+\lambda=m+r_{2}-\left(e_{1}-1\right) n=-2 m+\left(e_{1}-1\right) n+\left(e_{2}-1\right) r_{2}$. Hence:

$$
\begin{equation*}
\left(e_{2}-2\right) r_{2}=3 m-2\left(e_{1}-1\right) n \tag{3.2}
\end{equation*}
$$

It follows that $d_{2}=\operatorname{gcd}(m, n)$ divides $\left(e_{2}-2\right) r_{2}$, and so $\left(e_{2}-2\right) r_{2}=0$. Hence $e_{2}=2, d_{2}=e_{2}=2$ and $e_{1}=\frac{d_{1}}{d_{2}}=\frac{m}{2}$. Since $\left(e_{2}-2\right) r_{2}=0$, then by Equation (3.2), we get that $3 m-2\left(\frac{m}{2}-1\right) n=0$, and so $3 \frac{m}{2}-\frac{m}{2} n+n=0$, hence $\left(\frac{m}{2}-1\right)(n-3)=3$. If $\frac{m}{2} \geq 4$, then $n>m \geq 8$, and so $\left(\frac{m}{2}-1\right)(n-3)>15$, which is a contradiction. Hence $\frac{m}{2}=2$, and so $m=4$ and $n=6$, and it is the only solution. Moreover $r_{2}=2 p+1$ with $r_{2}<12$.

- If $m+\lambda=F(S)-n=-m+\left(e_{1}-2\right) n+\left(e_{2}-1\right) r_{2}$. Since $e_{2} \neq 1$, then $\lambda=-m_{2}-\left(e_{1}-1\right) n$. It follows that:

$$
\begin{equation*}
\left(e_{2}-2\right) r_{2}=2 m-\left(2 e_{1}-3\right) n \tag{3.3}
\end{equation*}
$$

Hence $e_{2}=d_{2}=2$ and $e_{1}=\frac{m}{2}$. Using Equation (3.3) we get that $2 m-(m-3) n=0$, and so $(m-3)(n-2)=6$. The only possible case is $m=4$ and $n=8$.

These results can be summarized into the following theorem.
Theorem 16 Let $X(t)=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}, Y(t)=t^{m}+b_{1} t^{m-1}+\ldots+b_{m}$ and assume that $m<n$ and that $\operatorname{gcd}(m, n)<m$. Let $f(x, y)$ be the monic polynomial of $\mathbb{K}[X, Y]$ such that $f(X(t), Y(t))=0$ and let $\Gamma(f)$ be the semigroup associated with f. Assume that $\Gamma(f)$ is a numerical semigroup and let $\Gamma(f)=\left\langle m=r_{0}, n=r_{1}, \ldots, r_{h}\right\rangle$ where r_{2}, \ldots, r_{h} are constructed as above. Let $\mu(f)$ and $\nu(f)$ be the Milnor number and the Tjurina number of f respectively. Assume that $\mu(f)>\nu(f)$. We have the following :
(i) If $\mu(f)=\nu(f)+1$, then $h=1$.
(ii) If $\mu(f)=\nu(f)+2$, then $h=1,2$.

Furthermore we have :
(1) If $\mu(f)=\nu(f)+1$, then $\Gamma(f)=<m, n>$ and one of the following conditions holds:

- $(m, n)=(2,2 p+1), p \geq 1$.
- $(m, n)=(3,4)$.
- $(m, n)=(3,5)$.
(2) If $\mu(f)=\nu(f)+2$ and $h=1$ then $\Gamma(f)=<m, n>$ and one of the following conditions holds:
- $(m, n)=(2,2 p+1), p \geq 1$.
- $(m, n)=(3,4)$.
- $(m, n)=(3,5)$.
- $(m, n)=(4,5)$.
- $(m, n)=(3, n)$ with $\operatorname{gcd}(3, n)=1$.
(3) If $\mu(f)=\nu(f)+2$ and $h=2$ then $\Gamma(f)=<m, n, r_{2}>$ and one of the following conditions holds:
- $\left(m, n, r_{2}\right)=(4,4 p+2,2 q+1), p \geq 1$ and $8 p+4>2 q+1$.
- $\left(m, n, r_{2}\right)=(6,8,2 p+1), p \leq 11$.
- $\left(m, n, r_{2}\right)=(6,10,2 p+1), p \leq 14$.
- $\left(m, n, r_{2}\right)=(4,6,2 p+1), p \leq 5$.

Bibliographie

[1] S.S Abhyankar, Approximate Roots of Polynomials and Special Cases of the Epimorphism Theorem. preprint Purdue Univ. 1975.
[2] S.S. Abhyankar, Expansion Techniques in Algebraic Geometry, Lecture Notes of the Tata Institute Bombay, 57, (1977). 9
[3] S. S. Abhyankar, On the ramification of algebraic functions, Amer. J. Math., 77, (1955), 575-592. 10
[4] S.S. Abhyankar, On the semigroup of a meromorphic curve, Part 1, in Proceedings of International Symposium on Algebraic Geometry, Kyoto, (1977), 240-414. 9, 12
[5] S.S. Abhyankar, T.T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260 (1973), 47-83 ; ibid. 261 (1973), 29-54.
[6] F. Aroca, G. Ilardi, A family of algebraically closed fields containing polynomials in several variables, Communications in Algebra, 37 : 1284-1296, 2009. 10
[7] A. Assi, A. Sathaye, On quasi-homogenous curves, Affine Algebraic Geometry, Osaka Univ. Press, Osaka (2007), 33-56. 12
[8] A. Assi, Irreducibility criterion for quasi-ordinary polynomials, Journal of Singularities Volume 4 (2012), 23-34.
[9] A. Assi, Meromorphic plane curves, Math. Z. 230 (1999), no. 1, 165-183.
[10] A. Assi, P.A García-Sánchez, Algorithms for curves with one place at infinity, J. Symbolic Comput. 74 (2016), 475-492. 12
[11] A. Assi, P.A García-Sánchez, Numerical Semigroups and Applications, RSME Springer Series I, 2016.
[12] A. Assi, P.A García-Sánchez, V. Micale. Bases of subalgebras of $\mathbb{K}[x]$ and $\mathbb{K}[[x]]$. J. Symbolic Comput. 79 (2017), part 1, 4-22.
[13] A. Assi, The Frobenius vector of a free affine semigroup. J. Algebra Appl. 11 (2012), no. 4, 1250065, 10 pp.
[14] R. Berger, differentialmoduln eindimensionaler lokaler Ringe, Math. Z. 81 (1963), 326-354.
[15] P.D. Gonzàlez Pérez, Singularités quasi-ordinaires toriques et polyédre de newton du discriminant. Canad. J. Math., 52, (2000), no. 2, 348-368. 10
[16] P.D. Gonzàlez Pérez, The semigroup of a quasi-ordinary hypersurface, Journal of the Institute of Mathematics of Jussieu, no 2 (2003), 383-399. 10
[17] B. Grunbaum, Convex Polytopes, John Wiley, 1967.
[18] H. E. W. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Varänderlichen x , y in der Umbebung einer Stelle $\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}$. J. Reine Angew. Math., 133, (1908), 289-314. 10
[19] J. Lipman, Quasi-ordinary singularities of embedded surfaces, Thesis, Harvard University (1965). 10
[20] F. Lucas, J. J. Madden, D. Schaub, M. Spivakovsky On connectedness of sets in the real spectra of polynomial rings.
[21] J. McDonald, Fiber polytopes and fractional power series, Journal of Pure and Applied Algebra 104 (1995) 213-233. 10
[22] V. Micale, G. Molica, B. Torrisi, Order bases of subalgebras of $\mathbb{K}[[X]]$. Commutative rings, 193-199, Nova Sci. Publ., Hauppauge, NY, 2002.
[23] V. Micale, Order bases of subalgebras of power series rings, Comm. Algebra 31 (2003), no. 3, 1359-1375.
[24] A. Monforte, M. Kauers, Formal Laurent series in several variables, Expo. Math. 31 (2013) 350-367. 35
[25] I. Newton. The mathematical papers of Isaac Newton. Vol. III : 1670-1673. Edited by D. T. Whiteside, with the assistance in publication of M. A. Hoskin and A. Prag. Cambridge University Press, London, 1969. 9
[26] P. Popescu-Pampu, Approximate roots, 1991 Mathematics Subject Classification. 32B30, 14B05.
[27] V. Puiseux. Recherches sur les fonctions algébriques. J. de math. pures et appl., 15 :365-480, 1850. 9
[28] L. Robbiano and M. Sweedler, Subalgebra bases. Commutative algebra (Salvador, 1988), 61-87, Lecture Notes in Math., 1430, Springer, Berlin, 1990.
[29] J.C Rosales, P.A García-Sánchez, Numerical semigroups, Developments in Mathematics, 20. Springer, New York, 2009.
[30] K. Saito, Quasihomogene isolierte Singularitäten von Hyperfächen, Invent. Math. 14 (1971), 123-142. 12
[31] O. Zariski, Characterization of plane algebroid curves whose module of differentials has maximum torsion. Proc. Nat. Acad. Sci. U.S.A. 56 1966 781-786. 12
[32] M. Zurro, The Abhyankar-Jung theorem revisited, Journal of Pure and Applied Algebra 90 (1993) 275-282.

Thèse de Doctorat

Ali Abbas
 Combinatoire des singularités de certaines courbes et hypersurfaces

Combinatorics of singularities of some curves and hypersurfaces

Abstract

Résumé La thèse est constituée de deux parties. Dans la première partie on généralise la Théorie d'Abhyankar-Moh à un type special de polynômes, les polynômes libres. Soit f un polynôme non nul de $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]$ et supposons, moyennement un changement des variables élémentaire, que la composante homogène de plus bas degré du discriminant de f contient une puissance de x_{1}. Une transformation monômiale dans $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right]$ transforme f en un polynôme quasi-ordinaire avec une racine dans $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right], n \in \mathbb{N}$. En prenant la Préimage de f par le morphisme, nous obtenons une solution $y \in \mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ de $f\left(x_{1}, \ldots, x_{e}, y\right)=0$, où $\mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ est l'anneau des séries fractionnaires dont le support appartient à un cône convexe C. Ceci nous permet de construire l'ensemble des exposants caractéristiques de y, et de généraliser certains des résultats concernant les polynômes quasi-ordinaire au polynôme f. Dans la deuxiéme partie, nous donnons un algorithme pour calculer le monoïde des degrés du module $M=F_{1} A+\ldots+F_{r} A$ oú $A=\mathbb{K}\left[f_{1}(t), \ldots, f_{s}(t)\right]$ et $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$. Nous donnons ensuite des applications concernant le probléme de la classification des courbes polynômiales (C'est-á-dire, des courbes algébriques paramétrées par des polynômes) par rapport à certains de leurs invariants, en utilisant le module de différentielles Kähleriennes.

Mots clés

Polynômes quasi-ordinaires, Cônes sans droites, Racines approchées, Semigroupes numériques, Nombre de Milnor, Nombre de Tjurina

Abstract

The thesis is made up of two parts. In the first part we generalize the Abhyankar-Moh theory to a special kind of polynomials, called free polynomials. We take a polynomial f in $\mathbb{K}\left[\left[x_{1}, \ldots, x_{e}\right]\right][y]$ and by a preliminary change of variables we may assume that the leading term of the discriminant of f contains a power of x_{1}. After a monomial transformation we get a quasi-ordinary polynomial with a root in $\mathbb{K}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{e}}\right]\right]$ for some $n \in \mathbb{N}$. By taking the preimage of f we get a solution $y \in \mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{1}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ of $f\left(x_{1}, \ldots, x_{e}, y\right)=0$, where $\mathbb{K}_{C}\left[\left[x_{1}^{\frac{1}{n}}, \ldots, x_{e}^{\frac{1}{n}}\right]\right]$ is the ring of formal fractional power series with support in a specific line free cone C. Then we construct the set of characteristic exponents of y, and we generalize some of the results concerning quasi-ordinary polynomials to f. In the second part, we give a procedure to calculate the monoid of degrees of the module $M=F_{1} A+\ldots+F_{r} A$ where $A=\mathbb{K}\left[f_{1}, \ldots, f_{s}\right]$ and $F_{1}, \ldots, F_{r} \in \mathbb{K}[t]$. Then we give some applications to the problem of the classification of plane polynomial curves (that is, plane algebraic curves parametrized by polynomials) with respect to some of their invariants, using the module of Kähler differentials.

Key Words

Quasi-ordinary polynomials, Line-free cones, Approximate roots, Numerical semigroups, Tjurina number, Milnor number.

