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METHODES DE LA FRONTIERE IMMERGEE POUR L'INTERACTIONS
FLUIDE-STRUCTURE AVEC DES CHANGEMENTS DE TOPOLOGIE

Resumé: Cette thése est dédiée a la modélisation, ’analyse numérique et a la simulation
des problémes d’interactions fluide-structure. Nous considérons des structures déformable
& parois minces et immergées dans un fluide visqueux incompressible. La motivation
sous-jacente de ce travail est la simulation des valves cardiaques.

Ce travail aborde des questions fondamentales qui vont du fractionnement efficace du
temps avec des maillages non compatibles, a la modélisation de contact dans 'interaction
fluide-structure et son approximation. Pour des raisons de robustesse et de solidité math-
ématique, 'approximation spatiale est basée sur le cadre de maillage non compatibles
Nitsche-XFEM.

Dans la premiére partie, nous présentons et analysons un nouveau schéma semi-
implicite, qui évite un couplage fort, sans compromettre la stabilité et la précision. Dans
la deuxiéme partie, nous considérons la situation dans laquelle le contact se produit. Dans
le contexte de Nitsche-XFEM, un modéle d’interaction fluide-structure-contact est égale-
ment étendu dans le cas de contact avec plusieurs structures. Une procédure de duplication
spécifique permet de préserver la consistance de la méthode également dans le cas du con-
tact. Les inconsistances mécaniques traditionnelles de la formulation du contact relaxé
dans l'interaction fluide-structure sont contournées en introduisant un modéle poreux de
surface dans la paroi de contact. Cette couche décrit la rugosité de la surface, donnant
un sens physique aux régions fluides infinitésimales, qui restent entre le solide et la sur-
face au contact. Dans la derniére partie, nous développons I'extension 3D de la méthode
de maillage Nitsche-XFEM, dans le cas de domaines fluides entiérement et partiellement
intersectés.

Mots-clés: Interactions fluide-structure, Méthodes de maillages non compatibles, Sché-
mas de couplage, Méthode de Nitsche, XFEM, Structures minces immergés, Contact.






IMMERSED BOUNDARY METHODS FOR FLUID-STRUCTURE INTERACTION WITH
TOPOLOGICAL CHANGES

Abstract: This thesis is dedicated to the modeling, numerical analysis and simulation
of fluid-structure interaction problems, involving thin-walled structures immersed in an
incompressible viscous fluid. The underlying motivation of this work is the simulation of
heart valves.

This work addresses fundamental issues which go from efficient time-splitting with
unfitted meshes, to contact modeling in fluid-structure interaction and its approximation.
For the sake of robustness and mathematical soundness, the spatial approximation is based
on the Nitsche-XFEM unfitted mesh framework.

In the first part, we present and analyse a new semi-implicit scheme for Nitsche-
XFEM, which avoids strong coupling, without compromising stability and accuracy. In
the second part, we consider the situation in which contact occurs. In the context of
Nitsche-XFEM, a fluid-structure-contact interaction model is extended also to the case of
contact with multiple structures. A specific duplication procedure allows to extend the
consistency of the method to the case of contact. Traditional mechanical inconsistencies of
relaxed contact formulation in fluid-structure interaction are circumvented by introducing
a surface porous model in the contact wall. This layer describes surface roughness, giving
physical meaning to the infinitesimal fluid regions between the solid and the surface at
contact. In the last part, we develop the 3D extension of the unfitted mesh Nitsche-XFEM
method in case of fully and partially intersected fluid domains.

Keywords: Fluid-structure interaction, Unfitted mesh methods, Coupling schemes,
Nitsche’s method, XFEM, Immersed thin-walled structures, Contact.
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INTRODUCTION






Thesis general context

The mechanical interaction of an incompressible viscous fluid with an immersed struc-
ture appears in a wide variety of engineering fields and is particularly ubiquitous in nature.
The applications span from micro-encapsulation, biomechanics of cells deformation, birds
flight, physiological flows, such as, heart dynamics and cilliary beating, to aeroelasticity
of parachutes and sailing boats (see, e.g., Liu and Liu (2006); Van Loon et al. (2005);
Han and Peskin (2018); Nakata and Liu (2012); Weymouth et al. (2006); Takizawa and
Tezduyar (2012)).

Since the beginning of this century, impressive progress has been made in building
efficient and accurate numerical methods, able to represent the physiological and patho-
logical functionality of blood dynamics. Numerical simulations are effective tools, useful
to physicians, as, e.g., support for design new devices, better understanding diseases or
malfunctioning and they can become tools for quantity estimations, otherwise concretely
inaccessible.

Position of the thesis

This thesis is devoted to the modeling, analysis and numerical simulations of fluid-
structure interaction problems with immersed solids and contact. The work is mainly
motivated by the numerical simulation of blood flow interacting with heart valves (see,
e.g., Kamensky et al. (2015); Lau et al. (2010)), with particular focus on stability, accuracy
and robustness. Given the ratio thickness/size of the leaflets, a common assumption is to
model the heart valves as structures of co-dimension one (see, e.g., Diniz dos Santos et al.
(2008); Astorino et al. (2009b)). This simplified, but realistic, reduced order problem is
a fundamental ingredient of this thesis and we refer to as thin-walled solid model. With
regard to efficiency, one possible way to gain in performance is to introduce a certain
degrees of time-splitting between the fluid and solid problems, thus, avoid strong coupling.
Standard loosely coupled schemes are known to exhibit stability and accuracy issues, since
the interface coupling in incompressible fluid-structure interaction is extremely stiff. In-
deed, they often require severe time-step restrictions and stability conditions, which are
linked to the amount of added-mass effect (see Section 1.3.2).

The development of fluid-structure interaction numerical methods has been extensively
investigated within the fitted and unfitted mesh frameworks. In the first strategy the fluid
and solid meshes are fitted at their interface (see Section 1.3.1), thus, it is ideal for problems
with moderate displacement and are usually treated with moving mesh techniques and an
Arbitrary Lagrangian Eulerian description of the fluid problem. However, they becomes
cumbersome within problems featuring large interface displacement and potential contact
between solids.



In such situations, a favored numerical approach is the unfitted mesh based formula-
tions, in which an Eulerian description of the fluid problem is combined with solid meshes
which are freely to move independently of a background fluid mesh. However, the design
and analysis of splitting schemes, which avoid strong coupling, in the unfitted framework,
have been rarely addressed in the literature so far. In the first part of this thesis (Part
I), we investigate the stability and accuracy of an unfitted mesh semi-implicit scheme,
which avoids strong coupling. Therein, we will consider a consistent spatial discretization
based on Nitsche mortaring, with unfitted mesh and cut-elements, named Nitsche-XFEM
method.

Moreover, in applications where contact occurs, such as in heart valves dynamics, topo-
logical changes appear in the fluid domain. Modeling contact, in particular coupled with
fluid-structure interaction, rises many issues, from the modeling and numerical points of
view. The computational complexity is also an issue, in particular when a realistic contact
(i.e, without relaxation of the contact conditions) is considered. Real topology changes
can be avoided by relaxing the contact conditions (see Section 1.2.4). This approximation
suffers, however, of mechanical consistency loss. In the second part of this thesis (Part
IT), we address some of these issues (see Section 1.2.4).

Furthermore, the development of efficient, accurate and robust methods is fundamental
for 3D numerical simulations. This raises some issues that are addressed in Part III by
extending the unfitted mesh, Nitsche’s and cut-elements based method, to the 3D case.
Indeed, the considered unfitted mesh method requires a specific track of the interface
intersections which becomes cumbersome in 3D.

Thesis outline and main contributions

The main contributions of this work are listed here, chapter by chapter. For the sake
of clarity, they are discussed at the beginning of each chapter.

Chapter 1. This is an introductory chapter. We present the essential models involved
in fluid-structure interaction problems with thin-walled immersed solids. A review of the
state-of-the-art on numerical methods is provided, by discussing the different available
methods for the space and time discretization.

Part I: Time-splitting schemes for unfitted mesh approximations of FSI

Chapter 2. We introduce a new semi-implicit coupling scheme for the numerical
approximation of incompressible fluid-structure interaction problems, involving thin-
walled immersed solids. The method combines a Nitsche based unfitted mesh spatial
approximation with a fractional-step time-marching in the fluid. The viscous part of the
coupling is treated in an explicit fashion, while the remaining fluid pressure and solid con-
tributions are treated implicitly. The presented scheme efficiently avoid strong coupling,
without compromising stability and accuracy. A stability analysis is conducted in the
chapter and the efficiency of the numerical scheme is illustrated via numerical experiments.
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Chapter 3. This chapter is devoted to the error analysis of the numerical method
presented in Chapter 2, for a linear fluid-structure coupled system, involving the transient
Stokes equations (in a fixed domain) and a thin-walled solid elastodynamics model. Robust
a priori error estimates are derived for two extrapolated variants of the solid velocity.
Further, numerical evidences on the convergence properties of the methods is provided.

Part II: Modeling and approximation of fluid-structure-contact interaction

Chapter 4. We address the issues raised by the approximation of a basic fluid-
structure-contact interaction model using the Nitsche-XFEM method. We illustrate
that, for consistency reasons, further element duplication is needed in the fluid elements
where contact between the structures occurs. The proposed method, for fluid-structure
interaction with contact, is hence compared with the ALE and FD/Lagrange multipliers
methods, exploiting the advantages and limitations of these strategies.

Chapter 5. We introduce a mechanically consistent mixed dimensional fluid-
structure-contact interaction model. The fluid-structure-contact interaction problem
is coupled to a thin-walled Darcy model on the contacting wall. The model gives a
mechanical justification for the fluid-structure-contact interaction with a relaxed contact
condition. The thin-walled porous layer introduces tangential creeping flow along the
boundary and allows for the modelling of boundary flow due to surface roughness.
Numerical examples are reported for both Stokes’-Darcy coupling alone, as well as
fluid-structure-Darcy-contact at the porous boundary layer.

Part III: 3D numerical simulations

Chapter 6. In this chapter, we discuss the formulation and implementation aspects
of the Nitsche-XFEM discretization method, to the three-dimensional case. A particular
focus is made on the efficiency and robustness of the intersection and sub-triangulation
algorithms without resorting to black-box meshing software. The performance and
robustness of the presented method are explored via a series of numerical examples,
involving moving interfaces, with partially and fully intersected fluid domains.
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CHAPTER 1

Numerical methods for fluid-structure
interaction

In this chapter, we briefly review the basic models and numerical methods for fluid-
structure interaction with tmmersed thin-walled solids. In particular, we present a review
of the existing numerical methods, focusing, in particular, on the spatial discretization,
the time splitting between the fluid and structure solvers and contact formulations.

Contents

1.1 Introduction
1.2 Fluid-structure interaction
1.2.1 Fluid models

1.2.2  Thin-walled solid model 10
1.2.3  Fluid-structure coupled problems 11
1.2.4 Contact modeling 14
1.3 Numerical methods 18
1.3.1 Spatial discretization 18
1.3.2  Time-splitting 19

1.1 Introduction

The content of this chapter serves as basic background of the work presented in the
rest of this thesis. The reader interested in fundamentals of general continuum mechan-
ics, is referred to Gurtin (1982); Lai et al. (2009). Material regarding fundamentals of
solid mechanics can be found in Ciarlet (1988); Chapelle and Bathe (2011). The latter
reference is related, in particular, to the mathematical models and their finite element
approximation, in the context of thin-walled structures. The models commonly used for
the mathematical modeling of fluid-structure interaction (FSI) problems are presented in
the following sections. Starting from the description of the fluid equations, solid equations
and, finally, considering the full FSI problem, adding the necessary coupling conditions.
The fluid formalisms considered will be the Eulerian and Arbitrary Lagrangian Eulerian
(ALE), while for the solid equation we restrict the discussion only to the Lagrangian de-
scription. As regards additional materials about basis and introduction to fluid-structure



interaction problems, we refer to Formaggia et al. (2009) and the references therein. Af-
terward, we describe the modeling in contact. In particular, for discussion on dry contact
mechanics, we refer to Wriggers and Zavarise (2004), for contact treated via penalization
to Chouly and Hild (2012), and via Augmented Lagrangian/Nitsche’s approach to Burman
et al. (2018, 2019). The latter approach can be seen as a consistent penalization method.
For contact considered in the context of fluid-structure interaction, we refer to Diniz dos
Santos et al. (2008); Astorino et al. (2009b); Kamensky et al. (2015); Zonca et al. (2020)
and Burman et al. (2020a); Mayer et al. (2009, 2010); Chouly et al. (2017) for further
examples of contact for FSI treated via Nitsche’s approach.

Regarding the numerical approximation, we present a review of the existing numerical
methods, discussing the possible spatial discretization strategies (distinguish fitted mesh
from the unfitted mesh based approximations) and the degree of time splitting between
the fluid and structure sub-problems (introducing the concept of strongly coupled and
weakly-coupled schemes). Reviews on numerical methods for FSI can be found in Hou
et al. (2012); Formaggia et al. (2009); Fernandez (2011).

The rest of the chapter is organized as follows. In Section 1.2 we describe the general
geometrical setting and we introduce the fundamental models involved in FSI problem. In
particular, we present the fluid problems in Section 1.2.1, the solid problem in Section 1.2.2
and the coupled problems in Section 1.2.3. In Section 1.2.4, the main issues encountered
considering contact modeling are described. Section 1.3 presents a review on the existing
numerical methods regarding the space discretization (Section 1.3.1) and the splitting
between the fluid and solid (Section 1.3.2).

1.2 Fluid-structure interaction

In this section, we consider the mechanical interaction between a deformable thin-
walled structure and an incompressible viscous fluid. In the following, the structure domain
and the fluid-structure coupling interface are identified by the solid mid-surface.

In continuum mechanics, the Lagrangian formalism is typically used when the interest
is on following the material particles, while the Eulerian point of view describes the state
of the system in a given control volume in the physical space. Depending on the context
one formulation is preferred to the other (see Formaggia et al. (2009)). The classical choice
is to consider the Eulerian representation for the fluid and the Lagrangian for the solid.
Another possible formulation is the intermediate formalism, called Arbitrary Lagrangian
Eulerian (ALE) and is often considered in hemodynamics simulations (see Nobile (2001);
Formaggia et al. (2009)).

In the following paragraphs, we will first present the fluid equations in their Eulerian
and ALE formalism, afterwards, the solid Lagrangian equations and finally the coupled
FSI problem.

1.2.1 Fluid models

Blood is a complex non-Newtonian fluid characterized by a suspension of cells in a
liquid (the plasma) made of water for its 90%. The constitutive particles are mainly
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red blood cell, white blood cell and platelets. The red blood cell are responsible for
the Non-Newtonian blood behavior, due to their highly deformable structure. The Non-
Newtonian effects become significant when the vessel size is small (see, e.g., Fahraeus-
Lindqvist effect in Possenti et al. (2019); Pries et al. (1994)), while they can be neglected for
medium and large size arteries. In this work we will consider the numerical approximation
of blood flow in large/medium size vessels, hence, it is reasonable to assume the blood
as an homogeneous, incompressible and Newtonian fluid, governed by the Navier-Stokes
equations. Let now introduce the Navier-Stokes equations in the different frameworks.

1.2.1.1 Eulerian Incompressible Navier-Stokes equations

In this paragraph we provide the necessary notations to describe the Navier-Stokes
equations in theirs Eulerian framework. Let Qf(t) € R d = 2,3, be a bounded time-
dependent domain, with a Lipschitz boundary 0Qf(¢). We denote with n the unit outward
normal on 9Qf(t). The previously discussed fluid assumptions translate to constant (in
space and time) fluid density pt and dynamic viscosity p. The Incompressible Navier-
Stokes equations in Eulerian framework read as follow: find the fluid velocity u : QF(t) x
R+ — R? and pressure p : Qf(t) x RT — R, such that for all t € Rt we have

f - _0 £
{p (Ou+ (u-V)u) —dive(u,p) =0 in Q(t), (L.1)

divu=0 in Qf(t),

where o (u, p) aof 2p€e(u) — pI is the Cauchy stress tensor and €(u) e 3 (Vu+Vaul) the
strain rate tensor, in which I denotes the identity tensor.

Problem (1.1) needs to be completed with proper initial condition »(0) = wo and
boundary conditions on 9Qf (), namely

u=wup on I'p(t),

o(u,p)n =gy on I'x(t),

where up and gy denote, respectively, a velocity and a pressure profile. Finally, I'p and
'y, are such that 9Qf(t) = Tp(t) UTx(t).

1.2.1.2 Arbitrary-Lagrangian-Eulerian Incompressible Navier-Stokes equa-
tions

In this paragraph we reformulate the Eulerian Navier-Stokes equation (1.1) in the ALE
framework. Only the essential notions are presented. A more extensive presentation can
be found in Formaggia et al. (2009) and Nobile (2001). Let Qf = Qf(0) be the reference
fluid domain. The Arbitrary-Lagrangian-Eulerian description is based on the introduction
of an appropriate one-to-one mapping A : Of x Rt — R?, defined in terms of the fluid
domain displacement d' : Of x R — R?, given by the following expression

def £
A — IﬁfXR-" +d .
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The purpose of the ALE mapping A is to parametrize the motion of fluid domain and
facilitate the time discretization, when working with an evolving computational domain.
The fluid domain velocity is hence defined as w def dyd’ and the initial configuration is

such that Of = A(ﬁf, 0). It should be noted that, the initial configuration coincides with

the reference fluid domain. We will also introduce the notation A(X) o A(X, 1), by fixing

¢t> 0 and with % € QF.
We recall that for a given functional defined on the ALE reference domain f : Qf x RT,
we can define its Eulerian counterpart, by

~

f(@t) = f@.t)o AT = F(A 7 (®),1), V(1) € Q(t) x RT,

and conversely R R
f(ivt) :f(At(i)at)v V(i,t) EQf XR+'

For instance, at each point of the current configuration, the Eulerian domain velocity is
such that w(x,t) = w(x,t). Notice that in general the fluid velocity and the domain
velocity are different (if w = 0 we retrieve the Eulerian formulation, while if w = wu the
Lagrangian description).

The last necessary ingredient is the so-called ALE time-derivative. For a given Eulerian
field g, we define the ALE time-derivative as follows:

? défaﬂAq:qu—F%
ta ot

Hence, the Arbitrary-Lagrangian-Eulerian description of the incompressible Navier-Stokes
equations is obtained by introducing the ALE time derivative inside (1.1). The problem
reads as follow:
find the velocity u = u(&,1t) : Of x RT — R? and pressure p = p(x,t) : Of x Rt — R,
such that

{pf(8t|Au+(uw-V)u)diva'(u,p):f in Qf(t), L9

dive =0 in Qi(t),

As for the Eulerian description, problem (1.2) is similarly completed with initial condition
on Qf(0) and boundary conditions on I'p and I'y.

1.2.2 Thin-walled solid model

For a full presentation of the theory of shell models we refer to Chapelle and Bathe
(2011); Bischoff et al. (2018). Given the ratio thickness/size of the heart valve leaflets, a
common assumption is to model the valves as co-dimensional one structures (i.e., (d — 1)-
dimensional models where d is the dimension of the problem under analysis, see, e.g.,
Diniz dos Santos et al. (2008); Astorino et al. (2009b)). These simplified (but still real-
istic) dimensionally reduced problems, that we refer to as thin-walled solid models, are
those considered in the models presented in this work. Starting form a thick-walled solid
description, with the assumption of ration thickness/size of the solid structure small, we
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define the solid equations on the solid mid-surface ¥ and we refer to its thickness as €. Note
that 3 is at the same time the fluid-structure interface as well as the solid reference config-
uration. We will consider the Reissner-Mindlin kinematic assumption (see Chapelle and
Bathe (2011)), which states that, a material line orthogonal to the reference mid-surface
is assumed to remain straight and unstretched during deformation. The displacement is,
hence, given in terms of a global displacement and a rotation vector around the normal to
the mid-surface. Additionally we well consider a shear-membrane-bending model within a
non-linear framework. This will be the model considered in the numerical examples of the
next chapters, unless specified otherwise.

For sake of simplicity, the shear-membrane-bending model that we consider in the
description of the methods reads as follow: find the solid displacement d : ¥ x Rt — R?
and velocity d: ¥ x Rt = R? such that

(1.3)

pedid + L(d) =T on X,
d=0,d on X,

where p° represents the solid density and ¢ its thickness. Additionally, T' denotes a given
source term, hence a force per unit area, and the surface operator L represents the strong
formulation of the thin-walled solid elastic contributions.

Finally, problem (1.3) must be completed with initial conditions, namely,

d(O) = do on Z,
d(0) = dy on X,

as well as boundary conditions on 0.

1.2.3 Fluid-structure coupled problems

Considering the models presented previously, we can now describe the full fluid-
structure interaction problem including the coupling/transmission conditions. Thus, we
will couple the fluid equations introduced in Section 1.2.1 (considering both Eulerian and
ALE formalism) with the thin-walled solid model presented in Section 1.2.2 in Lagrangian

formalism.
Of f
b)) Q1) N9
: ()

\_//

ol

Figure 1.1: Geometrical configuration.

We consider ¥ C RY, with d = 2,3, the solid mid-surface and let () be the current
position of the interface, given in terms of a deformation map ¢ : ¥ x Rt — R? and
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the solid displacement d, namely ¢ def Iy g+ + d and such that X(t) = ¢(X,t). The
geometric configuration is shown in Figure 1.1. The structure is allowed to move within a

fixed domain Qf ¢ R?, with boundary T 4f 90f. The fluid time-dependent domain is then

defined as Qf(t) L of \ 2(¢) and with boundary 9Qf = I' U £(¢). We also introduce the

following notation ¢, def (-, t). The immersed interface X(t) is oriented with unit normal

ny, and it divides the fluid domain Qf(¢) into two subdomains, with normals respectively

def def
ny = ny, and Ny = —ny.

For a given field f in Qf(t) (possibly discontinuous on X(t)), we define its sided-
restrictions, denoted by fi; and fs, as

fil@) < Jim f(@+gn), fol2) < lim fl@+éna),

for all € X(t), and the following jump and average operators across 3(t):

def det 1

1 fi—fo [nl Y fing+ fons, {1} §(f1 + f2).

In the coupling with a thin-walled solid the transmission condition are applied directly
to the solid mid-surface ¥, this means that the solid thickness effects are neglected in the
interface coupling. This is a common assumption in the coupling of thin-walled solids with
general 3D media (see, e.g., Chapelle and Ferent (2003)). The fluid and solid problems are
coupled via the so-called kinematic and dynamic coupling conditions. The first is a no-slip
condition, representing the fact that, due to its viscosity, the fluid sticks perfectly to the
fluid-structure interface. The second accounts for the Newton’s third law, hence, for the

balance of stresses at the interface. Additionally a geometrical compatibility condition
need to be fulfilled between the fluid and solid domains Qf () and X(¢).

In the sequel, we introduce the Eulerian-Lagrangian and the ALE-Lagrangian descrip-
tion of the coupled FSI problem.

1.2.3.1 Eulerian-Lagrangian formalism

We can define the first coupled fluid-structure problem by considering the Eulerian
Navier-Stokes equations of Section 1.2.1.1 and the membrane model of Section 1.2.2. The
coupled problem read as follow: find the fluid velocity w : Qf x Rt — R¢ and pressure
p: Qf x RT — R, the solid displacement d : ¥ x Rt — R? and velocity d : ¥ x RT — R,
such that

P (O +u-Vu) —dive(u,p) =0 in Q(t),
divu=0 in Qf(t), (1.5)
u=0 on T,
pedd+L(d)=T on X,
d=98d on I,
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¢=Ing +d, () =¢(5,1), Q(t)="\I(),
u=do¢p;! on X(t),

/T-y:—/ [o(u,p)n] -yo ¢! Vsmoothy : ¥ — R%.
s ()

(1.7)

As previously, we complete the problem by adding initial and boundary conditions, which
are inherited from problems (1.1) and (1.3).

The first equation in (1.7) represents the geometric coupling, which defines the time
dependent fluid control volume following the motion of the interface. Equation (1.7)2
enforces the kinematic coupling and the last equation (1.7)3 the dynamic coupling, i.e.,
the balance of stresses at the interface X(¢).

As a consequence of the geometrical coupling condition, problem (1.5)-(1.7) is non-
linear, since involves integrals defined on moving domains. In the following, we will refer
to this as geometrical non-linearities.

1.2.3.2 ALE-Lagrangian formalism

In this section, we introduce an alternative formulation of problem (1.5)-(1.7), in which
the fluid equations are formulated using the ALE formalism of Section 1.2.1.2.

A1)

Qz Qb (1) n,
()

\_//

of

Qf

Figure 1.2: Geometrical configuration with for ALE-Lagrangian formalism.

We begin by recalling that the dynamics of the fluid domain is parametrized as
Q) = A(ﬁf,t), where A is the ALE-one-to-one mapping defined in Section 1.2.1.2,
in terms of the fluid domain displacement d' (see Figure 1.2). In the context of FSI,
the fluid domain displacement is constrained to the solid displacement by a geometrical
compatibility. Typically, the fluid domain displacement is described by a relation of the
type d' = L (d), where L (d) represents a suitable lifting of d from X to Qf which vanishes
on I'. Additionally, it should be noted that the fluid domain displacement is arbitrary in
ﬁf\E. Here the terminology Arbitrary Lagrangian Eulerian. The choice for the mapping is
arbitrary. However, the efficiency of the method is strongly connected to the effectiveness
of the lifting operator, which has the objective of correctly deforming the fluid mesh while
maintaining a reasonable elements quality. An harmonic lifting operator can be consid-
ered at first, even though, more involved operators based, for instance, on the resolution
of elasticity problems are extensively used in the literature (see, e.g., Stein et al. (2003);
Landajuela et al. (2017)).
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The ALE-Lagrangian FSI coupled problem reads as follows: find the fluid domain
displacement d! : Of x Rt — R?, the fluid velocity @ : Of x Rt — R?, the fluid pressure
D: Of x Rt — R, the solid mid-surface displacement d : ¥ x Rt — R¢ and the solid
mid-surface velocity d: S xRt — R?, such that

pf8t|,4u + pf(u —w)-Vu—dive(u,p) =0 in Qf(t),
divu=0 in Qi) (1.8)
u=0 on T,

sedd+L(d)=T on X,
v w9

d:atd on E,
d'=C(d), w=9d, A=Is o +d, Qi) =A0""1),
¢:IE><]R+ +d7 E(t) = ¢(th)>

u=dog¢;' =do A" on X(), (1.10)

[T v= _/E(t)[[(f(u,p)nﬂ ot = —/E(t)[[cr(u,p)nu yo AL,

for all smooth function y : ¥ — R%.

Compared to problem (1.5)-(1.7), the fluid domain motion is now fully parametrize
by the map A. Equations (1.10)23 and (1.10)4 represent, respectively, the geometric,
the kinematic, and the dynamic coupling conditions. Note that as a consequence of the
geometrical coupling condition, the ALE A mapping and the deformation map ¢ coincide
on X(t). Finally, problem (1.8)-(1.10) must be completed with appropriate initial and
boundary conditions.

1.2.4 Contact modeling

Contact is an essential aspect of fluid-structure interaction problems, in particular,
when we consider as target application heart valves hemodynamics. Building a fluid-
structure-contact interaction model, which is, simultaneously, mechanically consistent and
able to avoid penetration (between the contacting bodies), is a highly complicate and
challenging problem. The computational complexity is also a issue, particularly in the
case of real contact (i.e, without relaxation of the contact conditions). In the following,
we will consider unilateral frictionless contact, where contact can occur between the solid
and a rigid wall, but this can be generalized to the case of contact between multiple solids
(see Section 4.2.1).

The distance between the solid and the contacting surface is called gap (see Figure 1.3)
and solid penetration is typically avoided by adding a contact force to the solid problem
when contact is detected. Usually, two exclusive status gap or contact are classically
formulated by imposing an impermeability condition, a compression condition and a com-
plementary condition. Let consider the solid model introduced in Section 1.2.2. Within
the typical contact approaches, we can distinguish between realistic and relazed contact
models.
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Figure 1.3: Geometric configuration in the non contact situation.

In the first setting, the solid is allowed to reach a zero gap distance, enabling a change
in the fluid domain topology (see Figure 1.4). In this case the contact problem reads as
follow: find the solid displacement d : ¥ x Rt — R and velocity d : ¥ x RT — R?, such
that

c0d+ L(d)—An=T 5,
{pet +L(d) - An o (1.11)

dn—g<0, A<0, AMd-n—-g)=0 on X,

where n denotes the outward normal vector of the contacting surface and A represents the
contact force in the normal direction. The first inequality in (1.11)2 ensures that the solid
can not pass though the contacting surface, the second inequality that the normal stress
is zero (in the absence of contact) or negative (during contact) and the third condition
is a complementarity condition that guarantees that at least one of the inequalities is
activated. During contact state we have that d-n — g = 0 and A < 0, while A = 0 if

Figure 1.4: Geometric configuration for the realistic contact scenario.

d-n—g<0. Aslong as d-n — g < 0, contact is not activated and no extra forces are
added to the solid problem (see Figure 1.3).

Typically, at the discrete level the contacting nodes are removed from the FSI
interface, hence, they are only in contact with the surface and, therefore, the Newton’s
third law is respected (the only force acting is the contact force, no fluid stresses are
involved). This mechanical consistency at contact comes however at a price. Several
difficulties have to be faced, such as, paradoxes at solid release (such as isolated vacuum
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zone, see Figure 1.5) and FSI coupling interface which is, a priory, unknown, thus, the
explicit treatment of geometrical non-linearities may be inappropriate. Additionally, at

Figure 1.5: Geometric configuration for the realistic contact scenario with vacuum zone
at release.

the discrete level, real contact between non matching meshes lead to small regions of
fluid isolated from the rest of the fluid domain could appear. In Ager et al. (2019a), the
authors propose and ad hoc approach by removing these isolated areas, when smaller
than a specific size.

To overcome this difficulties, an alternative approach is to consider a relazed contact
formulation, which can also be seen as the insertion of a fictitious contact wall, only visible
from the solid side. This formulation avoids real contact, by allowing a small separation
between the structure and the contacting wall (see, e.g., Burman et al. (2020a)) . In this
approximation, the gap g is relaxed by a small fictitious gap ep, allowing an infinitesimal
distance between the solid and the contacting surface at contact (see Figure 1.6). The

(1)

ten

Figure 1.6: Geometric configuration for the relaxed contact scenario.

relaxed contact problem reads as follow: find the solid displacement d : ¥ x RT — R? and
velocity d : ¥ x RT — R%, such that

pedd+ L(d) —An =T on Y,
dn—g<0 AX<0, AMd-n—g;)=0 on X,
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where g, def g — ep. Concretely, the no-penetration condition is imposed at ep-distance
from the contacting surface. In the context of FSI with contact, a layer of fluid will
always remain in between the solid and the surface, also at contact. Hence, the contacting
structure feel both the contact force as well as the fluid stresses. The solid is at the same
time in contact and coupled with the fluid, therefore, the balance of stresses is violated
and the Newton’s third law is broken. In other words, the contact relaxed formulation
avoids the issues related to real topology change, but at the price of a loss of mechanical
consistency.

A possible solution strategy to overcome this mechanically inconsistency has been
introduced in Ager et al. (2019a). They propose to include, within a real contact fluid-
structure model, a poroelastic medium over the surface, with the function of describe the
solid asperities and eventually squeezing effect due to contact. Hence, the solid gets in
contact with a poroelastic medium, which plays the role of an averaged representation
between fluid and solid (see Figure 1.7). This approach solves, for instance, the problem

Figure 1.7: Geometric configuration for the realistic contact scenario with a poroelastic
medium.

of possible fluid isolated region, that could be created at contact or at release, by enabling
a fluid flux inside the poroelastic material. The drawbacks are the computational com-
plexity and active switch between fluid-solid, fluid-porous and poroelastic-solid coupling
conditions (due to the real contact approximation).

To overcome this additional issues, we will propose in Chapter 5 a reduced order
porous model coupled with a relaxed contact formulation. Adding the porous layer over
the contact surface is solving the problem of mechanical consistency loss in the relaxed
contact problem, related to the Newton’s third law rupture. In fact, the porous medium
gives physical meaning to the fluid stresses of the infinitesimal fluid layer remaining at
contact.

Regarding the contact algorithm considered in literature, we can find approaches based
on the resolution of a constrained minimization problem (see, e.g., Diniz dos Santos et al.
(2008); Astorino et al. (2009b)), penalization procedure, for instance, for contact treated
via penalization we refer to Chouly and Hild (2012); Kamensky et al. (2015), via Aug-
mented Lagrangian/Nitsche’s approach to Burman et al. (2018, 2019, 2020a); Mayer et al.
(2009, 2010); Chouly et al. (2017). In this work, we will consider a penalty-based ap-
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proach, in which we assume contact to be frictionless and soft, characterized by the fact
that only displacements in the normal direction are constrained. Moreover, no additional
forces due to the lubrication of the structures by the surrounding fluid are considered.

1.3 Numerical methods

In this section, we draw an overview of the methods that are currently used for fluid-
structure coupled problems with immersed solids. We will consider first the possible
methodology related to the spatial discretization, in particular we will distinguish between
fitted and unfitted meshes. Afterward, we consider the splitting in time of the fluid-
structure coupling condition. We will discuss about monolithic/partitioned approaches
and, within the latter class of coupling schemes, strongly coupled /weakly coupled schemes.

1.3.1 Spatial discretization

The numerical methods for fluid-structure interaction can be roughly divided between
fitted and unfitted mesh based approaches. In the former methodology, the fluid and
solid meshes match (see Figure 1.8(a)). Hence, accurate computation of the transmission
condition are allowed since the fluid and solid meshes fit at their interface. Additionally,
an exact representation of discontinuous quantities is easily embeddable, within the
discrete problem, by simply duplicating the degrees of freedom on ¥. For contributions
within the fitted meshes framework we refer to, e.g., Formaggia et al. (2009); Nobile
(2001); Boman and Ponthot (2004); Donea et al. (1982); Spiihler et al. (2018). When
large displacements (specially contact) are considered the deformation procedure may
fail. Advanced remeshing and moving meshes techniques are one way to circumvent these
issues (Wick (2011); Alauzet (2014)).

Figure 1.8: Fitted fluid and solid meshes (a), unfitted meshes (b).

In the unfitted mesh methodology (see Figure 1.8(b)), the solid mesh is free to move
independently from the fluid mesh (often called background mesh). As a result, this
method is quite appealing when FSI with large displacement and contact are considered,
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but they consequently require a tracking of the interface. The position of the structure is
typically tracked by displacing the solid mesh (see, e.g., Boffi et al. (2015)) or by captur-
ing it through a level set method (see, e.g., Legay et al. (2006)). Among these methods,
the most popular are the Immersed Boundary method (see, e.g., Peskin (2002); Newren
et al. (2007); Boffi et al. (2011); Kamensky et al. (2015); Griffith (2012)), the Fictitious
Domain method (see, e.g., Glowinski et al. (1999); Baaijens (2001); De Hart et al. (2003);
Astorino et al. (2009b); Boffi et al. (2015); Boffi and Gastaldi (2017); Baaijens (2001))
and the fully Eulerian (see, e.g., Cottet et al. (2008); Richter (2013); Frei (2016)). In
general, these unfitted mesh methods have the reputation of being inaccurate in space,
since the fluid spatial discretization does not generally allows for discontinuities across
the interface. This often yields severe interfacial mass loss (see, e.g., Boilevin-Kayl et al.
(2019b)). The eXtended-FEM (XFEM) class of methods are able to overcome these is-
sues. They are based on local duplication and a cut-FEM approach, but they introduce
additional unknowns via Lagrange multipliers (see, e.g., Zilian and Legay (2008); Gersten-
berger and Wall (2008a); Sawada and Tezuka (2011); Gerstenberger and Wall (2008b)).
These issues are circumvented in an extension of the classical XFEM methods, based on
Nitsche’s treatment of the interface coupling, (see, e.g., Burman and Fernandez (2014a);
Alauzet et al. (2016); Zonca et al. (2018)), at the price of additional stabilization parame-
ters, they require a specific evaluation of the interface and background mesh intersections
(particularly involving in three dimensions as we will discuss in Chapter 6) and a loss of
robustness with respect to how the interface intersects the fluid mesh (see, e.g., Burman
et al. (2014); Fries and Belytschko (2010)).

The Nitsche-XFEM method of Alauzet et al. (2016) will be the basis of the spatial
approximation considered in this thesis.

1.3.2 Time-splitting

In Section 1.2.3 we have introduced the full FSI models, in which the kinematic,
dynamic and geometric conditions, couple the fluid and the structure sub-problems. De-
pending on how those conditions are imposed (at discrete level) in each problem we can
distinguish between implicit/strongly coupled, explicit and semi-implicit coupling schemes.

In the literature, we often distinguish between monolithic and partitioned resolution
strategies. Their peculiarities and differences can be summarize as follows:

Monolithic In this group of methods, the fluid and structure problems are solved simulta-
neously (in a single block) and in a unified solver (see, e.g., Formaggia et al. (2009);
Badia et al. (2008c); Richter and Wick (2010); Gee et al. (2011); Crosetto et al.
(2011)). Monolithic schemes are, by nature, implicit or strongly coupled. Hence,
they deliver unconditional stability and optimal accuracy, but at the price of solving
a computationally demanding coupled problem at each time-step. An illustration of
the approach is presented in Figure 1.9.

Partitioned In the partitioned class of methods, the fluid and solid problems are solved
separately, with their own solvers, and they are coupled via their transmission condi-
tions (see, e.g., Fernandez and Moubachir (2005); Badia et al. (2008a); Van Brumme-
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Figure 1.9: Monolithic solution of the coupled system.

len (2011); Nobile et al. (2013)). Their modular nature allows to include independent
fluid and solid preexisting solver, at the price of loosing some efficiency with respect
to monolithic approaches (see, e.g., Badia et al. (2008¢); Gee et al. (2011)).

In this thesis, we will consider partitioned schemes, in particular, the Dirichlet-
Neumann approach. This implies that we impose the Dirichlet condition (kinematic cou-
pling condition) in the fluid problem and the Neumann (dynamic coupling condition)
in the solid problem (see, e.g., Toselli and Widlund (2006) for a general description on
this the domain decomposition strategy). Among the partitioned methods, we can dis-
tinguish between strongly, semi-implicit and weakly coupled schemes, depending on the
time-stepping splitting considered to impose the kinematic and dynamic conditions, inside
each separate fluid and solid solvers. The main distinctive features are the following:

Strongly coupled Iterations between the fluid and solid problems are performed at each
time iteration until convergence. Hence, the coupling condition is enforced exactly.
The illustration of the approach is visible in Figure 1.10.

Figure 1.10: Strongly coupled solution of the coupled system.

Explicit Also called loosely coupled or weakly coupled schemes. In this class of schemes,
the fluid and solid problems are solved only once per time step. Thus, no inner
iteration are present between the fluid and solid solver within one time-step. They
are less computationally demanding but might lead to stability and accuracy issues
(see Figure 1.11).

Semi-implicit Here, the fluid problem is ofter divided in sub-problems (typically based
in fractional-step strategy) and one part of the fluid problem is coupled explicitly
with the solid, while the remaining part is strongly coupled with the solid problem
(see Figure 1.12).
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Figure 1.11: Loosely coupled solution of the coupled system.

Fi(tn-1) —  Fi(tn)

| |

Fo(tn-1) Fa(tn) J—

Figure 1.12: Semi-implicit solution of the coupled system.

The semi-implicit scheme that we will present in Chapter 2 is part of the last category.
Additionally, it should be noted that, for the geometric coupling condition we will always
consider an explicit treatment. This does not compromise stability and accuracy at a
reduced computational cost.

Developing stable and accurate loosely-coupled schemes is very challenging problem
in incompressible fluid-structure interaction, since the coupling can be extremely stiff. As
explain in Causin et al. (2005), Dirichlet-Neumann explicit schemes become uncondition-
ally unstable, as soon as the added-mass effect is large. This typically occurs when the
fluid and solid density are of the same magnitude (classical situation in hemodynamics).

The majority of the works about not strongly coupled schemes existing in the literature,
are based on fitted mesh approximation strategies (see, e.g., Fernandez et al. (2007);
Quaini and Quarteroni (2007); Badia et al. (2008b); Astorino and Grandmont (2010);
Fernandez (2013); Bukac et al. (2013); Bukac and Muha (2016)). On the contrary, fewer
works exist which avoid strong coupling within the framework of unfitted meshes. The
challenge is mainly related to weak treatment of the kinematic interface coupling, without
compromising stability and/or accuracy. Note that with unfitted mesh based methods,
no connection exist between the fluid and structure functional space. Examples of the
loosely-coupled schemes within the unfitted framework are reported in Boffi et al. (2011);
Burman and Fernandez (2014a); Alauzet et al. (2016); Kadapa et al. (2018); Kim and
Lee (2018). Unfortunately, they are known to enforce severe time-step restrictions for
stability /accuracy or to be sensitive to the amount of added-mass effect. These issues are
circumvented by the semi-implicit and loosely-coupled schemes reported in Annese (2017);
Fernandez and Landajuela (2015) and in Boilevin-Kayl et al. (2019a), respectively, in the
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case of the coupling with thin-walled solids.



Part 1

TIME-SPLITTING SCHEMES FOR
UNFITTED MESH APPROXIMATIONS OF
FSI






CHAPTER 2

An unfitted mesh semi-implicit coupling
scheme for fluid-structure interaction with
immersed solids

Unfitted mesh finite element approximations of immersed incompressible fluid-structure
interaction problems which efficiently avoid strong coupling without compromising stability
and accuracy are rare in the literature. Moreover, most of the existing approaches introduce
additional unknowns or are limited by penalty terms which yield ill-conditioning issues. In
this chapter, we introduce a new unfitted mesh semi-implicit coupling scheme which avoids
these issues. To this purpose, we provide a consistent generalization of the projection based
semi-implicit coupling paradigm of [Int. J. Num. Meth. Engrg.,69(4):794-821, 2007] to
the unfitted mesh Nitsche-XFEM framework.
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2.1 Introduction

Numerical methods for the approximation of mathematical models describing the me-
chanical interaction of an incompressible viscous fluid with an immersed elastic structure
are an essential ingredient in the computer simulation of many living and engineering



26

systems (see, e.g., Pozrikidis (2010); Hou et al. (2012)). These coupled problems often
feature large interface displacements, with potential contact between solids, so that the
favored numerical approaches are mainly based on unfitted mesh approximations (the fluid
mesh is not fitted to the fluid-solid interface). Among these methods, the most popular
are the immersed boundary method (see, e.g., Peskin (2002); Newren et al. (2007); Boffi
et al. (2011)) and the fictitious domain method (see, e.g., Glowinski et al. (1999); Baaijens
(2001); De Hart et al. (2003); Astorino et al. (2009b); Boffi et al. (2015); Boffi and Gastaldi
(2017)), which treat the solid in Lagrangian form. We can also mention the methods based
on fully Eulerian descriptions of the coupled system (see, e.g., Cottet et al. (2008); Richter
(2013)).

In general, unfitted mesh methods have the reputation of being inaccurate in space.
This is due to the approximation of the interface conditions in an unfitted framework and
to the fact that the fluid spatial discretization does not generally allows for discontinuities
across the interface (which often yields severe interfacial mass loss). Mesh adaptation can
improve the situation (see, e.g., Hachem et al. (2013)), but it does not cure the problem.
The extended-FEM (XFEM) method, which combines a local duplication with a cut-FEM
approach (see, e.g., Zilian and Legay (2008); Gerstenberger and Wall (2008a); Sawada and
Tezuka (2011)), fixes these issues but at the expense of introducing Lagrange multipliers
(additional unknowns) and deteriorating the robustness (ill-conditioning). The Nitsche-
XFEM method (see Burman and Fernandez (2014a); Alauzet et al. (2016); Zonca et al.
(2018)) circumvents these difficulties through a Nitsche’s treatment of the interface cou-
pling (with overlapping meshes) and the addition of suitable stabilization in the vicinity
of the interface. The superior accuracy of Nitsche-XFEM with respect to the traditional
immersed boundary or fictitious domain methods (see Boilevin-Kayl et al. (2019b) for
a recent comparative study) comes, however, at the price of introducing additional sta-
bilization parameters, a much more involved computer implementation and a superior
computational complexity. The latter is particularly due to the fact that accurate time-
splitting schemes for Nitsche-XFEM are mainly of strongly coupled nature.

Time splitting is generally difficult to marry with unfitted meshes without compro-
mising stability and/or accuracy. This is a direct consequence of the weak treatment of
the kinematic interface coupling. To the best of our knowledge, the sole available ap-
proaches are the splitting methods introduced in Boffi et al. (2011); Annese (2017); Kim
and Lee (2018); Boilevin-Kayl et al. (2019a) for the immersed boundary or fictitious do-
main methods, and in Burman and Fernandez (2014a); Alauzet et al. (2016); Kadapa et al.
(2018); Fernandez and Landajuela (2015) for unfitted Nitsche based methods. The loosely
coupled schemes reported in Boffi et al. (2011); Burman and Fernandez (2014a); Alauzet
et al. (2016); Kadapa et al. (2018); Kim and Lee (2018) are known to enforce severe time-
step restrictions for stability /accuracy or to be sensitive to the amount of added-mass
effect. In the case of the coupling with thin-walled solids, these issues are circumvented by
the semi-implicit and loosely coupled schemes reported in Annese (2017); Alauzet et al.
(2016); Fernandez and Landajuela (2015) and in Boilevin-Kayl et al. (2019a), respectively.
Nevertheless, the former introduces additional unknowns in the fluid sub-problem (inter-
mediate solid velocity) and the accuracy of the latter relies on a grad-div penalty term
(for enhanced mass conservation) which spoils the conditioning of the fluid problem.
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In this chapter, we introduce and analyze a new semi-implicit coupling scheme for un-
fitted mesh approximations of fluid-structure interaction problems with immersed solids
which overcomes the above mentioned drawbacks. To this purpose, we propose to gen-
eralize the projection based semi-implicit splitting paradigm reported in Fernédndez et al.
(2007) with fitted meshes, to the unfitted Nitsche based framework of Burman and Fer-
nandez (2014a); Alauzet et al. (2016). The basic idea consists in the explicit treatment of
the geometrical non-linearities, convective and viscous fluid contributions (which avoids
strong coupling), whereas the remain fluid pressure and solid contributions are coupled
in a fully implicit fashion (which guarantees added-mass free stability). In contrast to
alternative immersed boundary and fictitious domain methods involving fractional-step
time-marching in the fluid (see, e.g., Newren et al. (2007); Roshchenko et al. (2015)), the
Nitsche-XFEM approximation guarantees the spatial consistency of the Laplacian opera-
tor in the projection step. For a model problem with static interface, we prove a stability
result which states that the conditionally stability of the coupling scheme in the energy
norm. Numerical evidence in a series of well-known two-dimensional examples, involv-
ing large interface displacements and solid contact, highlights the stability and accuracy
properties of the proposed method.

The rest of the chapter is organized as follows. Section 2.2 presents the derivation
of the proposed coupling scheme in a linear setting with static interfaces. The energy
stability of this method is addressed in Section 2.2.4. In Section 2.3, the coupling scheme
is formulated within a fully non-linear setting involving dynamic interfaces. The numerical
experiments are reported in Section 2.4. Finally, a summary of the results of the present
work are discussed in Section 2.5. Through this chapter and without loss of generality, the
solid is assumed to be thin-walled, which corresponds to the most difficult case from the
implementation point of view (e.g., discontinuous fluid pressure, interface with tip). The
methods and theoretical results presented in this chapter remain valid in the case of the
coupling with a thick-walled solid, by simply limiting the fluid problem to a single side of
the interface.

2.2 Linear model problem: static interfaces

We first consider a linear fluid-structure interaction problem in which the fluid is
described by the Stokes equations in a fixed domain and the structure by a linear immersed
thin-walled solid model. We denote by ¥ C R¢, with d = 2, 3, the reference configuration
of the solid mid-surface. The structure is supposed to be immersed within a fixed domain
Q C RY, with boundary T' = 9Q (see Figure 2.1). In this section, we assume that the
solid undergoes infinitesimal displacements so that the fluid flows within the fixed domain

Qf def O\X C R?. The immersed interface ¥ is supposed to divide Qf into two subdomains

of = Qﬁ U Qf, with respective unit normals nq def ny, and noy def —ny,. Here, ny, the
normal unit vector given by the orientation of the surface ¥. For a given field f defined in
Qf (possibly discontinuous across the interface), we can then define its sided-restrictions,
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ny
Figure 2.1: Geometric configuration of the fluid domain and the immersed solid.

denoted by f1 and fo, as

fi@) S lim fwtgnn), fow)  lim (@ gna),

for all x € ¥, and the following jump and average operators across X:

def def 1

U1 fi=f2 [n] = fina+ fona, {7} S(0+ ). (2.1)

In this framework, the considered coupled problem reads as follow: find the fluid velocity
and pressure u : Y x RT = R%, p: Qf x R* — R, the solid displacement and velocity
d: X xRt 5 R d: X x Rt — R? such that for all ¢ € Rt we have

oo — dive(u,p) =0 in Of,
divu =0 in QF, (2.2)

u=0 on T,

p’cdd+Ld=T in I,
d == 6td in E, (23)
d=0 on 0%,

u=d on N
(2.4)
{T = —[o(u,p)n] on X

with the initial conditions u(0) = wug, d(0) = do and d(0) = do. Here, the symbols pf and
p° stand respectively the fluid and solid densities, the thickness of the solid is denoted by
¢ and the fluid Cauchy stress tensor is given by

€ e 1
o(u,p) = 2ue(u) —pl, e(w) ¥ 2 (Vu+Va),

where p denotes the fluid dynamic viscosity. The operator L describes the elastic behavior
of the solid. The relations in (2.4) enforce, respectively, the kinematic and dynamic
interface coupling conditions. Note that the former enforces two conditions since it has to
be seen as up = uy = don 3.
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2.2.1 Time-discretization: semi-implicit coupled scheme

In what follows, we will use the following notation for the first-order backward differ-

ence: 0,z" ¥ (z™ — 2" 1) /7, where 7 > 0 denotes the time-step length. For the time

discretization of the coupled problem (2.2)-(2.4) we consider the projection based semi-
implicit splitting scheme proposed in Fernandez et al. (2007); Landajuela et al. (2017) for
the case of fitted-mesh spatial approximations (see also Quaini and Quarteroni (2007);
Badia et al. (2008b); Astorino et al. (2009a); Astorino and Grandmont (2010)). The
scheme avoids strong coupling without compromising stability and accuracy. The fun-
damental idea consists in combining a fractional-step time-marching in the fluid with a
semi-implicit treatment of the interface coupling (2.4). The resulting time semi-discrete
method reads as follows (see Fernandez et al. (2007); Landajuela et al. (2017)) for n > 1:

1. Explicit fluid viscous step: Find @" : Qf — R? such that

s

(@" —u" ) —dive(@",p" =0 in QF

SR

u"=0 on T, (2.5)

" =d" ' on X.

2. Implicit pressure-displacement step: Find u”: Qf = R4 p?: Qf 5 R, d": ¥ — R?
and d" : ¥ — R? such that

£
%(u” —u")+V(p" - p"_l) =0 in O

divu” =0 in Q,

u" - mn=0 on T,

(2.6)

p’ed-d” + Ld" =T" on Y,

d'=0;d" on X, (2.7)
d"'=0 on 0%,

2.8
T' = —[o(u",p")n] on X. (28)

{ ulnnzzdnnl on X, i=1,2,
The viscous-step (2.5) is loosely coupled with the solid, which avoids strong coupling,
whereas the step (2.6)-(2.8) guarantees added-mass free stability by the implicit treat-
ment of the fluid pressure and solid inertia. From a computational point of view, the
scheme (2.5)-(2.8) can be reformulated exclusively in terms of @”, p", d” and d™ as shown
in Algorithm 2.1. In the viscous step, the end-of-step velocity w™~! has been eliminated
by inserting (2.6)1, evaluated at time n — 1, into (2.5);. This leads to a second-order ex-

"=2_in the viscous step. Finally, the

trapolation of the pressure, noted by p™* def 2" —p
projection step (2.6) can be rewritten in a Poisson-like problem by taking the divergence

of (2.6); and applying (2.6)2 in each sub-domain €2;.
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Algorithm 2.1 Time semi-discrete projection based semi-implicit scheme (from Fernan-
dez et al. (2007); Landajuela et al. (2017)).
For n > 2:

1. Fluid viscous step: Find @" : Qf — R? such that

plo.u" — dive (W, p"*) =0 in QF
a"=0 on T, (2.9)

a"=d" ' on X.

2. Pressure-displacement step: Find p" : Of - R, d": ¥ — R% and d” : ¥ — R? such

that -
——A (p" — p”fl) = —diva"” in O,
P (2.10)
EV (p"—p" ') m=0 on T,
p’edd” + Ld" =T" on X,
d"=0.d" on ¥, (2.11)
d"=0 on 0%,
T .
V=) n=@-d")-n;, on %, i=1,2,
Pt (vl =pi™) e = @ ' (2.12)

T' = —[o(u",p")n] on X.

An energy based stability result for the non-incremental version of (2.5)-(2.8) (i.e.,
with p"~! = 0) with a fitted mesh based finite element approximation in space, has been
reported in Fernandez et al. (2007). Therein, stability is guaranteed under the CFL-like
condition

p'h? + 2ur < poeh, (2.13)

where h > 0 stands for the spatial grid parameter. It is also worth noting that uncondi-
tional stability was achieved in Astorino et al. (2009a) via a specific Nitsche’s treatment of
the viscous coupling. Unfortunately, the splitting error of the resulting scheme is known
to be non uniform with respect to h, namely, to scales as O(7/h), so that suitable cor-
rection iterations are needed to enhance accuracy under restrictive constraints on the
discretization parameters (as in Alauzet et al. (2016)).

Remark 2.2.1. Note that from the relation (2.12); we get the continuity of fluz on the
pressure increment across X, namely,

[V(p"=p"") n]=0 on .

However, both the pressure p™ and the pressure increment p — p"~! are generally discon-
tinuous across 3, so that the pressure-Poisson equation (2.10); is not valid across &, only
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in Q. Most of the immersed boundary and fictitious domain methods involving fractional-
step time-marching in the fluid assume that this relation if valid in Q (see, e.g., Newren
et al. (2007); Roshchenko et al. (2015)). This is not the case of the unfitted mesh method
considered in this chapter, which correctly enforces (2.10) in QF rather than in €.

2.2.2 Unfitted mesh approximation: fully discrete scheme

In the following, the closed spaces H{(w), of functions in H'(w) with zero trace on
I, and L3(w), of functions in L?(w) with zero mean in w, will be considered. The scalar
product in L?(w) is denoted by (-,-),. In this section, we introduce a consistent unfitted
mesh spatial approximation of the time semi-discrete scheme given by Algorithm 2.1.
The fluid fields (u",p™) will hence be approximated in triangulations of Q which are
independent of 3. To this purpose, it is important to note that:

e The velocity gradient Vu" and the pressure p™ are discontinuous across 3;

e The bulk relations (2.9); and (2.10); are not valid across X, only in Qf (see Re-
mark 2.2.1).

In the case of fitted mesh approximations, these discontinuous features of the solution can
be introduced in the discrete approximation in simple fashion (e.g., by considering cracked
meshes with duplicated nodes on the interface). However, if the fluid mesh does not have
a geometrical representation of the interface 3, guaranteeing consistency of the approxi-
mations requires a specific treatment. In this chapter, we build on the unfitted Nitsche’s
based method for incompressible fluid-structure interaction with overlapping meshes re-
ported in Burman and Fernandez (2014a); Alauzet et al. (2016). The fundamental reasons
for this choice are: (i) it is Lagrange multipliers free and robust; (ii) it is mathematically
sound (i.e., optimal error estimates are obtained for spatial semi-discrete approximations
of linear model problems such as (2.2)-(2.4) under reasonable regularity assumptions (see,
e.g., Burman and Fernandez (2014a)); and (iii) it naturally provides a consistent form of
the pressure-Poisson problem in step 2 of Algorithm 2.1.

In order to simplify the presentation, we assume that both €2 and ¥ are polyhedral.
Let be {77 }o<n<1 a family of triangulations of ¥. We then consider the standard space
of continuous piecewise affine functions:

X}sl def {thCO(i)}UMKG]P’l(K), VKG’T;?}
The weak form of the abstract solid elastic operator L in (2.3) is assumed to be given by a
positive and symmetric bi-linear form a®: W x W — R, where W = [H!(X)]¢ denotes
the space of admissible displacements. The discrete space for the solid displacement and
velocity approximations is hence defined as W, = [X,Sl]d NW. For the fluid, we consider a
family of meshes {7}, }r~0 of Q, fitted to its boundary I" but not to the internal interface X.
We can then define the two family of meshes {7} ;}n>0, with ¢ = 1,2, such that 7, ; C Ty
covers the fluid region ;. Each mesh 7} ; is fitted to the exterior boundary I' but not to
7. Moreover, for every element K € Tp, 1 N Ty 2 we have K NY # 0.



32

\
\
I

|
Y

o 0

Figure 2.2: One dimensional illustration of the construction of the discrete spaces Xj ;.

We denote by €, ; the domain covered by 7j,;, viz.,

def .
Qhﬂ' = int (UKETh,iK) .
We shall also make use of the following notation for the broken L?-product in the whole
computational domain

For i = 1,2, we can hence introduce the following spaces of continuous piecewise affine
functions:

def —_
Xni = {vn € CO(;) | vnie € PL(K), VK € Ty},

Associated with X}, ; we define the spaces

def

ef
E [Xna N [HEQ)),  Qni € Xni 0 LHQ)o.

Vi =
For the approximation of the fluid velocity and pressure we will consider the following
discrete product spaces

def def
Vi E Vi xVia, Qn= Qnix Qno, (2.14)

which guarantee that interfacial (strong and weak) discontinuities are included in the
discrete approximation of both the fluid velocity and pressure. Indeed, the functions of
(2.14) are continuous in the physical fluid domain Qf but discontinuous across the interface
Y (see Figure 2.2). Since the discrete pair V' /Qp, is not inf-sup stable, we consider a

symmetric stabilization operator, such as, the one given by Continuous Interior Penalty
method (see Burman and Hansbo (2006)) over the whole computational domain:

2

3
swona) = 23 32 (Il [Varle) -

=1 FeFp;

where Fj, ; denotes the set of interior edges or faces of 7, ;. Finally, we introduce the fluid



2.2. LINEAR MODEL PROBLEM: STATIC INTERFACES 33

discrete viscous bi-linear form

af, (un, vn) < 2p(e(up), €(vr)) o + gn(un, vr),

where the ghost-penalty operator is given by (see Burman (2010))

2
def
gn(un,vp) = vuh > D ([Vuinle, [Vvinlr) 5 (2.15)
=1 Fery,

and where ]-"Eh denotes the set of interior edges or faces of the elements intersected by
>, as shown in Figure 2.3. This operator guarantees robustness irrespectively to the way
the interface is cutting the fluid mesh, by extending the coercivity of the viscous bi-linear
form to the whole computational domain.

Figure 2.3: Tllustration of the interior edges (highlighted in blue) where the ghost-penalty
operator is applied.

For completeness and based on the above ingredients, a strongly coupled scheme for
the unfitted mesh approximation of (2.2)-(2.4) is given in Algorithm 2.2. Note that, at
each time step, the fluid and solid approximations are fully coupled. This guarantees
unconditional stability and accuracy at the expense of computational complexity (see
Alauzet et al. (2016)).

We can now introduce the unfitted mesh approximation of Algorithm 2.1 detailed in
Algorithm 2.3. Its main ingredients are the following:

e Unfitted Nitsche’s mortaring for the spatial discretization of the kinematic/dynamic
viscous coupling in (2.9), (2.11) and (2.12), which is Lagrange multipliers free (i.e.,
without additional unknowns) and guarantees accuracy and robustness;

e For robustness, the Laplace operator in the projection-step (2.10) is integrated over
the whole computational domain, whereas for consistency the remaining fluid bulk
terms in (2.9) and in (2.10) are integrated in the whole physical domain.

Note that the price to pay for consistency in the last point is a specific track of the interface
intersections and the integration over cut elements (see, e.g., Massing et al. (2013); Alauzet
et al. (2016); Zonca et al. (2018) and the references therein). As regards the first point, it
should be noted that in (2.17) the discrete interface stresses are exactly the variationally
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Algorithm 2.2 Strongly coupled scheme with unfitted meshes (from Alauzet et al.
(2016)).

For n > 1:

Find (u},p}, djl,dy) € Vi, x Qp, x W, x Wy, with df = 9-d} and such that

pH(Orup, vn) g + a (uh, v1) — (D, divor)ge + (qn, div ) o + sn(pr, an)

2
+ p°e(Ordy, wh) s, + a¥(di, wi) = > (o (uft s, i )i, vhs — wh)
=1
s . | RS .
- (up;—d} o(vni,—ani))ni)s + - > (uf; —dj,vp; —wp)e =0
h
=1 =1

for all (Uh,qh,wh) EVy xQnpx Wy

consistent viscous stress of (2.9). This constitutes a fundamental difference with respect
to the Robin based semi-implicit and explicit coupling schemes respectively reported in
Astorino et al. (2009a); Alauzet et al. (2016) with fitted meshes. The main reason is to
avoid the accuracy loss observed with this methods (see Section 2.2.1). The next section
is devoted the energy based stability analysis of Algorithm 2.3.

2.2.3 Partially intersected fluid domain

In the case in which the interface has a boundary inside the fluid domain (the tip), we
consider the construction of the fluid and solid spaces proposed in Alauzet et al. (2016),
which basically consists in introduce a virtual interface > which closes the fluid domain
within the cut element. This virtual interface is defined as the segment connecting the
interface tip with the fluid vertex opposite to the edge intersected by the interface (see

Figure 2.4).
NI
VA

Figure 2.4: Case in which the ¥ has a boundary inside the fluid domain.

Then, we enforce the kinematic/dynamic continuity of the fluid on 3 in a discontinuous
Galerkin fashion (see, e.g., Di Pietro and Ern (2012)). More precisely, the following terms
are added

~({o (@, 0)}n. [5:]) s~ ({o (@n, 0}, @] s (171 @) s, (7] 420} - m)s
(2.18)
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Algorithm 2.3 Projection based semi-implicit scheme with unfitted meshes and static

interface.
For n > 1:

1. Fluid viscous step: Find uj € V), such that

f ~
p' (8- uh,'vh)ﬂf—l—ah wp, vp) —

Mw
:
;“
5
<)
:‘
L
+

2
=32
]
—~
=
>3
|
Q
>3
\.H
<)
>
s
™

7,:]_ =1

for all v, € V.

2. Pressure-displacement step: Find (pz, dﬂ) € Qn x Wy, with dZ = O0rdy , such that

2
lf(V(pZ - pZ_l)a VQh)h + Sh(p27 Qh) - Z (’az’@ - d?b qh,ini)z - (le ﬂ’Z? Qh)va
i—1

(2

A

2
pe(0rd) wr)y, + a*(df, wn) = 257 (@ — &) wi)s
=1

2

> (o (@g ,pp Jmiswy)

i=1

(2.17)
for all (qh,'wh) € Qp X Wiy

into the left- and right-hand side of step (2.16), respectively, where as in (2.17); we add

T n T (tm TYrn ~

- ?({[Vph n}, [[‘Ih]])g - E([Lph]]a {Van- "}})i + Eﬁ ([[phﬂv [[‘Ih]])ga ([[Uh]] "n, {Qh})ga
(2.19)

to the left- and right-hand side, respectively.

2.2.4 Energy based stability analysis

For the purpose of the analysis below, we recall the following estimate from Burman
(2010):
ca(2ulle(on)|3.0, + 9n(vn vn)) < 2ulle(vn)ll§ or + gn(vn, vn) (2.20)

for all vy, € V), with ¢ > 0 and the notation

- 1Ba, < (),
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We shall also make use of the following (robust) discrete trace inequality
hlle(vr)nll§ s < Crlle(vn)llf o, (2.21)

for all vj, € Vj,. Let define the discrete total energy E;' by the following expression:

Ej

def p: 2
- 9 0,Qp"

poe - 1 72
(B + NI + 30" t) + 2 ]

The following result states the conditional energy based stability of the approximation
provided by Algorithm 2.3.

Theorem 2.2.1. Let {(u}f,pz, ",}, d’,;) }n21 be given by Algorithm 2.3. Under the follow-
ing conditions

3+4aC
S (2.22)
o Ccg
< Seh 2.23
YT S T AP Eh (2.23)
with a > 0, the discrete energy estimate presented below holds:
B} < B, (2.24)

for alln > 1. As a result, Algorithm 2.4 is conditionally stable in the energy norm.

Before proceeding with the proof of the above result, some remarks are in order. Note
that condition (2.23) becomes less severe for small values of o and the opposite holds
for condition (2.22). The parameter o > 0 hence weighs the constraints of (2.23) and
(2.22). It should be noted that the stability condition (2.23) provided by Theorem 2.2.1
is not exactly the same as the condition (2.13) obtained in Fernandez et al. (2007) for
Algorithm 2.1 with fitted meshes. In particular, condition (2.23) is independent of the
fluid density. Both conditions share however a similar hyperbolic structure, 7 = O(h).
For a given spatial mesh, the relation (2.23) provides an upper bound on 7 below which
the scheme is stable. The limit upper bound, as o — 0, is 2p°ch. The numerical results
of Section 2.4 indicate that this condition is necessary for stability.

Proof. We first introduce the L?—projection operator  : [L?(2)]? — V', given by

(mhs, vh)Qf = (s, vh)Qf (2.25)

for all v, € V;*. Note that, depending on how the solid mesh 7;’ intersects the fluid over-
lapping meshes 7}, ;, 7,8 may not be uniquely defined in the whole computation domain.
However, a simple argument show that ms is uniquely defined in the physical domain
Of (it suffices to remove the indetermination by blocking appropriate nodes outside the
physical domain). This feature will be enough for the purpose of the present proof. In a
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similar fashion, we introduce the intermediate velocity uj € V7 given by

SR,

p?(uZ/Uh)Qf = ({"Zvvh)ﬂf - (V(ph 7p2 1) vh)Qf (226)

for all vj, € V7, so that uj is uniquely defined in Qf. In particular, owing to (2.25) and

(2.26), we have
ul = up — plwhv (g —pp) in QF (2.27)

Now, since the fluid bulk terms of the viscous step (2.16) are integrated (only) in the
physical domain and using (2.26), it can alternatively be written as

£ 2 2
%(uh,vh) —i—ah "(uy, o) Z (@h 1 0)n, D), TZ up; —d ” ! Uhi)y,
i=1 =1
2
- (@ - d o (@ 0y = ”?(ugﬂ, oh)g — (Vo) 5), (2.28)

=1

for all v, € V..
We then proceed by testing the relation (2.26) with v} = u}, which yields

f
14 2 ~n 2 ~n 2
Z[HUZHQW_Huh”oﬂf'i"Hug_uhHO,Qf]+(V (oh =Py ") suf) g = 0. (2.29)

By inserting (2.27) into the last equality and by rearranging the terms, we get

f
P 2 ~n2 ~ T —1y/2
o7 L luhllogr = @Rl o + (V (oh =2 ") ) o = g7 [0V (R = ph") [lor = 0-
(2.30)
On the other hand, by testing (2.28) with v}, = u}, and using (2.20), we have

f
% [H’INLhHng - Huh 1”0 o T H uﬁfl\\igf] + 2¢qp ||6(1~LZ)||th + (Vph ! "72)

v _ el ~
+ # (UZ,Z - dZ ! ’U'Z z) 2:“‘ Z uh K nla uh 'L)
=1

- Q;LZ( e(@) yn, ap ; — &;ﬁg*l)z <0 (2:31)

and, by testing the fluid projection-step (2.17); with g5 = p}! and by integrating by parts
the divergence term, we get

2 n ~n
, ] - (Vphvu )Qf

2 LIVPRI 0, = 985 o, + V5 = 277"

2
+ > (@ marh )+ su(pi i) = 0. (2:32)
i=1



38

Finally, by adding the relations (2.30)-(2.32) we get the following energy estimate for the
fluid

f
14 2 ~ny (2 T 2 —1/12
587 HUZHO,Qf + 2¢gp H‘E(UZ)HO,Qh + Tpf [HVPZHO,Qh - HVPZ 1H0 Qh}

n n— 2 T n
- 2pf H(I_ Wh)v(ph ~ Ph l)HQf t 2pf HV(ph Hﬂh\Qf + Z ( hs TiD}, z)

2 2
VS (2n el ~ ~
Y ("Z,i —d; “Z,i)z =2y (e(th )mi, )
=1 i=1
2
oy (e(agi)ni,agi - d2’1>2 <0. (2.33)
i=1

We now proceed by testing the solid equation (2.17)9 with wy, = dz, which yields

pS€ . 2 . 71
5 L] |,

: e -,
0,2 0,2

1 mn m mn— mn— mn n— n n—
+?[a5( h,dh)—as(dh LdiY) +ag(dy —dp Tt dy — dp Y]

+2uz< uhzndh)E i(phlnz,dh> zlzi:(uhl dz_l,(.i’,;”>2:0.

1=

By adding this relation to (2.33) we get the following total energy estimate

f
14 2 ~ny (2 T 2 —1/12
587 HUZHO,Qf + 2¢gp H‘E(UZ)HO,Qh + Tpf [HVPZHO,Qh - HVPZ 1H079h}

psg ; 2 qn— 2 m— 2 1 m n— n—
;Hdz oz_Hdh 1“ — 1Hoz]+7[a5( hdp) —as(dy ™ dp )]
9 ( 5 C'ln) o ( . dn—l)

MZ uhz n; uhz h MZ uhz n; ’U/}” h 5

Terms T can be bounded from every side of the interface by adding and subtracting dy,



2.2. LINEAR MODEL PROBLEM: STATIC INTERFACES 39

using the Cauchy—Schwarz, Young’s and trace inequalities (2.21), as follows:
Ty = —2u <e(ﬂﬁi)ni, dr — él”‘l) 4y (e(az@)ni,agi - dg)z

1 uCT1 | p Wﬁ’
> — | — 4+ o1 —
= ( ) 2) |e(u )H()Qh 1 h

m ‘m—1 2
d—ap|| (2.35)

)

—2062,7” Huhl d?]:LL 5

0,3

with a1, ae > 0. Similarly, for the second term, we have

o2 . . .
1= " ap, - & +ﬂ(dz—d21a21 )
h = h ) 2.36)
o1 w‘ l|2 sy C-ln_c-ln_lHQ 2.
- 203 Mlos 2h hlox
with a3 > 0. By inserting (2.35) and (2.36) into (2.34) we get
o 0, ufl; v \vZ
nllogr T 57F [|| il o~ Vo, Ho,gh}
PSE n|[? 1 -1 -1
+ =500 ||dn 0724'?[%( hodp) —as(dpt dy )]
Cop (1 1 2 pe as\ Y] (1o o 1112
O (o )t + [ -r 5) ] fr-a
i [Cg Y (2@1 * a2>] He(uh)”o’ﬂh * 2T o+ 2/ h h b o

2
di| <0 (237)

1 =
1— — — 2 ) 15
+< 2a3 >hi:1

We now set
= a ! +a, a>0
a1 = — oy = ——— —
1 2, 2 2(1 +20é)’ 3 9 ; )
so that (2.37) yields
P n_12 pe |12
o7 LS\ Th Th S\"h T 27 4 h h los
CTI 3+ 4a 2 Q
e - S @y B, + 5 <o (@239)

Finally, the energy estimate (2.24) follows from (2.38) under de assumption (2.23), which

completes the proof.
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2.3 Non-linear model: moving interface

In this section, we propose an extension of the semi-implicit coupling scheme given
by Algorithm 2.3 to the case of non-linear fluid—structure interaction problems involving
an incompressible viscous fluid and a moving immersed thin-walled structure. The fluid
is described by the Navier-Stokes equations (in Eulerian form) and the structure by a
possibly non-linear (beam or shell) solid model (in Lagrangian form).

2.3.1 Problem setting

Let Q C R? be the reference configuration of the fluid domain with boundary T def 09,
and ¥ C R? be the reference solid mid-surface. In contrast to Section 2.2, the structure
is now supposed to move within the fluid domain. The current position of the interface
Y(t) is described in terms of a deformation map ¢ : ¥ x Rt — R% as £(t) = ¢(2, 1),
with ¢ def f y + d and where d denotes the solid displacement. To simplify the notation

we will refer to ¢, déf ¢(-, 1), so that we also have 3(t) = ¢,(2). Note that the fluid

control volume is now time-dependent, namely Qf(t) o Q\X(t) ¢ R? with boundary

00Q(t) = X(t) UT. The notations introduced in Section 2.2 for the surface normal vector
ny, jumps and average operators remain valid with the sole difference that they refer to
the current interface position 3(¢). The considered coupled problem reads therefore as
follow: find the fluid velocity and pressure u : @ x Rt — R? p: Q x Rt — R, the solid
displacement and velocity d : & x RT — R, d: ¥ x R — R such that for all ¢ € RT we
have

ot (Ou+u-Vu) —dive(u,p) =0 in Qf(t),
divu =0 in Qf(t), (2.39)

u=0 on T,

pedd+L(d)=T on X,
d=8d on X, (2.40)
d=0 on 0%,

p=Is+d, X(t)=¢(%), Q) =2\Z(),
u=do¢p;! on X(t),

(2.41)
/T-'w:—/ [o(u,p)n] - wo ¢! Vwe W.
) (1)

The relations in (2.41) respectively enforce the geometrical compatibility, the kinematic
and the dynamic coupling at the interface between the fluid and the solid. In the next
section, we propose a numerical method for the coupled system (2.39)-(2.41) based on
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Algorithm 2.3.

2.3.2 Numerical methods

With the purpose of avoiding geometrical non-linearities in the fluid, we will discretize
the geometric compatibility condition (2.41);, namely Qf(t) = Q\X(¢), in an explicit
fashion. For a given displacement approximation dj, € W,, we define by ¢}, its associated

deformation map as ¢}, df f v +d}. This map characterizes the interface position, at time

def

level n, as ¥" = ¢ (X). We hence propose to explicitly update the physical fluid domain

as

def

Qfn = Q\xnt (2.42)

For the fluid discrete spaces, V', and @} , we proceed as in Section 2.2.2, with the difference
that they are now given in term of the time-dependent overlapping meshes 7;1”1 covering
each side of Q™. We recall that this functional spaces are made of functions that are
continuous in each side of Q" but discontinuous across "~ 1. Finally, we introduce the
broken L2-product in the moving computational domain as

def
(- nh—Z > G

=1 KeT.",

The approximation space for the solid W, is the same as in Section 2.2.2.

For the spatial approximation of the fluid, we introduce the following discrete tri-linear
form associated to the convective term

£
def .
" (zn, wn,vn) Sp (2 - Yy, vp) g, + %((lezh)um V1) gfn

; (2.43)
0" ({zn} - mlwnl fond) o — 5 (T2 nl fun - on}) s,

where the three last terms are added in order to guarantee that ¢"(vp, zp, z5) = 0 for all
zp € V7 (see Alauzet et al. (2016)). Numerical instabilities, due to the lack of inf—sup
compatibility of the discrete spaces and to large local Reynolds number, will be handled by
the continuous interior penalty stabilization method (CIP) of Burman et al. (2006); Bur-
man and Fernandez (2007). The associated symmetric velocity and pressure stabilization
operators are given by:

s&h(zh;uh,vh ’)/Vh2z Z ReF Zh ||Zh n”Loo(F ([[Vuh]]p,[[vvh]]p)
1= 1F6.7-'"

n ReF Zh
Sp.n (213 Phs Q1) '7ph2z Z ([[Vph]]F»[[VQh]]F)
= rern, !Zh||L

where F}'; denotes the set of interior edges or faces of 7;";, ReF(zh) = p ||ZhHLoo yhu!
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denotes the local Reynolds number, &(z) f min{1, z} is a cut-off function and v, v >0
are user-defined parameters. In order to guarantee robustness with respect to the way the
interface X" is cutting the fluid domain €2, we introduce the time-dependent ghost-penalty
operator, given by

2
def
gn(un,vp) = euh Y - > ([Vuiple, [Vinlr) g
=1 perzr!

where ]-1%: ~' denotes the set of interior edges or faces of the elements intersected by 371
Finally, we collect all the above terms in a single contribution
ap™ (zn; un, vy ) e (zh, wn, vi) + 21 (€(un), €(Vn)) g + 5o 1 (Zh; Un, vR) + gh (Un, vp).
(2.44)

With all the above ingredients, we propose to approximate (2.39)-(2.41) by the semi-
implicit coupling scheme reported in Algorithm 2.4. The basic idea consists in combining
the interface kinematic/dynamic coupling of Algorithm 2.3 with the explicit treatment of
the geometrical compatibility (2.42).

Note that steps (2.45) and (2.46) of Algorithm 2.4 involves integrals of functions asso-
ciated with different time levels, namely,

("N‘Z_lﬁah)mv (sz_laah)mv (VPZ_275h)Qn7 (VpZ_IvVQh)n,h'

with uj, € V7, pz_l € Qz_l and pZ_Q S QZ_Q. This requires the integration of products
of functions that might be discontinuous at different locations in the same element. In
order avoid the simultaneous intersection of different interface locations with the same fluid
element, we consider the approach introduced in Alauzet et al. (2016) (see also Fries and
Zilian (2009)), which basically consists in locally shifting the discontinuity at time ¢* to
the structure location at time ¢, where t* refers to "' and t"~2 respectively. In the case
where the discontinuities are located in different elements, the quadrature is performed in
a standard fashion since we keep track of the (previous) intersections at different times
and we can treat each discontinuity separately.

Remark 2.3.1. In the case of partially intersected fluid domain with dynamic interface,
we proceed as in Remark 2.2.3. The terms in (2.18) and (2.19) are now evaluated on

71 and we add the following convective Discontinuous Galerkin contributions (see, e.g.,
Di Pietro and Ern (2012)) to the tri-linear form (2.43):

f
' (fza} - nlusd fond) g — 5 ([2n - m]. fun - or)s o

Remark 2.3.2. Note that whenever dy, c'izfl and wy, are integrated on X", one has to
understand dy o ((;52_1)_1, ('12_1 o (¢>2_1)_1 and wy, o ((Z)Z_l)_l respectively. This abuse
of notation is simply made to ease the presentation.
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Algorithm 2.4 Projection based semi-implicit scheme with unfitted meshes and moving

interfaces.
For n > 1:

1. Interface update:
-1 _ (1)2—1(2)’ Qf,n _ Q\Zn_l.

2. Fluid viscous step: Find u € V} such that

' (0-ay, D) i + az’n (172—1; wp, Up) — Z ((@h s 0)mi, Vni) son s

=1
2
+ % S @, - & ) g
=1
2
= (@ - d o (O 0)ni) g = — (VDR On) i (245)
=1

for all v, € V.

3. Pressure-displacement step: Find (pz, dﬂ) € Qp x Wy, with dy = 0-dy , such that

%(V(pz - pzil)’ VQh)m + Sp (uhvphv Qh)

= Z (a’h i dhv dhn znz)zn 1 (diV "7’27 qh)Qf,n?

=1
. l 2 .
psg(aTdZ,wh)E +as( hvwh #Z uhl dz_lvwh)zn_1

, =

o Z (U(az,wpz,i)niv wh)2n71

N =1

(2.46)
for all (qh,'wh) € Q) x Wy,. Then, set ¢ = Ix +dj,.

2.4 Numerical experiments

In this section we illustrate the stability and accuracy of the proposed semi-implicit
scheme (Algorithm 2.4) in different 2D test cases motivated by the simulation of heart
valves and of micro-encapsulation. To this purpose we compare the results obtained
with Algorithm 2.4 and those obtained with the strongly coupled and loosely coupled
(stabilized explicit coupling) schemes proposed in Alauzet et al. (2016). The implicit
step in Algorithm 2.4 is solved in a partitioned fashion by a Dirichlet-Neumann based
Newton-GMRES iterative algorithm. In all the tests, the solid is described by a non-linear
Reissner—Mindlin curved beam model with a MITC spacial discretization. All the units
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are given in the CGS units system. In all the numerical tests, the ghost penalty parameters
has been set to 7, = 1 and the CIP stabilization parameters to v, = v, = 1072,

2.4.1 Idealized valve without contact

The first example is the heart-valve-inspired benchmark proposed in Gil et al. (2013);
Hesch et al. (2012); Wick (2013); Kamensky et al. (2015); Boilevin-Kayl et al. (2019b).
The considered geometry is shown in Figure 2.5(a). The fluid domain is a rectangle
2 = [0,8] x [0,0.805], while the immersed solid reference configuration ¥ is the straight
segment AB, with A = (2,0) and B = (2,0.7).

(®)

-o

Figure 2.5: (a) Geometric configuration of the idealized valve without contact, (b) Zoom
of the fluid and solid meshes.

The physical parameters used for the fluid in this test are pf = 100, g = 10. While for
the solid we have p* = 100, € = 0.0212, the Young’s modulus £ = 5.6 - 10" and Poisson’s
ratio v = 0.4. Concerning the boundary conditions, no-slip boundary condition is apply
on I'y, a symmetry condition is imposed on I'syr,, zero traction on I'gy and finally on I'y,
the following half parabolic profile is applied:

Umax(t) = 5(0.805)(sin(27t) + 1.1), teR*.

The solid rotation and displacement are set to zero at the bottom endpoint A and zero
initial conditions are considered for both fluid and solid.

The solid mesh is made of 64 edges while the fluid unfitted mesh is made of 18662 trian-
gles (see Figure 2.5(b)). We have h ~ 0.037. Three different levels of time-step refinement,
T € {(10_3 / 2i) 12:0, are considered in order to compare results from Algorithms 2.4 and
the loosely coupled and strongly coupled schemes. The final time is T" = 3, which cor-
responds to 3 full oscillations cycles for the structure. The Nitsche penalty parameter is
set to v = 10. With the above physical and discretization parameters, the relation (2.23)
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(a) Strongly coupled, t = 0.5. (b) Semi-implicit, ¢ = 0.5. (¢) Loosely coupled, ¢t = 0.5.

— ] S

(d) Strongly coupled, ¢t = 0.8. (e) Semi-implicit, t = 0.8. (f) Loosely coupled, t = 0.8.

velocity

0.00 167 333 500 6.66

Figure 2.6: Velocity magnitude snapshots at 7 = 1073,

(a) Strongly coupled, t = 0.5. (b) Semi-implicit, ¢ = 0.5. (¢) Loosely coupled, ¢t = 0.5.

-

pressure

-9041 -8627 -8214 -7800 -7387

. b

(d) Strongly coupled, ¢t = 0.8. (e) Semi-implicit, t = 0.8. (f) Loosely coupled, t = 0.8.

pressure

1584 2046 2508 2970 3432

Figure 2.7: Pressure snapshots at 7 = 1073,

provides the limit upper bound v < 2p°¢h/(ut) ~ 15.6 for stability. Numerical evidence,
not reported here, suggests that larger values yield indeed numerical instability.
For illustration purposes, snapshots of the fluid velocity magnitude and the position of
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the interface, computed with 7 = 1073, are shown in Figure 2.6 at time t = 0.5 and t = 0.8
respectively. A very good agreement is obtained for the three methods already with the
larger time step and all algorithms reproduce very well the vortex induced after the leaflet.
The two times selected correspond to a situation of opening of the valve at ¢ = 0.5 and
closing at t = 0.8. At opening state, there is an increasing velocity magnitude on top of the
channel, while the velocity is decreasing at closing state. Figure 2.7 presents the pressure
elevation computed with the coarsest time step, 7 = 1073 , obtained with the semi-implicit
coupling scheme (Algorithm 2.4), the loosely coupled and the strongly coupled schemes
at the same time instants as before. The discontinuity of the pressure is well captured
with all methods. A very good agreement can be observed between Algorithm 2.4 and
the strongly coupled scheme, while some differences are clear visible in the loosely coupled
scheme.

Figures 2.8 and 2.9 report the displacement history of the upper structure endpoint
B as function of time, in terms of x-displacement and y-displacement respectively. Al-
gorithm 2.4 delivers practically the same results as the strongly coupled scheme (the two
curves are indistinguishable already with the larger time step), whereas some differences
are clearly visible with the loosely coupled scheme. This mismatch is reduced with the
time-step refinement.

A quantitative comparison is given in Table 2.1 which shows the difference, in the
£>° (0, T; EQ(E)) norm, of the displacement obtained with the strongly coupled scheme and
Algorithm 2.4. We can observe that this quantity decreases with the time-step length 7.
Dimensionless runtimes for the strongly coupled and the semi-implicit coupling scheme are
reported in Table 2.2. The observed computational time reduction using the semi-implicit
scheme is on average of 27.4%. It should be noted that this corresponds to the worst-case
scenario, in which no specific preconditioners for the fluid linear systems involved in steps
2 and 3 of Algorithm 2.4 are considered.

T 0> (0,T;¢*(¥)) norm
1073 1.03-1072
5.1074 5-1073
2.5-1074 2.76-1073

Table 2.1: Measure of the difference of the displacement between the strongly coupled
and the semi-implicit schemes.

T Strongly coupled | Semi-implicit
1073 1.35 1
5.1074 2.7 1.93
2.5-107% 4.83 3.4

Table 2.2: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.
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2.4.2 Idealized valve with c

05 1

ontact

of the y-displacement for the structure endpoint B.

The second numerical example corresponds to the idealized valve test with contact
introduced in Boilevin-Kayl et al. (2019a). It is an extension of the previous one in which
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the structure is sufficiently long to get in contact with I'syy. The geometry is shown in
Figure 2.10(a). The fluid domain  is the same as in the previous example, while as
reference configuration for the solid, 3, we consider a curve segment of extreme A = (4,0)
and B = (5.112,0.483), parametrized by the analytical function

y(z) = 1\/1—(‘7:_11/2)2 € [4,5.112].

2 (3/2)* 7

The physical parameters used for the fluid in this test are pf =1, = 0.03. While for the
solid we have p* = 1.2, ¢ = 0.065, the Young’s modulus £ = 107 and the Poisson’s ratio
v=04.

(b)

Figure 2.10: (a) Geometric configuration of the idealized valve with contact, (b) Zoom of
the leaflet mesh and fluid mesh.

Regarding the boundary condition, a symmetry condition is enforced on Iy, a no-
slip condition on I'y,, zero traction on the outflow boundary I'gy and a traction condition
is imposed on I'y, in terms of the following time-dependent pressure:

0 —200atanh(100t) if 0<t<0.7,
Pmit) = 200 if t>0.7.

The final time is T = 1 and it corresponds to one full valve oscillation cycle. The fluid
and the solid are initially at rest and the beam is pinched at the bottom tip A.

In order to avoid penetration on I'yop, we enforce the following contact condition:
d-nr,,—9g<0 on X, (2.47)

where nr_,, denotes the exterior unit normal to I'gym (see Figure 2.10 (a) ) and g : ¥ — R
refer to the gap function between ¥ and I'syy, defined as the initial distance of a point
on ¥ to the wall I'sypy in the direction of nr,,, namely g = yr_ . — y(z). The inequality
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(a) Strongly coupled, t = 0.6. (b) Semi-implicit, t = 0.6. (¢) Loosely coupled, ¢t = 0.6.

1

ﬁﬁ —

d) Strongly coupled, t = 1. e) Semi-implicit, ¢t = 1. f) Loosely coupled, ¢ = 1.

velocity
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Figure 2.11: Velocity magnitude snapshots with 7 = 1073,

Mgy

0.6. (b) Semi-implicit, ¢ = 0.6. (¢) Loosely coupled, ¢t = 0.6.

(a) Strongly coupled, ¢

—

(d) Strongly coupled, t =

(e) Semi-implicit, ¢ (f) Loosely coupled, ¢ = 1.

pressure

D I
-370  -238  -106 26 157

Figure 2.12: Pressure snapshots with 7 = 1073,

constraint (2.47) is approximated via a penalty method (see, e.g., Scholz (1984)), by
inserting the following term in the solid discrete problem:

Y Ee

5 ([ mrg —g+en] wn)gs (2.48)

where [x]4 déf max{0,x}, 7. > 0 is a (dimensionless) user-defined parameter and e, > 0
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is a contact tolerance. The contact parameters are given by ¢, = 0.01 and 7. = 5-1073 as
in Boilevin-Kayl et al. (2019a). The relaxation parameter ¢y, is chosen in such a way that
the generated artificial gap is below h. The penalty parameter 7. (independent of h) is
chosen to avoid penetration (i.e., not very small) and in such a way that the term (2.48)
does not perturbs the convergence of the Newton solver in the solid (the operator []; is
not differentiable at 0).

The fluid mesh has 16384 triangles and the solid 50 edges. We have h ~ 0.04. The
zoom on the both meshes is presented in Figure 2.10(b). As in the previous example,
we consider three levels of time refinement 7 € {(10_3 / 2i) }2_, for the comparisons. The
Nitsche parameter is set to v = 100. With the above set of physical and discretization
parameters, the relation (2.23) provides the limit bound v < 2p%h/(ur) ~ 208.6 for
stability. As in the previous example, numerical evidence (not reported here) indicates
that larger values yield numerical instability.

For illustration purposes, we report in Figure 2.11 the velocity magnitude, with the
corresponding contour lines, at two different instants. In Figures 2.11 (a), (b) and (c) are
reported the solutions obtained at time ¢t = 0.6, when the valve is supposed to get into
contact with the upper wall and the fluid velocity decreases globally as consequence of the
closing of the valve. The same comparison is performed at time ¢ = 1 in Figures 2.11 (d),
(e) and (f) in a situation where the valve is open and far from contact. In this case the
flux is reestablishes and the velocity increases in the channel. Again, a good agreement is
observed between Algorithm 2.4 and the strongly coupled scheme, even though at t = 1
slightly differences in the velocity are visible. On the contrary, the loosely coupled scheme
delivers an approximation that is far from the previous ones. Similar observations can be
made from Figure 2.12, where we compare the pressure at the same instants the pressure.
We can see the high pressure jump when the valve is getting in contact with the wall
(Figures 2.12(a) and (b)), while at ¢ = 1 the discontinuity between the two sides of the
interface is weaker (see Figures 2.12(d) and (e)). Algorithm 2.4 reproduces very well the
pressure jump obtained with the strongly coupled scheme, though a small difference is
visible at ¢ = 0.6. Figure 2.12 (¢) and (f) show the results obtained with the loosely
coupled algorithm, which is unable to deliver reasonable approximations.

Finally, Figures 2.13 and 2.14 present the time history of the horizontal and vertical
displacement, respectively, at the upper solid point B for the different levels of time
refinement. The contact condition with the wall can be seen in Figures 2.14, whereas
Figures 2.13 shows that the structure is sliding and bouncing over the top wall. These
results clearly show that Algorithm 2.4 is able to capture the dynamics of the interface
before and after contact with the upper wall. Only slightly differences are observed, in
particular close to the contact instant, but which decrease with the time refinement. On
the contrary, the loosely coupled is not able to reproduce the dynamics obtained with the
strongly coupled scheme, even with finest time refinement. This illustrates the limitations
of the loosely coupled scheme.

A more quantitative comparison of the strongly coupled and semi-implicit schemes is
given in Table 2.3 which shows the ¢£*° (0, T; 62(2)) norm of the difference of the displace-
ment obtained with each method. We can observe that the difference reduces with the
time refinement, but less than in the previous example. This is probably due to the ex-
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T > (0, T, ¢*(%)) norm
1073 1.34-1071
5-1074 1.28 1071
2.5-107* 1.22-107t

Table 2.3: Measure of the difference of the displacement between the strongly coupled and
the semi-implicit schemes.

T Strongly coupled | Semi-implicit
1073 1.32 1
5-1074 2.57 2
2.5-1071 5.35 4

Table 2.4: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.

treme singularity of the problem with contact. Table 2.4 displays the computational times
(dimensionless) of the strongly coupled and the semi-implicit (Algorithm 2.4) schemes.
The scaling is similar with the different time-steps and the semi-implicit scheme provides
on average a computational cost reduction of 24.2%.

2.4.3 Vesicle in lid-driven cavity flow

The last example is and adaptation of the well-known lid-driven cavity test with an
immersed elastic disk (see, e.g., Roy et al. (2013); Wang and Zhang (2010); E Griffith
(2012); Griffith and Luo (2017) ). The fluid geometry is shown in Figure2.15 (a) and
consists in three rigid wall I'y, and a lid I'yop, moving with tangential velocity. The domain
2 is the unit square given by [0,1] x [0,1]. The reference solid configuration is a circle
of center (0.6,0.5) and radius 0.2. The physical parameters used for the fluid in this test
are pf = 100, u = 10. For the solid we have p* = 100, ¢ = 0.0212, the Young’s modulus
E = 5.6 - 10 and Poisson’s ratio v = 0.4. Both the fluid and the solid are initially at
rest. For the boundary conditions, we impose zero velocity on I'y, and tangential velocity
of magnitude 4 = 1 on I'igp.

Since the fluid is entirely enclosed by Dirichlet-type boundary condition, standard
Dirichlet—Neumann partitioned procedures for the solution of the implicit step (2.46) are
known to diverge. This is due to the ill-posedness of the fluid system which enforces a
volumetric constraint on the interfacial solid velocity. In order to avoid this issues, we
consider the approach proposed in Kiittler et al. (2006) which consists in enforcing the
volumetric constraint into the structure equation using a scalar Lagrange multiplier, in
order to avoid the incompressibility incompatibilities with the subsequent fluid problem.
More precisely, in step (2.46) of Algorithm 2.4 the solid problem is replaced by the following
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mixed system

s(aTd;;,wh)E+a8(dz,wh)+v/2n1@h.n _
2

2
TN (@ =) @n) g — Y (@R e @)
i=1 =1

/andz'n:O

for all wy € Wy,. The scalar Lagrange multiplier A™ € R represents the unknown constant

pressure in the fluid.

The fluid mesh has 3200 triangles while the solid mesh is composed by 80 edges. We
have h ~ 0.035. Both meshes are presented in Figure 2.15 (b). The chosen time-step
lengths are 7 € {(5-1073/2")}2 and the final time is T = 10. We take as Nitsche
parameter v = 1. With the above physical and discretization parameters, the relation
(2.23) provides approximately the limit bound v < 2pch/(u1) & 3 for stability. Numerical
evidence, not reported here, indicates that larger values yield numerical instability.

For illustration purposes, Figure 2.16 shows the snapshots of the fluid magnitude for
both schemes and at different time, i.e., two different positions of the structure. At ¢t = 2,
Figures2.16(a) and (b), the vesicle is starting the upper region of the cavity, while at
t = 5, Figures 2.16(d) and (e), is moving away this region. Even with the coarsest
time step, Algorithm 2.4 is able to predict the same location as the strongly coupled
scheme. Figures 2.16(c) and (f) show the results of the loosely coupled scheme, which
is clearly unable to reproduce the previous dynamics. Similar observations can be made
from Figure 2.17 which shows the elevation of the pressure for the same time instants. No
notable differences can be seen between Algorithm 2.4 and the strongly coupled scheme,
whereas a major mismatch is obtained with the loosely coupled algorithm, particularly at
time ¢ = 5.

In Figure 2.18 we present the trajectory of the vesicle rightmost node obtained with
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Figure 2.15: (a) Geometric configuration and external boundary condition, (b) Fluid and
solid meshes at time ¢t = 0.
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(a) Strongly coupled, t = 2. (b) Semi-implicit, ¢ = 2. (¢) Loosely coupled, t = 2.

(d) Strongly coupled, t = 5. (e) Semi-implicit, t = 5. (f) Loosely coupled, t = 5.

velocity
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Figure 2.16: Velocity magnitude snapshots with 7 = 5- 1073,

the three numerical methods for the different levels of time refinement. Time markers
have been depicted in order to facilitate the comparison of the results. Algorithm 2.4
is able to capture the dynamics of the strongly coupled scheme at all the discretization
levels (time markers t5 and ¢1p are practically indistinguishable), whereas the loosely
coupled scheme requires a sufficiently small time-step to deliver a minimally reasonable
approximation (time markers t5 and t19 get closer after time refinement, but still yield
poor approximations).

T > (0,T,¢*(%)) norm
5-1073 6.70 - 1072
2.5-1073 1.97-1072
1.25-1073 7.76-1073

Table 2.5: Measure of the difference of the displacement between the strongly coupled
and the semi-implicit schemes.

Table 2.5 shows a quantitative measure of the difference between the approximations



2.4. NUMERICAL EXPERIMENTS 55

(a) Strongly coupled, t = 2. (b) Semi-implicit, t = 2. (¢) Loosely coupled, t = 2.

-~ o

(d) Strongly coupled, ¢ = 5. (e) Semi-implicit, ¢ = 5. (f) Loosely coupled, ¢t = 5.

pressure
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Figure 2.17: Pressure snapshots with 7 = 5-1073.

y-coordinate
o
>
y-coordinate
°
>
y-coordinate
°
>

041 04 0.4
— STRONGLY COUPLED — STRONGLY COUPLED — STRONGLY COUPLED
0sl ™ SEMI-IMPLICIT P SEMI-IMPLICIT P SEMI-IMPLICIT
Bl S LIOOSEILY COIUPLEIIJ B LOOSELY COUPLED :

0.1 0.2 0.3 04 0.5 0.6 0.7 08
x-coordinate

(a) 7=5-1073.

0.1 0.2 0.3 04 05 0.6 07 08
x-coordinate

(b) 7 =2.5-10"%,

---- LOOSELY COUPLED

01 02 03 04 05 06 07
x-coordinate

(c) T=125-1072

0.8

Figure 2.18: Trajectory of the extreme right node of the vesicle from ¢ = 0 to t = 10.

T Strongly coupled | Semi-implicit
5-1073 1.4 1
2.5-1073 2.3 1.9
1.25-1073 4 3.1

Table 2.6: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.

provided by the strongly coupled and Algorithm 2.4, for each level of time refinement.
As in the idealized valve without contact, no stagnation phenomena are visible. Finally,
dimensionless runtimes are provided in Table 2.6, showing that the semi-implicit algorithm
shows on average computational cost reduction of 23.3%, consistently with the previous
examples.
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2.5 Conclusion

In this chapter, we have introduced a new semi-implicit coupling scheme for the nu-
merical approximations of incompressible fluid-structure interaction problems involving
immersed solids. The proposed method generalizes the projection based semi-implicit
coupling paradigm of Fernandez et al. (2007) to the Nitsche-XFEM framework, with the
following main ingredients:

e The traditional accuracy issues of previous splitting schemes based on a Nitsche’s
interface treatment (see Astorino et al. (2009a); Alauzet et al. (2016)) are circum-
vented through a variationally consistent transfer of the fluid viscous stresses to the
solid problem;

e Consistent spatial approximation of the pressure-Poisson problem through the
Nitsche-XFEM unfitted framework.

Moreover, Theorem 2.2.1 has shown that the method preserves the stability properties of
the original splitting in the fitted mesh framework (see Fernandez et al. (2007)). The com-
prehensive numerical study reported in Section 2.4 confirmed these findings and showed
a very good performance, in terms of stability and accuracy, with respect to the previous
strongly coupled and loosely coupled schemes reported in Alauzet et al. (2016). As a
result, the present semi-implicit coupling scheme can be considered as a robust approach
to avoid strong coupling in unfitted meshes without compromising stability and accuracy.

Ongoing work focuses on the implementation of the present approach with 3D un-
structured meshes. The main difficulty lies on the formulation of a robust and efficient
algorithm for mesh intersection and integration over the cut-elements (see Massing et al.
(2013); Zonca et al. (2018), Chapter 6), as well as the management of contact between
several solids, which we address in Chapter 4.



CHAPTER 3

Error analysis of an unfitted mesh
semi-implicit coupling scheme for
fluid-structure interaction

3.1 Introduction

This chapter is devoted to the error analysis of the numerical method described in
Chapter 2, for a linear fluid-structure coupled system involving the transient Stokes equa-
tions (in a fixed domain) and a thin-walled solid elastodynamics model. This system is
often used as model problem for the analysis of time-splitting schemes for incompressible
fluid-structure interaction (see, e.g., Astorino and Grandmont (2010); Fernandez (2013);
Burman and Fernandez (2014a); Fernandez and Mullaert (2016); Bukac and Muha (2016);
Boffi and Gastaldi (2017)). Indeed, it retains the fundamental numerical difficulties that
have to be faced also in general incompressible fluid-structure systems. A large amount
of added-mass in the system is known to severely compromise stability and accuracy in
standard explicit coupling schemes (i.e., those which invoke the fluid and solid solvers only
once per time-step, see, e.g., Le Tallec and Mouro (2001); Causin et al. (2005); Forster
et al. (2007); van Brummelen (2009)). The simplest approach to overcome these issues is
to resort to a strongly coupled scheme (i.e., one in which the interface coupling is implicitly
discretized in time), but at the expense of a higher computational complexity.

The development and the analysis of time splitting schemes which avoid strong coupling
without compromising stability and accuracy has been a very active field of research during
the last fifteen years. The vast majority of the studies have been devoted to the case of
spatial approximations based on fluid meshes which are fitted to the interface (see, e.g.,
Fernandez et al. (2007); Quaini and Quarteroni (2007); Badia et al. (2008b); Astorino and
Grandmont (2010); Fernandez (2013); Bukac et al. (2013); Bukac and Muha (2016)). For
many applications, such a mesh compatibility can however be cumbersome to maintain
in practice (see, e.g., Peskin (2002); Gerstenberger and Wall (2008a); Sawada and Tezuka
(2011); Boffi et al. (2011); Burman and Fernandez (2014a); Kadapa et al. (2018); Kim and
Lee (2018)).

The earliest explicit coupling schemes with unfitted meshes have been reported in Bofhi
et al. (2011); Kim and Lee (2018), using the immersed boundary method, and in Burman
and Fernandez (2014a); Kadapa et al. (2018), using unfitted Nitsche approximations with
overlapping meshes. Nevertheless, these methods suffer from major stability /accuracy
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issues which either require severe time-step restrictions (see Boffi et al. (2011); Burman
and Fernandez (2014a)) or are limited by the amount of added-mass in the system (see
Kadapa et al. (2018); Kim and Lee (2018)). A new class of semi-implicit schemes with
unfitted meshes has been recently reported in Fernandez and Landajuela (2019); Annese
et al. for the case of the coupling with thin-walled solids. These methods robustly avoid
strong coupling but at the expense of introducing additional unknowns in the fluid sub-
problem (intermediate solid velocity). Fully explicit variants of these approaches have
been derived in Fernandez and Landajuela (2019) and in Boilevin-Kayl et al. (2019a).
Nevertheless, the formulation of the former in the case of immersed solids remains open
and the accuracy of the latter relies on a grad-div penalty stabilization (for enhanced mass
conservation) which spoils the conditioning of the fluid subsystem.

This chapter is devoted to the numerical analysis of the unfitted mesh semi-implicit
coupling scheme recently introduced in Chapter 2. The method combines a Nitsche based
unfitted mesh spatial approximation with a fractional-step time-marching in the fluid.
The viscous part of the coupling is treated in an explicit fashion (which avoids strong
coupling), while the remaining fluid pressure and solid contributions are treated implicitly
(which guarantees added-mass free stability). Robust a priori error estimates are derived
for two extrapolated variants (r = 1,2 stands for the extrapolation of the solid velocity).
The analysis highlights the fundamental role played by the time discretization of the
Nitsche’s penalty term in the stability and accuracy of the splitting. In particular, an
o(r"/ h%) splitting error is obtained instead of the standard O(7/h) for the stabilized
explicit coupling scheme of Burman and Fernandez (2014a). The superior accuracy of the
method is also supported by numerical experiments in an academic benchmark.

The rest of the chapter is organized as follows. Section 3.2 presents the continuous
setting. Its numerical approximation is discussed in Section 3.3. The numerical analysis of
the semi-implicit scheme is reported in Section 3.4. Numerical evidence on the convergence
properties of the methods is given in Section 3.5. Finally, Section 3.6 summarizes the main
conclusions of this work.

3.2 Problem Setting

We consider a linear fluid-structure interaction problem in which the fluid is described
by the Stokes equations in a fixed polyhedral bounded domain Qf ¢ R?, with d = 2,3
and the structure by a linear thin-walled solid model with mid-surface given by X, also
assumed polyhedral. Let the boundary of Qf be partitioned as 9Qf = X UT and denote
the outward unit normal to OQf by n. In this framework, the considered coupled problem
reads as follow: find the fluid velocity and pressure u : Qf x Rt — R% p: Qf x Rt - R,
the solid displacement and velocity d : ¥ x RT — R?, d: Y x RT — R? such that for all
t € RT we have
ployu — dive(u,p) =0 in QF x RT,
divu =0 in QFf xR, (3.1)
u=0 on I'xRT,



3.2. PROBLEM SETTING 59

p’cdd+Ld=T in ¥ xR,
d=08d in X xR, (3.2)
d=0 on 0¥ xRT,

u=d on X xRT,
(3.3)
T =—o(u,p)n on X xR
with the initial conditions w(0) = wug, d(0) = do and d(0) = dy. Here, the symbols pf
and p® stand, respectively, for the fluid and solid densities. The thickness of the solid is
denoted by ¢ and the fluid Cauchy stress tensor is given by

[oW

1
o(u.p) “ 2pe(u) —pI, e(w) 2 (Vu+ Vu),

where p denotes the fluid dynamic viscosity and I is the identity matrix. The relations in
(3.3) enforce, respectively, the kinematic and dynamic interface coupling conditions. The
abstract differential operator L in (3.2) describes the elastic behavior of the solid.

In the following, we will make use of the usual Sobolev’s spaces H™(2)(m > 0), with
norm || + [|m,q and seminorm | - | 0, along with the closed spaces HE (), of functions in
H'(Q) with zero trace on T, and L3(f2), of functions in L?*(Q) with zero mean in 2. The
scalar product in L?(€) is denoted by (-, -)q.

For the weak formulation of the fluid problem we consider V = [H%(Qf)]d and Q =
LQ(Qf) as the fluid velocity and pressure functional spaces, respectively. The standard
Stokes bilinear forms are given by

a(u,v) € 2 (e(u), e(v))ge . bg,v) E — (q,dive) g .

For the solid weak problem we suppose that W C [H 52 (Z)]d is the space of admissible
displacements and we assume that L: D C [L* ()] ¢ [L? ()] Yisa self—adjoint second-
order differential operator symmetric, coercive and continuous on W. Associated to the
operator L, we define the elastic bilinear form

o (d, w) < (Ld, w)y (3.4)
for all d € D and w € W. We define the following elastic energy norm on
[wll? = a® (w, w)
and we assume that the following continuity estimate holds
lwll2 < 5°lwllf 5 (3.5)

for all w € W, with % > 0.
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3.3 Numerical methods

In this section, we discuss three numerical methods for the approximations of the
coupled problem (3.1)-(3.3). These methods involve an unfitted mesh spatial discretization
and different levels of fluid-solid time splitting.

3.3.1 Unfitted mesh spatial approximation

In a standard conforming finite element approximation, typically based on fitted
meshes (see, e.g., Du et al. (2004); Fernandez (2013)), the kinematic coupling condition
(3.3)1 is strongly enforced. This is no longer feasible in the unfitted mesh setting. We
consider the robust and optimal unfitted mesh method with overlapping meshes proposed
in Burman and Fernandez (2014a). Therein, the interfacial fluid-solid coupling is treated
in a fully weak fashion via a Nitsche’s type mortaring.

Let be {77}o<n<1 a family of triangulations of ¥, such that ¥ = UKeThS' We then
consider the standard space of continuous piecewise affine functions associated to 7,°,
namely,

X5 {v, € COF) |opi € Pi(K), VK €T}

For the approximation of the solid discrete space for the displacement and velocity we
consider the following space W, = [X3]9 N W.

)
a

ﬁ/r

Figure 3.1: Unfitted meshes.

We denote with {’7;5}0<h<1 a family of triangulations that cover the fluid domain QF
such that:

1. Every 72( is fitted to I' but, in general, not to X;
2. For every simplex K € 775, we have K NQf # @.

In what follows, Qg stands for the domain covered by 77{ (i.e., the fluid computational
domain). We denote by Gj the set of elements of 7;Lf intersected by X, by JFj the set of
the internal edges or faces of 7;5, and by Fg, the set of edges or faces of the elements of
Gy, that do not lie on 892, namely,

def . def
Qz = lnt(UKEThf K), (673 =

def
Fn =

{Keﬁf\KﬁE;ﬁ@},

[Feor|KeT!, Fnoo£F}, Fo, Y {FecoKx|Keg, Fnooj£F}.
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We consider the following space of continuous piecewise affine functions defined over 7;5

x£ e {vh € CO() | vpx € PL(E) VK € 7’,{} . (3.6)

For the approximation of the fluid velocity and pressure, we consider the following spaces

def

def
vV, = :

{vh € X3 [vnlr = 0}, Qn = Xj.

Since the discrete pair V5, /Qp lacks inf-sup stability, we consider the classical Brezzi-
Pitkdranta symmetric pressure stabilization (see, e.g., Brezzi and Pitkdranta (1984)):

2

def h
sn (Phyan) = ’Yp/ ;Vph'VQh, % >0 (3.7)

@,
Note that the pressure stabilization is defined over the computational fluid domain Q};
In order to guarantee robustness of the method with respect to the way the interface

is cutting the fluid mesh, we consider the following ghost-penalty operator (see Burman
(2010)):

gh(uh, 'Uh) déf 'yg,uh Z ([[Vuh]]p, [[V’vh]]p)F (38)
FeFg,

We can hence introduce the following total stabilization operator Sj and associated semi-
norm:

Sn((wnspn) s Wy an) ) < sn(pny an) + gn(un, vn), (3.9)
| (o pn) |5 = Sn( (wn, pn) , (wn, pr) )%,

so that the fluid discrete bi-linear form is given by

a, ((wn, pn), (0nsan)) = a ((wns pn), (Vns @) + Sn ((wns pr), (i a)).-

Finally, the considered space semi-discrete unfitted mesh approximation of (3.1)—(3.3)
reads as follows: for ¢ > 0, find (wp(t),pa(t), di(t), dn(t)) € Vi, X Qp x Wy x W, such
that d;, = 0ydj, and

o' (Ovun, v1) o, + af, ((whs pr), (Vn, an)) + pe(Ordn, wy) g, + a®(dp, wy)

— (o (up, pr)m,vh — wp) ¢ — (w, — dp, o(vh, —qn)n) g + %(uh —dp, vy —wyp) g =0
(3.10)
for all (vp, g, wp) € Vi, X Qp X W, Here, v > 0 denotes the Nitsche’s penalty parameter.

Remark 3.3.1. In the numerical experiments of Section 3.5, the second assumption on
7;5, that is, all the elements of QZ intersect the physical domain QF is relazed. This is
achieved by extending the ghost-penalty operator (3.8) to Fyp, (all internal edges or faces of

T,f), i.e.,

an(wp, vy) & b > ([Vunlr, [Vorlr) p- (3.11)
FeFy
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This ensures the invertibility of the fluid stiffness matriz. It should be noted that the results
of the numerical analysis reported in Section 3.4 below also hold in this case.

3.3.2 Time splitting schemes

This section is devoted to the time-discretization of (3.10). We first discuss the strongly
coupled and the stabilized explicit coupling schemes reported in Burman and Fernandez
(2014a). Particular attention is paid to the well-known accuracy issues of the latter. We
then discuss the semi-implicit projection based coupling scheme reported in Chapter 2,
whose purpose was precisely to circumvent such difficulties without resorting to strong
coupling.

In the following, the parameter 7 > 0 denotes the time-step length, 0,z" stands for

*T represents the r-th order explicit

the first-order backward difference formula and z
extrapolations to =", viz.,

71 .
ndef 1, ne1 s def " ifr=1,
O = = (a"—a" ), 2= {anl 2 ifp—o (3.12)

3.3.2.1 Strongly coupled scheme

Traditionally, the natural way to achieve numerical stability has been to consider a
strongly coupled scheme, that is, a fully implicit time-discretization of (3.10). An example
of such an approach is reported in Algorithm 3.1. The method is also known to deliver
an optimal O(7) + O(h) accuracy in the energy norm (see Fernandez and Landajuela
(2019)). The price to pay for this robustness is the resolution (at each time-step) of
the hybrid coupled system (3.13), which can be computationally demanding in practice,
particularly, due to its hybrid nature. Indeed, this monolithic system often yields ill-
conditioned matrices which require dedicated solvers.

Algorithm 3.1 Strongly coupled scheme (from Burman and Fernandez (2014a)).
For n > 1:
find (uz,pz, Z,dﬁ) e Vi, x Qp x Wy x Wy, with dj = 0-d}} and such that

P (0rujt, vn) o + ai (uf ), (Vn, an)) + pe(0-dy, wp)y, + a(djy, wy)

_ (a(uz,pﬁ)n, vy, — wh)E — (uZ — dZ, o(vp, —qh))fn,)E 4 ﬂ(uz _ ‘27 vy, — wh)E =0

h
(3.13)

for all (vh,qh,wh) EVy xQnpx Wy

3.3.2.2 Stabilized explicit coupling scheme

The stabilized explicit coupling scheme reported in Algorithm 3.2 enables a fully se-
quential decoupled time-marching of (3.10). Energy stability is achieved under a mild
CFL-like condition (see Burman and Fernandez (2014a)), thanks to the specific explicit
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treatment of the Nitsche penalty interface term and to the addition of an interface pressure
stabilization in time (weakly consistent interfacial compressibility). The stability of the
method is independent of the added-mass effect and of the considered local fluid and solid
time-marching schemes. These features come however at a price: the sub-optimality of
the splitting error, whose leading term scales as O(7/h) (see Remark 3.4.3 and Burman
and Fernandez (2014b)). Correction iterations are thus needed to enhance accuracy, under
restrictive constraints on the discretization parameters.

Algorithm 3.2 Stabilized explicit coupling scheme (from Burman and Fernandez
(2014a)).
For n > 1:

e Solid sub-step: find (ﬁ, dy) € W, x W, with d}! = 9-d}} and such that

L(uz_l,wh)z — (o(up " o Y, wy)

pse(aTc.lZ,’wh)E + a’( Z,wh)“‘%(.;;?wh)z =
1
h
for all wy, € Wy,.

e Fluid sub-step: find (uﬁ,pﬁ) € V', x Qp, such that

h
' (0-uft, v1) o + af, ((wns pn), (Vn, qn)) + %(PZ —ph )y
— (up — 'Z»Qh")z + %(u%vh)z - %(.Zv”h)z + (U(UZ*vaﬁfl)"’”h)z
(3.15)

for all (vp,qn) € Vi, x Qp.

Roughly speaking, the lack of spatial uniformity in the splitting error of Algorithm 3.2
can be explained as follows. After spatial refinement, i.e., whenever h — 0, the solid
sub-problem (3.14) forces the solid velocity d to be close to u}"!|s;, whereas in the
fluid sub-problem (3.15) the fluid velocity u}!|s; approximates dZ In summary, the spatial
discretization forces ||u} — ’UJZf1 llo,x; to be small as h — 0, by amplifying the time-splitting
error. This is an essential ingredient of the scheme that guarantees numerical stability but
it degrades accuracy.

3.3.2.3 Projection based semi-implicit coupling scheme

Algorithm 3.3 reports the projection based semi-implicit scheme of Chapter 2. The
fundamental idea of this method, borrowed from Fernandez et al. (2007) in the case of fitted
mesh approximations, consists in combining a fractional-step time-marching in the fluid
(3.1) (see, e.g., Guermond et al. (2006)) with a semi-implicit treatment of the interface
coupling (3.3). In Algorithm 3.3, the fluid is discretized in time with an incremental
pressure-correction method and a backward-Euler method is considered for the solid. We
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introduce the fluid discrete viscous bi-linear form

ab, (un, vi) © 2p(e(un), e(vn)) -

Note that the fluid viscous-step (3.16) is explicitly coupled with the solid, hence avoiding
strong coupling (i.e., reducing computational complexity), whereas the coupled pressure-
displacement system (3.17) guarantees added-mass free stability through the implicit treat-
ment of the fluid incompressibility and solid inertial effects. For r = 2, the Algorithm 3.3
can be initialized with one step of the scheme with r = 1.

Algorithm 3.3 Projection-based semi-implicit scheme (from Chapter 2).

For n > r:

1. Fluid viscous step: find uj € V', such that

1

f
p? (ﬁz B ’UZ_ 7§h)Qf + afz (ﬂ’zv vp) + gh(a27 vp) + (sz—l, 5h)Qf

— (o(@},0)n, )y, + % (a;; —dr m)z - (ag —dr a(ah,O)n)E =0 (3.16)

for all v, € V.

2. Pressure-displacement step: find (pz, dZ) € Qp x Wy, with dZ = 0,d} , such that

T — ~ . .~
E(V(pz _pZ 1)7 VQh)Qg + Sh(p;zla Qh) = (’u';LL - d;7,L7th)E - (le Uz7 Qh)Qh
pe(0rdy, wy)y + a*(dy, wy) = %(az —dy" wy)y — (o(@), pin,wy).
3.17)
for all (qh,'wh) € Qp x Wy,
3. Intermediate velocity step: find u} € V', such that
P’ P )
2 (aft on)or = = @ on)or — (V0 — 51, 0n) (3.18)

for all vy, € V.

It is worth noting that the discrete interface stresses in the (3.17)s involve the same
penalty term as in (3.16). In other words, the viscous stresses in (3.17)y correspond to
the variationally consistent residual of (3.16). This constitutes a fundamental difference
with respect to Algorithm 3.2 (and also with respect to Astorino et al. (2009a) with fitted
meshes).

The next section provides an error estimate for Algorithm 3.3 which shows superior ac-
curacy with respect to Algorithm 3.2, namely: O(Tr/h%), with » = 1, 2, instead of O(7/h).
Furthermore, the numerical evidence reported in Section 3.5 suggests Algorithm 3.3 de-
livers practically the same accuracy as Algorithm 3.1, which is uniform with respect to h.
The price to pay for this superior accuracy with respect to Algorithm 3.2 is threefold:
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e An additional CFL-like condition for stability (see Theorem 2.2.1 and Theorem 3.4.1
below);

e The solution of the coupled pressure-displacement system (3.17);

e A limited flexibility in the choice of the time-stepping for the fluid and solid sub-
systems.

Remark 3.3.2. In practice, we can avoid solving the third step, by inserting (3.18) into
the viscous step (3.16), obtaining

' (0-uf, n) o + ai, (@h, On) + gu(@p, va) + (V(2p" 1 = p"2),0) o

— (o (uy, 0)7%5/1)2 + %(ﬁh dzraah)z (uh — dﬁ? o (Vh,is O)Ri)z =0

for all vy, € Vy,.

3.4 Numerical analysis

This section is devoted to the numerical analysis of Algorithm 3.3. We first recall the
main ingredients for the energy stability of the method reported in Chapter 2 and extend
the proof to cover the case of a second-order extrapolation (r = 2). An a priori error
estimate is derived in Section 3.4.2.

3.4.1 Energy stability

We assume (see, e.g., Hansbo and Hansbo (2004); Burman and Hansbo (2012)) that
the following trace inequality holds

lllf snx < O (R H[0lIE g + RIVIE 1) (3.19)

for all v € HY(K), K € 7! and Ct depending only on . By combining (3.19) with a
discrete inverse inequality, it follows

le (wr)nllgs < D lle (@n)lloznx

Kegy
<Cr Y (e @nlx +hlIVe@ill) (300
Kegy
Crr
S Z le (’Uh)||3,K
Kegy
for all vy, € V},. Hence,
hlle (vn) nllg,s < Crille (wa)5.0r (3:21)

for all v, € V. This estimates are fundamental for the energy stability of the method.
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Let define the discrete total energy Ej}' by the following expression:

-2
aef p!
Ep = 5 llu |‘7PZH§¢22~ (3:22)

Hogf+ IId %+ Hd 12+ 2pf|

The following result states the conditional energy based stability of the approximation
provided by Algorithm 3.3.

Theorem 3.4.1. Let {(uﬁ,pﬁ, 'Z, dZ) }n>1 be given by Algorithm 3.3 withr = 1,2. Under
the following conditions B

2(3 + 40&) CT1

> AT 2 3.23

v > - o (3.23)
22r

h, 24

YT _1+4 p°e (3.24)

with a > 0, the discrete energy estimate presented below holds:
E; < Eh, (3.25)

foralln > 1. As a result, Algorithm 3.3 is conditionally stable in the energy norm (3.22).

Proof. The proof for r = 1 is reported in Chapter 2. We recall here some of the steps
and provide some details that include also the case r = 2, which follows similarly. We
proceed by testing (3.16)-(3.18) with (vh,ﬂh,qh,wh) = (u}f,ﬂﬁ,p}f,dﬁ). By proceeding
like in the derivation of (2.34) in Chapter 2 (the sole difference lies in the choice of dZT
and the inclusion of the seminorm associated to the stabilization operator S,), we get the
following energy estimate

£
P 2 1112 -
5 Or lluplloor + 2cgu [le(u e o T of [HVphllo of ~ NS 1HOQ§L] + [|(@R, pi)lI%

T T A P
~2p (e(@iym. @y — &) -2 (@i, ag - ")
Ty
+ 25 (- a7 —dp) <0 (3.26)

T2

for n > r. Term T; can be bounded by adding and subtracting 'Z, using the
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Cauchy—Schwarz, Young’s and trace inequalities (3.20), as follows:

T =—2u (e(a;;)n, ar — d;f) 4y (qaz)n, ar — dg)z

1 wCTr e, n_ gl 2
2‘(al+ag> ()50, - “Hd B NRCEY
_ _ i n—1 n—2 o _m
2(r 1)a1 h d d Hoz 227" h hHo,z7

with a1, ae > 0. Similarly, for the second term, we have

f LS o
T2_7‘ up, — dn 0,5 7<dﬁ d,*f,uz dz)z
2 sy || - P
( 2a3) ] Wyl E A IH (3:28)
A3V | -1 'n—2‘ 2
—(r—1 d —d
(r ) h h los

with ag > 0. By inserting (3.27) and (3.28) into (3.26) we get

P _1n2 pe < N2
5 Huh”o Qf + [vahHO of HVpZ IHOQf ] + 787 dy o
_ C1 1 9
GMW|WHQ+M@—V(M o )| etz
pe ( as) VH ’ o -n_1H2 1 |
= - SR g — a - —— —2a, ) &
" [27 Tt h} n s T T 20 T2 h "o,

) 2
~ (1 =1) (201 + ag) 2F Hdz—l - dg—QHOE <0 (3.29)
for n > r. We now set

[0
a1:§7 Qg =

so that (3.29) yields

P n pe n n—
a HuhHogf‘i‘ [HVth[)Qf vah IHOQf] 78 d 0% 2 (Hd Hs Hdh 1”3)
pe 1 YE || -THH? 1 w‘ m—1 -HHQ
B2 (= Ria —d —tr=1D(=42a) =|dv ' -d
+{27 T<4+a> h] =" los (r—1) g T b los
Cr1 3 + 4o ~ny||2 ~n n
wou e = L @y + 25 - ) <0 a0

for n > r. We now replace the upper index n by m and sum over m = r...n and multiply
by 7. This yields



2 ol + o VDR ey + 57 e+ el
+Fmr(3+e) ”“]ZHd’” B e (o) 33 -
orn = S S g+ 3 [ - )
< W e 195 g+ 22 0+ S

for n > r. By rearranging the terms in the first sums, we get

f 2 S
P 2 T 2 PE|:
G el + e VPRI 0 + 5[]+ 5 IR

0,5

pe (1 1] < Hm -m_1H2 1 v Hl -0H2
4 ar _ =1 (= +2a) | a -

+[2 <4+a>h]n; dii — i | Tr=1) (5 +2 )= |d; i) &

Ct1 3+ 4o o ~my |2 ™ m
Fam [ - O3 }Zue(uh)nmﬁ o ZH -ar|

2
r—1
[l
0,5

<2 Yoo + 57 HVPZ Yooy + %5

Ty =12
+ —||d 31

forn > r.
In the case r = 1, the previous bound yields the energy estimate provided in Chapter 2.
For r = 2, we need to control the contributions coming form the initialization step, namely,

P 2 T 2 pe || -
ol + oo 98h o+ 55 8] + kI,

which are obtained from one step of Algorithm 3.3 with » = 1. We hence consider (3.31)
with (n = 1,7 = 1), which yields

f 2 S o2 1
G sk + 5 (VPG gy + 5[] + 50k

5 o)) - e - S e
+[2 (i) }dhd eS8

p
< |

el LI [N ¥ oy L T +’” |as], + 5 laz

Hence, by adding this expression to (3.31), we finally get

Se | - 2
v n 2 14 ‘dn
e VRl + 50 )

*Hd

I2

P e m—1
fy T Ja — a2
+[2 + 4a) }Zd dr s
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Cr13+4a] — _ ~
+2w{cg_;ﬂ aa}zne(u?)Hng—i— T ZH m deOE
m=1
f
<& |l h!\omzf»lv Rlag + 50 [8], + 12 32)

for n > 1. The energy estimate (3.22) hence follows from (3.32) under the conditions
(3.23)-(3.24), which completes the proof.
O

Remark 3.4.1. A similar stability analysis can be derived in the case of a thick-walled
solid. The solid quantities appearing on the interface 3, such as dz — &Z_l, are controlled
on the whole solid domain using element-wise trace inequalities. This yields to a parabolic
CFL-type stability condition, namely,

T S PR,

which is more restrictive than in the case of a thin-walled solid. An analogous stability re-
sult is reported in Ferndndez et al. (2007) for the non-incremental version of Algorithm 3.3
within the framework of fitted mesh. Stability is guaranteed under the CFL-like condition
ph2 4 2ut < pSeh for a thin-walled solid and pth? 4 2ut < p*h? in the case of thick-walled
solid.

3.4.2 A priori error estimate

In the following we use the notation v" ey (t,,) for a given time dependent function
v. For conciseness, an abuse of notation will be committed by denoting (d;v)" with d;v™.
Furthermore, the symbol < indicates inequalities up to a multiplicative constant (inde-
pendent of the discretization parameter h and of the physical parameters). We consider
the following mesh-dependent seminorms for functions defined on the interface X:

IR = D DB 1120 s = D BN s

Kegy, Kegp

where ¥ denotes the part of the interface intersecting the simplex K| i.e., X RNy

For the sake of simplicity, in the error analysis we assume that the interface X is
flat. Furthermore, the elements of the solid mesh are supposed to be grouped in disjoint
macropatches P;, with meas(P;) = O(h%). Each (d — 1)-dimensional macro patch P; is
assumed to contain at least one interior node and the union of the P; is assumed to cover
>, viz., U By = 3.

The discrete interpolation operators are those introduced in Burman and Fernandez
(2014a) (see also Fernandez and Landajuela (2019)). For the solid displacement, we con-
sider the elastic Ritz-projection operator w} : W — W, defined by the relation

a® (w—miw,wp) =0 (3.33)
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for all wjy, € Wy, and for which there holds
Jw - whwloy + 1[IV (w - wjw)llyy S h2wlss (3.34)

for all w € [H?*(X)] AW For the solid velocity, we consider the operator I, : W — Wy,
which is defined as a correction of the operator 7§ by the relation

def
Iyw = 7r§lw+zaicpi,
i

with o; € R to be fixed with a constraint detailed below. The ¢; are functions with
support in the macropatches P;, such that

d—1
0<wi <1, |oillgp Sh 2

and take the value 1, component-wise, in the interior nodes of the associated patch P;.
The scalars «; are chosen so that the following condition holds:

/ (w — Tpw) - n =0, (3.35)
P

This orthogonality condition is used in the error analysis to control the interface terms
coupling the fluid pressure and the solid velocity. We refer to Becker et al. (2009) for the
detailed construction of such an operator. It can be shown (see (Burman and Fernandez,
2014a, Lemma 3.3)) that

lw — Tywllgs + BV (w = Lw) o S B2 wls (3.36)

for all w € [H2(S)]" N W.

Since the physical solution and the discrete one, are defined on different domains,
namely Qf and Qz, with Qf ¢ O, we assume that there exist two linear continuous
lifting operators Eo : H? (Qf) — H? (Rd) and E; : H! (Qf) — H! (Rd) , satisfying the
bounds HEIUHHI(Rd) < HUHHI(Qf) forallv € H' (QF) and HEQUHHQ(Rd) S HUHHQ(Qf) for all
v € H?(QF), (see, e.g., Evans (2002); Salsa (2009)). To interpolate the resulting extended
fluid solution we consider the Scott—Zhang operator ig,, see Ern and Guermond (2004)
for extra details. Then it holds (see (Burman and Fernandez, 2014a, Lemma 3.3)):

lv — isz Bawllg or + 1 [V (v — i, Bav) g or S W2 [vla 0,

g — issE1qllg o + A IV (g — issErd)g 0r < Plalyars
o (v — i Bav.q — iwBra)nl_y s Sh (l0loor + laler) . (337
< hjjv

~

v — isﬁhﬂ”%@g 2,0f

3
lw = Trwlly 5 S h2 w2z

for all v € [HQ(Qf)]d, g€ HY(Q) and w € [H2(E)}d N W. Moreover, using an inverse
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inequality, (3.37) and the stability of the extension operator we have the following stability
result for the gradient projection

HVZSZEIQHO Qf <h” 1HZSzElq EIQHOQf + HVEIQHO Qf ~ HQH1 Qf (338>

For the pressure and ghost-penalty stabilization operators (3.7)-(3.8), the follow-
ing consistency properties hold (see, e.g., Burman and Fernandez (2014a); Burman and
Hansbo (2014)):

. . 1 _1
sh (issB1q, i, B19) 2 S w2 h|gly qor (3.39)

and )
1
gn (isg B0, is, Fov)2 S hju? vy g (3.40)

In the following we will make use of the discrete Gronwall lemma (see, e.g., Heywood
and Rannacher (1990)), which we collect here without a proof.

Lemma 3.4.2. Let 7, B and ap,, by, Cm, i (for integers m > 1 ) be non-negative numbers

such that
an—i—TZb Tanam—I—TZcm—i—B

forn = 1. Suppose that 70y, < 1 for all m = 1. Then there holds

o Sncon(rE ) ()

forn > 1.

For the a priori error estimate, we assume that the exact solution of problem (3.1)-(3.3)
has the following regularity, for a given final time T' > 7

we [H (0,T; H2()]", wuls € [H' (0,T; H*(%))]",
duu € [L2 (0,T; L2(2))]%, duuls € [L? (0,T; LA(%))]°,

J (3.41)
peH' (0,T;H'(Q), wuls e [H?(0,T;H*(%))]",
Ouly € [L2(0,T; 12(2)]*, de [H' (0,T; H())]".
We define the energy norm of the error at time ¢, as
anﬁf f% n__ ,m T YV (p" — p? S %dn_n d® — d»
no= )7 lu" —uglloor + —— IVP" = pp)lloor + (7€) |] nllos + 1l s

(p")2
-~ «
~m - 2
(gt
m=

We can then state the following a priori error estimate.

1

+ (Zn: T!(Wm%”)\%)

m=1

(NI
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Theorem  3.4.3. Let (u,p,d,d) be the solution of (3.1)-(3.2) and,
{(up,ay, py, dy, dpy) }n>r be given by Algorithm 3.3, with initial data

~r—1 -1 g1 "r—1 . -1 . -1 _s -1 “r—1
(@, ,pp . dy dy ) = (ispBou” i, Erp’ whd’ T Id )

forr =1,2. Suppose that the exact solution has the reqularity (3.41) and that the stability
conditions (3.23)-(3.24) hold. Then, for n > r and nt <T, we have the following discrete

error estimate: ,

Zy Sah+cr+ 63%, (3.42)

2

where {cz-}g’:1 denote positive constants independent of h and T, but which depend on the
physical parameters and on the regularity of the exact solution.

Proof. The proof combines some of the arguments reported in Burman et al. (2017);
Burman and Fernandez (2014a). Note however that analysis of Burman and Fernandez
(2014a) focuses on the spatial semi-discrete problem (3.10) and the work of Burman et al.
(2017) is limited to a pure fluid problem. Multiplying (3.1)-(3.2) by (vpn,qn) € Vi X Qp
and wy, € Wy, integrating by parts over Qf and using (3.1)3 and (3.3)2 we obtain

1. Fluid sub-problem:

{pf (Opw, vp)or + 21 (e(u), €(vn))or + (Vp,vn)gr — (0 (w,0) n,vp)y, = 0, (3.43)

(qn, divu)ge = 0.
2. Solid sub-problem:
psg(atda wh)E + a’ (da ’UJh) + (0- (uvp) n, ’th)E =0.

Note that only the viscous term has been integrated by parts in the fluid.
On the other hand, owing to the kinematic coupling condition (3.3)1, we also have

1. Fluid sub-problem:

+ %(U —d,vp)s — (u—d,o (v, —qn)n)s = 0, (3.44)

(gn,divar)ge =0
for all (vp,qn) € Vi X Q.
2. Solid sub-problem:

poe(Ord, wp)x + a° (d, wy) + %(d —u,wp)y + (o (u,p)n,wy)y, =0  (3.45)

for all wy, € Wy,
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Thereafter, using the lifting operators (component-wise) we introduce the following de-

composition of the errors for the fluid:

Eyu™ —up = Fou" — i Fyu” +ig, Ehu” —uj in of

def ,p def
= 071- = OZ

Exu" —up = Bou” — ig Fou” +ig, Fou™ —u,  in Qg,

dﬁf n def 1
= 0} =0,

Elpn - PZ = Elpn - iszElpn + iszElpn - pZ n Qh

def ' n def p
= Yn = Yp

and for the solid:

d'—d} =d" —md"+md" —d} in X,

def def

= &7 =&

d"—dy =d" —I,d"+I,d"—d} in 3.
def “n def “n
= E7r = gh

By adding and subtracting 0,7} d", we can rewrite EZ as

& =Ipd" — d} = Tp,d" — 0,5 d" + 0,5 d — O.dy = 27 + 0,£7.

_ n
déf zz - TEh

We also introduce the following notations:

X*,r déf dn _ Ihd*,r _

i

d" — I,d" ! ifr=1,
d" —2I,d" '+ I,d" % ifr=2,

—1 def p— . . —
wz = y;f ! "‘%zElpn _ZSZElpn 1-

In particular, owing to (3.49), we have

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

w' =g — (d"—dy") = 02+ 0, — (X" +Tnd™ —dy") = 01+ 6, — (X5 +€7), (3.51)

Similar, from (3.50), one straightforwardly gets the following useful relations:

Pt —pp =
7

P —pp =yt -y,

(3.52)

The essential part of the proof focuses on deriving an a priori estimate for the discrete

€eITrors

{(67, 61, 7, €1 €1} s
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in terms of the following energy norm

T

1
def , £\ 1 2 1.
& (2 103+ (%) 190 loay + (79 16 + gl

1 1
1 2 n 2 n
~m 2 (6% ~m . ~m
+<§ |V, ”0@2) +<§ REwnrald ) —é’;’l‘llz,hvz) +<§ Tcg‘(6h7y}T)|§>
m=r m=r

m=r

2

To this purpose, we first focus on the fluid subsystem. By subtracting (3.16) from the
momentum equation of (3.44) at t = t,,, with n > r, we get

f
P (O™, B o — % (@ — )" o) o + 20 (e(u — @), (@) o + (V" =P, B)
o1l

+ 7 ((un - ag) - (dn - dz,'f')’ Aﬁh)z - (un - C‘in’ U(%hv _q}l)ln’)z + (ﬁz - d;ﬂ”’ 0'(/’5}” 0)“’)2

— (o(u" —ayp,0)n, vy)y, — gn(ay,vyy) = 0. (3.53)

Owing to the error decompositions (3.46) -(3.47) and using (3.51)-(3.52), the identity
(3.53) can be rewritten as

f ~Nn —~ ~Nn ~ _ —~
&(eh - ezilv vh)Qf + 2#(6(0h)7 e('vh))gf + (sz 1"Uh)Qf

-
+ %(52 - €Z7T’ Eh)z - (52 - éz,r, U(%ha 0)7?,)2 - (0(523 O)TL, 6h)2 + gn (Aéz, UZ)
= pf( — at’u,n + aTun — 67-07;, %h)gf — 2”(6(0?), 6(%h))ﬂf — (Vy;_t, %h)gf
- %(0: - X:rJn? 5h)§) + (02 - X;ﬂ“’ U(an O)n)z + (0(027 O)TL, ah)z + gn (iszE2un7 UZ)
(3.54)

for n > r.

For the pressure, subtracting the pressure-projection step of (3.17) from the mass
conservation equation (3.44) at t = t,,, with n > r, we get the following relation

(le(’U,n - az)a Qh)Qf - %(V(pg _pZ_l)v VQh)le - Sh(p;;Qh) + (ﬂ”lrLL - d;zl7 ahn n)z =0.
(3.55)

Again, using the definition of error decomposition (3.46)-(3.47), the coupling kinematic
condition (3.3); and (3.52), from (3.55) we obtain

lf(v(y/? - wg_l)a VQh)le + (divaz7Qh)Qf + Sh(yiryfuq}L) - (5Z - é27Qh n)z

= —(div O}, qn) o + sn(isaE1p", an) + (05 — &%, qn n)y, (3.56)

A

forn > r.

Finally, adding and subtracting is, Eou™, ig, F1p" , is, E1p" ' in (3.18) and using (3.52),
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we obtain the following relation for the end-of-step velocity error

8=,

(‘92 - 52’ vh)Qf + (V(y}? - @bzil)v 'Uh)Qf =0 (357)

for n > r.

Subtracting the solid problem of (3.17) from (3.45) t = t,,, with n > r, and using the
relation (3.51), we obtain

pe(Oud” — ;dj wh)y, + a*(d" — df,wp) — S5 (W = G — (& — ;") wn)s
+ (o-(u” —ay,p" — p}f)n,'wh)E =0.

Thus, using (3.46) -(3.47) and (3.51), we finally get the equation for the solid discrete
errors:

pSE (67627 wh)z +a® (£Za wh) - % (AéZ - éz,r7 wh)z + (U(aza yZ)’l’L, wh)z
= psg(&d"—ﬁtdn—&éz, wh)z—as( Z,wh) +%(02—x;’r,wh)z— (0(9;‘, y:ﬁ)n,wh)2
————

=0
(3.58)

for n > r. Note that term as( 5 'wh) vanishes due to the definition of the solid velocity
projection operator (3.33).

Owing to (3.54), (3.56), (3.57) and (3.58), we have that the the discrete errors
( Z,Bz,yﬁ,fz, &)) satisfy a time-stepping scheme similar to Algorithm 3.3, but with
a modified right-hand side and pressure increment (i.e., we have y;' — 1/12_1 instead of
Pl — pzfl). Therefore, we can leverage the stability arguments of Theorem 3.4.1 to derive
an a priori error estimate. We proceed by testing (3.54), (3.56), (3.57) and (3.58) with

~ -n i
(’Uh,’Uh,Qh,’LUh) = 7_(Ohv Z’yg7€g)

By adding the resulting expressions, using the equivalent steps considered for (3.30) in
Theorem 3.4.1, we obtain the following energy inequality for the discrete errors:

‘2 w12 PE (| an2 gn—1/2
0792—H Uy, HO,Q% 5 1€:116, — 165 16,5

P’ 2 192 7
n n— n
% (16313 06 = 167715 0 ) 455 (193

1 2 —1y2 pe r TE g 1|
+ 5 (1612~ I ”s)"‘[2—7‘(4+ra>h & &7,

—r(r—1) <;+2a)7ﬂ

Ct13 4+ 4o ~n
+ 2/,1/7' (Cg — T o ) H€(9h>

2 ~
o .
G =g 1@l

—n 2

2 .
= ||en - &

0,Q§L+Tl+2a7

s G (3.59)

)
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for n > r, and with the right-hand side QZ’T defined by

Gi" 7o (= D" + D" — 007, 83) o + 7 (u5 v B)) o 27 (e(07), €(61))

def def T2 def 7y
. TH ; ~n
+T(0: - X:r’ 70(0h7 O)TL) _77(0 X7r ) h - EZ)E +T(U(027 yﬂ')“’? eh - EZ)E
dﬁf Ty d_ef Ty d_ef Ts
_T(div 0, yZ)Qf + 7(92 — 'Z, Yh n)Z +7'Sh((iSZE2u", is, Erp™), (Hh, y;’{))
' L1
Tpse(aTc.i" —0,d (tn) — GTS?” SZ)E —7a° (52, zﬁ)
= =
(3.60)
Considering condition (3.23), equation (3.59) can be written as:
n—1/2 7'2 2 n—1|2 P € pn—112
0 (16712 165 I3.06)+gr (199800, — V97 ) (IER13 5 — 1€ 135
1 2 -1)12 pie 1
b3 (eI — e 1) + [2—7(4+m) g HOZ
1
o) e 6
T(r —1) <2 + a> 5 o
-~n 2 )
+r @i+ meer @)+ [0 - &, < g

The lack of telescoping sum on the pressure terms HVyZH(Z) of — HV?[)Zleg of is not
= h »op

an issue (see, e.g., Burman et al. (2017)). Indeed, using (3.38) we have
VR 5 0 = IV~ + 7V Oris Erp™ |5 o
T .
(1 + > HV n 1”0 Qf + <1 + > TszaflszElang,Qi
< (1 + *) IV 2 o + (7 +T) || 0up|)?
~ T h 0,82, L2(tn—17tn§H1(Qf))7

so that by inserting this expression into (3.59), we have

P n—12 7 ny2 n—1(|2 P°E (1an 2 gn—12
o (16512 65 I3.06) +5 (179815 05 = 193 0y )+ 75 (VeI — 167" 3.0)
1 ; pe
+5 (1R~ 1) + | 5 = 7 (5 +r) %] e

(- 1) <;+2a>7:’

- &

s

G-+ 1@ + e @)

0,0
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;o om
14+2a h

~ 2 3 2
noin *xr, T n—12 T 2
0, — & 05 S gh +2prHVyh HO,QZ—’—(T +7) 2pf "8tp‘|L2(tn,1,tn;H1(Qf))

for n > r. We now replace the upper index n by m and sum over m = r...n, this yields

Se’f A 1 ° ~m_||2
Mumﬁ+2wv%mﬁ+-2mm&+§mm3u@§:ﬁ%wmmm
m=r "Th

n
SR O A | O i I
1420 h 2 7110, — & 072"‘;7”( non)ls

pe 1 Y|
+[2 ( ) }ZH% S NE G (W@) o
m 7
< T §j 7|Vl o + 5 Hw‘ww o+ TV
~ 2pr 0,82, 0,92 2pf h 0,82,
m=r—1
P°E 112 Lor—1y2 - m,r 2 2
- 1€}, ||o,z+§||$h Hs+§ g +(T+T)72pfHf?tplng(tPhT;Hl(Qf)) (3.61)

m=r

forn > r.

We proceed by estimating g,*l””, by treating each term in (3.60) separately. The
first term can be bound in a standard fashion using a Taylor expansion, (3.37), the
Cauchy—Schwarz and the Poincaré’s inequalities with constant Cp. This yields

-~n
Ty < p'r([|0wu™ — d-u™||g o + 1|0 0% lo, Qf)HehHOQf
<

p
P (7% ||Opu” 22t 1 tiz2ry) 77 2 0,05 22ty LQ(Qf))HOhHO,Qf
(p )2

2 -~n
(72 10l (1, tosrziary) + 100xllz2 (s, 4iz2ny) ) + o172 VOLIG o

-2 2 (P CP) 2 2
2T 100l Ta(y, gneon) + P 10T, e

~Nn
+ 517'NHV9h||g,Q§l
(3.62)

with 1 > 0. Observe that the last term can be absorbed in the left-hand side of (3.61)
with 1 small enough. For term Ty we proceed in a similar fashion. Using (3.37), we get

Ty <7p°<(||(0; — 9-)d"

T WHO,Z)

l _l . .
< pSST(TQ ||8ttu||L2 (tn—1,tn;L2(5)) +7 2 ||at€17:”LQ(tn_l,tn;LQ(E)))HsZHOE
< p’eT 69p €
269

HEhHO )R]
(3.63)

(P 10wl T2,y aezzisy + PNl 2, a2y ) + T

with €9 > 0 and where the last term can can be controlled in (3.61) using a Gronwall
argument (Lemma 3.4.2).
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For term 7%, using (3.37), we have
. on 1 2 £9 -n
Ty = 7(yy,div 0y) o < Th2@ Ip" I3 o + T§M|‘V0h||(2)792' (3.64)
The second term can be absorbed in the left-hand side of (3.61) for €2 > 0 small enough.

-~n
Ty S W B+ resn | VLG o (3.65)

The last term can be, once again, absorbed in the left-hand side of (3.61), for e3 > 0
sufficiently small.

Terms Ty and Ty involve the Nitsche splitting error, namely ||@" — x»" |1 5. Using
2%

(3.36), (3.37) and a Taylor expansion we have

167 — X;’r”%,h,z <||67 — 52”%,;1,2 + [[Ird" — Ihd*’rH%,h,z

r 2r—1
3 . o T 2 .
Shilw" [0 + b2 (HdnHz,E +>_lla" TH&E) + o 19l 2y
2

i=1
(3.66)
To estimate Ty, we follow the same idea of Burman and Fernandez (2014a). Using the
robust trace inequality (3.21) combined with (3.66), we get

-~n
2 rnealle@nl

T, <r Ejer —
&4

r 2r

7 . ks : ~n

e 22 (1 s )+ 2 + e -
i=1

(3.67)

Once more, the last term can be absorbed in the left-hand side of (3.61), for e4 > 0
sufficiently small. Similarly, for Ts we have

T <2 TE5 ~n 12
15 <27557MH02 - X”T”évhvz + T’YMHOh - 52”%7;172

:
S <uu”u%,g £yl
=1

2r

THT 712

2,2) + % h HagdHB(tn,r,tn;L?(Z)) (3.68)
TE5 -~n .

+ B iy, _EZHQ%,}L7E'

Note that the last term can be included in the left-hand side of (3.61) for €5 > 0 small
enough.
Term Ty can be handled using (3.37) as follows:

1 1 €6 ~n .
Ts <7—277||0- (egay;)nHQ_l h + T?’W‘Heh - EZH% hy
€6 Y 2% 2" (369)

€6 an -
<rh?s—— (1" G o + 12" o) + 750185 — ERI ,

2e671
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Again, the last term can be absorbed in the left-hand side of (3.61), for g > 0 small
enough.

Integrating by parts in T%, we have

Tr = 7(02, Vyi) o + 7 (€2, Typm) ;-

— " (3.70)

= Ty = Tro

Term T%; can be easily handled by using (3.37) as follows:
Trp <7 ||9”Hg o F T HVtho of S Th2 HU”HO ar t TS I(O unl3. (3.71)

The second term can be absorbed in the left-hand side of (3.61), for ey > 0 sufficiently
small. For the second term of (3.70), we proceed as in Burman and Fernandez (2014a)
(see also Fernandez and Landajuela (2019)). We denote by ' € R the average of y!
over the interface patch P;. Combining the trace inequality (3.19) with the orthogonality
property (3.35) of the interpolation operator I, and the standard estimate

v = i'llo.p, S P IIVURllo.p, -

term T7 2 can be estimated as follow:

Tro = —TZ (y}f - ﬂ?,ég ) n)pi S TZh HVZ/ZHO,Pi 577 0P
' ' ’ (3.72)
Iz €7 “nll? €7 2
<7'h3 Hdnuzz‘“’hz HVZ/hHOQh §Th3 d" 22+T§|(an2)‘s-

It should be noted here we have assumed that the solid mesh step has an asymptotic
regime similar to the fluid mesh step, namely, A% = O(h!). As for T 7.1, the last term in
(3.72) can be, once again, absorbed in the left-hand side of (3.61), for e7 > 0 sufficiently
small.

For term T3, using the weak consistency of the stabilization operators (3.39) and (3.40),
we have 1 B
Ty <7278!<z'szEzu", i Erp") &+ 7516 o)
(3.73)
o (e B+ 0 10" ) + 7 1@ 0

Again, the last term can be absorbed in the left-hand side of (3.61), for eg > 0 small
enough.

Term Tjg can be bounded using the continuity estimate for the elastic bilinear form
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(3.5), (3.33), (3.37) and a triangular inequality. This yields

Ty = - 7a* (&, Ld" — 0, m,d")

=—70° (627 Ihdg - aTd”)

<TllgR NI Thd" — 0rd” (3.74)
<rligall (1Ind” = ", + " — o,a"],)
<L hQBS . 2 T
”thS 2 H HQE + 2810”atuH%Q(tn—lytrﬁHl(E)).

Note that the first term can controlled via Lemma 3.4.2 in (3.61).

In summary, the term >, _ G in the right-hand side of (3.61) can be estimated
by collecting the estimates (3.62)-(3.74) and by inserting them into (3.60), for n > r.
The desired estimate (3.42) hence follows from (3.61) together with the stability condition
(3.24) and Lemma 3.4.2 with

1
om =210+ o [0k + 5 LIEHE ne=z (375)
and by noting that, owing to the initial data, we have
_ ~r _ L
oglzo,eh =0,y '=0,&""1=0,&""=0 (3.76)
for r = 1,2. This completes proof. O

Corollary 3.4.3.1. Assume that Algorithm 3.3 with r = 2 is initialized with one step of
the method with r = 1. Then, under the assumptions of Theorem 3.4.3, for n > 1 and
nt < T, the following discrete error estimate holds for the scheme with r = 2:

2
2 < erh + eoT + 3o + 4t
h2

e (3.77)

w»—t [SI[ed)

where {c;}}_, denote positive constants independent of h and T, but which depend on the
physical parameters and on the regularity of the exact solution.

Proof. For r = 2, we have to bound the contributions from the initialization step in the
right-hand side of (3.61), namely,

|| h”o of + o 20 HVthO o + 25 Hthoz +5 ||§fll||§- (3.78)

To this purpose, we use the fact that the initialization of Algorithm 3.3 with r = 2 is
provided by the first step of the scheme with = 1. We can hence use the estimate
provided by (3.61) with 7 = 1 and n = 1 to control (3.78). More precisely, using (3.76),
this yields
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f 2 S
P T 2 poE 1
UL o+ ot [V g + 16k s + 516002 + e @],

“ryan [0 8l @b - (G ra) - al,

1,1 T 2
5 gh + TpfuatPHLz(omHl(Qf)).

Hence, by inserting this estimate in (3.61), we get

2 pSE A 1 "~ ~m_||2
C10R2 g + o IR gy + EE IR + SIERIE + s Y 7 €@
m=1

0,2
O Y |gm 2 n m
£m I my |12
e e sD DL AR D R (AR
m= m=1
pe i e || 112
T oo ] Sl e
[ T<+a>h]mz:15h L

2 n—1 n 2
T 2 1,1 m,2 T 2
20fT ZITHVy?HO,QﬁL +G, + Z Gy " + (r+T) QT)fHatpHL?(o,T;Hl(Qf)) (3.79)
m= m=

for n > 1. Owing to the initialization procedure, the bounds provided in (3.67)-(3.68) for
terms Ty and T5 of g};l yield a O(73/h) splitting error, by noting that

3
”athLQ 0,mL2(8) = ’W Hatd”Loo 0,7;L2())" (3.80)

The estimate (3.42) for r = 2 hence follows from (3.79) together with the stability condition
(3.24) and Lemma 3.4.2 with (3.75). This completes proof. O

We conclude this section with a series of remarks.

Remark 3.4.2. For r = 2, the last term in (3.42) comes from the bound of the first
step of Algorithm 3.3 with r = 1, that is, the estimate given by (3.80). This bound is
quasi-optimal in time because the Taylor expansions are evaluated in L*(0,T) instead of
LY(0,T). Alternatively, one could avoid this term by initializing Algorithm 3.3 with the
first-step of Algorithm 3.1.

Remark 3.4.3. Note that Algorithm 3.2 introduces the following perturbations terms in
the discrete error equation

oL B
7(“2 —up lawh)OE + (o(up, pp)n — o(up =", ppHn, vy, — wh)oyz,

with wy, = TEZ The first term leads to the following bound:

T - (yp)? 72 T
TT(un —u" 1752)0,2 < 2 12 HatuHLQ (tn—1,tn;L2(2)) 5”52”%,2




82

The second term can be controlled via Lemma 3.4.2 while the first yields the above men-
tioned O(7/h) sub-optimal splitting error.

Remark 3.4.4. As shown in Theorem 3./.3, the discrete error estimates of Algorithm 5.3
contains terms of order O(7" /hY?), which are not visible numerically (see Section 3.5). To
fully understand the impact of selecting the same penalty term in the viscous step as in the
solid sub-step in Algorithm 3.3, we consider the coupling of a parabolic equation with and
an hyperbolic one. The considered coupled problem reads as follow: find u : Qf x Rt — R,
d:TxRT 5 R, d: X xRY = R, such that for all t € RT we have

od—Ad =T in L xR,
d :atd m EXR+,

{Btu—Au:O in QF x RY,
d =0 on 0YxRT,

u=0 on I xRT,
u=d on X xRT,

T=—-—— on YxRT,

with the respective initial conditions. We propose to discretize the problem via a loosely
coupled scheme, inspired by the semi-implicit scheme of Algorithm 3.5. The fully discrete
approximation results in the following (explicit) scheme:

Forn > 1:

e Parabolic step: find uy € Vy, such that

(8TUZ,Uh)Qf + (VUZ, V'Uh)Qf + %(U‘Z - dz_l)vh)z - (7/’7’7 Uh)z =0

for all vy, € V3.

e Hyperbolic step: find (d}, d;”) € Wy x Wy, with dz = 0-d} and such that

n
Ouy,

on wn)y =0

(9rdf wn)y, + (Velf, Veon) = 7 (uf; = di = wn) g +

for all wy, € Wy,

When considering loosely coupled schemes with Nitsche’s coupling, the sub-optimal terms
come typically from the fact that we introduce a time-splitting error inside the Nitsche’s
penalty term, which is scaled with an h™'. A possible way to overcome this issue, is to
remove the time-splitting error from the Nitsche’s penalty term, by introducing an error
in time within the definition of the projection errors. Thus, considering the following
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decomposition of the errors for the parabolic-hyperbolic explicit scheme:

Eou™ —uy = Fou” — ig, Eou” + i Fou™ —up  in Qf,

et gn def gn
d* —dy =d" —mpd" +mpdt —dy  in X,
3.81
L Hg o
dn o dn o dn mno_ n+1 m+1l _ n :
h = mpd" + mpd" — TR dV T+ pd dy in X,
L én L =

it can be proven that the scheme delivers optimal space and time accuracy. More in detail,
using similar arguments of the proof of Theorem 3.4.3, we will get the following terms
inside the Nitsche’s penalty part:

W =y — (d* = dy ) = 07+ O — (d = md” - myd” — dy ),

& -t

which does not contain error in time, in fact the arising terms involving 0} — 5271 are
controlled via the stability result and terms involving 07 — {,’Z have optimal convergence
order. The only terms which contain ﬁf are the corresponding Ty and Tyo terms of (3.60)
and their optimality can be proved.

A similar strategy fails when considered for the semi-implicit scheme of Algorithm 3.5.
In particular we will retrieve terms of order O(1/hY?) when controlling the pressure term
Tyo of (3.60).

3.5 Numerical experiments

In this section, we illustrate via numerical experiments the convergence properties
of Algorithm 3.3 with » = 1,2 (semi-implicit scheme) in an academic numerical example.
The obtained results are compared with those of Algorithms 3.1 (strongly coupled scheme)
and Algorithm 3.2 (stabilized explicit coupling scheme).

AS---m e - Qi———oB
I'r Of I'o

Figure 3.2: Geometric configuration.

The considered test case is the well-known fluid-structure interaction benchmark de-
scribing the propagation of a pressure wave within a straight two-dimensional elastic tube
(see, e.g., Formaggia et al. (2001); Burman and Fernandez (2009, 2014a)). In the following,
all the units are given in the CGS system.
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Figure 3.3: Fluid and solid meshes for h = 0.1.

o
4 wel G we

a) Algorithm 3.3, r = 1. b) Algorithm 3.3, r = 2.

ﬁ—
&4 el 4 B

¢) Algorithm 3.1. (d) Algorithm 3.2.

Figure 3.4: Snapshots of the fluid pressure and deformation (magnified) at different time
instants.

The fluid domain is defined as Qf = [0, L] x [0, R], with L = 6 and R = 0.5, while
the fluid computational domain is given by Qf = [0,6] x [0,0.8]. The solid domain is

= [0,L] x {R}, as shown in Figure 3.2. In the sequel, the solid is described by a
one-dimensional string model, viz.,

0 0 det  Ee def FEe
d= Ld= P N G
(n)’ ( —Alaanern)’ LT 9110 0T BRI




3.5. NUMERICAL EXPERIMENTS 85

0.03 PR 0.03
~~~~~ Reference K -+ Reference
— Alg. 3r=1 — Alg. 3r=1
—— Alg.3r=2 H —— Alg.3r=2
£ oo2f - Agd ; £ oo2f —Algd
2 Alg. 2 2 Alg. 2
@ 19
3] o]
S o
Q Q
2 001 2 0,01
° ©
© ©
sl 2
£ £
g g
0 0
0.01 -0.01
L L L L L L L L L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
x-coordinate x-coordinate
(a) t=0. (b) i=1.
0.03 P 0.03
~~~~~ Reference K -+ Reference
— Alg. 3r=1 — Alg. 3r=1
—— Alg.3r=2 i 5 —— Alg.3r=2
T ooz 7 Alg.1 T o002 - Alg.t
2 Alg. 2 2 Alg. 2
@ @
3] o]
S o
Q Q
2 001 2 001
o ©
© ©
sl °
£ £
2 g
of—— Y
0.01 -0.01
L L L L L L L L L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
x-coordinate x-coordinate
(¢)i=2. (d) i=3.

Figure 3.5: Comparison of the solid displacements at ¢t = 1.5 x 1072 for different levels of
(7, h)-refinement, given by (3.82) with ¢ =0, ..., 3.

hence in (3.4), taking w = (0,w)", we have

a*(d, w) & A1 (0,7, 0aw) s + Ao(n, w)s.

The fluid physical parameters are given by pf = 1.0, = 0.035. For the solid we have
p* = 1.1 and € = 0.1, with Young’s modulus E = 0.75 x 10% and Poisson’s ratio v = 0.5.
Regarding the boundary conditions, we consider both fluid and structure to be initially
at rest and we impose a sinusoidal normal traction of maximal amplitude 2 x 10* for
5 x 1073 time instants at the inlet I'1. A symmetry condition is applied on the lower wall
I'w and zero traction is enforced at I'g. All the computations have been performed with
FreeFem+-+ Hecht (2012). An example of the unfitted meshes is shown in Figure 3.3 with
fluid space discretization parameter h = 0.1. The Nitsche parameter is set to v = 103 and
for the pressure and ghost-penalty stabilization terms (3.7)-(3.8) we consider v, = 1073
and 7, = 1, respectively.

As expected, all the considered considered methods deliver a numerical solution with
a stable pressure-wave propagation. For illustration purposes, Figure 3.4 provides the
snapshots of the fluid pressure and solid deformation at time ¢t = 5 x 1073,1072 and
1.5 x 1072, obtained with 7 = 10™* and h = 0.05 using respectively Algorithms 3.1-3.3.
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Figure 3.6: Convergence history of the solid displacements at ¢ = 1.5 x 1072 in the elastic-
energy norm.

The solid displacement has been amplified by a factor 20. A very good agreement between
Algorithm 3.1 and Algorithm 3.3 (r = 1, 2) is clearly visible, while a difference on the solid
displacement is noticeable with Algorithm 3.2.

In order to quantify the accuracy properties of each coupling scheme we have evaluated
the convergence histories by uniformly refining in space and in time

(h,7) € {0.1/21,2 x 1074/21}} . (3.82)

Figure 3.5 shows the corresponding solid displacement at ¢ = 1.5 x 1072 for i = 0, ..,3
and the different coupling schemes. As in Figure 3.4, a very good fit is observed between
Algorithm 3.1 and Algorithm 3.3 (r = 1,2), while a degradation of accuracy is visible
for Algorithm 3.2 under space-time refinement. The depicted reference solution has been
generated using the strongly coupled fitted method with a high space-time grid resolution
(h =3.125 x 1073 and 7 = 1079).

Figure 3.6 reports the convergence history of the solid displacement at time ¢ =
1.5 x 1072, in the relative elastic energy-norm. Note that by the choice of space and
time discretization parameters we have 7 = O(h). The results show that Algorithm 3.3
with 7 = 1,2 and Algorithm 3.1 retrieve the overall optimal first-order accuracy O(h) of
Algorithm 3.1. As expected, Algorithm 3.2 shows a non-convergent behavior. This points
out the sub-optimal O(7/h) splitting error (see Remark 3.4.3). Finally, it is worth noting
that no effect from the O(T/h%) and (’)(7'2/h%) anticipated by Theorem 3.4.3 is visible on
the convergence history of Algorithm 3.3.
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3.6 Conclusion

In this chapter we have analyzed the unfitted mesh based semi-implicit coupling scheme
introduced in Chapter 2 in the context of linear-fluid structure interaction with thin-walled
solid. The investigated method combines a Nitsche based unfitted mesh spatial approxi-
mation with a fractional-step time-splitting in the fluid. The strong coupling is avoided
by treating explicitly the fluid viscous part, while the added-mass free stability (see Theo-
rem 2.2.1 and Theorem 3.4.1) is achieved by treating implicitly the fluid incompressibility
and the solid inertia.

We have extended the stability analysis, previously carried out in Chapter 2, for first
order extrapolation in the solid velocity, namely » = 1, to the case of second order extrap-
olation, r = 2. An additional CFL-like condition is obtained, which limits the choice of
the time-step, subordinated to the space discretization and the Nitsche’s penalty parame-
ters. An a priori convergence analysis is derived in Section 3.4.2, for the two extrapolated
variants, 7 = 1,2. A superior accuracy is shown, namely O(7"/ h%), r = 1,2, with respect
to the stabilized explicit scheme of Burman and Fernandez (2014a), which is O(7/h).

The numerical evidence of Section 3.5 indicates that the semi-implicit algorithm and
the strongly coupled (from Burman and Fernandez (2014a)) deliver the same accuracy
behavior. Future extensions of this work could consider, for instance, curved and moving
interfaces.
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CHAPTER 4

An unfitted mesh fluid-structure-contact
approximation with multiple thin-walled
immersed solids

In this chapter we address some of the difficulties that arise in the treatment of contact
within the Nitsche-XFEM framework. In order to guarantee consistency, further element
duplication is introduced in the fluid elements where contact between the solid occurs. The
proposed Nitsche-XFEM method for fluid-structure-contact interaction is then compared
with alternative fitted (ALE based) and unfitted (fictitious domain) mesh methods. The
advantages and limitations of all this approaches are discussed in an academic test case.
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4.1 Introduction

In this chapter, we address the problem of fluid-structure interaction with contact be-
tween multiple thin-walled immersed structures, starting from the Nitsche-XFEM method-
ology proposed in Alauzet et al. (2016). Specific duplication and intersection procedures
allow to extend the consistency of the method to the case of contact.

The immersed interfaces separate each intersected fluid element into two, or more
(when multiple structures enter the same fluid element), physical regions. Here, we propose
to enrich the discrete spaces as many times as needed, in order to well reproduce all the
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physical regions belonging to each fluid element. This approach is a natural extension
of the procedure proposed in Alauzet et al. (2016), even thought, to our knowledge, no
previous works combining contact, XFEM, fluid-structure interaction with multiple thin-
walled structures and unfitted mesh are available.

In order to avoid penetration between the solids, we consider an unbiased contact for-
mulation which does not distinguish between master and slave surfaces (see, e.g., Mlika
et al. (2017); Poulios and Renard (2015)). Additionally, issues related to real contact (such
as, changing in time of the FSI interface, creation of vacuum zones at solid release) are
circumvented considering a relaxed contact formulation. The relaxed contact formulation
suffers of mechanical inconsistencies at contact. This subject will be considered in Chap-
ter 5. For discussion on dry contact mechanics, we refer to Wriggers and Zavarise (2004).
Additionally, for contact treated via penalization we refer to Chouly and Hild (2012);
Kamensky et al. (2015), via Augmented Lagrangian/Nitsche’s approach to Burman et al.
(2018, 2019). The latter approach can be seen as a consistent penalization method. We
also refer to Burman et al. (2020a); Mayer et al. (2009, 2010); Chouly et al. (2017) for
further examples of contact for FSI with Nitsche. In this chapter, we will compare the
Nitsche-XFEM method with FD and ALE numerical methods.

The rest of the chapter is organized as follows. Section 4.2 recalls the geometrical
setting for the models considered. In particular, we introduce in Section 4.2.1 the non-
linear contact model and in Section 4.2.2 the fluid-structure-contact model. The numerical
methods are presented in Section 4.3, in particular, Section 4.3.1 describes the penalty-
based contact algorithm considered, the new Nitsche-XFEM methods is introduced in
Section 4.3.2, together with the new intersection and duplication procedures. Additionally,
we exhibit in Section 4.3.3 the ALE fitted method and in Section 4.3.4 the FD/Lagrange
multipliers method. In Section 4.4 we compare the previously introduced methods on
an academic numerical example and, finally, a summary of the conclusion are given in
Section 4.5.

4.2 Problem setting

In what follows, the fluid is modeled by the incompressible Navier-Stokes equations
in the ALE or Eulerian formalisms. We refer to Section 1.2.1 for a description of these
mathematical formalisms. For the solid, we consider a non-linear thin-walled sold model
in Lagrangian form (details on Section 1.2.2). The considered geometric configurations
are those presented in Section 2.3.1, except for the fact that we consider multiple moving
thin-walled structures immersed within the fluid domain Qf. The current configuration
of the solid X(t) is hence made of m € N connected components, X(t) = U;—;__,, Zi(t).
Similarly, for the reference configuration we have » = Ui:l,...,m 3. The time-dependent
fluid domain is Qf(¢) = Qf\X(¢). Additionally, the thin-walled structures are assumed to
divide the fluid domain into m + 1 disconnected domains Qg(t), i=1, ...,m+1. Without
loss of generality, the model presented in this chapter will consider only two structures,
but it can be derived for m € N immersed structures. Hence, we have X(t) = X1 () UXa(?)
and Qf(¢) = Qf (t) U QL () U QL(¢). The considered geometry is shown in Figure 4.1. We



4.2. PROBLEM SETTING 93

¥
o)
s Q .
3

Figure 4.1: Geometric configuration of the fluid domain and the immersed solids.

now describe, separately, the considered contact and fluid-structure-contact interaction
models.

4.2.1 Contact model

For simplicity, we assume that the thin-walled solid is made of two connected compo-
nents ¥ = X3 U Xy. We have %,(t) = ¢,(X). Each surface is oriented with a unit normal
vector ny, (y) pointing outwards, with respect to the enclosed fluid domain (see Figure 4.1).
Following Mlika et al. (2017), we consider an unbiased contact formulation which does not
distinguish between master and slave surfaces. The formulation of the non-penetration
conditions, in the deformed configuration, requires the introduction of a map which detects
the potential contacts between opposed surfaces, namely, a vector-valued function

7w 3(t) — R

A standard method to define the map 7 is the closest-point projection algorithm, but
this is known to yield complicated tangent expressions for the contact terms (see, e.g.,
Poulios and Renard (2015)). Here, we consider a simpler approach, the so-called ray-
tracing method of Poulios and Renard (2015), which for each point y € ¥;(¢) C X(t), the
target (y) € ¥;(t) is defined as the closest intersection of a opposite surface ¥;(t) C X(¢)
with the line passing through point y and having as direction my;, ;) (see Figure 4.2). Here
i,7 € {1,2} are such that i # j, but self contact could also be considered. Note that the
ray intersection might not exist. In that case, it suffices to simple define the target as a
point along the positive part of the ray and sufficiently far away from a given bounding
box. We can hence define the gap function g : ¥ — R as

9(@) € (m(dy(2) — (@) - nx

for all x € 3; C X. Note that g depends non-linearly on ¢, and thus on d, i.e., g = g(d)
with a little abuse of notation.

The solid equilibrium with the non penetration conditions is then given by the following



94

Yo (t)

Figure 4.2: Definition of the map 7r using the ray-tracing approach.

system:

{ (psaatc.l + L(d) — Angp =T in 3, (4.1)
g

d)>0, A<0, M(d)=0 in X.

Note that, as in Chapter 5, the Lagrange multiplier A represents the contact force, which
must be negative. For any positive function -, the contact conditions (4.1)y can be refor-
mulated in terms of the following non-linear relation (see, e.g., Curnier and Alart (1988)):

A= fl}l[’)/)‘+g(d)]R—v (42)

where [ |g- stands for the projection onto R™.
As in Chapter 2, we consider W & [H&(E)]d as the admissible displacement space.
The variational formulation of (4.1); yields

pse(ﬁtd,w)+as(d,w)—/)\nz(t).w:/T.w
b b

for all w € W. Furthermore, one applies an additional constraint on the system (see Mlika
et al. (2017)), by requiring that the differential contact forces on the opposite surfaces are
balanced (viz., Newton’s law), which yields the new relation

pss(ata,w) + a*(d, w) — % /2 Ay - (w — w(p; 'omog,)) = /ET Sw (4.3)

for all w e W.

4.2.2 Fluid-structure-contact model

Considering the notations introduced at the beginning of this section and the solid
model with contact described above, the fluid-structure-contact interaction model reads
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as follows: find the fluid velocity and pressure u : Qf(t) x RT = R9 p: Q(t)f x RT = R,
the solid displacement and velocity d : ¥ x Rt — R4, d: ¥ x Rt — R?, such that for all
t € RT, we have

e Fluid problem:

P (O +u-Vu) —dive(u,p) =0 in QF(t),
divu=0 in Qf(), (4.4)

u=0 on T,

e Solid problem with contact:

pedd + L(d) — Angy =T on X,
ge(d) >0, A<0, Age(d)=0 on X, (4.5)
d=0,d on X,

e Fluid-structure coupling conditions:

¢=1Ix+d, S(t)=¢(), Q) ="\5(0),
u=do¢;t on X(t),

(4.6)
/T-w:— [o(u,p)n] -wo ¢; !, Yw:¥ —RE
) (1)

with the initial conditions u(0) = ug, d(0) = dy and d(0) = do. In the solid problem
we consider a relaxed contact formulation (see Section 1.2.4), hence the contact condi-
tions (4.5) employs the relaxed gap function g. : ¥ — R, namely:
def
g:(x) = g(x) ¢,
for all x € ¥; C ¥ and € > 0 is a small parameter. Note that the kinematic and dynamic
interface coupling conditions in (4.6) depend on the considered interface and the sided-

restrictions to each physical region separated by the structure. The jump and average
operators (2.1) across 3, are now defined according for each interface ;, i = 1,2, 3.

4.3 Numerical methods

This section is devoted to the discretization of the coupled problem (4.4)-(4.6). We
will mainly focus to the discretization via the Nitsche-XFEM method, but for the purpose
of completeness, we will briefly recall the key components of the fitted mesh ALE and
fictitious domain numerical methods, used in Section 4.4 for comparison. The common
factor between the methods is the approximation of the solid problem with contact, which
will be addressed separately. In the following, we denote with 7 > 0 the time-step dis-

def 1

cretization parameter, t, def nT where n € N and with 9,2" = - (3:” — x”_l) the first



96

order backward difference. As in Chapter 2, we consider to following functional spaces

for the solution of the fluid subproblem, namely V' def [H%(Q)] “ for the fluid velocity and

Q def L3(9) for the fluid pressure.

4.3.1 Solid contact approximation via penalty

For the discretization of problem (4.1), we consider a relaxed (see Section 1.2.4) penalty
version of (4.3). Let be {7 }o<n<1 a family of quasi-uniform triangulations of ¥ = 3, UX,.
We consider the standard space of continuous piecewise affine functions:

X5 {v, € COF) |opi € Pi(K), VK €T} (4.7)

Hence, we define the discrete space for the solid displacement and velocity approximations
as W, = [X5]2N W. The penalty approach consists in taking

_ cke

=2 e > 0,

and by neglecting the term A in (4.2). This enables the elimination of A\, which yields
the following numerical method in terms of primal variables only:

. FEe
pe(ordiwn) + o (diwn) = 55 [ @]y Tod = [T w @)

for all wy, € W), and with the notations

Ger (d}) (7 (9}) — @) - msn — e,

def _

[wn] Swh, — wp, (@) oo ¢fy)
and where € denotes the contact relaxation parameter. The contact term associated to
(4.8) is evaluated locally at each quadrature point. For the derivation of the corresponding
tangent term we refer to Poulios and Renard (2015).
Remark 4.3.1. Note that we could invoke the relation (4.1) to get

A= (pseatd +L(d)-T) - Ny
and then use (4.2) to eliminate the Lagrange multiplier in (4.3), by setting

A= Fly[’)/(psé‘atc'i + L(d) — T) "My + g(d)]R,.

This is the basis of the consistent Galerkin least-squares method for the obstacle problem
reported in Burman et al. (2018).
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4.3.2 Unfitted mesh Nitsche-XFEM method

In this section, we focus on the extension of the Nitsche-XFEM discretization technique
to the case of contact with multiple immersed thin-walled solids. As already pointed out in
Section 4.1, the basic idea of XFEM is to reproduce inside the discrete spaces the eventual
singularities of the solution. Considering a single immersed structure (see Figure 4.3(a)),
the only discontinuity lies across the interface . In this case, the discretization procedure
proposed by Alauzet et al. (2016) is able to reproduce the singularity within the discrete
spaces. Similarly, the method covers the situation in which multiple structures are con-
sidered without contact (they do not intersect the same fluid element). This situation is
showed in Figure 4.3(b). Whereas, if contact is allowed, two approaching solids can reach
the same fluid element. As a result, two discontinuities, one for each interface, need to be
incorporated within the fluid discrete spaces (see Figure 4.3(c)). In the next paragraphs

(a) One single interface. (b) Two interfaces intersecting different
fluid elements.

(c) Two structures entering the same fluid
element.

Figure 4.3: One-dimensional illustration of the different interface locations and associated
physical discontinuities.

we extend the approach proposed in Alauzet et al. (2016) to this situation. We recall
that, for simplicity, a relaxed contact condition is considered. Hence, even in the case of
contact, a thin layer of fluid remains between the two contacting structures.

For sake of simplification, we assume that both Qf and ¥ are polyhedral. For a

given displacement dj, € W,, we define the interface position, at time level n, as X" def

#7 1 (), hence, for each interface X7 o @71 (X;). We further recall that " = $7 U X2,
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Additionally, the physical fluid domain is

Qf,n déf Qf\En

and therefore, Qf" = Qfln U an U Qg’”, where each Qf" is the i-th physical fluid region.
We introduce three families of quasi-uniform triangulations {7, }o<n<1, i = 1,2,3,

starting from a family {7,"}o<p<1 of quasi-uniform triangulations of Qf". Each Thy s
obtained as the collection of elements of 7," that cover each region szfn, separated by
¥, i =1,2. Thus, ’77;"”1 covers the i-th fluid region an Each generated mesh 7,7 is
fitted to the exterior boundary I'; but not to 7. An example of this setting is shown in
Figure 4.4. Note that the triangulation composed by Ui:1,2,3 (K € 7;:11) is a conforming

triangulation of the whole fluid domain Qf(¢). Furthermore, for each fluid element K, such
that K € Ul j < e E”j), we can distinguish two situations:

e K belongs only to one couple of fluid triangulations (see, for instance, the yellow
and blue elements in Figure 4.4(b));

e K belongs to all fluid triangulations, namely K € 7, 07,5 N T} (see, for instance,
the grey elements in Figure 4.4(b)).

mn
h,2

n
Qr "
h,1

mn
h,3
(a) Unfitted fluid-solid meshes. (b) Triangulations Tx,1, Trh,2 and Tr,3.

Figure 4.4: The overlapping region between ’7;{?1, 7;1"2 and 7,3 is colored in grey, between
7;;‘1 and 7;:‘2 in yellow and between ’77;"‘2 and 7;1"3 is blue.

mn

We denote by sz the domain covered by heis

QZJ def int (UKET,:’iK> .

Let now introduce the following spaces of continuous piecewise affine functions, for i =

1,2,3:

Xﬁi déf {Uh ECO(@)‘UMK Epl(K), VKE’]Z}Z}
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Associated with X}, ; we define the spaces
Vn def [Xh Z] n Vn, Qn def X}” N Qn

For the approximation of the fluid velocity and pressure, we will consider the following
discrete product spaces

def def
Vi = Vi xViaxVis, Qp = Q1 XQpoxQhs,

which guarantee that interfacial (strong and weak) discontinuities are included in the
discrete approximation of both the fluid velocity and pressure, also in case two structures
intersect the same fluid element. We will denote by w}, and pj ,, with ¢ = 1,2,3, the
unknowns defined in each domain €} .. We recall that the fluid trilinear form is given by
the following expression 7

def
as, (zn; (wnypn) s (On, qn)) S (zn,wn, o) + a* (wn, pr) , (Vs an))

+ 8y n (Zn; wn, V1) + 85 (203 Phs qn) + g (Un, vh)

with the fluid discrete bi-linear form

af (wn, pn) , (vn, qn)) 21 (€(un), €(Vn)) grn — 1, V - Un) gt + (qns V - up) gt

and the convective term by
f

def :
(zn, un,v1) = p (26 Vun, vp) g + 5((dlvzh)uh,vh)gf,n

f

0" ({20} - nlunl, for}) g — 5 ([zn - nl, - 01}

where the jump and average operators are defined in Section 4.2.2. Terms s}, and Sp h
correspond to the CIP stabilization contributions (see Section 2.3.2 and Burman and
Fernandez (2007)), namely,

vn(Zn;un, vp) —%hzz > E(Rer(zn))lzn - nll Lo ry ([Vunle, [Vorle) g
1= 1F€]:n

Rep Zh
oo (2R3 Phy an) —thQZ Z |z H (IVonlr, [Varlr) s
i=1 peFp, WMIL=E)

where F}'; denotes the set of interior edges (d = 2) or faces (d = 3) of 7;;, with ¢ = 1,2, 3,

Yp, Vv > 0 are user-defined parameters, Rer(zp) et P12kl oo (yhp™ denotes the local

def

Reynolds number and £(z) = min{l,z}. Finally, term g}’ corresponds to the ghost-
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penalty operator, given by

2 1
gp (un, vp) —’Ygﬂhzz Z (IVuirjnlr, [Vvigjnlr)

<.
-
-.
Il
o
™
3

n

7
where J, 3 denotes the set of interior edges or faces of the elements of 7%, k = 1,2, 3,
intersected by X7, j =1,2.

Algorithm 4.1 Nitsche-XFEM scheme.
For n > 1:

1. Interface update: qbz_l =Is+ d’g_l, = ¢Z‘1(E), Qfr = Qf\ 1

2. Find (u},p}, d}) € VI x Q} x W, such that dff = ,d} and

' (0-uft, vn) gen + ap (w) s (uft, pi), (’Uh, an)) + pe(0rdy, wh)y, + aj, (di, wh)

ycEe
22 /2 (921 ()] - [eon]) - Z O (Wh. iy > Ph i+ )T+ Ohiitj — Wh) g
7=1 =0
2 1
=D > (Ui — A7 o (Onigg —Ghitg))Pits) s
7j=1 =0

2 1
7:“' n m _
? Z Z Whitj — Ay Vhitj — wh)zn =0
7j=11i=0

for all (vp,, qr, wy) € Vi x QF x W,

The resulting numerical method is detailed in Algorithm 4.1. Note that the weak im-
position of the interface coupling conditions (4.6) are now defined considering the physical
domain on each side of every interface.

Remark 4.3.2. In this chapter, we have assumed that the thin-walled solids have no
boundaries in the interior part of the fluid domain, so that Q™ is fully separated in different
regions. The present approach can be generalized the case of partially intersected fluid
domains by considering the tip treatment strategy proposed in Section 6.2.2 of Chapter 6.
Note that the strategy proposed in Alauzet et al. (2016) cannot cover this situation.

4.3.2.1 Intersection algorithm

For a full discussion on the 2D meshes intersection algorithm we refer to Landajuela
(2016) and Alauzet et al. (2016). Here, we recall the salient points and we highlight the
modifications necessary to consider multiple structures, possibly in contact, with Algo-
rithm 4.1. The fundamental idea of the intersection algorithm is practically unchanged.
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(a) Intersected mesh with (b) Intersected mesh with
sign for ;. sign for Xs.

Figure 4.5: Marked intersected fluid mesh for the bottom interface ¥;(a) and for the top
interface ¥2(b). Both interfaces have downward normal. Green color corresponds to left
side, red to right.

The main modifications concern the definition of the physical domain within the inter-
sected mesh (the mesh generated by all the sub-elements). We recall that the main phases
of the algorithm are the following:

1. Localization and insertion of solid meshes vertices inside the fluid mesh;
2. Insertion of solid edges, one at a time.

Once the insertion procedure has been completed, we update all the data structures nec-
essary for the duplication and integration over cut elements. In particular, we need to
know which are the physical regions for each cut element, hence, we label as LEFT, the
fluid sub-elements towards which the structure normal is pointing in, and RIGHT the
others. Note that the side is defined with respect to each structure, therefore, all the
fluid sub-elements are labeled with regard to every structure. We require the knowledge
of which fluid element is intersected by each structure and if a sub-element is on the left
or the right of every structure. An example is shown in Figure 4.5. See that the sub-
elements are signed with respect to each interface, X7 Fig.(a) X% (b). Note that not all
the elements are signed, (dark green in Figure 4.5). In fact, we have a signed partition
of the cut elements for each interface and the elements, which are intersected from both
interfaces, have two sign patterns.

4.3.2.2 Element duplication

In this section we describe the proposed element duplication procedure, which is car-
ried out exploiting the information stored at the end of the intersection algorithm of
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Section 4.3.2.1. Each overlapping triangulation 7,";, ¢ = 1,2, 3, is generated by duplicat-
ing the elements of the intersected fluid element, stz;rting from a conforming (background)
mesh of QF". For each fluid elements K, intersected by X" = YUY UXE, we can identify
two or more separated regions. We will refer to the physical part of a triangulation as
the restriction of 7,"; on Qg’n, 1 =1,2,3. Its complementary part is called nonphysical or
fictitious. Let consider the situation shown in Figure 4.6, in which we have three triangles

(a) Original background mesh. (b) Triangulation 7,1 after duplication proce-
dure.

k
A VV m”

(¢) Triangulation T, o after duplication proce- (d) Triangulation 7 3 after duplication proce-
dure. dure.

Figure 4.6: Duplication procedure. The fluid physical domains are 1,5 and 3, and
the interfaces are X1 and Y.

with vertices {4, j,k}, {i,k,l} and {j,1,k}. We show in Figure 4.6(a) the original back-
ground mesh. Note that nodes i, are physical for Qi’", k is physical for Qg" and j, m for
oL,

Each interface introduces a new level of vertices duplication. For instance, the vertices
of the fluid elements intersected by X7 will form the duplication Level I. The vertices
duplicated due to X% yield a second level of duplication, Level II. We will identify the
duplicated nodes of Level I by -’ and the duplicates node of Level I (coming the XJ) by
/7. The levels of vertex duplication for the example of Figure 4.6 are show in Table 4.1.
For each element K intersected by 3", we can have two scenarios:

1. K is intersected only by one structure, so that ™ divides K into two regions. In
this case, we build two identical copies of K, namely K; and K>, associated to each
region;

2. K is intersected by more than one interface. In this case, X" divides K in three
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regions. We define three identical copies of K, namely, K;, Ko and K3. Each of
them represents a physical region.

Let now describe the building strategy for triangulations h’fi, with ¢ = 1,2, 3, i.e., how
the nodes for the generated copies are selected. The original vertices are always kept on
the physical side of the triangulation, while the unphysical nodes are selected as follows:

e For K € T;';: we select as unphysical nodes the duplicated vertices belonging to
Level I.

e For K € 771’?2: we choose as unphysical vertices the duplicated nodes belonging to
Level I, when still available (if they are not used to build 7, ), otherwise, we select
the nodes of Level II.

e For K € 7,'5: we select as unphysical the duplicated nodes belonging to Level II.

Original ¢ 5 k I m
Level I ¢ § K I -

Level IT " 5" k' - m"

Table 4.1: Levels of duplication for example of Figure 4.6

We now apply this procedure in the example of Figure 4.6. Let consider K = {i, k,}.
This element is intersected only form X7, therefore we will create two copies of it, namely
{i,k,l} and {¢',k’,I'}. Note that we have used the duplicated nodes of Level I. At the
end of the duplication procedure we will get K; = {i,k',1} and Ky = {i',k,I'}. (see
Figure 4.6(b) and (c)). Similarly for K = {j,m, k}, except that is intersected only by X7,
therefore we will use the duplicated vertices of Level II. Finally, we have K; = {j, m,k"}
and Ko = {j”,m”, k}. (see Figure 4.6(d) and (c)).

Let now consider, K = {4, j,k}. It is intersected by both X7 and ¥%. We hence build
three copies of K, namely K1, Ky and K3. In order to construct K7 we keep i as physical
and we select the available nodes starting form Level I. Vertices 7' and k' are not used
yet, hence we obtain K1 = {i,j’,k'} (Figure 4.6(b)). For Ky we fix k as physical and we
select i’ and j” as unphysical, since j' has already been used (see Figure 4.6(c)). At last,
K3 will be K3 = {i",j,k"} (Figure 4.6(d)).

At the end of this process, we have, three independent meshes 77:"1, 77:}2 and 7;{713
covering Qg’", Q;” and Qg’", respectively. The duplicated elements are designed in such
a way that the correct connectivity of the meshes is guaranteed. Hence, we preserve
the continuity on each physical side of the duplicated elements with the rest of the fluid
physical domain.

4.3.2.3 Integration with moving domains

As mentioned in Section 2.3.2, Algorithm 4.1 involves integrals with functions defined
on spaces generated form time-dependent triangulations. Therefore, products of functions
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that might be discontinuous at different locations in the same element. When the discon-
tinuities are located in different elements, regardless the number of structures considered,
the quadrature is performed in a standard fashion by treating separately each discontinu-
ity. In fact, we store also the previous intersected meshes and the necessary informations.
In case we have different discontinuities within the same element, this inconvenience is
solved by shifting the discontinuity at time t"~! to the structure location at time t" (see
Alauzet et al. (2016); Fries and Zilian (2009)). Note that an alternative strategy could
have been considered as follows. When the number of discontinuities located inside an
element at t” and ¢"~! is different, we denote by t*~ the sub-triangulation with less dis-
continuities and with t*+ the other one. Finally, the discontinuity at time t*- is shifted
to the structure location at time *+.

4.3.3 Fitted mesh ALE method

The purpose of this section is to recall the basic ingredients of the fitted mesh ALE-
Lagrangian numerical scheme, starting from the coupled problem (4.4)-(4.6), described in
Section 4.2. This scheme will be only used for comparison purposes in Section 4.4.Let
begin by recalling that we consider a bijective map A, such that A : Of xRt — Qf(t). We

also parametrize the moving fluid domain by a one-to-one mapping introduce A; dof A(-,t).

We consider a fitted meshes based discretization, i.e., the fluid and solid meshes
matches at the interface 3. We consider a family of triangulations of {775}0<h<1 of the
initial fluid domain Qf which are fitted to the family of triangulations {7}o<p<1 of the
reference solid domain Y. For the discrete spaces, we consider the standard Lagrange
space of continuous piecewise affine functions, namely

X! df {vh € CO) | o € Py(K), VK € ﬁ} , (4.9)

Then, we consider for the approximation of the fluid velocity Vi, = [X}fl]d N V. For the
fluid pressure space, we allow the pressure to be discontinuous across ¥, by considering
piece-wise affine functions but continuous on each fluid domain, ©;, i = {1,2,3}. We
achieve this objective by duplicating the fluid degrees of freedom belonging to ¥ only for
the pressure approximation. The geometric non-linearities are treated, once again, in an
explicit fashion. Therefore, for a given solid displacement dz_l € Wy, we define the ALE
map
Z =1 o T d;’n,

where di’n is defined as di’n = Ly(d}).

Considering an overall backward Euler time-stepping and a strong coupling between
fluid and solid sub-problems, the fitted meshes based discretization of problem (4.4)-(4.6)
is detailed in Algorithm 4.2.
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Algorithm 4.2 Fitted mesh ALE scheme.
For n > 1,

1. Fluid mesh update:
d" =Ly (di7), wi=0.d)", AL =Io+dy", Q= AnQ).

2. Find (ﬁz,ﬁg,d’ﬁ) €V xQnx Wy, with dj, = 0-d} and uj |y = dﬁ, such that

—

f

o)y (i o) = (7wt )y
+afy (wp " = wils (ui, pi), (vn, an) + P2 (0-df, y)

E
o (@) - 5 [ o (@] - Twnd =0,

for all (%h,th,yh) eV xQpx Wy, with ’Uh|2 =Yy

In Algorithm 4.2, we have considered the following fluid discrete bilinear form

def
afzg(Zh;(uh,ph)»(Uhﬂh)) = CZ(ZMUha'Uh)+2M(€(Uh)7€(vh))gz

— (pn, V- vn)ap + (an, V - up)ap

+ SQZ (Zh; Up, Uh)v

with the convective trilinear form defined as

f

def
CZ(zh;uhvvh) = (Zh : V’ll/h,’vh)ﬂz + 5

((V . zh)uh, vh)QZ

and, since the couple velocity /pressure discrete spaces fails to satisfy the inf-sup condition
we consider the SUPG/PSPG sqq stabilization (see, e.g., Tezduyar (1992)), as follows,

def
sap (zn; un, vp) = / On (Pf (2 V)up + Vph) ' (Pf (2n - V)vp + V%) ;
K
KeTf

~1 (4.10)

def ¢ [ 4 16/12 4|Zh|2
5}1 - )‘M 1Y \/7_2 + h4(,0f)2 + h2 )

with Ay > 0 user-defined parameter.

Remark 4.3.3. Algorithm 4.2 involves a motion of the fluid domain mesh and the effi-
ciency of the method is strongly connected to the effectiveness of the lifting operator Ly,.
The lifting operator has the objective of correctly deforming the fluid mesh while main-
taining a reasonable elements quality. This becomes challenging and cumbersome in case
of large displacement and when topological changes (e.g., contact) are considered. In the
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numerical experiments of Section 4.4, we consider the non-linear lifting operator intro-
duced in Landajuela et al. (2017) which is an incremental variant of the approach reported
in Stein et al. (2003). The core concept of the technique is to locally increase the stiffness
of small elements in order to avoid the distortion of the mesh elements.

4.3.4 Unfitted mesh Fictitious Domain method

In the following Section, we will recall a discrete version of problem (4.4)-(4.6) based
on FD method. Let consider two families of triangulations {775}0<h<1 and {7, }o<n<1 of,
respectively, Qf and ¥. The mesh 7;5 is fitted to the exterior boundary but, possibly, not
fitted to the solid mesh 7.

We consider the following space discretization. Let X}fL and X} be the standard spaces
of piecewise continuous affine functions, given by (4.9). For the approximations of the
fluid velocity and pressure we introduce the following spaces:

Vi=[X1"nVv and Q,=XInQ.

Note that, in this case, the pressure and velocity spaces are both globally continuous.
Considering an overall backward Euler scheme for the time discretization, the strongly
coupled approximation with fictitious domain of problem (4.4)-(4.6) reads as follows:
For n > 1,

1. Interface update:
on=1Is+dy', Xh=¢p(E), Q=03 (4.11)

2. Find (uf, pp, AR, dy,) € Vi, x Qn x Ay, x W, with dj, = 9-d}!, such that

1; (uZ’pZL)’ (’Uha Qh))

. E
O wn)y + ot (dfown) 0 [ o (@] Tl @12)

+ bh(Az,Uh o ¢Z - yh) - bh(“h’uz © ¢Z - dﬁ) =0,

Pt (Orufs, vn) o + ag (up~

for all (vp, qn, po, wn) € Vi X Qp X Apy x W,

Here, the kinematic constraint is treated in a weak fashion via Lagrange multipliers,
with the discrete bilinear form by, : Aj, X [CO(E)}d — R, given by

N
def
bh (:u‘hﬂz) = ZIJ‘Z "z (ZD?) )
i=1
where Ay denotes the Lagrange multiplier space, namely,

pi €RYL Vie {1,...,N;}

Ni
Ap=1qQnpp= Zﬂifsm:
i=1
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and {w?}i\f‘l denotes the points of the triangulation 77 and dgs stands for the Dirac’s
measure at point x?. Additionally we have considered the following notations,

def
aby (25 (Who pn), (Vnan)) = en(zns un, o) + 20 (e(un), €(vn)) o
— (pn, V- o)t + (qn, V - up) e
+ Sof (Zh; Up, Uh)v

and convective trilinear form

f

def p
ch(zn; un, v) = (zh - Vg, vp)or + 5((V CZR)Wh, V) o

The SUPG/PSPG and grad-div stabilizations (see, e.g., Tezduyar (1992)), are considered
in order to treat the instabilities associated to the inf-sup incompatibility of the fluid
discrete spaces, namely

def A h2
Sﬂz,h(zh;uh,vh) = Z/ g (V-up)(V - vp)
KeTd K Oh

+ K;,g /K5h (Pf (zn - V) un + Vph) ' <pf (zh - V)or + V%> " (4.13)

-1

dif £ 4 16#2 4‘Zh’2
5h = )\M P \/7_2 + h4(pf)2 + h2 ;

with Ay, Ac > 0 user-defined parameters. Note that the pressure approximation is contin-
uous, so that in order to enhance mass conservation across the interface we consider the
approach by (see, e.g., Kamensky et al. (2015)) which consists in boosting the grad-div
stabilization in a vicinity of the interface. Note that this improved mass conservation is
obtained at expense of a perturbation of the conditioning of the fluid system. Concretely,
the stabilization parameter in (4.13) are modified in a neighborhood wj of the interface
X3, typically two layers of fluid elements on each side, as follows:

. f\ n
Ae=1 in O A= { Lo Qn\w’“
eM In wy,
with 0 < ey < 1 a user-defined parameter.

In the numerical experiments of Section 4.4, we consider the alternative fictitious
domain method reported in Algorithm 4.3, where we introduce the fluid-to-solid Lagrange
interpolation operator By, : [CO(E)]d — Wy,

The main advantages of this scheme, with respect to the strongly coupled prob-
lem (4.11) (4.12), are the fact that it is loosely coupled and it does not introduce additional
unknown in the fluid problem, by giving an explicit expression for the Lagrange multiplier.
This is achieved by applying mass lumping in the solid. Note that the solid inertia and
the fluid are implicitly coupled in (4.14), which guarantees added-mass stability.
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Algorithm 4.3 Loosely coupled FD scheme (from Boilevin-Kayl et al. (2019a))
For n > 2,

1. Interface update: ¢} = I's +d; '.

2. Fluid step: find (u},p}) € Vi, x Qp, such that

1

Pf (a‘ru27 vh)Qf + (12 (uZ_ ) (’u'z;p;;)v (Uh7 Qh))

1055 n n n
+ T(Bh(uh © ¢h)7 Bh(vh o ¢h))2,h (4.14)
Se S S n e n
- L’T (2d; 7" = dy =%, By(vn 0 6})) s, — ba(N ", Br(vn 0 67)),

for all (vp,qn) € Vi X Qh.
3. Evaluate fluid load: find A}, € Ay, such that
pe
T

bh( Z, wh) = (Bh (uz o ¢Z) — 2&2_1 + &2_2, wh)zﬁ + bh(AZ_l, 'wh), (4.15)

for all wy, € Wy,.
4. Solid step: find dff € W, with d = 8,d}, such that

"chE

e (Orttwn) 0 (dfwn) = S5 [ [on (@] Funl) = (A i), (2,16

for all wy, € W,.

4.4 Numerical experiments

The purpose of this section is to illustrate the performance of the Nitsche-XFEM
method for fluid-structure-contact interaction with multiple immersed structures (Algo-
rithm 4.1), introduced in Section 4.3.2, in a 2D numerical example. To this end, we
compare the numerical solution provided by Algorithm 4.1 with those of Algorithms 4.2
and 4.3. We recall that we express the units in the CGS system. In Algorithm 4.1, we
select the Nitsche’s penalty parameter as v = 100 and v, = 7p = 1072; in Algorithm 4.2
we consider Ay = 1, while in Algorithm 4.3 we set Ac = 0.1, Ay = 1 and ey = 10%. In
the following, a non-linear Reissner-Mindlin beam model is considered for the solid. Its
spatial approximation is based on linear MITC (Mixed Interpolation of Tensorial Compo-
nents) elements, involving two displacements and one rotation as degrees of freedom per
node in the increments (see, e.g., Bathe (1996)).

We consider a cross-shaped fluid domain and two idealized closed vertical valves in the
horizontal branches. The considered geometry is displayed in Figure 4.7. The fluid domain
bounding box is [0,1.25] x [0,1.5]. The solids reference configurations are, respectively,
Y1 =0.5x[0.5,1] and X3 = 0.75 x [0.5, 1].

Regarding the fluid boundary conditions, a zero traction is enforced on 'y and a
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Figure 4.7: Geometric configuration of two idealized closed valves Y1 and ¥y immersed in
a cross shape domain Qf.

time-dependent traction is imposed on I'y;, in terms of a sinusoidal time-dependent pressure

Pin(t), namely,
pin(t) = 1.3-10% -sin(27t), VYt > 0.

Additionally, a no-slip boundary condition is prescribed on I'y. The solids, ¥ and X5 are
clamped at their endpoints, hence the displacement, on both directions, and the rotations
are set to zero.

The considered physical parameters for the fluid are pf =1 and p = 0.035. For the solid,
we have p® = 1.2, the Young’s modulus F = 7.5 - 10°, thickness ¢ = 0.0212 and Poisson’s
ratio v = 0.4. The time-step is 7 = 103 and the final time is 7' = 1, while for the contact
gap we consider €, = 51072 and y¢ = 2 - 1073. The space discretization parameter is
selected as h = 0.02 for Algorithm 4.1 and Algorithm 4.2, with the only difference that the
fluid and solid meshes are fitted in Algorithm 4.2. For Algorithm 4.3, we consider the same
space discretization for the fluid mesh, while, to overcome leaking issues, we use a finer
solid mesh. The unstructured unfitted fluid mesh is composed by 5210 triangles, while for
the fitted by 5362. The solid meshes contain, respectively, 52 edges for Algorithm 4.1-4.2
and 100 for Algorithm 4.3.

We first discuss the results of Algorithm 4.1. Figure 4.8 shows the structures location at
different time instants. As the inlet pressure increases, the solids start to bend one towards
the other. At ¢ = 0.25 we reach the maximum positive pressure at the inlet, therefore the
structures are at their minimum distance and they get into contact (see Figure 4.8(a)).
After t = 0.25, the pressure decreases reaching zero at ¢ = 0.5 (Figure 4.8(b)). At ¢ =0.75
the inlet pressure reaches the negative minimum and the structure are at their maximum
distance, as shown in Figure 4.8(c). Afterward, the pressure increases and the solids
approach again reaching the final state at ¢ = 1 (see Figure 4.8(d)). Note that the solids
move symmetrically, due to the underlying symmetry of the problem.
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Figure 4.8: Deformed solid configurations at different time instants obtained with Algo-
rithm 4.1.

At t = 0.25 the solids get into contact and cut the same fluid elements. In Figure 4.9(a),
we highlight the fluid elements intersected by both structures. It can be noticed that, a
small gap (smaller than the element size) remains between the structures, since we consider
a relaxed contact approximation. We show in Figure 4.9(b) the effect of the duplication
procedure described in Section 4.3.2.2. The elements highlighted in Figure 4.9(a) are
duplicated twice as shown in Figure 4.9(b), the first in green and the second in red.

For illustration purposes, we display in Figure 4.10 some snapshots of the pressure
elevation corresponding to the time instants of Figure 4.8. At each instant, the pressure
jumps across the two interfaces are well captured. Figure 4.11 provides the corresponding
fluid velocity magnitudes. When the structures start to approach, they squeeze the fluid in
the middle channel, creating a flow in direction of I'yy¢, until the structures stop at contact.
Note that the fluid velocity is very low during contact (see Figure 4.11 (a)). Afterward,
they move away and the flow is restored (see Figure 4.11 (b)). At that moment, the fluid
enters from I'oyt. When the minimum pressure is reached at t = 0.75, the structures
velocity is very low and the fluid is at rest (see Figure 4.11 (c)), until move towards the
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(a) The solids X1 and X1 get into contact. (b) Pressure elevation with two levels of element du-
plication.

Figure 4.9: Zoom on the structures at contact, t = 0.25. The fluid elements highlighted
in (a) are triplicated in (b), where the three copies of the elements are visible.

central channel, pushing again the fluid across I'gyt.

We now compare the results of Algorithm 4.1 with those obtained with Algorithms 4.2
and 4.3. Since we are mostly interested on the contact phenomenon, we focus our attention
at t = 0.25. We show in Figure 4.12 the pressure elevations at ¢ = 0.25 obtained with
the three numerical methods. A very good agreement is visible between the solutions
obtained with Algorithm 4.1 and Algorithm 4.2. The pressure is discontinuous and they
well represent the exact pressure jump across the interface. Algorithm 4.3 provides a
reasonable continuous approximation with a sharp gradient. Note however, that the gap
between the two solids is larger when compared with those provided by Algorithms 4.1
and 4.2. In fact, in contrast to Algorithms 4.1-4.2, solid contact in not detected with
Algorithm 4.3 from ¢t = 0.178 until ¢ = 0.325 and a layer of one or more fluid elements
remains in between the two solids. This might be a consequence of: (i) a locking effect
of the penalized grad-div term; or (ii) the leaking induced by the Robin treatment of
the kinematic condition. The last point is illustrated in Figure 4.13, where we report
the velocity magnitudes obtained with the three numerical methods. Note that spurious
velocities are visible for Algorithm 4.3 (Figure 4.13(b)).

Figure 4.14 reports the deformed configurations of the solids and fluid meshes at ¢ =
0.25. As a consequence of the fitted nature of Algorithm 4.2, the fluid elements between
the structures are squeezed (see Figure 4.14(a)). This seems to not perturb the quality of
the numerical solution in this example, indeed, Algorithms 4.1-4.2 show very small gaps
(see Figure 4.14(c)). On the contrary, contact is not activated with Algorithm 4.3, which
is visible in Figure 4.14(b) with larger gap.

We conclude this section with a space-time refinement study, by taking, (h,7) € {0.04-
279,2-1073 - 277}2 . We recall that for Algorithm 4.3 we consider a finer solid mesh,
typically taking twice the number of nodes with respect to Algorithms 4.1-4.2. The contact
gap e, = ep(h) is selected accordingly as g5, € {0.01-277}2_,. We report in Figure 4.15
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pressure

-1.30e+04 -6.50e+03 0.00e+00 6.50e+03 1.30e+04

Figure 4.10: Pressure elevation at different time instants of the solution obtained with
Algorithm 4.1.

the time history of the z-displacement at the middle left solid node. As previously noted,
the very good agreement between Algorithms 4.1 and 4.2 is clearly visible. Figure 4.15
shows a convergent behavior of the approximations provided by Algorithm 4.3 towards
those of Algorithms 4.1 and 4.2. Figure 4.15 points out that in Algorithms 4.1 and 4.2
the solids get into contact. This is not the case of Algorithm 4.3, even with the finest
grid. Finally, we display in Figure 4.16 the velocity magnitude of the solution obtained
via Algorithm 4.3 with the finest discretization. The spurious velocity are still present,
but they reduce with refinement.
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(b) t = 0.5.

= 0.25.

a) t

(

0.75.

t

(c)

velocity

0.00 2.81 563 844 11.26

Figure 4.11: Velocity magnitude obtained with Algorithm 4.1.
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(a) Algorithm 4.2. (b) Algorithm 4.3.

(c) Algorithm 4.1.

pressure

0.00e+00 3.25e+03 6.50e+03 9.75e+03 1.30e+04

Figure 4.12: Pressure elevation at ¢ = 0.25 obtained with the three considered numerical
methods.



4.4. NUMERICAL EXPERIMENTS 115

(a) Algorithm 4.2. (b) Algorithm 4.3.

(¢) Algorithm 4.1.

velocity

0.00 2.81 563 844 11.26

Figure 4.13: Velocity magnitude at ¢ = 0.25 obtained with the three considered numerical
methods.
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Figure 4.16: Velocity magnitude at ¢ = 0.25 obtained with Algorithm 4.3 and (h,7) =
(0.01,5-107%).
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4.5 Conclusion

In this chapter, we have presented a new numerical method, based on unfitted mesh and
Nitsche-XFEM framework, for the approximation of fluid-structure-contact interaction
problems with immersed thin-walled solids. The introduced method extends the Nitsche-
XFEM approximation from Alauzet et al. (2016) to the case of contact with multiple
structures. The main features of the method can be summarized as follows:

e Consistent spacial approximation through the Nitsche-XFEM framework using a
relaxed contact formulation;

e Ad hoc intersection and duplication strategies guarantee consistency and correctness
of the overlapping meshes.

The Nitsche-XFEM method for contact is compared with fitted ALE and unfitted FD
methods. Similar results are observed with Nitsche-XFEM and ALE methods, while FD
suffers of no-collision and spurious velocity, particularly for the coarsest approximations.
The main drawback of the presented methodology is that an additional duplication level
complicates the computer implementation and major intrusive modifications were neces-
saries within the existent fluid solver. Ongoing work concerns the extension to partially
intersected fluid domain using the fictitious solid method proposed in Chapter 6, as well
as the extension to 3D.






CHAPTER 5

A mechanically consistent
fluid-structure-contact interaction model

In this chapter we introduce a mized dimensional fluid-structure-contact coupling
model, in which we include a thin-walled porous layer, in order to model surface asperities.
The thin-walled porous layer introduces tangential creeping flow along the boundary and
allows for the modelling of boundary flow due to surface roughness, giving physical
sense to the fluid stresses at contact and bringing mechanical consistency at contact and
release. Numerical examples are reported for both Stokes’-Darcy coupling alone, as well
as fluid-structure-Darcy-contact at the porous boundary layer.

Some of the results of this chapter have been reported in:

e E. Burman, M. A. Fernandez, S. Frei, and F. M. Gerosa. 3D-2D Stokes-
Darcy coupling for the modelling of seepage with an application to
fluid-structure interaction with contact. Chapter 20 of F. J. Vermolen,
C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH
2019, Lecture Notes in Computational Science and Engineering, Vol. 139, 2020.
DOI: 10.1007/978-3-030-55874-1 20. Available online: https://hal.inria.fr/
hal-02417042.

Contents
5.1 Introduction 122
5.2 Mathematical models 123
5.2.1 Darcy model with porous interface 123
5.2.2 Coupled Stokes and thin-walled Darcy model 126
5.2.3 Relaxed contact condition 128
5.2.4  Coupled fluid-structure-porous interaction model with contact 130
5.2.5 Numerical approximation 132
5.3 Numerical experiments 136
5.3.1 Reservoirs connected via porous layer 136
5.3.2 Idealized valve with contact 138

5.4 Conclusions 150



https://hal.inria.fr/hal-02417042
https://hal.inria.fr/hal-02417042

122

5.1 Introduction

Building a consistent fluid-structure-contact interaction numerical method is an highly
complicate and challenging problem. As introduced in Section 1.2.4, between the typical
numerical contact approaches, we can distinguish real and relazed contact approximations.
Both approximations suffer of consistency loss, at contact for the relaxed approximation
and at release for the realistic one. In fact, in the relaxed approximation, the solid is
simultaneously in contact and coupled with the fluid, which results in an incorrect balance
of stresses (breaking the Newton’s third law).

Contrarily to dry contact, when fluid-structure-contact is considered, the fluid serves
as link between the contacting bodies, allowing stresses exchange even before contact. In
fact, the fluid between the contacting bodies severely impacts the contact dynamics (for
instance, the pulsating blood flow pilots the closure and opening of heart valves). It has
recently been observed by several authors Ager et al. (2019a), Burman et al. (2020a) that
the consistent modelling of fluid-structure interaction with contact requires a fluid model,
in particular a pressure, also in the contact zone. Indeed, some seepage is expected to
occur due to permeability of the contacting bodies or their surface roughness. Otherwise
there is no continuous mechanism for the release of contact and non-physical voids can
occur.

For instance, Ager et al. (2019b) propose to include the modelling of fluid stress in
the contact zone, by an extension approach coupled with some compatibility conditions
on the intersection between fluid-solid interface and solid-solid region.

Similar ideas were introduced in Burman et al. (2020a), but for computational reasons.
Indeed, in the latter reference an elastic body immersed in a fluid enters in contact with
a rigid wall and to allow for a consistent numerical modelling, the permeability of the
wall is relaxed. This motivates the introduction of an artificial porous medium whose
permeability goes to zero with the mesh-size.

In addition, it is ambiguous if the Navier-Stokes equations are still a valid model and
numerics suffer of the no-collision paradox, when smooth solids are considered, with no-slip
conditions for both contacting wall and fluid-structure coupling, see e.g. Hillairet (2007);
Hesla (2004); Hillairet and Takahashi (2009); Burman et al. (2020a). A no-contact result
in fluid-structure interaction with a thin-walled solid and no-slip condition is proven in
Grandmont and Hillairet (2016). Alternative approaches consist in taking a slip or Navier-
slip condition on both contacting wall and in the interface coupling (see, e.g., Gérard-Varet
et al. (2015); Burman et al. (2020a); Balilescu et al. (2017)). In Gérard-Varet and Hillairet
(2010); Davis et al. (2003), authors study mathematically the roughness-induced effect on
the collision process, showing that as soon as the surface asperities are considered, contact
can occur.

However, an exact resolution of the surface asperities is impractical. Ager et al. (2019a)
proposes to introduce a poroelastic model to describe the surface roughness and the flow
near the contact wall. Since the poroelastic layer is an averaged representation between
the fluid and the solid description, including this model into a fluid-structure-contact
interaction problem, solves the issue related to consistency loss.

Nevertheless, they do consider a realistic contact approximation, hence, the problem
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related to topology changes, such as, active switch between fluid-porous, fluid-solid and
solid-porous interface coupling, isolated fluid region which are artifact of the non smooth-
ness of the interfaces at discrete level and difficult implementation, are still present.

In this chapter, we propose to overcome this issues by considering a relaxed contact
formulation and a reduced order thin-walled Darcy model for the thin porous domain,
neglecting the porous deformation. Such approach is enough to account physical effect as
fluid pressure between the contacting bodies, partially solving the problem of the rupture
of the Newton’s third law, because it gives physical sens to the fluid stresses that are sent
to the structure at contact. The derivation of the reduced Darcy model, is inspired from
the work of Martin et al. (2005), in which they introduce a reduced model for flow in
fractures, considered as interfaces between sub-