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Méthodes de la frontière immergée pour l'interactions
fluide-structure avec des changements de topologie

Resumé: Cette thèse est dédiée à la modélisation, l'analyse numérique et à la simulation
des problèmes d'interactions �uide-structure. Nous considérons des structures déformable
à parois minces et immergées dans un �uide visqueux incompressible. La motivation
sous-jacente de ce travail est la simulation des valves cardiaques.

Ce travail aborde des questions fondamentales qui vont du fractionnement e�cace du
temps avec des maillages non compatibles, à la modélisation de contact dans l'interaction
�uide-structure et son approximation. Pour des raisons de robustesse et de solidité math-
ématique, l'approximation spatiale est basée sur le cadre de maillage non compatibles
Nitsche-XFEM.

Dans la première partie, nous présentons et analysons un nouveau schéma semi-
implicite, qui évite un couplage fort, sans compromettre la stabilité et la précision. Dans
la deuxième partie, nous considérons la situation dans laquelle le contact se produit. Dans
le contexte de Nitsche-XFEM, un modèle d'interaction �uide-structure-contact est égale-
ment étendu dans le cas de contact avec plusieurs structures. Une procédure de duplication
spéci�que permet de préserver la consistance de la méthode également dans le cas du con-
tact. Les inconsistances mécaniques traditionnelles de la formulation du contact relaxé
dans l'interaction �uide-structure sont contournées en introduisant un modèle poreux de
surface dans la paroi de contact. Cette couche décrit la rugosité de la surface, donnant
un sens physique aux régions �uides in�nitésimales, qui restent entre le solide et la sur-
face au contact. Dans la dernière partie, nous développons l'extension 3D de la méthode
de maillage Nitsche-XFEM, dans le cas de domaines �uides entièrement et partiellement
intersectés.

Mots-clés: Interactions �uide-structure, Méthodes de maillages non compatibles, Sché-
mas de couplage, Méthode de Nitsche, XFEM, Structures minces immergés, Contact.





Immersed boundary methods for fluid-structure interaction with
topological changes

Abstract: This thesis is dedicated to the modeling, numerical analysis and simulation
of �uid-structure interaction problems, involving thin-walled structures immersed in an
incompressible viscous �uid. The underlying motivation of this work is the simulation of
heart valves.

This work addresses fundamental issues which go from e�cient time-splitting with
un�tted meshes, to contact modeling in �uid-structure interaction and its approximation.
For the sake of robustness and mathematical soundness, the spatial approximation is based
on the Nitsche-XFEM un�tted mesh framework.

In the �rst part, we present and analyse a new semi-implicit scheme for Nitsche-
XFEM, which avoids strong coupling, without compromising stability and accuracy. In
the second part, we consider the situation in which contact occurs. In the context of
Nitsche-XFEM, a �uid-structure-contact interaction model is extended also to the case of
contact with multiple structures. A speci�c duplication procedure allows to extend the
consistency of the method to the case of contact. Traditional mechanical inconsistencies of
relaxed contact formulation in �uid-structure interaction are circumvented by introducing
a surface porous model in the contact wall. This layer describes surface roughness, giving
physical meaning to the in�nitesimal �uid regions between the solid and the surface at
contact. In the last part, we develop the 3D extension of the un�tted mesh Nitsche-XFEM
method in case of fully and partially intersected �uid domains.

Keywords: Fluid-structure interaction, Un�tted mesh methods, Coupling schemes,
Nitsche's method, XFEM, Immersed thin-walled structures, Contact.
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Introduction





Thesis general context

The mechanical interaction of an incompressible viscous �uid with an immersed struc-
ture appears in a wide variety of engineering �elds and is particularly ubiquitous in nature.
The applications span from micro-encapsulation, biomechanics of cells deformation, birds
�ight, physiological �ows, such as, heart dynamics and cilliary beating, to aeroelasticity
of parachutes and sailing boats (see, e.g., Liu and Liu (2006); Van Loon et al. (2005);
Han and Peskin (2018); Nakata and Liu (2012); Weymouth et al. (2006); Takizawa and
Tezduyar (2012)).

Since the beginning of this century, impressive progress has been made in building
e�cient and accurate numerical methods, able to represent the physiological and patho-
logical functionality of blood dynamics. Numerical simulations are e�ective tools, useful
to physicians, as, e.g., support for design new devices, better understanding diseases or
malfunctioning and they can become tools for quantity estimations, otherwise concretely
inaccessible.

Position of the thesis

This thesis is devoted to the modeling, analysis and numerical simulations of �uid-
structure interaction problems with immersed solids and contact. The work is mainly
motivated by the numerical simulation of blood �ow interacting with heart valves (see,
e.g., Kamensky et al. (2015); Lau et al. (2010)), with particular focus on stability, accuracy
and robustness. Given the ratio thickness/size of the lea�ets, a common assumption is to
model the heart valves as structures of co-dimension one (see, e.g., Diniz dos Santos et al.
(2008); Astorino et al. (2009b)). This simpli�ed, but realistic, reduced order problem is
a fundamental ingredient of this thesis and we refer to as thin-walled solid model. With
regard to e�ciency, one possible way to gain in performance is to introduce a certain
degrees of time-splitting between the �uid and solid problems, thus, avoidstrong coupling.
Standard loosely coupledschemes are known to exhibit stability and accuracy issues, since
the interface coupling in incompressible �uid-structure interaction is extremely sti�. In-
deed, they often require severe time-step restrictions and stability conditions, which are
linked to the amount of added-masse�ect (see Section 1.3.2).

The development of �uid-structure interaction numerical methods has been extensively
investigated within the �tted and un�tted mesh frameworks. In the �rst strategy the �uid
and solid meshes are �tted at their interface (see Section 1.3.1), thus, it is ideal for problems
with moderate displacement and are usually treated with moving mesh techniques and an
Arbitrary Lagrangian Eulerian description of the �uid problem. However, they becomes
cumbersome within problems featuring large interface displacement and potential contact
between solids.
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In such situations, a favored numerical approach is the un�tted mesh based formula-
tions, in which an Eulerian description of the �uid problem is combined with solid meshes
which are freely to move independently of a background �uid mesh. However, the design
and analysis of splitting schemes, which avoid strong coupling, in the un�tted framework,
have been rarely addressed in the literature so far. In the �rst part of this thesis (Part
I), we investigate the stability and accuracy of an un�tted mesh semi-implicit scheme,
which avoids strong coupling. Therein, we will consider a consistent spatial discretization
based on Nitsche mortaring, with un�tted mesh and cut-elements, named Nitsche-XFEM
method.

Moreover, in applications where contact occurs, such as in heart valves dynamics, topo-
logical changes appear in the �uid domain. Modeling contact, in particular coupled with
�uid-structure interaction, rises many issues, from the modeling and numerical points of
view. The computational complexity is also an issue, in particular when a realistic contact
(i.e, without relaxation of the contact conditions) is considered. Real topology changes
can be avoided by relaxing the contact conditions (see Section 1.2.4). This approximation
su�ers, however, of mechanical consistency loss. In the second part of this thesis (Part
II), we address some of these issues (see Section 1.2.4).

Furthermore, the development of e�cient, accurate and robust methods is fundamental
for 3D numerical simulations. This raises some issues that are addressed in Part III by
extending the un�tted mesh, Nitsche's and cut-elements based method, to the 3D case.
Indeed, the considered un�tted mesh method requires a speci�c track of the interface
intersections which becomes cumbersome in 3D.

Thesis outline and main contributions

The main contributions of this work are listed here, chapter by chapter. For the sake
of clarity, they are discussed at the beginning of each chapter.

Chapter 1. This is an introductory chapter. We present the essential models involved
in �uid-structure interaction problems with thin-walled immersed solids. A review of the
state-of-the-art on numerical methods is provided, by discussing the di�erent available
methods for the space and time discretization.

Part I: Time-splitting schemes for un�tted mesh approximations of FSI

Chapter 2. We introduce a new semi-implicit coupling scheme for the numerical
approximation of incompressible �uid-structure interaction problems, involving thin-
walled immersed solids. The method combines a Nitsche based un�tted mesh spatial
approximation with a fractional-step time-marching in the �uid. The viscous part of the
coupling is treated in an explicit fashion, while the remaining �uid pressure and solid con-
tributions are treated implicitly. The presented scheme e�ciently avoid strong coupling,
without compromising stability and accuracy. A stability analysis is conducted in the
chapter and the e�ciency of the numerical scheme is illustrated via numerical experiments.
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Chapter 3. This chapter is devoted to the error analysis of the numerical method
presented in Chapter 2, for a linear �uid-structure coupled system, involving the transient
Stokes equations (in a �xed domain) and a thin-walled solid elastodynamics model. Robust
a priori error estimates are derived for two extrapolated variants of the solid velocity.
Further, numerical evidences on the convergence properties of the methods is provided.

Part II: Modeling and approximation of �uid-structure-contact interaction

Chapter 4. We address the issues raised by the approximation of a basic �uid-
structure-contact interaction model using the Nitsche-XFEM method. We illustrate
that, for consistency reasons, further element duplication is needed in the �uid elements
where contact between the structures occurs. The proposed method, for �uid-structure
interaction with contact, is hence compared with the ALE and FD/Lagrange multipliers
methods, exploiting the advantages and limitations of these strategies.

Chapter 5. We introduce a mechanically consistent mixed dimensional �uid-
structure-contact interaction model. The �uid-structure-contact interaction problem
is coupled to a thin-walled Darcy model on the contacting wall. The model gives a
mechanical justi�cation for the �uid-structure-contact interaction with a relaxed contact
condition. The thin-walled porous layer introduces tangential creeping �ow along the
boundary and allows for the modelling of boundary �ow due to surface roughness.
Numerical examples are reported for both Stokes'-Darcy coupling alone, as well as
�uid-structure-Darcy-contact at the porous boundary layer.

Part III: 3D numerical simulations

Chapter 6. In this chapter, we discuss the formulation and implementation aspects
of the Nitsche-XFEM discretization method, to the three-dimensional case. A particular
focus is made on the e�ciency and robustness of the intersection and sub-triangulation
algorithms without resorting to black-box meshing software. The performance and
robustness of the presented method are explored via a series of numerical examples,
involving moving interfaces, with partially and fully intersected �uid domains.
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Chapter 1

Numerical methods for �uid-structure
interaction

In this chapter, we brie�y review the basic models and numerical methods for �uid-
structure interaction with immersed thin-walled solids. In particular, we present a review
of the existing numerical methods, focusing, in particular, on the spatial discretization,
the time splitting between the �uid and structure solvers and contact formulations.

Contents
1.1 Introduction 7

1.2 Fluid-structure interaction 8

1.2.1 Fluid models 8

1.2.2 Thin-walled solid model 10

1.2.3 Fluid-structure coupled problems 11

1.2.4 Contact modeling 14

1.3 Numerical methods 18

1.3.1 Spatial discretization 18

1.3.2 Time-splitting 19

1.1 Introduction

The content of this chapter serves as basic background of the work presented in the
rest of this thesis. The reader interested in fundamentals of general continuum mechan-
ics, is referred to Gurtin (1982); Lai et al. (2009). Material regarding fundamentals of
solid mechanics can be found in Ciarlet (1988); Chapelle and Bathe (2011). The latter
reference is related, in particular, to the mathematical models and their �nite element
approximation, in the context of thin-walled structures. The models commonly used for
the mathematical modeling of �uid-structure interaction (FSI) problems are presented in
the following sections. Starting from the description of the �uid equations, solid equations
and, �nally, considering the full FSI problem, adding the necessary coupling conditions.
The �uid formalisms considered will be the Eulerian and Arbitrary Lagrangian Eulerian
(ALE), while for the solid equation we restrict the discussion only to the Lagrangian de-
scription. As regards additional materials about basis and introduction to �uid-structure
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interaction problems, we refer to Formaggia et al. (2009) and the references therein. Af-
terward, we describe the modeling in contact. In particular, for discussion on dry contact
mechanics, we refer to Wriggers and Zavarise (2004), for contact treated via penalization
to Chouly and Hild (2012), and via Augmented Lagrangian/Nitsche's approach to Burman
et al. (2018, 2019). The latter approach can be seen as a consistent penalization method.
For contact considered in the context of �uid-structure interaction, we refer to Diniz dos
Santos et al. (2008); Astorino et al. (2009b); Kamensky et al. (2015); Zonca et al. (2020)
and Burman et al. (2020a); Mayer et al. (2009, 2010); Chouly et al. (2017) for further
examples of contact for FSI treated via Nitsche's approach.

Regarding the numerical approximation, we present a review of the existing numerical
methods, discussing the possible spatial discretization strategies (distinguish �tted mesh
from the un�tted mesh based approximations) and the degree of time splitting between
the �uid and structure sub-problems (introducing the concept of strongly coupled and
weakly-coupled schemes). Reviews on numerical methods for FSI can be found in Hou
et al. (2012); Formaggia et al. (2009); Fernández (2011).

The rest of the chapter is organized as follows. In Section 1.2 we describe the general
geometrical setting and we introduce the fundamental models involved in FSI problem. In
particular, we present the �uid problems in Section 1.2.1, the solid problem in Section 1.2.2
and the coupled problems in Section 1.2.3. In Section 1.2.4, the main issues encountered
considering contact modeling are described. Section 1.3 presents a review on the existing
numerical methods regarding the space discretization (Section 1.3.1) and the splitting
between the �uid and solid (Section 1.3.2).

1.2 Fluid-structure interaction

In this section, we consider the mechanical interaction between a deformable thin-
walled structure and an incompressible viscous �uid. In the following, the structure domain
and the �uid-structure coupling interface are identi�ed by the solid mid-surface.

In continuum mechanics, the Lagrangian formalism is typically used when the interest
is on following the material particles, while the Eulerian point of view describes the state
of the system in a given control volume in the physical space. Depending on the context
one formulation is preferred to the other (see Formaggia et al. (2009)). The classical choice
is to consider the Eulerian representation for the �uid and the Lagrangian for the solid.
Another possible formulation is the intermediate formalism, called Arbitrary Lagrangian
Eulerian (ALE) and is often considered in hemodynamics simulations (see Nobile (2001);
Formaggia et al. (2009)).

In the following paragraphs, we will �rst present the �uid equations in their Eulerian
and ALE formalism, afterwards, the solid Lagrangian equations and �nally the coupled
FSI problem.

1.2.1 Fluid models

Blood is a complex non-Newtonian �uid characterized by a suspension of cells in a
liquid (the plasma) made of water for its 90%. The constitutive particles are mainly
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red blood cell, white blood cell and platelets. The red blood cell are responsible for
the Non-Newtonian blood behavior, due to their highly deformable structure. The Non-
Newtonian e�ects become signi�cant when the vessel size is small (see, e.g., Fåhræus-
Lindqvist e�ect in Possenti et al. (2019); Pries et al. (1994)), while they can be neglected for
medium and large size arteries. In this work we will consider the numerical approximation
of blood �ow in large/medium size vessels, hence, it is reasonable to assume the blood
as an homogeneous, incompressibleand Newtonian �uid, governed by the Navier-Stokes
equations. Let now introduce the Navier-Stokes equations in the di�erent frameworks.

1.2.1.1 Eulerian Incompressible Navier-Stokes equations

In this paragraph we provide the necessary notations to describe the Navier-Stokes
equations in theirs Eulerian framework. Let 
 f (t) 2 Rd, d = 2 ; 3, be a bounded time-
dependent domain, with a Lipschitz boundary@
 f (t). We denote with n the unit outward
normal on @
 f (t). The previously discussed �uid assumptions translate to constant (in
space and time) �uid density � f and dynamic viscosity � . The Incompressible Navier-
Stokes equations in Eulerian framework read as follow: �nd the �uid velocity u : 
 f (t) �
R+ ! Rd and pressurep : 
 f (t) � R+ ! R, such that for all t 2 R+ we have

(
� f � @t u + ( u � r )u

�
� div � (u ; p) = 0 in 
 f (t);

div u = 0 in 
 f (t);
(1.1)

where � (u ; p) def= 2 � � (u ) � pI is the Cauchy stress tensor and� (u ) def= 1
2

�
r u + r u T ) the

strain rate tensor, in which I denotes the identity tensor.
Problem (1.1) needs to be completed with proper initial condition u(0) = u 0 and

boundary conditions on @
 f (t), namely

u = u D on � D (t);

� (u ; p)n = gN on � N(t);

where u D and gN denote, respectively, a velocity and a pressure pro�le. Finally,� D and
� N , are such that @
 f (t) = � D (t) [ � N(t).

1.2.1.2 Arbitrary-Lagrangian-Eulerian Incompressible Navier-Stokes equa-
tions

In this paragraph we reformulate the Eulerian Navier-Stokes equation (1.1) in the ALE
framework. Only the essential notions are presented. A more extensive presentation can
be found in Formaggia et al. (2009) and Nobile (2001). Letb
 f = 
 f (0) be the reference
�uid domain. The Arbitrary-Lagrangian-Eulerian description is based on the introduction
of an appropriate one-to-one mappingA : b
 f � R+ ! Rd, de�ned in terms of the �uid
domain displacementdf : b
 f � R+ ! Rd, given by the following expression

A def= I b
 f � R+ + df :
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The purpose of the ALE mapping A is to parametrize the motion of �uid domain and
facilitate the time discretization, when working with an evolving computational domain.

The �uid domain velocity is hence de�ned as w def= @t df and the initial con�guration is
such that b
 f = A ( b
 f ; 0). It should be noted that, the initial con�guration coincides with

the reference �uid domain. We will also introduce the notation A t (bx) def= A (bx; t), by �xing
t > 0 and with bx 2 b
 f .

We recall that for a given functional de�ned on the ALE reference domainbf : b
 f � R+ ,
we can de�ne its Eulerian counterpart, by

f (x ; t) = bf (x ; t) � A � 1
t = bf (A � 1

t (x ); t); 8 (x ; t) 2 
 f (t) � R+ ;

and conversely
bf (bx ; t) = f (A t (bx ); t); 8 (bx ; t) 2 b
 f � R+ :

For instance, at each point of the current con�guration, the Eulerian domain velocity is
such that w (x ; t) = bw(bx ; t): Notice that in general the �uid velocity and the domain
velocity are di�erent (if w = 0 we retrieve the Eulerian formulation, while if w = u the
Lagrangian description).

The last necessary ingredient is the so-called ALE time-derivative. For a given Eulerian
�eld q, we de�ne the ALE time-derivative as follows:

@q
@t

�
�
�
�
A

def= @t jA q = w � r q +
@q
@t

:

Hence, the Arbitrary-Lagrangian-Eulerian description of the incompressible Navier-Stokes
equations is obtained by introducing the ALE time derivative inside (1.1). The problem
reads as follow:
�nd the velocity bu = bu(bx ; t) : b
 f � R+ ! Rd and pressurebp = bp(bx ; t) : b
 f � R+ ! R,
such that

(
� f �

@t jA u +
�
u � w � r

�
u

�
� div � (u ; p) = f in 
 f (t);

div u = 0 in 
 f (t);
(1.2)

As for the Eulerian description, problem (1.2) is similarly completed with initial condition
on 
 f (0) and boundary conditions on� D and � N .

1.2.2 Thin-walled solid model

For a full presentation of the theory of shell models we refer to Chapelle and Bathe
(2011); Bischo� et al. (2018). Given the ratio thickness/size of the heart valve lea�ets, a
common assumption is to model the valves as co-dimensional one structures (i.e.,(d � 1)-
dimensional models where d is the dimension of the problem under analysis, see, e.g.,
Diniz dos Santos et al. (2008); Astorino et al. (2009b)). These simpli�ed (but still real-
istic) dimensionally reduced problems, that we refer to as thin-walled solid models, are
those considered in the models presented in this work. Starting form a thick-walled solid
description, with the assumption of ration thickness/size of the solid structure small, we
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de�ne the solid equations on the solid mid-surface� and we refer to its thickness as" . Note
that � is at the same time the �uid-structure interface as well as the solid reference con�g-
uration. We will consider the Reissner-Mindlin kinematic assumption (see Chapelle and
Bathe (2011)), which states that, a material line orthogonal to the reference mid-surface
is assumed to remain straight and unstretched during deformation. The displacement is,
hence, given in terms of a global displacement and a rotation vector around the normal to
the mid-surface. Additionally we well consider ashear-membrane-bending modelwithin a
non-linear framework. This will be the model considered in the numerical examples of the
next chapters, unless speci�ed otherwise.

For sake of simplicity, the shear-membrane-bendingmodel that we consider in the
description of the methods reads as follow: �nd the solid displacementd : � � R+ ! Rd

and velocity
.
d : � � R+ ! Rd, such that

(
� s"@t

.
d + L (d) = T on � ;

.
d = @t d on � ;

(1.3)

where � s represents thesolid density and " its thickness. Additionally, T denotes a given
source term, hence a force per unit area, and the surface operatorL represents the strong
formulation of the thin-walled solid elastic contributions.

Finally, problem (1.3) must be completed with initial conditions, namely,
(

d(0) = d0 on � ;
.
d(0) =

.
d0 on � ;

(1.4)

as well as boundary conditions on@� .

1.2.3 Fluid-structure coupled problems

Considering the models presented previously, we can now describe the full �uid-
structure interaction problem including the coupling/transmission conditions. Thus, we
will couple the �uid equations introduced in Section 1.2.1 (considering both Eulerian and
ALE formalism) with the thin-walled solid model presented in Section 1.2.2 in Lagrangian
formalism.
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Figure 1.1: Geometrical con�guration.

We consider� � Rd, with d = 2 ; 3, the solid mid-surface and let�( t) be the current
position of the interface, given in terms of a deformation map� : � � R+ ! Rd and
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the solid displacementd, namely � def= I � � R+ + d and such that �( t) = � (� ; t). The
geometric con�guration is shown in Figure 1.1. The structure is allowed to move within a

�xed domain 
 f � Rd, with boundary � def= @
 f . The �uid time-dependent domain is then

de�ned as 
 f (t) def= 
 f n �( t) and with boundary @
 f = � [ �( t). We also introduce the

following notation � t
def= � (�; t): The immersed interface�( t) is oriented with unit normal

n � and it divides the �uid domain 
 f (t) into two subdomains, with normals respectively

n 1
def= n � and n 2

def= � n � .

For a given �eld f in 
 f (t) (possibly discontinuous on �( t)), we de�ne its sided-
restrictions, denoted by f 1 and f 2, as

f 1(x ) def= lim
� ! 0�

f (x + � n 1); f 2(x ) def= lim
� ! 0�

f (x + � n 2);

for all x 2 �( t), and the following jump and average operators across�( t):

Jf Kdef= f 1 � f 2 Jf n Kdef= f 1n 1 + f 2n 2; ff f gg def=
1
2

�
f 1 + f 2

�
:

In the coupling with a thin-walled solid the transmission condition are applied directly
to the solid mid-surface� , this means that the solid thickness e�ects are neglected in the
interface coupling. This is a common assumption in the coupling of thin-walled solids with
general 3D media (see, e.g., Chapelle and Ferent (2003)). The �uid and solid problems are
coupled via the so-called kinematic and dynamic coupling conditions. The �rst is a no-slip
condition, representing the fact that, due to its viscosity, the �uid sticks perfectly to the
�uid-structure interface. The second accounts for the Newton's third law, hence, for the
balance of stresses at the interface. Additionally a geometrical compatibility condition
need to be ful�lled between the �uid and solid domains 
 f (t) and �( t).

In the sequel, we introduce the Eulerian-Lagrangian and the ALE-Lagrangian descrip-
tion of the coupled FSI problem.

1.2.3.1 Eulerian-Lagrangian formalism

We can de�ne the �rst coupled �uid-structure problem by considering the Eulerian
Navier-Stokes equations of Section 1.2.1.1 and the membrane model of Section 1.2.2. The
coupled problem read as follow: �nd the �uid velocity u : 
 f � R+ ! Rd and pressure
p : 
 f � R+ ! R, the solid displacementd : � � R+ ! Rd and velocity

.
d : � � R+ ! Rd,

such that
8
><

>:

� f � @t u + u � r u
�

� div � (u ; p) = 0 in 
 f (t);

div u = 0 in 
 f (t);

u = 0 on � ;

(1.5)

(
� s"@t

.
d + L (d) = T on � ;

.
d = @t d on � ;

(1.6)
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8
>>><

>>>:

� = I � � R+ + d; �( t) = � (� ; t); 
 f (t) = 
 f n�( t);

u =
.
d � � � 1

t on �( t);
Z

�
T � y = �

Z

�( t )
J� (u ; p)n K� y � � � 1

t 8 smoothy : � ! Rd:

(1.7)

As previously, we complete the problem by adding initial and boundary conditions, which
are inherited from problems (1.1) and (1.3).

The �rst equation in (1.7) represents the geometric coupling, which de�nes the time
dependent �uid control volume following the motion of the interface. Equation (1.7)2
enforces the kinematic coupling and the last equation (1.7)3 the dynamic coupling, i.e.,
the balance of stresses at the interface�( t):

As a consequence of the geometrical coupling condition, problem (1.5)-(1.7) is non-
linear, since involves integrals de�ned on moving domains. In the following, we will refer
to this as geometrical non-linearities.

1.2.3.2 ALE-Lagrangian formalism

In this section, we introduce an alternative formulation of problem (1.5)-(1.7), in which
the �uid equations are formulated using the ALE formalism of Section 1.2.1.2.
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A (á, t)

Figure 1.2: Geometrical con�guration with for ALE-Lagrangian formalism.

We begin by recalling that the dynamics of the �uid domain is parametrized as

 f (t) = A ( b
 f ; t), where A is the ALE-one-to-one mapping de�ned in Section 1.2.1.2,
in terms of the �uid domain displacement df (see Figure 1.2). In the context of FSI,
the �uid domain displacement is constrained to the solid displacement by a geometrical
compatibility. Typically, the �uid domain displacement is described by a relation of the
type df = L (d), whereL (d) represents a suitable lifting ofd from � to b
 f which vanishes
on � . Additionally, it should be noted that the �uid domain displacement is arbitrary in
b
 f n� . Here the terminologyArbitrary Lagrangian Eulerian. The choice for the mapping is
arbitrary. However, the e�ciency of the method is strongly connected to the e�ectiveness
of the lifting operator, which has the objective of correctly deforming the �uid mesh while
maintaining a reasonable elements quality. An harmonic lifting operator can be consid-
ered at �rst, even though, more involved operators based, for instance, on the resolution
of elasticity problems are extensively used in the literature (see, e.g., Stein et al. (2003);
Landajuela et al. (2017)).
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The ALE-Lagrangian FSI coupled problem reads as follows: �nd the �uid domain
displacementdf : b
 f � R+ ! Rd, the �uid velocity bu : b
 f � R+ ! Rd, the �uid pressure
bp : b
 f � R+ ! R, the solid mid-surface displacementd : � � R+ ! Rd and the solid
mid-surface velocity

.
d : � � R+ ! Rd, such that

8
><

>:

� f @t jA u + � f (u � w ) � r u � div � (u ; p) = 0 in 
 f (t);

div u = 0 in 
 f (t);

u = 0 on � ;

(1.8)

(
� s"@t

.
d + L (d) = T on � ;

.
d = @t d on � ;

(1.9)

8
>>>>>><

>>>>>>:

df = L (d) ; w = @t df ; A = I b
 f � R+ + df ; 
 f (t) = A ( b
 f ; t);

� = I � � R+ + d; �( t) = � (� ; t);

u =
.
d � � � 1

t =
.
d � A � 1

t on �( t);
Z

�
T � y = �

Z

�( t )
J� (u ; p)n K� y � � � 1

t = �
Z

�( t )
J� (u ; p)n K� y � A � 1

t ;

(1.10)

for all smooth function y : � ! Rd.
Compared to problem (1.5)-(1.7), the �uid domain motion is now fully parametrize

by the map A . Equations (1.10)2;3 and (1.10)4 represent, respectively, the geometric,
the kinematic, and the dynamic coupling conditions. Note that as a consequence of the
geometrical coupling condition, the ALE A mapping and the deformation map� coincide
on �( t). Finally, problem (1.8)-(1.10) must be completed with appropriate initial and
boundary conditions.

1.2.4 Contact modeling

Contact is an essential aspect of �uid-structure interaction problems, in particular,
when we consider as target application heart valves hemodynamics. Building a �uid-
structure-contact interaction model, which is, simultaneously, mechanically consistent and
able to avoid penetration (between the contacting bodies), is a highly complicate and
challenging problem. The computational complexity is also a issue, particularly in the
case of real contact (i.e, without relaxation of the contact conditions). In the following,
we will consider unilateral frictionless contact, where contact can occur between the solid
and a rigid wall, but this can be generalized to the case of contact between multiple solids
(see Section 4.2.1).

The distance between the solid and the contacting surface is calledgap(see Figure 1.3)
and solid penetration is typically avoided by adding a contact force to the solid problem
when contact is detected. Usually, two exclusive statusgap or contact are classically
formulated by imposing an impermeability condition, a compression condition and a com-
plementary condition. Let consider the solid model introduced in Section 1.2.2. Within
the typical contact approaches, we can distinguish betweenrealistic and relaxed contact
models.
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Figure 1.3: Geometric con�guration in the non contact situation.

In the �rst setting, the solid is allowed to reach a zero gap distance, enabling a change
in the �uid domain topology (see Figure 1.4). In this case the contact problem reads as
follow: �nd the solid displacement d : � � R+ ! Rd and velocity

.
d : � � R+ ! Rd, such

that
(

� s"@t
.
d + L (d) � � n = T on � ;

d � n � g � 0; � � 0; � (d � n � g) = 0 on � ;
(1.11)

wheren denotes the outward normal vector of the contacting surface and� represents the
contact force in the normal direction. The �rst inequality in (1.11) 2 ensures that the solid
can not pass though the contacting surface, the second inequality that the normal stress
is zero (in the absence of contact) or negative (during contact) and the third condition
is a complementarity condition that guarantees that at least one of the inequalities is
activated. During contact state we have that d � n � g = 0 and � < 0, while � = 0 if

Figure 1.4: Geometric con�guration for the realistic contact scenario.

d � n � g < 0. As long asd � n � g < 0, contact is not activated and no extra forces are
added to the solid problem (see Figure 1.3).

Typically, at the discrete level the contacting nodes are removed from the FSI
interface, hence, they are only in contact with the surface and, therefore, the Newton's
third law is respected (the only force acting is the contact force, no �uid stresses are
involved). This mechanical consistency at contact comes however at a price. Several
di�culties have to be faced, such as, paradoxes at solid release (such as isolated vacuum
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zone, see Figure 1.5) and FSI coupling interface which is, a priory, unknown, thus, the
explicit treatment of geometrical non-linearities may be inappropriate. Additionally, at

Figure 1.5: Geometric con�guration for the realistic contact scenario with vacuum zone
at release.

the discrete level, real contact between non matching meshes lead to small regions of
�uid isolated from the rest of the �uid domain could appear. In Ager et al. (2019a), the
authors propose and ad hoc approach by removing these isolated areas, when smaller
than a speci�c size.

To overcome this di�culties, an alternative approach is to consider a relaxed contact
formulation, which can also be seen as the insertion of a �ctitious contact wall, only visible
from the solid side. This formulation avoids real contact, by allowing a small separation
between the structure and the contacting wall (see, e.g., Burman et al. (2020a)) . In this
approximation, the gap g is relaxed by a small �ctitious gap "h , allowing an in�nitesimal
distance between the solid and the contacting surface at contact (see Figure 1.6). The

Figure 1.6: Geometric con�guration for the relaxed contact scenario.

relaxed contact problem reads as follow: �nd the solid displacementd : � � R+ ! Rd and
velocity

.
d : � � R+ ! Rd, such that

(
� s"@t

.
d + L (d) � � n = T on � ;

d � n � g" � 0; � � 0; � (d � n � g" ) = 0 on � ;
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where g"
def= g � "h . Concretely, the no-penetration condition is imposed at"h-distance

from the contacting surface. In the context of FSI with contact, a layer of �uid will
always remain in between the solid and the surface, also at contact. Hence, the contacting
structure feel both the contact force as well as the �uid stresses. The solid is at the same
time in contact and coupled with the �uid, therefore, the balance of stresses is violated
and the Newton's third law is broken. In other words, the contact relaxed formulation
avoids the issues related to real topology change, but at the price of a loss of mechanical
consistency.

A possible solution strategy to overcome this mechanically inconsistency has been
introduced in Ager et al. (2019a). They propose to include, within areal contact �uid-
structure model, a poroelastic medium over the surface, with the function of describe the
solid asperities and eventually squeezing e�ect due to contact. Hence, the solid gets in
contact with a poroelastic medium, which plays the role of an averaged representation
between �uid and solid (see Figure 1.7). This approach solves, for instance, the problem

Figure 1.7: Geometric con�guration for the realistic contact scenario with a poroelastic
medium.

of possible �uid isolated region, that could be created at contact or at release, by enabling
a �uid �ux inside the poroelastic material. The drawbacks are the computational com-
plexity and active switch between �uid-solid, �uid-porous and poroelastic-solid coupling
conditions (due to the real contact approximation).

To overcome this additional issues, we will propose in Chapter 5 a reduced order
porous model coupled with a relaxed contact formulation. Adding the porous layer over
the contact surface is solving the problem of mechanical consistency loss in the relaxed
contact problem, related to the Newton's third law rupture. In fact, the porous medium
gives physical meaning to the �uid stresses of the in�nitesimal �uid layer remaining at
contact.

Regarding the contact algorithm considered in literature, we can �nd approaches based
on the resolution of a constrained minimization problem (see, e.g., Diniz dos Santos et al.
(2008); Astorino et al. (2009b)), penalization procedure, for instance, for contact treated
via penalization we refer to Chouly and Hild (2012); Kamensky et al. (2015), via Aug-
mented Lagrangian/Nitsche's approach to Burman et al. (2018, 2019, 2020a); Mayer et al.
(2009, 2010); Chouly et al. (2017). In this work, we will consider a penalty-based ap-
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proach, in which we assume contact to be frictionless and soft, characterized by the fact
that only displacements in the normal direction are constrained. Moreover, no additional
forces due to the lubrication of the structures by the surrounding �uid are considered.

1.3 Numerical methods

In this section, we draw an overview of the methods that are currently used for �uid-
structure coupled problems with immersed solids. We will consider �rst the possible
methodology related to the spatial discretization, in particular we will distinguish between
�tted and un�tted meshes. Afterward, we consider the splitting in time of the �uid-
structure coupling condition. We will discuss about monolithic/partitioned approaches
and, within the latter class of coupling schemes, strongly coupled/weakly coupled schemes.

1.3.1 Spatial discretization

The numerical methods for �uid-structure interaction can be roughly divided between
�tted and un�tted mesh based approaches. In the former methodology, the �uid and
solid meshes match (see Figure 1.8(a)). Hence, accurate computation of the transmission
condition are allowed since the �uid and solid meshes �t at their interface. Additionally,
an exact representation of discontinuous quantities is easily embeddable, within the
discrete problem, by simply duplicating the degrees of freedom on� . For contributions
within the �tted meshes framework we refer to, e.g., Formaggia et al. (2009); Nobile
(2001); Boman and Ponthot (2004); Donea et al. (1982); Spühler et al. (2018). When
large displacements (specially contact) are considered the deformation procedure may
fail. Advanced remeshing and moving meshes techniques are one way to circumvent these
issues (Wick (2011); Alauzet (2014)).

(a) (b)

Figure 1.8: Fitted �uid and solid meshes (a), un�tted meshes (b).

In the un�tted mesh methodology (see Figure 1.8(b)), the solid mesh is free to move
independently from the �uid mesh (often called background mesh). As a result, this
method is quite appealing when FSI with large displacement and contact are considered,
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but they consequently require a tracking of the interface. The position of the structure is
typically tracked by displacing the solid mesh (see, e.g., Bo� et al. (2015)) or by captur-
ing it through a level set method (see, e.g., Legay et al. (2006)). Among these methods,
the most popular are the Immersed Boundary method (see, e.g., Peskin (2002); Newren
et al. (2007); Bo� et al. (2011); Kamensky et al. (2015); Gri�th (2012)), the Fictitious
Domain method (see, e.g., Glowinski et al. (1999); Baaijens (2001); De Hart et al. (2003);
Astorino et al. (2009b); Bo� et al. (2015); Bo� and Gastaldi (2017); Baaijens (2001))
and the fully Eulerian (see, e.g., Cottet et al. (2008); Richter (2013); Frei (2016)). In
general, these un�tted mesh methods have the reputation of being inaccurate in space,
since the �uid spatial discretization does not generally allows for discontinuities across
the interface. This often yields severe interfacial mass loss (see, e.g., Boilevin-Kayl et al.
(2019b)). The eXtended-FEM (XFEM) class of methods are able to overcome these is-
sues. They are based on local duplication and a cut-FEM approach, but they introduce
additional unknowns via Lagrange multipliers (see, e.g., Zilian and Legay (2008); Gersten-
berger and Wall (2008a); Sawada and Tezuka (2011); Gerstenberger and Wall (2008b)).
These issues are circumvented in an extension of the classical XFEM methods, based on
Nitsche's treatment of the interface coupling, (see, e.g., Burman and Fernández (2014a);
Alauzet et al. (2016); Zonca et al. (2018)), at the price of additional stabilization parame-
ters, they require a speci�c evaluation of the interface and background mesh intersections
(particularly involving in three dimensions as we will discuss in Chapter 6) and a loss of
robustness with respect to how the interface intersects the �uid mesh (see, e.g., Burman
et al. (2014); Fries and Belytschko (2010)).

The Nitsche-XFEM method of Alauzet et al. (2016) will be the basis of the spatial
approximation considered in this thesis.

1.3.2 Time-splitting

In Section 1.2.3 we have introduced the full FSI models, in which the kinematic,
dynamic and geometric conditions, couple the �uid and the structure sub-problems. De-
pending on how those conditions are imposed (at discrete level) in each problem we can
distinguish betweenimplicit/strongly coupled, explicit and semi-implicit coupling schemes.

In the literature, we often distinguish between monolithic and partitioned resolution
strategies. Their peculiarities and di�erences can be summarize as follows:

Monolithic In this group of methods, the �uid and structure problems are solved simulta-
neously (in a single block) and in a uni�ed solver (see, e.g., Formaggia et al. (2009);
Badia et al. (2008c); Richter and Wick (2010); Gee et al. (2011); Crosetto et al.
(2011)). Monolithic schemes are, by nature,implicit or strongly coupled. Hence,
they deliver unconditional stability and optimal accuracy, but at the price of solving
a computationally demanding coupled problem at each time-step. An illustration of
the approach is presented in Figure 1.9.

Partitioned In the partitioned class of methods, the �uid and solid problems are solved
separately, with their own solvers, and they are coupled via their transmission condi-
tions (see, e.g., Fernández and Moubachir (2005); Badia et al. (2008a); Van Brumme-
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Figure 1.9: Monolithic solution of the coupled system.

len (2011); Nobile et al. (2013)). Their modular nature allow to include independent
�uid and solid preexisting solver, at the price of loosing some e�ciency with respect
to monolithic approaches (see, e.g., Badia et al. (2008c); Gee et al. (2011)).

In this thesis, we will consider partitioned schemes, in particular, the Dirichlet-
Neumann approach. This implies that we impose the Dirichlet condition (kinematic cou-
pling condition) in the �uid problem and the Neumann (dynamic coupling condition)
in the solid problem (see, e.g., Toselli and Widlund (2006) for a general description on
this the domain decomposition strategy). Among the partitioned methods, we can dis-
tinguish between strongly, semi-implicit and weakly coupled schemes, depending on the
time-stepping splitting considered to impose the kinematic and dynamic conditions, inside
each separate �uid and solid solvers. The main distinctive features are the following:

Strongly coupled Iterations between the �uid and solid problems are performed at each
time iteration until convergence. Hence, the coupling condition is enforced exactly.
The illustration of the approach is visible in Figure 1.10.

Figure 1.10: Strongly coupled solution of the coupled system.

Explicit Also called loosely coupled or weakly coupled schemes. In this class of schemes,
the �uid and solid problems are solved only once per time step. Thus, no inner
iteration are present between the �uid and solid solver within one time-step. They
are less computationally demanding but might lead to stability and accuracy issues
(see Figure 1.11).

Semi-implicit Here, the �uid problem is ofter divided in sub-problems (typically based
in fractional-step strategy) and one part of the �uid problem is coupled explicitly
with the solid, while the remaining part is strongly coupled with the solid problem
(see Figure 1.12).
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Figure 1.11: Loosely coupled solution of the coupled system.

Figure 1.12: Semi-implicit solution of the coupled system.

The semi-implicit scheme that we will present in Chapter 2 is part of the last category.
Additionally, it should be noted that, for the geometric coupling condition we will always
consider an explicit treatment. This does not compromise stability and accuracy at a
reduced computational cost.

Developing stable and accurate loosely-coupled schemes is very challenging problem
in incompressible �uid-structure interaction, since the coupling can be extremely sti�. As
explain in Causin et al. (2005), Dirichlet-Neumann explicit schemes become uncondition-
ally unstable, as soon as theadded-mass e�ect is large. This typically occurs when the
�uid and solid density are of the same magnitude (classical situation in hemodynamics).

The majority of the works about not strongly coupled schemes existing in the literature,
are based on �tted mesh approximation strategies (see, e.g., Fernández et al. (2007);
Quaini and Quarteroni (2007); Badia et al. (2008b); Astorino and Grandmont (2010);
Fernández (2013); Bukac et al. (2013); Bukac and Muha (2016)). On the contrary, fewer
works exist which avoid strong coupling within the framework of un�tted meshes. The
challenge is mainly related to weak treatment of the kinematic interface coupling, without
compromising stability and/or accuracy. Note that with un�tted mesh based methods,
no connection exist between the �uid and structure functional space. Examples of the
loosely-coupled schemes within the un�tted framework are reported in Bo� et al. (2011);
Burman and Fernández (2014a); Alauzet et al. (2016); Kadapa et al. (2018); Kim and
Lee (2018). Unfortunately, they are known to enforce severe time-step restrictions for
stability/accuracy or to be sensitive to the amount of added-mass e�ect. These issues are
circumvented by the semi-implicit and loosely-coupled schemes reported in Annese (2017);
Fernández and Landajuela (2015) and in Boilevin-Kayl et al. (2019a), respectively, in the



22

case of the coupling with thin-walled solids.



Part I

Time-splitting schemes for
unfitted mesh approximations of

FSI





Chapter 2

An un�tted mesh semi-implicit coupling
scheme for �uid-structure interaction with

immersed solids

Un�tted mesh �nite element approximations of immersed incompressible �uid-structure
interaction problems which e�ciently avoid strong coupling without compromising stability
and accuracy are rare in the literature. Moreover, most of the existing approaches introduce
additional unknowns or are limited by penalty terms which yield ill-conditioning issues. In
this chapter, we introduce a new un�tted mesh semi-implicit coupling scheme which avoids
these issues. To this purpose, we provide a consistent generalization of the projection based
semi-implicit coupling paradigm of [Int. J. Num. Meth. Engrg.,69(4):794-821, 2007] to
the un�tted mesh Nitsche-XFEM framework.
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2.1 Introduction

Numerical methods for the approximation of mathematical models describing the me-
chanical interaction of an incompressible viscous �uid with an immersed elastic structure
are an essential ingredient in the computer simulation of many living and engineering
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systems (see, e.g., Pozrikidis (2010); Hou et al. (2012)). These coupled problems often
feature large interface displacements, with potential contact between solids, so that the
favored numerical approaches are mainly based on un�tted mesh approximations (the �uid
mesh is not �tted to the �uid-solid interface). Among these methods, the most popular
are the immersed boundary method (see, e.g., Peskin (2002); Newren et al. (2007); Bo�
et al. (2011)) and the �ctitious domain method (see, e.g., Glowinski et al. (1999); Baaijens
(2001); De Hart et al. (2003); Astorino et al. (2009b); Bo� et al. (2015); Bo� and Gastaldi
(2017)), which treat the solid in Lagrangian form. We can also mention the methods based
on fully Eulerian descriptions of the coupled system (see, e.g., Cottet et al. (2008); Richter
(2013)).

In general, un�tted mesh methods have the reputation of being inaccurate in space.
This is due to the approximation of the interface conditions in an un�tted framework and
to the fact that the �uid spatial discretization does not generally allows for discontinuities
across the interface (which often yields severe interfacial mass loss). Mesh adaptation can
improve the situation (see, e.g., Hachem et al. (2013)), but it does not cure the problem.
The extended-FEM (XFEM) method, which combines a local duplication with a cut-FEM
approach (see, e.g., Zilian and Legay (2008); Gerstenberger and Wall (2008a); Sawada and
Tezuka (2011)), �xes these issues but at the expense of introducing Lagrange multipliers
(additional unknowns) and deteriorating the robustness (ill-conditioning). The Nitsche-
XFEM method (see Burman and Fernández (2014a); Alauzet et al. (2016); Zonca et al.
(2018)) circumvents these di�culties through a Nitsche's treatment of the interface cou-
pling (with overlapping meshes) and the addition of suitable stabilization in the vicinity
of the interface. The superior accuracy of Nitsche-XFEM with respect to the traditional
immersed boundary or �ctitious domain methods (see Boilevin-Kayl et al. (2019b) for
a recent comparative study) comes, however, at the price of introducing additional sta-
bilization parameters, a much more involved computer implementation and a superior
computational complexity. The latter is particularly due to the fact that accurate time-
splitting schemes for Nitsche-XFEM are mainly of strongly coupled nature.

Time splitting is generally di�cult to marry with un�tted meshes without compro-
mising stability and/or accuracy. This is a direct consequence of the weak treatment of
the kinematic interface coupling. To the best of our knowledge, the sole available ap-
proaches are the splitting methods introduced in Bo� et al. (2011); Annese (2017); Kim
and Lee (2018); Boilevin-Kayl et al. (2019a) for the immersed boundary or �ctitious do-
main methods, and in Burman and Fernández (2014a); Alauzet et al. (2016); Kadapa et al.
(2018); Fernández and Landajuela (2015) for un�tted Nitsche based methods. The loosely
coupled schemes reported in Bo� et al. (2011); Burman and Fernández (2014a); Alauzet
et al. (2016); Kadapa et al. (2018); Kim and Lee (2018) are known to enforce severe time-
step restrictions for stability/accuracy or to be sensitive to the amount of added-mass
e�ect. In the case of the coupling with thin-walled solids, these issues are circumvented by
the semi-implicit and loosely coupled schemes reported in Annese (2017); Alauzet et al.
(2016); Fernández and Landajuela (2015) and in Boilevin-Kayl et al. (2019a), respectively.
Nevertheless, the former introduces additional unknowns in the �uid sub-problem (inter-
mediate solid velocity) and the accuracy of the latter relies on a grad-div penalty term
(for enhanced mass conservation) which spoils the conditioning of the �uid problem.
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In this chapter, we introduce and analyze a new semi-implicit coupling scheme for un-
�tted mesh approximations of �uid-structure interaction problems with immersed solids
which overcomes the above mentioned drawbacks. To this purpose, we propose to gen-
eralize the projection based semi-implicit splitting paradigm reported in Fernández et al.
(2007) with �tted meshes, to the un�tted Nitsche based framework of Burman and Fer-
nández (2014a); Alauzet et al. (2016). The basic idea consists in the explicit treatment of
the geometrical non-linearities, convective and viscous �uid contributions (which avoids
strong coupling), whereas the remain �uid pressure and solid contributions are coupled
in a fully implicit fashion (which guarantees added-mass free stability). In contrast to
alternative immersed boundary and �ctitious domain methods involving fractional-step
time-marching in the �uid (see, e.g., Newren et al. (2007); Roshchenko et al. (2015)), the
Nitsche-XFEM approximation guarantees the spatial consistency of the Laplacian opera-
tor in the projection step. For a model problem with static interface, we prove a stability
result which states that the conditionally stability of the coupling scheme in the energy
norm. Numerical evidence in a series of well-known two-dimensional examples, involv-
ing large interface displacements and solid contact, highlights the stability and accuracy
properties of the proposed method.

The rest of the chapter is organized as follows. Section 2.2 presents the derivation
of the proposed coupling scheme in a linear setting with static interfaces. The energy
stability of this method is addressed in Section 2.2.4. In Section 2.3, the coupling scheme
is formulated within a fully non-linear setting involving dynamic interfaces. The numerical
experiments are reported in Section 2.4. Finally, a summary of the results of the present
work are discussed in Section 2.5. Through this chapter and without loss of generality, the
solid is assumed to be thin-walled, which corresponds to the most di�cult case from the
implementation point of view (e.g., discontinuous �uid pressure, interface with tip). The
methods and theoretical results presented in this chapter remain valid in the case of the
coupling with a thick-walled solid, by simply limiting the �uid problem to a single side of
the interface.

2.2 Linear model problem: static interfaces

We �rst consider a linear �uid-structure interaction problem in which the �uid is
described by the Stokes equations in a �xed domain and the structure by a linear immersed
thin-walled solid model. We denote by� � Rd, with d = 2 ; 3, the reference con�guration
of the solid mid-surface. The structure is supposed to be immersed within a �xed domain

 � Rd, with boundary � = @
 (see Figure 2.1). In this section, we assume that the
solid undergoes in�nitesimal displacements so that the �uid �ows within the �xed domain


 f def= 
 n� � Rd. The immersed interface� is supposed to divide
 f into two subdomains


 f = 
 f
1 [ 
 f

2, with respective unit normals n 1
def= n � and n 2

def= � n � . Here, n � the
normal unit vector given by the orientation of the surface� . For a given �eld f de�ned in

 f (possibly discontinuous across the interface), we can then de�ne its sided-restrictions,
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Figure 2.1: Geometric con�guration of the �uid domain and the immersed solid.

denoted by f 1 and f 2, as

f 1(x ) def= lim
� ! 0�

f (x + � n 1); f 2(x ) def= lim
� ! 0�

f (x + � n 2);

for all x 2 � , and the following jump and average operators across� :

Jf Kdef= f 1 � f 2 Jf n Kdef= f 1n 1 + f 2n 2; ff f gg def=
1
2

�
f 1 + f 2

�
: (2.1)

In this framework, the considered coupled problem reads as follow: �nd the �uid velocity
and pressureu : 
 f � R+ ! Rd, p : 
 f � R+ ! R, the solid displacement and velocity
d : � � R+ ! Rd,

.
d : � � R+ ! Rd such that for all t 2 R+ we have

8
><

>:

� f @t u � div� (u ; p) = 0 in 
 f ;

divu = 0 in 
 f ;

u = 0 on � ;

(2.2)

8
><

>:

� s"@t
.
d + Ld = T in � ;

.
d = @t d in � ;

d = 0 on @� ;

(2.3)

(
u =

.
d on � ;

T = � J� (u ; p)n K on �
(2.4)

with the initial conditions u(0) = u 0, d(0) = d0 and
.
d(0) =

.
d0. Here, the symbols� f and

� s stand respectively the �uid and solid densities, the thickness of the solid is denoted by
" and the �uid Cauchy stress tensor is given by

� (u ; p) def= 2 � � (u ) � pI ; � (u ) def=
1
2

�
r u + r u T );

where� denotes the �uid dynamic viscosity. The operatorL describes the elastic behavior
of the solid. The relations in (2.4) enforce, respectively, the kinematic and dynamic
interface coupling conditions. Note that the former enforces two conditions since it has to
be seen asu 1 = u 2 =

.
d on � .
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2.2.1 Time-discretization: semi-implicit coupled scheme

In what follows, we will use the following notation for the �rst-order backward di�er-

ence: @� xn def= ( xn � xn� 1)=� , where � > 0 denotes the time-step length. For the time
discretization of the coupled problem (2.2)-(2.4) we consider the projection based semi-
implicit splitting scheme proposed in Fernández et al. (2007); Landajuela et al. (2017) for
the case of �tted-mesh spatial approximations (see also Quaini and Quarteroni (2007);
Badia et al. (2008b); Astorino et al. (2009a); Astorino and Grandmont (2010)). The
scheme avoids strong coupling without compromising stability and accuracy. The fun-
damental idea consists in combining a fractional-step time-marching in the �uid with a
semi-implicit treatment of the interface coupling (2.4). The resulting time semi-discrete
method reads as follows (see Fernández et al. (2007); Landajuela et al. (2017)) forn � 1:

1. Explicit �uid viscous step: Find eu n : 
 f ! Rd such that
8
>>><

>>>:

� f

�
(eu n � u n� 1) � div� (eu n ; pn� 1) = 0 in 
 f ;

eu n = 0 on � ;

eu n =
.
dn� 1 on � :

(2.5)

2. Implicit pressure-displacement step: Findu n : 
 f ! Rd, pn : 
 f ! R, dn : � ! Rd

and
.
dn : � ! Rd such that

8
>>><

>>>:

� f

�
(u n � eu n ) + r

�
pn � pn� 1�

= 0 in 
 f ;

divu n = 0 in 
 f ;

u n � n = 0 on � ;

(2.6)

8
><

>:

� s"@�
.
dn + Ld n = T n on � ;

.
dn = @� dn on � ;

dn = 0 on @� ;

(2.7)

(
u n

i � n i =
.
dn � n i on � ; i = 1 ; 2;

T n = � J� (eu n ; pn )n K on � :
(2.8)

The viscous-step (2.5) is loosely coupled with the solid, which avoids strong coupling,
whereas the step (2.6)-(2.8) guarantees added-mass free stability by the implicit treat-
ment of the �uid pressure and solid inertia. From a computational point of view, the
scheme (2.5)-(2.8) can be reformulated exclusively in terms ofeu n , pn , dn and

.
dn as shown

in Algorithm 2.1. In the viscous step, the end-of-step velocityu n� 1 has been eliminated
by inserting (2.6)1, evaluated at time n � 1, into (2.5)1. This leads to a second-order ex-

trapolation of the pressure, noted bypn;? def= 2pn� 1 � pn� 2, in the viscous step. Finally, the
projection step (2.6) can be rewritten in a Poisson-like problem by taking the divergence
of (2.6)1 and applying (2.6)2 in each sub-domain
 i .
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Algorithm 2.1 Time semi-discrete projection based semi-implicit scheme (from Fernán-
dez et al. (2007); Landajuela et al. (2017)).
For n � 2:

1. Fluid viscous step: Find eu n : 
 f ! Rd such that
8
><

>:

� f @� eu n � div� (eu n ; pn;? ) = 0 in 
 f ;

eu n = 0 on � ;

eu n =
.
dn� 1 on � :

(2.9)

2. Pressure-displacement step: Findpn : 
 f ! R, dn : � ! Rd and
.
dn : � ! Rd such

that 8
><

>:

�
�
� f �

�
pn � pn� 1�

= � diveu n in 
 f ;

�
� f r

�
pn � pn� 1�

� n = 0 on � ;
(2.10)

8
><

>:

� s"@�
.
dn + Ld n = T n on � ;

.
dn = @� dn on � ;

dn = 0 on @� ;

(2.11)

8
<

:

�
� f r

�
pn

i � pn� 1
i

�
� n i = ( eu n

i �
.
dn ) � n i on � ; i = 1 ; 2;

T n = � J� (eu n ; pn )n K on � :
(2.12)

An energy based stability result for the non-incremental version of (2.5)-(2.8) (i.e.,
with pn� 1 = 0 ) with a �tted mesh based �nite element approximation in space, has been
reported in Fernández et al. (2007). Therein, stability is guaranteed under the CFL-like
condition

� f h2 + 2 �� . � s"h; (2.13)

where h > 0 stands for the spatial grid parameter. It is also worth noting that uncondi-
tional stability was achieved in Astorino et al. (2009a) via a speci�c Nitsche's treatment of
the viscous coupling. Unfortunately, the splitting error of the resulting scheme is known
to be non uniform with respect to h, namely, to scales asO(�=h), so that suitable cor-
rection iterations are needed to enhance accuracy under restrictive constraints on the
discretization parameters (as in Alauzet et al. (2016)).

Remark 2.2.1. Note that from the relation (2.12)1 we get the continuity of �ux on the
pressure increment across� , namely,

Jr
�
pn � pn� 1�

� n K= 0 on � :

However, both the pressurepn and the pressure incrementpn � pn� 1 are generally discon-
tinuous across� , so that the pressure-Poisson equation(2.10)1 is not valid across� , only
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in 
 f . Most of the immersed boundary and �ctitious domain methods involving fractional-
step time-marching in the �uid assume that this relation if valid in 
 (see, e.g., Newren
et al. (2007); Roshchenko et al. (2015)). This is not the case of the un�tted mesh method
considered in this chapter, which correctly enforces(2.10) in 
 f rather than in 
 .

2.2.2 Un�tted mesh approximation: fully discrete scheme

In the following, the closed spacesH 1
� (! ), of functions in H 1(! ) with zero trace on

� , and L 2
0(! ), of functions in L 2(! ) with zero mean in ! , will be considered. The scalar

product in L 2(! ) is denoted by(�; �)! . In this section, we introduce a consistent un�tted
mesh spatial approximation of the time semi-discrete scheme given by Algorithm 2.1.
The �uid �elds (eu n ; pn ) will hence be approximated in triangulations of 
 which are
independent of � . To this purpose, it is important to note that:

ˆ The velocity gradient r eu n and the pressurepn are discontinuous across� ;

ˆ The bulk relations (2.9)1 and (2.10)1 are not valid across� , only in 
 f (see Re-
mark 2.2.1).

In the case of �tted mesh approximations, these discontinuous features of the solution can
be introduced in the discrete approximation in simple fashion (e.g., by considering cracked
meshes with duplicated nodes on the interface). However, if the �uid mesh does not have
a geometrical representation of the interface� , guaranteeing consistency of the approxi-
mations requires a speci�c treatment. In this chapter, we build on the un�tted Nitsche's
based method for incompressible �uid-structure interaction with overlapping meshes re-
ported in Burman and Fernández (2014a); Alauzet et al. (2016). The fundamental reasons
for this choice are: (i) it is Lagrange multipliers free and robust; (ii) it is mathematically
sound (i.e., optimal error estimates are obtained for spatial semi-discrete approximations
of linear model problems such as (2.2)-(2.4) under reasonable regularity assumptions (see,
e.g., Burman and Fernández (2014a)); and (iii) it naturally provides a consistent form of
the pressure-Poisson problem in step 2 of Algorithm 2.1.

In order to simplify the presentation, we assume that both
 and � are polyhedral.
Let be fT s

h g0<h< 1 a family of triangulations of � . We then consider the standard space
of continuous piecewise a�ne functions:

X s
h

def=
�

vh 2 C0(�)
�
� vhjK 2 P1(K ); 8K 2 T s

h

	
:

The weak form of the abstract solid elastic operatorL in (2.3) is assumed to be given by a
positive and symmetric bi-linear form as : W � W �! R, where W = [ H 1(�)] d

0 denotes
the space of admissible displacements. The discrete space for the solid displacement and
velocity approximations is hence de�ned asW h = [ X s

h ]d \ W . For the �uid, we consider a
family of meshesfT hgh> 0 of 
 , �tted to its boundary � but not to the internal interface � .
We can then de�ne the two family of meshesfT h;i gh> 0, with i = 1 ; 2, such that Th;i � T h

covers the �uid region 
 i . Each meshTh;i is �tted to the exterior boundary � but not to
T s

h . Moreover, for every elementK 2 Th;1 \ T h;2 we haveK \ � 6= ; :
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Figure 2.2: One dimensional illustration of the construction of the discrete spacesX h;i .

We denote by 
 h;i the domain covered byTh;i , viz.,


 h;i
def= int

�
[ K 2T h;i K

�
:

We shall also make use of the following notation for the brokenL 2-product in the whole
computational domain

(�; �)h
def=

2X

i =1

X

K 2T h;i

(�; �)K :

For i = 1 ; 2, we can hence introduce the following spaces of continuous piecewise a�ne
functions:

X h;i
def=

�
vh 2 C0(
 h;i )

�
� vhjK 2 P1(K ); 8K 2 Th;i

	
;

Associated with X h;i we de�ne the spaces

V h;i
def= [ X h;i ]d \ [H 1

� (
)] d; Qh;i
def= X h;i \ L 2(
) 0:

For the approximation of the �uid velocity and pressure we will consider the following
discrete product spaces

V h
def= V h;1 � V h;2; Qh

def= Qh;1 � Qh;2; (2.14)

which guarantee that interfacial (strong and weak) discontinuities are included in the
discrete approximation of both the �uid velocity and pressure. Indeed, the functions of
(2.14) are continuous in the physical �uid domain 
 f but discontinuous across the interface
� (see Figure 2.2). Since the discrete pairV h=Qh is not inf-sup stable, we consider a
symmetric stabilization operator, such as, the one given by Continuous Interior Penalty
method (see Burman and Hansbo (2006)) over the whole computational domain:

sh(ph ; qh) =
 ph3

�

2X

i =1

X

F 2F h;i

�
Jr phKF ; Jr qhKF

�
F ;

whereFh;i denotes the set of interior edges or faces ofTh;i . Finally, we introduce the �uid
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discrete viscous bi-linear form

af
h

�
u h ; vh

� def= 2 �
�
� (u h); � (vh)

�

 f + gh(u h ; vh);

where the ghost-penalty operator is given by (see Burman (2010))

gh(u h ; vh) def=  g�h
2X

i =1

X

F 2F �
i;h

�
Jr u i;h KF ; Jr v i;h KF

�
F (2.15)

and where F �
i;h denotes the set of interior edges or faces of the elements intersected by

� , as shown in Figure 2.3. This operator guarantees robustness irrespectively to the way
the interface is cutting the �uid mesh, by extending the coercivity of the viscous bi-linear
form to the whole computational domain.

Figure 2.3: Illustration of the interior edges (highlighted in blue) where the ghost-penalty
operator is applied.

For completeness and based on the above ingredients, a strongly coupled scheme for
the un�tted mesh approximation of (2.2)-(2.4) is given in Algorithm 2.2. Note that, at
each time step, the �uid and solid approximations are fully coupled. This guarantees
unconditional stability and accuracy at the expense of computational complexity (see
Alauzet et al. (2016)).

We can now introduce the un�tted mesh approximation of Algorithm 2.1 detailed in
Algorithm 2.3. Its main ingredients are the following:

ˆ Un�tted Nitsche's mortaring for the spatial discretization of the kinematic/dynamic
viscous coupling in (2.9), (2.11) and (2.12), which is Lagrange multipliers free (i.e.,
without additional unknowns) and guarantees accuracy and robustness;

ˆ For robustness, the Laplace operator in the projection-step (2.10) is integrated over
the whole computational domain, whereas for consistency the remaining �uid bulk
terms in (2.9) and in (2.10) are integrated in the whole physical domain.

Note that the price to pay for consistency in the last point is a speci�c track of the interface
intersections and the integration over cut elements (see, e.g., Massing et al. (2013); Alauzet
et al. (2016); Zonca et al. (2018) and the references therein). As regards the �rst point, it
should be noted that in (2.17) the discrete interface stresses are exactly the variationally
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Algorithm 2.2 Strongly coupled scheme with un�tted meshes (from Alauzet et al.
(2016)).
For n � 1:
Find

�
u n

h ; pn
h ;

.
dn

h ; dn
h

�
2 V h � Qh � W h � W h with

.
dn

h = @� dn
h and such that

� f � @� u n
h ; vh

�

 f + af

h

�
u n

h ; vh
�

� (pn
h ; div vh) 
 f + ( qh ; div u n

h ) 
 f + sh(ph ; qh)

+ � s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h) �

2X

i =1

�
� (u n

h;i ; pn
h;i )n i ; vh;i � w h

�
�

�
2X

i =1

�
u n

h;i �
.
dn

h ; � (vh;i ; � qh;i ))n i
�

� +
�
h

2X

i =1

�
u n

h;i �
.
dn

h ; vh;i � w h
�

� = 0

for all (vh ; qh ; w h) 2 V h � Qh � W h .

consistent viscous stress of (2.9). This constitutes a fundamental di�erence with respect
to the Robin based semi-implicit and explicit coupling schemes respectively reported in
Astorino et al. (2009a); Alauzet et al. (2016) with �tted meshes. The main reason is to
avoid the accuracy loss observed with this methods (see Section 2.2.1). The next section
is devoted the energy based stability analysis of Algorithm 2.3.

2.2.3 Partially intersected �uid domain

In the case in which the interface has a boundary inside the �uid domain (the tip), we
consider the construction of the �uid and solid spaces proposed in Alauzet et al. (2016),
which basically consists in introduce a virtual interface e� which closes the �uid domain
within the cut element. This virtual interface is de�ned as the segment connecting the
interface tip with the �uid vertex opposite to the edge intersected by the interface (see
Figure 2.4).

Figure 2.4: Case in which the� has a boundary inside the �uid domain.

Then, we enforce the kinematic/dynamic continuity of the �uid on e� in a discontinuous
Galerkin fashion (see, e.g., Di Pietro and Ern (2012)). More precisely, the following terms
are added

�
�
ff � (eu n

h ; 0)ggn ; JevhK
�

e� �
�
ff � (evh ; 0)ggn ; Jeu n

hK
�

e� +
�
h

�
Jeu n

hK; JevhK
�

e� ;
�
Jpn;?

h K; ff evhgg �n
�

e� ;

(2.18)
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Algorithm 2.3 Projection based semi-implicit scheme with un�tted meshes and static
interface.
For n � 1:

1. Fluid viscous step: Find eu n
h 2 V h such that

� f � @� eu n
h ; evh

�

 f + af

h

�
eu n

h ; evh
�
�

2X

i =1

�
� (eu n

h;i ; 0)n i ; evh;i
�

� +
�
h

2X

i =1

�
eu n

h;i �
.
dn� 1

h ; evh;i
�

�

�
2X

i =1

�
eu n

h;i �
.
dn� 1

h ; � (evh;i ; 0)n i
�

� = �
�
r pn;?

h ; evh
�


 f (2.16)

for all evh 2 V h .

2. Pressure-displacement step: Find
�
pn

h ; dn
h

�
2 Qh � W h with

.
dn

h = @� dn
h , such that

8
>>>>>>>>>>><

>>>>>>>>>>>:

�
� f

�
r (pn

h � pn� 1
h ); r qh

�
h + sh(pn

h ; qh) =
2X

i =1

�
eu n

h;i �
.
dn

h ; qh;i n i
�

� �
�

div eu n
h ; qh

�

 f ;

� s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h) =

�
h

2X

i =1

�
(eu n

h;i �
.
dn� 1

h ); w h
�

�

�
2X

i =1

�
� (eu n

h;i ; pn
h;i )n i ; w h

�
�

(2.17)
for all

�
qh ; w h

�
2 Qh � W h .

into the left- and right-hand side of step (2.16), respectively, where as in (2.17)1 we add

�
�
� f

�
ff r pn

h � n gg; JqhK
�

e� �
�
� f

�
Jpn

hK; ff r qh � n gg
�

e� +
�
� f


h

�
Jpn

hK; JqhK
�

e� ;
�
Jeu n

hK� n ; ff qhgg
�

e� ;

(2.19)
to the left- and right-hand side, respectively.

2.2.4 Energy based stability analysis

For the purpose of the analysis below, we recall the following estimate from Burman
(2010):

cg(2� k� (vh)k2
0;
 h

+ gh(vh ; vh)) � 2� k� (vh)k2
0;
 f + gh(vh ; vh) (2.20)

for all vh 2 V h with cg > 0 and the notation

k � k2
0;
 h

def=
�
�; �

�
h :
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We shall also make use of the following (robust) discrete trace inequality

hk� (vh)n k2
0;� � CT k� (vh)k2

0;
 h
(2.21)

for all vh 2 V h . Let de�ne the discrete total energy E n
h by the following expression:

E n
h

def=
� f

2
ku n

hk2
0;
 f +

� s"
2

k
.
dn

hk2
� +

1
2

as(dn
h ; dn

h ) +
� 2

2� f kr pn
hk2

0;
 h
:

The following result states the conditional energy based stability of the approximation
provided by Algorithm 2.3.

Theorem 2.2.1. Let
��

u n
h ; pn

h ;
.
dn

h ; dn
h

�	
n� 1 be given by Algorithm 2.3. Under the follow-

ing conditions

 �
3 + 4�

�
CTI

cg
; (2.22)

�� �
2

1 + 4�
� s"h; (2.23)

with � > 0, the discrete energy estimate presented below holds:

E n
h . E 0

h ; (2.24)

for all n � 1. As a result, Algorithm 2.4 is conditionally stable in the energy norm.

Before proceeding with the proof of the above result, some remarks are in order. Note
that condition (2.23) becomes less severe for small values of� and the opposite holds
for condition (2.22). The parameter � > 0 hence weighs the constraints of (2.23) and
(2.22). It should be noted that the stability condition (2.23) provided by Theorem 2.2.1
is not exactly the same as the condition (2.13) obtained in Fernández et al. (2007) for
Algorithm 2.1 with �tted meshes. In particular, condition (2.23) is independent of the
�uid density. Both conditions share however a similar hyperbolic structure, � = O(h).
For a given spatial mesh, the relation (2.23) provides an upper bound on� below which
the scheme is stable. The limit upper bound, as� ! 0, is 2� s"h . The numerical results
of Section 2.4 indicate that this condition is necessary for stability.

Proof. We �rst introduce the L 2� projection operator � h : [L 2(
)] d ! V h given by

�
� hs; vh

�

 f =

�
s; vh

�

 f (2.25)

for all vh 2 V n
h : Note that, depending on how the solid meshT s

h intersects the �uid over-
lapping meshesTh;i , � hs may not be uniquely de�ned in the whole computation domain.
However, a simple argument show that� hs is uniquely de�ned in the physical domain

 f (it su�ces to remove the indetermination by blocking appropriate nodes outside the
physical domain). This feature will be enough for the purpose of the present proof. In a
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similar fashion, we introduce the intermediate velocityu n
h 2 V n

h given by

� f

�

�
u n

h ; vh
�


 f =
� f

�

�
eu n

h ; vh
�


 f �
�
r (pn

h � pn� 1
h ); vh

�

 f (2.26)

for all vh 2 V n
h , so that u n

h is uniquely de�ned in 
 f . In particular, owing to (2.25) and
(2.26), we have

u n
h = eu n

h �
�
� f � hr

�
pn

h � pn� 1
h

�
in 
 f : (2.27)

Now, since the �uid bulk terms of the viscous step (2.16) are integrated (only) in the
physical domain and using (2.26), it can alternatively be written as

� f

�

�
eu n

h ; evh
�


 + af ;n
h

�
eu n

h ; evh
�

�
2X

i =1

�
� (eu n

h;i ; 0)n i ; evh;i
�

� +
�
h

2X

i =1

�
eu n

h;i �
.
dn� 1

h ; evh;i
�

�

�
2X

i =1

�
eu n

h;i �
.
dn� 1

h ; � (evh;i ; 0)n i
�

� =
� f

�

�
u n� 1

h ; evh
�


 �
�
r pn� 1

h ; evh
�


 (2.28)

for all evh 2 V n
h .

We then proceed by testing the relation (2.26) withvn
h = u n

h , which yields

� f

2�

�
ku n

hk2
0;
 f � k eu n

hk2
0;
 f + ku n

h � eu n
hk2

0;
 f

�
+

�
r

�
pn

h � pn� 1
h

�
; u n

h

�

 f = 0 : (2.29)

By inserting (2.27) into the last equality and by rearranging the terms, we get

� f

2�

�
ku n

hk2
0;
 f � k eu n

hk2
0;
 f +

�
r

�
pn

h � pn� 1
h

�
; eu n

h

�

 f �

�
2� f


 � hr

�
pn

h � pn� 1
h

� 
 2

0;
 f = 0 :

(2.30)
On the other hand, by testing (2.28) with evn

h = eu n
h and using (2.20), we have

� f

2�

h
keu n

hk2
0;
 f �


 u n� 1

h


 2

0;
 f +

 eu n

h � u n� 1
h


 2

0;
 f

i
+ 2cg� k� (eu n

h )k2
0;
 h

+
�
r pn� 1

h ; eu n
h

�

 f

+
�
h

2X

i =1

�
eu n

h;i �
.
dn� 1

h ; eu n
h;i

�

�
� 2�

2X

i =1

�
� (eu n

h;i )n i ; eu n
h;i

�
�

� 2�
2X

i =1

�
� (eu n

h;i )n i ; eu n
h;i �

.
dn� 1

h

�

�
� 0 (2.31)

and, by testing the �uid projection-step (2.17)1 with qh = pn
h and by integrating by parts

the divergence term, we get

�
2� f

�
kr pn

hk2
0;
 h

�

 r pn� 1

h


 2

0;
 h
+


 r (pn

h � pn� 1
h )


 2

0;
 h

�
� (r pn

h ; eu n ) 
 f

+
2X

i =1

� .
dn

h ; n i pn
h;i

�

�
+ sh(pn

h ; pn
h ) = 0 : (2.32)
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Finally, by adding the relations (2.30)-(2.32) we get the following energy estimate for the
�uid

� f

2
@� ku n

hk2
0;
 f + 2cg� k� (eu n

h )k2
0;
 h

+
�

2� f
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By adding this relation to (2.33) we get the following total energy estimate
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Terms T1 can be bounded from every side of the interface by adding and subtracting
.
dn

h ,



2.2. Linear model problem: static interfaces 39

using the Cauchy� Schwarz, Young's and trace inequalities (2.21), as follows:
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with � 1; � 2 > 0. Similarly, for the second term, we have
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(2.36)

with � 3 > 0. By inserting (2.35) and (2.36) into (2.34) we get
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We now set
� 1 =

�
2

; � 2 =
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+ �; � > 0;

so that (2.37) yields
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Finally, the energy estimate (2.24) follows from (2.38) under de assumption (2.23), which
completes the proof.
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2.3 Non-linear model: moving interface

In this section, we propose an extension of the semi-implicit coupling scheme given
by Algorithm 2.3 to the case of non-linear �uid� structure interaction problems involving
an incompressible viscous �uid and a moving immersed thin-walled structure. The �uid
is described by the Navier-Stokes equations (in Eulerian form) and the structure by a
possibly non-linear (beam or shell) solid model (in Lagrangian form).

2.3.1 Problem setting

Let 
 � Rd be the reference con�guration of the �uid domain with boundary � def= @
 ,
and � � R2 be the reference solid mid-surface. In contrast to Section 2.2, the structure
is now supposed to move within the �uid domain. The current position of the interface
�( t) is described in terms of a deformation map� : � � R+ �! Rd as �( t) = � (� ; t),

with � def= I � + d and whered denotes the solid displacement. To simplify the notation

we will refer to � t
def= � (�; t), so that we also have�( t) = � t (�) . Note that the �uid

control volume is now time-dependent, namely
 f (t) def= 
 n�( t) � Rd with boundary
@
( t) = �( t) [ � . The notations introduced in Section 2.2 for the surface normal vector
n � , jumps and average operators remain valid with the sole di�erence that they refer to
the current interface position �( t). The considered coupled problem reads therefore as
follow: �nd the �uid velocity and pressure u : 
 � R+ ! Rd, p : 
 � R+ ! R, the solid
displacement and velocityd : � � R+ ! Rd,

.
d : � � R+ ! Rd such that for all t 2 R+ we

have

8
><

>:

� f � @t u + u � r u
�

� div� (u ; p) = 0 in 
 f (t);

divu = 0 in 
 f (t);

u = 0 on � ;

(2.39)

8
><

>:

� s"@t
.
d + L (d) = T on � ;

.
d = @t d on � ;

d = 0 on @� ;

(2.40)

8
>>><

>>>:

� = I � + d; �( t) = � t (�) ; 
 f (t) = 
 n�( t);

u =
.
d � � � 1

t on �( t);
Z

�
T � w = �

Z

�( t )
J� (u ; p)n K� w � � � 1

t 8w 2 W :

(2.41)

The relations in (2.41) respectively enforce the geometrical compatibility, the kinematic
and the dynamic coupling at the interface between the �uid and the solid. In the next
section, we propose a numerical method for the coupled system (2.39)-(2.41) based on
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Algorithm 2.3.

2.3.2 Numerical methods

With the purpose of avoiding geometrical non-linearities in the �uid, we will discretize
the geometric compatibility condition (2.41)1, namely 
 f (t) = 
 n�( t), in an explicit
fashion. For a given displacement approximationdn

h 2 W h , we de�ne by � n
h its associated

deformation map as� n
h

def= I � + dn
h . This map characterizes the interface position, at time

level n, as � n def= � n
h (�) . We hence propose to explicitly update the physical �uid domain

as

 f ;n def= 
 n� n� 1: (2.42)

For the �uid discrete spaces,V n
h and Qn

h , we proceed as in Section 2.2.2, with the di�erence
that they are now given in term of the time-dependent overlapping meshesT n

h;i covering
each side of
 f ;n . We recall that this functional spaces are made of functions that are
continuous in each side of
 f ;n but discontinuous across� n� 1. Finally, we introduce the
broken L 2-product in the moving computational domain as

(�; �)n;h
def=

2X

i =1

X

K 2T n
h;i

(�; �)K :

The approximation space for the solidW h is the same as in Section 2.2.2.
For the spatial approximation of the �uid, we introduce the following discrete tri-linear

form associated to the convective term

cn (zh ; u h ; vh) def= � f � zh � r u h ; vh
�


 f ;n +
� f

2

�
(divzh)u h ; vh
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 f ;n

� � f � ff zhgg �n Ju hK; ff vhgg
�

� n � 1 �
� f

2

�
Jzh � n K; ff u h � vhgg

�
� n � 1 ;

(2.43)

where the three last terms are added in order to guarantee thatcn (vh ; zh ; zh) = 0 for all
zh 2 V n

h (see Alauzet et al. (2016)). Numerical instabilities, due to the lack of inf� sup
compatibility of the discrete spaces and to large local Reynolds number, will be handled by
the continuous interior penalty stabilization method (CIP) of Burman et al. (2006); Bur-
man and Fernández (2007). The associated symmetric velocity and pressure stabilization
operators are given by:

sn
v;h(zh ; u h ; vh) def=  vh2
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F 2F n
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�
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�
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F 2F n
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�
ReF (zh)
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kzhkL 1 (F )
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Jr phKF ; Jr qhKF

�
F ;

whereF n
h;i denotes the set of interior edges or faces ofT n

h;i , ReF (zh) def= � f kzhkL 1 (F )h� � 1
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denotes the local Reynolds number,� (x) def= min f 1; xg is a cut-o� function and  p;  v > 0
are user-de�ned parameters. In order to guarantee robustness with respect to the way the
interface � n is cutting the �uid domain 
 , we introduce the time-dependent ghost-penalty
operator, given by

gn
h (u h ; vh) def=  g�h

2X

i =1

X

F 2F � n � 1
i;h

�
Jr u i;h KF ; Jr v i;h KF

�
F ;

whereF � n � 1

i;h denotes the set of interior edges or faces of the elements intersected by� n� 1.
Finally, we collect all the above terms in a single contribution

af ;n
h

�
zh ; u h ; vh

� def= cn (zh ; u h ; vh) + 2 �
�
� (u h); � (vh)

�

 f ;n + sn

v;h(zh ; u h ; vh) + gn
h (u h ; vh):

(2.44)
With all the above ingredients, we propose to approximate (2.39)-(2.41) by the semi-
implicit coupling scheme reported in Algorithm 2.4. The basic idea consists in combining
the interface kinematic/dynamic coupling of Algorithm 2.3 with the explicit treatment of
the geometrical compatibility (2.42).

Note that steps (2.45) and (2.46) of Algorithm 2.4 involves integrals of functions asso-
ciated with di�erent time levels, namely,

�
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h ; evh
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 n ;
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r pn� 2

h ; evh
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 n ;
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r pn� 1

h ; r qh
�

n;h :

with eu n
h 2 V n

h , pn� 1
h 2 Qn� 1

h and pn� 2
h 2 Qn� 2

h . This requires the integration of products
of functions that might be discontinuous at di�erent locations in the same element. In
order avoid the simultaneous intersection of di�erent interface locations with the same �uid
element, we consider the approach introduced in Alauzet et al. (2016) (see also Fries and
Zilian (2009)), which basically consists in locally shifting the discontinuity at time t? to
the structure location at time tn , wheret? refers to tn� 1 and tn� 2 respectively. In the case
where the discontinuities are located in di�erent elements, the quadrature is performed in
a standard fashion since we keep track of the (previous) intersections at di�erent times
and we can treat each discontinuity separately.

Remark 2.3.1. In the case of partially intersected �uid domain with dynamic interface,
we proceed as in Remark 2.2.3. The terms in(2.18) and (2.19) are now evaluated on
e� n� 1 and we add the following convective Discontinuous Galerkin contributions (see, e.g.,
Di Pietro and Ern (2012)) to the tri-linear form (2.43):

� � f � ff zhgg �n Ju hK; ff vhgg
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Remark 2.3.2. Note that whenever
.
dn

h ,
.
dn� 1

h and w h are integrated on� n� 1, one has to

understand
.
dn

h �
�
� n� 1

h

� � 1
,

.
dn� 1

h �
�
� n� 1

h

� � 1
and w h �

�
� n� 1

h

� � 1
respectively. This abuse

of notation is simply made to ease the presentation.
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Algorithm 2.4 Projection based semi-implicit scheme with un�tted meshes and moving
interfaces.
For n � 1:

1. Interface update:
� n� 1 = � n� 1

h (�) ; 
 f ;n = 
 n� n� 1:

2. Fluid viscous step: Find eu n
h 2 V n

h such that
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for all evh 2 V n
h .

3. Pressure-displacement step: Find
�
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h

�
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(2.46)
for all

�
qh ; w h

�
2 Qn

h � W h . Then, set � n
h = I � + dn

h :

2.4 Numerical experiments

In this section we illustrate the stability and accuracy of the proposed semi-implicit
scheme (Algorithm 2.4) in di�erent 2D test cases motivated by the simulation of heart
valves and of micro-encapsulation. To this purpose we compare the results obtained
with Algorithm 2.4 and those obtained with the strongly coupled and loosely coupled
(stabilized explicit coupling) schemes proposed in Alauzet et al. (2016). The implicit
step in Algorithm 2.4 is solved in a partitioned fashion by a Dirichlet-Neumann based
Newton-GMRES iterative algorithm. In all the tests, the solid is described by a non-linear
Reissner� Mindlin curved beam model with a MITC spacial discretization. All the units
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are given in the CGS units system. In all the numerical tests, the ghost penalty parameters
has been set to g = 1 and the CIP stabilization parameters to  v =  p = 10 � 2.

2.4.1 Idealized valve without contact

The �rst example is the heart-valve-inspired benchmark proposed in Gil et al. (2013);
Hesch et al. (2012); Wick (2013); Kamensky et al. (2015); Boilevin-Kayl et al. (2019b).
The considered geometry is shown in Figure 2.5(a). The �uid domain is a rectangle

 = [0 ; 8] � [0; 0:805], while the immersed solid reference con�guration� is the straight
segmentAB , with A = (2 ; 0) and B = (2 ; 0:7).

(a)

(b)

Figure 2.5: (a) Geometric con�guration of the idealized valve without contact, (b) Zoom
of the �uid and solid meshes.

The physical parameters used for the �uid in this test are� f = 100, � = 10. While for
the solid we have� s = 100, " = 0 :0212, the Young's modulusE = 5 :6 � 107 and Poisson's
ratio � = 0 :4. Concerning the boundary conditions, no-slip boundary condition is apply
on � w , a symmetry condition is imposed on� sym, zero traction on � out and �nally on � in

the following half parabolic pro�le is applied:

umax (t) = 5(0 :805)2
�

sin(2�t ) + 1 :1
�
; t 2 R+ :

The solid rotation and displacement are set to zero at the bottom endpointA and zero
initial conditions are considered for both �uid and solid.

The solid mesh is made of 64 edges while the �uid un�tted mesh is made of 18662 trian-
gles (see Figure 2.5(b)). We haveh � 0:037. Three di�erent levels of time-step re�nement,
� 2 f

�
10� 3=2i

�
g2

i =0 , are considered in order to compare results from Algorithms 2.4 and
the loosely coupled and strongly coupled schemes. The �nal time isT = 3 , which cor-
responds to 3 full oscillations cycles for the structure. The Nitsche penalty parameter is
set to  = 10. With the above physical and discretization parameters, the relation (2.23)
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(a) Strongly coupled, t = 0 :5. (b) Semi-implicit, t = 0 :5. (c) Loosely coupled, t = 0 :5.

(d) Strongly coupled, t = 0 :8. (e) Semi-implicit, t = 0 :8. (f) Loosely coupled, t = 0 :8.

Figure 2.6: Velocity magnitude snapshots at� = 10 � 3.

(a) Strongly coupled, t = 0 :5. (b) Semi-implicit, t = 0 :5. (c) Loosely coupled, t = 0 :5.

(d) Strongly coupled, t = 0 :8. (e) Semi-implicit, t = 0 :8. (f) Loosely coupled, t = 0 :8.

Figure 2.7: Pressure snapshots at� = 10 � 3.

provides the limit upper bound  � 2� s"h=(�� ) � 15:6 for stability. Numerical evidence,
not reported here, suggests that larger values yield indeed numerical instability.

For illustration purposes, snapshots of the �uid velocity magnitude and the position of
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the interface, computed with � = 10 � 3, are shown in Figure 2.6 at timet = 0 :5 and t = 0 :8
respectively. A very good agreement is obtained for the three methods already with the
larger time step and all algorithms reproduce very well the vortex induced after the lea�et.
The two times selected correspond to a situation of opening of the valve att = 0 :5 and
closing at t = 0 :8. At opening state, there is an increasing velocity magnitude on top of the
channel, while the velocity is decreasing at closing state. Figure 2.7 presents the pressure
elevation computed with the coarsest time step,� = 10 � 3 , obtained with the semi-implicit
coupling scheme (Algorithm 2.4), the loosely coupled and the strongly coupled schemes
at the same time instants as before. The discontinuity of the pressure is well captured
with all methods. A very good agreement can be observed between Algorithm 2.4 and
the strongly coupled scheme, while some di�erences are clear visible in the loosely coupled
scheme.

Figures 2.8 and 2.9 report the displacement history of the upper structure endpoint
B as function of time, in terms of x-displacement andy-displacement respectively. Al-
gorithm 2.4 delivers practically the same results as the strongly coupled scheme (the two
curves are indistinguishable already with the larger time step), whereas some di�erences
are clearly visible with the loosely coupled scheme. This mismatch is reduced with the
time-step re�nement.

A quantitative comparison is given in Table 2.1 which shows the di�erence, in the
`1

�
0; T; `2(�)

�
norm, of the displacement obtained with the strongly coupled scheme and

Algorithm 2.4. We can observe that this quantity decreases with the time-step length� .
Dimensionless runtimes for the strongly coupled and the semi-implicit coupling scheme are
reported in Table 2.2. The observed computational time reduction using the semi-implicit
scheme is on average of27:4%. It should be noted that this corresponds to the worst-case
scenario, in which no speci�c preconditioners for the �uid linear systems involved in steps
2 and 3 of Algorithm 2.4 are considered.

� `1
�
0; T; `2(�)

�
norm

10� 3 1:03� 10� 2

5 � 10� 4 5 � 10� 3

2:5 � 10� 4 2:76� 10� 3

Table 2.1: Measure of the di�erence of the displacement between the strongly coupled
and the semi-implicit schemes.

� Strongly coupled Semi-implicit
10� 3 1.35 1

5 � 10� 4 2.7 1.93
2:5 � 10� 4 4.83 3.4

Table 2.2: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.
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(a) � = 10 � 3 . (b) � = 5 � 10� 4 .

(c) � = 2 :5 � 10� 4 .

Figure 2.8: Time evolution of the x-displacement for the structure endpointB .

(a) � = 10 � 3 . (b) � = 5 � 10� 4 .

(c) � = 2 :5 � 10� 5 .

Figure 2.9: Time evolution of the y-displacement for the structure endpointB .

2.4.2 Idealized valve with contact

The second numerical example corresponds to the idealized valve test with contact
introduced in Boilevin-Kayl et al. (2019a). It is an extension of the previous one in which
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the structure is su�ciently long to get in contact with � sym. The geometry is shown in
Figure 2.10(a). The �uid domain 
 is the same as in the previous example, while as
reference con�guration for the solid,� , we consider a curve segment of extremeA = (4 ; 0)
and B = (5 :112; 0:483), parametrized by the analytical function

y(x) =
1
2

s

1 �
(x � 11=2)2

(3=2)2 ; x 2 [4; 5:112]:

The physical parameters used for the �uid in this test are� f = 1 , � = 0 :03. While for the
solid we have� s = 1 :2, " = 0 :065, the Young's modulus E = 107 and the Poisson's ratio
� = 0 :4.

(a)

(b)

Figure 2.10: (a) Geometric con�guration of the idealized valve with contact, (b) Zoom of
the lea�et mesh and �uid mesh.

Regarding the boundary condition, a symmetry condition is enforced on� sym , a no-
slip condition on � w , zero traction on the out�ow boundary � out and a traction condition
is imposed on� in in terms of the following time-dependent pressure:

pin (t) =

(
� 200 atanh(100t) if 0 < t < 0:7;

200 if t � 0:7:

The �nal time is T = 1 and it corresponds to one full valve oscillation cycle. The �uid
and the solid are initially at rest and the beam is pinched at the bottom tip A.

In order to avoid penetration on � top , we enforce the following contact condition:

d � n � sym � g � 0 on � ; (2.47)

wheren � sym denotes the exterior unit normal to � sym (see Figure 2.10 (a) ) andg : � ! R+

refer to the gap function between� and � sym, de�ned as the initial distance of a point
on � to the wall � sym in the direction of n � sym , namely g = y� sym � y(x). The inequality
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(a) Strongly coupled, t = 0 :6. (b) Semi-implicit, t = 0 :6. (c) Loosely coupled, t = 0 :6.

(d) Strongly coupled, t = 1 . (e) Semi-implicit, t = 1 . (f) Loosely coupled, t = 1 .

Figure 2.11: Velocity magnitude snapshots with� = 10 � 3.

(a) Strongly coupled, t = 0 :6. (b) Semi-implicit, t = 0 :6. (c) Loosely coupled, t = 0 :6.

(d) Strongly coupled, t = 1 . (e) Semi-implicit, t = 1 . (f) Loosely coupled, t = 1 .

Figure 2.12: Pressure snapshots with� = 10 � 3.

constraint (2.47) is approximated via a penalty method (see, e.g., Scholz (1984)), by
inserting the following term in the solid discrete problem:

 cE"
h2

��
dn

h � n � sym � g + "h
�

+ ; w h
�

� ; (2.48)

where [x]+
def= max f 0; xg,  c > 0 is a (dimensionless) user-de�ned parameter and"h > 0
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(a) � = 10 � 3 . (b) � = 5 � 10� 4 .

(c) � = 2 :5 � 10� 5 .

Figure 2.13: Time evolution of thex-displacement for the structure endpointB .

(a) � = 10 � 3 . (b) � = 5 � 10� 4 .

(c) � = 2 :5 � 10� 5 .

Figure 2.14: Time evolution of they-displacement for the structure endpointB .
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is a contact tolerance. The contact parameters are given by"h = 0 :01 and  c = 5 � 10� 3 as
in Boilevin-Kayl et al. (2019a). The relaxation parameter "h is chosen in such a way that
the generated arti�cial gap is below h. The penalty parameter  c (independent of h) is
chosen to avoid penetration (i.e., not very small) and in such a way that the term (2.48)
does not perturbs the convergence of the Newton solver in the solid (the operator[�]+ is
not di�erentiable at 0).

The �uid mesh has 16384triangles and the solid 50 edges. We haveh � 0:04. The
zoom on the both meshes is presented in Figure 2.10(b). As in the previous example,
we consider three levels of time re�nement� 2 f

�
10� 3=2i

�
g2

i =0 for the comparisons. The
Nitsche parameter is set to = 100. With the above set of physical and discretization
parameters, the relation (2.23) provides the limit bound  � 2� s"h=(�� ) � 208:6 for
stability. As in the previous example, numerical evidence (not reported here) indicates
that larger values yield numerical instability.

For illustration purposes, we report in Figure 2.11 the velocity magnitude, with the
corresponding contour lines, at two di�erent instants. In Figures 2.11 (a), (b) and (c) are
reported the solutions obtained at time t = 0 :6, when the valve is supposed to get into
contact with the upper wall and the �uid velocity decreases globally as consequence of the
closing of the valve. The same comparison is performed at timet = 1 in Figures 2.11 (d),
(e) and (f) in a situation where the valve is open and far from contact. In this case the
�ux is reestablishes and the velocity increases in the channel. Again, a good agreement is
observed between Algorithm 2.4 and the strongly coupled scheme, even though att = 1
slightly di�erences in the velocity are visible. On the contrary, the loosely coupled scheme
delivers an approximation that is far from the previous ones. Similar observations can be
made from Figure 2.12, where we compare the pressure at the same instants the pressure.
We can see the high pressure jump when the valve is getting in contact with the wall
(Figures 2.12(a) and (b)), while at t = 1 the discontinuity between the two sides of the
interface is weaker (see Figures 2.12(d) and (e)). Algorithm 2.4 reproduces very well the
pressure jump obtained with the strongly coupled scheme, though a small di�erence is
visible at t = 0 :6. Figure 2.12 (c) and (f) show the results obtained with the loosely
coupled algorithm, which is unable to deliver reasonable approximations.

Finally, Figures 2.13 and 2.14 present the time history of the horizontal and vertical
displacement, respectively, at the upper solid pointB for the di�erent levels of time
re�nement. The contact condition with the wall can be seen in Figures 2.14, whereas
Figures 2.13 shows that the structure is sliding and bouncing over the top wall. These
results clearly show that Algorithm 2.4 is able to capture the dynamics of the interface
before and after contact with the upper wall. Only slightly di�erences are observed, in
particular close to the contact instant, but which decrease with the time re�nement. On
the contrary, the loosely coupled is not able to reproduce the dynamics obtained with the
strongly coupled scheme, even with �nest time re�nement. This illustrates the limitations
of the loosely coupled scheme.

A more quantitative comparison of the strongly coupled and semi-implicit schemes is
given in Table 2.3 which shows thè 1

�
0; T; `2(�)

�
norm of the di�erence of the displace-

ment obtained with each method. We can observe that the di�erence reduces with the
time re�nement, but less than in the previous example. This is probably due to the ex-
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� `1
�
0; T; `2(�)

�
norm

10� 3 1:34� 10� 1

5 � 10� 4 1:28� 10� 1

2:5 � 10� 4 1:22� 10� 1

Table 2.3: Measure of the di�erence of the displacement between the strongly coupled and
the semi-implicit schemes.

� Strongly coupled Semi-implicit
10� 3 1.32 1

5 � 10� 4 2.57 2
2:5 � 10� 4 5.35 4

Table 2.4: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.

treme singularity of the problem with contact. Table 2.4 displays the computational times
(dimensionless) of the strongly coupled and the semi-implicit (Algorithm 2.4) schemes.
The scaling is similar with the di�erent time-steps and the semi-implicit scheme provides
on average a computational cost reduction of24:2%.

2.4.3 Vesicle in lid-driven cavity �ow

The last example is and adaptation of the well-known lid-driven cavity test with an
immersed elastic disk (see, e.g., Roy et al. (2013); Wang and Zhang (2010); E Gri�th
(2012); Gri�th and Luo (2017) ). The �uid geometry is shown in Figure2.15 (a) and
consists in three rigid wall � w and a lid � top moving with tangential velocity. The domain

 is the unit square given by [0; 1] � [0; 1]. The reference solid con�guration is a circle
of center (0:6; 0:5) and radius 0:2. The physical parameters used for the �uid in this test
are � f = 100, � = 10. For the solid we have� s = 100, " = 0 :0212, the Young's modulus
E = 5 :6 � 103 and Poisson's ratio � = 0 :4. Both the �uid and the solid are initially at
rest. For the boundary conditions, we impose zero velocity on� w and tangential velocity
of magnitude �u = 1 on � top .

Since the �uid is entirely enclosed by Dirichlet-type boundary condition, standard
Dirichlet � Neumann partitioned procedures for the solution of the implicit step (2.46) are
known to diverge. This is due to the ill-posedness of the �uid system which enforces a
volumetric constraint on the interfacial solid velocity. In order to avoid this issues, we
consider the approach proposed in Küttler et al. (2006) which consists in enforcing the
volumetric constraint into the structure equation using a scalar Lagrange multiplier, in
order to avoid the incompressibility incompatibilities with the subsequent �uid problem.
More precisely, in step (2.46) of Algorithm 2.4 the solid problem is replaced by the following
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mixed system
8
>>>>>>>><

>>>>>>>>:

� s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h) + � n

Z

� n � 1
bw h � n =

�
h

2X

i =1

�
(eu n

h;i �
.
dn� 1

h ); bw h
�

� n � 1 �
2X

i =1

�
� (eu n

h;i ; pn
h;i )n i ; bw h

�
� n � 1 ;

Z

� n � 1

.
dn

h � n = 0

for all w h 2 W h . The scalar Lagrange multiplier � n 2 R represents the unknown constant
pressure in the �uid.

The �uid mesh has 3200 triangles while the solid mesh is composed by80 edges. We
have h � 0:035. Both meshes are presented in Figure 2.15 (b). The chosen time-step
lengths are � 2 f

�
5 � 10� 3=2i

�
g2

i =0 and the �nal time is T = 10. We take as Nitsche
parameter  = 1 . With the above physical and discretization parameters, the relation
(2.23) provides approximately the limit bound  � 2� s"h=(�� ) � 3 for stability. Numerical
evidence, not reported here, indicates that larger values yield numerical instability.

For illustration purposes, Figure 2.16 shows the snapshots of the �uid magnitude for
both schemes and at di�erent time, i.e., two di�erent positions of the structure. At t = 2 ,
Figures2.16(a) and (b), the vesicle is starting the upper region of the cavity, while at
t = 5 , Figures 2.16(d) and (e), is moving away this region. Even with the coarsest
time step, Algorithm 2.4 is able to predict the same location as the strongly coupled
scheme. Figures 2.16(c) and (f) show the results of the loosely coupled scheme, which
is clearly unable to reproduce the previous dynamics. Similar observations can be made
from Figure 2.17 which shows the elevation of the pressure for the same time instants. No
notable di�erences can be seen between Algorithm 2.4 and the strongly coupled scheme,
whereas a major mismatch is obtained with the loosely coupled algorithm, particularly at
time t = 5 .

In Figure 2.18 we present the trajectory of the vesicle rightmost node obtained with

�u� top

� w







�

(a) (b)

Figure 2.15: (a) Geometric con�guration and external boundary condition, (b) Fluid and
solid meshes at timet = 0 .
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(a) Strongly coupled, t = 2 . (b) Semi-implicit, t = 2 . (c) Loosely coupled, t = 2 .

(d) Strongly coupled, t = 5 . (e) Semi-implicit, t = 5 . (f) Loosely coupled, t = 5 .

Figure 2.16: Velocity magnitude snapshots with� = 5 � 10� 3.

the three numerical methods for the di�erent levels of time re�nement. Time markers
have been depicted in order to facilitate the comparison of the results. Algorithm 2.4
is able to capture the dynamics of the strongly coupled scheme at all the discretization
levels (time markers t5 and t10 are practically indistinguishable), whereas the loosely
coupled scheme requires a su�ciently small time-step to deliver a minimally reasonable
approximation (time markers t5 and t10 get closer after time re�nement, but still yield
poor approximations).

� `1
�
0; T; `2(�)

�
norm

5 � 10� 3 6:70� 10� 2

2:5 � 10� 3 1:97� 10� 2

1:25� 10� 3 7:76� 10� 3

Table 2.5: Measure of the di�erence of the displacement between the strongly coupled
and the semi-implicit schemes.

Table 2.5 shows a quantitative measure of the di�erence between the approximations
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(a) Strongly coupled, t = 2 . (b) Semi-implicit, t = 2 . (c) Loosely coupled, t = 2 .

(d) Strongly coupled, t = 5 . (e) Semi-implicit, t = 5 . (f) Loosely coupled, t = 5 .

Figure 2.17: Pressure snapshots with� = 5 � 10� 3.

(a) � = 5 � 10� 3 . (b) � = 2 :5 � 10� 3 . (c) � = 1 :25 � 10� 3 .

Figure 2.18: Trajectory of the extreme right node of the vesicle fromt = 0 to t = 10.

� Strongly coupled Semi-implicit
5 � 10� 3 1.4 1

2:5 � 10� 3 2.3 1.9
1:25� 10� 3 4 3.1

Table 2.6: Dimensionless runtimes for the strongly coupled and semi-implicit schemes.

provided by the strongly coupled and Algorithm 2.4, for each level of time re�nement.
As in the idealized valve without contact, no stagnation phenomena are visible. Finally,
dimensionless runtimes are provided in Table 2.6, showing that the semi-implicit algorithm
shows on average computational cost reduction of23:3%, consistently with the previous
examples.
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2.5 Conclusion

In this chapter, we have introduced a new semi-implicit coupling scheme for the nu-
merical approximations of incompressible �uid-structure interaction problems involving
immersed solids. The proposed method generalizes the projection based semi-implicit
coupling paradigm of Fernández et al. (2007) to the Nitsche-XFEM framework, with the
following main ingredients:

ˆ The traditional accuracy issues of previous splitting schemes based on a Nitsche's
interface treatment (see Astorino et al. (2009a); Alauzet et al. (2016)) are circum-
vented through a variationally consistent transfer of the �uid viscous stresses to the
solid problem;

ˆ Consistent spatial approximation of the pressure-Poisson problem through the
Nitsche-XFEM un�tted framework.

Moreover, Theorem 2.2.1 has shown that the method preserves the stability properties of
the original splitting in the �tted mesh framework (see Fernández et al. (2007)). The com-
prehensive numerical study reported in Section 2.4 con�rmed these �ndings and showed
a very good performance, in terms of stability and accuracy, with respect to the previous
strongly coupled and loosely coupled schemes reported in Alauzet et al. (2016). As a
result, the present semi-implicit coupling scheme can be considered as a robust approach
to avoid strong coupling in un�tted meshes without compromising stability and accuracy.

Ongoing work focuses on the implementation of the present approach with 3D un-
structured meshes. The main di�culty lies on the formulation of a robust and e�cient
algorithm for mesh intersection and integration over the cut-elements (see Massing et al.
(2013); Zonca et al. (2018), Chapter 6), as well as the management of contact between
several solids, which we address in Chapter 4.



Chapter 3

Error analysis of an un�tted mesh
semi-implicit coupling scheme for

�uid-structure interaction

3.1 Introduction

This chapter is devoted to the error analysis of the numerical method described in
Chapter 2, for a linear �uid-structure coupled system involving the transient Stokes equa-
tions (in a �xed domain) and a thin-walled solid elastodynamics model. This system is
often used as model problem for the analysis of time-splitting schemes for incompressible
�uid-structure interaction (see, e.g., Astorino and Grandmont (2010); Fernández (2013);
Burman and Fernández (2014a); Fernández and Mullaert (2016); Bukac and Muha (2016);
Bo� and Gastaldi (2017)). Indeed, it retains the fundamental numerical di�culties that
have to be faced also in general incompressible �uid-structure systems. A large amount
of added-mass in the system is known to severely compromise stability and accuracy in
standard explicit coupling schemes (i.e., those which invoke the �uid and solid solvers only
once per time-step, see, e.g., Le Tallec and Mouro (2001); Causin et al. (2005); Förster
et al. (2007); van Brummelen (2009)). The simplest approach to overcome these issues is
to resort to a strongly coupled scheme (i.e., one in which the interface coupling is implicitly
discretized in time), but at the expense of a higher computational complexity.

The development and the analysis of time splitting schemes which avoid strong coupling
without compromising stability and accuracy has been a very active �eld of research during
the last �fteen years. The vast majority of the studies have been devoted to the case of
spatial approximations based on �uid meshes which are �tted to the interface (see, e.g.,
Fernández et al. (2007); Quaini and Quarteroni (2007); Badia et al. (2008b); Astorino and
Grandmont (2010); Fernández (2013); Bukac et al. (2013); Bukac and Muha (2016)). For
many applications, such a mesh compatibility can however be cumbersome to maintain
in practice (see, e.g., Peskin (2002); Gerstenberger and Wall (2008a); Sawada and Tezuka
(2011); Bo� et al. (2011); Burman and Fernández (2014a); Kadapa et al. (2018); Kim and
Lee (2018)).

The earliest explicit coupling schemes with un�tted meshes have been reported in Bo�
et al. (2011); Kim and Lee (2018), using the immersed boundary method, and in Burman
and Fernández (2014a); Kadapa et al. (2018), using un�tted Nitsche approximations with
overlapping meshes. Nevertheless, these methods su�er from major stability/accuracy
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issues which either require severe time-step restrictions (see Bo� et al. (2011); Burman
and Fernández (2014a)) or are limited by the amount of added-mass in the system (see
Kadapa et al. (2018); Kim and Lee (2018)). A new class of semi-implicit schemes with
un�tted meshes has been recently reported in Fernández and Landajuela (2019); Annese
et al. for the case of the coupling with thin-walled solids. These methods robustly avoid
strong coupling but at the expense of introducing additional unknowns in the �uid sub-
problem (intermediate solid velocity). Fully explicit variants of these approaches have
been derived in Fernández and Landajuela (2019) and in Boilevin-Kayl et al. (2019a).
Nevertheless, the formulation of the former in the case of immersed solids remains open
and the accuracy of the latter relies on a grad-div penalty stabilization (for enhanced mass
conservation) which spoils the conditioning of the �uid subsystem.

This chapter is devoted to the numerical analysis of the un�tted mesh semi-implicit
coupling scheme recently introduced in Chapter 2. The method combines a Nitsche based
un�tted mesh spatial approximation with a fractional-step time-marching in the �uid.
The viscous part of the coupling is treated in an explicit fashion (which avoids strong
coupling), while the remaining �uid pressure and solid contributions are treated implicitly
(which guarantees added-mass free stability). Robusta priori error estimates are derived
for two extrapolated variants (r = 1 ; 2 stands for the extrapolation of the solid velocity).
The analysis highlights the fundamental role played by the time discretization of the
Nitsche's penalty term in the stability and accuracy of the splitting. In particular, an
O(� r =h

1
2 ) splitting error is obtained instead of the standard O(�=h) for the stabilized

explicit coupling scheme of Burman and Fernández (2014a). The superior accuracy of the
method is also supported by numerical experiments in an academic benchmark.

The rest of the chapter is organized as follows. Section 3.2 presents the continuous
setting. Its numerical approximation is discussed in Section 3.3. The numerical analysis of
the semi-implicit scheme is reported in Section 3.4. Numerical evidence on the convergence
properties of the methods is given in Section 3.5. Finally, Section 3.6 summarizes the main
conclusions of this work.

3.2 Problem Setting

We consider a linear �uid-structure interaction problem in which the �uid is described
by the Stokes equations in a �xed polyhedral bounded domain
 f � Rd, with d = 2 ; 3
and the structure by a linear thin-walled solid model with mid-surface given by� ; also
assumed polyhedral. Let the boundary of
 f be partitioned as @
 f = � [ � and denote
the outward unit normal to @
 f by n : In this framework, the considered coupled problem
reads as follow: �nd the �uid velocity and pressure u : 
 f � R+ ! Rd, p : 
 f � R+ ! R,
the solid displacement and velocityd : � � R+ ! Rd,

.
d : � � R+ ! Rd such that for all

t 2 R+ we have 8
><

>:

� f @t u � div� (u ; p) = 0 in 
 f � R+ ;

divu = 0 in 
 f � R+ ;

u = 0 on � � R+ ;

(3.1)
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8
><

>:

� s"@t
.
d + Ld = T in � � R+ ;

.
d = @t d in � � R+ ;

d = 0 on @� � R+ ;

(3.2)

(
u =

.
d on � � R+ ;

T = � � (u ; p)n on � � R+ ;
(3.3)

with the initial conditions u(0) = u 0, d(0) = d0 and
.
d(0) =

.
d0. Here, the symbols� f

and � s stand, respectively, for the �uid and solid densities. The thickness of the solid is
denoted by " and the �uid Cauchy stress tensor is given by

� (u ; p) def= 2 � � (u ) � pI ; � (u ) def=
1
2

�
r u + r u T );

where � denotes the �uid dynamic viscosity and I is the identity matrix. The relations in
(3.3) enforce, respectively, the kinematic and dynamic interface coupling conditions. The
abstract di�erential operator L in (3.2) describes the elastic behavior of the solid.

In the following, we will make use of the usual Sobolev's spacesH m (
)( m > 0); with
norm k � km; 
 and seminormj � j m; 
 ; along with the closed spacesH 1

� (
) , of functions in
H 1(
) with zero trace on � , and L 2

0(
) , of functions in L 2(
) with zero mean in 
 . The
scalar product in L 2(
) is denoted by(�; �) 
 .

For the weak formulation of the �uid problem we consider V =
�
H 1

� (
 f )
� d

and Q =
L 2(
 f ) as the �uid velocity and pressure functional spaces, respectively. The standard
Stokes bilinear forms are given by

a(u ; v) def= 2 � (� (u ); � (v)) 
 f ; b(q;v) def= � (q;divv) 
 f :

For the solid weak problem we suppose thatW �
�
H 1

@� (�)
� d is the space of admissible

displacements and we assume thatL : D �
�
L 2 (�)

� d !
�
L 2 (�)

� d is a self� adjoint second-
order di�erential operator symmetric, coercive and continuous onW . Associated to the
operator L , we de�ne the elastic bilinear form

as (d; w ) def= ( Ld ; w ) � (3.4)

for all d 2 D and w 2 W : We de�ne the following elastic energy norm on

kwk2
s

def= as (w ; w )

and we assume that the following continuity estimate holds

kwk2
s 6 � skwk2

1;� (3.5)

for all w 2 W , with � s > 0.
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3.3 Numerical methods

In this section, we discuss three numerical methods for the approximations of the
coupled problem (3.1)-(3.3). These methods involve an un�tted mesh spatial discretization
and di�erent levels of �uid-solid time splitting.

3.3.1 Un�tted mesh spatial approximation

In a standard conforming �nite element approximation, typically based on �tted
meshes (see, e.g., Du et al. (2004); Fernández (2013)), the kinematic coupling condition
(3.3)1 is strongly enforced. This is no longer feasible in the un�tted mesh setting. We
consider the robust and optimal un�tted mesh method with overlapping meshes proposed
in Burman and Fernández (2014a). Therein, the interfacial �uid-solid coupling is treated
in a fully weak fashion via a Nitsche's type mortaring.

Let be fT s
h g0<h< 1 a family of triangulations of � , such that � =

S
K 2T s

h
. We then

consider the standard space of continuous piecewise a�ne functions associated toT s
h ,

namely,

X s
h

def=
�

vh 2 C0(�)
�
� vhjK 2 P1(K ); 8K 2 T s

h

	
:

For the approximation of the solid discrete space for the displacement and velocity we
consider the following spaceW h = [ X s

h ]d \ W .

�


 f
h
 f

�

Figure 3.1: Un�tted meshes.

We denote with fT f
h g0<h< 1 a family of triangulations that cover the �uid domain 
 f

such that:

1. Every T f
h is �tted to � but, in general, not to � ;

2. For every simplexK 2 T f
h , we haveK \ 
 f 6= ? .

In what follows, 
 f
h stands for the domain covered byT f

h (i.e., the �uid computational
domain). We denote by Gh the set of elements ofT f

h intersected by � , by Fh the set of
the internal edges or faces ofT f

h , and by FGh the set of edges or faces of the elements of
Gh that do not lie on @
 f

h , namely,


 f
h

def= int
�

[ K 2T f
h

K
�
; Gh

def=
n

K 2 T f
h

�
� K \ � 6= ?

o
;

Fh
def=

n
F 2 @K

�
� K 2 T f

h ; F \ @
 f
h 6= F

o
; FGh

def=
n

F 2 @K
�
� K 2 Gh ; F \ @
 f

h 6= F
o

:
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We consider the following space of continuous piecewise a�ne functions de�ned overT f
h

X f
h

def=
n

vh 2 C0(
 h)
�
� vhjK 2 P1(K ) 8K 2 T f

h

o
: (3.6)

For the approximation of the �uid velocity and pressure, we consider the following spaces

V h
def=

n
vh 2 [X f

h ]d
�
� vh j � = 0

o
; Qh

def= X f
h :

Since the discrete pairV h=Qh lacks inf-sup stability, we consider the classical Brezzi-
Pitkäranta symmetric pressure stabilization (see, e.g., Brezzi and Pitkäranta (1984)):

sh (ph ; qh) def=  p

Z


 f
h

h2

�
r ph � r qh ;  p > 0 (3.7)

Note that the pressure stabilization is de�ned over the computational �uid domain 
 f
h .

In order to guarantee robustness of the method with respect to the way the interface
is cutting the �uid mesh, we consider the following ghost-penalty operator (see Burman
(2010)):

gh(u h ; vh) def=  g�h
X

F 2F Gh

�
Jr u hKF ; Jr vhKF

�
F : (3.8)

We can hence introduce the following total stabilization operatorSh and associated semi-
norm:

Sh
�

(u h ; ph) ; (vh ; qh)
� def= sh(ph ; qh) + gh(u h ; vh);

j (u h ; ph) jS
def= Sh

�
(u h ; ph) ; (u h ; ph)

� 1
2 ;

(3.9)

so that the �uid discrete bi-linear form is given by

af
h

�
(u h ; ph); (vh ; qh)

� def= af � (u h ; ph); (vh ; qh)
�

+ Sh
�
(u h ; ph); (vh ; qh)

�
:

Finally, the considered space semi-discrete un�tted mesh approximation of (3.1)�(3.3)
reads as follows: fort > 0, �nd

�
u h(t); ph(t);

.
dh(t); dh(t)

�
2 V h � Qh � W h � W h ; such

that
.
dh = @t dh and

8
<

:

� f � @t u h ; vh
�


 + af
h

�
(u h ; ph); (vh ; qh)

�
+ � s"

�
@t

.
dh ; w h

�
� + as(dh ; w h)

�
�
� (u h ; ph)n ; vh � w h

�
� �

�
u h �

.
dh ; � (vh ; � qh)n

�
� +

�
h

�
u h �

.
dh ; vh � w h

�
� = 0

(3.10)
for all (vh ; qh ; w h) 2 V h � Qh � W h . Here,  > 0 denotes the Nitsche's penalty parameter.

Remark 3.3.1. In the numerical experiments of Section 3.5, the second assumption on
T f

h , that is, all the elements of
 f
h intersect the physical domain
 f is relaxed. This is

achieved by extending the ghost-penalty operator(3.8) to Fh (all internal edges or faces of
T f

h ), i.e.,

gh(u h ; vh) def=  g�h
X

F 2F h

�
Jr u hKF ; Jr vhKF

�
F : (3.11)
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This ensures the invertibility of the �uid sti�ness matrix. It should be noted that the results
of the numerical analysis reported in Section 3.4 below also hold in this case.

3.3.2 Time splitting schemes

This section is devoted to the time-discretization of (3.10). We �rst discuss the strongly
coupled and the stabilized explicit coupling schemes reported in Burman and Fernández
(2014a). Particular attention is paid to the well-known accuracy issues of the latter. We
then discuss the semi-implicit projection based coupling scheme reported in Chapter 2,
whose purpose was precisely to circumvent such di�culties without resorting to strong
coupling.

In the following, the parameter � > 0 denotes the time-step length,@� xn stands for
the �rst-order backward di�erence formula and x?;r represents the r -th order explicit
extrapolations to xn , viz.,

@� xn def=
1
�

�
xn � xn� 1�

; x?;r def=

(
xn� 1 if r = 1 ;

2xn� 1 � xn� 2 if r = 2 :
(3.12)

3.3.2.1 Strongly coupled scheme

Traditionally, the natural way to achieve numerical stability has been to consider a
strongly coupled scheme, that is, a fully implicit time-discretization of (3.10). An example
of such an approach is reported in Algorithm 3.1. The method is also known to deliver
an optimal O(� ) + O(h) accuracy in the energy norm (see Fernández and Landajuela
(2019)). The price to pay for this robustness is the resolution (at each time-step) of
the hybrid coupled system (3.13), which can be computationally demanding in practice,
particularly, due to its hybrid nature. Indeed, this monolithic system often yields ill-
conditioned matrices which require dedicated solvers.

Algorithm 3.1 Strongly coupled scheme (from Burman and Fernández (2014a)).
For n � 1:
�nd

�
u n

h ; pn
h ;

.
dn

h ; dn
h

�
2 V h � Qh � W h � W h with

.
dn

h = @� dn
h and such that

� f � @� u n
h ; vh

�

 f + af

h

�
(u n

h ; pn
h ); (vh ; qh)

�
+ � s"

�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h)

�
�
� (u n

h ; pn
h )n ; vh � w h

�
� �

�
u n

h �
.
dn

h ; � (vh ; � qh))n
�

� +
�
h

�
u n

h �
.
dn

h ; vh � w h
�

� = 0

(3.13)

for all (vh ; qh ; w h) 2 V h � Qh � W h .

3.3.2.2 Stabilized explicit coupling scheme

The stabilized explicit coupling scheme reported in Algorithm 3.2 enables a fully se-
quential decoupled time-marching of (3.10). Energy stability is achieved under a mild
CFL-like condition (see Burman and Fernández (2014a)), thanks to the speci�c explicit
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treatment of the Nitsche penalty interface term and to the addition of an interface pressure
stabilization in time (weakly consistent interfacial compressibility). The stability of the
method is independent of the added-mass e�ect and of the considered local �uid and solid
time-marching schemes. These features come however at a price: the sub-optimality of
the splitting error, whose leading term scales asO(�=h) (see Remark 3.4.3 and Burman
and Fernández (2014b)). Correction iterations are thus needed to enhance accuracy, under
restrictive constraints on the discretization parameters.

Algorithm 3.2 Stabilized explicit coupling scheme (from Burman and Fernández
(2014a)).
For n � 1:

ˆ Solid sub-step: �nd
� .
dn

h ; dn
h

�
2 W h � W h with

.
dn

h = @� dn
h and such that

� s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h)+

�
h

� .
dn

h ; w h
�

� =

�
h

�
u n� 1

h ; w h
�

� �
�
� (u n� 1

h ; pn� 1
h )n ; w h

�
�

(3.14)

for all w h 2 W h .

ˆ Fluid sub-step: �nd
�
u n

h ; pn
h

�
2 V h � Qh , such that

� f � @� u n
h ; vh

�

 f + af

h

�
(u h ; ph); (vh ; qh)

�
+

 0h
�

�
pn

h � pn� 1
h ; qh

�
�

�
�
u n

h �
.
dn

h ; qhn
�

� +
�
h

�
u n

h ; vh
�

� =
�
h

� .
dn

h ; vh
�

� +
�
� (u n� 1

h ; pn� 1
h )n ; vh

�
�

(3.15)

for all (vh ; qh) 2 V h � Qh .

Roughly speaking, the lack of spatial uniformity in the splitting error of Algorithm 3.2
can be explained as follows. After spatial re�nement, i.e., wheneverh ! 0, the solid
sub-problem (3.14) forces the solid velocity

.
dn

h to be close to u n� 1
h j � , whereas in the

�uid sub-problem (3.15) the �uid velocity u n
h j � approximates

.
dn

h . In summary, the spatial
discretization forcesku n

h � u n� 1
h k0;� to be small ash ! 0, by amplifying the time-splitting

error. This is an essential ingredient of the scheme that guarantees numerical stability but
it degrades accuracy.

3.3.2.3 Projection based semi-implicit coupling scheme

Algorithm 3.3 reports the projection based semi-implicit scheme of Chapter 2. The
fundamental idea of this method, borrowed from Fernández et al. (2007) in the case of �tted
mesh approximations, consists in combining a fractional-step time-marching in the �uid
(3.1) (see, e.g., Guermond et al. (2006)) with a semi-implicit treatment of the interface
coupling (3.3). In Algorithm 3.3, the �uid is discretized in time with an incremental
pressure-correction method and a backward-Euler method is considered for the solid. We
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introduce the �uid discrete viscous bi-linear form

af
h

�
u h ; vh

� def= 2 �
�
� (u h); � (vh)

�

 f :

Note that the �uid viscous-step (3.16) is explicitly coupled with the solid, hence avoiding
strong coupling (i.e., reducing computational complexity), whereas the coupled pressure-
displacement system (3.17) guarantees added-mass free stability through the implicit treat-
ment of the �uid incompressibility and solid inertial e�ects. For r = 2 , the Algorithm 3.3
can be initialized with one step of the scheme withr = 1 .

Algorithm 3.3 Projection-based semi-implicit scheme (from Chapter 2).
For n � r :

1. Fluid viscous step: �nd eu n
h 2 V h such that

� f

�

�
eu n

h � u n� 1
h ; evh

�

 f + af

h (eu n
h ; evh) + gh(eu n

h ; vh) +
�
r pn� 1

h ; evh
�


 f

� (� (eu n
h ; 0)n ; evh) � +

�
h

�
eu n

h �
.
d?;r

h ; evh

�

�
�

�
eu n

h �
.
d?;r

h ; � (evh ; 0)n
�

�
= 0 (3.16)

for all evh 2 V h .

2. Pressure-displacement step: �nd
�
pn

h ; dn
h

�
2 Qh � W h with

.
dn

h = @� dn
h , such that

8
><

>:

�
� f

�
r (pn

h � pn� 1
h ); r qh

�

 f

h
+ sh(pn

h ; qh) =
�
eu n

h �
.
dn

h ; qhn
�

� �
�

div eu n
h ; qh

�

 f ;

� s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h) =

�
h

�
eu n

h �
.
d?;r

h ; w h
�

� �
�
� (eu n

h ; pn
h )n ; w h

�
�

(3.17)
for all

�
qh ; w h

�
2 Qh � W h .

3. Intermediate velocity step: �nd u n
h 2 V h such that

� f

�
(u n

h ; vh) 
 f =
� f

�
(eu n

h ; vh) 
 f �
�
r (pn

h � pn� 1
h ); vh

�

 f (3.18)

for all vh 2 V h .

It is worth noting that the discrete interface stresses in the (3.17)2 involve the same
penalty term as in (3.16). In other words, the viscous stresses in (3.17)2 correspond to
the variationally consistent residual of (3.16). This constitutes a fundamental di�erence
with respect to Algorithm 3.2 (and also with respect to Astorino et al. (2009a) with �tted
meshes).

The next section provides an error estimate for Algorithm 3.3 which shows superior ac-
curacy with respect to Algorithm 3.2, namely: O(� r =h

1
2 ), with r = 1 ; 2, instead ofO(�=h).

Furthermore, the numerical evidence reported in Section 3.5 suggests Algorithm 3.3 de-
livers practically the same accuracy as Algorithm 3.1, which is uniform with respect toh.
The price to pay for this superior accuracy with respect to Algorithm 3.2 is threefold:
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ˆ An additional CFL-like condition for stability (see Theorem 2.2.1 and Theorem 3.4.1
below);

ˆ The solution of the coupled pressure-displacement system (3.17);

ˆ A limited �exibility in the choice of the time-stepping for the �uid and solid sub-
systems.

Remark 3.3.2. In practice, we can avoid solving the third step, by inserting(3.18) into
the viscous step(3.16), obtaining

� f � @� eu n
h ; evh

�

 f + af

h

�
eu n

h ; evh
�

+ gh(eu n
h ; vh) +

�
r (2pn� 1 � pn� 2); evh

�

 f

�
�
� (eu n

h ; 0)n ; evh
�

� +
�
h

�
eu n

h �
.
d?;r

h ; evh
�

� �
�
eu n

h �
.
d?;r

h ; � (evh;i ; 0)n i
�

� = 0

for all evh 2 V h .

3.4 Numerical analysis

This section is devoted to the numerical analysis of Algorithm 3.3. We �rst recall the
main ingredients for the energy stability of the method reported in Chapter 2 and extend
the proof to cover the case of a second-order extrapolation (r = 2 ). An a priori error
estimate is derived in Section 3.4.2.

3.4.1 Energy stability

We assume (see, e.g., Hansbo and Hansbo (2004); Burman and Hansbo (2012)) that
the following trace inequality holds

kvk2
0;� \ K � CT

�
h� 1kvk2

0;K + hkr vk2
0;K

�
(3.19)

for all v 2 H 1(K ), K 2 T f
h and CT depending only on� . By combining (3.19) with a

discrete inverse inequality, it follows

k" (vh) n k2
0;� 6

X

K 2Gh

k" (vh)k2
0;� \ K

6 CT

X

K 2Gh

�
h� 1 k" (vh)k2

0;K + h kr " (vh)k2
0;K

�

6
CTI

h

X

K 2Gh

k" (vh)k2
0;K

(3.20)

for all vh 2 Vh : Hence,
h k" (vh) n k2

0;� � CTI k" (vh)k2
0;
 f

h
(3.21)

for all vh 2 V h . This estimates are fundamental for the energy stability of the method.
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Let de�ne the discrete total energy E n
h by the following expression:

E n
h

def=
� f

2
ku n

hk2
0;
 f +

� s"
2

k
.
dn

hk2
� +

1
2

kdn
hk2

s +
� 2

2� f kr pn
hk2

0;
 f
h
: (3.22)

The following result states the conditional energy based stability of the approximation
provided by Algorithm 3.3.

Theorem 3.4.1. Let
��

u n
h ; pn

h ;
.
dn

h ; dn
h

�	
n� 1 be given by Algorithm 3.3 withr = 1 ; 2. Under

the following conditions

 �
2(3 + 4� )

�
CTI

cg
; (3.23)

�� �
22� r

1 + 4�
� s"h; (3.24)

with � > 0, the discrete energy estimate presented below holds:

E n
h . E 0

h ; (3.25)

for all n � 1. As a result, Algorithm 3.3 is conditionally stable in the energy norm(3.22).

Proof. The proof for r = 1 is reported in Chapter 2. We recall here some of the steps
and provide some details that include also the caser = 2 , which follows similarly. We
proceed by testing (3.16)-(3.18) with

�
vh ; evh ; qh ; w h

�
=

�
u n

h ; eu n
h ; pn

h ;
.
dn

h

�
. By proceeding

like in the derivation of (2.34) in Chapter 2 (the sole di�erence lies in the choice of
.
d?;r

h
and the inclusion of the seminorm associated to the stabilization operatorSh), we get the
following energy estimate

� f

2
@� ku n
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0;
 f + 2cg� k� (eu n

h )k2
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 f

h
+

�
2� f

�
kr pn
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 2
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 f
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h �
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s � k dn� 1

h k2
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� 2�
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� (eu n
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h �
.
dn

h

�

�
� 2�

�
� (eu n
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h �
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h

�

�| {z }
T1

+
�
h

�
eu n

h �
.
d?;r

h ; eu n
h �

.
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h

�

�| {z }
T2

� 0 (3.26)

for n � r . Term T1 can be bounded by adding and subtracting
.
dn

h , using the
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Cauchy� Schwarz, Young's and trace inequalities (3.20), as follows:

T1 = � 2�
�

� (eu n
h )n ;

.
dn

h �
.
d?;r

h

�

�
� 4�

�
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� �
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� 1
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(3.27)

with � 1; � 2 > 0. Similarly, for the second term, we have
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(3.28)

with � 3 > 0. By inserting (3.27) and (3.28) into (3.26) we get
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for n � r . We now set

� 1 =
�
2

; � 2 =
�

2(1 + 2� )
; � 3 =

1
2

+ �; � > 0;

so that (3.29) yields
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for n � r . We now replace the upper indexn by m and sum overm = r : : : n and multiply
by � . This yields
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for n � r . By rearranging the terms in the �rst sums, we get
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for n � r .
In the caser = 1 , the previous bound yields the energy estimate provided in Chapter 2.

For r = 2 , we need to control the contributions coming form the initialization step, namely,
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which are obtained from one step of Algorithm 3.3 withr = 1 . We hence consider (3.31)
with (n = 1 ; r = 1) , which yields
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Hence, by adding this expression to (3.31), we �nally get
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for n � 1. The energy estimate (3.22) hence follows from (3.32) under the conditions
(3.23)-(3.24), which completes the proof.

Remark 3.4.1. A similar stability analysis can be derived in the case of a thick-walled
solid. The solid quantities appearing on the interface� , such as

.
dn

h �
.
dn� 1

h , are controlled
on the whole solid domain using element-wise trace inequalities. This yields to a parabolic
CFL-type stability condition, namely,

�� . � sh2;

which is more restrictive than in the case of a thin-walled solid. An analogous stability re-
sult is reported in Fernández et al. (2007) for the non-incremental version of Algorithm 3.3
within the framework of �tted mesh. Stability is guaranteed under the CFL-like condition
� f h2 +2 �� . � s"h for a thin-walled solid and� f h2 +2 �� . � sh2 in the case of thick-walled
solid.

3.4.2 A priori error estimate

In the following we use the notation vn def= v (tn ) for a given time dependent function
v. For conciseness, an abuse of notation will be committed by denoting(@t v)n with @t vn .
Furthermore, the symbol . indicates inequalities up to a multiplicative constant (inde-
pendent of the discretization parameterh and of the physical parameters). We consider
the following mesh-dependent seminorms for functions de�ned on the interface� :

kf k2
1
2 ;h; � =

X

K 2Gh

h� 1kf k2
0;� K

; kf k2
� 1

2 ;h; � =
X

K 2Gh

hkf k2
0;� K

where � K denotes the part of the interface intersecting the simplexK , i.e., � K
def= K \ � :

For the sake of simplicity, in the error analysis we assume that the interface� is
�at. Furthermore, the elements of the solid mesh are supposed to be grouped in disjoint
macropatchesPi , with meas(Pi ) = O(hd). Each (d � 1)-dimensional macro patchPi is
assumed to contain at least one interior node and the union of thePi is assumed to cover
� , viz., [ i Fi = � .

The discrete interpolation operators are those introduced in Burman and Fernández
(2014a) (see also Fernández and Landajuela (2019)). For the solid displacement, we con-
sider the elastic Ritz-projection operator � s

h : W ! W h de�ned by the relation

as (w � � s
hw; w h) = 0 (3.33)
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for all w h 2 W h ; and for which there holds

kw � � s
hwk0;� + h kr (w � � s

hw)k0;� . h2jw j2;� (3.34)

for all w 2
�
H 2(�)

� d \ W . For the solid velocity, we consider the operatorI h : W ! W h

which is de�ned as a correction of the operator� s
h by the relation

I hw def= � s
hw +

X

i

� i ' i ;

with � i 2 R to be �xed with a constraint detailed below. The ' i are functions with
support in the macropatchesPi ; such that

0 6 ' i 6 1; k' i k0;Pi
. h

d� 1
2

and take the value 1, component-wise, in the interior nodes of the associated patchPi .
The scalars� i are chosen so that the following condition holds:

Z

Pi

(w � I hw) � n = 0 : (3.35)

This orthogonality condition is used in the error analysis to control the interface terms
coupling the �uid pressure and the solid velocity. We refer to Becker et al. (2009) for the
detailed construction of such an operator. It can be shown (see (Burman and Fernández,
2014a, Lemma 3.3)) that

kw � I hwk0;� + h kr (w � I hw)k0;� . h2jw j2;� (3.36)

for all w 2
�
H 2(�)

� d \ W .

Since the physical solution and the discrete one, are de�ned on di�erent domains,
namely 
 f and 
 f

h , with 
 f � 
 f
h , we assume that there exist two linear continuous

lifting operators E2 : H 2
�

 f

�
! H 2

�
Rd

�
and E1 : H 1

�

 f

�
! H 1

�
Rd

�
; satisfying the

boundskE1vkH 1(Rd) . kvkH 1( 
 f ) for all v 2 H 1
�

 f

�
and kE2vkH 2(Rd) . kvkH 2( 
 f ) for all

v 2 H 2
�

 f

�
; (see, e.g., Evans (2002); Salsa (2009)). To interpolate the resulting extended

�uid solution we consider the Scott� Zhang operator i sz, see Ern and Guermond (2004)
for extra details. Then it holds (see (Burman and Fernández, 2014a, Lemma 3.3)):

kv � i szE2vk0;
 f + h kr (v � i szE2v)k0;
 f . h2jv j2;
 f ;

kq � i szE1qk0;
 f + h kr (q � i szE1q)k0;
 f . hjqj1;
 f ;

k� (v � i szE2v; q � i szE1q) n k� 1
2 ;h; � . h

�
kvk2;
 f + kqk1;
 f

�
;

kv � i szE2vk 1
2 ;h; � . hkvk2;
 f ;

kw � I hwk 1
2 ;h; � . h

3
2 kwk2;�

(3.37)

for all v 2
�
H 2(
 f )

� d
, q 2 H 1(
 f ) and w 2

�
H 2(�)

� d \ W . Moreover, using an inverse
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inequality, (3.37) and the stability of the extension operator we have the following stability
result for the gradient projection


 r i szE1qk2

0;
 f
h

� h� 1

 i szE1q � E1qk2

0;
 f
h

+

 r E1qk2

0;
 f
h

.

 qk2

1;
 f : (3.38)

For the pressure and ghost-penalty stabilization operators (3.7)-(3.8), the follow-
ing consistency properties hold (see, e.g., Burman and Fernández (2014a); Burman and
Hansbo (2014)):

sh (i szE1q; iszE1q)
1
2 . � � 1

2 hjqj1;
 f (3.39)

and
gh (i szE2v; i szE2v)

1
2 . h�

1
2 jvj2;
 f : (3.40)

In the following we will make use of the discrete Gronwall lemma (see, e.g., Heywood
and Rannacher (1990)), which we collect here without a proof.

Lemma 3.4.2. Let �; B and am ; bm ; cm ; � m (for integers m > 1 ) be non-negative numbers
such that

an + �
nX

m=1

bm 6 �
nX

m=1

� m am + �
nX

m=1

cm + B

for n > 1: Suppose that� � m < 1 for all m > 1: Then there holds

an + �
nX

m=1

bm 6 exp

 

�
nX

m=1

� m

1 � � � m

!  

�
nX

m=1

cm + B

!

for n � 1.

For the a priori error estimate, we assume that the exact solution of problem (3.1)-(3.3)
has the following regularity, for a given �nal time T > � :

u 2
�
H 1 �

0; T; H 2(
)
�� d

; u j � 2
�
H 1 �

0; T; H 2(�)
�� d

;

@tt u 2
�
L 2 �

0; T; L 2(
)
�� d

; @tt u j � 2
�
L 2 �

0; T; L 2(�)
�� d

;

p 2 H 1 �
0; T; H 1(
)

�
; u j � 2

�
H 2 �

0; T; H 2(�)
�� d

;

@( r )
t u j � 2

�
L 2 �

0; T; L 2(�)
�� d

; d 2
�
H 1 �

0; T; H 2(�)
�� d

:

(3.41)

We de�ne the energy norm of the error at time tn as

Z n
h

def= ( � f )
1
2 ku n � u n

hk0;
 f +
�

(� f )
1
2

kr (pn � pn
h )k0;
 f

h
+ ( � s" )

1
2 k

.
dn �

.
dn

hk0;� + kdn � dn
hks

+

 
nX

m=1

�
�

1 + 2�
� keu m

h �
.
dm

h k2
1
2 ;h; �

! 1
2

+

 
nX

m=1

� j(eu m
h ; pm

h )j2S

! 1
2

:

We can then state the following a priori error estimate.
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Theorem 3.4.3. Let (u ; p;d;
.
d) be the solution of (3.1)-(3.2) and,

f (u n
h ; eu n

h ; pn
h ; dn

h ;
.
dn

h )gn� r be given by Algorithm 3.3, with initial data

(eu r � 1
h ; pr � 1

h ; dr � 1
h ;

.
dr � 1

h ) = ( i szE2u r � 1; i szE1pr � 1; � s
hdr � 1; I h

.
dr � 1)

for r = 1 ; 2. Suppose that the exact solution has the regularity(3.41) and that the stability
conditions (3.23)-(3.24) hold. Then, for n � r and n� < T , we have the following discrete
error estimate:

Z n
h . c1h + c2� + c3

� r

h
1
2

; (3.42)

where f ci g3
i =1 denote positive constants independent ofh and � , but which depend on the

physical parameters and on the regularity of the exact solution.

Proof. The proof combines some of the arguments reported in Burman et al. (2017);
Burman and Fernández (2014a). Note however that analysis of Burman and Fernández
(2014a) focuses on the spatial semi-discrete problem (3.10) and the work of Burman et al.
(2017) is limited to a pure �uid problem. Multiplying (3.1)-(3.2) by (vh ; qh) 2 V h � Qh

and w h 2 W h , integrating by parts over 
 f and using (3.1)3 and (3.3)2 we obtain

1. Fluid sub-problem:

(
� f (@t u; vh) 
 f + 2 � (� (u ); � (vh)) 
 f + ( r p;vh) 
 f � (� (u ; 0) n ; vh) � = 0 ;

(qh ; div u ) 
 f = 0 :
(3.43)

2. Solid sub-problem:

� s" (@t
.
d; w h) � + as (d; w h) + ( � (u ; p) n ; w h) � = 0 :

Note that only the viscous term has been integrated by parts in the �uid.

On the other hand, owing to the kinematic coupling condition (3.3)1, we also have

1. Fluid sub-problem:

8
>><

>>:

� f (@t u; vh) 
 f + 2 � (� (u ); � (vh)) 
 f + ( r p;vh) 
 f � (� (u ; 0) n ; vh) �

+
�
h

(u �
.
d; vh) � � (u �

.
d; � (vh ; � qh) n ) � = 0 ;

(qh ; div u ) 
 f = 0

(3.44)

for all (vh ; qh) 2 V h � Qh .

2. Solid sub-problem:

� s" (@t
.
d; w h) � + as (d; w h) +

�
h

(
.
d � u ; w h) � + ( � (u ; p) n ; w h) � = 0 (3.45)

for all w h 2 W h .
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Thereafter, using the lifting operators (component-wise) we introduce the following de-
composition of the errors for the �uid:

E2u n � u n
h = E2u n � i szE2u n

| {z }
def= � n

�

+ i szE2u n � u n
h| {z }

def= � n
h

in 
 f
h ;

E2u n � eu n
h = E2u n � i szE2u n

| {z }
def= � n

�

+ i szE2u n � eu n
h| {z }

def= e�
n
h

in 
 f
h ;

E1pn � pn
h = E1pn � i szE1pn

| {z }
def= yn

�

+ i szE1pn � pn
h| {z }

def= yn
h

in 
 f
h

(3.46)

and for the solid:

dn � dn
h = dn � � s

hdn

| {z }
def= � n

�

+ � s
hdn � dn

h| {z }
def= � n

h

in � ;

.
dn �

.
dn

h =
.
dn � I h

.
dn

| {z }
def= _� n

�

+ I h
.
dn �

.
dn

h| {z }
def= _� n

h

in � :
(3.47)

By adding and subtracting @� � s
hdn , we can rewrite _� n

h as

_� n
h = I h

.
dn �

.
dn

h = I h
.
dn � @� � s

hdn

| {z }
def= zn

h

+ @� � s
hdn � @� dn

h| {z }
= @� � n

h

= zn
h + @� � n

h : (3.48)

We also introduce the following notations:

_� ?;r
�

def=
.
dn � I h

.
d?;r =

( .
dn � I h

.
dn� 1 if r = 1 ;

.
dn � 2I h

.
dn� 1 + I h

.
dn� 2 if r = 2 ;

(3.49)

 n� 1
h

def= yn� 1
h + i szE1pn � i szE1pn� 1: (3.50)

In particular, owing to (3.49), we have

u n � eu n
h � (

.
dn �

.
d?;r

h ) = � n
� + e�

n
h � ( _� ?;r

� + I h
.
d?;r �

.
dn;r

h ) = � n
� + e�

n
h � ( _� ?;r

� + _� n;r
h ); (3.51)

Similar, from (3.50), one straightforwardly gets the following useful relations:

pn � pn� 1
h =  n� 1

h + yn
� ;

pn
h � pn� 1

h =  n� 1
h � yn

h :
(3.52)

The essential part of the proof focuses on deriving an a priori estimate for the discrete
errors �

(� n
h ; e�

n
h ; yn

h ; � n
h ; _� n

h )
	

n� r ;
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in terms of the following energy norm

En
h

def= ( � f )
1
2 k� n

hk0;
 f +
�

�
� f

� 1
2

kr yn
h k0;
 f

h
+ ( � s" )

1
2 k_� n

hk0;� + k� n
hks

+

 
nX

m= r

� �

 r e�

m
h


 2

0;
 f
h

! 1
2

+

 
nX

m= r

�
�

1 + 2�
� ke�

m
h � _� m

h k2
1
2 ;h; �

! 1
2

+

 
nX

m= r

� cgj(e�
m
h ; ym

h )j2S

! 1
2

:

To this purpose, we �rst focus on the �uid subsystem. By subtracting (3.16) from the
momentum equation of (3.44) att = tn , with n � r , we get

� f � @t u n ; evh
�


 f �
� f

�

�
eu n

h � u n� 1
h ; evh

�

 f +2 �

�
� (u n � eu n

h ); � (evh)
�


 f +
�
r (pn � pn� 1

h ); evh
�


 f

+
�
h

�
(u n � eu n

h ) � (
.
dn �

.
d?;r

h ); evh
�

� �
�
u n �

.
dn ; � (evh ; � qh)n

�
� +

�
eu n

h �
.
d?;r

h ; � (evh ; 0)n
�

�

�
�
� (u n � eu n

h ; 0)n ; evh
�

� � gh(eu n
h ; vn

h ) = 0 : (3.53)

Owing to the error decompositions (3.46) -(3.47) and using (3.51)-(3.52), the identity
(3.53) can be rewritten as

� f

�

� e�
n
h � � n� 1

h ; evh
�


 f + 2 �
�
� (e�

n
h ); � (evh)

�

 f +

�
r  n� 1

h ; evh
�


 f

+
�
h

� e�
n
h � _� ?;r

h ; evh
�

� �
� e�

n
h � _� ?;r

h ; � (evh ; 0)n
�

� �
�
� (e�

n
h ; 0)n ; evh

�
� + gh

� e�
n
h ; vn

h

�

= � f � � @t u n + @� u n � @� � n
� ; evh

�

 f � 2�

�
� (� n

� ); � (evh)
�


 f �
�
r yn

� ; evh
�


 f

�
�
h

�
� n

� � _� ?;r
� ; evh

�
� +

�
� n

� � _� ?;r
� ; � (evh ; 0)n

�
� +

�
� (� n

� ; 0)n ; evh
�

� + gh
�
i szE2u n ; vn

h

�

(3.54)

for n � r .

For the pressure, subtracting the pressure-projection step of (3.17) from the mass
conservation equation (3.44) att = tn , with n � r , we get the following relation

�
div(u n � eu n

h ); qh
�


 f �
�
� f

�
r (pn

h � pn� 1
h ); r qh

�

 f

h
� sh

�
pn

h ; qh
�

+
�
eu n

h �
.
dn

h ; qh n
�

� = 0 :

(3.55)
Again, using the de�nition of error decomposition (3.46)-(3.47), the coupling kinematic
condition (3.3)1 and (3.52), from (3.55) we obtain

�
� f

�
r (yn

h �  n� 1
h ); r qh

�

 f

h
+

�
div e�

n
h ; qh

�

 f + sh

�
yn

h ; qh
�

�
� e�

n
h � _� n

h ; qh n
�

�

= �
�

div � n
� ; qh

�

 f + sh

�
i szE1pn ; qh

�
+

�
� n

� � _� n
� ; qh n

�
� (3.56)

for n � r .

Finally, adding and subtracting i szE2u n , i szE1pn , i szE1pn� 1 in (3.18) and using (3.52),
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we obtain the following relation for the end-of-step velocity error

� f

�

�
� n

h � e�
n
h ; vh

�

 f +

�
r (yn

h �  n� 1
h ); vh

�

 f = 0 (3.57)

for n � r .

Subtracting the solid problem of (3.17) from (3.45)t = tn , with n � r , and using the
relation (3.51), we obtain

� s"
�
@t

.
dn � @�

�
.
dn

h ; w h
�

� + as� dn � dn
h ; w h

�
�

�
h

�
u n � eu n

h � (
.
dn �

.
d?;r

h ); w h
�

�

+
�
� (u n � eu n

h ; pn � pn
h )n ; w h

�
� = 0 :

Thus, using (3.46) -(3.47) and (3.51), we �nally get the equation for the solid discrete
errors:

� s"
�
@� _� n

h ; w h
�

� + as� � n
h ; w h

�
�

�
h

� e�
n
h � _� ?;r

h ; w h
�

� +
�
� (e�

n
h ; yn

h )n ; w h
�

�

= � s"
�
@�

.
dn � @t

.
dn � @� _� n

� ; w h
�

� � as� � n
� ; w h

�

| {z }
= 0

+
�
h

�
� n

� � _� ?;r
� ; w h

�
� �

�
� (� n

� ; yn
� )n ; w h

�
�

(3.58)

for n � r . Note that term as
�
� n

� ; w h
�

vanishes due to the de�nition of the solid velocity
projection operator (3.33).

Owing to (3.54), (3.56), (3.57) and (3.58), we have that the the discrete errors
(� n

h ; e�
n
h ; yn

h ; � n
h , _� n

h ) satisfy a time-stepping scheme similar to Algorithm 3.3, but with
a modi�ed right-hand side and pressure increment (i.e., we haveyn

n �  n� 1
h instead of

pn
h � pn� 1

h ). Therefore, we can leverage the stability arguments of Theorem 3.4.1 to derive
an a priori error estimate. We proceed by testing (3.54), (3.56), (3.57) and (3.58) with

(evh ; vh ; qh ; w h) = �
� e�

n
h ; � n

h ; yn
h ; _� n

h

�
:

By adding the resulting expressions, using the equivalent steps considered for (3.30) in
Theorem 3.4.1, we obtain the following energy inequality for the discrete errors:
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for n � r , and with the right-hand side G?;r
h de�ned by
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(3.60)
Considering condition (3.23), equation (3.59) can be written as:
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an issue (see, e.g., Burman et al. (2017)). Indeed, using (3.38) we have
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so that by inserting this expression into (3.59), we have
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for n � r . We now replace the upper indexn by m and sum overm = r : : : n , this yields
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for n � r .

We proceed by estimating G?;r
h , by treating each term in (3.60) separately. The

�rst term can be bound in a standard fashion using a Taylor expansion, (3.37), the
Cauchy�Schwarz and the Poincaré's inequalities with constantCP . This yields

T1 6 � f �
�
k@t u n � @� u nk0;
 f + k@� � n

� k0;
 f

�
ke�

n
hk0;
 f

6 � f �
�
�

1
2 k@tt u nkL 2(tn � 1 ;t n ;L 2 (
 f )) + � � 1

2 k@t � � kL 2(tn � 1 ;t n ;L 2 (
 f ))
�
ke�

n
hk0;
 f

6
(� f CP)2

2"1�

�
� 2 k@tt ukL 2(tn � 1 ;t n ;L 2 (
 f )) + k@t � � k2

L 2(tn � 1 ;t n ;L 2 (
 f ))
�

+ "1� � kr e�
n
hk2

0;
 f
h

.
(� f CP)2

2"1�
� 2 k@tt uk2

L 2(tn � 1 ;t n ;L 2 (
 f )) +
(� f CP)2

2"1�
h2 k@t uk2

L 2(tn � 1 ;t n ;H 2 (
 f ))

+ "1� � kr e�
n
hk2

0;
 f
h

(3.62)

with "1 > 0. Observe that the last term can be absorbed in the left-hand side of (3.61)
with "1 small enough. For termT9 we proceed in a similar fashion. Using (3.37), we get
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with "9 > 0 and where the last term can can be controlled in (3.61) using a Grönwall
argument (Lemma 3.4.2).
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For term T2, using (3.37), we have
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The second term can be absorbed in the left-hand side of (3.61) for"2 > 0 small enough.
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The last term can be, once again, absorbed in the left-hand side of (3.61), for"3 > 0
su�ciently small.

Terms T4 and T5 involve the Nitsche splitting error, namely k� n
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(3.36), (3.37) and a Taylor expansion we have
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To estimate T4, we follow the same idea of Burman and Fernández (2014a). Using the
robust trace inequality (3.21) combined with (3.66), we get
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Once more, the last term can be absorbed in the left-hand side of (3.61), for"4 > 0
su�ciently small. Similarly, for T5 we have
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Note that the last term can be included in the left-hand side of (3.61) for"5 > 0 small
enough.

Term T6 can be handled using (3.37) as follows:
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Again, the last term can be absorbed in the left-hand side of (3.61), for"6 > 0 small
enough.

Integrating by parts in T7, we have
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Term T7;1 can be easily handled by using (3.37) as follows:
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The second term can be absorbed in the left-hand side of (3.61), for"7 > 0 su�ciently
small. For the second term of (3.70), we proceed as in Burman and Fernández (2014a)
(see also Fernández and Landajuela (2019)). We denote by�yn

i 2 R the average ofyn
h

over the interface patchPi . Combining the trace inequality (3.19) with the orthogonality
property (3.35) of the interpolation operator I h and the standard estimate
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It should be noted here we have assumed that the solid mesh step has an asymptotic
regime similar to the �uid mesh step, namely, hs = O(hf ). As for T7;1, the last term in
(3.72) can be, once again, absorbed in the left-hand side of (3.61), for"7 > 0 su�ciently
small.

For term T8, using the weak consistency of the stabilization operators (3.39) and (3.40),
we have
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Again, the last term can be absorbed in the left-hand side of (3.61), for"8 > 0 small
enough.

Term T10 can be bounded using the continuity estimate for the elastic bilinear form
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(3.5), (3.33), (3.37) and a triangular inequality. This yields
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Note that the �rst term can controlled via Lemma 3.4.2 in (3.61).
In summary, the term

P n
m= r Gm;r

h in the right-hand side of (3.61) can be estimated
by collecting the estimates (3.62)-(3.74) and by inserting them into (3.60), forn � r .
The desired estimate (3.42) hence follows from (3.61) together with the stability condition
(3.24) and Lemma 3.4.2 with
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and by noting that, owing to the initial data, we have

� r � 1
h = 0; e�

r � 1
h = 0; yr � 1

h = 0 ; � r � 1
h = 0; _� r � 1

h = 0 (3.76)

for r = 1 ; 2. This completes proof.

Corollary 3.4.3.1. Assume that Algorithm 3.3 with r = 2 is initialized with one step of
the method with r = 1 . Then, under the assumptions of Theorem 3.4.3, forn � 1 and
n� < T , the following discrete error estimate holds for the scheme withr = 2 :
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where f ci g4
i =1 denote positive constants independent ofh and � , but which depend on the

physical parameters and on the regularity of the exact solution.

Proof. For r = 2 , we have to bound the contributions from the initialization step in the
right-hand side of (3.61), namely,

� f

2
k� 1

hk2
0;
 f +

� 2

2� f


 r y1

h


 2

0;
 f
h

+
� s"
2

k_� 1
hk2

0;� +
1
2

k� 1
hk2

s: (3.78)

To this purpose, we use the fact that the initialization of Algorithm 3.3 with r = 2 is
provided by the �rst step of the scheme with r = 1 . We can hence use the estimate
provided by (3.61) with r = 1 and n = 1 to control (3.78). More precisely, using (3.76),
this yields
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Hence, by inserting this estimate in (3.61), we get
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for n � 1. Owing to the initialization procedure, the bounds provided in (3.67)-(3.68) for
terms T4 and T5 of G1;1

h yield a O(� 3=h) splitting error, by noting that
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The estimate (3.42) forr = 2 hence follows from (3.79) together with the stability condition
(3.24) and Lemma 3.4.2 with (3.75). This completes proof.

We conclude this section with a series of remarks.

Remark 3.4.2. For r = 2 , the last term in (3.42) comes from the bound of the �rst
step of Algorithm 3.3 with r = 1 , that is, the estimate given by(3.80). This bound is
quasi-optimal in time because the Taylor expansions are evaluated inL 2(0; T) instead of
L 1(0; T). Alternatively, one could avoid this term by initializing Algorithm 3.3 with the
�rst-step of Algorithm 3.1.

Remark 3.4.3. Note that Algorithm 3.2 introduces the following perturbations terms in
the discrete error equation

�
h

�
u n

h � u n� 1
h ; w h

�
0;� +

�
� (u n

h ; pn
h )n � � (u n� 1

h ; pn� 1
h )n ; vh � w h

�
0;� ;

with w h = � _� n
h . The �rst term leads to the following bound:

�
�
h

�
u n � u n� 1; _� n

h

�
0;� �

(� )2

2
� 2

h2 k@t uk2
L 2 (tn � 1 ;t n ;L 2 (�)) +

�
2

k_� n
hk2

0;� :



82

The second term can be controlled via Lemma 3.4.2 while the �rst yields the above men-
tioned O(�=h) sub-optimal splitting error.

Remark 3.4.4. As shown in Theorem 3.4.3, the discrete error estimates of Algorithm 3.3
contains terms of orderO(� r =h1=2), which are not visible numerically (see Section 3.5). To
fully understand the impact of selecting the same penalty term in the viscous step as in the
solid sub-step in Algorithm 3.3, we consider the coupling of a parabolic equation with and
an hyperbolic one. The considered coupled problem reads as follow: �ndu : 
 f � R+ ! R,
d : � � R+ ! R, _d : � � R+ ! R, such that for all t 2 R+ we have

(
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with the respective initial conditions. We propose to discretize the problem via a loosely
coupled scheme, inspired by the semi-implicit scheme of Algorithm 3.3. The fully discrete
approximation results in the following (explicit) scheme:
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When considering loosely coupled schemes with Nitsche's coupling, the sub-optimal terms
come typically from the fact that we introduce a time-splitting error inside the Nitsche's
penalty term, which is scaled with anh� 1. A possible way to overcome this issue, is to
remove the time-splitting error from the Nitsche's penalty term, by introducing an error
in time within the de�nition of the projection errors. Thus, considering the following
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decomposition of the errors for the parabolic-hyperbolic explicit scheme:
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it can be proven that the scheme delivers optimal space and time accuracy. More in detail,
using similar arguments of the proof of Theorem 3.4.3, we will get the following terms
inside the Nitsche's penalty part:
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which does not contain error in time, in fact the arising terms involving � n
h � _� n� 1

h are
controlled via the stability result and terms involving� n

� � _� n
� have optimal convergence

order. The only terms which contain _� n
� are the correspondingT9 and T10 terms of (3.60)

and their optimality can be proved.
A similar strategy fails when considered for the semi-implicit scheme of Algorithm 3.3.

In particular we will retrieve terms of order O(�=h 1=2) when controlling the pressure term
T7;2 of (3.60).

3.5 Numerical experiments

In this section, we illustrate via numerical experiments the convergence properties
of Algorithm 3.3 with r = 1 ; 2 (semi-implicit scheme) in an academic numerical example.
The obtained results are compared with those of Algorithms 3.1 (strongly coupled scheme)
and Algorithm 3.2 (stabilized explicit coupling scheme).

ˆ ˆA B

� I � O

� W


 f


 f
h�

Figure 3.2: Geometric con�guration.

The considered test case is the well-known �uid-structure interaction benchmark de-
scribing the propagation of a pressure wave within a straight two-dimensional elastic tube
(see, e.g., Formaggia et al. (2001); Burman and Fernández (2009, 2014a)). In the following,
all the units are given in the CGS system.
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Figure 3.3: Fluid and solid meshes forh = 0 :1.

(a) Algorithm 3.3, r = 1 : (b) Algorithm 3.3, r = 2 :

(c) Algorithm 3.1. (d) Algorithm 3.2.

Figure 3.4: Snapshots of the �uid pressure and deformation (magni�ed) at di�erent time
instants.

The �uid domain is de�ned as 
 f = [0 ; L ] � [0; R], with L = 6 and R = 0 :5, while
the �uid computational domain is given by 
 f

h = [0 ; 6] � [0; 0:8]. The solid domain is
� = [0 ; L ] � f Rg, as shown in Figure 3.2. In the sequel, the solid is described by a
one-dimensional string model, viz.,

d =
�

0
�

�
; Ld =

�
0

� � 1@xx � + � 0�

�
; � 1

def=
E"

2(1 + v)
; � 0

def=
E"

R2 (1 � � 2)
;
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(a) i = 0 : (b) i = 1 :

(c) i = 2 : (d) i = 3 :

Figure 3.5: Comparison of the solid displacements att = 1 :5 � 10� 2 for di�erent levels of
(�; h )-re�nement, given by (3.82) with i = 0 ; :::; 3.

hence in (3.4), taking w = (0 ; w)T ; we have

as(d; w ) def= � 1(@x �; @xw) � + � 0(�; w ) � :

The �uid physical parameters are given by � f = 1 :0; � = 0 :035: For the solid we have
� s = 1 :1 and " = 0 :1; with Young's modulus E = 0 :75 � 106 and Poisson's ratio� = 0 :5.
Regarding the boundary conditions, we consider both �uid and structure to be initially
at rest and we impose a sinusoidal normal traction of maximal amplitude2 � 104 for
5 � 10� 3 time instants at the inlet � I . A symmetry condition is applied on the lower wall
� W and zero traction is enforced at� O. All the computations have been performed with
FreeFem++ Hecht (2012). An example of the un�tted meshes is shown in Figure 3.3 with
�uid space discretization parameter h = 0 :1. The Nitsche parameter is set to = 103 and
for the pressure and ghost-penalty stabilization terms (3.7)-(3.8) we consider p = 10 � 3

and  g = 1 ; respectively.

As expected, all the considered considered methods deliver a numerical solution with
a stable pressure-wave propagation. For illustration purposes, Figure 3.4 provides the
snapshots of the �uid pressure and solid deformation at timet = 5 � 10� 3; 10� 2 and
1:5 � 10� 2, obtained with � = 10 � 4 and h = 0 :05 using respectively Algorithms 3.1-3.3.
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Figure 3.6: Convergence history of the solid displacements att = 1 :5� 10� 2 in the elastic-
energy norm.

The solid displacement has been ampli�ed by a factor20. A very good agreement between
Algorithm 3.1 and Algorithm 3.3 ( r = 1 ; 2) is clearly visible, while a di�erence on the solid
displacement is noticeable with Algorithm 3.2.

In order to quantify the accuracy properties of each coupling scheme we have evaluated
the convergence histories by uniformly re�ning in space and in time

(h; � ) 2
�

0:1=2i ; 2 � 10� 4=2i 	 4
i =0 : (3.82)

Figure 3.5 shows the corresponding solid displacement att = 1 :5 � 10� 2 for i = 0 ; ::; 3
and the di�erent coupling schemes. As in Figure 3.4, a very good �t is observed between
Algorithm 3.1 and Algorithm 3.3 ( r = 1 ; 2), while a degradation of accuracy is visible
for Algorithm 3.2 under space-time re�nement. The depicted reference solution has been
generated using the strongly coupled �tted method with a high space-time grid resolution
(h = 3 :125� 10� 3 and � = 10 � 6).

Figure 3.6 reports the convergence history of the solid displacement at timet =
1:5 � 10� 2, in the relative elastic energy-norm. Note that by the choice of space and
time discretization parameters we have� = O(h). The results show that Algorithm 3.3
with r = 1 ; 2 and Algorithm 3.1 retrieve the overall optimal �rst-order accuracy O(h) of
Algorithm 3.1. As expected, Algorithm 3.2 shows a non-convergent behavior. This points
out the sub-optimal O(�=h) splitting error (see Remark 3.4.3). Finally, it is worth noting
that no e�ect from the O(�=h

1
2 ) and O(� 2=h

1
2 ) anticipated by Theorem 3.4.3 is visible on

the convergence history of Algorithm 3.3.
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3.6 Conclusion

In this chapter we have analyzed the un�tted mesh based semi-implicit coupling scheme
introduced in Chapter 2 in the context of linear-�uid structure interaction with thin-walled
solid. The investigated method combines a Nitsche based un�tted mesh spatial approxi-
mation with a fractional-step time-splitting in the �uid. The strong coupling is avoided
by treating explicitly the �uid viscous part, while the added-mass free stability (see Theo-
rem 2.2.1 and Theorem 3.4.1) is achieved by treating implicitly the �uid incompressibility
and the solid inertia.

We have extended the stability analysis, previously carried out in Chapter 2, for �rst
order extrapolation in the solid velocity, namely r = 1 , to the case of second order extrap-
olation, r = 2 . An additional CFL-like condition is obtained, which limits the choice of
the time-step, subordinated to the space discretization and the Nitsche's penalty parame-
ters. An a priori convergence analysis is derived in Section 3.4.2, for the two extrapolated
variants, r = 1 ; 2. A superior accuracy is shown, namelyO(� r =h

1
2 ), r = 1 ; 2, with respect

to the stabilized explicit scheme of Burman and Fernández (2014a), which isO(�=h).
The numerical evidence of Section 3.5 indicates that the semi-implicit algorithm and

the strongly coupled (from Burman and Fernández (2014a)) deliver the same accuracy
behavior. Future extensions of this work could consider, for instance, curved and moving
interfaces.





Part II

Modeling and approximation of
fluid-structure-contact

interaction





Chapter 4

An un�tted mesh �uid-structure-contact
approximation with multiple thin-walled

immersed solids

In this chapter we address some of the di�culties that arise in the treatment of contact
within the Nitsche-XFEM framework. In order to guarantee consistency, further element
duplication is introduced in the �uid elements where contact between the solid occurs. The
proposed Nitsche-XFEM method for �uid-structure-contact interaction is then compared
with alternative �tted (ALE based) and un�tted (�ctitious domain) mesh methods. The
advantages and limitations of all this approaches are discussed in an academic test case.
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4.1 Introduction

In this chapter, we address the problem of �uid-structure interaction with contact be-
tween multiple thin-walled immersed structures, starting from the Nitsche-XFEM method-
ology proposed in Alauzet et al. (2016). Speci�c duplication and intersection procedures
allow to extend the consistency of the method to the case of contact.

The immersed interfaces separate each intersected �uid element into two, or more
(when multiple structures enter the same �uid element), physical regions. Here, we propose
to enrich the discrete spaces as many times as needed, in order to well reproduce all the
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physical regions belonging to each �uid element. This approach is a natural extension
of the procedure proposed in Alauzet et al. (2016), even thought, to our knowledge, no
previous works combining contact, XFEM, �uid-structure interaction with multiple thin-
walled structures and un�tted mesh are available.

In order to avoid penetration between the solids, we consider an unbiased contact for-
mulation which does not distinguish between master and slave surfaces (see, e.g., Mlika
et al. (2017); Poulios and Renard (2015)). Additionally, issues related to real contact (such
as, changing in time of the FSI interface, creation of vacuum zones at solid release) are
circumvented considering a relaxed contact formulation. The relaxed contact formulation
su�ers of mechanical inconsistencies at contact. This subject will be considered in Chap-
ter 5. For discussion on dry contact mechanics, we refer to Wriggers and Zavarise (2004).
Additionally, for contact treated via penalization we refer to Chouly and Hild (2012);
Kamensky et al. (2015), via Augmented Lagrangian/Nitsche's approach to Burman et al.
(2018, 2019). The latter approach can be seen as a consistent penalization method. We
also refer to Burman et al. (2020a); Mayer et al. (2009, 2010); Chouly et al. (2017) for
further examples of contact for FSI with Nitsche. In this chapter, we will compare the
Nitsche-XFEM method with FD and ALE numerical methods.

The rest of the chapter is organized as follows. Section 4.2 recalls the geometrical
setting for the models considered. In particular, we introduce in Section 4.2.1 the non-
linear contact model and in Section 4.2.2 the �uid-structure-contact model. The numerical
methods are presented in Section 4.3, in particular, Section 4.3.1 describes the penalty-
based contact algorithm considered, the new Nitsche-XFEM methods is introduced in
Section 4.3.2, together with the new intersection and duplication procedures. Additionally,
we exhibit in Section 4.3.3 the ALE �tted method and in Section 4.3.4 the FD/Lagrange
multipliers method. In Section 4.4 we compare the previously introduced methods on
an academic numerical example and, �nally, a summary of the conclusion are given in
Section 4.5.

4.2 Problem setting

In what follows, the �uid is modeled by the incompressible Navier-Stokes equations
in the ALE or Eulerian formalisms. We refer to Section 1.2.1 for a description of these
mathematical formalisms. For the solid, we consider a non-linear thin-walled sold model
in Lagrangian form (details on Section 1.2.2). The considered geometric con�gurations
are those presented in Section 2.3.1, except for the fact that we consider multiple moving
thin-walled structures immersed within the �uid domain 
 f . The current con�guration
of the solid �( t) is hence made ofm 2 N connected components,�( t) =

S
i =1 ;:::;m � i (t).

Similarly, for the reference con�guration we have� =
S

i =1 ;:::;m � i . The time-dependent
�uid domain is 
 f (t) = 
 f n�( t). Additionally, the thin-walled structures are assumed to
divide the �uid domain into m + 1 disconnected domains
 f

i (t), i = 1 ; ::: ; m + 1 . Without
loss of generality, the model presented in this chapter will consider only two structures,
but it can be derived for m 2 N immersed structures. Hence, we have�( t) = � 1(t) [ � 2(t)
and 
 f (t) = 
 f

1(t) [ 
 f
2(t) [ 
 f

3(t). The considered geometry is shown in Figure 4.1. We
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Figure 4.1: Geometric con�guration of the �uid domain and the immersed solids.

now describe, separately, the considered contact and �uid-structure-contact interaction
models.

4.2.1 Contact model

For simplicity, we assume that the thin-walled solid is made of two connected compo-
nents � = � 1 [ � 2. We have � i (t) = � t (�) . Each surface is oriented with a unit normal
vector n � i (t ) pointing outwards, with respect to the enclosed �uid domain (see Figure 4.1).
Following Mlika et al. (2017), we consider an unbiased contact formulation which does not
distinguish between master and slave surfaces. The formulation of the non-penetration
conditions, in the deformed con�guration, requires the introduction of a map which detects
the potential contacts between opposed surfaces, namely, a vector-valued function

� : �( t) �! Rd:

A standard method to de�ne the map � is the closest-point projection algorithm, but
this is known to yield complicated tangent expressions for the contact terms (see, e.g.,
Poulios and Renard (2015)). Here, we consider a simpler approach, the so-called ray-
tracing method of Poulios and Renard (2015), which for each pointy 2 � i (t) � �( t), the
target � (y ) 2 � j (t) is de�ned as the closest intersection of a opposite surface� j (t) � �( t)
with the line passing through point y and having as directionn � i (t ) (see Figure 4.2). Here
i; j 2 f 1; 2g are such that i 6= j , but self contact could also be considered. Note that the
ray intersection might not exist. In that case, it su�ces to simple de�ne the target as a
point along the positive part of the ray and su�ciently far away from a given bounding
box. We can hence de�ne the gap functiong : � �! R as

g(x ) def=
�
� (� t (x )) � � t (x )

�
� n � i (t )

for all x 2 � i � � . Note that g depends non-linearly on� t and thus on d, i.e., g = g(d)
with a little abuse of notation.

The solid equilibrium with the non penetration conditions is then given by the following
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Figure 4.2: De�nition of the map � using the ray-tracing approach.

system: (
� s"@t

.
d + L (d) � � n �( t ) = T in � ;

g(d) � 0; � � 0; �g (d) = 0 in � :
(4.1)

Note that, as in Chapter 5, the Lagrange multiplier � represents the contact force, which
must be negative. For any positive function , the contact conditions (4.1)2 can be refor-
mulated in terms of the following non-linear relation (see, e.g., Curnier and Alart (1988)):

� =
1


�
� + g(d)

�
R� ; (4.2)

where [ � ]R� stands for the projection onto R� .

As in Chapter 2, we considerW 2
�
H 1

0 (�)
� d as the admissible displacement space.

The variational formulation of (4.1) 1 yields

� s"
�
@t

.
d; w ) + as� d; w ) �

Z

�
� n �( t ) � w =

Z

�
T � w

for all w 2 W . Furthermore, one applies an additional constraint on the system (see Mlika
et al. (2017)), by requiring that the di�erential contact forces on the opposite surfaces are
balanced (viz., Newton's law), which yields the new relation

� s"
�
@t

.
d; w ) + as� d; w ) �

1
2

Z

�
� n �( t ) �

�
w � w (� � 1

t � � � � t )
�

=
Z

�
T � w (4.3)

for all w 2 W .

4.2.2 Fluid-structure-contact model

Considering the notations introduced at the beginning of this section and the solid
model with contact described above, the �uid-structure-contact interaction model reads
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as follows: �nd the �uid velocity and pressure u : 
 f (t) � R+ ! Rd, p : 
( t)f � R+ ! R,
the solid displacement and velocityd : � � R+ ! Rd,

.
d : � � R+ ! Rd, such that for all

t 2 R+ , we have

ˆ Fluid problem:

8
><

>:

� f � @t u + u � r u
�

� div � (u ; p) = 0 in 
 f (t);

div u = 0 in 
 f (t);

u = 0 on � ;

(4.4)

ˆ Solid problem with contact:

8
><

>:

� s"@t
.
d + L (d) � � n �( t ) = T on � ;

g" (d) � 0; � � 0; �g " (d) = 0 on � ;
.
d = @t d on � ;

(4.5)

ˆ Fluid-structure coupling conditions:

8
>>><

>>>:

� = I � + d; �( t) = � t (�) ; 
 f (t) = 
 f n�( t);

u =
.
d � � � 1

t on �( t);
Z

�
T � w = �

Z

�( t )
J� (u ; p)n K� w � � � 1

t ; 8 w : � ! Rd;

(4.6)

with the initial conditions u(0) = u 0, d(0) = d0 and
.
d(0) =

.
d0. In the solid problem

we consider a relaxed contact formulation (see Section 1.2.4), hence the contact condi-
tions (4.5)2 employs the relaxed gap functiong" : � �! R, namely:

g" (x ) def= g(x ) � ";

for all x 2 � i � � and " > 0 is a small parameter. Note that the kinematic and dynamic
interface coupling conditions in (4.6) depend on the considered interface and the sided-
restrictions to each physical region separated by the structure. The jump and average
operators (2.1) across� , are now de�ned according for each interface� i , i = 1 ; 2; 3.

4.3 Numerical methods

This section is devoted to the discretization of the coupled problem (4.4)-(4.6). We
will mainly focus to the discretization via the Nitsche-XFEM method, but for the purpose
of completeness, we will brie�y recall the key components of the �tted mesh ALE and
�ctitious domain numerical methods, used in Section 4.4 for comparison. The common
factor between the methods is the approximation of the solid problem with contact, which
will be addressed separately. In the following, we denote with� > 0 the time-step dis-

cretization parameter, tn
def= n� where n 2 N and with @� xn def= 1

�

�
xn � xn� 1

�
the �rst
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order backward di�erence. As in Chapter 2, we consider to following functional spaces

for the solution of the �uid subproblem, namely V def=
�
H 1

� (
)
� d for the �uid velocity and

Q def= L 2
0(
) for the �uid pressure.

4.3.1 Solid contact approximation via penalty

For the discretization of problem (4.1), we consider a relaxed (see Section 1.2.4) penalty
version of (4.3). Let befT s

h g0<h< 1 a family of quasi-uniform triangulations of � = � 1 [ � 2.
We consider the standard space of continuous piecewise a�ne functions:

X s
h

def=
�

vh 2 C0(�)
�
� vhjK 2 P1(K ); 8K 2 T s

h

	
: (4.7)

Hence, we de�ne the discrete space for the solid displacement and velocity approximations
as W h = [ X s

h ]d \ W . The penalty approach consists in taking

 =
 CE"

h2 ;  C > 0;

and by neglecting the term � in (4.2). This enables the elimination of � , which yields
the following numerical method in terms of primal variables only:

� s"
�
@�

.
dn

h ; w h) + as� dn
h ; w h) �

 CE"
2h2

Z

�

�
g" h (dn

h )
�

R� � JJw hKK =
Z

�
T � w h (4.8)

for all w h 2 W h and with the notations

g" h (dn
h ) def=

�
� (� n

h ) � � n
h

�
� n � n � "h ;

JJw hKKdef= w h � w h
�
(� n

h ) � 1 � � � � n
h

�

and where"h denotes the contact relaxation parameter. The contact term associated to
(4.8) is evaluated locally at each quadrature point. For the derivation of the corresponding
tangent term we refer to Poulios and Renard (2015).

Remark 4.3.1. Note that we could invoke the relation(4.1) to get

� =
�
� s"@t

.
d + L (d) � T

�
� n �( t )

and then use(4.2) to eliminate the Lagrange multiplier in (4.3), by setting

� =
1


�


�
� s"@t

.
d + L (d) � T

�
� n �( t ) + g(d)

�
R� :

This is the basis of the consistent Galerkin least-squares method for the obstacle problem
reported in Burman et al. (2018).
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4.3.2 Un�tted mesh Nitsche-XFEM method

In this section, we focus on the extension of the Nitsche-XFEM discretization technique
to the case of contact with multiple immersed thin-walled solids. As already pointed out in
Section 4.1, the basic idea of XFEM is to reproduce inside the discrete spaces the eventual
singularities of the solution. Considering a single immersed structure (see Figure 4.3(a)),
the only discontinuity lies across the interface� . In this case, the discretization procedure
proposed by Alauzet et al. (2016) is able to reproduce the singularity within the discrete
spaces. Similarly, the method covers the situation in which multiple structures are con-
sidered without contact (they do not intersect the same �uid element). This situation is
showed in Figure 4.3(b). Whereas, if contact is allowed, two approaching solids can reach
the same �uid element. As a result, two discontinuities, one for each interface, need to be
incorporated within the �uid discrete spaces (see Figure 4.3(c)). In the next paragraphs

(a) One single interface. (b) Two interfaces intersecting di�erent
�uid elements.

(c) Two structures entering the same �uid
element.

Figure 4.3: One-dimensional illustration of the di�erent interface locations and associated
physical discontinuities.

we extend the approach proposed in Alauzet et al. (2016) to this situation. We recall
that, for simplicity, a relaxed contact condition is considered. Hence, even in the case of
contact, a thin layer of �uid remains between the two contacting structures.

For sake of simpli�cation, we assume that both 
 f and � are polyhedral. For a

given displacementdn
h 2 W h , we de�ne the interface position, at time level n, as � n def=

� n� 1
h (�) , hence, for each interface� n

i
def= � n� 1

h (� i ). We further recall that � n = � n
1 [ � n

2 .
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Additionally, the physical �uid domain is


 f ;n def= 
 f n� n

and therefore, 
 f ;n = 
 f ;n
1 [ 
 f ;n

2 [ 
 f ;n
3 , where each
 f ;n

i is the i-th physical �uid region.
We introduce three families of quasi-uniform triangulations fT n

h;i g0<h< 1, i = 1 ; 2; 3,

starting from a family fT n
h g0<h< 1 of quasi-uniform triangulations of 
 f ;n . Each T n

h;i is

obtained as the collection of elements ofT n
h that cover each region
 f ;n

i , separated by
� n

i , i = 1 ; 2. Thus, T n
h;i covers the i -th �uid region 
 f ;n

i . Each generated meshT n
h;i is

�tted to the exterior boundary � i but not to T s
h . An example of this setting is shown in

Figure 4.4. Note that the triangulation composed by
S

i =1 ;2;3

�
K 2 T n

h;i

�
is a conforming

triangulation of the whole �uid domain 
 f (t): Furthermore, for each �uid element K , such

that K 2
S

i;j

�
T n

h;i \ T n
h;j

�
, we can distinguish two situations:

ˆ K belongs only to one couple of �uid triangulations (see, for instance, the yellow
and blue elements in Figure 4.4(b));

ˆ K belongs to all �uid triangulations, namely K 2 T n
h;1 \ T n

h;2 \ T n
h;3 (see, for instance,

the grey elements in Figure 4.4(b)).

(a) Un�tted �uid-solid meshes. (b) Triangulations Th; 1 ; Th; 2 and Th; 3 .

Figure 4.4: The overlapping region betweenT n
h;1; T n

h;2 and T n
h;3 is colored in grey, between

T n
h;1 and T n

h;2 in yellow and betweenT n
h;2 and T n

h;3 is blue.

We denote by 
 n
h;i the domain covered byT n

h;i ,


 n
h;i

def= int
�

[ K 2T n
h;i

K
�

:

Let now introduce the following spaces of continuous piecewise a�ne functions, fori =
1; 2; 3:

X n
h;i

def=
n

vh 2 C0(
 n
h;i )

�
� vhjK 2 P1(K ); 8K 2 T n

h;i

o
:
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Associated with X h;i we de�ne the spaces

V n
h;i

def= [ X n
h;i ]

2 \ V n ; Qn
h;i

def= X n
h;i \ Qn :

For the approximation of the �uid velocity and pressure, we will consider the following
discrete product spaces

V n
h

def= V n
h;1 � V n

h;2 � V n
h;3; Qn

h
def= Qn

h;1 � Qn
h;2 � Qn

h;3;

which guarantee that interfacial (strong and weak) discontinuities are included in the
discrete approximation of both the �uid velocity and pressure, also in case two structures
intersect the same �uid element. We will denote by u n

h;i and pn
h;i , with i = 1 ; 2; 3, the

unknowns de�ned in each domain
 n
h;i . We recall that the �uid trilinear form is given by

the following expression

af
h (zh ; (u h ; ph) ; (vh ; qh)) def= cn

h (zh ; u h ; vh) + af ((u h ; ph) ; (vh ; qh))

+ sn
v;h (zh ; u h ; vh) + sn

p;h (zh ; ph ; qh) + gn
h (u h ; vh) ;

with the �uid discrete bi-linear form

af ((u h ; ph) ; (vh ; qh)) def= 2 �
�
� (u h); � (vh)

�

 f ;n � (ph ; r � vh) 
 f ;n + ( qh ; r � u h) 
 f ;n

and the convective term by

cn (zh ; u h ; vh) def= � f � zh � r u h ; vh
�


 f ;n +
� f

2

�
(divzh)u h ; vh

�

 f ;n

� � f � ff zhgg �n Ju hK; ff vhgg
�

� n �
� f

2

�
Jzh � n K; ff u h � vhgg

�
� n ;

where the jump and average operators are de�ned in Section 4.2.2. Termssn
v;h and sn

p;h
correspond to the CIP stabilization contributions (see Section 2.3.2 and Burman and
Fernández (2007)), namely,

sn
v;h(zh ; u h ; vh) def=  vh2

3X

i =1

X

F 2F n
h;i

�
�
ReF (zh)

�
kzh � n kL 1 (F )

�
Jr u hKF ; Jr vhKF

�
F ;

sn
p;h(zh ; ph ; qh) def=  ph2

3X

i =1

X

F 2F n
h;i

�
�
ReF (zh)

�

kzhkL 1 (F )

�
Jr phKF ; Jr qhKF

�
F ;

whereF n
h;i denotes the set of interior edges (d = 2 ) or faces (d = 3 ) of T n

h;i , with i = 1 ; 2; 3,

 p;  v > 0 are user-de�ned parameters,ReF (zh) def= � f kzhkL 1 (F )h� � 1 denotes the local

Reynolds number and� (x) def= min f 1; xg. Finally, term gn
h corresponds to the ghost-
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penalty operator, given by

gn
h (u h ; vh) def=  g�h

2X

j =1

1X

i =0

X

F 2F
� n

j
i + j;h

�
Jr u i + j;h KF ; Jr v i + j;h KF

�
F ;

where F
� n

j
k;h denotes the set of interior edges or faces of the elements ofT n

h;k , k = 1 ; 2; 3,
intersected by � n

j , j = 1 ; 2.

Algorithm 4.1 Nitsche-XFEM scheme.
For n � 1:

1. Interface update: � n� 1
h = I � + dn� 1

h ; � n = � n� 1
h (�) ; 
 f ;n = 
 f n� n

2. Find
�
u n

h ; pn
h ; dn

h

�
2 V n

h � Qn
h � W h ; such that

.
dn

h = @� dn
h and

� f � @� u n
h ; vh

�

 f ;n + af

h

�
u n� 1

h ; (u n
h ; pn

h ); (vh ; qh)
�

+ � s"
�
@�

.
dn

h ; w h
�

� + as
h

�
dn

h ; w h
�

�
 CE"
2h2

Z

�

�
g" h (dn

h )
�

R� � JJw hKK�
2X

j =1

1X

i =0

�
� (u n

h;i + j ; pn
h;i + j )n i + j ; vh;i + j � w h

�
� n

�
2X

j =1

1X

i =0

�
u n

h;i + j �
.
dn

h ; � (vh;i + j ; � qh;i + j ))n i + j
�

� n

+
�
h

2X

j =1

1X

i =0

�
u n

h;i + j �
.
dn

h ; vh;i + j � w h
�

� n = 0

for all (vh ; qh ; w h) 2 V n
h � Qn

h � W h

The resulting numerical method is detailed in Algorithm 4.1. Note that the weak im-
position of the interface coupling conditions (4.6) are now de�ned considering the physical
domain on each side of every interface.

Remark 4.3.2. In this chapter, we have assumed that the thin-walled solids have no
boundaries in the interior part of the �uid domain, so that 
 f ;n is fully separated in di�erent
regions. The present approach can be generalized the case of partially intersected �uid
domains by considering the tip treatment strategy proposed in Section 6.2.2 of Chapter 6.
Note that the strategy proposed in Alauzet et al. (2016) cannot cover this situation.

4.3.2.1 Intersection algorithm

For a full discussion on the 2D meshes intersection algorithm we refer to Landajuela
(2016) and Alauzet et al. (2016). Here, we recall the salient points and we highlight the
modi�cations necessary to consider multiple structures, possibly in contact, with Algo-
rithm 4.1. The fundamental idea of the intersection algorithm is practically unchanged.
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(a) Intersected mesh with
sign for � 1 .

(b) Intersected mesh with
sign for � 2 .

Figure 4.5: Marked intersected �uid mesh for the bottom interface� 1(a) and for the top
interface � 2(b). Both interfaces have downward normal. Green color corresponds to left
side, red to right.

The main modi�cations concern the de�nition of the physical domain within the inter-
sected mesh (the mesh generated by all the sub-elements). We recall that the main phases
of the algorithm are the following:

1. Localization and insertion of solid meshes vertices inside the �uid mesh;

2. Insertion of solid edges, one at a time.

Once the insertion procedure has been completed, we update all the data structures nec-
essary for the duplication and integration over cut elements. In particular, we need to
know which are the physical regions for each cut element, hence, we label asLEFT , the
�uid sub-elements towards which the structure normal is pointing in, and RIGHT the
others. Note that the side is de�ned with respect to each structure, therefore, all the
�uid sub-elements are labeled with regard to every structure. We require the knowledge
of which �uid element is intersected by each structure and if a sub-element is on the left
or the right of every structure. An example is shown in Figure 4.5. See that the sub-
elements are signed with respect to each interface,� n

1 Fig.(a) � n
2 (b). Note that not all

the elements are signed, (dark green in Figure 4.5). In fact, we have a signed partition
of the cut elements for each interface and the elements, which are intersected from both
interfaces, have two sign patterns.

4.3.2.2 Element duplication

In this section we describe the proposed element duplication procedure, which is car-
ried out exploiting the information stored at the end of the intersection algorithm of
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Section 4.3.2.1. Each overlapping triangulationT n
h;i , i = 1 ; 2; 3, is generated by duplicat-

ing the elements of the intersected �uid element, starting from a conforming (background)
mesh of
 f ;n . For each �uid elementsK , intersected by� n = � n

1 [ � n
3 [ � n

3 , we can identify
two or more separated regions. We will refer to thephysical part of a triangulation as
the restriction of T n

h;i on 
 f ;n
i , i = 1 ; 2; 3. Its complementary part is called nonphysical or

�ctitious . Let consider the situation shown in Figure 4.6, in which we have three triangles

(a) Original background mesh. (b) Triangulation Th; 1 after duplication proce-
dure.

(c) Triangulation Th; 2 after duplication proce-
dure.

(d) Triangulation Th; 3 after duplication proce-
dure.

Figure 4.6: Duplication procedure. The �uid physical domains are
 1; 
 2 and 
 3, and
the interfaces are� 1 and � 2.

with vertices f i; j; k g, f i; k; l g and f j; l; k g: We show in Figure 4.6(a) the original back-
ground mesh. Note that nodesi; l are physical for 
 f ;n

1 , k is physical for 
 f ;n
2 and j; m for


 f ;n
3 .

Each interface introduces a new level of vertices duplication. For instance, the vertices
of the �uid elements intersected by � n

1 will form the duplication Level I. The vertices
duplicated due to � n

2 yield a second level of duplication,Level II. We will identify the
duplicated nodes ofLevel I by �0 and the duplicates node ofLevel II (coming the � n

2 ) by
�00. The levels of vertex duplication for the example of Figure 4.6 are show in Table 4.1.
For each elementK intersected by � n , we can have two scenarios:

1. K is intersected only by one structure, so that� n divides K into two regions. In
this case, we build two identical copies ofK , namely K 1 and K 2, associated to each
region;

2. K is intersected by more than one interface. In this case,� n divides K in three
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regions. We de�ne three identical copies ofK , namely, K 1, K 2 and K 3. Each of
them represents aphysical region.

Let now describe the building strategy for triangulationsT n
h;i , with i = 1 ; 2; 3, i.e., how

the nodes for the generated copies are selected. The original vertices are always kept on
the physical side of the triangulation, while the unphysical nodes are selected as follows:

ˆ For K 2 T n
h;1: we select asunphysical nodes the duplicated vertices belonging to

Level I.

ˆ For K 2 T n
h;2: we choose asunphysical vertices the duplicated nodes belonging to

Level I, when still available (if they are not used to build T n
h;1), otherwise, we select

the nodes ofLevel II.

ˆ For K 2 T n
h;3: we select asunphysical the duplicated nodes belonging toLevel II.

Original i j k l m

Level I i 0 j 0 k0 l0 -

Level II i 00 j 00 k00 - m00

Table 4.1: Levels of duplication for example of Figure 4.6

We now apply this procedure in the example of Figure 4.6. Let considerK = f i; k; l g.
This element is intersected only form� n

1 , therefore we will create two copies of it, namely
f i; k; l g and f i 0; k0; l0g. Note that we have used the duplicated nodes ofLevel I. At the
end of the duplication procedure we will getK 1 = f i; k 0; lg and K 2 = f i 0; k; l0g. (see
Figure 4.6(b) and (c)). Similarly for K = f j; m; k g, except that is intersected only by� n

2 ,
therefore we will use the duplicated vertices ofLevel II. Finally, we have K 1 = f j; m; k 00g
and K 2 = f j 00; m00; kg. (see Figure 4.6(d) and (c)).

Let now consider,K = f i; j; k g. It is intersected by both � n
1 and � n

2 . We hence build
three copies ofK , namely K 1, K 2 and K 3. In order to construct K 1 we keepi as physical
and we select the available nodes starting formLevel I. Vertices j 0 and k0 are not used
yet, hence we obtainK 1 = f i; j 0; k0g (Figure 4.6(b)). For K 2 we �x k as physical and we
select i 0 and j 00as unphysical, since j 0 has already been used (see Figure 4.6(c)). At last,
K 3 will be K 3 = f i 00; j; k 00g (Figure 4.6(d)).

At the end of this process, we have, three independent meshesT n
h;1, T n

h;2 and T n
h;3

covering 
 f ;n
1 , 
 f ;n

2 and 
 f ;n
3 , respectively. The duplicated elements are designed in such

a way that the correct connectivity of the meshes is guaranteed. Hence, we preserve
the continuity on each physical side of the duplicated elements with the rest of the �uid
physical domain.

4.3.2.3 Integration with moving domains

As mentioned in Section 2.3.2, Algorithm 4.1 involves integrals with functions de�ned
on spaces generated form time-dependent triangulations. Therefore, products of functions
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that might be discontinuous at di�erent locations in the same element. When the discon-
tinuities are located in di�erent elements, regardless the number of structures considered,
the quadrature is performed in a standard fashion by treating separately each discontinu-
ity. In fact, we store also the previous intersected meshes and the necessary informations.
In case we have di�erent discontinuities within the same element, this inconvenience is
solved by shifting the discontinuity at time tn� 1 to the structure location at time tn (see
Alauzet et al. (2016); Fries and Zilian (2009)). Note that an alternative strategy could
have been considered as follows. When the number of discontinuities located inside an
element at tn and tn� 1 is di�erent, we denote by tk� the sub-triangulation with less dis-
continuities and with tk+ the other one. Finally, the discontinuity at time tk� is shifted
to the structure location at time tk+ .

4.3.3 Fitted mesh ALE method

The purpose of this section is to recall the basic ingredients of the �tted mesh ALE-
Lagrangian numerical scheme, starting from the coupled problem (4.4)-(4.6), described in
Section 4.2. This scheme will be only used for comparison purposes in Section 4.4.Let
begin by recalling that we consider a bijective mapA, such that A : b
 f � R+ ! 
 f (t). We

also parametrize the moving �uid domain by a one-to-one mapping introduceA t
def= A(�; t):

We consider a �tted meshes based discretization, i.e., the �uid and solid meshes
matches at the interface� . We consider a family of triangulations of fT f

h g0<h< 1 of the
initial �uid domain 
 f which are �tted to the family of triangulations fT s

h g0<h< 1 of the
reference solid domain� . For the discrete spaces, we consider the standard Lagrange
space of continuous piecewise a�ne functions, namely

X f
h

def=
n

vh 2 C0(
 f )
�
� vhjK 2 P1(K ); 8K 2 T f

h

o
; (4.9)

Then, we consider for the approximation of the �uid velocity V h = [ X f
h ]d \ V . For the

�uid pressure space, we allow the pressure to be discontinuous across� , by considering
piece-wise a�ne functions but continuous on each �uid domain, 
 i , i = f 1; 2; 3g. We
achieve this objective by duplicating the �uid degrees of freedom belonging to� only for
the pressure approximation. The geometric non-linearities are treated, once again, in an
explicit fashion. Therefore, for a given solid displacementdn� 1

h 2 W h , we de�ne the ALE
map

A n
h = I b
 f + df ;n

h ;

where df ;n
h is de�ned as df ;n

h = L h(dn� 1
h ).

Considering an overall backward Euler time-stepping and a strong coupling between
�uid and solid sub-problems, the �tted meshes based discretization of problem (4.4)-(4.6)
is detailed in Algorithm 4.2.
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Algorithm 4.2 Fitted mesh ALE scheme.
For n � 1,

1. Fluid mesh update:

df ;n
h = L h

�
dn� 1

h

�
; w n

h = @� df ;n
h ; A n

h = I 
 + df ;n
h ; 
 n

h = A n
h (
) :

2. Find
�
bu n

h ; bpn
h ; dn

h

�
2 V h � Qh � W h ; with

.
dh = @� dn

h and bu n
h j � =

.
dn

h , such that

� f

�

�
u n

h ; vh
�


 n
h

�
� f

�

�
u n� 1

h ; vh
�


 n � 1
h

� � f � (r � w n
h )u n

h ; vh
�


 n
h

+ af

 n

h

�
u n� 1

h � w n
h ; (u n

h ; pn
h ); (vh ; qh)

�
+ � s"

�
@�

.
dn

h ; y h
�

�

+ as
h

�
dn

h ; y h
�

�
 CE"
2h2

Z

�

�
g" h (dn

h )
�

R� � JJw hKK= 0 ;

for all (bvh ; bqh ; y h) 2 V h � Qh � W h , with vh j � = y h .

In Algorithm 4.2, we have considered the following �uid discrete bilinear form

af

 n

h

�
zh ; (u h ; ph); (vh ; qh)

� def= cn
h (zh ; u h ; vh) + 2 �

�
� (u h); � (vh)

�

 n

h

� (ph ; r � vh) 
 n
h

+ ( qh ; r � u h) 
 n
h

+ s
 n
h
(zh ; u h ; vh);

with the convective trilinear form de�ned as

cn
h (zh ; u h ; vh) def= ( zh � r u h ; vh) 
 n

h
+

� f

2

�
(r � zh)u h ; vh

�

 n

h

and, since the couple velocity/pressure discrete spaces fails to satisfy the inf-sup condition
we consider the SUPG/PSPGs
 n

h
stabilization (see, e.g., Tezduyar (1992)), as follows,

s
 n
h
(zh ; u h ; vh) def=

X

K 2T f
h

Z

K
� h

�
� f (zh � r ) u h + r ph

�
�
�

� f (zh � r ) vh + r qh

�
;

� h
def= � M

0

@� f

s
4
� 2 +

16� 2

h4(� f )2 +
4jzh j2

h2

1

A

� 1

;

(4.10)

with � M > 0 user-de�ned parameter.

Remark 4.3.3. Algorithm 4.2 involves a motion of the �uid domain mesh and the e�-
ciency of the method is strongly connected to the e�ectiveness of the lifting operatorL h .
The lifting operator has the objective of correctly deforming the �uid mesh while main-
taining a reasonable elements quality. This becomes challenging and cumbersome in case
of large displacement and when topological changes (e.g., contact) are considered. In the
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numerical experiments of Section 4.4, we consider the non-linear lifting operator intro-
duced in Landajuela et al. (2017) which is an incremental variant of the approach reported
in Stein et al. (2003). The core concept of the technique is to locally increase the sti�ness
of small elements in order to avoid the distortion of the mesh elements.

4.3.4 Un�tted mesh Fictitious Domain method

In the following Section, we will recall a discrete version of problem (4.4)-(4.6) based
on FD method. Let consider two families of triangulationsfT f

h g0<h< 1 and fT s
h g0<h< 1 of,

respectively, 
 f and � . The meshT f
h is �tted to the exterior boundary but, possibly, not

�tted to the solid mesh T s
h .

We consider the following space discretization. LetX f
h and X s

h be the standard spaces
of piecewise continuous a�ne functions, given by (4.9). For the approximations of the
�uid velocity and pressure we introduce the following spaces:

V h = [ X f
h ]d \ V and Qh = X f

h \ Q:

Note that, in this case, the pressure and velocity spaces are both globally continuous.
Considering an overall backward Euler scheme for the time discretization, the strongly
coupled approximation with �ctitious domain of problem (4.4)-(4.6) reads as follows:
For n � 1,

1. Interface update:

� n
h = I � + dn� 1

h ; � n
h = � n

h (�) ; 
 n
h = 
 f n� n

h : (4.11)

2. Find
�
u n

h ; pn
h ; � n

h ; dn
h ;

�
2 V h � Qh � � h � W h ; with

.
dh = @� dn

h , such that

8
>>><

>>>:

� f � @� u n
h ; vh

�

 f + af


 ;h

�
u n� 1

h ; (u n
h ; pn

h ); (vh ; qh)
�

+ � s"
�
@�

.
dn

h ; w h
�

� + as� dn
h ; w h

�
�

 CE"
2h2

Z

�

�
g" h (dn

h )
�

R� � JJw hKK

+ bh
�
� n

h ; vh � � n
h � y h

�
� bh

�
� h ; u n

h � � n
h �

.
dn

h

�
= 0 ;

(4.12)

for all (vh ; qh ; � h ; w h) 2 V h � Qh � � h � W h .

Here, the kinematic constraint is treated in a weak fashion via Lagrange multipliers,
with the discrete bilinear form bh : � h �

�
C0(�)

� d ! R; given by

bh (� h ; z) def=
N s

hX

i =1

� i � z (x s
i ) ;

where � h denotes the Lagrange multiplier space, namely,

� h =

8
<

:
� h =

N s
hX

i =1

� i � x s
i

�
� � i 2 Rd; 8i 2 f 1; : : : ; N s

hg

9
=

;
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and f x s
i g

N s
h

i =1 denotes the points of the triangulation T s
h and � x s

i
stands for the Dirac's

measure at pointx s
i . Additionally we have considered the following notations,

af

 f

�
zh ; (u h ; ph); (vh ; qh)

� def= ch(zh ; u h ; vh) + 2 �
�
� (u h); � (vh)

�

 f

� (ph ; r � vh) 
 f + ( qh ; r � u h) 
 f

+ s
 f (zh ; u h ; vh);

and convective trilinear form

ch(zh ; u h ; vh) def= ( zh � r u h ; vh) 
 f +
� f

2

�
(r � zh)u h ; vh

�

 f :

The SUPG/PSPG and grad-div stabilizations (see, e.g., Tezduyar (1992)), are considered
in order to treat the instabilities associated to the inf-sup incompatibility of the �uid
discrete spaces, namely

s
 n
h ;h(zh ; u h ; vh) def=

X

K 2T f
h

Z

K

� Ch2

� h
(r � u h)( r � vh)

+
X

K 2T f
h

Z

K
� h

�
� f (zh � r ) u h + r ph

�
�
�

� f (zh � r ) vh + r qh

�
;

� h
def= � M

0

@� f

s
4
� 2 +

16� 2

h4(� f )2 +
4jzh j2

h2

1

A

� 1

;

(4.13)

with � M ; � C > 0 user-de�ned parameters. Note that the pressure approximation is contin-
uous, so that in order to enhance mass conservation across the interface we consider the
approach by (see, e.g., Kamensky et al. (2015)) which consists in boosting the grad-div
stabilization in a vicinity of the interface. Note that this improved mass conservation is
obtained at expense of a perturbation of the conditioning of the �uid system. Concretely,
the stabilization parameter in (4.13) are modi�ed in a neighborhood! n

h of the interface
� n

h , typically two layers of �uid elements on each side, as follows:

� C = 1 in 
 f ; � M =

(
1 in 
 f n! n

h ;

"M in ! n
h ;

with 0 < " M � 1 a user-de�ned parameter.
In the numerical experiments of Section 4.4, we consider the alternative �ctitious

domain method reported in Algorithm 4.3, where we introduce the�uid-to-solid Lagrange
interpolation operator B h :

�
C0(�)

� d ! W h .
The main advantages of this scheme, with respect to the strongly coupled prob-

lem (4.11) (4.12), are the fact that it is loosely coupled and it does not introduce additional
unknown in the �uid problem, by giving an explicit expression for the Lagrange multiplier.
This is achieved by applying mass lumping in the solid. Note that the solid inertia and
the �uid are implicitly coupled in (4.14), which guarantees added-mass stability.
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Algorithm 4.3 Loosely coupled FD scheme (from Boilevin-Kayl et al. (2019a))
For n � 2,

1. Interface update: � n
h = I � + dn� 1

h .

2. Fluid step: �nd (u n
h ; pn

h ) 2 V h � Qh , such that

� f � @� u n
h ; vh) 
 f + af

h

�
u n� 1

h ; (u n
h ; pn

h ); (vh ; qh)
�

+
� s"
�

�
B h(u n

h � � n
h ); B h(vh � � n

h )
�

� ;h

=
� s"
�

�
2

.
dn� 1

h �
.
dn� 2

h ; B h(vh � � n
h )

�
� ;h � bh(� n� 1

h ; B h(vh � � n
h )) ;

(4.14)

for all (vh ; qh) 2 V h � Qh .

3. Evaluate �uid load: �nd � n
h 2 � h , such that

bh
�
� n

h ; w h
�

=
� s"
�

�
B h

�
u n

h � � n
h

�
� 2

.
dn� 1

h +
.
dn� 2

h ; w h
�

� ;h + bh(� n� 1
h ; w h); (4.15)

for all w h 2 W h .

4. Solid step: �nd dn
h 2 W h , with

.
dn

h = @� dn
h , such that

� s"
�
@�

.
dn

h ; w h
�

� ;h + as� dn
h ; w h

�
�

 CE"
2h2

Z

�

�
g" h (dn

h )
�

R� � JJw hKK= bh(� n
h ; w h); (4.16)

for all w h 2 W h .

4.4 Numerical experiments

The purpose of this section is to illustrate the performance of the Nitsche-XFEM
method for �uid-structure-contact interaction with multiple immersed structures (Algo-
rithm 4.1), introduced in Section 4.3.2, in a 2D numerical example. To this end, we
compare the numerical solution provided by Algorithm 4.1 with those of Algorithms 4.2
and 4.3. We recall that we express the units in the CGS system. In Algorithm 4.1, we
select the Nitsche's penalty parameter as = 100 and  v =  p = 10 � 2; in Algorithm 4.2
we consider� M = 1 , while in Algorithm 4.3 we set � C = 0 :1, � M = 1 and "M = 104: In
the following, a non-linear Reissner�Mindlin beam model is considered for the solid. Its
spatial approximation is based on linear MITC (Mixed Interpolation of Tensorial Compo-
nents) elements, involving two displacements and one rotation as degrees of freedom per
node in the increments (see, e.g., Bathe (1996)).

We consider a cross-shaped �uid domain and two idealized closed vertical valves in the
horizontal branches. The considered geometry is displayed in Figure 4.7. The �uid domain
bounding box is [0; 1:25] � [0; 1:5]. The solids reference con�gurations are, respectively,
� 1 = 0 :5 � [0:5; 1] and � 2 = 0 :75� [0:5; 1].

Regarding the �uid boundary conditions, a zero traction is enforced on� out and a
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Figure 4.7: Geometric con�guration of two idealized closed valves� 1 and � 2 immersed in
a cross shape domain
 f .

time-dependent traction is imposed on� in in terms of a sinusoidal time-dependent pressure
pin (t), namely,

pin (t) = 1 :3 � 104 � sin(2 � t ); 8 t > 0:

Additionally, a no-slip boundary condition is prescribed on� 0. The solids, � 1 and � 2 are
clamped at their endpoints, hence the displacement, on both directions, and the rotations
are set to zero.
The considered physical parameters for the �uid are� f = 1 and � = 0 :035. For the solid,
we have� s = 1 :2, the Young's modulusE = 7 :5 � 105, thickness " = 0 :0212and Poisson's
ratio � = 0 :4. The time-step is � = 10 � 3 and the �nal time is T = 1 , while for the contact
gap we consider"h = 5 � 10� 3 and  C = 2 � 10� 3. The space discretization parameter is
selected ash � 0:02 for Algorithm 4.1 and Algorithm 4.2, with the only di�erence that the
�uid and solid meshes are �tted in Algorithm 4.2. For Algorithm 4.3, we consider the same
space discretization for the �uid mesh, while, to overcome leaking issues, we use a �ner
solid mesh. The unstructured un�tted �uid mesh is composed by 5210 triangles, while for
the �tted by 5362. The solid meshes contain, respectively, 52 edges for Algorithm 4.1-4.2
and 100 for Algorithm 4.3.

We �rst discuss the results of Algorithm 4.1. Figure 4.8 shows the structures location at
di�erent time instants. As the inlet pressure increases, the solids start to bend one towards
the other. At t = 0 :25 we reach the maximum positive pressure at the inlet, therefore the
structures are at their minimum distance and they get into contact (see Figure 4.8(a)).
After t = 0 :25, the pressure decreases reaching zero att = 0 :5 (Figure 4.8(b)). At t = 0 :75
the inlet pressure reaches the negative minimum and the structure are at their maximum
distance, as shown in Figure 4.8(c). Afterward, the pressure increases and the solids
approach again reaching the �nal state at t = 1 (see Figure 4.8(d)). Note that the solids
move symmetrically, due to the underlying symmetry of the problem.
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(a) t = 0 :25. (b) t = 0 :5.

(c) t = 0 :75. (d) t = 1 .

Figure 4.8: Deformed solid con�gurations at di�erent time instants obtained with Algo-
rithm 4.1.

At t = 0 :25the solids get into contact and cut the same �uid elements. In Figure 4.9(a),
we highlight the �uid elements intersected by both structures. It can be noticed that, a
small gap (smaller than the element size) remains between the structures, since we consider
a relaxed contact approximation. We show in Figure 4.9(b) the e�ect of the duplication
procedure described in Section 4.3.2.2. The elements highlighted in Figure 4.9(a) are
duplicated twice as shown in Figure 4.9(b), the �rst in green and the second in red.

For illustration purposes, we display in Figure 4.10 some snapshots of the pressure
elevation corresponding to the time instants of Figure 4.8. At each instant, the pressure
jumps across the two interfaces are well captured. Figure 4.11 provides the corresponding
�uid velocity magnitudes. When the structures start to approach, they squeeze the �uid in
the middle channel, creating a �ow in direction of � out , until the structures stop at contact.
Note that the �uid velocity is very low during contact (see Figure 4.11 (a)). Afterward,
they move away and the �ow is restored (see Figure 4.11 (b)). At that moment, the �uid
enters from � out . When the minimum pressure is reached att = 0 :75, the structures
velocity is very low and the �uid is at rest (see Figure 4.11 (c)), until move towards the
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(a) The solids � 1 and � 1 get into contact. (b) Pressure elevation with two levels of element du-
plication.

Figure 4.9: Zoom on the structures at contact,t = 0 :25. The �uid elements highlighted
in (a) are triplicated in (b), where the three copies of the elements are visible.

central channel, pushing again the �uid across� out .

We now compare the results of Algorithm 4.1 with those obtained with Algorithms 4.2
and 4.3. Since we are mostly interested on the contact phenomenon, we focus our attention
at t = 0 :25. We show in Figure 4.12 the pressure elevations att = 0 :25 obtained with
the three numerical methods. A very good agreement is visible between the solutions
obtained with Algorithm 4.1 and Algorithm 4.2. The pressure is discontinuous and they
well represent the exact pressure jump across the interface. Algorithm 4.3 provides a
reasonable continuous approximation with a sharp gradient. Note however, that the gap
between the two solids is larger when compared with those provided by Algorithms 4.1
and 4.2. In fact, in contrast to Algorithms 4.1-4.2, solid contact in not detected with
Algorithm 4.3 from t = 0 :178 until t = 0 :325 and a layer of one or more �uid elements
remains in between the two solids. This might be a consequence of: (i) a locking e�ect
of the penalized grad-div term; or (ii) the leaking induced by the Robin treatment of
the kinematic condition. The last point is illustrated in Figure 4.13, where we report
the velocity magnitudes obtained with the three numerical methods. Note that spurious
velocities are visible for Algorithm 4.3 (Figure 4.13(b)).

Figure 4.14 reports the deformed con�gurations of the solids and �uid meshes att =
0:25. As a consequence of the �tted nature of Algorithm 4.2, the �uid elements between
the structures are squeezed (see Figure 4.14(a)). This seems to not perturb the quality of
the numerical solution in this example, indeed, Algorithms 4.1-4.2 show very small gaps
(see Figure 4.14(c)). On the contrary, contact is not activated with Algorithm 4.3, which
is visible in Figure 4.14(b) with larger gap.

We conclude this section with a space-time re�nement study, by taking,(h; � ) 2 f 0:04�
2� i ; 2 � 10� 3 � 2� i g2

i =0 . We recall that for Algorithm 4.3 we consider a �ner solid mesh,
typically taking twice the number of nodes with respect to Algorithms 4.1-4.2. The contact
gap "h = "h(h) is selected accordingly as"h 2 f 0:01 � 2� i g2

i =0 . We report in Figure 4.15
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(a) t = 0 :25. (b) t = 0 :5.

(c) t = 0 :75. (d) t = 1 .

Figure 4.10: Pressure elevation at di�erent time instants of the solution obtained with
Algorithm 4.1.

the time history of the x-displacement at the middle left solid node. As previously noted,
the very good agreement between Algorithms 4.1 and 4.2 is clearly visible. Figure 4.15
shows a convergent behavior of the approximations provided by Algorithm 4.3 towards
those of Algorithms 4.1 and 4.2. Figure 4.15 points out that in Algorithms 4.1 and 4.2
the solids get into contact. This is not the case of Algorithm 4.3, even with the �nest
grid. Finally, we display in Figure 4.16 the velocity magnitude of the solution obtained
via Algorithm 4.3 with the �nest discretization. The spurious velocity are still present,
but they reduce with re�nement.



4.4. Numerical experiments 113

(a) t = 0 :25. (b) t = 0 :5.

(c) t = 0 :75. (d) t = 1 .

Figure 4.11: Velocity magnitude obtained with Algorithm 4.1.
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(a) Algorithm 4.2. (b) Algorithm 4.3.

(c) Algorithm 4.1.

Figure 4.12: Pressure elevation att = 0 :25 obtained with the three considered numerical
methods.
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(a) Algorithm 4.2. (b) Algorithm 4.3.

(c) Algorithm 4.1.

Figure 4.13: Velocity magnitude at t = 0 :25 obtained with the three considered numerical
methods.
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(a) Algorithm 4.2. (b) Algorithm 4.3.

(c) Algorithm 4.1.

Figure 4.14: Deformed structures att = 0 :25, obtained with the three numerical methods.
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(a) i = 0 .

(b) i = 1 .

(c) i = 2 .

Figure 4.15: Time history of the x-displacement at the middle structure point of the left
structure, for di�erent levels of space-time re�nement.
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Figure 4.16: Velocity magnitude at t = 0 :25 obtained with Algorithm 4.3 and (h; � ) =
(0:01; 5 � 10� 4).
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4.5 Conclusion

In this chapter, we have presented a new numerical method, based on un�tted mesh and
Nitsche-XFEM framework, for the approximation of �uid-structure-contact interaction
problems with immersed thin-walled solids. The introduced method extends the Nitsche-
XFEM approximation from Alauzet et al. (2016) to the case of contact with multiple
structures. The main features of the method can be summarized as follows:

ˆ Consistent spacial approximation through the Nitsche-XFEM framework using a
relaxed contact formulation;

ˆ Ad hoc intersection and duplication strategies guarantee consistency and correctness
of the overlapping meshes.

The Nitsche-XFEM method for contact is compared with �tted ALE and un�tted FD
methods. Similar results are observed with Nitsche-XFEM and ALE methods, while FD
su�ers of no-collision and spurious velocity, particularly for the coarsest approximations.
The main drawback of the presented methodology is that an additional duplication level
complicates the computer implementation and major intrusive modi�cations were neces-
saries within the existent �uid solver. Ongoing work concerns the extension to partially
intersected �uid domain using the �ctitious solid method proposed in Chapter 6, as well
as the extension to 3D.





Chapter 5

A mechanically consistent
�uid-structure-contact interaction model

In this chapter we introduce a mixed dimensional �uid-structure-contact coupling
model, in which we include a thin-walled porous layer, in order to model surface asperities.
The thin-walled porous layer introduces tangential creeping �ow along the boundary and
allows for the modelling of boundary �ow due to surface roughness, giving physical
sense to the �uid stresses at contact and bringing mechanical consistency at contact and
release. Numerical examples are reported for both Stokes'-Darcy coupling alone, as well
as �uid-structure-Darcy-contact at the porous boundary layer.

Some of the results of this chapter have been reported in:

ˆ E. Burman, M. A. Fernández, S. Frei, and F. M. Gerosa. 3D-2D Stokes-
Darcy coupling for the modelling of seepage with an application to
�uid-structure interaction with contact . Chapter 20 of F. J. Vermolen,
C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH
2019, Lecture Notes in Computational Science and Engineering, Vol. 139,2020.
DOI: 10.1007/978-3-030-55874-1_20. Available online:https://hal.inria.fr/
hal-02417042.
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5.1 Introduction

Building a consistent �uid-structure-contact interaction numerical method is an highly
complicate and challenging problem. As introduced in Section 1.2.4, between the typical
numerical contact approaches, we can distinguishreal and relaxedcontact approximations.
Both approximations su�er of consistency loss, at contact for the relaxed approximation
and at release for the realistic one. In fact, in the relaxed approximation, the solid is
simultaneously in contact and coupled with the �uid, which results in an incorrect balance
of stresses (breaking the Newton's third law).

Contrarily to dry contact, when �uid-structure-contact is considered, the �uid serves
as link between the contacting bodies, allowing stresses exchange even before contact. In
fact, the �uid between the contacting bodies severely impacts the contact dynamics (for
instance, the pulsating blood �ow pilots the closure and opening of heart valves). It has
recently been observed by several authors Ager et al. (2019a), Burman et al. (2020a) that
the consistent modelling of �uid-structure interaction with contact requires a �uid model,
in particular a pressure, also in the contact zone. Indeed, some seepage is expected to
occur due to permeability of the contacting bodies or their surface roughness. Otherwise
there is no continuous mechanism for the release of contact and non-physical voids can
occur.

For instance, Ager et al. (2019b) propose to include the modelling of �uid stress in
the contact zone, by an extension approach coupled with some compatibility conditions
on the intersection between �uid-solid interface and solid-solid region.

Similar ideas were introduced in Burman et al. (2020a), but for computational reasons.
Indeed, in the latter reference an elastic body immersed in a �uid enters in contact with
a rigid wall and to allow for a consistent numerical modelling, the permeability of the
wall is relaxed. This motivates the introduction of an arti�cial porous medium whose
permeability goes to zero with the mesh-size.

In addition, it is ambiguous if the Navier-Stokes equations are still a valid model and
numerics su�er of the no-collision paradox, when smooth solids are considered, with no-slip
conditions for both contacting wall and �uid-structure coupling, see e.g. Hillairet (2007);
Hesla (2004); Hillairet and Takahashi (2009); Burman et al. (2020a). A no-contact result
in �uid-structure interaction with a thin-walled solid and no-slip condition is proven in
Grandmont and Hillairet (2016). Alternative approaches consist in taking a slip or Navier-
slip condition on both contacting wall and in the interface coupling (see, e.g., Gérard-Varet
et al. (2015); Burman et al. (2020a); B lilescu et al. (2017)). In Gérard-Varet and Hillairet
(2010); Davis et al. (2003), authors study mathematically the roughness-induced e�ect on
the collision process, showing that as soon as the surface asperities are considered, contact
can occur.

However, an exact resolution of the surface asperities is impractical. Ager et al. (2019a)
proposes to introduce a poroelastic model to describe the surface roughness and the �ow
near the contact wall. Since the poroelastic layer is an averaged representation between
the �uid and the solid description, including this model into a �uid-structure-contact
interaction problem, solves the issue related to consistency loss.

Nevertheless, they do consider a realistic contact approximation, hence, the problem
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related to topology changes, such as, active switch between �uid-porous, �uid-solid and
solid-porous interface coupling, isolated �uid region which are artifact of the non smooth-
ness of the interfaces at discrete level and di�cult implementation, are still present.

In this chapter, we propose to overcome this issues by considering a relaxed contact
formulation and a reduced order thin-walled Darcy model for the thin porous domain,
neglecting the porous deformation. Such approach is enough to account physical e�ect as
�uid pressure between the contacting bodies, partially solving the problem of the rupture
of the Newton's third law, because it gives physical sens to the �uid stresses that are sent
to the structure at contact. The derivation of the reduced Darcy model, is inspired from
the work of Martin et al. (2005), in which they introduce a reduced model for �ow in
fractures, considered as interfaces between sub-domains.

The rest of the chapter is organized as follows. In Section 5.2 we describe the mathe-
matical models, in particular, the thin-walled Darcy model is introduced in Section 5.2.1,
via an averaging approach across the thickness. Then, in Section 5.2.2, we describe the
continuous coupled Stokes'-Darcy model. In Section 5.2.3, we present the relaxed contact
model and in Section 5.2.4 the coupled �uid-structure-porous interaction model with con-
tact. Section 5.2.5 is dedicated to the description of the numerical approximation of the
�uid-structure-porous-contact interaction model. We illustrate numerically the models in
Section 5.3, in the case of reservoirs coupling, only involving �uid and porous layer (Sec-
tion 5.3.1), afterward the �uid-structure-porous contact model in Section 5.3.2. Finally, a
summary of the conclusions is given in Section 5.4.

5.2 Mathematical models

In the following section, we will introduce the fundamental models necessary to de�ne
to full �uid-structure-contact model with a thin-walled Darcy interface. We will begin
by describing the reduced order model for the porous interface, modeled via the Darcy
equation. Afterward, before introducing the complete FSI model with contact, we explore
the coupling of an incompressible �uid and the thin-walled porous layer. Such model can
be seen as an intermediate step to the complete model, since we will consider a relaxed
contact formulation, hence, the only coupling interface conditions appearing will be �uid-
structure and �uid-porous.

5.2.1 Darcy model with porous interface

We present the reduced order Darcy model de�ned on the mid-surface interface of the
porous domain
 p, based in the work of Martin et al. (2005) for fractures. The �ltration
of an incompressible �uid through a porous medium is often described by the Darcy's law.
This mathematical relationship provides the simplest linear relation between velocity and
pressure in porous medium under the physically reasonable assumption that �uid �ows are
usually very slow and all the inertial and non-linear terms may be neglected. Groundwater
�ows could be treated microscopically by the laws of hydrodynamics. However, the seepage
path is tortuous and it branches into a multitude of rami�cations. Darcy's law avoids
the severe di�culties of modeling a microscopic picture via homogenization. In fact, it
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describes an homogenized �ow velocity, the Darcy velocityul , through a given cross section
of the porous medium, rather than the true �uid velocity. We consider a Darcy �ow model
in a thin-walled domain 
 p = � l � (� "

2 ; "
2) 2 Rd for d = 2 ; 3, with mid-surface � l .

(
r � u l = 0 in 
 p;

u l + K r pl = 0 in 
 p;
(5.1)

whereul denotes the Darcy velocity,pl the Darcy pressure andK is a symmetric positive
de�nite and bounded tensor K = ( K ij ) i;j =1 ;:::;d , K ij 2 L 1 (
 p), K ij > 0, K ij = K ji ,
called hydraulic conductivity tensor, which depends on the properties of the �uid as well
as on the characteristics of the porous medium. Suitable boundary condition will be
included afterward. Let n be the unit normal vector of the mid-surface� l that points to-
wards the exterior boundary + and � the corresponding tangential parts (see Figure 5.1).
In order to derive the Darcy reduced order model on the mid-surface interface, we pro-
ceed by averaging the Darcy equation across the thickness, i.e., along the line segments�
s � " p

2 n ; s + " p
2 n

�
, s 2 � l normal to � l .

"p

� l


 p [
 �

 + n

�

Figure 5.1: Porous geometric con�guration

We �rst decompose the unknown and the di�erential operators using the curvilinear
system de�ned by the tangential and normal vectors to the mid-surface� l , i.e., x (s; t) =
s� + tn . This yields the following decomposition for the velocity

u l = u l;� + u l;n ;

with u l;� = ul;� � and u l;n = ul;n n . Let denote with r � and div � respectively the
tangential gradient and divergence operator and withr n and divn the normal gradient
and divergence operator.

Averaging the conservation equation

Using the above notation we may rewrite the divergence operator as

div u l = div � ul;� + div n ul;n in 
 p:

We can rewrite (5.1)1 as

div � ul;� + div n ul;n = 0 in 
 p:
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Then, integrating the mass conservation equation across the thickness we obtain

div �

Z " p
2

�
" p
2

ul;� dt + ul;n j  + � ul;n j  � = 0 in � l :

By introducing the following notation for the averaged tangential velocity

Ul
def=

Z " p
2

�
" p
2

ul;� dt;

we �nally get
div � Ul = � ul;n j  + + ul;n j  � in � l : (5.2)

The averaged conservation equation remains a mass conservation equation for the aver-
aged tangential Darcy velocity but with an additional source term representing the �ow
penetrating into the porous medium from the adjacent domains.

Averaging Darcy's law

Using the same approach we can decompose the Darcy's equation (5.1)2 as

ul;� + K � r � pl = 0 in 
 p;

ul;n + K n r npl = 0 in 
 p;
(5.3)

where, K n and K � are decompositions ofK , such that K n
def= n T K n and K �

def= � T K � .
Let assume that K � is constant along the segment

�
s � " p

2 n ; s + " p
2 n

�
. Afterward, by

integrating the �rst equation of (5.3) across the thickness we get

Ul + "pK � r � Pl = in � l : (5.4)

where we have used the averaged pressure across the thickness, de�ned as:

Pl
def=

1
"p

Z " p
2

�
" p
2

pl dt:

Hence, by averaging the Darcy's equation, we obtain again a Darcy's law for the averaged
pressure and tangential velocity de�ned on the (d� 1)� dimensional domain� l . Afterward,
combining (5.2) and (5.4) we get the following equation for the averaged pressure

� r � � ("pK � r � Pl ) = ul;n j  � � ul;n j  + in � l : (5.5)

We retrieve, similarly to (5.2), a mass conservation equation with a source term rep-
resenting the �ow entering from the domains adjacent to � l . The remaining equation
involving the normal component (5.3)2 is now used to impose the boundary conditions.
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The integration of (5.3)2 across the thickness yields:

Z " p
2

�
" p
2

ul;n dt + K n
�
pl j  + � pl j  �

�
= 0 in � l : (5.6)

The �rst integral of (5.6) can be approximated using a trapezoidal approximation rule,

Z " p
2

�
" p
2

ul;n dt �
"p

2

�
ul;n j  + + ul;n j  �

�
;

so that
"p

2

�
ul;n j  + + ul;n j  �

�
+ K n

�
pl j  + � pl j  �

�
= 0 in � l : (5.7)

To close the system, we introduce the following additional modeling assumption for the
averaged pressure, supposing thatPl is also the average of the pressures on the boundaries
 + and  � :

Pl �
1
2

�
pl j  + + pl j  �

�
in � l : (5.8)

The relations (5.7) and (5.8) can be used to eliminatepl j  + , which yields

2Pl � pl j  � = pl j  � �
"pK � 1

n

2

�
ul;n j  + + ul;n j  �

�
in � l

and gives the following expression for the unknown pressurepl j  + :

pl j  � = Pl +
"pK � 1

n

4

�
ul;n j  + + ul;n j  �

�
in � l : (5.9)

To summarize, we are look forPl solution of (5.5) and coupled to the external medium
via (5.9). Hence, the �nal d � 1-reduced interface porous model is given by:

8
<

:

�r � � ("pK � r � Pl ) = ul;n j  � � ul;n j  + in � l ;

pl j  � = Pl +
"pK � 1

n

4

�
ul;n j  + + ul;n j  �

�
in � l :

(5.10)

5.2.2 Coupled Stokes and thin-walled Darcy model

Before to introduce the full FSI model with contact and porous interface, let considered
the model in which we coupled the �uid with a thin-walled porous layer. The Darcy
interface, � l , coincides with a part of the �uid domain 
 f . Note that, the Darcy problem
can be seen as a non local boundary condition problem for the �uid, in which classic
boundary conditions are replaced by the porous problem. Additionally,n and � are
respectively, the normal and tangent vector on� l . The geometric con�guration is shown
in Figure 5.2. In the following, u denotes the �uid velocity, un and u� its normal and
tangential components,p the �uid pressure.

We will represent the normal and tangential component of the Cauchy stress tensor,
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Figure 5.2: Geometric con�guration of the coupled Stokes-thin-walled Darcy model.

by
� nn = n T � (u ; p) n and � n� = � T � (u ; p) n :

We consider the case in which a Stokes �ow model is coupled to the Darcy system (5.10) on
 � . The problem reads as follow: Find the �uid velocity and pressureu : 
 f � R+ ! Rd,
p : 
 f � R+ ! R, and the Darcy porous pressurePl : � l � R+ ! R, such that, for all
t 2 R+ , the following equations are satis�ed

(
� f @t u � � � u + r p = 0 in 
 f ;

r � u = 0 in 
 f ;
(5.11)

8
<

:

�r � � ("pK � r � Pl ) = ul;n j  � � ul;n j  + in � l ;

pl j  � = Pl +
"pK � 1

n

4

�
ul;n j  + + ul;n j  �

�
in � l ;

(5.12)

with interface coupling conditions
8
>>><

>>>:

un = ul;n on  �

� nn = � pl on  � ;

� n� = �
�

p
K � "p

u� on  � :
(5.13)

Condition (5.13)1 imposes the continuity of normal velocity. It should be observed
that, in contrast to the situation of only �uid, the normal �uid velocity on  � is not zero,
as the �uid can enter the porous layer. The second condition corresponds to the balance of
stresses between �uid and porous layer at the interface � . The latter condition in (5.13)
corresponds to the so-called Beavers-Joseph-Sa�mann condition (see, e.g., Beavers and
Joseph (1967); Sa�man (1971); Mikelic and Jäger (2000)). Beavers and Joseph, in Beavers
and Joseph (1967), state that, a no-slip condition on a permeable boundary is physical only
if the true �uid velocity is considered in the porous medium. The presence of a boundary
layer at the permeable wall is modeled by introducing a slip velocity, proportional to the
shear rate, at the permeable boundary. Note that the condition for the tangential stresses
corresponds to a Navier-slip boundary condition for the �uid. The appropriate choice
of the parameter � depends on the application. In the case in which � corresponds to
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a symmetry boundary within a larger �uid domain, where contact can take place, for
instance between two contacting valves, it is appropriate to set� = 0 (pure slip). If the
porous layer is, however, placed at a rigid wall, the Beavers-Joseph-Sa�mann condition
with � > 0 is more appropriate. The parameter� depends on the structure of the porous
layer. Values0:01 < � < 5 have been suggested in Nield et al. (2006)).

Moreover, in the upper outer porous boundary + we assume the wall to be not
permeable, hence, we enforce zero normal velocity,

ul;n = 0 on  + : (5.14)

Owing to (5.13) and (5.14), relation (5.12), becomes

8
>>>><

>>>>:

�r � �
�
"pK � r � Pl

�
= un on � l ;

� nn = � Pl �
"p

4K n
un on � l ;

� n� = �
�

p
K � "p

u� on � l :

(5.15)

We will use the following functional spaces de�nitions. Let V def=
�
H 1

� f

�

 f

� � d and

Q def= L 2
0

�

 f

�
be the �uid velocity and pressure functional spaces, respectively. For the

porous functional space we denote withS def= L 2
0 (� l) the space for the Darcy pressure.

The weak form of the linear coupled problem (5.11) and (5.15) reads as follows:
for t > 0; �nd (u (t); p(t); Pl (t)) 2 V � Q � S such that

8
>>><

>>>:

� f � @t u; v
�


 f + �
�
r u ; r v

�

 f �

�
p;div v

�

 f +

�
q;div u

�

 f

+
�
Pl ; v � n

�
� l

+
"p

4K n

�
un ; v � n

�
� l

+
� �

p
K � "p

u� ; v � �
�

� l
= 0 ;

�
"pK � r � Pl ; r � ql

�
� l

�
�
un ; ql

�
� l

= 0 ;

(5.16)

for all (v ; q; ql ) 2 V � Q � S.
Before introducing the �uid-structure-porous coupled problem, let us make a few more

comments. Taking "pK � ! 0, we are forcing the �uid normal velocity to be zero on � l ,
"p=Kn ! 0 correspond to the case in which we remove the porous model on� l . Regarding
the Beavers-Joseph-Sa�mann condition, by taking�=

p
"pK � ! 0 we get free tangential

�uid stresses on � l , while if �=
p

"pK � ! 1 we force the �uid tangential velocity to be
zero. Hence, in the limit K n ; K � ! 0, the coupling conditions turn into a Navier-slip
boundary condition for the �uid on � l .

5.2.3 Relaxed contact condition

In the following section, we will consider that contact can occur between the solid and
the porous layer, namely�( t) can come into contact with � l . We begin by introducing
the considered contact model without �uid-structure-porous interaction. We denote by
� � Rd, with d = 2 , the reference con�guration of the solid mid-surface and the solid
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Figure 5.3: Geometric con�guration of the relaxed contact situation.

elastic behavior is speci�ed by an abstract operatorL .
We will consider unilateral frictionless contact law. Usually, two exclusive statusgapor

contact are classically formulated by imposing an impermeability condition, a compression
condition and a complementary condition. In this case the solid�( t) cannot penetrate
into the porous medium � l via the contact conditions

(
� s"@t

.
d + L (d) � � n = 0 on � ;

d � n � g � 0; � � 0; � (d � n � g) = 0 on � :
(5.17)

Here, g denotes the gap function de�ned as the initial distance (see Figure 5.3), in the
normal direction of a point on � to the wall � l and � represents the contact force alongn ,
which can be seen as the Lagrange multiplier associated to the no-penetration condition.
The �rst inequality in (5.17) 2 ensures that the solid can not pass though� l , the second
inequality describes that the normal stress is zero (in the absence of contact) or negative
(during contact) and the third condition is a complementarity condition that guarantees
that at least one of the inequalities is �active�. During contact state we have thatd �n � g =
0 and � < 0, while � = 0 if d � n � g < 0.

Following Alart and Curnier (1991); Chouly and Hild (2013), these conditions can be
reformulated in an single equality as

� = �  C
�
d � n � g �  � 1

C �
�

+ on � ;

for arbitrary  C > 0, where the notation [ � ]+ stands for the projection onto R+ .
In order to avoid the implementation issues of exact contact, a standard approach

consists in relaxing the contact condition (5.17)2, by introducing a small (mesh dependent)

�ctitious gap "h = "h(h) > 0, and g"
def= g � "h (Burman et al. (2020a)) as follows:

d � n � g" � 0; � � 0; � (d � n � g" ) = 0 on � ;

or, equivalently,

� = �  C
�
d � n � g" �  � 1

C �
�

+ on � : (5.18)

In other words, the no-penetration condition is imposed at"h-distance from the porous
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layer � l .

5.2.4 Coupled �uid-structure-porous interaction model with contact

In this section, we introduce and derive the fully coupled �uid-structure-porous inter-
action model with contact. We combine a similar �uid-porous coupled model described
in Section 5.2.2 (where the �uid is described by the Navier-Stokes equations) and the
solid problem (possibly non-linear beam or shell solid models) with the relaxed contact
formulation of Section 5.2.3. The result is a �uid-structure-contact model, in which we
add the thin-walled porous interface as boundary condition for the �uid problem. Due to
the relaxation in the contact condition, the porous interface is only visible from the �uid
side. No direct interaction occurs between the solid and the porous models.

Let 
 f (t) � Rd be the complete domain of interest with boundary@
 def= � [ � l , where
� l denotes the part of �uid boundary where contact might take place and where the thin-
walled porous layer is considered. The �uid-structure interface is denoted by�( t) and the
solid reference con�gurations by� .

The structure is allowed to move within the domain 
 f . The current position of the
interface �( t) is described in terms of a deformation map� : � � R+ �! Rd such that

�( t) = � (� ; t), with � def= I � + d and whered denotes the solid displacement. To simplify

the notation we will refer to � t
def= � (�; t), so that we can also write�( t) = � t (�) . The

�uid domain is time-dependent, namely 
 f (t) def= 
 n�( t) � Rd with boundary @
 f (t) =
�( t) [ � [ � l . The geometric con�guration is shown in Figure 5.4.

Figure 5.4: Geometric con�guration of the �uid domain, the immersed solid and the
thin-walled porous interface.

The solid domain divides 
 f (t) into two sub-domains 
 f (t) = 
 f
1(t) [ 
 f

2(t), with

respective unit normalsn 1
def= n and n 2

def= � n , as shown in Figure 5.4. The normal unit
vector n is given by the orientation of the surface�( t). For a given �eld f de�ned in 

(possibly discontinuous across the interface), we can de�ne the sided-restrictions, jump
and average operators de�ned in Chapter 2.

Let consider an incompressible viscous �uid governed by the Navier-Stokes equations
in 
 f (t) and either a beam or shell solid model (speci�ed by an abstract operatorL ). The
�uid-structure-contact with thin-walled porous interaction model reads as follows: Find
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the �uid velocity and pressure u : 
 f (t) � R+ ! Rd, p : 
( t)f � R+ ! R, the solid
displacement and velocityd : � � R+ ! Rd,

.
d : � � R+ ! Rd, the Darcy porous pressure

Pl : � l � R+ ! R and the Lagrange multiplier � : � � R+ ! R, such that for all t 2 R+ ,
the following equations are satis�ed

ˆ Fluid problem

8
><

>:

� f � @t u + u � r u
�

� div � (u ; p) = 0 in 
 f (t);

div u = 0 in 
 f (t);

u = 0 on � ;

(5.19)

ˆ Solid problem:

8
><

>:

� s"@t
.
d + L (d) � � n = T on � ;

.
d = @t d on � ;

d = 0 on @� \ � ;

(5.20)

ˆ Contact conditions:

d � n � g" � 0; � � 0; � (d � n � g" ) = 0 on � ; (5.21)

ˆ Porous interface problem:
(

�r � �
�
"pK � r � Pl

�
= ul;n on � l ;

"pK � � � r � Pl = 0 on @� l ;
(5.22)

ˆ Fluid-structure coupling conditions

8
>>><

>>>:

� = I � + d; �( t) = � t (�) ; 
 f (t) = 
 f n�( t);

u =
.
d � � � 1

t on �( t);
Z

�
T � w = �

Z

�( t )
J� (u ; p)n K� w � � � 1

t ; 8 w : � ! Rd;

(5.23)

ˆ Fluid-porous coupling conditions

8
>>>><

>>>>:

un = ul;n on � l ;

� nn = � Pl �
"p

4K n
un on � l ;

� n� = �
�

p
K � "p

u� on � l :

(5.24)

The relations in (5.23) enforce, respectively, the geometrical compatibility, the kine-
matic and the dynamic coupling at the interface between the �uid and the solid. It should
be noted that the no-penetration condition in (5.21) is already imposed at an"-distance
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to the porous layer � l . This modeling simpli�cation circumvents most of the numerical
di�culties associated with the topological change in the �uid domain induced by the exact
contact condition (i.e., with " = 0 ), such as switching between the contact and the �uid-
solid interface and the presence of isolated small �uid regions (see Ager et al. (2019a)).
This avoids switches in the variational formulation, which would be necessary in the tran-
sition between �uid-structure and �uid-porous interaction (Burman et al. (2020b)). On
the other hand, the solid perceives indirectly the presence of the porous layer through
the �uid stresses and velocity during contact. Moreover, it also facilitates the explicit
treatment of the geometric condition in the �uid-structure coupling.

In the �uid-structure-porous-contact interaction model (5.19)-(5.24), a very thin �uid
layer always remains between the solid and the porous medium during contact. Owing to
the relations (5.24), the behavior of the �uid con�ned in the contact layer is expected to be
very close to the one of the porous �uid. Indeed, this is a consequence of the kinematic-
dynamic relations (5.24)1;2, which are enforced both during and in absence of contact.
As a result, all the kinematic and dynamic relations acting on the solid during contact
have a physical meaning, which guarantees the mechanical consistency of the proposed
�uid-structure-porous-contact interaction model.

More precisely, the solid Lagrange multiplier for the no-penetration condition will
formally assume the form

� =
�

� s"@t
.
d + L (d)

�
� n + J� nn K

�
�

� s"@t
.
d + L (d)

�
� n + � p � � � � nn

�
�
2 on � ;

where � indicates a (closest-point) projection from�( t) to � l and the porous stresses� p

denotes� p
def= � Pl � " p

4 K n
un . Hence, this porous-contact approach gives physical meaning

to the stresses generated in the in�nitesimal �uid layer, in contrast to the relaxed contact
formulation in Burman et al. (2020a), where the �uid stresses did not allow for a direct
physical interpretation.

Remark 5.2.1 (Seepage). The proposed �uid-structure-porous-contact interaction model
allows for seepage in the sense that �uid can �ow through the porous layer� l , for example
to connect a cavity in the central part of the contact surface with the exterior �uid. These
could emerge when the impact of the structure happens in the lateral parts of the structure
�rst or when contact of the solid is released in a central part of the contact surface only.
This is an important aspect in the modelling of �uid-structure-contact interaction, as oth-
erwise unphysical con�gurations might result. If no seepage along� l is allowed, a vacuum
would emerge between� and � l . While one could argue that this paradox is already cir-
cumvented by using the relaxed contact conditions, we note that only the porous layer gives
a physical meaning to the �uid �lling the in�nitesimal contact layer.

5.2.5 Numerical approximation

In this section, we introduce a consistent un�tted mesh spatial approximation of prob-
lem (5.19)-(5.24). We consider a �tted approximation for the �uid-porous interface, while
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for the �uid-solid coupling, the un�tted spatial discretization described in Chapter 2.
We recall here the most salient features, and complete the description adding the porous
and contact discretization. Regarding time-discretization, we use a backward Euler time-

stepping scheme. We denote by� > 0 the time-step length, tn
def= n� for n 2 N; and by

@� xn def= 1
�

�
xn � xn� 1

�
the �rst-order backward di�erence. The �uid �elds (u n ; pn ) will

hence be approximated with triangulations of 
 f , which are independent of� . To this
purpose, it is important to note that the velocity gradient r u n and the pressurepn are
possibly discontinuous across�( t). The contact conditions (5.21) are approximated via
penalty method, considering the same discretization strategy of Section 2.4.2.

Let be fT s
h g0<h< 1 a family of triangulations of � . We then consider the standard space

of continuous piecewise a�ne functions:

X s
h

def=
�

vh 2 C0(�)
�
� vhjK 2 P1(K ); 8K 2 T s

h

	
:

The discrete space for the solid displacement and velocity approximations is hence de�ned
asW h = [ X s

h ]d \ W , whereW = [ H 1(�)] d
0 denotes the space of admissible displacements.

Given a discrete displacement approximationdn
h 2 W h , we de�ne by � n

h its associated

deformation map as� n
h

def= I � + dn
h . This map characterizes the current interface position,

at time level n, as � n def= � n
h (�) . We hence propose to explicitly update the physical �uid

domain as

 f ;n def= 
 f n� n� 1;

allowing the geometrical non-linearity to vanish. For the �uid discrete spaces, we introduce
a family of meshesfT n

h g0<h< 1, �tted to the exterior boundary � [ � l but not to T s
h .

Afterward, we de�ne two family of meshes fT n
h;i g0<h< 1, i = 1 ; 2, where eachT n

h;i � T n
h

covers the i -th �uid region 
 f ;n
i de�ned by � n . Furthermore for every element K 2

T n
h;1 \ T n

h;2 we assume thatK \ � n 6= ; . We denote by 
 n
h;i the domain covered byT n

h;i ,
viz.,


 n
h;i

def= int
�

[ K 2T n
h;i

K
�

:

For i = 1 ; 2, we can hence introduce the following spaces of continuous piecewise a�ne
functions:

X n
h;i

def=
n

vh 2 C0(
 n
h;i )

�
� vhjK 2 P1(K ); 8K 2 T n

h;i

o
:

Associated with X h;i we de�ne the spaces

V n
h;i

def= [ X h;i ]2 \ [H 1
� (
 f ;n )]2; Qn

h;i
def= X h;i \ L 2(
 f ;n )0:

For the approximation of the �uid velocity and pressure we will consider the following
discrete product spaces

V n
h

def= V n
h;1 � V n

h;2; Qn
h

def= Qn
h;1 � Qn

h;2; (5.25)

which guarantee that interfacial (strong and weak) discontinuities are included in the
discrete approximation of both the �uid velocity and pressure. Indeed, the functions
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of (5.25) are continuous in the physical �uid domain 
 f ;n but discontinuous across the
interface � n . Since the discrete pairV n

h=Qn
h is not inf-sup stable, we consider a symmetric

stabilization operator, such as, the one given by Continuous Interior Penalty method (see
Burman and Hansbo (2006)) over the whole computational domain:

sn
h (ph ; qh) def=

 ph3

�

2X

i =1

X

F 2F h;i

�
Jr phKF ; Jr qhKF

�
F ;

whereFh;i denotes the set of interior edges or faces ofTh;i . Finally, we introduce the �uid
discrete form

af ;n
h

�
wh ; (u h ; ph); (vh ; qh)

� def= 2 �
�
� (u h); � (vh)

�

 f ;n + ( wh � r u h ; vh) 
 f ;n � (ph ; div vh) 
 f ;n

+ ( div u h ; qh) 
 f ;n + sh(ph ; qh) + gh(u h ; vh);

where the ghost-penalty operator is given by (see Burman (2010))

gn
h (u h ; vh) def=  g�h

2X

i =1

X

F 2F �
i;h

�
Jr u i;h KF ; Jr v i;h KF

�
F

and where F �
i;h denotes the set of interior edges or faces of the elements intersected by

� n . This operator guarantees robustness irrespectively to the way the interface is cutting
the �uid mesh, by extending the coercivity of the viscous bi-linear form to the whole
computational domain. In addition, we assume that a positive and symmetric elastic bi-
linear form as : W � W �! R corresponds to the solid elastic operatorL in case of a
thin-walled solid.

For the approximation of the porous layer we consider a triangulation of� l which
is �tted to the triangulation of 
 f . We then consider the standard space of continuous
piecewise a�ne functions:

X p
h

def=
�

vh 2 C0(� l)
�
� vhjK 2 P1(K ); 8K 2 T p

h

	
:

Finally, the following discrete space is considered for the approximation of the porous
pressure

Sh
def= X p

h :

The �nal ingredient towards the discretization of problem (5.19)-(5.24) is the con-
tact treatment. Condition (5.18) can be embedded in an elegant way in the variational
formulation using a Nitsche-based approach, see, e.g., Burman et al. (2020a), Chouly
and Hild (2013) and Chouly et al. (2015). The Lagrange multiplier is eliminated using
the de�nition of stresses jump on �( t) and integrated consistently into the variational
�uid-structure formulation via Nitsche's method. Unfortunately, for thin structure this
approach involves an additional di�culty, i.e., the normal solid traction on the mid-surface
is typically not available. Other possible approaches are penalty methods, where the set
of inequalities associated to contact is replaced with a non-linear equation that approxi-
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mates them. These methods are easy to implement, but nevertheless consistency is lost,
as a small amount of penetration, controlled by the penalty parameter, is allowed. This
penalty parameter needs to be chosen carefully. Indeed, when the penalty parameter gets
smaller to improve the approximation of contact conditions, the discrete problem gets
sti�er and ill-conditioned (see Chouly et al. (2017)). The penalty formulation is obtained
as a simpli�cation of (5.18), by taking  C �  ch� 2 and neglecting the � 1

C � term, namely,

 cE"
h2

��
dn

h � n � g + "h
�

+ ; w h
�

� ; (5.26)

where  c > 0 is a (dimensionless) user-de�ned parameter,"h > 0 is a contact tolerance,
n denotes the exterior unit normal to � l and g : � ! R+ refer to the gap function
between� and � l . This approach is optimal in the case of thin-walled solids. Finally, this
method is highly competitive in terms of computational costs compared to approaches
using Lagrange multipliers and/or active-sets.

Algorithm 5.1 Strongly coupled scheme for the approximation of (5.19)-(5.24).
For n � 1:

1. De�nition of the interface position:

� n� 1
h = I � + dn� 1

h ; � n� 1 = � n� 1
h (�) ; 
 n = 
 n� n� 1:

2. Find
�
u n

h ; pn
h ; Pn

l ;
.
dn

h ; dn
h

�
2 V n

h � Qn
h � Sh � W h � W h , with

.
dn

h = @� dn
h and such

that

� f � @� u n
h ; vh

�

 f ;n + af ;n

h

�
u n� 1

h ; (u n
h ; pn

h ); (vh ; qh)
�

+ � s"
�
@�

.
dn

h ; w h
�

� + as(dn
h ; w h)

�
2X

i =1

�
� (u n

h;i ; pn
h;i )n i ; vh;i � w h

�
� n �

2X

i =1

�
u n

h;i �
.
dn

h ; � (vh;i ; � qh;i ))n i
�

� n

+
�
h

2X

i =1

�
u n

h;i �
.
dn

h ; vh;i � w h
�

� n +
 cE"

h2

��
dn

h � n � g"
�

+ ; w h � n
�

�

+ ( Pn
l ; vh � n ) � l +

"p

4K n
(u n

h � n ; vh � n ) � l + (
�

p
K � "p

u n
h � � ; vh � � ) � l

+ ( "pK � r � Pl ; r � ql ) � l �
�
u n

h � n ; ql
�

� l
= 0

for all (vh ; qh ; w h ; ql ) 2 V n
h � Qn

h � W h � Sh .

In summary, we report the resulting Nitsche-based XFEM approximation of (5.19)-
(5.24) in Algorithm 5.1. Notice that the scheme is strongly coupled, no weakly coupled
strategies are considered indeed.

Remark 5.2.2. It is worth noting that, when contact occur between� and � l , the �uid
element is duplicated. In that case, the porous layer is connected to the physical duplicated
element of the �uid domain.
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Remark 5.2.3. If the the interface has a boundary inside the �uid domain (the tip), we
consider the construction of the �uid and solid spaces proposed in Alauzet et al. (2016). A
virtual interface e� is introduced by connecting the interface tip with the �uid vertex opposite
to the edge intersected by the interface and therefore the �uid domain is closed. Afterwards,
we enforce the kinematic/dynamic continuity of the �uid on e� in a discontinuous Galerkin
fashion (see, e.g., Di Pietro and Ern (2012) and Chapter 2 and 6). More precisely, the
following terms are added into 5.1

�
�
ff � (u n

h ; pn
h )ggn ; JvhK

�
e� �

�
ff � (vh ; � qh)ggn ; Ju n

hK
�

e� +
�
h

�
Ju n

hK; JvhK
�

e� :

Remark 5.2.4 (Discretization of Stokes'-Darcy model). A discrete version of the contin-
uous Stokes'-Darcy model(5.16) can be easily derived, by considering standard discontin-
uous spaces of piecewise linear a�ne functions for both �uid and porous and a backward
Euler time-stepping scheme.

5.3 Numerical experiments

In this section, we present a series of numerical models which illustrate the capabilities
of the models introduced in the previous sections. In the �rst numerical example we
consider the mixed dimensional Stokes'-Darcy system showing how the porous layer can
be used to connect two disconnected �uid reservoirs. Later on, we consider the example of
the idealized valve test with contact of Section 2.4.2, but on the context of �uid-structure-
porous interaction. The model developed here is for two or three-dimensional spaces.
Though numerical results are given only in the two-dimensional case, they could be carried
out for three-dimensional problems, but with extra di�culties illustrate in Chapter 6. In
the following we will consider an approximation of the Beavers-Joseph-Sa�mann condition
for tangential stresses, in which we let� ! 0. Hence, in order to allow the valve to slide,
we consider zero-tangential traction on� l . Additionally, a Newton method is considered
for solve the coupled problem with a partitioned approach. All the units are given in the
CGS units system.

5.3.1 Reservoirs connected via porous layer

In this example, we consider two disconnected �uid reservoirs, connected through a
thin-walled porous interface located on the bottom wall � l , as shown in Figure 5.5. The
�uid domain 
 f is shown in Figure 5.5 and� l is a segment with extremities(0; 0) and
(2; 0).

Regarding the �uid boundary conditions, we impose a pressure drop across the two
parts of the top boundary. A traction is imposed on � N1

f in terms of a sinusoidal time-
dependent pressurepin (t), namely,

pin (t) = 5 � sin(2 � t ); 8 t 2 R+ ;

while a zero traction is enforced on� N2
f . Additionally, a no-slip boundary condition is
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Figure 5.5: Geometrical con�guration for the Stokes model with a thin-walled porous
medium on the bottom wall.

Figure 5.6: Snapshot of the �uid velocity.

enforce on� D
f . The considered physical parameters are� = 0 :03, � f = 1 , "p = 0 :01 and

K � = K n = 1 .
The purpose of this example is to illustrate how the porous model is able to connect

the �uid �ow between the two containers. This can be clearly inferred from the results
reported in Figure 5.6 and Figure 5.7 att = 0 :25, which, respectively, show a snapshot of
the �uid velocity, the elevation of the �uid pressure and the associated porous pressure.
As we can see, the �uid is entering into the porous layer from the left reservoir and leaving
the porous interface into the right one. Further studies on the model parameters will be
considered in the second numerical example.
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(a)

(b)

Figure 5.7: (a) Elevation of the �uid pressure, (b) Porous pressure.

5.3.2 Idealized valve with contact

This numerical example corresponds to the idealized valve test (see Section 2.4.2)
with possible contact on the top wall, in which the porous interface is added on� l . The
geometry is shown in Figure 5.8(a). The �uid domain is a rectangle
 f = [0 ; 8] � [0; 0:805]
and as reference con�guration for the solid,� , we consider a curve segment of extreme
A = (4 ; 0) and B = (5 :112; 0:483), parametrized by the analytical function

y(x) =
1
2

s

1 �
(x � 11=2)2

(3=2)2 ; x 2 [4; 5:112]:

The physical parameters used for the �uid in this test are � f = 1 , � = 0 :03. While for
the solid we have� s = 1 :2, " = 0 :065, the Young's modulus E = 107 and the Poisson's
ratio � = 0 :4. Regarding the porous medium, we consider"p = 0 :01 and we explore
the in�uence of the porous layer on the contact dynamics by changing the hydraulic
conductivity parameters K � = K n 2 f 10� i g3

i =0 and by comparing it with the situation of
simple wall on � l , where we enforce a symmetry condition.

Regarding the boundary condition, a no-slip condition is enforced on� w , zero traction
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(a) (b)

Figure 5.8: (a) Geometric con�guration of the idealized valve with contact, (b) Zoom of
the lea�et mesh and �uid mesh.

on the out�ow boundary � out and a traction condition is imposed on� in in terms of the
following time-dependent pressure:

pin (t) =

(
� 200 atanh(100t) if 0 < t < 0:7;

200 if t � 0:7:

The �nal time is T = 1 and it corresponds to one full valve oscillation cycle. The �uid
and the solid are initially at rest and the beam is pinched at the bottom tip A. In this
test, the solid is described by a non-linear Reissner� Mindlin curved beam model with a
MITC spacial discretization. The ghost penalty parameter has been set to g = 1 and the
CIP stabilization parameters to  v =  p = 10 � 2. In this particular case, the gap function
is de�ned as the initial distance of a point on � to the wall � l in the direction of n l ,
namely g = y� l � y(x). The contact parameters are given by"h = 0 :01 and  c = 5 � 10� 3

as in Boilevin-Kayl et al. (2019a). The relaxation parameter"h is chosen in such a way
that the generated arti�cial gap is below h, typically "h � h=2. The penalty parameter  c

(independent of h) is chosen to avoid penetration (i.e., not very small) and in such a way
that the term (5.26) does not perturbs the convergence of the Newton solver in the solid
(the operator [�]+ is not di�erentiable at 0).

The �uid mesh has 16384triangles and the solid 50 edges. We haveh � 0:04. The
zoom on the both meshes is presented in Figure 5.8(b). The time discretization parameter
is � = 10 � 3 and the Nitsche parameter is set to = 100.

Let �rst consider the case in which we selectK � = K n = 10 � 3. We report in Figure
5.9 the velocity magnitude at two di�erent instants. In Figure 5.9(a) is reported the
approximation obtained at time t = 0 :6. At this instant, the valve is in contact with
the upper wall and the �uid velocity decreases globally as consequence of the closing.
Contrarily to the idealized valve test without porous layer at the top wall, here, we allow
the �ow to enter the porous interface at contact. The �uid is transported, through the
porous layer, from the right side of the domain, to the left side. At t = 1 the valve is
open and far from � l , therefore the �uid �ow is reestablished and the velocity increases
in the channel. The same comparison is performed in Figures 5.10(a) and (b) for the
pressure. We can see the high pressure jump when the valve is in contact with the wall
(Figure 5.10(b)), while at t = 1 the discontinuity between the two sides of the interface is
weaker (Figure 5.10(d)).

We now consider the case in which we insert a thin porous layer on the top contact
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(a) t = 0 :6.

(b) t = 1 .

Figure 5.9: Velocity magnitude snapshots.

wall and investigate the impact of K � = K n on the results. Figure 5.11 presents the time
history of the horizontal, Figure 5.11 (a), and vertical displacement, Figure 5.11 (b), at the
upper solid point B for di�erent levels of conductivity. The non-penetration condition with
the wall can be seen in Figure 5.11(b), whereas Figure 5.11(a) shows that the structure
is sliding over the top wall. The interface is bouncing for all tests except the cases of
K � = K n = 1 and 10� 1: In such cases, the structure reaches contact and the �uid �ows
abundantly into the porous layer, which prevents the release of contact. When the inlet
pressure increases, the valve opens and the �ow is restored. In all the other tests the
interface is bouncing, but with a di�erent reaction time, linked to the conductivity value.
There is a slight di�erence in the �rst release time, but the more visible di�erences are on
the second bounce. Both, the second contact instant and the �nal release, are considerably
sensitive to the changing inK � = K n . Finally, let notice that taking K � ! 0 and K n ! 0
we converge to the situation of no porous layer on� l , as we can see in Figure 5.11.

Similar observations can be inferred form Figure 5.12 which shows the interface con-
�guration at time t = 0 :25 (during contact), t = 0 :45 (after the �rst release) and t = 1
(when the �ow is restored). We can see that forK � = K n = 1 and 10� 1 the valve do not
bounce, but they only release once the inlet pressure increases (see Fig. 5.12(c)). Decreas-
ing the conductivity of the porous medium increases the structure sliding at contact (see
Fig. 5.12(a)) and the bouncing force applied on the structure (see Fig. 5.12(b)).

Figure 5.13 displays the �uid pressure (continuous line) and the porous pressure
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(a) t = 0 :6.

(b) t = 1 .

Figure 5.10: Pressure elevation snapshots.

(dashed line) at time t = 0 :25 and t = 0 :45. As expected, both pressures remain close.
At time t = 0 :25 the structure is in contact with the upper wall, therefore there is a high
pressure gradient that decreases by increasing the conductivity.

Figure 5.14 shows the �uid x� velocity along the porous layer � l at two di�erent
instants. As we can see, the horizontal velocity is not zero also during contact as e�ect
of the porous layer. As expected, the higher is the conductivity the greater the velocity
magnitude is and a larger area of the porous layer is leaking or pushing �uid inside the
domain. In Figure 5.15 we report the �uid y� velocity on � l . The e�ect are more localized
near the contact area except for cases ofK = 1 ; 0:1, where the porous layer is still leaking
and entering also far form the contact area.

We now explore the results when variations on the porous thickness"p are considered.
The porous hydraulic conductivity is taken K � = K n = 10 � 3. We explore results for
"p 2 f 10� i g4

i =1 . The outcome is shown in Figure 5.16. For"p ! 0 the curves converge
towards the results of no porous layer on the top wall.

No particular di�erences are visible at �rst contact between the structure and the upper
wall. During contact, the horizontal velocity is lower for higher values of"p, therefore, the
bouncing force is also lower. In addition, the higher is"p, the later is the �rst release, the
lower is the rebound force and, consequently, the earlier is the second contact and release.
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(a) x-displacement.

(b) y-displacement.

Figure 5.11: Time evolution of thex and y-displacement for the structure endpointB .

For illustration purposes, we report in Figure 5.17 a zoom of they-displacement between
the �rst release and the second contact instants.
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(a) t = 0 :25.

(b) t = 0 :45.

(c) t = 1 .

Figure 5.12: Interfaces location at timet = 0 :25 (a), t = 0 :45 (b) and t = 1 (c).
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(a) t = 0 :25.

(b) t = 0 :45.

Figure 5.13: Fluid pressure (continuous line) and porous pressure (dash line) on� l for
di�erent value of hydraulic conductivity at time t = 0 :25 and t = 0 :45.
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(a) x-velocity at t = 0 :25.

(b) x-velocity at t = 0 :45.

Figure 5.14: Fluid velocity on � l :
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(a) y-velocity at t = 0 :25.

(b) y-velocity at t = 0 :45.

Figure 5.15: Fluid velocity on � l :
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(a) x-displacement.

(b) y-displacement.

Figure 5.16: Time evolution of the x-displacement (a) and y-displacement (b) for the
structure endpoint B for di�erent values of "p
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(a) First release.

(b) Second release.

Figure 5.17: Time evolution of they-displacement for the structure endpointB , between
�rst release and second contact (a) and after second release (b).
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5.3.2.1 Space and time re�nement

We explore the convergence behavior taking three levels of space and time re�nement,
namely

�
�; h

�
2

�
2� 10� 3 � 2� i ; 0:07� 2� i

	 2
i =0 . The coarser �uid and solid meshes are made

of 5120 triangles and 26 segments, respectively. The middle meshes by 20480 triangles and
50 edges, while the �nest by 81920 triangles and 102 segments. The porous conductivity
is chosenK n = K � = 10 � 3, and the contact relaxation parameter "h = "h(h), chosen
"h 2 f 0:02� 2� i g2

i =0 .

(a) x-displacement.

(b) y-displacement.

Figure 5.18: Time evolution of the x-displacement (a) and y-displacement (b) for the
structure endpoint B , with di�erent levels of re�nement.

We show in Figure 5.18 the results with these three re�nement levels. We observe
that the bouncing height is lower for the coarser mesh and that the intermediate level of
re�nement provides a reasonable approximation. We can also observe that, due to di�erent
contact relaxation parameters, contact and release occur at di�erent instants and heights.
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5.4 Conclusions

We have introduced a mechanically consistent �uid-structure-porous-contact interac-
tion model, involving immersed thin-walled structures, thin-walled porous layer, on the
contact surface, and a relaxed contact approximation. Physical enrichment is considered,
by including surface roughness through a reduced order porous model on the contact inter-
face, allowing seepage in the contact zone. The porous provides a mechanical justi�cation
for the relaxed contact approximation, giving a physical sense to the �uid stresses in the
small layer of �uid remaining at contact. This relaxation is fundamental from the numer-
ical point of view, since it does not introduce further non-linearities in the �uid-structure
coupling, typical of the realistic contact formulation (where the FSI interface depends on
the contact state). In fact, a relaxed contact approximation enables a fully partitioned
solution of the �uid-structure-contact problem, i.e., contact does not perturbs the FSI
coupling and, hence, the solution procedure.

Extensions of this work can explore several directions. From the modeling point of
view, the assessment of the model parameters is still an open issue. Experiments could
assist for this purpose. Furthermore, the extension of the model to the case in which
we consider a non rigid porous layer and contact with large displacement. Under such
circumstances, additional di�culties related to geometrical non-linearities (concerning the
�uid-porous coupling) have to be faced.
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3D numerical simulations





Chapter 6

A 3D Nitsche-XFEM method for FSI with
immersed thin-walled structures

In this chapter we formulate and implement the un�tted Nitsche-XFEM space semi-
discretization presented in Chapter 2 to the three-dimensional case. For the temporal
discretization, only the strongly coupled scheme is considered. Particular focus is made
on the e�ciency and robustness of the intersection algorithm, by avoiding to resort to
black-box mesh generators. Note that the mathematical formulation of the method is the
same as in two dimensions. A series of numerical examples in two and three dimensions,
involving moving interfaces, with partially and fully intersected �uid domain, illustrate
the performance of the proposed method.

Some of the results presented in this chapter have been reported in:

ˆ F. Alauzet, D.C. Corti, M.A. Fernández, F.M. Gerosa. A 3D Nitsche-XFEM
method for immersed FSI with thin-walled solids. 14th World Congress on
Computational Mechanics (WCCM) ECCOMAS, 2020 11�15 January 2021, Paris,
France.
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6.1 Introduction

This chapter is devoted to the extension to three dimensions, of the numerical method
for the mechanical interaction of an immersed thin-walled structure presented in Alauzet
et al. (2016) and Chapter 2. We consider an Eulerian description for viscous �uid in
a three-dimensional domain and a Lagrangian formulation for the immersed solid (see
Section 1.2.3.1).

As already mentioned in the previous chapters, un�tted mesh formulations based
on method like Immersed Boundary (see, e.g., Peskin (2002); Kamensky et al. (2015);
Sotiropoulos and Yang (2014); Gri�th (2012)) and Fictitious Domain (see, e.g., Bo� and
Gastaldi (2017); Astorino et al. (2009b); Baaijens (2001)), are known to be inaccurate due
to the continuous nature of the �uid approximation spaces at the interface between the
�uid and the solid. One possible way to overcome this consistency issue is to combine
a local XFEM duplication with a cut-FEM methodology and a weak imposition of the
interface coupling.

A widely used implementation technique is to decompose the �uid intersected elements
into sub-elements, conforming to an additional sub-division of the interface mesh. Even
though this approach is extensively used in two dimensions, the extension to thee dimen-
sions is still a quite challenging problem (particularly for unstructured mesh). Additionally,
when considering dynamic interfaces, there is the need to compute the intersection at each
time iteration, hence, the algorithm has to be e�cient and robust (with respect to how the
structure mesh cuts the �uid mesh). Moreover, the sub-tetrahedralization without adding
additional vertices, cannot be guaranteed, even for a simple polyhedron (see Mayer et al.
(2009) and the references therein). A few 3D intersection and sub-tetrahedralization algo-
rithms have been reported in the literature. For instance, we recall the work of Mayer et al.
(2010), Zonca et al. (2018) and Mayer et al. (2009), the latter in the case of high-order
XFEM implementation. Furthermore, Massing et al. (2013) presents only an algorithm
to identify the intersecting elements and avoids sub-tetrahedralization, by considering a
boundary representation of the bulk integrals. Finally, Burman et al. (2014) introduces
an intersection based on a level-set methodology, in which the location of the boundary is
given by the zero level set of a function.

The majority of those works relay on external meshing libraries for the elements sub-
division, such as TetGen (see Si (2015)), with the purpose of building some constrained
tetrahedralization. Contrarily, in the presented work, we will build an ad hoc intersec-
tion and sub-tetrahedralization algorithm. To summarize, with the aim of extending the
Nitsche-XFEM method of Alauzet et al. (2016) to three dimensions, we require an inter-
section algorithm to locate the structure mesh within the �uid mesh, sub-tetrahedralize
the �uid and solid intersected elements and which is e�cient and robust with arbitrary
�uid and solid unstructured meshes. Additionally, we will derive a duplication strategy
able to preserve mesh connectivity and consistency, also with partially intersected �uid
domain.

The rest of the chapter is organized as follows: Section 6.2 is devoted to the description
of the linear coupled problem in the case of static interface. In particular, we will intro-
duce in Section 6.2.1 the space semi-discretization, the partially intersected �uid domain



6.2. The linear model 155

is addressed in Section 6.2.2. In Section 6.2.3 we introduce the fully discrete algorithm,
Section 6.2.4 describes the intersection algorithm and Section 6.2.5 the duplication pro-
cedure, while in Section 6.2.6 we will address the problem of integrals over cut-elements.
Section 6.3 concerns the extension to the method in the non-linear case. In Section 6.4
a series of three-dimensional numerical examples, involving moving interfaces and par-
tially intersected �uid domain, illustrate the performance and robustness of the proposed
method, by comparing with the two-dimensional solutions. Finally, Section 6.5 reports a
summary of the conclusions for this chapter.

6.2 The linear model

We consider a linear coupled problem similar to the one introduced in Chapter 2,
involving the Stokes system and a linear thin-walled solid problem in which the structure
is immersed within the �uid and considered as static. The �uid domain is denoted by

 f � R3 and the mid-surface of the structure is represented by the oriented manifold
� � 
 f of codimension 1 and unitary normal vectorn : For the time being, we will assume
that � divides 
 f into two open domains 
 1 and 
 2 (see Figure 2.1). We will address in
Section 6.2.2 the more general case of partially intersected �uid domain
 f . We denote
the outward unit normal to 
 i on � by n i ; i = 1 ; 2 Note that we choose
 1 and 
 2 so that
n 1 = n and n 2 = � n : We de�ne � f = @
 f n� ; and � i = @
 i n� ; with i = 1 ; 2: As already
introduced in Section 2.2 we de�ne the following de�nitions of side-restrictions, jumps and
averaged, reported here for facilitate the reading. For a given continuous scalar or tensorial
�eld f de�ned in 
 f (possibly discontinuous across� ) we de�ne its sided-restrictions to
� , noted by f 1 and f 2; as

f 1(x ) def= lim
� ! 0+

f (x + � n 1) ; f 2(x ) def= lim
� ! 0+

f (x + � n 2) 8x 2 � :

We also de�ne the following jumps and average across the interface� :

Jf Kdef= f 1 � f 2; Jf n Kdef= f 1n 1 + f 2n 2; ff f gg def=
1
2

(f 1 + f 2) :

In this framework, the considered coupled problem reads as follow: �nd the �uid velocity
and pressureu : 
 f � R+ ! R3, p : 
 f � R+ ! R, the solid displacement and velocity
d : � � R+ ! R3,

.
d : � � R+ ! R3 such that for all t 2 R+ we have

8
><

>:

� f @t u � div� (u ; p) = 0 in 
 i � R+ ; i = 1 ; 2

divu = 0 in 
 i � R+ ; i = 1 ; 2

u = 0 on � i � R+ ; i = 1 ; 2

(6.1)

8
><

>:

� s"@t
.
d + Ld = T in � � R+ ;

.
d = @t d in � � R+ ;

d = 0 on @� � R+ ;

(6.2)
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(
u 1 = u 2 =

.
d on � � R+ ;

T = � J� (u ; p)n K on � � R+ (6.3)

complemented with standard initial conditions u(0) = u 0; d(0) = d0 and _d(0) = _d0. The
standard Stokes bilinear forms are given by

af � (u ; p); (v; q)
� def= 2 � (� (u ); � (v)) 
 f � (p;div v) 
 f + ( q;div u ) 
 f

As in Section 2.2, the elastic bilinear formas : W � W ! R will represent the weak form
of the surface di�erential operator L : D (L ) �

�
L 2(�)

� d !
�
L 2(�)

� d ; namely

as(d; w ) = ( Ld ; w ) �

for all d 2 D (L ) and w 2 W . The weak form of the linear coupled problem (6.1)-(6.3)
reads as follows: fort > 0; �nd (u (t); p(t); d(t);

.
d(t)) 2 V � Q � W � W such that

(
u 1j � = u 2j � =

.
d;

.
d = @t d

� f � @t u; v
�


 f + af � (u ; p); (v; q)
�

+ � s"
�
@t

.
d; w

�
� + as� d; w

�
= 0 :

6.2.1 Space semi-discretization

In the following Section we introduce the space semi-discretization. Since the three-
dimensional mathematical formulation of the method is the same as in two dimensions,
we will follow Alauzet et al. (2016). The discussion is similar to Section 2.2.2 since the
discretization is independent from the dimension of the problem. As pointed out in Sec-
tion 2.2, the thin-walled nature of the immersed solid introduces jumps on the �uid stresses
(due to the dynamic coupling relation (6.3)2), which, respectively, results in weak and
strong discontinuities of the velocity and pressure �elds.

(a) (b)

Figure 6.1: (a) Two-dimensional un�tted �uid-solid meshes (in gray the elements inter-
sected by the structure � ). (b) The triangulations Th;1 and Th;2 with the overlapping
region in gray.
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We propose to approximate the �uid velocity and pressure with triangulations of 
 f

which are independent of the interface� and we allow the discrete �uid solution to be
possibly discontinuous by enriching the �uid elements that are intersected by the interface
� , as shown in Figure 6.1 in two dimensions and the corresponding three-dimensional
representation in Figure 6.2. This guarantees optimal convergence. In this framework we
enforce the coupling conditions (6.3) by Nitsche's type mortaring as reported in Chapter 2.

(a) (b)

Figure 6.2: (a) Three-dimensional un�tted �uid-solid meshes (with the intersected �uid
elements highlighted). (b) The triangulations Th;1 and Th;2 with the overlapping region in
dark gray.

For sake of simplicity, we assume that both
 f and � are polyhedral. Let befT s
h g0<h< 1

a family of quasi-uniform triangulations of � . We then consider the standard space of
continuous piecewise a�ne functions:

X s
h

def=
�

vh 2 C0(�)
�
� vhjK 2 P1(K ); 8K 2 T s

h

	
:

The discrete space for the solid displacement and velocity approximations is hence de�ned
as W h = [ X s

h ]3 \ W .

For the �uid, we introduce two families of quasi-uniform tetrahedral meshes
fT h;i g0<h< 1, i = 1 ; 2, where eachTh;i covers the i -th �uid region 
 f

i separated by � .
Each meshTh;i is �tted to the exterior boundary � i but not to T s

h .

Moreover we assume that for every elementK 2 Th;1 \ T h;2 we haveK \ � n 6= ; . We
denote by 
 h;i the domain covered byTh;i ,


 h;i
def= int

�
[ K 2T h;i K

�
:

Note that the mesh composed byTh;1 [T h;2 is a conforming mesh of the whole �uid domain

 f : For i = 1 ; 2, we can hence introduce the following spaces of continuous piecewise a�ne
functions:

X h;i
def=

�
vh 2 C0(
 h;i )

�
� vhjK 2 P1(K ); 8K 2 Th;i

	
;
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Associated with X h;i we de�ne the following spaces

V h;i
def= [ X h;i ]3 \ [H 1

� f (
 f )]3; Qh;i
def= X h;i \ L 2(
 f )0:

For the approximation of the �uid velocity and pressure we consider the following discrete
product spaces

V h
def= V h;1 � V h;2; Qh

def= Qh;1 � Qh;2:

Note that interfacial strong and weak discontinuities are included these discrete approx-
imation spaces. Since this choice of pressure and velocity approximation spaces do not
satisfy the inf-sup condition we need a stabilization operator. For instance the symmetric
stabilization operator given by the Continuous Interior Penalty method (see Burman and
Hansbo (2006)):

sh(ph ; qh) =
 ph3

�

2X

i =1

X

F 2F h;i

�
Jr phKF ; Jr qhKF

�
F ;

where Fh;i denotes the set of interior faces ofTh;i . Note that the stabilization operator
acts on the whole computational domain.

Afterward, in order to guarantee robustness with respect to the way the interface
is cutting the �uid domain, we consider the ghost-penalty stabilization operator gh :
V h � V h ! R (see Burman (2010)) de�ned by

gh(u h ; vh) def=  g�h
2X

i =1

X

F 2F �
i;h

�
Jr u i;h KF ; Jr v i;h KF

�
F

where  g > 0 is a user-de�ned parameter andJ�KF denotes the jump across the faceF
belonging to F �

i;h ; the set of interior faces of the elements ofT f
i;h intersected by � ; i.e.,

F 2 F �
i;h if there exist K 1; K 2 2 T f

i;h ; with K 1 6= K 2 and K 1 \ � 6= ? or K 2 \ � 6= ? ; such
that F = K 1 \ K 2. Hence, the total stabilization operator is given by

Sh ((u h ; ph); (vh ; qh)) def= sh (qh ; qh) + gh (u h ; vh)

with the associated semi-normj(vh ; qh)jS
def=

p
Sh ((vh ; ph) ; (vh ; qh)) : We can now intro-

duce the �uid discrete bilinear form

af
h ((u h ; ph) ; (vh ; qh)) def= af ((u h ; ph) ; (vh ; qh)) + Sh ((u h ; ph) ; (vh ; qh))

and the space semi-discrete problem of (6.1)-(6.3) (from Alauzet et al. (2016)) as follows:
for t > 0; �nd �

u h(t); ph(t);
.
dh(t); dh(t)

�
2 V h � Qh � W h � W h
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such that
.
dh(t) = @t dh(t) and

8
>>>>>>>><

>>>>>>>>:

� f � @t u h ; vh
�


 f + af
h

�
(u h ; ph); (vh ; qh)

�
+ � s"

�
@t

.
dh ; w h

�
� + as� dh ; w h

�

�
2X

i =1

�
� (u h;i ; ph;i )n i ; vh;i � w h

�
� �

2X

i =1

�
u h;i �

.
dh ; � (vh;i ; � qh;i )n i

�
�

+
�
h

2X

i =1

�
u h;i �

.
dh ; vh;i � w h

�
� = 0

(6.4)

6.2.2 Partially intersected �uid domain

This section is focus on the generalization of the semi-discrete formulation 6.4 to the
case in which the interface� only partially intersects the domain 
 f , i.e. the structure has
a boundary front (some boundary edges) inside
 f . We will introduce a procedure which
aim to connect the �uid elements intersected by the solid boundary elements, with the rest
of the �uid domain, and that will help the de�nition of the �uid discrete spaces. The two-
dimensional connection strategy proposed in Alauzet et al. (2016) becomes inapplicable
in three dimensions. For comparison and illustration purposes, we will �rst consider
the two-dimensional case and recall the procedure proposed in Alauzet et al. (2016). In
two dimensions we refer to the boundary solid vertex astip, while in three dimensions
the immersed boundary is identi�ed as front . Additionally, we will name with �uid tip
elements the �uid simplexes that are intersected by the solid boundary tip in 2D or the
boundary front in 3D. The strategy is proposed in Alauzet et al. (2016) for the 2D case

(a) (b)

Figure 6.3: (a) Initial �uid and solid triangulations. (b) Virtual interface extension from
Alauzet et al. (2016)

consists in introducing a virtual interface e� h which closes the �uid domain within the cut
element. The resulting �uid-�uid �ctitious prolongation, shown in Figure 6.3, is de�ned
in terms of the partition � tip

h = e� h [ b� h where:

ˆ e� h is the prolongation of the interface tip up to the �uid vertex which is opposite
to the edge intersected by� ;

ˆ b� h is arbitrary chosen, but aligned with the edges of the �uid mesh. It connects the
�uid tip vertex with the �uid boundary.
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We recall that, b� h does not play any role in practice, it is only used as mathematical
object to de�ne the discrete spaces. As mentioned above, the extension of this strategy
to three dimensions is not straightforward (a clear closing location of prolongatione� h is
not available) and even less in the case of multiple structures (see Remark 4.3.2).

The main idea of the new approach is unchanged, we built a �ctitious prolongation of
� , namely � tip

h , so that � [ � tip
h divides 
 f into two domains. The proposed approach

(a) (b)

Figure 6.4: (a) Initial �uid and solid triangulation with the �ctitious interface � �c . (b)
Virtual interface prolongation � tip

h = e� h [ e� F;h [ b� h .

avoids any need of closure strategy in the�uid tip elements, by adding to the structure
mesh � a �ctitious extension � �c (see Figure 6.4(a)), with the only function of helping
de�ning the new solid prolongation e� h . As shown in Figure 6.4 (for the two-dimensional
version), the �uid-�uid �ctitious prolongation � tip

h is now de�ned as� tip
h = e� h [ e� F;h [ b� h

where:

ˆ e� h : represents the intersection of the �ctitious interface� �c that belongs to the �uid
tip simplex. Note that, contrarily to the approach proposed in Alauzet et al. (2016),
the con�guration of e� h is now arbitrary with respect to the �uid element;

ˆ e� F;h : stands for the edge or faces of the tip �uid element that are intersected by the
�ctitious interface � �c (in two dimensions there is only onetip edge, while in three
dimensions multiple faces can be considered astip faces, see Figure 6.5);

ˆ b� h : as in Alauzet et al. (2016), it is arbitrary chosen and aligned with the edges or
faces of the �uid mesh connect with the tip edge or faces. It connects the �uid tip
edge or faces with the �uid boundary.

We now proceed, as in Section 6.2.1, by introducing two overlapping meshesT f
i;h ; i =

1; 2 (see Figure 6.6). Like in Alauzet et al. (2016), the overlap region reduces to the set of
elements intersected by� . The �uid elements intersected only by the �ctitious interface
� �c are not duplicated. The associated discrete spacesX f

i;h ; i = 1 ; 2; are then de�ned as in
Section 6.2.1, while for the derivation of the velocity and pressure approximation spaces
one last observation is necessary.
As a consequence of the duplication procedure, the generated �uid domains are discon-
nected acrossb� h and e� F;h . To overcome this issue Alauzet et al. (2016) proposes to
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(a) (b)

Figure 6.5: (a) two dimensionstip edges, (b) three dimensionstip faces.

(a) (b)

Figure 6.6: Two overlapping two-dimensional triangulations with partially intersected �uid
domain. (a) Strong continuity imposed on the tip vertex (from Alauzet et al. (2016)) and
(b) weak continuity imposed on the tip edges.

enforce strongly the continuity of the velocity and pressure acrossb� h , in particular at the
tip vertex (see Figure 6.6(a)). Contrarily, we propose to enforce weakly the continuity on
b� F;h , between the physical part of the tip element and the rest of the �uid domain (see
Figure 6.6(b)).
This new approach results in functions that are continuous in
 f n(� [ e� h [ e� F;h ) and
discontinuous across� [ e� h [ e� F;h . The �uid approximation spaces are hence de�ned as:

V h
def=

n
vh = ( v1;h ; v2;h) 2 V 1;h � V 2;h

�
� v1;h = v2;h on b� h

o

Qh
def=

n
qh = ( q1;h ; q2;h) 2 Q1;h � Q2;h

�
� q1;h = q2;h on b� h

o
:

It should be noted that the solid �ctitious region is introduced only to facilitate the
treatment of the partially intersected �uid domains in three dimensions. The physical
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interface � is the sole part of the �uid mesh which intervenes in the solid approximation
and �uid-structure interaction coupling. The �ctitious solid region � �c is mechanically
a slave of the solid interface� . In other words, a kinematic continuity is enforced, but
no dynamic coupling is considered at the interface between the two regions. In practice,
the uncoupling between the physical� and �ctitious � �c solid regions is performed at the
algebraic level of the solid solver, during the elementary evaluations of the residual and
tangent matrices. For the sake of clarity, we give here some details in the linear case.
The �nite element system over the whole solid computational domain has the following
structure: 2

4
APP API 0
A IP A II A IF

0 AFI AFF

3

5

2

4
xP

xI

xF

3

5 =

2

4
bP

bI

bF

3

5 ; (6.5)

where, the arraysxP , xF , xI respectively denote the solid degrees of freedom in the physical
region, �ctitious region and interface between the two regions. The right-hand side arrays
bP , bI and bF stands for the algebraic counterpart of body forces and/or time-stepping
terms. The fundamental idea consists in removing the coupling blockA IF in (6.5), which
yields 2

4
APP API 0
A IP A II 0
0 AFI AFF

3

5

2

4
xP

xI

xF

3

5 =

2

4
bP

bI
ebF

3

5 ; (6.6)

where the �ctitious right-hand side ebF does not contain anymore body forces related to
the physical region, but only time-stepping terms. Note that, in this modi�ed system,
the physical degrees of freedomxP and xI are uncoupled from the �ctitious degrees of
freedom xF . Indeed, the �rst two rows of (6.6) correspond to a solid problem in the
physical region with homogeneous Neumann boundary conditions on the interface between
the two regions. The last row of (6.6) is nothing but a solid problem in the �ctitious
region with Dirichlet conditions on the interface between the two regions (note that the
prescribed Dirichlet data xI is known from the �rst two rows of (6.6)). An illustration
of this is given in Figure 6.7, for di�erent external boundary conditions on the �ctitious
region. In this example, we impose a vertical volumetric force on the physical region�
and di�erent boundary conditions on the right extremity of � �c , zero traction in 6.7(a)
and zero displacement in 6.7(b). The displacement of� is clearly independent of the
displacement of� �c .

The �uid semi-discrete bilinear form in case of partially intersected �uid domain is
hence rede�ned as: fort > 0; �nd

�
u h(t); ph(t);

.
dh(t); dh(t)

�
2 V h � Qh � W h � W h
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(a) (b)

Figure 6.7: Illustration of the slave nature of � �c with respect to � . The solid problem is
solved in � �c with di�erent boundary conditions on its right extremity: (a) zero traction
and (b) zero displacement.

such that
.
dh(t) = @t dh(t) and

8
>>>>>>>>>>><

>>>>>>>>>>>:

� f � @t u h ; vh
�


 f + af
h

�
(u h ; ph); (vh ; qh)

�
+ � s"

�
@t

.
dh ; w h

�
� + as� dh ; w h

�

�
2X

i =1

�
� (u h;i ; ph;i )n i ; vh;i � w h

�
� �

2X

i =1

�
u h;i �

.
dh ; � (vh;i ; � qh;i )n i

�
�

+
�
h

2X

i =1

�
u h;i �

.
dh ; vh;i � w h

�
� �

�
ff � (u h ; ph)ggn ; JvhK

�
e� h [ e� F;h

�
�
ff � (vh ; � qh)ggn ; Ju hK

�
e� h [ e� F;h

+
�
h

�
Ju hK; JvhK

�
e� h [ e� F;h

= 0

(6.7)

Remark 6.2.1. It should be noted that the three additional terms act on the whole �uid-
�uid �ctitious interface e� h [ e� F;h . The jumps and averages across the tip facese� F;h must
be interpreted between the physical region of the tip �uid element and its respective opposite
element in the �uid triangulation. We refer to Section 6.2.6 for further details about the
integration onto sub-edges and sub-faces.

6.2.3 Fully discrete scheme: time discretization

In what follows, we use the notation for the �rst-order backward di�erence introduced
in Section 2.2.1. Considering an overall Backward Euler time-stepping and a strong cou-
pling between �uid and solid problems, the discretization of the coupled problem (6.7) is
given in Algorithm 6.1. Note that the only di�erence, with respect to Algorithm 2.2 in
Chapter 2, concerns the DG terms, now acting on the interface prolongatione� h and tip
facese� F;h .

6.2.4 Intersection algorithm

As pointed out earlier, the Nitsche-XFEM method requires a speci�c track of the
interface inside the �uid mesh and the construction of sub-elements from cut elements,
with the only purpose of numerical integration. A robust and computationally e�cient
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Algorithm 6.1 Linear strongly coupled scheme.

For n � 1: �nd
�
u n

h ; pn
h ;

.
dn

h ; dn
h

�
2 V h � Qh � W h � W h with
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dn
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h and such that
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� �
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ff � (u n

h ; pn
h )ggn ; JvhK

�
e� h [ e� F;h

�
�
ff � (vh ; � qh)ggn ; Ju n

hK
�

e� h [ e� F;h
+

�
h

�
Ju n

hK; JvhK
�

e� h [ e� F;h
= 0

for all (vh ; qh ; w h) 2 V h � Qh � W h .

intersection algorithm is a key component, especially when FSI problems with complex
and deformable geometries are considered. These procedures are much more involving in
3D and, in particular, for arbitrary unstructured meshes. It should be noted that, no
a priory notion exists regarding which �uid element is intersected from the solid mesh
and vice versa. Additionally, for complex polyhedra, a subtetrahedralization cannot be
guaranteed in 3D, without introducing additional vertices. Algorithms available in the
literature often relay on external meshing libraries for the local subtetrahedralization.
We refer, for instance, to Zonca et al. (2018); Fries and Belytschko (2010); Mayer et al.
(2009), the latter in particular for three-dimensional higher-order XFEM-computations.
An alternative approach to subtetrahedralization, based on a boundary representation of
the integrals, is considered in Massing et al. (2013). At last, we refer to Wang et al. (2012)
for the tracking of thin-walled immersed interface intersections.

In the following paragraphs, we will present a three-dimensional intersection algorithm
for the localization of the thin-walled immersed solid mesh in the 3D �uid mesh and
the subtetrahedralization of the intersected �uid elements (without resort to black-box
meshing libraries). We recall that a triangulation Th of 
 of simplex K such that


 =
[

K 2T h

K

where �
 is the closure of
 ; is calledconforming if the non empty intersection F between
two elements K 1; K 2, namely F = K 1 \ K 2 6= ; with K 1; K 2 2 Th and K 1 6= K 2; is
either a whole edge,face or a vertex of the triangulation. If this condition is not ful�lled
the triangulation is called non-conforming (see, e.g. Quarteroni and Quarteroni (2009)).
Another important features of the following algorithm is the notion of geometry tolerance.
The tolerance is used in order to de�ne the minimum distance between two separated
nodes. Hence, if the distance between two nodes is smaller that thetolerance, they are
merged into the same node. In the context ofconformal meshes the notion oftolerance is
global (unique for the whole mesh), while fornon-conformal meshes thetolerance can be
de�ned locally (it can be adapted on each element, i.e., we can have di�erent tolerance in
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each tetrahedra).
The two-dimensional intersection and sub-triangulation algorithm presented in Alauzet

et al. (2016) was based on aconformal approach. Numerical experiments (already in two
dimensions) show lack of robustness when the discretization parameterhs of the solid
mesh is considered signi�cantly smaller than the one of the �uid meshhf . When moving
to three dimensions, the corresponding conforming algorithm fails already withhs �
hf , indeed invalid con�gurations are appearing (for instance tetrahedra generated from
coplanar vertices). Adjusting (both increasing and reducing) thegeometry tolerancecan
help to overcome these situations, but doing this globally (due to a conformity constraint)
is unfeasible in practice. Consequently anon-conformal approach has been considered. A
local notion of tolerance is considered in order to avoid eventual invalid con�guration.

(a)

Figure 6.8: Initial con�guration (�uid tetrahedron of vertices 1; 2; 3; 4 and structure tri-
angle 5; 6; 7 partially intersecting the tetrahedron) and vertices localization. Solid vertex
5 is localized inside the tetrahedron, vertex 6 on the face, while vertex 7 is external.

(a) Internally. (b) On a face. (c) Outside, end of step 1.

Figure 6.9: Insertion of solid vertices inside the tetrahedron (step 1).

The proposed algorithm proceeds as follows:

ˆ We begin by localizing all the solid mesh vertices inside the �uid mesh. An example
of initial con�guration is showed in Figure 6.8. The localization is carried out using
a barycentric coordinates based algorithm, which e�ciently identi�es the element of
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the �uid mesh containing a given point (see, e.g., Frey and George (2007) or Alauzet
and Mehrenberger (2010) for further details). We then de�ne two lists of elements
L 1 and L 2. The �rst is the list of intersected �uid elements and the second contains
the list of solid triangles intersecting a selected �uid tetrahedron. Thus, we will have
a single list L 1 and multiple lists L 2, one for each �uid intersected element (one list
L 2 for each element inL 1). These lists are updated dynamically during the insertion
algorithm described in the following steps.

ˆ We continue by looping over the �uid elements contained inL 1. For each tetrahedron
in L 1, we intersect, one by one, the solid elements contained in theL 2 list of the
selected �uid element. For each triangle, we begin by inserting in order vertices
(step 1), edges (step 2) and face (step 3). From now on, we are working on each
�uid element separately and we address withK 2 L 1 the selected tetrahedra and
with T 2 L 2 its internal structure element. It should be point out that for e�ciency a
simple insertion operation is conducted, instead of complex vertex insertion operators
(such as Delaunay kernel Frey and George (2000)). The core steps of the intersection
algorithm are the following:

Vertex insertion (step 1): The vertices of T are localized insideK , using again
a barycentric coordinates based algorithm. Once localized, the solid vertices
are inserted into the �uid mesh. Five cases may arise (three of them being
degenerated):

? the point falls outside K , then nothing is done;

? the point falls on a vertex of K , then nothing is done;

? the point falls inside K , henceK is divided into four sub-tetrahedra;

? the point falls on a face ofK , then K is divided in three sub-tetrahedra;

? the point falls on an edge ofK , then K is divided in two sub-tetrahedra;

This steps are illustrated in Figure 6.9.

Edges insertion (step 2): Successively, we proceed by intersecting the structure
edges into the local intersected mesh resulting fromstep 1, considering a parti-
tioning algorithm (see, e.g., George et al. (2003) for a two-dimensional version).
Each edge is treated one at a time. Its endpoints are vertices of the current
(intersected) mesh thanks tostep 1: Let AB be an edge ofT. Starting from
one of its endpoints, sayA; we seek for the �rst current mesh edge or face
intersected by AB . The intersection point P1 is computed (see Alauzet and
Mehrenberger (2010), Section 5 for details on the two-dimensional version) and
inserted into the current local intersected mesh.P1 is necessarily on a tetrahe-
dron face (internally to the face or in one of its edges/vertices) and therefore we
follow the same insertion strategy ofstep 1. At this stage the segmentAP1 has
been added to the current local intersected mesh. Then, the process is pursued
by seeking for the intersection between sub-edgeP1B and the current mesh
faces/sub-faces, which will give a new intersection pointP2 and so on. If after
n intersection steps the sub-edgePnB belongs to the current mesh, the whole
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(a) Edge 6,7 intersects face
1,5,4 generating point 8.

(b) Edge 8,7 intersects face
1,2,4 generating point 9.

(c) Edge 9,7 is outside tetrahe-
dron 1,2,3,4.

(d) Edge 5,7 intersects face
8,2,4 generating point 10.

(e) Edge 10,7 intersects face
9,2,4 generating point 11.

(f) Edge 11,7 is outside tetrahe-
dron 1,2,3,4.

(g) Edge 5,6 is already included
in the intersected mesh.

Figure 6.10: Insertion of the structure edges into the local intersected mesh resulting from
step 1. Insertion of edges6; 7 (a)-(c), edge5; 7 (d)-(f) and edge 5; 6 (g).

solid edgeAB has been inserted into this local mesh. Otherwise, if the sub-edge
PnB lies outside the local mesh, this edge intersection is done. See Figure 6.10
for a detailed representation starting from con�guration of Figure 6.9.

Face insertion (step 3): At this stage, we reconstruct the structure triangle (as
union of its sub-elements) within the �uid intersected mesh. Thus, we search
the structure sub-triangles among the �uid sub-faces. Let consider a face with
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(a) Searching between the shell
of edge 6; 8 we select triangle
6; 8; 5.

(b) Searching between the shell
of edge 8; 9 we select triangle
8; 9; 10.

(c) Searching between the shell
of edge 5; 10 we select triangle
5; 10; 8.

(d) Searching between the shell
of edge10; 11 we select triangle
10; 11; 9.

(e) Searching between the shell
of edge 5; 6 we select triangle
5; 6; 8.

(f) Recovered intersected struc-
ture triangle 5; 6; 7.

Figure 6.11: Insertion of structure face5; 6; 7 and recovery of the interface from the inter-
sected sub-faces.

vertices f A; B; C g, and f Pi gn
i =1 the points on the edges ofT generated bystep

2, be I the union of these vertices. Beginning from the �rst sub-edgeAP1, we
search between all the sub-tetrahedra belonging to its shell one with vertices
f A; P1; yg, with y 2 I . We report in Figure 6.11 these steps starting from
con�guration of Figure 6.10.
In case a sub-tetrahedra with aimed vertices is not detected, we still have to
recover the surface, i.e. we loop on all the sub-tetrahedra belonging to its shell
looking for an intersection between a �uid edge and the current interface. If
we �nd it we insert the intersection point as in step 1. Figure 6.12 displays an
example of the latter situation.

Completed the insertion of vertices, edges and face, before to continue a further
control is needed: if the structure elementT intersects the boundary faceF of
K , then the current solid triangle T is added to the L 2 list of the neighbour �uid
element with respect to F of the original mesh. In case the �uid opposite element
is not already included into L 1, we add it. At this stage, we �nish the intersection



6.2. The linear model 169

(a) Initial con�guration. (b) Vertices and edges inser-
tion.

(c) Interface reconstruction.
Intersection between edge 2; 4
and triangle 6; 7; 5 generates
vertex 10, which is inserted.
Sub-triangles 6; 9; 10 and
6; 10; 8 are now available.

Figure 6.12: Reconstruction of structure sub-triangles after further solid triangle and �uid
edges intersection.

betweenK and T and we pass to the next structure element inL 2.

(a) Initial con�guration. (b) Insertion of vertex 8 in-
side sub-tetrahedron of vertices
2,5,10,4.

Figure 6.13: Step 1 for solid triangle 8; 5; 7: insertion of solid vertices 8,5,7 inside tetrahe-
dron f 1; 2; 3; 4g, which is already been intersected from the solid trianglef 5; 6; 7g. Vertices
5 and 7 are already been inserted, vertex 8 is internal to the sub-tetrahedronf 2; 5; 10; 4g,
hence, is divided in 4 sub-tetrahedra.

It should be noted that K could have already been intersected by another solid
triangle, therefore steps1; 2; 3 can be conducted on sub-tetrahedra. For instance, in
case of degenerated con�gurations insteps 1 (solid vertex on a �uid face, edge or
vertex) we also have to split the adjacent sub-tetrahedra. Concretely, if the solid
vertex is on an edge we also split the corresponding shell elements (all sub-tetrahedra
whose share the same edge), while if it is on a face we divide also the opposite sub-
tetrahedra (if this exists, because it could be a boundary face). Figure 6.13 shows
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an illustration of this circumstances.

ˆ Once all the �uid elements have been intersected, we merge all the local intersected
meshes into a global one. Additionally, the data structures needed for element
duplication and integration (over cut elements) are updated accordingly. Regarding
the latter, since for consistency only integration on the physical domain is considered,
we need the notion of location of a sub-tetrahedron with respect to the interface.
Considering that the structure is dividing the �uid element into two regions, we label
as LEFT , the region towards which the structure normal is pointing in (hence,
all its sub-elements), and RIGHT the other. The marking is starting from the
sub-elements directly in contact with the structure, successively, the remaining sub-
elements are marked by neighbor. Figure 6.14 illustrates a result of the presented
algorithm.

Finally, it is worth recalling that the quality of the intersected mesh is de�nitely
not a concern here, whose sole purpose is numerical quadrature in cut elements (not
interpolation). Therefore, simple mesh validity su�ces.

In the case of partially intersected �uid domain the algorithm remains unchanged,
except for the following two steps:

1. the vertices belonging to the �ctitious interface � �c are not localized inside the �uid
mesh. Therefore the �uid elements that contain only �ctitious triangles are not
included in the list of elements to be intersected (L 1);

2. after the insertion of vertices, edges and face, if the structure elementT intersects
the boundary faceF of K , but it belongs to the �ctitious interface � �c , we don't
add it the list L 2 of the opposite element (with respect toF ).

Remark 6.2.2. Following the same approach a similar non-conformal algorithm for two
dimensions has been also implemented.

(a) (b) (c) (d)

Figure 6.14: Example of intersected meshes. Initial con�guration (a), intersected �uid
mesh (b), Intersected solid mesh with sub-elements normals (c) and side colored �uid
intersected mesh (LEFT sub-elements are colored in green andRIGHT sub-elements in
red) (d).
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6.2.5 Element duplication

The duplication procedure is carried out as following. The overlapping meshesT f
1;h and

T f
2;h are created starting from a conforming triangulationT f

h of the whole �uid domain 
 f

and duplicating the elements that are intersected by the interface� . Using the information
coming from the intersection algorithm described in Section 6.2.4, let

Gh
def=

�
K 2 T f

h

�
�K \ � 6= ?

	

be the subset of elements intersected by� : For each elementK 2 Gh ; with nodesf i; j; k; l g;
we can identify two separated regions
 1 and 
 2, divided by the interface � ; we refer to
Figure 6.15 for the details. In what follows, we will distinguish betweenphysical and
nonphysical domain. The former consists of the restriction ofT f

i;h on 
 i , i = 1 ; 2, the
latter contains the complementary part.
Let consider a duplication f i 0; j 0; k0; l0g of nodesf i; j; k; l g. In order to preserve the con-
tinuity between the physical adjacent duplicated elements, if a node has been already
duplicated, we select the preexisting duplication as duplicated node. We de�ne two iden-
tical copies ofK , namely K 1 and K 2, such that they will identify one of this regions. These
new elementsK 1,K 2 contains two parts, respectivelyphysical (gray in Figure 6.15) and
nonphysical, and they are de�ned such that if an original nodes 2 
 i � K , i = 1 ; 2, then
s 2 T f

i;h . Concretely, the original nodes are kept on the physical part of the duplicated
elements, i.e. they remains on each side of the interface. As a consequence, the respective
duplicated nodes appears on thenonphysical side of eachK i , i = 1 ; 2.
Suppose that nodel is in 
 1 whereasi; j; k are in 
 2 (see Figure 6.15). After the duplica-
tion process we havel 2 T f

1;h and its duplicated node l0 2 T f
2;h , contrarily i; j; k 2 
 2, we

have i; j; k 2 T f
2;h and i 0; j 0; k0 2 T f

1;h (see Figure 6.15).

To summarize, we build two copies of the intersected �uid elements, duplicating their
nodes and keeping the original nodes on the physical side of each element. At the end
of this process, we have, two independent meshesT f

1;h and T f
2;h covering 
 1 and 
 2 re-

spectively, designed in such a way that the correct connectivity of the meshes is guaranteed.

In the case of a partially intersected �uid domain, the duplication procedure remains
unchanged. In the work proposed by Alauzet et al. (2016), the duplication procedure for
the tip element was conduced di�erently from the others �uid intersected elements and
in such a way that, the continuity was strongly imposed on the �uid vertex where e� h

was closed (see Section6.2.2). We propose to duplicate the tip �uid elements using the
same duplication strategy as in the other elements. As a consequence, a lack of continuity
appears, which is treated in a Discontinuous Galerkin (DG) fashion.

Suppose that tetrahedronf i; j; k; l g is a tip element and its resulting duplicated ele-
ments are f i; j; k; l 0g and f i 0; j 0; k0; lg (see Figure 6.16). We �rst analyse the connection
with the neighbours elements. Faces whose opposite element is also duplicated are well
connected with the adjacent elements due to duplication process, for instancef i; k; l 0g and
f j 0; l0; k0g. Faces whose opposite element is not duplicated are not connected with the
neighbour, (facesf i; l 0; j g and f i 0; l; j 0g in Figure 6.16 are not connected with facef i; l; j g
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of the below tetrahedron). Hence the need of DG treatment on this faces (calledtip faces)
in order to guarantee continuity.

Figure 6.15: Duplication of tetrahedron f i; j; k; l g (left) into f i; j; k; l 0g and f i 0; j 0; k0; lg
(right).

Figure 6.16: Duplication of tetrahedron f i; j; k; l g containing a structure front (left). The
resulting duplicated elements aref i; j; k; l 0g and f i 0; j 0; k0; lg (right). The below neighbour
is included to show the loss of continuity on the bottom face.

6.2.6 Integration over cut elements

In the following paragraphs, we focus on the de�nition of the integration formulas over
volume and surface sub-elements. These computation are needed for the evaluation of the
�uid's bulk, Nitsche's interface and tip's faces DG terms.

The integration formulas are independent from the problem dimension, however the
computations are involved in 3D. We refer to Landajuela (2016), for a complete derivation,
while we will address only the salient aspects.

Let consider a tetrahedron K , which is fully intersected by the structure � and let
S = K \ � . The intersection algorithm described in 6.2.4 divides elementsK and S into
sub-elementsf K i gn

i =1 and f Si gm
i =1 . The reference elements are denoted withbK and bS
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respectively for the �uid and the solid elements. To approximate this integrals, we will
make use of the standard quadrature formulas over the reference elements, by combining
them, with the transformations between sub-elements in the deformed con�guration,
sub-elements in the reference con�guration and reference elements. Figure 6.17 shows the
mappings that we will consider in the following.

Let �rst focus on integration over volume sub-elements. Let� be a function de�ned in
K . We assume that we are able to computeb� (bx) = �

�
T bK ! K (bx)

�
. We de�ne the gradient

and the Jacobian of transformationT bK ! K as follows:

F bK ! K
def= r T bK ! K ; J bK ! K

def= det F bK ! K :

We denote the image ofK i � K under the transformation
�
T bK ! K

� � 1 with eK i � bK; for
i 2 f 1; ::: ; ng: We consider also the mappingsT bK ! eK i

from bK to ~K i ; with corresponding
gradient and JacobianF bK ! eK i

and J bK ! eK i
; for i 2 f 1; ::: ; ng:

We may identify with
� b� l

	 lq
l=1 the quadrature points on bK and with

�
b! l

	 lq
l=1 the corre-

sponding quadrature weights. Using successively the change of variablesx = T bK ! K

�
ex
�
,

ex = T bK ! eK i

� b� l
�
; and considering an isoparametric approach withP1 �nite elements, we

have Z

K i

� (x) dx =
Z

eK i

b� (ex)J bK ! K dex

=
Z

bK

b�
�
T bK ! eK i

(bx)
�
J bK ! K J bK ! ~K i

dbx

�
lqX

l=1

b�
�
T bK ! eK i

� b� l
��

J bK ! K J bK ! eK i
b! l :

Thus, to approximate integrals over volume sub-elements we need to compute the

Figure 6.17: Mappings used to compute integrals over volume and surface sub-elements.

integration points T bK ! eK i

� b� l
�

2 eK i , evaluate b� at these points and update the new
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Figure 6.18: Integration over sub-faces in the case of partially intersected �uid domain.

quadrature weights J bK ! eK i
b! l .

Let now consider the integration over interface sub-elements and faces sub-elements. As
before, we �rst use the mapping from the reference volume elementsbK and, afterwards, the
mapping from the reference surface elementbS. The image ofSi under the transformation�
T bK ! K

� � 1 is denoted by eSi : In the same fashion as above, we consider the mapping
T bS! eSi

with the associated tensors gradientF bS! eSi
and metric a bS! eSi

, given by

F bS! Si

def= r T bS! Si
; a bS! Si

def=
�
F bS! Si

� T F bS! Si
:

Owing to the properties of the Piola transform and basics for di�erential geometry on the
midsurface (see Chapelle and Bathe (2010); Landajuela (2016) and the references therein)
and considering aP1 isoparametric approach, we may write:

Z

Si

� (x)dS =
Z

eSi

�
�
T bK ! K (~x)

�
JbK ! K


 �

F bK ! K

� � T ~n

 deS

=
Z

bS

b�
�
T bS! eSi

(bx)
�
J bK ! K


 �

F bK ! K

� � T en


q

det a bS! eSi
dbS

�

l@qX

l=1

b�
�
T bS! eSi

� b� @
l

��
J bK ! K


 �

F bK ! K

� � T en


q

det a bS! eSi
b! @

l

where ~n is the normal to eSi , b! @
l and l@q are, respectively, the weights and quadrature

points for the quadrature rule on bS.
The above integration formula requires the computation of the new quadrature points
T bS! eSi

� b� @
l

�
2 eSi , the evaluation of b� at these points and the update the quadrature

weights by

 �

F bK ! K

� � T en


q

det a bS! eSi
b! @

l .

In case of partially intersected �uid domain, the above integration formulas are used
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to compute the DG terms on e� h and e� F;h . Terms acting on e� h require integrals between
the �uid tip elements and their duplicated elements. Contrarily, the DG terms acting
on e� F;h involve jumps and averages across the duplicated tip elements and their non
duplicated neighbour. For consistency reason, these integrals are conducted only on the
physical sub-faces ofe� F;h for each duplicated element. We show an example in Figure 6.18.
In triangulation T1;h , we integrate only in sub-facef t; s; l g between f i 0; j 0; l0k0g and the
opposite element, while inT2;h we integrate on sub-facesf i; j; s g and f i; s; t g.

6.3 The non-linear model

This section is devoted to the extension of the strongly coupled scheme given by Algo-
rithm 6.1 to the case of non-linear �uid� structure interaction problems involving moving
thin-walled structures immersed within an incompressible viscous �uid. For the geometric
con�gurations and the numerical methods we refer to Section 2.3.

The only necessary observation concerns the partially intersected �uid domain. In
fact, in such a case, the discrete tri-linear form associated to the �uid convective term
becomes:

cn (zh ; u h ; vh) def= � f � zh � r u h ; vh
�


 f ;n +
� f

2

�
(divzh)u h ; vh

�

 f ;n

� � f � ff zhgg �n Ju hK; ff vhgg
�

� n [ e� n
h [ e� n

F;h
�

� f

2

�
Jzh � n K; ff u h � vhgg

�
� n [ e� n

h [ e� n
F;h

:
(6.8)

Hence, the Discontinuous Galerkin contributions of (6.8) have to be evaluated on the
whole dynamic boundaries� n [ e� n

h [ e� n
F;h , which are de�ned as in Section 6.2.2, but on

the dynamic interface.
We now have all the ingredients to extend the numerical methods of Section 6.2 to the

approximation of the non-linear coupled problem. By combining the explicit treatment of
the geometric compatibility with the implicit coupling paradigm of Section 6.2.3 we get
the solution procedure given in Algorithm 6.2.

Remark 6.3.1. Due to the dynamic nature of problem, Algorithm 6.2 involves integrals
of functions associated to di�erent time levels, such as

�
u n� 1

h ; evh
�


 f ;n . At each iteration
a new location of the structure is computed, together with a new subtetrahedralization.
Hence, these integrals involve products of functions that might be discontinuous at di�erent
locations in the same element. We typically resolve this situation by locally shifting the
discontinuity at time tn� 1 at the structure location at time tn (see also Alauzet et al.
(2016); Fries and Zilian (2009) and Section 2.3).
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Algorithm 6.2 Non-linear strongly coupled scheme.
For n � 1:

1. Interface update: � n� 1
h = I � + dn� 1

h ; � n
h = � n� 1
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for all (vh ; qh ; w h) 2 V n
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h � W h

6.4 Numerical experiments

In this section we present a numerical study which illustrates the performance of the
proposed 3D Nitsche-XFEM solution algorithm. The method has been implemented in the
FELiScE C++ �nite element library (see team.inria.fr/commedia/software/felisce). Three
di�erent examples involving dynamic interfaces and both partially and fully intersected
�uid domains are presented. Each of them is generated from a two dimensions example,
which is then extruded along the third dimension. For validation purposes, we compare
the original 2D solution to the 3D solution by exploiting the symmetry of the problem.
Indeed, each 2D test is reproduced in 3D by enforcing a symmetry condition alonge3,
namely the 3D solution is invariant on each plane with normaln = e3. Along this section
the user-de�ned parameters in Algorithm 6.2 are �xed to  g = 1 ,  p = 10 � 2,  v = 10 � 2,
 = 100. We remind that all the units are given in the CGS system. The beam and shell
solid models are discretized in space by linear MITC2 elements and triangular MITC3
elements with 3 and 5 degrees of freedom per node in the increments, respectively.

6.4.1 Idealized closed valve

The �rst example reproduces the behavior of a closed valve under a pressure drop. This
test case is a classical benchmark problem (see, e.g., Kamensky et al. (2015); Van Loon
et al. (2004)) extensively tested with the two-dimensional version of Algorithm 6.2 in
Boilevin-Kayl et al. (2019b); Alauzet et al. (2016).

The problem consists of an elastic shell clamped on its endpoints and immersed in
a channel �lled with an incompressible Newtonian �uid, as shown in Figure 6.19. The
two dimensions �uid domain is given by the rectangle
 = [0 ; 3] � [0; 1], while for three
dimensions we have
 = [0 ; 3]� [0; 1]� [0; 0:2]. The 2D reference solid con�guration is the
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� top

� bot



�� in � out

� sym

Figure 6.19: Geometric con�guration and external boundary conditions.

segment with endpoints(1:5; 0) and (1:5; 1), while in 3D � = f 1:5g � [0; 1] � [0; 0:2].
As regards the boundary conditions for the �uid, a no-slip boundary condition is

enforce on� top and � bot . A zero traction is enforced on the outer boundary� out , while
on � in a traction is imposed in terms of the following negative time-dependent pressure
function pin (t), given by:

pin (t) = � 105 � tanh(10 t); 8 t 2 R+ :

In addition, a symmetry condition, namely, u � n = 0 and � (u ; p)n = 0, is considered

Figure 6.20: Fluid and solid meshes.

on � sym in the three-dimensional case. Regarding the structure, it is fully clamped at
its endpoints in two dimensions and on� top [ � bot in three dimensions. Additionally, a
symmetry condition is considered on� sym, namely d � n and a � n , where a denotes the
director vector, are set to zero. Both �uid and solid are initially at rest.

The physical parameters for the �uid are � f = 1 :0 and � = 0 :035. For the solid, we
have � s = 1 :1, the Young's modulus E = 7 :5 � 105, " s = 0 :1 and Poisson's ratio � = 0 :5.
The time-step is � = 10 � 3 and the �nal time is T = 1 .

The 3D �uid and solid meshes are shown in Figure 6.20. Both 2D and 3D meshes
have a local size ofh � 0:05. The �uid 2D mesh is composed of 2166 triangles, while
the 3D mesh is made of 47181 tetrahedra. For the solid we consider a structure of30
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(a) t = 0 . (b) t = 0 :05.

(c) t = 1 .

Figure 6.21: Deformed con�gurations in 2D (red dots) and 3D (blue) at di�erent time
instants.

segments in 2D and360 triangles in 3D. As the prescribed pressure increases, the solid

Figure 6.22: Solidx-displacement of the closed valve mid-point for the 2D-case and for
the midpoint on the place z = 0 for the 3D.
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(a) Both side colored. (b) Left side colored. (c) Right side colored.

Figure 6.23: Fluid intersected mesh att = 1 .

(a) Deformed solid mesh. (b) Intersected deformed
solid mesh.

Figure 6.24: Deformed and intersected solid meshes att = 1 .

starts to bend. After a brief transition phase, the system reaches a steady state with a
pressure jump across the interface. The �uid and solid velocities vanish and the pressure
is a piecewise constant.

Some snapshots of the resulting deformed mesh at timet = 0 , t = 0 :05 and t = 1 :
are shown in Figure 6.21. We can observe that the 2D deformed con�guration (red dots)
and the 3D (blue) perfectly match. Already at t = 0 :3, the structure has reached the
stationary states.
Figure 6.22 reports a comparison of the time history of the solidx-displacement of the
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(a) 2D case. (b) 3D case (with cut plane at z = 0 :1).

Figure 6.25: Snapshots of the pressure elevation at timet = 1 .

closed-valve mid-point. Both results are practically indistinguishable.
For illustration purposes, Figure 6.23 and Figure 6.24 show the 3D intersected �uid and
solid meshes respectively at the reached steady state. The �uid intersected mesh includes
only the �uid elements that are cut by the structure. The two sides of the mesh are
highlighted with di�erent colors. It contains 16896 tetrahedra. As regards the solid,
Figure 6.24(a) shows the deformed solid mesh, while Figure 6.24(b) shows the intersected
mesh with its sub-elements (6805triangles in this case).

For illustration purposes, pressure snapshots and elevations for two and three dimen-
sions are reported in Figure 6.25. Both 2D and 3D Nitsche-XFEM methods get the correct
pressure jump,P0 = � 105 on one side and zero on the other.

6.4.2 Vesicle in lid-driven cavity �ow

�u� top

� w � w

� w







�

� sym

Figure 6.26: Geometric con�guration and external boundary conditions in the 3D case.

As second example, we consider the lid-driven cavity test with an immersed elastic
structure (see, e.g., Roy et al. (2013); Wang and Zhang (2010); E Gri�th (2012); Gri�th
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and Luo (2017)).
In two dimensions the �uid domain 
 is given by the unit square [0; 1] � [0; 1]. The

reference solid con�guration is a circle of center(0:6; 0:5) and radius 0:2. In the three-
dimensional case we have,
 = [0 ; 1] � [0; 1] � [0; 0:2] and the reference solid con�guration
is an open right circular cylinder, with height 0:2 and each base is centered inxc = 0 :6,
yc = 0 :5, as shown in Figure 6.26.

Figure 6.27: Fluid and solid meshes in 3D.

As regards the �uid boundary conditions, a no-slip boundary condition is enforced on
� w . A constant velocity �u = e1 is prescribed on� top . A symmetry condition is considered
for both �uid and solid on � sym, namely u � n = 0 , � (u ; p)n = 0, d � n = 0 and a � n = 0 .
Finally, both �uid and solid are initially at rest.

The physical parameters used for the �uid in this test are � f = 100, � = 10. For the
solid we have� s = 100, " = 0 :0212, the Young's modulusE = 5 :6� 103 and Poisson's ratio
� = 0 :4. The time-step is � = 5 � 10� 3 and the �nal time is T = 10.

As previously discussed in Section 2.4.3, since the �uid is entirely enclosed by Dirichlet-
type boundary conditions, standard Dirichlet� Neumann partitioned solution procedures
are not suitable for the resolution of this type of problems. Therefore an additional
volumetric constraint on the solid velocity is enforced in Algorithm 6.2. We refer to
Section 2.4.3 for extra details.

The 2D solution has been generated using a �uid mesh made of800 triangles and
a solid mesh of29 segments. The three-dimensional �uid mesh is composed by15830
tetrahedra, while the solid by 800triangles. Figure 6.27 shows respectively the considered
�uid and solid meshes. In both cases the space discretization parameter ish � 0:05.

As mentioned above, at each time step we need to evaluate the intersection between
the two meshes and the subtetrahedralization of the �uid intersected elements. We show
in Figure 6.28 the three-dimensional intersected �uid mesh att = 2 :5, where the two
regions of the �uid domain are highlighted with di�erent colors. The intersected mesh is
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(a) Both colored sides. (b) Restriction to left side.

(c) Restriction to right side.

Figure 6.28: Fluid intersected mesh att = 2 :5.

(a) Deformed solid mesh. (b) Intersected deformed solid mesh.

Figure 6.29: Deformed and intersected solid meshes att = 2 :5.

made of17886tetrahedra. Notice that we are starting from an initial �uid mesh of 15830
tetrahedra, i.e., we are generating an intersected mesh with more tetrahedra than the
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original one. It should be noted that this induces additional computational cost (only) to
the assembling phase, the price to pay when integrating over arbitrary polygons. Similarly
for the structure intersected mesh. Figure 6.29(a) shows the deformed solid mesh att = 2 :5
and Figure 6.29(b) the corresponding intersected solid mesh, composed by7222triangles
while the original were 360. Each color in Figure 6.29(b) characterizes an original solid
triangle.

For illustration purposes, Figure 6.30 shows the snapshots of the �uid velocity mag-
nitude for 2D and 3D tests. At t = 2 :5, Figures 6.30(a) and (d), the vesicle is heading
towards the moving upper region of the cavity, getting closer att = 5 , Figures 6.30(b)
and (e). At t = 7 :5, Figures 6.30(c) and (f), the vesicle has completed the �rst rotation
around the initial position. Both results show present the same dynamics.
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(a) t = 2 :5. (b) t = 5 .

(c) t = 7 :5.

(d) t = 2 :5. (e) t = 5 .

(f) t = 7 :5.

Figure 6.30: Velocity magnitude snapshots in 2D ((a)-(c)) and 3D ((d)-(f)).
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(a) t = 2 :5. (b) t = 5 .

(c) t = 7 :5.

(d) t = 2 :5. (e) t = 5 .

(f) t = 7 :5.

Figure 6.31: Pressure snapshots and elevation in 2D ((a)-(c)) and 3D ((d)-(f)).
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(a) t = 0 .

(b) t = 2 :5. (c) t = 5 . (d) t = 7 :5.

Figure 6.32: Overlapping of the actual solid location for two dimensions and three dimen-
sions case at di�erent time.
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Similar observations can be made from Figure 6.31 which shows the pressure elevation
of the whole �uid domain in 2D and of a cutting plane parallel to � sym for the 3D test.
As for the velocity, di�erent time instants are considered. Both cases reproduce well the
pressure jump across the moving interface�( t).

In order to validate the implementation of the Nitsche-XFEM algorithm, an additional
comparison is carried out. We show in Figure 6.32 the solid con�guration at di�erent time
instants, namely t = 0 ; 2:5; 5; 7:5. Some di�erences can be observed between the 2D and
3D con�gurations at time t = 7 :5. This can be due to the asymmetry of the �uid mesh.
We can expect the solutions to get closer with space re�nement.

In Figure 6.33 we present the trajectory of the vesicle rightmost vertex for the 2D case
and the rightmost node on the planez = 0 for the 3D case. The results with a coarser
mesh are included in the �gure,hc � 2h and � c = 2 � (dashed line in Figure 6.33). Time
markers have been depicted in order to facilitate the comparison of the results. The 3D
test is able to capture the dynamics of the 2D case and as expected the 2D and 3D results
draw closer with the �ner mesh.

t0t10

t10

t10

Figure 6.33: Comparison of trajectory of the extreme right node of the vesicle fromt = 0
to t = 10 between 2D and 3D.

6.4.3 Idealized open valve

The last example simulates the behavior of an open valve, no contact is considered.
Notice that in this case the structure has a boundary inside the �uid domain. Hence, the

Figure 6.34: Geometric con�guration of the 3D case.

front treatment proposed in Section 6.2.2 is considered. The 2D �uid domain is a rectangle
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 = [0 ; 4] � [0; 0:805], while the immersed solid reference con�guration� is the straight
segmentAB , with A = (2 ; 0) and B = (2 ; 0:7). In three dimensions the �uid domain is

 = [0 ; 4] � [0; 0:805]� [0; 0:2]. For the structure we have � = 2 � [0; 0:7] � [0; 0:2], and
a �ctitious interface � �c = 2 � [0:7; 0:9] � [0; 0:2]. The considered geometry is shown in
Figure 6.34.

The physical parameters used for the �uid in this test are� f = 100, � = 10. While for
the solid we have� s = 100, " = 0 :0212, the Young's modulusE = 5 :6 � 107 and Poisson's
ratio � = 0 :4. Concerning the external boundary conditions for both 2D and 3D, no-slip

Figure 6.35: Fluid and solid meshes in 3D.

boundary condition is apply on � w , a symmetry condition is imposed on� sym (u � n = 0
and � (u ; p)n = 0), zero traction on � out and �nally, the following half parabolic pro�le
is applied on � in :

umax (t) = 5(0 :805)2
�

sin(2�t ) + 1 :1
�
; t 2 R+ :

In addition the solid is clamped at its bottom, namely rotation and displacement are set
to zero. A further symmetry condition is considered for the 3D-structure on� sym. Both
�uid and solid are considered initially at rest.

The considered space discretization parameter is approximatelyh � 0:04. The two-
dimensional solid mesh is made of28 edges while the �uid un�tted mesh is made of
4000 triangles. For the 3D case, we consider an unstructured �uid mesh made of102380
tetrahedra while the structure mesh is made of576 triangles. Figure 6.35 shows the
corresponding meshes. The physical structure is colored in red and the �ctitious interface
in green. The time-step is� = 2 � 10� 3 and the �nal time is T = 1 , which corresponds to
one full oscillation cycle for the structure.

For illustration purposes, snapshots of the �uid velocity magnitude and the position
of the interface, computed in two and three dimensions cases, are shown in Figure 6.36
at time t = 0 :3, 0:75 and 1 respectively. For the 2D case we show a zoom of the �uid
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(a) t = 0 :3. (b) t = 0 :75. (c) t = 1 .

(d) t = 0 :3. (e) t = 0 :75. (f) t = 1 .

Figure 6.36: Snapshots of the �uid velocity magnitude at t = 0 :3 (left column), t = 0 :75
(center column) and t = 1 : (right column) for both 2D (top row) and 3D (bottom row).

(a) t = 0 :3. (b) t = 0 :75. (c) t = 1 .

(d) t = 0 :3. (e) t = 0 :75. (f) t = 1 .

Figure 6.37: Snapshots of the �uid pressure att = 0 :3 (left column), t = 0 :75 (center
column) and t = 1 : (right column) for both 2D (top row) and 3D (bottom row).
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(a) Deformed solid mesh (� and � �c ).

(b) Intersected �uid mesh.

Figure 6.38: Deformed solid interface (physical and �ctitious) immersed in the �uid chan-
nel (a) and the �uid intersected mesh with its restriction on each side of the interface (b)
at t = 0 :3.
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(a) Deformed solid mesh �( t).

(b) Intersected structure mesh

Figure 6.39: Deformed and intersected solid meshes att = 0 :3, both with a zoom on the
immersed front solid boundary. Note that (a) contains only the physical interface�( t)
(the front is �at), while the front of (b) includes some sub-elements of � �c .

domain near the deformed structure location, while for the three dimension case we plot
the solution on a clipped plane, namelyz = 0 :1. A very good agreement is obtained for the
two cases. Similarly, Figure 6.37 presents the snapshots of the pressure at three di�erent
time instants. No particular di�erence between the two cases is visible.
Additionally, we show in Figure 6.38(a) the three dimensions deformed structure interface

with the �ctitious part at t = 0 :3. Across the physical structure, we can see the faces of
the intersected �uid mesh. Notice that no tetrahedra around the �ctitious interface are
visible, they are not included into the �uid intersected mesh. In �gure 6.38(b) we exhibit
the �uid intersected mesh, highlighting the two side of the interface. The �uid intersected
mesh is composed by17879tetrahedra.

Figure 6.39 reports the deformed structure mesh (a) and the corresponding intersected
mesh, which contains7415triangles. A zoom of the immersed front boundary is displays
for each mesh. The intersected structure mesh contains all the triangles of the original
mesh (divided into sub-triangles) and the extra sub-triangles belonging initially to � �c
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(a) Pressure elevation. (b) x-velocity elevation.

(c) y-velocity elevation.

Figure 6.40: Snapshots of the �uid elevated pressure,x-velocity and y-velocity of a clipped
plane z = 0 :1, obtained in the 3D case, att = 0 :3.

which are necessary to close the structure front inside the �uid tip elements.
Figure 6.40(a) presents the pressure elevation for the cutting planez = 0 :1. The

�ctitious part of the structure is included with the purpose of highlighting that the pressure
discontinuity is well captured across the physical interface, while it is continuous across the
�ctitious interface, i.e., the �ctitious interface is totally imperceptible from both the �uid
side as well as the solid side. Additionally, Figures 6.40(b) and (c) show respectively the
elevation of thex- and y-component of the velocity. Each velocity component is continuous
across� and also � �c , but clearly no constraint on the velocity on � �c are visible form
the �uid side. The velocity z-component vanishes due to the symmetry of this problem.

For illustration purposes, we display in Figure 6.41 the solid con�gurations in both
two and three dimensions with the displacement magnitude at di�erent instants, namely
t = 0 :3, 0:75 and 1. Once more, no notable di�erences are visible between the 2D and
3D solutions. Figure 6.42 reports the displacement history of the upper 2D-structure
endpoint and the upper 3D-structure on the planez = 0 as function of time, in terms of
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(a) t = 0 :3. (b) t = 0 :75.

(c) t = 1 .

Figure 6.41: Representation of the actual structure location at three di�erent instants.
The 2D solution (in red) is superimposed to the 3D (colored by the solid displacement
magnitude). The �ctitious interface is displayed (colored in blue).
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(a) x-displacement. (b) y-displacement.

Figure 6.42: Displacement time history of the solid tip in 2D and the top node on the
plane z = 0 in 3D.

x-displacement andy-displacement respectively. The 3D is able to reproduce very well
the 2D dynamics even if small di�erences are visible. We expect this small mismatch to
be reduced with space re�nement.

6.5 Conclusion

In this chapter we have presented a three dimensional un�tted Nitsche-XFEM method
for incompressible �uid-structure interaction problems involving thin-walled structures.
The extension to thee dimensions of XFEM/cut-FEM methods is still a quite challenging
problem, specially because it requires a robust and e�cient intersection algorithm. We re-
call that sub-tetrahedralization without adding additional vertices, cannot be guaranteed,
even for a simple polyhedron (see e.g. Mayer et al. (2009)).

The key features of the presented model are the following:

ˆ Nitsche-XFEM consistent treatment of the interface coupling based on an a�ne
�nite element approximation with local elements duplication;

ˆ cut-FEM methodology is enabled owing to a robust and e�cient intersection algo-
rithm for general unstructured meshes, by localizing the solid mesh within the �uid
mesh and subdividing in sub-tetrahedra the �uid intersected elements;

ˆ partially intersected �uid domain are included in the model by adding a �ctitious
interface � �c only with the purpose of helping to connect the �uid domain from the
two side of the interface. In fact, the prolongation � �c is a mechanical slave of the
physical interface � .

The three-dimensional method is validated via a series of numerical examples, involving
moving interfaces as well as partially intersected �uid domain. On going works attempt to
show the e�ciency of the discussed algorithm, by comparing with remeshing techniques.
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Other future working directions can include, for instance, 3D contact with single and
multiple structures (including the numerical method presented in Chapter 4).





General conclusion and
perspectives





In this thesis we have considered the modeling and numerical approximation of �uid-
structure interaction problems with immersed solids within the un�tted mesh Nitsche-
XFEM framework.

In Part I, we have successfully avoided strong coupling without compromising stability
and accuracy, introducing an un�tted mesh semi-implicit scheme, combining a fractional-
step time-marching in the �uid with the consistent Nitsche-XFEM spatial discretization
method. The numerical results of Chapter 2 have shown that, traditional accuracy issues
of previous weakly coupled schemes with Nitsche's interface treatment (see Astorino et al.
(2009a); Alauzet et al. (2016)) are circumvented through a consistent transfer of the �uid
viscous stresses to the solid, even though subordinated to an additional CFL-like condition,
linking the space discretization and the Nitsche's penalty parameters. In Chapter 3, we
have derived ana priori error analysis, in the case of �rst and second order extrapolations
in the kinematic coupling, showing a superior accuracy, with respect to the stabilized
explicit scheme of Burman and Fernández (2014a), which su�ers of stagnation phenomena
when � = O(h). Additionally, numerical evidence indicates that the new semi-implicit
algorithm and the strongly coupled (from Burman and Fernández (2014a)) deliver the
same accuracy behavior.

The second part (Part II) of this thesis focused on �uid-structure-contact interaction
problems. In Chapter 4, we have addressed the case of contact with multiple structures
within the un�tted mesh Nitsche-XFEM framework. Consistency and correctness of the
overlapping meshes are guaranteed also at contact, as a consequence of an additional du-
plication of the �uid elements intersected from di�erent structures. A new duplication
procedure has been developed and a numerical experiment (with low displacements), in
which we compare the Nitsche-XFEM method with �tted ALE and un�tted FD meth-
ods, showed similar results between Nitsche-XFEM and ALE and the higher robustness
of Nitsche-XFEM with respect to FD. In Chapter 5, we have presented a �uid-structure-
porous-contact model, in which, mechanical consistency issues of the relaxed contact for-
mulations are avoided. We have introduced a thin-walled porous layer, over the contacting
surface, in order to model the solid asperities and give a physical meaning to the �uid
stresses at contact.

Furthermore, in Part III, we have extended the Nitsche-XFEM un�tted mesh method
of Alauzet et al. (2016) to three dimensions. The development of an intersection and
sub-tetrahedralization algorithm is a crucial point for the e�ectiveness of the presented
methodology. This is one of the main contributions of Chapter 6. Additionally, consid-
ering the case of partially intersected �uid domain, special treatment are included in the
method, by adding a solid region which reduces the geometrical operations to the case
of fully intersected domains. Numerical evidences have validated the 3D Nitsche-XFEM
un�tted mesh method.

From the present work, several research directions can be explored:

ˆ The implementation of the semi-implicit coupled scheme presented in Chapter 2 in
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three-dimensions, considering the contributions of Chapter 6, in order to be able to
handle complex and physiological simulation of heart valves.

ˆ From the theoretical point of view, the extension of the stability and convergence
analysis of Chapters 2, 3 to the case of curved and dynamic interfaces. Both subjects
have not been particularly analyzed in the literature. We refer to Lehrenfeld and
Olshanskii (2019) for stability and error analysis accounting also geometric errors,
while for the study of parabolic problems with moving interfaces we refer to Zunino
(2013). Additionally, further insight on the analysis in the case of second order
time-discretization in both �uid and solid problem could be considered.

ˆ The extension of the �uid-structure-contact interaction model of Chapter 4 to 3D
and the case of partially intersected �uid domain, using the �ctitious solid method
proposed in Chapter 6. As regards partially intersected �uid domain, this is a
promising approach, since the tip procedure reduces the operations to the case of
fully intersected domains. Hence, by avoiding penetration also within the �ctitious
interface, we can apply the same strategy of Chapter 4.

ˆ Regarding the �uid-structure-porous-contact model of Chapter 5, we can consider
the extension of the model to the case in which we consider a non rigid porous layer,
with large displacements.

ˆ On going works are devoted to the comparison of the un�tted mesh Nitsche-XFEM
based FSI-contact model of Chapter 4, with advanced moving meshes techniques,
coupled with the ALE �tted approach (see, e.g., Alauzet (2014)) in the context of
contact with large displacements.
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