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Context and motivations

Major economic losses in industrial companies in different domains (e.g., energy, manufacturing and automobile, transportation, etc.) are due to repairing and downtime costs that result from unforeseen equipment failure. Repairing costs for nuclear plants can exceed 600 million$ without including lost revenues due to the downtime (J. B.

Coble 2010a

). System downtime can also lead to huge economic losses, an unexpected one day stoppage of production in industry may cost up to 100,000 e for coal power station and chemical factory, 200,000 e for Pulp and Paper, and can reach up to 300,000 e for nuclear plant [START_REF] Helle | Development of prognostic concepts and tools[END_REF], as shown in Figure 1-1.

Figure 1-1: Economical losses for one day stoppage in industry [START_REF] Helle | Development of prognostic concepts and tools[END_REF] Traditional maintenance strategies include two categories: corrective and preventive maintenance. Corrective maintenance aims to repair the system only when a failure has occurred. The process of the corrective maintenance strategy has the advantage to avoid any unnecessary maintenance actions by only repairing the failed component. However, it is very costly because of the fault consequences on the system safety, availability and reliability. On the other hand, preventive maintenance aims to schedule periodic inspections of the system in order to prevent failures and their consequences. Its cost is very high because the replacement of critical components is scheduled in period interval regardless of the current health conditions. An alternative to those traditional maintenance strategies is the predictive maintenance.

Prognostics and health management (PHM) is an advanced maintenance strategy that can overcome the limits of traditional maintenance strategies. PHM permits to monitor the health conditions of the system and trigger the maintenance actions only when needed. It is a cost-effective strategy comparing to the traditional strategies since it can reduce the repairing costs of the corrective maintenance as well as the costs of periodic inspections generated by the preventive maintenance. Generally, the pipeline of the PHM strategy includes five steps: data acquisition, data processing, fault diagnostics, fault prognostics, and decision support (health management).

Fault prognostics is one of the main steps for achieving PHM strategy, which aims to estimate the Remaining Useful Life (RUL) before failure. It can help to plan the maintenance actions in advance before failure occurrence in order to avoid systems downtime and reduce the revenue losses.

Objectives and contributions

Fault prognostics based on data-driven approaches is efficient, especially when no physical or mathematical model about the operation of the system is available, or when it is challenging to build a physical model where several components are in interaction. Fault prognostics based on data-driven approaches require several historical degradation sequences in order to construct a model that can achieve a desirable RUL estimation accuracy. Different approaches are proposed in the literature for RUL estimation when several historical degradation sequences are available [START_REF] Medjaher | Remaining useful life estimation of critical components with application to bearings[END_REF][START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF]X. Li et al. 2018;[START_REF] Heimes | Recurrent neural networks for remaining useful life estimation[END_REF]. However, in industrial systems, these historical sequences are often unavailable (e.g., new machines) or insufficient (i.e., few available sequences that do not cover all the degradation evolution dynamics or conditions). In order to overcome this main challenge, three data-driven approaches are proposed for RUL estimation when no degradation sequences, few sequences, and multiple sequences are available a priori, as it is shown in Figure 12. The general proposed approach includes three RUL estimation paths: blind, informed, and deep paths depending on the number of available degradation sequences.

The blind path is triggered when no a priori sequences are available, it aims to estimate the RUL using an adaptive model where the prediction becomes more accurate over time with the arrival of new incoming degradation data. The informed path is triggered when one or more a priori sequences are available, the RUL is estimated using several adaptive models, and the more the number of a priori sequences is increasing the more the RUL estimation is accurate and reliable. The deep path is used when multiple a priori sequences are available, where the RUL estimation is more efficient and accurate compared with the other paths. More details about these paths are provided in the next section.

Manuscript organization

The thesis manuscript is organized as follows:

Chapter 2 -State of the art of fault prognostics for the predictive maintenance. This chapter presents a review about the state of the art techniques used for the prognostics and health management strategy pipeline, especially the prognostics step. First, the evolution of the maintenance strategies is shown from corrective, preventive, until predictive maintenance. Then, the pipeline of the PHM strategy is presented, including Health Indicator (HI) construction, degradation detection, and RUL estimation. The different techniques for constructing the HI are described as well as the metrics able to select the best one automatically. Thereafter, the degradation detection methods are presented, and classified according to how they detect a degradation: it can be detected using normal and faulty data about the system operation or using only normal data. Finally, the RUL estimation approaches are described, and their performances are compared in order to justify the use of data-driven approaches. The chapter focuses on the latter category of approaches in order to estimate the RUL.. The chapter ends with a discussion about the previously described techniques that permit to achieve fault prognostics efficiently.

Chapter 3 -Prognostic approach with insufficient a priori degradation sequences. This chapter presents the data-driven based approach for achieving fault prognostics when there is insufficient (no or too few) historical degradation sequences. First, the HI library is defined, then the degradation is detected using only normal data of the system operation by applying a One Class Support Vector Machine (OCSVM). When the degradation is detected, the blind path or the informed path is triggered depending on the availability of a priori sequences. The blind path is triggered when no a priori sequences are available, where the HI is selected dynamically at each time cycle, and an adaptive model is used for the HI extrapolation until failure. The informed path is triggered when some a priori sequences are available (at least one sequence is available). It aims at predicting RULs using different adaptive HI-model pairs, where the final RUL is deduced by fusing the computed RULs. This proposed approach is validated using vibration data collected from a real degraded bearing of a wind turbine high speed shaft, vibration data generated from a degraded bearing with inner and outer race fault, and sensors data collected from a degraded aircraft engine (C-MAPSS dataset).

Chapter 4 -Prognostic approach with multiple a priori degradation sequences. This chapter presents a data-driven based approach for achieving fault prognostics when several historical degradation sequences are available. The proposed approach is based on a deep ensemble method by combining the RUL estimation of two deep learning models that have proven their effectiveness for fault prognostics, named

Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). CNN architecture can automatically extract relevant information (features) by applying several convolution filters on the raw data, while the LSTM has the ability to capture the sequential information in time series data. Two RULs are predicted with each model, where the final RUL is obtained by fusing the predicted RULs. The proposed deep ensemble approach for RUL estimation is validated using a filter clogging dataset available for the PHM Europe data challenge, and C-MAPSS dataset. It achieved promising performance compared with the state-of-the-art results.

Chapter 5 -General conclusion. This chapter summarizes the proposed contributions, then presents the open issues and future directions in order to improve the proposed fault prognostics approaches. • Abid, K., Sayed-Mouchaweh, M., & Cornez, L. (2018, September). Fault prognostics for the predictive maintenance of wind turbines: State of the art. In Joint european conference on machine learning and knowledge discovery in databases (pp. 113-125). Springer, Cham.
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Chapter 2

State of the art of fault prognostics for the predictive maintenance

Introduction

Operation reliability and availability of industrial systems influence on the profit generation and competitiveness of industrial companies. With the upgrade of the production equipment and automation level, industrial companies have experienced a steady increase in maintenance costs. This implies the importance of applying a cost-effective maintenance strategy that can maintain the reliability and availability while reducing downtime and production loss costs of machinery, process, and other production means of industrial systems.

In this chapter, the different maintenance strategies are described. Then, the pipeline of the prognostics and health management strategy is presented, and its different steps required to perform fault prognostics are investigated. The main fault prognostic steps include health indicator construction, degradation detection, and remaining useful life estimation. The chapter ends with a discussion highlighting the advantages of the suitable techniques that can be used for our work in the next.

Maintenance strategy evolution

In order to plan maintenance actions, three basic maintenance strategies can be defined: corrective maintenance, preventive maintenance, and condition based maintenance. The application of these strategies evolved with time in order to reduce the lifecycle costs of systems [START_REF] Kim | Prognostics and health management of engineering systems: An introduction[END_REF].

Corrective maintenance

Preventive maintenance

Condition based maintenance

Evolution of maintenance strategy

Downtime cost

Inspect and repair after breakdown Inspect in predetermined intervals Inspect and repair only when needed nance. The principle of the corrective maintenance strategy is to run the system until it fails (breaks), the preventive maintenance schedules inspections of the system in predetermined intervals, while the condition based maintenance helps to monitor the system in real time and recommends maintenance actions only when needed. The three strategies are detailed next.

Corrective maintenance

Corrective maintenance, also called breakdown, reactive, or unplanned maintenance, is the earliest used maintenance strategy. There are no routine maintenance tasks to perform, and it aims to repair the system only when the useful life of the system is consumed (after failure occurrence). Corrective maintenance is suitable when equipment shutdowns do not affect product quality or revenue generation, or when repair and downtime time costs are within an acceptable range. However, this strategy takes the longest time to start repairing actions, especially when replacement parts are not available because there is no time to prepare the maintenance actions in advance (before failure). This strategy leads to a high costs because downtime events are often unplanned, more frequent, and longer in duration.

Preventive maintenance

Preventive maintenance, also called time-based maintenance or planned maintenance, aims to schedule periodic inspections of the system in order to prevent failures and their consequences. In this strategy, key elements have a prescheduled replacement interval, regardless the current health conditions. It is a cost-effective strategy if all parts are expected to fail in the same time, which is often not the case in real systems. The maintenance costs increase in this strategy because it replaces all parts even if many of them may not need to be replaced. Moreover, the scheduled inspection requires intrusion on equipment which increases the downtime costs. While this approach can help to reduce system failure and increase the residual life, the process is labor-intensive, the inspection requires to downtime the system, and the inspection is time-dependent regardless the condition of the system which increases the maintenance cost.

Condition based maintenance

With the development of technology, modern industrial systems became more complex entailing to increase their potential to fail. Therefore, their maintenance costs, especially preventive maintenance, become very expensive. In order to reduce maintenance costs while maintaining system reliability and safety, condition based maintenance became a promising solution for industrial systems.

The condition based maintenance (CBM), also called condition directed mainte-nance or predictive maintenance, which is applied to overcome the limits of preventive maintenance. While the preventive maintenance is time dependant regardless of the system health conditions, the CBM is dependent on the current health conditions of the system. CBM permits to take actions by repairing or replacing the degraded parts before product quality is reduced to unaccepted levels or failures occurred. Even if CBM requires investment costs in order to implement, operate, and maintain, those costs remain lower than ones generated by production losses due to downtime [START_REF] Niu | Data-driven technology for engineering systems health management[END_REF]. The predictive maintenance is efficient when the degradation dynamics of the system is known (not random) and evolves with time, and when measurable parameters about the system conditions are available (collected by sensors). Moreover, the CBM is not intrusive on the system's components and does not require system downtime for inspection since the inspection actions are triggered only when degradation is detected.

Prognostics and health management strategy

In the literature, more and more works are investigating the Prognostics and Health Management (PHM) strategy, which is a strategy that can help to achieve the condition based maintenance (predictive maintenance). PHM can enhance the predictive maintenance by evaluating the current health state of the system, detect and diagnose the incipient fault, and determine how long from now a failure will happen in a system given the current operating conditions [START_REF] Das | An open architecture for enabling CBM/PHM capabilities in ground vehicles[END_REF].

PHM is a strategy that focuses more on incipient fault detection, current health assessment and remaining useful life prediction [START_REF] Lee | Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications[END_REF]). PHM strategy is applied for several goals: predicting failure in advance, minimizing the number of unscheduled maintenance, increasing the availability of the system, reducing the maintenance costs by decreasing the inspection costs, decreasing downtime costs, and optimizing the maintenance actions. According to [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF], PHM program consists of three main steps including data acquisition step in order to collect relevant data for the system health monitoring, data processing step where the col-lected data are analyzed by using advanced methods for achieving fault diagnosis and prognosis, and the maintenance decision making step in order to recommend optimal maintenance actions. [START_REF] Callan | An integrated approach to the development of an intelligent prognostic health management system[END_REF] proposed a PHM architecture with five steps: Data Manipulation, Condition Monitoring, Health Assessment, Prognostics, and automatic decision reasoning. Four main steps for PHM strategy is presented by [START_REF] Kim | Prognostics and health management of engineering systems: An introduction[END_REF] Data acquisition step is used to collect relevant data from sensors that are placed on critical components, such as bearing in rotating machines that undergo slow degradation, which enable performing the prognostics (estimating their RUL) that may reduce their maintenance costs significantly. In the data processing step, the collected data are analyzed in order to extract significant indicators (features) about the system's health evolution useful for the next steps. The diagnostics step permits to achieve incipient fault detection, fault isolation or localization. Degradation detection triggers the prognostics step where the RUL is estimated. The final step is the decision support step, and it uses the obtained information from the previous steps (health state, root cause, and RUL) in addition to other information (e.g., priority, logistics) in order to recommend the optimal maintenance actions. This thesis focuses on data processing, diagnostics and prognostics steps of the PHM strategy, in particular prognostics, as it is illustrated in Figure 2-2 in the red rectangle.

Health indicator construction

In order to detect an incipient fault (e.g., wear or crack) in its early stage and follow its progress over time to be a failure, indicators characterizing the system's, or one of its components, health state, as well as its dynamic evolution over time, must be built. To this end, it is necessary to apply condition monitoring by using data collected from sensors. The collected data contains raw information about the system health state. Hence, in general the collected data requires careful processing to build a suitable, sensitive, health indicators.

The Health Indicator (HI) construction is one of the most important steps to achieve prognostics. It can represent the system performance (e.g., produced energy for a wind turbine), or it can represent the system operation conditions (e.g., temperature, vibration, oil debris density). In general, the HI permits to follow the health state of a component or a system over time. When the HI evolution starts increasing 

Health indicator based on a single feature

In this category, the health state of the system is monitored using only one HI (i.e., one feature). This feature could be chosen manually by a human expert or automatically by using HI selection criteria proposed in the literature. The HI based on a single feature can be based on raw measurements, residuals, or signal processing techniques.

Raw measurement based HI

The HI can be based on collected raw measurement from the monitored system or component. For instance, in [START_REF] Dupuis | Application of oil debris monitoring for wind turbine gearbox prognostics and health management[END_REF], the HI is constructed using the full signal of oil debris monitoring located on wind turbine gearbox, which is sensitive to bearing spall. J. [START_REF] Zhu | Lubrication oil condition monitoring and remaining useful life prediction with particle filtering[END_REF] used the viscosity and dielectric raw signals as HI in order to monitor the lubrication oil degradation of the wind turbine gearbox.

Residual based HI

The HI based on a residual is computed as the deviation between the current new measurement and the nominal operation conditions of the system. In the work of [START_REF] Uluyol | Power curve analytic for wind turbine performance monitoring and prognostics[END_REF], a residual is computed between the current generated power and the power curve given by the manufacturer of wind turbines. The residual is calculated in order to predict the health state of the system based on its performance.

A residual between a nominal reference temperature and the measured temperature of wind turbine bearing is computed in [START_REF] Bangalore | An artificial neural network approach for early fault detection of gearbox bearings[END_REF], while the nominal (reference) temperature is predicted using artificial neural network (ANN).

Signal processing based HI

It is necessary to use signal processing techniques to deal with high sampling frequency signal (e.g., vibration signals), because it is difficult to clearly observe the degradation start as well as its evolution, due to the variation in operating conditions and the effect of noise.

In the literature, most of the prognostic works construct the HI using signal processing techniques (time, frequency, and time-frequency domain features). In general, they apply traditional time domain techniques such as Root Mean Square (RMS), kurtosis, skewness, peak value, shape factor, crest factor, impulse factor...etc. RMS is widely used as HI for health monitoring (Y. [START_REF] Li | Adaptive prognostics for rolling element bearing condition[END_REF]Y. Lei et al. 2016a;[START_REF] Ahmad | A hybrid prognostics technique for rolling element bearings using adaptive predictive models[END_REF]. In (Y. Lei et al. 2016a), RMS is computed using vibrations signal in order to monitor the health state of bearings and estimate the remaining useful life.

The RMS value is also computed in [START_REF] Ahmad | A hybrid prognostics technique for rolling element bearings using adaptive predictive models[END_REF]) in order to estimate the RUL of bearings, where the RMS has shown a trend that can be used to characterize different health states of a bearing (normal, incipient, and severe stages). In the work of [START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF], the kurtosis is used to monitor the degradation of a high speed shaft bearing of a wind turbine. This HI is computed from 50 days run-to-failure vi-bration measurements (see Figure 2 -5). This figure shows an increasing trend of the HI over time due to the degradation severity evolution. [START_REF] Javed | Enabling health monitoring approach based on vibration data for accurate prognostics[END_REF] proposed new features based on trigonometric functions computed from the vibration signals, then cumulative transformation is performed to enhance the trend of the degradation evolution. Spectral Kurtosis (SK) has also proven its effectiveness for HI construction in order to perform fault detection and prognosis of bearings using vibration signals (J. [START_REF] Tian | Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis[END_REF][START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF]. SK is the kurtosis of the spectral components, it can detect impulsive bearing signatures. J. [START_REF] Tian | Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis[END_REF] applied SK for fault detection of motor bearing, while it is applied in [START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF] for fault detection and prognosis of high speed shaft bearing of a wind turbine. In [START_REF] Cheng | Fault prognosis and remaining useful life prediction of wind turbine gearboxes using current signal analysis[END_REF], current signal is analysed to extract HI by using the Power Spectral Density (PSD) of the current signal. Some works use time-frequency techniques for HI construction, including Short Time Fourier Transform (STFT), Wavelet Packet Decomposition (WPD), and Hilbert Huang Transform (HHT). WPD is used for signal analysis, it aims to decompose the frequency domain of the signal into several frequency subsets. In [START_REF] Malhi | Prognosis of defect propagation based on recurrent neural networks[END_REF], RMS and peak values are computed on the wavelet coefficient and were chosen as HI for the RUL estimation. [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF] and Z. [START_REF] Zhang | Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network[END_REF] used WPD for HI construction, where it is applied on vibration data of bearings for RUL estimation. HHT can decompose a signal into so-called Intrinsic Mode Functions (IMF), where the IMF are used to compute the instantaneous frequency data. It is applied in [START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF][START_REF] Li | Ensemble empirical mode decomposition and Hilbert-Huang transform applied to bearing fault diagnosis[END_REF] to extract time-frequency HIs, where the computed HIs are used for fault detection, diagnosis and prognosis.

-days of vibration measurements

Health indicator based on multiple features

In some cases where the degradation dynamic evolution is complex (different operating conditions, noises etc.), it can be useful to build a HI issued from the combination of several features in order to exploit their diversity and complementarity. This combination can be obtained using different techniques such as dimension reduction, Distance-based, or regression techniques. However, this fusion entails the loss of physics meaning (loss of interpretability). This fusion is mainly used for fault detection and diagnosis [START_REF] Toubakh | Hybrid dynamic classifier for driftlike fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters[END_REF][START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF], as well as in some works for fault prognostics [START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF][START_REF] Chammas | Drift detection and characterization for condition monitoring: application to dynamical systems with unknown failure modes[END_REF].

Dimension reduction based HI

These techniques can merge several features into one HI by using dimension reduction techniques such as Principal Component Analysis (PCA) or Isometric Mapping (ISOMAP). [START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF] extracted eight features from a vibration signal using WPD. Each feature represents the level of energy at each level of decomposition.

These features are then merged in order to construct one HI, as illustrated in Figure 2-6. This fusion is achieved by using a nonlinear dimension reduction techniques called ISOMAP [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF]. The computed HI is then used for health monitoring and fault prognostic of bearings. Le [START_REF] Son | Remaining useful life estimation based on stochastic deterioration models: A comparative study[END_REF] applied PCA in order to construct a HI named degradation indicator based on the first component of the PCA. The computed HI is used for RUL estimation of turbofan engine (Saxena et al. 2008b). getting to a failure class by using Kullback-Leibler (KL) divergence. The HI is then used for the prognosis of fault in a tank system (leak in the tank). In [START_REF] Boškoski | Bearing fault prognostics using Rényi entropy based features and Gaussian process models[END_REF], a distance is computed between wavelet coefficient of fault free bearing and faulty bearing using Jensen-Rényi divergence, which measures the dissimilarities between probability distribution functions. In [START_REF] Toubakh | Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines[END_REF][START_REF] Toubakh | Hybrid dynamic classifier for driftlike fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine converters[END_REF], two drift indicators are computed by the use of the Euclidean distance and the Mahalanobis distance between normal and evolving classes. These two indicators are considered as HIs and applied for fault detection in the pitch system and the converter of a wind turbine.

Regression based HI

The goal of these techniques is to use regression models in order to map several features (input) into one HI (output). For example, a new HI for bearing monitoring is constructed using ANN in [START_REF] Ali | Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[END_REF] in order to estimate the life percentage.

The latter is a HI that shows the evolution of the system health state towards the failure, while the RMS, kurtosis, and RMS Entropy Estimator (RMSEE) are used as input of the ANN model. L. [START_REF] Guo | A recurrent neural network based health indicator for remaining useful life prediction of bearings[END_REF] applied a Recurrent Neural Network (RNN) in order to merge six selected features and construct the HI, while the RNN are used to map the features to the HI which is between 0 and 1, where 0 represents the healthy state and 1 the faulty state of the component, the computed HI is employed for the RUL estimation of a test bed bearings and a wind turbines generator bearings.

Health indicator selection

In order to achieve fault prognosis and obtain an accurate RUL estimation, it is necessary to select the efficient HIs (features) to the evolution of degradation and discard the irrelevant ones. An efficient HI is the one that can follow the evolution of the degradation over time until failure, which means that it should be monotonically correlated with the degradation process. For this reason, selection criteria or metrics that can automatically select the most suitable HIs should be applied.

J. [START_REF] Coble | Identifying optimal prognostic parameters from data: a genetic algorithms approach[END_REF] proposed three metrics in order to evaluate the HIs sensitive to the degradation evolution and select the best one. The proposed metrics are:

"prognosability", "monotonicity", and "trendability". They are detailed in the next subsections.

Prognosability

Prognosability, also called consistency, or failure consistency is a metric that returns a measure of the variance in the failure value of a population of degraded systems or components. A wide spread in failure threshold can make it difficult to accurately extrapolate a HI to the failure value. Prognosability measures the variability of the different HIs' values when the system is in failure. It is calculated as follows:

𝑃 𝑟𝑜𝑔 = 𝑒𝑥𝑝(- 𝑠𝑡𝑑(𝑉 𝑒𝑛𝑑) 𝑚𝑒𝑎𝑛(|𝑉 𝑒𝑛𝑑 -𝑉 𝑠𝑡𝑎𝑟𝑡)| ) (2.1)
where 𝑉 𝑒𝑛𝑑 is the HIs' values when the system is in failure, while 𝑉 𝑠𝑡𝑎𝑟𝑡 denotes the HIs' values when the degradation starts.

Monotonicity

The monotonicity evaluates the negative or positive trend of the HI, with the assumption that the system cannot self-heal. Monotonicity is measured by the absolute difference between the negative and positive derivative of HI, as indicated in the following equation:

𝑀 𝑜𝑛𝑜𝑡 = ⃒ ⃒ ⃒ ⃒ Nb of (𝑑/𝑑𝑥 > 0) 𝑛 -1 - Nb of (𝑑/𝑑𝑥 < 0) 𝑛 -1 ⃒ ⃒ ⃒ ⃒ (2.2)
where 𝑑/𝑑𝑥 represents the derivative of the HI, 𝑛 represents the number of observations, 𝑀 𝑜𝑛𝑜𝑡 ∈ [0, 1], where 1 represents the perfect monotonicity.

Trendability

Trendability is related to time and represents the correlation between the degradation trend and the operating time of a component, and it is calculated as follow [START_REF] Javed | Enabling health monitoring approach based on vibration data for accurate prognostics[END_REF])

𝑇 𝑟𝑒𝑛𝑑 = |𝑛( ∑︀ 𝑛 𝑖=1 𝑥 𝑖 𝑡 𝑖 )-( ∑︀ 𝑛 𝑖=1 𝑥 𝑖 )( ∑︀ 𝑛 𝑖=1 𝑡 𝑖 )| √ [𝑛 ∑︀ 𝑛 𝑖=1 𝑥 2 𝑖 -( ∑︀ 𝑛 𝑖=1 𝑥 𝑖 ) 2 ][𝑛 ∑︀ 𝑛 𝑖=1 𝑡 2 𝑖 -( ∑︀ 𝑛 𝑖=1 𝑡 𝑖 ) 2 ]
(2.3)

𝑇 𝑟𝑒𝑛𝑑 ∈ [0; 1] represents the correlation coefficient between the value of HI for a pattern 𝑥 at time 𝑡. 𝑇 𝑟𝑒𝑛𝑑 approaches 1 when the HI has a strong positive linear correlation with time.

Robustness

B. [START_REF] Zhang | Degradation feature selection for remaining useful life prediction of rolling element bearings[END_REF] proposed the robustness metric in order to measure how robust the HI is to random fluctuations. It is computed as follow:

𝑅𝑜𝑏 = 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑒𝑥𝑝 (︂ - ⃒ ⃒ ⃒ ⃒ 𝑥𝑟 𝑖 𝑥 𝑖 ⃒ ⃒ ⃒ ⃒ )︂ (2.4)
where 𝑥 is the HI values, and 𝑥𝑟 denotes the random part values that is computed as the difference between the HI and the trend of the HI (smoothed HI). Several works applied these metrics in order to select the most efficient HI for fault prognostic automatically. [START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF] 

Degradation detection

Degradation detection is primordial for prognostic because it allows triggering the RUL estimation technique. Degradation detection aims to divide the health state of a system into a healthy state (normal or nominal) and an unhealthy state (degraded or faulty). However, in some cases, the monitored system or component presents a gradually degraded trend during the whole operating period (e.g., flank wear of a milling tool [START_REF] Eker | Major challenges in prognostics: study on benchmarking prognostic datasets[END_REF]). Hence, there is no need to detect degradation since the degradation starts when the component is in operation.

The degradation detection is based on a HI (or HIs) that can follow the degradation evolution of the system. The simplest way to detect the degradation is to set an alarm threshold [START_REF] Niu | Intelligent condition monitoring and prognostics system based on data-fusion strategy[END_REF]) on a single HI as illustrated in Figure 2-8. Another efficient widely used way for fault detection is to combine multiple HIs in order to exploit the complementarity of the HIs. This can be achieved using classification (machine learning) techniques such as support vector machine, k nearest neighbors, artificial neural network (ANN)...etc. The degradation can be detected using historical normal and faulty data, or by using only normal data by applying anomaly detection techniques. Figure 2-9 shows the classification of the degradation detection techniques.

Degradation detection using normal and faulty data

When using both normal and faulty (abnormal) data about the system, the goal is to find a boundary (separation) between the two classes (normal and faulty) as 

Degradation detection using normal data

The degradation detection using normal data can be achieved using anomaly detection (novelty detection, outlier detection) also called one class classification, which refers to the problem of finding patterns in data that do not conform to the expected behavior [START_REF] Marsland | Novelty detection in learning systems[END_REF]. The objective of anomaly detection methods is to detect degradation and fault using only the data collected from the system or its components under normal (nominal) operation conditions. These techniques can be applied to degradation detection since the data points about normal operating conditions are well condensed in the feature space, while the data points about degradation operation conditions are spread in the feature space as illustrated in Figure 2 Anomaly detection methods can be broadly categorized into statistical, or machine learning techniques that include similarity based, and deviation based methods [START_REF] An | Variational autoencoder based anomaly detection using reconstruction probability[END_REF].

Statistical techniques

Statistical anomaly detection techniques assume that the data is modeled from a specific probability distribution. The simplest way for anomaly detection is to represent the normal data as a Gaussian distribution, then apply 3𝜎 interval (𝜇 + 3𝜎 contains 99.7% of data instance) in order to set the threshold and detect the anomaly (Chan-dola et al. 2009). [START_REF] Jin | Anomaly detection and fault prognosis for bearings[END_REF] applied the box-cox transformation in order to change the distribution of the HI into Gaussian distribution, then applied an alarm threshold for fault detection in order to trigger the RUL estimation step for bearings faults.

Machine Learning techniques

Similarity based techniques compute the similarity (closeness) between the new measurement point and the normal class in the feature space. The similarity can be computed using a distance metric such as Euclidean, Mahalanobis, and Manhattan distance. Y. [START_REF] Wang | A two-stage data-driven-based prognostic approach for bearing degradation problem[END_REF] computed Mahalanobis distance between the new measurement and the original healthy state, then 3𝜎 interval is set as a threshold in order to detect the fault. KNN is also a similarity based method, it is adapted in [START_REF] He | Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[END_REF]) by examining the distance of a new sample to its neighboring training samples (using only normal data) for fault detection in an industrial process (semiconductor manufacturing process).

SVM can also be a similarity based method because it computes the distance of the new observation from the support vector points. [START_REF] Schölkopf | Support vector method for novelty detection[END_REF] developed a variant of SVM in order to tackle the one class classification problem called One Class Support Vector Machine (OCSVM). The goal of OCSVM is anomaly detection and novelty detection, which is extensively applied in the literature [START_REF] Khan | One-class classification: taxonomy of study and review of techniques[END_REF]. OCSM is also applied in [START_REF] Yin | Fault detection based on a robust one class support vector machine[END_REF]) for fault detection. [START_REF] Shin | One-class support vector machines-an application in machine fault detection and classification[END_REF] applied OCSVM for machine fault detection, where the results showed that the OCSVM performance is comparable to MLP neural network performance. An approach based on OCSVM is proposed in [START_REF] Fernandez-Francos | Automatic bearing fault diagnosis based on one-class 𝜈-SVM[END_REF] for fault detection and isolation of bearings. The proposed approach showed its ability to detect failures in an incipient stage, to isolate its location, and qualitatively assess its evolution over time.

Deviation based methods use the reconstruction errors as the anomaly score (which can be used also as HI). Autoencoder is a type of neural network that can reconstruct the input at the output layer [START_REF] Hinton | Autoencoders, minimum description length and Helmholtz free energy[END_REF][START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. It has been used in the literature to extract features for fault detection in an unsupervised manner [START_REF] Sun | A sparse auto-encoder-based deep neural network approach for induction motor faults classification[END_REF][START_REF] Haidong | Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[END_REF]. Anomaly or novelty detection can be achieved when the reconstruction errors (residual) between output and input is greater than a threshold. [START_REF] Jiang | Wind turbine fault detection using a denoising autoencoder with temporal information[END_REF] applied a variant of the autoencoder named denoising autoencoder for errors generation, while a threshold is used for fault detection. The proposed approach is validated on a wind turbine benchmark and then on a real wind turbine data. The construction of the residual based HI is also a deviation based methods since the residual based HI is the deviation between nominal operation conditions and the new measurement. Then, the degradation detection can be triggered by setting an alarm threshold, while the latter is generally set as the maximum value of residual under normal operation.

Remaining useful life estimation approaches

The degradation detection or diagnosis (detection and isolation) triggers the estimation of the RUL. The RUL is the time between the failure time when the extrapolated HI exceeds the failure threshold and the present time. The RUL is computed since the degradation is detected (alarm threshold reached). The RUL estimation process is illustrated in Figure 2-12.

Several categories of prognostic approaches were applied in the literature for achieving prognostics (RUL estimation), each category is efficient in a particular situation depending on the availability of data, availability of the physical model, and availability of information about the current health state. Most of the review works in the literature classify the prognostic approaches into model based (physics based) and data-driven based approaches [START_REF] Goh | A review of research in manufacturing prognostics[END_REF][START_REF] Heng | Intelligent condition-based prediction of machinery reliability[END_REF]. A taxonomy of model based, data-driven based, and hybrid approaches are proposed in [START_REF] Lee | Intelligent prognostics tools and e-maintenance[END_REF], where the hybrid approaches combine the first two approaches. In this manuscript, the RUL estimation is classified into two main approaches:

Tobon

Experience based approaches and degradation modeling approaches (see Figure 2-13). Experience based prognostic is achieved by applying reliability or similarity based approaches. The degradation modeling can be achieved by using physical models or by data-driven approaches (Abid et al. 2018).

Prognostic approaches

Experience based approaches

Reliability based approaches

Similarity based approaches

Degradation modelling based approaches

Data-driven based approaches

Model based approaches

Indirect RUL estimation 

Direct RUL estimation

Reliability based approaches

Traditional reliability based approaches use several run-to-failure sequences in order to characterize the expected lifetime of a population of components (systems). These approaches can be applied even when no information is available about the current health state of a component. Besides, the operating conditions are not considered for lifetime estimation. Usually, these approaches are applied in the manufacturing industry in order to estimate the mean life of a product, which is determined by analyzing time-to-failure of product population with similar characteristics. For this analysis, a failure distribution is applied such as Weibull distribution which is widely applied for characterizing the time-to-failure probability function of the component (product) [START_REF] Schömig | On the suitability of the Weibull distribution for the approximation of machine failures[END_REF][START_REF] Zhai | Analysis of time-to-failure data with Weibull model in product life cycle management[END_REF]).

Similarity based approaches

Similarity based approaches also use a huge amount of a priori run-to-failure sequences (library of degradation trajectories or patterns) for a set of components under different operation conditions. This category of approaches requires the monitoring of the current health state or health indicator of the system (component). Then the current HI sequence is compared with the library of degradation trajectories. The goal is to select the degradation trajectory (degradation evolution) that best matches, in terms of similarity or closeness, the degradation evolution of the current component. The selected degradation evolution is used to predict the RUL of the current component.

T. [START_REF] Wang | A similarity-based prognostics approach for remaining useful life estimation of engineered systems[END_REF] employed an Euclidean distance in order to find the most similar

HIs with the current one. Then, the best HIs are used for RULs estimation while the final RUL is computed using a weighted mean of the computed RULs. The proposed approach is validated using run-to-failure data collected from a faulty aircraft engine datasets.

Some other works apply KNN for finding the similar HIs from the library. The selected HIs are represented as the K nearest neighbors according to defined distance metric [START_REF] Ramasso | Joint prediction of continuous and discrete states in time-series based on belief functions[END_REF][START_REF] Mosallam | Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[END_REF]. [START_REF] Mosallam | Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[END_REF] used KNN in order to find the most similar trajectories in training to the online one, while a recursive discrete Bayesian filter is applied for RUL estimation. The proposed method is evaluated using two data sets, namely, turbofan engines and lithium-ion battery (Saxena et al. 2008a;[START_REF] Saha | Battery data set[END_REF]). [START_REF] Zio | A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[END_REF] applied a fuzzy pointwise similarity concept in order to match the current data to the data in the library of reference patterns. Then the RULs of the selected reference patterns are aggregated using a weighted mean for the final RUL estimation.

Degradation modeling based approaches aim at modeling the degradation dynamic evolution and predicting its progress over time until failure. Precisely, those approaches aim at estimating the RUL considered as the time between the starting time of the degradation detection and the time of end of life. The degradation dynamic evolution can be modeled using model based approaches or data-driven based approaches. This thesis focuses on data-driven approaches.

Model based approaches

Model based approaches require specific physical knowledge about the system operation and fault evolution and development. They use physical and mathematical laws and principals in order to model the degradation trend. Paris law [START_REF] Paris | A critical analysis of crack propagation laws[END_REF] is widely used for modeling damage propagation in a material. Paris law is a crack growth equation that gives the rate of growth of a fatigue crack. It is applied in [START_REF] Kacprzynski | Predicting remaining life by fusing the physics of failure modeling with diagnostics[END_REF]) for the fault prognosis of gears. [START_REF] Oppenheimer | Physically based diagnosis and prognosis of cracked rotor shafts[END_REF] proposed a physics based approach for performing fault diagnosis and prognosis. The observer method is used for fault detection and diagnosis, where a life model based on material crack growth laws is used for the RUL estimation. In (Y. Lei et al. 2016b), a particle filter based method is proposed to predict the RUL of machinery with degradation processes described using a variant of Paris model, the proposed method is validated using accelerated degradation test of bearings.

Data-driven based approaches

Data-driven based approaches require few or several degradation data (depending on the used method) in order to estimate the RUL. They build a model that learns using only the available data. These models can be statistical or based on Artificial Intelligence (AI) methods. First, the model is fitted with the historical degradation data offline, then when the degradation is detected the model permits to estimate the RUL online. RUL estimation using data-driven approaches can be classified into indirect and direct RUL estimation.

Indirect RUL estimation

The indirect RUL estimation is the standard RUL estimation where HIs are defined using features extracted from the new incoming data. Then, the trend of the HIs is extrapolated using a data-driven model (statistical or AI), where the RUL is deduced priori degradation sequences for RUL estimation. The developed method is evaluated using bearings degradation data. The exponential model is also widely used to characterize the degradation evolution of bearings [START_REF] Shao | Prognosis of remaining bearing life using neural networks[END_REF][START_REF] Gebraeel | Sensory-updated residual life distributions for components with exponential degradation patterns[END_REF]).

Gebraeel ( 2006) developed a sensory updating method using the exponential model where the model is updated for each new incoming sample from the sensors. A double exponential model is applied in [START_REF] Jin | Anomaly detection and fault prognosis for bearings[END_REF]) which is the summation of two exponential models, whereas the model parameters are updated using kalman filter.

The developed model is used for modeling the degraded trend of bearings. Also, a double exponential model is applied in (L. [START_REF] Guo | A recurrent neural network based health indicator for remaining useful life prediction of bearings[END_REF]) in order to extrapolate the computed HI of degraded bearings, the approach is validated using experimental data of bearings testbed and real data from a generator bearing of a wind turbine.

Artificial intelligence methods attempt to learn the degradation evolution of the system, by training a model on the available a priori sequences about the degradation.

They are able to perform prognostics for complex dynamic systems. In that case, the degradation is difficult to be characterized by model based approach or statistical approach. However, compared to the statistical methods, AI methods require an important number of run-to-failure data in offline for training the model. Support

Vector Regression (SVR) is a variant of SVM for regression, it is an AI method extensively used for RUL estimation in the literature. [START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF] applied SVR in an indirect way for predicting the trend of the HI and estimate the RUL of a high speed shaft bearing of a wind turbine. In [START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF], an approach based on three SVR models is developed, it is used for predicting the evolution of three computed HIs on vibration signal collected for health monitoring of bearing, then the smallest RUL is deduced as the final predicted RUL. SVR is also used in [START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF] for RUL estimation of bearings by using the indirect way.

ANNs are the most commonly AI techniques used for RUL estimation. They can model the complex non-linear relationship between input and output. An indirect life percentage estimation method is developed in [START_REF] Ali | Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[END_REF], where the life percentage is the inverse of the RUL. The life percentage of bearings is estimated by predicting the HI evolution based on ANN. An indirect RUL estimation is applied in [START_REF] Malhi | Prognosis of defect propagation based on recurrent neural networks[END_REF], while the trend evolution of the computed HI is predicted using RNN. LSTM is a RNN employed to learn the long term dependencies, its architecture makes it able to remember information for long periods of time. Y. Zhang et al. (2018) applied LSTM in the indirect way by modeling the evolution of the capacity degradation trajectories for the RUL estimation of lithium-ion batteries.

Direct RUL estimation

In direct RUL estimation, the RUL is estimated directly without trend prediction until failure, the input of the AI model can be either raw data or extracted features while the output is the actual RUL (see Figure 2 2004) developed an RUL estimation method based on a neuro-fuzzy system, which is a neural network-based fuzzy system. The structure of the fuzzy inference is determined by expertise, where its membership functions are trained by using ANN. In [START_REF] Aye | An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission[END_REF], the remaining life is predicted for slow speed bearings based on acoustic emission thanks to the Gaussian Process Regression model (GPR), GPR is a flexible non-parametric Bayesian model that permits a prior probability distribution to be defined over functions directly. [START_REF] Loutas | Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression[END_REF] used the SVR in a direct way where the inputs are the selected HIs and the output is the True RUL, it is applied for RUL estimation of rolling bearings. Z. [START_REF] Tian | An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring[END_REF] developed an ANN based method for RUL estimation of equipment using as input the age and conditions monitoring values at the present and past measurement. The developed method is validated using real world vibration monitoring data collected from pump bearings. In [START_REF] Mahamad | Predicting remaining useful life of rotating machinery based artificial neural network[END_REF]), a feed forward neural network is applied for direct prediction of the bearing life percentage. Recurrent Neural Networks (RNN) are as well used for RUL estimation, they contain an internal memory and can learn complex nonlinear mapping. Heimes Deep CNN is applied in (X. [START_REF] Li | Remaining useful life estimation in prognostics using deep convolution neural networks[END_REF] for RUL estimation using the turbofan engine dataset, the proposed architecture is deep because it stacks five convolution layers in order to capture the representative information from raw input data. It is applied in (X. [START_REF] Li | Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[END_REF] for direct RUL estimation of bearings by using as input a time-frequency transformation of the raw vibration signal and the actual RUL as output. LSTM is also widely used for the direct RUL estimation. Several works applied the LSTM in order to predict the RUL of an aircraft engines (S. [START_REF] Zheng | Long short-term memory network for remaining useful life estimation[END_REF][START_REF] Hsu | Remaining useful life estimation using long short-term memory deep learning[END_REF]. [START_REF] Mao | Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network[END_REF] applied the LSTM in a direct way by using as input features extracted from the vibration signal in order to predict the RUL of bearings. Some works also used a variant of the LSTM named Bidirectional LSTM (BLSTM) that can learn the dependencies of sensor data in both forward and backward direction. BLSTM is applied for the RUL estimation of an aircraft engine in (J. [START_REF] Wang | Remaining useful life estimation in prognostics using deep bidirectional lstm neural network[END_REF]J. Zhang et al. 2018).

Remaining useful life evaluation metrics

The predicted RUL is evaluated in a post prognostic step after failure occurrence using suitable and meaningful metrics. When the system's failure is reached, the actual or true RUL can be computed. This true RUL is then used as a reference to find the error between it and the predicted RUL. The true RUL is inversely proportional to the degradation rate and is computed as the difference between the present time and failure time, as illustrated in Figure 2 

𝑅𝑀 𝑆𝐸 = ⎯ ⎸ ⎸ ⎷ 1 𝑛 𝑡 𝑛𝑡 ∑︁ 𝑡=1 (𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) -𝑟𝑢𝑙(𝑡)) 2 (2.7) 𝑀 𝐴𝑃 𝐸 = 1 𝑛 𝑡 𝑛𝑡 ∑︁ 𝑡=1 ⃒ ⃒ ⃒ ⃒ 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) -𝑟𝑢𝑙(𝑡) 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) ⃒ ⃒ ⃒ ⃒ (2.8)
where 𝑛 𝑡 is the number of time index from degradation detection until failure, 𝑡 is the time index (time cycle), 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙 represents the actual RUL, and 𝑟𝑢𝑙 represents the predicted RUL. has been widely used for the RUL evaluation [START_REF] Ahmad | A hybrid prognostics technique for rolling element bearings using adaptive predictive models[END_REF][START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF][START_REF] Duong | A Reliable Health Indicator for Fault Prognosis of Bearings[END_REF]. CRA is calculated as follows:

𝐶𝑅𝐴 = 1 𝑛 𝑡 𝑛𝑡 ∑︁ 𝑡=1 𝑤(𝑡)𝑅𝐴(𝑡) (2.10) 𝑤(𝑡) = 1 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) ∑︀ 𝑛𝑡 𝑡=1 1 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) (2.11)
where 𝑛 𝑡 is the number of time index (time cycle) from RUL estimation start until failure (End Of Life (EOL)), and 𝑤(𝑡) is a weight factor as a function of the actual RUL [START_REF] Goebel | Prognostic Performance Metrics[END_REF]. The weights aim to improve the RUL evaluation by penalizing more the errors closer to 𝑡 𝐸𝑂𝐿 .

Discussion

Achieving prognostics requires to develop an approach with several steps. The main steps are HI construction, degradation detection (or diagnosis), and then modeling the degradation evolution for the RUL estimation step.

Health indicator construction is the first and main step for achieving prognostics.

It is preferable to have some knowledge about the system (expert knowledge) in order to choose an efficient HI. Alternatively, the HI can be selected automatically among a library of condition-based indicators using some evaluation metrics such as prognosability, monotonicity, trendability, and robustness.

For the degradation detection, it is efficient to apply detection using normal and faulty data (i.e., classification techniques) by exploiting multiple health indicators in order to find the optimal boundary between normal and faulty data points. However, in real industrial systems, there is a lack of historical degradation data and sometimes they are not available (e.g., for new systems). In the latter case, it is preferable to apply anomaly detection methods because the historical data about normal operation conditions are widely available.

The discussed prognostic approaches in this manuscript are compared according to their potential requirements in Table 2.1, where each requirement can be "Required", "Not required", and "Beneficial" for each prognostics approach. Experience based approaches (reliability and similarity) do not require an engineering model, but they require several run-to-failure sequences to achieve RUL estimation. Also, reliability based approaches do not require current health state and degradation detection comparing to other approaches. Degradation history is not required for Model based approaches, because they require physics or mathematical model about the system operation and degradation evolution. Data-driven based approaches do not require an engineering model about the system, and it is beneficial to have degradation history. They can deal with a huge amount of run-to-failure history (i.e., using deep learning methods), and deal with the lack of degradation history by using statistical methods (i.e., HI-extrapolation methods). In addition, the latter can be adaptive to the current degradation evolution.

Table 2.2 presents a comparison between the four prognostics approaches in terms of precision, implementation, cost, and interpretability. Precision criterion denotes the RUL estimation's accuracy provided by the different approaches on component level and system level. Implementation refers to the ease of implementation of the approach, where the cost criterion is the cost of implementing the methods and generating degradation data in order to achieve the prognostics. Finally, interpretability is the possibility of explaining how the RUL is estimated. The sign (+) refers to the advantage and (-) refers to the drawback of the methods. Experience based approaches (reliability and similarity) are easier to apply for RUL estimation since the online HI is compared with the offline HI trajectories.

However, they require a huge amount of historical run-to-failure sequences (high cost).

Model based approaches may have a good precision at the component level (e.g., crack propagation of bearing). However, when the system is more complex, this kind of approaches may not be applicable since it is challenging to build a physical model where several components are in interaction. Despite the lack of interpretability of the data-driven approaches, they are the most suitable (best trade-off) to perform the prognostic task when comparing with other approaches in terms of precision, implementation, and cost.

For developing a data-driven approach that can achieve the prognostics, the avail-ability of historical degradation data is the main requirement that should be consid- 

Conclusion

This chapter presented the three main steps of the prognostics and health management strategy: health indicator construction (data processing), degradation detection (diagnostics), and RUL estimation (prognostics). The HI can be based on single or multiple indicators, the use of one HI is better for keeping the interpretation of the HI, whereas fusing multiple HI may result in a virtual HI without interpretation that could be more efficient for the degradation detection and RUL estimation. The degradation can be detected using both data of the system under normal and faulty conditions. However, the normal data are widely available in real industrial systems where there is a lack of faulty data. In this case, it is preferable to apply anomaly detection methods while using only normal data as a priori. When the incipient fault is detected, the prognostic approach is triggered. The RUL can be estimated using experience based approaches (reliability and similarity), model based approaches, and data-driven based approaches. Data-driven approaches appear to be the most suitable in terms of precision, implementation, and cost. Data-driven approaches can be efficient in both cases when having few or having a huge amount of historical degradation data.

In the next chapter, a data-driven approach is proposed for the fault prognostics, which deals with insufficient historical degradation data (without and with few historical degradation sequences). The RUL is estimated using the indirect RUL estimation since these methods can be adaptive and do not require several a priori sequences for RUL prediction. The approach will be validated using different experimental datasets (high speed shaft of a wind turbine, rolling bearings, and aircraft engine).
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Chapter 3

Prognostic approach with insufficient a priori degradation sequences

Introduction

In industrial systems, a large amount of historical data about the normal (healthy) operating conditions are often available, while historical data about degraded and faulty conditions are often unavailable because of their high cost, or for safety reasons, or in the case of newly installed machines. Besides the high cost of generating degradation data in laboratory conditions, the system's degradation behavior is often different in real operation conditions due mainly to the variation of environmental and load conditions.

In order to overcome these aforementioned limits, this chapter proposes a datadriven prognostic approach dealing with the problem of insufficient historical run-tofailure sequences. It performs prognostics when there is no run-to-failure sequences, or only a few available ones, insufficient to allow a reliable and precise RUL estimation.

The proposed approach comprises two main steps: degradation detection and localization and RUL estimation. In the first step, the degradation is detected using only data collected when the system is working under normal conditions. The second step estimates the RUL using blind or informed path. The blind path is triggered when no a priori sequences are available offline, where the best HI is selected dynamically by using a selection criterion. Then, the RUL is predicted using an adaptive model, which is updated with each new incoming point. The informed path is triggered to estimate the RUL when few a priori sequences about the degradation evolution are collected. In this path, the best HIs as well as the best models are selected according to their capacity to perform a precise estimation of RUL over time on the few a priori sequences. Hence, several HI-model combinations (pairs) are used for the RUL prediction in order to improve the accuracy as well as the reliability of RUL's estimation.

The chapter is organized as follows. Section 3.2 presents the proposed approach for RUL estimation with insufficient a priori sequences. The proposed approach is validated in sections 3.3, 3.4, and 3.5 using, respectively, vibration data collected from a real degraded bearing of a wind turbine high speed shaft, and vibration data generated from a degraded bearing with inner and outer race fault. Also, sensors data collected from a degraded aircraft engine that are generated by the National Aeronautics and Space Administration (NASA) and named C-MAPSS dataset (Saxena et al. 2008b). Finally, Section 3.6 ends the chapter with concluding remarks.

Proposed approach

The proposed approach is illustrated in Figure 3-1. It is splitted into two phases: offline and online. In the offline phase, a large set of features is defined and integrated into a library. Those features are issued from signal processing of measured variables by sensors. Their choice is guided by the available knowledge about the system dynamics and its components as well as the potential faults that can occur. The performances of those features in response to their application to each system will also be integrated into the library in order to facilitate their choice for new systems, in particular when there is no degradation data. Indeed, in the latter case, the choice of suitable features will be based mainly on their online RUL prediction accuracy. If some degradation data sequences are available, an RUL prediction accuracy computed in offline by using different pairs of regression models and HIs. This accuracy will be used to select the best pairs. In the offline phase, the OCSVM is trained using the available data about normal operation conditions and the selected features. The goal is to define the best decision border that allows separating normal operation conditions zone from any potential degradation. This allows OCSVM to detect a degradation in a reliable way and in an early stage. In the online phase, OCSVM score is computed for each incoming data representing the system's current operating conditions in order to detect degradation. Fault isolation is then triggered after the detection using the isolation features. The latter are sensitive to faults in specific components. Therefore, they can be used to isolate the component responsible of the fault occurrence. Then, the RUL estimation starts by using one of two paths: the blind path or the informed path. The blind path is used when no historical degradation data are available, the RUL is estimated blindly without being confident on it. The informed path is used when some historical degradation data are available, the RUL is estimated by using some a priori knowledge about the degradation, which improves the accuracy and increases the confidence on the predicted RUL. The main steps of the proposed approach are as follows: features definition, fault detection and isolation, RUL estimation using the blind path, and RUL estimation using the informed path. They are detailed in the next subsections. 

Data processing and features definition

Fault detection and isolation

Fault detection

In industrial systems, a considerable amount of data collected from healthy systems is available. On the other side, there is a lack of data collected about fault/degradation operation conditions or sometimes it is unavailable. For this reason, applying anomaly detection techniques is necessary in this case. One Class Support Vector Machines (OCSVM) is chosen among the different anomaly detection methods for several reasons such as it does not require any assumption about data distribution, it can deal with high dimensional data, and also it can deal with complex problems (non linear decision boundary).

OCSVM separates all the data points from the origin in a high dimensional feature space. The objective is to find an optimal hyperplane that maximizes the distance.

It can be formulated as a quadratic programming problem [START_REF] Schölkopf | Support vector method for novelty detection[END_REF]:

min 𝜔,𝜉,𝜌 1 2 ‖𝜔‖ 2 + 1 𝜈.𝑛 𝑛 ∑︁ 𝑖 𝜉 𝑖 -𝜌 (3.1)
Subject to

(𝜔 • Φ(𝑥 𝑖 )) ≥ 𝜌 -𝜉 𝑖 , 𝜉 𝑖 ≥ 0 (3.2)
Where 𝑛 is the number of training samples, 𝜔 is the normal vector separating hyperplane, 𝜌 is the offset of the desired hyperplane, 𝜉 = [𝜉 1 ...𝜉 𝑛 ] is a vector of errors, and Φ(.) maps 𝑥 𝑖 into a higher dimensional space. 𝜈 ∈ [0, 1] is an upper bound on the fraction of training samples outside the decision boundaries and a lower bound on the fraction of support vectors.

After solving the quadratic programming problem, the final decision function for a new point 𝑥 ′ is:

𝑠(𝑥 ′ ) = 𝑛 ∑︁ 𝑖 𝛼 𝑖 𝐾(𝑥 𝑖 , 𝑥 ′ ) -𝜌 (3.3) 𝑓 (𝑥 ′ ) = sgn(𝑠(𝑥 ′ )) (3.4) 𝐾(𝑥 𝑖 , 𝑥 ′ ) = 𝑒𝑥𝑝[-‖𝑥 𝑖 -𝑥 ′ ‖ 2 /2𝜎 2 ] (3.5)
Where 𝑥 ′ is the new sample, 𝑥 refers to the training points, 𝑠𝑔𝑛 is a sign function that returns +1 for positive values and -1 for the negative ones, 𝛼 𝑖 is the observation coefficient, 𝐾 is the kernel function, where Radial Basis Function (RBF) is used (Eq.

(3.5)), 𝜎 2 is the variance, and ‖.‖ is the Euclidean norm.

The function 𝑓 (𝑥 ′ ) returns +1 if the observation 𝑥 ′ belongs to the known regions and -1 elsewhere. The OCSVM score 𝑠(𝑥 ′ ) is computed using Eq. ( 3.3) which is positive in the normal class, negative outside, and 0 on the boundary. In order to improve the reliability of detection, the computed score is corrected using a moving median.

Fault isolation

A discriminant feature (or several features) should be computed to isolate the component (or element) responsible of the fault. The isolation feature is dependent on the application domain. For example, in bearings when the rolling elements (bearing balls) pass over the defected part, they generate an impact. The successive impacts produce a series of impulse responses in the vibration signal. The spectrum of the signal can show a harmonic series of frequency components spaced at the bearing defect frequency. The latter depends on the nature of faults (e.g., inner race, outer race, ball bearings). The computed isolation feature is the median of the distance between each two successive harmonic peaks in the spectrum. After that, the computed median distance is compared with the different defects frequencies references. The latter are computed a priori using the mechanical characteristics of the bearing (e.g., ball diameter, pitch diameter, number of balls) and operating conditions (rotational speed).

Remaining useful life estimation using the blind path

The degradation detection triggers one of the RUL estimation paths depending on the availability of a priori sequences. In the case where no a priori sequences are available, the blind path is triggered because the best health indicator is unknown.

Hence, the best HI is selected dynamically (selected online for each time cycle), then the best one according to a selection criterion is used for fitting a Generalized Linear Model (GLM) that allows estimating the RUL.

Dynamic HI selection

Since no degradation sequence is available, there is no a priori knowledge about the most sensitive HIs to the degradation evolution. For this reason, in the blind path, trendability and monotonicity at the beginning of the degradation better than the peak-to-peak HI since it reacts to the degradation much time before than peak-topeak HI. However, the SK HI's trendability and monotonicity decrease significantly while the peak-to-peak HI's trendability and monotonicity remain good. However, the SK based HI is very efficient for early degradation detection.

In order to overcome this limit, a selection criterion based on the goodness of fit is used. The HI that best fits the GLM is selected. The 𝑅 2 or goodness of fit indicator is used to measure how close the HI is to the fitted GLM. The higher the 𝑅 2 is, the better the GLM fits the HI.

𝑅 2 = 1 - ∑︀ 𝑛 𝑖=1 (𝑦 𝑖 -ŷ𝑖 ) 2 ∑︀ 𝑛 𝑖=1 (𝑦 𝑖 -ȳ) 2 (3.6) 𝑅 2 ∈ [0, 1],
where 𝑛 is the number of samples, 𝑦 𝑖 is the HI value at index 𝑖, ŷ𝑖 is the estimated HI value using the GLM, ȳ is the HI mean.

The GLM is fitted with the points starting from the degradation time until the present time. The HI with the highest goodness of fit 𝑅 2 is selected at each time cycle. The selected HI is then used to predict the degradation evolution and estimate the RUL.

Blind RUL estimation

The RUL is the time difference between the present time and the time of failure, also named time of End Of Life 𝑡 𝐸𝑂𝐿 as shown in Figure 3 Accordingly, the regression model is given by:

E(Y) = 𝜇 = 𝑔 -1 (𝛼 + 𝑋𝛽) (3.7)
The coefficient estimation of the GLM is achieved using the method of maximum likelihood. The development of a GLM can be viewed as choosing the response distribution and the link function, where the selection of the appropriate parameters depends on the application.

---------------------------- The GLM is used in an adaptive manner, which means that for each time cycle, the GLM is re-fitted with the present and past samples to predict the HI evolution until it reaches the failure threshold. Finding 𝑡 𝐸𝑂𝐿 is necessary to estimate the RUL.

True

The RUL estimation starts when the isolation is achieved.

Remaining useful life estimation using the informed path

This part deals with the case where few run-to-failure degradation sequences are stored offline. A degradation sequence starts from the degradation detection until the failure. The proposed method aims at taking benefit of the diversity of differ-ent HIs and extrapolation models to estimate the RUL. The available degradation sequences are used to guide the selection of the best HI-model pairs and to determine their weights according to their performances on the RUL estimation based on those available sequences. The final RUL is computed by using a weighted mean of the estimated RULs with the selected HI-model pairs.

HI-model pairs selection and determination of their corresponding weights

Comparing to machine learning and deep learning techniques that require a huge amount of historical data for RUL estimation, extrapolation based models (e.g., linear regression, exponential model, quadratic regression...) are efficient even when few data are collected because they can be fitted with the collected HI samples and used to extrapolate the HI evolution until the failure (see Figure 34).

In this work, an ensemble of extrapolation based models is applied to extrapolate the HIs. Ensemble based method can improve the reliability and the accuracy of the prediction thanks to combining different models that are fitted with different HIs. The stored run-to-failure sequences are used to estimate the RUL using different HIs and different extrapolation based models. Then an accuracy 𝑎 𝑖𝑗 (Eq. (3.10)) is calculated for each RUL predicted by the HI-model pair, where 𝑖 represents the index of a HI, and 𝑗 the index of a used model:

𝑎 𝑠 𝑖𝑗 = 𝐶𝑅𝐴 𝑠 𝑖𝑗 (3.8) 𝐶𝑅𝐴 = 1 𝑛 𝑡 𝑛𝑡 ∑︁ 𝑡=1 𝑤(𝑡)𝑅𝐴(𝑡) (3.9) 𝑅𝐴(𝑡) = 1 - |𝑟𝑢𝑙(𝑡) -𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)| 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) (3.10) 𝑤(𝑡) = 1 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) ∑︀ 𝑛𝑡 𝑡=1 1 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡) (3.11)
Where 𝑠 is the sequence number, 𝑛 𝑡 is the number of time index (time cycle) from RUL estimation start until failure (EOL), and 𝑤(𝑡) is a weight factor as a function of the actual RUL [START_REF] Goebel | Prognostic Performance Metrics[END_REF]. The weights aim to improve the RUL evaluation by penalizing more the errors closer to 𝑡 𝐸𝑂𝐿 . Table 3

.2 presents an example of four

HIs and three models, where the accuracy 𝑎 𝑖𝑗 is computed for each combination HI-model. The Cumulative Relative Accuracy (CRA) is used to evaluate the RUL prediction according to the actual RUL (Saxena et al. 2008c). CRA is the weighted average of the Relative Accuracy (RA), where the RA is a measure of the error in RUL prediction (𝑟𝑢𝑙) relative to the actual RUL (𝑡𝑟𝑢𝑒_𝑟𝑢𝑙) at a specific time index 𝑡. The time index for RUL prediction 𝑡 starts when the degradation is isolated and stops when the HI exceeds the failure threshold at 𝑡 𝐸𝑂𝐿 . When there are two or more run-to-failure sequences available offline, the combinations accuracies 𝑎 𝑠 𝑖𝑗 (as in Table 3.2) are computed for each sequence. Then, the mean is computed between the combinations accuracies of all the run-to-failure sequences, as shown in Eq. (3.12).

𝑎 𝑖𝑗 = 1 𝑛 𝑠 𝑛𝑠 ∑︁ 𝑠=1 𝑎 𝑠 𝑖𝑗 (3.12)
Where 𝑎 𝑠 𝑖𝑗 is the combinations accuracy for each run-to-failure sequence 𝑠, and 𝑛 𝑠 is the number of available sequences. More the degradation sequences are available better the estimation accuracy of RUL for a new degradation sequence is. Therefore, at each time when a new degradation sequence is available, the selected HI-model pairs and their corresponding weights are updated. This is done in order to represent or cover better the variation of different degradation sequences' dynamics.

When the combinations accuracies are calculated, the HI-model combinations are ranked according to the computed accuracies 𝑎 𝑖𝑗 . Thereafter, the best combinations are selected when the accuracy is greater than a predefined threshold. A weight 𝑊 𝑘 is computed for each selected combination as a function of its accuracy. The weights can be defined as the normalization of the corresponding accuracy with a power factor 𝛾 as follows:

𝑊 𝑘 = (𝑎 𝑖𝑗 ) 𝛾 𝑘 ∑︀ 𝑛 𝑘 𝑘=1 (𝑎 𝑖𝑗 ) 𝛾 𝑘 (3.13)
Where 𝑛 𝑘 is the number of selected HI-model pairs, (𝑎 𝑖𝑗 ) 𝑘 is the ranked combination accuracy where (𝑎 𝑖𝑗 ) 1 is the combination with the highest accuracy and (𝑎 𝑖𝑗 ) 𝑛 𝑘 is the lowest accuracy greater than the predefined threshold. 𝛾 is a power factor used to give more weight for the combination with the highest accuracy. Table 3.3 is an example of 4 combinations ranked and selected (accuracy greater than a threshold).

They are ranked according to the RUL estimation accuracy (the highest accuracy has the first rank), and the according weights are computed using Eq. (3.13). 

Informed RUL estimation

When the HI-model combinations are selected, and their corresponding weights are computed offline, this triggers online the RUL estimation using the informed path (see Figure 3-1). In this path, the RUL is calculated using a weighted average of RULs (as shown in Figure 3-4) estimated by the selected HI-model pairs as follows:

Selected The run-to-failure vibration signal is measured each day for 6 seconds at a high sample rate (97656 samples per second), while this measure is repeated for 50 days.

The unit of measurement is in "g", where 1g is the earth gravitational acceleration. 

Results and discussion

Data processing and features definition

The features library presented in Table 3.1 is used for this dataset since this library is suitable for vibration data. The 17 features are computed for each day (each day includes 6 seconds of measurement). The computed features are then smoothed using a moving mean with a window of 2 days in order to reduce the fluctuation and effect of noise. The computed features are illustrated in Figure 3-7. It can be observed that some features have a more monotonic trend than other features.

RUL estimation using the blind path

For this dataset, the RUL estimation starts directly from the beginning of the sequence, since the degradation data is a run-to-failure sequence which means that the degradation starts since the beginning of the measurement. Since there is no available a priori sequences, the blind path is triggered. First, the best HI is selected automatically and dynamically (i.e., for each day) using the selection criterion 𝑅 2 defined in Eq. (3.6). The selected HI for each day is shown in Figure 3-8. From this figure, it can be observed that the selected HI is varying at the beginning. However, when more data are collected, the selected HI becomes constant. The constant selected HI is the mean of the spectral kurtosis (HI 6 in Table 3.1), which confirms the suitability When the best HI is selected according to the selection criterion, the degradation evolution is predicted using the adaptive GLM model until the failure. Then, the RUL is computed. The predicted RUL using the proposed approach (dynamic HI selection) is shown in Figure 3-9d, it has an accuracy of 𝐶𝑅𝐴 = 0.504, and it can be seen that the RUL estimation becomes more accurate with time. This is thanks to the dynamic HI selection and the adaptive GLM model that updates the model parameters with every new observation. The predicted RUL using the proposed approach is compared with the RUL estimation when using a predefined feature (without using dynamic 9c). However, the best HI cannot be predefined in blind RUL estimation (when no a priori sequences are available). Hence, our proposed approach using the dynamic HI selection can overcome this issue.

3.4 Experimentation using data of a faulty rolling bearing

Faulty bearing model presentation

Rolling bearings are commonly used in rotating machinery that permit the rotation of the shaft in the machinery. The main parts of the rolling bearing consist of (see 

(︂ 𝑡 - 𝑘 𝑓 𝐵𝑃 𝐹 𝑂 )︂)︂ .𝑠𝑖𝑛 (︂ 2𝜋𝑓 0 (︂ 𝑡 - 𝑘 𝑓 𝐵𝑃 𝐹 𝑂 )︂)︂ + 𝑏(𝑡) (3.15) 𝑓 𝐵𝑃 𝐹 𝑂 = 𝑛𝑏 2 𝑓 𝑟 (︂ 1 + 𝑑 𝑏𝑎𝑙𝑙 𝐷 𝑚 .𝑐𝑜𝑠(𝛼) )︂ (3.16) 𝑥 𝐵𝑃 𝐹 𝐼 (𝑡) = 𝑁 ∑︁ 𝑘=1 𝐴.𝑚𝑐.𝑒𝑥𝑝 (︂ -2𝜋𝜇𝑓 0 (︂ 𝑡 - 𝑘 𝑓 𝐵𝑃 𝐹 𝐼 )︂)︂ .𝑠𝑖𝑛 (︂ 2𝜋𝑓 0 (︂ 𝑡 - 𝑘 𝑓 𝐵𝑃 𝐹 𝐼 )︂)︂ + 𝑏(𝑡)
(3.17)

𝑓 𝐵𝑃 𝐹 𝐼 = 𝑛𝑏 2 𝑓 𝑟 (︂ 1 - 𝑑 𝑏𝑎𝑙𝑙 𝐷 𝑚 .𝑐𝑜𝑠(𝛼) )︂ (3.18) 𝑚𝑐 = 1 + 𝑚.𝑐𝑜𝑠(2𝜋𝑓 𝑟 𝑡) (3.19)
The generated signatures for the inner/outer race fault are shown in Figure 3-11.

Outer race fault is characterized by a constant amplitude modulation, while inner race fault is characterized by a periodic amplitude modulation. 

Fault sequences generation

By using the faulty bearing model described in the previous subsection, the amplitude 𝐴 of the vibration signature is increased in an exponential manner, since the degradation evolution of bearings shows an exponential growth [START_REF] Gebraeel | Residual life predictions from vibration-based degradation signals: a neural network approach[END_REF]). Thus, for each signal window (showed in Figure 3-11), the amplitude 𝐴 is modified. The incipient degradation starts at the first signal window, where the failure is reached at the last signal window. In the next, the term "time cycle" is used instead of "signal window". The generated bearing degradation data are available online [START_REF] Abid | Simulated Bearing Degradation Data[END_REF].

For each fault mode (inner or outer race fault), twenty sequences are generated to validate our proposed approach (see Table 3.5). Five degradation speeds are simulated (very fast, fast, medium, slow, and very slow). For each degradation speed, four sequences are generated with a variability of ±5% on the condition parameters (the five parameters cited in the previous subsection). The latter are varied to simulate the variability of the operating conditions that affect the component in reality. In order to train the OCSVM model, a sequence of normal operating data is also generated.

Results and discussion

Degradation detection and isolation

The features predefined in the library are computed for each time cycle (signal window). The OCSVM model is trained offline using the normal operating data in order to construct a boundary on the normal data. For a new collected signal, features are computed for each time cycle and then fed to the OCSVM model to predict the OCSVM score. The degradation is detected when the corrected OCSVM score is below the boundary (score=0). Figure 3-13 shows the degradation detection for the sequence #9 (sequence with a medium degradation speed). This sequence is used to illustrate the application of the proposed approach to the generated bearings scenar- Fault isolation starts when the degradation is detected, and the isolation feature (the median of the distance between each two successive harmonic peaks in the spectrum) is computed for each new window signal. Figure 3-14 shows the harmonics of the signal in the frequency domain. The peaks of the harmonics greater than a peak threshold (𝑃 𝑡ℎ ) are selected. 𝑃 𝑡ℎ = 48 is selected using 𝜇 + 3.𝜎 rule on the peaks of the normal operating signal (𝜇 is the mean and 𝜎 is the STD of the normal signal peaks), then the frequency distances between the peaks are computed. In order to isolate the fault, the median of the computed frequency distances is compared with the bearing defects frequencies 𝑓 𝐵𝑃 𝐹 𝑂 = 59.47𝐻𝑧 and 𝑓 𝐵𝑃 𝐹 𝐼 = 90.52𝐻𝑧, which are computed offline using the mechanical characteristics of the bearing by applying Eq.

(3.16) and Eq. (3.18). For each new window the 𝑑𝑖𝑠𝑡 𝑚𝑒𝑑 is computed, the fault is then isolated when it is within the defect frequency boundary ±10% (𝑓 𝑑𝑒𝑓 𝑒𝑐𝑡 ± 0.1.𝑓 𝑑𝑒𝑓 𝑒𝑐𝑡 ). Degradation detection and fault isolation time results are presented in Table 3.6.

It can be seen that the detection time is correlated with the degradation speed, because when the degradation is slow, it is difficult to detect the fault early. Then, when the detection time percent is computed (i.e., the ratio of detection time to the sequence length), it can be seen that the detection percent is almost the same for all the sequence (around 35%), which means that the degradation is detected in the 35% of the sequence length. A delay is observed between detection time and isolation time due to the difficulty to observe the peaks in the frequency domain when the degradation amplitude is low, which is due to the effect of noise on the signal.

RUL estimation using the blind path

When no a priori sequences are available, the blind path is triggered. The degradation isolation triggers the dynamic HI selection and RUL estimation steps. The collected data starting from the degradation detection can be used to start fitting the model for the RUL estimation. As mentioned in subsection 3.2.3, in this path, the HI is dynamically selected among the different features available in the library by using the selection criterion defined in Eq. (3.6) (goodness of fit by the GLM). Figure 3-15

shows the different HIs selected for the sequence #9 with outer race fault at each time index from the isolation time cycle until the failure. Then, the selected HI at each time cycle is used for RUL estimation. When the informed path is triggered in the online phase, different RULs are predicted using the selected HI-model pairs. After that, the computed RULs are merged using a weighted sum as defined in Eq. (3.14) to predict the final RUL. It is worth mentioning that the extrapolation model parameters are updated with each new time cycle, which allows the adaptability of our proposed approach to the different degradation speeds. In the aim to validate the proposed approach for the informed path, the RUL is predicted for all the sequences in the scenario (20 sequences) using as a priori different number and combinations of the available sequences, where the number of available a priori sequence is from zero (blind) to six sequences. In order to show the robustness of the proposed method, 20 combinations of a priori sequences are selected randomly for two until six sequences. The goal is twofold: observing the improvement of the RUL accuracy estimation with the number of available degradation sequences, and highlighting the interest of the use of the best HI-model pairs when the degradation dynamics (speed) of a new sequence is significantly different of the one in the available degradation sequences.

Each accuracy table is computed for a specific number of a priori degradation sequences (i.e., from 1 to 6). As an example Table 3.9 shows CRA for each incoming sequence (from 1 to 20) for different combinations of 3 a priori sequence (selected randomly). Then, the average and the standard deviation of each row of the accuracy tables (such as in Table 3.9 for the case of 3 a priori sequence) is computed and shown in Table 3.10.

The average is computed for those accuracy tables of accuracies with different a priori sequences, from one a priori sequence until six a priori sequences. The columns of Table 3.10 present the average and the standard deviations of the accuracy tables.

For example, the average and the standard deviation of each row in Table 3.9 is shown in the column (named CRA 3 seqs) of Table 3.10. The overall accuracy is then computed as the average of each column of Table 3.10, it is computed with the objective to show the overall accuracy improvement when more a priori sequences are available. Table 3.10 shows that the overall accuracy is improved when more a priori sequences are available. The computed accuracies when there are more than six a priori sequences are not showed because for more than six a priori sequences, no significant improvement in the RUL estimation accuracies is observed.

(a) Predicted RUL using available a priori sequence #11 (b) Predicted RUL using available a priori sequences #2, #7, and #11 (c) Predicted RUL using available a priori sequences #3, #11, #14, #16, and #17

Figure 3-17: RUL prediction for the sequence #9 using different available a priori sequences

In the aim to validate the robustness of the proposed approach, Table 3.10 presents as well the standard deviation (STD) of the accuracies. It can be seen that the overall STD is decreasing when more a priori sequences are available, this confirms that the proposed approach is more robust while having more a priori sequences. Ensemble modelling allows the diversity exploitation of the different models that can enhance the accuracy of prediction, which means that using several models is better than the use of one model. In order to confirm this, the RUL is computed using only the top best model in the selected HI-model pairs. For example, the RUL is predicted using only the top best HI-model pair in Table 3.8. Thus, the RUL is predicted using model 2 = Quadratic Regression fitted by HI 15 = SK-rms. The validation is the same as for the proposed approach using an ensemble of models,

where the results are presented in Table 3.11. This table shows that the accuracy using an ensemble of models is better than using only the top best model (one model).

Table 3.11 presents a comparison according to the overall RUL estimation accuracy of a faulty bearing with an outer race fault. The proposed approach using an ensemble of HI-model pairs is compared with using only the first best HI-model pair, and with two other methods: SVR and LSTM.

SVR has proven its effectiveness for RUL estimation of bearings [START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF][START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF][START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF]. It is a machine learning regression method 3.11 indicates that the proposed approach yields better results when few run-to-failure sequences are available in advance, comparing to SVR and LSTM. When more a priori degradation sequences are available, LSTM outperforms the proposed approach. Table 3.12 presents comparison results for RUL estimation of faulty bearings with an inner race fault. As in the previous table, it can be seen that the proposed method with the ensemble of models provides better accuracies when few a priori sequences are available. The results confirm that the proposed approach is very efficient for RUL estimation dealing with insufficient a priori sequences.

Figure 3-18 shows a comparison of the predicted RUL of sequence #9 using the proposed approach, SVR, and LSTM. In Figure 3-18a and 3-18b, the RUL of sequence #9 (medium speed) is predicted, by using a priori sequences with different degradation speeds: #1 (very high speed) and #20 (very low speed). Comparing to the RUL prediction using the proposed approach, the RUL predicted using SVR and LSTM is very far from the true RUL. This can be explained by the fact that SVR and LSTM are static models, the models are trained offline on sequences of run-to-failure data, then the estimated models are used online for RUL prediction. Contrary to these methods, the proposed approach is an adaptive approach by using an ensemble of adaptive models. Only the type of models and HIs are selected in the offline phase, while in the online phase, the models are fitted and updated with each new time cycle in order to estimate the RUL. However, when predicting RUL of sequence #9 using as a priori sequence #10 (see Figure 3-18c) with the same degradation speed (medium speed), RUL's prediction accuracy using SVR or LSTM is comparable to the proposed ensemble approach.

(a) Predicted RUL using a priori sequence with different speed (fast) (b) Predicted RUL using a priori sequence with different speed (slow) (c) Predicted RUL using a priori sequence with same speed (medium)

Figure 3-18: RUL prediction comparison for the sequence #9 with the proposed approach, SVR, and LSTM 3.5 Experimentation using degradation data of an aircraft engine

Dataset presentation

The performance of the proposed approach is validated using a public dataset named Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). The dataset represents the damage propagation of an aircraft gas turbine engines. C-MAPSS dataset is generated by NASA (Saxena et al. 2008b), this data have been widely used to compare RUL prediction methods in the literature [START_REF] Louen | A new framework for remaining useful life estimation using support vector machine classifier[END_REF][START_REF] Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF][START_REF] Al-Dulaimi | A multimodal and hybrid deep neural network model for remaining useful life estimation[END_REF]C. Zheng et al. 2018;X. Li et al. 2018). The subdataset FD001 is considered for this validation, which includes one type of fault and one mode of operating conditions. This subdataset contains 100 run-to-failure sequences in the training set, and 100 sequences for testing that stop at some time before failure. For each sequence, there are 21 sensors measurements about the system conditions (e.g., temperature, pressure, and rotational speed).

In order to show the performance of our proposed approach, a degradation scenario is considered for this dataset. The 100 sequences in the training set are sorted according to their length. Then, three sequences are selected for the smallest length (number 1, 2 and 3 after sorting), the largest length (number 98, 99 and 100 after sorting), and the medium length (number 49, 50 and 51 after sorting). Hence, a degradation scenario of 9 sequences is obtained with different speeds, as seen in Table 3.13.

Results and discussion

Data processing and features definition

First, some sensors are not selected from the 21 sensors in the dataset. The sensors # 1, 5, 6, 10, 16, 18, and 19 are discarded because their values remain unchanged during operation, also sensors # 9 and 14 are discarded because of their strong variation.

Hence, sensors measurements # 2, 3,4,7,8,11,12,13,15,17,20, and 21 are selected and presented in Figure 3-19. Then, a moving mean is applied in order to smooth the sensors' values and to remove the noise, and the sensors that exhibit a negative exponential trend are flipped in order to obtain a positive exponential trend for all the sensor values. The features library (HI library) contains the preprocessed raw measurements of the sensors, and is presented in Table 3.14. 

RUL estimation using the blind path

In this dataset, there is no need to detect the fault, since the degradation sequences are run-to-failure data which mean that the degradation starts with the beginning of the sequence. When no a priori sequences are available, the blind path is triggered.

In the blind path, the best HI is selected dynamically among the available HIs in the features library, where the selection is achieved using the selection criterion presented in Eq. (3.6). An example of dynamically selected HIs for sequence #4 is presented in Figure 3-20a, it can be observed that the selected HI changes over time. The corresponding predicted RUL is shown in Figure 3-20b, where it can be seen that the RUL is less accurate at the beginning of the degradation, and then it becomes more precise when approaching the failure. This is thanks to the selection of the best HI by using the dynamic HI selection, also thanks to the adaptive GLM model that can be updated with each new collected data point.

The RUL estimation accuracies for all the sequences using the blind path are presented in Table 3.15. The mean of computed RUL estimation accuracies is around 0.559, this estimation accuracy is suitable, knowing that the prediction is achieved in a blind manner. This results using the blind path will be compared next when having 

RUL estimation using the informed path

When some a priori sequences are available, the HI-model pairs that give a good CRA accuracy greater than a predefined threshold, are selected. The available HIs in the features library (Table 3.14) are employed with each of the four extrapolation based models used previously: Model 1 : GLM, Model 2 : quadratic regression, Model 3 : exponential model, and Model 4 : double exponential model. In offline, the HImodel pairs that show better accuracy than the threshold of 0.559 are selected. The threshold is the average of accuracy for the blind path in order to select the HImodel pairs that give better performance than the blind path. The RUL can be predicted using all the HI-model combinations by assigning a weight near to zero to the combinations with low accuracy, since the weights are computed according to the CRA accuracy in an exponential manner (see Eq. (3.13)). However, using all the combinations can lead to high computation time, for this reason, setting a threshold in order to select only the best HI-model pairs is necessary to reduce the computation time. In online, several RULs are estimated for a new incoming sequence using the selected HI-model pairs, while the final RUL is computed using the weighted mean presented in Eq. (3.14).

In order to validate our proposed approach with the informed path, the RUL is predicted for all the nine sequences describing the degradation scenarios in Table 3.13.

When only one a priori sequence is available, the RUL is predicted for each sequence as presented in Table 3.16. Table 3.16 presents the CRAs for the RUL estimation of the sequences in the scenario using one a priori sequence. It can be observed that the diagonal CRAs in the table are the highest because the RUL is estimated for each sequence using as a priori the same sequence. When two and three a priori sequences are available, sequences are added randomly to the a priori sequence as shown in Table 3.17 and Table 3.18, respectively. From these tables, it can be seen that the accuracies are slightly improved. The improvement in accuracy when more a priori sequences are collected can be shown by computing the average of each table row (predicted sequence).

Table 3.19 shows the average accuracies of each row and the overall accuracy for each number of a priori sequence. From Table 3.19, the accuracy improvement when using more a priori sequence can be seen in the overall accuracy. Moreover, the standard deviation is computed for each row in order to show the robustness of prediction. It can be seen that the overall standard deviation is decreasing when collecting more a priori sequences. Hence, our proposed approach can improve the accuracy of prediction as well as the robustness when more a priori sequences are available. The RUL estimation accuracy improvement is illustrated in Figure 3-21, it can be observed that when collecting more a priori sequences, the RUL estimation is improved. This is thanks to the proposed HI-model pairs selection that can update the selected pairs in offline for each new stored sequence. 3.20 compares the overall accuracies of the RUL estimation using the proposed approach, which uses a set of best HI-models, the top best HI-model, SVR, and LSTM. SVR and LSTM are machine learning techniques that have shown their effectiveness for the RUL estimation [START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF][START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF]Y. Zhang et al. 2018;[START_REF] Wu | Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[END_REF]. The proposed approach combines several HI-model pairs for RUL estimation, and it is compared when using only the best HI-model pair. Based on Table 3.20, it can be observed that the proposed approach outperforms the other techniques when few a priori sequences are available, this is thanks to the adaptability of our proposed approach and also to the combination of several HI-model pairs. However, when several a priori sequences are available in offline (more than 6 sequences), the RUL estimation accuracy using our approach converges while the LSTM outperforms the proposed approach.

Figure 3-22 shows the adaptability of our proposed approach compared with SVR and LSTM methods. The RUL is estimated for sequence #4 which is a sequence with a medium degradation speed, the RUL is estimated using as a priori one sequence with different degradation speeds (i.e., fast, medium, and slow). It can be observed that when the RUL is predicted using a priori sequence with a degradation speed different from the predicted one, our approach has a good accuracy comparing with SVR and LSTM that show a low accuracy. Our proposed approach can estimate the RUL with good accuracy even when the degradation speed of the a priori sequence is different from the predicted one. This is thanks to the adaptability of our proposed approach that combines different adaptive models. When the degradation speed of the a priori sequence is similar to the new sequence, it can be seen that the LSTM shows good accuracy for RUL estimation, SVR shows a low accuracy because CRA accuracy penalizes more the errors of prediction near to the failure.

Conclusion

In this chapter, a data-driven approach is proposed for RUL estimation dealing with insufficient a priori run-to-failure sequences. Firstly, a blind case is considered, where no a priori sequences are available, thus no a priori knowledge is available allowing to guide the choice of the most suitable or efficient health indicators (HIs) to use. To overcome this issue, the best HI is selected dynamically using a selection criterion for each time cycle, this criterion indicates the degree to which a HI fits an extrapolation model. After collecting some a priori run-to-failure sequences offline, the informed path is triggered. In this path, the RUL is predicted using an ensemble of models fitted with the corresponding HIs, where the final RUL is predicted using a weighted mean. The HI-model pairs and their corresponding weights are determined offline.

The blind path of the proposed approach is validated using real vibration data collected from a degraded shaft of a wind turbine. It showed promising results compared to the use of predefined HIs. The blind and the informed paths of the proposed approach are validated using degradation data of a rolling bearing and a turbofan engine of an aircraft. In the degradation scenarios of these datasets, there are several sequences with different degradation speeds. The proposed approach showed several advantages. First, it exploits the diversity of the different models and HIs allowing the improvement the RUL's prediction accuracy. Second, the robustness of RUL prediction for the new incoming sequences increases over time thanks to update of the selected HI-model pairs by integrating the collected degradation data. This can be seen through the decrease of the variation (STD) of the RUL's predictions over time.

Third, the proposed approach showed better RUL prediction accuracy compared to the well-known methods applied for RUL prediction: support vector machine and long short term memory in particular when there are few available degradation data.

Finally, the proposed method can be adaptive to the different degradation speeds because it uses an ensemble of different online adaptive models.

As demonstrated through the results of this chapter, RUL estimation using LSTM outperformed our proposed approach when collecting an important number of a priori This chapter focuses on the case where multiple a priori run-to-failure sequences are available. A new data-driven approach for direct RUL estimation is proposed based on a deep ensemble method. The proposed approach combines the decisions of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) models, which are kn won to be efficient methods for RUL estimation when several a priori run-to-failure sequences are available. The proposed approach aims to improve the reliability as well as the accuracy of the RUL prediction by exploiting the diversity of CNN and LSTM models. It is validated using two datasets: the first dataset is C-MAPSS used in chapter 3, which are degradation data collected from an aircraft engine, the data are generated by the National Aeronautics and Space Administration (NASA) and named C-MAPSS dataset (Saxena et al. 2008b). The second dataset comprises degradation data collected from sensors in order to estimate the RUL of an industrial filter system before clogging. These data are provided by the fifth European PHM Society conference for the data challenge competition.

The chapter is organized as follows: section 4.2 presents the proposed approach for RUL estimation. The experimentation and obtained results on the degraded aircraft engine and the clogged filter datasets are presented sections 4.3 and 4.4, respectively.

Finally, section 4.5 ends the chapter with concluding remarks.

Proposed approach

The proposed approach, illustrated in Figure 4-1, includes two phases: an offline phase for tuning and training the models and an online phase for estimating the RUL from new incoming observations. In the offline phase (training phase), the historical run-to-failure sequences are first preprocessed by selecting the significant input data (sensors), normalizing, segmenting them into windows, and setting the true RUL of these sequences (labels). After data preprocessing, different CNN and LSTM models are trained in order to select the optimal hyperparameters by using k-fold crossvalidation. Then, the fusion weights are computed according to the performance of the validation data. In the online phase (testing phase), the data are preprocessed as in the offline phase. Then, the RULs are predicted using CNN and LSTM models, while the predicted RULs by each model are then merged using a weighted mean in order to obtain the final RUL. In the next subsections, the data processing step is explained, the CNN and LSTM models are described, and the decision fusion step is presented.

Predict where 𝑁 𝑜𝑟𝑚 (𝑥 𝑠 ) represents the normalized values, 𝑥 𝑠 are the values of the sensor 𝑠, 𝜇 𝑠 is the mean and 𝜎 𝑠 is the standard deviation of each sensor 𝑠. 

Start of estimation

RUL estimation using convolutional neural network

The convolutional neural network is developed mainly for computer vision by LeCun The convolution layer operation is represented as follow: 

𝑓 = 𝜑(𝑈 * 𝑘 + 𝑏) (4.2)

Remaining useful life fusion

In the online phase, the predicted RULs using the previously described CNN and LSTM models are then aggregated using the weighted mean as illustrated in Figure 4567. The weighted mean is applied in [START_REF] Xia | An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[END_REF] for aggregating the predicted RUL with different time windows. However, the weights are computed according to the training errors, this may increase the weights of overfitted models (when the training error is small whereas the test error is high). For this reason, in our proposed ensemble approach, the weights are computed according to a validation error. This is done by using the majority of training sequences to train the models, and the remaining sequences are used as validation data for calculating the validation error.

The merged RUL is computed using the following equations: A dropout is applied after the last layer of CNN and LSTM [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], which is a powerful regularization technique that randomly discards a subset of neurons and their connections during training, it is applied to reduce data overfitting when training deep learning models in order to enhance the model generalization.

𝑊 𝑘 = 1 𝐸𝑟𝑟𝑉 𝑎𝑙 𝑘 ∑︀ 𝑛 𝑘 𝑘=1 1 𝐸𝑟𝑟𝑉 𝑎𝑙 𝑘
The dropout probability is set to 0.5, which is an optimal probability value for a wide range of networks and tasks [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF].

4.3 Experimentation using data of a degraded aircraft engine

Dataset presentation

The performance of the proposed approach is evaluated using the benchmark dataset named Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). The dataset represents the damage propagation of the aircraft gas turbine engines. C-MAPSS dataset is generated by NASA (Saxena et al. 2008b), this data has been widely used to compare RUL prediction methods in the literature [START_REF] Louen | A new framework for remaining useful life estimation using support vector machine classifier[END_REF][START_REF] Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF][START_REF] Al-Dulaimi | A multimodal and hybrid deep neural network model for remaining useful life estimation[END_REF]C. Zheng et al. 2018;X. Li et al. 2018). The training dataset contains run-to-failure sequences from healthy to failure, while the test data contains sequences that stop at some time before failure. The goal is to estimate the RUL of the test data until failure. Then, the predicted RUL should be evaluated for all the engine units according to the true RUL which is provided in the datasets. Two evaluation criteria are employed: RMSE (see Eq. (2.7)) and the value of a scoring function defined in (Saxena et al. 2008b). The scoring function penalizes more the overestimated RUL (if the predicted RUL is greater than the true RUL), it is calculated as follows:

𝑆𝑐𝑜𝑟𝑒 = ⎧ ⎪ ⎨ ⎪ ⎩ ∑︀ 𝑛𝑢 𝑢=1 (︁ 𝑒 -𝑑(𝑢) 13 -1 )︁ for 𝑑(𝑢) < 0 ∑︀ 𝑛𝑢 𝑢=1 (︁ 𝑒 𝑑(𝑢) 10 -1 )︁ for 𝑑(𝑢) ≥ 0 (4.11)
where 𝑛 𝑢 is the total number of engine units in the test data, 𝑢 is the engine unit's index. 𝑑(𝑢) is the difference between the predicted and true RUL (𝑟𝑢𝑙(𝑢) -𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑢)).

Results and discussion

In the training phase, the data are preprocessed before modeling. Firstly, the data collected by sensors n# 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and In Figure 4-9, operating condition 1 refers to the altitude from sea level (10 3 ft), operating condition 2 represents the mach number (a ratio of flow velocity to the speed of sound), and operating condition 3 is the sea-level temperature ( ∘ F). For ing cycle is smaller than a predefined threshold, the true RUL is constant, and the system is considered healthy in this case. Then, when the training cycle is greater than the threshold, the target RUL starts decreasing (as illustrated in Figure 4-11).

According to the literature, the threshold is set to 125. This rectification is set because the RUL should not decrease at the beginning of the degradation since the system is always considered under healthy conditions. Also, this rectification will prevent overestimating the RUL prediction (the evaluation score will be larger). We adopted this rectification with the same setting in order to allow a suitable comparison in the same conditions with the related works. For training, the RMSE is used as cost function, back-propagation learning is utilized for the updates of the weights in the network using mini-batches. Adam optimizer algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]) is used for training the two models. A kernel size of 10 is adopted which is applied in (X. [START_REF] Li | Remaining useful life estimation in prognostics using deep convolution neural networks[END_REF] and showed a good performance on C-MAPSS data. tween the true and the rectified true RUL in the test set for the subdatasets FD001 and FD003, this is why our approach outperforms the other works. There is a significant difference between the true and the rectified true RUL in the test set for the subdatasets FD002 and FD004. Hence, this rectification of RUL constant = 125 applied in the literature for C-MAPSS can provide good results for the subdatasets FD001 and FD003, but this constant RUL should be changed for the case of FD002 and FD004. It is worth mentioning that this rectification is applied only to compare the results of our proposed approach with the related works (to be in the same conditions).

Some works applied the RUL rectification to both the training and the test sets. For each particles size, the experimentation is run with different suspension concentrations as illustrated in Table 4.8. The particles quantity is fixed (32g) while the quantity of water in the suspension tank is changed. Consequently, the concentration of particles (solid ratio) is changed, the solid ratio is varied from 0.4%, 0.425%, 0.45%, and 0.475%. This is applied in order to obtain different filter clogging the computed mean will also smooth the collected data and remove the noises. Then, the drop pressure is computed (pressure drop = upstream pressure -downstream pressure) in order to set a failure threshold on the sequences (when the pressure drop is higher than 20 psi). Figure 4-18 shows the example of collected raw data after subsampling using the mean and after deleting the points that exceed the given failure threshold.

The pressure drop for all the sequences (training and test sequences) is shown in The training sequences are represented with dark color, whereas the testing sequences are represented with the lighter color. From the two figures, it can be observed that the degradation evolution of the test sequences is faster than the train sequences, this fast evolution is due to the concentration of the particles in the test sequences which is higher than the train sequences. Therefore, the filter clogging is faster when more particles are present in the liquid and also when the particles size are large. For the data challenge, the particles size and the concentration number can be used as input. However, this information about the particles size and concentration number should be known in advance. In the case where this information cannot be provided, the RUL will be predicted using only the sensors data as input (flow rate, upstream pressure, downstream pressure), as well as the pressure drop. Hence, the information about the particles size and the concentration are not provided to the model as input. when the validation error is not decreasing within 10 iterations. K-fold cross validation is applied in order to select the optimal model hyperparameters. The model is trained using sequences generated with two concentration numbers and validated using the third one (K=3), for example, the model is trained with the sequences from concentration number 1 and 2 (0.4% and 0.425%), then it is validated using the remaining sequences from concentration number 3 (0.45%) using the small and large particles size. This is done in order to find the model that can be generalized for different concentration numbers, knowing that the concentration number in the test sequences is different from the training sequences. An example of RUL prediction for the filter with small and large particles is presented in Figure 4-22a and 4-22b, respectively. It can be observed that the predicted RUL is less accurate at the beginning of prediction then it becomes more accurate when it is near to the failure, this is because when the degradation is at a low level (in the beginning) there no sufficient information in the features in order to predict the RUL. However, when the degradation is at a high level (near failure), the information about the degradation level can be seen on the features (a high variation on the features amplitude). In Figure 4-22b, there is a high variation of RUL prediction at the beginning of the sequence, this is due to an outlier of prediction caused by the LSTM model. different operation modes). Finally, the proposed deep ensemble method for RUL estimation has proven its efficiency demonstrated through the obtained results since it improved the accuracy of RUL prediction. 137 a desirable RUL estimation accuracy. Different approaches are proposed in the literature for RUL estimation when multiple historical degradation sequences are available [START_REF] Heimes | Recurrent neural networks for remaining useful life estimation[END_REF][START_REF] Medjaher | Remaining useful life estimation of critical components with application to bearings[END_REF][START_REF] Soualhi | Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[END_REF]X. Li et al. 2018). In industrial systems, a large quantity of data can be available about the normal operation conditions of the system, while the historical degradation data of the system are often unavailable (e.g., new machines) or insufficient (i.e., few sequences are available).

Due to the lack of a priori run-to-failure sequences, several challenges need to be addressed:

• Estimate RUL without any a priori degradation data is challenging. How could online HI selection method be developed to improve this selection over time thanks to the new incoming degradation data? and how to predict its evolution over time until the failure?

• RUL estimation is still difficult when only a few a priori sequences about the degradation that do not cover all degradation dynamic evolution and conditions are available. How could those available degradation sequences be used to improve the accuracy of RUL estimation?

• After collecting several a priori degradation sequences offline, how could the RUL prediction be more accurate? and how to predict the RUL when the system switches between different operating condition modes?

In this manuscript, three data-driven approaches are proposed for achieving fault prognostics. The first two proposed approach aims at predicting the RUL when a priori degradation sequences are insufficient (without and with few a priori sequences).

The third approach aims at predicting the RUL when multiple a priori degradation sequences are available. The proposed approaches permit to address the aforementioned challenges by using three RUL estimations paths depending on the quantity of historical degradation data:

• The blind path is triggered when no a priori sequences are available, it aims to select the best HI dynamically using a selection criterion based on the goodness of fit with the GLM model. At the same time, the Generalized Linear Model (GLM) is used in an adaptive manner in order to extrapolate the HI until failure threshold. The results showed that the RUL prediction is improved over time with the arrival of new incoming degradation data.

• The informed path is triggered when one or more a priori sequences are available.

Different RULs are estimated using different adaptive models combined with different HIs, while the final RUL is obtained by merging the RULs using a weighted mean. The informed path showed better RUL prediction results when few a priori sequences are available compared with the methods applied in the literature (SVR and LSTM). Also, the RUL estimation accuracy and robustness are improved when more a priori sequences are collected. Besides, it can predict the RUL when the degradation speed (dynamics) of the incoming sequence is different from the a priori degradation speed, or dynamics thanks to the use of different adaptive models.

• The deep ensemble approach is used when many a priori degradation sequences are available. Two RULs are predicted using two deep learning models named Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM),

where the final RUL is obtained by merging the two RUL using weighted mean.

The proposed deep ensemble approach has shown promising results against the related works in the state-of-the-art. Also, it has the ability to capture the variability of the different operating condition modes.

Open issues and future directions

• Switching mechanism. The informed path is triggered for RUL estimation when few (insufficient) a priori sequences are available offline. The prediction is improved when more a priori sequences are available. The deep ensemble approach or deep path is used for RUL prediction when multiple a priori sequences are available. Hence, one future work is to add a criterion that allows operating conditions are not known since the future is unknown), modeling uncertainty (the HI modeling and the failure threshold are uncertain due to the model parameters estimation and process noise), and prediction method uncertainty (it is necessary to quantify the combined effects of the different uncertainty sources on the predicted RUL).

• Transfer learning. It is a future work direction that can deal with insufficient a priori degradation sequences. It aims at transferring the knowledge, in terms of model parameters, weights, etc.) between related problems. In RUL prediction, transfer learning exploits data from other related systems in order to train a model that permits to predict the RUL. Then, the trained model is tuned with the few available a priori sequences of the new system for achieving the RUL prediction. Also, the transfer learning can be used for transferring the information from an operating condition mode to another in the same system (A. Zhang et al. 2018).
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Résumé : Le pronostic des pannes consiste en l'estimation de la durée de vie résiduelle (RUL). Il s'agit d'un élément essentiel de la stratégie de maintenance prédictive qui peut contribuer à améliorer la fiabilité et la disponibilité des systèmes industriels tout en réduisant les temps d'arrêt imprévus et les coûts de maintenance. Fréquemment, l'application du pronostic dans des systèmes industriels réels est ardue en raison de l'insuffisance des données historiques de dégradation, en particulier pour les nouvelles machines, ou en raison du coût élevé de leur production ou de leur obtention. Par conséquent, ce manuscrit de thèse propose une approche générale axée sur les données avec trois chemins pour l'estimation du RUL lorsqu'aucune séquence de dégradation, peu de séquences et multiples séquences sont disponibles a priori. L'approche générale proposée comprend trois chemins d'estimation RUL : chemins aveugle, guidé et profond en fonction du nombre de séquences de dégradation disponibles. Le chemin aveugle est déclenché lorsqu'aucune séquence a priori n'est disponible, il vise à sélectionner le meilleur indicateur de santé (HI) dynamiquement à l'aide d'un critère de sélection basé sur le fit avec le modèle linéaire généralisé (GLM). Dans le même temps, les paramètres du GLM sont mis à jour en fonction des nouvelles données de dégradation permettant d'améliorer l'extrapolation de l'indicateur de santé jusqu'au seuil de défaillance. La prédiction du RUL s'améliore au fil du temps avec l'arrivée de nouvelles données de dégradation. Le chemin guidé est déclenché lorsqu'une ou plusieurs séquences a priori sont disponibles. Différents RUL sont estimés à l'aide de différents modèles adaptatifs combinés avec différents HI, tandis que le RUL final est obtenue en fusionnant les RUL en utilisant une moyenne pondérée. Le chemin guidé a montré de meilleurs résultats de prédiction du RUL par rapport aux méthodes appliquées dans la littérature (support vector machine et long short term memory). En outre, la précision et la robustesse de l'estimation RUL sont améliorées lorsque davantage de séquences a priori sont collectées. De plus, cette approche a montré une adaptation à plusieurs dynamiques (vitesses) de dégradation grâce à l'utilisation de différents modèles adaptatifs. Le chemin profond est utilisé lorsque de nombreuses séquences de dégradation a priori sont disponibles. Deux RULs sont prédits à l'aide de deux modèles d'apprentissage profond appelés Convolutional Neural Network (CNN) et Long Short Term Memory (LSTM), où le RUL final est obtenu en fusionnant les deux RUL en utilisant une moyenne pondérée. L'approche d'ensemble profond proposée a la capacité de capturer la variabilité des différents modes de conditions de fonctionnement. Cette approche a montré des résultats prometteurs par rapport aux méthodes similaires dans l'état de l'art.

Mots clés : Indicateur de santé -Détection de défauts -Pronostic des pannes -Durée de vie résiduelle Abstract: Fault prognostics consists of the estimation of the remaining useful life (RUL). It is the main part of the predictive maintenance strategy that can help to enhance the reliability and availability of industrial systems while reducing unscheduled downtime and maintenance cost. Applying prognostics in real industrial systems is arduous due to the insufficiency of the historical degradation data, in particular for new machines, or because of the high cost to produce or obtain them. Hence, this PhD thesis proposes a general data-driven approach with three paths for the RUL estimation when no degradation sequences, few sequences, and multiple sequences are available a priori. The general proposed approach includes three RUL estimation paths: blind, informed, and deep paths depending on the number of available degradation sequences. The blind path is triggered when no a priori sequences are available, it aims to select the best Health Indicator (HI) dynamically using a selection criterion based on the goodness of fit with the Generalized Linear Model (GLM). The GLM's parameters are updated using the incoming degradation data in order to increase the RUL's accuracy estimation when extrapolating the HI until the failure threshold. Therefore, the RUL prediction is improved over time with the arrival of new incoming degradation data. The informed path is triggered when one or more a priori sequences are available. Different RULs are estimated using different adaptive models (GLM, quadratic regression, exponential model, and double exponential model) combined with different HIs, while the final RUL is obtained by merging the individual RULs using a weighted mean. The informed path showed better RUL prediction results when few a priori sequences are available compared with the State-of-the-art RUL estimation methods (support vector machine and long short term memory models). The RUL estimation accuracy and robustness are improved when more a priori sequences are collected. Besides. The informed path can predict the RUL when the degradation speed (dynamics) of the incoming sequence is different from the a priori degradation speed, or dynamics, thanks to the use of different adaptive models. The deep ensemble approach is used when many a priori degradation sequences are available. Two RULs are predicted using two deep learning models named Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), where the final RUL is obtained by merging the two RUL using weighted mean. The proposed deep ensemble approach (deep path) has the ability to capture the variability of different operating condition modes. The deep ensemble approach showed promising results against the related works in the state-of-the-art.

2. 1

 1 Prognostic approaches requirements . . . . . . . . . . . . . . . . . . . 2.2 Prognostic approaches comparison . . . . . . . . . . . . . . . . . . . . 3.1 Features library for bearing's health monitoring . . . . . . . . . . . . 3.2 An example of accuracy computation for each combination HI-model 3.3 An example of HI-model combination selection and ranking . . . . . . 3.4 Bearing dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Generated degradation sequences . . . . . . . . . . . . . . . . . . . . 3.6 Blind path RUL accuracies of the sequences with outer race fault . . 3.7 Example of HI-model pairs selection . . . . . . . . . . . . . . . . . . . 3.8 Example of selected HI-model and corresponding weights . . . . . . . 3.9 RUL estimation accuracy for the outer race fault with 3 a priori sequences 3.10 RUL estimation accuracy for the outer race fault using the informed path with different number of a priori sequences . . . . . . . . . . . . 3.11 RUL overall accuracy comparison for the outer race fault . . . . . . . 3.12 RUL overall accuracy comparison for the inner race fault . . . . . . . 3.13 Degradation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 Features library for the C-MAPSS dataset . . . . . . . . . . . . . . . 3.15 Degradation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 RUL estimation accuracies (CRAs) for the degradation scenarios with one a priori sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17 RUL estimation accuracies (CRAs) for the degradation scenarios with two a priori sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18 RUL estimation accuracies (CRAs) for the degradation scenarios with three a priori sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19 Average of RUL estimation accuracies (CRAs) with different number of a priori sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20 Comparison of the RUL estimation overall accuracies . . . . . . . . . 4.1 C-MAPSS sub-datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 C-MAPSS Data format . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Hyperparameters selection for FD001 and FD003 . . . . . . . . . . . 4.4 Hyperparameters selection for FD002 and FD004 . . . . . . . . . . . 4.5 Evaluation of the CNN, LSTM, and ensemble model . . . . . . . . . . 4.6 Performance comparison with the related works on C-MAPSS dataset (without applying rectification on the test set) . . . . . . . . . . . . . 4.7 Performance comparison with the related works on C-MAPSS dataset (with applying rectification on the test set) . . . . . . . . . . . . . . . 4.8 Suspension details for generating the dataset . . . . . . . . . . . . . . 4.9 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Testing set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Filter clogging data format . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Cross validation results using different hyperparameters setting . . . . 4.13 Prediction errors using CNN, LSTM, and ensemble . . . . . . . . . .List of abbreviationsAI Artificial Intelligence ANN Artificial Neural Network AR Auto Regressive ARMA Auto Regressive Moving Average BLSTM Bidirectional Long Short Term Memory BPFI Ball Pass Frequency Inner BPFO Ball Pass Frequency Outer C-MAPSS Commercial Modular Aero-Propulsion System Simulation CBM Condition Based Maintenance CNN Convolutional Neural Network CRA Cumulative Relative Accuracy EOL End Of Life FFT Fast Fourier Transform GLM Generalized Linear Model GPR Gaussian Process Regression HHT Hilbert Huang Transform HI Health Indicator HMM Hidden Markov Model IMF Intrinsic Mode Function ISOMAP Isometric Mapping KL Kullback-Leibler divergence KNN K Nearest Neighbor LSTM Long Short Term Memory MA Moving Average MAE Mean Absolute Error MAPE Mean Absolute Percentage Error MLP Multi Layer Perceptron OCSVM One Class Support Vector Machine PCA Principal Component Analysis PHM Prognostics and Health Management PSD Power Spectral Density RA Relative Accuracy RBF Radial Basis Function RMS Root Mean Square RMSE Root Mean Square Error

Figure 1 - 2 :
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  Abid, K., Sayed-Mouchaweh, M., & Cornez, L. (2020). Adaptive Fault Prognostic Approach for the Remaining Useful Life Estimation of Bearings by Dealing with the Lack of Historical Degradation Data. In IET Science, Measurement & Technology. (Submitted) • Abid, K., Sayed-Mouchaweh, M., & Cornez, L. (2020). Adaptive Data-driven Approach for the Remaining Useful Life Estimation when Few Historical Degradation Sequences are Available. In International Conference on Machine Learning and Applications, IEEE. (Accepted) • Abid, K., Sayed-Mouchaweh, M., & Cornez, L. (2020). Deep Ensemble Approach for RUL Estimation of Aircraft Engines. In Mediterranean Forum of Data Science MEFDATA2020, Springer. (Accepted) • Abid, K., Sayed-Mouchaweh, M., & Cornez, L. (2019, September). Adaptive Machine Learning Approach for Fault Prognostics based on Normal Conditions-Application to Shaft Bearings of Wind Turbine. In Annual Conference of the PHM Society (Vol. 11, No. 1).
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 21 Figure 2-1: Evolution of maintenance strategy
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 22 Figure 2-2: Main steps of the PHM strategy
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 23 Figure 2-3: Illustration of a HI evolution in the degradation occurrence
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 25 Figure 2-5: HI based on a single feature[START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF] 

  Figure 2-6: HI construction example based on multiple features[START_REF] Benkedjouh | Remaining useful life estimation based on nonlinear feature reduction and support vector regression[END_REF] 
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 27 Figure 2-7: Example of good and bad population of HIs (J. B. Coble 2010b)

  Figure 2-8: Degradation detection using alarm threshold

Figure 2

 2 Figure 2-9: Classification of the degradation detection techniques

Figure 2

 2 Figure 2-11: Classification using only normal data

  Figure 2-12: Illustration of RUL estimation
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 2 Figure 2-13: Classification of RUL estimation approaches

Figure 2

 2 Figure 2-14: Indirect RUL estimation

  Figure 2-15: Direct RUL estimation

  (2008) proposed a direct RUL estimation for turbofan engine based on RNN, where the proposed method based on RNN yields better results compared to ANN.Recently deeper architectures of the ANN are applied for RUL estimation named deep learning models. Deep learning models are more and more used for machine health prognostics and have proven their effectiveness for RUL estimation. Most of the deep learning based approach for prognostics estimate the RUL in a direct way. As explained before, the advantage of these techniques is that there is no need to achieve health indicators extraction, and they require several a priori sequences about the degradation evolution for RUL prediction.As for fault diagnosis, the most applied methods for fault prognostics are CNN and LSTM. CNN and LSTM have shown their effectiveness for RUL estimation applied on different applications (e.g., bearings, battery, and aircraft engine). CNN has a deep architecture which makes it suitable for achieving automatic features extraction without computing the features manually.[START_REF] Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF] applied CNN for direct RUL estimation of data generated from a turbofan engine. The raw data collected from different sensors are used as input, whereas the true (actual) RUL is used as output.

Figure 2

 2 Figure 2-16: True RUL vs time

}

  Figure 2-17: Prognostic horizon
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 31 Figure 3-1: Flowchart of the proposed prognostic approach

A

  library of features (health indicators) sensitive to the degradation occurrence and evolution should be predefined in the offline phase. These features are used, on the one hand, for degradation detection, and on the other hand, for characterizing its evolution over time in order to estimate the RUL. The chosen indicators in the library are dependent on the application domain.For rotating machine degradation, vibration measurement is the most condition monitoring data used for monitoring rotating machinery, since the vibration increases due to mechanical troubles (e.g., worn bearings). Features are computed based on time domain and frequency domains in order to extract relevant health indicators from the data characterizing the degradation. Time domain features use statistical properties computed directly from the raw signal such as Root Mean Square (RMS), which describes the signal strength, peak to peak which is the distance from a negative peak to a positive peak, kurtosis which measures the probability density flatness degree of the signal, Shape factor which is computed as the ratio of RMS to the average value.Frequency domain techniques are more effective for bearings fault diagnostic due to their ability to detect and isolate the degradation using frequency components. Fast Fourier Transform (FFT) is a common method in vibration signal analysis[START_REF] Rai | Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[END_REF]). The Frequency spectrum is computed using FFT to observe the characteristics of the vibration signal in the frequency domain. When a fault occurs, it can show the repetitive impulse period due to the contact between the rolling elements and the defective part. Other frequency domain features are computed based on the spectral kurtosis (SK)(Antoni 2006). SK is the kurtosis of the spectral component of the signal. It can deal with the transient behavior in a signal and can detect incipient fault even in the presence of noise[START_REF] Saidi | Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[END_REF]).

  the best HI is selected dynamically (online) among the different features in the library according to selection criteria. The most used HI selection criteria in the literature are monotonicity and trendability (J. B. Coble 2010b; Abid et al. 2019). The monotonicity evaluates the negative or positive trend of the HI, while the trendability is related to time and represents the correlation between the HI and the operating time. However, some HIs show good trendability and monotoncity at certain time periods and then their trendability and/or monotoncity decrease significantly for other time periods. Figure 3-2 shows an example of the variable trendability and monotoncity of HIs over time. This figure illustrates the monitoring of degradation evolution using two different HIs (peak-to-peak and SK-kurtosis). The SK HI shows a very good
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 32 Figure 3-2: Example of two HIs evolution over time.

  -3. 𝑡 𝐸𝑂𝐿 is the time when the selected HI exceeds a predefined failure threshold. In this work, the Generalized Linear Model (GLM) is used to extrapolate the selected HI until it reaches the failure threshold. In the blind path, the failure threshold should be predefined by an expert.GLM is a flexible generalization of the standard linear regression[START_REF] Mccullagh | Generalized linear models[END_REF]. It can be used for different response distributions belonging to the exponential family (e.g., the normal, binomial, Poisson...). GLM generalizes linear regression by allowing the linear model 𝛼 + 𝑋𝛽 to be related to the response variable via a link function (𝑔(𝜇) = (𝛼 + 𝑋𝛽)).

Figure 3

 3 Figure 3-3: Illustration of the RUL estimation.
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 34 Figure 3-4: Diagram of the RUL prediction using the HI-model pairs

1

 1 Data presentation and failure descriptionVibration data are collected from a real high speed shaft bearing installed in a real commercial wind turbine with a 2MW power output provided by the Green Power Monitoring Systems in USA[START_REF] Bechhoefer | Processing for improved spectral analysis[END_REF]). After the last day of recording, an inspection of the bearing showed that the inner race was cracked (Figure3-5).
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 35 Figure 3-5: Cracked inner race of the high speed shaft bearing after the last day of recording.

Figure 3 -

 3 Figure 3-6 shows the collected run to failure vibration signal over 50 days, where each part of the signal with different color has a length of 585936 samples (97656 samples times 6 seconds).

  Figure 3-6: Collected vibration signal

Figure 3

 3 Figure 3-7: Computed indicators using HIs of Table3.1

  Figure 3-9: RUL prediction comparison when using predefined HI and dynamic HI selection

Figure 3 -Figure 3

 33 Figure 3-10): the outer race, the inner race, and the bearing balls.
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 3 Figure 3-11: Generated fault signatures for the inner and outer race.
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 3 Figure 3-12: Examples of generated sequences with several degradation speeds.

Figure 3

 3 Figure 3-13: Degradation detection for sequence 9.

Figure 3

 3 Figure 3-14: Example of computation of the distance between peaks

Figure 3 -

 3 Figure3-17 shows the predicted and the true (actual) RUL for the sequence #9 using different number of a priori sequences. One sequence (#11) is used as a priori in Figure3-17a, three a priori sequences (#2, #7, and #11) are used in Figure3-17b, and five sequences(#3, #11, #14, #16, and #17) are used in Figure3-17c. From these figures, it can be observed that the RUL prediction accuracy is improved when more a priori sequences are available.

S21Figure 3

 3 Figure 3-19: Selected sensor values for the sequence #4

  Figure 3-20: Example of RUL estimation using the blind path

Figure 3

 3 Figure 3-21: RUL prediction for sequence #5 using different available a priori sequences

  Figure 3-22: RUL prediction for sequence #4 using a priori sequences with different degradation speed
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 41 Figure 4-1: Proposed deep ensemble approach for RUL estimation

Figure 4

 4 Figure 4-2: Sliding time window used as input

  et al. (1995), it is efficient for automatic feature extraction. The adopted CNN model is a 1-dimensional CNN (1D CNN) that can handle time series signals. CNN consists of several consecutive convolution layers for features extraction. In the convolution layer, several filters are convolved with the input data in order to generate the features map (as illustrated in Figure 4-3).
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 47 Figure 4-7: Illustration of RUL fusion for a new input data

  𝑟𝑢𝑙(𝑡) is the final RUL estimated at each time cycle 𝑡, 𝑟𝑢𝑙(𝑡) 𝑘 is the RUL estimated by the model 𝑘 at each time cycle, 𝑛 𝑘 is the number of models (here 𝑛 𝑘 = 2) and 𝑊 𝑘 is the corresponding weight to each model. 𝐸𝑟𝑟𝑉 𝑎𝑙 𝑘 represents the validation RMSE errors for each model 𝑘.

  second and fourth cases (FD002 and FD004) are generated under six operating conditions (variation of three flight condition parameters: aircraft altitude, environmental temperature, and aircraft speed). Table4.1 summarizes the C-MAPSS sub-datasets properties. The data format contains columns about: unit index, time cycle, three operating conditions or flight conditions, and 21 sensors measurements about the system conditions (e.g., temperature, pressure, and rotational speed), the data format is shown in Table4.2.
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 48 Figure 4-8: Sensors measurement in FD001 sub-datasets

FD001

  Figure 4-9: Different Operating condition modes for the C-MAPSS dataset

Figure 4

 4 Figure 4-10: Sensor #2 values under one (a) and six operating condition modes (b)

Figure 4

 4 Figure 4-11: Rectified true RUL

4. 4

 4 Experimentation using filter clogging dataset4.4.1 Dataset presentationIn industry, particles filtration is a common process to achieve a desired level of purification, the particles in the liquids may lead to performance drop and rapid wear propagation of the mechanical systems. Filtration is an operation which separates the suspended particles from the fluid by using a filtration unit named filter. The filter clogging dataset (PHME 2020) is proposed for data challenge of the fifth European conference of the Prognostics and Health Management Society. The experimental system for the filter clogging evolution is illustrated in Figure4-15. It consists of a filter, pump, liquid tanks, tank stirrer, pulsation dampener, pressure and flow rate sensors, and a data acquisition system connected to a computer. The system is a liquid circuit, where the pump flows the liquid from a tank to another through a filter. The circuit includes a dampener in order to eliminate possible pulsations in the flow. Three sensors are installed for instrumentation, two pressure transducers sensors to measure the pressure before and after the filter, and a flow meter sensor for flow rate measurement.

Figure 4 -

 4 Figure 4-15: Experimental system of filter clogging

Figure 4

 4 Figure 4-17: Example of collected raw data for filter clogging
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 4 Figure 4-19, where the experiments with small particles size are presented in Figure 4-19a, and the experiments with large particles size are presented in Figure 4-19b.

Figure 4

 4 Figure 4-18: Example of preprocessed raw data

  Figure 4-21: Predicted RUL for filter with small particles size in the test set
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			1: Prognostic approaches requirements	
	RUL estimation Approaches	Physical model Degradation history Current health state Degradation detection
	Experience based	Reliability	Not required	Required	Not required	Not required
	approach	Similarity	Not required	Required	Required	Required
	Degradation modeling	Model based	Required	Beneficial	Required	Required
	bsed approach	Data-driven	Not required	Beneficial	Required	Required

Table 2

 2 

		.2: Prognostic approaches comparison		
	RUL estimation Approaches	Precision Component level System level	Implementation Cost Interpretability
	Experience based	Reliability	+	-	++	-	-
	approach	Similarity	+	-	++	-	-
	Degradation modeling	Model based	++	+	-	-	+
	bsed approach	Data-driven	+	++	++	+	-

  ered. When there is a lack of historical run-to-failure data, adaptive techniques should be investigated, such as HI-extrapolation methods (i.g., linear regression, quadratic regression, exponential model...). The advantage of such techniques is the non requirement of several run-to-failure data, they are applied in the indirect RUL estimation way by computing the HI, and then extrapolate it until reaching the failure threshold. The failure threshold can be set by some failure data if available or set by expert

	knowledge otherwise.
	When several run-to-failure data are available in offline, direct estimation using

more sophisticated techniques is preferable, such as machine learning or deep learning techniques (i.g., HMM, SVM, ANN, LSTM, CNN). Despite the requirement of several run-to-failure data, these methods possess several advantages, they can estimate the RUL directly without modeling the evolution of a HI, and raw data can be used as input without computing health indicators when applying deep learning techniques. Moreover, they can model a complex non-linear relationship between the input and the output (RUL). Hence, they can be applied to estimate the RUL for complex dynamic systems switching between different operating conditions in variable environment conditions (e.g. wind turbine). Furthermore, the failure threshold can be set only the training set.

Table 3 .

 3 1: Features library for bearing's health monitoring Table3.1 sums up the features defined in the library for monitoring the bearing degradation using the vibration measurement, where 𝑥 is the signal in the temporal domain, 𝑆 is the spectral component computed using the FFT, and 𝐾 is the spectral kurtosis. In this library, five temporal domain features are computed on the raw signal: HI 1 , HI 2 , HI 3 , HI 4 , and HI 5 , and seven statistical features are computed on the FFT: HI 6 , HI 7 , HI 8 , HI 9 , HI 10 , HI 11 , and HI 12 . Also, five statistical features

	HI index	Name	Formula
	HI 1	RMS	√︁	1 𝑛	∑︀ 𝑛 𝑖=1 𝑥 2 𝑖
	HI 2	Peak-to-peak	𝑚𝑎𝑥(𝑥) -𝑚𝑖𝑛(𝑥)
	HI 3	Kurtosis	1 𝑛	∑︀ 𝑛 𝑖=1 (𝑥 𝑖 -x) 4 𝜎 4
	HI 4 HI 5 HI 6	Energy Shape Factor FT-mean	∑︀ 𝑛 𝑖=1 𝑥 2 𝑖 √ 1 𝑛 ∑︀ 𝑛 𝑖=1 𝑥 2 𝑖 1 𝑛 ∑︀ 𝑛 𝑖=1 |𝑥 𝑖 | 1 𝑛 ∑︀ 𝑛 𝑖=1 𝑆 𝑖
	HI 7	FT-std	√︁	1 𝑛	∑︀ 𝑛 𝑖=1 (𝑆 𝑖 -S)
	HI 8	FT-rms	√︁	1 𝑛	∑︀ 𝑛 𝑖=1 𝑆 2 𝑖
	HI 9	FT-peak	𝑚𝑎𝑥(𝑆)
	HI 10	FT-kurtosis	1 𝑛	∑︀ 𝑛 𝑖=1 (𝑆 𝑖 -S) 4 𝜎 4
	HI 11	FT-skewness	1 𝑛	∑︀ 𝑛 𝑖=1 (𝑆 𝑖 -S) 3 𝜎 3
	HI 12 HI 13	FT-crestfactor SK-mean	𝑚𝑎𝑥(𝑆) 1 𝑛 ∑︀ 𝑛 𝑖=1 𝑆 2 𝑖 ∑︀ 𝑛 √ 1 𝑛 𝑖=1 𝐾 𝑖
	HI 14	SK-std	√︁	1 𝑛	∑︀ 𝑛 𝑖=1 (𝐾 𝑖 -K)
	HI 15	SK-rms	√︁	1 𝑛	∑︀ 𝑛 𝑖=1 𝐾 2 𝑖
	HI 16	SK-peak	𝑚𝑎𝑥(𝐾)
	HI 17	SK-kurtosis	1 𝑛	∑︀ 𝑛 𝑖=1 (𝐾 𝑖 -K) 4 𝜎 4

are computed on the spectral kurtosis: HI 13 , HI 14 , HI 15 , HI 16 , HI 17 . The library of features can be modified or enriched by feedback or human experts according to the application domain.

Table 3 .

 3 2: An example of accuracy computation for each combination HI-model Model 1 Model 2 Model 3

	HI 1	𝑎 𝑠 11	𝑎 𝑠 12	𝑎 𝑠 13
	HI 2	𝑎 𝑠 21	𝑎 𝑠 22	𝑎 𝑠 23
	HI 3	𝑎 𝑠 31	𝑎 𝑠 32	𝑎 𝑠 33
	HI 4	𝑎 𝑠 41	𝑎 𝑠 42	𝑎 𝑠 43

Table 3

 3 

	.3: An example of HI-model combination selection and ranking
	Rank Selected HI Selected Model Accuracies Weights
	1	HI 2	Model 1	(𝑎 21 ) 1	𝑊 1
	2	HI 4	Model 3	(𝑎 43 ) 2	𝑊 2
	3	HI 1	Model 1	(𝑎 11 ) 3	𝑊 3
	4	HI 3	Model 2	(𝑎 32 ) 4	𝑊 4

Table 3

 3 

		.4: Bearing dimensions
	𝐷	Outer diameter	62𝑚𝑚
	𝑑	Inner diameter	30𝑚𝑚
	𝐷 𝑚	Pitch diameter	46𝑚𝑚
	𝑛 𝑏	Number of balls	9
	𝑑 𝑏𝑎𝑙𝑙	Ball diameter	9.525𝑚𝑚
	𝑚	Modulation index	0.7
	𝑓 0 Sampling frequency 51.2𝑘𝐻𝑧
	𝛼	Angle 0 𝑁 (︂ ∑︁ 𝐴.𝑒𝑥𝑝 -2𝜋𝜇𝑓 0
		𝑘=1	

∘

The simulated bearing dimensions are listed in Table

3

.4. The model described in Eq. (3.15)-(3.19) is based on the bearing dimensions, and on five parameters that can influence the vibratory signature: amplitude 𝐴, rotational speed 𝑓 𝑟 , damping factor 𝜇, amplitude of the noise signal 𝑏(𝑡), and modulation shock signal 𝑚𝑐. The generated signal window contains 𝑁 = 16348 samples with a sampling frequency of 𝑓 0 = 51.2𝑘𝐻𝑧. 𝑥 𝐵𝑃 𝐹 𝑂 (𝑡) =

Table 3

 3 

	.5: Generated degradation sequences
	Outer/Inner race fault sequence #	Degradation speeds Time cycle length
	1		
	2 3	Very fast	30
	4		
	5		
	6 7	Fast	50
	8		
	9		
	10 11	Medium	65
	12		
	13		
	14 15	Slow	80
	16		
	17		
	18 19	Very slow	100
	20		

Table 3 .

 3 6: Blind path RUL accuracies of the sequences with outer race fault HI-model pairs with a high accuracy are HI 15 -model 2 , HI 14 -model 2 , HI 7 -model 3 , HI 13 -model 3 , HI 12 -model 2 , HI 7 -model 1 , and HI 9 -model 4 . These HI-model pairs are selected, and their corresponding weights are calculated as a function of the accuracy, the parameter 𝛾 has been chosen empirically (𝛾 = 8), where more important weights are given to the pairs with high accuracy as shown in Table3.8.

	Sequence	Detection	isolation	Detection	Fault	Accuracy
	#	time	time	percent (%)	type	(Blind)
	1	10	15	33.3	BPFO	0.694
	2	11	15	36.6	BPFO	0.703
	3	11	16	36.6	BPFO	0.661
	4	11	13	36.6	BPFO	0.698
	5	19	23	38.0	BPFO	0.655
	6	17	23	34.0	BPFO	0.661
	7	17	23	34.0	BPFO	0.670
	8	18	22	36.0	BPFO	0.692
	9	22	27	33.8	BPFO	0.633
	10	24	29	36.9	BPFO	0.687
	11	23	27	35.3	BPFO	0.591
	12	21	30	32.3	BPFO	0.745
	13	27	36	33.7	BPFO	0.614
	14	24	34	30.0	BPFO	0.680
	15	28	37	35.0	BPFO	0.609
	16	28	37	35.0	BPFO	0.741
	17	38	45	38.0	BPFO	0.616
	18	36	42	36.0	BPFO	0.606
	19	37	46	37.0	BPFO	0.660
	20	36	42	36.0	BPFO	0.633
	sequences for the outer race fault with the blind path are presented in Table 3.6. The
	overall accuracy for the blind path is 0.662, which is computed with the mean of the

last column of Table

3

.6. This RUL estimation accuracy is suitable because the RUL is estimated in a blind manner without a priori degradation data. This accuracy is compared in the next subsection when there are few historical degradation data. the

Table 3 .

 3 9: RUL estimation accuracy for the outer race fault with 3 a priori sequences

								Randomly selected a priori sequences (3 sequences)							
	Incoming sequences	5 9 18	7 10 19	3 4 12	5 6 9	10 18 19	11 12 14	1 13 14	2 7 11	1 5 13	4 8 9	1 3 20	4 9 16	6 12 13	2 16 20	6 17 18	5 15 19	1 3 13	5 10 18	2 12 20	4 5 19
	1	0.825 0.847 0.786 0.856 0.796 0.869 0.888 0.907 0.879 0.890 0.886 0.824 0.758 0.836 0.759 0.854 0.888 0.837 0.836 0.776
	2	0.640 0.779 0.894 0.820 0.543 0.839 0.796 0.927 0.742 0.913 0.811 0.884 0.744 0.938 0.630 0.793 0.806 0.632 0.928 0.802
	3	0.698 0.744 0.838 0.746 0.686 0.791 0.752 0.781 0.729 0.727 0.821 0.799 0.712 0.796 0.692 0.762 0.744 0.710 0.802 0.791
	4	0.759 0.806 0.918 0.816 0.709 0.868 0.891 0.892 0.839 0.901 0.840 0.859 0.724 0.842 0.692 0.837 0.861 0.769 0.848 0.883
	5	0.844 0.856 0.905 0.855 0.829 0.893 0.865 0.865 0.857 0.804 0.841 0.815 0.788 0.840 0.792 0.881 0.861 0.861 0.840 0.875
	6	0.806 0.867 0.859 0.880 0.803 0.889 0.860 0.875 0.838 0.836 0.923 0.884 0.872 0.887 0.836 0.874 0.862 0.815 0.891 0.842
	7	0.908 0.931 0.937 0.934 0.911 0.938 0.899 0.930 0.874 0.892 0.942 0.888 0.836 0.920 0.906 0.916 0.890 0.903 0.901 0.876
	8	0.834 0.845 0.793 0.824 0.804 0.776 0.808 0.799 0.846 0.795 0.832 0.765 0.819 0.777 0.797 0.834 0.837 0.838 0.756 0.839
	9	0.867 0.858 0.815 0.888 0.829 0.832 0.828 0.838 0.859 0.801 0.865 0.847 0.908 0.868 0.826 0.868 0.861 0.873 0.844 0.814
	10	0.811 0.851 0.926 0.845 0.817 0.862 0.839 0.839 0.821 0.847 0.934 0.870 0.834 0.867 0.826 0.859 0.831 0.821 0.869 0.889
	11	0.833 0.850 0.891 0.843 0.809 0.869 0.864 0.865 0.833 0.871 0.778 0.871 0.792 0.859 0.784 0.859 0.838 0.844 0.871 0.878
	12	0.821 0.863 0.886 0.891 0.809 0.914 0.857 0.885 0.808 0.856 0.957 0.922 0.896 0.929 0.826 0.879 0.836 0.830 0.928 0.864
	13	0.907 0.848 0.655 0.843 0.890 0.720 0.769 0.739 0.875 0.741 0.639 0.747 0.901 0.761 0.869 0.818 0.846 0.905 0.726 0.746
	14	0.816 0.856 0.914 0.860 0.801 0.926 0.836 0.858 0.789 0.826 0.923 0.857 0.855 0.870 0.798 0.868 0.809 0.827 0.895 0.872
	15	0.763 0.808 0.872 0.820 0.733 0.883 0.847 0.869 0.792 0.836 0.903 0.855 0.771 0.848 0.723 0.835 0.813 0.778 0.870 0.809
	16	0.870 0.886 0.815 0.934 0.839 0.915 0.907 0.919 0.875 0.862 0.897 0.938 0.908 0.945 0.846 0.902 0.903 0.880 0.937 0.815
	17	0.847 0.858 0.772 0.831 0.843 0.759 0.765 0.777 0.821 0.788 0.786 0.817 0.875 0.821 0.850 0.828 0.812 0.844 0.800 0.813
	18	0.806 0.754 0.612 0.765 0.831 0.704 0.707 0.699 0.757 0.672 0.702 0.686 0.826 0.703 0.843 0.734 0.740 0.799 0.685 0.653
	19	0.884 0.897 0.842 0.879 0.897 0.834 0.833 0.850 0.869 0.843 0.761 0.849 0.890 0.864 0.891 0.878 0.863 0.889 0.851 0.862
	20	0.810 0.866 0.918 0.879 0.794 0.923 0.877 0.920 0.833 0.863 0.952 0.903 0.849 0.917 0.801 0.886 0.854 0.824 0.915 0.877
	Table 3.10: RUL estimation accuracy for the outer race fault using the informed path
	with different number of a priori sequences										
										Number of a priori sequences							
			Incoming	CRA		CRA		CRA		CRA			CRA		CRA			
			sequences	(1 seq)		(2 seqs)		(3 seqs)		(4 seqs)		(5 seqs)		(6 seqs)		
			1		0.718±0.173	0.811±0.099	0.840±0.045	0.855±0.068	0.853±0.050		0.860±0.035		
			2		0.728±0.134	0.807±0.077	0.793±0.112	0.844±0.078	0.846±0.082		0.826±0.080		
			3		0.783±0.087	0.782±0.044	0.756±0.045	0.770±0.037	0.765±0.033		0.754±0.025		
			4		0.667±0.249	0.782±0.179	0.828±0.066	0.853±0.088	0.862±0.055		0.848±0.053		
			5		0.700±0.367	0.800±0.167	0.848±0.031	0.838±0.123	0.860±0.031		0.858±0.018		
			6		0.820±0.080	0.862±0.037	0.860±0.031	0.863±0.024	0.861±0.022		0.865±0.015		
			7		0.870±0.065	0.905±0.027	0.906±0.026	0.921±0.017	0.913±0.023		0.920±0.016		
			8		0.743±0.140	0.804±0.041	0.811±0.028	0.804±0.027	0.804±0.025		0.808±0.022		
			9		0.831±0.097	0.856±0.049	0.849±0.027	0.840±0.036	0.843±0.036		0.852±0.032		
			10		0.762±0.172	0.820±0.118	0.853±0.033	0.848±0.026	0.851±0.026		0.847±0.018		
			11		0.692±0.282	0.790±0.150	0.845±0.032	0.833±0.105	0.858±0.019		0.856±0.017		
			12		0.797±0.149	0.853±0.088	0.873±0.043	0.871±0.042	0.881±0.027		0.886±0.017		
			13		0.681±0.215	0.744±0.122	0.797±0.083	0.754±0.105	0.774±0.074		0.796±0.065		
			14		0.720±0.253	0.809±0.135	0.853±0.041	0.844±0.081	0.870±0.039		0.865±0.025		
			15		0.718±0.192	0.804±0.079	0.821±0.050	0.832±0.057	0.839±0.035		0.835±0.031		
			16		0.804±0.169	0.872±0.086	0.890±0.039	0.885±0.071	0.898±0.036		0.912±0.026		
			17		0.780±0.093	0.801±0.051	0.815±0.033	0.788±0.044	0.791±0.045		0.801±0.041		
			18		0.688±0.125	0.715±0.045	0.734±0.063	0.708±0.045	0.716±0.056		0.732±0.047		
			19		0.749±0.248	0.816±0.123	0.861±0.031	0.832±0.098	0.852±0.021		0.859±0.023		
			20		0.820±0.090	0.882±0.041	0.873±0.045	0.886±0.032	0.886±0.032		0.882±0.025		
			Overall accuracy	0.753±0.169 0.816±0.088 0.835±0.045 0.833±0.060 0.841±0.038 0.843±0.032		

Table 3 .

 3 11: RUL overall accuracy comparison for the outer race fault

		CRA	CRA	CRA	CRA	CRA	CRA	CRA
		Blind	1seq	2seq	3seq	4seq	5seq	6seq
	SVR	-	0.366 0.529 0.575 0.634 0.655 0.675
	LSTM	-	0.316 0.586 0.698 0.767 0.831 0.852
	Best HI-model	0.662 0.664 0.791 0.789 0.799 0.819 0.822
	Proposed approach 0.662 0.753 0.816 0.835 0.833 0.841 0.843

Table 3 .

 3 12: RUL overall accuracy comparison for the inner race fault between the input and the output. It can predict the RUL by mapping the HIs (input) directly to the RUL values (output). Unlike SVR that predicts the RUL directly considering each time point independently, LSTM is a recurrent neural network designed to learn the long term dependencies. It can remember information for long periods of time, it has been applied for RUL estimation of lithium-ion batteries (Y.Zhang et al. 2018), aircraft turbofan engines(Wu et al. 

		CRA	CRA	CRA	CRA	CRA	CRA	CRA
		Blind	1seq	2seq	3seq	4seq	5seq	6seq
	SVR	-	0.344 0.517 0.567 0.660 0.683 0.692
	LSTM	-	0.316 0.583 0.671 0.744 0.817 0.815
	Best HI-model	0.655 0.688 0.721 0.703 0.719 0.747 0.740
	Proposed approach 0.655 0.738 0.776 0.754 0.786 0.797 0.793
	modelling the relationship						

2018), and bearings (B.

[START_REF] Zhang | Bearing performance degradation assessment using long short-term memory recurrent network[END_REF]

. Table
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		.13: Degradation scenario
	Sequence # Degradation speed Time cycle length
	1		128
	2	Fast	135
	3		137
	4		198
	5	Medium	199
	6		199
	7		336
	8	Slow	341
	9		362

Table 3 .

 3 14: Features library for the C-MAPSS dataset HI index HI 1 HI 2 HI 3 HI 4 HI 5 HI 6 HI 7 HI 8 HI 9 HI 10 HI 11 HI 12

	Sensor	S2 S3 S4 S7 S8 S11 S12 S13 S15 S17 S20 S21

Table 3
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		.15: Degradation scenarios
	Sequence N Degradation speed	Accuracy (Blind)
	1		0.502
	2	Fast	0.463
	3		0.431
	4		0.608
	5	Medium	0.515
	6		0.546
	7		0.668
	8	Slow	0.687
	9		0.612
	Mean		0.559

Table 3

 3 

	.16: RUL estimation accuracies (CRAs) for the degradation scenarios with
	one a priori sequence							
				A priori sequences (1 sequence)	
		S1	S2	S3	S4	S5	S6	S7	S8	S9
	Predicted sequences	S1 0.863 0.794 0.624 0.727 0.589 0.773 0.735 0.776 0.736 S2 0.796 0.812 0.698 0.717 0.616 0.787 0.741 0.715 0.659 S3 0.587 0.787 0.898 0.778 0.799 0.829 0.747 0.728 0.675 S4 0.63 0.757 0.722 0.855 0.842 0.865 0.864 0.726 0.775 S5 0.505 0 0.245 0.824 0.893 0.419 0.722 0.865 0.412 S6 0.821 0.883 0.607 0.733 0.654 0.805 0.709 0.67 0.718 S7 0.645 0.631 0.598 0.845 0.791 0.809 0.918 0.789 0.859 S8 0.601 0.664 0.405 0.5 0.685 0.595 0.672 0.86 0.503
		S9 0.648 0.567 0.538 0.881 0.813 0.736 0.855 0.842 0.886
	Table 3.17: RUL estimation accuracies (CRAs) for the degradation scenarios with
	two a priori sequences							
				A priori sequences (2 sequences)	
		S3	S6	S5	S7	S4	S8	S9	S1	S2
		S1	S2	S3	S4	S5	S6	S7	S8	S9
	Predicted sequences	S1 0.807 0.697 0.627 0.714 0.575 0.773 0.732 0.716 0.743 S2 0.782 0.79 0.588 0.692 0.617 0.734 0.685 0.792 0.712 S3 0.751 0.715 0.831 0.74 0.786 0.806 0.684 0.667 0.615 S4 0.821 0.792 0.829 0.866 0.876 0.764 0.841 0.83 0.809 S5 0.621 0.38 0.875 0.843 0.882 0.816 0.692 0.825 0.655 S6 0.717 0.778 0.669 0.682 0.647 0.718 0.705 0.675 0.718 S7 0.775 0.845 0.849 0.907 0.841 0.829 0.903 0.819 0.844 S8 0.691 0.735 0.704 0.648 0.651 0.848 0.575 0.862 0.616
		S9 0.817 0.743 0.862 0.839 0.804 0.845 0.874 0.852 0.844
	Table 3.18: RUL estimation accuracies (CRAs) for the degradation scenarios with
	three a priori sequences							
				A priori sequences (3 sequences)	
		S2	S7	S4	S8	S1	S3	S5	S9	S6
		S3	S6	S5	S7	S4	S8	S9	S1	S2
		S1	S2	S3	S4	S5	S6	S7	S8	S9
	Predicted sequences	S1 0.839 0.754 0.615 0.734 0.697 0.736 0.678 0.715 0.716 S2 0.796 0.772 0.631 0.76 0.724 0.689 0.665 0.729 0.723 S3 0.775 0.696 0.813 0.73 0.704 0.777 0.796 0.675 0.625 S4 0.804 0.786 0.881 0.81 0.85 0.693 0.849 0.762 0.802 S5 0.261 0.519 0.874 0.754 0.853 0.815 0.863 0.85 0.657 S6 0.793 0.735 0.65 0.669 0.678 0.731 0.699 0.668 0.716 S7 0.638 0.879 0.87 0.891 0.854 0.809 0.87 0.798 0.839 S8 0.682 0.721 0.685 0.82 0.772 0.851 0.754 0.872 0.713
		S9 0.743 0.793 0.833 0.852 0.851 0.879 0.858 0.869 0.849

Table 3 .

 3 19: Average of RUL estimation accuracies (CRAs) with different number of a priori sequences

						Number of a priori sequences			
			CRA	CRA	CRA	CRA	CRA	CRA	CRA	CRA	CRA
			(1seq)	(2seq)	(3seq)	(4seq)	(5seq)	(6seq)	(7seq)	(8seq)	(9seq)
	Predicted sequences	S1 S2 S3 S4 S5 S6 S7 S8	0.735+0.0842 0.727+0.0652 0.759+0.0898 0.782+0.0815 0.543+0.3070 0.733+0.0882 0.765+0.1130 0.610+0.1330	0.709+0.0710 0.710+0.0738 0.733+0.0700 0.825+0.0347 0.732+0.1640 0.701+0.0383 0.846+0.0404 0.703+0.0981	0.720+0.0604 0.721+0.0526 0.732+0.0625 0.804+0.0555 0.716+0.2070 0.704+0.0447 0.828+0.0778 0.763+0.0705	0.722+0.0424 0.72+0.0328 0.703+0.0648 0.811+0.0412 0.818+0.0577 0.688+0.0157 0.845+0.0315 0.792+0.0657	0.740+0.0371 0.714+0.0304 0.706+0.0736 0.819+0.0357 0.842+0.0290 0.687+0.0129 0.852+0.0284 0.801+0.0544	0.745+0.0257 0.728+0.0293 0.695+0.0638 0.813+0.0292 0.844+0.0202 0.687+0.0185 0.846+0.0340 0.806+0.0411	0.753+0.0164 0.734+0.0142 0.694+0.0397 0.817+0.0170 0.846+0.0103 0.688+0.0153 0.846+0.0240 0.814+0.0376	0.752+0.0200 0.737+0.0195 0.696+0.0278 0.817+0.0143 0.844+0.0099 0.688+0.0094 0.846+0.0159 0.822+0.0309	0.750+0 0.747+0 0.698+0 0.818+0 0.843+0 0.685+0 0.843+0 0.838+0
		S9	0.752+0.1360	0.831+0.0394	0.836+0.0426	0.855+0.0130	0.858+0.0108	0.856+0.0119	0.857+0.0087	0.859+0.0075	0.857+0
	Overall accuracy	0.712+0.1220 0.755+0.0699 0.758+0.0749 0.773+0.0405 0.780+0.0347 0.780+0.0304 0.783+0.0204 0.784+0.0173 0.787+0

Table 3
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		.20: Comparison of the RUL estimation overall accuracies
		CRA	CRA	CRA	CRA	CRA	CRA	CRA	CRA	CRA	CRA
		(Blind)	(1seq)	(2seq)	(3seq)	(4seq)	(5seq)	(6seq)	(7seq)	(8seq)	(9seq)
	SVR	-	0.167 0.325 0.408 0.498 0.559 0.620 0.663 0.702 0.742
	LSTM	-	0.362 0.448 0.540 0.615 0.657 0.749 0.794 0.851 0.912
	Best HI-model	0.559 0.487 0.635 0.586 0.647 0.648 0.659 0.661 0.670 0.676
	Proposed approach 0.559 0.712 0.755 0.758 0.773 0.780 0.780 0.783 0.784 0.787
	Table									

  Proposed CNN architecture for RUL estimation the information addition to the current cell state 𝑐 𝑡 . The output gate 𝑜 𝑡 controls the information that will be carried to the current hidden state ℎ 𝑡 .𝑓 𝑡 = 𝜎(𝑊 𝑓 [𝑥 𝑡 , ℎ 𝑡-1 ] + 𝑏 𝑓 ) (4.3) 𝑢 𝑡 = 𝜎(𝑊 𝑢 [𝑥 𝑡 , ℎ 𝑡-1 ] + 𝑏 𝑢 ) (4.4) 𝑜 𝑡 = 𝜎(𝑊 𝑜 [𝑥 𝑡 , ℎ 𝑡-1 ] + 𝑏 𝑜 ) 𝑐 𝑡 = 𝑓 𝑡 * 𝑐 𝑡-1 + 𝑢 𝑡 * c𝑡 (4.7) ℎ 𝑡 = 𝑜 𝑡 * 𝑡𝑎𝑛ℎ(𝑐 𝑡 ) (4.8)Where 𝑊 𝑓 , 𝑊 𝑢 , 𝑊 𝑜 , and 𝑊 𝑐 represent the corresponding weights to the forget gate, update gate, output gate, and the cell state, respectively, while 𝑏 𝑓 , 𝑏 𝑢 , 𝑏 𝑜 , and 𝑏 𝑐 are their corresponding bias. The weights and bias are estimated during the training phase. c is the candidate cell state, 𝜎 represents the sigmoid activation function, while 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function. 𝑥 𝑡1 , 𝑥 𝑡2 , 𝑥 𝑡3 ..., 𝑥 𝑡𝑛 are the input data points (𝑡1 is the first time index of the segmented window while 𝑡𝑛 is the last index of the input window) and 𝑅𝑈 𝐿 𝑡𝑛 is the predicted RUL for the input window.

	Data	Filters	Filters	Filters	
	dimension	number	number	number	
					(4.5)
	Time window		c𝑡 = 𝑡𝑎𝑛ℎ(𝑊 𝑐 [𝑥 𝑡 , ℎ 𝑡-1 ] + 𝑏 𝑐 )	(4.6)
					RUL t
	Input data	First conv layer	Second conv layer	Third conv layer	Fully connected
					layer
				Flatten	
	relu The proposed LSTM architecture is presented in Figure 4-6. It is a many to one y t Figure 4-4: x + c t-1 c t c t
	architecture where three LSTM layers are stacked in order to discover the underlying
	x tanh Figure 4-5: Diagram of LSTM cell x tanh σ σ c t Update gate i t Output gate o t The corresponding equations for the explained LSTM unit are presented as follows: σ h t h t-1 x t Forget gate f t LSTM cell LSTM cell LSTM cell LSTM cell LSTM cell LSTM cell LSTM cell LSTM cell x 2 x 3 x t RUL t First LSTM layer Second LSTM layer patterns embedded in time series. x 1 LSTM cell LSTM cell LSTM cell Third LSTM cell LSTM layer
	Figure 4-6: Proposed LSTM architecture for RUL estimation
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	.1: C-MAPSS sub-datasets	
	Sub-datasets	FD001 FD002 FD003 FD004
	Training sequences	100	260	100	249
	Testing sequences	100	259	100	248
	Operating conditions	1	6	1	6
	Fault conditions	1	2	2	2
	This dataset is divided into four cases (or sub-datasets), where each case includes
	several run-to-failure sequences (or trajectories) for training and for testing. The first
	and third sub-datasets (FD001 and FD003) are generated under one operating con-
	dition, FD001 includes one type of fault, while FD003 includes two fault types. The

  An early stopping criterion is applied in order to stop the training of the network. The training is stopped when the validation error is not decreasing within 10 epochs (iterations). 5-fold cross validation is applied for each model in order to choose the best hyperparameters (mini-batch size 𝐵𝑠, learning rate 𝑙𝑟, filters number 𝐹 for CNN, and number of hidden units 𝐿 in LSTM). Table4.3 presents the average RMSE errors of the cross validation for the FD001 and FD003, while Table4.4 presents the average RMSE errors of the cross validation for the FD002 and FD004 (when having multiple operating condition modes). The selected hyperparameters for each subdataset according to the average errors can be seen in bold font.
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	0														
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			Test units sorted by increasing RULs							Test units sorted by increasing RULs
	(a) Predicted RUL of test units in FD001		(b) Predicted RUL for test unit #60
			Figure 4-14: Predicted RUL for the test unit #60 in FD001
	Table 4.6: Performance comparison with the related works on C-MAPSS dataset
	(without applying rectification on the test set)	
		Method				Year	RUL constant on train set	RUL constant on test set	FD001 RMSE Score RMSE Score RMSE FD003 FD002 Score	FD004 RMSE Score
	SVM (Louen et al. 2013)		2013		Not applied	Not applied	29.82	-	-	-	-	-	-	-
	MLP (Lim et al. 2016)		2016		N/A	Not applied	15.15	-	-	-	-	-	-	-
	CNN (Babu et al. 2016)		2016		130		Not applied	18.44 1286.70 19.81 1596.20 30.29	13570	29.15	7886.4
	LSTM (S. Zheng et al. 2017)		2017		130		Not applied	16.14	338	16.18	852	24.49	4450	28.17	5550
	LSTM (Hsu et al. 2018) Table 4.3: Hyperparameters selection for FD001 and FD003 2018 N/A Not applied 16.73 388.68 18.06 822.19 29.43 10654 BLSTM (J. Zhang et al. 2018) 2018 130 Not applied 15.42 -----	28.39 -	6370 -
	ELM (C. Zheng et al. 2018)		2018		125		Not applied	13.78	267.31	-	-	-	-	-	-
	CNN hyperparameters CNN (X. Li et al. 2018) Stacking ensemble (Singh et al. 2019) 2019 2018 Hybrid CNN-BLSTM (Xia et al. 2020) 2020		FD001 FD003 125 Not applied RMSE RMSE N/A Not applied 130 Not applied	13.32 16.67 12.66	LSTM hyperparameters -14.02 --18.44 -304.29 --	24.86 25.57 -	-FD001 FD003 29.44 --26.76 -RMSE RMSE ---
	Bs(512)F(32,32,32)lr(0.0001) 14.80 13.69 Bs(512)F(64,64,64)lr(0.0001) 14.72 14.40 Ensemble CNN-LSTM (proposed approach) 2020 125 Not applied	Bs(512)L(32,32,32)lr(0.0001) Bs(512)L(64,64,64)lr(0.0001) 12.61 218.68 13.17 244.28 27.44 11061.08 30.18 7418.26 50.75 48.87 23.92 17.66
	Bs(512)F(64,64,64)lr(0.01)		16.10	16.75 Bs(512)L(32,32,32)lr(0.01) 13.82 13.67
	Bs(512)F(32,32,32)lr(0.01)		16.43	16.88		Bs(512)L(64,64,64)lr(0.01)	41.85	41.62
	Bs(128)F(64,64,64)lr(0.0001)	14.78	13.73	Bs(128)L(32,32,32)lr(0.0001)	15.88	15.11
	Bs(128)F(64,64,64)lr(0.01)		17.52	19.17		Bs(128)L(32,32,32)lr(0.01)	21.15	15.15
			Table 4.4: Hyperparameters selection for FD002 and FD004
			CNN					FD002 FD004				LSTM	FD002 FD004
		hyperparameters			RMSE RMSE			hyperparameters	RMSE RMSE
	Bs(512)F(16,16,16)lr(0.001)		23.03		24.86		Bs(512)F(16,16,16)lr(0.001)	18.04	18.86
	Bs(512)F(16,16,16)lr(0.0001)		18.40		23.51	Bs(512)F(16,16,16)lr(0.0001)	41.52	40.39
	Bs(128)F(16,16,16)lr(0.001)		23.64		25.11 Bs(128)F(16,16,16)lr(0.001) 17.81 18.68
	Bs(128)F(16,16,16)lr(0.0001) 18.27 22.91	Bs(128)F(16,16,16)lr(0.0001)	17.85	19.05
	Bs(128)F(32,32,32)lr(0.0001)		21.18		24.44		Bs(128)F(32,32,32)lr(0.001)	19.14	19.85
	Bs(128)F(64,64,64)lr(0.0001)		21.13		24.37		Bs(128)F(64,64,64)lr(0.001)	19.47	22.28

Since neural networks learning is non convex, the models with the selected hyperparameters are trained 10 times, and the best models according to the validation are selected, in this step, the training set is divided randomly 90% for training and 10%
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.7 compares the obtained results by applying the same conditions. The difference between the target RUL with and without rectification is shown in Figure

126

4-13.

Table 4 .

 4 7: Performance comparison with the related works on C-MAPSS dataset (with applying rectification on the test set) From Table 4.7, it can be observed that the proposed deep ensemble approach outperforms the other methods. In MS-DCNN (Han Li et al. 2020), a multi-scale deep CNN is applied which uses an ensemble of CNN models with different time window lengths. Our proposed approach has shown better performance than MS-DCNN and other methods, due to combining models with different properties. This

	Method	Year	RUL constant on train set	RUL constant on test set	FD001 RMSE Score RMSE Score RMSE Score RMSE FD003 FD002 FD004 Score
	BLSTM (J. Wang et al. 2018)	2018	125	125	13.65	295	13.74	317	23.18	4130	24.86	5430
	CNN (X. Li et al. 2018)	2018	125	125	12.61	273.7	12.64	284.1	22.36	10412	23.31	12466
	BHLSTM (Elsheikh et al. 2019)	2019	130	130	-	376.64	-	1422	-	-	-	-
	Hybrid CNN-LSTM (Al-Dulaimi et al. 2019) 2019	125	125	13.017	245	12.22	287.72	15.24 1282.42 18.156 1527.42
	MS-DCNN (Han Li et al. 2020)	2020	125	125	11.44	196.22	11.67	241.89	19.35	3747	22.22	4844
	Ensemble CNN-LSTM (proposed approach)	2020	125	125	10.74 176.36 11.48 206.53 14.23 984.34 18.05 1478.70

is due to the fact that CNN can automatically extract relevant features, and LSTM memorizes long term dependency between the data points. The proposed approach is more efficient for RUL estimation than the hybrid CNN-LSTM (Al-Dulaimi et al. 2019), because it shows better accuracy due to the decision fusion. Comparing to the hybrid CNN-LSTM that predicts only one RUL, our proposed approach is more reliable because two RULs are predicted with two different models. Finally, the predicted RULs are merged in order to obtain the final RUL.

Table 4 .

 4 12: Cross validation results using different hyperparameters setting Kingma et al. 2014) is used for training the two models CNN and LSTM. An early stopping criterion is used in order to stop the training

	CNN hyperparameters	MAE	LSTM hyperparameters	MAE
	Bs(128)F(32,32,32)lr(0.001)	14.16	Bs(128)F(32,32,32)lr(0.001)	14.61
	Bs(128)F(128,128,128)lr(0.001) 14.55	Bs(128)F(64,64,64)lr(0.001)	13.16
	Bs(512)F(32,32,32)lr(0.01) 12.78	Bs(128)F(128,128,128)lr(0.01)	48.54
	Bs(512)F(32,32,32)lr(0.001)	16.43 Bs(128)F(128,128,128)lr(0.001) 11.78
	Bs(512)F(64,64,64)lr(0.001)	18.66	Bs(512)F(128,128,128)lr(0.01)	46.20
	Bs(512)F(128,128,128)lr(0.001) 17.70	Bs(512)F(128,128,128)lr(0.001)	16.34
	Adam optimizer algorithm (			

Table 4 .

 4 Table 4.12 shows the MAE errors of RUL prediction with different combinations of hyperparameters induced by the cross validation technique. The varied hyperparameters are mini-batch size 𝐵𝑠, learning rate 𝑙𝑟, filters number 𝐹 for CNN, and hidden units number 𝐿 in LSTM. The best hyperparameters combination according to the RUL prediction error are shown in the table with bold font. Table 4.13: Prediction errors using CNN, LSTM, and ensemble 13 shows the RUL prediction errors MAE for the testing sequences. It

	Model	MAE
	CNN	6.98
	LSTM	6.32
	Ensemble CNN-LSTM 6.19
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RUL estimation using the informed path

When few run-to-failure sequences are stored offline, the HI-model pairs are selected offline by computing the RUL accuracy using different combinations HI-model. The tested HIs are the features defined in the feature library. The used models are the widely used extrapolation based models for bearing degradation modelling: Model 1 : GLM [START_REF] Abid | Adaptive Machine Learning Approach for Fault Prognostics based on Normal Conditions-Application to Shaft Bearings of Wind Turbine[END_REF], Model 2 : quadratic regression [START_REF] Ahmad | A hybrid prognostics technique for rolling element bearings using adaptive predictive models[END_REF], Model 3 : exponential model [START_REF] Gebraeel | Residual life predictions from vibration-based degradation signals: a neural network approach[END_REF], and Model 4 : double exponential model [START_REF] Jin | Anomaly detection and fault prognosis for bearings[END_REF]L. Guo et al. 2017). The accuracy defined in Eq. (3.8), (3.9), (3.10), and (3.11) is calculated for each HI-model pairs, then the pairs with an accuracy greater than a threshold are selected. The threshold selected is the overall accuracy of the blind path in order to choose HI-model pairs that yield RUL accuracy greater than the blind path accuracy (0.662). Thus, all the HI-model pairs greater than 0.662 are selected.

The corresponding weight for each HI-model combination is calculated using Eq.

(3.13). An example of the computed accuracies offline using different models and different HIs is presented in Table 3.7, where the bold numbers represent the accuracies greater than the threshold (0.622). When the error of prediction is very high, the CRA accuracy (see Eq. (3.9)) value becomes negative. Hence, the accuracies with negative values are substituted by zero. From Table 3.7, it can be seen that Chapter 4

Prognostic approach with multiple a priori degradation sequences

Introduction

As we have seen in chapter 3, when there is no or few insufficient a priori run-to-failure degradation sequences, the blind and the informed paths, respectively, are triggered for the RUL estimation. In this case, the RUL is predicted in an indirect way, where the HI is computed and extrapolated until reaching the failure threshold. The indirect RUL estimation is efficient when there is insufficient a priori run-to-failure sequences.

On the other hand, when an important number of a priori sequences are available, employing direct RUL estimation is suitable for efficient RUL estimation. Direct RUL estimation has several advantages. Firstly, it is not necessary to understand the operation of the system and its different operating modes, most of the datadriven techniques applied to the direct RUL estimation (e.g., ANN) can handle the variation of the operating modes in complex dynamic systems. Secondly, it is not necessary to extract and select features in order to build a suitable health indicator for extrapolation, the direct RUL estimation way maps the raw data collected from sensors directly to the RUL. Finally, it is not necessary to predefine a failure threshold for the RUL estimation, knowing that defining a failure threshold is challenging and requires domain expertise. 

RUL estimation using long short term memory

Long short term memory is an advanced type of recurrent neural network [START_REF] Hochreiter | Long short-term memory[END_REF] The separated CNN and LSTM show a good RUL accuracy (RMSE and Score), while the ensemble of CNN and LSTM reveals better accuracy than each separated model. Figure 4-12 shows examples of predicted RUL for each subdataset, the sequences are taken from the validation data. The x-axis is the running time while the y-axis is the RUL values. The blue line represents the rectified true RUL while the red line represents the predicted RUL, it can be seen that the RUL prediction is more accurate with time and becomes more precise near the failure. The figure also shows that the RUL is well predicted even when there are different operating condition modes in FD002 and FD004.

The RUL prediction results of the testing engine units for each subdataset are presented in Figure 4-13. The true RULs of the testing units are sorted from small to large in order to enhance the results visualization.

The x-axis represents the testing units, while the y-axis represents the RUL value for each unit. It can be observed that the RUL prediction is more accurate when the engine is near to failure (when the true RUL is small), this is because the degradation is in a significant level and the information about the degradation can be seen in the collected data. Hence, our method is able to capture this degradation level and predict the RUL with high accuracy. Figure 4-13c and 4-13d present a suitable RUL prediction accuracy even when there is a high variability of the operating condition modes (six operating condition modes). Therefore, the proposed approach has proven its efficiency to capture the variability of the different operating condition modes.

The efficiency of the ensemble deep method is shown in Figure 4-14. RUL prediction examples for the validation sequences using the proposed approach using each separated model CNN and LSTM is far from the true RUL. However, the proposed deep ensemble method shows a better RUL prediction closer to the true RUL, this is performed thanks to the proposed fusion method where the predicted RULs using each model are aggregated by using the weighted mean.

The performance of our proposed approach is compared with the state-of-theart prognostics approaches applied to the C-MAPSS dataset. Table 4.6 summarizes the latest research results sorted in the ascending order of publication year. The comparison is made in the same conditions, the rectified RUL is applied for the training set, and not in the testing set (𝑁/𝐴 refers to the not available information).

The rectification is not applied for the test units means that the predicted RUL is compared with the dashed line in Figure 4-13. From Table 4.6, it can be seen that However the other works have a slightly better performance for FD002 and FD004, this is because we applied a rectification on the training set (RUL constant = 125), but this rectification is not applied for the test set. There is a slight difference be- The dataset is composed of the time index, the flow rate of the liquid, the pressure before the filter (upstream pressure), and the pressure after the filter (downstream pressure), the measurements are acquired at a frequency of 10Hz. The failure threshold is set by computing the pressure drop, which is equal to upstream pressure - The objective of this application example is to compute the RUL from the starting of the experiment (sequence). The RUL should be predicted every 1 second (every 10 samples), and the Mean Absolute Error (MAE) is used for the evaluation of the predicted RUL (given as metric by the data challenge), which is computed as follow:

where 𝑡 is the time index, and 𝑛 𝑡 is the time of failure (end of the sequences).

𝑟𝑢𝑙(𝑡) is the predicted RUL and 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙 is the true RUL.

Results and discussion

In the offline phase, the collected data from sensors are preprocessed before starting the training. An example of the collected raw data is presented in Figure 4-17. The figure presents the data collected from an experiment with small particles size and concentration number 1 (solid ratio = 0.4%). The collected data is a run-to-failure sequence from the healthy state until the clogging of the filter.

The collected data are sub-sampled by computing the mean for each 10 samples (1 second) in order to obtain 1 sample for each second. This permits to compute a large sliding window with few points. For example, a 10 seconds window contains

The selected inputs are then normalized using the z-score normalization (see equation 4.1), which are next reshaped using a sliding time window, as shown in Figure 4-2.

The true RUL (output) is also computed for the training set, which is inversely proportional to the running time.

The goal is to predict the RUL as soon as possible from the start of the experiment (sequence). Hence, the time window length should be small and contains sufficient information for prediction. Figure 4-20 represents a zoom on the pressure drop feature in order to observe the beginning of the degradation. The window length should be small in order to start the RUL prediction as soon as possible and not large in order to avoid prediction delay. As it can be seen in Figure 4-20, the drop pressure feature is constant in the beginning for about 30 seconds, choosing a window smaller than 30 seconds is not useful because the predicted RUL will not be accurate (no variation on the features), and choosing a time window larger than 30 seconds will add a delay for starting the prediction. Hence the optimal time window length for this experiment is 30 seconds and it is chosen for the RUL estimation. Since the reliability of prediction is necessary for the critical industrial systems, the proposed deep ensemble approach can enhance the RUL prediction reliability by fusing the prediction of two different models. The proposed approach has also shown its ability to capture the variability of the different operating condition modes when it is evaluated using the C-MAPSS experimentation (complex dynamic system with Chapter 5

General conclusion

Summary of the thesis

System failures can lead to high economic losses for industrial companies due to reparation and downtime costs. Hence, it is necessary to apply an optimal maintenance strategy that can increase the reliability and availability of the industrial systems while reducing the maintenance costs. The maintenance strategy evolved from corrective, preventive, to predictive maintenance strategy (PHM strategy). The predictive maintenance strategy is efficient since it can overcome the limits of the two other strategies by triggering maintenance actions depending on the health conditions of the system. Generally, the pipeline of the PHM strategy includes five steps: data acquisition, data processing, fault diagnostics, fault prognostics, and decision support (health management). Fault prognostics is one of the main steps for achieving PHM strategy, it aims to estimate the Remaining Useful Life (RUL) before failure. It can help to plan the maintenance actions in advance before failure occurrence in order to avoid systems downtime and reduce the revenue losses.

Fault prognostics can be achieved using experience based (reliability and similarity), model based, or data-driven approaches. The latter present the best trade-off in terms of precision, implementation, and cost. Fault prognostics based on data-driven approaches requires sufficient historical degradation sequences covering all degradation dynamic evolution and conditions in order to construct a model that can achieve to switch from informed path to deep path when there is sufficient number of degradation sequences in order to cover all the degradation dynamic evolution and conditions, as illustrated in Figure 5-1. The switching criterion can be based on the RUL prediction accuracy of each path on the available offline sequences. Also, it is intended to investigate the use of both paths (informed and deep) in parallel and merging their predicted RULs in order to obtain a better, precise, and reliable RUL. • Failure threshold and confidence interval. In this manuscript, failure threshold setting and confidence interval estimation were not investigated. In order to predict the RUL when no and few historical degradation sequences are available, it is necessary to set a failure threshold. In the blind path, the solution is to set the threshold according to human expert or feedback from other similar systems since no a priori sequences are available for automatically select the threshold. On the other hand, the threshold can be set in the informed path automatically using the few available a priori sequences. A confidence interval should be given for the predicted RUL, because it is difficult to estimate the RUL with complete precision due to multiple uncertainty sources that influence the prediction. According to [START_REF] Sankararaman | Why is the remaining useful life prediction uncertain[END_REF], different sources of uncertainty should be considered: present uncertainty (the estimation of the present system conditions should be precise), future uncertainty (the future