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Chapter 1

General introduction

1.1 Context and motivations

Major economic losses in industrial companies in different domains (e.g., energy, man-

ufacturing and automobile, transportation, etc.) are due to repairing and downtime

costs that result from unforeseen equipment failure. Repairing costs for nuclear plants

can exceed 600 million$ without including lost revenues due to the downtime (J. B.

Coble 2010a). System downtime can also lead to huge economic losses, an unexpected

one day stoppage of production in industry may cost up to 100,000 e for coal power

station and chemical factory, 200,000 e for Pulp and Paper, and can reach up to

300,000 e for nuclear plant (Helle 2006), as shown in Figure 1-1.

Figure 1-1: Economical losses for one day stoppage in industry (Helle 2006)
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Traditional maintenance strategies include two categories: corrective and preven-

tive maintenance. Corrective maintenance aims to repair the system only when a

failure has occurred. The process of the corrective maintenance strategy has the ad-

vantage to avoid any unnecessary maintenance actions by only repairing the failed

component. However, it is very costly because of the fault consequences on the sys-

tem safety, availability and reliability. On the other hand, preventive maintenance

aims to schedule periodic inspections of the system in order to prevent failures and

their consequences. Its cost is very high because the replacement of critical compo-

nents is scheduled in period interval regardless of the current health conditions. An

alternative to those traditional maintenance strategies is the predictive maintenance.

Prognostics and health management (PHM) is an advanced maintenance strategy

that can overcome the limits of traditional maintenance strategies. PHM permits to

monitor the health conditions of the system and trigger the maintenance actions only

when needed. It is a cost-effective strategy comparing to the traditional strategies

since it can reduce the repairing costs of the corrective maintenance as well as the

costs of periodic inspections generated by the preventive maintenance. Generally,

the pipeline of the PHM strategy includes five steps: data acquisition, data process-

ing, fault diagnostics, fault prognostics, and decision support (health management).

Fault prognostics is one of the main steps for achieving PHM strategy, which aims

to estimate the Remaining Useful Life (RUL) before failure. It can help to plan the

maintenance actions in advance before failure occurrence in order to avoid systems

downtime and reduce the revenue losses.

1.2 Objectives and contributions

Fault prognostics based on data-driven approaches is efficient, especially when no

physical or mathematical model about the operation of the system is available, or

when it is challenging to build a physical model where several components are in in-

teraction. Fault prognostics based on data-driven approaches require several historical

degradation sequences in order to construct a model that can achieve a desirable RUL

22



estimation accuracy. Different approaches are proposed in the literature for RUL es-

timation when several historical degradation sequences are available (Medjaher et al.

2012; Soualhi et al. 2014; X. Li et al. 2018; Heimes 2008). However, in industrial

systems, these historical sequences are often unavailable (e.g., new machines) or in-

sufficient (i.e., few available sequences that do not cover all the degradation evolution

dynamics or conditions). In order to overcome this main challenge, three data-driven

approaches are proposed for RUL estimation when no degradation sequences, few

sequences, and multiple sequences are available a priori, as it is shown in Figure 1-2.

Blind path

Informed path

Deep path

Predicted RUL

No	historical	degradation
sequences	are	available

Few	historical	degradation
sequences	are	available

Several	historical	degradation
sequences	are	available

Figure 1-2: Three proposed approach for fault prognostics according to the available
degradation sequences

The general proposed approach includes three RUL estimation paths: blind, in-

formed, and deep paths depending on the number of available degradation sequences.

The blind path is triggered when no a priori sequences are available, it aims to esti-

mate the RUL using an adaptive model where the prediction becomes more accurate

over time with the arrival of new incoming degradation data. The informed path is

triggered when one or more a priori sequences are available, the RUL is estimated

using several adaptive models, and the more the number of a priori sequences is in-

creasing the more the RUL estimation is accurate and reliable. The deep path is used

when multiple a priori sequences are available, where the RUL estimation is more

efficient and accurate compared with the other paths. More details about these paths

are provided in the next section.
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1.3 Manuscript organization

The thesis manuscript is organized as follows:

Chapter 2 - State of the art of fault prognostics for the predictive main-

tenance. This chapter presents a review about the state of the art techniques used

for the prognostics and health management strategy pipeline, especially the prognos-

tics step. First, the evolution of the maintenance strategies is shown from corrective,

preventive, until predictive maintenance. Then, the pipeline of the PHM strategy is

presented, including Health Indicator (HI) construction, degradation detection, and

RUL estimation. The different techniques for constructing the HI are described as

well as the metrics able to select the best one automatically. Thereafter, the degra-

dation detection methods are presented, and classified according to how they detect

a degradation: it can be detected using normal and faulty data about the system

operation or using only normal data. Finally, the RUL estimation approaches are de-

scribed, and their performances are compared in order to justify the use of data-driven

approaches. The chapter focuses on the latter category of approaches in order to es-

timate the RUL.. The chapter ends with a discussion about the previously described

techniques that permit to achieve fault prognostics efficiently.

Chapter 3 - Prognostic approach with insufficient a priori degradation

sequences. This chapter presents the data-driven based approach for achieving

fault prognostics when there is insufficient (no or too few) historical degradation se-

quences. First, the HI library is defined, then the degradation is detected using only

normal data of the system operation by applying a One Class Support Vector Ma-

chine (OCSVM). When the degradation is detected, the blind path or the informed

path is triggered depending on the availability of a priori sequences. The blind path

is triggered when no a priori sequences are available, where the HI is selected dynam-

ically at each time cycle, and an adaptive model is used for the HI extrapolation until

failure. The informed path is triggered when some a priori sequences are available (at

least one sequence is available). It aims at predicting RULs using different adaptive

HI-model pairs, where the final RUL is deduced by fusing the computed RULs. This
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proposed approach is validated using vibration data collected from a real degraded

bearing of a wind turbine high speed shaft, vibration data generated from a degraded

bearing with inner and outer race fault, and sensors data collected from a degraded

aircraft engine (C-MAPSS dataset).

Chapter 4 - Prognostic approach with multiple a priori degradation

sequences. This chapter presents a data-driven based approach for achieving fault

prognostics when several historical degradation sequences are available. The proposed

approach is based on a deep ensemble method by combining the RUL estimation of two

deep learning models that have proven their effectiveness for fault prognostics, named

Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). CNN

architecture can automatically extract relevant information (features) by applying

several convolution filters on the raw data, while the LSTM has the ability to capture

the sequential information in time series data. Two RULs are predicted with each

model, where the final RUL is obtained by fusing the predicted RULs. The proposed

deep ensemble approach for RUL estimation is validated using a filter clogging dataset

available for the PHM Europe data challenge, and C-MAPSS dataset. It achieved

promising performance compared with the state-of-the-art results.

Chapter 5 - General conclusion. This chapter summarizes the proposed con-

tributions, then presents the open issues and future directions in order to improve

the proposed fault prognostics approaches.
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Chapter 2

State of the art of fault prognostics

for the predictive maintenance

2.1 Introduction

Operation reliability and availability of industrial systems influence on the profit

generation and competitiveness of industrial companies. With the upgrade of the

production equipment and automation level, industrial companies have experienced

a steady increase in maintenance costs. This implies the importance of applying a

cost-effective maintenance strategy that can maintain the reliability and availability

while reducing downtime and production loss costs of machinery, process, and other

production means of industrial systems.

In this chapter, the different maintenance strategies are described. Then, the

pipeline of the prognostics and health management strategy is presented, and its

different steps required to perform fault prognostics are investigated. The main fault

prognostic steps include health indicator construction, degradation detection, and

remaining useful life estimation. The chapter ends with a discussion highlighting the

advantages of the suitable techniques that can be used for our work in the next.
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2.2 Maintenance strategy evolution

In order to plan maintenance actions, three basic maintenance strategies can be de-

fined: corrective maintenance, preventive maintenance, and condition based mainte-

nance. The application of these strategies evolved with time in order to reduce the

lifecycle costs of systems (Kim et al. 2016).

Corrective
maintenance

Preventive
maintenance

Condition based
maintenance

Evolution of maintenance strategy

D
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Inspect and repair
after breakdown
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predetermined

intervals Inspect and repair
only when needed

Figure 2-1: Evolution of maintenance strategy

Figure 2-1 presents the evolution of maintenance strategy in order to reduce the

downtime costs. The maintenance strategy evolved from corrective maintenance and

preventive maintenance to the condition based maintenance or predictive mainte-

nance. The principle of the corrective maintenance strategy is to run the system

until it fails (breaks), the preventive maintenance schedules inspections of the system

in predetermined intervals, while the condition based maintenance helps to monitor

the system in real time and recommends maintenance actions only when needed. The

three strategies are detailed next.

2.2.1 Corrective maintenance

Corrective maintenance, also called breakdown, reactive, or unplanned maintenance,

is the earliest used maintenance strategy. There are no routine maintenance tasks to

perform, and it aims to repair the system only when the useful life of the system is
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consumed (after failure occurrence). Corrective maintenance is suitable when equip-

ment shutdowns do not affect product quality or revenue generation, or when repair

and downtime time costs are within an acceptable range. However, this strategy takes

the longest time to start repairing actions, especially when replacement parts are not

available because there is no time to prepare the maintenance actions in advance (be-

fore failure). This strategy leads to a high costs because downtime events are often

unplanned, more frequent, and longer in duration.

2.2.2 Preventive maintenance

Preventive maintenance, also called time-based maintenance or planned maintenance,

aims to schedule periodic inspections of the system in order to prevent failures and

their consequences. In this strategy, key elements have a prescheduled replacement

interval, regardless the current health conditions. It is a cost-effective strategy if all

parts are expected to fail in the same time, which is often not the case in real sys-

tems. The maintenance costs increase in this strategy because it replaces all parts

even if many of them may not need to be replaced. Moreover, the scheduled in-

spection requires intrusion on equipment which increases the downtime costs. While

this approach can help to reduce system failure and increase the residual life, the

process is labor-intensive, the inspection requires to downtime the system, and the

inspection is time-dependent regardless the condition of the system which increases

the maintenance cost.

2.2.3 Condition based maintenance

With the development of technology, modern industrial systems became more com-

plex entailing to increase their potential to fail. Therefore, their maintenance costs,

especially preventive maintenance, become very expensive. In order to reduce main-

tenance costs while maintaining system reliability and safety, condition based main-

tenance became a promising solution for industrial systems.

The condition based maintenance (CBM), also called condition directed mainte-
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nance or predictive maintenance, which is applied to overcome the limits of preventive

maintenance. While the preventive maintenance is time dependant regardless of the

system health conditions, the CBM is dependent on the current health conditions of

the system. CBM permits to take actions by repairing or replacing the degraded parts

before product quality is reduced to unaccepted levels or failures occurred. Even if

CBM requires investment costs in order to implement, operate, and maintain, those

costs remain lower than ones generated by production losses due to downtime (Niu

2017). The predictive maintenance is efficient when the degradation dynamics of the

system is known (not random) and evolves with time, and when measurable param-

eters about the system conditions are available (collected by sensors). Moreover, the

CBM is not intrusive on the system’s components and does not require system down-

time for inspection since the inspection actions are triggered only when degradation

is detected.

2.3 Prognostics and health management strategy

In the literature, more and more works are investigating the Prognostics and Health

Management (PHM) strategy, which is a strategy that can help to achieve the condi-

tion based maintenance (predictive maintenance). PHM can enhance the predictive

maintenance by evaluating the current health state of the system, detect and diag-

nose the incipient fault, and determine how long from now a failure will happen in a

system given the current operating conditions (Das et al. 2012).

PHM is a strategy that focuses more on incipient fault detection, current health

assessment and remaining useful life prediction (Lee et al. 2014). PHM strategy

is applied for several goals: predicting failure in advance, minimizing the number

of unscheduled maintenance, increasing the availability of the system, reducing the

maintenance costs by decreasing the inspection costs, decreasing downtime costs, and

optimizing the maintenance actions. According to Jardine et al. (2006), PHM pro-

gram consists of three main steps including data acquisition step in order to collect

relevant data for the system health monitoring, data processing step where the col-
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lected data are analyzed by using advanced methods for achieving fault diagnosis and

prognosis, and the maintenance decision making step in order to recommend optimal

maintenance actions. Callan et al. (2006) proposed a PHM architecture with five

steps: Data Manipulation, Condition Monitoring, Health Assessment, Prognostics,

and automatic decision reasoning. Four main steps for PHM strategy is presented by

(Kim et al. 2016) including data acquisition step (collect condition monitoring data

and extract features), diagnostics step (what is the fault and how severe is it?), prog-

nostics step (what is the remaining useful life?), and finally health management step

(optimal management on maintenance and logistics). To sum up, Figure 2-2 shows

the main steps to perform PHM strategy.

Data acquisition Data processing Diagnostics Prognostics Decision support

Investigated PHM steps

PHM strategy pipeline

Figure 2-2: Main steps of the PHM strategy

Data acquisition step is used to collect relevant data from sensors that are placed

on critical components, such as bearing in rotating machines that undergo slow degra-

dation, which enable performing the prognostics (estimating their RUL) that may

reduce their maintenance costs significantly. In the data processing step, the col-

lected data are analyzed in order to extract significant indicators (features) about the

system’s health evolution useful for the next steps. The diagnostics step permits to

achieve incipient fault detection, fault isolation or localization. Degradation detec-

tion triggers the prognostics step where the RUL is estimated. The final step is the

decision support step, and it uses the obtained information from the previous steps

(health state, root cause, and RUL) in addition to other information (e.g., priority,

logistics) in order to recommend the optimal maintenance actions. This thesis fo-

cuses on data processing, diagnostics and prognostics steps of the PHM strategy, in

particular prognostics, as it is illustrated in Figure 2-2 in the red rectangle.
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2.4 Health indicator construction

In order to detect an incipient fault (e.g., wear or crack) in its early stage and follow

its progress over time to be a failure, indicators characterizing the system’s, or one

of its components, health state, as well as its dynamic evolution over time, must

be built. To this end, it is necessary to apply condition monitoring by using data

collected from sensors. The collected data contains raw information about the system

health state. Hence, in general the collected data requires careful processing to build

a suitable, sensitive, health indicators.

The Health Indicator (HI) construction is one of the most important steps to

achieve prognostics. It can represent the system performance (e.g., produced energy

for a wind turbine), or it can represent the system operation conditions (e.g., temper-

ature, vibration, oil debris density). In general, the HI permits to follow the health

state of a component or a system over time. When the HI evolution starts increasing

(or decreasing) over time, a drift appears from nominal (normal) operating conditions

towards failure as illustrated in Figure 2-3.

0 20 40 60 80 100 120

Figure 2-3: Illustration of a HI evolution in the degradation occurrence

The HI should be sensitive to the degradation dynamics and can be built based

on the extraction and processing of one feature, or can be based on fusing multiple

features extracted from the monitoring signals. The HI based on a single feature can

be constructed using the collected raw measurements, generated residuals between

32



nominal and incoming measurements, or signal processing techniques such as time,

frequency, or time-frequency domain signal processing. The second category is based

on a fusion of multiple features by merging different HIs in the aim to exploit their

diversity (Abid et al. 2018; Y. Lei et al. 2018). This merge can be achieved based on

dimension reduction (e.g., principal component analysis), based on a distance from

the normal or faulty class (e.g., Euclidean and Mahalanobis distance), or it can be

based on the fusion using regression techniques (e.g., support vector regression or

artificial neural network). However, this kind of HIs loses physics meaning as well as

their interpretability. The two categories are detailed in the next. Figure 2-4 shows

the classification of the different HI construction methods.

Health Indicator (HI)

HI based on single 
feature

Raw
measurement

based HI
Residual 
based HI

HI based on multiple
features

Signal
processing
based HI

Dimension
reduction
based HI

Distance
based HI

Regression
based HI

Figure 2-4: Classification of HI construction techniques

2.4.1 Health indicator based on a single feature

In this category, the health state of the system is monitored using only one HI (i.e., one

feature). This feature could be chosen manually by a human expert or automatically

by using HI selection criteria proposed in the literature. The HI based on a single

feature can be based on raw measurements, residuals, or signal processing techniques.

Raw measurement based HI

The HI can be based on collected raw measurement from the monitored system or

component. For instance, in (Dupuis 2010), the HI is constructed using the full signal

of oil debris monitoring located on wind turbine gearbox, which is sensitive to bearing
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spall. J. Zhu et al. (2013) used the viscosity and dielectric raw signals as HI in order

to monitor the lubrication oil degradation of the wind turbine gearbox.

Residual based HI

The HI based on a residual is computed as the deviation between the current new

measurement and the nominal operation conditions of the system. In the work of

Uluyol et al. (2011), a residual is computed between the current generated power

and the power curve given by the manufacturer of wind turbines. The residual is

calculated in order to predict the health state of the system based on its performance.

A residual between a nominal reference temperature and the measured temperature

of wind turbine bearing is computed in (Bangalore et al. 2015), while the nominal

(reference) temperature is predicted using artificial neural network (ANN).

Signal processing based HI

It is necessary to use signal processing techniques to deal with high sampling frequency

signal (e.g., vibration signals), because it is difficult to clearly observe the degradation

start as well as its evolution, due to the variation in operating conditions and the effect

of noise.

In the literature, most of the prognostic works construct the HI using signal pro-

cessing techniques (time, frequency, and time-frequency domain features). In general,

they apply traditional time domain techniques such as Root Mean Square (RMS), kur-

tosis, skewness, peak value, shape factor, crest factor, impulse factor...etc. RMS is

widely used as HI for health monitoring (Y. Li et al. 1999; Y. Lei et al. 2016a; Ahmad

et al. 2017). In (Y. Lei et al. 2016a), RMS is computed using vibrations signal in

order to monitor the health state of bearings and estimate the remaining useful life.

The RMS value is also computed in (Ahmad et al. 2017) in order to estimate the

RUL of bearings, where the RMS has shown a trend that can be used to characterize

different health states of a bearing (normal, incipient, and severe stages). In the work

of Saidi et al. (2017), the kurtosis is used to monitor the degradation of a high speed

shaft bearing of a wind turbine. This HI is computed from 50 days run-to-failure vi-
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bration measurements (see Figure 2-5). This figure shows an increasing trend of the

HI over time due to the degradation severity evolution. Javed et al. (2014) proposed

new features based on trigonometric functions computed from the vibration signals,

then cumulative transformation is performed to enhance the trend of the degradation

evolution.

50 - days of vibration measurements

Figure 2-5: HI based on a single feature (Saidi et al. 2017)

Frequency domain techniques are efficient for HI construction from vibration sig-

nals in order to detect degradations and predict the RUL of mechanical components

(e.g. bearings). Fast Fourier Transform (FFT) is widely used for feature extraction

on vibration signals. FFT decomposes the vibration signal into its spectrum, which

contains frequency components and their amplitudes. FFT is used in (Liao 2013) for

features extraction in order to predict the RUL of a spindle test-bed machine and

rolling bearing. Z. Zhang et al. (2013) transformed the pre-processed vibration sig-

nals into frequency domain signals using FFT for HIs construction, where the latter

are used as input for ANN in order to achieve fault diagnosis and prognosis.

Spectral Kurtosis (SK) has also proven its effectiveness for HI construction in

order to perform fault detection and prognosis of bearings using vibration signals (J.

Tian et al. 2015; Saidi et al. 2017). SK is the kurtosis of the spectral components,

it can detect impulsive bearing signatures. J. Tian et al. (2015) applied SK for fault

detection of motor bearing, while it is applied in (Saidi et al. 2017) for fault detection

and prognosis of high speed shaft bearing of a wind turbine. In (Cheng et al. 2017),
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current signal is analysed to extract HI by using the Power Spectral Density (PSD)

of the current signal.

Some works use time-frequency techniques for HI construction, including Short

Time Fourier Transform (STFT), Wavelet Packet Decomposition (WPD), and Hilbert

Huang Transform (HHT). WPD is used for signal analysis, it aims to decompose the

frequency domain of the signal into several frequency subsets. In (Malhi et al. 2011),

RMS and peak values are computed on the wavelet coefficient and were chosen as HI

for the RUL estimation. Tobon-Mejia et al. (2012) and Z. Zhang et al. (2013) used

WPD for HI construction, where it is applied on vibration data of bearings for RUL

estimation. HHT can decompose a signal into so-called Intrinsic Mode Functions

(IMF), where the IMF are used to compute the instantaneous frequency data. It is

applied in (Soualhi et al. 2014; Hui Li et al. 2010) to extract time-frequency HIs,

where the computed HIs are used for fault detection, diagnosis and prognosis.

2.4.2 Health indicator based on multiple features

In some cases where the degradation dynamic evolution is complex (different oper-

ating conditions, noises etc.), it can be useful to build a HI issued from the com-

bination of several features in order to exploit their diversity and complementarity.

This combination can be obtained using different techniques such as dimension re-

duction, Distance-based, or regression techniques. However, this fusion entails the

loss of physics meaning (loss of interpretability). This fusion is mainly used for fault

detection and diagnosis (Toubakh et al. 2016; Soualhi et al. 2014), as well as in some

works for fault prognostics (Benkedjouh et al. 2013; Chammas et al. 2015).

Dimension reduction based HI

These techniques can merge several features into one HI by using dimension reduc-

tion techniques such as Principal Component Analysis (PCA) or Isometric Mapping

(ISOMAP). Benkedjouh et al. (2013) extracted eight features from a vibration signal

using WPD. Each feature represents the level of energy at each level of decomposition.
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These features are then merged in order to construct one HI, as illustrated in Fig-

ure 2-6. This fusion is achieved by using a nonlinear dimension reduction techniques

called ISOMAP (Tenenbaum et al. 2000). The computed HI is then used for health

monitoring and fault prognostic of bearings. Le Son et al. (2013) applied PCA in

order to construct a HI named degradation indicator based on the first component of

the PCA. The computed HI is used for RUL estimation of turbofan engine (Saxena

et al. 2008b).

(a) Extracted features using WPD (b) HI construction based on features
fusion

Figure 2-6: HI construction example based on multiple features (Benkedjouh et al.
2013)

Distance based HI

Some other works construct the HI by computing a distance between the evolving

class (new incoming measures) and the normal class in a features space. Chammas et

al. (2015) constructed a HI named severity indicator using two features, the computed

HI represents how far the evolving class is from the normal class and how close it is

getting to a failure class by using Kullback-Leibler (KL) divergence. The HI is then

used for the prognosis of fault in a tank system (leak in the tank). In (Boškoski

et al. 2015), a distance is computed between wavelet coefficient of fault free bearing

and faulty bearing using Jensen-Rényi divergence, which measures the dissimilarities

between probability distribution functions. In (Toubakh et al. 2015; Toubakh et al.

2016), two drift indicators are computed by the use of the Euclidean distance and
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the Mahalanobis distance between normal and evolving classes. These two indicators

are considered as HIs and applied for fault detection in the pitch system and the

converter of a wind turbine.

Regression based HI

The goal of these techniques is to use regression models in order to map several

features (input) into one HI (output). For example, a new HI for bearing monitoring

is constructed using ANN in (Ali et al. 2015) in order to estimate the life percentage.

The latter is a HI that shows the evolution of the system health state towards the

failure, while the RMS, kurtosis, and RMS Entropy Estimator (RMSEE) are used as

input of the ANN model. L. Guo et al. (2017) applied a Recurrent Neural Network

(RNN) in order to merge six selected features and construct the HI, while the RNN are

used to map the features to the HI which is between 0 and 1, where 0 represents the

healthy state and 1 the faulty state of the component, the computed HI is employed

for the RUL estimation of a test bed bearings and a wind turbines generator bearings.

2.4.3 Health indicator selection

In order to achieve fault prognosis and obtain an accurate RUL estimation, it is

necessary to select the efficient HIs (features) to the evolution of degradation and

discard the irrelevant ones. An efficient HI is the one that can follow the evolution of

the degradation over time until failure, which means that it should be monotonically

correlated with the degradation process. For this reason, selection criteria or metrics

that can automatically select the most suitable HIs should be applied.

J. Coble et al. (2009) proposed three metrics in order to evaluate the HIs sensitive

to the degradation evolution and select the best one. The proposed metrics are:

"prognosability", "monotonicity", and "trendability". They are detailed in the next

subsections.
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Prognosability

Prognosability, also called consistency, or failure consistency is a metric that returns

a measure of the variance in the failure value of a population of degraded systems or

components. A wide spread in failure threshold can make it difficult to accurately

extrapolate a HI to the failure value. Prognosability measures the variability of the

different HIs’ values when the system is in failure. It is calculated as follows:

𝑃𝑟𝑜𝑔 = 𝑒𝑥𝑝(− 𝑠𝑡𝑑(𝑉 𝑒𝑛𝑑)

𝑚𝑒𝑎𝑛(|𝑉 𝑒𝑛𝑑− 𝑉 𝑠𝑡𝑎𝑟𝑡)|
) (2.1)

where 𝑉 𝑒𝑛𝑑 is the HIs’ values when the system is in failure, while 𝑉 𝑠𝑡𝑎𝑟𝑡 denotes

the HIs’ values when the degradation starts.

Monotonicity

The monotonicity evaluates the negative or positive trend of the HI, with the as-

sumption that the system cannot self-heal. Monotonicity is measured by the absolute

difference between the negative and positive derivative of HI, as indicated in the

following equation:

𝑀𝑜𝑛𝑜𝑡 =

⃒⃒⃒⃒
Nb of (𝑑/𝑑𝑥 > 0)

𝑛− 1
− Nb of (𝑑/𝑑𝑥 < 0)

𝑛− 1

⃒⃒⃒⃒
(2.2)

where 𝑑/𝑑𝑥 represents the derivative of the HI, 𝑛 represents the number of observa-

tions, 𝑀𝑜𝑛𝑜𝑡 ∈ [0, 1], where 1 represents the perfect monotonicity.

Trendability

Trendability is related to time and represents the correlation between the degradation

trend and the operating time of a component, and it is calculated as follow (Javed

et al. 2014)

𝑇𝑟𝑒𝑛𝑑 =
|𝑛(

∑︀𝑛
𝑖=1 𝑥𝑖𝑡𝑖)−(

∑︀𝑛
𝑖=1 𝑥𝑖)(

∑︀𝑛
𝑖=1 𝑡𝑖)|√

[𝑛
∑︀𝑛

𝑖=1 𝑥
2
𝑖−(

∑︀𝑛
𝑖=1 𝑥𝑖)2][𝑛

∑︀𝑛
𝑖=1 𝑡

2
𝑖−(

∑︀𝑛
𝑖=1 𝑡𝑖)

2]
(2.3)
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𝑇𝑟𝑒𝑛𝑑 ∈ [0; 1] represents the correlation coefficient between the value of HI for a

pattern 𝑥 at time 𝑡. 𝑇𝑟𝑒𝑛𝑑 approaches 1 when the HI has a strong positive linear

correlation with time.

Robustness

B. Zhang et al. (2016) proposed the robustness metric in order to measure how robust

the HI is to random fluctuations. It is computed as follow:

𝑅𝑜𝑏 =
1

𝑛

𝑛∑︁
𝑖=1

𝑒𝑥𝑝

(︂
−
⃒⃒⃒⃒
𝑥𝑟𝑖
𝑥𝑖

⃒⃒⃒⃒)︂
(2.4)

where 𝑥 is the HI values, and 𝑥𝑟 denotes the random part values that is computed as

the difference between the HI and the trend of the HI (smoothed HI).
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Figure 2-7: Example of good and bad population of HIs (J. B. Coble 2010b)

An example of a population of good and bad HIs is illustrated in Figure 2-7

(J. B. Coble 2010b). By comparing the population of good and bad HIs, shown

in Figure 2-7a and Figure 2-7b respectively, it can be observed that the good HIs

are characterized by their monotonic trend (monotonicity), correlation with time

(trendability), clustered failure threshold (prognosability), and robustness.

Several works applied these metrics in order to select the most efficient HI for fault

prognostic automatically. Saidi et al. (2017) computed 11 different time domain and
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frequency domain HIs from vibration signals in order to estimate the RUL of a bearing

in a shaft of a real wind turbine. The effectiveness of the HIs are compared using

monotonicity and trendability metrics, and found that HI computed using spectral

kurtosis (area under SK) presents better monotonicity and trenadability compared to

other classical temporal HI, because it can avoid the effect of noise.

In (L. Guo et al. 2017; Abid et al. 2019), monotonicity and correlation (trend-

ability) are used to select the suitable HIs among 14 extracted features. A linear

combination between monotonicity and trendability is used in order to obtain a se-

lection criterion as follows:

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1 =
𝑀𝑜𝑛𝑜𝑡+ 𝑇𝑟𝑒𝑛𝑑

2
(2.5)

B. Zhang et al. (2016) computed the monotonicity, trendability, the robustness

metric, then a weighted linear combination of the three metrics is applied in order to

select the best HI as follow:

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2 = 𝑤1.𝑀𝑜𝑛𝑜𝑡+ 𝑤2.𝑇 𝑟𝑒𝑛𝑑+ 𝑤3.𝑅𝑜𝑏 (2.6)

In (Duong et al. 2018), monotonicity, trendability, and robustness are applied

in order to compare a new proposed HI based on discrete wavelet packet transform

with two other HIs (RMS and variance). A weighted linear combination of the three

metrics is applied in (Atamuradov et al. 2018) in order to rank several features. After

that, the consistency metric (prognosability) is used to select the most consistent

features among the ranked ones. L. Guo et al. (2018) proposed a new evaluation

metric named scale similarity. It measures the scale similarity between the new HI

and the HIs in the training set.

2.5 Degradation detection

Degradation detection is primordial for prognostic because it allows triggering the

RUL estimation technique. Degradation detection aims to divide the health state of
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a system into a healthy state (normal or nominal) and an unhealthy state (degraded

or faulty). However, in some cases, the monitored system or component presents a

gradually degraded trend during the whole operating period (e.g., flank wear of a

milling tool (Eker et al. 2012)). Hence, there is no need to detect degradation since

the degradation starts when the component is in operation.

The degradation detection is based on a HI (or HIs) that can follow the degradation

evolution of the system. The simplest way to detect the degradation is to set an alarm

threshold (Niu et al. 2010) on a single HI as illustrated in Figure 2-8.
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Figure 2-8: Degradation detection using alarm threshold

Another efficient widely used way for fault detection is to combine multiple HIs

in order to exploit the complementarity of the HIs. This can be achieved using

classification (machine learning) techniques such as support vector machine, k nearest

neighbors, artificial neural network (ANN)...etc. The degradation can be detected

using historical normal and faulty data, or by using only normal data by applying

anomaly detection techniques. Figure 2-9 shows the classification of the degradation

detection techniques.

2.5.1 Degradation detection using normal and faulty data

When using both normal and faulty (abnormal) data about the system, the goal

is to find a boundary (separation) between the two classes (normal and faulty) as
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Figure 2-9: Classification of the degradation detection techniques

illustrated in Figure 2-10. Then, when a new measure is collected, it is assigned to

one of those classes according to its similarity (closeness) to one of them. Degradation

detection can be achieved using traditional machine learning models or by using recent

deep learning models.

Machine Learning techniques

K Nearest Neighbor (KNN) (Duda et al. 2012) is a classification method which mea-

sures the distance of the new observation from the K nearest points in the feature

space. KNN is applied for fault detection and fault isolation in industrial systems

(Z.-B. Zhu et al. 2011).

Support Vector Machine (SVM) is one of the most popular machine learning

techniques for classification. The objective of SVM is to find the hyperplane in a

specific space (i.e., transformed) separating two classes by maximizing the distance

between both data sets (maximum margin) (Vapnik 2013). Soualhi et al. (2014)

applied a multi class SVM by using a three dimensional feature space, in order to

classify the health state of bearings into three states (class): good state, medium

state, and degraded state. The medium state is a health state where it is difficult
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Figure 2-10: Classification using normal and faulty data

to differentiate between the normal and degraded state of the component, where in

the degraded state the degradation or fault occurrence is confirmed. In (Saidi et al.

2015), SVM is applied for fault diagnosis of bearings in order to distinguish four

kinds of bearings fault: healthy bearing, inner race fault, outer race fault, and ball

fault. Laouti et al. (2011) proposed a fault detection and isolation approach based on

SVM, which is validated using a simulated wind turbine benchmark (Odgaard et al.

2009). Artificial Neural Networks (ANNs) are more and more used for fault diagnosis.

Saxena et al. (2007) applied ANN for fault classification of rotating mechanical system

(bearings), where a genetic algorithm is employed for selecting the optimal set of

features in order to achieve better classification accuracy.

Deep Learning techniques

Recently deep learning techniques are used for fault diagnosis. They are a deep rep-

resentation of the ANN. Their advantages are that there is no need to achieve health

indicators extraction, the diagnosis is achieved using only raw collected data. How-

ever, these techniques require an important size of faulty data for training containing
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information about all the faulty conditions. W. Yan et al. (2019) proposed a deep

learning based approach for fault detection by combining Autoencoder for feature

extraction, then the features are fed to an Extreme Learning Machine (ELM) which

is a particular type of ANN (Huang et al. 2006). The proposed approach is applied

for fault detection in gas turbine combustors.

Convolutional Neural Network (CNN) (LeCun et al. 1998) has been proven suc-

cessful in many domains. The main advantage of CNN is the ability to extract sen-

sitive features to the degradation automatically without manual feature extraction

and selection. Janssens et al. (2016) compared CNN with a classical manual feature

extraction approach for bearings fault detection. The obtained results using auto-

matic features extraction based on CNN showed better accuracy than the detection

using manual feature extraction approaches. Hierarchical CNN is applied in (X. Guo

et al. 2016) for bearings fault diagnosis, where CNN detects the fault occurrence and

isolates the element responsible of the fault (outer race, inner race, and ball bearing).

Long Short Term Memory (LSTM) is a deep learning technique that can deal with

sequential data. It is a Recurrent Neural Network (RNN) that can model long-term

dependencies hidden in sequential data (Hochreiter et al. 1997). LSTM is used in

(J. Lei et al. 2019) for condition monitoring and fault diagnosis of a wind turbine. It

showed good performance compared to other techniques such as SVM, Multi Layer

Perceptron (MLP), simple RNN, and convolutional neural network.

2.5.2 Degradation detection using normal data

The degradation detection using normal data can be achieved using anomaly detection

(novelty detection, outlier detection) also called one class classification, which refers

to the problem of finding patterns in data that do not conform to the expected

behavior (Marsland 2003). The objective of anomaly detection methods is to detect

degradation and fault using only the data collected from the system or its components

under normal (nominal) operation conditions. These techniques can be applied to

degradation detection since the data points about normal operating conditions are

well condensed in the feature space, while the data points about degradation operation
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conditions are spread in the feature space as illustrated in Figure 2-11. Degradation

detection using normal data aims at finding a boundary around the normal data

as represented in Figure 2-11, then the new measurement is classified as normal or

abnormal if it is inside or outside the boundary, respectively.
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Figure 2-11: Classification using only normal data

Anomaly detection methods can be broadly categorized into statistical, or machine

learning techniques that include similarity based, and deviation based methods (An

et al. 2015).

Statistical techniques

Statistical anomaly detection techniques assume that the data is modeled from a spe-

cific probability distribution. The simplest way for anomaly detection is to represent

the normal data as a Gaussian distribution, then apply 3𝜎 interval (𝜇+ 3𝜎 contains

99.7% of data instance) in order to set the threshold and detect the anomaly (Chan-
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dola et al. 2009). Jin et al. (2016) applied the box-cox transformation in order to

change the distribution of the HI into Gaussian distribution, then applied an alarm

threshold for fault detection in order to trigger the RUL estimation step for bearings

faults.

Machine Learning techniques

Similarity based techniques compute the similarity (closeness) between the new mea-

surement point and the normal class in the feature space. The similarity can be

computed using a distance metric such as Euclidean, Mahalanobis, and Manhattan

distance. Y. Wang et al. (2016) computed Mahalanobis distance between the new

measurement and the original healthy state, then 3𝜎 interval is set as a threshold

in order to detect the fault. KNN is also a similarity based method, it is adapted

in (He et al. 2007) by examining the distance of a new sample to its neighboring

training samples (using only normal data) for fault detection in an industrial process

(semiconductor manufacturing process).

SVM can also be a similarity based method because it computes the distance of

the new observation from the support vector points. Schölkopf et al. (2000) developed

a variant of SVM in order to tackle the one class classification problem called One

Class Support Vector Machine (OCSVM). The goal of OCSVM is anomaly detection

and novelty detection, which is extensively applied in the literature (Khan et al.

2014). OCSM is also applied in (Yin et al. 2014) for fault detection. Shin et al.

(2005) applied OCSVM for machine fault detection, where the results showed that

the OCSVM performance is comparable to MLP neural network performance. An

approach based on OCSVM is proposed in (Fernandez-Francos et al. 2013) for fault

detection and isolation of bearings. The proposed approach showed its ability to

detect failures in an incipient stage, to isolate its location, and qualitatively assess its

evolution over time.

Deviation based methods use the reconstruction errors as the anomaly score

(which can be used also as HI). Autoencoder is a type of neural network that can

reconstruct the input at the output layer (Hinton et al. 1994; Bengio et al. 2013). It
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has been used in the literature to extract features for fault detection in an unsuper-

vised manner (Sun et al. 2016; Haidong et al. 2018). Anomaly or novelty detection

can be achieved when the reconstruction errors (residual) between output and input

is greater than a threshold. Jiang et al. (2017) applied a variant of the autoencoder

named denoising autoencoder for errors generation, while a threshold is used for fault

detection. The proposed approach is validated on a wind turbine benchmark and

then on a real wind turbine data. The construction of the residual based HI is also a

deviation based methods since the residual based HI is the deviation between nominal

operation conditions and the new measurement. Then, the degradation detection can

be triggered by setting an alarm threshold, while the latter is generally set as the

maximum value of residual under normal operation.

2.6 Remaining useful life estimation approaches

The degradation detection or diagnosis (detection and isolation) triggers the estima-

tion of the RUL. The RUL is the time between the failure time when the extrapolated

HI exceeds the failure threshold and the present time. The RUL is computed since

the degradation is detected (alarm threshold reached). The RUL estimation process

is illustrated in Figure 2-12.

Several categories of prognostic approaches were applied in the literature for

achieving prognostics (RUL estimation), each category is efficient in a particular

situation depending on the availability of data, availability of the physical model,

and availability of information about the current health state. Most of the review

works in the literature classify the prognostic approaches into model based (physics

based) and data-driven based approaches (Goh et al. 2006; Heng et al. 2009). A

taxonomy of model based, data-driven based, and hybrid approaches are proposed

in (Lee et al. 2006), where the hybrid approaches combine the first two approaches.

Tobon-Mejia et al. (2012) classified the prognostic approaches into model-based, data-

driven based, and experience based prognostic approaches, where the latter use the

traditional reliability methods.
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Figure 2-12: Illustration of RUL estimation

In this manuscript, the RUL estimation is classified into two main approaches:

Experience based approaches and degradation modeling approaches (see Figure 2-

13). Experience based prognostic is achieved by applying reliability or similarity based

approaches. The degradation modeling can be achieved by using physical models or

by data-driven approaches (Abid et al. 2018).

Prognostic approaches
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approaches

Similarity based
approaches

Degradation modelling
based approaches

Data-driven based
approaches

Model based
approaches

Indirect RUL 
estimation

Direct RUL
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Figure 2-13: Classification of RUL estimation approaches

Experience based approaches are based on the requirements of multiple run-to-
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failure experiments in order to achieve prognostics. The run-to-failure experiment or

sequence represents the operation of the system or component during the whole degra-

dation process until failure. These sequences can be collected during the operation

of the component, but in general, they are generated artificially in the laboratory by

accelerating the degradation process. Experience based approaches can be classified

into reliability based approaches and similarity based approaches.

2.6.1 Reliability based approaches

Traditional reliability based approaches use several run-to-failure sequences in order

to characterize the expected lifetime of a population of components (systems). These

approaches can be applied even when no information is available about the current

health state of a component. Besides, the operating conditions are not considered

for lifetime estimation. Usually, these approaches are applied in the manufacturing

industry in order to estimate the mean life of a product, which is determined by

analyzing time-to-failure of product population with similar characteristics. For this

analysis, a failure distribution is applied such as Weibull distribution which is widely

applied for characterizing the time-to-failure probability function of the component

(product) (Schömig et al. 2003; Zhai et al. 2013).

2.6.2 Similarity based approaches

Similarity based approaches also use a huge amount of a priori run-to-failure sequences

(library of degradation trajectories or patterns) for a set of components under different

operation conditions. This category of approaches requires the monitoring of the

current health state or health indicator of the system (component). Then the current

HI sequence is compared with the library of degradation trajectories. The goal is to

select the degradation trajectory (degradation evolution) that best matches, in terms

of similarity or closeness, the degradation evolution of the current component. The

selected degradation evolution is used to predict the RUL of the current component.

T. Wang et al. (2008) employed an Euclidean distance in order to find the most similar
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HIs with the current one. Then, the best HIs are used for RULs estimation while the

final RUL is computed using a weighted mean of the computed RULs. The proposed

approach is validated using run-to-failure data collected from a faulty aircraft engine

datasets.

Some other works apply KNN for finding the similar HIs from the library. The

selected HIs are represented as the K nearest neighbors according to defined distance

metric (Ramasso et al. 2012; Mosallam et al. 2016). Mosallam et al. (2016) used KNN

in order to find the most similar trajectories in training to the online one, while a

recursive discrete Bayesian filter is applied for RUL estimation. The proposed method

is evaluated using two data sets, namely, turbofan engines and lithium-ion battery

(Saxena et al. 2008a; Saha et al. 2007). Zio et al. (2010) applied a fuzzy pointwise

similarity concept in order to match the current data to the data in the library of

reference patterns. Then the RULs of the selected reference patterns are aggregated

using a weighted mean for the final RUL estimation.

Degradation modeling based approaches aim at modeling the degradation dy-

namic evolution and predicting its progress over time until failure. Precisely, those

approaches aim at estimating the RUL considered as the time between the starting

time of the degradation detection and the time of end of life. The degradation dy-

namic evolution can be modeled using model based approaches or data-driven based

approaches. This thesis focuses on data-driven approaches.

2.6.3 Model based approaches

Model based approaches require specific physical knowledge about the system opera-

tion and fault evolution and development. They use physical and mathematical laws

and principals in order to model the degradation trend. Paris law (Paris et al. 1963)

is widely used for modeling damage propagation in a material. Paris law is a crack

growth equation that gives the rate of growth of a fatigue crack. It is applied in

(Kacprzynski et al. 2004) for the fault prognosis of gears. Oppenheimer et al. (2002)

proposed a physics based approach for performing fault diagnosis and prognosis. The

observer method is used for fault detection and diagnosis, where a life model based on
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material crack growth laws is used for the RUL estimation. In (Y. Lei et al. 2016b), a

particle filter based method is proposed to predict the RUL of machinery with degra-

dation processes described using a variant of Paris model, the proposed method is

validated using accelerated degradation test of bearings.

2.6.4 Data-driven based approaches

Data-driven based approaches require few or several degradation data (depending

on the used method) in order to estimate the RUL. They build a model that learns

using only the available data. These models can be statistical or based on Artificial

Intelligence (AI) methods. First, the model is fitted with the historical degradation

data offline, then when the degradation is detected the model permits to estimate

the RUL online. RUL estimation using data-driven approaches can be classified into

indirect and direct RUL estimation.

Indirect RUL estimation

The indirect RUL estimation is the standard RUL estimation where HIs are defined

using features extracted from the new incoming data. Then, the trend of the HIs is

extrapolated using a data-driven model (statistical or AI), where the RUL is deduced

as remaining time to the failure (see Figure 2-14).
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Figure 2-14: Indirect RUL estimation

Statistical based methods for prognostic use build a model based on empirical

knowledge without having physical knowledge about the system operation. Some

of these methods could have an easy update of their parameters because the model
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contains only a few parameters to fit. Hence, they can perform prognosis with few

or without using any a priori degradation sequences for RUL estimation. Qian et al.

(2014) utilized the Auto Regressive (AR) model for RUL prediction of bearings. The

AR model assumes that future degradation evolution is dependent on past observa-

tions.

Two Moving Average (MA) windows are used in (Dupuis 2010) for RUL estima-

tion of bearings in a wind turbine gearbox by monitoring the oil debris signal. Auto

Regressive Moving Average (ARMA) is a traditional statistical model for time series

prediction, which combines the AR model and the moving average model. It is ap-

plied in (J. Yan et al. 2004) for RUL estimation of an elevator door motion system.

Ahmad et al. (2017) developed an adaptive predictive method for RUL estimation

based on the indicator RMS and the quadratic regression model. The model pa-

rameters are updated with each new time cycle, hence, it does not require several a

priori degradation sequences for RUL estimation. The developed method is evalu-

ated using bearings degradation data. The exponential model is also widely used to

characterize the degradation evolution of bearings (Shao et al. 2000; Gebraeel 2006).

Gebraeel (2006) developed a sensory updating method using the exponential model

where the model is updated for each new incoming sample from the sensors. A dou-

ble exponential model is applied in (Jin et al. 2016) which is the summation of two

exponential models, whereas the model parameters are updated using kalman filter.

The developed model is used for modeling the degraded trend of bearings. Also, a

double exponential model is applied in (L. Guo et al. 2017) in order to extrapolate

the computed HI of degraded bearings, the approach is validated using experimental

data of bearings testbed and real data from a generator bearing of a wind turbine.

Artificial intelligence methods attempt to learn the degradation evolution of the

system, by training a model on the available a priori sequences about the degradation.

They are able to perform prognostics for complex dynamic systems. In that case, the

degradation is difficult to be characterized by model based approach or statistical

approach. However, compared to the statistical methods, AI methods require an

important number of run-to-failure data in offline for training the model. Support
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Vector Regression (SVR) is a variant of SVM for regression, it is an AI method

extensively used for RUL estimation in the literature. Saidi et al. (2017) applied

SVR in an indirect way for predicting the trend of the HI and estimate the RUL of

a high speed shaft bearing of a wind turbine. In (Soualhi et al. 2014), an approach

based on three SVR models is developed, it is used for predicting the evolution of

three computed HIs on vibration signal collected for health monitoring of bearing,

then the smallest RUL is deduced as the final predicted RUL. SVR is also used in

(Benkedjouh et al. 2013) for RUL estimation of bearings by using the indirect way.

ANNs are the most commonly AI techniques used for RUL estimation. They can

model the complex non-linear relationship between input and output. An indirect

life percentage estimation method is developed in (Ali et al. 2015), where the life

percentage is the inverse of the RUL. The life percentage of bearings is estimated by

predicting the HI evolution based on ANN. An indirect RUL estimation is applied in

(Malhi et al. 2011), while the trend evolution of the computed HI is predicted using

RNN. LSTM is a RNN employed to learn the long term dependencies, its architecture

makes it able to remember information for long periods of time. Y. Zhang et al.

(2018) applied LSTM in the indirect way by modeling the evolution of the capacity

degradation trajectories for the RUL estimation of lithium-ion batteries.

Direct RUL estimation

In direct RUL estimation, the RUL is estimated directly without trend prediction

until failure, the input of the AI model can be either raw data or extracted features

while the output is the actual RUL (see Figure 2-15). However, these methods are

black box models, hence, it is difficult to have interpretable elements to share with

operators.

Different artificial intelligence techniques are applied in the literature, especially

machine learning methods, and they are used to model a nonlinear mapping between

the output and the input space. Hidden Markov Model (HMM) is also used for RUL

estimation thanks to their advantage of dealing with data sequentiality. It is applied

in (Tobon-Mejia et al. 2012) combined with a mixture of Gaussians for predicting the
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failures in bearings. W. Q. Wang et al. (2004) developed an RUL estimation method

based on a neuro-fuzzy system, which is a neural network-based fuzzy system. The

structure of the fuzzy inference is determined by expertise, where its membership

functions are trained by using ANN. In (Aye et al. 2017), the remaining life is predicted

for slow speed bearings based on acoustic emission thanks to the Gaussian Process

Regression model (GPR), GPR is a flexible non-parametric Bayesian model that

permits a prior probability distribution to be defined over functions directly.

Loutas et al. (2013) used the SVR in a direct way where the inputs are the se-

lected HIs and the output is the True RUL, it is applied for RUL estimation of rolling

bearings. Z. Tian (2012) developed an ANN based method for RUL estimation of

equipment using as input the age and conditions monitoring values at the present

and past measurement. The developed method is validated using real world vibra-

tion monitoring data collected from pump bearings. In (Mahamad et al. 2010), a

feed forward neural network is applied for direct prediction of the bearing life per-

centage. Recurrent Neural Networks (RNN) are as well used for RUL estimation,

they contain an internal memory and can learn complex nonlinear mapping. Heimes

(2008) proposed a direct RUL estimation for turbofan engine based on RNN, where

the proposed method based on RNN yields better results compared to ANN.

Recently deeper architectures of the ANN are applied for RUL estimation named

deep learning models. Deep learning models are more and more used for machine

health prognostics and have proven their effectiveness for RUL estimation. Most

of the deep learning based approach for prognostics estimate the RUL in a direct
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way. As explained before, the advantage of these techniques is that there is no need

to achieve health indicators extraction, and they require several a priori sequences

about the degradation evolution for RUL prediction.

As for fault diagnosis, the most applied methods for fault prognostics are CNN and

LSTM. CNN and LSTM have shown their effectiveness for RUL estimation applied

on different applications (e.g., bearings, battery, and aircraft engine). CNN has a

deep architecture which makes it suitable for achieving automatic features extraction

without computing the features manually. Babu et al. (2016) applied CNN for direct

RUL estimation of data generated from a turbofan engine. The raw data collected

from different sensors are used as input, whereas the true (actual) RUL is used as

output.

Deep CNN is applied in (X. Li et al. 2018) for RUL estimation using the turbofan

engine dataset, the proposed architecture is deep because it stacks five convolution

layers in order to capture the representative information from raw input data. It is

applied in (X. Li et al. 2019) for direct RUL estimation of bearings by using as input

a time-frequency transformation of the raw vibration signal and the actual RUL as

output. LSTM is also widely used for the direct RUL estimation. Several works

applied the LSTM in order to predict the RUL of an aircraft engines (S. Zheng et

al. 2017; Hsu et al. 2018). Mao et al. (2018) applied the LSTM in a direct way by

using as input features extracted from the vibration signal in order to predict the

RUL of bearings. Some works also used a variant of the LSTM named Bidirectional

LSTM (BLSTM) that can learn the dependencies of sensor data in both forward and

backward direction. BLSTM is applied for the RUL estimation of an aircraft engine

in (J. Wang et al. 2018; J. Zhang et al. 2018).

2.7 Remaining useful life evaluation metrics

The predicted RUL is evaluated in a post prognostic step after failure occurrence using

suitable and meaningful metrics. When the system’s failure is reached, the actual or

true RUL can be computed. This true RUL is then used as a reference to find the

56



error between it and the predicted RUL. The true RUL is inversely proportional to

the degradation rate and is computed as the difference between the present time and

failure time, as illustrated in Figure 2-16.
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Figure 2-16: True RUL vs time

In order to quantify the performance of the computed RUL, errors based metrics

can be computed between the predicted and the true RUL. Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE) are used for RUL evaluation

(Tobon-Mejia et al. 2012; Loutas et al. 2013). RMSE is the standard deviation of the

prediction errors, where MAPE is a relative error that can express the accuracy as a

percentage:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛𝑡

𝑛𝑡∑︁
𝑡=1

(𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)− 𝑟𝑢𝑙(𝑡))2 (2.7)

𝑀𝐴𝑃𝐸 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑡=1

⃒⃒⃒⃒
𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)− 𝑟𝑢𝑙(𝑡)

𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)

⃒⃒⃒⃒
(2.8)

where 𝑛𝑡 is the number of time index from degradation detection until failure, 𝑡 is

the time index (time cycle), 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙 represents the actual RUL, and 𝑟𝑢𝑙 represents
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the predicted RUL.
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Figure 2-17: Prognostic horizon

Saxena et al. (2008c) proposed several metrics for RUL evaluation that are widely

used in the literature. The most relevant metrics are: prognostic horizon, 𝛼 − 𝜆

performance, relative accuracy, and cumulative relative accuracy. Prognostic Horizon

(PH) is the difference between the time of the end of life (𝑡𝐸𝑂𝐿) and the present time

when the RUL is lower than a certain threshold defined by parameter 𝛽 (see Figure

2-17).

𝛼 − 𝜆 performance can determine whether the prediction falls within specified

limits 𝛼*100% at particular distance 𝜆. For example, in Figure 2-18 the RUL predic-

tion falls within the cone +/- 30% (i.e., 𝛼=0.3) at a halfway distance (𝜆 = 0.5) from

degradation detection (𝜆 = 0) until failure (𝜆 = 1).

Relative Accuracy (RA) is the error between the predicted RUL relative to the

actual RUL (true RUL) at a specific time index 𝑡.

𝑅𝐴(𝑡) = 1− |𝑟𝑢𝑙(𝑡)− 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)|
𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)

(2.9)

Cumulative Relative Accuracy (CRA) ∈ [0, 1] is the weighted average of the Rel-
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Figure 2-18: 𝛼− 𝜆 performance metric

ative Accuracy (RA). Compared to RA that evaluates the RUL at a specific time

instance, CRA can evaluate the predicted RUL at multiple time instances, and it

has been widely used for the RUL evaluation (Ahmad et al. 2017; Tobon-Mejia et al.

2012; Duong et al. 2018). CRA is calculated as follows:

𝐶𝑅𝐴 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑡=1

𝑤(𝑡)𝑅𝐴(𝑡) (2.10)

𝑤(𝑡) =

1
𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)∑︀𝑛𝑡

𝑡=1
1

𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)

(2.11)

where 𝑛𝑡 is the number of time index (time cycle) from RUL estimation start

until failure (End Of Life (EOL)), and 𝑤(𝑡) is a weight factor as a function of the

actual RUL (Goebel et al. 2011). The weights aim to improve the RUL evaluation

by penalizing more the errors closer to 𝑡𝐸𝑂𝐿.
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2.8 Discussion

Achieving prognostics requires to develop an approach with several steps. The main

steps are HI construction, degradation detection (or diagnosis), and then modeling

the degradation evolution for the RUL estimation step.

Health indicator construction is the first and main step for achieving prognostics.

It is preferable to have some knowledge about the system (expert knowledge) in

order to choose an efficient HI. Alternatively, the HI can be selected automatically

among a library of condition-based indicators using some evaluation metrics such as

prognosability, monotonicity, trendability, and robustness.

For the degradation detection, it is efficient to apply detection using normal and

faulty data (i.e., classification techniques) by exploiting multiple health indicators in

order to find the optimal boundary between normal and faulty data points. However,

in real industrial systems, there is a lack of historical degradation data and sometimes

they are not available (e.g., for new systems). In the latter case, it is preferable to

apply anomaly detection methods because the historical data about normal operation

conditions are widely available.

The discussed prognostic approaches in this manuscript are compared according to

their potential requirements in Table 2.1, where each requirement can be "Required",

"Not required", and "Beneficial" for each prognostics approach.

Table 2.1: Prognostic approaches requirements

RUL estimation Approaches Physical model Degradation history Current health state Degradation detection

Experience based
approach

Reliability Not required Required Not required Not required

Similarity Not required Required Required Required

Degradation modeling
bsed approach

Model based Required Beneficial Required Required

Data-driven Not required Beneficial Required Required

Experience based approaches (reliability and similarity) do not require an en-

gineering model, but they require several run-to-failure sequences to achieve RUL

estimation. Also, reliability based approaches do not require current health state and

degradation detection comparing to other approaches. Degradation history is not

required for Model based approaches, because they require physics or mathematical
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model about the system operation and degradation evolution. Data-driven based ap-

proaches do not require an engineering model about the system, and it is beneficial to

have degradation history. They can deal with a huge amount of run-to-failure history

(i.e., using deep learning methods), and deal with the lack of degradation history by

using statistical methods (i.e., HI-extrapolation methods). In addition, the latter can

be adaptive to the current degradation evolution.

Table 2.2 presents a comparison between the four prognostics approaches in terms

of precision, implementation, cost, and interpretability. Precision criterion denotes

the RUL estimation’s accuracy provided by the different approaches on component

level and system level. Implementation refers to the ease of implementation of the

approach, where the cost criterion is the cost of implementing the methods and gen-

erating degradation data in order to achieve the prognostics. Finally, interpretability

is the possibility of explaining how the RUL is estimated. The sign (+) refers to the

advantage and (-) refers to the drawback of the methods.

Table 2.2: Prognostic approaches comparison

RUL estimation Approaches Precision Implementation Cost InterpretabilityComponent level System level
Experience based

approach
Reliability + - ++ - -
Similarity + - ++ - -

Degradation modeling
bsed approach

Model based ++ + - - +
Data-driven + ++ ++ + −

Experience based approaches (reliability and similarity) are easier to apply for

RUL estimation since the online HI is compared with the offline HI trajectories.

However, they require a huge amount of historical run-to-failure sequences (high cost).

Model based approaches may have a good precision at the component level (e.g., crack

propagation of bearing). However, when the system is more complex, this kind of

approaches may not be applicable since it is challenging to build a physical model

where several components are in interaction. Despite the lack of interpretability of

the data-driven approaches, they are the most suitable (best trade-off) to perform

the prognostic task when comparing with other approaches in terms of precision,

implementation, and cost.

For developing a data-driven approach that can achieve the prognostics, the avail-

61



ability of historical degradation data is the main requirement that should be consid-

ered. When there is a lack of historical run-to-failure data, adaptive techniques should

be investigated, such as HI-extrapolation methods (i.g., linear regression, quadratic

regression, exponential model...). The advantage of such techniques is the non require-

ment of several run-to-failure data, they are applied in the indirect RUL estimation

way by computing the HI, and then extrapolate it until reaching the failure thresh-

old. The failure threshold can be set by some failure data if available or set by expert

knowledge otherwise.

When several run-to-failure data are available in offline, direct estimation using

more sophisticated techniques is preferable, such as machine learning or deep learn-

ing techniques (i.g., HMM, SVM, ANN, LSTM, CNN). Despite the requirement of

several run-to-failure data, these methods possess several advantages, they can esti-

mate the RUL directly without modeling the evolution of a HI, and raw data can

be used as input without computing health indicators when applying deep learning

techniques. Moreover, they can model a complex non-linear relationship between the

input and the output (RUL). Hence, they can be applied to estimate the RUL for

complex dynamic systems switching between different operating conditions in vari-

able environment conditions (e.g. wind turbine). Furthermore, the failure threshold

can be set only the training set.

2.9 Conclusion

This chapter presented the three main steps of the prognostics and health manage-

ment strategy: health indicator construction (data processing), degradation detection

(diagnostics), and RUL estimation (prognostics). The HI can be based on single or

multiple indicators, the use of one HI is better for keeping the interpretation of the

HI, whereas fusing multiple HI may result in a virtual HI without interpretation

that could be more efficient for the degradation detection and RUL estimation. The

degradation can be detected using both data of the system under normal and faulty

conditions. However, the normal data are widely available in real industrial systems
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where there is a lack of faulty data. In this case, it is preferable to apply anomaly

detection methods while using only normal data as a priori. When the incipient fault

is detected, the prognostic approach is triggered. The RUL can be estimated us-

ing experience based approaches (reliability and similarity), model based approaches,

and data-driven based approaches. Data-driven approaches appear to be the most

suitable in terms of precision, implementation, and cost. Data-driven approaches can

be efficient in both cases when having few or having a huge amount of historical

degradation data.

In the next chapter, a data-driven approach is proposed for the fault prognostics,

which deals with insufficient historical degradation data (without and with few histor-

ical degradation sequences). The RUL is estimated using the indirect RUL estimation

since these methods can be adaptive and do not require several a priori sequences for

RUL prediction. The approach will be validated using different experimental datasets

(high speed shaft of a wind turbine, rolling bearings, and aircraft engine).
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Chapter 3

Prognostic approach with insufficient

a priori degradation sequences

3.1 Introduction

In industrial systems, a large amount of historical data about the normal (healthy)

operating conditions are often available, while historical data about degraded and

faulty conditions are often unavailable because of their high cost, or for safety rea-

sons, or in the case of newly installed machines. Besides the high cost of generating

degradation data in laboratory conditions, the system’s degradation behavior is often

different in real operation conditions due mainly to the variation of environmental

and load conditions.

In order to overcome these aforementioned limits, this chapter proposes a data-

driven prognostic approach dealing with the problem of insufficient historical run-to-

failure sequences. It performs prognostics when there is no run-to-failure sequences, or

only a few available ones, insufficient to allow a reliable and precise RUL estimation.

The proposed approach comprises two main steps: degradation detection and local-

ization and RUL estimation. In the first step, the degradation is detected using only

data collected when the system is working under normal conditions. The second step

estimates the RUL using blind or informed path. The blind path is triggered when

no a priori sequences are available offline, where the best HI is selected dynamically
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by using a selection criterion. Then, the RUL is predicted using an adaptive model,

which is updated with each new incoming point. The informed path is triggered to

estimate the RUL when few a priori sequences about the degradation evolution are

collected. In this path, the best HIs as well as the best models are selected accord-

ing to their capacity to perform a precise estimation of RUL over time on the few

a priori sequences. Hence, several HI-model combinations (pairs) are used for the

RUL prediction in order to improve the accuracy as well as the reliability of RUL’s

estimation.

The chapter is organized as follows. Section 3.2 presents the proposed approach

for RUL estimation with insufficient a priori sequences. The proposed approach is

validated in sections 3.3, 3.4, and 3.5 using, respectively, vibration data collected

from a real degraded bearing of a wind turbine high speed shaft, and vibration data

generated from a degraded bearing with inner and outer race fault. Also, sensors data

collected from a degraded aircraft engine that are generated by the National Aero-

nautics and Space Administration (NASA) and named C-MAPSS dataset (Saxena

et al. 2008b). Finally, Section 3.6 ends the chapter with concluding remarks.

3.2 Proposed approach

The proposed approach is illustrated in Figure 3-1. It is splitted into two phases:

offline and online. In the offline phase, a large set of features is defined and integrated

into a library. Those features are issued from signal processing of measured variables

by sensors. Their choice is guided by the available knowledge about the system

dynamics and its components as well as the potential faults that can occur. The

performances of those features in response to their application to each system will

also be integrated into the library in order to facilitate their choice for new systems,

in particular when there is no degradation data. Indeed, in the latter case, the choice

of suitable features will be based mainly on their online RUL prediction accuracy. If

some degradation data sequences are available, an RUL prediction accuracy computed

in offline by using different pairs of regression models and HIs. This accuracy will

66



be used to select the best pairs. In the offline phase, the OCSVM is trained using

the available data about normal operation conditions and the selected features. The

goal is to define the best decision border that allows separating normal operation

conditions zone from any potential degradation. This allows OCSVM to detect a

degradation in a reliable way and in an early stage.

Features library

Features
computation

Historical normal
operating data OCSVM Training

Offline phase

Online phase

Features
computation

Incoming new
operating data

OCSVM Score
estimation

OCSVM Score
correction

Degradation
detected?

END: receive
new data

Dynamic HI
selection

Adaptive GLM
fittingRUL estimation

Failure 
reached?

True

False

Compute RULs using the
selected combinations

HI - Model
RULs fusion using

a weighted averageRUL estimation

Informed path

Blind path
Available a priori 

sequences corresponding to the 
isolated component

?
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False

Selection of the best 
HI - Model pairs

Computation of the
corresponding weights 

Degradation 
isolated?

True

False

True

False

Isolation features

Models library

Figure 3-1: Flowchart of the proposed prognostic approach

In the online phase, OCSVM score is computed for each incoming data represent-

ing the system’s current operating conditions in order to detect degradation. Fault

isolation is then triggered after the detection using the isolation features. The latter

are sensitive to faults in specific components. Therefore, they can be used to isolate

the component responsible of the fault occurrence. Then, the RUL estimation starts

by using one of two paths: the blind path or the informed path. The blind path is

used when no historical degradation data are available, the RUL is estimated blindly

without being confident on it. The informed path is used when some historical degra-

dation data are available, the RUL is estimated by using some a priori knowledge

about the degradation, which improves the accuracy and increases the confidence on
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the predicted RUL. The main steps of the proposed approach are as follows: features

definition, fault detection and isolation, RUL estimation using the blind path, and

RUL estimation using the informed path. They are detailed in the next subsections.

3.2.1 Data processing and features definition

A library of features (health indicators) sensitive to the degradation occurrence and

evolution should be predefined in the offline phase. These features are used, on

the one hand, for degradation detection, and on the other hand, for characterizing

its evolution over time in order to estimate the RUL. The chosen indicators in the

library are dependent on the application domain.

For rotating machine degradation, vibration measurement is the most condition

monitoring data used for monitoring rotating machinery, since the vibration increases

due to mechanical troubles (e.g., worn bearings). Features are computed based on

time domain and frequency domains in order to extract relevant health indicators

from the data characterizing the degradation. Time domain features use statistical

properties computed directly from the raw signal such as Root Mean Square (RMS),

which describes the signal strength, peak to peak which is the distance from a negative

peak to a positive peak, kurtosis which measures the probability density flatness

degree of the signal, Shape factor which is computed as the ratio of RMS to the

average value.

Frequency domain techniques are more effective for bearings fault diagnostic due

to their ability to detect and isolate the degradation using frequency components. Fast

Fourier Transform (FFT) is a common method in vibration signal analysis (Rai et al.

2007). The Frequency spectrum is computed using FFT to observe the characteristics

of the vibration signal in the frequency domain. When a fault occurs, it can show

the repetitive impulse period due to the contact between the rolling elements and the

defective part. Other frequency domain features are computed based on the spectral

kurtosis (SK) (Antoni 2006). SK is the kurtosis of the spectral component of the

signal. It can deal with the transient behavior in a signal and can detect incipient

fault even in the presence of noise (Saidi et al. 2017).
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Table 3.1: Features library for bearing’s health monitoring

HI index Name Formula

HI1 RMS
√︁

1
𝑛

∑︀𝑛
𝑖=1 𝑥

2
𝑖

HI2 Peak-to-peak 𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)

HI3 Kurtosis
1
𝑛

∑︀𝑛
𝑖=1(𝑥𝑖−𝑥̄)4

𝜎4

HI4 Energy
∑︀𝑛

𝑖=1 𝑥
2
𝑖

HI5 Shape Factor
√

1
𝑛

∑︀𝑛
𝑖=1 𝑥

2
𝑖

1
𝑛

∑︀𝑛
𝑖=1 |𝑥𝑖|

HI6 FT-mean 1
𝑛

∑︀𝑛
𝑖=1 𝑆𝑖

HI7 FT-std
√︁

1
𝑛

∑︀𝑛
𝑖=1(𝑆𝑖 − 𝑆)

HI8 FT-rms
√︁

1
𝑛

∑︀𝑛
𝑖=1 𝑆

2
𝑖

HI9 FT-peak 𝑚𝑎𝑥(𝑆)

HI10 FT-kurtosis
1
𝑛

∑︀𝑛
𝑖=1(𝑆𝑖−𝑆)4

𝜎4

HI11 FT-skewness
1
𝑛

∑︀𝑛
𝑖=1(𝑆𝑖−𝑆)3

𝜎3

HI12 FT-crestfactor 𝑚𝑎𝑥(𝑆)√
1
𝑛

∑︀𝑛
𝑖=1 𝑆

2
𝑖

HI13 SK-mean 1
𝑛

∑︀𝑛
𝑖=1 𝐾𝑖

HI14 SK-std
√︁

1
𝑛

∑︀𝑛
𝑖=1(𝐾𝑖 − 𝐾̄)

HI15 SK-rms
√︁

1
𝑛

∑︀𝑛
𝑖=1𝐾

2
𝑖

HI16 SK-peak 𝑚𝑎𝑥(𝐾)

HI17 SK-kurtosis
1
𝑛

∑︀𝑛
𝑖=1(𝐾𝑖−𝐾̄)4

𝜎4

Table 3.1 sums up the features defined in the library for monitoring the bearing

degradation using the vibration measurement, where 𝑥 is the signal in the temporal

domain, 𝑆 is the spectral component computed using the FFT, and 𝐾 is the spectral

kurtosis. In this library, five temporal domain features are computed on the raw

signal: HI1, HI2, HI3, HI4, and HI5, and seven statistical features are computed on

the FFT: HI6, HI7, HI8, HI9, HI10, HI11, and HI12. Also, five statistical features

are computed on the spectral kurtosis: HI13, HI14, HI15, HI16, HI17. The library of

features can be modified or enriched by feedback or human experts according to the

application domain.
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3.2.2 Fault detection and isolation

Fault detection

In industrial systems, a considerable amount of data collected from healthy systems is

available. On the other side, there is a lack of data collected about fault/degradation

operation conditions or sometimes it is unavailable. For this reason, applying anomaly

detection techniques is necessary in this case. One Class Support Vector Machines

(OCSVM) is chosen among the different anomaly detection methods for several rea-

sons such as it does not require any assumption about data distribution, it can deal

with high dimensional data, and also it can deal with complex problems (non linear

decision boundary).

OCSVM separates all the data points from the origin in a high dimensional feature

space. The objective is to find an optimal hyperplane that maximizes the distance.

It can be formulated as a quadratic programming problem (Schölkopf et al. 2000):

min
𝜔,𝜉,𝜌

1

2
‖𝜔‖2 + 1

𝜈.𝑛

𝑛∑︁
𝑖

𝜉𝑖 − 𝜌 (3.1)

Subject to

(𝜔 · Φ(𝑥𝑖)) ≥ 𝜌− 𝜉𝑖, 𝜉𝑖 ≥ 0 (3.2)

Where 𝑛 is the number of training samples, 𝜔 is the normal vector separating

hyperplane, 𝜌 is the offset of the desired hyperplane, 𝜉 = [𝜉1...𝜉𝑛] is a vector of errors,

and Φ(.) maps 𝑥𝑖 into a higher dimensional space. 𝜈 ∈ [0, 1] is an upper bound on

the fraction of training samples outside the decision boundaries and a lower bound

on the fraction of support vectors.

After solving the quadratic programming problem, the final decision function for

a new point 𝑥′ is:

𝑠(𝑥′) =
𝑛∑︁
𝑖

𝛼𝑖𝐾(𝑥𝑖, 𝑥
′)− 𝜌 (3.3)
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𝑓(𝑥′) = sgn(𝑠(𝑥′)) (3.4)

𝐾(𝑥𝑖, 𝑥
′) = 𝑒𝑥𝑝[−‖𝑥𝑖 − 𝑥′‖2/2𝜎2] (3.5)

Where 𝑥′ is the new sample, 𝑥 refers to the training points, 𝑠𝑔𝑛 is a sign function

that returns +1 for positive values and -1 for the negative ones, 𝛼𝑖 is the observation

coefficient, 𝐾 is the kernel function, where Radial Basis Function (RBF) is used (Eq.

(3.5)), 𝜎2 is the variance, and ‖.‖ is the Euclidean norm.

The function 𝑓(𝑥′) returns +1 if the observation 𝑥′ belongs to the known regions

and -1 elsewhere. The OCSVM score 𝑠(𝑥′) is computed using Eq. (3.3) which is

positive in the normal class, negative outside, and 0 on the boundary. In order to

improve the reliability of detection, the computed score is corrected using a moving

median.

Fault isolation

A discriminant feature (or several features) should be computed to isolate the com-

ponent (or element) responsible of the fault. The isolation feature is dependent on

the application domain. For example, in bearings when the rolling elements (bearing

balls) pass over the defected part, they generate an impact. The successive impacts

produce a series of impulse responses in the vibration signal. The spectrum of the

signal can show a harmonic series of frequency components spaced at the bearing

defect frequency. The latter depends on the nature of faults (e.g., inner race, outer

race, ball bearings). The computed isolation feature is the median of the distance be-

tween each two successive harmonic peaks in the spectrum. After that, the computed

median distance is compared with the different defects frequencies references. The

latter are computed a priori using the mechanical characteristics of the bearing (e.g.,

ball diameter, pitch diameter, number of balls) and operating conditions (rotational

speed).
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3.2.3 Remaining useful life estimation using the blind path

The degradation detection triggers one of the RUL estimation paths depending on

the availability of a priori sequences. In the case where no a priori sequences are

available, the blind path is triggered because the best health indicator is unknown.

Hence, the best HI is selected dynamically (selected online for each time cycle), then

the best one according to a selection criterion is used for fitting a Generalized Linear

Model (GLM) that allows estimating the RUL.

Dynamic HI selection

Since no degradation sequence is available, there is no a priori knowledge about the

most sensitive HIs to the degradation evolution. For this reason, in the blind path,

the best HI is selected dynamically (online) among the different features in the library

according to selection criteria. The most used HI selection criteria in the literature

are monotonicity and trendability (J. B. Coble 2010b; Abid et al. 2019). The mono-

tonicity evaluates the negative or positive trend of the HI, while the trendability is

related to time and represents the correlation between the HI and the operating time.

However, some HIs show good trendability and monotoncity at certain time periods

and then their trendability and/or monotoncity decrease significantly for other time

periods. Figure 3-2 shows an example of the variable trendability and monotoncity of

HIs over time. This figure illustrates the monitoring of degradation evolution using

two different HIs (peak-to-peak and SK-kurtosis). The SK HI shows a very good

trendability and monotonicity at the beginning of the degradation better than the

peak-to-peak HI since it reacts to the degradation much time before than peak-to-

peak HI. However, the SK HI’s trendability and monotonicity decrease significantly

while the peak-to-peak HI’s trendability and monotonicity remain good. However,

the SK based HI is very efficient for early degradation detection.

In order to overcome this limit, a selection criterion based on the goodness of fit is

used. The HI that best fits the GLM is selected. The 𝑅2 or goodness of fit indicator

is used to measure how close the HI is to the fitted GLM. The higher the 𝑅2 is, the
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Figure 3-2: Example of two HIs evolution over time.

better the GLM fits the HI.

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(3.6)

𝑅2 ∈ [0, 1], where 𝑛 is the number of samples, 𝑦𝑖 is the HI value at index 𝑖, 𝑦𝑖 is

the estimated HI value using the GLM, 𝑦 is the HI mean.

The GLM is fitted with the points starting from the degradation time until the

present time. The HI with the highest goodness of fit 𝑅2 is selected at each time

cycle. The selected HI is then used to predict the degradation evolution and estimate

the RUL.

Blind RUL estimation

The RUL is the time difference between the present time and the time of failure,

also named time of End Of Life 𝑡𝐸𝑂𝐿 as shown in Figure 3-3. 𝑡𝐸𝑂𝐿 is the time when

the selected HI exceeds a predefined failure threshold. In this work, the Generalized

Linear Model (GLM) is used to extrapolate the selected HI until it reaches the failure

threshold. In the blind path, the failure threshold should be predefined by an expert.

GLM is a flexible generalization of the standard linear regression (McCullagh

2018). It can be used for different response distributions belonging to the exponential

family (e.g., the normal, binomial, Poisson...). GLM generalizes linear regression by

allowing the linear model 𝛼 + 𝑋𝛽 to be related to the response variable via a link

function (𝑔(𝜇) = (𝛼 +𝑋𝛽)). Accordingly, the regression model is given by:
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E(Y) = 𝜇 = 𝑔−1(𝛼 +𝑋𝛽) (3.7)

The coefficient estimation of the GLM is achieved using the method of maximum

likelihood. The development of a GLM can be viewed as choosing the response

distribution and the link function, where the selection of the appropriate parameters

depends on the application.
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Figure 3-3: Illustration of the RUL estimation.

The GLM is used in an adaptive manner, which means that for each time cycle,

the GLM is re-fitted with the present and past samples to predict the HI evolution

until it reaches the failure threshold. Finding 𝑡𝐸𝑂𝐿 is necessary to estimate the RUL.

The RUL estimation starts when the isolation is achieved.

3.2.4 Remaining useful life estimation using the informed path

This part deals with the case where few run-to-failure degradation sequences are

stored offline. A degradation sequence starts from the degradation detection until

the failure. The proposed method aims at taking benefit of the diversity of differ-
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ent HIs and extrapolation models to estimate the RUL. The available degradation

sequences are used to guide the selection of the best HI-model pairs and to determine

their weights according to their performances on the RUL estimation based on those

available sequences. The final RUL is computed by using a weighted mean of the

estimated RULs with the selected HI-model pairs.

HI-model pairs selection and determination of their corresponding weights

Comparing to machine learning and deep learning techniques that require a huge

amount of historical data for RUL estimation, extrapolation based models (e.g., linear

regression, exponential model, quadratic regression...) are efficient even when few

data are collected because they can be fitted with the collected HI samples and used

to extrapolate the HI evolution until the failure (see Figure 3-4).

In this work, an ensemble of extrapolation based models is applied to extrapolate

the HIs. Ensemble based method can improve the reliability and the accuracy of the

prediction thanks to combining different models that are fitted with different HIs. The

stored run-to-failure sequences are used to estimate the RUL using different HIs and

different extrapolation based models. Then an accuracy 𝑎𝑖𝑗 (Eq. (3.10)) is calculated

for each RUL predicted by the HI-model pair, where 𝑖 represents the index of a HI,

and 𝑗 the index of a used model:

𝑎𝑠𝑖𝑗 = 𝐶𝑅𝐴𝑠
𝑖𝑗 (3.8)

𝐶𝑅𝐴 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑡=1

𝑤(𝑡)𝑅𝐴(𝑡) (3.9)

𝑅𝐴(𝑡) = 1− |𝑟𝑢𝑙(𝑡)− 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)|
𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)

(3.10)

𝑤(𝑡) =

1
𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)∑︀𝑛𝑡

𝑡=1
1

𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)

(3.11)

Where 𝑠 is the sequence number, 𝑛𝑡 is the number of time index (time cycle) from
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RUL estimation start until failure (EOL), and 𝑤(𝑡) is a weight factor as a function of

the actual RUL (Goebel et al. 2011). The weights aim to improve the RUL evaluation

by penalizing more the errors closer to 𝑡𝐸𝑂𝐿. Table 3.2 presents an example of four

HIs and three models, where the accuracy 𝑎𝑖𝑗 is computed for each combination

HI-model. The Cumulative Relative Accuracy (CRA) is used to evaluate the RUL

prediction according to the actual RUL (Saxena et al. 2008c). CRA is the weighted

average of the Relative Accuracy (RA), where the RA is a measure of the error in

RUL prediction (𝑟𝑢𝑙) relative to the actual RUL (𝑡𝑟𝑢𝑒_𝑟𝑢𝑙) at a specific time index

𝑡. The time index for RUL prediction 𝑡 starts when the degradation is isolated and

stops when the HI exceeds the failure threshold at 𝑡𝐸𝑂𝐿.

Table 3.2: An example of accuracy computation for each combination HI-model

Model1 Model2 Model3

HI1 𝑎𝑠11 𝑎𝑠12 𝑎𝑠13

HI2 𝑎𝑠21 𝑎𝑠22 𝑎𝑠23

HI3 𝑎𝑠31 𝑎𝑠32 𝑎𝑠33

HI4 𝑎𝑠41 𝑎𝑠42 𝑎𝑠43

When there are two or more run-to-failure sequences available offline, the com-

binations accuracies 𝑎𝑠𝑖𝑗 (as in Table 3.2) are computed for each sequence. Then,

the mean is computed between the combinations accuracies of all the run-to-failure

sequences, as shown in Eq. (3.12).

𝑎𝑖𝑗 =
1

𝑛𝑠

𝑛𝑠∑︁
𝑠=1

𝑎𝑠𝑖𝑗 (3.12)

Where 𝑎𝑠𝑖𝑗 is the combinations accuracy for each run-to-failure sequence 𝑠, and 𝑛𝑠

is the number of available sequences. More the degradation sequences are available

better the estimation accuracy of RUL for a new degradation sequence is. Therefore,

at each time when a new degradation sequence is available, the selected HI-model

pairs and their corresponding weights are updated. This is done in order to represent

or cover better the variation of different degradation sequences’ dynamics.
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When the combinations accuracies are calculated, the HI-model combinations are

ranked according to the computed accuracies 𝑎𝑖𝑗. Thereafter, the best combinations

are selected when the accuracy is greater than a predefined threshold. A weight 𝑊𝑘

is computed for each selected combination as a function of its accuracy. The weights

can be defined as the normalization of the corresponding accuracy with a power factor

𝛾 as follows:

𝑊𝑘 =
(𝑎𝑖𝑗)

𝛾
𝑘∑︀𝑛𝑘

𝑘=1(𝑎𝑖𝑗)
𝛾
𝑘

(3.13)

Where 𝑛𝑘 is the number of selected HI-model pairs, (𝑎𝑖𝑗)𝑘 is the ranked combina-

tion accuracy where (𝑎𝑖𝑗)1 is the combination with the highest accuracy and (𝑎𝑖𝑗)𝑛𝑘

is the lowest accuracy greater than the predefined threshold. 𝛾 is a power factor used

to give more weight for the combination with the highest accuracy. Table 3.3 is an

example of 4 combinations ranked and selected (accuracy greater than a threshold).

They are ranked according to the RUL estimation accuracy (the highest accuracy has

the first rank), and the according weights are computed using Eq. (3.13).

Table 3.3: An example of HI-model combination selection and ranking

Rank Selected HI Selected Model Accuracies Weights

1 HI2 Model1 (𝑎21)1 𝑊1

2 HI4 Model3 (𝑎43)2 𝑊2

3 HI1 Model1 (𝑎11)3 𝑊3

4 HI3 Model2 (𝑎32)4 𝑊4

Informed RUL estimation

When the HI-model combinations are selected, and their corresponding weights are

computed offline, this triggers online the RUL estimation using the informed path

(see Figure 3-1). In this path, the RUL is calculated using a weighted average of

RULs (as shown in Figure 3-4) estimated by the selected HI-model pairs as follows:
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Figure 3-4: Diagram of the RUL prediction using the HI-model pairs

𝑟𝑢𝑙(𝑡) =

𝑛𝑘∑︁
𝑘=1

𝑊𝑘.𝑟𝑢𝑙(𝑡)𝑘 (3.14)

Where 𝑟𝑢𝑙(𝑡) is the final RUL estimated at each time cycle 𝑡, 𝑟𝑢𝑙(𝑡)𝑘 is the RUL

estimated by the HI-model pair 𝑘 at each time cycle, and 𝑊𝑘 is the corresponding

weight to each pair.

78



3.3 Experimentation using high speed shaft bearing

degradation data

3.3.1 Data presentation and failure description

Vibration data are collected from a real high speed shaft bearing installed in a real

commercial wind turbine with a 2MW power output provided by the Green Power

Monitoring Systems in USA (Bechhoefer et al. 2013). After the last day of recording,

an inspection of the bearing showed that the inner race was cracked (Figure 3-5).

Figure 3-5: Cracked inner race of the high speed shaft bearing after the last day of
recording.

The run-to-failure vibration signal is measured each day for 6 seconds at a high

sample rate (97656 samples per second), while this measure is repeated for 50 days.

The unit of measurement is in "g", where 1g is the earth gravitational acceleration.

Figure 3-6 shows the collected run to failure vibration signal over 50 days, where each

part of the signal with different color has a length of 585936 samples (97656 samples

times 6 seconds).
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Figure 3-6: Collected vibration signal

3.3.2 Results and discussion

Data processing and features definition

The features library presented in Table 3.1 is used for this dataset since this library

is suitable for vibration data. The 17 features are computed for each day (each day

includes 6 seconds of measurement). The computed features are then smoothed using

a moving mean with a window of 2 days in order to reduce the fluctuation and effect

of noise. The computed features are illustrated in Figure 3-7. It can be observed that

some features have a more monotonic trend than other features.

RUL estimation using the blind path

For this dataset, the RUL estimation starts directly from the beginning of the se-

quence, since the degradation data is a run-to-failure sequence which means that the

degradation starts since the beginning of the measurement. Since there is no available

a priori sequences, the blind path is triggered. First, the best HI is selected automat-

ically and dynamically (i.e., for each day) using the selection criterion 𝑅2 defined in

Eq. (3.6). The selected HI for each day is shown in Figure 3-8. From this figure,

it can be observed that the selected HI is varying at the beginning. However, when

more data are collected, the selected HI becomes constant. The constant selected HI

is the mean of the spectral kurtosis (HI6 in Table 3.1), which confirms the suitability
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Figure 3-7: Computed indicators using HIs of Table 3.1
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Figure 3-8: Dynamic HI selection
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of spectral kurtosis based features for the health monitoring of the wind turbine shaft

bearing (Saidi et al. 2017).

When the best HI is selected according to the selection criterion, the degradation

evolution is predicted using the adaptive GLM model until the failure. Then, the RUL

is computed. The predicted RUL using the proposed approach (dynamic HI selection)

is shown in Figure 3-9d, it has an accuracy of 𝐶𝑅𝐴 = 0.504, and it can be seen that

the RUL estimation becomes more accurate with time. This is thanks to the dynamic

HI selection and the adaptive GLM model that updates the model parameters with

every new observation. The predicted RUL using the proposed approach is compared

with the RUL estimation when using a predefined feature (without using dynamic

(a) Predicted RUL using predefined HI1 (b) Predicted RUL using predefined HI6

(c) Predicted RUL using predefined HI2 (d) Predicted RUL using dynamic HI selection

Figure 3-9: RUL prediction comparison when using predefined HI and dynamic HI
selection
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HI selection). It can be observed that the RUL estimation accuracy by using the

HI1=RMS is very low (see Figure 3-9a), and the accuracy when using the HI6=SK-

mean (𝐶𝑅𝐴 = 0.449), which is slightly lower than using the dynamic HI selection

as shown in Figure 3-9b. The time domain kurtosis HI2 shows a slightly better

accuracy (𝐶𝑅𝐴 = 0.572) than the dynamic HI selection (as illustrated in Figure 3-

9c). However, the best HI cannot be predefined in blind RUL estimation (when no a

priori sequences are available). Hence, our proposed approach using the dynamic HI

selection can overcome this issue.

3.4 Experimentation using data of a faulty rolling

bearing

3.4.1 Faulty bearing model presentation

Rolling bearings are commonly used in rotating machinery that permit the rotation

of the shaft in the machinery. The main parts of the rolling bearing consist of (see

Figure 3-10): the outer race, the inner race, and the bearing balls.

Outer
race

Inner
race

Defect at
outer race

Bearing
balls

Figure 3-10: Main elements of the rolling bearing

In order to validate the proposed approach, a mathematical model representing the

bearing vibratory signature within outer race defect 𝑥𝐵𝑃𝐹𝑂 (Ball Pass Frequency outer

(BPFO)), and inner race defect 𝑥𝐵𝑃𝐹𝐼 (Ball Pass Frequency Inner (BPFI)) is used

(McFadden et al. 1984; Antoni 2007). This model describes the impact produced by
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the outer (inner) race fault at each passage of a rolling element at time 𝑡. 𝑓𝐵𝑃𝐹𝑂 and

𝑓𝐵𝑃𝐹𝐼 are the ball pass frequencies for the outer race and the inner race, respectively.

Table 3.4: Bearing dimensions

𝐷 Outer diameter 62𝑚𝑚

𝑑 Inner diameter 30𝑚𝑚

𝐷𝑚 Pitch diameter 46𝑚𝑚

𝑛𝑏 Number of balls 9

𝑑𝑏𝑎𝑙𝑙 Ball diameter 9.525𝑚𝑚

𝑚 Modulation index 0.7

𝑓0 Sampling frequency 51.2𝑘𝐻𝑧

𝛼 Angle 0∘

The simulated bearing dimensions are listed in Table 3.4. The model described

in Eq. (3.15)-(3.19) is based on the bearing dimensions, and on five parameters that

can influence the vibratory signature: amplitude 𝐴, rotational speed 𝑓𝑟, damping

factor 𝜇, amplitude of the noise signal 𝑏(𝑡), and modulation shock signal 𝑚𝑐. The

generated signal window contains 𝑁 = 16348 samples with a sampling frequency of

𝑓0 = 51.2𝑘𝐻𝑧.

𝑥𝐵𝑃𝐹𝑂(𝑡) =
𝑁∑︁
𝑘=1

𝐴.𝑒𝑥𝑝

(︂
−2𝜋𝜇𝑓0

(︂
𝑡− 𝑘

𝑓𝐵𝑃𝐹𝑂

)︂)︂
.𝑠𝑖𝑛

(︂
2𝜋𝑓0

(︂
𝑡− 𝑘

𝑓𝐵𝑃𝐹𝑂

)︂)︂
+ 𝑏(𝑡)

(3.15)

𝑓𝐵𝑃𝐹𝑂 =
𝑛𝑏

2
𝑓𝑟

(︂
1 +

𝑑𝑏𝑎𝑙𝑙
𝐷𝑚

.𝑐𝑜𝑠(𝛼)

)︂
(3.16)

𝑥𝐵𝑃𝐹𝐼(𝑡) =

𝑁∑︁
𝑘=1

𝐴.𝑚𝑐.𝑒𝑥𝑝

(︂
−2𝜋𝜇𝑓0

(︂
𝑡− 𝑘

𝑓𝐵𝑃𝐹𝐼

)︂)︂
.𝑠𝑖𝑛

(︂
2𝜋𝑓0

(︂
𝑡− 𝑘

𝑓𝐵𝑃𝐹𝐼

)︂)︂
+ 𝑏(𝑡)

(3.17)

𝑓𝐵𝑃𝐹𝐼 =
𝑛𝑏

2
𝑓𝑟

(︂
1− 𝑑𝑏𝑎𝑙𝑙

𝐷𝑚
.𝑐𝑜𝑠(𝛼)

)︂
(3.18)

𝑚𝑐 = 1 +𝑚.𝑐𝑜𝑠(2𝜋𝑓𝑟𝑡) (3.19)
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The generated signatures for the inner/outer race fault are shown in Figure 3-11.

Outer race fault is characterized by a constant amplitude modulation, while inner

race fault is characterized by a periodic amplitude modulation.
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Figure 3-11: Generated fault signatures for the inner and outer race.

3.4.2 Fault sequences generation

By using the faulty bearing model described in the previous subsection, the amplitude

𝐴 of the vibration signature is increased in an exponential manner, since the degrada-

tion evolution of bearings shows an exponential growth (Gebraeel et al. 2004). Thus,

for each signal window (showed in Figure 3-11), the amplitude 𝐴 is modified. The

incipient degradation starts at the first signal window, where the failure is reached at

the last signal window. In the next, the term "time cycle" is used instead of "signal

window". The generated bearing degradation data are available online (Abid et al.

2020).

For each fault mode (inner or outer race fault), twenty sequences are generated to

validate our proposed approach (see Table 3.5). Five degradation speeds are simulated
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Table 3.5: Generated degradation sequences

Outer/Inner race fault
sequence # Degradation speeds Time cycle length

1

Very fast 302
3
4
5

Fast 506
7
8
9

Medium 6510
11
12
13

Slow 8014
15
16
17

Very slow 10018
19
20

(very fast, fast, medium, slow, and very slow). For each degradation speed, four

sequences are generated with a variability of ±5% on the condition parameters (the

five parameters cited in the previous subsection). The latter are varied to simulate the

variability of the operating conditions that affect the component in reality. In order

to train the OCSVM model, a sequence of normal operating data is also generated.

3.4.3 Results and discussion

Degradation detection and isolation

The features predefined in the library are computed for each time cycle (signal win-

dow). The OCSVM model is trained offline using the normal operating data in order

to construct a boundary on the normal data. For a new collected signal, features

are computed for each time cycle and then fed to the OCSVM model to predict the

OCSVM score. The degradation is detected when the corrected OCSVM score is

below the boundary (score=0). Figure 3-13 shows the degradation detection for the

sequence #9 (sequence with a medium degradation speed). This sequence is used to

illustrate the application of the proposed approach to the generated bearings scenar-
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Figure 3-12: Examples of generated sequences with several degradation speeds.

ios.

Fault isolation starts when the degradation is detected, and the isolation feature

(the median of the distance between each two successive harmonic peaks in the spec-

trum) is computed for each new window signal. Figure 3-14 shows the harmonics of

the signal in the frequency domain. The peaks of the harmonics greater than a peak

threshold (𝑃𝑡ℎ) are selected. 𝑃𝑡ℎ = 48 is selected using 𝜇 + 3.𝜎 rule on the peaks of

the normal operating signal (𝜇 is the mean and 𝜎 is the STD of the normal signal

peaks), then the frequency distances between the peaks are computed. In order to

isolate the fault, the median of the computed frequency distances is compared with

the bearing defects frequencies 𝑓𝐵𝑃𝐹𝑂 = 59.47𝐻𝑧 and 𝑓𝐵𝑃𝐹𝐼 = 90.52𝐻𝑧, which are

computed offline using the mechanical characteristics of the bearing by applying Eq.

(3.16) and Eq. (3.18). For each new window the 𝑑𝑖𝑠𝑡𝑚𝑒𝑑 is computed, the fault is then

isolated when it is within the defect frequency boundary ±10% (𝑓𝑑𝑒𝑓𝑒𝑐𝑡 ± 0.1.𝑓𝑑𝑒𝑓𝑒𝑐𝑡).

Degradation detection and fault isolation time results are presented in Table 3.6.

It can be seen that the detection time is correlated with the degradation speed,

because when the degradation is slow, it is difficult to detect the fault early. Then,
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Figure 3-13: Degradation detection for sequence 9.

when the detection time percent is computed (i.e., the ratio of detection time to the

sequence length), it can be seen that the detection percent is almost the same for

all the sequence (around 35%), which means that the degradation is detected in the

35% of the sequence length. A delay is observed between detection time and isolation

time due to the difficulty to observe the peaks in the frequency domain when the

degradation amplitude is low, which is due to the effect of noise on the signal.

RUL estimation using the blind path

When no a priori sequences are available, the blind path is triggered. The degradation

isolation triggers the dynamic HI selection and RUL estimation steps. The collected

data starting from the degradation detection can be used to start fitting the model

for the RUL estimation. As mentioned in subsection 3.2.3, in this path, the HI is

dynamically selected among the different features available in the library by using

the selection criterion defined in Eq. (3.6) (goodness of fit by the GLM). Figure 3-15

shows the different HIs selected for the sequence #9 with outer race fault at each

time index from the isolation time cycle until the failure. Then, the selected HI at

each time cycle is used for RUL estimation.
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Figure 3-14: Example of computation of the distance between peaks
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Figure 3-15: Online selected HIs for sequence #9.

The estimated RUL for the sequence #9 is presented in Figure 3-16. It shows

the predicted RUL, actual RUL, and 𝛼 = 0.3 boundary, which allows the deviation

of 30% from the true RUL at each time. It can be seen that the RUL becomes

more accurate over time, this is due to our adaptive model that is updated with each

new collected sample. The RUL estimation accuracies using all the generated fault
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Figure 3-16: RUL estimation for sequence #9 with outer race fault using the blind
path.

Table 3.6: Blind path RUL accuracies of the sequences with outer race fault

Sequence
#

Detection
time

isolation
time

Detection
percent (%)

Fault
type

Accuracy
(Blind)

1 10 15 33.3 BPFO 0.694
2 11 15 36.6 BPFO 0.703
3 11 16 36.6 BPFO 0.661
4 11 13 36.6 BPFO 0.698
5 19 23 38.0 BPFO 0.655
6 17 23 34.0 BPFO 0.661
7 17 23 34.0 BPFO 0.670
8 18 22 36.0 BPFO 0.692
9 22 27 33.8 BPFO 0.633
10 24 29 36.9 BPFO 0.687
11 23 27 35.3 BPFO 0.591
12 21 30 32.3 BPFO 0.745
13 27 36 33.7 BPFO 0.614
14 24 34 30.0 BPFO 0.680
15 28 37 35.0 BPFO 0.609
16 28 37 35.0 BPFO 0.741
17 38 45 38.0 BPFO 0.616
18 36 42 36.0 BPFO 0.606
19 37 46 37.0 BPFO 0.660
20 36 42 36.0 BPFO 0.633

sequences for the outer race fault with the blind path are presented in Table 3.6. The

overall accuracy for the blind path is 0.662, which is computed with the mean of the

last column of Table 3.6. This RUL estimation accuracy is suitable because the RUL

is estimated in a blind manner without a priori degradation data. This accuracy is

compared in the next subsection when there are few historical degradation data.
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RUL estimation using the informed path

When few run-to-failure sequences are stored offline, the HI-model pairs are selected

offline by computing the RUL accuracy using different combinations HI-model. The

tested HIs are the features defined in the feature library. The used models are the

widely used extrapolation based models for bearing degradation modelling: Model1 :

GLM (Abid et al. 2019), Model2 : quadratic regression (Ahmad et al. 2017), Model3

: exponential model (Gebraeel et al. 2004), and Model4 : double exponential model

(Jin et al. 2016; L. Guo et al. 2017). The accuracy defined in Eq. (3.8), (3.9), (3.10),

and (3.11) is calculated for each HI-model pairs, then the pairs with an accuracy

greater than a threshold are selected. The threshold selected is the overall accuracy

of the blind path in order to choose HI-model pairs that yield RUL accuracy greater

than the blind path accuracy (0.662). Thus, all the HI-model pairs greater than 0.662

are selected.

The corresponding weight for each HI-model combination is calculated using Eq.

(3.13). An example of the computed accuracies offline using different models and

different HIs is presented in Table 3.7, where the bold numbers represent the accu-

racies greater than the threshold (0.622). When the error of prediction is very high,

the CRA accuracy (see Eq. (3.9)) value becomes negative. Hence, the accuracies

with negative values are substituted by zero. From Table 3.7, it can be seen that

Table 3.7: Example of HI-model pairs selection

Model1
GLM

Model2
Quad Reg

Model3
Exp

Model4
Double Exp

HI1 0.067 0.000 0.358 0.000
HI2 0.145 0.000 0.181 0.000
HI3 0.552 0.000 0.566 0.000
HI4 0.000 0.000 0.194 0.000
HI5 0.000 0.000 0.000 0.000
HI6 0.000 0.000 0.000 0.000
HI7 0.752 0.059 0.773 0.000
HI8 0.064 0.000 0.355 0.000
HI9 0.476 0.461 0.650 0.714
HI10 0.287 0.616 0.411 0.178
HI11 0.256 0.628 0.274 0.214
HI12 0.256 0.754 0.332 0.282
HI13 0.616 0.364 0.768 0.424
HI14 0.226 0.814 0.362 0.165
HI15 0.259 0.870 0.398 0.216
HI16 0.291 0.013 0.576 0.000
HI17 0.000 0.000 0.000 0.000
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the HI-model pairs with a high accuracy are HI15-model2, HI14-model2, HI7-model3,

HI13-model3, HI12-model2, HI7-model1, and HI9-model4. These HI-model pairs are

selected, and their corresponding weights are calculated as a function of the accuracy,

the parameter 𝛾 has been chosen empirically (𝛾 = 8), where more important weights

are given to the pairs with high accuracy as shown in Table 3.8.

Table 3.8: Example of selected HI-model and corresponding weights

Rank HI Model Accuracy Weight

1 15 2 0.870 0.314
2 14 2 0.814 0.185
3 7 3 0.773 0.122
4 13 3 0.768 0.116
5 12 2 0.754 0.100
6 7 1 0.752 0.098
7 9 4 0.714 0.064

When the informed path is triggered in the online phase, different RULs are pre-

dicted using the selected HI-model pairs. After that, the computed RULs are merged

using a weighted sum as defined in Eq. (3.14) to predict the final RUL. It is worth

mentioning that the extrapolation model parameters are updated with each new time

cycle, which allows the adaptability of our proposed approach to the different degra-

dation speeds. In the aim to validate the proposed approach for the informed path,

the RUL is predicted for all the sequences in the scenario (20 sequences) using as a

priori different number and combinations of the available sequences, where the num-

ber of available a priori sequence is from zero (blind) to six sequences. In order to

show the robustness of the proposed method, 20 combinations of a priori sequences

are selected randomly for two until six sequences. The goal is twofold: observing the

improvement of the RUL accuracy estimation with the number of available degrada-

tion sequences, and highlighting the interest of the use of the best HI-model pairs

when the degradation dynamics (speed) of a new sequence is significantly different of

the one in the available degradation sequences.

Each accuracy table is computed for a specific number of a priori degradation

sequences (i.e., from 1 to 6). As an example Table 3.9 shows CRA for each incoming

sequence (from 1 to 20) for different combinations of 3 a priori sequence (selected
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Table 3.9: RUL estimation accuracy for the outer race fault with 3 a priori sequences

Randomly selected a priori sequences (3 sequences)

Incoming
sequences

5 7 3 5 10 11 1 2 1 4 1 4 6 2 6 5 1 5 2 4
9 10 4 6 18 12 13 7 5 8 3 9 12 16 17 15 3 10 12 5
18 19 12 9 19 14 14 11 13 9 20 16 13 20 18 19 13 18 20 19

1 0.825 0.847 0.786 0.856 0.796 0.869 0.888 0.907 0.879 0.890 0.886 0.824 0.758 0.836 0.759 0.854 0.888 0.837 0.836 0.776
2 0.640 0.779 0.894 0.820 0.543 0.839 0.796 0.927 0.742 0.913 0.811 0.884 0.744 0.938 0.630 0.793 0.806 0.632 0.928 0.802
3 0.698 0.744 0.838 0.746 0.686 0.791 0.752 0.781 0.729 0.727 0.821 0.799 0.712 0.796 0.692 0.762 0.744 0.710 0.802 0.791
4 0.759 0.806 0.918 0.816 0.709 0.868 0.891 0.892 0.839 0.901 0.840 0.859 0.724 0.842 0.692 0.837 0.861 0.769 0.848 0.883
5 0.844 0.856 0.905 0.855 0.829 0.893 0.865 0.865 0.857 0.804 0.841 0.815 0.788 0.840 0.792 0.881 0.861 0.861 0.840 0.875
6 0.806 0.867 0.859 0.880 0.803 0.889 0.860 0.875 0.838 0.836 0.923 0.884 0.872 0.887 0.836 0.874 0.862 0.815 0.891 0.842
7 0.908 0.931 0.937 0.934 0.911 0.938 0.899 0.930 0.874 0.892 0.942 0.888 0.836 0.920 0.906 0.916 0.890 0.903 0.901 0.876
8 0.834 0.845 0.793 0.824 0.804 0.776 0.808 0.799 0.846 0.795 0.832 0.765 0.819 0.777 0.797 0.834 0.837 0.838 0.756 0.839
9 0.867 0.858 0.815 0.888 0.829 0.832 0.828 0.838 0.859 0.801 0.865 0.847 0.908 0.868 0.826 0.868 0.861 0.873 0.844 0.814
10 0.811 0.851 0.926 0.845 0.817 0.862 0.839 0.839 0.821 0.847 0.934 0.870 0.834 0.867 0.826 0.859 0.831 0.821 0.869 0.889
11 0.833 0.850 0.891 0.843 0.809 0.869 0.864 0.865 0.833 0.871 0.778 0.871 0.792 0.859 0.784 0.859 0.838 0.844 0.871 0.878
12 0.821 0.863 0.886 0.891 0.809 0.914 0.857 0.885 0.808 0.856 0.957 0.922 0.896 0.929 0.826 0.879 0.836 0.830 0.928 0.864
13 0.907 0.848 0.655 0.843 0.890 0.720 0.769 0.739 0.875 0.741 0.639 0.747 0.901 0.761 0.869 0.818 0.846 0.905 0.726 0.746
14 0.816 0.856 0.914 0.860 0.801 0.926 0.836 0.858 0.789 0.826 0.923 0.857 0.855 0.870 0.798 0.868 0.809 0.827 0.895 0.872
15 0.763 0.808 0.872 0.820 0.733 0.883 0.847 0.869 0.792 0.836 0.903 0.855 0.771 0.848 0.723 0.835 0.813 0.778 0.870 0.809
16 0.870 0.886 0.815 0.934 0.839 0.915 0.907 0.919 0.875 0.862 0.897 0.938 0.908 0.945 0.846 0.902 0.903 0.880 0.937 0.815
17 0.847 0.858 0.772 0.831 0.843 0.759 0.765 0.777 0.821 0.788 0.786 0.817 0.875 0.821 0.850 0.828 0.812 0.844 0.800 0.813
18 0.806 0.754 0.612 0.765 0.831 0.704 0.707 0.699 0.757 0.672 0.702 0.686 0.826 0.703 0.843 0.734 0.740 0.799 0.685 0.653
19 0.884 0.897 0.842 0.879 0.897 0.834 0.833 0.850 0.869 0.843 0.761 0.849 0.890 0.864 0.891 0.878 0.863 0.889 0.851 0.862
20 0.810 0.866 0.918 0.879 0.794 0.923 0.877 0.920 0.833 0.863 0.952 0.903 0.849 0.917 0.801 0.886 0.854 0.824 0.915 0.877

Table 3.10: RUL estimation accuracy for the outer race fault using the informed path
with different number of a priori sequences

Number of a priori sequences

Incoming
sequences

CRA
(1 seq)

CRA
(2 seqs)

CRA
(3 seqs)

CRA
(4 seqs)

CRA
(5 seqs)

CRA
(6 seqs)

1 0.718±0.173 0.811±0.099 0.840±0.045 0.855±0.068 0.853±0.050 0.860±0.035
2 0.728±0.134 0.807±0.077 0.793±0.112 0.844±0.078 0.846±0.082 0.826±0.080
3 0.783±0.087 0.782±0.044 0.756±0.045 0.770±0.037 0.765±0.033 0.754±0.025
4 0.667±0.249 0.782±0.179 0.828±0.066 0.853±0.088 0.862±0.055 0.848±0.053
5 0.700±0.367 0.800±0.167 0.848±0.031 0.838±0.123 0.860±0.031 0.858±0.018
6 0.820±0.080 0.862±0.037 0.860±0.031 0.863±0.024 0.861±0.022 0.865±0.015
7 0.870±0.065 0.905±0.027 0.906±0.026 0.921±0.017 0.913±0.023 0.920±0.016
8 0.743±0.140 0.804±0.041 0.811±0.028 0.804±0.027 0.804±0.025 0.808±0.022
9 0.831±0.097 0.856±0.049 0.849±0.027 0.840±0.036 0.843±0.036 0.852±0.032
10 0.762±0.172 0.820±0.118 0.853±0.033 0.848±0.026 0.851±0.026 0.847±0.018
11 0.692±0.282 0.790±0.150 0.845±0.032 0.833±0.105 0.858±0.019 0.856±0.017
12 0.797±0.149 0.853±0.088 0.873±0.043 0.871±0.042 0.881±0.027 0.886±0.017
13 0.681±0.215 0.744±0.122 0.797±0.083 0.754±0.105 0.774±0.074 0.796±0.065
14 0.720±0.253 0.809±0.135 0.853±0.041 0.844±0.081 0.870±0.039 0.865±0.025
15 0.718±0.192 0.804±0.079 0.821±0.050 0.832±0.057 0.839±0.035 0.835±0.031
16 0.804±0.169 0.872±0.086 0.890±0.039 0.885±0.071 0.898±0.036 0.912±0.026
17 0.780±0.093 0.801±0.051 0.815±0.033 0.788±0.044 0.791±0.045 0.801±0.041
18 0.688±0.125 0.715±0.045 0.734±0.063 0.708±0.045 0.716±0.056 0.732±0.047
19 0.749±0.248 0.816±0.123 0.861±0.031 0.832±0.098 0.852±0.021 0.859±0.023
20 0.820±0.090 0.882±0.041 0.873±0.045 0.886±0.032 0.886±0.032 0.882±0.025

Overall
accuracy 0.753±0.169 0.816±0.088 0.835±0.045 0.833±0.060 0.841±0.038 0.843±0.032

randomly). Then, the average and the standard deviation of each row of the accuracy

tables (such as in Table 3.9 for the case of 3 a priori sequence) is computed and shown

in Table 3.10.

The average is computed for those accuracy tables of accuracies with different a

priori sequences, from one a priori sequence until six a priori sequences. The columns

of Table 3.10 present the average and the standard deviations of the accuracy tables.
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For example, the average and the standard deviation of each row in Table 3.9 is

shown in the column (named CRA 3 seqs) of Table 3.10. The overall accuracy is

then computed as the average of each column of Table 3.10, it is computed with the

objective to show the overall accuracy improvement when more a priori sequences

are available. Table 3.10 shows that the overall accuracy is improved when more a

priori sequences are available. The computed accuracies when there are more than

six a priori sequences are not showed because for more than six a priori sequences,

no significant improvement in the RUL estimation accuracies is observed.

(a) Predicted RUL using available a priori
sequence #11

(b) Predicted RUL using available a priori
sequences #2, #7, and #11

(c) Predicted RUL using available a priori
sequences #3, #11, #14, #16, and #17

Figure 3-17: RUL prediction for the sequence #9 using different available a priori
sequences

In the aim to validate the robustness of the proposed approach, Table 3.10 presents
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as well the standard deviation (STD) of the accuracies. It can be seen that the overall

STD is decreasing when more a priori sequences are available, this confirms that the

proposed approach is more robust while having more a priori sequences.

Figure 3-17 shows the predicted and the true (actual) RUL for the sequence #9

using different number of a priori sequences. One sequence (#11) is used as a priori

in Figure 3-17a, three a priori sequences (#2, #7, and #11) are used in Figure 3-17b,

and five sequences (#3, #11, #14, #16, and #17) are used in Figure 3-17c. From

these figures, it can be observed that the RUL prediction accuracy is improved when

more a priori sequences are available.

Ensemble modelling allows the diversity exploitation of the different models that

can enhance the accuracy of prediction, which means that using several models is

better than the use of one model. In order to confirm this, the RUL is computed

using only the top best model in the selected HI-model pairs. For example, the RUL

is predicted using only the top best HI-model pair in Table 3.8. Thus, the RUL

is predicted using model2 = Quadratic Regression fitted by HI15 = SK-rms. The

validation is the same as for the proposed approach using an ensemble of models,

where the results are presented in Table 3.11. This table shows that the accuracy

using an ensemble of models is better than using only the top best model (one model).

Table 3.11 presents a comparison according to the overall RUL estimation accuracy

of a faulty bearing with an outer race fault.

Table 3.11: RUL overall accuracy comparison for the outer race fault

CRA
Blind

CRA
1seq

CRA
2seq

CRA
3seq

CRA
4seq

CRA
5seq

CRA
6seq

SVR - 0.366 0.529 0.575 0.634 0.655 0.675

LSTM - 0.316 0.586 0.698 0.767 0.831 0.852

Best HI-model 0.662 0.664 0.791 0.789 0.799 0.819 0.822

Proposed approach 0.662 0.753 0.816 0.835 0.833 0.841 0.843

The proposed approach using an ensemble of HI-model pairs is compared with us-

ing only the first best HI-model pair, and with two other methods: SVR and LSTM.

SVR has proven its effectiveness for RUL estimation of bearings (Benkedjouh et al.

2013; Saidi et al. 2017; Soualhi et al. 2014). It is a machine learning regression method
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Table 3.12: RUL overall accuracy comparison for the inner race fault

CRA
Blind

CRA
1seq

CRA
2seq

CRA
3seq

CRA
4seq

CRA
5seq

CRA
6seq

SVR - 0.344 0.517 0.567 0.660 0.683 0.692

LSTM - 0.316 0.583 0.671 0.744 0.817 0.815

Best HI-model 0.655 0.688 0.721 0.703 0.719 0.747 0.740

Proposed approach 0.655 0.738 0.776 0.754 0.786 0.797 0.793

modelling the relationship between the input and the output. It can predict the RUL

by mapping the HIs (input) directly to the RUL values (output). Unlike SVR that

predicts the RUL directly considering each time point independently, LSTM is a

recurrent neural network designed to learn the long term dependencies. It can re-

member information for long periods of time, it has been applied for RUL estimation

of lithium-ion batteries (Y. Zhang et al. 2018), aircraft turbofan engines (Wu et al.

2018), and bearings (B. Zhang et al. 2019). Table 3.11 indicates that the proposed

approach yields better results when few run-to-failure sequences are available in ad-

vance, comparing to SVR and LSTM. When more a priori degradation sequences are

available, LSTM outperforms the proposed approach. Table 3.12 presents compari-

son results for RUL estimation of faulty bearings with an inner race fault. As in the

previous table, it can be seen that the proposed method with the ensemble of mod-

els provides better accuracies when few a priori sequences are available. The results

confirm that the proposed approach is very efficient for RUL estimation dealing with

insufficient a priori sequences.

Figure 3-18 shows a comparison of the predicted RUL of sequence #9 using the

proposed approach, SVR, and LSTM. In Figure 3-18a and 3-18b, the RUL of sequence

#9 (medium speed) is predicted, by using a priori sequences with different degradation

speeds: #1 (very high speed) and #20 (very low speed). Comparing to the RUL

prediction using the proposed approach, the RUL predicted using SVR and LSTM is

very far from the true RUL. This can be explained by the fact that SVR and LSTM

are static models, the models are trained offline on sequences of run-to-failure data,

then the estimated models are used online for RUL prediction. Contrary to these

methods, the proposed approach is an adaptive approach by using an ensemble of
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adaptive models. Only the type of models and HIs are selected in the offline phase,

while in the online phase, the models are fitted and updated with each new time

cycle in order to estimate the RUL. However, when predicting RUL of sequence #9

using as a priori sequence #10 (see Figure 3-18c) with the same degradation speed

(medium speed), RUL’s prediction accuracy using SVR or LSTM is comparable to

the proposed ensemble approach.

(a) Predicted RUL using a priori sequence
with different speed (fast)

(b) Predicted RUL using a priori sequence
with different speed (slow)

(c) Predicted RUL using a priori sequence
with same speed (medium)

Figure 3-18: RUL prediction comparison for the sequence #9 with the proposed
approach, SVR, and LSTM
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3.5 Experimentation using degradation data of an

aircraft engine

3.5.1 Dataset presentation

The performance of the proposed approach is validated using a public dataset named

Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). The dataset

represents the damage propagation of an aircraft gas turbine engines. C-MAPSS

dataset is generated by NASA (Saxena et al. 2008b), this data have been widely used

to compare RUL prediction methods in the literature (Louen et al. 2013; Babu et al.

2016; Al-Dulaimi et al. 2019; C. Zheng et al. 2018; X. Li et al. 2018). The subdataset

FD001 is considered for this validation, which includes one type of fault and one mode

of operating conditions. This subdataset contains 100 run-to-failure sequences in the

training set, and 100 sequences for testing that stop at some time before failure. For

each sequence, there are 21 sensors measurements about the system conditions (e.g.,

temperature, pressure, and rotational speed).

In order to show the performance of our proposed approach, a degradation sce-

nario is considered for this dataset. The 100 sequences in the training set are sorted

according to their length. Then, three sequences are selected for the smallest length

(number 1, 2 and 3 after sorting), the largest length (number 98, 99 and 100 after

sorting), and the medium length (number 49, 50 and 51 after sorting). Hence, a

degradation scenario of 9 sequences is obtained with different speeds, as seen in Table

3.13.

3.5.2 Results and discussion

Data processing and features definition

First, some sensors are not selected from the 21 sensors in the dataset. The sensors #

1, 5, 6, 10, 16, 18, and 19 are discarded because their values remain unchanged during

operation, also sensors # 9 and 14 are discarded because of their strong variation.

Hence, sensors measurements # 2, 3, 4, 7, 8, 11, 12, 13, 15, 17, 20, and 21 are selected
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Table 3.13: Degradation scenario

Sequence # Degradation speed Time cycle length
1

Fast
128

2 135
3 137
4

Medium
198

5 199
6 199
7

Slow
336

8 341
9 362

and presented in Figure 3-19.
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Figure 3-19: Selected sensor values for the sequence #4

Then, a moving mean is applied in order to smooth the sensors’ values and to

remove the noise, and the sensors that exhibit a negative exponential trend are flipped

in order to obtain a positive exponential trend for all the sensor values. The features

library (HI library) contains the preprocessed raw measurements of the sensors, and

is presented in Table 3.14.
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Table 3.14: Features library for the C-MAPSS dataset

HI index HI1 HI2 HI3 HI4 HI5 HI6 HI7 HI8 HI9 HI10 HI11 HI12
Sensor S2 S3 S4 S7 S8 S11 S12 S13 S15 S17 S20 S21

Table 3.15: Degradation scenarios

Sequence N Degradation speed Accuracy
(Blind)

1
Fast

0.502
2 0.463
3 0.431
4

Medium
0.608

5 0.515
6 0.546
7

Slow
0.668

8 0.687
9 0.612

Mean 0.559

RUL estimation using the blind path

In this dataset, there is no need to detect the fault, since the degradation sequences

are run-to-failure data which mean that the degradation starts with the beginning of

the sequence. When no a priori sequences are available, the blind path is triggered.

In the blind path, the best HI is selected dynamically among the available HIs in the

features library, where the selection is achieved using the selection criterion presented

in Eq. (3.6). An example of dynamically selected HIs for sequence #4 is presented

in Figure 3-20a, it can be observed that the selected HI changes over time. The

corresponding predicted RUL is shown in Figure 3-20b, where it can be seen that the

RUL is less accurate at the beginning of the degradation, and then it becomes more

precise when approaching the failure. This is thanks to the selection of the best HI

by using the dynamic HI selection, also thanks to the adaptive GLM model that can

be updated with each new collected data point.

The RUL estimation accuracies for all the sequences using the blind path are

presented in Table 3.15. The mean of computed RUL estimation accuracies is around

0.559, this estimation accuracy is suitable, knowing that the prediction is achieved in

a blind manner. This results using the blind path will be compared next when having
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(a) Online selected HI for sequence #4

(b) RUL estimation using the blind path for sequence #4

Figure 3-20: Example of RUL estimation using the blind path

more available a priori sequences.

RUL estimation using the informed path

When some a priori sequences are available, the HI-model pairs that give a good

CRA accuracy greater than a predefined threshold, are selected. The available HIs
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in the features library (Table 3.14) are employed with each of the four extrapolation

based models used previously: Model1 : GLM, Model2 : quadratic regression, Model3

: exponential model, and Model4 : double exponential model. In offline, the HI-

model pairs that show better accuracy than the threshold of 0.559 are selected. The

threshold is the average of accuracy for the blind path in order to select the HI-

model pairs that give better performance than the blind path. The RUL can be

predicted using all the HI-model combinations by assigning a weight near to zero to

the combinations with low accuracy, since the weights are computed according to the

CRA accuracy in an exponential manner (see Eq. (3.13)). However, using all the

combinations can lead to high computation time, for this reason, setting a threshold

in order to select only the best HI-model pairs is necessary to reduce the computation

time. In online, several RULs are estimated for a new incoming sequence using the

selected HI-model pairs, while the final RUL is computed using the weighted mean

presented in Eq. (3.14).

In order to validate our proposed approach with the informed path, the RUL is

predicted for all the nine sequences describing the degradation scenarios in Table 3.13.

When only one a priori sequence is available, the RUL is predicted for each sequence

as presented in Table 3.16. Table 3.16 presents the CRAs for the RUL estimation of

the sequences in the scenario using one a priori sequence. It can be observed that the

diagonal CRAs in the table are the highest because the RUL is estimated for each

sequence using as a priori the same sequence. When two and three a priori sequences

are available, sequences are added randomly to the a priori sequence as shown in

Table 3.17 and Table 3.18, respectively. From these tables, it can be seen that the

accuracies are slightly improved. The improvement in accuracy when more a priori

sequences are collected can be shown by computing the average of each table row

(predicted sequence).

Table 3.19 shows the average accuracies of each row and the overall accuracy

for each number of a priori sequence. From Table 3.19, the accuracy improvement

when using more a priori sequence can be seen in the overall accuracy. Moreover,

the standard deviation is computed for each row in order to show the robustness of
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Table 3.16: RUL estimation accuracies (CRAs) for the degradation scenarios with
one a priori sequence

A priori sequences (1 sequence)
S1 S2 S3 S4 S5 S6 S7 S8 S9

P
re

di
ct

ed
se

qu
en

ce
s S1 0.863 0.794 0.624 0.727 0.589 0.773 0.735 0.776 0.736

S2 0.796 0.812 0.698 0.717 0.616 0.787 0.741 0.715 0.659
S3 0.587 0.787 0.898 0.778 0.799 0.829 0.747 0.728 0.675
S4 0.63 0.757 0.722 0.855 0.842 0.865 0.864 0.726 0.775
S5 0.505 0 0.245 0.824 0.893 0.419 0.722 0.865 0.412
S6 0.821 0.883 0.607 0.733 0.654 0.805 0.709 0.67 0.718
S7 0.645 0.631 0.598 0.845 0.791 0.809 0.918 0.789 0.859
S8 0.601 0.664 0.405 0.5 0.685 0.595 0.672 0.86 0.503
S9 0.648 0.567 0.538 0.881 0.813 0.736 0.855 0.842 0.886

Table 3.17: RUL estimation accuracies (CRAs) for the degradation scenarios with
two a priori sequences

A priori sequences (2 sequences)
S3 S6 S5 S7 S4 S8 S9 S1 S2
S1 S2 S3 S4 S5 S6 S7 S8 S9

P
re

di
ct

ed
se

qu
en

ce
s S1 0.807 0.697 0.627 0.714 0.575 0.773 0.732 0.716 0.743

S2 0.782 0.79 0.588 0.692 0.617 0.734 0.685 0.792 0.712
S3 0.751 0.715 0.831 0.74 0.786 0.806 0.684 0.667 0.615
S4 0.821 0.792 0.829 0.866 0.876 0.764 0.841 0.83 0.809
S5 0.621 0.38 0.875 0.843 0.882 0.816 0.692 0.825 0.655
S6 0.717 0.778 0.669 0.682 0.647 0.718 0.705 0.675 0.718
S7 0.775 0.845 0.849 0.907 0.841 0.829 0.903 0.819 0.844
S8 0.691 0.735 0.704 0.648 0.651 0.848 0.575 0.862 0.616
S9 0.817 0.743 0.862 0.839 0.804 0.845 0.874 0.852 0.844

Table 3.18: RUL estimation accuracies (CRAs) for the degradation scenarios with
three a priori sequences

A priori sequences (3 sequences)
S2 S7 S4 S8 S1 S3 S5 S9 S6
S3 S6 S5 S7 S4 S8 S9 S1 S2
S1 S2 S3 S4 S5 S6 S7 S8 S9

P
re

di
ct

ed
se

qu
en

ce
s S1 0.839 0.754 0.615 0.734 0.697 0.736 0.678 0.715 0.716

S2 0.796 0.772 0.631 0.76 0.724 0.689 0.665 0.729 0.723
S3 0.775 0.696 0.813 0.73 0.704 0.777 0.796 0.675 0.625
S4 0.804 0.786 0.881 0.81 0.85 0.693 0.849 0.762 0.802
S5 0.261 0.519 0.874 0.754 0.853 0.815 0.863 0.85 0.657
S6 0.793 0.735 0.65 0.669 0.678 0.731 0.699 0.668 0.716
S7 0.638 0.879 0.87 0.891 0.854 0.809 0.87 0.798 0.839
S8 0.682 0.721 0.685 0.82 0.772 0.851 0.754 0.872 0.713
S9 0.743 0.793 0.833 0.852 0.851 0.879 0.858 0.869 0.849
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Table 3.19: Average of RUL estimation accuracies (CRAs) with different number of
a priori sequences

Number of a priori sequences
CRA
(1seq)

CRA
(2seq)

CRA
(3seq)

CRA
(4seq)

CRA
(5seq)

CRA
(6seq)

CRA
(7seq)

CRA
(8seq)

CRA
(9seq)

P
re

di
ct

ed
se

qu
en

ce
s S1 0.735+0.0842 0.709+0.0710 0.720+0.0604 0.722+0.0424 0.740+0.0371 0.745+0.0257 0.753+0.0164 0.752+0.0200 0.750+0

S2 0.727+0.0652 0.710+0.0738 0.721+0.0526 0.72+0.0328 0.714+0.0304 0.728+0.0293 0.734+0.0142 0.737+0.0195 0.747+0
S3 0.759+0.0898 0.733+0.0700 0.732+0.0625 0.703+0.0648 0.706+0.0736 0.695+0.0638 0.694+0.0397 0.696+0.0278 0.698+0
S4 0.782+0.0815 0.825+0.0347 0.804+0.0555 0.811+0.0412 0.819+0.0357 0.813+0.0292 0.817+0.0170 0.817+0.0143 0.818+0
S5 0.543+0.3070 0.732+0.1640 0.716+0.2070 0.818+0.0577 0.842+0.0290 0.844+0.0202 0.846+0.0103 0.844+0.0099 0.843+0
S6 0.733+0.0882 0.701+0.0383 0.704+0.0447 0.688+0.0157 0.687+0.0129 0.687+0.0185 0.688+0.0153 0.688+0.0094 0.685+0
S7 0.765+0.1130 0.846+0.0404 0.828+0.0778 0.845+0.0315 0.852+0.0284 0.846+0.0340 0.846+0.0240 0.846+0.0159 0.843+0
S8 0.610+0.1330 0.703+0.0981 0.763+0.0705 0.792+0.0657 0.801+0.0544 0.806+0.0411 0.814+0.0376 0.822+0.0309 0.838+0
S9 0.752+0.1360 0.831+0.0394 0.836+0.0426 0.855+0.0130 0.858+0.0108 0.856+0.0119 0.857+0.0087 0.859+0.0075 0.857+0

Overall
accuracy 0.712+0.1220 0.755+0.0699 0.758+0.0749 0.773+0.0405 0.780+0.0347 0.780+0.0304 0.783+0.0204 0.784+0.0173 0.787+0

prediction. It can be seen that the overall standard deviation is decreasing when

collecting more a priori sequences. Hence, our proposed approach can improve the

accuracy of prediction as well as the robustness when more a priori sequences are

available. The RUL estimation accuracy improvement is illustrated in Figure 3-21, it

can be observed that when collecting more a priori sequences, the RUL estimation is

improved. This is thanks to the proposed HI-model pairs selection that can update

the selected pairs in offline for each new stored sequence.

Table 3.20: Comparison of the RUL estimation overall accuracies

CRA
(Blind)

CRA
(1seq)

CRA
(2seq)

CRA
(3seq)

CRA
(4seq)

CRA
(5seq)

CRA
(6seq)

CRA
(7seq)

CRA
(8seq)

CRA
(9seq)

SVR - 0.167 0.325 0.408 0.498 0.559 0.620 0.663 0.702 0.742
LSTM - 0.362 0.448 0.540 0.615 0.657 0.749 0.794 0.851 0.912

Best HI-model 0.559 0.487 0.635 0.586 0.647 0.648 0.659 0.661 0.670 0.676
Proposed approach 0.559 0.712 0.755 0.758 0.773 0.780 0.780 0.783 0.784 0.787

Table 3.20 compares the overall accuracies of the RUL estimation using the pro-

posed approach, which uses a set of best HI-models, the top best HI-model, SVR,

and LSTM. SVR and LSTM are machine learning techniques that have shown their

effectiveness for the RUL estimation (Benkedjouh et al. 2013; Soualhi et al. 2014;

Y. Zhang et al. 2018; Wu et al. 2018). The proposed approach combines several

HI-model pairs for RUL estimation, and it is compared when using only the best

HI-model pair. Based on Table 3.20, it can be observed that the proposed approach

outperforms the other techniques when few a priori sequences are available, this is

thanks to the adaptability of our proposed approach and also to the combination of

several HI-model pairs. However, when several a priori sequences are available in
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(a) Predicted RUL using a priori sequence
#9

(b) Predicted RUL using a priori sequence
#9, #2, and #6

(c) Predicted RUL using a priori sequence
#9, #2, #6, #8, and #1

(d) Predicted RUL using a priori sequence
#9, #2, #6, #8, #1, #7, and #5

Figure 3-21: RUL prediction for sequence #5 using different available a priori se-
quences

offline (more than 6 sequences), the RUL estimation accuracy using our approach

converges while the LSTM outperforms the proposed approach.

Figure 3-22 shows the adaptability of our proposed approach compared with SVR

and LSTM methods. The RUL is estimated for sequence #4 which is a sequence with

a medium degradation speed, the RUL is estimated using as a priori one sequence

with different degradation speeds (i.e., fast, medium, and slow). It can be observed

that when the RUL is predicted using a priori sequence with a degradation speed

different from the predicted one, our approach has a good accuracy comparing with

SVR and LSTM that show a low accuracy. Our proposed approach can estimate the
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(a) Predicted RUL using a priori sequence with
different speed (fast)

(b) Predicted RUL using a priori sequence
with different speed (slow)

(c) Predicted RUL using a priori sequence with
same speed (medium)

Figure 3-22: RUL prediction for sequence #4 using a priori sequences with different
degradation speed

RUL with good accuracy even when the degradation speed of the a priori sequence is

different from the predicted one. This is thanks to the adaptability of our proposed

approach that combines different adaptive models. When the degradation speed of

the a priori sequence is similar to the new sequence, it can be seen that the LSTM

shows good accuracy for RUL estimation, SVR shows a low accuracy because CRA

accuracy penalizes more the errors of prediction near to the failure.
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3.6 Conclusion

In this chapter, a data-driven approach is proposed for RUL estimation dealing with

insufficient a priori run-to-failure sequences. Firstly, a blind case is considered, where

no a priori sequences are available, thus no a priori knowledge is available allowing

to guide the choice of the most suitable or efficient health indicators (HIs) to use. To

overcome this issue, the best HI is selected dynamically using a selection criterion for

each time cycle, this criterion indicates the degree to which a HI fits an extrapolation

model. After collecting some a priori run-to-failure sequences offline, the informed

path is triggered. In this path, the RUL is predicted using an ensemble of models

fitted with the corresponding HIs, where the final RUL is predicted using a weighted

mean. The HI-model pairs and their corresponding weights are determined offline.

The blind path of the proposed approach is validated using real vibration data

collected from a degraded shaft of a wind turbine. It showed promising results com-

pared to the use of predefined HIs. The blind and the informed paths of the proposed

approach are validated using degradation data of a rolling bearing and a turbofan

engine of an aircraft. In the degradation scenarios of these datasets, there are several

sequences with different degradation speeds. The proposed approach showed several

advantages. First, it exploits the diversity of the different models and HIs allowing

the improvement the RUL’s prediction accuracy. Second, the robustness of RUL pre-

diction for the new incoming sequences increases over time thanks to update of the

selected HI-model pairs by integrating the collected degradation data. This can be

seen through the decrease of the variation (STD) of the RUL’s predictions over time.

Third, the proposed approach showed better RUL prediction accuracy compared to

the well-known methods applied for RUL prediction: support vector machine and

long short term memory in particular when there are few available degradation data.

Finally, the proposed method can be adaptive to the different degradation speeds

because it uses an ensemble of different online adaptive models.

As demonstrated through the results of this chapter, RUL estimation using LSTM

outperformed our proposed approach when collecting an important number of a priori
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run-to-failure sequences. For this reason, a new data-driven approach based on the

use of deep learning models is proposed in the next chapter, which deals with the

case where multiple run-to-failure sequences are available.
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Chapter 4

Prognostic approach with multiple a

priori degradation sequences

4.1 Introduction

As we have seen in chapter 3, when there is no or few insufficient a priori run-to-failure

degradation sequences, the blind and the informed paths, respectively, are triggered

for the RUL estimation. In this case, the RUL is predicted in an indirect way, where

the HI is computed and extrapolated until reaching the failure threshold. The indirect

RUL estimation is efficient when there is insufficient a priori run-to-failure sequences.

On the other hand, when an important number of a priori sequences are available,

employing direct RUL estimation is suitable for efficient RUL estimation. Direct

RUL estimation has several advantages. Firstly, it is not necessary to understand

the operation of the system and its different operating modes, most of the data-

driven techniques applied to the direct RUL estimation (e.g., ANN) can handle the

variation of the operating modes in complex dynamic systems. Secondly, it is not

necessary to extract and select features in order to build a suitable health indicator

for extrapolation, the direct RUL estimation way maps the raw data collected from

sensors directly to the RUL. Finally, it is not necessary to predefine a failure threshold

for the RUL estimation, knowing that defining a failure threshold is challenging and

requires domain expertise.
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This chapter focuses on the case where multiple a priori run-to-failure sequences

are available. A new data-driven approach for direct RUL estimation is proposed

based on a deep ensemble method. The proposed approach combines the decisions

of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM)

models, which are kn won to be efficient methods for RUL estimation when several a

priori run-to-failure sequences are available. The proposed approach aims to improve

the reliability as well as the accuracy of the RUL prediction by exploiting the diversity

of CNN and LSTM models. It is validated using two datasets: the first dataset is

C-MAPSS used in chapter 3, which are degradation data collected from an aircraft

engine, the data are generated by the National Aeronautics and Space Administration

(NASA) and named C-MAPSS dataset (Saxena et al. 2008b). The second dataset

comprises degradation data collected from sensors in order to estimate the RUL of an

industrial filter system before clogging. These data are provided by the fifth European

PHM Society conference for the data challenge competition.

The chapter is organized as follows: section 4.2 presents the proposed approach for

RUL estimation. The experimentation and obtained results on the degraded aircraft

engine and the clogged filter datasets are presented sections 4.3 and 4.4, respectively.

Finally, section 4.5 ends the chapter with concluding remarks.

4.2 Proposed approach

The proposed approach, illustrated in Figure 4-1, includes two phases: an offline

phase for tuning and training the models and an online phase for estimating the RUL

from new incoming observations. In the offline phase (training phase), the historical

run-to-failure sequences are first preprocessed by selecting the significant input data

(sensors), normalizing, segmenting them into windows, and setting the true RUL of

these sequences (labels). After data preprocessing, different CNN and LSTM models

are trained in order to select the optimal hyperparameters by using k-fold cross-

validation. Then, the fusion weights are computed according to the performance of

the validation data. In the online phase (testing phase), the data are preprocessed as
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in the offline phase. Then, the RULs are predicted using CNN and LSTM models,

while the predicted RULs by each model are then merged using a weighted mean in

order to obtain the final RUL. In the next subsections, the data processing step is

explained, the CNN and LSTM models are described, and the decision fusion step is

presented.

Predict RUL
(CNN model)

Predict RUL
(LSTM model)

Final RUL fusion
(weighted mean)Incoming new data

Historical run-to-
failure sequences Data preprocessing

Hyperparameters
optimization
(CNN model)

Hyperparameters
optimization

(LSTM model)

Fusion weights
computation

Offline phase

Online phase

Data preprocessing

Figure 4-1: Proposed deep ensemble approach for RUL estimation

4.2.1 Data processing

When the data collected from sensors are acquired, they are first preprocessed before

starting the RUL estimation. The collected raw data from sensors are in different

ranges, this may lead to unequal weight computation in the deep neural network

(CNN and LSTM). Hence, the data are first normalized using z-score normalization,

which is computed as follow:

𝑁𝑜𝑟𝑚 (𝑥𝑠) =
𝑥𝑠 − 𝜇𝑠

𝜎𝑠

(4.1)

where 𝑁𝑜𝑟𝑚 (𝑥𝑠) represents the normalized values, 𝑥𝑠 are the values of the sensor

𝑠, 𝜇𝑠 is the mean and 𝜎𝑠 is the standard deviation of each sensor 𝑠.
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Figure 4-2: Sliding time window used as input

The normalized input data are then segmented using a time window as illustrated

in Figure 4-2, where the multiple sensors measurements with length 𝑁𝑓 are shown as

different features. A fixed length sliding time window of length 𝑁𝑡𝑤 is employed for

the segmentation of the consecutive data points. Hence, a two dimensional input is

obtained for each time cycle (𝑁𝑡𝑤 ×𝑁𝑓 ). In the training phase, this 2D input is fed

to the deep learning models while the output of the models is the true RUL.

4.2.2 RUL estimation using convolutional neural network

The convolutional neural network is developed mainly for computer vision by LeCun

et al. (1995), it is efficient for automatic feature extraction. The adopted CNN model

is a 1-dimensional CNN (1D CNN) that can handle time series signals. CNN consists

of several consecutive convolution layers for features extraction. In the convolution

layer, several filters are convolved with the input data in order to generate the features

map (as illustrated in Figure 4-3).

The convolution layer operation is represented as follow:

𝑓 = 𝜑(𝑈 * 𝑘 + 𝑏) (4.2)
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Figure 4-3: Illustration of 1D CNN operation

𝑘 represents the convolution filter, 𝑈 is the input data, and * is the convolution

operator, while 𝑏 is the bias term and 𝜑 represents a nonlinear activation function. 𝑓 is

the obtained features map which represents the learned features by sliding the multiple

filters on the input data. Deep CNN architecture has proven its efficiency for RUL

estimation (X. Li et al. 2018). The more the network is deep, the more the model can

learn high level representation of features. In the proposed CNN architecture, three

convolution layers are stacked for efficient features extraction. When the features

map is obtained, it is flattened into 1-dimensional shape, and fed to a fully connected

layer for RUL prediction as illustrated in Figure 4-4.

4.2.3 RUL estimation using long short term memory

Long short term memory is an advanced type of recurrent neural network (Hochreiter

et al. 1997), which has been successfully applied for speech recognition and natural

language processing. It is able to address the problem of capturing long term memory.

LSTM unit structure is shown in Figure 4-5. LSTM unit is composed of the hidden

state ℎ𝑡, the cell state 𝑐𝑡, and the three gates: forget gate, update gate, and output

gate that controls the flow of information in the unit. The forget gate 𝑓𝑡 controls the

information removal from the previous cell state 𝑐𝑡−1. The update gate 𝑢𝑡 controls
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Figure 4-4: Proposed CNN architecture for RUL estimation

the information addition to the current cell state 𝑐𝑡. The output gate 𝑜𝑡 controls the

information that will be carried to the current hidden state ℎ𝑡.
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Figure 4-5: Diagram of LSTM cell

The corresponding equations for the explained LSTM unit are presented as follows:

𝑓𝑡 = 𝜎(𝑊𝑓 [𝑥𝑡, ℎ𝑡−1] + 𝑏𝑓 ) (4.3)

𝑢𝑡 = 𝜎(𝑊𝑢[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑢) (4.4)
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𝑜𝑡 = 𝜎(𝑊𝑜[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑜) (4.5)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑐) (4.6)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑢𝑡 * 𝑐𝑡 (4.7)

ℎ𝑡 = 𝑜𝑡 * 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.8)

Where 𝑊𝑓 , 𝑊𝑢, 𝑊𝑜, and 𝑊𝑐 represent the corresponding weights to the forget

gate, update gate, output gate, and the cell state, respectively, while 𝑏𝑓 , 𝑏𝑢, 𝑏𝑜, and 𝑏𝑐

are their corresponding bias. The weights and bias are estimated during the training

phase. 𝑐 is the candidate cell state, 𝜎 represents the sigmoid activation function,

while 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function.

The proposed LSTM architecture is presented in Figure 4-6. It is a many to one

architecture where three LSTM layers are stacked in order to discover the underlying

patterns embedded in time series. 𝑥𝑡1, 𝑥𝑡2, 𝑥𝑡3..., 𝑥𝑡𝑛 are the input data points (𝑡1 is

the first time index of the segmented window while 𝑡𝑛 is the last index of the input

window) and 𝑅𝑈𝐿𝑡𝑛 is the predicted RUL for the input window.

x1

LSTM cell LSTM cell LSTM cell LSTM cell

LSTM cell LSTM cell LSTM cell LSTM cell

LSTM cell LSTM cell LSTM cell LSTM cell

x2 x3 xt

RULt

First	
LSTM	layer

Second
LSTM	layer

Third	
LSTM	layer

Figure 4-6: Proposed LSTM architecture for RUL estimation
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4.2.4 Remaining useful life fusion

In the online phase, the predicted RULs using the previously described CNN and

LSTM models are then aggregated using the weighted mean as illustrated in Figure

4-7.

RUL	fusion	
(Weighted	mean) Final	RULData	preprocessing

(in	a	time	window)

New	input	data RULcnn

RULlstm

Figure 4-7: Illustration of RUL fusion for a new input data

The weighted mean is applied in (Xia et al. 2020) for aggregating the predicted

RUL with different time windows. However, the weights are computed according

to the training errors, this may increase the weights of overfitted models (when the

training error is small whereas the test error is high). For this reason, in our proposed

ensemble approach, the weights are computed according to a validation error. This

is done by using the majority of training sequences to train the models, and the

remaining sequences are used as validation data for calculating the validation error.

The merged RUL is computed using the following equations:

𝑊𝑘 =
1

𝐸𝑟𝑟𝑉 𝑎𝑙𝑘∑︀𝑛𝑘

𝑘=1
1

𝐸𝑟𝑟𝑉 𝑎𝑙𝑘

(4.9)

𝑟𝑢𝑙(𝑡) =

𝑛𝑘∑︁
𝑘=1

𝑊𝑘.𝑟𝑢𝑙(𝑡)𝑘 (4.10)

Where 𝑟𝑢𝑙(𝑡) is the final RUL estimated at each time cycle 𝑡, 𝑟𝑢𝑙(𝑡)𝑘 is the RUL

estimated by the model 𝑘 at each time cycle, 𝑛𝑘 is the number of models (here 𝑛𝑘 = 2)
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and 𝑊𝑘 is the corresponding weight to each model. 𝐸𝑟𝑟𝑉 𝑎𝑙𝑘 represents the validation

RMSE errors for each model 𝑘.

A dropout is applied after the last layer of CNN and LSTM (Srivastava et al.

2014), which is a powerful regularization technique that randomly discards a subset of

neurons and their connections during training, it is applied to reduce data overfitting

when training deep learning models in order to enhance the model generalization.

The dropout probability is set to 0.5, which is an optimal probability value for a wide

range of networks and tasks (Srivastava et al. 2014).

4.3 Experimentation using data of a degraded air-

craft engine

4.3.1 Dataset presentation

The performance of the proposed approach is evaluated using the benchmark dataset

named Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). The

dataset represents the damage propagation of the aircraft gas turbine engines. C-

MAPSS dataset is generated by NASA (Saxena et al. 2008b), this data has been

widely used to compare RUL prediction methods in the literature (Louen et al. 2013;

Babu et al. 2016; Al-Dulaimi et al. 2019; C. Zheng et al. 2018; X. Li et al. 2018).

Table 4.1: C-MAPSS sub-datasets

Sub-datasets FD001 FD002 FD003 FD004
Training sequences 100 260 100 249
Testing sequences 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 2 2 2

This dataset is divided into four cases (or sub-datasets), where each case includes

several run-to-failure sequences (or trajectories) for training and for testing. The first

and third sub-datasets (FD001 and FD003) are generated under one operating con-

dition, FD001 includes one type of fault, while FD003 includes two fault types. The
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Table 4.2: C-MAPSS Data format

Column n# 1 2 3-5 6-26
Information Unit index Time cycle index Operating conditions Sensor values

second and fourth cases (FD002 and FD004) are generated under six operating condi-

tions (variation of three flight condition parameters: aircraft altitude, environmental

temperature, and aircraft speed). Table 4.1 summarizes the C-MAPSS sub-datasets

properties. The data format contains columns about: unit index, time cycle, three

operating conditions or flight conditions, and 21 sensors measurements about the sys-

tem conditions (e.g., temperature, pressure, and rotational speed), the data format

is shown in Table 4.2.

The training dataset contains run-to-failure sequences from healthy to failure,

while the test data contains sequences that stop at some time before failure. The goal

is to estimate the RUL of the test data until failure. Then, the predicted RUL should

be evaluated for all the engine units according to the true RUL which is provided in

the datasets. Two evaluation criteria are employed: RMSE (see Eq. (2.7)) and the

value of a scoring function defined in (Saxena et al. 2008b). The scoring function

penalizes more the overestimated RUL (if the predicted RUL is greater than the true

RUL), it is calculated as follows:

𝑆𝑐𝑜𝑟𝑒 =

⎧⎪⎨⎪⎩
∑︀𝑛𝑢

𝑢=1

(︁
𝑒

−𝑑(𝑢)
13 − 1

)︁
for 𝑑(𝑢) < 0∑︀𝑛𝑢

𝑢=1

(︁
𝑒

𝑑(𝑢)
10 − 1

)︁
for 𝑑(𝑢) ≥ 0

(4.11)

where 𝑛𝑢 is the total number of engine units in the test data, 𝑢 is the engine

unit’s index. 𝑑(𝑢) is the difference between the predicted and true RUL (𝑟𝑢𝑙(𝑢) −

𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑢)).

4.3.2 Results and discussion

In the training phase, the data are preprocessed before modeling. Firstly, the data

collected by sensors n# 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21 are selected

(𝑁𝑓 = 14), because the values of the discarded sensors remain unchanged during
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operation (as shown in Figure 4-8).
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Figure 4-8: Sensors measurement in FD001 sub-datasets

In addition to the selected sensors, the three operating condition (flight condition)

measurements are also selected for the cases FD002 and FD004 due to the variation

of the operating condition modes as illustrated in Figure 4-9.

In Figure 4-9, operating condition 1 refers to the altitude from sea level (103 ft),

operating condition 2 represents the mach number (a ratio of flow velocity to the

speed of sound), and operating condition 3 is the sea-level temperature (∘F). For

FD001 and FD003 there is only one mode of operating condition represented by the

red circle, where for FD002 and FD004 there are six different modes of operating

conditions represented by red and blue circles. This variation of operating condition

modes results in a variation of the sensor values, which may hide the observation

of the system degradation with time. Figure 4-10a represents the values of sensor

number #2 in the sub-datasets FD001, the degradation can be observed on the sensor

values which is monotonic and increase with time because there is only one mode of
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Figure 4-9: Different Operating condition modes for the C-MAPSS dataset

operating conditions. However, in Figure 4-10b which represents the values of sensor

number #2 in the sub-datasets FD002, the degradation evolution over time cannot

be observed due to the variation of the operating conditions, this may increase the

difficulty of RUL estimation.
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(b) Values of sensor #2 in FD002

Figure 4-10: Sensor #2 values under one (a) and six operating condition modes (b)

In general, the target RUL (true RUL) of a training set sequence should be in-

versely proportional to the time cycle. For the C-MAPSS datasets, a piece-wise linear
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function is proposed by (Heimes 2008) to rectify the training labels. When the train-

ing cycle is smaller than a predefined threshold, the true RUL is constant, and the

system is considered healthy in this case. Then, when the training cycle is greater

than the threshold, the target RUL starts decreasing (as illustrated in Figure 4-11).

According to the literature, the threshold is set to 125. This rectification is set because

the RUL should not decrease at the beginning of the degradation since the system

is always considered under healthy conditions. Also, this rectification will prevent

overestimating the RUL prediction (the evaluation score will be larger). We adopted

this rectification with the same setting in order to allow a suitable comparison in the

same conditions with the related works.
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Figure 4-11: Rectified true RUL

The input of the model is constructed using the sliding window, the length of

the time window (𝑁𝑡𝑤) should be large enough in order to include the maximum of

information. On the other side, the minimum running cycle length of the sequences in

the test data is 31 cycles, therefore the window length should be less than 31 cycles.

Time window of length 15 and 30 cycles are compared for RUL prediction accuracy

in (Al-Dulaimi et al. 2019), where the time window with a length of 30 cycles showed

better performance, hence for this work, the selected sensor values are normalized

using z-score normalization and then segmented using a time window with the length

of 𝑁𝑡𝑤 = 30 time cycles.
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For training, the RMSE is used as cost function, back-propagation learning is

utilized for the updates of the weights in the network using mini-batches. Adam

optimizer algorithm (Kingma et al. 2014) is used for training the two models. A

kernel size of 10 is adopted which is applied in (X. Li et al. 2018) and showed a good

performance on C-MAPSS data. An early stopping criterion is applied in order to

stop the training of the network. The training is stopped when the validation error

is not decreasing within 10 epochs (iterations). 5-fold cross validation is applied for

each model in order to choose the best hyperparameters (mini-batch size 𝐵𝑠, learning

rate 𝑙𝑟, filters number 𝐹 for CNN, and number of hidden units 𝐿 in LSTM).

Table 4.3 presents the average RMSE errors of the cross validation for the FD001

and FD003, while Table 4.4 presents the average RMSE errors of the cross validation

for the FD002 and FD004 (when having multiple operating condition modes). The

selected hyperparameters for each subdataset according to the average errors can be

seen in bold font.

Table 4.3: Hyperparameters selection for FD001 and FD003

CNN
hyperparameters

FD001 FD003 LSTM
hyperparameters

FD001 FD003
RMSE RMSE RMSE RMSE

Bs(512)F(32,32,32)lr(0.0001) 14.80 13.69 Bs(512)L(32,32,32)lr(0.0001) 50.75 48.87
Bs(512)F(64,64,64)lr(0.0001) 14.72 14.40 Bs(512)L(64,64,64)lr(0.0001) 23.92 17.66

Bs(512)F(64,64,64)lr(0.01) 16.10 16.75 Bs(512)L(32,32,32)lr(0.01) 13.82 13.67
Bs(512)F(32,32,32)lr(0.01) 16.43 16.88 Bs(512)L(64,64,64)lr(0.01) 41.85 41.62

Bs(128)F(64,64,64)lr(0.0001) 14.78 13.73 Bs(128)L(32,32,32)lr(0.0001) 15.88 15.11
Bs(128)F(64,64,64)lr(0.01) 17.52 19.17 Bs(128)L(32,32,32)lr(0.01) 21.15 15.15

Table 4.4: Hyperparameters selection for FD002 and FD004

CNN
hyperparameters

FD002 FD004 LSTM
hyperparameters

FD002 FD004
RMSE RMSE RMSE RMSE

Bs(512)F(16,16,16)lr(0.001) 23.03 24.86 Bs(512)F(16,16,16)lr(0.001) 18.04 18.86
Bs(512)F(16,16,16)lr(0.0001) 18.40 23.51 Bs(512)F(16,16,16)lr(0.0001) 41.52 40.39
Bs(128)F(16,16,16)lr(0.001) 23.64 25.11 Bs(128)F(16,16,16)lr(0.001) 17.81 18.68

Bs(128)F(16,16,16)lr(0.0001) 18.27 22.91 Bs(128)F(16,16,16)lr(0.0001) 17.85 19.05
Bs(128)F(32,32,32)lr(0.0001) 21.18 24.44 Bs(128)F(32,32,32)lr(0.001) 19.14 19.85
Bs(128)F(64,64,64)lr(0.0001) 21.13 24.37 Bs(128)F(64,64,64)lr(0.001) 19.47 22.28

Since neural networks learning is non convex, the models with the selected hyper-

parameters are trained 10 times, and the best models according to the validation are

selected, in this step, the training set is divided randomly 90% for training and 10%
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for validation. The RUL prediction accuracies for the test units by using the CNN

model, the LSTM model, and the deep ensemble method are presented in Table 4.5.

Table 4.5: Evaluation of the CNN, LSTM, and ensemble model

Model FD001 FD003 FD002 FD004
RMSE Score RMSE Score RMSE Score RMSE Score

CNN 13.42 227.20 13.43 266.28 27.64 11269.07 33.01 12058.89
LSTM 13.53 286.16 14.24 284.59 28.05 12322.89 30.02 9246.61

Ensemble
CNN-LSTM 12.61 218.68 13.17 244.28 27.44 11061.08 30.18 7418.26

The separated CNN and LSTM show a good RUL accuracy (RMSE and Score),

while the ensemble of CNN and LSTM reveals better accuracy than each separated

model. Figure 4-12 shows examples of predicted RUL for each subdataset, the se-

quences are taken from the validation data. The x-axis is the running time while

the y-axis is the RUL values. The blue line represents the rectified true RUL while

the red line represents the predicted RUL, it can be seen that the RUL prediction

is more accurate with time and becomes more precise near the failure. The figure

also shows that the RUL is well predicted even when there are different operating

condition modes in FD002 and FD004.

The RUL prediction results of the testing engine units for each subdataset are

presented in Figure 4-13. The true RULs of the testing units are sorted from small

to large in order to enhance the results visualization.

The x-axis represents the testing units, while the y-axis represents the RUL value

for each unit. It can be observed that the RUL prediction is more accurate when the

engine is near to failure (when the true RUL is small), this is because the degradation

is in a significant level and the information about the degradation can be seen in

the collected data. Hence, our method is able to capture this degradation level and

predict the RUL with high accuracy. Figure 4-13c and 4-13d present a suitable RUL

prediction accuracy even when there is a high variability of the operating condition

modes (six operating condition modes). Therefore, the proposed approach has proven

its efficiency to capture the variability of the different operating condition modes.

The efficiency of the ensemble deep method is shown in Figure 4-14. Figure 4-14b

is a zoom of Figure 4-14a for the test unit #60, it shows that the predicted RUL
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(a) RUL prediction example in FD001
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(b) RUL prediction example in FD003
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(c) RUL prediction example in FD002
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(d) RUL prediction example in FD004

Figure 4-12: RUL prediction examples for the validation sequences using the proposed
approach

using each separated model CNN and LSTM is far from the true RUL. However, the

proposed deep ensemble method shows a better RUL prediction closer to the true

RUL, this is performed thanks to the proposed fusion method where the predicted

RULs using each model are aggregated by using the weighted mean.

The performance of our proposed approach is compared with the state-of-the-

art prognostics approaches applied to the C-MAPSS dataset. Table 4.6 summarizes

the latest research results sorted in the ascending order of publication year. The

comparison is made in the same conditions, the rectified RUL is applied for the

training set, and not in the testing set (𝑁/𝐴 refers to the not available information).

The rectification is not applied for the test units means that the predicted RUL is

compared with the dashed line in Figure 4-13. From Table 4.6, it can be seen that
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(a) sorted RUL of test units in FD001
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(b) sorted RUL of test units in FD003
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(c) sorted RUL of test units in FD002
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(d) sorted RUL of test units in FD004

Figure 4-13: RUL prediction for the test units for all the subdatasets

recently deep learning models are widely applied and give better results compared to

the traditional machine learning models (SVM and MLP). It can also be observed

that the RMSE and scoring errors are lower for FD001 and FD003 than FD002 and

FD004, this is due to the viability of the operating condition modes in the latter two

subdatasets. Our proposed approach outperforms the other related works in terms of

accuracy (RMSE and Score are low) for the subdatasets FD001 and FD003, this can

confirm the suitability of exploiting the advantage of each model (CNN and LSTM)

by fusing their decision (RUL estimation).

However the other works have a slightly better performance for FD002 and FD004,

this is because we applied a rectification on the training set (RUL constant = 125),

but this rectification is not applied for the test set. There is a slight difference be-
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(a) Predicted RUL of test units in FD001
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(b) Predicted RUL for test unit #60

Figure 4-14: Predicted RUL for the test unit #60 in FD001

Table 4.6: Performance comparison with the related works on C-MAPSS dataset
(without applying rectification on the test set)

Method Year RUL constant
on train set

RUL constant
on test set

FD001 FD003 FD002 FD004
RMSE Score RMSE Score RMSE Score RMSE Score

SVM (Louen et al. 2013) 2013 Not applied Not applied 29.82 - - - - - - -
MLP (Lim et al. 2016) 2016 N/A Not applied 15.15 - - - - - - -
CNN (Babu et al. 2016) 2016 130 Not applied 18.44 1286.70 19.81 1596.20 30.29 13570 29.15 7886.4

LSTM (S. Zheng et al. 2017) 2017 130 Not applied 16.14 338 16.18 852 24.49 4450 28.17 5550
LSTM (Hsu et al. 2018) 2018 N/A Not applied 16.73 388.68 18.06 822.19 29.43 10654 28.39 6370

BLSTM (J. Zhang et al. 2018) 2018 130 Not applied 15.42 - - - - - - -
ELM (C. Zheng et al. 2018) 2018 125 Not applied 13.78 267.31 - - - - - -

CNN (X. Li et al. 2018) 2018 125 Not applied 13.32 - 14.02 - 24.86 - 29.44 -
Stacking ensemble (Singh et al. 2019) 2019 N/A Not applied 16.67 - 18.44 - 25.57 - 26.76 -
Hybrid CNN-BLSTM (Xia et al. 2020) 2020 130 Not applied 12.66 304.29 - - - - - -

Ensemble CNN-LSTM
(proposed approach) 2020 125 Not applied 12.61 218.68 13.17 244.28 27.44 11061.08 30.18 7418.26

tween the true and the rectified true RUL in the test set for the subdatasets FD001

and FD003, this is why our approach outperforms the other works. There is a sig-

nificant difference between the true and the rectified true RUL in the test set for

the subdatasets FD002 and FD004. Hence, this rectification of RUL constant = 125

applied in the literature for C-MAPSS can provide good results for the subdatasets

FD001 and FD003, but this constant RUL should be changed for the case of FD002

and FD004. It is worth mentioning that this rectification is applied only to com-

pare the results of our proposed approach with the related works (to be in the same

conditions).

Some works applied the RUL rectification to both the training and the test sets.

Table 4.7 compares the obtained results by applying the same conditions. The dif-

ference between the target RUL with and without rectification is shown in Figure
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4-13.

Table 4.7: Performance comparison with the related works on C-MAPSS dataset
(with applying rectification on the test set)

Method Year RUL constant
on train set

RUL constant
on test set

FD001 FD003 FD002 FD004
RMSE Score RMSE Score RMSE Score RMSE Score

BLSTM (J. Wang et al. 2018) 2018 125 125 13.65 295 13.74 317 23.18 4130 24.86 5430
CNN (X. Li et al. 2018) 2018 125 125 12.61 273.7 12.64 284.1 22.36 10412 23.31 12466

BHLSTM (Elsheikh et al. 2019) 2019 130 130 - 376.64 - 1422 - - - -
Hybrid CNN-LSTM (Al-Dulaimi et al. 2019) 2019 125 125 13.017 245 12.22 287.72 15.24 1282.42 18.156 1527.42

MS-DCNN (Han Li et al. 2020) 2020 125 125 11.44 196.22 11.67 241.89 19.35 3747 22.22 4844
Ensemble CNN-LSTM
(proposed approach) 2020 125 125 10.74 176.36 11.48 206.53 14.23 984.34 18.05 1478.70

From Table 4.7, it can be observed that the proposed deep ensemble approach

outperforms the other methods. In MS-DCNN (Han Li et al. 2020), a multi-scale

deep CNN is applied which uses an ensemble of CNN models with different time

window lengths. Our proposed approach has shown better performance than MS-

DCNN and other methods, due to combining models with different properties. This

is due to the fact that CNN can automatically extract relevant features, and LSTM

memorizes long term dependency between the data points. The proposed approach

is more efficient for RUL estimation than the hybrid CNN-LSTM (Al-Dulaimi et

al. 2019), because it shows better accuracy due to the decision fusion. Comparing

to the hybrid CNN-LSTM that predicts only one RUL, our proposed approach is

more reliable because two RULs are predicted with two different models. Finally, the

predicted RULs are merged in order to obtain the final RUL.

4.4 Experimentation using filter clogging dataset

4.4.1 Dataset presentation

In industry, particles filtration is a common process to achieve a desired level of

purification, the particles in the liquids may lead to performance drop and rapid wear

propagation of the mechanical systems. Filtration is an operation which separates the

suspended particles from the fluid by using a filtration unit named filter. The filter

clogging dataset (PHME 2020) is proposed for data challenge of the fifth European

conference of the Prognostics and Health Management Society. The experimental
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system for the filter clogging evolution is illustrated in Figure 4-15. It consists of a

filter, pump, liquid tanks, tank stirrer, pulsation dampener, pressure and flow rate

sensors, and a data acquisition system connected to a computer. The system is a

liquid circuit, where the pump flows the liquid from a tank to another through a

filter. The circuit includes a dampener in order to eliminate possible pulsations in

the flow. Three sensors are installed for instrumentation, two pressure transducers

sensors to measure the pressure before and after the filter, and a flow meter sensor

for flow rate measurement.

Figure 4-15: Experimental system of filter clogging

The filter has a pore mesh size of 125𝜇𝑚, as shown in Figure 4-16. The suspension

(liquid) is composed of Polyetheretherketone (PEEK) particles and water. The sus-

pension is created by adding particles with different size (small and large), the small

particles have a size of 45-53𝜇𝑚, while the large particles have a size of 63-75𝜇𝑚.

For each particles size, the experimentation is run with different suspension con-

centrations as illustrated in Table 4.8. The particles quantity is fixed (32g) while

the quantity of water in the suspension tank is changed. Consequently, the con-

centration of particles (solid ratio) is changed, the solid ratio is varied from 0.4%,

0.425%, 0.45%, and 0.475%. This is applied in order to obtain different filter clogging
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Figure 4-16: The filter used for the dataset

Table 4.8: Suspension details for generating the dataset

Concentration number
1 2 3 4

Water (g) in the suspension tank 7968 7497 7079 6704
Particles (g) 32 32 32 32

Solid ratio 0.004
0.4%

0.00425
0.425%

0.0045
0.45%

0.00475
0.475%

evolution (different degradation dynamics).

The experimentation is run 4 times with each concentration number. Hence, for

each particles size (small and large), 16 experimentation are achieved (16 run-to-

failure sequences are generated). The concentration numbers 1, 2, and 3 are used for

training, while the concentration number 4 is used for testing as shown in Table 4.9

and Table 4.10, the training set includes 24 run-to-failure sequences while the testing

set contains 8 run-to-failure sequences.

Table 4.9: Training set

Particles size Concentration number Solid ratio Number of sequences

Small
45-53

1 0.4 4
2 0.425 4
3 0.45 4

Large
63-75

1 0.4 4
2 0.425 4
3 0.45 4

The dataset is composed of the time index, the flow rate of the liquid, the pressure

before the filter (upstream pressure), and the pressure after the filter (downstream

pressure), the measurements are acquired at a frequency of 10Hz. The failure thresh-

old is set by computing the pressure drop, which is equal to upstream pressure –
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Table 4.10: Testing set

Particles size Concentration number Solid ratio Number of sequences
Small
45-53 4 0.475 4

Large
63-75 4 0.475 4

Table 4.11: Filter clogging data format

Column n# 1 2 3 4
Information Time index Flow rate Upstream pressure Downstream pressure

downstream pressure. The filter is considered clogged (failure) when the pressure

drop is higher than 20 psi (pound per square inch equivalent to 6894.76 Pascal). The

data format is presented in Table 4.11.

The objective of this application example is to compute the RUL from the starting

of the experiment (sequence). The RUL should be predicted every 1 second (every

10 samples), and the Mean Absolute Error (MAE) is used for the evaluation of the

predicted RUL (given as metric by the data challenge), which is computed as follow:

𝑀𝐴𝐸 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑡=1

|𝑟𝑢𝑙(𝑡)− 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙(𝑡)| (4.12)

where 𝑡 is the time index, and 𝑛𝑡 is the time of failure (end of the sequences).

𝑟𝑢𝑙(𝑡) is the predicted RUL and 𝑡𝑟𝑢𝑒_𝑟𝑢𝑙 is the true RUL.

4.4.2 Results and discussion

In the offline phase, the collected data from sensors are preprocessed before starting

the training. An example of the collected raw data is presented in Figure 4-17. The

figure presents the data collected from an experiment with small particles size and

concentration number 1 (solid ratio = 0.4%). The collected data is a run-to-failure

sequence from the healthy state until the clogging of the filter.

The collected data are sub-sampled by computing the mean for each 10 samples

(1 second) in order to obtain 1 sample for each second. This permits to compute a

large sliding window with few points. For example, a 10 seconds window contains
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Figure 4-17: Example of collected raw data for filter clogging

100 samples without sub-sampling and 10 samples with sub-sampling. In addition,

the computed mean will also smooth the collected data and remove the noises. Then,

the drop pressure is computed (pressure drop = upstream pressure - downstream

pressure) in order to set a failure threshold on the sequences (when the pressure

drop is higher than 20 psi). Figure 4-18 shows the example of collected raw data

after subsampling using the mean and after deleting the points that exceed the given

failure threshold.

The pressure drop for all the sequences (training and test sequences) is shown in

Figure 4-19, where the experiments with small particles size are presented in Figure

4-19a, and the experiments with large particles size are presented in Figure 4-19b.

The training sequences are represented with dark color, whereas the testing sequences

are represented with the lighter color. From the two figures, it can be observed that

the degradation evolution of the test sequences is faster than the train sequences, this

fast evolution is due to the concentration of the particles in the test sequences which

is higher than the train sequences. Therefore, the filter clogging is faster when more

particles are present in the liquid and also when the particles size are large.
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Figure 4-18: Example of preprocessed raw data
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Figure 4-19: Computed pressure drop for small and large particles

For the data challenge, the particles size and the concentration number can be used

as input. However, this information about the particles size and concentration number

should be known in advance. In the case where this information cannot be provided,

the RUL will be predicted using only the sensors data as input (flow rate, upstream

pressure, downstream pressure), as well as the pressure drop. Hence, the information

about the particles size and the concentration are not provided to the model as input.
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The selected inputs are then normalized using the z-score normalization (see equation

4.1), which are next reshaped using a sliding time window, as shown in Figure 4-2.

The true RUL (output) is also computed for the training set, which is inversely

proportional to the running time.

The goal is to predict the RUL as soon as possible from the start of the experiment

(sequence). Hence, the time window length should be small and contains sufficient

information for prediction. Figure 4-20 represents a zoom on the pressure drop feature

in order to observe the beginning of the degradation. The window length should be

small in order to start the RUL prediction as soon as possible and not large in order

to avoid prediction delay. As it can be seen in Figure 4-20, the drop pressure feature

is constant in the beginning for about 30 seconds, choosing a window smaller than 30

seconds is not useful because the predicted RUL will not be accurate (no variation on

the features), and choosing a time window larger than 30 seconds will add a delay for

starting the prediction. Hence the optimal time window length for this experiment is

30 seconds and it is chosen for the RUL estimation.
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Figure 4-20: Start of the sequences

For training, the mean absolute error is used as cost function (see Eq. (4.12)).
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Table 4.12: Cross validation results using different hyperparameters setting

CNN
hyperparameters MAE LSTM

hyperparameters MAE

Bs(128)F(32,32,32)lr(0.001) 14.16 Bs(128)F(32,32,32)lr(0.001) 14.61
Bs(128)F(128,128,128)lr(0.001) 14.55 Bs(128)F(64,64,64)lr(0.001) 13.16
Bs(512)F(32,32,32)lr(0.01) 12.78 Bs(128)F(128,128,128)lr(0.01) 48.54
Bs(512)F(32,32,32)lr(0.001) 16.43 Bs(128)F(128,128,128)lr(0.001) 11.78
Bs(512)F(64,64,64)lr(0.001) 18.66 Bs(512)F(128,128,128)lr(0.01) 46.20

Bs(512)F(128,128,128)lr(0.001) 17.70 Bs(512)F(128,128,128)lr(0.001) 16.34

Adam optimizer algorithm (Kingma et al. 2014) is used for training the two models

CNN and LSTM. An early stopping criterion is used in order to stop the training

when the validation error is not decreasing within 10 iterations. K-fold cross vali-

dation is applied in order to select the optimal model hyperparameters. The model

is trained using sequences generated with two concentration numbers and validated

using the third one (K=3), for example, the model is trained with the sequences

from concentration number 1 and 2 (0.4% and 0.425%), then it is validated using

the remaining sequences from concentration number 3 (0.45%) using the small and

large particles size. This is done in order to find the model that can be generalized

for different concentration numbers, knowing that the concentration number in the

test sequences is different from the training sequences. Table 4.12 shows the MAE

errors of RUL prediction with different combinations of hyperparameters induced by

the cross validation technique. The varied hyperparameters are mini-batch size 𝐵𝑠,

learning rate 𝑙𝑟, filters number 𝐹 for CNN, and hidden units number 𝐿 in LSTM. The

best hyperparameters combination according to the RUL prediction error are shown

in the table with bold font.

Table 4.13: Prediction errors using CNN, LSTM, and ensemble

Model MAE

CNN 6.98
LSTM 6.32

Ensemble CNN-LSTM 6.19

Table 4.13 shows the RUL prediction errors MAE for the testing sequences. It
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Figure 4-21: Predicted RUL for filter with small particles size in the test set

can be seen that the performance of the deep ensemble model is better than the

performance of each model (CNN and LSTM). This confirms the efficiency of using

an ensemble of models, which can improve the accuracy of the RUL prediction. Figure

4-21a shows the predicted RUL for the test set with small particles size, where the

predicted RUL shows a good accuracy comparing to the true RUL. Figure 4-21b

represents a zoom on the rectangle with dashed points, this figure shows that the

proposed ensemble method improves the performance of the RUL prediction, thanks

to the weighted mean fusion of the predicted RULs.

An example of RUL prediction for the filter with small and large particles is pre-

sented in Figure 4-22a and 4-22b, respectively. It can be observed that the predicted

RUL is less accurate at the beginning of prediction then it becomes more accurate

when it is near to the failure, this is because when the degradation is at a low level

(in the beginning) there no sufficient information in the features in order to predict

the RUL. However, when the degradation is at a high level (near failure), the infor-

mation about the degradation level can be seen on the features (a high variation on

the features amplitude). In Figure 4-22b, there is a high variation of RUL prediction

at the beginning of the sequence, this is due to an outlier of prediction caused by the

LSTM model.
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Figure 4-22: Examples of RUL prediction for the filter with small and large particles

4.5 Conclusion

In this chapter, a deep ensemble approach is proposed, which exploits the diversity

of two different deep learning models named Convolutional Neural Network (CNN)

and Long Short Term Memory (LSTM). CNN architecture can extract relevant in-

formation by applying several convolution filters on the raw data, while LSTM is

able to capture the temporal information in time series data. The proposed deep

ensemble approach for RUL estimation is validated using the well known C-MAPSS

dataset and has achieved promising performance compared with the state-of-the-art

results. It is also validated using a filter clogging dataset available through the PHM

Europe data challenge. The obtained results on this dataset showed a suitable RUL

prediction accuracy which becomes more precise when the degradation is closer to

the failure.

Since the reliability of prediction is necessary for the critical industrial systems,

the proposed deep ensemble approach can enhance the RUL prediction reliability by

fusing the prediction of two different models. The proposed approach has also shown

its ability to capture the variability of the different operating condition modes when

it is evaluated using the C-MAPSS experimentation (complex dynamic system with
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different operation modes). Finally, the proposed deep ensemble method for RUL

estimation has proven its efficiency demonstrated through the obtained results since

it improved the accuracy of RUL prediction.
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Chapter 5

General conclusion

5.1 Summary of the thesis

System failures can lead to high economic losses for industrial companies due to

reparation and downtime costs. Hence, it is necessary to apply an optimal main-

tenance strategy that can increase the reliability and availability of the industrial

systems while reducing the maintenance costs. The maintenance strategy evolved

from corrective, preventive, to predictive maintenance strategy (PHM strategy). The

predictive maintenance strategy is efficient since it can overcome the limits of the two

other strategies by triggering maintenance actions depending on the health conditions

of the system. Generally, the pipeline of the PHM strategy includes five steps: data

acquisition, data processing, fault diagnostics, fault prognostics, and decision support

(health management). Fault prognostics is one of the main steps for achieving PHM

strategy, it aims to estimate the Remaining Useful Life (RUL) before failure. It can

help to plan the maintenance actions in advance before failure occurrence in order to

avoid systems downtime and reduce the revenue losses.

Fault prognostics can be achieved using experience based (reliability and similar-

ity), model based, or data-driven approaches. The latter present the best trade-off in

terms of precision, implementation, and cost. Fault prognostics based on data-driven

approaches requires sufficient historical degradation sequences covering all degrada-

tion dynamic evolution and conditions in order to construct a model that can achieve
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a desirable RUL estimation accuracy. Different approaches are proposed in the litera-

ture for RUL estimation when multiple historical degradation sequences are available

(Heimes 2008; Medjaher et al. 2012; Soualhi et al. 2014; X. Li et al. 2018). In indus-

trial systems, a large quantity of data can be available about the normal operation

conditions of the system, while the historical degradation data of the system are of-

ten unavailable (e.g., new machines) or insufficient (i.e., few sequences are available).

Due to the lack of a priori run-to-failure sequences, several challenges need to be

addressed:

∙ Estimate RUL without any a priori degradation data is challenging. How could

online HI selection method be developed to improve this selection over time

thanks to the new incoming degradation data? and how to predict its evolution

over time until the failure?

∙ RUL estimation is still difficult when only a few a priori sequences about the

degradation that do not cover all degradation dynamic evolution and conditions

are available. How could those available degradation sequences be used to

improve the accuracy of RUL estimation?

∙ After collecting several a priori degradation sequences offline, how could the

RUL prediction be more accurate? and how to predict the RUL when the

system switches between different operating condition modes?

In this manuscript, three data-driven approaches are proposed for achieving fault

prognostics. The first two proposed approach aims at predicting the RUL when a pri-

ori degradation sequences are insufficient (without and with few a priori sequences).

The third approach aims at predicting the RUL when multiple a priori degradation

sequences are available. The proposed approaches permit to address the aforemen-

tioned challenges by using three RUL estimations paths depending on the quantity

of historical degradation data:

∙ The blind path is triggered when no a priori sequences are available, it aims to

select the best HI dynamically using a selection criterion based on the goodness
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of fit with the GLM model. At the same time, the Generalized Linear Model

(GLM) is used in an adaptive manner in order to extrapolate the HI until failure

threshold. The results showed that the RUL prediction is improved over time

with the arrival of new incoming degradation data.

∙ The informed path is triggered when one or more a priori sequences are available.

Different RULs are estimated using different adaptive models combined with

different HIs, while the final RUL is obtained by merging the RULs using a

weighted mean. The informed path showed better RUL prediction results when

few a priori sequences are available compared with the methods applied in the

literature (SVR and LSTM). Also, the RUL estimation accuracy and robustness

are improved when more a priori sequences are collected. Besides, it can predict

the RUL when the degradation speed (dynamics) of the incoming sequence is

different from the a priori degradation speed, or dynamics thanks to the use of

different adaptive models.

∙ The deep ensemble approach is used when many a priori degradation sequences

are available. Two RULs are predicted using two deep learning models named

Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM),

where the final RUL is obtained by merging the two RUL using weighted mean.

The proposed deep ensemble approach has shown promising results against the

related works in the state-of-the-art. Also, it has the ability to capture the

variability of the different operating condition modes.

5.2 Open issues and future directions

∙ Switching mechanism. The informed path is triggered for RUL estimation

when few (insufficient) a priori sequences are available offline. The prediction

is improved when more a priori sequences are available. The deep ensemble

approach or deep path is used for RUL prediction when multiple a priori se-

quences are available. Hence, one future work is to add a criterion that allows
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to switch from informed path to deep path when there is sufficient number of

degradation sequences in order to cover all the degradation dynamic evolution

and conditions, as illustrated in Figure 5-1. The switching criterion can be

based on the RUL prediction accuracy of each path on the available offline se-

quences. Also, it is intended to investigate the use of both paths (informed and

deep) in parallel and merging their predicted RULs in order to obtain a better,

precise, and reliable RUL.

Blind path

Informed path

Deep path

Predicted RUL

No	historical	degradation
sequences	are	available

Few	historical	degradation
sequences	are	available

Several	historical	degradation
sequences	are	available

Switch

Figure 5-1: Illustration for switching from the informed path to the deep path

∙ Failure threshold and confidence interval. In this manuscript, failure

threshold setting and confidence interval estimation were not investigated. In

order to predict the RUL when no and few historical degradation sequences

are available, it is necessary to set a failure threshold. In the blind path, the

solution is to set the threshold according to human expert or feedback from other

similar systems since no a priori sequences are available for automatically select

the threshold. On the other hand, the threshold can be set in the informed path

automatically using the few available a priori sequences. A confidence interval

should be given for the predicted RUL, because it is difficult to estimate the

RUL with complete precision due to multiple uncertainty sources that influence

the prediction. According to (Sankararaman et al. 2013), different sources of

uncertainty should be considered: present uncertainty (the estimation of the

present system conditions should be precise), future uncertainty (the future
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operating conditions are not known since the future is unknown), modeling

uncertainty (the HI modeling and the failure threshold are uncertain due to

the model parameters estimation and process noise), and prediction method

uncertainty (it is necessary to quantify the combined effects of the different

uncertainty sources on the predicted RUL).

∙ Transfer learning. It is a future work direction that can deal with insufficient a

priori degradation sequences. It aims at transferring the knowledge, in terms of

model parameters, weights, etc.) between related problems. In RUL prediction,

transfer learning exploits data from other related systems in order to train

a model that permits to predict the RUL. Then, the trained model is tuned

with the few available a priori sequences of the new system for achieving the

RUL prediction. Also, the transfer learning can be used for transferring the

information from an operating condition mode to another in the same system

(A. Zhang et al. 2018).
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Résumé : Le pronostic des pannes consiste en l'estimation de la durée de vie résiduelle (RUL). Il s'agit d'un élément 
essentiel de la stratégie de maintenance prédictive qui peut contribuer à améliorer la fiabilité et la disponibilité des 
systèmes industriels tout en réduisant les temps d'arrêt imprévus et les coûts de maintenance. Fréquemment, 
l'application du pronostic dans des systèmes industriels réels est ardue en raison de l'insuffisance des données historiques 
de dégradation, en particulier pour les nouvelles machines, ou en raison du coût élevé de leur production ou de leur 
obtention. Par conséquent, ce manuscrit de thèse propose une approche générale axée sur les données avec trois chemins 
pour l'estimation du RUL lorsqu'aucune séquence de dégradation, peu de séquences et multiples séquences sont 
disponibles a priori. L'approche générale proposée comprend trois chemins d'estimation RUL : chemins aveugle, guidé et 
profond en fonction du nombre de séquences de dégradation disponibles. Le chemin aveugle est déclenché lorsqu'aucune 
séquence a priori n'est disponible, il vise à sélectionner le meilleur indicateur de santé (HI) dynamiquement à l'aide d'un 
critère de sélection basé sur le fit avec le modèle linéaire généralisé (GLM). Dans le même temps, les paramètres du GLM 
sont mis à jour en fonction des nouvelles données de dégradation permettant d’améliorer l’extrapolation de l’indicateur 
de santé jusqu'au seuil de défaillance. La prédiction du RUL s'améliore au fil du temps avec l'arrivée de nouvelles données 
de dégradation. Le chemin guidé est déclenché lorsqu'une ou plusieurs séquences a priori sont disponibles. Différents 
RUL sont estimés à l'aide de différents modèles adaptatifs combinés avec différents HI, tandis que le RUL final est obtenue 
en fusionnant les RUL en utilisant une moyenne pondérée. Le chemin guidé a montré de meilleurs résultats de prédiction 
du RUL par rapport aux méthodes appliquées dans la littérature (support vector machine et long short term memory). En 
outre, la précision et la robustesse de l'estimation RUL sont améliorées lorsque davantage de séquences a priori sont 
collectées. De plus, cette approche a montré une adaptation à plusieurs dynamiques (vitesses) de dégradation grâce à 
l'utilisation de différents modèles adaptatifs. Le chemin profond est utilisé lorsque de nombreuses séquences de 
dégradation a priori sont disponibles. Deux RULs sont prédits à l'aide de deux modèles d'apprentissage profond appelés 
Convolutional Neural Network (CNN) et Long Short Term Memory (LSTM), où le RUL final est obtenu en fusionnant les 
deux RUL en utilisant une moyenne pondérée. L'approche d'ensemble profond proposée a la capacité de capturer la 
variabilité des différents modes de conditions de fonctionnement. Cette approche a montré des résultats prometteurs 
par rapport aux méthodes similaires dans l'état de l'art. 

Mots clés : Indicateur de santé - Détection de défauts - Pronostic des pannes - Durée de vie résiduelle 
 

Abstract: Fault prognostics consists of the estimation of the remaining useful life (RUL). It is the main part of the 

predictive maintenance strategy that can help to enhance the reliability and availability of industrial systems while 

reducing unscheduled downtime and maintenance cost. Applying prognostics in real industrial systems is arduous due to 

the insufficiency of the historical degradation data, in particular for new machines, or because of the high cost to produce 

or obtain them. Hence, this PhD thesis proposes a general data-driven approach with three paths for the RUL estimation 

when no degradation sequences, few sequences, and multiple sequences are available a priori. The general proposed 

approach includes three RUL estimation paths: blind, informed, and deep paths depending on the number of available 

degradation sequences. The blind path is triggered when no a priori sequences are available, it aims to select the best 

Health Indicator (HI) dynamically using a selection criterion based on the goodness of fit with the Generalized Linear 

Model (GLM). The GLM’s parameters are updated using the incoming degradation data in order to increase the RUL’s 

accuracy estimation when extrapolating the HI until the failure threshold. Therefore, the RUL prediction is improved over 

time with the arrival of new incoming degradation data. The informed path is triggered when one or more a priori 

sequences are available. Different RULs are estimated using different adaptive models (GLM, quadratic regression, 

exponential model, and double exponential model) combined with different HIs, while the final RUL is obtained by 

merging the individual RULs using a weighted mean. The informed path showed better RUL prediction results when few 

a priori sequences are available compared with the State-of-the-art RUL estimation methods (support vector machine and 

long short term memory models). The RUL estimation accuracy and robustness are improved when more a priori 

sequences are collected. Besides. The informed path can predict the RUL when the degradation speed (dynamics) of the 

incoming sequence is different from the a priori degradation speed, or dynamics, thanks to the use of different adaptive 

models. The deep ensemble approach is used when many a priori degradation sequences are available. Two RULs are 

predicted using two deep learning models named Convolutional Neural Network (CNN) and Long Short Term Memory 

(LSTM), where the final RUL is obtained by merging the two RUL using weighted mean. The proposed deep ensemble 

approach (deep path) has the ability to capture the variability of different operating condition modes. The deep ensemble 

approach showed promising results against the related works in the state-of-the-art. 

Keywords: Health indicator - Fault detection - Fault prognostics - Remaining useful life  
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