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Chapter 1

General Introduction

1.1 Research context

Nowadays, freight transportation is a vital component for the economy and the
supply chain. In Europe, freight transport contributes around 5% to the total
gross domestic product (GDP). Among all transportation mode, road freight
transport shares almost 80% of the inland transportation activities due to the
associated flexibility and capability to provide efficient and rapid door-to-door
services in most countries, see Figure 1.1. The total operating revenue (see Figure
1.3) and the total revenue (see Figure 1.4) are increasing because of the globalized
trade and economic growth. As in France, the contribution to GDP of transport
is 14% i.e. 321 billions of euros, and 5.4% GDP is coming from the road freight
transportation (INSEE, 2018∗).

Notice that, in US, full truckload transportation shares almost 70% of the
freight transport market (see Figure 1.2). Therefore, throughout this thesis, we
mainly focus on the study of full truckload transportation to highlight its impor-
tance.

However, the carriers in freight transport market are facing several challenges
to keep and enlarge their market share and thus improve their revenue. One of the
challenges comes from the increasing intense competition at three levels: among
the countries and regions, among the various transportation modes, and among
the abundant carriers and logistics services providers. In this strong competitive
environments, both shippers and carriers are under pressure to reduce their costs

∗https://www.unionroutiere.fr/publication/consultez-faits-chiffres-2018/
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Figure 1.1: Modal split of inland freight transport, 2017

Figure 1.2: Market size of the U.S. freight transportation in 2018
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Figure 1.3: Total operating revenues of the U.S. trucking industry
from 2010 to 2018

Figure 1.4: Total revenue of the trucking industry in the U.S.
from 2014 to 2018
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INTRODUCTION

and to operate more efficiently. As a response to these challenges, we study in
this thesis the centralized and decentralized logistics and transportation systems.

Centralization and decentralization describe the processes of the activities
of an organization. In centralization, the activities particular those regarding
planning and decision-making, framing strategy and policies become concen-
trated within a particular geographical location group. This moves the important
decision-making and planning powers within the center of the organisation. In
decentralization, the activities are distributed or delegated away from a central,
authoritative location or group.

The words "Centralization" and "Decentralization" were first introduced to
describe new government leadership structure in France since the end of 18th
century. In the early 20th century America, decentralist movement was used
as a response to the centralization of economic wealth and political power. "A
decentralized system is where some decisions by the agents are made without
centralized control or processing. An important property of agent systems is the
degree of connectivity or connectedness between the agents, a measure global
flow of information or influence. If each agent is connected (exchange states or
influence) to all other agents, then the system is highly connected. " (Johnson,
1999). The concepts of decentralization have been applied to group dynamics and
management science in private businesses and organizations, political science, law
and public administration, economics, money and technology.

Decentralization in any area is a response to the problems of centralized sys-
tems. Government decentralization has both political and administrative aspects.
Decentralization has been seen as a solution to problems like economic decline,
government inability to fund services and their general decline in performance
of overloaded services, the demands of minorities for a greater say in local gov-
ernance, the general weakening legitimacy of the public sector and global and
international pressure on countries with inefficient, undemocratic, overly central-
ized systems (Daun, 2006). In economics, decentralization allows efficient control
or planning when each single agent or board can effectively survey all the relevant
facts. Since 1970, some industries are being deregulated, like banking, trucking,
airlines and telecommunications resulting generally in more competition and lower
prices ∗.

∗https://www.cato.org/publications/commentary/shortcircuited
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1.2 Objectives and research methodology

In centralized logistics and transportation systems, multiple shippers or carri-
ers collaborate closely to optimize the transportation operations through sharing
transportation capacities or exchanging delivering tasks. However, real world
transportation market is essentially distributed - decentralized. Self-interested
shippers and carriers have private information and personal preferences. They
behave strategically to achieve better efficiency and increase their own profits. In
decentralized logistics and transportation systems, all independent actors interact
in a self-interested nature.

This thesis is within the framework of an ANR project, "pi-co-modality". The
partners are Centre de Gestion Scientifique de Mines ParisTech, DHL Service Cen-
tral, INRIA Lille-Nord Europe and CNRS LAAS. For the European Commission,
co-modality refers to a "use of different modes on their own and in combination"
in the aim to obtain "an optimal and sustainable utilisation of resources". The
pi-co-modality project is devoted to the design of co-modal chains between origins
and destinations according to environmental and economic objectives. Co-modal
is a term first used by the EU in 2006 and refers to the intelligent use of two
or more modes of transport on their own and in combination to get the biggest
benefit from each of them so that the overall journey is the most sustainable that
it can be. This optimising in the use of resources has economic, environmental
and societal benefits. The project is based on the concept of the Physical In-
ternet (shortened by PI) (Montreuil, 2011) that breaks with previous established
approaches. The metaphor with the digital internet is used to illustrate the key
concepts. As digital packets on interconnected computer networks, the PI aims to
develop a global logistics system based on the interconnection of logistics services
networks to transfer goods between origins and destinations.

1.2 Objectives and research methodology

In the ANR project, the problem of designing multimodal sustainable chains is
addressed from two perspectives. In the first case, we consider a centralized sys-
tem or "system optimum" where a shipper is in charge of defining the "best" set
of chains. In the second case, the system is shared between actors and decen-
tralized. The shipper will specify the general framework (potential multimodal

5



INTRODUCTION

platforms to be used) and the origins and destinations of flows. Then, transporta-
tion companies will put out their offers, which will be considered according to a
combinatorial auction mechanism. This will result in a shared logistics activity
that optimizes the use of resources.

The goal of my thesis is to address the decentralized situation, and to extend
the PI concept in a more realistic way. In order to achieve high level performance
in decentralized environments, a potential auction center plays the role of market
intermediary. Between the origin (i.e. shippers) and destination (i.e. customers),
hubs act as goods transit center to increase the allocation efficiency of the system.
All these actors are interacting with their own interests, their assets, their sub-
networks and their independence.

The global goal of this dissertation is to rely on a "mechanism design" ap-
proach. More precisely, the market intermediary allocates bundles of lanes to set
of carriers to define the solution between actors, and improve the performance
of the mechanism driven by all actors. In other words, the main objective is to
design an auction mechanism and a platform, to facilitate the matching of supply
and demand between shippers and customers leading to the most efficient
global transportation resource allocation. The solution should encourage
shippers and carriers to use the auction mechanism rather to behave individually,
such that all self-interested agents have a better interest to apply the solution
designed by the platform rather than apply the basic self-interest solution.

The design of such a platform requires 3 steps,

• firstly, auction is defined to facilitate the matching between transportation
demands and supplies, which refers to the transportation procurement
auctions;

• secondly, routing construction methods is used to build bundle of lanes;

• and finally a bidding generation problem and winner determination
problem are solved to determine the matching of supply and demand.

From a methodological point of view, we rely on the PI to modelize meshed
network and on a "mechanism design approach" to define bundle of lanes for
carriers, in order to increase the objective of the system; and then we consider
a pricing-allocation bilevel optimization problem to determine the allocation of

6



1.3 Outline of the dissertation

lanes to carriers, in order to fully explore the interaction among shipper and
carriers.

1.3 Outline of the dissertation

We next provide the description of the chapters, it consists of six parts:

• In chapter 2, we first introduce basic concepts for decentralized logistics
and transportation systems. We next review the auction types used in
transportation procurement and focus on Combinatorial Auctions (CAs).
Finally, we define the bilevel optimization models and show why and how
they can be used to improve the global solution for both shippers and
carriers in CAs.

• In chapter 3, a detailed survey aboutWinner Determination Problem (WDP)
is given to summarize the general and variants of the formulations for WDP.
The complexity of the problem is analyzed. The exact and approximated
algorithms are investigated in solving WDP accurately and efficiently, the
performance of the algorithms is also compared with the most used bench-
marks.

• In Chapter 4, we address the problem defined as Bundle Construction Prob-
lem (BCP) in a 5-phase procedure for CAs. Under the assumptions of
CAs, each lane is defined as an origin-destination pair with time windows,
combining distinct lanes into a single bid or constructing a bundle enables
carriers to propose attractive prices, it will also lead to procurement cost
reduction for shippers. We study the Bundle Construction Problem (BCP)
under CAs specially for full truckload transportation procurement.

• In Chapter 5, we introduce the pricing-allocation bilevel model in CAs
for full truckload transportation procurement. The auction-based Trans-
portation Procurement Problem (TPP) involves solving the Bid Genera-
tion Problem (BGP) for carriers and the Winner Determination Problem
(WDP) for shipper. In BGP, carriers place their bids (prices) for the most
profitable bundles; in WDP, shipper allocate bundles to carriers based on
their bids. To address this problem, we assume a market place - auctioneer
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representing shippers uses CAs to allocate lanes to carriers. We study the
pricing-allocation problem (i.e. price-based BGP-WDP) under CAs spe-
cially for full truckload transportation procurement. The BGP and WDP
are two of the main auction phases in the CAs. Even if they share strong
relationship, it has not been investigated so far in the literature (Gansterer
& Hartl, 2017). Our work is the first to merge BGP and WDP in a single
bilevel formulation to model more accurate this interaction from a practical
point of view.

• In Chapter 6, we extend the model given in Chapter 4 with a decentralized
setting where the carriers at the upper level define prices in a competitive
manner. The decentralized model can accurately describe the market envi-
ronment when actors involved are selfish and non-cooperative. In this case,
a multi-leader single-follower pricing-allocation bilevel model is given and
it can be solved by best-response strategy under multiple round CAs.

• Finally, in Chapter 7, we summarize the work of this dissertation, and give
perspectives and future extensions.
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2. STATE OF THE ART OF DECENTRALIZED LOGISTICS AND
TRANSPORTATION SYSTEMS

The objective of this chapter is to introduce basic concepts and information
for decentralized logistics and transportation systems. We review the auction
types used in transportation procurement and focus on CAs. Next, we address
the bilevel programming and show why and how it can be used to improve the
global solution for both shippers and carriers in CAs.

2.1 Decentralized logistics and transportation sys-
tems

Logistics activities considered in this thesis involve the various stakeholders clas-
sified into five groups of actors and two main facilities,

Five actors:

• shippers, are the owner and provider of the necessary customer goods,
they provide logistics tasks to get their components or goods transported
to their customers;

• 3PL or Third Party Logistics, refers to the outsourcing of logistics ac-
tivities, ranging from a specific task such as trucking or marine cargo trans-
port to broader activities serving the whole supply chain such as inventory
management, order processing and consulting∗;

• 4PL or Fourth Party Logistics, refers to a party who works on behalf
of client to do contract negotiations and management of performance of
3PL providers including the design of the whole supply chain network and
control of day-to-day operations;

• carrier, also mentioned as logistics service provider (Natalia et al., 2016),
is a provider institution freight forwarder (transporter, freight forwarders,
shipping liner) from the place of origin of goods (shipper) to its destination
(consignee), storage of goods and services (warehousing, fumigation, and
so on). The origin of the goods could have come from the manufacturer,
supplier, while the destination to consumers, distributors, or manufacturers;

∗http://www.supplychainopz.com/2012/04/what-is-logistics-and-supply-chain-
management.html
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2.1 Decentralized logistics and transportation systems

• customers(Natalia et al., 2016), "logistics users who need goods both for
the production process as well as for consumption. customers can determine
the type and quantity of goods to be purchased, from whom and where the
goods are purchased and where the goods were delivered".

Two facilities:

• The logistic auction center provides logistics services and holds trans-
portation auctions for bidding agents and auctioneers;

• The hubs are storing areas to mutualise deliveries while providing ad-
ditional functions like repackaging, information and material transaction.
Moreover, the hubs also provide

– current logistics information such as demand and supply;

– tools to monitor cargo movement by all modes of transportation;

– ancillary services such as finance and insurance.

For better understanding, in auction-based transportation procurement, we
also give the following notations,

• Shippers or a market intermediary represent shippers is the auctioneer in
the auction language;

• Carriers are service providers and bidders ;

• A link is a physical delivery route connecting two locations directly;

• A lane is an origin destination pair on which shippers have loads to move; a
lane may include service time or capacity requirement, etc... For example,
shipper A has a load need to be transported from Paris to Lyon within the
date of 01/08/2019 - 03/08/2019;

• A bid is a set of lanes called lane bundle and a bidding price. For example:
Carrier B provides service on Paris to Lyon lane and Lyon to Nice lane with
a price b.
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2. STATE OF THE ART OF DECENTRALIZED LOGISTICS AND
TRANSPORTATION SYSTEMS

A general framework for decentralized logistics and transportation systems is
shown in Figure 2.1. Without loss of generality, we assume that all served lanes
are long distance ones, which implies that the transportation cost between the
shippers and hubs can be neglected and routing through hubs could be beneficial
for the shippers. In decentralized environments, it is also assumed that all the
agents (shippers and carriers) are selfish and each of them chooses his strategy
to increase his own profit.

The following sequence of events take place in the transportation auction
center:

• Market intermediary receives tasks from shippers and repackages the de-
liveries at the hubs and then announces which lanes (a original-destination
pair is defined as a lane) will be auctioned;

• Carriers place bids on the lanes being auctioned, bids may combine different
adjacent lanes involve a single or multiple shippers;

• Market intermediary receives the bids and determines which lanes each
carrier wins.

Figure 2.1: General framework for decentralized logistics and transportation sys-
tems.
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Unlike traditional transportation systems where the deliveries are separately
flowed from shippers to customers, the considered systems favor mutualisation of
resources among actors and thus reduce the cost. For example, for a customer
with many orders from multiple providers, joining their packages at the hub such
that a single package is delivered to customers can reduce the deliveries costs.
Moreover, shippers can store all the customers’ orders in the hubs periodically,
which will reduce the frequency of the transportation services in the network i.e.
reduce the less than full truckload shipping from shippers to hubs.

In conclusion, the next advantages of using an auction center and hubs are:

• the repackaging can reduce the number of deliveries from the shippers to
customers;

• the mutualisation of deliveries thanks to the storage can reduce the Less
Than Truckload Shipping (LTL) and the frequency of the transportation
services in the network.

Example in Figure 2.2 can be seen as a auction-based decentralized logistics
and transportation system, it implement how information and materials move in
a food supply industry.

Figure 2.2: Information and materials flow in a food supply in-
dustry.
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TRANSPORTATION SYSTEMS

2.2 Transportation procurement auctions

Transportation procurement problem (TPP) is generally the problem of deter-
mining transportation and exchanging relationships across a transportation mar-
ket, it consists of shippers, carriers and a third-party exchange service provider.
Most of shippers use auctions to procure transportation services with an ori-
gin/destination pair defined as a lane, a volume to be shipped on this lane, and
some other information on shipping conditions, time windows, specific equip-
ments, etc.

Transportation procurement auction starts with a call for quotation, initiated
by the shipper (or third-party logistics on behalf of the shippers), followed by
bidding (bid generation) of various carriers interested in the offer. Carriers can
either bid for each lane individually or a bundle called combinatorial bid. After
receiving bids from carriers, the shippers evaluate the submitted bids and find out
the winning bids (carrier assignment). Major research work is carried out with
respect to both the bid generation and carrier assignments aspects. Related
reviews on transportation procurement problems based on Bid Generation Prob-
lem (BGP), Carrier Assignment Problem (CAP) and Collaboration are provided
in Ramanatan et al. (2015). In the review of J.Meixell & Norbis (2008), the
authors investigate the transportation choice research (mode choice and carrier
selection). Their work allow us to better understand the transportation procure-
ment market and explore the future study.

In the next section, I will first review the main auction types, then I will focus
on auctions for transportation procurement with recent papers on these subjects.

2.2.1 Auction types

Various sorts of auctions are utilized in resource allocation mechanisms such as:
single item auctions, Generalized Vickrey Auction (GVA), iterative bundle auc-
tions, sequential and simultaneous auctions which have been studied extensively.
There are some most used of these auction mechanisms as follows.

• Single item auctions: This type of auction is useful for selling/buying
a single unit of an item. Although it is used in the real market, in terms
of computation approach is not important. English auction, Dutch auction
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2.2 Transportation procurement auctions

and first (or second) price sealed-bid auctions are good examples of these
traditional auctions.

• Multi-unit auctions: Auctions involving the sale of different items are
named multi-unit auction. Transportation domain can be a good example
in multi-unit auctions area. In this auction, a buyer and multiple sellers
wish to exploit economies of scale by using a volume discount auction.

• Vickrey auction: Vickrey auction is an auction for multiple similar items.
Bidders submit their demand simultaneously. Each bidder wins the de-
manded item at the clearing price, and pays the opportunity cost of its
winnings. If there is only an item for bidding, the vickrey auction will
be second-price auction. If the auction performs for non-identical item,
the Vickrey auction referred to as generalized Vickery auction (GVA) or
Vickery-Clarke-Groves (VCG).

• Generalized Vickrey Auction (GVA):GVA is single round second-price
sealed-bid combinatorial auction, in which the highest bid will be the final
winner, but pays the second highest bidding price. Therefore, a winning
bidder can never affect the paid price. In addition, there is no incentive
for any bidder to misrepresent its value. GVA is known as one of the most
efficient auctions.

• Iterative bundle auction: Iterative bundle auctions are indirect imple-
mentations of GVA. This type of auction is reputable for addressing compu-
tational and informational complexity of GVA. In this class of auction, the
agents are allowed to reveal essential information as the auction progressed.
However the exact and private information has to be kept uncover by the
agents. This auction is designed for general combinatorial allocation (CA)
problem.

• Sequential and simultaneous auctions: price bundles as the sum of
each individual line, and assume that a set of preferred resources are auc-
tioned in sequence. Agents bid on resources considering the past successes,
failures, prices, and etc. The main application of this class of auction is in
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combinatorial or simultaneous items. Multiple goods sell in separate mar-
kets at the same time. The agents have to interact to separate markets in
order to achieve a combinatorial of resources to accomplish their tasks.

2.2.2 Auctions for transportation procurement

Generally, the Transportation Procurement Problem (TPP) is the problem of set-
ting transportation service prices, delivery timing and quantity, and controlling
costs and capacity to reduce empty movements and improve market efficiency
(Song & Regan, 2003b) etc. Auction-based TPP has gain a great deal of atten-
tion in transportation research. The most used auction type for transportation
procurement can be summarized as follows,

• Sequential auctions: In sequential auctions marketplaces, demands of
shippers arrive randomly over time and each arrived demand is success-
fully auctioned before another one comes in (Figliozzi, 2006; Figliozzi et al.,
2007), these studies on sequential auctions are usually set in dynamic and
stochastic environments.

• Combinatorial Auctions (CAs): CAs allow a single bid for a set of
distinct lanes from a single or multiple shippers (Song & Regan, 2003b;
Wang & Xia, 2005). CAs are essentially simultaneous multi-unit auction
paradigms, carriers have to maximize their capacity utilization and balance
delivery requirements such as distinct destinations and arrival time win-
dows. Combining distinct lanes into a single bid enables carriers to achieve
the economics of scope (Caplice & Sheffi, 2003), which will also lead to
procurement cost reduction for shippers (Caplice & Sheffi, 2003).

• Double auctions: A double auction scheme involves a third-party auction-
eer, i.e., market clearing broker. An important benefit of double auction
is that it allows simultaneous bidding from both buyers and sellers, and
clears the market one at a time based on the received asks and bids. Under
double auctions, the existing results related to transportation procurement
problem appeared in Cheng et al. (2016); Xu & Huang (2014b).

Sequential auctions and Double auctions can be seen as special cases of CAs
when we consider multiple rounds and market clearing factors. Due to exclusive
advantages of CAs, it is used throughout this dissertation.
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2.2.3 Bidding language for transportation procurement com-
binatorial auctions

In an auction, bidders have to formulate bids according to their private prefer-
ences, information, and bidding strategies (Nisan & Ronen, 1999). A bidding
language in the auction defines the standard way (the format of the communi-
cated messages and the interpretation) that the bidders are allowed to formulate
their bids. In transportation procurement, it refers to how carriers communicate
their true valuation of the lanes, we give three inter-relationships between lanes
as defined in Song & Regan (2003a):

Definition 2.1 Denote v(A) as a carrier’s true valuation of a set of lanes A if
and only if these lanes are assigned, two disjoint sets of lanes A and B are:

• Complementary: if v(A) + v(B) > v(A ∪B);

• Substitutable: if v(A) + v(B) < v(A ∪B);

• Additive: if v(A) + v(B) < v(A ∪B).

In transportation logistic network, a set of lanes is complementary to another
set of lanes when it can refill each others’ empty movements; a set of lanes is
substitute to another set of lanes when one of these two sets can be contained by
the other one; a set of lanes is additive to another set of lanes when they do not
exist connection. For example, a lane from Paris to Lille is a complementary to
a lane from Lille to Paris, as they can reduce the empty backhaul; a set of lanes
from Paris to Lyon, Lyon to Marseille is a substitute to the direct lane from Paris
to Marseille; and the lane from Paris to Lille is additive to the lane from Lyon to
Marseille as share no relation.

For CAs, bidders need to make sets of bids for "bundles" of items, where the
bid for the different bundles can be either exclusive or non-exclusive. The basic
bidding languages of this form are classified and given in Nisan (2000, 2006).

Hereafter in this section, we give the most general used bid form in CAs.

Definition 2.2 (Atomic bids) Each bidder can submit a pair (S, p) where S is
a subset of the items and p is the price that he is willing to pay for S. Thus the
valuation of a set T is v(T ) = p for S ⊆ T and v(T ) = 0 otherwise. Such a bid
is called an atomic bid.
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Atomic bids are called single-minded bids in Lehmann et al. (2002). It is clear
that many simple bids cannot be represented by this language.

Definition 2.3 (OR bids) Each bidder can submit an arbitrary number of atomic
bids, i.e., a collection of pairs (Si, pi), where each Si is a subset of the items, and
pi is the maximum price that he is willing to pay for that subset.

Under OR bids, each bidder is willing to obtain any number of disjoint atomic
bids for the sum of their respective prices. Thus an OR bid is equivalent to a
set of separate atomic bids from different bidders. More formally, for a valuation
v = (S1, p1)OR...OR(Sk, pk), the value of v(S) is defined to be the maximum over
all possible valid collections W , of the value of

∑
i∈W pi, where W is valid if for

all i 6= j ∈ W,Si ∩ Sj = ∅.

Proposition 2.4 OR bids can represent all bids that don’t have any substitutabil-
ities, i.e., those where for all S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ), and only them.

Definition 2.5 (XOR bids) Each bidder can submit an arbitrary number of
pairs (Si, pi), where Si is a subset of the items, and pi is the maximum price that
he is willing to pay for that subset.

Under XOR bids, each bidder is willing to obtain at most one of these bids.
More formally, for a valuation v = (S1, p1)XOR...XOR(Sk, pk), the value of v(S)

is defined to be maxi|Si⊆Spi.

Proposition 2.6 XOR bids can represent all valuations.

XOR is formally defined from Sandholm (2002), and it is widely used in most
CAs literature as it can represent OR bids and also those with substitutabilities.

In Nisan (2006), the author also discuss the combinations of OR and XOR to
represent more desirable simple valuations.

Definition 2.7 (OR of XORs bids) Each bidder can submit an arbitrary num-
ber of XOR bids, as defined above.

Implicit here is that he is willing to obtain any number of these bids, each for its
respectively offered price.

Definition 2.8 (XOR of OR bids) Each bidder can submit an arbitrary num-
ber of OR bids, as defined above.

Implicit here is that he is willing to obtain just one of these bids.
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2.3 Combinatorial Auctions (CAs) for transporta-
tion procurement problem

Over the past two decades, CAs has gained more and more attentions both in
theoretical and practical studies (Peter et al., 2006), which allow bidders to bid on
combinations of items as a packages instead of bidding only on individual items.
The advantage of CAs is that the bidders can fully express their preferences
when items are complements and substituents due to the economies of scope and
economies of scale, in such a sense, the bidders can generate more profit or save
more cost.

While in a competitive transportation procurement system, if carriers can
combine multiple lanes as a tour or a continuous move, they can decrease their
empty mileage and thereby reduce cost (Chen et al., 2009) or generate greater
profits (Chang, 2009; Jothi Basu et al., 2015). Due to the synergies available on
the transportation pathways (Triki, 2016; Wang & Wang, 2015; Xu & Huang,
2014a,b), CAs has attracted increasing attentions in transportation procurement
as it allows carriers to submit bundle bids that can express their preferences when
they group transportation lanes into packages (Sheffi, 2004a; Triki et al., 2014).

In transportation procurement, CAs generally follows a 5-phase procedure
(Berger & Bierwirth, 2010), see Figure 2.3:

• Carriers determine request lanes and put them into the auction pool, request
lanes are selected based on carriers’ time and truck capacity availability;

• Bid Generation Problem (BGP): Auctioneer (Shipper or Third-party logis-
tics - 3PL) generates bundles of requests and shows them to the carriers,
a request bundle is generally a feasible path tour respecting each carrier’s
resource constraints;

• Bid Generation Problem (BGP): Carriers give their bids for the offered
bundles;

• Winner Determination Problem (WDP): Auctioneer allocates bundles to
carriers based on their bids;

• Gained profits are distributed among the carriers.
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Figure 2.3: 5-phase procedure for CAs.

As mentioned in Xia et al. (2004), the ideal auction mechanism for CAs should
provides the following three features:

• An efficient winner determination mechanism;

• Incentive compatible bid pricing mechanism;

• A way to determine imputed prices for goods.

The following of this section will review the above presented Bidding Genera-
tion Problem (BGP) and Winner Determination Problem (WDP) in transporta-
tion problem.

2.3.1 Bidding generation problem for transportation pro-
curement problem

CAs has attracted increasing attention in transportation procurement market
because of the synergies ∗ available on the transportation pathways (Triki, 2016;
Wang & Wang, 2015; Xu & Huang, 2014a,b) as transportation request lanes can
be grouped into packages or bundles of various products (Sheffi, 2004a; Triki et al.,
2014), request bundle is defined as a path tour from one location to another.

In the transportation procurement, the carriers’ major goal is to discover and
take advantage of inter-dependencies in their transportation operations, and then

∗The synergies means that the traveling and other operating costs associated with a set of
lanes are lower than the sum of the traveling and other operating costs per lane associated with
each individual lane.

20



2.3 Combinatorial Auctions (CAs) for transportation procurement
problem

determine the optimal packages to bid for. A carrier’s pricing decision involves
choosing right prices for right transport request bundles in order to maximize his
profit, this is known as price-based revenue management (Talluri & Van Ryzin,
2006; Ting* & Tzeng, 2004). It consists two decision making problems as we
define as two phases. In first phase, potential tours (bundles, bids of requests)
are determined that a carrier could bid for. Each tour is constructed so that
all relevant operating constraints can be met, this problem is defined as Bundle
Construction Problem (BCP). In second phase, incentive pricing strategies are
employed that each carrier could win his desired bids, this problem is defined as
Bundle Pricing Problem.

An overview of the carrier’s Bidding Generation Problem is as follows:

Max Total utility (2.1)

subject to Each request lane can be covered at most once (2.2)

Bidding language constraints: XOR or OR (2.3)

Connection constraints of the path tour (2.4)
Resource constraints for carriers: trucks need to return to a given location,

driving distance/time limitation, etc...
(2.5)

Resource constraints for trucks: capacity limitation (2.6)

Resource constraints for request lanes: served on time, etc...
(2.7)

Other operating constraints (2.8)

(2.1) describes the total utility or profit that a carrier can gain through sev-
ering request bundles, which is generally defined as the served request bundles’
price minus the serving cost; (2.2) says each request lane can be at most served
by one carrier; (2.3) is the bidding language constraints mentioned in Section
2.2.3; (2.5) are the resource constraints for carriers, such as, the trucks must re-
turn to the depot or to a given location, the driving distance or time must under
a given limitation, etc...; (2.6) describes the trucks’ capacity constraint for less
than truckload case; (2.8) gives the information and constraints for the request
lanes, as some request lanes must be served during a certain time interval or other
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requirement; (2.8) supplements the specific constraints for a given model, such as
shipment uncertainty or service quality level, etc...

2.3.1.1 Bundle construction problem

Bundle Construction Problem (BCP) in transportation procurement is described
as follows, for given set of carriers, generate - find and select - feasible bundles
with high quality respecting the carriers’ flexibility and resource budget. Here,
a request lane is defined as a pick-up/delivery location pair with resource con-
straints (time, capacity, etc...). The problem of defining feasible bundles is a
problem of route-building or route-construction problem as introduced in Baker
& Schaffer (1986). In BCP, not all lane requests need to be visited, indeed, the
carriers only have to find all the bundles that they can handle and make profit.
This problem is also recognized as an Orienteering Problem (OP) with resource
constraints. The OP problem is a route-construction problem in which a subset
of requests are determined to visit, such that the total profit/score are maximized
and the resource constraints is not exceeded (Gunawan et al., 2016).

2.3.1.2 Bundle pricing problem

In auction-based transportation procurement, carriers are often driven by economies
of scope and proposing right price in order to win lanes. While in most of lit-
erature of Bidding Generation Problem, marginal prices are used to generation
bundles and then determine the lane allocation. In a more realistic setting, price
is a main factor that can largely effect the shippers and carriers’ decision and the
final profit, determining prices for individual goods is also valuable because (Xia
et al., 2004):

• "they help explain the auction result - why a certain bid lost and another
won";

• "they can serve as a price guide for future auctions".

Thus, when and how to price the bundles should also be discussed here.
In the TL industry, carrier charges a fixed cost for each truck whether it

is fully or partially loaded, he may consider some factors to adjust the price (or
bid), for example asymmetric requests in a truck’s round-trip (Zhou & Lee, 2009),

22



2.3 Combinatorial Auctions (CAs) for transportation procurement
problem

daily scheduling (Mes & Van der Heijden, 2007), real-time request learning and
forecasting (Lin, 2006), competitor behaviour (Toptal & Bingöl, 2011), or synergy
between lanes of long-term contracts and spot contracts (Kuyzu et al., 2015).
Under this situation, fill rate or request size is not taken into account.

While in the LTL industry, carrier charges a shipping price for each unit
(per palette/kg) of the requests. There are only few research focusing on the
LTL pricing problem (Dai & Chen, 2011; Douma et al., 2006; Wang & Kopfer,
2011), even less focuses on dynamic and stochastic pricing. In Qiao et al. (2016),
a dynamic pricing model was studied under a specific context - the Physical
Internet (PI). And in Toptal & Bingöl (2011), the replenishment problem of a
retailer and the transportation pricing problem of a truckload carrier under the
presence of two carriers (one TL carrier and one LTL carrier) was studied.

In a dynamic environment, where transport requests with different volumes
and/or destinations arrive over time, carriers can adjust their pricing policies
within a given time, taking into account the status and the arrival of requests in
real time to maximize their expected profits, this is known as dynamic pricing
decision problem (Lin, 2006; Talluri & Van Ryzin, 2006).

However, in the literature, as most of the literature mentioned above, TL
carriers may consider some factors to adjust the price (or bid), but the pricing
strategies are studied heavily depend on the requests/demands in Lin (2006);
Mes & Van der Heijden (2007); Qiao et al. (2016); Zhou & Lee (2009), there is
less competition mentioned. To remedy this, Toptal & Bingöl (2011) study the
competition among TL and LTL carriers, and Kuyzu et al. (2015) address the
competition among long-term contracts and spot contracts.

Neglecting the transportation procurement perspective, Xia et al. (2004) dis-
cuss also different pricing strategies in CAs, which defined the winning prices or
market clearing prices as follows,

Definition 2.9 For CAs, a set of item prices is called market clearing or
equilibrium if all the winning bids are greater than or equal to the total price of
the bundle items and all the losing bids are less than or equal to the total price of
the bundle items.

The bundle pricing approaches and individual pricing together with their ad-
vantages and disadvantages are discussed and summarized in the paper Xia et al.
(2004), which we will not mention it here again.
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2.3.2 Winner determination problem for transportation pro-
curement problem

The concept of WDP is expressed as follows: consider a set of bids in a CAs, find
an item-conflict-free allocation to bidders (not all items need to be allocated) such
that the auctioneer’s revenue is maximized or the auctioneer’s cost is minimized.

Given N = {1, . . . , n} the set of bidders andM = {1, . . . ,m} the set of items.
A bundle S is a subset of items in M : S ⊆M . Let Fi ⊂M be the set of bundles
for which bidder i submits an atomic bid, and F = F1 ∪ . . .Fn the set containing
all the bundles demanded by at least one of the bidders. Each bidder i can give
a bundle S an atomic bid vi(S) i.e., the highest price that bidder i is willing to
pay for bundle S.

The items are allocated through variables xi(S) ∈ {0, 1}: it equals to 1 when
bidder i get bundle S. An allocation (xi(S)|i ∈ N,S ⊆ M) is said to be feasible
if it allocates no item more than once:∑

i∈N

∑
S⊆M,S3j

xi(S) ≤ 1 for all j ∈M, (2.9)

and at most one bundle to every bidder∑
S⊆M

xi(S) ≤ 1 for all i ∈ N. (2.10)

OR and XOR bidding languages are widely used in this problem and will be
presented here, we give two refinements of WDP , called WDPOR and WDPXOP

respectively. In both frameworks, bidders provide atomic bids for the bundles.
The WDP problem is defined as follows (De Vries & Vohra, 2003),

Definition 2.10 Winner Determination Problem (WDP)
Given bids vi(S), i = 1, . . . n and S ∈ F, the winner determination problem is the
problem which determines

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x is a feasible allocation). (2.11)

In the OR bidding language, the atomic bids for bidder i can be seen as
follows, i is willing to accept any combination of pairwise disjoint atomic bids
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a price equal to the summation of the disjoint bid prices. In this case, disjoint
atomic bids can be combined as one bid, multiple bids can be given to one bidder
as soon as it is feasible, constraint (3.2) is thus omitted, see Daniel et al. (2006).

Definition 2.11 (WDPOR)
Given a set of bids in the OR bidding language, with atomic bids on sets in Fi

for every bidder i, WDPOR is the problem which computes

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x satisfies (3.1)). (2.12)

In XOR bidding language, the atomic bids for bidder i can be seen as
follows, bidder i can only receive at most one atomic bid.

Definition 2.12 (WDPXOR)
Given a set of bids in the XOR bidding language, with atomic bids on sets in Fi

for every bidder i, WDPOR is the problem which computes

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x satisfies (3.1) and (3.2)). (2.13)

For the detailed review of WDP problem, we refer Chapter 2 for the WDP
survey.

2.4 Bilevel programming and its application to
CAs

Bilevel optimization problems are optimization problems involving two indepen-
dent decision makers with a hierarchical structure, where some decision variables
in one optimization problem (the upper level problem) are constrained to be op-
timal in a second optimization problem (the lower level problem). It describes
the problem as follows, at the upper level, the leader makes decisions; then, at
the lower level, the follower reacts optimally to the leader’s decision. Originally
the problem was introduced in an economic setting in Stackelberg et al. (1952)
as a sequential game called Stackelberg game. The literature on bilevel program-
ming from both economical and mathematical perspectives has been largely in-
vestigated since then, more recently, the book Dempe (2018) provides a detailed
survey about the theory, algorithms and applications on bilevel optimization.
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2.4.1 Problem description

In a bilevel optimization problem, both leader and follower aim to optimize their

own utilities by determine their own set of variables. Let x ∈ X and y ∈ Y

denote the decision variable vector of the leader and the the follower respectively,

with X and Y closed and nonempty. Then, for a given decision x of the leader,

the follower has to solve a optimization problem as follows,

min
y

f(x, y) (2.14)

s.t. y ∈ Y (2.15)

g(x, y) ≤ 0 (2.16)

h(x, y) = 0 (2.17)

where g(x, y) and h(x, y) are set of inequality and equality constraints func-

tions.

The follower’s optimal/rational reaction yield a solution set mapping:

y(x) := {y ∈ argminf(x, y) | y ∈ Y, g(x, y) ≤ 0, h(x, y) = 0} (2.18)

We define then the graph of y, it give the optimal/rational response y(x) of

the follower to any of the leader’s decision x:

Φ(x) := {(x, y) | x ∈ X, y ∈ y(x)} (2.19)

On the leader’s side, he optimize his objective function F (x, y(x)) by taking

into account y(x) is an optimal response of the follower to x, where x satisfies

also a set of inequality constraints G(x, y(x)) and equality constraints H(x, y(x)).

The leader’s problem is defined as

min
x
{F (x, y(x)) | x ∈ X,G(x, y(x)) ≤ 0, H(x, y(x)) = 0, (x, y(x)) ∈ Φ(x)}

(2.20)

Thus the global bilevel programming problem (BLPP) can be represented as
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the form:

min
x

F (x, y(x)) (2.21)

s.t. G(x, y(x)) ≤ 0 (2.22)

H(x, y(x)) = 0 (2.23)

y(x) = argminy{f(x, y) | g(x, y) ≤ 0, h(x, y) = 0} (2.24)

Overall, the relaxed feasible set for BLPP id defined as Ω = {(x, y) : G(x, y) ≤
0, H(x, y) = 0, g(x, y) ≤ 0, h(x, y) = 0}, and the inducible region or feasible set
for BLPP is IR = {(x, y) : (x, y) ∈ Ω, (x, y) ∈ Φ(x)). The inducible region is the
set the leader may optimize.

2.4.2 Optimistic and pessimistic bilevel formulation

The bilevel problem (Colson et al., 2007) has a natural interpretation as a non-
cooperative game between two levels. Players at the upper level (leaders) choose
his decision x first, after seeing the x, players at lower level (followers) responds
with a decision y, as defined in Equation (2.18), there may exist several optimal
solutions at the lower level for fixed leader decisions. Since the leader cannot
anticipate the follower’s decision, the constraint must be satisfied for any rational
decision of the follower, that is, for any feasible decision x that optimizes the
follower’s objective function. This statement leads to a optimistic/pessimistic
bilevel problem where the leader have to face the best/worst case that may happen
to him. Two main strategies have been originally proposed by Loridan & Morgan
(1996) to explore these two cases.

2.4.2.1 Optimistic formulation

As it says in word, under optimistic formulation, the leader is in a optimistic
situation, for a given decision x, he assumes that the follower will always select
the solution in Φ(x) that is most favorable to the leader. In this case, Problem
(2.20) is thus:

min
x
{min
y(x)

F (x, y(x)) | x ∈ X,G(x, y(x)) ≤ 0, H(x, y(x)) = 0, (x, y(x)) ∈ Φ(x)}

(2.25)
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It describes the fact that the leader chooses the best solution y ∈ y(x) for any
given decision x. The general formulation of optimistic bilevel formulation is as
follows:

min
x

min
y(x)

F (x, y(x)) (2.26)

s.t. G(x, y(x)) ≤ 0 (2.27)

H(x, y(x)) = 0 (2.28)

y(x) = argminy{f(x, y) | g(x, y) ≤ 0, h(x, y) = 0} (2.29)

As optimistic formulation gives the leader the selection power to the follower’s
solution pool, this problem are also referred as strong Stackelberg games (Loridan
& Morgan, 1996).

2.4.2.2 Pessimistic formulation

While in pessimistic case, the leader consider the worst case that it may happen
to him, that is, the follower is always going to react optimally to leader’s decision
x that is least favorable to the leader.

In this case, Problem (2.20) is thus:

min
x
{max
y(x)

F (x, y(x)) | x ∈ X,G(x, y(x)) ≤ 0, H(x, y(x)) = 0, (x, y(x)) ∈ Φ(x)}

(2.30)
It describes the fact that the leader chooses the worst solution y ∈ y(x) for

any given decision x. The general formulation of pessimistic bilevel formulation
is as follows:

min
x

max
y(x)

F (x, y(x)) (2.31)

s.t. G(x, y(x)) ≤ 0 (2.32)

H(x, y(x)) = 0 (2.33)

y(x) = argminy{f(x, y) | g(x, y) ≤ 0, h(x, y) = 0} (2.34)

When a pessimistic formulation is solved, that is the worst-case scenario
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solved, the leader can guarantee the least objective that he can get, it leads
to a weak Stackelberg game (Loridan & Morgan, 1996).

2.4.2.3 Rewarding and deceiving solutions

As follower in reality does not going to react in the predicted way - the opti-
mistic or pessimistic - with lack of communication or private information, and
the choice of the follower influences the leader’s objective value, thus, rewarding
and deceiving solutions are also introduced as alternative solutions of the bilevel
problem (Alves & Antunes, 2016).

• Rewarding solution: the leader’s decisions are determined with the pes-
simistic formulation, but the solution chosen by the follower is the most
favorable for the leader.

• Deceiving solution: the leader’s decisions are determined with optimistic
formulation, but the solution chosen by the follower is the least favorable
for the leader.

For the leader, the various solutions are ordered as follows:

deceiving ≤ pessimistic ≤ rewarding ≤ optimistic

2.4.3 Bilevel resolution

Bilevel programming belongs to the class of NP -hard problems, which means
that no polynomial time algorithms exist for solving it unless P = NP (Bard,
2009). Even with the simplest form of a bilevel problem, where all constraints
and objectives are linear, is NP -hard (Ben-Ayed & Blair, 1990; Labbé et al.,
1998). In general, the feasible region of the leader is nonconvex, and can even
be disconnected or empty (Colson et al., 2005). This is the reason why there do
not exist many effective algorithms for solving these problems, and even less for
pessimistic case.

Effectively solving bilevel problems heavily depends on the nature form of
(2.21)-(2.24). When the follower’s problem is convex for a given fixed decision
from the leader and the constraint qualification is satisfied (e.g. Slater’s condi-
tion), the lower level problem can be replaced by its Karush-Kuhn-Tucker (KKT)
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optimality conditions in the leader’s problem (Bard & Moore, 1990; Edmunds &
Bard, 1991; Gümüş & Floudas, 2001; Hansen et al., 1992; Júdice & Faustino,
1988). This yields a mathematical problem with equilibrium constraints (MPEC)
that widely developed to solve bilevel problems. However, Dempe & Dutta (2012)
show that in optimistic case, global and local optimal of the bilevel problem and
te MPEC do not always correspond. The global optimal solutions of the MPCC
correspond to global optimal solutions of the bilevel problem provided the lower-
level problem satisfies the Slater’s constraint qualification, but the local optimal
are complicated to verify. Thus, Dempe (2019) use a relaxation of the bilevel
problem in two constraints in which a sequence of locally optimal solutions of the
relaxed problems converges to a point which is related to a locally optimal solu-
tion of the bilevel optimization problem. If the lower-level problem is a linear one,
relaxation of only the complementarity constraint is sufficient. The correspon-
dence of optima in the pessimistic case has been discussed in Aussel & Svensson
(2019); Dempe et al. (2019).

2.4.4 Bilevel application and its application to CAs

Despite the problem is hard to solve due to its complexity, bilevel problems and
even multi-level problems are attracting more attentions as they allow to model
complicate real-life problems which actors involved has to make their own deci-
sions sequentially and the decisions made can influence each other. This includes
problems in the domain of transportation, economics, decision science, business,
engineering, environmental economics etc.

Bilevel optimization was first introduced in the field of game theory by a
German economist Freiherr von Stackelberg who published Market Structure and
Equilibrium in 1934 (Von Stackelberg, 2010), in a work of great originality and
richness, he described and analyzed a market situation in which the leader firm
moves first and the follower firms then move sequentially (Stackelberg et al.,
1952). The bilevel setting were soon used for military propose (Bracken & McGill,
1973) where the leader has to determine a resource allocation - weapons owned
by the follower - problem.

Examples of problems that are adequately modeled with bilevel program-
ming including but not limited to defense applications, electricity markets and
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networks, facility location and production problem, problems over networks, in-
terdiction problems, price setting problems, resource allocation, etc... See Dempe
(2018) for a detailed list and publications.

In this dissertation, the bilevel setting is employed to build a pricing-allocation
model in CAs. Pricing problems have composed a class of problems that fit ide-
ally bilevel framework when player/follower in the system is sensitive to the price
changes and will react differently, then the price proposer/leader has to deter-
mine an optimal pricing strategy with knowing the follower’s reaction. Pricing
bilevel models has been studied in Brotcorne et al. (2001); Heilporn et al. (2010);
Labbé et al. (1998) as toll-setting problem, in Afşar et al. (2016); Aussel et al.
(2017, 2019) as energy pricing problem, in Gilbert et al. (2015); Labbé & Violin
(2013); Marcotte & Savard (2002); Robbins & Lunday (2016) as pricing-setting
problem, etc... As mentioned in Gansterer & Hartl (2017, 2018), among the lit-
erature studied CAs, BGP and WDP are studied separately, it seems there is
no solution for the whole system (5-phase procedure for CAs) when we are fac-
ing a auction-based decentralized planning, the pricing strategies used in these
two problems are either with a marginal price or a given pricing strategy as de-
scribed in Section 2.3.1.2. Introducing bilevel structure between carriers/BGP
and auctioneer/WDP allows us to adequately formulate their relationship, as the
upper level/leader, carriers collaboratively or competitively choose their pricing
strategies, knowing that the lower level/auctioneer is going to adapt his behavior
- allocation bundle of lanes to carriers - accordingly.
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3. THE WINNER DETERMINATION PROBLEM IN CAS

Auction can be used as a market protocol to allocate agent activities or re-
sources in a multi-agent system. In Combinatorial Auctions (CAs), agents (bid-
ders) bid on a subset of items (goods, tasks, resources, services, etc.), i.e. a
bundle (Peter et al., 2006). In CAs, bidders can express both their preference
within bids for the items’ complementarity ∗ and substitutability † (Boughaci
et al., 2009). CAs has been widely used in economics, operation research, game
theory and resource allocation in multi-agent systems (Boughaci & Drias, 2005;
Collins et al., 1999; Fujishima et al., 1999; Leyton-Brown et al., 2000b; Rothkopf
et al., 1998). Real-world applications can be found such as America’s Federal
Commissions (FCC) auctions ‡.

Under the context of CAs, one main issue is the Winner Determination Prob-
lem (WDP) (Lehmann et al., 2006). The concept of WDP is expressed as follows:
consider a set of bids in a CAs, find an item-conflict-free allocation to bidders (not
all items need to be allocated) such that the auctioneer’s revenue is maximized
or the auctioneer’s cost is minimized.

From a practical point of view, WDP has been used in the applications of
multi-agent systems and other domains such as cloud computing (Samimi et al.,
2016; Tafsiri & Yousefi, 2018), e-commerce (De Vries & Vohra, 2003), intelli-
gent transportation systems (De Vries & Vohra, 2003; Satunin & Babkin, 2014),
services scheduling (Fontanini & Ferreira, 2014), knowledge management (Wu,
2001), logistics services (De Vries & Vohra, 2003; Ignatius et al., 2011; Pla et al.,
2014) and production management (Ray et al., 2011), etc.

WDP is reviewed under CAs in the paper De Vries & Vohra (2003), and this
survey is devoted to the WDP which has never been individually reviewed. This
chapter aims to depict how far WDP has been considered in different respects,
and to better understand the current status of the research, and to branch the
studies for the future. In this survey, our studies are focused on where operation
research models are developed and solution techniques are applied.

∗The value assigned to a collection of items should be greater than the sum of the values
assigned to its individual’s elements.

†The value assigned to a collection of items should be lower than the sum of the value
attached to its individual’s elements.

‡http://wireless.fcc.gov/auctions/.
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3.1 Problem formulation

The reminder of this chapter is organized as follows, Section 3.1 provides the
general problem description as well as formulations for WDP. Details about the
solution approach, the benchmarks and the computational study are given in
Section 3.2, 3.3 and 3.4, respectively. Conclusions and further research are given
in Section 3.6.

3.1 Problem formulation

Given N = {1, . . . , n} the set of bidders and M = {1, . . . ,m} the set of items. A
bundle S is a subset of items in M : S ⊆ M . Let Fi ⊂ M be the set of bundles
for which bidder i submits an atomic bid, and F = F1 ∪ . . .Fn the set containing
all the bundles demanded by at least one of the bidders. Each bidder i can give
a bundle S an atomic bid vi(S) i.e., the highest price that bidder i is willing to
pay for bundle S.

The items are allocated through variables xi(S) ∈ {0, 1}: it equals to 1 when
bidder i get bundle S. An allocation (xi(S)|i ∈ N,S ⊆ M) is said to be feasible
if it allocates no item more than once:∑

i∈N

∑
S⊆M,S3j

xi(S) ≤ 1 for all j ∈M, (3.1)

and at most one bundle to every bidder∑
S⊆M

xi(S) ≤ 1 for all i ∈ N. (3.2)

In Nisan & Ronen (1999), bidding languages are introduced to represent bids,
through which bidders price the bundles with their own preferences, see also
Nisan & Ronen (1999). OR and XOR bidding languages are widely used in this
problem (see Chapter 2.2.3) and will be presented here, we give two refinements of
WDP , called WDPOR and WDPXOP respectively. In both frameworks, bidders
provide atomic bids for the bundles.

The WDP problem is defined as follows (De Vries & Vohra, 2003),

Definition 3.1 Winner Determination Problem (WDP)
Given bids vi(S), i = 1, . . . n and S ∈ F, the winner determination problem is the
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problem which determines

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x is a feasible allocation). (3.3)

In the OR bidding language, the atomic bids for bidder i can be seen as
follows, i is willing to accept any combination of pairwise disjoint atomic bids
a price equal to the summation of the disjoint bid prices. In this case, disjoint
atomic bids can be combined as one bid, multiple bids can be given to one bidder
as soon as it is feasible, constraint (3.2) is thus omitted, see Daniel et al. (2006).

Definition 3.2 (WDPOR)
Given a set of bids in the OR bidding language, with atomic bids on sets in Fi

for every bidder i, WDPOR is the problem which computes

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x satisfies (3.1)). (3.4)

In XOR bidding language, the atomic bids for bidder i can be seen as
follows, bidder i can only receive at most one atomic bid.

Definition 3.3 (WDPXOR)
Given a set of bids in the XOR bidding language, with atomic bids on sets in Fi

for every bidder i, WDPOR is the problem which computes

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x satisfies (3.1) and (3.2)). (3.5)

3.1.1 General formulation of WDP

In most literature, problem WDPOR is modeled as an integer linear program

max
n∑
i=1

∑
S⊆M

vi(S)xi(S)

subject to
∑
i∈N

∑
S⊆M,S3j

xi(S) ≤ 1 ∀j ∈M

xi(S) ∈ {0, 1} ∀i ∈ N,S ⊆M

(3.6)

This model is identical to the integer linear programming model of the weighted
set packing problem (Rothkopf et al., 1998). In this problem, we consider a

36



3.1 Problem formulation

collection of subsets (i.e. the bundle) of a set M , each subset with a weight (i.e,
the valuation), and the goal is to find a non-intersecting sets of maximal total
weight.

In problem WDPXOR, extra constraints are added in (3.6):∑
S⊆M

xi(S) ≤ 1 ∀i ∈ N. (3.7)

We can also modelWDPOR andWDPXOR by using intersection graphs. Con-
sider a finite un-directed graph G = (U,E). The nodes in U are identical to the
bids in F, and an edge is build between two nodes if and only if there is a con-
flict between these two bids, i.e., there is an intersection between these two bids,
or, in the case of WDPXOR, both bids are by the same bidder. The node in
u ∈ U associated with the bid S are given a weight wi(u) := vi(S). A subset of
nodes in a graph is called a stable set if no two nodes are connected by an edge.
The maximum weighted stable set problem is the problem to find a stable set of
maximum total weight. WDPOR and WDPXOR can be seen as the maximum
weighted stable set problem related to WDPOR and WDPXOR, respectively.

When we consider multi-unit supply or multiplicities of items in bids, Holte
(2001) models WDPOR and WDPXOR as generalized knapsack problem.

3.1.2 Variants of WDP

3.1.2.1 Bi-objective WDP (2WDP-SC)

2WDP-SC is first introduced in Buer & Pankratz (2010b) as a generalization of
set covering problem (SC). The goal of the problem is to find the best allocation
such that the total cost is minimized, and total service quality is maximized.

Given N = {1, . . . , n} the set of bidders, M = {1, . . . ,m} the set of items and
F the set of bundle bids, a bundle bid S ∈ F is defined as triple S := (i, τ, vi(τ)),
which implies that bidder i ∈ N is willing to pay the subset τ at a price of vi(τ).
Given also the set Q := {qij|∀i ∈ N ∧ j ∈M} where qij ≥ 0 indicates the service
quality level if bidder i fulfills j.

The goal is to find a non-intersection set of bids W ⊆ F, such that every item
in M is covered by W . Also, in the objective functions, the total cost f1 need
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to be minimized and the total service quality f2 needs to be maximized. The

2WDP-SC is modeled as follows (Buer & Pankratz, 2010b):

min f1(W ) =
∑
S∈W

vi(S)

max f2(W ) =
∑
j∈M

max{qij|i ∈ {i(S)|S ∈ W ∧ i ∈ τ(S)}}

subject to ∪S∈W τ(S) = M

(3.8)

In the paper of Asli et al. (2019), the authors propose a bi-objective winner

determination problem, where the objectives are: (i) maximization of the total

income, (ii) maximization of the number of sold items.

3.1.2.2 WDP under uncertainty (sWDP)

Uncertainty is one of the major tasks in most of the mathematical applications,

to measure and to deal with the uncertainty is also part of WDP.

In the theoretical studies, in order to deal with the uncertainty, a min-max

regret robust optimization approach is developed in Boutilier et al. (2004) to

solve WDP under uncertainties within the auctioneer’s objective function, also,

a robust models is proposed in Sampath & Benyoucef (2009) to solve WDP with

bid evaluation under uncertainty.

In the application of truckload (TL) procurement, Ma et al. (2010); Remli

et al. (2019); Zhang et al. (2014, 2015) address WDP under shipment volume

uncertainty. A two-stage stochastic WDP model is considered to differ from the

classical WDP model. In this problem, the items are called lanes, a lane is defined

as an origin-destination pair together with a volume of shipment needed to be

transported from the origin to the destination, and the bidding price vi(S) is

defined for one unit volume S by bidder i. The task is to minimize the total

expected cost for the shipper (i.e, the auctioneer).
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3.2 Methodology of the WDP problem

3.2.1 Complexity of WDP

In CAs, a set of items is traded simultaneously, and in the bidding process, bidders
may bid for any combination of items. "The space of WDP problem is large, it
has three degrees of freedom: the number of items, the number of bids and the
distribution of bids" (Fujishima et al., 1999). The solution of such auction is an
optimization problem which is NP-hard in the general case (Rothkopf et al., 1998).
Sandholm et al. (2002) show how different features of a combinatorial market
affect the complexity of determining the winners, and theoretically analyze the
complexity of finding a feasible, approximate, or optimal solution.

Motivated by its potential applications and computation challenges, WDP has
been studied and developed with a variety of optimization algorithms. Two classes
of algorithms can be discovered in the literature, "exact" or "approximate". In
general, exact algorithms can give the optimal solution and guarantee the opti-
mality of the solution of all WDP instances. But in practice, on one hand, using
exact algorithms to solve WDP requires exponential time, which makes them
impractical with most real-world applications when the number of traded items
grow (Dowlatshahi et al., 2014); and on the other hand, approximate algorithms
do not guarantee the optimality of the solutions, the optimality is sacrificed so
that the problem could be solved more efficiently.

3.2.2 Exact algorithms for WDP

Applying exact algorithms to solve WDP can be tracked back to the beginning
of 1970s (Padberg, 1973) when solving set packing problems. In Andersson et al.
(2000); Caplice & Sheffi (2003), WDP is formulated as a standard mixed integer
programming problem, see also Nisan & Ronen (1999); Wurman (1999), it enables
the problem to be developed and solved by standard mixed integer programming
algorithms.

3.2.2.1 Branch-and-bound (B&B)

A variety of work can be found to solve WDP is under the framework of branch-
and-bound (B&B). These algorithms include the combinatorial auction structural
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search (CASS) (Fujishima et al., 1999) which is based on the depth-first branch-

&-bound algorithm, the linear programming based B&B algorithm (Nisan, 2000),

the Combinatorial Auction Multi-Unit Search (CAMUS) (Leyton-Brown & Shoham,

2003; Leyton-Brown et al., 2000b), the BOB algorithm (Sandholm & Suri, 2003),

the CABOB algorithm (Sandholm et al., 2005), and the clique-based B&B al-

gorithm using graph coloring for bounding (Wu & Hao, 2016). In Wu & Hao

(2016), an exact approach with an effective B&B algorithm is explored, Com-

plete Set Partitioning problem captures the special case of WDP in CAs, where

bidders place bids on every possible bundle of items. These B&B methods differ

from each other mainly by

• specific techniques to determine the lower and upper bounds (Nisan, 2000;

Sandholm & Suri, 2003; Sandholm et al., 2005; Wu & Hao, 2016),

• their branching strategies (Fujishima et al., 1999; Leyton-Brown et al.,

2000b; Wu & Hao, 2016),

• other techniques like preprocessing, decomposition of the bid graph, and

identifying and solving tractable special cases (Sandholm & Suri, 2003;

Sandholm et al., 2005; Wu & Hao, 2016).

3.2.2.2 Branch-and-cut (B&C)

A set packing formulation for WDP studied within a branch-and-cut algorithm

is given in Escudero et al. (2009). The authors study the polyhedral structure

of the problem and propose a new and tighter formulation with some new valid

inequalities.

3.2.2.3 Branch-and-price (B&P)

A branch-and-price algorithm is given in Günlük et al. (2005) also based on a set

packing formulation proposed in Dietrich & Forrest (2001). B&P is said to be a

powerful tool to combine column (or, variable) generation with enumeration to

solve large integer programs.
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3.2.2.4 Dynamic programming (DP)

Using DP to solve WDP is discussed in Rothkopf et al. (1998); Sandholm (2000).
By using the optimal substructure property of the problem: the maximal revenue
either from a single bid set or from two disjoint subsets of the same bid set, the
dynamic programming explores the highest possible revenue of each bid set from
the smallest to the largest.

The DP (Vangerven et al., 2017) is proposed again for CAs with a specific
geometric structure. In this restricted topology, every item corresponds to a
rectangle with different size, and the items are arranged in rows.

3.2.3 Approximate algorithms for WDP

Approximate algorithms can be divided into three classes: approximation al-
gorithms, problem-specific heuristics, and meta-heuristics (Dowlatshahi et al.,
2014). In general, approximation algorithms can obtain good quality solution
within a run-time bounds; problem-specific heuristics are designed for a specific
problem with particular objective functions or constraints, meta-heuristics pro-
vide more general approximate algorithms and are applicable to a large variety of
optimization problems. "Meta-heuristics solve complex optimization problems by
’exploring’ the large solution space and achieve this goal by effectively reducing
the size of this space and ’exploiting’ the reduced space efficiently" (Dowlatshahi
et al., 2014). Representative algorithms in this class includes Evolutionary Com-
putation (EC), Ant Colony Optimization (ACO), Greedy Randomized Adaptive
Search Procedure (GRASP), Tabu Search (TS), Variable Neighborhood Search
(VNS), Iterated Local Search (ILS), Particle Swarm Optimization (PSO), Grav-
itational Search algorithm (GSA), etc.

3.2.3.1 Stochastic local search (SLS)

Casanova (Hoos & Boutilier, 2000) is a SLS algorithm that explores the space of
the searching regions. Given a feasible allocation, Casanova adds an un-allocated
bid and then removes the conflicting bids from the allocation at each iteration.
The selection of the bids is based on the bids’ quality and their history informa-
tion.
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3.2.3.2 Limited discrepancy search (LDS)

Based on the idea of optimal algorithm IDA* in Sandholm (1999), Sakurai et al.
(2001) introduce LDS techniques to limit the search efforts to the regions where
good solutions are likely to exist.

3.2.3.3 Hybrid algorithm (HA)

A HA combining simulated annealing with branch-and-bound (SAGII) is pro-
posed with three different local move operators: an embedded branch-and-bound
move, greedy local search move, and exchange move (Guo et al., 2006b).

In Dowlatshahi & Derhami (2017), a hybrid Ant Colony Optimization with
a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm is proposed
for solving WDP in CAs. MNLS uses the fact that the global optima of WDP
is a local optima for a given neighborhood. The proposed MNLS algorithm si-
multaneously explores a set of three different neighborhoods to get different local
optima and to escape from the deep local optima.

3.2.3.4 Tabu search (TS)

TS is a meta-heuristic algorithm to explore the searching space based on LS meth-
ods. A TS algorithm (Boughaci et al., 2010), a crossover-based tabu search al-
gorithm (TSX_WDP) (Sghir et al., 2013) and a multi-neighborhood tabu search
algorithm (MN/TS) (Wu & Hao, 2015) are proposed to solve WDP.

TSX_WDP is designed with two ways to generate complementary neigh-
borhoods, called intensification and diversification. TSX_WDP also employs a
backbone-based recombination operator to escape from the deep local optimal
and to search into unexplored more promising regions.

MN/TS is a heuristic algorithm designed for maximum weight clique problem
(MWCP) in Wu et al. (2012). In Wu & Hao (2015), WDP is transformed into
the maximum weight clique problem.

3.2.3.5 Memetic algorithm (MA)

Boughaci et al. (2009) propose a MA for the optimal WDP, this algorithm is based
on a SLS with a specific crossover operator. In every iteration of the LS, either a
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random bid or a best bid is added with a probability p or 1− p respectively, and
the conflicting bids are removed in the allocation.

3.2.3.6 Greedy algorithm

Lehmann et al. (2002); Zurel & Nisan (2001) introduce a greedy algorithm, then
Fukuta & Ito (2006) give a hill-climbing (HC) greedy algorithm and a SA-like
random search algorithm in a more practical point of view.

3.2.3.7 Genetic algorithm (GA)

The GA method uses crossover and standard operators to increase the searching
space without a local search (LS). In Wang & Wang (2014), a problem-specific
mathematical model is designed to maximize the expected economization of a
procurement, the GA method is used to solve the problem within the solution of
WDP.

3.2.3.8 Lagrangian heuristic (LAHA)

The Lagrangian heuristic is introduced in Beasley (1990) to solve the set-covering
problem. Guo et al. (2006a) model the CAs problem as a set packing and applied
the Lagrangian relaxation method. Hsieh (2010) and Mansouri & Hassini (2015)
solve the Lagrangian relaxation of WDP, the first one deals with multi-unit multi-
item reverse WDP and the second one deals with the WDP in iterative CAs. In
Hsieh & Liao (2014), an agent learning approach has been proposed for solving
WDP, in which a Lagrangian relaxation approach is used to develop an efficient
multi-agent learning algorithm.

3.2.3.9 Clique-based heuristic

WDP is said to be equivalent to the weight set packing problem (De Vries &
Vohra, 2003), and in Ausiello et al. (1980), weight set packing problem is reduced
as the maximum weight clique problem (MWCP). In Guo et al. (2006b), a clique-
based branch-and-bound approach has been introduced for solving WDP, which
is based on clique formulation of WDP, then it can be solved as the MWCP. Wu
& Hao (2015) study the clique-based approach for WDP by applying a heuristic
to the transformed MWCP problem.
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3.2.3.10 Ant Colony Optimization (ACO)

Using ant colony optimization to solve the WDP is started from the Dowlatshahi
& Derhami (2017), the authors propose a hybrid Ant Colony Optimization with
a novel Multi-Neighborhood Local Search (ACO-MNLS) algorithm. A Graph
Based Ant Algorithm (TrACA) (Ray et al., 2018) and an Ant Colony approach
(Ray & Ventresca, 2018) are given one year later. In Ray et al. (2018), the IP
formulation of the WDP problem is transformed into a graphical one where the
set of bundles and associated bids are represented on a directed cyclic graph.

3.2.3.11 Other algorithms

Dobzinski & Schapira (2006) propose an improved approximation algorithms for
CAs with submodular bidders. This class of bidders is also called XOS bidders.

In Boughaci (2010), a population-based metaheuristic, called differential evo-
lution algorithm (DE) is studied for the WDP.

In Nguyen (2014), a new mathematical formulation for WDP (under the name
of set packing) and an efficient method for generating near-optimal solution have
been proposed.

In Boughaci & Lassouaoui (2014), a stochastic hyper-heuristic (SHH) for solv-
ing WDP has been proposed, in which a new idea is developed for hyper-heuristics
by combining choice function and randomness strategies. In addition, to com-
pare with the SHH algorithm, choice function (CF) and random (RHH) hyper-
heuristics are also discussed.

3.2.4 Algorithms for 2WDP-SC

A multiobjective genetic algorithm (Buer & Pankratz, 2010b), a Pareto-based
greedy randomized adaptive search procedure (GRASP) approach (Buer & Pankratz,
2010a), a Pareto-metaheuristic are proposed for solving the problem. In Rekik
& Mellouli (2012), bidder’s reputation is taken into account the decision making
of the problem, to evaluate bidder reputations, the auctioneer uses a number of
service attributes with different weights.

In Buer & Kopfer (2014), the authors have presented a metaheuristic approach
by integrating the greedy randomized adaptive search procedure with a two-stage
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candidate component selection procedure in order to find a competitive set of
non-dominated solutions.

3.3 Benchmarks

In this section, we give some empirical test suites that were used in order to
evaluate and compare the existing algorithms for WDP. It is generally agreed that
no real-world benchmarks are available for WDP problem, here in this section,
we provide the most used test suite created for WDP problem in the literature.

3.3.1 Sandholm

Sandholm is provided by Sandholm (1999), which can be used to generate in-
stances of different problem sizes and distributions. There are four different dis-
tributions available: Random, WeightedRandom, Uniform, Decay, the Decay
distribution in general leads to the hardest instance (Sandholm, 2002),

• Random: For each bid, pick the number of items randomly from 1, 2, ...,m.
Randomly choose that many items without replacement. Pick the price
randomly from [0, 1].

• WeightedRandom: Same bid creation procedure, but pick the price be-
tween 0 and the number of items in the bid.

• Uniform: Randomly chosen items for each bid with same number. Pick
the prices from [0, 1].

• Decay: Give the bid with one random item. Then repeatedly add a new
random item with probability α until an item is not added or the bid in-
cludes all m items. Pick the price between 0 and the number of items in
the bid.

3.3.2 CATS

Leyton-Brown et al. (2000a) have created the program Combinatorial Auction
Test Suite (CATS) to generate benchmarks. CATS is a suite of distributions
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which are parameterized by the number of items and bids. This suite of distribu-
tions models the realistic bidding behavior, it provides an economic motivation
for both the contents and the valuation of a bundle, deriving them from basic
bidder preferences.

Different distributions are available in the CATS suite: paths, regions, match-
ing, scheduling, and arbitrary,

• paths : Bids are build in space - an actual map, it begins generate num-
cities nodes randomly placed on a plane. then, iteratively consider random
pairs of nodes and examine the shortest path connecting them, each path
is treated as a bid with a price, the price is random in (parameterized)
proportion to the Euclidean distance between the chosen nodes.

• regions : Bids are build in adjacency graph, the items are adjacency con-
nected in the graph with different common values and private values for
each bidder (the value combination is used to show bidders’ preferences).
To generate the bids, it first add a random item, weighted by a bidder’s pref-
erences, to the bidder’s bid; next, determine whether another item should
be added by drawing a value uniformly from [0,1], and adding another item
if this value is smaller than a threshold, in this procedure, it allows a small
chance that a new item will be added uniformly at random from the set of
items, without the requirement that it be adjacent to a item in the current
bundle S, otherwise, select a item from the set of nodes bordering the items
in S. The probability that some adjacent item n will be added depends on
how many edges n shares with the current bundle S, and on the bidder’s
relative private valuations for n, the price for each bid depends on the sum
of common and private valuations for the items in the bundle; finally, ad-
ditional bids that are substitutable for the original bid are generated, with
the constraint that each new bid contains at least one item from the original
bid.

• matching : Bids are build based on matching problems, in which correspond-
ing time slices must be secured on multiple resources. The general form of
temporal matching includes m sets of resources, in which each bidder wants
1 time slice from each of j ≤ m sets subject to certain constraints on how
the times may relate to one another. The bids are generated based on the
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time deviation of the defined matching problem, and the price of a bid is
derived from a particular bidder’s utility function.

• scheduling : Bids are build based on job-shop scheduling problems. First,
determine the number of deadlines for a given job according to a decay
distribution, and then generate a set of substitutable bids satisfying the
deadline constraints. Specifically, let the set of deadlines of a particular job
be d1 < · · · < dn and the value of a job completed by d1 be v1, superadditive
in the job length. The price of a job completed by deadline di is vi = v1

d1
di
,

reflecting the intuition that the decrease in value for a later deadline is
proportional to its ’lateness’.

• arbitrary : Bid are build with arbitrary relationship in a fully-connected
graph, it express the likelihood that a particular pair of items will appear
together in a bundle. To generate the bids, it choose a first item and then
proceed to add items one by one, with the probability the new item shared
with the current bundle.

More information on the test suite can be found at http://robotics.stanford.
edu/CATS.

3.3.3 REL

Lau & Goh (2002) provide new benchmarks of various sizes consisting of up to
1500 items and 1500 bids. These benchmarks include 500 instances. These in-
stances are considered in Lau & Goh (2002) as more realistic than other instances
and are divided into 5 different groups, each group having 100 instances labeled
as REL − m − n, where m is the number of item and n is the number of bid.
To generate these instances, several factors are incorporated, including a pricing
factor which models a bidder’s acceptable price range for each bid, a preference
factor which takes into account bidder’s preferences among bids, and a fairness
factor which measures the fairness in distributing items among bidders.

3.3.4 Complementary data

Fujishima et al. (1999) (Fuji sets) provide two more distributions to generate
instances: binomial and exponential, and De Vries & Vohra (2003) (deV ries sets)
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provide the distribution quadratic, they use distribution functions to determine
how often a bid for n items appears, the probability of each item being included
in a given bid is independent of which other items are included.

Aside from the general setting WDP problem, in Günlük et al. (2005), in
order to generate multi-round bids using XOR-of-OR language, the authors con-
struct problem instances from the round-by-round results of FCC auction. While
Guo et al. (2006a) propose a new methodology to produce the Proportional Bid
Price(PBP ) SPP test set.

3.4 Performance of the algorithms

The performance of the proposed algorithms are evaluated in terms of solution
quality and computation time by several well-known benchmarks. Since there is
no real-world benchmarks are available, thus identifying what types distributions
can be solved more efficiently by what types algorithms is rather important. In
the following section, only the algorithms that are based on the nature formula-
tion of WDP are considered and they are listed by the year of publication, the
algorithms that devoted to specific case WDP will not be taken into account the
consideration.

3.4.1 Exact algorithms

CASS (Fujishima et al., 1999) demonstrates excellent performance both in find-
ing optimal allocations and as an anytime algorithm. CASS’s effectiveness is
strongly influenced by the distribution (Binomial, Exponential) of bids, espe-
cially when the number of items increases. CASS is compared with IDA*, it
outperforms IDA* (Sandholm, 1999) for the search strategy and the prepossess-
ing - two orders of magnitude faster.

CPLEX (MIP) (Andersson et al., 2000) (version 6.5) performs well compar-
ing with IDA* (Sandholm, 1999) for all the distributions (Random,WeightedRandom,
Uniform, Decay) introduced in Sandholm (1999) - five orders of magnitude
faster, and CASS is faster than CPLEX for some distributions (Binomial, Exponential)
introduced in Fujishima et al. (1999).

CAMUS (Leyton-Brown et al., 2000b) is targeted for multi-unit combinato-
rial auction, it is the generalization and extension of CASS algorithm. CAMUS
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introduce the B&B technique for computing upper bounds on the optimal out-
come. The algorithm is tested on Random distribution. CAMUS’s performance
is sub-exponential in the number of items and as an anytime algorithm, it can
find a 99% optimal solution an order of magnitude more quickly than it finish the
complete run, which suggests that CAMUS could be useful on large problems.

CABOB (Sandholm et al., 2005) uses decomposition techniques, upper and
lower bounding, elaborate and dynamically choose bid-ordering heuristics. It is
compared with CPLEX (version 8.0, the fastest optimal algorithm by the time),
CPLEX uses best-bound search which requires exponential search, while CABOB
uses depth-first branch-and-bound (DFBnB), which runs in linear space. The
algorithm together with CPLEX are tested on the Sandholm and CATS distri-
bution, CABOB has better anytime performance than CPLEX and can achieve
close to optimal solution quality faster than CPLEX.

B&P (Günlük et al., 2005) uses XOR-of-OR (the combination of XOR and
OR bidding language) bidding for FCC-auction. It is tested on the distribution of
Sandholm, Fuji and deV ries. The algorithm manages to solve almost all these
instances within 10 minutes and performs better than the natural formulation
solved using CPLEX in the case that the columns in the column generation can
be generated and the formulation is stronger.

B&C (Escudero et al., 2009) algorithm offers a tighter formulation based on
the polyhedral structure of the set packing formulation and introduces several
techniques in the data prepossessing and some useful inequalities. The test is
done in comparison with CPLEX version 9.1 on CATS distribution. B&C is
faster than CPLEX for the hard instances (the hardest instances can be solved in
two minutes while CPLEX took almost one hour), and it can reduce the duality
gap significantly.

MaxWClique (Wu & Hao, 2016) introduces some specific bounding and
branching strategies, and it is tested on Sandholm, CATS, and REL distribu-
tions compared with CPLEX version 12.4. MaxWClique outperforms CPLEX
12.4 solver on the whole set of the REL instance; For Sandholm instances,
MaxWClique is slightly faster for Random distribution, but significantly bet-
ter for Uniform distribution, and Decay distribution is significantly hard for
MaxWClique; For CATS distribution, CPLEX performs much better and much
faster than MaxWClique.
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Table 3.1: Exact algorithms for WDP
References Algorithm Test suits Performance
(Sandholm, 1999) IDA* Sandholm
(Fujishima et al., 1999) CASS Fuji Outperform Sandholm’s algorithm
(Andersson et al., 2000) CPLEX Fuji, Sandholm Faster than CASS
(Leyton-Brown et al., 2000b) CAMUS CATS Useful for large problem
(Sandholm & Suri, 2003) BOB No experimental

(Sandholm et al., 2005) CABOB Sandholm, CATS Outperform CPLEX for most
sets CATS

(Günlük et al., 2005) B&P FCC Faster than CPLEX
(Escudero et al., 2009) B&C CATS Outperform CPLEX
(Wu & Hao, 2016) MaxWClique Sandholm, CATS, REL Outperform CPLEX for sets REL
(Vangerven et al., 2017) DP No experimental

In conclusion, the presented exact algorithms may be useful on certain distri-
butions but using CPLEX solver seems still powerful facing the nature formula-
tion of the WDP, see Andersson et al. (2000); Günlük et al. (2005); Guo et al.
(2006b); Sandholm et al. (2005); Wu & Hao (2016).

3.4.2 Approximate algorithms

Casanova (Hoos & Boutilier, 2000) is tested on several random problem dis-
tributions, and its performance is compared with CASS. High quality solutions
are found by Casanova much faster than CASS, Casanova outperforms CASS on
large problem instances; and on small instances, though incomplete.

SAGII (Guo et al., 2006a) together with CPLEX and Casanova are com-
pared and tested with CATS for different distributions and REL distribution.
The experimental results show SAGII outperforms significantly Casanova and
the CPLEX 8.0 solver for REL instances.

LAHA (Lagrangian) heuristic (Guo et al., 2006a) uses 8 different dis-
tributions generated from CATS, namely the exponential, random, uniform,
binomial, decay, scheduling, matching and paths distributions and the PBP
distribution. LAHA provides high quality results for all CATS tests suite, it ob-
tains optimal solutions for both exponential, random, binomial and scheduling
distributions. For the rest, it obtains the solution within 1% of optimal. While
for PBP test set, LAHA performs at least as same as CPLEX in less CPU time.

HC-all and SA (Fukuta & Ito, 2006) use the Random distribution and con-
duct a detailed comparison to theGreedy approach introduced in Zurel & Nisan
(2001), it shows that HC-all and SA are slightly better in optimality (0.997). The
algorithms are also demonstrated as anytime algorithm that can be applied to
large and dynamic problems.
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MA algorithm (Boughaci et al., 2009) is tested on the REL distributions and
does the comparison with GA, SAGII and Casanova. The results show that MA
can find better solutions than GA in less CPU time. MA performs better than
Casanova (29-44% improvement) with less CPU time on all checked instances.
The SAGII and MA all perform well with respect to certain distributions. In
general, MA is a powerful tool to solve realistic instances.

SLS and TS algorithms (Boughaci et al., 2010) are tested on the REL dis-
tributions and compared with Casanova, SAGII and MA. In general, SLS and
TS can obtain qualified solutions for all benchmarks efficiently, the combination
between diversification and intensification plays a key role to effectively find the
good solutions. It shows that the result from SAGII has the 28% to 42% im-
provement in comparison to Casanova within less CPU time. As for SAGII and
MA, they provides similar results.

DE (Boughaci, 2010) algorithm is tested on the REL distribution and com-
pared to the methods including SAGII, GA, and MA. SAGII, MA and DE show a
good performance all checked benchmarks, and outperform GA in both solution
quality and efficiency. Only for certain instances (REL-500-1000 and REL1000-
1000 instances), DE performs better than SAGII and MA.

TSX_WDP (Sghir et al., 2013) is tested on the REL distributions and
compared with five algorithms from the above: Casanova, SAGII, SLS, TS, MA.
TSX_WDP gives an improvement between 31% and 47% in solution quality
compared to Casanova, between 4% and 8% compared to SLS, between 4% and
9% compared with TS, between 2% and 7% compared to MA, between 1% and
7% compared to SAGII.

SHH (Boughaci & Lassouaoui, 2014) is tested on REL distribution and com-
pared with CF, RHH and SLS. The experimental results show that the stochas-
tic SHH succeed to find good results for all the benchmark problems. They always
outperform CF and RHH in both solution quality and efficiency. SHH performs
also better than SLS on all the tested instances, it finds better solutions in shorter
CPU time.

MN/TS (Wu & Hao, 2015) is tested on CATS, Sandhlom and REL distri-
bution and compared with CPLEX version 12.4 and MA. For REL distribution,
the results show that MN/TS dominates MA both in terms of solution quality
and computing time and performs better than CPLEX 12.4 solver for most of the

51



3. THE WINNER DETERMINATION PROBLEM IN CAS

instances and very stable, and it outperforms SAGII, Casanova. For Sandhlom
distributions, MN/TS outperforms CPLEX by producing much better results
in solution quality on Random, Uniform distribution, but worse than CPLEX
both in terms of solution quality and computing time on Decay distribution. For
CATS distribution, CPLEX performs better than MN/TS for all tested instances
both on the solution quality and computing time.

ACO-MNLS (Dowlatshahi & Derhami, 2017) is compared with four differ-
ent metaheuristics for solving WDP, i.e. SLS, TS, GA, MA for solving REL

distribution. The experimental results of ACO-MNLS show that ACO-MNLS
outperforms the current best performing WDP metaheuristics in both the solu-
tion quality and computational efficiency.

TrACA (Ray et al., 2018) is compared with MA and CPLEX for solving REL
distribution. Results indicate that in a given run-time, the median of results from
TrACA statistically significantly outperforms MA results in 85 percents of the
cases. Further, the best value from TrACA is at least as good as MA values in
100 percents of the cases.

For conclusion, the proposed approximate algorithms could be all useful for
certain distributions and they complement each other in the study. To the best of
our knowledge, ACO-MNLS has the best results, it outperforms the GA, MA, SLS
and TS algorithms in terms of the computational time, and overcomes the GA,
TS, MA and SLS algorithms in terms of the solution quality in most problems,
whereas in the case of other problems, both ACO-MNLS and other algorithms
get the same results.

3.5 Investigated papers

Papers selected are positioned according to 4 criteria of classification: the article’s
methodology, the biding language, the method type and the algorithm.

5 categories of methodology can be observed. (a) Conceptual analysis that
is the theoretical studies which report issues and challenges, or give definitions
without any numerical or empirical studies, (b) case study in which data from
practitioners are used to test and analyze the results, (c) literature review that
is an evaluative report of information found in the literature which is related to
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Table 3.2: Approximated algorithms for WDP
References Algorithm Test suits Performance
(Hoos & Boutilier, 2000) Casanova (SLS) Fuji Outperform CASS for large instances
(Sakurai et al., 2001) LDS Sandholm, Fuji No comparison
(Zurel & Nisan, 2001) Greedy Sandholm No comparison
(Lehmann et al., 2002) Greedy No experimental
(Guo et al., 2006a) LAHA heuristic CATS, PBP Ourperform CPLEX for sets PBP
(Guo et al., 2006b) SAGII CATS, REL Outperform Casanova and CPLEX
(Fukuta & Ito, 2006) HC-all, SA Uniform Better than GA for optimality
(Dobzinski & Schapira, 2006) No experimental
(Boughaci et al., 2009) MA REL Outperform Genetic, Casanova
(Boughaci et al., 2010) SLS, TS REL SLS outperforms Casanova and TS
(Boughaci, 2010) DE REL Outperform GA
(Hsieh, 2010) LR No experimental
(Lavi & Swamy, 2011) No experimental

(Sghir et al., 2013) TSX_WDP REL
Outperform Casanova,
SLS, TS, MA, SAGII

(Boughaci & Lassouaoui, 2014) SHH, CF, RHH REL Outperform SLS
(Hsieh & Liao, 2014) Agent learning approach No details

(Wu & Hao, 2015) MN/TS CATS, REL,
Sandholm

Outperform Casanova,
MA, SAGII for sets REL

(Mansouri & Hassini, 2015) LR CATS
(Dowlatshahi & Derhami, 2017) ACO-MNLS REL Outperform SLS, TS, GA, MA
(Ray et al., 2018) TrACA CATS, REL Outperform MA
(Ray & Ventresca, 2018) ACO CATS, REL Outperform MA

Table 3.3: Literature review of conceptual analysis for WDP
References Methodology Bidding

language Method Algorithm

(Abrache et al., 2007) Conceptual analysis
(Caplice & Sheffi, 2003) Conceptual analysis OR
(Caplice & Sheffi, 2006) Conceptual analysis
(Cerquides et al., 2007) Conceptual analysis
(Daniel et al., 2006) Conceptual analysis
(De Vries & Vohra, 2003) Literature review
(Gujo, 2008) Conceptual analysis
(Lavi & Swamy, 2011) Conceptual analysis
(Lehmann et al., 2006) Conceptual analysis OR, XOR
(Lehmann et al., 2002) Conceptual analysis
(Leyton-Brown et al., 2000a) Conceptual analysis
(Nisan, 2000) Conceptual analysis
(Nisan & Ronen, 1999) Conceptual analysis
(Parkes & Ungar, 2000) Conceptual analysis
(Peter et al., 2006) Conceptual analysis
(Ray et al., 2011) Conceptual analysis
(Rothkopf et al., 1998) Conceptual analysis
(Sandholm, 2000) Conceptual analysis XOR
(Sandholm et al., 2002) Conceptual analysis XOR Exact IDA
(Sheffi, 2004b) Conceptual analysis

a specific area of study, (d) empirical study that is based on observed and mea-
sured phenomena and derives knowledge from actual experience rather than from
theory or belief and (e) numerical experiment that is the study of approximation
techniques for solving a problem, taking into account the extent of possible errors.

The first part is classified as conceptual analysis that as in Table 3.3. Table
3.4 is classified as numerical and empirical study.

3.6 Conclusions

In this Chapter, a detailed survey about WDP is given to summarized the general
and variants of the formulations for WDP. The complexity of the problem is
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Table 3.4: Literature review of numerical and empirical study for WDP
References Methodology Bidding

language Method Algorithm

(Amor et al., 2016) Empirical study XOR Stochastic Monte Carlo approach
(Andersson et al., 2000) Empirical study OR Exact Mixed integer programming
(Asli et al., 2019) Empirical study OR Heuristic Fuzzy
(Boughaci et al., 2009) Numerical experiments OR Heuristic Memetic algorithm (SLS)
(Boughaci et al., 2010) Numerical experiments OR Heuristic Equilibrium-based LS
(Boughaci, 2010) Numerical experiments OR Heuristic DE
(Boughaci, 2013) Numerical experiments OR Heuristic
(Boughaci & Lassouaoui, 2014) Numerical experiments OR Heuristic SHH
(Boutilier et al., 2004) Empirical study OR Robust Min-max regret
(Buer & Pankratz, 2010a) Numerical experiments OR Heuristic Pareto-based GRASP
(Buer & Pankratz, 2010b) Numerical experiments OR Exact, Heuristic B&B, genetic algorithm
(Buer & Kopfer, 2011) Numerical experiments OR Heuristic HPNS
(Buer & Kopfer, 2014) Numerical experiments OR Heuristic Pareto-metaheuristic
(Dowlatshahi & Derhami, 2017) Numerical experiments OR Heuristic Hybrid ACO, MNLS
(Chen et al., 2009) Empirical study OR Heuristic Implicit bidding approach
(Cohn et al., 2008) Empirical study Heuristic Implicit bidding approach
(Dobzinski & Schapira, 2006) Numerical experiment Heuristic e/e-1 approximation
(Escudero et al., 2009) Numerical experiment XOR Exact B&C algorithm
(Fujishima et al., 1999) Numerical experiment Exact, Heuristic CASS, VSA
(Fukuta & Ito, 2006) Numerical experiment Heuristic Greedy algorithm
(Günlük et al., 2005) Numerical experiment XOR-of-OR Exact B&P
(Guo et al., 2003) Numerical experiment Heuristic GA+TS
(Guo et al., 2006a) Numerical experiment OR Heuristic Lagrangian relaxation
(Guo et al., 2006b) Numerical experiment OR Heuristic Hybrid algorithm
(Hoos & Boutilier, 2000) Numerical experiment Heuristic SLS
(Holte, 2001) Numerical experiment Heuristic HCA
(Hsieh, 2010) Numerical experiment OR Heuristic Lagrangian relaxation
(Hsieh & Liao, 2014) Numerical experiment OR Heuristic Lagrangian relaxation
(Lau & Goh, 2002) Case study Heuristic GA + LS
(Leyton-Brown et al., 2000b) Empirical study OR Exact CAMUS
(Ma et al., 2010) Empirical study OR Stochastic programming
(Mansouri & Hassini, 2015) Numerical experiment OR Heuristic Lagrangian relaxation
(Mansouri & Hassini, 2019) Empirical study OR Heuristic Lagrangian relaxation
(Michalak et al., 2016) Numerical experiment Heuristic ODP-IP
(Mito & Fujita, 2004) Numerical experiment Heuristic Greedy algorithm
(Nguyen, 2014) Empirical study Heuristic Constraint generation
(Othmane et al., 2014b) Empirical study OR
(Ray et al., 2018) Numerical experiment XOR Heuristic TrACA
(Ray & Ventresca, 2018) Numerical experiment XOR Heuristic ACO
(Rekik & Mellouli, 2012) Empirical study XOR
(Remli & Rekik, 2013) Empirical study XOR Robust Constraint Generation
(Remli et al., 2019) Empirical study XOR Robust Constraint Generation
(Sakurai et al., 2001) Numerical experiment XOR Heuristic LDS
(Sandholm, 1999) Numerical experiment OR Exact IDA
(Sandholm & Suri, 2003) Numerical experiment XOR Exact BOB
(Sandholm et al., 2002) Empirical study XOR Exact Mixed integer programming
(Sandholm et al., 2005) Numerical experiment XOR Exact Cabob
(Schwind et al., 2003) Numerical experiment OR Heuristic SG, SA, GA
(Sghir et al., 2013) Numerical experiment OR Heuristic Tabu search
(Tsung et al., 2011) Numerical experiment Heuristic NESA
(Vangerven et al., 2017) Empirical study Exact Dynamic Programming
(van Norden et al., 2006) Empirical study Exact, heuristic ILP, fast randomized heuristic
(Wang & Wang, 2014) Case study Heuristic GA
(Wu & Hao, 2015) Numerical experiment OR Heuristic Tabu search
(Wu & Hao, 2016) Numerical experiment OR Exact Clique-based B&B
(Zhang et al., 2014) Empirical study OR Stochastic Monte Carlo approach
(Zhang et al., 2015) Empirical study OR Robust Data-driven approach
(Zurel & Nisan, 2001) Numerical experiment OR Heuristic Greedy algorithm
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3.6 Conclusions

analyzed. We investigate the exact and approximated algorithms that are used in
solving WDP accurately and efficiently. The most used benchmarks are classified
and the performance of the algorithms is compared.

From the reviewed methods, we observe that, although exact methods have
the theoretical advantages to find the optimal solution, their computation time
generally grows exponentially with the problem size, and this makes them less
attractive for solving large size problems or real-world applications. On the other
hand, heuristic algorithms can solve WDP with polynomial time complexity, but
they are less efficient and less effective.
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Over the past two decades, combinatorial auctions (CAs) (Peter et al., 2006)
has attracted more and more attentions both in theoretical and practical studies.
The advantage of CAs is that the bidders can fully express their preferences
when items are complements and substituents due to the economies of scope and
economies of scale. In conclusion, with CAs, the bidders can generate more profit
or save more cost.

In a competitive transportation procurement system, due to the synergies
available on the transportation pathways (Triki, 2016; Wang & Wang, 2015; Xu &
Huang, 2014a,b), CAs allows carriers to bid on combinations of lanes as a packages
instead of bidding only on individual lane, in which, carriers can express their
preferences when they group transportation lanes into packages (Sheffi, 2004a;
Triki et al., 2014). In other words, combining multiple lanes as a tour or a
continuous move by carriers allows them to decrease their empty mileage and
thereby reduce cost (Chen et al., 2009) or to generate greater profits (Chang,
2009; Jothi Basu et al., 2015).

In transportation procurement, CAs generally follows a 5-phase procedure
(Berger & Bierwirth, 2010):

• Carriers determine request lanes and put them into the auction pool;

• Bid Generation Problem (BGP): Auctioneer (Shipper or Third-party logis-
tics - 3PL) generates bundles of requests and sends them to the carriers;

• Bid Generation Problem (BGP): Carriers give their bids for the offered
bundles;

• Winner Determination Problem (WDP): Auctioneer allocates bundles to
carriers based on their bids;

• Gained profits are distributed among the carriers.

In this thesis, we mainly focus on the second phase of the procurement. To
address this problem, we assume a market place representing shippers who uses
CAs to allocate lanes to carriers. A request lane is defined as a pick-up/delivery
location pair with time constraints. And we focus only the full truckload trans-
portation for study, not only because of its economical importance as shown in
1.2, but also because it is easier to implement and can be easily extended to less
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than truckload case. The problem of defining feasible bundles is a problem of
route-building or route-construction as introduced in Baker & Schaffer (1986) as
VRPTW (vehicle routing problem with time windows). Although VRPTW is
developed to minimize the total route cost or total tour time for a given task, the
problem addressed in this thesis is to maximize the profit for carriers. We study
the Bundle Construction Problem (BCP) under CAs specially for full truckload
transportation procurement. More precisely, for a given set of carriers, we gener-
ate - find and select - feasible bundles with high quality respecting the carriers’
flexibility and time budget.

In BCP, not all lane requests need to be visited. Indeed, the carriers only
have to determine all the bundles that they can handle which generates profit.
This problem is also recognized as an Orienteering Problem with Time Windows
(OPTW). The OPTW problem is a route-construction problem in which a subset
of requests are determined to visit, such that the total profit/score are maximized
and the time constraints is not exceeded (Gunawan et al., 2016). Righini &
Salani (2006, 2008) develop bounded bi-directional dynamic programming to solve
the elementary shortest path problems with additional resource constraints, and
Righini & Salani (2009) apply it to solve the OPTW. The idea is to build paths
from both the origin and the destination and match forward and backward paths
to yield complete solutions.

The remainder of this chapter is organized as follows: Section 1 gives a sci-
entific literature review. Section 2 defines the problem under study. In Section
3, we establish a mixed integer formulation of the problem to determine how the
optimal bundles can be given. Section 4 proposes the dynamic programming algo-
rithm to solve the proposed model. Numerical results are commented in Section
5. Section 6 summarizes the main findings and suggests extensions.

4.1 Literature review

As mentioned above, in BGP, auctioneer generates bundles of requests and sends
them to the carriers. And BCP considered as part of BGP, the conceptual analysis
is polarized. As in the 5-phase procedure for CAs-based transportation procure-
ment (Berger & Bierwirth, 2010), with request lanes contained in the auction
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pool, the auctioneer in Phase 2 needs to determine attractive bundling of re-
quests such that the carriers are more incentive to bid in Phase 3. Under this
setting, each carrier can theoretically submit up to 2n − 1 different combinations
of bundles to the auctioneer, where n is the number of requests that are traded.
This is not manageable for realistic applications. Moreover, due to inaccurate
information and different methodologies from the carriers, only a small subset
of the useful combinations is actually found in practice even for large networks
(Caplice & Sheffi, 2003). Alternatively, the BCP in Phase 2 can be determined
by carriers themselves. As mentioned in Caplice & Sheffi (2003); Crainic & Gen-
dreau (2002), carriers can combine their personal information - truck capacity,
time budget, existing network etc. - with the complex market information to
determine the most profitable bundles and bid strategies. Chang et al. (2002);
Crainic & Gendreau (2003) have proposed efficient tools to assist the carriers to
determine the best bundle selection. Moreover, Caplice & Sheffi (2003) propose a
collaborative approach for both shippers and carriers to secure and manage their
strategic relationship and to yield better solution.

Most of the research in this domain is focused on explicit computation of bun-
dle bids for truckload transportation auctions. Song & Regan (2003a) present the
first carrier model based on optimization approximation to determine the useful
bundles. Wang & Xia (2005) clarify the bidder’s optimality criterion in a combi-
natorial bid and studied a bundling method. Lee et al. (2007) develop a utility
maximization decision problem in which the carriers determine the best packages
to bid for in CAs and presented a column generation approach to solve the un-
derlying nonlinear quadratic integer program. Chang (2009) develop a bidding
advisor to assist truckload carriers in overcoming the challenges in the one-shot
CAs. Chen et al. (2009) describe an approach to CAs for truckload procurement
allowing to implicitly determine the complete set of all possible bids without of
an exponential number of bids on either the bidders or the auctioneer. They pro-
vide also extensive computational results to demonstrate the tractability of the
proposed approach. Ueasangkomsate & Lohatepanont (2012) introduce a bidding
strategy for carriers facing a hard valuation problem on all possible routes. Triki
et al. (2014) focus on the generation of load bundles to be submitted by carri-
ers participating in CAs for long-haul full truckload transportation services and
develop a probabilistic optimization model integrating the bid generation and
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pricing problems jointly with the carriers fleet routing. Two heuristic procedures
are proposed to solve instances with up to 400 auctioned loads. Kuyzu et al.
(2015) formulate a stochastic bid price optimization model to maximize the car-
riers expected profit which accounted for lane synergies and competing carriers
bid patterns. An iterative coordinate search algorithm is then developed to find
high quality solutions. Triki (2016) develop an optimization approach based on
the use of the location techniques by maximizing the synergy among the bundle’s
auctioned loads from one side and between the auctioned and the preexisting
loads from the other side.

However, only a few papers address the less than full truckload freight trans-
portation problems. Mesa-Arango & Ukkusuri (2013) investigate the benefits and
provide some insights into the competitiveness and challenges associated with the
development of consolidated bids (suitable for less than truckload operations).
These lost one are constructed using a multicommodity one-to-one pickup and
delivery vehicle routing problem solved through a branch-and-price algorithm.
Gansterer & Hartl (2018) investigate a carrier collaborative BGP which allows
carriers to exchange requests. They develop a proxy for the objective function
to assess the attractiveness of bundles under incomplete information. A genetic-
based algorithms is defined to generate attractive and feasible bundles. In Yan
et al. (2018), a mixed integer programming method is developed to generate the
best bid of the carriers using a bundled price to maximize their utility and increase
the chance of winning the business.

4.2 Problem statement

In BCP, three types of carriers are considered:

• traditional carriers. They have no information about the bids. They prefer
to bid on the bundles defining as a tour where a vehicle leave/return at the
same location;

• informed carriers. They have part information about their future bids, i.e.
they know part of their tasks (including lanes and their resources). They
bid on the bundles that can be included in their current routing plan to
gain the cost reduction;
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• spot market. It covers all the requests not taken by above two carriers.

In other words, traditional carriers can be seen as the freight transport com-
panies; informed carriers can be seen as the industrial producers sharing trans-
portation services during their own transportation tasks e.g. adding new lanes
in their current network. For example, after serving its own customer, instead
of returning back with an empty truck to the origin, a producer can offer trans-
portation capacity for other delivery tasks respecting his own time constraints
to go back. However, all type carriers can be seen as the informed carrier when
given a specific setting.

Hereafter, each lane is defined with a origin-destination with time windows,
we refer it as a lane request. The key goal to is to construct the feasible bundles
and select the bundle sets with high quality for each carrier, which is the BCP
defined at the beginning of this chapter.

To precisely define the feasible request bundles in transportation procurement,
the following rules and assumptions are considered:

• the request bundles need to satisfy two conditions: "route compatibility
and carrier’s capacity" (Lafkihi et al., 2017). More precisely, a carrier must
be able to accomplish his shipping task. Thus, only the requests along
the same route and within the carrier’s limited capacity (residual volume,
number of trucks, etc.) can be jointly delivered by the same carrier;

• the time window for leaving and going back to the depot for all carriers are
the same. The request bundles are served in this time interval.

Figure 4.1 consider the example for study. All carriers are located at node
0. Nodes 1, 2, 3 are customer nodes that informed carriers will serve. The other
nodes are lane requests for traded in CAs. All requests are one full truckload, no
capacity constraints are concerned.

In other words,

• An informed carrier knows in advance that he needs to serve customers
at nodes 1, 2, 3. A time window is given at each node and another time
window at the node 0 for his truck to return. He will bid on the request
bundles which allow him to go back to the depot with a cost reduction. For
example, he serves the customer 2, he will choose a request bundles such as
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Figure 4.1: Transportation network.

r2→4→0 or r2→6→4→0 as long as they can reduce his cost and satisfy the time
windows constraints. Informed carriers have to solve a cost minimization
problem.

• A traditional carrier will bid on a request bundles with a tour such as
r0→2→6→4→0, r0→3→7→2→0. Traditional carriers have to solve a profit maxi-
mization problem.

• for request lanes not taken for both carriers, they will be submitted to the
spot market.

Notations
Let G = (N,A) be a complete asymmetric graph where, N = {0, n+ 1} is the

set of nodes, 0 is the depot, n+1 is the destination and A = {(i, j)‖i 6= j; i, j ∈ N}
is the set of undirected arcs.

Parameters:

• C1: set of informed carriers;

• C2: set of traditional carriers;

• C3: set of spot market carriers;

• C = C1 ∪ C2 ∪ C3: set of all carriers;
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• R: set of requests;

• RBc∈C : set of feasible bundle for carrier c ∈ C;

• or, dr: origin and end node for a request r ∈ R;

• ar, br: lower and upper bounds of the time window for request r ∈ R;

• sc, tc: lower and upper bounds of the time window for informed carrier
c ∈ C2 to cover his own request;

• tr: duration to deliver the request r ∈ R;

• O: depot for all carriers;

• Oc∈C1 : set of customer locations for informed carrier c ∈ C1;

• tij: traveling time for an empty move from i to j.

The feasible bundles for the carriers are defined as follows,

• For an informed carrier c ∈ C1, let us assume that rb = {r1, · · · rK} ∈
RBc∈C1 is a feasible bundle consisting of K requests. And trks is the starting
time for serving request rk. The next constraints need to be satisfied:

trks ≥ ark ;∀k ∈ {1, · · ·K} (4.1)

trks + trk ≤ brk ;∀k ∈ {1, · · ·K} (4.2)

sc ≤ tr1s ; (4.3)
K−1∑
k=1

tr1s + trk + trkrk+1
+ trK + trK0 ≤ tc; (4.4)

drK = O; (4.5)

or1 = Oc. (4.6)

where (4.1), (4.2) assure that the requests can be served on time; (4.3),
(4.4) guarantee that the request bundle can be served in carrier c’s time
window; also (4.5), (4.6) guarantee that the first request leaves from an
informed carriers’ customer locations and returns to the depot at last.
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• For a traditional carrier c ∈ C2, let us assume that rb = {r1, · · · rK} ∈
RBc∈C2 is a feasible bundle consisting K requests. And trks is the starting
time for serving request rk. The next constraints need to be satisfied:

trks ≥ ark ; (4.7)

trks + trk ≤ brk ;∀k ∈ {1, · · ·K} (4.8)

drK = or1 = O. (4.9)

where (4.7), (4.8) guarantee that the requests can be served on time; and
(4.9) guarantees that truck leaves and returns to the depot.

• For a spot-market carrier c ∈ C3, the request bundles only need to satisfy
the time constraints.

4.3 Resolution of bundle construction problem

The bundle construction problem associated with traditional carriers is a VRPTW
(Baker & Schaffer, 1986). For informed carriers, the bundle-construction is a
VRPTW with pickup and delivery with a single pickup vertex corresponding to
the customer location (Gansterer et al., 2017).

As computing a feasible bundle is already a difficult problem, we need make
some assumptions to be able to determine the set of qualified feasible bundles.

4.3.1 Simplified requests network

One difficulty occurs when several requests contain the same node. For example,
several requests may share the same node with different time constraints allowing
several visits of this node. The problem can not be solved as shortest path problem
or travelling sales man problem. Therefore the request is decomposed as shown
in Figure 4.2.

The decomposition of the network leads also to the following Specifications of
our model:

• Due to specific network structure, the distance between two nodes may equal
to 0 (for example, one request’s destination is the next request’s origin). For
large time windows, different orders of several requests may occurred (for
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Figure 4.2: Example illustrates the transfer of original requests network to a
simplified requests network.

example, two requests have the same origin/destination pair and large time
windows) ;

• the simplified requests network is a complete asymmetric graph. Indeed,
there is no order among the requests; and, tij 6= tji for most of the cases of
(i, j), (j, i) ∈ A.

Under these assumptions, the requests network is a complete asymmetric
graph where the request nodes need to be visited within their time windows.

4.3.2 Bundle construction problem formulation

Let G = (N,A) be a complete asymmetric graph where, N = {0, n+ 1} is the set
of the request nodes, 0 is the depot, n+ 1 is the destination and A = {(i, j)‖i 6=
j; i, j ∈ N} is the set of undirected arcs.

Parameters:

• tij: travel time from node i to node j;

• ai: earliest visit (service begins) time of node i;

• bi: latest visit time of node i;

• [ai, bi]: time window of node i;
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• ti: serving time at node i;

• Pi: profit for serving node i;

• cij: cost for traveling from node i to j.

Decision Variables:

• σt: service time at the tth node of N ∪ {0, n+ 1};

• yjt: yjt = 1 if node j is the tth node of N in the Hamiltonian path, 0

otherwise;

• wtij: wtij = 1 if nodes i and j are respectively the (t− 1)st and tth nodes of

N in the Hamiltonian path∗, 0 otherwise.

The BCP is formulated as follows:

max
n∑
t=1

{∑
j∈N

Pjyjt −
∑

i,j∈N :i 6=j

cijw
t
ij

}
(4.10)

∗A Hamiltonian path (or traceable path) is a path in an undirected or directed graph that
visits each vertex exactly once.
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s.t.



σ1 − σ0 ≥
∑

i,j∈N :i 6=j

t0jw
2
ji (4.11)

σt − σt−1 ≥
∑

i,j∈N :i 6=j

(ti + tij)w
t
ij t = 2, · · · , n+ 1 (4.12)

a0 ≤ σ0 ≤ b0 (4.13)

an+1 ≤ σn+1 ≤ bn+1 (4.14)

σ1 ≥
∑

i,j∈N :i 6=j

ajw
2
ji (4.15)

σ1 ≤
∑

i,j∈N :i 6=j

(bj − tj)w2
ji (4.16)

σt ≥
∑

i,j∈N :i 6=j

ajw
t
ij t = 2, · · · , n+ 1 (4.17)

σt ≤
∑

i,j∈N :i 6=j

(bj − tj)wtij t = 2, · · · , n+ 1 (4.18)∑
j∈N

yjt ≤ 1 t = 1, · · · , n+ 1 (4.19)

n+1∑
t=2

yjt ≤ 1 j ∈ N (4.20)∑
i∈N

wtij = yjt j ∈ N, t = 2, · · · , n+ 1 (4.21)∑
i∈N

wtji = yj,t−1 j ∈ N, t = 2, · · · , n+ 1 (4.22)

yjt ∈ {0, 1} j ∈ N, t = 2, · · · , n+ 1 (4.23)

wti,j ≥ 0 i, j ∈ N(i 6= j), t = 2, · · · , n+ 1(4.24)

y(n+1)(n+1) = 1 (4.25)

Constraints (4.11) and (4.12) are the schedule compatibility inequalities. Con-

straints (4.13) - (4.18) are the time windows inequalities. Constraints (4.19) and

(4.20) are the flow inequalities: (4.19) imposes that a node is visited in each posi-

tion t = 1, · · ·n+1, whereas (4.20) ensures that each node is visited at most once.

Finally, constraints (4.21) and (4.22) link the transition y and position variables

w.
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4.4 Bounded exact bi-directional dynamic program-
ming

In this section we describe a bounded bi-directional dynamic programming algo-
rithm to compute a set of solutions with an order priority.

As described in Righini & Salani (2009) for the bounded bi-directional dy-
namic programming algorithm, a request node i corresponds to the state (S, τ, P, i, O),
where S is a binary vector representing the subset of request nodes already vis-
ited, τ is the time used, P is the profit collected, i is the last reached node, and
O stores the path of this state with nodes order. The states of the nodes are
extended in both forward from the origin 0 and backward from the destination
n+ 1. All states are generated respecting nearly half of the resource constraints
(time, capacity, etc.). Joining forward and backward states yield to determine
complete paths.

4.4.1 Forward and backward extension and extension rules

The extension of state (S, τ, P, i, O) associated with node i to node j results a
new state (S ′, τ ′, P ′, j, O) according to the following rules,

• The profit P , initialized to 0 at node 0, is updated as

P ′ = P +
Pi
2

+
Pj
2
− cij

• The vector S is initialized to 0 and updated as

S ′k =

{
Sk + 1, k = j

Sk, k 6= j

A state (S, τ, P, i) can be extended to node j only if Sj = 0.

• The consumption of time resource τ is updated according to the type of the
extension. Time window [abwi , b

bw
i ] represents the backward time window

of node i: determined by adding the service time ti to the forward time
window [ai, bi] for each i /∈ {0, n+ 1}.
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For forward extensions:

τ ′ = max{τ + ti + tij, aj}

and for backward extensions:

τ ′ = max{τ + tj + tij, bn+1 − bbwi }.

A forward state (S, τ, P, i) is feasible only if τ ≤ bi; a backward state
(S, τ, P, i) is feasible only if τ ≤ bn+1 − abwi .

• The path O is initialized with the depart node. A new node j is added to
i’s state only if it satisfies the feasibility check from i to j as we defined
above.

4.4.2 Dominance test

Dominance tests are performed at each time when the states are extended. It
keeps only the non-dominated states and reduces the computational efforts. Let
L1 = (S1, τ1, P1, i, O1), L2 = (S2, τ2, P2, i, O2) be the labels of two states associated
with node i generated in the same extended direction, and

|S| =
∑
s∈N

Si

Then L1 dominates L2 only if
|S1| ≤ |S2|
τ1 ≤ τ2

P1 ≥ P2

where at least one of the inequalities is strictly satisfied.

4.4.3 Matching forward and backward states

Forward and backward states are matched together to build full paths from node 0
to node n+1. The feasibility conditions to match forward path (Sfw, τ fw, P fw, i, Ofw)
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with a backward path (Sbw, τ bw, P bw, j, Obw) are defined as:{
Sfwk + Sbwk ≤ 1 ∀k ∈ N
τ fw + ti + tij + tj + τ bw ≤ bn+1,

The overall profit of the resulting path is

P = P fw +
Pi
2

+
Pj
2

+ P bw − cij,

The resulting full path is obtained by joining the forward and backward state
nodes order

Ofw +Reverse(Obw).

The bounded bi-directional dynamic programming algorithm is defined in
Algorithm 1. For each node i ∈ N , Γfwi /Γbwi is the forward/backward set of
labels associated with the node, Γfwi ⊆ Γfwi /Γbwi ⊆ Γbwi is the subset of labels not
extended so far, ∆+

i /∆−i denotes the set of successors of i in forward and backward
extension. E is the set of nodes to be examined. Extend(li, k)fw/Extend(li, k)bw

corresponds to the extension procedure. The state li of node i specified as the
first argument is extended to the node k specified as the second argument. This
procedure follows the extension rules we defined above and checks the feasibility
of the new states. EFF (Γ, l) is the insertion procedure of state l into set Γ by
applying the domination rules. Finally Θ contains all the joined paths.

4.4.4 Solution uniqueness and optimality

As discussed in Righini & Salani (2006), the dynamic programming algorithm
defined in Algorithm 1 can result duplicate solutions if the resource constraints
are not tight. For the BCP problem, if the time windows of the requests are large,
requests can be present in both forward and backward states resulting duplicate
solutions. Therefore, we add a remove procedure at the end of the matching
procedure as defined in Algorithm 2. Θnew indicates the new generated path
pool.

Another issue comes from the optimality of the solution. Indeed, as the bi-
directional dynamic programming stopped at the HalfWay of the resource con-
straints (Righini & Salani, 2006), it may not explore the whole structure of the
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Algorithm 1 Bounded Bi-directional Dynamic Programming
//Initialization//
Γfwi ← {0, 0, 0, 0, {0}}
Γbwi ← {0, 0, 0, 0, {n+ 1}}
for all i ∈ N \ {0} do

Γfwi ← ∅
for all i ∈ N \ {n+ 1} do

Γbwi ← ∅
E ← {0, n+ 1}
Θ← ∅
//Search//
repeat

//Node selection//
Select i ∈ E
//Forward extension//
for all li = (Si, τi, Pi, i, Oi) ∈ Γfwi do

for all j ∈ ∆+
i such that Sij = 0 do

lj ← Extendfw(li, j)

Γfwj ← EFF (Γfwj , lj)

if Γfwj 6= ∅ then
E ← E ∪ {j}

//Backward extension//
for all li = (Si, τi, Pi, i, Oi) ∈ Γbwi do

for all j ∈ ∆−i such that Sij = 0 do
lj ← Extendbw(li, j)
Γbwj ← EFF (Γbwj , lj)

if Γbwj 6= ∅ then
E ← E ∪ {j}

until E = ∅
//Join forward and backward paths//
for all (Sfw, τ fw, P fw, i, Ofw) ∈ Γfw do

for all (Sbw, τ bw, P bw, i, Obw) ∈ Γbw do
for all k ∈ N do

if Sfwk + Sbwk ≤ 1 and τ fw + ti + tij + tj + τ bw ≤ bn+1 then
Θ← Θ ∪ {Ofw +Reverse(Obw)}
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Algorithm 2 Remove Procedure
//Initialization//
Θnew ← ∅
//Generating new path pool//
repeat

for all i ∈ Θ do
if i /∈ Θnew then

Θnew = Θnew ∪ {i}
Θ = Θ \ {i}

until Θ = ∅

instance. And result in non-optimal solutions.

4.5 Numerical results

4.5.1 Data-sets

Computational experiments are performed on the instances introduced by Righini
& Salani (2009) for solving orienteering problem with time windows. According
to the displacement of the nodes, these data sets are divided into clustered,
random and random − clustered categories by considering the first 50 and 100
nodes (namely c101, r101 and rc101). Instances belonging to the same category
have the same location and same lane requests. They differ only on the time
windows.

4.5.2 Computational results

The algorithms were coded in Python 3.6 and the running time limit is set to 2
hours. To explore near optimal solutions, for the forward and backward extension,
the time limit is set to 0.6T instead of HalfWay (0.5T ), where T is the path
time constraint. As in the works of Righini & Salani (2006, 2008, 2009), O is not
considered which keeps the information about the order in which the nodes are
visited, the computed time are relatively long and memory used are relatively
large.

Numerical results are given in Table 4.1. The first column reports the instance
name, then second is the best known solution, the third is the profit, and the
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Instance 50 requests 100 requests
BestKnown Profit Gap(%) Time(s) nb of Paths BestKnown Profit Gap(%) Time(s) nb of Paths

c101 270 270 0.00 0.35 7045 320 320 0.00 1.82 26599
c102 300 300 0.00 8.89 35851 360 360 0.00 60.48 271400
c103 320 310 3.13 27.69 93894 400 370 7.50 216.74 501315
c104 340 320 9.19 81.10 271501 420 410 2.38 574.89 1296054
c105 300 300 0.00 0.89 16646 340 340 0.00 5.73 79054
c106 280 280 0.00 0.51 8486 340 340 0.00 12.90 141493
c107 310 310 0.00 1.88 31146 370 370 0.00 13.59 190845
c108 320 320 0.00 3.18 52960 370 370 0.00 35.71 384371
c109 340 340 0.00 8.69 114890 380 380 0.00 68.20 629522
r101 126 129 -2.38 0.09 1825 198 198 0.00 1.44 15067
r102 198 200 -1.01 4.53 30891 286 286 0.00 69.64 294788
r103 214 211 1.40 19.64 128773 293 290 1.02 374.52 1610067
r104 227 229 -0.88 80.26 492521 303 301 0.66 886.91 4295871
r105 159 159 0.00 0.59 7911 247 247 0.00 13.40 151947
r106 208 205 1.44 7.31 63608 293 293 0.00 108.82 608598
r107 220 217 1.36 23.95 169013 299 297 0.66 450.63 2227482
r108 227 225 0.88 81.05 515096 308 305 0.97 993.83 5153861
r109 192 197 -2.60 3.56 37510 277 277 0.00 75.91 711592
r110 208 208 0.00 12.41 106512 284 281 1.06 236.80 1467550
r111 223 216 3.14 19.20 145005 297 289 2.69 362.95 1687758
r112 226 226 0.00 31.97 251192 298 289 3.02 705.21 3275548
rc101 180 190 -5.56 0.40 4680 219 219 0.00 6.24 66603
rc102 230 240 -4.35 1.35 13199 266 266 0.00 53.01 334328
rc103 240 250 -4.17 3.76 37111 266 266 0.00 154.45 1157109
rc104 270 270 0.00 12.00 106488 301 301 0.00 528.05 3379175
rc105 210 210 0.00 1.19 10475 244 244 0.00 39.06 256725
rc106 210 210 0.00 1.63 15740 252 252 0.00 56.19 414053
rc107 240 240 0.00 5.12 39003 277 277 0.00 155.32 998655
rc108 250 250 0.00 10.25 72158 298 298 0.00 367.14 2060557
Avg. -0.014 16.79 0.688 231.04

Table 4.1: Computational results for BCP with 50 and 100 requests

fourth is the percentage gap. The computed time in seconds and path number

generated by using the bounded bidirectional dynamic programming for both 50

and 100 request nodes are given in column 5 and 6.

The DP algorithm solve all of Solomon’s instances with 50 and 100 request

nodes within 2 hours. All instances with 50 nodes can be solved within less

2 minutes with a small average improvement of the best known solution. All

instances with 100 nodes can be solved within 1000 seconds with a relatively

small gap. For the hard instances, for example in 50 nodes case, r104 and r108,

the remove procedure to delete the duplicate solutions is not performed due to the

computational time (the results with italic format letters). However, according to

the existing results, the duplicate solutions are no larger than 10% of the initial

computed paths.

Note that, if we extend the searching space, the best found solution can be

improved. For example, for the instance c103 and c104 of 50 nodes, when we

extend the searching space to T, we can obtain the same profit as the Best-Known

solution.
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4.6 Conclusions

In this chapter, we define a new model in which a new type carrier (i.e. informed
carrier) is introduced into the transportation service procurement market. The
definition of the feasible request bundles for each carrier are given. The prob-
lem was solved by applying bounded exact bi-directional dynamic programming
algorithm. Although three types of carriers are described in Section 3 but they
are treated as one same model as the bundle construction problem, the pricing
strategies generally differ from each other which will yield different benefits for
shippers and carriers.

The contributions of this chapter are threefold: 1. a new carrier type called
"informed carriers" is introduced in the transportation procurement who have
several advantages in the competition with classical carriers; 2. a request network
is considered in our model to avoid non-compatible solutions; 3. a bi-directional
dynamic programming algorithm is developed to solve the problem, which provide
us with a non-dominated solution set instead of only the optimal solution.

As mentioned in section 2, few research is devoted to less than full truckload
freight transportation, the model developed in this paper can be extended when
capacity is integrated in the routing construction problem where the request nodes
can overlap from each other.
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The procurement of transportation services is an important task for shippers
to control costs and provide high quality services. In the past, when shippers
needed to procure transportation services for a set of lanes, they determined
quotes for each lane individually and repeat the simple auction process for each
lane, or they negotiated for bundles of lanes with one carrier at a time. This pro-
cess is called "call-for-quote-and-negotiation procurement method". However, as
software technology develops, all lanes can be bidded simultaneously. Moreover,
carriers can simultaneously bid upon combinations of individual lanes, leading to
Combinatorial Auctions (CAs).

In the CAs framework, carriers are solving a price-based revenue management
problem. They price a set of bundles/bids (of lane requests) for transportation
procurement in order to maximize their total revenue. This problem is known
as carrier’s Optimal Bid Generation Problem (BGP) (Song & Regan, 2003a);
while the auctioneer - generally the third party logistics - represents the shippers
allocating bundles to carriers on the basis of their proposed bids. This problem
refers to Winner Determination Problem (WDP) (Lehmann et al., 2006).

The procedure defined in Song & Regan (2003a)for CAs consists in two phases:

• In the first phase, potential tours (bundles, bids of lane requests) are build.
The tour is constructed by each carrier’s operating abilities and while sat-
isfying all relevant constraints. Potential tours are build as Bundle Con-
struction Problem (BCP), see Chapter 4. Then the bundles are submitted
to the auctioneer in the form of XOR bids (see Chapter 2.2.3) .

• In the second phase, a set partitioning model is defined based on binary
variables to determine which bundles to select in the final allocation for the
carriers.

In a single round auction procedure, no more bids are allowed after the WDP
computation. For multiple rounds, bidders are allowed to submit bundles again
after the WDP has been computed. The multiple round combinatorial auction
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format could be an iterative ascending format e.g. the mechanism in Parkes
(1999a), the prices are increasing and updated on the basis of bids from bidders
that are not accepted in the current round of the auction. Multiple round auctions
lead to better results than single round auctions in situations where the compu-
tational requirements to evaluate the worth of items is hard (Parkes, 1999b). The
information, e.g. prices for bundles obtained after a round, can enable bidders to
adjust their strategies and react to price changes.

In this thesis, as discussed in 2.4, the bilevel setting is used to build the pricing-
allocation model in CAs. Introducing bilevel structure between carriers/BGP and
auctioneer/WDP allows us to adequately formulate their sequential hierarchical
relationships. At the upper level/leader, carriers collaboratively or compet-
itively choose their pricing strategies, knowing that the lower level/auctioneer
is going to adapt his behavior - allocation bundle of lanes to carriers - accord-
ingly. In chapter 5 and 6, the single-leader single-follower and multi-leader single-
follower bilevel models are discussed. In the single-leader single-follower bilevel
model, carriers collaboratively determine their pricing strategies. In multi-
leader single-follower bilevel model, carriers competitively choose their pricing
strategies to maximize their own revenue.

For the rest of this chapter, we first introduce the definitions and basic assump-
tions. Next, we define the bilevel model describing the hierarchical relationship
between leader and follower. Finally we present a solution algorithm and discuss
numerical results.

5.1 Problem Definition

5.1.1 Assumptions, definitions and notations

We first give some definitions and define some assumptions:

• We only consider full truckload (FTL) carriers, thus substitutability among
the lanes in a bundle will not be considered since one lane cannot be included
by another;

• The lane request bundles are given by the Bundle Construction Prob-
lem(BCP) in Chapter 4. Note that, a lane is a transportation task with an
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origin - destination associated with a time window. A bundle is route with
at least one transportation lane;

• The lane demands/requests are given before bundling and pricing, no future
lanes arrives after the final allocation. This assumption is common for
long distance, long term transportation tasks when they are not easy to
exchange, reallocate which differs from the less than truckload (LTL) tasks;

• The prices proposed by carriers are either for bundles or for the individual
request.

Definition 5.1 (Bundle Pricing Problem (Xia et al., 2004)) The bundle pric-
ing Problem consists in computing a final price for each bundle.

Remark 5.2 A single price associated with each bundle but not with each indi-
vidual lane, means that we do not need to care about the complementarity (or
substitutability in a more general setting) among the lanes in a bundle.

Definition 5.3 (Individual Pricing Problem) The individual pricing prob-
lem consists in determining the final price for each individual lane. Individual
lane prices can serve as benchmarks for combinatorial bids. Denote by vi(j) the
final price of carrier i for lane j. The final price vi(S) for a bundle S is the sum
of all lane prices included in this bundle,

vi(S) =
∑
j∈S

vi(j). (5.1)

Proposition 5.4 The bundle pricing problem is equivalent to the individual pric-
ing only if the valuation is additive over lanes i.e. the lanes included in a bundle
have no inter-relationships. With complementarity among the lanes in a bundle,
the following inequality holds,

vi(S) ≤
∑
j∈S

vi(j). (5.2)

In a more general setting, with substitutability among lanes in a bundle, the fol-
lowing inequality holds,

vi(S) ≥
∑
j∈S

vi(j). (5.3)
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The goals to determine bundle prices for CAs are twofold (Xia et al., 2004):

• Market clearing goal : The total surplus is maximized (so the allocation is
efficient), and the final prices is a competitive equilibrium. More precisely,
every bidder can improve his profit by selecting another bundle to trade
other than the one he has been assigned. Note the definition of market
clearing when imputing individual prices, shown in Definition 2.9, is dif-
ferent as the competitive equilibrium may not lead to the defined bids in
2.9.

• Incentive compatibility : Given the prices, there is no incentive for any indi-
vidual bidder to misrepresent his valuation in order to improve his outcome.

The bundle and individual pricing strategies will be compared in the rest
sections.

5.1.2 The shipper’s Winner Determination Problem (WDP)

The WDP problem consists in determining an allocation of items to bidders (the
auctioneer can keep some of the items- not all items are given to bidders) given
a set of bids in a CAs, such that the auctioneer’s revenue is maximized. For the
transportation procurement problem, the auctioneer’s (shipper’s) objective is to
minimize the total shipping cost, i.e. the sum of bidding prices of all bundles in
the final allocation.

Let N = {1, . . . , n} be the set of bidders (carriers) and let V = {1, . . . ,m} be
the set of items (transportation lane requests). A bundle S ⊆ V is a set of lanes.
Let F = F1 ∪ . . .Fn be the set of all the bundles offered by at least one of the
carriers, where Fi is the bundle set proposed by carrier i. For a bundle S and a
carrier i, we denote by vi(S) the bundle bid that carrier i makes for bundle S,
i.e., the maximal price that i is willing to pay for S.

An allocation of the lanes is described by variables xi(S) ∈ {0, 1}. The vari-
able xi(S) is equal to one if and only if bidder i gets bundle S. An allocation
(xi(S)|i ∈ N,S ∈ F) is said to be feasible if it allocates no lane more than once:∑

i∈N

∑
S∈F,S3j

xi(S) ≤ 1 ∀j ∈ V, (5.4)
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and at most one bundle to every carrier (XOR bidding language format)∑
S∈F

xi(S) ≤ 1 ∀i ∈ N. (5.5)

Definition 5.5 Winner Determination Problem (WDP)
Given bids {vi, i = 1, . . . n}, the winner determination problem is defined as

x ∈ argmin (
∑
i∈N

vi(S)xi(S) | x is a feasible allocation). (5.6)

This problem determines the final allocations for carriers. Multiple solutions may
exist.

5.1.3 The carrier’s optimal Bidding Generation Problem
(BGP)

In transportation procurement context, the carriers’ major goal is to take advan-
tage of inter-dependencies in their transportation operations when determining
the optimal bundles to bid for.

The carrier i’s optimal bidding generation problem is defined as:

max
vi(S)

∑
S∈F

(vi(S)−OperCi(S))xi(S) (5.7)

s.t.

{
Price bounding constraints (5.8)

Resource constraints (5.9)

The price bounding constraints define the price interval where the lower bound
is 0 and the upper bound is the market price. The resource constraints defines the
resources owned by carrier, such as, number of trucks, available traveling times,
etc... The "Operation cost" for a bundle S given as OperCi(S) could vary a lot,
opportunity costs in Figliozzi et al. (2006); empty equipment re-positioning costs
in Zhou & Lee (2009); or the transportation costs itself.

In transportation procurement problem, each carrier has to solve an optimal
BGP, such that, they have to decide in a cooperative/competitive manner,

• which bundles to bid on;
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• the price associated with each bundle;

• the parameters for their operation cost.

We now discuss the bidding generation problem for informed carrier. An
informed carrier is a carrier offering truck resource between two empty truck
move nodes. More precisely, he is interested by adding new lanes in his pre-
existing network between two nodes. We now describe 2 examples. In example
1, after serving his customer at Paris, a carrier has an empty truck departing
from Paris to Nice with a large time windows. It is better for him to serve some
transportation requests (bundle) in between. he prefers to take some profitable
transportation requests (a bundle) rather than only the empty truck. In second
example (see Figure 5.1), a carrier has a tour including 4 requests. To add one
or several of the new (gray) requests will probably result extra profit.

We denote by Vi(S) the maximum price that a carrier i can offer for a bundle
S, then

Vi(S) =
∑
j∈S

V(j) (5.10)

where V (j) is given as the marginal price that each carrier can offer for a lane j.

The optimal bidding generation problem for informed carrier is defined by:

max
vi(S)

∑
S∈Fi

(vi(S)−OperCi(S))xi(S)− ziOperCi(Fi) (5.11)

s.t.


vi(S) ≤ Vi(S) (5.12)∑
S∈Fi

xi(S) + zi = 1 (5.13)

The objective of the informed carrier is to cover a bundle to reduce their cost
from a location pair o to d. In (5.11), the first term is the profit if the informed
carrier covers a bundle S from origin o to destination d, otherwise he goes from
o to d with an empty truck, and he pays OperC(Fi). Constraint (5.12) is the
bounding constraints where V (S) is the market highest price. Constraint (5.13)
is the path constraints: a carrier either goes from o to d with an empty truck or
with a bundle, zi equals to one only there is no bundle assigned to carrier i .
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Figure 5.1: Informed carrier with a tour with 4 requests. Including one of the
new (gray) requests will probably result extra profit.

5.2 Price update and bilevel formulation for in-
formed carriers

Pricing problems perfectly fit the bilevel framework when player/follower in the
system is sensitive to the price changes and will react differently, then the price
proposer/leader has to determine an optimal pricing strategy with knowing the
follower’s reaction. Pricing bilevel models have been studied by Brotcorne et al.
(2001); Heilporn et al. (2010); Labbé et al. (1998) as toll-setting problems, in
Afşar et al. (2016); Aussel et al. (2017, 2019) as energy pricing problems, in
Gilbert et al. (2015); Labbé & Violin (2013); Marcotte & Savard (2002); Robbins
& Lunday (2016) as pricing-setting problem, etc... As mentioned in Gansterer &
Hartl (2017, 2018), classically, in the literature, CAs, BGP and WDP are studied
separately. There is no solution for the whole system (5-phase procedure for CAs)
in an auction-based decentralized planning, the pricing strategies are either based
on marginal price or a given pricing strategy as described in Section 2.3.1.2.

5.2.1 Price update and bilevel formulation

The bidder’s optimization problem is a pricing problem derived from a WDP
allocation as an input. A bilevel optimization problem is solved to obtain prices
for bundles.
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In the bilevel problem, the auctioneer’s allocation is solved at the lower level.
Carriers at the upper level solve the revenue management problem to maximize
their profits explicitly integrating the reaction of the lower level in their decision
making process.

We next define the notations,
Given data:

• A graph G = (V,E), where V = {1, . . . ,m} is the set of lanes and E is the
set of edges connecting the lanes;

• N = {1, . . . , n} the set of carriers;

• A bundle S is a set of lanes: S ⊆ V ;

• F = F1 ∪ . . .Fn is the set of all the bundles demanded by at least one of
the carriers. Fi is the bundle set proposed for carrier i;

• OperCi(Fi) is the operation cost if carrier i does not cover any transporta-
tion request;

• OperCi(S) is the operation cost for carrier i to cover bundle S;

• Vj is the price of the lane j if it is served by the spot market;

•

δjS =

{
1 if lane j ∈ S (5.14)

0 otherwise (5.15)

.

The decision variable are:

•

xi(S) =

{
1 if bundle S is assigned to carrier i (5.16)

0 otherwise (5.17)

•

yj =

{
1 if lane j is not covered by a carrier (5.18)

0 otherwise (5.19)
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•

zi =

{
1 if carrier i is covering no bundle (5.20)

0 otherwise (5.21)

• vi(S), the price determined by carrier i for bundle S. The valuation carrier
i gives for a bundle S should be smaller than the summation of the spot
market prices of the lanes contained in S

vi(S) ≤ V (S) =
∑
j∈S

Vj (5.22)

.

The single-leader single-follower bilevel formulation where the lower level prob-
lem is to maximize the summation of all carriers’ overall profits is defined as
follows,

min
x,y

∑
i∈N

∑
S∈Fi

vi(S)xi(S) +
∑
j∈V

Vjyj (5.23)

s.t.



∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.24)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.25)∑
S∈F

∑
i∈N

δjSxi(S) + yj = 1 ∀j ∈ V, (5.26)

max
v

∑
i∈N

∑
S∈Fi

(vi(S)−OperCi(S))xi(S)− ziOperCi(Fi) (5.27)

vi(S) ≤ V (S) ∀i ∈ N,∀S ∈ Fi, (5.28)∑
S∈Fi

xi(S) + zi = 1 ∀i ∈ N. (5.29)

At the upper level, the auctioneer decides which bundle S ∈ F to assign to
each carrier i ∈ N . xi(S) = 1 when bundle S is assigned to carrier i, xi(S) = 0

otherwise. If a lane j ∈ V is not assigned to the carrier, it is transferred to the
spot market with cost Vj. Constraint (5.24) insures that each lane can only be
assigned once. Constraint (5.25) insures that each carrier can at most get one
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bundle (XOR bidding format). Constraint (5.26) guarantees that each request is
either assigned to carriers or transferred to the spot market.

Constraint (5.28) is the price bounding constraint: the price defined by the
carrier should be positive and smaller than the limited market price. Constraint
(5.29) means that the carrier either cover a bundle or take nothing.

In this model, auctioneer at the upper level solve the minimization problem
to allocate the bundles to the carriers in order to cover as much as lane requests;
and carriers adjust their pricing strategies and maximize their profits at the lower
level.

5.2.2 Reformulation as a single level optimization problem

As mentioned in Section 2.4.3, the classical approach to solve a bilevel opti-
mization problem is to reformulate it as a single level optimization problem by
replacing the lower level by its optimality conditions. As the lower level is linear
programs (LP), its optimality conditions are equivalent to the primal feasibility,
dual feasibility and complementary constraints.

The lower level problem - the optimal bidding generation problem - for carrier
i can be simplified as follows:

Primal
max
vi(S)

∑
S∈Fi

vi(S)xi(S) (5.30)

s.t. vi(S) ≤ V (S) S ∈ Fi (5.31)

The dual formulation corresponding to the primal problem is as follows:

Dual
min
µi(S)

∑
S∈Fi

V (S)µi(S) (5.32)

s.t. µi(S) ≥ xi(S) S ∈ Fi (5.33)

Remark 5.6 The dual of the lower level problem means that when the allocation
at the upper level is done, the lower level will always choose the highest allowed
price. It indicates that, if we model the auctioneer/shipper at the upper level, the
reaction of the carriers will be always the highest allowed price and the decision
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Figure 5.2: Illustration of the proposed model between carriers and shipper.

making orders are not corresponding the realistic situation. This does not reveal
the fact that the the leadership of the auctioneer.

5.3 Second bilevel model

In a demand-response system (Cui et al., 2016), the decision of the lower level is
a response to the upper level’s decision. More precisely, the auctioneer’s decision
- the allocation - depends on the bidder’s decision - the prices, putting the auc-
tioneer at the lower level and taking the auctioneer’s decision as the a response to
the upper level’s decision will be more appropriate to formulate the relationship
between bidder and auctioneer.

In this section, the notations are the same as in last section. We define the
carriers maximization problem as the upper level problem, see Figure 5.2, they
set bundle prices in response to the decision of the shipper’s allocation at the
lower level. In this formulation, the constraint (5.28) is omitted since the price
of the lane j is bounded with the price Vj in the objective function, i.e. if the
carriers propose a price higher than the spot market, the lane will be assigned to
spot market ∗.

∗This argument is true only in the case of individual lane pricing, in bundle pricing approach,
we cannot evaluate the true value of a individual lane.
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This formulation is as follows,

max
v

∑
i∈N

∑
S∈Fi

(vi(S)−OperCi(S)))xi(S)− ziOperCi(Fi) (5.34)

s.t.



∑
S∈Fi

xi(S) + zi = 1 ∀i ∈ N, (5.35)

min
x

∑
i∈N

∑
S∈Fi

vi(S)xi(S) +
∑
j∈V

Vjyj (5.36)∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.37)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.38)∑
i∈N

∑
S∈Fi

δjSxi(S) + yj = 1 ∀j ∈ V, (5.39)

xi(S), yj, zi ∈ {0, 1} ∀i ∈ N, ∀S ∈ Fi,∀j ∈ V. (5.40)

The variables y, z in this formulation can be easily replaced by the variable

x,

yj = 1−
∑
i∈N

∑
S∈Fi

δjSxi(S) (5.41)

and

zi = 1−
∑
S∈Fi

xi(S). (5.42)

5.3.1 Lower level problem

The objective function of the lower level problem is given by

min
x

∑
i∈N

∑
S∈Fi

vi(S)xi(S) +
∑
j∈V

Vjyj (5.43)

= min
x

∑
i∈N

∑
S∈Fi

vi(S)xi(S) +
∑
j∈V

Vj(1−
∑
S∈F

∑
i∈N

δjSxi(S)) (5.44)

= min
x

∑
i∈N

∑
S∈Fi

vi(S)xi(S)−
∑
j∈V

∑
S∈F

∑
i∈N

PjδjSxi(S)) +
∑
j∈V

Vj (5.45)

= min
x

∑
i∈N

∑
S∈Fi

(vi(S)−
∑
j∈S

VjδjS)xi(S) +
∑
j∈V

Vj (5.46)
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Step 5.45 to 5.46 are based on the fact δjS = 1 only when j ∈ S. The summation∑
j∈V can be replaced by

∑
j∈S and put in the inner summation when all the

bundle S ∈ F are considered. In addition, for the lower level problem, vi(S), δjS
and Vj are fixed, the objective of the lower level lead to the next simplification,

min
x

∑
i∈N

∑
S∈Fi

ciSxi(S) (5.47)

where

ciS = vi(S)−
∑
j∈S

PjδjS (5.48)

Finally, the lower level problem is defined as,

min
x

∑
i∈N

∑
S∈Fi

ciSxi(S) (5.49)

s.t.



∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.50)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.51)

xi(S) ∈ {0, 1} ∀i ∈ N,∀S ∈ F. (5.52)

The lower level is a weighted set partitioning problem with additional con-
straints (5.50) meaning that each request j ∈ V can be at most covered once. As
the lower level problem - the set partitioning problem - is not convex, continuous
or with nice properties 2.4.3, it falls into the hardest case of the bilevel problems
and it is NP-complete.

5.3.2 Special case of the problem: 1-to-1 pricing-allocation

In this section, we consider a special case where bundles are individual requests,
the number of bundles are identical to the number of requests, the number of carri-
ersm = n, all the carriers have the same bundle pool Fi = F = {{1}, {2}, · · · , {m}},∀i ∈
N , see Figure 5.3.

The lower level is a linear assignment problem, where each carrier is assigned
at most one bundle, i.e. one request. The decision variables are doubled for both
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Figure 5.3: 1-to-1 pricing-allocation

dummy lanes and dummy carriers, i.e. spot market. More precisely, if one carrier
covers no request, then he gets a dummy lane, and if one request is not covered
by any carriers, it goes to spot market.

The bilevel model is given by,

max
v

n∑
i=1

m∑
j=1

(vi(j)−OperCi(j))xi(j)−
n∑
i=1

m∑
j=1

OperCi(Fi)xi(m+ j) (5.53)

s.t.



min
x

m∑
j=1

n∑
i=1

vi(j)xi(j) +
m∑
j=1

n∑
i=1

Vjxn+i(j) (5.54)

2n∑
i=1

xi(j) = 1 ∀j ∈ {1, · · · , 2m}, (5.55)

2m∑
j=1

xi(j) = 1 ∀i ∈ {1, · · · , 2n}, (5.56)

xi(j) ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · , 2m}. (5.57)

Since each carrier - including the dummy carriers - will be assigned with
exactly one request - including the dummy requests, the factor −ziOperCi(Fi)

is replaced by −
∑n

i=1

∑m
j=1 OperCi(Fi)xi(m + j) in the upper level objective
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function. If there is no assignment for a non-dummy carrier i i.e. xi(j) = 0, ∀j ∈
{1, · · · ,m}, he will be assigned with a dummy lane j such that xi(j) = 1,∃j ∈
{m + 1, · · · , 2m}, it leads to the constraints 5.56, more precisely, each carrier
can be assigned with exactly one lane, and it corresponds to a cost OperCi(Fi)

in the upper level objective. Similarly, if a non-dummy lane j is not assigned
to a non-dummy carrier, then xi(j) = 0,∀i ∈ {1, · · · , n} and this lane will go
to a dummy carrier/spot market (xi(j) = 1,∃i ∈ {n + 1, · · · , 2n}), it leads to
the constraint 5.55. In other words, each lane can be assigned with exactly once,
and it corresponds to a cost Vj in the lower level objective. In conclusion, the
lower level problem is a one-to-one assignment problem. The binary variable
constraints at the lower level can be relaxed as continuous due to the fact that
the constraint matrix is totally unimodular (Carpaneto & Toth, 1987).

The lower level problem is thus a linear and convex problem. It can be re-
placed by its optimality conditions, i.e. the primal feasibility, dual feasibility and
complementary feasibility.

Primal

min
x

m∑
j=1

n∑
i=1

vi(j)xi(j) +
m∑
j=1

n∑
i=1

Vjxn+i(j) (5.58)

s.t.



2n∑
i=1

xi(j) = 1 ∀j ∈ {1, · · · , 2m}, (5.59)

2m∑
j=1

xi(j) = 1 ∀i ∈ {1, · · · , 2n}, (5.60)

xi(j) ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · , 2m}. (5.61)

Associated with this primal problem there is a corresponding dual problem
given by Carpaneto & Toth (1987):

Dual

max
µi,νj

2n∑
i=1

µi +
2m∑
j=1

νj (5.62)

s.t.


vi(j)− µi − νj ≥ 0 ∀i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}, (5.63)

Vj − µi − νj ≥ 0 ∀i ∈ {n+ 1, · · · , 2n}, j ∈ {1, · · · ,m}, (5.64)

−µi − νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {m+ 1, · · · , 2m}, (5.65)

µi, νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · ,m}. (5.66)

The dummy lane involved in the dual problem is associated with 0 valuation
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leading to the constraint 5.65, together with constraint 5.66. The associated
µi,∀i ∈ {1, · · · , 2n} and νj,∀j ∈ {m + 1, · · · , 2m} are forced with the value 0.
Thus the dual problem can be then simplified as:

Dual+

max
νj

2m∑
j=1

νj (5.67)

s.t.


vi(j)− νj ≥ 0 ∀j ∈ {1, · · · ,m}, (5.68)

Vj − νj ≥ 0 ∀j ∈ {1, · · · ,m}, (5.69)

νj ≥ 0 ∀j ∈ {1, · · · ,m}. (5.70)

5.3.2.1 Optimistic and pessimistic single level formulation

The bilevel problem (Colson et al., 2007) has a natural interpretation as a non-
cooperative game between two levels. Players at the upper level (leaders) choose
his decision vi(j) i.e. cij first, then players at lower level (followers) observes cij
and responds with a decision x. Both the objective function and the feasible
region of the follower may depend on the leader’s decision. Likewise, the leader
has to satisfy a constraint that depends on the follower’s decision. Since the
leader cannot anticipate the follower’s decision, the constraint must be satisfied
for any rational decision of the follower, that is, for any feasible decision x that
optimizes the follower’s objective function. This statement leads to a pessimistic
bilevel problem where the leader have to face the worst case that may happen to
him, this problem is perceived to be very difficult to solve.

As a result, most theoretical and algorithmic contributions to bilevel pro-
gramming relate to the optimistic formulation, in which the universal quantifier
"∀" in the bilevel constraint is replaced with an existential quantifier "∃". In a
game theoretic context, the optimistic problem can be justified in two ways. On
one hand, there may be limited cooperation between the players to the extent
that the followers altruistically chooses an optimal solution that also benefits the
leader. On the other hand, the leaders may be able to make small side payments
that bias the follower’s objective in his favor. Even though the optimistic and
the pessimistic bilevel problem are very similar, their optimal solutions can differ
considerably.

The bilevel formulation of the problem is formulated as a single level optimistic
optimization problem where the lower level will always select the solution that is
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most favorable to the leader when facing several optimal solutions:

max
v

max
x

n∑
i=1

m∑
j=1

(vi(j)−OperCi(j))xi(j)−
n∑
i=1

m∑
j=1

OperCi(Fi)xi(m+j) (5.71)

s.t.



m∑
j=1

n∑
i=1

vi(j)xi(j) +
m∑
j=1

n∑
i=1

Vjxn+i(j) =
2n∑
i=1

µi +
2m∑
j=1

νj (5.72)

2n∑
i=1

xi(j) = 1 ∀j ∈ {1, · · · , 2m}, (5.73)

2m∑
j=1

xi(j) = 1 ∀i ∈ {1, · · · , 2n}, (5.74)

vi(j)− µi − νj ≥ 0 ∀i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}, (5.75)

Vj − µi − νj ≥ 0 ∀i ∈ {n+ 1, · · · , 2n}, j ∈ {1, · · · ,m}, (5.76)

−µi − νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {m+ 1, · · · , 2m}, (5.77)

µi, νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · ,m}. (5.78)

This bilevel formulation of the problem is formulated as a single level pes-

simistic optimization problem where the upper level consider the worst case that

it may happen to him:

max
v

min
x

n∑
i=1

m∑
j=1

(vi(j)−OperCi(j))xi(j)−
n∑
i=1

m∑
j=1

OperCi(Fi)xi(m+ j) (5.79)
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s.t.



m∑
j=1

n∑
i=1

vi(j)xi(j) +
m∑
j=1

n∑
i=1

Vjxn+i(j) =
2n∑
i=1

µi +
2m∑
j=1

νj (5.80)

2n∑
i=1

xi(j) = 1 ∀j ∈ {1, · · · , 2m}, (5.81)

2m∑
j=1

xi(j) = 1 ∀i ∈ {1, · · · , 2n}, (5.82)

vi(j)− µi − νj ≥ 0 ∀i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}, (5.83)

Vj − µi − νj ≥ 0 ∀i ∈ {n+ 1, · · · , 2n}, j ∈ {1, · · · ,m}, (5.84)

−µi − νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {m+ 1, · · · , 2m}, (5.85)

µi, νj ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · ,m}. (5.86)

In the optimistic case, the leader will always set the highest spot market price.
Indeed, for a given set of requests and carriers, the solution strategies are finite,
the leader defines the prices, and the follower give the cooperative allocation. No
matter what the leader do (in the sense that the carriers can only decrease the
prices of the requests), it will at least beneficial for the follower and it will not
yield out better solution for the leader i.e. the solution strategies are the same
and decreasing the prices will not lead higher profit for the leader.

In the pessimistic case, the maximization of the leader’s objective not only
depends on his own decision vi(j) but also on the worst response decision xi(j)
from the follower. The solution given in this case guarantees the lowest profit for
the leader.

5.3.2.2 Illustration between the optimistic and pessimistic cases

We next illustrate the difference between the optimistic and pessimistic cases on
a small example. We consider two carriers and two request lanes i.e. two bundles,
and the prices must be integers.

The lane information and solutions are reported in Table 5.1 and 5.2. The
final allocation and defined prices are marked in red color.

As shown in Table 5.2, carrier 1 does not put the highest price on request 2,
because the shipper is facing the same price over the two carriers. He will then
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Carrier Lane Market Price Operation Cost Optimal Solution

1
1 5 -1 5

2 6 -1 6

2
1 5 -1 5

2 6 -3 6

Table 5.1: Solution for the optimistic case of 1-to-1 pricing-allocation.

Carrier Lane Market Price Operation cost Optimal solution

1
1 5 -1 5

2 6 -1 5

2
1 5 -1 5

2 6 -3 6

Table 5.2: Solution for the pessimistic case of 1-to-1 pricing-allocation.

allocate randomly the two requests to the carriers. The cost of carrier 2 covering
request 2 is higher.

Remark 5.7 The pessimistic bilevel formulation is suitable for the transportation
procurement. At the upper level, carriers set the incentive prices not only to lead
the shipper’s allocation over the transportation requests, but also to maximize
their own profit.

5.3.3 General case of the bilevel problem

In general, bilevel programming problems are difficult due to their non-convexity
and non-differentiability. Most of the research has focused on the problems with
nice properties such as linear, quadratic or convex objective and/or constraint
functions. In such cases bilevel programs, the second level problems can be
replaced by their optimality conditions. As for the integer bilevel programs,
studies are very limited to find which has been devoted to the case where the
objective/constraint functions of both levels are linear (Fischetti et al., 2017;
Tahernejad et al., 2016).

In our bilevel model listed from (5.34) - (5.40), by replacing zi = 1−
∑

S∈Fi
xi(S)

in and considering only bundle price, we obtain the following single-level bi-linear
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optimization problem:
UP:

min
v,x

∑
i∈N

∑
S∈Fi

(
−vi(S) + OperCi(S)−OperCi(Fi)

)
xi(S) +

∑
i∈N

OperCi(Fi)

(5.87)

s.t.

0 ≤ vi(S) ≤
∑
j∈S

Vj ∀i ∈ N, (5.88)

x ∈ {0, 1},S. (5.89)

where S is the collection of all feasible partitioning of the followers.
As for the lower level problem, by replacing yj = 1−

∑
i∈N
∑

S∈Fi
δjSxi(S), it

is equivalent to the following bi-linear optimization problem:
LP:

min
x,v

∑
i∈N

∑
S∈Fi

(vi(S)−
∑
j∈V

VjδjS)xi(S) +
∑
j∈V

Vj (5.90)

s.t.



0 ≤ vi(S) ≤
∑
j∈S

Vj ∀i ∈ N, (5.91)∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.92)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.93)

xi(S) ∈ {0, 1} ∀i ∈ N,∀S ∈ Fi. (5.94)

This problem can be formulated as a mixed integer bilevel bilinear programs.

5.3.3.1 Linearization procedure for UP and LP

Notice that both UP and LP have the following form

min
v,x

∑
i∈N

∑
S∈Fi

xi(S)Di(v) (5.95)

s.t.

{
L(x, v) ∀i ∈ N, (5.96)

xi ∈ {0, 1}. (5.97)
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where Di(v) is a linear function of v; L(x, v) is a set of linear constraints.
Since the variable vi(S) is bounded by the market price, then the function

Di(v) for UP and LP must lie between certain bounds:

DUP
i ≤ DUP

i ≤ DUP
i

and
DLP
i ≤ DLP

i ≤ DLP
i

By applying the development in Oral & Kettani (1992), the UP can be written
as:

min
x,v

∑
i∈N

∑
S∈Fi

DUP
i xi(S) + ξi(S) (5.98)

s.t.



ξi(S) ≥ DUP
i (v)−DUP

i xi(S)−DUP
i (1− xi(S)) ∀i ∈ N,S ∈ Fi,(5.99)

0 ≤ vi(S) ≤
∑
j∈S

Vi(j) ∀i ∈ N, (5.100)

x ∈ {0, 1}, S, (5.101)

ξi(S) ≥ 0 ∀i ∈ N,S ∈ Fi. (5.102)

In the similar way, the LP is equivalent to the following problem:

min
x,v

∑
i∈N

∑
S∈Fi

DLP
i (v)−DLP

i (1− xi(S) + ξi(S)) (5.103)

s.t.



ξi(S) ≥ −DLP
i (v) +DLP

i xi −DLP
i (1− xi) ∀i ∈ N,S ∈ Fi, (5.104)

0 ≤ vi(S) ≤
∑
j∈S

Vi(j) ∀i ∈ N, (5.105)∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.106)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.107)

x ∈ {0, 1}, (5.108)

ξi(S) ≥ 0 ∀i ∈ N,S ∈ Fi. (5.109)

Finally, the general case bilevel problem is equivalent to a mixed integer bilevel
programming with binary variable. It is solvable by the algorithms developed in
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(Fischetti et al., 2017) and (Tahernejad et al., 2016).

5.4 Risk cost in shipper’s objective function

In the more complex real world applications, not only the price is evaluated in
the carrier selection, but also the quality of service. Allianz Global Corporate
& Specialty has provided a report to measure the carriers’ performance period-
ically∗. Indeed, before a shipper can move its goods to market, special care must
be taken to carefully scrutinize and select an appropriate method of transporta-
tion and a reliable carrier, or transportation provider, to move the goods quickly,
safely, and at the best rate with minimal risk of damage, loss or theft.

In the report, more than thirty criteria are considered to evaluate the carriers’
service level and how they can affect the shippers’ choice. These criteria, includ-
ing but not limited to Organizational structure, Professional reputation, Present
customer contacts/references, Financial stability, Carrier’s costing/financing sys-
tem, Billing cycles, Quality of carrier and staff, Operating philosophy, Workforce,
Geographical coverage, Communications capability, On-time performance and tar-
get, Fleet size, Intermodal linkages/partners, Use of owner-operators and/or sub-
contractors, Cargo service, Fleet condition and maintenance, Cargo equipment in-
spection frequency and procedures, Experience in hauling cargo similar to yours,
High value cargo handling and transport, Cargo security devices, Cargo infor-
mation security, Cargo tracking, Routing, Pre-employment, Training, Discipline,
Cargo inventory, Loss/damage notification, Insurance Coverage, Limits of lia-
bility, Loss and damage experience, Claims handling philosophy and standards,
Monitoring and Control.

In the transportation procurement literature, Othmane et al. (2014a,b); Rekik
& Mellouli (2012) considered reputation - based WDP problem in transportation
CAs. The objective for shippers is to find a trade off between transport costs and
the quality of service during operations. In their work, the carriers’ reputation
represents the aggregated service level. It differs from carrier to carrier, and also
differs from shipper to shipper. In the auction process, the reputation is trans-
lated into unexpected hidden cost representing the possible additional cost/loss

∗https://www.agcs.allianz.com/insights/white-papers-and-case-studies/carrier-selection-
criteria/
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in shippers’ carrier selection process. The shipper may develop numerical ratings
for each carrier by weighting each criteria depending on their importance. By
doing so, it is able to build a incentive market in which carriers are forced to
improve their performance as each of them will be vying to increase their market
share.

In this section, a risk cost added to the shipper’s objective function to rep-
resent the lose it may occur when considering carriers’ service level. For a given
bundle S and a given carrier i, the risk cost is defined as Ri(S). The single-leader
single-follower bilevel formulation is given by,

max
v

∑
i∈N

∑
S∈Fi

(∑
j∈S

vi(j)−OperCi(S)

)
xi(S)− ziOperCi(Fi) (5.110)

s.t.



∑
S∈Fi

xi(S) + zi = 1 ∀i ∈ N, (5.111)

min
x

∑
i∈N

∑
S∈Fi

(
∑
j∈S

vi(j) +Ri(S))xi(S) +
∑
j∈V

Vjyj (5.112)∑
i∈N

∑
S∈Fi

δjSxi(S) ≤ 1 ∀j ∈ V, (5.113)∑
S∈Fi

xi(S) ≤ 1 ∀i ∈ N, (5.114)∑
i∈N

∑
S∈Fi

δjSxi(S) + yj = 1 ∀j ∈ V, (5.115)

xi(S), yj, zi ∈ {0, 1} ∀i ∈ N,∀S ∈ Fi, ∀j ∈ V. (5.116)

Remark 5.8 What have changed?

• Even in the optimistic case, due to the risk cost occurred in the carrier
selection, the carriers are forced to propose price lower than the spot market
price;

• The risk cost is an information that the shipper may not share with the
carriers. The updating prices strategy for carriers is unclear. If the risk
cost is hidden from carriers, the lower level problem seems like a black box
optimization problem;
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• Price on bundles? Or on individual lanes? If carriers simply change their
lane prices when they want to get certain bundles, the other unwanted bun-
dles may have attractive prices as. As the risk is related with bundles and
with carriers, the lane in different bundles may reveal different values.

5.5 Experimental Results

In this section, we provide the numerical test results obtained from individual
lane pricing and bundle pricing, different cases are evaluated and discussed. In
addition, we also study the bundle pricing strategy with informed carriers.

5.5.1 Individual lane pricing

We define a cost matrix for shipper when generating bundle allocations among
carriers, in which carriers are listed in lines and the bundle costs are presented in
columns, each matrix coordinate is the given price and its risk cost. All bundles
are supposed can be allocated to all carriers, when one carrier can not serve one
bundle, he set the infinity price. A random risk cost is associated with each
bundle. The cost of a bundle and of a carrier is the summation of the price
proposed by this carrier and the risk cost. The objective of the shipper is to find
a conflict-free allocation while the total cost is minimized.

As for the carriers, we define a profit matrix in which carriers are listed in
lines and the bundle profits are presented in columns, each matrix coordinate
is the given price and its operating cost. The profit of a bundle for a carrier is
the summation of the profit minus the cost to cover this bundle, an empty set is
given to represent the case a carrier is assigned with nothing. The objective of
the carriers is to adapt their pricing strategies in order to maximize their total
revenue.

Hereafter, the solution of a final pricing-allocation in the matrix are marked
in red color.

The goal of the bilevel model is to find a compromised solution favors both the
shipper and the carriers. The strategy to find the optimal solution is iteratively
reducing the price of each lane for each carrier until the price is accepted by the
auctioneer.
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5.5.1.1 Case 1

The network is depicted in Figure 5.4, C1, C2 are carriers, node C1, C2 are

carriers’ origin/destination from left to right; each node R represents a lane re-

quest, arrow lines are truck movement from request to request; requests in same

color are feasible bundles. With carrier C1, C2 as line 1, 2, and bundle (R1, R2),

(R3, R2), (R3) as column 1, 2, 3, the cost matrix for shipper and the profit matrix

for carriers is as follows if initially give the market price,

(R1, R2) (R3, R2) (R3)
C1
[

9, 2 +∞ +∞
]

C2 +∞ 12, 1 8, 1

(R1, R2) (R3, R2) (R3) ∅
C1
[

9,−3 −∞ −∞ −6
]

C2 −∞ 12,−6 8,−3 −4

If the shipper receives the market price from the carriers, due to the risk cost,

Figure 5.4: Example 1 of the single-leader single-follower pricing-allocation bilevel
model.

102



5.5 Experimental Results

no bundle will assign to carriers, all bundles go to spot market. The carriers will
operate as the empty set cost with -10. As shipper only assign a bundle to a
carrier when the cost of this bundle is lower than the market price.

The optimal solution is given by

(R1, R2) (R3, R2) (R3)
C1
[

7, 2 +∞ +∞
]

C2 +∞ 11, 1 7, 1

(R1, R2) (R3, R2) (R3) ∅
C1
[

7,−3 −∞ −∞ −6
]

C2 −∞ 11,−6 7,−3 −4

with
vC1(R1) = 3, vC1(R2) = 4, vC1(R3) = 8

vC2(R1) = 5, vC2(R2) = 4, vC2(R3) = 7

The total gain of carriers are 8 and the total cost of shipper is 17. These values
are the same to the case where the requests are assigned to the spot market.

Remark 5.9 • As the best allocation for carriers consists in assigning to
each carrier with exactly one bundle to avoid the empty set cost, carriers
need to pre-decide the best allocation to maximize his profit. They determine
prices to lead the shipper to define this best allocation. In the example, they
decrease the price on R1, R3, and increase the price on R2;

• The risk cost is the factor to avoid the carriers to set the market price,
there is no benefit improved for the shipper, the risk cost is a upper bound
for carrier to set the price. The carrier must determine a lower price to
win this bundle, that is, for a carrier i,∑

j∈S

vi(j) ≤
∑
j∈S

Vj −Ri(S) (5.117)

5.5.1.2 Case 2

We slightly change the Example 1 where C2 cover bundle (R3, R2) with risk cost
0. In this case, the cost matrix for shipper and the profit matrix for carriers will
be as follows,

(R1, R2) (R3, R2) (R3)
C1
[

9, 2 +∞ +∞
]

C2 +∞ 12, 0 8, 1

(R1, R2) (R3, R2) (R3) ∅
C1
[

9,−3 −∞ −∞ −6
]

C2 −∞ 12,−6 8,−3 −4
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Since there is no risk cost associated with an allocation for shipper to give
request to spot market, if carriers define prices as in Case 1, bundle (R3, R2) will
be chosen. C1 will suffer an empty truck cost of -6. The total cost for carriers is
-1 and the cost for shipper is unchanged. In fact, the optimal solution is

(R1, R2) (R3, R2) (R3)
C1
[

6, 2 +∞ +∞
]

C2 +∞ 11, 0 7, 1

(R1, R2) (R3, R2) (R3) ∅
C1
[

6,−3 −∞ −∞ −6
]

C2 −∞ 11,−6 7,−3 −4

with
vC1(R1) = 2, vC1(R2) = 4, vC1(R3) = 8

vC2(R1) = 5, vC2(R2) = 4, vC2(R3) = 7

The total gain of carriers are 7 and the total cost of shipper is 16 which
represents one unit saving compare with Case 1.

Remark 5.10 The difference between Case 1 and 2 comes from the fact that
prices are defined on individual requests not on bundles. Decreasing the price
on R3, it results in decreasing the price on the bundle (R3, R2). If we price on
bundles, for example, when C2 descend the price on (R3) with bundle price for
(R3, R2) staying the same, there will exist no saving for shipper anymore.

5.5.2 Bundle pricing

As discussed in last section, pricing on individual lanes can not reveal their true
values when they are in different bundles which have different risk cost. The
best way of addressing this problem is to make bundle prices superadditive in the
number of lanes. The fact that bidders’ valuations satisfy this property is often
a motivation for holding a combinatorial auction in the first place.

5.5.2.1 Case 3

In this section, we use the network depicted in Figure 5.5 and we consider bundle
pricing strategy. C1, C2 are carriers, node C1, C2 are carriers’ origin/destination
from left to right; each node R represents a lane request, arrow lines are truck
movement from request to request; requests in same color are feasible bundles.
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The bundle pricing corresponds to the general case of bilevel problem, it is
a mixed integer bilevel programming with binary variables and solvable by the
solver developed in Tahernejad et al. (2016).

We consider two risk form, the first is carrier based, which means a fixed risk
cost is attached to a carrier regardless his bundle set information; the second is
bundle based, which we give a concave risk cost function which depend on the
bundles’ size.

The cost of the carrier based risk is is 1.5 and 1 for carrier C1 and C2. Initially
with the market price given, the corresponding cost matrix for shipper and the
profit matrix for carriers is as follows:

(R1, R2) (R1, R3, R2) (R3, R2) (R3)

C1
[

9, 1.5 17, 1.5 +∞ +∞
]

C2 +∞ +∞ 12, 1 8, 1

(R1, R2) (R1, R3, R2) (R3, R2) (R3) ∅
C1

[
9,−3 17,−4 −∞ −∞ −6

]
C2 −∞ −∞ 12,−6 8,−3 −4

Figure 5.5: Example 2 of the single-leader single-follower pricing-allocation bilevel
model.
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and its optimal solution given is:

(R1, R2) (R1, R3, R2) (R3, R2) (R3)

C1
[

7, 1.5 17, 1.5 +∞ +∞
]

C2 +∞ +∞ 12, 1 7, 1

(R1, R2) (R1, R3, R2) (R3, R2) (R3) ∅
C1

[
7,−3 17,−4 −∞ −∞ −6

]
C2 −∞ −∞ 12,−6 7,−3 −4

The cost of bundle based risk is set 1, 1,3 and 1.5 if a bundle contain 1, 2 and
3 lanes. Initially with the market price proposed, the corresponding cost matrix
for shipper and the profit matrix for carriers is as follows:

(R1, R2) (R1, R3, R2) (R3, R2) (R3)

C1
[

9, 1.3 17, 1.5 +∞ +∞
]

C2 +∞ +∞ 12, 1.5 8, 1

(R1, R2) (R1, R3, R2) (R3, R2) (R3) ∅
C1

[
9,−3 17,−4 −∞ −∞ −6

]
C2 −∞ −∞ 12,−6 8,−3 −4

and its optimal solution given is:

(R1, R2) (R1, R3, R2) (R3, R2) (R3)

C1
[

7, 1.3 17, 1.5 +∞ +∞
]

C2 +∞ +∞ 12, 1.3 7, 1

(R1, R2) (R1, R3, R2) (R3, R2) (R3) ∅
C1

[
7,−3 17,−4 −∞ −∞ −6

]
C2 −∞ −∞ 12,−6 7,−3 −4

In results from the experiments, both of the cases can generate a cost saving
for shipper when the risk cost is not integer. For example, for carrier based risk,
the saving for shipper is 0.5 unit; as for bundle based risk, the saving is 0.7 unit.

5.5.2.2 Case 4

In this section, we enlarge the data set and add to the previous example with
6 requests, each carrier has 4 bundles that he may serve. The market price is
defined as 2, 2, 1, 2, 2, 1 for request 1 to 6 respectively.

In the first test, the bundle profile for the carriers and the final allocation and
prices (marked in red) without risk at the lower level are given in Table 5.3. The
time node is 0, nodes fully or partially processed are 860 and 56, nodes branched
is 615, tree depth is 23, search CPU time is 0.97s, feasibility check used 0.6380s.

We next define the risk at the lower level with 20% and 10% of the Market
Price for carrier 1 and 2. The optimal solution and the final allocation is given in
Table 5.4. In this test, time node is 1185, nodes fully or partially processed are
545378 and 1947, nodes branched is 273662, tree depth is 30, search CPU time is
1283.65s, feasibility check used 845.0343s.
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Carrier Bundle Market Price Operation cost Optimal solution

1

(1,2,3) 5 -2 5

(2,4) 4 -1 4

(4,5) 4 -1 4

(3,4) 3 -1 3

2

(1,3,6) 4 -1 4

(2,5) 4 -2 4

(3,4) 3 -1 3

(1,5) 4 -2 4

Table 5.3: Centralized bundle pricing without risk at the lower level.

Carrier Bundle Market Price Operation cost Optimal solution

1

(1,2,3) 5 -2 5

(2,4) 4 -1 3

(4,5) 4 -1 4

(3,4) 3 -1 3

2

(1,3,6) 4 -1 3

(2,5) 4 -2 3

(3,4) 3 -1 3

(1,5) 4 -2 4

Table 5.4: Centralized bundle pricing with risk at the lower level.

Again, without risk at the lower level, the carriers are proposing highest al-

lowed prices, i.e. the market price. With the risk at the lower level, the cost

saving is again comes from the fact that the carriers can only set integer prices.

Observe that, introducing risk at the lower level can largely increase the

searching effort. Indeed, the computational time can increase up to 2128.6843s,

1324 times of the computation time comparing without risk at the lower level.
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5.5.3 Bundle pricing with informed carriers

In this section, we intend to check how informed carriers can benefit from the
mechanism that we have developed. As discussed in Remark 5.10, there is no
saving for shipper if we consider no risk evaluated on carriers, thus in the following
tests, we will consider the case without risk cost and only discuss the infection of
introducing the informed carriers.

We use the same data set as in Chapter 4. The case tested used a compressed
instance from C101 with 50 nodes, from the knowledge of previous sections, the
computational time is relatively large if we consider the origin data. We only
consider 20% of the C101 request nodes, which have 14 request nodes in total.

We consider three informed carriers and one traditional carrier, each informed
carrier is associated with a different origin-destination node pair, and the tradi-
tional carrier departs and goes back to node 0. The bundle pool is computed by
the algorithm defined in Chapter 4 with same time limitation.

We give the 4 carriers with his origin-destination node pair as follows:

• 6-27: informed carrier 1 with 8 bundles and with largest bundle size 3;

• 5-42: informed carrier 2 with 9 bundles and with largest bundle size 3;

• 33-6: informed carrier 3 with 14 bundles and with largest bundle size 3;

• 0-0: traditional carrier with 2 bundles and with largest bundle size 3.

Without risk cost at the lower level, four tests are performed. In each test,
three carriers are defined to evaluate the affection of informed carriers. The time
limit is set as 1 hour,

• 3 different informed carriers (6-27, 5-42, 33-6): The origin profit for the
upper level without lower level is 105 and the final profit is 35 with totally
7 covered nodes;

• 2 informed carrier (6-27, 5-42) and 1 traditional carrier: the origin profit
for the upper level without lower level is 75 and the final profit is 2 with
totally 5 covered nodes and traditional carrier is assigned with nothing;

• 1 informed carrier (6-27) and 2 traditional carriers: the origin profit for the
upper level without lower level is 45 and the final profit is 15 with totally 5
covered nodes and 1 traditional carrier is assigned with nothing.
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• 3 traditional carriers: the origin profit for the upper level without lower
level is 19 and the final profit is -69 with totally 3 covered nodes and 2
traditional carrier is assigned with nothing.

Remark 5.11 • Without the lower level, i.e. the carriers do the allocation
themselves, it equivalent to the case of multiple vehicle routing problems,
the profit is decreasing by decreasing the number of informed carriers, the
profits are 105, 75, 45, 19 with 3, 2, 1, 0 informed carriers;

• With the allocation of the lower level, the profit is decreasing by decreasing
the number of informed carriers, the profits are 35, 2, 15, -69 with 3, 2, 1,
0 informed carriers, note that the final profit is calculated by the time limit
of 1 hour, it is not the optimal solution;

• The total number of requests is decreasing by decreasing the number of in-
formed carriers, the number of requests covered are 7, 5, 5, 3 with 3, 2, 1,
0 informed carriers.

5.6 Conclusions

We describe a bilevel model in combinatorial auctions to express the interaction
between the BGP and the WDP, the problem aims to identify an optimal solution
in which the carriers’ decisions are taken considering the shipper reaction.

The contribution of this chapter are: 1, we are the first to merge the BGP
and the WDP as the centralized pricing-allocation bilevel model; 2, we are able to
solve the pricing-allocation problem exactly by replacing the lower level problem
by its primal-dual optimality conditions in both the 1-to-1 pricing-allocation case
and the general bilevel case; 3, we introduce and define the risk cost in shipper’s
objective function.

In the experimental results, we show that:

• In both individual and bundle pricing, risk cost can generate saving for
shipper if carriers only can set integer prices;

• Introducing risk cost at the lower level can largely increase the searching
effort of our algorithm;
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• The traditional carrier has the obvious disadvantage to cover bundles both
in qualities and in quantities comparing with informed carrier.

Nevertheless, the formulations developed and the algorithm used can only
solve very small size instances, and the computational time is already long, thus
more efficient heuristics need to be developed to solve the same problem.
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Observe that, for the formulation presented in previous Chapter, carriers are
cooperating with each other to achieve the highest total profit, which does not
reveal the truth that carriers could adjust their pricing strategies themselves to
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get more profit for their own. Indeed, cooperating among carriers is a strong
assumption which will lead to a strong centralization at the carriers’ level, thus
the single-leader single-follower pricing-allocation bilevel model can be seen as
with only one carrier but with different truck resources, it eventually falls into
a resource planning problem at the upper level. And this is also why carriers in
most solutions are proposing highest market prices and there is less saving for
the shipper.

In real world applications, in order to gain more market share, to keep up in
the development of the new technology, to have higher standards for competence
and to sustain the current pace of growth, the carriers at the upper level are under
pressure and generally selfish/distributed. They can build and enlarge their own
logistic network and operate individually or cooperate very closely to achieve
global and self profit goals. In other words, carriers compete with each other,
to avoid congestion and minimize their travel time, and on public transport, to
purchase the cheapest tickets or maximize the comfort of their journey. Moreover,
carriers compete also on price, quantity, quality and other features to attract
customers.

In literature, several papers are targeting less-than-truckload carrier collabo-
ration as it allows more flexibility to exchange, reallocate lanes among different
carriers in a complex logistic network and in a dynamic environment (Berger &
Bierwirth, 2010; Hernández & Peeta, 2014; Hernández et al., 2011; Liu et al.,
2010a; Nadarajah & Bookbinder, 2013). Truckload carrier collaboration can be
included in the less-than-truckload researches when carriers can reduce back-haul
or empty movement cost through lane exchange (Liu et al., 2010b; Özener et al.,
2011). Other papers discuss the profit sharing problem by doing the collaboration
(Dai & Chen, 2012; Krajewska et al., 2008; Liu et al., 2010a). Finally considering
carrier collaboration under auction concept, works can be found in Dai & Chen
(2011); Dai et al. (2014); Gansterer & Hartl (2016); Lai et al. (2017); Song &
Regan (2003b); Xu et al. (2016).

The discipline that studies competition among groups of decision-makers where
individual choices can jointly determine the final outcome is known as game the-
ory. Two types of non-cooperative games are involved and discussed in this chap-
ter, namely the Nash game and the Stackelberg game. In Nash game (Nash,
1951), the decision makers who have equal status and they are making decisions
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at the same time. Each player can affect their competitors’ decisions by chang-
ing their strategy unilaterally, and the outcome for each of them depends on the
decisions of the others. Under this setting, Nash equilibrium solution is a state
in which no player can improve his outcome by unilaterally changing his deci-
sion. Stackelberg game (Stackelberg et al., 1952) features two players, identified
as leader and follower, both trying to optimize their own objective function, the
leader take into account the follower’s reaction when optimizing its decisions.

In this Chapter, we consider a pure competitive environment to express the
relationship among the carriers at the upper level. The competitive feature among
carriers draws the Nash game at the upper level. Each carrier’s decision not only
is determined by the follower’s response but is also influenced by other carriers
strategies. Multi-leader/carriers single-follower/shipper bilevel model is employed
to fully express the complex relationship among all players.

6.1 Multi-leader single-follower bilevel formulation

In this section, we introduce the carrier interaction and carrier-shipper interaction
with the same notations as in Chapter 5 and give the multi-leader single-follower
bilevel formulation.

6.1.1 Carrier interaction

Let vi be the vector price proposed by carrier i over all the transportation requests.
The alternative offers proposed by the other carriers other than i, is denoted by∗

v−i = (v1, · · · ,vi−1,vi+1, · · · ,vn), (6.1)

it interacts with the choice vi of carrier i through the choice of the lower level -
shipper. If an alternative carrier proposes a very attractive offer (i.e., with lower
prices), the cost at the lower level should be reduced.

Setting a proper offer against the other carriers’ offers (i.e. v−i) to gain more
profit is challenging task for each carrier, then in competition.

∗Standard notation in game theory to define the strategy of all the players but one, i.e. his
opponents.
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Figure 6.1: Illustration of the proposed model for the competition between car-
riers and shipper.

6.1.2 Carrier-shipper intersection

The relation between carriers and shipper can be modeled as a bilevel compe-
tition game named Stackelberg multiple-leader single-follower game. Consider
the network depicted in Figure 6.1, carriers at the upper level propose individual
offers - in a competitive manner - to the shipper, shipper react to the prices by
allocating the lanes to the carriers.

6.1.3 Multi-leader single-follower bilevel formulation

Given Xi(vi,v−i) the solution of the lower level problem - the shipper’s alloca-
tion problem - under the competition between carriers. The multi-leader single-
follower bilevel formulation for each i ∈ N is given by,

Πi(vi,v−i) = max
vi,

xi∈Xi(vi,v−i)

∑
S∈Fi

(vi(S)−OperCi(S))xi(S)− ziOperCi(Fi) (6.2)

where Πi is the utility function defined for carrier i when he set price vi
respecting the other carrier’s offer v−i.
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The other carrier’s offers v−i are not represented in each carrier’s objec-

tive function but will interact with the shipper’s decision at the lower level as

Xi(vi,v−i).

For fixed v−i, each carrier i has to solve a single-leader single-follower bilevel

programming problem. The final solution vi leads to a Nash Equilibrium among

all carriers, in other words, no carrier can improve there profit by changing only

their own pricing strategy.

6.2 Solution approach

In this section, we propose an iterative approach to obtain the Nash equilibrium

between carriers by using a standard game theoretical dynamics named best re-

sponse dynamics.

6.2.1 Best response

Game theory offers us a way to approach the solution for our problem with an

iterative procedure, which is best response dynamics. In evolutionary game the-

ory (Fudenberg & Tirole, 1991). Best response dynamics represents a class of

strategy updating rules, where players strategies in the next iteration are deter-

mined by their best responses of current iteration.

To solve the problem of our defined multi-leader single-follower model, the

other carriers’ offers v−i,r are fixed at round r. The adaptation dynamics of the

next-round offer r + 1 for carrier i is

vi,r+1 ∈ argmax
vi

Πi(vi,v−i,r). (6.3)

6.2.1.1 1-to-1 pricing-allocation

In this section, we define the solution algorithm for the 1-to-1 pricing-allocation

mentioned in section 5.3.2 under the multi-leader single-follower setting. The

bilevel problem can be then reformulated as a single-level problem. Each carrier

i need to solve the problem as follows,
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Πi(vi,v−i) = max
vi,

xi∈Xi(vi,v−i)

m∑
j=1

(vi(j)−OperCi(j))xi(j)−
m∑
j=1

OperCi(Fi)xi(m+ j)

(6.4)

s.t.



min
x

m∑
j=1

n∑
i=1

vi(j)xi(j) +
m∑
j=1

n∑
i=1

Vjxn+i(j) (6.5)

2n∑
i=1

xi(j) = 1 ∀j ∈ {1, · · · , 2m}, (6.6)

2m∑
j=1

xi(j) = 1 ∀i ∈ {1, · · · , 2n}, (6.7)

xi(j) ≥ 0 ∀i ∈ {1, · · · , 2n}, j ∈ {1, · · · , 2m}. (6.8)

The primal-dual reformulation can be written again as same as in Section 5.3.2.
According to the reformulation defined in Section 5.3.2, in the best response

dynamics, for each round r, carrier i is able to compute his offer vi,r respecting
the other carriers offers v−i,r−1 by solving a single-level problem. Iteratively, the
best response dynamics converges to a equilibrium solution for all carriers.

6.2.1.2 Bundle-to-carrier pricing-allocation

In this section, we define an algorithm to solve the bundles to carriers - we refer
it as bundle-to-carrier pricing-allocation problem depicted in Figure 6.2.

In this problem, the lower level problem can not be easily replaced by its op-
timality conditions, making it more difficult to be solved by any exact algorithm.
Nevertheless, if the price is the only factor affecting the shipper’s decision, the
best strategies for carriers to win a conflict lane is to reduce the price. Thus,
by decreasing prices at each round for each carrier, we are able to find a stable
solution.

Now we define Fi,j the set of bundles containing request j for carrier i, the
problem is solved by the Algorithm 3.

Two stopping criteria can be considered in the Best Response technique,

• When a bundle is a subset of another bundle, this bundle profit must be
lower than the other bundle, otherwise, the carrier will choose the smaller
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Figure 6.2: Bundle-to-carrier pricing-allocation

bundle and still keep the same profit. This leads us to define a lower bound
for bundle pricing. For a carrier i,

vi(S)−OperCi(S) > vi(S
′)−OperCi(S

′) ∀S ′ ⊂ S.

Moreover, in the special case when carrier i is not covering any bundle, we
have,

vi(S)−OperCi(S) > −OperCi(Fi) ∀S ⊂ Fi

This inequality implies that negative price is acceptable as soon as the cost
with this negative price is lower than the empty movement cost.

• Since carriers are reducing the prices of the conflicting lanes round by round,
there will be a situation such that, in next round, a lot of carriers will choose
not to covering any bundle. The uncovered lanes will be assigned to the
spot market with highest prices, leading to increase cost for the shipper.
Thus the shipper has to prevent this situation and stop the iteration at the
right point, that is, the shipper’s cost at next round r + 1 is

Cr+1 > Cr. (6.9)
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Algorithm 3 Bundle price evolution through Best Response
1: r=0: set vi(j) = V (j),∀i ∈ N, j ∈ V ;
2: for j ∈ V do
3: for i ∈ N do
4: while Fi,j 6= ∅ and Fi′,j 6= ∅,∀i 6= i′ do
5: vi(j) = vi(j)− 1;
6: dominate the unprofitable bundles and update the set Fi,j;
7: solve the WDP problem for shipper and the shipper’s cost is Ck;
8: if Cr > Cr−1 then
9: Stop;
10: else
11: if there is no conflict interest among carriers for j then
12: V = V \ j;
13: else
14: r = r + 1;

6.3 Experimental results

Three instances are generated for the Bundle-to-Carrier Pricing-Allocation model.
They are illustrated in Figure 6.3 - 6.5. In these instances, Requests R1, R2 and
R3 are lanes with highest market prices. Arcs link the carriers and the requests
with its transportation cost. Carrier C1 and C2 are moving from left to right,
they either pass the colored bundle path or pass the dashed lines as a direct path.

Strategy to get the final solution: if there is a conflict of interest for two
carriers on a request, they will lower their prices for their bundles iteratively until
one of the carrier give up on his bundle in cause of no profit.

6.3.1 Instance 1

Bundle sets for the carriers:

• C1: {(R1, R2)}

• C2: {(R3, R2), (R3)}

Evaluation of the solution:
In this instance, requests R1 and R3 are not conflicting within two carriers,

carrier C1 and carrier C2 will always set the highest prices for these two requests.
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Figure 6.3: Instance 1 of the multi-leader single-follower bundle pricing model.

Request R2 is a conflict of interest for two carriers, carrier C1 decrease his bundle
({(R1, R2)}) price as long as this bundle can give him a profit that is higher than
-6 which is transportation cost for not covering any bundle. Carrier C2 will lower
his bundle {(R3, R2)} price as long as request R2 has no interest for him. In
other words, passing bundle {(R3, R2)} has equal or less profit than only passing
bundle {(R3)}. As shown in Table 6.1, for each round, the new prices and profits
are obtained by adjusting the price on request R2 .

Round
Price Profit

R1 R2 R3 (R1,R2) (R3,R2) (R3)

1 5 4 8 6 6 5

2 5 3 8 5 5 5

Table 6.1: Bundle pricing through best response for instance 1.

Solutions of the instance:

• C1: {(R1, R2)} with bundle price (5+3=) 8 and profit (8-1-2=) 5

• C2: {(R3)} with bundle price 8 and profit (8-2-1=) 5
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Figure 6.4: Instance 2 of the multi-leader single-follower bundle pricing model.

• Shipper: cost with 16

6.3.2 Instance 2

Bundle sets for the carriers:

• C1: {(R1, R2), (R1, R2, R3)}

• C2: {(R3, R2), (R3)}

Evaluation of the solution: In this instance, request R2, R3 are conflicts
of interest for both carriers, price decrease on both R2 and R3. As shown in
Table 6.2, from round 1 to 2, the price are decreasing on request R2 until there
is no interest for carrier C2 to pass the bundle (R3, R2); from round 3 to 9, the
price are decreasing on request R3 until there is no interest for carrier C1 to pass
the bundle (R1, R3, R2).

Solutions of the instance:

• C1: {(R1, R2)} with bundle price (5+3=) 8 and profit (8-1-2=) 5

• C2: {(R3)} with bundle price 1 and cost (1-2-1=) -2
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Round
Price Profit

R1 R2 R3 (R1,R2) (R1,R3,R2) (R3,R2) (R3)

1 5 4 8 6 13 6 5

2 5 3 8 5 12 5 5

3 5 3 7 5 11 - 4

4 5 3 6 5 10 - 3

5 5 3 5 5 9 - 2

6 5 3 4 5 8 - 1

7 5 3 3 5 7 - 0

8 5 3 2 5 6 - -1

9 5 3 1 5 5 - -2

Table 6.2: Bundle pricing through best response for instance 2.

• Shipper: cost with 9

6.3.3 Instance 3

Bundle sets for the carriers:

• C1: {(R1, R2), (R1, R2, R3)}

• C2: {(R3, R2), (R3)}

Evaluation of the solution: In this instance, request R2, R3 are still con-
flicts of interest for both carriers, price decrease on both R2 and R3, but we
change the market price at R3 as 4, the cost from R3 to carrier 2’s destination
is changed as -2 and the cost from R3 to R2 is changed to 0. As shown in Table
6.3, from round 1 to 5, the price is decreasing on request R2 until there is no
interest for carrier C2 to pass the bundle (R3, R2); from round 6 to 9, the price
is decreasing on request R3 until there is no interest for carrier C2 to pass any
bundle.

Solutions of the instance:

• C1: {(R1, R2, R3)} with bundle price (5+0+0=) 5 and profit (5-2=) 3

• C2: takes no bundle
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Figure 6.5: Instance 3 of the multi-leader single-follower bundle pricing model.

Round
Price Profit

R1 R2 R3 (R1,R2) (R1,R3,R2) (R3,R2) (R3)

1 5 4 4 6 11 4 0

2 5 3 4 5 10 3 0

3 5 2 4 4 9 2 0

4 5 1 4 3 8 1 0

5 5 0 4 2 7 0 0

6 5 0 3 2 6 - -1

7 5 0 2 2 5 - -2

8 5 0 1 2 4 - -3

9 5 0 0 2 3 - -4

Table 6.3: Bundle pricing through best response for instance 3.
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• Shipper: cost with 5

6.4 Conclusions

In this chapter, we improve the bilevel model by introducing the competition
among carriers, it leads to the multi-leader single-follower bilevel model, the
problem investigate the truth that the carriers are decentralized and we study
how it affect the final solution.

In the experiment results, we show that: 1, introducing conflicting lanes can
largely lower the shipper’s cost, instance 2 and 3 gives less cost for shipper com-
paring with instance 1; 2, as seen in all instances, request R1 is the request only
in carrier C1’s bundles, this request will always keep the highest price in the
price evolution. This request can be defined as the most attractive request. If we
can identify all the attractive requests in the large instances, it will save a lot of
computational time.
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Conclusions and Perspectives

In this thesis, we have defined models and decision-making algorithms to design
simultaneously several sustainable logistics and transportation chains between
origins and destinations for a given logistics and transportation network. These
problems typically involve Bundle Construction Problem (BCP), Winner Deter-
mination Problem (WDP), Bid Generation Problem (BGP), and Bundle Pricing
Problem (BPP) under the transportation procurement system. These problems
are addressed from two perspectives. In the first case, centralization is considered
among carriers, the best set of chains or the system optimum need to be found.
In the second case, the system is shared by all self-interested actors and is decen-
tralized. Carriers put their offers for given origins and destinations flows, then, a
combinatorial auction mechanism is applied to compute the final allocation. The
main contributions are as follows,

In Chapter 2, the basic concepts and information for decentralized logistics
and transportation system are given. We present a classification of the trans-
portation procurement auctions especially the CAs. The bidding language is
discussed to be used in CAs. In CAs for transportation procurement, the BCP
and BPP are reviewed under BGP and the basic formulation were given for BGP
and WDP. Next, we review bilevel problems and showed how/why it can be used
to improve the solution in CAs.

In Chapter 3, a detailed survey about WDP is given to summarize the general
and variants of the formulations for WDP. The complexity of the problem is
analyzed. The most popular benchmarks are classified and the performance of
the algorithms are compared.

In Chapter 4, we study the BCP in CAs for full truckload transportation
procurement. We define informed carrier and a simplified requests network, and
propose a mixed integer linear programming formulation. A bounded exact bi-
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directional dynamic programming is used to solve the problem. The results define
a non-dominated solution set instead of only the optimal solution.

In Chapter 5, we merge the BGP and WDP as the single-leader single-follower
pricing-allocation bilevel model to express the interactions between shippers and
carriers. We define two general bilevel formulations and prove the model with
carriers/shipper at the upper/lower level is useful. We also propose a formulation
by introducing the risk cost at the lower level to represent the service quality of
the carriers. The problem is solved by using the linearization procedure at both
upper and lower level. The individual lane pricing and bundle pricing strategies
are evaluated and compared in the experimental tests. We show that the risk
cost can generate savings for shipper but it increases the computation time of the
algorithm. We also show that the informed carriers has the obvious advantage to
cover bundles both in qualities and in quantities.

In Chapter 6, we propose a multi-leader single-follower bilevel formulation
to represent the carrier interactions. It corresponds to the decentralized setting
where the carriers are competitively putting their offers. The problem is solved
by best response dynamics under multiple round CAs.

The topics covered in this thesis provide some management insights for de-
centralized logistics and transportation systems. However, there is still room for
new research developments. In the following, we list several research directions
that we believe are of interest.

The first two perspectives considers the methodology,

• In this thesis, the BCP problem is solved through an exact bi-directional
dynamic programming. The solution can not guaranteed to be optimal
unless the forward and the backward extension are mapped on all searching
area, i.e. the Halfway point is extended to T . This procedure is very time
consuming. Therefore developing heuristics to solve the problem efficiently
and to simultaneously determine the non-dominated solution set could be
useful.

• Second, the bilevel formulations developed and the algorithms used for cen-
tralized and decentralized pricing-allocation problem need to be further im-
proved to solve large and realistic instances. Indeed, solving Mixed-Integer
Bilevel Linear Program (MIBLP) is much more challenging than single level
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Mixed-Integer Linear Program (MILP): first of all, MIBLPs are
∑P

2 -hard.
Furthermore, it is known that allowing continuous variables in the leader
and integer variables in the follower, may lead to bilevel problems whose op-
timal solutions are unattainable. Finally, in contrast to single-level MILPs,
unboundedness of a relaxation of the problem does not allow to draw con-
clusions on the optimal solution of MIBLP. More precisely, MIBLPs with
unbounded relaxation value can be unbounded, infeasible, or admit an op-
timal solution. DeNegre & Ralphs (2009); Fischetti et al. (2018) demon-
strated how to turn a standard branch-and-bound MILP solver into an
exact and finitely-convergent MIBLP, and possible linear inequalities and
cuts could be introduced to solve the problems more efficiently. However,
the solution methods in Fischetti et al. (2018) rely on a strong assumption
where the leader variables do not appear in the follower problem, which is
not our case.

The second perspectives are associated with the application,

• In this thesis, the BCP problem is formulated for full truckload freight
transportation. Few research is found for less than truckload freight trans-
portation. In less than truckload freight transportation, a lane is defined as
an origin-destination pair together with a volume of shipment needed to be
transported from the origin to the destination, and the bidding price vi(S)

is defined for one unit volume S by bidder i. The BCP formulation could be
extended when capacity is integrated in the routing construction problem,
but it will increase the complexity of the problem both in modeling and
computation.

• Another perspective of the BCP is to investigate the dynamic version of
the routing construction problem under the same setting. Indeed, in the
more realistic applications, new lane requests are arriving randomly or lane
exchange (Özener et al., 2011) may be allowed during the planning horizon,
then a new solution has to be recomputed.

• Furthermore, risk costs in shipper’s objective are either bundle oriented or
carrier oriented. More precisely, risk is fixed when the number of lane in
a bundle is fixed or a carrier is given. In a more realistic way, the shipper
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may develop numerical rating for each carrier to define his service quality
level.
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Résumé Etendu

De nos jours, le transport de marchandises ou le camionnage est une composante
vitale de l’économie et de la chaîne d’approvisionnement. En Europe, le trans-
port de marchandises contribue à environ 5 % du PIB total, et parmi tous les
modes de transport, le transport routier de marchandises partage près de 80 %

des activités de transport intérieur en raison de la flexibilité et de la capacité à
fournir des services porte-à-porte efficaces et rapides dans la plupart des pays,
voir la Figure.1.1. Aux États-Unis, le camionnage par camion a partagé près de
70 % du marché du transport de marchandises (voir Figure.1.2), et le total des
revenus d’exploitation (voir Figure.1.3) et le revenu total (voir Figure. 1.4) con-
tinue d’augmenter en raison de la mondialisation du commerce et de la croissance
économique. Comme en France, la contribution au PIB des transports en France
est de 14 % soit 321 milliards d’euros, et 5,4 % PIB provient du transport de
marchandises (Insee, 2018 ∗).

Cependant, les transporteurs du marché du transport de fret sont confrontés
à plusieurs défis pour conserver et élargir leur part de marché et ainsi améliorer
leurs revenus. L’un des défis vient de la concurrence de plus en plus intense à trois
niveaux: entre les pays et les régions, entre les différents modes de transport et
entre les nombreux transporteurs et prestataires de services logistiques. Dans cet
environnement concurrentiel fort, les expéditeurs et les transporteurs sont sous
pression pour réduire leurs coûts et opérer plus efficacement, et en réponse à ces
défis, dans cette thèse, nous étudions les systèmes de logistique et de transport
centralisés et décentralisés.

Dans les systèmes de logistique et de transport centralisés, plusieurs expédi-
teurs ou transporteurs collaborent étroitement pour optimiser les opérations de
transport en partageant les capacités de transport et les demandes de livraison.

∗https: //www.unionroutiere. fr / publication / consultez-faits-chiffres-2018 /



Résumé Etendu

Cependant, les marchés du monde réel sont essentiellement distribués - décentral-
isés. Les expéditeurs et les transporteurs intéressés ont des préférences privées,
ils se comportent de manière stratégique pour atteindre une meilleure efficacité et
augmenter leurs propres profits. Ce système est appelé les systèmes de logistique
et de transport décentralisés. Dans ce système, tous les acteurs indépendants
doivent interagir de manière intéressée.

Cette thèse se poursuit dans le cadre d’un projet ANR, «pi-co-modalité».
Les partenaires sont le Centre de Gestion Scientifique de Mines ParisTech, DHL
Service Central, l’INRIA Lille-Nord Europe et le CNRS LAAS. Le projet pi-co-
modalité est consacré à la conception de chaînes co-modales entre les origines
et les destinations en fonction d’objectifs environnementaux et économiques. Le
terme “ co-modal ” est un terme utilisé pour la première fois par l’UE en 2006
et fait référence à l’utilisation intelligente de deux ou plusieurs modes de trans-
port seuls et en combinaison pour tirer le meilleur parti de chacun d’eux afin
que le trajet global soit le plus durable. que cela peut être. Cette optimisation
de l’utilisation des ressources présente des avantages économiques, environnemen-
taux et sociétaux. Le projet est basé sur le concept d’Internet physique (raccourci
par PI) (Montreuil, 2011) qui rompt avec les approches établies précédemment.
La métaphore de l’internet numérique est utilisée pour illustrer les concepts clés.
En tant que paquets numériques sur des réseaux informatiques interconnectés,
le PI vise à développer un système logistique global basé sur l’interconnexion de
réseaux de services logistiques pour transférer des marchandises entre les origines
et les destinations.

Dans le projet ANR, le problème de la conception de chaînes durables multi-
modales est abordé sous deux angles. Dans le premier cas, on considère un sys-
tème centralisé ou «système optimal» où un expéditeur est en charge de définir le
«meilleur» ensemble de chaînes. Dans le second cas, le système est partagé entre
les acteurs et décentralisé. L’expéditeur précisera le cadre général (les plateformes
multimodales potentielles à utiliser) et les origines et destinations des flux. En-
suite, les entreprises de transport présenteront leurs offres, qui seront considérées
selon un mécanisme d’enchères combinatoires. Cela se traduira par une activité
logistique partagée qui optimise l’utilisation des ressources.

Le sujet de ma thèse est d’aborder la situation décentralisée et d’étendre le
concept PI de manière plus réaliste. Afin d’atteindre des performances de haut
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niveau dans des environnements décentralisés, un cadre général constitué d’un
centre d’enchères potentiel joue le rôle d’intermédiaire de marché. Entre l’origine
(c’est-à-dire les expéditeurs) et la destination (c’est-à-dire les clients), les hubs
jouent le rôle de centre de transit des marchandises pour augmenter l’efficacité de
l’allocation du système. Tous ces acteurs avec leurs propres intérêts, leurs atouts,
leurs sous-réseaux et leur indépendance sont considérés.

L’objectif global de cette thèse est de s’appuyer sur une approche de «concep-
tion de mécanisme», elle permet aux agents allouant des faisceaux de voies à un
ensemble de transporteurs de définir la solution entre les acteurs, et d’améliorer
les performances du mécanisme porté par tous les acteurs. En d’autres termes,
l’objectif principal est de concevoir un mécanisme d’enchères et une plate-forme,
pour faciliter l’adéquation entre l’offre et la demande entre les expéditeurs et les
clients; pour obtenir des informations utiles pour la mise en œuvre pratique de
ces mécanismes, qui conduiront à l’allocation des ressources de transport
mondiales la plus efficace. La solution devrait encourager les expéditeurs et
les transporteurs à utiliser le mécanisme d’enchères plutôt qu’à se comporter in-
dividuellement, de sorte que tous les agents intéressés aient un meilleur intérêt à
appliquer la solution conçue par la plateforme plutôt que d’appliquer la solution
de base d’intérêt personnel.

Dans l’étude de cette thèse, plusieurs parties se posent,

• Premièrement, des approches d’enchères sont utilisées pour faciliter l’appariement
entre les demandes de transport et les fournitures, ce qui fait référence aux
textbf enchères d’approvisionnement en transport;

• deuxièmement, méthodes de construction de routage sera utilisé pour
construire un faisceau de voies;

• et enfin un problème de génération d’enchères et problème de déter-
mination du gagnant sont résolus pour réaliser l’appariement de l’offre
et de la demande.

D’un point de vue méthodologique, nous nous sommes appuyés sur l’IP pour
modéliser le réseau maillé et sur une «approche de conception de mécanismes»
pour définir des faisceaux d’itinéraires pour les transporteurs, afin d’augmenter
l’objectif du système; puis nous avons utilisé un modèle d’allocation des prix
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à deux niveaux pour déterminer l’attribution des voies aux transporteurs, afin
d’explorer pleinement les comportements d’interaction entre l’expéditeur et les
transporteurs.

Dans cette thèse, nous avons pour objectif de développer des modèles et des
algorithmes de prise de décision pour concevoir simultanément plusieurs chaînes
de logistique et de transport durables entre les origines et les destinations compte
tenu d’un réseau logistique et de transport. Ces problèmes impliquent générale-
ment un problème de construction groupée (BCP), un problème de détermination
du gagnant (WDP), un problème de génération d’enchères (BGP) et un problème
de tarification groupée (BPP) dans le cadre du système d’approvisionnement en
transport. Ces problèmes sont abordés sous deux angles. Dans le premier cas,
la centralisation est envisagée entre les transporteurs, il faut trouver le meilleur
ensemble de chaînes ou l’optimum du système. Dans le second cas, le système
est partagé par tous les acteurs intéressés et il est décentralisé. Les transporteurs
déposent leurs offres pour des flux d’origines et de destinations donnés, puis un
mécanisme d’enchères combinatoires est utilisé pour calculer l’allocation finale.
Les principales contributions sont les suivantes,

Au chapitre 2, les concepts et informations de base pour la logistique dé-
centralisée et le système de transport ont été donnés. Nous avons présenté une
classification des enchères d’achat de transport en particulier les enchères com-
binatoires (CAs), le langage des enchères a été discuté pour être utilisé dans les
CAs. Dans les CAs pour les achats de transport, le BCP et le BPP ont été
examinés sous BGP et la formulation bisique a été donnée pour BGP et WDP.
Dans le dernier, nous avons examiné les problèmes à deux niveaux et montré
comment/pourquoi il peut être utilisé pour améliorer la solution dans les CAs.

Dans le chapitre 3, une enquête détaillée sur WDP a été donnée pour résumer
le général et les variantes des formulations pour WDP. La complexité du prob-
lème est analysée, il a suivi les algorithmes exacts et approximatifs utilisés pour
résoudre WDP avec précision et efficacité. Les benchmarks les plus utilisés ont
été classés et les performances des algorithmes ont été comparées.

Au chapitre 4, nous avons étudié le BCP dans les CAs pour l’approvisionnement
en transport par camion complet. Nous avons défini un transporteur informé et
un réseau de requêtes simplifié, et proposé une formulation de programmation
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linéaire en nombres entiers mixtes. Une programmation dynamique bidirection-
nelle exacte bornée a été utilisée pour résoudre le problème, elle a fourni un
ensemble de solutions non dominé au lieu de seulement la solution optimale.

Au chapitre 5, nous avons fusionné le BGP et le WDP en tant que mod-
èle à deux niveaux d’allocation de prix centralisé pour exprimer l’interaction
entre l’expéditeur et les transporteurs. Nous avons proposé deux formulations
générales à deux niveaux et prouvé que les transporteurs/expéditeurs au niveau
supérieur/inférieur sont utiles. Nous avons également proposé une formulation
en introduisant le coût du risque au niveau inférieur pour représenter la qualité
de service des transporteurs. Le problème a été résolu en utilisant la procédure
de linéarisation aux niveaux supérieur et inférieur. Les stratégies de tarification
des voies individuelles et de tarification groupée ont été évaluées et comparées
dans les tests expérimentaux. Nous avons montré que le coût du risque peut
générer des économies pour l’expéditeur mais il a augmenté l’effort de recherche
de l’algorithme. Nous avons également constaté que les transporteurs avertis ont
l’avantage évident de couvrir les paquets tant en qualité qu’en quantité.

Dans le chapitre 6, nous avons proposé une formulation bi-niveau multi-leader
mono-suiveur pour représenter l’interaction des transporteurs, cela correspond
au cadre décentralisé où les transporteurs mettent leurs offres de manière com-
pétitive. Le problème a été résolu par la meilleure dynamique de réponse sous
plusieurs CAs rondes.
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Models and methods for decentralized decision in logistics networks

Abstract

In this thesis, we aim to develop models and decision making algorithms to design simultane-
ously several sustainable logistics and transportation chains between origins and destinations
given a logistics and transportation network. First, we investigate the state of the art of decen-
tralized logistics and transportation systems, and survey the Winner Determination Problem.
Then, we study the Bundle Construction Problem to construct transportation routes, which
is solved by an exact bi-directional dynamic programming. Next, we merge the Bid Genera-
tion Problem and Winner Determination Problem through bilevel concept, the centralized and
decentralized bilevel problems are then solved by Linearization procedure and Best Response
procedure, respectively.
Keywords: Bilevel Optimization, Integer Programming, Decentralized Transportation Sys-
tem, Bundle Construction Problem, Winner Determination Problem, Bid Generation Problem.

Modèles et méthodes de décision décentralisée dans les réseaux logistiques

Résumé

Dans cette thèse, nous avons pour objectif de développer des modèles et des algorithmes de
prise de décision pour concevoir simultanément plusieurs chaînes de logistique et de transport
durables entre origines et destinations compte tenu d’un réseau de logistique et de transport.
Tout d’abord, nous étudions l’état de l’art des systèmes de logistique et de transport décen-
tralisés et étudions le problème de la détermination des gagnants. Ensuite, nous étudions le
problème de construction de paquets pour construire des itinéraires de transport, qui est résolu
par une programmation dynamique bidirectionnelle exacte. Ensuite, nous fusionnons le prob-
lème de génération d’enchères et le problème de détermination du gagnant via un concept à
deux niveaux, les problèmes à deux niveaux centralisés et décentralisés sont ensuite résolus par
la procédure de linéarisation et la procédure de meilleure réponse, respectivement.
Mots clés : Optimisation à deux niveaux, programmation d’entiers, système de transport
décentralisé, problème de construction de lots, problème de détermination du gagnant, problème
de génération d’enchères.
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