
HAL Id: tel-03241794
https://theses.hal.science/tel-03241794v1
Submitted on 31 May 2021 (v1), last revised 15 Jun 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isolating the Singularities of the Plane Projection of
Generic Space Curves and Applications in Robotics

George Krait

To cite this version:
George Krait. Isolating the Singularities of the Plane Projection of Generic Space Curves and Applica-
tions in Robotics. Computational Geometry [cs.CG]. Université de Lorraine (Nancy), 2021. English.
�NNT : �. �tel-03241794v1�

https://theses.hal.science/tel-03241794v1
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Isolating the Singularities of the Plane

Projection of Generic Space Curves

and Applications in Robotics

THÈSE DE DOCTORAT

présentée et soutenue publiquement le 04 mai 2021

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

George Krait

Composition du jury

Président : Pierrick Gaudry (CNRS, Loria)

Rapporteurs : Nicolas Delanoue (Université d’Angers, ISTIA)

Sonia Pérez-Dı́az (University of Alcala)

Examinateurs : Sylvain Lazard -directeur- (INRIA Nancy Grand Est, Loria)

Guillaume Moroz -co-directeur- (INRIA Nancy Grand Est, Loria)

Erika Ottaviano (University of Cassino and Southern Lazio)

Invité : Marc Pouget (INRIA Nancy Grand Est, Loria)

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Remerciements

Entreprendre cette thèse a été une riche expérience, qui m’a révélé non seulement les aspects
académiques de ma propre personnalité, mais aussi des caractéristiques intimes, des faiblesses et
des forces dont je n’avais jamais pris conscience auparavant. Une thèse de doctorat est souvent
décrite comme un travail solitaire; cependant, les noms qui suivent démontrent absolument le con-
traire. De fait, le chemin vers mon but a été éclairé par l’appui de personnes qui n’ont rien épargné
pour m’aider, me motiver et partager des connaissances.

Ce travail a été réalisé avec l’orientation de mes superviseurs: Sylvain Lazard, Guillaume Moroz
et Marc Pouget. Avec votre inestimable expertise, la recherche et la méthode allèrent de l’avant.
Votre apport perspicace m’incita au raffinement de ma pensée et orienta mon travail vers un niveau
supérieur. Merci pour votre amitié, votre patience et votre rigueur académique.

Ma gratitude s’adresse aussi aux membres du jury, qui ont pris le temps de lire cette thèse et
ont formulé des commentaires importants et des suggestions, qui m’aident pour l’amélioration de
cette contribution et la poussent vers l’avant. Outre l’appui académique, j’ai aussi bénéficié de
l’assistance amicale de Joel Veldkamp et de Juan Pedro de Gandt sur le plan linguistique. Vos
efforts, bien appréciés, ont enrichi et consolidé la formulation de mon texte, soulignant et renforçant
la rigueur et la précision du langage utilisé.

Une profonde gratitude va aussi vers ma famille, pour qui la distance n’a pas été un obstacle aux
encouragements et aux preuves d’amour. J’ai aussi bénéficié d’un appui familial de la part de Pierre
Kreit et de sa famille, auprès de qui j’ai trouvé de sages conseils et une oreille sympathisante, étant
pour moi, en France, comme un second père, en m’offrant, avec Madame Christine Kreit, ce qui me
fit sentir chez moi.

Le dernier remerciement s’adresse au lecteur de ces pages, quel qu’il soit. Tout commentaire,
toute suggestion ou critique seront aussi des contributions pour ce travail.

i

ii

This thesis is dedicated to the big family I miss in Syria and to the small one I am making
in France.

iii

iv

Résumé

L’isolation des points singuliers d’une courbe plane est la première étape vers le calcul de sa topolo-
gie. Pour cela, les méthodes numériques sont efficaces mais non certifiées en général. Nous sommes
intéressés par le développement d’algorithmes numériques certifiés pour isoler les singularités. Pour
ce faire, nous limitons notre attention au cas particulier des courbes planes qui sont des projec-
tions de courbes lisses en dimensions superieures. Ce type de courbes apparaît naturellement dans
les applications robotiques et la visualisation scientifique. Dans ce cadre, nous montrons que les
singularités peuvent être encodées par un système carré et régulier dont les solutions peuvent être
isolées avec des méthodes numériques certifiées. Notre analyse est conditionnée par des hypothèses
que nous démontrons comme étant génériques en utilisant la théorie de la transversalité; nous four-
nissons également un semi-algorithme pour vérifier leur validité. Enfin, nous présentons des expéri-
ences de visualisation et de robotique, dont certaines ne sont pas accessibles par d’autres méthodes,
et discutons de l’efficacité de notre méthode.

Mots-clés: Transversalité, Singularités Génériques, Algorithmes Numériques Certifiés, Arithmé-
tique d’Intervalles, Topologie de Courbe Singulière

Abstract

Isolating the singularities of a plane curve is the first step towards computing its topology. For this,
numerical methods are efficient but not certified in general. We are interested in developing certified
numerical algorithms for isolating the singularities. In order to do so, we restrict our attention to
the special case of plane curves that are projections of smooth curves in higher dimensions. This
type of curves appears naturally in robotics applications and scientific visualization. In this setting,
we show that the singularities can be encoded by a regular square system whose solutions can be
isolated with certified numerical methods. Our analysis is conditioned by assumptions that we prove
to be generic using transversality theory. We also provide a semi-algorithm to check their validity.
Finally, we present experiments in visualization and robotics, some of which are not reachable by
other methods, and discuss the efficiency of our method.

Keywords: Transversality, Generic Singularities, Certified Numerical Algorithms, Interval Arith-
metic, Singular Curve Topology

Contents

List of Tables xi

List of Figures xiii

Chapter 1
Introduction 1

1.1 Motivation . 2

1.2 Problem statement . 5

1.2.1 Preserved properties when approximating plane curves 5

1.2.2 Isolating singularities . 7

1.2.3 Formal statement of the problem . 8

1.3 Related work . 10

1.3.1 Curves and singularities . 11

1.3.2 Zero-dimensional systems . 12

1.3.3 Singularities of implicit plane curves 16

1.3.4 Singularities of the plane projections of implicit space curves 16

1.4 Contribution . 18

1.4.1 Generic assumptions . 19

1.4.2 Enclosing singularities by the Ball system 19

1.4.3 Algorithmic contribution . 20

1.4.4 Implementation, experiments and applications 21

Part I Singularity modelling 23

Chapter 2
Preliminaries in geometry and algebra

2.1 Real algebraic geometry . 28

2.1.1 The ring of real polynomials . 28

vii

Contents

2.1.2 Determinantal varieties . 29

2.2 Differential geometry . 29

2.2.1 Smooth functions and manifolds . 29

2.2.2 Germs of smooth functions . 31

2.2.3 The multiplicity of smooth systems of equations 32

2.2.4 Transversality theorems . 33

Chapter 3
Generic space curve

3.1 Notation and assumptions . 38

3.1.1 Notation . 38

3.1.2 Assumptions . 38

3.2 Genericity of the assumptions . 39

3.2.1 Genericity of the assumptions for a curve in Rn 41

3.2.2 Genericity of the assumptions for the silhouette of a surface in Rn . . 49

Chapter 4
Modelling system

4.1 Encoding the singular points of the plane projection 57

4.2 Singularities induced by Ln . 64

4.3 Singularities induced by Lc . 64

4.4 Regularity of the Ball system . 73

Chapter 5
Semi-algorithms to check the assumptions and isolate singularities

5.1 Interval arithmetic . 84

5.2 Semi-algorithms to check assumptions and isolate singularities 85

5.3 Semi-algorithms improvements . 92

5.3.1 Subdivision-based solver on a high-dimensional system 92

5.3.2 Evaluating the operator D . 98

5.3.3 Improvement integration . 99

Part II Software, experiments and application in robotics 101

Chapter 6
Implementation

6.1 Third-party libraries . 106

6.2 The Python software Isolating_singularities 107

viii

Chapter 7
Experiments

7.1 Experiment 1: Analytic curve in R3 generating one node and one ordinary cusp 112

7.2 Experiment 2: Analytic curve in R4 with many nodes 113

7.3 Experiment 3: High degree algebraic curve in R4 114

7.4 Experiment 4: Two close lines in R3 generating a node 115

Chapter 8
Applications in robotic mechanisms

8.1 Preliminaries in robotics . 118

8.2 Description of RRRRR robot . 122

8.3 Results . 123

8.3.1 The parallel singularity Sparallel . 123

8.3.2 The serial singularity Sserial . 128

Conclusion 133

Chapter 9
Conclusion

Bibliography

ix

Contents

x

List of Tables

7.1 Timings (in seconds) and numbers of boxes in Experiments 1 to 3. 112

7.2 Experiment 4: Performances for different values of ε. 116

8.1 The list of certified nodes enclosure that enclosing_singularities re-
turns, where every row represents an enclosing box of a solution of
Ball(P1). Notice that enclosing_singularities returns exactly one
solution of every pair of twin solutions. 127

8.2 The list of certified nodes enclosure that enclosing_singularities re-
turns, where every row represents an enclosing box of a solution of
Ball(P2). Notice that enclosing_singularities returns exactly one
solution of every pair of twin solutions. 130

xi

List of Tables

xii

List of Figures

1.1 Left: Illustration of a configuration space of a 2-degrees-of-freedom
robot. In this example, it is a surface embedded in R3. Generically,
the silhouette of this surface is a (smooth) curve. Right: Projection
of the silhouette on the motor space. 3

1.2 An approximation of the curve in Figure 1.1 (right) that preserves
the topology and the locations of the critical points. The approach
used for this goal is to isolate the critical points, and then, to con-
nect them properly using the state-of-the-art methods since the re-
maining part is smooth. Additional black vertices are added to
improve the visualization. The number on each face represents the
number of solutions of the direct kinematic problem. 4

1.3 Approximating the given curve preserving its topology, but loosing
relative positions of the connected components. 6

1.4 An approximation of the plane curve that is ambient-isotopic to the
given curve. 7

1.5 An approximation of the plane curve where the vertices are boxes
isolating singular or smooth critical points connected by segments
approximating the curve (in blue). 8

1.6 The curve defined by y2 − (x3 + x2) = 0. 9

1.7 Illustration of a node and cusps in the plane projection of a smooth
curve. 21

1.8 Left: An example of a box in Rn that satisfies (a) and whose pro-
jection contains a node. Right: A simplified illustration of pruning
the domain of the Ball system. The brown and orange boxes strat-
ify (a), also the pair of red boxes satisfy (b). Using these boxes, the
blue boxes in R2n−1 are computed. 22

2.1 An example in R2 where f and g define the same germ. 31

xiii

List of Figures

2.2 Left: At an A1 singularity, two branches of the curve intersect
transversally. Right: At an A2k+1 singularity with k > 1, the tan-
gent lines of the two branches at the intersection point coincide. . 32

3.1 Illustration of the assumptions. 40

3.2 Illustration of the proof of Lemma 3.2.6. 45

3.3 Proof of Lemma 3.2.7: The first case where v and v′ are independent. 46

3.4 Proof of Lemma 4.3.3: The second case where v and v′ are co-linear. 47

3.5 Example: The silhouette of the torus in R3 with the coordinates
(x, y, z) (source: [IMP2016a]) . 50

3.6 Illustration of Lemma 2.2.17 which is used in the proof of Propo-
sition 3.2.12. Since ϕ is a submersion over Reg(W) and since j1P̃

is, generically, transversal to Reg(W), the lemma implies that the
composition P̃ = ϕ ◦ j1P̃ is generically a submersion. 52

4.1 Illustration of a node and cusps in the plane projection of a smooth
curve. 58

4.2 The curve C (red) and its plane projection πC(C) (blue) of Exam-
ple 4.1.11 displaying a cusp singularity. 63

4.3 The curve C (red) and its plane projection πC(C) (blue) of Exam-
ple 4.1.12 displaying a node singularity. 65

4.4 An example of Lemma 4.3.1 for n = 3. 68

4.5 Comparing the singularities considered in Lemma 4.3.4 withA2k+1

types. 72

4.6 Comparing the curve C defined in Remark 4.4.5 with C′ that is
defined by x1− (x3−1)2 = x2− (x3−1)3 = 0 where both of them
have the same plane projection which contains an ordinary cusp;
however, the multiplicities of S (defined in the same remark) at q
differ. In this example, the pair (q, q) satisfies Assumption A−′5 for
C′, however, it does not for C. 78

5.1 An example of Case (ii) for a curve C in Rn. The box B contains a
smooth part of C that projects to a loop with a node. This implies
that two points q1 and q2 are in B such that det(M1(q1)) = 0 and
det(M2(q2)) = 0. Hence, the tangent space plane projection of q1

(resp. q2) is parallel to x2-axis (resp. x1-axis). 94

xiv

5.2 An example of B and B′ satisfying (2) in Lemma 5.3.1. Their
projections have a node in the boundary. The curve C is tangent
to the boundaries of both B and B′ at q and q′ respectively. The
curve and the boxes intersect at q′′ such that q′′ does not have the
same plane projection as q and q′. 95

5.3 An example of B and B′ satisfying (2) in Lemma 5.3.1. The pro-
jection has a loop. This implies that there are a x1-critical point
and a x2-critical point in the union of B and B′. In this example,
these points are different and the projection has a node. 95

5.4 A simplified illustration of pruning BBall as described in Proposi-
tion 5.3.3. The red boxes satisfy (1). On the other hand, the brown
(resp. orange) box satisfies (2). Hence, we solve the Ball system
over fBall pre-images (in blue) of the red boxes, the brown box and
the orange box. 97

7.1 Experiment 1: Plane projection of an analytic curve in R3 with one
node and one ordinary cusp. 113

7.2 Experiment 2: Plane projection of an analytical curve C in R4.
Each of the 43 black boxes contains a node of πC(C) and is the
projection of a box in R7 containing one solution of Ball(P). . . . 114

7.3 Experiment 3: High degree algebraic curve in R3 generating 7 nodes.115

8.1 A non-singular configuration of PRRP where there is a local bijec-
tion between poses and commands. 120

8.2 Geometric modelling of PRRP motion. 120

8.3 The parallel singular poses of PRRP where the pose x admits two
commands. 121

8.4 The serial singular poses of PRRP where the command q admits
two poses. 121

8.5 RRRRR robot in a non-singular configuration. 122

8.6 Illustration of the projections of Sserial on different variable sub-
spaces. 124

8.7 Illustration of the projections of Sparallel on different variable sub-
spaces. 125

8.8 Enclosing the plane projection of Sparallel with respect to x1 and x2. 126

8.9 The plane plotting of Isolating_singularities output for Sparallel
with respect to q1 and q2. 128

xv

List of Figures

8.10 Plotting the result of applying Isolating_singularities to Sserial with
respect to x1, x2, where it plots only red boxes since neither As-
sumption A2 nor Assumption A1 is satisfied. 129

8.11 An example of two different (serial) singular configurations of RRRRR
that define the same pose (x1, x2). 129

8.12 An illustration of enclosing_singularities output for the serial sin-
gularity Sserial of the robot RRRRR. The projection is with respect
to the (q1, q1)-plane (the command variables). The certification of
the geometric singularities is done only where our strong assump-
tions are satisfied. The red boxes contain the projections of the
(geometric) singular points of Sserial. 131

9.1 An example where our visualization tool does not provide a correct
topology for some precision. A: Our software returns a set of boxes
that encloses the projected curve without reporting any node (or
unknown-status boxes). B & C: Two different scenarios of the plot
in A after enough refinements. 138

xvi

1

Introduction

Computational geometry is the branch of computer science that studies theoretical
and applied aspects of geometric algorithms. A classical problem in computational
geometry is to visualize curves, in particular, plane curves. The importance of
curve visualization comes from the fact that curves are very common in engineer-
ing, physics and mathematical problems. In general, visualizing a geometric object
consists in representing it by an implementable structure which can be handled by
computers. In particular, (plane) curve visualization is usually based on approxi-
mating a given curve into a piecewise-linear graph that preserves some properties
of the curve. A question that might come to mind is: What are the properties that
an approximation is supposed to preserve? The classical properties that are consid-
ered are that the approximation should be “close enough” to the original curve and
that the original curve and its approximation should have the same topologies, in
particular, connected components and self-intersections should not be missed.

Depending on the applications, preserving the topology and some other geometric
features may be critical or of interest while in some other applications, this may
not be relevant. In this regard, one can find in the literature two main types of
approaches for approximating curves:

• Non-certified approaches in the sense that the topology of the approximation
does not necessarily coincide with the one of the original curve. In particular,
connected components and self-intersection points might be missed or spuri-
ously added. Many numerical non-certified approaches exist in the literature
such as marching cubes and continuation methods; see Section 1.3.

• Certified approaches in the sense that they ensure that the topologies of the
curve and its approximation are the same. Few certified approaches exist in
the literature. Most of these approaches are algebraic, although some numer-

1

Chapter 1. Introduction

ical approaches exist if the input curves satisfy some assumptions. In Sec-
tion 1.3, we provide more details about these approaches. In particular, we
focus on a critical sub-problem that appears in all known approaches of this
type, namely, isolating the singularities of plane curves.

In this thesis, we address the problem of certified plane curve approximation. Nu-
merical approaches are usually efficient for approximating curves. However, when
the considered curves contain singularities, numerical methods do not, in general,
provide certified approximations. Our goal is to design a fast numerical method
that is certified for approximating and visualizing plane curves. With this goal in
mind, we restrict ourselves to a special case of 2D curves, namely, those that are
the projections of smooth curves living in Rn, with n > 2. This problem of approx-
imating and visualizing 2D projections of smooth curves in higher dimensions is
rather specific and we start by presenting the application in robotics that motivates
our work.

1.1 Motivation

Before introducing the problem in details, we describe the context that motivates
our study. The motivation we present revolves around robotics design and analysis.
For this goal, we recall some preliminaries [LP2017]:

An end-effector is the end robotic part that attaches to robotic arms or appendages.
The configuration space is the space of possible positions an end-effector may at-
tain. The degrees of freedom of a robot refer to the number of movable joints or
links of this robot. Equivalently, the degrees of freedom refer to the dimension of
the configuration space. The motor (or command) space is the set of positions that
the engines of a robot may attain. The direct kinematic problem refers to deter-
mining the position of the end-effector, given the values for the motor variables
of a robot. In particular, for a robot with 2 degrees of freedom, the configuration
space can be seen as a surface embedded in an n-dimensional space, where n ∈ N
represents the number of variables that define and control the robot. Moreover, the
engines’ possible positions can be represented in R2 (as a sub-space of Rn).

Figure 1.1 (left) shows how a 2-degrees-of-freedom robot configuration space
looks like when n = 3. The first two coordinates x and y represent the engine vari-
ables. The third one z represents, for example, the position of an end-effector. This
figure is for illustrative purposes and is not meant to refer to any robot. Every point
of this surface represents a solution of the direct kinematic problem, given its pro-
jection to the (x, y)-plane. The silhouette is the set of points in the surface at which

2

1.1. Motivation

x

y

y
x

z

Figure 1.1: Left: Illustration of a configuration space of a 2-degrees-of-freedom
robot. In this example, it is a surface embedded in R3. Generically, the silhouette
of this surface is a (smooth) curve. Right: Projection of the silhouette on the motor
space.

the tangent plane is vertical. Its projection to (x, y)-plane contains the boundary of
the engine possible motions. In the neighbourhood of a point on the silhouette, the
number of solutions of the direct kinematic problem is likely to change. Figure 1.1
(right) shows the projection of the configuration space’s silhouette on the motor
space.

Moving the robot from a position to another amounts to convey the engines ac-
cordingly. Thus, a path in the motor space is drawn for this motion. If such a path
traverses the projection of the silhouette, bad scenarios might occur. For example,
suppose that the approximation misses topological information about the silhou-
ette projection such as the part numbered with zero in Figure 1.2 (right). This part
surrounds points where the direct kinematic problem has no solution. In this case,
paths traversing this part might cause robot damage. One of the approaches used for
this problem is based on approximating the silhouette projection into a piecewise-
linear graph. This approximation is supposed to preserve several properties, more
precisely, the topology and geometric features such as the location of critical points
and their types. By critical points we mean those where the tangent line is not well-
defined (in this case, the points are called singular) or the tangent line is parallel to
one of the axes (smooth critical points). Preserving these properties allows to un-
derstand how the silhouette plane projection divides the motor space topologically.
This allows to classify the motor space by the number of solutions of the direct
kinematic problem. With the help of this information, bad scenarios as the one

3

Chapter 1. Introduction

4

0

2

Smooth critical point
Singular critical point

Additional non-critical point

Edges representing critical-point-free paths

Figure 1.2: An approximation of the curve in Figure 1.1 (right) that preserves the
topology and the locations of the critical points. The approach used for this goal
is to isolate the critical points, and then, to connect them properly using the state-
of-the-art methods since the remaining part is smooth. Additional black vertices
are added to improve the visualization. The number on each face represents the
number of solutions of the direct kinematic problem.

mentioned above can be avoided. This type of approximation is also useful when
computing paths in the command space for preserving a safe distance between the
paths and the boundary of the silhouette. In other words, a topologically-correct
approximation of the silhouette projection leads to approximately computing sim-
ply connected subsets of the motor space. In every component, the robot is safely
movable from and to every two points in that component. More information about
this approach is described in Chapter 8.

Recall that, as mentioned in the introduction, if the projections of the silhou-
ette curves contain singularities, numerical methods such as [Sny1992, LOD2001,
PV2004, MGGJ2013] fail to ensure a correct topology in general. On the other
hand, in the case of algebraic curves, symbolic methods can be used for this goal
(see Section 1.3 for more details) but, in general, they are slower compared with
numerical methods.

However, a specificity of the problem described above is that, although the sil-

4

1.2. Problem statement

houette projections generically have singularities, the silhouette curves before the
projection are in general smooth. This is why we aim at a certified numerical
method for approximating the plane projections of smooth curves in Rn.

Although the above example with a configuration space in R3 is a toy example,
other 2-degrees-of freedom robots appear in real-life for different purposes such
as plotting, pick-and-place and other industrial tasks. Such robots usually have
two motor variables but they tend to have more than one variable for represent-
ing the position of an end-effector. Hence, their configuration spaces are surfaces
embedded in Rn, with n is larger than 3. This explains why we are interested in
approximating the projections of silhouette curves in Rn and not only in R3.

Even with robots of k degrees of freedom, with k > 2, our approach might be
helpful by fixing k − 2 motors. Then, the motor space is embedded in R2 and
the configuration space is restricted to a surface. We can thus use our approach
for approximating the projection of its silhouette. For path planning, this could
be used to design safe paths with sequences of motions that only move 2 motors
simultaneously.

1.2 Problem statement

This section is dedicated to state the problem we consider more formally. We
start with explaining the properties that we want to preserve when approximating
a possibly-singular plane curve. Then, we describe a natural approach to approxi-
mate the targeted type of (plane) curves. Then, we focus on the main sub-problem
of this approach, namely, to isolate the singular points of that curve.

1.2.1 Preserved properties when approximating plane curves

Recall that the set of critical points consists of singularities and smooth (non-
singular) points with tangent lines parallel to one of the axis. The curve approxima-
tion that we wish is a plane graph where every critical point of the curve is identified
by a vertex in that graph. In addition, we previously discussed the properties that
we want to certify in order to tackle the robotics problem in Section 1.1.

In the following, we state these properties more formally and justify their signifi-
cance. To avoid technicality, we describe our purposes by examples.

Topology. We first consider “simple” properties such as the number of connected
components, intersection points, etc. More formally, we wish to find a plane graph
that is homeomorphic to the given curve. Figure 1.3 (left) shows a plane curve to
be approximated. An approximation of the latter curve that fulfills these conditions

5

Chapter 1. Introduction

is illustrated in the right-hand side. However, it is clear that this approximation
does not look similar to the curve since the relative positions of the connected
components are not preserved. This leads us to another interesting property which
is beyond topology.

Figure 1.3: Approximating the given curve preserving its topology, but loosing
relative positions of the connected components.

To improve the approximation, we require an additional property. This property
is about the relative position of the connected components. More formally, we
want that the curve and the graph are ambient-isotopic, that is, the curve can be
continuously deformed towards the graph such that stopping the deformation at
any point gives a curve that has the same topology as the graph.

Geometric properties. By geometric properties we mean the location of critical
points. More precisely, for every critical point in the curve and any positive real ε,
we want to find a box in R2, with a width at most ε that contains this point and does
not contain any other critical point. This box is called an isolating box. In addition,
we also want to determine the type of this point, e.g., smooth critical point, node,
cusp, etc. Figure 1.5 shows an approximation of the plane curve mentioned above
preserving its geometric properties. Having the critical points isolated, the approx-
imation can be easily improved by adding vertices on critical-point-free parts of the
curve. Consequentially, we can control the Hausdorff distance between the curve
and its approximation and make it as small as we wish.

From the above discussion, the approach we consider for approximating a plane
curve consists in computing an isolating box for every critical point, as well as
additional boxes added in the case where there are different edges that have the
same endpoints. Then, we identify these boxes as vertices in the approximating

6

1.2. Problem statement

Figure 1.4: An approximation of the plane curve that is ambient-isotopic to the
given curve.

plane graph. This approach allows us to preserve the topological and geometric
properties mentioned in the previous paragraph.

Thus, the first step (and the main one) in this approach is to compute isolating
boxes for critical points. In the next section we discuss the difficulties of this step.

1.2.2 Isolating singularities

Recall that for implicit plane curves, the critical points are described by systems
of equations. In order to detect them efficiently, one may wish to use certified nu-
merical methods such as Newton interval methods [Neu1991]. Recall that these
methods require that the system is (a) square, that is it has as many variables as
equations, and (b) regular, that is, the system has no multiple solutions; equiva-
lently, the Jacobian matrix at every solution is regular. Generically, critical points
can be described by square regular systems in smooth curves. On the other hand,
the usual system that encodes singular points (where tangent lines are not well-
defined), which is obtained by the Jacobian criteria, does not satisfy theses condi-
tions in general.

For example, take the curve defined by f(x, y) = y2− (x3 +x2) = 0 (Figure 1.6).
The singularities are encoded by the system f(x, y) = ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0,

7

Chapter 1. Introduction

Singular point (cusp)

Singular point (node)

Non-singular critical point

Edges of the approximation

The original curve

Figure 1.5: An approximation of the plane curve where the vertices are boxes
isolating singular or smooth critical points connected by segments approximating
the curve (in blue).

that is y2 − (x3 + x2) = −(3x2 + 2x) = 2y = 0 which is not square. Hence, we
cannot apply Newton interval methods to certify the correctness of the solutions.

For a system of polynomial equations, symbolic methods are available to certify
all solutions of any zero-dimensional system (in particular, to certify curve singu-
larities). However, they show, in general, a slower performance compared with
numerical methods; see Section 1.3.2.

From the above discussion, we deduce that the problem of isolating the singular-
ities of a plane curve is itself a challenge towards approximating it. In fact, the
main focus of this thesis is to numerically isolate singular points of a special type
of plane curves using certified efficient methods.

1.2.3 Formal statement of the problem

In this section, we state the problem more formally and precisely. Before that,
we want to determine what we mean by concepts such as “input”, “curve” and
“solution”. In other words, we first mention several related considerations that

8

1.2. Problem statement

Figure 1.6: The curve defined by y2 − (x3 + x2) = 0.

play an important role in solving this type of problems.

The first factor to consider is the input of the problem. More precisely, the way
in which the curve is given. For example, the curve can be parametrized or, more
generally, given by an implicit form, i.e., as the zero locus of a function f(x, y).
In some other problems (as the one mentioned in Section 1.1), the plane curve
is given as the projection of a curve in a higher-dimensional space. The plane
curves in the previous examples are described by functions. This leads us to another
factor, the type of functions used to define that curve, e.g., polynomials, analytic or
more general differentiable functions. Moreover, one also considers the domains
in which these functions are defined, e.g., real numbers, complex numbers, finite
fields, etc. Finally, an important factor is how we want to output singularities (e.g.,
parametrized, contained in isolating boxes, etc.) and how reliable the output is.

These considerations are parameters of a family of problems, each of which hav-
ing its own state of the art. In Section 1.3, we discuss the state of the art of the
problems that are related to our goal.

Genericity. The formal description of the problem concerning this thesis requires
us to mention the concept of genericity. In vague terms, a property is generic if
it is satisfied for almost all instances. More formally, the set of C∞ functions
from Rn to Rn−1 is equipped with the weak topology [Dem2000, §3.9.2] (see Sec-
tion 2.2.4). The convergence in this topology is defined as follows: For a sequence
of C∞-functions fi → f , every partial derivative of fi uniformly converges to the
corresponding partial derivative of f over every compact subset of Rn. A property
over C∞-functions is generic if it is satisfied by a countable intersection of open
dense subsets of functions with respect to this topology.

9

Chapter 1. Introduction

Formal statement of the problem. Let C be a generic (in particular, smooth; see
Lemma 3.2.1) curve defined by a C∞-function P from Rn to Rn−1, that is, if P
maps x = (x1, . . . , xn)→ (P1(x), . . . , Pn−1(x)), the curve C is the intersection of
the n − 1 hypersurfaces of the implicit equations Pi(x) = 0 for i = i, . . . , n − 1.
In particular, C is not necessarily algebraic. Let πC : C → R2 be the projection
sending every point to its first two coordinates. We want to find a set of pairwise
disjoint boxes in R2 (a product of two closed intervals) such that every singular
point of πC(C) is contained in a unique box of this set and every box of this set
contains exactly one singular point of πC(C).

Plane curves πC(C) of the type described in the latter paragraph appear naturally
in visualizing the apparent contour of surfaces which is also related to mechanical
design. As mentioned in the motivation (Section 1.1), obtaining information about
the silhouette projection to the command space eases the analysis and design of
safe motion.

1.3 Related work

This Section is dedicated to the state of the art of the methods for approximating
plane curves and in particular the plane projections of higher-dimensional curves.
We also focus on the sub-problem of detecting their singularities. We are in par-
ticular interested in methods that ensure the exactness of the topology and that
correctly detect all the singularities.

There are two main approaches for approximating the plane projections of curves
in Rn. Either the curve is approximated in Rn and then projected or it is projected
and then approximated.

Most classical numerical methods for approximating curves in Rn are based
on marching cube (see [GVJ+2009, Chapter 7]) and continuation methods
(see [GVJ+2009, Chapter 6]). However, even when these approaches may ensure to
preserve the topology of the curve in Rn [KX1994,FM2007,BL2013,MGGJ2013,
TBV2019], they do not ensure to preserve the topology of their projections and we
do not detail these methods in this state of the art.

On the other hand, algebraic methods for approximating curves in Rn are to the
best of our knowledge based on first projecting these curves in the plane (see
e.g. [MPS+2006, Section 3.7]) and they are thus of no interest in the context of
our problem.

In summary, there are very few approaches that approximate with a certified topol-
ogy the plane projections of higher-dimensional curves without first projecting

10

1.3. Related work

them in the plane. We only know three of such contributions, which we detail
in Section 1.3.4: Plantinga and Vegter [PV2006] consider the contour generator
projections of implicit surfaces. Delanoue and Lagrange [DL2014] consider the
apparent contours of smooth surfaces in R4 and Imbach et al. [IMP2016b] handle
the plane projections of smooth curves in R3 using a subdivision scheme locally in
four dimensions; the latter one is of particular interest for us because our work is a
generalization of theirs.

Consider now the approaches that first project the curves in R2. When the curves
are algebraic, projecting them can be done using elimination theory [CLO2007,
Chapter 3]. Then the main problem for approximating the plane curve is to isolate
the singularities of the projected curve, which amounts to solving an algebraic zero-
dimensional system of equations, for which there is a large state of the art (see
Section 1.3.2). However, computing the projection (using elimination theory) has
a rather high complexity and it is quite time consuming in practice. Furthermore,
when the input curves are not algebraic, existing approaches of elimination theory
cannot be used.

Our approach is based on the idea of encoding the singularities of the projected
curve by a square and regular system that can be solved using certified numerical
methods. In fact, the same idea has been already used by Imbach et al. [IMP2016b]
for the plane projections of generic curves in R3. We provide more details about
this work in Section 1.3.4. The same idea was also considered to deal with sin-
gular surfaces. More precisely, Diatta et al. [DMP2019] used this idea to encode
the curves of singularities that appear on surfaces obtained by projecting generic
surfaces in R4 to R3.

The rest of this section is organized as follows. In Section 1.3.1 we discuss how
to characterize the singularities, given different types of plane curves. Based on
that, in Section 1.3.2, we consider the problem of zero-dimensional systems of
equations of which singularities detection can be seen as a special case. Then, in
Section 1.3.3, we provide a brief state of the art on the isolation of singularities in
implicit plane curves. Finally, Section 1.3.4 is dedicated to explain the approaches
that are more related to our goal.

1.3.1 Curves and singularities

As mentioned in Section 1.2.3, there are several parameters that must be taken into
account when treating the problem of isolating the singular points. When the curve
is real or complex and described in the “language of functions” (e.g., as solution set
of implicit equations, as a locally or globally parametrized curve, a projection of a

11

Chapter 1. Introduction

curve embedded in a higher dimension, etc.), the Jacobian criteria can be used to
encode singularities as the solution set of a zero-dimensional system of equations.
If the curve is parametrized by (f1(t), f2(t)), then every singular point corresponds
to a t-value with (f ′1(t), f ′2(t)) = (0, 0). If the curve is given by f(x, y) = 0,
with f is differentiable, then the singularities are the solutions set of the system
f(x, y) = ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0. For the case where the curve is the projection

of an implicit curve in a higher dimension, it is more complicated. As mentioned in
the preamble of this section, one may project the curve to R2 to compute an implicit
equation that defines the projection by which the singularities can be characterized.
Another way to characterize the singularities can be done in terms of points in the
upper curve as in [IMP2016b, DL2014] which involves zero-dimensional systems
of equations.

From the foregoing, our considered problem can be seen as a special case of solv-
ing a zero-dimensional system of equations. This general problem is fundamental
in algebra and has itself parameters that change many aspects. So, in addition to
the state of the art of singularities detection, it is useful to go through the history
of solving a zero-dimensional system of equations. This allows us to better un-
derstand the different available approaches of singularities detection. In general,
two main types of approaches are used to deal with both problems. In the follow-
ing section, we clarify these types. We discuss their strategies, pros and cons that
interest us.

1.3.2 Zero-dimensional systems

By a zero-dimensional system we mean a system of which the solutions set forms a
zero-dimensional manifold. This is a very active area of research involving, in gen-
eral, two main types of approaches. These approaches are numerical and symbolic.
In the following, we explain these types in details.

Numerical methods

Numerical methods are tools to solve mathematical problems where the output is
an approximated form of the targeted object. In the context of solving system of
equations (in particular, isolating singularities of plane curves), the basic strategy
in numerical methods is to construct sequences of objects that converge towards the
solutions. This gives rise to an important question, that is whether the convergence
is always guaranteed. Unfortunately, the answer is no in general. Moreover, the
solutions are usually sought in a given area of interest. This makes searching for
roots in precise regions efficient. However, if the goal is finding all solutions,

12

1.3. Related work

numerical methods do not give a complete answer, unless bounds on the solutions
are given. On the other hand, numerical methods provide fairly fast approaches
compared with the other category (which we introduce next). Moreover, in terms
of the type of equations, numerical methods can solve a wide range of systems such
as analytic and differentiable.

One can find in the literature classical approaches based on Newton (-Raphson)
or Fixed-Point methods; see for example [Epp2013, (§) 7.8] for details. These
methods are not certified in general. However, under some conditions, the con-
vergence can be guaranteed. Concerning our goals in this thesis, we focus on
certified methods. An important type of numerical methods is subdivision-based
methods; see for example [EH2004, SP1993, GS2001b] and the references therein.
Subdivision can be seen as a generalization of binary search. Starting from
a given domain, the subdivision consists in recursively bisecting the area un-
til existence and uniqueness criteria are satisfied or the non-existence of solu-
tions is guaranteed. One can distinguish two main types of subdivision: alge-
braic and box-function-based. Algebraic subdivision handles systems of poly-
nomials. One exploits representations of polynomials such as Bernstein form
or B-splines [ZSP1993, GS2001b, GS2001a, MP2009]. On the other hand, box-
function-based subdivision [Neu1991, PVHK1997, Kea2013] is based on interval
evaluations of the given functions (and possibly their derivatives) which supports a
broader class of functions.

In these approaches, different tests are used. In the case of differentiable func-
tions of which box functions are given (i.e., interval enclosures of the function
evaluations; see Definition 5.1.1), some approaches are based on interval compu-
tation techniques such as interval evaluation, Newton interval method, Krawzcyk
operator [Neu1991, MKC2009]. These operators offer existence, uniqueness and
exclusion tests (see [Neu1991, Theorems 5.1.7 & 5.1.8]). Other approaches use
tests such as fixed point theorem of Brouwer, in the form of Miranda’s Theo-
rem [Kul1997]. For example, in [XY2019], Miranda and Jacobian test are used
to verify the existence and uniqueness respectively. In addition, the exclusion test
of the previous paper is based on interval evaluation.

Another type of numerical methods is based on homotopy continuation; see for
example [BL2013,VDH2015,TBV2019]. Using a system S ′ with known solutions,
homotopy-based methods build a continuous path between the solutions of a given
system S and the solutions of S ′.

13

Chapter 1. Introduction

Symbolic methods

Roughly speaking, symbolic methods are algorithms with exact input and output
based on a formal language and algebraic-combinatorial approaches. In the case of
solving a zero-dimensional system of equations (in particular, isolating singulari-
ties), these methods are usually based on elimination strategies. Thus, they can be
seen as generalizations of the classical Gauss elimination method. The basic idea of
this type of methods is, first, to transfer the given problem to a lower dimensional
one using algebraic-combinatorial methods, returning a formal representation of
the solutions. This step is usually called a symbolic or a projection step. The
second step is to transfer this characterization of solutions into an approximated
numerical presentation. This step is called numerical or lifting step.

In contrast to general numerical methods, symbolic methods are certified and pro-
vide a complete answer about the solution set. Moreover, they do not require initial
conditions to guarantee the correctness or completeness of the output. On the other
hand, in most well-conditioned problems, the techniques used in the projection
step are usually slow. compared with the numerical ones. This makes symbolic
methods unpractical for systems of high dimensions and degrees. Moreover, most
algebraic techniques apply only for polynomials which limits the generality of such
approaches.

In general, two main types of symbolic methods are used for zero-dimensional
systems: those that are based on resultant techniques or Gröbner basis. Using
these approaches, solving a zero-dimensional system amounts to, roughly speak-
ing, computing a formal representation of the solutions such as a univariate rep-
resentation or a triangular representation. To stay in the context of our thesis, we
present in the following a short survey of the contributions considering mainly
the bivariate case. For the general zero-dimensional case, we refer the reader
to [CLO2007] and [RZ2009].

Resultant techniques. The resultant of two univariate polynomials is a polynomial
expression of their coefficients that is zero if and only if the two polynomials have
a common root. This idea can be generalized to higher dimensions. In the latter
case, the resultant is used for computing the projection of varieties. For solving
zero-dimensional systems (in particular isolating singularities), the usual approach
using resultant is to compute the projection of solutions along several directions.
Then, to obtain candidates which are then filtered until we get only the solutions.
In the context of implicit plane curves, methods based on genericity are presented
in [GVK1996,SW2005,CGL2009,Vil2018]. Other papers use resultant techniques
without generic position assumption such as [DET2009, BES2011].

14

1.3. Related work

Gröbner basis. The Gröbner basis technique was introduced by Bruno Buch-
berger [Buc1965].1 Given a system of polynomial equations, a Gröbner basis
of this system is a set of polynomials satisfying the following: A polynomial
f vanishes in all solutions of the system iff it is divisible by the Gröbner ba-
sis, that is, the reminder of f , over the Gröbner basis polynomials, by the Eu-
clidean division, is zero. In additional to zero-dimensional systems, Gröbner ba-
sis techniques are used in many applications in computer algebra; see for exam-
ple [GM1989, Laz1992, Sva2014] and the references therein.

Based on the previous techniques, the following representations can be used to
solve zero-dimensional systems:

Univariate representation. Given a zero-dimensional system of polynomial equa-
tions, this representation consists of, first, a univariate polynomial. The roots of
this polynomial are in one-to-one correspondence with the given system solutions.
Second, a set of univariate rational mappings that parameterize the coordinates of
the solutions, that is, the mappings send the roots of the univariate polynomials
to the solutions of the system. This type of representation started in end of 19th
century with Kronecker’s work. This approach usually consists of two steps: The
first one is to compute a polynomial (called separating polynomial) that takes pair-
wise different values when evaluated in distinct solutions. Second, to compute the
polynomials defining the univariate representation.

Recently, this type of techniques has been widely studied for both solving zero-
dimensional polynomial systems and singularity detection of implicit plane curves;
see for example [ABRW1996, Rou1998, BSS2001, Bou2014, BLM+2016] and the
references therein.

Triangular representation. The basic idea of this method is to recursively rewrite
the system that we want to solve in a triangular way, that is, in an ordered list
of equations such that every equation has one variable less than the one before.
Hence, in the manipulated system, there is a univariate equation which can be
solved numerically. This allows to analogously compute approximations of the
other variables. In the bivariate case, this amounts to saying that the manipulated
system is of the shape f1(x, y) = f2(x) = 0. The function f2 is solved using
univariate numerical methods [Epp2013, §3]. Then, f1 is solved in the same way
using the computed approximations of f2-solutions; see for example [Laz1992,
Kal1993, WCB2001, vdHL2018] and the references therein for more details.

1Wolfgang Gröbner was Buchberger’s thesis advisor.

15

Chapter 1. Introduction

1.3.3 Singularities of implicit plane curves

By an implicit plane curve we mean the zero locus of a bivariate function f(x, y).
To approximate such curves, the literature is rich of uncertified numerical methods
that compute approximations of given curves without any guarantee in the topol-
ogy. Since this type of methods is out of our interests for this thesis, we simply
refer the reader to [GVJ+2009] for more details.

For approximating plane curves in a certified way, one can find in the litera-
ture many approaches that are based on subdivision such as in [Sny1992] or ho-
motopy such as in [BL2013]. These approaches are certified under the smooth-
ness condition. Some software is also available to certify smooth curves such
as Ibexsolve [Nin2015]. This software provides a tool to enclose smooth plane
curves, even for some non-algebraic curves, more precisely, for those that are de-
fined by the Minibex language (e.g., sin, cos, exp. . .).2 For singular curves, ISO-
TOP [CLP+2010] can be used to certify the topology of algebraic curves.

Concerning the problem of isolating singularities, recall that, for plane curves, the
singularities are encoded by the system f(x, y) = ∂f

∂x
(x, y) = ∂f

∂y
(x, y) = 0. This

system does not satisfy the conditions required for applying certified numerical
methods such as the interval Newton methods.

A numerical approach to solve this issue is to use combinations of
these equations to translate this system into a square one. Non-
regular solutions can be handled through deflation systems (see for exam-
ple [OWM1983, LVZ2006, MM2011, HMS2015]). However, spurious solutions
may appear in this process. We are not aware about any approach that finds the
singularities of a general implicit plane curve numerically in a certified way. Re-
call that, in Section 1.3.2, we discussed the symbolic methods for isolating the
singularities of plane curves in the context of solving zero-dimensional systems of
equations.

1.3.4 Singularities of the plane projections of implicit space curves

As mentioned in Section 1.1, such curves appear naturally in real-life problems as
in robotics. In the polynomial case, for curves given as the intersection of two sur-
faces in R3, the plane projection can be defined by the resultant of the polynomials
defining the surfaces. Its singular locus can be related to the first sub-resultant. Im-
bach et al. [IMP2016a] use the latter facts and present a deflation-based approach to
generically isolate the singularities of the plane projection (i.e., the zero set of the

2http://www.ibex-lib.org/doc/minibex.html.

16

http://www.ibex-lib.org/doc/solver.html
http://www.ibex-lib.org/doc/minibex.html
http://www.ibex-lib.org/doc/minibex.html

1.3. Related work

resultant). This approach involves obtaining a square regular system that encodes
the singularities. The idea of this system is based on a relation between the singu-
larities of the plane projection and sub-resultants under some generic assumptions.
In other words, under some generic assumptions presented in [IMP2016a, §2], the
authors provide a square regular system [IMP2016a, Theorem 2], based on sub-
resultants that can be used to numerically isolate singularities in a certified way.

A different approach is presented in [IMP2016b] for more general curves, namely,
those that are defined by analytic functions. Similarly to [IMP2016a], the goal of
the latter work is to numerically isolate the singularities of the plane projection of
a curve in R3. On the other hand, the approach in [IMP2016b] uses information
about the projection function Πxy from the space curve onto R2. More precisely,
under some generic assumptions [IMP2016b, §2.1], the authors show that a node
(resp. an ordinary cusp) appears in the plane projection exactly where Πxy is not
injective (resp. not immersion; see Definition 2.2.6). Based on these statements, a
regular square system that encodes singularities is presented. This system is called
the Ball system and is solved using subdivision approaches. Comparing with the
system presented on [IMP2016a], the Ball system is of higher dimension which
may mean that it is more costly to solve. On the other hand, it is more general
since it holds for analytic curves. An algorithmic version of this approach in addi-
tion to an implementation (for polynomials with interval coefficients) are presented
in [IMP2018]. Even though subdivision approaches may suffer in practice from
the curse of dimensionality, Imbach et al. observe experimentally that, for alge-
braic curves, their approach is more efficient than computing the implicit equation
of the projected plane curves and its singularities using symbolic methods. In fact,
our work in this thesis can be seen as a generalization of this approach for generic
space curves in Rn, for n > 2 defined by C∞ functions.

Plantinga and Vegter [PV2006] provided for the first time explicit conditions on
implicit surfaces in R3 to exhibit generic singularities in the contour generators (the
curves on the surfaces which separate front-facing from back-facing regions) and
their projections. They presented a certified algorithm to approximate the contour
generator and its projection. The algorithm is based on a theoretical analysis which
provides local models of the singularities.

Delanoue and Lagrange [DL2014], compute the topology of the apparent contour
(the set of critical values) of a smooth mapping from R2 to R2. The reader can
notice the connection of this work with our considered problem by the following:
The graph of a generic function f : (x, y) → (X = f1(x, y), Y = f2(x, y))

can be seen as a parametric surface in R4, defined by {(x, y,X, Y) ∈ R4 | X =

f1(x, y), Y = f2(x, y)}. The silhouette is the set of those points in the surface

17

Chapter 1. Introduction

where the projection of the tangent onto R2 is not surjective. The plane projection
of the silhouette is equal to the apparent contour. This approach is based on result
proved by Whitney that, generically, critical points of a smooth map are folds or
cusps [Whi1955]. Using interval Newton method, Delanoue and Lagrange solve
two systems of equations which represent ordinary cusp and nodes respectively.
The first one is based on the idea that f restricted to the apparent contour around
an ordinary cusp is equal (up to an equivalence) to (x, y) → (x, xy + y3). The
second system is based on characterizing distinct points of the domain that have
the same image under f .

1.4 Contribution

In this section we give a detailed overview of the results we obtained. Recall that
we are interested in the problem of isolating the singularities of the plane projection
of a generic curve C of Rn, with n > 2. Our approach is based on the following:
First, we find proper conditions on C that lead to characterizing the singularity in
a useful way. These conditions are general enough in the sense that we prove that
they are generic. Hence, after finding these conditions, we prove their genericity.
Then, under these conditions, we introduce a regular-square system that encodes
the singularities of πC(C). Based on this system, we develop a (semi) algorithm
that, first, checks whether a given curve C satisfies our assumptions. Second, it
returns a set (or a superset) of boxes in R2 that isolates the singularities of πC(C).
In addition, we provide an implementation of our (semi) algorithm and we examine
its performance using examples of implicit curves and an application in robotics.

The main novelty of our work is that we consider types of curves for which no
certified methods used to exist. Furthermore, our approach allows us to handle
classes of curves that were in practice not reachable by other methods in a certified
way. Namely, we consider curves defined by C∞-functions and not only algebraic
or even analytic functions. Moreover, for curves that live in Rn for n larger than 3,
no certified numerical methods existed even for algebraic curves. For such types
of algebraic curves, our preliminary experiments show that our approach allows us
to handle, in practice, curves that are unreachable by classical algebraic certified
approaches.

We give in Section 1.4.1 a summary of the assumptions we consider. Then, in Sec-
tion 1.4.2 we explain our idea for encoding the singularities in a square and regular
system, which we call the Ball system. Section 1.4.3 is dedicated to briefly describ-
ing the specifications of the algorithm we designed for checking the assumptions
and isolating the singularities of the projected curve. In addition, we show how

18

1.4. Contribution

we overcame the curse of dimensionality when solving the Ball system. Finally in
Section 1.4.4, we outline the properties of our implementation and the experiments
we perform to measure its efficiency.

1.4.1 Generic assumptions

Our goal is to design a numerical algorithm for isolating the singularities that ap-
pear in the plane projection of a curve C in Rn. Numerical algorithms usually can-
not handle degenerate cases, that is, singularities in our context. However, under
some assumptions on C (which are formally defined in Section 3.1.2), we succeed
to handle in a certified way some, although not all, singularities of the projection.
Namely, we require that the singularities are “generic”, that is, only nodes can ap-
pear in the projection. Our other assumptions on C are, roughly speaking, that it is
smooth, that its projection only has a discrete set of singularities, and that at most
two points of C project on each singularity. We call this set of assumptions strong.
We prove in Section 3.2 that these assumptions are generically satisfied.

In addition, we consider a weaker assumption that relaxes the constraint that only
nodes can appear. This assumption allows for ordinary cusps in πC(C). Our motiva-
tion for also considering this weak assumption is dual. First, our certified algorithm
for isolating the singularities of the projection of curves satisfying the strong as-
sumptions also works, to some extent, if only the weak assumptions hold: namely,
it outputs a superset of the isolating boxes of the singularities. Second, we conjec-
ture that our weak assumptions are satisfied by silhouette curves of generic surfaces
(see Proposition 3.2.17 and Conjecture 3.2.18). A detailed explanation about the
assumptions and their genericity are presented in Chapter 3.

1.4.2 Enclosing singularities by the Ball system

We consider here our set of weak assumptions, that is, nodes and cusps are allowed
in the projected curve πC(C). Our goal is to encode the singularities of πC(C) by a
square and regular (see Definition 4.4.1) system so that it is solvable with certified
numerical methods.

Intuitively, a node appears when two points of C project to the same point and
a cusp appears when projecting a point with a tangent line orthogonal to the pro-
jection plane (see Figure 1.7). The idea to encode the nodes is to design a system
whose variables are the coordinates of two different points in Rn constrained to be
on C and so that they have the same plane projection. To encode a cusp, we design
a system whose variables are the coordinates of one point in Rn constrained to be
on C with a tangent orthogonal to the projection plane.

19

Chapter 1. Introduction

Furthermore, we need systems that are square and regular for using certified nu-
merical solvers. To solve this issue and to gather the two systems into a single
one, we first parameterize two different points of C with the same projection by
(x1, x2, y + r

√
t) and (x1, x2, y − r

√
t), with x1, x2, t ∈ R, y, r in Rn−2 and

‖r‖ = 1, where ‖r‖ denotes the Euclidean norm of r. Hence, the Ball system
is of size 2n − 1. Then, given any function f from Rn to R so that f = 0 is
one of the n − 1 hypersurfaces that define C, we introduce (Definition 4.1.1) two
smooth functions S · f and D · f . When t > 0, they return, roughly speaking,
the arithmetic mean and difference of f at the above two points, hence they both
vanish if and only if the two points are on the hypersurface f = 0. When t = 0,
the two points coincide and S · f and D · f return, roughly speaking, f evaluated at
this point and the gradient of f (at that point) scalar the “vertical” vector (0, 0, r);
hence, they both vanish if and only if the point is on the hypersurface f = 0 and
its tangent hyperplane is normal to the plane of projection. It follows that given a
curve defined by P1 = · · · = Pn−1 = 0, the solutions of the so-called Ball system
of all S · Pi = D · Pi = 0 is the set of points on the curve that project to nodes and
cusps (Theorem 4.1.3).

Note that we consider
√
t instead of t in the parameterization (x1, x2, y ± r

√
t)

for ensuring the regularity of the Ball system when t = 0 (because this ensures that
the linear term of the Taylor expansion of D · f , with respect to t, does not vanish).
We refer the reader to Chapter 4 for a more formal explanation.

1.4.3 Algorithmic contribution

Based on interval arithmetic [MKC2009], we provide a semi-algorithm to check
whether a given implicit curve in Rn satisfies the weak (or strong) assumptions.
More precisely, the semi-algorithm terminates if and only if the assumptions are
satisfied. Moreover, under the strong assumptions the semi-algorithm provides a
set of pairwise disjoint boxes in R2 each of which contains exactly one singular
point (in this case, it is a node) of πC(C) such that the boxes union contains all
singularities. On the other hand, under the weak assumptions, the semi-algorithm
returns a superset of the strong-assumption-case output. A full description of the
semi-algorithm we designed is in Chapter 5.

Pruning the domain of the Ball system. As mentioned before, the Ball system is of
size 2n − 1. This is because the Ball system encodes (a) two distinct points in
the case where the singular point is a node (see Figure 1.8, left) or (b) a point and
a tangent vector for the case of an ordinary cusp. It is arguable whether solving
a system of size 2n − 1 for detecting singularities of a 2D curve is a good idea

20

1.4. Contribution

C is smooth

πC(C)

Cusps

Node

(x1, x2, y)

(0, 0, r
√
t)

y ∈ Rn−2

x1

x2

(0, 0,−r
√
t)

(0, 0, r)

Figure 1.7: Illustration of a node and cusps in the plane projection of a smooth
curve.

from an efficiency point of view. In fact, we succeed to overcome the curse of
dimensionality by pruning the domain on which we solve the Ball system.

The idea is that we compute a set of n-dimensional boxes that cover C. Then,
every singular point of πC(C) is contained, roughly speaking, in either (a) the plane
projection of a box where the curve has (possibly equal) x1-critical points and x2-
critical points or (b) a non-empty plane projection of two disjoint boxes. Then, we
map these boxes to boxes in R2n−1,3 which are the restricted domain on which we
solve the Ball system (see Figure 1.8, right). A detailed description of the pruning
in addition to other improvements are described in Section 5.3.

1.4.4 Implementation, experiments and applications

We provide a software Isolating_singularities4 written in Python that is an imple-
mentation of our semi-algorithm mentioned in Section 1.4.1. This software uses
black boxes such as Python-FLINT [Joh2012b] and Ibexsolve [Nin2015] to deal
with interval-arithmetic objects and to solve regular systems of non-linear equa-
tions. In addition, our software provides a way to visualize the projection of a
space curve into R2 or R3. We present our software in Chapter 6 and experiments
and discussions on its performance in Chapter 7.

3Recall that 2n− 1 is the size of the Ball system.
4The software is accessible at https://github.com/gkrait/Isolating_singularities.

21

http://fredrikj.net/python-flint/
http://www.ibex-lib.org/doc/solver.html
https://github.com/gkrait/Isolating_singularities

Chapter 1. Introduction

x1
x2

(x3, . . . , xn)

q1

q2

B ⊂ Rn

C

πC(C)

Node

R2n−1

C

Rn

Figure 1.8: Left: An example of a box in Rn that satisfies (a) and whose projection
contains a node. Right: A simplified illustration of pruning the domain of the Ball
system. The brown and orange boxes stratify (a), also the pair of red boxes satisfy
(b). Using these boxes, the blue boxes in R2n−1 are computed.

We terminate the summary of our contribution with exhibiting results regarding
an application in robotics. Within this frame, we study the plane projection of the
parallel and serial singularities (not to be confused with the geometric singularity;
see Definition 8.1.1 (f)) of a parallel 2-degrees-of-freedom robot. In the considered
example, the parallel and serial singularities are curves in R4 defined by analytic
functions. With respect to different plane projections, we compute certified iso-
lating boxes of singular (the geometric sense) points in the plane projection of the
parallel and serial singularities (as long as our assumptions are satisfied). In the
end, we provide 2D and 3D plots to visualize the results. See Chapter 8 for more
details.

22

Part I

Singularity modelling

23

This part presents the main content of this thesis. It contains the theoretical aspects
of our contribution and the results that prove the correctness of our approach. This
part consists of local and global analysis of the plane projection curve in addition
to (semi-) algorithms that are based on our theoretical results.

Before starting the analysis, we recall some facts in algebra and geometry in
Chapter 2. Then, in Chapter 3, we introduce a set of conditions on curves in Rn

that guarantee the correctness of our approach. We prove the genericity of these
conditions discussing, in the end of the chapter, the same conditions on the silhou-
ette of a generic surface. In Chapter 4, we introduce the Ball system that encodes
the singularities the plane projection of a space curve satisfying our conditions. We
show, in addition, the relation between the regularity (Definition 4.4.1) of the Ball
system and the generic conditions.

The algorithmic part consists of Chapter 5, where we provide the semi-algorithms
for isolating the singularities of the plane projection of the space curve. We start
the chapter with preliminaries in interval analysis. After presenting the semi-
algorithms, we prove in Section 5.2 the correctness in addition to determining the
necessary and sufficient conditions for termination. In Section 5.3, we explain im-
provements to the semi-algorithms preparing them to the implementation stage.

25

26

2

Preliminaries in geometry and
algebra

Contents
2.1 Real algebraic geometry . 28

2.1.1 The ring of real polynomials . 28

2.1.2 Determinantal varieties . 29

2.2 Differential geometry . 29

2.2.1 Smooth functions and manifolds 29

2.2.2 Germs of smooth functions . 31

2.2.3 The multiplicity of smooth systems of equations 32

2.2.4 Transversality theorems . 33

This chapter is dedicated to recall some concepts and results in algebra and ge-
ometry. Most of the material in this chapter is well-known and can be found in any
introductory textbook on commutative algebra, algebraic and differential geome-
try. We suggest to the reader the references [CLO2007,CLO2005, Dem2000]. The
rest such as transversality theorems are less known.

We start this chapter with common properties of the ring of real polynomial and
determinantal varieties. Then, we recall some results about manifolds and singu-
larity theory. After that, we exhibit the concept of the multiplicity of non-linear
system of equations. This concept is a generalization of the intersection multiplic-
ity of the algebraic case. We terminate the chapter with transversality theorems
which have a direct connection of our assumptions.

27

Chapter 2. Preliminaries in geometry and algebra

2.1 Real algebraic geometry

In this section, we recall concepts in algebraic geometry that we use in different
places in this thesis. We assume that the reader is familiar with elementary notions
and well-known results of commutative algebra such as polynomial rings, local-
ization, ideals, Gröbner Bases, etc, and algebraic geometry such as affine varieties,
Hilbert’s Nullstellensatz, etc. We suggest to the reader the reference [CLO2007],
in particular, Chapters 1, 2, 4, 5 and 9.

2.1.1 The ring of real polynomials

For a positive integer n and x = (x1, . . . , xn), we consider the polynomial ring
R[x] over the field of real numbers R. In the following, we present the definition
of the multiplicity of a zero-dimensional ideal over R[x] at a solution. This notion
will be used to count the preimages of points in R2 under πC (see Section 1.4.1).
Loosely speaking, the multiplicity m at a solution a in this setup is a generalization
of the univariate case where a is a repeated solution m times. For a point q ∈ Rn,
consider the ring R[x]q that is the localization of R[x] at q.

Definition 2.1.1 ([CLO2005, Definition 4.2.1]). For integers m > n > 1, let G =

(g1(x), . . . , gm(x)) be a polynomial function from Rn to Rm and q be a solution of
the system {G = 0}. Define the intersection multiplicity of q in the system {G = 0}
(or equivalently the multiplicity of the system {G = 0} at q) to be the dimension of
the real vector space R[x]q

IG
, where IG is the ideal generated by the set {g1

1
, . . . , gm

1
}

in R[x]q.

The previous definition is classical for the algebraic case. However, we are in-
terested in curves defined as the zero locus of smooth functions. For this goal, we
consider a more general definition in 2.2.10 for a system S = {f1(x) = · · · =

fm(x) = 0} with fi is differentiable infinitely many times which is, unsurprisingly,
more complicated and its computability is less clear. Definition 2.1.1 will be thus
used when it is equivalent to Definition 2.2.10.

In some places of this thesis where we compute the multiplicity, we reduce the
problem of computing the dimension of R[x]q

IG
to computing the dimension of an-

other quotient that is easer to handle. The following theorem is in this regards:

Theorem 2.1.2 ([CLO2005, Theorem 4.4.3, P. 177]). Consider the real polyno-
mial ring R[x] and its localization R[x]q at some point q ∈ Rn. Consider a local
monomial ordering > over R[x]q. Let I be an ideal in R[x]q and LT (I) be the
ideal generated by the leading monomials of I . Then, the following statements are
equivalent:

28

2.2. Differential geometry

(a) The dimension of the R-vector R[x]q
I

space is finite.

(b) The dimension of the R-vector R[x]q
LT (I)

space is finite.

Furthermore, when any of these conditions is satisfied, we have:

(c) The equality dim(R[x]q
I

) = dim(R[x]q
LT (I)

) holds.

2.1.2 Determinantal varieties

We study in this section a large and important class of varieties, those whose equa-
tions take the form of the minors of a matrix. This concept is useful in Section 3.2.2
to prove the genericity of properties for a silhouette curve, where those properties
are based on determinantal relations.

Definition 2.1.3. Let M(m,n) be the vector space of real matrices of size m × n
and r be a positive integer such that r < min{n,m}. The determinantal variety,
Mr(m,n), is the set of matrices in M(m,n) that have rank less than r + 1.

Proposition 2.1.4 ([BV1988, Proposition 1.A.1.1]). Let Mr(m,n) be a determi-
nantal variety in M(m,n). The following statements hold:

(a) Mr(m,n) is an irreducible variety in M(m,n).

(b) Mr(m,n) is of dimension r(n+m− r).

(c) The singular locus of Mr(m,n) is Mr−1(m,n).

Lemma 2.1.5 ([Bôc1964, §XIV.61 Theorem 1]). Let n > 2 be an integer,
{xij}16j,i6n be a set of n2 variables and C[xij]16j,i6n be the ring of complex poly-
nomials with the variables {xij}. Then, the determinant of the matrix (xij)16i,j6n

is an irreducible polynomial in C[xij]16j,i6n.

2.2 Differential geometry

In this section, we study real C∞ (or smooth) functions, i.e., those that are differ-
entiable infinity many times. Since the main goal of our work is to deal with the
singular points of plane curves given in terms of smooth functions, it makes sense
to study the behavior of this type of functions (and their zero locus) locally.

2.2.1 Smooth functions and manifolds

In this section we state the properties we need of the type of functions that interest
us, namely, C∞ functions. More formally, let n and m be positive integers. A

29

Chapter 2. Preliminaries in geometry and algebra

function f defined on an open subset of Rn to Rm is called C∞ (or smooth) at a if
it is differentiable infinitely many times at a, that is, all partial derivatives of f at a
of all orders exist. For an open subset U ⊆ Rn, the set of smooth functions from U

to Rm is denoted by C∞(U,Rm). In this section, we state useful statements about
C∞ functions and their zero locus.

Definitions 2.2.1 (Regular and singular points [Dem2000, Definition 2.2.2]). Let
m > 1 be an integer, V be a subset of Rm and p ∈ V . We call p a regular (or
smooth) point of V if V is a sub-manifold at p, that is, there exist a neighbourhood
W of p in Rm, an integer k > 0 and k smooth functions ϕ1, . . . , ϕk defined over
W , such that V ∩W is the set of solutions of {ϕ1(x) = · · · = ϕk(x) = 0} in W

and the rank of the matrix


∂ϕ1

∂x1
. . . ∂ϕ1

∂xm
...

...
...

∂ϕk

∂x1
. . . ∂ϕk

∂xm

, evaluated at q, is k. We call this

matrix the Jacobian matrix of the system {ϕ1(x) = · · · = ϕk(x) = 0} and we
denote it by J(ϕ1,...,ϕk). If q is not a regular point of V , we call it a singular point
(or singularity). If all points in V are regular, then V is called regular or smooth.
Otherwise, V is called singular.

For ϕ = (ϕ1, . . . , ϕk) ∈ C∞(Rn,Rk), we denote by Tqϕ its derivative (also
known as the tangent map) at the point q. Note that the Jacobian matrix Jϕ =

J(ϕ1,...,ϕk) is the expression of the derivative in the canonical bases of Rn and Rk.

A function f : X → Y between two manifolds is called diffeomorphism if f
is a bijection and Tqf is full rank at every q in X . Two manifolds are called
diffeomorphic if there exist a diffeomorphism from one of them to the other.

The following Theorem shows the compatibility between the dimension as a
(smooth) real variety and the dimension as a manifold:

Theorem 2.2.1. [BCR1998, (Proposition 2.8.14)] Let V ⊆ Rn be a manifold that is
also an affine variety. Then its dimensions as a manifold and as a variety coincide.

The following theorem by Whitney represents a nice property of even smooth
functions. We use this theorem to rewrite functions locally and parametrize them
in terms of variables of an even power.

Theorem 2.2.2 ([Whi1943, Theorem 1 & 2]). Let f be an even (resp. odd) smooth
function, then there exists a smooth function g such that f(x) = g(x2) (resp.
f(x) = x · g(x2)).

30

2.2. Differential geometry

U

W

f (x, y) = 0

g(x, y) = 0

q

Figure 2.1: An example in R2 where f and g define the same germ.

2.2.2 Germs of smooth functions

As mentioned before, we are interested in the local behaviour of a smooth function
that are defined in Rn, that is, we want to study a function that is defined in a
neighbourhood of a point q ∈ Rn. For this reason, we can assume in this section,
without loss of generality, that q = 0 ∈ Rn.

Definition 2.2.3. [Dem2000, §5.2.1] Let U be an open sub set of Rn with q ∈ U
and f, g : U → R be two smooth functions. The functions f, g define the same
germ at q, if there exists an open subset W contained in U with q ∈ W such that
fW = gW , that is, f and g restricted to W coincide. Consequentially, the zero
locus of f, g coincides in W (see Figure 2.1)

Definition 2.2.4 ([AGZV2012, §17.1]). For i ∈ {1, 2}, let Ci be a plane curve
defined in a neighbourhood Ui ⊂ R2 of pi by the zero set of a smooth function fi.
The pairs (p1, C1) and (p2, C2) are equivalent, and thus define the same plane curve
singularity, if there exists a diffeomorphism ϕ from U1 to U2 such that f1 = f2 ◦ ϕ
and ϕ(p1) = p2.

In particular, a singularity is of type Ak if the curve is locally defined at the origin
by the zero set of the function x2 − yk+1. As important special cases, A1 is called
a node singularity and A2 is called an ordinary cusp singularity, see Figure 2.2.
We are going to assume later that the plane curve that we consider has only nodes
or ordinary cusps as singularities. After that, we prove that this assumption is
“general enough”, more formally, generic; see Chapter 3.

31

Chapter 2. Preliminaries in geometry and algebra

p p

Figure 2.2: Left: At an A1 singularity, two branches of the curve intersect transver-
sally. Right: At an A2k+1 singularity with k > 1, the tangent lines of the two
branches at the intersection point coincide.

Remark 2.2.5. It is worthy to notice that a curve C has an ordinary cusp at a
point p if C can be locally parametrized with (z2, z3) and p corresponds to the
value z = 0. This remark is helpful to characterize ordinary cusps in Chapter 4.

Definition 2.2.6. [GG1973, I.2.3] Let X and Y be differentiable manifolds. Let
f : X → Y be a differentiable function. Suppose that Tqf is full rank. Then,

• if dim(X) 6 dim(Y), f is an immersion at q,

• if dim(X) 6 dim(Y) and f(X) is diffeomorphic to X , f is embedding

• if dim(X) > dim(Y), f is an submersion at q,

• if for every point q ∈ X , f is immersion (resp. submersion) at q, then f is an
immersion (submersion).

Proposition 2.2.7. [Dem2000, Proposition 2.9.6] Preserving the same notation as
in Definition 2.2.6, if f is an immersion at q ∈ X , there exists an open subset U in
X containing q such that the restriction of f to U is embedding.

2.2.3 The multiplicity of smooth systems of equations

We defined earlier the multiplicity of zero-dimensional systems of polynomials.
Our goal now is to define the same notion for smooth functions. We first recall
the definition of multiplicity in the univariate case before generalizing it to higher
dimensions.

Definition 2.2.8. Let f be a real smooth function at a ∈ R. The order of f at
a is the integer orda(f(x)) = min{k ∈ N | ∂kf

∂xk
(a) 6= 0} if it exists, otherwise

orda(f(x)) =∞. For the case a = 0, we write for simplicity ord(f) = orda(f).

The following definition is introduced in [DLZ2011]. We are going to use the
same notion of the previous paper:

32

2.2. Differential geometry

Notation 2.2.9. Consider x = (x1, . . . , xn), for k̃ = (k1, . . . , kn) ∈ Zn and q ∈
Rn, define the differential operator ∂k̃[q] : C∞(U,R)→ R that sends f to 1

k1!...kn!
·

∂k1+···+knf

∂x
k1
1 ...∂xknn

(q) if k̃ > 0 ∈ Zn and 0 otherwise. From now on, a linear combination

of differential operator is called differential functional. The set of all differential
functionals forms a vector space denoted by Dq over R. Define the linear anti-
derivative operator φj that maps ∂k

∂x
k1
1 ...∂x

kj
j ...∂xknn

to ∂k−1

∂x
k1
1 ...∂x

kj−1

j ...∂xhnn
if kj > 0 and

to ∂0

x0j
otherwise, where k =

n∑
i=1

ki.

Let S = {f1(x) = · · · = fm(x) = 0} be a system of smooth equations, q be a
solution of S and k be a non-negative integer, we define the dual space of rank k,
denoted by Dk

q [S], to be the vector space of all linear combinations c of differential
functionals ∂k1+···+kn

∂x
k1
1 ...∂xknn

with k1 + · · ·+ kn 6 k such that:

(a) D0
q [S] = span({ ∂0

∂x01...∂x
0
n
}),

(b) c applied to fi, evaluated at q is zero for all integers 1 6 i 6 m, and

(c) for all i ∈ {1, . . . , n}, the anti-differentiation transformation φj applied to c
is in Dk−1

q [S].

Definition 2.2.10 ([DLZ2011, Definition 1]). Let F ∈ C∞(Rn,Rk) such that
F−1(0) is a finite set and let a ∈ Rn be a solution of the system S = {F = 0}.
Consider the ascending chain of dual spaces D0

q [F] ⊆ D1
q [F] ⊆ . . . Dh

q [F] ⊆
If there exists an integer α such that Dα

q [F] = Dα+1
q [F], then the dimension of the

vector space Dα
a [F] is called the multiplicity of q in the system S. If such an α does

not exist, the multiplicity is, by convention, infinity.

As mentioned before, for polynomial systems, the previous definition is equiva-
lent to Definition 2.1.1 [DLZ2011, Theorem 2]. In addition, the following propo-
sition shows that algebraic tools can be used in the smooth case.

Proposition 2.2.11 ([DLZ2011, Corollary 3]). For an integer k > n, let F =

(f1, . . . , fk) ∈ C∞(Rn,Rk) and let a ∈ Rn be a solution of the system {F = 0}.
Suppose that the multiplicity of a in {F = 0} is m < ∞, then the intersection
multiplicity at a of the polynomial system {G = (g1, . . . , gk) = 0} is also m, where
gi is equal to the Taylor expansion of fi at a up to degree at least m.

2.2.4 Transversality theorems

The goal of this section is to introduce the concept of genericity and some related
results. This has of course a direct relation with our assumptions.

33

Chapter 2. Preliminaries in geometry and algebra

Let U ⊆ Rn be an open subset. The set C∞(U,R) can be equipped with the so
called weak topology that is defined in [Dem2000, §3.9.2] as follows: Let fi be a
sequence of elements in C∞(U,R). The latter sequence is said to be convergent to
a function f if over every compact subset of U , the sequence ∂kfi

∂x
k1
1 ...xknn

uniformly

converges to ∂kf

∂x
k1
1 ...xknn

, with k =
n∑
i=1

ki for all k1, . . . , kn in N. Having thus de-

fined convergent sequences, we now know what are the closed and open sets in
C∞(U,R). Naturally, for a positive integer m, the set C∞(U,Rm) is equipped with
the product topology as C∞(U,Rm) can be seen as is the Cartesian product of m
copies of C∞(U,R).

The key to prove the genericity of our assumptions is Thom’s Transversality The-
orem. We thus first recall, in this Section, the basics of transversality theory using
the notation of Demazure’s book [Dem2000].

We work with the set of smooth functions C∞(Rn,Rn−1) with the weak (or
compact-open) topology [Dem2000, §3.9.2], that is, the convergence is understood
as uniform on compact subsets and for any derivative. A subset of C∞(Rn,Rn−1)

is called residual if it contains the intersection of a countable family of dense open
subsets. The space C∞(Rn,Rn−1) is a Baire space [Dem2000, Proposition 3.9.3],
that is, every residual subset of C∞(Rn,Rn−1) is dense.

Definition 2.2.12. A property is generic in C∞(Rn,Rn−1) if it is satisfied by a
residual subset.

Definition 2.2.13 ([Dem2000, §3.8.3]). Let E ' Rn and F be two finite-
dimensional real vector spaces and let r > 0 be an integer. Let P r(E,F) be
the vector space of polynomial functions of degree at most r from E to F . For
an open subset U of E (with respect to the usual topology on E), let Jr(U, F) =

U × P r(E,F) be the space of jets of order r of functions from U to F . Notice that
Jr(U, F) can be identified with an open subset of RN for some positive integer N .
Let f : U → F be a smooth function, the jet of order r of f is the function

jrf : U ⊂ Rn → Jr(U, F) ⊆ RN

x 7→
(
x, f(x),

∂f

∂x1

(x), . . . ,
∂f

∂xn
(x),

∂2f

∂x1∂x2

(x), . . . ,
∂rf

∂xrn
(x)

)
.

Let W be a sub-manifold of Jr(U, F). We say that jrf is transverse to W if for all
a ∈ U either jrf(a) 6∈ W or every vector of RN can be written as a sum of a vector
of Tjrf(a)W and a vector in the image of the function Tajrf , where Tjrf(a)W is the
tangent space of W at jrf(a) and Tajrf is the derivative function of jrf at a.

Theorem 2.2.14 (Thom’s Transversality Theorem [Dem2000, Theorem 3.9.4]).
Let E and F be two finite-dimensional vector spaces with U an open set in E.

34

2.2. Differential geometry

Let r > 0 be an integer and W be a sub-manifold of Jr(U, F). Then, the set of
functions f ∈ C∞(U, F) such that jrf is transverse toW is a dense residual subset
of C∞(U, F).

Proposition 2.2.15 ([Dem2000, Corollary 3.7.3]). Let U be an open subset of Rn,
N > 1 be an integer and W be a sub-manifold of the vector space RN of pure
co-dimension m. Assume that the smooth function g : U → RN is transverse to
W , then g−1(W) is a (possibly empty) sub-manifold of dimension n−m.

The idea of our proofs of genericity of our assumptions is to express each of them
as a system of equations in the jet space. When this system defines a manifold,
Thom’s theorem applies directly to pull back the manifold from the jet space to the
ambient space of the curve and obtain the subset where the assumption is satisfied
together with its dimension according to Proposition 2.2.15. A difficulty occurs
when the system does not define a manifold. The following corollary overcomes
this difficulty in the special case where the system is defined by analytic functions,
in other words the system defines an analytic variety. Such a variety does not
need to be a manifold but, using the Whitney stratification theorem [Whi1965], the
variety is written as a union of manifolds on which Thom’s theorem is then applied.

Corollary 2.2.16. Let E and F be two finite-dimensional vector spaces with E

of dimension n and U an open set in E. Let r > 0 be an integer and W be an
analytic variety of Jr(U, F) with co-dimension larger than n, then for a generic
P ∈ C∞(U, F), the pre-image of W under jrP is empty.

Proof. Let W =
m⋃
i=1

Wi be a Whitney stratification of W , where the Wi’s are sub-

manifolds. Since codim(W) > n, we have that codim(Wi) > n for any integer

1 6 i 6 m. Let Γi = {P ∈ C∞(U, F) | jrP is transverse to Wi} and Γ =
m⋂
i=1

Γi.

By Theorem 2.2.14, Γi is residual and so is Γ. Moreover, by Proposition 2.2.15,
for P ∈ Γi the pre-image of Wi under jrP is empty. Hence, (jrP)−1(W) =
m⋃
i=1

(jrP)−1(Wi) = ∅.

Lemma 2.2.17. [GG1973, Lemma II.4.3] LetX, Y be smooth manifolds, W ⊂ Y

a sub-manifold, and f : X → Y be a smooth function. Let q ∈ X and f(q) ∈ W .
Suppose there is an open subset U of f(q) in Y and a submersion φ : U → Rk

(k = codim(W)) such that W ∩ U = φ−1(0). Then, f is transversal to W at q iff
φ ◦ f is submersion at q.

We will also need a refined version of Thom’s theorem in a multijet setting, that
is for several points in the source space simultaneously. We give the formal def-

35

Chapter 2. Preliminaries in geometry and algebra

initions of the multijet space and function but we do not restate Theorem 2.2.14,
Proposition 2.2.15 and Corollary 2.2.16 that also hold for multijets.

Definition 2.2.18 ([Dem2000, §3.9.6]). Let U be an open subset of Rn and k > 1

be an integer. We denote ∆(k)(U) the subset of Uk consisting of sequences
(a1, . . . , ak) of pairwise distinct points of U . For an integer r > 0 and a finite
dimensional space F , the k-multijet space of order r, Jr(k)(U, F), is the subset of
Jr(U, F)k = (U × P r(E,F))k consisting of the k-tuples ((a1, p1), . . . , (ak, pk)),
with (a1, . . . , ak) ∈ ∆(k)(U). Let f : U → F be a smooth function, the k-multijet
of order r of f is the function

jr(k)f : ∆(k)(U)→ Jr(k)(U, F)

(a1, . . . , ak) 7→ (jrf(a1), . . . , jrf(ak)).

Theorem 2.2.19 (Multijet Transversality Theorem [Dem2000, Theorem 3.9.7]).
Let E and F be two finite dimensional vector spaces and let U be an open subset
of E. Let r > 0 and k > 1 be two integers and W be a sub-manifold of Jr(k)(U, F).
The set of f ∈ C∞(U, F) such that jr(k)f is transverse to W is a dense residual
subset of C∞(U, F).

36

3

Generic space curve

Contents
3.1 Notation and assumptions . 38

3.1.1 Notation . 38

3.1.2 Assumptions . 38

3.2 Genericity of the assumptions . 39

3.2.1 Genericity of the assumptions for a curve in Rn 41

3.2.2 Genericity of the assumptions for the silhouette of a surface in Rn . 49

The goal of this thesis is to design certified numerical methods to isolate the singu-
larities of plane curves. Numerical algorithms usually cannot handle singularities.
However, under some assumptions, we succeed to handle in a certified way some,
although not all, singularities of projections of smooth curves defined in Rn.

In this chapter, we introduce a set of assumptions on a curve C in Rn, with n > 2

(Section 3.1.2). We study, under these assumptions, the singularities of the plane
projection of C classifying them according to Arnold’s list [AGZV2012]. This
classification is later used to show a correspondence between the singularities of
the plane projection of C and the solutions of a regular and square system in R2n−1

introduced in Chapter 4. In section 3.2.1, we prove that the assumptions mentioned
above are satisfied by a generic curve in Rn. In addition, in Section 3.2.2, we prove
that the silhouette of a generic surface in Rn satisfies a part of these assumptions.
we conclude the chapter by a conjecture that the silhouette of a generic surface
satisfies the rest of the assumptions.

37

Chapter 3. Generic space curve

3.1 Notation and assumptions

3.1.1 Notation

For a positive integer n, a closed (resp. an open) n-box is the Cartesian prod-
uct of n closed (resp. open) interval. Assume that n > 3 and let B be an
open n-box and B be the topological closure of B with respect to the usual
topology in Rn. Let C∞(Rn,Rn−1) denote the set of smooth functions (i.e.,
differentiable infinitely many times) from Rn to Rn−1. Consider the function
P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1). We will denote by C (resp. C) the solution
set of the system {P1(x) = · · · = Pn−1(x) = 0}, with x = (x1, . . . , xn) ∈ B (resp.
with x ∈ B). Also, consider the projection πC (resp. πC) from C (resp. C) to the
(x1, x2)-plane. Unless otherwise stated, the plane projection of a point x ∈ Rn is
(x1, x2). If C is a smooth curve (see the definition below), define Lc (resp. L′c) to
be the set of points q in C (resp. C) such that the tangent line, denoted by TqC,
(resp. TqC) is orthogonal to the (x1, x2)-plane. We also define the set Ln (resp. L′n)
to be the set of points q in C (resp. C) such that the cardinality of the pre-image of
πC(q) under πC (resp. πC) is at least two. We will see later that, under some generic
assumption, Lc (resp. Ln) is equal to the set of points in C that project to a cusp
(resp. node) which justifies the subscript c (resp. n).

3.1.2 Assumptions

Recall that our goal is to design a numerical algorithm for isolating the singularities
that appear in the plane projection of a curve C in Rn. Numerical algorithms usually
cannot handle degenerate cases, that is, singularities in our context. However, under
some assumptions on C, we succeed to isolate in a certified way some singularities
of the projection. Namely, we require that the singularities are “generic”, that is,
only nodes can appear in the projection (Assumption A5). Our other assumptions
on C are, roughly speaking, that it is smooth (A1), that its projection only has
a discrete set of singularities (A4), and that at most two points of C project on
each singularity (A3). We will prove in Chapter 5 that our numerical algorithm
is certified and terminates under these assumptions and in Section 3.2 that these
assumptions are generically satisfied.

Recall that we denote by JP the Jacobian matrix of the function P in
C∞(Rn,Rn−1). Consider the following assumptions:

A1 – For all q ∈ C, rank(JP (q)) = n− 1. In particular, C is a smooth curve.5

5Note that the converse is not true as the vertical (double) line defined by x21 = x2 = 0 in R3 is smooth but the rank of
its Jacobian is never full.

38

3.2. Genericity of the assumptions

A2 – The set L′c is discrete and does not intersect the boundary of B.

A3 – For all points p = (α, β) ∈ πC(C), the pre-image of p under πC consists of at
most two points in B counted with multiplicities in the system {P (x) = 0 ∈
Rn−1, x1 − α = x2 − β = 0}.

A4 – The set L′n is discrete and does not intersect the boundary of B.

A5 – The singular points of πC(C) are only nodes (see Definition 2.2.4).

We also consider a weaker version of AssumptionA5 in which ordinary cusps can
also appear in the projection:

A−5 – The singular points of πC(C) are only ordinary cusps or nodes (see Defini-
tion 2.2.4).

Definition 3.1.1. Assumptions A1−5 are called the strong assumptions and As-
sumptions A1−4 and A−5 are called the weak assumptions.

Figure 3.1 illustrates the assumptions that we have just introduced. Our goal in the
next section is to prove that a generic curve C satisfies our assumptions. Loosely
speaking, the genericity implies that a “random” curve satisfies these assumptions.
Moreover, if a curve does not satisfy the assumptions, there exists a sequence of
generic curves that is converging to that curve.

Remark 3.1.2. Our motivation for also considering these weak assumptions is
dual. First, our certified algorithm for isolating the singularities of the projection
of curves satisfying the strong assumptions also works, to some extent, if only the
weak assumptions hold: namely, it outputs a superset of the isolating boxes of the
singularities. Second, we conjecture that our weak assumptions are satisfied by sil-
houette curves of generic surfaces (see Proposition 3.2.17 and Conjecture 3.2.18).

3.2 Genericity of the assumptions

Recall from the introduction (namely in Section 1.2.2) that a property in
C∞(Rn,Rn−2) is generic if it is satisfied by all elements of a residual subset (a
countable intersection of open dense subsets) in C∞(Rn,Rn−2). The key to prove
the genericity of our assumptions mentioned on Section 3.1.2 is Thom’s Transver-
sality Theorem 2.2.14. We mentioned, in Section 2.2.4, the basics of transver-
sality theory using the notation of Demazure’s book [Dem2000]. We prove, in
Section 3.2.1, that all assumptions of Section 3.1.2 are satisfied for a generic curve.
In Section 3.2.2, we consider the special case where the curve is the silhouette of

39

Chapter 3. Generic space curve

q

points in Ln

πC(C)

point in Lc

Rn−2

x1

x2

(a) Assumption A1: C is a smooth; the rank
of the Jacobian of P at q is full.

(b) Assumptions A2 and A4: the sets Lc and
Ln are finite and do not intersect the bound-
ary of B.

C
C

q

multiplicity at q > 3

Rn−2

x1

x2
Rn−2

x1

x2

(c) Assumption A3: No three points (counted
with multiplicity) have the same projection.

C
C

πC(C)

πC(C)

Not allowedB

Not allowed:B

(d) Assumption A3: No three points (counted
with multiplicity) have the same projection.

πC(C)

πC(C)

x1

x2x1

x2

(f) Assumption A5: points in πC(C) are only
smooth or nodes.

(e) Assumption A−
5 : points in πC(C) are ei-

ther smooth, nodes or ordinary cusps.

Figure 3.1: Illustration of the assumptions.

40

3.2. Genericity of the assumptions

a surface and prove that Assumptions A1, A2, A4 are generically satisfied in this
case; the genericity of Assumptions A3 and A−5 is left as a conjecture.

3.2.1 Genericity of the assumptions for a curve in Rn

We are going to prove that each assumption in Section 3.1 is generic. Hence, the
combination of these assumptions is also generic since a countable intersection of
residual subsets in C∞(Rn,Rn−1) is residual.

Lemma 3.2.1. Assumption A1 is generic.

Proof. Consider the jet of order 1 of the function P ∈ C∞(Rn,Rn−1):

j1P : Rn → J1(Rn,Rn−1) = Rn × Rn−1 × R(n−1)×n

x 7→ (x, P (x), JP (x)) = (x, y, z).

We represent the jet space by the variables x ∈ Rn, y ∈ Rn−1 and z ∈ R(n−1)×n.
With abuse of notation, we can see the variable z as a (n − 1) × n-matrix. Define
the variety W = {(x, y, z) ∈ Rn × Rn−1 × R(n−1)×n | y = 0, rank(z) 6 n − 2}.
The variety W is a product of a determinantal variety in R(n−1)×n of dimension
n2− n− 2 (by Proposition 2.1.4) and a linear space of dimension n in Rn×Rn−1.
Thus, W is a variety of co-dimension n + 1 in Rn × Rn−1 × R(n−1)×n. Hence,
by Corollary 2.2.16, there exists a residual subset Γ1 ⊂ C∞(Rn,Rn−1), such that
for P ∈ Γ1 the pre-image of W under j1P is empty. Consequently, for a generic
P ∈ C∞(Rn,Rn−1) and any q ∈ C, we have that q /∈ (j1P)−1(W) = ∅, thus
rank(JP (q)) = n− 1, which is Assumption A1.

The following lemma proves a stronger claim than the genericity of Assumption
A2, namely, that generically, L′c is empty. However, as mentioned before, being L′c
discrete, is the case for the Silhouette of a generic surface in Rn (more precisely,
generic P in C∞(Rn,Rn−2)) which justify why we choose the weaker assumption.

Lemma 3.2.2. Assumption A2 is generic. Moreover, generically, the set L′c is
empty.

Proof. We consider the jet of order 1 of the function P ∈ C∞(Rn,Rn−1) as is the
proof of Lemma 3.2.1 with the same notation. Define the matrix T1(z) (resp. T2(z))
to be the sub-matrix of z obtained by removing the first (resp. second) column.
Consider the variety W ⊂ J1(Rn,Rn−1) defined by {y = 0 ∈ Rn−1, det(T1(z)) =

det(T2(z)) = 0}. Notice that L′c is included in the pre-image of W under j1P

since L′c is the set of points of the curve C that are both x1 and x2-critical. By

41

Chapter 3. Generic space curve

Lemma 2.1.5, we have that both det(T1(z)) and det(T2(z)) are irreducible polyno-
mials. By [CLO2007, §9.4 Prop 10], a proper sub-variety of an irreducible variety
is of lower dimension, we deduce that the common zero locus of det(T1(z)) and
det(T2(z)) is of co-dimension at least two. We deduce that codim(W) > n. By
Corollary 2.2.16, there exists a residual subset Γ2 ⊂ C∞(Rn,Rn−1), such that for
P ∈ Γ2∩Γ1, the pre-image ofW under j1P is empty and hence L′c is empty, which
implies Assumption A2.

The following lemma provides a characterization of the points in L′c (under As-
sumptionA1) in terms of multiplicity. Such an equivalence is useful to ease proofs
and reduce technicalities.

Lemma 3.2.3. Let P = (P1 . . . , Pn−1) ∈ C∞(Rn,Rn−1) satisfy Assumption A1.
Let q be in C such that the multiplicity of the system S = {P (x) = 0 ∈ Rn−1, x1 −
α = x2 − β = 0} at q is finite, where (α, β) = πC(q) ∈ R2. Then, q ∈ L′c if and
only if the multiplicity of the system S at q is at least two.

Proof. Without loss of generality assume that q = 0 ∈ Rn.

Sufficiency: Assume that q ∈ L′c. Let v = (v1, . . . , vn) be a non-trivial vector
of the tangent line of C at q. Thus, JP (q) · vT = 0. By the definition of L′c we

have v1 = v2 = 0. Define the differential operator c =
n∑
i=3

vi
∂
∂xi
. Notice that

c · Pj =
n∑
i=3

vi
∂Pj

∂xi
(q) = 0 for all integers 1 6 j 6 n − 1 (see [DLZ2011, 2.1] for

the definition of c · Pj). Moreover, by the definition of c and since v1 = v2 = 0,
we have c · (x1) = c · (x2) = 0. Hence, c ∈ D1

q [S] \D0
q [S]. Thus, dim(D1

q) > 1.
Hence, the multiplicity of S at q is at least two.

Necessity: Assume that the multiplicity of S at q is at least two, then D0
q [S] (

D1
q [S]. This implies that there exists a non-trivial differential operator c =
n∑
i=1

ci
∂
∂xi
∈ D1

q [S] \D0
q [S] such that:

(a) We have that c ·Pj = 0 for all integers 1 6 j 6 n−1 which implies that if we
write vi = ci, with 1 6 i 6 n, the non-trivial vector v is in the tangent space
of C at q.

(b) We have that c · (x1) = c · (x2) = 0, equivalently, c1 = c2 = 0. Thus,
v1 = v2 = 0.

The tangent line to the curve at q is thus orthogonal to the (x1, x2)-plane. Thus,
q ∈ L′c.

Lemma 3.2.4. Assumption A3 is generic.

42

3.2. Genericity of the assumptions

Proof. Let us consider the 3-multijet of order 0:

j0
(3)P : ∆(3)(Rn)→ J0

(3)(Rn,Rn−1) = (Rn × Rn−1)3

(x, x′, x′′) 7→ ((x, P (x)), (x′, P (x′)), (x′′, P (x′′))) = ((x, y), (x′, y′), (x′′, y′′))

where every element in the jet space J0
(3)(Rn,Rn−1) is of the form

((x, y), (x′, y′), (x′′, y′′)), where x = (x1, . . . , xn), x′, x′′ ∈ Rn and y, y′, y′′ ∈
Rn−1. Consider the linear sub-manifold W = {x1 = x′1 = x′′1, x2 = x′2 = x′′2, y =

y′ = y′′ = 0}, the co-dimension ofW is thus 3n+1 which is larger than the dimen-
sion of the source space ∆(3)(Rn) which is 3n. Thus, by Corollary 2.2.16, there
exists a residual subset Γ3 ⊂ C∞(Rn,Rn−1), such that for P ∈ Γ3, the pre-image
of W by j0

(3) is empty, which translates to the fact that there are no pairwise distinct
points q, q′, q′′ in C such that πC(q) = πC(q′) = πC(q′′). This is also equivalent to
say that the system S = {P (x) = 0 ∈ Rn−1, x1 − α = x2 − β = 0} has at most
two distinct solutions (without counting multiplicities) for any (α, β) ∈ R2.

Using Γ1,Γ2 as defined in the proofs of Lemmas 3.2.1 & 3.2.2 and Γ3 defined
above, we define Γ4 = Γ1 ∩ Γ2 ∩ Γ3 which is thus a residual set and let P be in Γ4.
Since P is in Γ3, the system S has at most two distinct solutions. In addition, since
P is in Γ2 ∩ Γ1, one has that L′c is empty and finally together with Lemma 3.2.3,
since P is in Γ1, this implies that these solutions have multiplicity exactly 1 is S.
For P in the residual set Γ4, the number of solutions counted with multiplicities of
S is thus at most 2, which is Assumption A3.

Lemma 3.2.5. Assumption A4 is generic.

Proof. Let us consider the 2-multijet of order 0 of P :

j0
(2)P : ∆(2)(Rn)→ J0

(2)(Rn,Rn−1) = (Rn × Rn−1)2

(x, x′) 7→ ((x, P (x)), (x′, P (x′))) = ((x, y), (x′, y′))

where every element in the jet space J0
(2)(Rn,Rn−1) is of the form ((x, y), (x′, y′)),

where x = (x1, . . . , xn), x′ ∈ Rn and y, y′ ∈ Rn−1. Consider the linear sub-
manifold W = {x1 = x′1, x2 = x′2, y = y′ = 0} of the jet space J0

(2)(Rn,Rn−1).

Notice that, (j0
(2)P)−1(W) contains the set L̂′n = {(q1, q2) ∈ ∆(2)(Rn) ∩ C × C |

πC(q1) = πC(q2)} and L′n is the image of L̂′n by the projection (q1, q2) → q1.
We have dim(∆(2)(Rn)) = 2n and, since W is linear, its co-dimension is easily
computed codim(W) = 2(2n− 1)− (2 + 2(n− 1)) = 2n. Proposition 2.2.15 thus
yields that generically (j0

(2)P)−1(W) is a sub-manifold of dimension zero that is a
discrete set in Rn, and so is L′n.

Now, we prove that, generically, L′n does not intersect the boundary of B. The
boundary ∂B of the box B is included in the union of the supporting hyperplanes

43

Chapter 3. Generic space curve

Hi of its 2n faces of dimension n − 1, that is ∂B = ∪i=2n

i=1 Hi. Define the linear
sub-manifold Wi = {((x, y), (x′, y′)) ∈ W |x ∈ Hi or x′ ∈ Hi}, notice that this
adds one equation to W and thus increases the co-dimension of W by one, thus
codim(Wi) = 2n + 1. By Corollary 2.2.16, we have that, generically, the pre-
image of Wi under j0

(2)P is empty, which translates to the fact that there is no point
of L′n on ∂B ∩ Hi. This is also true for any i and thus, generically, L′n does not
intersect the boundary of B.

Proving the genericity of Assumptions A5 and A−5 is a bit more complicated. We
first study the singularity types that occur on the plane curve πC(C) under Assump-
tionsA1,A2,A3 andA4 in Lemmas 3.2.6 and 3.2.7. Then, we translate their results
into algebra (Lemma 3.2.9) which paves the way to use transversality theorem in
proving the genericity of Assumptions A5 and A−5 in Corollary 3.2.10.

Lemma 3.2.6. Under Assumptions A1, A2, A3 and A4, let q ∈ C and p = πC(q).
If q 6∈ Lc ∪ Ln, then p is a smooth point of the plane curve πC(C).

Proof. As illustrated in Figure 3.2, since q 6∈ Lc, the plane projection of TqC is
a line, or equivalently, the derivative TqπC of πC at q is injective. Thus, πC is an
immersion at q. Hence, for a small enough neighbourhood U0 of q in Rn, we have
that πC restricted to V = U0 ∩ C is embedding (Proposition 2.2.7). We are going
to prove that, assuming that U0 is small enough, the curve πC(C) has exactly one
branch around πC(q) which implies that πC(C) is smooth at πC(q) since C is smooth
at q by Assumption A1.

To prove this claim, assume that there exists an open subset U ′0 in Rn such that
the set V ′ = U ′0 ∩ C and V are disjoint, but πC(q) is in the closure of πC(V ′).
Let qk be a sequence of points in V ′ such that πC(qk) converges to πC(q). Since B
is compact, there exists a convergent sub-sequence of qk that has a limit q′ in B.
Notice that πC(q′) = πC(q) by the continuity of πC. Hence, q, q′ are both in L′n.
However, since q 6∈ Ln, we must have that q′ 6∈ B. Hence, q′ is in the boundary
of B which contradicts Assumption A4. Hence, the curve πC(C) has exactly one
smooth branch around πC(q) which concludes the proof.

Regarding our goal about the singularities of πC(C), by Lemma 3.2.6, we can
concentrate our attention to the plane projections of the points in Lc ∪ Ln.

Lemma 3.2.7. Under Assumptions A1, A2, A3 and A4, if q ∈ Ln, then πC(q)

is a singular point of the plane curve πC(C). More precisely, either πC(q) is of
type A−2k+1 with k > 0, or there exists a non-null smooth function g defined in a
neighbourhood of 0 ∈ R with ord(g) = ∞ such that (πC(C), πC(q)) is equivalent
to the curve defined by x2 − g(y2) = 0 at the origin.

44

3.2. Genericity of the assumptions

U0 TqC

q

Rn

V
B

R2 p

TpπC(C)

Figure 3.2: Illustration of the proof of Lemma 3.2.6.

Proof. As in Figure 3.4, let p = πC(q), according to A3, π−1
C (p) has at most two

points, and since q is in Ln, it also has at least two points. Define q′ such that
π−1
C (p) = {q, q′} and denote the plane curve πC(C) by C. Without loss of general-

ity, one can assume that p = (0, 0). In addition, A3 also implies that the multiplic-
ities of q and q′ in the system {P (x) = 0 ∈ Rn−1, x1 = x2 = 0} are one. With
AssumptionA1, Lemma 3.2.3 then implies that the tangents to C at q and q′ are not
orthogonal to the (x1, x2)-plane. Thus there exists two neighborhoods Nq and Nq′

of q and q′ in Rn such that π restricted to C∩Nq (resp. C∩Nq′) is an embedding. Let
Dk be a sequence of open disks centered at p and of radius 1

k
. By contradiction, if

for all k, there exists points qk ∈ C such that qk is not in Nq∪Nq′ and πC(qk) ∈ Dk,
then the limit q∞ is a point of C distinct from q and q′, and πC(q∞) = p. If q∞ is
in B, it contradicts A3 and if it is in B, it contradicts A4. Thus for a small enough
neighborhood of p, the projection of the curve is restricted to the projection of the
two branches around q and q′. Finally, if for all Dk, the pre-image of π−1(Dk)

contains a point in L′n \ {q, q′}, then this contradicts the discreteness assumption
A4. Thus there exists a neighborhood N ⊆ R2 of p such that π−1

C (N) is a union of
two smooth (AssumptionA1) open subsets of C such that q is on one branch and q′

on the other, and πC restricted to π−1
C (N) \ {p, q′} is an embedding. The projection

of these two smooth branches are thus two smooth curves in the plane. Let these
two smooth plane branches be defined by the zero sets of the smooth functions f1

and f2 in C∞(R2,R). Let u (resp. u′) be a non-zero tangent vector of C at q (resp.
q′) and v (resp. v′) be its projection in R2. We distinguish two cases:

45

Chapter 3. Generic space curve

p

q

N

u

q′
u′

v

v′

Figure 3.3: Proof of Lemma 3.2.7: The first case where v and v′ are independent.

(a) The vectors v and v′ are independent in R2 (see Figure 3.3). Thus, v and v′

give rise to a local coordinate system (x, y) in a neighborhood of p in R2.
The vector v being tangent to the zero set of f1, one has ∂f1

∂x
(p) = 0 and

∂f1
∂y

(p) 6= 0. By the implicit function theorem [Dem2000, Corollary 2.7.3.],
we deduce that there exists a real smooth function h1 such that y = x2 ·
h1(x) is a local parameterization of the zero set of f1. Similarly, there exists
a smooth function h2 such that x = y2 · h2(y) is a local parameterization of
the zero set of f2. Thus (x, y) ∈ N iff f(x, y) = f1(x, y)f2(x, y) = 0 iff
(y − x2 · h1(x))(x− y2 · h2(y)) = 0, equivalently, [y − x− x2 · h1(x) + y2 ·
h2(y)]2 − [y + x − x2 · h1(x) − y2 · h2(y)]2 = 0. The change of coordinates
X = y − x+ x2 · h1(x) + y2 · h2(y) and Y = y + x+ x2 · h1(x)− y2 · h2(y)

is a diffeomorphism since det(Jx,y(X, Y))p 6= 0. Then, the local equation of
the curve C at p is of the form X2 − Y 2 with these new coordinates, which
means that p is a A−1 or node singularity.

(b) The vectors v and v′ are co-linear (see Figure 3.4). Then, choose v′′ ∈ TpR2

linearly independent from v, the vectors v, v′′ give rise to a coordinate system
(x, y) at p. In this coordinate system, we thus have ∂f1

∂x
(p) = ∂f2

∂x
(p) = 0,

∂f1
∂y

(p) 6= 0 and ∂f2
∂y

(p) 6= 0. By the implicit function theorem, there exist
smooth functions h1 and h2 such that locally f(x, y) = 0 if and only if (y −
x2 · h1(x))(y − x2 · h2(x)) = 0. The last equality is equivalent to (2y −
x2(h1(x) + h2(x)))2 − x4(h1(x)− h2(x))2 = 0. Assumption A4 ensures that
the projections of the two branches have only one common point, such that

46

3.2. Genericity of the assumptions

q

p
N

u

q′
u′

v = k · v′ v′′

Figure 3.4: Proof of Lemma 4.3.3: The second case where v and v′ are co-linear.

h1(x)− h2(x) does not vanish identically. We distinguish two cases:

(i) mult(h1(x) − h2(x)) = k 6 ∞, then h1(x) − h2(x) = xk · u with
u(p) 6= 0 and without loss of generality, assume that u(p) > 0. The
change of coordinates X = 2y−x2(h1(x)+h2(x)) and Y = x ·u

1
2+k is a

diffeomorphism (notice that indeed u
1

2+k is a smooth function around p).
Then, the local equation of the curve C at p is of the formX2−Y (2k+3)+1

with these new coordinates, which means that p is a singularity of type
A−2k+3.

(ii) mult(h1(x)−h2(x)) =∞. Since the function x4(h1(x)−h2(x))2 is even,
by Theorem 2.2.2, there exists a smooth function g such that x4(h1(x)−
h2(x))2 = g(x2). Thus, taking the diffeomorphismX = 2y−x2(h1(x)+

h2(x)) and Y = x, we get the second case of the claim.

The next definition and lemma are technical tools for proving the genericity of
Assumptions A−5 and A5. We want to translate the result of Lemma 3.2.7 to the
language of algebra. The following definition is needed for this characterization:

Definition 3.2.8. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) satisfying As-
sumption A1 and recall that we denote by JP (q) the Jacobian matrix of P at the
point q. We define the (n− 1)× (n− 2) sub-matrix M1,2(q) obtained by removing
the first two columns of JP (q) and the (n − 1) × 2 sub-matrix NP (q) formed by
the first two columns of JP (q). Let q1, q2 ∈ C, we define the square matrix of size

47

Chapter 3. Generic space curve

2n− 2, M(q1, q2) =

(
NP (q1) 0 M1,2(q1)

NP (q2) M1,2(q2) 0

)
.

Lemma 3.2.9. Using the same assumption and notation as in Definition 3.2.8, let
q1 and q2 be distinct points of C with πC(q1) = πC(q2), then M(q1, q2) is invertible
if and only if none of q1 or q2 is in Lc and the plane projections of the tangent lines
of C at q1 and q2 do not coincide.

Proof. We prove the converse statement using
det(M(q1, q2)) = 0 ⇐⇒ There exist α ∈ R2 and β, γ ∈ Rn−2 such that the

vector x = (α, β, γ) is not trivial and satisfies the
equality M(q1, q2) · xT = 0.

⇐⇒ (α, β) and (α, γ) are in the tangent lines Tq1C and
Tq2C respectively and at least one of them is not
trivial.

The last statement can be split in two cases:

• α is not trivial which is equivalent to say that the plane projections of Tq1C
and Tq2C are both generated by α and coincide.

• α = (0, 0) which is equivalent to β or γ is not trivial, which is equivalent to
Tq2C or Tq1C projects to a point in the plane, which is equivalent to q1 or q2 is
in Lc.

Now, we are ready to prove the genericity of Assumptions A5 – and A−5 –:

Corollary 3.2.10. AssumptionA5 is generic. Consequently, so is AssumptionA−5 .

Proof. Let B be an open n-box. Recall that generically L′c (and hence Lc) is empty
(Lemma 3.2.2). Hence, it is enough to prove that for a generic P ∈ C∞(Rn,Rn−1),
the singular points of πC(C) are only nodes (recall that by Lemma 3.2.6, under the
generic assumptions A1, A2,A3 and A4, the points in C \ (Lc ∪ Ln) project to
smooth points).

Let Γ0 be the set of P ∈ C∞(Rn,Rn−1) such that P satisfies Assumptions A1,
A2, A3 and A4. The previous lemmas of this section show that Γ0 is residual in
C∞(Rn,Rn−1).

Let us consider the 2-multijet of order 1 of P :

j1
(2)P : ∆(2)(Rn)→ J1

(2)(Rn,Rn−1) ⊆ (Rn × Rn−1 × R(n−1)×n)2

(x, x′) 7→ ((x, P (x), JP (x)), (x′, P (x′), JP (x′))) = ((x, y, z), (x′, y′, z′))

48

3.2. Genericity of the assumptions

Let s, s′ (resp. r, r′) be the sub-matrices of z, z′ respectively obtained by removing
the first two columns (resp. obtained by the first two columns). Define the matrix

M =

(
r 0 s

r′ s′ 0

)
and the variety

W = {((x, y, z), (x′, y′, z′)) ∈ (Rn×Rn−1×R(n−1)×n)2 | y = y′ = 0, x1 = x′1, x2 = x′2,det(M) = 0}.

The variety W is a product of a determinantal variety and a linear space, thus
its co-dimension is codim(W) > 2n + 1 > 2n = dim(∆(2)(Rn)). Hence, by
Corollary 2.2.16, there exists a residual subset Γ′0 in C∞(Rn,Rn−1) such that for
all P ∈ Γ′0, the pre-image of W under j1

(2)P is empty.

Let then P be in the residual set Γ0 ∩ Γ′0. By Lemma 3.2.9 and since Lc is empty,
we deduce that for distinct q1, q2 ∈ C with πC(q1) = πC(q2), the plane projections
of the lines Tq1C and Tq2C intersect transversely if and only if j1

(2)((q1, q2)) 6∈ W .
Finally, by Lemma 3.2.7 (Step (a) of the proof), we deduce that πC(q1) = πC(q2) is
a node in πC(C).

3.2.2 Genericity of the assumptions for the silhouette of a surface in Rn

In this section, we focus on the special case of silhouette curves of surfaces in Rn.
For an open n-box B and P̃ in C∞(Rn,Rn−2) such that S = P̃−1(0) is a smooth
2-sub-manifold in Rn, the silhouette of P̃ is the set of points q of this surface S
such that the projection (with respect to a fixed direction) of the tangent plane TqS
to R2 is not surjective (see Figure 3.5). We prove that Assumptions A1, A2 & A4

are satisfied for a generic silhouette, and we only conjecture that Assumptions A3

& A−5 also hold generically. We start by formalizing algebraically the definition of
the silhouette curve.

Definition 3.2.11. For an integer n > 3, let P̃ = (P1, . . . , Pn−2) ∈

C∞(Rn,Rn−2). Define the smooth function Pn−1 = det

((
∂Pi

∂xj

)
16i6n−2

36j6n

)
and

P = (P1, . . . , Pn−1). We define the curve C (and C) as in Section 3.1 and call it the
silhouette of P̃ .

As mentioned before, we want now to prove that the silhouette of a generic sur-
face in Rn, Assumptions A1, A2 and A4 are satisfied. The argument used for the
proofs are more involved and complicated comparing with the ones presented in
Section 3.2.1. For Assumption A1, the basic idea of the proof of Lemma 3.2.12 is
Lemma 2.2.17.

Proposition 3.2.12. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies
Assumption A1.

49

Chapter 3. Generic space curve

Figure 3.5: Example: The silhouette of the torus in R3 with the coordinates (x, y, z)

(source: [IMP2016a]) .

50

3.2. Genericity of the assumptions

Proof. Consider the jet of order 1 of P̃ :

j1P̃ : Rn → J1(Rn,Rn−2) = Rn × Rn−2 × R(n−2)×n ' Rn2−2 = RN

x 7→ (x, P̃ (x), JP̃ (x)) = (x, y, z).

We represent the jet space by the vectors x ∈ Rn, y ∈ Rn−2 and the ((n− 2)× n)-
matrix z ∈ R(n−2)×n. Let T (z) denote the sub-matrix obtained by removing the
first two columns of z. Define the variety W = {y = 0, det(T (z)) = 0} =

{y = 0, rank(T (z)) 6 n − 3} in RN . According to Proposition 2.1.4, W =

Reg(W) ∪ Sing(W) where Reg(W) (resp. Sing(W)) is the set of smooth (resp.
singular) points in W and

Reg(W) = {(x, y, z) ∈ RN | y = 0, rank(T (z)) = n− 3}

Sing(W) = {(x, y, z) ∈ RN | y = 0, rank(T (z)) < n− 3}.

In addition, Proposition 2.1.4 yields that Reg(W) is a manifold of co-dimension
n − 1 and Sing(W) is a variety of co-dimension n + 2. Since the co-dimension
of Sing(W) is larger than that of the source space, Corollary 2.2.16 implies
that, generically, (j1P̃)−1(Sing(W)) = ∅. One thus has (j1P̃)−1(W) =

(j1P̃)−1(Reg(W)). Consider the function

ϕ : Rn × Rn−2 × R(n−2)×n → Rn−2 × R
χ = (x, y, z) 7→ (y, det(T (z))),

such that ϕ−1(0) = W . Its Jacobian matrix is Jϕ =(
0(n−2)×n I(n−2)×(n−2) 0(n−2)×(n−2)n

01×(n) 01×(n−2) v(z)

)
, where 0k1×k2 (resp. Ik1×k2) is

the zero (resp. identity) matrix of size k1 × k2 and the vector v(z) is
the adjugate matrix of T (z) written as the concatenation of its lines:
v(z) = (Adjij(T (z)))16i6n−2

36j6n
∈ R(n−2)2 . Let χ = (x, y, z) ∈ Reg(W),

then rank(T (z)) = n− 3, thus there exists a pair (i, j) such that Adjij(T (z)) 6= 0.
Hence, the vector v(z) is non-trivial and Jϕ(χ) has full rank n − 1. The function
ϕ is thus a submersion (Definition 2.2.6) on Reg(W). Theorem 2.2.14 yields
that, generically, j1P̃ is transverse to the manifold Reg(W). As illustrated in
Figure 3.6, since ϕ is a submersion on Reg(W), by Lemma 2.2.17, we imply
that that P = ϕ ◦ j1P̃ is a submersion on (j1P̃)−1(Reg(W)) = (j1P̃)−1(W) =

(j1P̃)−1(ϕ−1(0)) = (ϕ ◦ j1P̃)−1(0) = P−1(0) = C. In other words, JP has full
rank n− 1 on C, which is Assumption A1.

Proposition 3.2.13. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies
Assumption A2.

51

Chapter 3. Generic space curve

Rn−2 × R

P
=
ϕ ◦

j 1
P̃

RN = Rn × Rn−2 × R(n−2)×n

Rn

j1P̃

W

ϕ

Figure 3.6: Illustration of Lemma 2.2.17 which is used in the proof of Proposi-
tion 3.2.12. Since ϕ is a submersion over Reg(W) and since j1P̃ is, generically,
transversal to Reg(W), the lemma implies that the composition P̃ = ϕ ◦ j1P̃ is
generically a submersion.

Proof. First we prove that, generically, L′c is discrete. For any P̃ ∈ C∞(Rn,Rn−2)

consider j2P̃ : Rn → J2(Rn,Rn−2) ⊂ Rn × Rn−2 × R(n−2)×n × Rn2(n−2) =

RN . Assume that every element in RN is represented as (x, y, z, h), where x ∈
Rn, y ∈ Rn−2, z ∈ R(n−2)×n and h ∈ Rn2(n−2). With abuse of notation we can
consider z as a ((n − 2) × n)-matrix. Let T (z) denote the matrix obtained by
removing the first two columns of z. The Jacobian matrix JP is a function of the
derivatives (∂Pi

∂xj
, ∂2Pl

∂xk∂xs
)16i,l6n−2

16j,k,s6n
, it can thus be seen in the jet space as a function

of z and h, JP (z, h). Define the matrix T1(z, h) (resp. T2(z, h)) to be the sub-
matrix of JP (z, h) obtained by removing the first (resp. second) column. Define
the variety W = {(x, y, z, h) | y = 0 ∈ Rn−2, det(T (z)) = det(T1(z, h)) =

52

3.2. Genericity of the assumptions

det(T2(z, h)) = 0}, so that L′c is included in the pre-image of W under j2P̃ . Let
W1 = {(x, y, z, h) | y = 0 ∈ Rn−2, det(T (z)) = 0}, we already showed in the
proof of Proposition 3.2.12 that W1 is an irreducible variety of co-dimension n−1.
In addition, det(T1(z, h)) does not identically vanish on W1, thus W is a proper
sub-variety of the irreducible variety W1 and [CLO2007, §9.4 Prop 10] implies
that codim(W) > codim(W1) = n− 1.

Now, write W = Reg(W) ∪ Sing(W), where Reg(W) (resp. Sing(W)) is the
set of smooth (resp. singular) points in W. Recall that codim(Sing(W)) > n

since Sing(W) is a proper closed sub-variety of W [BCR1998, Proposition
3.3.14]. By Corollary 2.2.16, there exists a residual set Γ′ ⊂ C∞(Rn,Rn−2)

such that if P̃ ∈ Γ′, then the pre-image of Sing(W) under j2P̃ is empty. De-
fine Γ = {P̃ ∈ C∞(Rn,Rn−2) | j2P̃ is transverse to Reg(W)} ∩ Γ′. Notice that if
P̃ ∈ Γ, then L′c is included in the pre-image of Reg(W) under j2P̃ . Hence, since
codim(Reg(W)) = codim(W) > n, we have by Proposition 2.2.15 that L′c is a
sub-manifold of dimension, at most, zero. Thus, L′c is discrete for all P̃ ∈ Γ. Using
Theorem 2.2.14 we deduce that Γ is residual.

The proof that L′c does not intersect the boundary of B can be done analogously
as in the proof of Lemma 3.2.5.

Proposition 3.2.14. For a generic P̃ ∈ C∞(Rn,Rn−2), the function P satisfies
Assumption A4.

Proof. Consider the 2-multijet j1
(2)P̃ : ∆(2)(Rn) → J1

(2)(Rn,Rn−2) = (Rn ×
Rn−2 × R(n−2)×n)2 of the function P̃ ∈ C∞(Rn,Rn−2), where (Rn × R(n−2)×n ×
R(n−2)×n)2 is described by the coordinates x, x′ ∈ Rn, y, y′ ∈ Rn−2 and z, z′ ∈
R(n−2)×n. With abuse of notation we can consider z and z′ as ((n − 2) × n)- ma-
trices. Let T (z) (resp. T (z′)) denote the matrix obtained by removing the first two
columns of z (resp. z′). Define the variety W to be the solution set of the system
{y = y′ = 0, x1 − x′1 = x2 − x′2 = det(T (z)) = det(T (z′)) = 0}. Denote by
Reg(W) the regular part of W . By Proposition 2.1.4 (a) we deduce that W is of
co-dimension 2n. Using the same argument in the proof of Proposition 3.2.12, we
deduce that there exists a residual set Γ ⊂ C∞(Rn,Rn−2) such that if P̃ ∈ Γ,
then the image of ∆2(Rn) under j1

(2)P̃ is contained in Reg(W). Moreover, by

Proposition 2.2.15, we have that M1,2 = (j1
(2)P̃)−1(Reg(W)) = (j1

(2)P̃)−1(W) is
a sub-manifold of dimension zero in ∆2(Rn). Notice that L′n is the image of M1,2

under the projection (x, x′) → x. Since M1,2 is of dimension zero, then so is L′n.
Thus we have just proven that, if P̃ ∈ Γ, then L′n is a sub-manifold of dimension
zero. Hence, L′n is discrete.

53

Chapter 3. Generic space curve

The proof that L′n does not intersect the boundary of B can be done analogously
as in the proof of Lemma 3.2.5.

Assumption A3 can be rephrased by the three following assumptions:

A3(a) - There are no pairwise distinct q, q′, q′′ ∈ C such that πC(q) = πC(q′) =

πC(q′′).

A3(b) - L′c ∩ L′n = ∅.

A3(c) - For q ∈ L′c, the multiplicity of the system {P (x) = 0 ∈ Rn−1, (x1, x2) =

πC(q)} at q is exactly two.

Using this rephrasing, we next show that Assumptions A3(a) & A3(b) generically
hold and we leave the genericity of Assumption A3(c) as a conjecture.

Proposition 3.2.15. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assump-
tion A3(a) - holds.

Proof. Consider the 3-multijet j1
(3)P̃ : ∆(3)(Rn) → J1

(3)(Rn,Rn−2) = (Rn ×
Rn−2 × R(n−2)×n)3. Assume that every element in (Rn × Rn−2 × R(n−2)n)3 is of
the form ((x, y, z), (x′, y′, z′), (x′′, y′′, z′′)), where x, x′, x′′ ∈ Rn, y, y′, y′′ ∈ Rn−2

and z, z′, z′′ ∈ R(n−2)×n. With abuse of notation we can consider z, z′ and z′′ as
((n − 2) × n)-matrices. Let T (z), T (z′), T (z′′) denote the matrices obtained by
removing the first two columns of z, z′, z′′ respectively. Consider the variety W
defined by the equations: {x1 = x′1 = x′′1, x2 = x′2 = x′′2, y = y′ = y′′ = 0 ∈
Rn−2, det(T (z)) = det(T (z′)) = det(T (z′′)) = 0}.
Notice that dim(∆(3)(Rn)) = 3n < 3n + 1 = codim(W). Hence, by Corollary

2.2.16, we have that, generically, the pre-image of W under j1
(3)P̃ is empty. Hence,

there are no pairwise different q, q′, q′′ ∈ C such that πC(q) = πC(q′) = πC(q′′).

Proposition 3.2.16. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assump-
tion A3(b) - holds.

Proof. Consider the 2-multijet j2
(2)P̃ : ∆(2)(Rn) → J2

(2)(Rn,Rn−2) = (Rn ×
Rn−2 × R(n−2)×n × Rn2(n−2))2 of the function P̃ ∈ C∞(Rn,Rn−2), where
(Rn × R(n−2)×n × R(n−2)×n × Rn2(n−2))2 is described by the coordinates x, x′ ∈
Rn, y, y′ ∈ Rn−2, z, z′ ∈ R(n−2)×n and h, h′ ∈ Rn2(n−2). With abuse of notation
we can consider z and z′ as ((n− 2)× n)- matrices. Let T (z) (resp. T (z′)) denote
the matrix obtained by removing the first two columns of z (resp. z′). Define the
matrices T1(z, h), T2(z, h) as in the proof of Lemma 3.2.13 and the variety W to
be the solution set of the system {y = y′ = 0 ∈ Rn−2, x1 − x′1 = x2 − x′2 =

det(T (z)) = det(T (z′) = 0, det(T1(z, h)) = det(T2(z, h)) = 0}.

54

3.2. Genericity of the assumptions

Define varieties W ′ = {(x, y, z, h) | y = y′ = 0, det(T (z)) = det(T (z′)) =

0, x1 = x′1, x2 = x′2} and W ′′ = {(x, y, z, h) | y = y′ = 0, det(T1(z, h)) =

det(T2(z, h)) = 0}. Notice that W = W ′ ∩ W ′′. Moreover, we can find a
smooth silhouette curve C that is not an orthogonal line to (x1, x2)-plane and that
contains two distinct points q, q′, with πC(q) = πC(q′) such that the projection
of TqC (resp. Tq′C) onto R2 is injective. Notice that j2

(2)P̃ (q, q′) ∈ W ′ \ W ′′.

Hence, W ′ 6⊆ W ′′. Moreover, since W ′ is the Cartesian product of determinant
varieties (which are irreducible by Proposition 2.1.4(a)) with linear spaces, we
have that W ′ is also irreducible [BCR1998, Theorem 2.8.3 (iii)]. In other words,
W = W ′ ∩ W ′′ is a proper sub-variety of the irreducible variety W ′. Hence,
dim(W) = dim(W ′∩W ′′) < dim(W ′), equivalently, codim(W) > codim(W ′) =

2n. Hence, by Corollary 2.2.16 we have that, generically, the pre-image ofW under
j2

(2)P̃ is empty. Since, by Proposition 3.2.12, Assumption A1 (which is necessary
to guarantee that L′c is well-defined) is also generic, we imply that, generically,
there is no distinct pair q, q′ ∈ C such that πC(q) = πC(q′) and q ∈ L′c, equivalently,
L′c ∩ L′n = ∅ which proves the proposition.

We thus proved the following proposition that the silhouette of a generic surface
in Rn satisfies all assumptions except for AssumptionsA3(c) andA5− that we could
not prove. However, based on previous results with three variables [IMP2016b],
we formulate the following conjecture.

Proposition 3.2.17. For a generic function P̃ ∈ C∞(Rn,Rn−2), Assumptions A1,
A2, A3(a), A3(b) and A4 hold.

Conjecture 3.2.18. For a generic function P̃ ∈ C∞(Rn,Rn−2), AssumptionsA3(c)

and A−5 hold.

55

Chapter 3. Generic space curve

56

4

Modelling system

Contents
4.1 Encoding the singular points of the plane projection 57

4.2 Singularities induced by Ln . 64

4.3 Singularities induced by Lc . 64

4.4 Regularity of the Ball system . 73

Our goal in this chapter is, under our weak assumptions (Definition 3.1.1), to
encode the singularities of πC(C) by a square and regular (see Definition 4.4.1)
system, called the Ball system, so that it is solvable with certified numerical meth-
ods.

In Section 4.1, we define this system Ball(P). Then, we generically study the
plane projection of points in Ln in Section 4.2. In Section 4.3, we then locally
parametrize the curve around the points in Lc (Defined in Section 3.1.1) to simplify
the computation of Ball(P) and its Jacobian. In Section 4.4, we determine the
necessary and sufficient conditions for this system to be regular.

4.1 Encoding the singular points of the plane projection

By our Assumption A−5 , the singularities of the projected curve πC(C) are only
nodes and cusps. Intuitively, a node appears when two points of C project to the
same point and a cusp appears when projecting a point with a tangent line orthog-
onal to the projection plane (see Figure 4.1). The idea to encode the nodes is to
design a system whose variables are the coordinates of two different points in Rn

constrained to be on C and so that they have the same plane projection. To en-
code a cusp, we design a system whose variables are the coordinates of one point
in Rn constrained to be on C with a tangent orthogonal to the projection plane.

57

Chapter 4. Modelling system

C is smooth

πC(C)

Cusps

Node

(x1, x2, y)

(0, 0, r
√
t)

y ∈ Rn−2

x1

x2

(0, 0,−r
√
t)

(0, 0, r)

Figure 4.1: Illustration of a node and cusps in the plane projection of a smooth
curve.

Furthermore, in order to apply certified numerical methods we need systems that
are square and regular (Definition 4.4.1). To solve this issue and to gather the two
systems into a single one, we first parameterize two different points of C with the
same projection by (x1, x2, y+ r

√
t) and (x1, x2, y− r

√
t), with x1, x2, t ∈ R, y, r

in Rn−2 and ‖r‖ = 1, where ‖r‖ denotes the Euclidean norm of r. Then, given
any function f from Rn to R so that f = 0 is one of the n − 1 hypersurfaces that
define C, we introduce in Definition 4.1.1 two smooth functions S · f and D · f .
When t > 0, they return, roughly speaking, the arithmetic mean and difference of
f at the above two points, hence they both vanish if and only if the two points are
on the hypersurface f = 0. When t = 0, the two points coincide and S · f and
D · f return, roughly speaking, f evaluated at this point and the gradient of f (at
that point) scalar the “vertical” vector (0, 0, r); hence, they both vanish if and only
if the point is on the hypersurface f = 0 and its tangent hyperplane is normal to the
plane of projection. It follows that given a curve defined by P1 = · · · = Pn−1 = 0,
the solutions of the so-called Ball system of all S · Pi = D · Pi = 0 is the set of
points on the curve that project to nodes and cusps (Theorem 4.1.3). Note that we
consider

√
t instead of t in the parameterization (x1, x2, y ± r

√
t) for ensuring the

regularity of the Ball system when t = 0 (because this ensures that the linear term
of the Taylor expansion of D · f , with respect to t, does not vanish).

Definition 4.1.1. Let y, r be two variables in Rn−2 and t be a variable in R. For a

58

4.1. Encoding the singular points of the plane projection

smooth function f : B ⊂ Rn → R, we define the functions:

S ·f(x1, x2, y, r, t) =

{
1
2
[f(x1, x2, y + r

√
t) + f(x1, x2, y − r

√
t)], for t > 0

f(x1, x2, y), for t = 0

and

D·f(x1, x2, y, r, t) =


1

2
√
t
[f(x1, x2, y + r

√
t)− f(x1, x2, y − r

√
t)], for t > 0

∇f(x1, x2, y) · (0, 0, r) =
n∑
i=3

∂f
∂xi
ri, for t = 0.

Lemma 4.1.2. If f is a smooth function defined on B ⊆ Rn, then both S · f and
D · f are smooth functions on the subset

BBall = {(x1, x2, y, r, t) ∈ R × R × Rn−2 × Rn−2 × R | t > 0, (x1, x2, y ± r
√
t) ∈ B, ‖r‖2 = 1} of

R2n−1, where ‖r‖ denotes the Euclidean norm of r.

Proof. On the subset BBall with t > 0, both S · f(x1, x2, y, r, t) and D ·
f(x1, x2, y, r, t) are the compositions of smooth functions, hence they are smooth
functions.

For a point X = (x1, x2, y, r, t) in BBall with t = 0, we will prove that S · f (resp.
D · f) is a Cs function for an arbitrarily s which implies that S · f (resp. D · f) is
smooth.

First define the function

S0 · f(x1, x2, y, r, t) =

{
1
2
[f(x1, x2, y + rt) + f(x1, x2, y − rt)], for t > 0

f(x1, x2, y), for t = 0.

Since S0 · f(x1, x2, y, r, t) is an even smooth function with respect to t, the par-
tial derivatives of S0 · f with respect to t of odd orders, evaluated at X , are
zero. For an integer s > 0, by the parametrized Taylor formula without remain-
der [Dem2000, Proposition 4.2.2], there exist smooth functions ai(x1, x2, y, r),

with integers 0 6 i < s such that S0 · f(x1, x2, y, r, t) =
s−1∑
i=0

ai(x1, x2, y, r)t
2i +

t2s · φ(x1, x2, y, t), where φ(x1, x2, y, t) is a smooth function. Notice that S ·

f(x1, x2, y, r, t) =
s−1∑
i=0

ai(x1, x2, y, r)t
i+ts·φ(x1, x2, y,

√
t), so that a partial deriva-

tive exists up to order s at t = 0. Thus, S · f(x1, x2, y, r, t) is a Cs−1 function. This
holds for any arbitrarily large s, hence S · f(x1, x2, y, r, t) is a C∞ function.

Now, we prove that D · f is continuous at X = (x1, x2, y, r, 0). Let Xi be a
sequence that converges to X . To prove that D · f(Xi) converges to D · f(X),
it is enough to show that for a sequence ti that converges to 0, then we have that
D · f(x1, x2, y, r, tn) converges to D · f(X). We can assume that ti 6= 0 for all i,
so that

59

Chapter 4. Modelling system

lim
ti→0

D · f(x1, x2, y, r, ti) = lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− f(x1, x2, y − r

√
ti)]

= lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− (f(x1, x2, y)−

f(x1, x2, y))− f(x1, x2, y − r
√
ti)]

= lim
ti→0

1

2
√
ti

[f(x1, x2, y + r
√
ti)− f(x1, x2, y)]

+ lim
ti→0

1

2
√
ti

[f(x1, x2, y)− f(x1, x2, y − r
√
ti)]

=
1

2
∇f · (0, 0, r)− 1

2
∇f · (0, 0,−r)

= ∇f · (0, 0, r).

We now prove thatD ·f is smooth atX . Similarly to the proof of the case of S ·f ,
since the function 1

2
[f(x1, x2, y + rt) − f(x1, x2, y − rt)] is odd with respect to t,

there exist smooth functions bi(x1, x2, y, r), for 1 6 i < s and ψ(x1, x2, y, r, t)

such that 1
2
[f(x1, x2, y + rt) − f(x1, x2, y − rt)] =

s−1∑
i=0

bi(x1, x2, y, r)t
2i+1 +

t2s+1 · ψ(x1, x2, y, t). Notice that D · f(x1, x2, y, r, t) =
s−1∑
i=0

bi(x1, x2, y, r)t
i +

ts · ψ(x1, x2, y,
√
t), so that a partial derivative exists up to order s at t = 0. Thus,

D · f(x1, x2, y, r, t) is a Cs−1 function. This holds for any arbitrarily large s, hence
D · f(x1, x2, y, r, t) is a C∞ function.

By Lemma 4.1.2, we can build our Ball system based on the smooth operators S
and D. We state the main theorem of this section.

Theorem 4.1.3. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) satisfy Assump-
tionsA1,A2,A3 andA4. Then, X = (x1, x2, y, r, t) ∈ R×R×Rn−2×Rn−2×R
is a solution of the Ball system

Ball(P) =


S · P1(X) = · · · = S · Pn−1(X) = 0

D · P1(X) = · · · = D · Pn−1(X) = 0

‖r‖2 − 1 = 0

(4.1)

if and only if (x1, x2) is a singular point of πC(C) (see Definition 4.1.1 for the
notation S · Pi and D · Pi).

We postpone the proof of Theorem 4.1.3 to the end of Section 4.3.

60

4.1. Encoding the singular points of the plane projection

Remark 4.1.4. The purpose behind the last equation ‖r‖2 − 1 = 0 in Ball(P)

is to impose the constraint that r is not trivial. Hence, the equation ‖r‖2 − 1 =

0 can be replaced with a different constraint. However, this condition is first a
polynomial constraint. Second, it provides clear bounds of r when solving Ball(P).
In addition, as a special case, for n = 3, r then consists of one variable. Thus, the
equalities 0 = ‖r‖2 − 1 = r2

3 − 1 imply r3 = ±1 which reduces the complexity of
solving Ball(P).

We now study a mapping from the solutions of the Ball system to pairs of points
on the curve C.

Definition 4.1.5. Let P ∈ C∞(Rn,Rn−1). Define L̂n to be the set of pairs (q1, q2)

with q1, q2 ∈ C, q1 6= q2 and πC(q1) = πC(q2), also define L̂c to be the set of pairs
(q1, q1) with q1 ∈ Lc, and let L̂ = L̂n ∪ L̂c.

Lemma 4.1.6. Consider P = (P1, . . . , Pn−1) ∈ C∞(Rn,Rn−1) and let X =

(x1, x2, y, r, t) ∈ R × R × Rn−2 × Rn−2 × R, with ‖r‖ = 1. Assume that P
satisfies Assumption A1. Then X is a solution of Ball(P) if and only if for the
points q1 = (x1, x2, y+ r

√
t) and q2 = (x1, x2, y− r

√
t), the pair (q1, q2) is in L̂n,

or in L̂c with (0, 0, r) ∈ R× R× Rn−2 in Tq1C.

Proof. Note that, by Assumption A1, the tangent space to the curve at any of its
points is well defined and is a line. First, assume that X is a solution of Ball(P).
We consider two cases:

(a) If t > 0, then since r 6= 0 ∈ Rn−2 we have that q1 6= q2. Moreover, since
S ·Pi(X) = D ·Pi(X) = 0 for all i ∈ {1, . . . , n−1}, we deduce that Pi(q1) =

Pi(q2) = 0, thus q1, q2 ∈ C. Moreover, since πC(q1) = πC(q2) = (x1, x2) we
have q1, q2 ∈ Ln. Thus, (q1, q2) ∈ L̂n.

(b) If t = 0, then q1 = q2. First, Pi(q1) = S · Pi(X) = 0, for all indices
i ∈ {1, . . . , n − 1}, hence q1 ∈ C. Moreover, we have that 0 = D · Pi(X) =

∇Pi(q1) ·(0, 0, r), for all i ∈ {1, . . . , n−1}, equivalently, JP (q1) ·(0, 0, r)T =

0 ∈ Rn−1, i.e., we have (0, 0, r) ∈ Tq1C. Thus, q1 ∈ Lc and hence, (q1, q1) ∈
L̂c.

Now, let us prove the other direction:

(a) If (q1, q2) ∈ L̂n, then q1 6= q2 and t 6= 0. Also, since q1, q2 ∈ C, we can write
that S · Pi(X) = 1

2
(Pi(q1) + Pi(q2)) = 0, and D · Pi(X) = 1

2
√
t
(Pi(q1) −

Pi(q2)) = 0, for all i ∈ {1, . . . , n− 1}. Thus, X is a solution of Ball(P).

61

Chapter 4. Modelling system

(b) If (q1, q2) ∈ L̂c and (0, 0, r) ∈ R × R × Rn−2 is in Tq1C, one has q1 =

q2 ∈ Lc ⊆ C, and t = 0. Moreover, for all i ∈ {1, . . . , n − 1} we have
S · Pi(X) = Pi(q1) = 0 and since (0, 0, r) ∈ Tq1C, we can equivalently write
D · Pi(X) = ∇Pi(q1) · (0, 0, r) = 0. Thus, X is a solution of Ball(P).

Definition 4.1.7. Let SolBall(P) be the solution set of Ball(P). Define the function
ΩP from SolBall(P) to L̂ that sendsX = (x1, x2, y, r, t) ∈ R×R×Rn−2×Rn−2×R
to the ordered pair q1 = (x1, x2, y + r

√
t) and q2 = (x1, x2, y − r

√
t). Notice that

the function ΩP is well-defined by Lemma 4.1.6.

Lemma 4.1.8. If P ∈ C∞(Rn,Rn−1) satisfies Assumption A1, then ΩP is surjec-
tive.

Proof. For any pair (q1, q2) ∈ L̂n we have that the point X = (1
2
(q1 +

q2), ΠC(q1−q2)
‖q1−q2‖ ,

1
4
‖q1 − q2‖2) ∈ Rn × Rn−2 × R is a solution of Ball(P), where

ΠC(q1 − q2) is the vector in Rn−2 obtained by omitting the first two coordinates
(which are zeros) from q1 − q2. Note that ΩP (X) = (q1, q2). If the pair (q1, q1)

is in L̂c, we define r in the following way, we take a unit vector v ∈ Tq1C (the
first two coordinates of v are zeros since q1 ∈ Lc). We set r to be ΠC(v). Again
X = (q1, r, 0) ∈ Rn × Rn−2 × R is a solution of Ball(P), with ΩP (X) = (q1, q1).
Thus, ΩP is surjective.

Remark 4.1.9. Notice that ifX = (x1, x2, y, r, t) is in SolBall(P), then ΩP (X) ∈ L̂n

(resp. ΩP (X) ∈ L̂c) if and only if t 6= 0 (resp. t = 0).

Remark 4.1.10. Preserving the notation in Lemma 4.1.6, notice that if X =

(x1, x2, y, r, t) is a solution of Ball(P), then X ′ = (x1, x2, y,−r, t) is another so-
lution. Moreover, both solutions characterize the same unordered pair ΩP (X) =

ΩP (X ′) = (q1, q2). We call X and X ′ twin solutions. An alternative choice would
have been to take r in a projective space instead of the sphere to identify these twin
solutions.

Example 4.1.11. Let n = 3 and B = {(x1, x2, x3) ∈ R3 | x1, x2, x3 ∈ [−2, 2]}.
Define P1(x1, x2, x3) = x1 − (x3 − 1)3, P2(x1, x2, x3) = x2 − (x3 − 1)2 and
P = (P1, P2).

The Jacobian matrix of P has full rank over C, thus Assumption A1 is satisfied.
The set Ln is empty since πC is injective over C, hence Assumption A4 is satis-
fied. The only point of C with a tangent line orthogonal to the (x1, x2)-plane is
q1 = (0, 0, 1), thus Lc = {q1} and Assumption A2 is satisfied. By Lemma 4.3.2,
the multiplicity of the system {P = 0, (x1, x2) = πC(q1)} at its unique solution
q1 is min{ord1((x3 − 1)3), ord1((x3 − 1)2)} = min{3, 2} = 2 (ord is defined in

62

4.1. Encoding the singular points of the plane projection

Figure 4.2: The curve C (red) and its plane projection πC(C) (blue) of Exam-
ple 4.1.11 displaying a cusp singularity.

Definition 2.2.8). Moreover, for any point q0 ∈ C different from q1, the multiplic-
ity of the corresponding system at its unique solution q0 is one, thus P satisfies
Assumption A3. The system Ball(P):



x1 − 3r2ty + 3r2t− y3 + 3y2 − 3y + 1 = 0

x2 − r2t− y2 + 2y − 1 = 0

−r3t− 3ry2 + 6ry − 3r = 0

−2ry + 2r = 0

r2 − 1 = 0

(4.2)

has two twin solutions X = (0, 0, 1, 1, 0) and X ′ = (0, 0, 1,−1, 0) in BBall(P) ⊂
R2·3−1 = R5 such that ΩP (X) = ΩP (X ′) = (q1, q1) ∈ L̂c.

63

Chapter 4. Modelling system

Example 4.1.12. Let B be defined as in Example 4.1.11. Define the functions
P1(x1, x2, x3) = x1− (x2

3− 1), P2(x1, x2, x3) = x2− (x3
3−x3) and P = (P1, P2).

The Jacobian matrix of P has full rank over C, thus Assumption A1 is satis-
fied. Moreover, the set Lc is empty and Ln = {q1, q2}, with q1 = (0, 0, 1), q2 =

(0, 0,−1), i.e., AssumptionsA2 andA4 are satisfied. The multiplicity of the system
{P = 0 ∈ Rn−1, x1 = x2 = 0} at both q1, q2 is equal to one, thus Assumption A3

is also satisfied. The system Ball(P):

x1 − r2t− y2 + 1 = 0

x2 − r2ty − y3 + y = 0

−2ry = 0

−r3t− 3ry2 + r = 0

r2 − 1 = 0

(4.3)

has two twin solutions X = (0, 0, 0, 1, 1) and X ′ = (0, 0, 0,−1, 1) in R5 such that
ΩP (X) = ΩP (X ′) = (q1, q2) ∈ L̂n.

4.2 Singularities induced by Ln

Under AssumptionsA1,A2,A3 andA4, we studied in Lemma 3.2.7 the singularity
types of the projection of the points in Ln. More precisely, for q ∈ Ln, the point
πC(q) is the intersection of two branches of πC(C), that is, the curve πC(C) at the
point πC(q) is either an A2k+1 singularity with k > 0 or equivalent to a curve
defined by x2

1−g(x2
2) at the origin, with ord(g) =∞. In both cases, the point πC(q)

is a singularity in πC(C). Under our weak or strong assumptions, the singularity
type of πC(q) is A1 (see Definition 2.2.4). We prove in Section 4.4 that this implies
the regularity of our Ball system (defined in (4.1)).

Recall that in Lemma 3.2.6 we studied, under Assumptions A1, A2, A3 and A4,
the plane projection of points in C \ (Lc ∪ Ln). Hence, in order to complete the
classification of the points in πC(C) under the latter assumptions, we study in the
next section the plane projection of the points in Lc.

4.3 Singularities induced by Lc

We now study the types of singularities of the plane curve πC(C) obtained by pro-
jecting points in Lc, that is when the tangent to C is orthogonal to the projection
plane. We start by locally parameterizing C around a point in Lc. This parameteri-
zation will ease the computation of Ball(P) and its Jacobian in Section 4.4.

64

4.3. Singularities induced by Lc

Figure 4.3: The curve C (red) and its plane projection πC(C) (blue) of Exam-
ple 4.1.12 displaying a node singularity.

In the rest of this section and Section 4.4, the analysis is simplified by translating
relevant points or assuming the curve C is parameterizable by a specific variable.
On the other hand, in the algorithms presented in Chapter 5, the input is not mod-
ifiable at all but every computation uses interval arithmetic. This implies that the
exact coordinates of a point may not be known, instead we only compute with a
box containing it and isolating it from other relevant points. The idea of our semi-
algorithms is to check that some function does not vanish on such a box. This then
implies that such a function does not vanish at the point this box contains. The
theoretical analysis of this section can then be applied to the point to deduce the
appropriate property without the knowledge of the exact location of that point.

Lemma 4.3.1. Let P ∈ C∞(Rn,Rn−1). Let q ∈ Lc such that Assumption A1 is
satisfied in a neighbourhood of q in B. Without loss of generality one can assume

65

Chapter 4. Modelling system

q = 0 ∈ Rn. Then there exist an invertible matrix M of size (n − 1) × (n − 1) of
smooth functions in a neighbourhood of q and smooth functions f1, f2, f3, . . . , fn−1

defined in a neighbourhood of 0 ∈ R, such that:

x1 − f1(xn)

x2 − f2(xn)

x3 − f3(xn)

. . .

. . .

xn−1 − fn−1(xn)


= M ·



P1

P2

P3

. . .

. . .

Pn−1


, (4.1)

with min{ord(f1(xn)), ord(f2(xn))} > 1 (ord is defined in Definition 2.2.8).

Proof. Since rank(JP (q)) = n − 1 (Assumption A1), there exists k ∈ {1, . . . , n}
such that det(Mk(q)) 6= 0, where Mk is the sub-matrix of JP obtained by re-
moving the k-th column. Notice that k 6∈ {1, 2}, since q ∈ Lc implies that
det(M1(q)) = det(M2(q)) = 0. Without loss of generality, we assume that
k = n. Using the implicit function theorem [Corollary 2.7.3][Dem2000], there
exist smooth functions f1, . . . , fn−1 (see Figure 4.4) of one variable such that we
have that

Pj(f1(xn), . . . , fn−1(xn), xn) = 0, j ∈ {1, . . . n− 1}. (4.2)

Define the function ϕ that maps xi to zi = xi − fi(xn), for all i ∈ {1, . . . , n− 1}
and xn to zn = xn. We can see that ϕ is a diffeomorphism and z = (z1, . . . , zn)

is a local coordinate system around q. Hence, we can define the function
Gj(z) = Pj ◦ ϕ−1(z) = Pj(x) for all integers 1 6 j 6 n − 1. Using
Hadamard‘s Lemma [Dem2000, Proposition 4.2.3] for the first n − 1 variables

of z, we can write Gj(z)−Gj(0, . . . , 0, zn) =
n−1∑
i=1

zi ·hji(z) for some smooth func-

tions hji. Note that ϕ−1(z) = (z1 + f1(zn), . . . , zn−1 + fn−1(zn), zn). Hence,
Gj(0, . . . , 0, zn) = Pj ◦ ϕ−1(0, . . . , 0, zn) = Pj(f1(zn), . . . , fn−1(zn), zn) =

Pj(f1(xn), . . . , fn−1(xn), xn). The latter function is equal to zero by (4.2). Thus,

Pj(x) = Gj(z) =
n−1∑
i=1

zi · hji(z) =
n−1∑
i=1

(xi − fi(xn)) · Hji(x), with Hji(x) =

hji ◦ ϕ(x).

Defining M0 =
(
Hji

)
16j,i6n−1

we get:
P1

. . .

. . .

Pn−1

 = M0 ·


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 .

66

4.3. Singularities induced by Lc

Notice that M0 evaluated at q is the invertible matrix Mn(q). Hence, by continuity
of the determinant function, there is a neighbourhood of q in whichM0 is invertible.
Thus, writing M as the inverse of M0 we get:

Q0 =


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 = M ·


P1

. . .

. . .

Pn−1

 . (4.3)

To prove that min{ord(f1(xn)), ord(f2(xn))} > 1, we take the Jacobian matrices
of both sides of (4.3) and we evaluate them at q = 0. We get the equation JQ0(q) =

M(q) · JP (q). By invertibility of M(q) we deduce that the k-th sub-matrices, ob-
tained by removing the k-th column, of JQ0(q) and JP (q) have the same rank.
Computing JQ0(q) and considering the fact that det(M1(q)) = det(M2(q)) = 0

implies that f ′1(0) = f ′2(0) = 0, we thus have that min{ord(f1(xn)), ord(f2(xn))}
is at least two.

Lemma 4.3.2. Preserving the notation and the assumptions in Lemma 4.3.1, the
multiplicity m of the system S = {Q0(x) = 0 ∈ Rn−1, x1 = x2 = 0} at q is equal
to d = min{ord(f1(xn)), ord(f2(xn))}.

Proof. First, we start with the case m < ∞. By Proposition 2.2.11, we can
assume, without loss of generality, that f1, . . . , fn−1 are polynomials. Follow-
ing the notation in Definition 2.1.1, let R[x] (resp. R[xn]) be the ring of poly-
nomials with n variables (resp. one variable) and R[x]q (resp. R[xn]0) be its
localization at q (resp. 0 ∈ R). Also, define IS to be the ideal generated
by the polynomials of S in R[x]q (as IG is defined in Definition 2.1.1), i.e.,
IS = 〈x1− f1(xn), x2− f2(xn), . . . xn−1− fn−1(xn), x1, x2〉 = 〈x1− f1(xn), x2−
f2(xn), . . . xn−1 − fn−1(xn), f1(xn), f2(xn)〉. If f1(xn) = f2(xn) = 0, then
the ideal IS is of dimension one, hence, S has an infinite number of solutions
which contradicts the assumption that m < ∞. Thus, d < ∞ which means
that there exist h1, h2 ∈ R[xn]0 such that h1(xn)f1(xn) + h2(xn)f2(xn) = xdn.
Thus, IS = 〈x1 − f1(xn), x2 − f2(xn), . . . , xn−1 − fn−1(xn), xdn〉. Note that
the set {x1 − f1(xn), x2 − f2(xn), . . . xn−1 − fn−1(xn), xdn} is a Gröbner basis
of IS with respect to Local Lexicographical ordering x1 > · · · > xn. Hence,
by Theorem 2.1.2, we have dim(R[x]q

IS
) = dim(R[x]q

LT (IS)
) = dim(R[x]q

〈x1,x2,...xn−1,xdn〉
),

where LT (IS) is the ideal generated by the leading terms of IS . Consequently,
m = dim(R[x]q

IS
) = dim(R[xn]0

〈xdn〉
) = d.

Second, assume that m =∞. We prove that d =∞, that is, ∂
kf1
∂xkn

(0) = ∂kf2
∂xkn

(0) =

0 for any positive integer k. Preserving the notation in Definition 2.2.10, consider

67

Chapter 4. Modelling system

x3

x1

x2

q

C

(a) The curve C in R3 where q ∈ Lc.

x3

x1

x1 = f1(x3)

(b) x1 is locally a smooth function of x3 at q.

x3

x2

x2 = f2(x3)

(c) x2 is locally a smooth function of x3

at q.

Figure 4.4: An example of Lemma 4.3.1 for n = 3.

68

4.3. Singularities induced by Lc

the dual space Dk
q [S]. We are going to show that for any positive integer k and

any element c ∈ Dk
q [S] \ Dk−1

q [S] (which always exists since m = ∞), the coef-
ficient cxkn corresponding to ∂k

∂xkn
, for c, is non-zero. We consequentially show that

∂kf1
∂xkn

(0) = ∂kf2
∂xkn

(0) = 0. We prove the previous statements by induction on k.

For k = 1, since q ∈ Lc, we already showed in the proof of Lemma 3.2.3 that a

non-trivial element c =
n∑
i=1

vi
∂
∂xi

is in D1
q [S] \D0

q [S] if and only if v = (v1, . . . , vn)

is in TqC. On the other hand, TqC is generated by the vector (f ′1(0), . . . f ′n−1(0), 1),
thus cx1n = vn 6= 0. The function f1(xn) is in the set of functions generated by S

thus 0 = c · (f1(xn)) =
n∑
i=1

vi
∂
∂xi q
· (f1(xn)) = cx1n

∂f1
∂xn

(0), and hence ∂f1
∂xn

(0) = 0.

Thus, the induction hypothesis holds for k = 1.

For k > 1, define c′ = φn(c) and consider two cases:

(a) c′ ∈ Dk−1
q [S] \ Dk−2

q [S]: By the induction hypothesis, the coefficient c′
xk−1
n

corresponding to ∂k−1

∂xk−1
n

for c′ is non-zero and ∂k
′
f1

∂xk′n
(0) = ∂k

′
f2

∂xk′n
(0) = 0, for all

k′ < k. Notice that by the definition of φn, we have cxkn = c′
xk−1
n
6= 0. Hence,

0 = c · f1(xn) =
k∑
i=1

cxin
∂if1
∂xin

(0) = cxkn
∂kf1
∂xkn

(0). Hence, ∂
kf1
∂xkn

(0) = 0. Similarly,

we prove that ∂
kf2
∂xkn

(0) = 0. Thus in Case (a), the lemma is proved.

(b) c′ ∈ Dk−2
q [S]: Since c ∈ Dk

q [S] \ Dk−1
q [S], there exists j ∈ {1, . . . , n − 1}

such that the element c′′ = φj(c) is in Dk−1
q [S] \ Dk−2

q [S]. By the induction
hypothesis, the coefficient c′′

xk−1
n

corresponding to ∂k−1

∂xk−1
n

for c′′, is non-zero.

On the other hand, cxjxk−1
n

= c′′
xk−1
n
6= 0. Hence, since φn(cxjxk−1

n

∂k

∂xj∂x
k−1
n

) ∈
Dk−1
q [S] \ Dk−2

q [S], then so is φn(c) = c′ which contradicts the assumption.
Thus, Case (b) is impossible.

With the additional Assumptions A2, A3 and A4, one can give a more precise
form of f1 and f2 in Equation (4.1).

Lemma 4.3.3. Let P ∈ C∞(Rn,Rn−1). Let q ∈ Lc such that AssumptionsA1,A2,
A3 and A4 in B, then there exist an invertible matrix M̃ of size (n− 1)× (n− 1)

of smooth functions in a neighbourhood of q, a smooth diffeomorphism ϕ defined
in an open subset of Rn, with z = (z1, . . . , zn) = ϕ−1(x) and smooth functions

69

Chapter 4. Modelling system

f3, . . . , fn−1, g defined in a neighbourhood of 0 ∈ R, such that

Q =



z1 − zn · g(z2
n)

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


= M̃ ·



P1

P2

P3

. . .

. . .

Pn−1


◦ ϕ, (4.4)

on a neighbourhood of q. Moreover, either ord(g(zn)) = ∞ or there exists an
integer k > 0 with g(zn) = zkn.

Proof. Step 1: Equation (4.3) implies that Q0 and P define the same curve C in a
neighbourhood of q and that the function Q0 satisfies the same assumptions as P
around q. By Lemma 4.3.2, d = min{ord(f1(xn)), ord(f2(xn))} is the multiplicity
of the system {Q0(x) = 0 ∈ Rn−1, x1 = 0, x2 = 0} at q. By Assumption A3, we
have that d = 2.

Without loss of generality, assume that ord(f2(xn)) = 2 and ∂2f2
∂x2n

(0) = 2. Hence,
there is a smooth function v such that f2(xn) = x2

n(1 + xn · v(xn)). Now, consider
the diffeomorphism φn that sends xn to zn = xn

√
1 + xn · v(xn). We have that

x2− f2(xn) = x2− z2
n. Define f̃1(zn) = f1(φ−1

n (zn)) and f̃2(zn) = f2(φ−1
n (zn)) =

z2
n. Since ord(f̃1(zn)) = ord(f1(xn)) > d = 2, there exists a smooth function
h such that f̃1(zn) = z2

nh(zn). Write f̃1(zn) = z2
n[h(zn)+h(−zn)

2
+ h(zn)−h(−zn)

2
].

Since h(zn)+h(−zn)
2

(resp. h(zn)+h(−zn)
2

) is even (resp. odd), then by Theorem 2.2.2
there exists a smooth function ξ1 (resp. ξ2) such that h(zn)+h(−zn)

2
= ξ1(z2

n) (resp.
h(zn)−h(−zn)

2
= znξ2(z2

n)). Thus, f̃1(zn) = z2
n(ξ1(z2

n)+znξ2(z2
n)). Notice that ξ2(x2

n)

cannot be the zero function, otherwise f̃1(ε) = f̃1(−ε) and f̃2(ε) = f̃2(−ε) for all
small enough ε > 0, which contradicts Assumption A4.

Step 2: We have two cases:

Case 1: ord(ξ2(zn)) = ∞, then define the diffeomorphism φ which sends x1 to
z1 = x1 − x2ξ1(x2), xi to zi = xi for all integers i ∈ {2, . . . , n − 1} and xn to
zn = xn

√
1 + xn · v(xn). Taking g(zn) = znξ2(zn) and ϕ = φ−1 we prove the

claim for the first case.

Case 2: ord(ξ2(zn)) = k < ∞, that is, ξ2(zn) = zknu(zn), for some smooth
function u, with u(0) 6= 0 and an integer k > 0. Hence, we can write x1− f̃1(zn) =

x1 − z2
nξ1(z2

n)− z2k+3
n u(z2

n) = x1 − x2ξ1(x2)− z2k+3
n u(x2).

So, defining the diffeomorphism φ which sends xi to zi = xi for all integers
i ∈ {2, . . . , n − 1}, xn to zn = xn

√
1 + xn · v(xn) and x1 to z1 = (x1 −

x2ξ1(x2))u−1(x2) (which means that x1 − f1(xn) = u(x2)[z1 − z2k+3
n]), we get

70

4.3. Singularities induced by Lc

that:


x1 − f1(xn)

. . .

. . .

xn−1 − fn−1(xn)

 =

(
u(x2) 01×(n−2)

0(n−2)×1 In−2

)
·



z1 − z2k+3
n

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


◦ φ, (4.5)

for a small enough neighbourhood of q, where In−2 is the identity matrix of size
n− 2. Comparing with (4.1), we get:

M ·



P1

P2

P3

. . .

. . .

Pn−1


=

(
u(x2) 01×(n−2)

0(n−2)×1 In−2

)
·



z1 − z2k+3
n

z2 − z2
n

z3 − f3(zn)

. . .

. . .

zn−1 − fn−1(zn)


◦ φ. (4.6)

Hence, taking M̃ =

(
u(x2) 01×(n−2)

0(n−2)×1 In−2

)−1

·M and ϕ = φ−1 we recover (4.4).

Following the conclusion of Lemma 4.3.3, the reader may wonder whether the
projection of q in πC is always singular. This is clear when g(xn) = xkn for 0 < k <

∞ since this implies z2
1 − zk+1

2 = 0 and thus πC(q) is a singularity of the type A2k.
We next prove that the projection is also singular if ord(g(zn)) =∞.

Lemma 4.3.4. Preserving the notation and the assumptions in Lemma 4.3.3, con-
sider the function g defined in (4.4), if ord(g(zn)) = ∞, then πC(q) is singular in
πC(C).

Proof. Since ord(g(zn)) = ∞, then Case 1 in the proof of Lemma 4.3.3 holds.
Moreover, we saw in the same proof that ξ2(z2

n) (restricted to an open neighbour-
hood of 0 ∈ R) cannot be the zero function. This implies that neither is the func-
tion g(z2

n) = z2
nξ(z

2
n), i.e., g(z2

n), restricted to an open neighbourhood of 0 ∈ R, is
not the zero function. Assume for the sake of contradiction that πC(q) is smooth in
πC(C), then using the implicit function theorem, there exists a C∞-function defined
in a neighbourhood of 0 in R, with f(0) = 0 such that for a small neighbourhood
of πC(q) in R2, one of the following cases is satisfied:

71

Chapter 4. Modelling system

x1 = xng(x
2
n)

x2 = x2n
ord(g(xn)) = ∞

A 2k
sin
gu
la
rit
y
, w
ith

k
>
1

A 2
sin
gu
lar
ity

Figure 4.5: Comparing the singularities considered in Lemma 4.3.4 with A2k+1

types.

(a) f(z1) = z2 ⇐⇒ (z1, z2) ∈ πC(C). Then, by (4.4), we have f(zng(z2
n)) =

z2
n. Taking the second derivative of both sides with respect to zn and then

evaluating at 0 (recall that ord(g(zn)) =∞), we get the contradiction 0 = 2.

(b) f(z2) = z1 ⇐⇒ (z1, z2) ∈ πC(C). Then f(z2
n) = zng(z2

n). The function
zng(z2

n) is an odd function but not the zero function, and on the other hand
f(z2) is an even function, which leads to a contradiction.

Thus, in both cases we have a contradiction, that is, f does not exist and πC(q)

cannot be smooth in πC(C).

Returning to (4.4), notice that ϕ is defined in such a way that it preserves the
singularity class of πC(C) at the point πC(q). In other words, if C is the plane
projection of the curve defined by the Q then (πC(C), 0) and (C, 0) are equivalent.
As a corollary of Lemmas 3.2.6, 3.2.7, 4.3.3 and 4.3.4, the points of C in Lc ∪ Ln

are projected to the singular points of πC(C).

Corollary 4.3.5. If P satisfies AssumptionsA1,A2,A3 andA4, then a point q ∈ C

projects to a singular point in πC(C) if and only if q ∈ Lc ∪ Ln.

72

4.4. Regularity of the Ball system

Proof. If q ∈ Lc ∪ Ln, then by Lemmas 3.2.7, 4.3.3, and 4.3.4, πC(q) is singular in
πC(C). If q 6∈ Lc ∪ Ln, then by Lemma 3.2.6, πC(q) is smooth in πC(C).

Finally, we prove that the solutions of the Ball system project to the singular points
of πC(C).

Proof of Theorem 4.1.3: By Corollary 4.3.5, if (x1, x2) is singular in πC(C), then
there exists a point q1 ∈ Lc∪Ln,with πC(q1) = (x1, x2). If q1 ∈ Lc, let q2 = q1 and
otherwise let q2 be the unique (by Assumption A3) point in Ln, distinct from q1,
that projects onto (x1, x2), i.e. πC(q1) = πC(q2) = (x1, x2). Hence, (q1, q2) is in L̂.
Since ΩP is surjective (Lemma 4.1.8), there existsX = (x1, x2, y, r, t) ∈ SolBall(P)

with ΩP (X) = (q1, q2).

On the other hand, if X is a solution of Ball(P), then by Lemma 4.1.6 the pair
(q1, q2) = ΩP (X) is in L̂. Hence, q1 = (x1, x2, y + r

√
t) ∈ R × R × Rn−2 is in

Lc ∪ Ln. Hence, by Corollary 4.3.5 the point (x1, x2) is singular in πC(C).

4.4 Regularity of the Ball system

In this section, our goal is to prove Theorem 4.4.2 determining, under generic as-
sumptions, necessary and sufficient conditions for Ball(P) to be regular. We first
recall the definition of a regular system.

Definition 4.4.1. For some integer m 6 n, let F = (f1, . . . , fm) be a vector of
smooth real-valued functions that are defined in Rn and let a ∈ Rn be a solution of
the system {F = 0}. We say that the latter system is regular at a ∈ Rn if the rank
of its Jacobian matrix, evaluated at a, equals to m. We call {F = 0} regular if it is
regular at all of its solutions.

Theorem 4.4.2. Let P ∈ C∞(Rn,Rn−1) that satisfies Assumptions A1, A2, A3

and A4, then P satisfies Assumption A5 if and only if Ball(P) is regular in BBall.

In order to prove Theorem 4.4.2, we are going to show that the Jacobian matrices
of Ball(P) and Ball(Q) evaluated at X have the same rank, where Q is defined in
Equation (4.4). Recall that Equation (4.4) implies that P and Q define the same
curve around q. Notice also that ifX = (q, r, 0) ∈ Rn×Rn−2×R is in Ω−1

P ((q, q)),
then X ∈ Ω−1

Q ((q, q)).

Lemma 4.4.3. Let P and Q be as defined in (4.4). Under Assumption A1, let
(q, r, 0) ∈ Rn×Rn−2×R be a solution of the system Ball(P) inBBall, then Ball(P)

is regular at (q, r, 0) if and only if Ball(Q) is regular at the point (0, r, 0) ∈ Rn ×
Rn−2 × R (recall that for simplicity, we assume in Lemma 4.3.3 that q = 0 ∈ Rn).

73

Chapter 4. Modelling system

Proof. Let us write X = (q, r, 0). We are going to prove that the Jacobian matrices
of Ball(P) and Ball(Q) evaluated at X have the same rank. By Remark 4.1.9
we have that ΩP (X) = (q, q) ∈ L̂c (see Definitions 4.1.7 and 4.1.5), and hence,
q ∈ Lc. By Lemma 4.1.6 we have that (0, 0, r) ∈ TqC. We prove the claim in three
steps:

Step 1: Let M̃ = (fij)16i,j6n−1 be as defined in the Equality (4.4). We define
S · M̃ (resp. D · M̃) to be the matrix (S · fij)16i,j6n−1 (resp. (D · fij)16i,j6n−1).
Using the identity 1

2
(ab + cd) = 1

4
(a + c)(b + d) + 1

4
(a − c)(b − d), one deduces

the properties for any f, g ∈ C∞(Rn,R):

S · fg = (S · f)(S · g) + t(D · f)(D · g) (4.1)

D · fg = (D · f)(S · g) + (S · f)(D · g) (4.2)

These identities applied to Equation (4.4) yield


S ·Q1

. . .

. . .

S ·Qn−1

 =
(
S · M̃ tD · M̃

)
·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)



and


D ·Q1

. . .

. . .

D ·Qn−1

 =
(
D · M̃ S · M̃

)
·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)


74

4.4. Regularity of the Ball system

Combining the last two equalities:

S ·Q1

. . .

. . .

S ·Qn−1

D ·Q1

. . .

. . .

D ·Qn−1


=

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
·



S · (P1 ◦ ϕ)

. . .

. . .

S · (Pn−1 ◦ ϕ)

D · (P1 ◦ ϕ)

. . .

. . .

D · (Pn−1 ◦ ϕ)


(4.3)

Notice that

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
X

=

(
M̃(q) 0

D · M̃(X) M̃(q)

)
(recall that in our case

we have S · M̃(X) = M̃(q)) and that the latter matrix has an inverse (re-
call that, by Lemma 4.3.3, M̃(q) is an invertible matrix of size n − 1), namely,(

M̃(q)−1 0

−M̃(q)−1 · (D · M̃)(X) · M̃(q)−1 M̃(q)−1

)
which implies (by continuity of

the determinant function) that

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
is invertible in a neighbourhood

of X .

Step 2: Writing y = (y3, . . . , yn) and r = (r3, . . . , rn), consider the diffeo-
morphism ϕ defined in Lemma 4.3.3 and define the smooth function ψ over
an open subset of R2n−1 containing X which maps the point (x1, x2, y, r, t) to
(ϕ1, ϕ2, S · ϕ3, . . . , S · ϕn, D · ϕ3, . . . , D · ϕn, t). Notice that we have:

S · (Pj ◦ϕ) = (S ·P)◦ψ and D · (Pj ◦ϕ) = (D ·P)◦ψ, for 1 6 j 6 n−1, (4.4)

since ϕi(x1, x2, y ± r
√
t) = ψi ± ψn+i−2

√
ψ2n−1 for all i ∈ {3, . . . , n}. In fact,

using the last two equalities we can also see that ψ−1 exists and is smooth. Thus,
ψ is a diffeomorphism.

Step 3: Now, comparing (4.3) with (4.4) we get:

SD ·Q :=



S ·Q1

. . .

. . .

S ·Qn−1

D ·Q1

. . .

. . .

D ·Qn−1


=

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
·



S · P1

. . .

. . .

S · Pn−1

D · P1

. . .

. . .

D · Pn−1


◦ ψ.

75

Chapter 4. Modelling system

Consider the vector SD ·P = (S ·P1, . . . , S ·Pn−1, D ·P1, . . . , D ·Pn−1)T and let
JSD·P , JSD·Q and Jψ be the Jacobian matrices of SD ·P, SD ·Q and ψ respectively.
Taking the Jacobian matrix of both sides of the last equality yields:

JSD·Q =

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
·JSD·P ·Jψ+Jacobian(

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
)·



S · P1

. . .

. . .

S · Pn−1

D · P1

. . .

. . .

D · Pn−1


◦ψ.

Evaluating the last equality at X = (0, r, 0) and using the fact that ψ(X) =

ψ(0, r, 0) = (0, r, 0) = X , we note that the second term of the right-hand side
is zero. One thus has:

JSD·Q(X) =

(
S · M̃ tD · M̃
D · M̃ S · M̃

)
X

· JSD·P (X) · Jψ(X). (4.5)

Computing Jψ(X), we get Jψ(X) =

(
∂ϕ1

∂z1
(0) ∂ϕ1

∂z2
(0) 01×(2n−3)

0(2n−2)×1 I2n−2

)
, with

∂ϕ1

∂z1
(0) 6= 0 according to the formula in Lemma 4.3.3.

Hence by Equation (4.5), it is straightforward to check that:

JBall(Q) =

(
JSD·Q(X)

2X

)
=

 S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

·

(
JSD·P (X)

2X

)
· Jψ(X)

=

 S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

· JBall(P)(X) · Jψ(X).

(4.6)

Recalling that Jψ(X) and

 S · M̃ tD · M̃ 0

D · M̃ S · M̃ 0

01×(n−1) 01×(n−1) 1


X

are invertible matrices, the

proof of the lemma follows.

Now, we are ready to prove Theorem 4.4.2 which characterizes the regularity of
the solutions of Ball(P) under generic assumptions. We split the proof in two

76

4.4. Regularity of the Ball system

Lemmas 4.4.6 and 4.4.7. Before that, we introduce a new assumption that helps to
simplify the proof.

Definition 4.4.4. Let (q1, q2) ∈ L̂. We say that (q1, q2) satisfies Assumption A−′5 if
q1 and q2 are isolated in Ln ∪ Lc and any of the following conditions is satisfied:

(a) If (q1, q2) ∈ L̂n, then the plane projections of the tangent lines of q1 and q2 to
C are linearly independent.

(b) If (q1, q2) ∈ L̂c, then the plane projection of a small enough neighbourhood
of q1 in C is an ordinary cusp at πC(q1) and the multiplicity of the system
{P (x) = 0, (x1, x2) = πC(q1)} at q1 is two.

Remark 4.4.5. Assumption A−′5 can be seen as a “local version” of Assumption
A−5 . We are going to prove that if Assumptions A1, A2, A3 and A4 are satisfied,
then AssumptionA−5 is equivalent to the condition that AssumptionA−′5 is satisfied
for all L̂.

The main reason behind introducing AssumptionA−′5 , is that we are going to prove
in Lemma 4.4.6 that, under AssumptionA1, a pair (q1, q2) ∈ L̂ satisfies Assumption
A−′5 if and only if everyX in Ω−1

P ((q1, q2)) is a regular solution of Ball(P), whereas
Assumption A−5 is, in general, not sufficient for the regularity of the solutions of
Ball(P). For example, take n = 3 and P = (x1 − (x3 − 1)6, x2 − (x3 − 1)9)

(Figure 4.6). We can see that P satisfies Assumption A1, the set Lc consists of a
unique point q = (0, 0, 1) and the set Ln is empty. The plane projection of C is
the curve given by the equation x3

1 − x2
2 = 0. Hence, Assumption A−5 is satisfied.

However, the multiplicity of the system S = {P (x1, x2, x3) = 0 ∈ R2, x1 = x2 =

0} at the point q equals 6 (Lemma 4.3.2). Hence, Assumption A−′5 is not satisfied
and one can also check that Ball(P) is not regular.

Lemma 4.4.6. Let P ∈ C∞(Rn,Rn−1) that satisfies Assumption A1. Let X be a
solution of Ball(P) and (q1, q2) = ΩP (X) (Definition 4.1.7), then X is a regular
solution of Ball(P) if and only if (q1, q2) satisfies Assumption A−′5 .

Proof. Let X = (x1, x2, y, r, t) ∈ R × R × Rn−2 × Rn−2 × R be a solution of
Ball(P). We consider two cases:

Case (a): t 6= 0, i.e., q1 6= q2.
It is easy to see that ∂(S·Pi)

∂xj
, ∂(D·Pi)

∂xj
, ∂(S·Pi)

∂rk
, ∂(D·Pi)

∂rk
, ∂(S·Pi)

∂t
, ∂(D·Pi)

∂t
are, respectively,

equal to: S · ∂(Pi)
∂xj

, D · ∂(Pi)
∂xj

, t ·D · ∂(Pi)
∂xk

, S · ∂(Pi)
∂xk

, 1
2

n∑
m=3

D · (∂Pi

∂xm
) · rm, 1

2t
[
n∑

m=3

S ·

(∂Pi

∂xm
) · rm −D · Pi]. Hence, by computing the Jacobian matrix of the Ball(P) we

get the matrix:

77

Chapter 4. Modelling system

C

C
′

πC(C) = πC ′(C ′)

q

x1

x3

Figure 4.6: Comparing the curve C defined in Remark 4.4.5 with C′ that is defined
by x1 − (x3 − 1)2 = x2 − (x3 − 1)3 = 0 where both of them have the same
plane projection which contains an ordinary cusp; however, the multiplicities of S
(defined in the same remark) at q differ. In this example, the pair (q, q) satisfies
Assumption A−′5 for C′, however, it does not for C.



S · ∂(P1)
∂x1

. . . S · ∂P1
∂xn

t · D · ∂(P1)
∂x3

. . . t · D · ∂(P1)
∂xn

1
2

n∑
m=3

D · (
∂P1
∂xm

) · rm

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

S ·
∂(Pn−1)

∂x1
. . . S ·

∂(Pn−1)

∂xn
t · D ·

∂(Pn−1)

∂x3
. . . t · D ·

∂(Pn−1)

∂xn
1
2

n∑
m=3

D · (
∂Pn−1
∂xm

) · rm

D · ∂(P1)
∂x1

. . . D · ∂(P1)
∂xn

S · ∂(P1)
∂x3

. . . S · ∂(P1)
∂xn

1
2t

[
n∑

m=3
S · (

∂P1
∂xm

) · rm − D · P1]

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

D ·
∂(Pn−1)

∂x1
. . . D ·

∂(Pn−1)

∂xn
S ·

∂(Pn−1)

∂x3
. . . S ·

∂(Pn−1)

∂xn
1
2t

[
n∑

m=3
S · (

∂Pn−1
∂xm

) · rm − D · Pn−1]

0 . . . 0 2r3 . . . 2rn 0



.

We denote by Ci (resp. Li) the i-th column (resp. line) of the latter matrix. Replace

the last column C2n−1 with
n−2∑
m=1

rm+2

2t
Cn+m + C2n−1, also for all integers 1 6 k 6

n− 1 we replace the line Lk with Lk +
√
t · Lk+n−1 and then the line Lk+n−1 with

78

4.4. Regularity of the Ball system

Lk − 2
√
tLk+n−1. The resulting matrix is:

∂(P1)
∂x1

(q1) . . . ∂P1

∂xn
(q1)

√
(t) · ∂(P1)

∂x3
(q1) . . .

√
(t)∂(P1)

∂xn
(q1) 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

∂(Pn−1)
∂x1

(q1) . . . ∂Pn−1

∂xn
(q1)

√
(t) · ∂(Pn−1)

∂x3
(q1) . . .

√
(t)∂(Pn−1)

∂xn
(q1)) 0

∂(P1)
∂x1

(q2) . . . ∂(P1)
∂xn

(q2) −
√

(t)∂(P1)
∂x3

(q2) . . . −
√

(t)∂(P1)
∂xn

(q2) 0

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

∂(Pn−1)
∂x1

(q2) . . . ∂(Pn−1)
∂xn

(q2) −
√

(t)∂(Pn−1)
∂x3

(q2) . . . −
√

(t)∂(Pn−1)
∂xn

(q2)) 0

0 . . . 0 2r3 . . . 2rn
1
2t


.

The determinant of the latter matrix is zero if and only if the determinant of the
following matrix is zero:

M0 =

(
NP (q1) MP (q1) MP (q1)

NP (q2) MP (q2) −MP (q2)

)
, where MP (q1),MP (q2) are the

sub-matrices that are obtained, respectively, by removing the first two columns
from JP (q1), JP (q2) and NP (q1), NP (q2) are the matrices formed by the first two
columns of JP (q1), JP (q2), respectively. By linear operations on M0, we can see
that M0 has same rank as the matrix M(q1, q2) (see Definition 3.2.8). Thus, X is
regular for Ball(P) if and only if M(q1, q2) is invertible. By Lemma 3.2.9 we have
that M(q1, q2) is invertible if and only if none of q1, q2 is in Lc (and hence none
of the plane projections of Tq1C, Tq2C is trivial) and the plane projection of their
tangent spaces are different. Equivalently, the pair (q1, q2) is in L̂n and satisfies
Assumption A−′5 .

Case (b): t = 0, i.e., q1 = q2.
Let us write q = q1. We prove the claim in three steps:

Step 1: We first simplify P . Without loss of generality and by Lemma 4.3.1we can
assume that q = 0 and P1, . . . , Pn−1 are, respectively, equal to x1 − f1(xn), x2 −
f2(xn), . . . , xn−1 − fn−1(xn) with the property that min{mult(f1),mult(f2)} >
2. For all i ∈ {3, . . . , n − 1}, using Taylor’s theorem, we can write fi(xn) =

3∑
j=1

ai,jx
j
n + x4

nhi(xn), for some ai,j ∈ R and smooth functions hi(xn). Since

min{mult(f1),mult(f2)} > 2, we can write f1(xn) =
3∑
j=2

αjx
j
n + x4

nh1(xn) and

f2(xn) =
3∑
j=2

βjx
j
n + x4

nh2(xn). Notice that

(f1(xn), f2(xn), f3(xn), . . . , fn−1(xn), xn)

is a local parameterization system of C around q. Since dim(TqC) = 1 (Assump-

79

Chapter 4. Modelling system

tion A1), there exists λ ∈ R∗ with (a3,1, . . . , an−1,1, 1) = λr (because the vectors
(0, 0, r) ∈ R×R×Rn−2 and (0, 0, a1,3, . . . , a1,n−1, 1) are in TqC \ {0}). In partic-
ular, rn 6= 0.

Step 2: Now, we compute JBall(P) at X = (x1, x2, y, r, 0) by first computing it for
Xt = (x1, x2, y, r, t) with t 6= 0, and then taking the limit when t goes to 0. Since

the operator S is linear, we write S(xi−fi(xn)) = S(xi−
3∑
j=1

ai,jx
j
n)−S(x4

nhi(xn)).

On the other hand, using the identity (4.1) we deduce that S(x4
nhi(xn)) = S(x4

n) ·
S(hi(xn)) + tD(x4

n) · D(hi(xn)), for all ∈ {1, . . . , n − 1}. It is straightforward
to see that S(x4

n) = r4
nt

2 + 6r2
ntx

2
n + x4

n and tD(x4
n) = 4r3

nxnt
2 + 4rnx

3
nt with

r = (r3, . . . , rn). Hence, all of the first-order partial derivatives of S(x4
nhi(xn)),

evaluated atXt, converge to zero when t goes to 0. Hence, the partial derivatives of

the functions S(xi−fi(xn)) and S(xi−
3∑
j=1

ai,jx
j
n) evaluated atX are equal. Using

an analogous argument, we deduce that the evaluation of the partial derivatives of

the functions D(xi − fi(xn)) and D(xi −
3∑
j=1

ai,jx
j
n), at X are also equal. Thus,

JBall(P)(Xt) and JBall(P)(Xt) converge to the same limit JBall(P)(X), where P is
the function obtained by truncating P beyond degree 3 with respect to the variable
xn.

Computing JBall(P)(X) = limt→0 JBall(P)(Xt), we get:



1 0 . . . 0 0 0 . . . 0 −α2r
2
n

0 1 . . . 0 0 0 . . . 0 −β2r
2
n

0 0 −a3,1 0 . . . 0 −a3,2r
2
n

· · · · · · . . . · · · · · · · · ·
· · · · · · . . . · · · · · · · · ·

0 0 . . . 1 −an−1,1 0 . . . 0 −an−1,2r
2
n

0 0 −2α2rn 0 . . . 0 −α3r
3
n

0 0 −2β2rn 0 . . . 0 −β3r
3
n

0 0 −2a3,2rn 1 . . . −a3,1 −a3,3r
3
n

· · · · · · . . . · · · · · · · · ·
· · · · · · · · · . . . · · · · · ·

0 0 −2an−1,2rn 0 . . . 1 −an−1,1 −an−1,3r
3
n

0 0 0 2r3 . . . 2rn−1 2rn 0



.

Hence, observing that the matrix is block diagonal, its determinant is zero if and

80

4.4. Regularity of the Ball system

only if the determinant of the following one is:

−2α2rn 0 . . . 0 0 −α3r
3
n

−2β2rn 0 . . . 0 0 −β3r
3
n

−2a3,2rn 1 0 . . . 0 −a3,1 −a3,3r
3
n

.

−2an−1,2rn 0 0 . . . 1 −an−1,1 −an−1,3r
3
n

0 2r3 . . . 2rn−1 2rn 0


.

Shifting the columns of the last matrix we get:

−α3r
3
n −2α2rn 0 . . . 0 0

−β3r
3
n −2β2rn 0 . . . 0 0

−a3,3r
3
n −2a3,2rn 1 0 . . . 0 −a3,1

.

−an−1,3r
3
n −2an−1,2rn 0 0 . . . 1 −an−1,1

0 0 2r3 . . . 2rn−1 2rn


.

To compute the determinant of the second block, we expand it about the last row.
Hence, the determinant of the last matrix is zero if and only if rn(α2β3−α3β2)(rn+
n−1∑
i=3

ai,1ri) = 0. Notice that, by Step 1, we have that rn 6= 0 and the third factor

(rn +
n−1∑
i=3

ai,1ri) is never zero since it is equal to λ. Thus, JBall(P)(X) is invertible

iff α2β3 − α3β2 6= 0, equivalently, the matrix A =

(
α2 α3

β2 β3

)
is invertible.

Step 3: We now show that the invertibility of A is equivalent to the condition that
(q, q) satisfies Assumption A−′5 .
First assume that A is invertible. It follows that either α2 6= 0 or β2 6= 0 and this
yields that the minimum of the multiplicities of f1 and f2 is 2. By Lemma 4.3.2,
the multiplicity of the system {P (x1, x2, y) = 0 ∈ Rn−1, (x1, x2) = πC(q)} at q is
equal to 2, thus Assumption A−′5 (b) is satisfied. Using the same notation as in the
proof of Lemma 4.3.3, one can write f̃1(zn) = z2

n(ξ1(z2
n) + znξ2(z2

n)). Notice that
ξ2(x2

n) cannot be the zero function, otherwise f̃1(ε) = f̃1(−ε) and f̃2(ε) = f̃2(−ε)
for all small enough ε > 0, which means that X would be the limit of solutions
Xε of Ball(P) with ΩP (Xε) ∈ L̂n. X would then be a non-isolated solution and
thus a non-regular solution of Ball(P) which contradicts the assumption. We then
have two cases as in Lemma 4.3.3. The first one is when mult(ξ2(zn)) = ∞, that
would imply that α2 = α3 = 0 and contradicts the invertibility of A. We then must
satisfy the second case mult(ξ2(zn)) = k <∞ and, after a change of variables, the
first equation of the system becomes equivalent to z1−z2k+3

n = 0. The invertibility

81

Chapter 4. Modelling system

of A implies that k = 0. The projection of the curve in the plane is thus locally
parameterized by (z3

n, z
2
n) and is an ordinary cusp, Assumption A−′5 (a) is satisfied.

Second, assume that Assumption A−′5 is satisfied. By Lemma 4.3.2 and Assump-
tionA−′5 (b), the minimum of the multiplicities of f1 and f2 is 2. Using the proof of
Lemma 4.3.3 once again, one can assume that f2(zn) = z2

n and f1(zn) = zng(z2
n)

or f1(zn) = z2k+3
n . By Assumption A−′5 (a), the projection is an ordinary cusp and

thus has a parameterization of the form (z2
n, z

3
n), that is f1(zn) = z3

n. This implies

that A is equivalent to

(
0 1

1 0

)
and hence is invertible.

Lemma 4.4.7. If Assumptions A1, A2, A3 and A4 are satisfied, then Assumption
A−5 is satisfied if and only if Assumption A−′5 is satisfied for all (q1, q2) ∈ L̂ ⊂
B ×B.

Proof. Assume that Assumption A−5 is satisfied and (q1, q2) ∈ L̂. If (q1, q2) ∈ L̂c,
then by Lemma 4.3.3 and Assumption A−5 we must have that the plane projec-
tion of a small enough neighborhood of q1 in C is an ordinary cusp at πC(q1).
By Assumption A3 and Lemma 3.2.3, the multiplicity of the mentioned system at
q1 = q2 is two. Thus, (q1, q2) satisfies Assumption A−′5 . If (q1, q2) ∈ L̂n, then by
Lemma 3.2.7 and Assumption A−5 , we have that πC(q1) is a node in πC(C). Thus,
we have that πC(q1) is a transverse intersection of two smooth branches of πC(C).
Those branches are the plane projections of two disjoint branches of C each of
which contains either q1 or q2. Hence, the plane projections of the tangent spaces
of q1 and q2 to C are linearly independent. Thus, (q1, q2) satisfies Assumption A−′5 .

Assume conversely that A−′5 is satisfied for all (q1, q2) ∈ L̂. By Corollary 4.3.5,
any singular point of πC(C) is the plane projection of a point q1 ∈ Lc ∪ Ln. For
some q2 ∈ C, the pair (q1, q2) is in L̂ (which satisfies Assumption A−′5). Hence, if
(q1, q2) is in L̂n (resp. in L̂c) the plane projection of q1 is a node (resp. an ordinary
cusp) by Lemma 3.2.7 (resp. Lemma 4.3.3).

Lemmas 4.4.6 and 4.4.7 then imply Theorem 4.4.2.

In Chapter 7, we present examples that show how the Ball system encodes the sin-
gularities of πC(C). The next chapter is dedicated to provide a method to examine
whether a given curve satisfies the weak or strong assumptions.

82

5

Semi-algorithms to check the
assumptions and isolate singularities

Contents
5.1 Interval arithmetic . 84

5.2 Semi-algorithms to check assumptions and isolate singularities 85

5.3 Semi-algorithms improvements . 92

5.3.1 Subdivision-based solver on a high-dimensional system 92

5.3.2 Evaluating the operator D . 98

5.3.3 Improvement integration . 99

In this chapter we present Semi-algorithm 3 that checks the weak assumptions
of Section 3.1.2 and, if it terminates, outputs a superset of isolating boxes of the
singularities of πC(C). We also present Semi-algorithm 4 that checks the strong
assumptions of Section 3.1.2 and, if it terminates, outputs a set of isolating boxes
of the singularities of πC(C). The main idea of these semi-algorithms comes from
Theorems 4.1.3 and 4.4.2: Theorem 4.1.3 states that, under AssumptionsA1−4, the
singularities of πC(C) are the plane projections of the solutions of Ball(P). Theo-
rem 4.4.2 states that, under the further Assumption A−5 , Ball(P) is regular, so we
can use certified numerical methods such as interval Newton methods [MKC2009]
to solve Ball(P). In addition, in order to verify these assumptions, we use subdivi-
sion approaches based on interval arithmetic in a semi-algorithm framework.

These semi-algorithms are theoretically relevant but they are not very practical.
We thus present in Section 5.3 practical improvements and Semi-algorithm 6.

We present in Section 5.1 the basics of interval arithmetic with the notation and
definitions by Lin and Yap [LY2011] and Semi-algorithm 3 and 4 in Section 5.2.

83

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

5.1 Interval arithmetic

Recall that for some positive integer k, by a closed (resp. open) k-box B, we mean
the Cartesian product of k closed (resp. open) intervals. The width of a box B,
denoted by w(B), is the maximal length of the intervals of that product. For a
subset A ⊂ Rk, the set IA is the set of all closed k-boxes that are contained in A.

Functions over boxes. ([MKC2009, §2.3]) closed n-boxes can be seen as an exten-
sion of Rn. Hence, it would be interesting to speak about extending a function
f defined on Rn to a function �f over to IRn, preserving the “behavior” of a f .
More formally:

Definition 5.1.1. For the positive integer m, A ⊆ Rk, and a function f : A→ Rm,
the function �f : IA→ IRm is called an inclusion of f if the set f(B) = {f(x) |
x ∈ B} is contained in �f(B), for all B ∈ IA. An inclusion �f of f is called
a box function, if for any descending sequence of closed k-boxes B1 ⊇ B2 ⊇ . . .

that converges to a point q ∈ Rk (that is,
⋂
iBi = {q}), the sequence �f(B1) ⊇

�f(B2) ⊇ . . . converges to f(q).

Example 5.1.2. For the case of intervals, the first examples that come to mind
are inclusions of arithmetic operations. For instance, the addition +, can be seen
as a function over R2 to R. Hence, the addition of two intervals B1 = [a, b]

and B2 = [c, d] can be defined to be the interval B1 + B2 = [a + c, b + d].
This inclusion is a box function. The same can be said about multiplication and
subtraction. Of course, one must be careful when defining the division since the
dominator has to be zero-free. Addition and subtraction can be generalized over
higher-dimensional boxes in a natural way. Moreover, outward rounding of an
interval ([MKC2009, §3.2]) means to move the left endpoint to the left and the
right endpoint to the right at the last digit carried. Outward rounding, when eval-
uating a box function, guarantees that these enclosures are rigorous when using
fixed-point arithmetic (representation of real numbers approximation with a fixed
number of digits). We are going to assume that outward rounding is used for any
box evaluation performed.

In the rest of this chapter, we assume that we are given a box function �f for any
function f we consider. The command subdivide is applied to a closed k-box B,
and it returns the set of boxes obtained by bisecting B in all dimensions.

An interval matrix �M is a matrix whose coefficients are intervals. It can also
be seen as the set of all matrices whose (i, j)-th coefficients belong to the (i, j)-
th interval. The rank of an interval matrix �M , denoted by rank(�M), is the
minimum of the ranks of all the matrices in this set.

84

5.2. Semi-algorithms to check assumptions and isolate singularities

5.2 Semi-algorithms to check assumptions and isolate singular-
ities

This section is dedicated to prove the following theorem. Recall that the weak and
strong assumptions are defined in Definition 3.1.1.

Theorem 5.2.1. For an open n-box B and a smooth function P from B to Rn−1,
Semi-algorithm 3 stops if and only if P satisfies the weak assumptions in B and
then it returns a set of isolating boxes of all the singularities of πC(C), plus possibly
other spurious disjoint boxes. Semi-algorithm 4 stops if and only if P satisfies
the strong assumptions in B and then it returns a set of isolating boxes of all the
singularities of πC(C).

To check whether a given function P satisfies the weak assumptions (A1, A2,
A3, A4 and A−5) in B, we use their relation to the solutions of Ball(P) studied
in the previous sections. Recall that for any subset A ⊆ Rn, we defined ABall =

{(x1, x2, y, r, t) | t > 0, (x1, x2, y + r
√
t), (x1, x2, y − r

√
t) ∈ A, ‖r‖2 = 1}. Let

B be an open n-box and P be a smooth function from B to Rn−1 that satisfies
Assumption A1 in B. Consider the following assumptions:

ℵ1 - All solutions of Ball(P) in BBall are regular.

ℵ2 - For every solutionX of Ball(P) inBBall, none of the points of the pair ΩP (X)

(Definition 4.1.7) is in the boundary of B.

ℵ3 - No two distinct solutions of Ball(P) in BBall, except the twin solutions (Re-
mark 4.1.10), have the same plane projection.

The next lemma shows the relation between these new assumptions and those of
Section 3.1.2. The motivation of these alternative assumptions is that they are stated
in terms of Ball(P), which makes them easier to verify in our semi-algorithms.

Lemma 5.2.2. LetB be an open n-box and P be a smooth function fromB to Rn−1

that satisfies Assumption A1 in B. Then, Assumptions ℵ1, ℵ2 and ℵ3 are satisfied
if and only if Assumptions A2, A3, A4 and A−5 are satisfied in B.

Proof. If Assumptions A2, A3, A4 and A−5 are satisfied in B, then by Theo-
rem 4.4.2 we have Assumption ℵ1 is satisfied. Moreover, by Assumptions A2

and A4 we have that none of L′n, L′c intersects ∂B. By Definition 4.1.7, for any
solution X of Ball(P), we have that the points of the pair ΩP (X) are in L′n ∪ L′c
and hence are not in ∂B which implies that Assumption ℵ2 is satisfied. Assume

85

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

that Assumption ℵ3 is not satisfied, that is, there exist two distinct non-twin solu-
tions X,X ′ that have the same plane projection p ∈ R2. Let (q1, q2) = ΩP (X)

and (q′1, q
′
2) = ΩP (X ′). By Lemma 4.1.6, the pairs (q1, q2), (q′1, q

′
2) are distinct

and the points q1, q2, q
′
1, q
′
2 have the same plane projection p. By Assumption A3,

we cannot have three pairwise distinct points among q1, q2, q
′
1, q
′
2. Moreover, if the

multiplicity at all of the points q1, q2, q
′
1, q
′
2 is one, then (q1, q2), (q′1, q

′
2) are in L̂n

and not distinct. Hence, at least a point say q1 has multiplicity larger than one, i.e.,
q1 ∈ Lc (Lemma 3.2.3). Hence, the number of solutions counted with multiplic-
ity is at least three which contradicts Assumption A3. Hence, Assumption ℵ3 is
satisfied.

Now, assume that Assumptions ℵ1, ℵ2 and ℵ3 are satisfied. Since, by Assump-
tion ℵ1, Ball(P) is a regular square system, its solution set is a zero-dimensional
manifold in the compact set BBall(P) (regular value theorem). Hence, Ball(P) has
a finite number of solutions in BBall. Since ΩP (Definition 4.1.7) is surjective
(Lemma 4.1.8), the set L̂ (Definition 4.1.5) is also finite. Hence, the set Lc ∪ Ln is
finite (since Lc ∪ Ln is the image of L̂ under the surjective function (q1, q2)→ q1).
Moreover, by Assumption ℵ2, the set L′n∪L′c does not intersects the boundary ofB.
Hence, Assumptions A2 and A4 are satisfied in B. To prove that Assumption A3

is satisfied, let p = (α, β) ∈ πC(C) and |π−1(p)| > 3. For pairwise distinct points
q1, q2, q3 ∈ π−1(p), by Lemma 4.1.6, we have that there exist two distinct non-twin
solutions X,X ′ of Ball(P), with ΩP (X) = (q1, q2) and ΩP (X ′) = (q1, q3) such
that we have the same plane projection p which contradicts Assumption ℵ3. Hence,
π−1
C (p) consists of at most two distinct points. We consider two cases:

(a) π−1
C (p) has two distinct elements, say q1, q2. By Lemma 4.1.6, the pair (q1, q2)

is in L̂n, and hence, there exists a solution X = (α, β, y, r, t) ∈ R × R ×
Rn−2 × Rn−2 × R of Ball(P), with t 6= 0 and ΩP (X) = (q1, q2). Since X
is a regular solution (Assumption ℵ1), by Lemma 4.4.6 we have that none of
q1, q2 is in Lc. Hence, by Lemma 3.2.3, the multiplicity of {P (x1, x2, y) =

0 ∈ Rn−1, x1 − α = x2 − β = 0} at q1 (resp. q2) is one. Thus, the number of
solutions counted with multiplicity is two.

(b) π−1
C (p) has a unique point q. Let m denote the multiplicity of the system
{P (x1, x2, y) = 0 ∈ Rn−1, x1 − α = x2 − β = 0} at q. If m = 1, then
we are done. If m > 1, then by Lemma 3.2.3 we have that q ∈ Lc. Hence,
there exists a solution of Ball(P) of the form X = (α, β, y, r, 0) ∈ R × R ×
Rn−2×Rn−2×R such that ΩP (X) = (q, q) (Lemma 4.1.8). SinceX is regular
(Assumption ℵ1), by Lemma 4.4.6 we have that (q, q) satisfies assumptionA′5.
In particular, the multiplicity m is equal to two.

86

5.2. Semi-algorithms to check assumptions and isolate singularities

Thus, for all p ∈ πC(C) the sum of the multiplicities of the solutions in the system
{P (x) = 0 ∈ Rn−1, x1 − α = x2 − β = 0} is at most two, i.e., Assumption A3

is satisfied. Now, Since Assumptions A1,A2, A3 and A4 are satisfied and since all
solutions of Ball(P) are regular, by Theorem 4.4.2, we have that Assumption A−5
is also satisfied.

Using Lemma 5.2.2, we are ready to check Assumptions A2, A3, A4 and A−5
using ℵ1, ℵ2 and ℵ3. Since Lemma 5.2.2 requires Assumption A1, we start by
checking that assumption with Semi-algorithm 1 that is based on subdivision.

Semi-algorithm 1: Checking Assumption A1

Input: An open n-box B and a function P from B to Rn−1.
Termination: If and only if P satisfies Assumption A1 in B.
Output: True

1: L := {B}
2: while L 6= ∅ do
3: B := pop(L)

4: if 0 ∈ �P (B) and rank(�JP (B)) < n− 1 then
5: Subdivide B and add its children to L.
6: return True.

Lemma 5.2.3. Semi-algorithm 1 stops if and only if P satisfies Assumption A1 in
B.

Proof. If Semi-algorithm 1 stops, by the conditions in Step (4), the box B is parti-
tioned into two sets of boxes. A set of boxes that are disjoint with C and the other
one is a set of boxes that contain parts of C that satisfy Assumption A1. Thus,
Assumption A1 is satisfied in B. On the other hand, assume that P satisfies As-
sumption A1 in B and Semi-algorithm 1 does not stop, then, for every positive
real ε there exists a closed box Bε ⊂ B, with w(Bε) < ε such that the conditions
in Step (4) are satisfied in Bε. Consider the infinite chain B 1

1
,B 1

2
,B 1

3
. . . and

take qk ∈ B 1
k
, with qk 6= qk′ for k 6= k′. Since B is compact, then there exists a

subsequence of qk that converges to a point on B say q. Since �P and �JP are
box function we must have that P (q) = 0 and rank(JP (q)) < n − 1. Thus, q is
a point in C that does not satisfy Assumption A1 which is a contradiction. Hence,
Semi-algorithm 1 stops.

The next step is to check Assumptions ℵ1 and ℵ2. For this goal, we want to
find a finite set of pairwise disjoint boxes in BBall such that every box contains at

87

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

most one solution of Ball(P) and the union of these boxes contains all solutions
of Ball(P) in BBall. Notice that, by the definition of box functions, for a closed
(2n−1)-box U, if 0 6∈ �Ball(P)(U), then U does not contain a solution of Ball(P),
whereas the condition 0 ∈ �Ball(P)(U) does not necessarily imply that a solution
is in U. This is why the set we are going to find might have unnecessary boxes.
However, we will see later that this is enough for our purpose. Before introducing
Semi-algorithm 2, we define the following functions.

Definition 5.2.4. Consider the set R2n−1
t>0 = {(x1, x2, y, r, t) ∈ R × R × Rn−2 ×

Rn−2 × R | t > 0} and define

f±Ball : R2n−1
t>0 → Rn

(x1, x2, y, r, t) 7→ (x1, x2, y ± r
√
t)

Define the function fBall : R2n−1
t>0 → Rn ×Rn that maps X to (f+

Ball(X), f−Ball(X)).
Notice that fBall is an extension of ΩP (Definition 4.1.7). By abuse of notation, for
a set S ⊂ R2n−1, we define fBall(S) as fBall(S ∩ R2n−1

t>0).

Semi-algorithm 2: Isolating the solutions of Ball(P) (under Assumption A1)

Input: An open n-box B, a function P from B to Rn−1 such that P satisfies
Assumption A1 in B and a (2n − 1)-open box U0 that contains BBall (see
Remark 5.2.7).

Termination: If and only if Ball(P) satisfies Assumptions ℵ1 and ℵ2 in BBall.
Output: A list of pairwise disjoint isolating boxes of the solutions of Ball(P) in

U0 such that their images by fBall lies in B ×B.
1: Solutions = ∅.
2: L := {U0}.
3: while L 6= ∅ do
4: U := pop(L).
5: if 0 6∈ �Ball(P)(U) or (�fBall(U)) ∩ (B ×B) = ∅ then
6: Do nothing (U is simply removed from L).
7: else if rank(�JBall(P)(U)) = 2n − 1 and �fBall(ε-inflation(U))6 ⊂ B × B

then
8: if ε-inflation(U) contains a solution of Ball(P) (see Remark 5.2.5) then
9: Add ε-inflation(U) to Solutions.

10: else
6For a box B and ε > 0, ε-inflation(B) is the box that has the same center as B and its width is that of B multiplied by

(1 + ε). The box ε-inflation(B) thus contains B, the exact value of ε is not important for the algorithm and it is usually set
to 0.1 in subdivision algorithms [Rum2010].

88

5.2. Semi-algorithms to check assumptions and isolate singularities

11: Subdivide U and add its children to L.
12: Remove duplicates in Solutions (see Remark 5.2.5).
13: return Solutions

Remark 5.2.5. Steps (8) and (12) are not detailed because they are standard in
subdivision algorithms to handle the issue of solutions on or near box boundaries
and ensuring that solution boxes are pairwise disjoint. We only sketch below how
these steps are done and refer to [Sta1995, §5.9.1 ; Kea1997 ; XY2019] for de-
tails. In Step (8), an existence test is performed by evaluating an interval Newton
operator on an ε-inflation of the box U. The inflated box ε-inflation(U) is certified
to contain a solution if its image by the interval Newton operator is contained in
the interior of ε-inflation(U). When the existence test is positive, the solution may
be on the boundary or even outside U, but still in the interior of ε-inflation(U). The
side effect is that the same solution may be reported several times when it is on
or near a boundary of the subdivision. This issue is then solved in Step (12) as
follows. When two boxes in the set Solutions intersect, they must report the same
solution, and in addition, this solution is in the intersection of the two boxes. In
Step (12), we thus compute intersections between boxes and replace intersecting
ones by their intersection box. The boxes in the output set is Solutions are thus
pairwise disjoint.

Lemma 5.2.6. Under Assumption A1 in B, if Semi-algorithm 2 stops, it returns a
list of pairwise disjoint isolating boxes of the solutions of Ball(P) in U0 such that
their images by fBall lies in B × B. Moreover, Semi-algorithm 2 stops if and only
if Ball(P) satisfies Assumptions ℵ1, ℵ2 in BBall.

Proof. We first prove the correctness of the Semi-algorithm 2 assuming that it ter-
minates. Since Step (5) is the only time the algorithm discards boxes, it never
discards a box that contains a solution of Ball(P) in U0 such that its image by
fBall lies in B × B. Hence, all such solutions of Ball(P) lie in output boxes.
The rank condition in Step (7) guarantees that each output box contains at most
one solution of Ball(P) [Sny1992, Theorem A.1]. The fact that every output box
contains at least one solution is ensured by a standard algorithm in Step (8) (see
e.g., [Neu1991, Theorem 5.6.2 ; XY2019] and Remark 5.2.5). Finally, by Step (12),
the output boxes are pairwise disjoint, hence the algorithm outputs isolating boxes
of the solutions of Ball(P) in U0 such that their images by fBall lie in B ×B.

To prove the equivalence for the termination, first assume that Semi-algorithm 2
stops and returns Solutions. According to the correctness proof, every solution X
of Ball(P) in BBall is regular and satisfies ΩP (X) ∈ B × B. Thus, Assumptions
ℵ1 and ℵ2 are satisfied in BBall.

89

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

On the other hand, assume that ℵ1 and ℵ2 hold in BBall. We prove that Semi-
algorithm 2 terminates. By Assumption ℵ1 all solutions in BBall of the square
system Ball(P) are regular. Hence, they form a zero dimensional manifold in the
compact space BBall. Thus, the solution set is finite. We now prove that for any
box U ∈ L with a small enough width, one of the conditions in Step (5) or the
conditions in Steps (7-8) are satisfied. Thus, in both cases U will be removed from
L, and hence, Semi-algorithm 2 stops after a finite number of iterations. Due to
Assumption ℵ2, after a finite number of iterations, no box U in L intersects the
boundary of B × B. Moreover, due to the convergence of the box evaluations, we
can also assume that either �fBall(ε-inflation(U)) ⊂ B × B, which is the second
condition of Step (7), or (�fBall(U))∩ (B×B) = ∅ which is the second condition
of Step (5).

If U does not contain a solution of Ball(P), then due to convergence of the box
function evaluation of Ball(P), after a finite number of iterations, every children
U′ of U satisfies 0 6∈ �Ball(P)(U′), that is, it is discarded in Step (5).

If U contains a solution of Ball(P) in BBall, according to Assumption ℵ1, it is
a regular solution. Due to the convergence of the box evaluation det(JBall(P)(U))

will eventually be non zero and thus rank(�JBall(P)(U)) will eventually be 2n− 1

after a finite number of iterations, which is the first condition of Step (7). Due
to the convergence of the interval Newton existence test, the condition of Step (8)
will also be eventually satisfied (see Remark 5.2.5). The refined box will then
eventually be added in the Solutions list.

Thus, for any box in L with a small enough width, one of the conditions of Step
(5) is satisfied or all of the conditions in Step (7-8) are satisfied, thus it is either
discarded or added to the output. Hence, Semi-algorithm 2 terminates.

Remark 5.2.7. Semi-algorithm 2 requires a closed (2n − 1)-box U0 that con-
tains BBall. For instance the following set could be used: {(q, r, t) ∈ R2n−1 |
q ∈ B,−1 6 ri 6 1 for i ∈ {3, . . . , n}, 0 6 t 6 ξ2

4
} with ξ =

max {‖q − q′‖ | q, q′ ∈ B}.

Finally, using Lemma 5.2.2, Semi-algorithm 3 checks whether P satisfies As-
sumptions A1, A2, A3, A4 and A−5 in B and outputs a superset of isolating boxes
of the singularities of πC(C).

Semi-algorithm 3: Checking the weak assumptions and computing a superset of
the singularities of πC(C)

Input: An open n-box B and a smooth function P from B to Rn−1.
Termination: If and only if P satisfies AssumptionsA1,A2,A3,A4 andA−5 in B.

90

5.2. Semi-algorithms to check assumptions and isolate singularities

Output: N , a list of certified node singularities: a list of boxes in R2n−1 whose
projections in R2 contain each a single node of πC(C).
U , a list of uncertified singularities: a list of boxes in R2n−1 whose projections
in R2 contain each at most one node or one cusp of πC(C).
The union of all these projected 2D boxes contains all the singularities of
πC(C).

1: Check Assumption A1 (Semi-algorithm 1).
2: Compute a closed (2n− 1)-box U0 that contains BBall (Remark 5.2.7).
3: L := output of Semi-algorithm 2.
4: Keep refining all boxes U ∈ L (see Remark 5.2.8) until no triplets of boxes

overlap in projection. Then remove from L one box from every pair (see Re-
mark 4.1.10). This ensures Assumption ℵ3.

5: N := boxes of L that lie in the halfspace t > 0.
6: U := boxes of L that intersect the hyperplane t = 0.
7: return N and U .

Remark 5.2.8. The refinement of an isolating box of a solution is performed by it-
erative evaluation of an interval Newton operator; we refer to [Neu1991, Theorem
5.6.2] for details.

To identify the possible cusp points in the set U returned by Semi-algorithm 3,
one may wish to solve independently the Ball system with the additional constraint
t = 0 (by Remark 4.1.9). Unfortunately, in this case we have an over-determined
system and thus we cannot certify its solutions numerically. In the special case of
a silhouette curve, it is possible to identify cusp points with numerical algorithms
in the case n = 3 [IMP2016a, Lemmas 9 & 10], but we leave as a conjecture its
generalization for n > 3.

On the other hand, for curves that satisfy the strong assumptions, A5 ensures that
there are no cusps in the projection, which is equivalent to L̂c being empty and
Ball(P) having no solutions on the hyperplane t = 0 (by Remark 4.1.9). Hence, if
AssumptionsA1−5 hold, we can refine the boxes output by Semi-Algorithm 3 until
no box intersects t = 0. Boxes in the half-space t < 0 correspond to imaginary
points in Cn (Definition 4.1.7). Then the boxes satisfying t > 0 are all the iso-
lating boxes of the nodes of πC(C) by Lemmas 5.2.6 and 4.1.6, Remark 4.1.9 and
Corollary 4.3.5.

Semi-Algorithm 4: Checking AssumptionsA1−5 and isolating the singularities of
πC(C)

Input: An open n-box B and a smooth function P from B to Rn−1.

91

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

Termination: If and only if P satisfies Assumptions A1−5 in B.
Output: A list of boxes in R2n−1 whose projections in R2 are isolating boxes

of the singularities πC(C) (all singularities are in some boxes and each box
contains a unique singularity).

1: N,U := output of Semi-Algorithm 3.
2: for all U ∈ U do
3: Keep refining U (see Remark 5.2.8) until it does not intersect the hyperplane

t = 0 and discard it if it lies in the half-space t < 0.
4: return N ∪ U .

5.3 Semi-algorithms improvements

Semi-algorithm 3 (resp. 4) of Section 5.2 takes as input an open n-box B and a
curve C defined by a smooth function P from B to Rn−1. It terminates if and
only if P satisfies our weak (resp. strong) assumptions of Definition 3.1.1. Upon
termination, it outputs a superset of the singularities (resp. the singularities) of
the curve πC(C). This section is dedicated to describe the (semi) algorithm we
implemented which is a variant of Semi-algorithms 3 and 4.

In the following, we present the challenges we faced and how we overcame them
for implementing Semi-algorithms 3 and 4.

5.3.1 Subdivision-based solver on a high-dimensional system

The first challenge we faced is solving a high-dimensional system such as the Ball
system which is of dimension 2n − 1. The solutions of the Ball system are de-
tected in Semi-algorithm 3 using a method based on the subdivision of the space.
Such methods usually suffer from the curse of dimensionality in practice. In the
following, we describe the way we overcame this challenge.

For the rest of Section 5.3.1, we assume that Assumption A1 is always satisfied.
Moreover, recall that Mi is the sub-matrix of JP obtained by removing the i-th
column. Over a closed n-box B, we call P parameterizable in xi if Mi is full rank
at every point of B. This notion has a geometric interpretation: the function P
being parameterizable in xi implies that the tangent space at any point, of C, is not
orthogonal to the xi axis.

The domain BBall where the Ball system is solved is refined by first enclosing the
curve C in the smaller space Rn. Our approach follows the observation that if the
curve is enclosed by a set enclosing_curve of boxes in Rn such that:7

7Regarding the following properties, Items (a) and (b) are to remove redundancy which, of course, improves the perfor-

92

5.3. Semi-algorithms improvements

(a) every box B in enclosing_curve contains points of C,

(b) the intersection of two distinct B,B′ in enclosing_curve lives in their bound-
aries, moreover, the set B \B′ still contains points of C,

(c) for non-disjoint B and B′ in enclosing_curve, the curve C is connected in
B ∪B′,

then every node in πC(C) is contained in at least one of the following 2-boxes:

(i) The intersection of the plane projections of two boxes in enclosing_curve.
These 2-boxes contain the nodes induced by the projections of two points in
C, with the same projection, that do not belong to one and the same box of
enclosing_curve.

(ii) The projection of a box B in enclosing_curve such that the curve C in this
box is not parameterizable in x1 and not parameterizable in x2. Such a box
can be detected using the condition 0 ∈ det(�M1(B)) ∩ det(�M2(B)),
where �M1 and �M2 are box functions of M1 and M2 respectively. These
2-boxes contain the nodes induced by the projections of two points, with the
same projection, that belong to one and the same box B of enclosing_curve.
Figure 5.1 illustrates an example of this case where B contains a part of C that
projects to a loop. In this figure, to give a geometric intuition, we presume
that q1 and q2 are in C.

Moreover, every cusp of πC(C) lies in the projection of a box of enclosing_curve
containing a point of C with a tangent orthogonal to the (x1, x2)-plane, that is, P
is parameterizable neither in x1 nor in x2 at the same point in C. These boxes are
contained in the set of boxes that satisfy the constraint (ii) above.

The above observation helps to cover the set Lc∪Ln using enclosing_curve. This
paves the way to cover all Ball solutions using Lemma 4.1.6. We are going to
consider this approach to prune BBall which makes Semi-algorithms 3 and 4 more
efficient in practice. However, the reader might notice that any two neighbor boxes
in Rn satisfy the condition in (i). Hence, a non-ignorable set of spurious pairs
satisfy (i). This makes the previous condition a bad criteria to detect points of Ln.
In the following lemma, we develop the previous observation to obtain the criteria
by which we cover Lc ∪ Ln with less redundancy than the above observation.

Lemma 5.3.1. Let C be a curve defined by P satisfying AssumptionA1 in a closed
n-box B. Then, every point of Lc ∪ Ln is in at least one of the following:
mance of the algorithm. Item (c) is to preserve the connectivity of the components of C. This will be used in Lemma 5.3.1
where the connectivity of C in a box plays a role in detecting points of Ln in our approach.

93

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

x1
x2

(x3, . . . , xn)

q1

q2

B ⊂ Rn

C

πC(C)

Node

Figure 5.1: An example of Case (ii) for a curve C in Rn. The box B contains a
smooth part of C that projects to a loop with a node. This implies that two points
q1 and q2 are in B such that det(M1(q1)) = 0 and det(M2(q2)) = 0. Hence, the
tangent space plane projection of q1 (resp. q2) is parallel to x2-axis (resp. x1-axis).

(1) The union of disjoint boxes B and B′ in enclosing_curve such that their plane
projections intersect.

(2) The union of two non-disjoint boxes B and B′ in enclosing_curve such that C
has at least one x1-critical point and at least one x2-critical point in B ∪B′.

Figures 5.2 and 5.3 show two examples of (2) where B 6= B′.

Proof. For a points q ∈ Lc, since TqC is orthogonal on R2, then q is x1-critical
and x2-critical. Hence any box B in enclosing_curve, containing q, satisfies (2)

(taking B′ = B). On the other hand, let q in Ln and q′ be a point in Ln with
πC(q) = πC(q′). Suppose that q and q′ are in (possibly equal) boxes B and B′

respectively. We distinguish the following cases:

(a) B ∩B′ = ∅: Then, Case (1) applies; recall that the projections of B and B′

intersect since both contain πC(q) = πC(q′).

94

5.3. Semi-algorithms improvements

q′′

π(q) = π(q′)

q′

q

π(q′′)

B

B′

C

πC(C)

Figure 5.2: An example of B and B′ satisfying (2) in Lemma 5.3.1. Their projec-
tions have a node in the boundary. The curve C is tangent to the boundaries of both
B and B′ at q and q′ respectively. The curve and the boxes intersect at q′′ such that
q′′ does not have the same plane projection as q and q′.

x2-critical

x1-critical

B

B′

C

πC(C)

Figure 5.3: An example of B and B′ satisfying (2) in Lemma 5.3.1. The projection
has a loop. This implies that there are a x1-critical point and a x2-critical point in
the union of B and B′. In this example, these points are different and the projection
has a node.

95

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

(b) If B ∩ B′ 6= ∅: We are going to prove that B and B′ satisfy (2) using
Lagrange multiplier theorem (LMT). We consider x1 as a function from Rn

to R and P to be the constrains function. Since C is connected in B ∪ B′

and since πC(q) = πC(q′), there must be an x1-critical point q in the compact
subset C in B ∪ B′.8 By LMT, there exists a non-trivial λ ∈ Rn−1 such
that Jx1(q) = λtJP (q). This implies that λtM1(q)) = 0 ∈ Rn−1. Thus,
det(M1(q)) = 0. In other words, q is a x1-critical point. In the same way, we
prove the existence of q′ in C restricted to B∪B′ such that det(M2(q′)) = 0.
This proves that q′ is a x2-critical point. Thus, B and B′ satisfy (2).

Remark 5.3.2. From the proof of Lemma 5.3.1, we can obtain a more precise
statement: Every point of Lc is in a box B of enclosing_curve that satisfies (2),
considering B′ = B. Let q and q′ be in C with πC(q) = πC(q′), in particular, q
and q′ are in Ln. Assume that q and q′ are in the (possibly equal) boxes B and
B′ respectively. If B and B′ are disjoint, then they satisfy (1). Otherwise, they
satisfy (2).

An interesting question is how to detect boxes satisfying (1) or (2). Detecting
boxes of enclosing_curve satisfying (1) can be done using any black-box tool that
reports the pairs of intersected boxes of a given set of boxes. See Remark 6.1.1 for
information about the tool we chose. Boxes B,B′ satisfying (2) can be detected
using the same tool in addition to checking the condition:

0 ∈ �M1(B) ∪�M1(B′) and 0 ∈ �M2(B) ∪�M2(B′).

The next step is to cover the Ball solutions. This is be done by the following
proposition which is a corollary of Lemma 5.3.1.

Proposition 5.3.3. Let C be covered by enclosing_curve as above. Let X ∈ BBall

be a solution Ball(P). Then, at least one of the following holds:

(a) There exists B in enclosing_curve which is the cross product of boxesB(x1,x2)

in R2 and By in Rn−2 satisfying (2) and X lives in f−1
Ball(B ×B). Hence, X

is in (x1, x2, y, r, t) ∈ R × R × Rn−2 × Rn−2 × R, where (x1, x2, y) ∈
B, r ∈ [−1, 1]n−2 and t = [0,max(‖By−By‖2

4
)]}.

(b) There exist (possibly equal) boxes B = B(x1,x2)×By and B′ = B′(x1,x2)×B′y
in enclosing_curve satisfying (1) or (2) such that X is in f−1

Ball(B × B′).
Hence, X lives in (x1, x2, y, r, t), with (x1, x2) = B(x1,x2) ∩B′(x1,x2),y =

8Notice that the x1-values of q, q and q′ might be equal. This case occurs when C is a segment orthogonal to R2 in
B ∪B′.

96

5.3. Semi-algorithms improvements

f−1
Ball

BBall

R2n−1

C

B ⊂ Rn

Figure 5.4: A simplified illustration of pruning BBall as described in Proposi-
tion 5.3.3. The red boxes satisfy (1). On the other hand, the brown (resp. orange)
box satisfies (2). Hence, we solve the Ball system over fBall pre-images (in blue)
of the red boxes, the brown box and the orange box.

1
2
(By + B′y), r = [−1, 1]n−2 if B ∩ B′ 6= ∅, otherwise, r =

By−B′y
‖By−B′y‖ , t =

‖By−B′y‖2
4

.

The arithmetic operations mentioned in Proposition 5.3.3 are the natural box func-
tion of the usual arithmetic operations defined on Rn (see Example 5.1.2). Fig-
ure 5.4 illustrates a global picture of the steps above.

Proof. LetX = (x1, x2, y, r, t) ∈ R×R×Rn−2×Rn−2×R be a solution of Ball(P)

in BBall. Let (q, q′) be a pair of L̂ (Definition 4.1.5) such that fBall(X) = (q, q′).
Recall that q and q′ are in Lc∪Ln. Hence, by Remark 5.3.2, q and q′ are respectively
in two boxes B and B′ of enclosing_curve satisfying (1) or (2). In both cases, we
imply that X ∈ f−1

Ball(B×B′) which proves the proposition.

We now reformulate the results of Lemma 5.3.1 and Proposition 5.3.3 in Algo-
rithm 5. This algorithm is used to find a set of (2n − 1)-boxes that cover the Ball
solutions instead of solving it in the whole BBall. It turns out in practice, that com-
puting this set and solving Ball(P) over its boxes is faster than solving the Ball
system over BBall.

Algorithm 5: Pruning BBall.

97

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

Input: An open n-box B and a curve C defined by P ∈ C∞(Rn,Rn−1), with
C ⊂ B such that Assumption A1 is satisfied.

Output: A finite set Solving_domains which is a set of (2n− 1)-boxes contained
in BBall that contains all the solutions of Ball(P) in BBall.

1: Compute a set enclosing_curve of closed n-boxes that enclose C (using a
black-box solver) with Properties (a), (b) and (c).

2: Find the boxes of enclosing_curve satisfying (1) or (2) (Remark 5.3.2)
3: Solving_domains := {}
4: for a box B′ = B in enclosing_curve satisfying (2) do
5: (x1, x2, y) = B, r = [−1, 1]n−2 and t = [0,max(‖By−By‖2

4
)]

6: Add (x1, x2, y, r, t) to Solving_domains.
7: for distinct B = B(x1,x2) ×By and B′ = B′(x1,x2) ×B′y in enclosing_curve

satisfying (1) or (2) do
8: (x1, x2) = B(x1,x2) ∩B′(x1,x2) and y = 1

2
(By + B′y)

9: r = [−1, 1]n−2 if B ∩B′ 6= ∅, otherwise, r =
By−B′y
‖By−B′y‖ and t ∈ ‖By−B′y‖2

4

10: Add (x1, x2, y, r, t) to Solving_domains.
11: return Solving_domains

As a part of the improvements, the output of Algorithm 5 replaces L in Semi-
Algorithm 2, Step (2). For more details, Section 5.3.3 is dedicated to provide a
global vision of the improvements.

5.3.2 Evaluating the operator D

To solve the Ball system we need box functions for the operators S and D (Def-
inition 4.1.1). We first note that if P (x1, x2, y) ∈ C∞(Rn,R) is a polynomial
function, S · P (resp. D · P) is also a polynomial function and can be computed
from the terms of P (x1, x2, y + rt) that have even (resp. odd) exponents in the
variable t, see [IMP2016b, Lemma 6] for details.

If P is a more general C∞ function for which we have a box function, using
Definition 4.1.1, computing S · P on any (2n − 1)-box U or computing D · P on
U such that its t-interval does not contain 0, is implemented from the box function
of P and interval arithmetic. On the other hand, when the t-interval contains 0 or
is close to 0, the division by

√
t in the formula for D · P makes the computation

undefined or unstable. In such non-polynomial cases, we use a Taylor form at order
3 [Ral1983], that is, we compute a Taylor expansion with remainder at t = 0 of
D · P and evaluate by interval the third order derivative. We define a threshold
δTaylor (which we set to 10−2) such that this Taylor form is used when the t-interval

98

5.3. Semi-algorithms improvements

has values smaller than δTaylor.

5.3.3 Improvement integration

In this section, we discuss how we modify Semi-algorithms 2, 3 and 4 in view of
the improvements we discussed in Sections 5.3.1 and 5.3.2. We also add a new
parameter epsmin in addition to changes in several steps in Semi-algorithms 2, 3
and 4, preparing the semi-algorithms to the implementation stage.

Parameter epsmin. We start with adding the parameter epsmin to Semi-algorithm 4
and any (semi) algorithm called by it. The parameter epsmin is a non-negative real
that guarantees the termination in Semi-algorithm 4 even if the termination criteria
is not satisfied. More precisely, if epsmin = 0, then the parameter does not affect
Semi-algorithm 4. Otherwise, this parameter forces the termination of subdivision
or refinement steps in Semi-algorithm 4, that is, the semi-algorithm does not sub-
divide (or refine) further if the width of the processed box (which is a child of B)
is less than epsmin. In this case, the remaining boxes (where epsmin forces the
termination of subdivision or refinement) are labeled as “unknown-status”. These
boxes are left aside and not considered for the further steps. For example, in Semi-
algorithm 2 (which is called by Semi-algorithm 4), Step (11), the parameter epsmin

prohibits the subdivision when the width of U is less than epsmin. From a practical
point of view, the parameter epsmin allows the use of fixed precision arithmetic.9

In addition, it is useful if we want to ensure the termination even when not all
assumptions A1−5 are satisfied, certifying πC(C) singularities only on the part for
which we verify the strong assumptions. On the other hand, an “unknown-status”
label of a box prohibits the use of the Ball system to certify the singularities of its
plane projection (if any). This is, of course, a drawback of setting epsmin > 0.

Changes in Semi-algorithm 4. We now describe the changes in Semi-algorithm 4 and
all (semi) algorithms called by it.

i. Assumption A1 is not checked by Semi-algorithm 1 anymore. It is rather
checked using a black-box solver (see Black-box solver 7 in Section 6.1),
considering the parameter epsmin mentioned above. Such a solver does not
only check Assumption A1, but also computes a set enclosing_curve of n-
boxes that enclose C with Properties (a), (b) and (c) in Section 5.3.1. More
precisely, for epsmin > 0, the solver returns possibly-empty two sets of n-
boxes. The first enclosing_curve encloses a part of C such that the solver
succeeds to verify Assumption A1. The second set contains boxes of width
less than epsmin and encloses the rest of C.

9In fact, a black-box tool in our implementation uses fixed precision arithmetic; see Section 6.1 for more details.

99

Chapter 5. Semi-algorithms to check the assumptions and isolate singularities

ii. The set enclosing_curve is required for Algorithm 5. Furthermore, the output
of Algorithm 5 is used instead of U0 in Step (2) of Semi-algorithm 2. Conse-
quently, Step (2) of Semi-algorithm 3 is omitted. In practice, solving the Ball
system over Algorithm 5 output is more efficient than solving over U0, despite
the fact that computing U0 is simpler.

iii. Recall that every box U of L (after the change in Item i) is computed in such
a way that fBall(U) is a pair of boxes in enclosing_curve. Hence, no need to
check the condition (�fBall(U))∩(B×B) = ∅ in Step (5) of Semi-algorithm 2
since it is never satisfied.

iv. As mentioned in Section 5.3.2, when solving the Ball system (Semi-
algorithm 2, Step (8)) over a box ε-inflation(U), we consider the two dif-
ferent approaches to evaluate the operator D. More precisely, if the t-
interval [tmin, tmax] of ε-inflation(U) contains zero,10 we use Taylor form over
the sub-box of ε-inflation(U) satisfying tmin 6 t 6 min(δTaylor, tmax). If
tmax > δTaylor, we solve the Ball system over the complimentary sub-box
(i.e., with δTaylor 6 t 6 tmax) as defined in (4.1).

Considering the parameter epsmin and the changes above, we reformulate the
specifications of Semi-algorithm 4:

Semi-Algorithm 6: Variant of Semi-algorithm 4

Input: An open n-box B, a smooth function P from B to Rn−1 and two non-
negative reals δTaylor and epsmin.
A1−5 in B or epsmin > 0.

Output: N , a list of pairwise disjoint (2n−1)-boxes whose projections in R2 are
isolating boxes of node singularities in πC(C).
U , a list of n-boxes and (2n−1)-boxes such that AssumptionA1 is not verified
(n-boxes), or Assumptions ℵ1, ℵ2 or ℵ3 are not satisfied ((2n− 1)-boxes). The
width of every box is less than epsmin.
Moreover, every singularity is in the plane projection of a box of N or U .

In the next chapter, we provide more details about the implementation and how
to use the software we develop based on Semi-algorithm 6 and the improvements
explained in this section.

10Notice that, in this case, tmin is in (−∞, 0] by ε-inflation.

100

Part II

Software, experiments and
application in robotics

101

This part details our implementations of the (semi) algorithms presented in Chap-
ter 5 and reports on our experimentations. Based on the theoretical arguments in
Chapters 3 and 4 and the (semi) algorithms presented in Chapter 5, we developed
the software Isolating_singularities11 written in Python. Given a curve C in Rn,
our software finds the singularity of its plane projection. In addition, the software
provides a tool to visualize the projected curve and its singularities. Chapter 6 is
dedicated to describe Isolating_singularities in more details.

In chapter 7, we examine the efficiency of our software performing four experi-
ments that show different cases: C is an analytic curve in R3 or R4 (Sections 7.1
and 7.2), C is a high-degree algebraic curve defined by randomly-generated poly-
nomials (Section 7.3) and C is a curve that contains two very close branches whose
projections define a node (Section 7.4).

Finally, in Chapter 8, we revisit a classical problem in robotics design and anal-
ysis. This problem consists of determining the configurations in which a robot is
allowed to move without damaging it. More formally, it consists of numerically
computing the generalized aspects of that robot (Definition 8.1.1 (g)). For a robot
of two degrees of freedom, the boundaries of the generalized aspects is generically
a space curve in R4. We use our software on the fully parallel robot RRRRR and
we present our experiments in Section 8.3.

11The software is accessible at https://github.com/gkrait/Isolating_singularities.

103

https://github.com/gkrait/Isolating_singularities

104

6

Implementation

Contents
6.1 Third-party libraries . 106

6.2 The Python software Isolating_singularities 107

We present in this chapter a brief description of our software
Isolating_singularities12 which is an implementation of Semi-algorithm 6.

Our software consists of three main functions: enclosing_curve,
enclosing_singularities and ploting_boxes. The first one encloses the curve
C in Rn and checks Assumption A1. More precisely, it returns (a) a set of
n-dimensional boxes that cover a smooth part of the curve C, and (b) a set of
n-dimensional boxes that cover an unknown part of C, where the solver fails to
certify the smoothness.

The goal of the second function enclosing_singularities is to isolate the Ball
system solutions. Consequentially, the plane projections of the boxes output by
enclosing_singularities are, in the best case,13 isolating boxes of the singularities of
the projected curve, and in the worst case, they enclose the singularities. More pre-
cisely, the projection of the boxes returned by enclosing_singularities consists of:

• a set of 2-dimensional boxes each of which contains a unique singular point
of πC(C), and

• a set of 2-dimensional boxes where the behavior of πC(C) is unknown, but
such that every singular point in πC(C) is contained in a box of one of these
two sets.

The third function ploting_boxes performs a visualization task. Using the Python
12The software is accessible at https://github.com/gkrait/Isolating_singularities.
13That is, when our software succeeds to verify the weak assumptions (Section 3.1.2).

105

https://github.com/gkrait/Isolating_singularities

Chapter 6. Implementation

Package Matplotlib [Hea2007], we provide a tool to 2D-visualize the results of the
first and second functions.

In Section 6.1, we present the third-party libraries that we used in our soft-
ware. The second part of this chapter (Section 6.2) documents the software
Isolating_singularities.

6.1 Third-party libraries

Our software is based on interval arithmetic, interval evaluations of analytic
functions and an interval solver. We use the following libraries, Python-
FLINT [Joh2012b] and Ibexsolve [Nin2015] for these tasks.

Python-FLINT is a Python extension module wrapping FLINT (Fast Library for
Number Theory) and Arb (arbitrary-precision ball arithmetic) [Joh2012a], which
offers a toolbox for interval arithmetic and evaluation of analytic functions.

Ibexsolve is a C++ end-user program that solves systems of non-linear equations
rigorously, that is, it does not lose any solution and returns each solution under the
form of a small box enclosing the true value. It implements a classical branch-and-
prune algorithm that interleaves contractions and branching (bisections) to enclose
the solutions of a system at any given desired precision. However, as opposed to
Arb, Ibexsolve has a fixed precision, hence when several solutions are closer to
each other than this precision, it will correctly return an enclosing box for these so-
lutions but it will fail at isolating them. In our software, we use the default precision
which is 10−7. Ibexsolve, and thus also our software Isolating_singularities, use a
parameter eps_max that defines a maximum width for the isolating boxes output
by the solver (the box bisections are forced until all output boxes are not larger than
eps_max). We use Ibexsolve for solving the Ball system (Semi-algorithm 2) and
also in a variant of Semi-algorithm 1 to check the smoothness of the curve C and at
the same time enclosing C in a set of boxes of Rn. The following is a specification
of Ibexsolve:

Black-box solver 7: Ibexsolve

Input: A system of equations, the ranges of the variables and non-negative reals
epsmin 6 epsmax.14

Output: The following sets of boxes whose union contains all solutions of the
given system:

(a) A set of certified boxes, of width at most epsmin, where every box con-
tains a regular solution (resp. full-ranked-Jacobian part of the solution

14Recall that epsmin is the parameter used in Semi-algorithm 6.

106

 https://matplotlib.org/
http://fredrikj.net/python-flint/
http://fredrikj.net/python-flint/
http://www.ibex-lib.org/doc/solver.html
http://fredrikj.net/python-flint/
http://flintlib.org/
http://arblib.org/
http://www.ibex-lib.org/doc/solver.html
http://arblib.org/
http://www.ibex-lib.org/doc/solver.html

6.2. The Python software Isolating_singularities

set) if the system is zero-dimensional (resp. of positive dimension).

(b) A set of boxes, of width at most epsmax, that intersect the boundary of
the input box where the variables are defined and contain solutions of the
given system. Ibexsolve provides an option to verify the regularity of the
solutions inside these boxes.

(c) A set of unknown-status boxes of width at least epsmin.

Remark 6.1.1. Detecting pairs of boxes in enclosing_curve satisfying (1) or (2)

in Lemma 5.3.1 can be done using a black-box tool. It is a software that reports
the pairs of intersected boxes of a given set of boxes. In our implementation, we
use the SciPy class KDTree [VGO+2020].15 This class provides a tool for quick
nearest-neighbor lookup for points in Rn. Considering the center of every box
in enclosing_curve, we can find the centers of the other boxes that intersect it.
Although KDTrees tools offer a fast way to detect the neighbored boxes, it might
return in addition spurious boxes which we simply remove by checking whether a
pair of boxes returned by KDTree intersect.

In addition to the previously-mentioned tools, other libraries are used such as
SymPy [MSP+2017], NumPy [HMvdW+2020] and Matplotlib [Hea2007].

6.2 The Python software Isolating_singularities

The following is a short specification of the software Isolating_singularities16

which is a Python implementation of Semi-algorithm 6. As we mentioned in the
introduction of this chapter, two main tasks can be performed using our software:
computing the output of Semi-algorithm 6 (the function enclosing_singularities)
and a visualization tool (ploting_boxes). There is an additional function
enclosing_curve that performs a sub-task, namely, computing a set of n-boxes that
enclose the curve C. The output of this function is a part of the previous functions
input. The following is a more detailed description of how to use these functions.
By an interval we mean a list [a, b] of floats a, b that represent the lower and upper
bounds respectively. By a box we mean a list of intervals.

• enclosing_curve(system, Box, X, eps_min, eps_max):

15This reference is related to SciPy which is a collection of open source software for scientific computing in Python where
KDTree is a class of this collection; see https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html.

16The software is accessible at https://github.com/gkrait/Isolating_singularities.

107

http://www.ibex-lib.org/doc/solver.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://www.sympy.org/en/index.html
https://numpy.org/
https://matplotlib.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
https://github.com/gkrait/Isolating_singularities

Chapter 6. Implementation

This function returns a list of two lists: The first one is a list of boxes in Rn that
cover a smooth part of the curve (more precisely, where the used solver Ibex-
Solve succeeds to certify the smoothness). The second one contains boxes
where IbexSolve fails to certify the smoothness of the curve.

Parameters.

– system: a string that is the name of the txt file which contains the equa-
tions that define the curve

– Box: a box in Rn

– X: a list of the SymPy symbols that appear in the equations of system

– eps_max : the maximal width of the output boxes, that is, this is a cri-
terion to force bisection: the width of output box will not be larger than
eps_max. By default, eps_max = 0.1.

– eps_min : the minimal width of output boxes. This is a criterion to stop
bisection: for a box where IbexSolve fails to certify the regularity of the
solutions inside that box, the width of this box will not be larger than
eps_min. By default, eps_min = 10−7.

• enclosing_singularities (system, enclosing_curve, Box, X, eps_min,

eps_max, delta_Taylor)

The output of this function consists of the following two lists such that every
solution of Ball(P) (no matter it is regular or not) lives in the union of these
sets of boxes:

(a) A set of enclosing boxes, of width at most epsmax, each of which contains
one certified (regular) solution of Ball(P). Thus, the plane projection of every
box contains a unique singularity, namely, a node.

(b) A set of boxes of widths at most epsmin such that, in their projections, the
behavior of the plane curve is unknown.

Parameters.

– system, Box, X , eps_min and eps_max: are as in enclosing_curve.

– enclosing_curve: is the output of function enclosing_curve.

– threshold: Represents the parameter δTaylor introduced in Section 5.3.2.
When evaluating the Ball system, the parameter controls when to use the
system in (4.1) or the Taylor form. The default value of this parameter is
10−2.

108

http://www.ibex-lib.org/doc/solver.html
http://www.ibex-lib.org/doc/solver.html
http://www.ibex-lib.org/doc/solver.html
https://www.sympy.org/en/index.html
http://www.ibex-lib.org/doc/solver.html

6.2. The Python software Isolating_singularities

• ploting_boxes(certified_boxes, uncer_boxes, var, Box, nodes)

Based on NumPy [HMvdW+2020] and Matplolib [Hea2007], this
function plots a plane projection of enclosing_curve output and
enclosing_singularities output.

Parameters.

– certified_boxes : A list of boxes that cover a smooth part of the curve
certified by IbexSolve. The function plots the plane projection of this list
in green.

– uncer_boxes : A list of boxes that cover parts of the space curve with
unknown status. The function plots the plane projection of this list in
red.

– var (optional): A list of two integers that determines the variables for
which the plane projection is considered. By default, the function con-
siders the first two variables.

– Box (optional): determines the domain of the graph. By default, it is set
to be [−20, 20]2.

– nodes (optional): A set of boxes each of which contains a node.

109

https://numpy.org/
https://matplotlib.org/
http://www.ibex-lib.org/doc/solver.html

Chapter 6. Implementation

110

7

Experiments

Contents
7.1 Experiment 1: Analytic curve in R3 generating one node and one ordi-

nary cusp . 112

7.2 Experiment 2: Analytic curve in R4 with many nodes 113

7.3 Experiment 3: High degree algebraic curve in R4 114

7.4 Experiment 4: Two close lines in R3 generating a node 115

In this section, we present four experiments performed with our software
Isolating_singularities. The first example is pedagogical and considers a simple
analytic curve in R3 that induces only one node and one ordinary cusp in R2. The
second example considers a smooth analytic curve in R4 that induces many nodes
in R2. The third one considers sparse but reasonably-high-degree algebraic equa-
tions in R4. It should be stressed that, up to our knowledge, the two latter examples
are out of reach by other methods: indeed, no other certified algorithm can handle
non-algebraic curves in dimension higher than 3 and, for reasonably-high-degree
algebraic equations in R4, the bivariate equation defining their 2D projection often
has a very high degree (see Section 7.3 for details).

Finally, in the fourth example, we exhibit the behavior of our software when a
node in R2 is induced by a pair of points (on the space curve) that are very close.
Indeed, when the equations defining the space curve are not algebraic, the Ball
system contains a division by

√
t (due to the formula of D · P), which may cause

instability since t tends to zero when the distance between the pair of points tend to
zero. For that purpose, we consider two very close skew lines defined analytically
(and not algebraically).

We report the running times and other relevant parameters in Tables 7.1 and 7.2.
Running times are in seconds on a sequential Intel(R) Core(TM) i7-7600U CPU
@ 2.80GHz machine with Linux. We emphasize that the experiments are done

111

Chapter 7. Experiments

5.3

Enclosing curve C

Output
boxes

Time TimeTree size

Experiment 1

Experiment 2

Experiment 3

0.1

0.03

0.01

0.1

0.03

0.01

0.1

0.03

0.01

535 0.1134 70 3.6

3.890456 0.31835

5427 0.71354 188 4.4

2243 1.1520 6098 52

6759 3.41639 1078 35.4

37210.2484719583

1151 1.0203 655 4.2

2503 1.8523 272 3.5

5.71631482 4.56347

2

43

7

Experiments
Boxes
max.
width

Tree size
Total
time

Output
Solving Ball

system

5.2

10.2

35.8

4.1

5.1

53.1

38.8

45.6

Singularity
boxes

3.7

Table 7.1: Timings (in seconds) and numbers of boxes in Experiments 1 to 3.

with a prototype implementation that is under ongoing development. The tree size
columns reports the total number of boxes created during the subdivision algorithm
either for enclosing the curve C in Rn or for solving the Ball system in R2n−1.
For the enclosing part, the column output boxes is the number of boxes in the set
enclosing_curve. For each experiment, we provide a visualization of the plane
projected curve πC(C) with its singularities. On each figure, the green boxes are
the plane projections of the boxes in enclosing_curve that enclose C, hence these
green boxes enclose πC(C). The black boxes are the projections of the Ball system
solution boxes identifying nodes of the plane curve πC(C).

For each experiment, we consider three values of eps_max and it can be ob-
served (see Table 7.1) that the smaller the value of eps_max, the larger the set
enclosing_curve, and the longer it is to compute. As expected, even with the im-
provement to reduce the Ball system domains to be solved in, the subdivision in
the high dimensional space R2n−1 is the dominant step of the algorithm.

7.1 Experiment 1: Analytic curve in R3 generating one node
and one ordinary cusp

We start with a pedagogical example pictured in Figure 7.1. Running times are
given in Table 7.1. The curve C is defined in the box B = (−1, 4) × (−1, 4) ×
(−4.8,−1.4) by

P (x1, x2, x3) = [x1 − cos(x3)(3 + sin4(x3)) + 3, x2 − sin2(x3)(3 + sin(2x3))].

112

7.2. Experiment 2: Analytic curve in R4 with many nodes

Plane projection of boxes in enclosing curve

Plane projection of Box2
Plane projection of Box1

x1

x2

Figure 7.1: Experiment 1: Plane projection of an analytic curve in R3 with one
node and one ordinary cusp.

Our improved Semi-algorithm 3 outputs the following solutions for the Ball system
in R5:{

N = {Box1 = [3, 3]× [3, 3]× [−3.15,−3.14]× [1, 1]× [2.4673, 2.4675]

U = {Box2 = [−0.06, 0.04]× [−0.04, 0.07]× [−3.15,−3.14]× [1, 1]× [−0.01, 0.01]}.

Box1 in the set N thus projects to a node of πC(C). Box2 being in the set U , one
cannot decide whether its projection in the plane contains a node, a cusp or no
singularity at all. On the other hand, one can notice on the equation P = 0 that
the curve is parametrizable by the variable x3. It is thus an easy computation to
check that for the value x3 = −π, the point q = (0, 0,−π) is on the curve C and
its tangent line at q is generated by the vector (0, 0, 1) which is orthogonal to the
projection plane. It is then clear that the projection of q generates a cusp that is
witnessed by Box2.

7.2 Experiment 2: Analytic curve in R4 with many nodes

Figure 7.2 illustrates the output of our improved Semi-algorithm 4 for the curve
defined by

P = [x1 + 2 sin(x1)− cos(x4)− (3 cos(x3)− cos(2.8571x3)),

x2 + 0.2 cos(x2) + (3 sin(x3)− sin(2.8571x3)) + sin(x4),

x2
4 − sin(x2)]

113

Chapter 7. Experiments

x1

x2

x2

x1

Plane projection of boxes in enclosing curve

Certified node

Figure 7.2: Experiment 2: Plane projection of an analytical curve C in R4. Each of
the 43 black boxes contains a node of πC(C) and is the projection of a box in R7

containing one solution of Ball(P).

over the box B = (−1, 0) × (−0.1, 3.5) × (−20, 20) × (−10, 10). This curve has
many nodes, some of them very close to each other. Running times are given in
Table 7.1.

7.3 Experiment 3: High degree algebraic curve in R4

The goal of this experiment is to emphasize the genericity of the assumptions and
the efficiency of our software in the sparse polynomial case. The curve C in defined
in the 4-box B = (−1, 0.2)× (−0.2, 1.4)× (−10, 10)2 and is the zero set of three
polynomials of degrees 17, 15 and 13, respectively that have a unique monomial of
highest degree (which is monic) and 9 other random monomials of degrees at most
2 with integer coefficients in (−25, 25).

P = [x17
1 − 14x2

1 − 7x1x3 − 7x2
2 − 22x2x4 − x3x4 − 19x2

4 + 8x1 − 14x3 + 9,

x15
2 + 8x1x3 − 14x1x4 − 15x2

2 + 16x2x3 + 8x2x4 + 2x2
3 + 13x2

4 + 11x1 + 11x2,

x13
3 + 17x2

1 − 15x1x2 + 4x1x3 − 20x1x4 + 2x2
2 − 10x2x3 + 4x2x4 + 20x2

4 − 23x2].

Figure 7.3 illustrates the 7 nodes of the projection of C and running times are given
in Table 7.1.

Note that since P is polynomial, the implicit equation of πC(C) can be computed

114

7.4. Experiment 4: Two close lines in R3 generating a node

x1

x2

Plane projection of boxes in enclosing curve

Certified node

Figure 7.3: Experiment 3: High degree algebraic curve in R3 generating 7 nodes.

using elimination theory and its singularities can then be isolated using algebraic
solvers. However, the implicit equation we obtained for πC(C) is defined by an
irreducible bivariate polynomial of degree 442 with 51074 monomials. Isolating
the singularities of such a high-degree polynomial is then a real challenge.

Note also that our class of examples is rather specific and our software does not
work that well if our defining polynomials are dense or even if they have non-
monic high-degree monomials. However, it should be stressed that our software is
a prototype and that it would be more efficient to use an interval solver specialized
for the algebraic case than the versatile Ibex solver we used. Such a specialized
approach has been proved successfully for generic curves in the 3-dimensional
case by Imbach et al. [IMP2018].

7.4 Experiment 4: Two close lines in R3 generating a node

As mentioned in the preamble of Chapter 7, the purpose of this experiment is to
study the behavior of our software when a node in R2 is induced by a pair of points
(on the space curve) that are very close; namely when a node (x1, x2) ∈ R2 is
induced by the pair of points (x1, x2, y ± r

√
t) ∈ Rn with t that tends to zero.

Indeed, when the equations defining the space curve are not algebraic, the Ball
system contains a division by

√
t (due to the formula of D · P), which may cause

instability since t tends to zero when the distance between the pair of points tend

115

Chapter 7. Experiments

ε-values

0.1

C
is

em
p

ty

Time (δTaylor = 10−2)

Time without Taylor
forms

10−2 10−3 10−4 10−5 10−610−10.90.991> 1

Taylor forms are not
triggered 0.8

0.1
0.1

Uncertified solutions

C
is

si
n

g
u

la
r

10−7

0.3

Table 7.2: Experiment 4: Performances for different values of ε.

to zero.

The simplest example to consider is the two skew lines x2 = x1 in the plane x3 = ε

and x2 = −x1 in the plane x3 = −ε, whose projection in the (x1, x2)-plane has a
node at the origin, and to make ε vary towards 0. The pair of lines is thus defined
by [εx2 − x1x3, (x3 − ε)(x3 + ε)] but, in order to have non-algebraic equations, we
replace x3 by sinx3 and define our two lines by P = [εx2−x1 sinx3, sin2 x3− ε2]

in the box B = (−1, 1)3.

The goal of this experiment is to illustrate the stability of our software when ε
varies towards 0. Recall from Section 5.3 that the D operator is evaluated on a
box in two different ways depending on how close to zero is the t-interval of that
box. The Ball system is thus solved either with Equation (4.1) (involving a division
by
√
t) when the values of the t-interval are larger than a parameter δTaylor (set to

10−2) or using a Taylor expansion otherwise.

To illustrate the stability of our software, we compared in Table 7.2 its running
times when ε varies towards 0 with what it would be without using Taylor expan-
sions. It shows that if we do not use Taylor expansions, the solution is not certified
(by the Ibexsolver; see Section 6.1) when ε 6 10−5. On the other hand, our soft-
ware is stable, although its running time increases from 0.1 to 0.8 seconds when
ε gets smaller than or equal to 10−2, which is when the D operator starts to be
evaluated using a Taylor expansion.

116

8

Applications in robotic mechanisms

Contents
8.1 Preliminaries in robotics . 118

8.2 Description of RRRRR robot . 122

8.3 Results . 123

8.3.1 The parallel singularity Sparallel 123

8.3.2 The serial singularity Sserial . 128

In this section we use our software Isolating_singularities to deal with a classi-
cal problem in robotics design and analysis. This problem is about determining
the configurations in which a robot is allowed to move without damaging it; see for
example [BL1986,Cha2010,CCG+2012]. Caro et al. [CCG+2012] provided an ap-
proach, based on branch and prune algorithm, to compute a certified enclosure of
the generalized aspects (see Definition 8.1.1 (g)) which fully automatically applies
to arbitrary robot kinematic model under numerical constrains [CCG+2012, §4.1].
However, regions that include the serial and parallel singularities (i.e., the bound-
aries of the generalized aspects) are left undecided since the numerical constrains
are not satisfied. The results we present in section 8.3 can be considered as a contin-
uation of the above-mentioned work in [CCG+2012]. More precisely, we consider
the manipulator RRRRR which we describe in Section 8.2. We certify the location
of the geometric singularities (defined in Section 2.2.1) appearing in the reachable
workspace and reachable joint-space (Definitions 8.1.1 (d)) as long as our strong
assumptions are satisfied. Before that, we start with recalling preliminaries in Sec-
tion 8.1.

117

Chapter 8. Applications in robotic mechanisms

8.1 Preliminaries in robotics

Quoted from [LP2017, §2], a robot is mechanically constructed by connecting a
set of bodies, called links, to each other using various types of joints. Actuators,
deliver forces or torques that cause the robot’s links to move. The positions that
the robot attains are called configurations of the robot. The number of degrees
of freedom of a robot is, roughly speaking, the smallest number of real-valued
coordinates needed to represent the robot’s configurations.

Robots can be classified into serial and parallel. Serial robots [Mer2006, §1.1]
consist of series of links that are connected by joints equipped with motors. A
parallel robot [Mer2006, §1.4.3] is made up of an end-effector with k degrees of
freedom, and of a fixed base, linked together by at least two independent kinematic
chains. Actuation takes place through k simple actuators.

Since the example we consider in our experiment is a parallel robot, we start with
defining related vocabulary for modeling parallel robots:

Definitions 8.1.1. Consider the following notions.

(a) ([Mer2006, §1.4.3]) A fully parallel robot is a parallel robot for which the
number of chains is equal to the number of degrees of freedom of the end-
effector.

(b) [CCG+2012, §3.2] The pose-command space is the product of the pose and
command spaces which are ambient spaces of all poses and all commands
respectively.

(c) [LP2017, Definition 2.1] For a robot with k degrees of freedom, the k-
dimensional variety Σ containing all possible configurations of the robot is
called the configuration space (or C-space). The C-space Σ is embedded in
the pose-command space. The C-space Σ of a robot is presented as a system of
equations F (x, q) = 0 that characterizes the relation between the commands
q (which represent the command variables) and the corresponding poses x.

(d) [CCG+2012, §3.2] The projection of Σ on the pose space (resp. command
space) is called the reachable workspace Σx (resp. reachable joint-space Σq).

(e) [GA1990, Page 282] Let JF be the Jacobian matrix of F. Define the direct
kinematic matrix A (resp. the inverse-kinematics B) to be the sub-matrix of
JF obtained by removing the columns corresponding to q (resp. x).

(f) [GA1990, Page 282] The parallel (resp. serial) singularity set Sparallel (resp.
Sserial) is the set of points (x, q) in Σ such that det(A(x, q)) = 0 (resp.

118

8.1. Preliminaries in robotics

det(B(x, q)) = 0). The serial (resp. parallel) singularities are also called
first (resp. second) kinds of singularities.

(g) [CW1998, Definition 5] A generalized aspect A is defined as a maximal
subset in Σ such that A is connected and for all (x0, q0) ∈ A the matrices
A(x0, q0) and B(x0, q0) are full-rank.

In this section, we assume that the dimensions of the pose and joint spaces are
both equal to corank(JF (x, q)) for a generic (x, q) ∈ Σ.

Remark 8.1.1. It is important to emphasize that the notions of serial and parallel
singularities differ from the singularity defined on Section 2.2.1. In the rest of this
section, by geometric singularity we mean the one defined in Section 2.2.1.

To illustrate the objects that are defined above, we start with a simple exam-
ple presented by Caro et al. [CCG+2012]. Consider the planar robot PRRP de-
picted in Figure 8.1. A demo for simulating the motion of this robot is accessible
in [Kra2021b] The robot consists of two prismatic joints sliding along two perpen-
dicular axes. The positions of the prismatic joints are denoted by x (along x-axis)
and q (along q-axis). These prismatic joints are connected through rigid links of
lengths a, l and b respectively, with l is strictly larger than max(a, b). The three
links are connected to each other by two revolute joints each of which is rotatable
360 degrees.

As illustrated in Figure 8.2, the pose-command space is hence R2 and the con-
figuration space Σ is the solution set of the equation (x − a)2 + (q − b)2 = l2.

The pose space (resp. joint space) is [a − l, l + a] (resp. [b − l, l + b]). The serial
singularity Sserial is the set {(a+ l, b), (a− l, b)}. Figure 8.4 illustrates the positions
of the robot corresponding to the serial singularities. In these two configurations,
the robot motion is restricted but not damaged. However, when the robot passes
through a point in the parallel singularity Sparallel = {(a, l+b), (a, b−l)} (the corre-
sponding positions are depicted in Figure 8.3), a possibility of robot damage exists.
Hence, in the design and the path planning processes of the robot, it is important to
determine the location of the serial and parallel singularities in order to avoid any
dangerous motion.

The green curve in Figure 8.2 is the union of all generalized aspects (Defini-
tion 8.1.1 (g)) of the robot. The robot is safely allowed to move from and to two
points that are in the same generalized aspect (along that aspect). Notice that for
every point (x0, q0) in a generalized aspect, there exists a local bijection between
the commands and the poses near that point. Equivalently, both of the matrices
A(x0, q0) and B(x0, q0) are invertible.

119

Chapter 8. Applications in robotic mechanisms

Figure 8.1: A non-singular configuration of PRRP where there is a local bijection
between poses and commands.

p

a

b

l

Serial singularity

Parallel singularity

Generalized aspect

Figure 8.2: Geometric modelling of PRRP motion.

120

8.1. Preliminaries in robotics

Figure 8.3: The parallel singular poses of PRRP where the pose x admits two
commands.

Figure 8.4: The serial singular poses of PRRP where the command q admits two
poses.

121

Chapter 8. Applications in robotic mechanisms

In the following section we consider a more challenging example, namely, RRRRR
robot where the serial and parallel singularities are more complicated than in the
above example.

8.2 Description of RRRRR robot

Consider the robot RRRRR (Figure 8.5) that consists of five links
AP ′, P ′P, PP ′′, P ′′B and BA connected by five joints A,P ′, P, P ′′ and B.
The links’ lengths are respectively 8, 5, 8, 5 and 9. The angles BAP ′ and ABP ′′

are the commands q1, q2 respectively that vary in the interval (−π, π). The
pose variables x1, x2 are the coordinates of the point P and vary in the interval
[−15, 15]. A simulation of this robot motion is accessible in [Kra2021a]. The
kinematic equations are:

A B

P ′

P ′′

P

x

y

q1 q2

Figure 8.5: RRRRR robot in a non-singular configuration.

(x1 − 8 cos(q1))2 + (x2 − 8 sin(q1))2 − 25 = 0,

(x1 − 9− 5 cos(q2))2 + (x2 − 5 sin(q2))2 − 64 = 0.
(8.1)

Thus, the configuration space is a surface in the four-dimensional vector space rep-
resented by the variables x1, x2, q1 and q2. Using the notation of Definitions 8.1.1
(e,f), the parallel (resp. serial) singularity is the set of points (x1, x2, q1, q2) in the
configuration space (i.e., satisfying (8.1)) that satisfy the equation det(A) = 0

(resp. det(B) = 0). In other words, the functions P1 and P2 that define the parallel

122

8.3. Results

and serial singularities are respectively:

P1 =

[(x1 − 8 cos(q1))2 + (x2 − 8 sin(q1))2 − 25,

(x1 − 9− 5 cos(q2))2 + (x2 − 5 sin(q2))2 − 64,

det(A) = (2x1 − 16 cos(q1))(2x2 − 10 sin(q2))− (2x2 − 16 sin(q1))

× (2x1 − 10 cos(q2)− 18)].

(8.2)

and

P2 =

[(x1 − 8 cos(q1))2 + (x2 − 8 sin(q1))2 − 25,

(x1 − 9− 5 cos(q2))2 + (x2 − 5 sin(q2))2 − 64,

det(B) = (16(x1 − 8 cos(q1)) sin(q1)− 16(x2 − 8 sin(q1)) cos(q1))

× (−10(x2 − 5 sin(q2)) cos(q2) + 10(x1 − 5 cos(q2)− 9) sin(q2))]

(8.3)

Figures 8.6 and 8.7 illustrate the projections of the parallel and serial singularities
on different variable sub-spaces. These figures are plots of the boxes returned by
enclosing_curve.

8.3 Results

As mentioned in the preamble of this chapter, our goal is to certify the
nodes of the projections of the parallel and serial singularities with respect to
the command and pose spaces. This is a continuation of classical work in
robotics such as [CCG+2012]. Applying the functions enclosing_curve and
enclosing_singularities in software Isolating_singularities we get the following re-
sults:

8.3.1 The parallel singularity Sparallel

All boxes that enclosing_curve returns are certified. Hence, P1 satisfies Assump-
tionA1. Taking the plane projections of Sparallel with respect to (x1, x2) and (q1, q2)

and solving Ball(P1) accordingly we get:

• The plane projection of Sparallel with respect to x1 and x2:

The output of Isolating_singularities consists of:

(a) an empty set of uncertified solutions of Ball(P1). Hence, P1 satisfies
Assumption ℵ1 in BBall,

123

Chapter 8. Applications in robotic mechanisms

x115 10 5 0 5 10 15x2 1510505
1015

x3

3

2

1

0

1

2

3

(a) The projection of Sserial on R3

with respect to (x1, x2, q1).

x1 15105051015 x2

1510
5

0
5

10
15

x4

3
2
1

0

1

2

3

(b) The projection of Sserial on R3

with respect to (x1, x2, q2).

x3
3 2 1 0 1 2 3

x4

3

2

1

0

1

2

3

x1

15

10

5

0

5

10

15

(c) The projection of Sserial on R3 with re-
spect to (q1, q2, x1).

x3

3
2
1
0
1
2
3

x4 3210123

x2

15
10
5

0
5

10
15

(d) The projection of Sserial on R3

with respect to (q1, q2, x2).

2.5 0.0 2.5 5.0 7.5 10.0 12.5
x1

10

5

0

5

10

x2

(e) The plane projection of Sserial on
R3 with respect to (x1, x2).

3 2 1 0 1 2 3
q1

3

2

1

0

1

2

3

q2

(f) The plane projection of Sserial on
R3 with respect to (q1, q2).

Figure 8.6: Illustration of the projections of Sserial on different variable sub-spaces.

124

8.3. Results

x1
1510505

1015

x2
15105051015

x3

3

2

1

0

1

2

3

(a) The projection of Sparallel on R3

with respect to (x1, x2, q1).

x1

15105051015
x215 10 5 0 5 10 15

x4

3

2

1

0

1

2

3

(b) The projection of Sparallel on R3

with respect to (x1, x2, q2).

x3
3 2 1 0 1 2 3

x4

3
2
1

0
1
2
3

x1

15
10
5

0
5

10
15

(c) The projection of Sparallel on R3

with respect to (q1, q2, x1).

x3
3 2 1 0 1 2 3

x4

3
2
1

0
1
2
3

x2

15
10
5
0
5
10
15

(d) The projection of Sparallel on R3

with respect to (q1, q2, x2).

2.5 0.0 2.5 5.0 7.5 10.0 12.5
x1

10

5

0

5

10

x2

(e) The plane projection of Sparallel on
R3 with respect to (x1, x2).

3 2 1 0 1 2 3
q1

3

2

1

0

1

2

3

4

q2

(f) The plane projection of Sparallel on
R3 with respect to (q1, q2).

Figure 8.7: Illustration of the projections of Sparallel on different variable sub-
spaces.

125

Chapter 8. Applications in robotic mechanisms

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x1

15

10

5

0

5

10

x2

smooth part
unknown part
Certified nodes
cusps or small nodes

Figure 8.8: Enclosing the plane projection of Sparallel with respect to x1 and x2.

(b) an empty set of solution enclosures X = (x1,x2,y, r, t), with 0 ∈ t,
and

(c) a list of eleven Ball(P1) solutions that are corresponding to nodes. As
shown in Table 8.1, every row represents an enclosing box of a solution
of Ball(P1). Notice that the boxes returned by enclosing_singularities
enclose only one solution of every pair of twin solutions. More-
over, recall that enclosing_singularities checks Assumptions ℵ2 and ℵ3

which is straightforward to verify by hand from Table 8.1. Hence, By
Lemma 5.2.2, P1 satisfies Assumptions A1, A2, A3, A4 and A5.

Figure 8.8 shows the plane projection of Sparallel with respect to x1 and x2

(brown boxes) in addition to the boxes enclosing the solutions of Ball(P1)

(black boxes). In fact, the black boxes are inflations of the output of
Isolating_singularities since the width of the latter ones are not large enough
to be visualized.

• The plane projection with respect to q1 and q2:

In this case, enclosing_singularities returns an empty set of solutions (certi-
fied and uncertified) of Ball(P1). Hence, AssumptionsA1,A2,A3,A4 andA5

are satisfied. By Theorem 4.1.3, the plane projection of Sparallel with respect
to q1 and q2 is smooth; see Figure 8.9.

126

8.3. Results

x1
x2

x3
x4

r3
r4

t

[-3.082612383354,
-3.08261238335399]

[-4.32953244422151e-14,
4.74276298769349e-14]

[-1.00005123941644e-14,
9.31060578936555e-15]

[-4.82757003508379e-15,
4.2642170390076e-15]

[0.743897901776617,
0.743897901776618]

[-0.668293282722748,
-0.668293282722746]

[15.8228036397883,
15.8228036397884]

[12.4143983309575,
12.4143983309576]

[-2.19643732065757e-14,
2.16845988888023e-14]

[-1.76557550892842e-15,
1.76082789285627e-15]

[-3.26320463863822e-15,
3.49588194035759e-15]

[0.0940663393605286,
0.0940663393605299]

[0.995565931417558,
0.995565931417558]

[6.3027493738415,
6.30274937384154]

[7.72198469285079,
7.72198469285081]

[3.14146695654038,
3.1414669565404]

[0.386372842093721,
0.386372842093724]

[-1.18442348470118,
-1.18442348470117]

[0.704545623272464,
0.704545623272469]

[0.709658695943063,
0.709658695943068]

[0.776365783937367,
0.776365783937377]

[5.76855440419258,
5.7685544041926]

[2.39244228475219,
2.3924422847522]

[0.393147161987983,
0.393147161987985]

[-1.6041358360562,
-1.6041358360562]

[1.0, 1.0]
[-1.35072900290922e-15,
1.3524309601545e-15]

[0.455802586765906,
0.455802586765907]

[3.44858372485897,
3.44858372485899]

[-7.82218870513019e-15,
7.05250886308968e-15]

[-1.00674311863552e-15,
9.00186606896201e-16]

[-1.88040204779071e-15,
2.06396968946145e-15]

[0.268547393470069,
0.26854739347007]

[0.963266472716886,
0.963266472716886]

[2.18193106992155,
2.18193106992156]

[1.73739024480918,
1.7373902448092]

[3.55218064581808,
3.55218064581809]

[1.115902433489,
1.11590243348901]

[-0.454893893305893,
-0.45489389330589]

[-0.267600107931582,
-0.267600107931581]

[0.96353006296379,
0.963530062963791]

[3.90057257003159,
3.90057257003161]

[7.7219846928508,
7.72198469285081]

[-3.14146695654039,
-3.14146695654038]

[-0.386372842093724,
-0.386372842093722]

[1.18442348470117,
1.18442348470118]

[-0.704545623272468,
-0.704545623272464]

[-0.709658695943067,
-0.709658695943064]

[0.776365783937368,
0.776365783937376]

[5.76855440419258,
5.7685544041926]

[-2.3924422847522,
-2.39244228475219]

[-0.393147161987986,
-0.393147161987983]

[1.6041358360562,
1.6041358360562]

[1.0, 1.0]
[-1.12614686367309e-15,
1.57701309939061e-15]

[0.455802586765905,
0.455802586765907]

[1.73739024480918,
1.7373902448092]

[-3.55218064581809,
-3.55218064581808]

[-1.11590243348901,
-1.115902433489]

[0.45489389330589,
0.454893893305893]

[0.267600107931581,
0.267600107931582]

[-0.963530062963791,
-0.96353006296379]

[3.90057257003159,
3.90057257003161]

[0.920765984156912,
0.920765984156939]

[6.17674590722489,
6.17674590722491]

[1.4228162805306,
1.4228162805306]

[1.6041358360562,
1.6041358360562]

[1.0, 1.0]
[-4.35760929934693e-16,
6.34230694600428e-16]

[0.455802586765906,
0.455802586765907]

[0.920765984156913,
0.920765984156938]

[-6.17674590722491,
-6.17674590722489]

[-1.4228162805306,
-1.4228162805306]

[-1.6041358360562,
-1.6041358360562]

[1.0, 1.0]
[-5.98563567784164e-16,
4.71428056750956e-16]

[0.455802586765906,
0.455802586765907]

Table 8.1: The list of certified nodes enclosure that enclosing_singularities returns,
where every row represents an enclosing box of a solution of Ball(P1). Notice that
enclosing_singularities returns exactly one solution of every pair of twin solutions.

127

Chapter 8. Applications in robotic mechanisms

q1

q2

Figure 8.9: The plane plotting of Isolating_singularities output for Sparallel with
respect to q1 and q2.

8.3.2 The serial singularity Sserial

Applying enclosing_curve to P2, both sets of certified and uncertified boxes are
not empty (for epsmin > 0). Hence, enclosing_curve does not certify the smooth-
ness of Sserial. Indeed, using a computer algebra system, we checked that the points
(9

2
,
√

595
2

) and (9
2
,−
√

595
2

) are both the plane projections (with respect to x1, x2) of
singular points of Sserial. Projecting to the planes (x1, x2) and (q1, q2) and solving
Ball(P2) accordingly, we get:

• The plane projection with respect to x1 and x2; Figure 8.10:

For all values of the parameter epsmin that we chose, Isolating_singularities
returns an empty set of certified Ball solutions. Moreover, the plane projec-
tions of uncertified boxes cover the projection of Sserial. To understand this
result, see Figure 8.11, where two different configurations have the same po-
sition P = (x1, x2). This holds for uncountable number of configurations.
Thus, Assumption A2 is not satisfied (i.e., Ln is uncountable). In fact, using
a similar argument, we can see that Ln is equal to Sserial except the singular
points.

• The plane projection with respect to q1 and q2; Figure 8.12:

In this case, enclosing_singularities returns an empty set uncertified Ball(P2)

solutions in addition to 14 boxes each of which encloses a certified node (Ta-
ble 8.2). In Figure 8.12 we illustrate the projection of Sserial with respect
to q1 and q2 together with certified nodes which are inflated in the figure so
they can be seen. The projection of unknown boxes (which contain geometric
singularities of Sserial) are plotted in red.

128

8.3. Results

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x2
unknown part
Certified nodes
cusps or small nodes

Figure 8.10: Plotting the result of applying Isolating_singularities to Sserial with
respect to x1, x2, where it plots only red boxes since neither Assumption A2 nor
Assumption A1 is satisfied.

A B

P ′′

q1 q2

P

P ′

x1

x2

A B

P ′′

q1
q2

P

P ′

x1

x2

Figure 8.11: An example of two different (serial) singular configurations of RRRRR
that define the same pose (x1, x2).

129

Chapter 8. Applications in robotic mechanisms

x1
x2

x3
x4

r3
r4

t

[1.045652017194436,
1.04565201719444]

[2.408973115811948,
2.408973115811954]

[2.926433957572022,
2.926433957572062]

[9.97146124008183,
9.97146124008186]

[0.9422126706172985,
0.9422126706173009]

[0.3350153478994864,
0.3350153478994923]

[14.5252250070272,
14.5252250070274]

[1.17764916480691,
1.177649164806915]

[1.604135836056195,
1.604135836056203]

[3.06477892914073,
3.064778929140758]

[7.389663734940501,
7.389663734940516]

[0.3830973661425916,
0.3830973661425945]

[0.9237079668675628,
0.9237079668675643]

[24.99999999999996,
25.00000000000005]

[0.2207608354396288,
0.2207608354396333]

[2.609778324737173,
2.609778324737185]

[12.13508501616866,
12.13508501616868]

[0.6626714857891737,
0.6626714857892166]

[0.2439681633826448,
0.2439681633826514]

[0.9697832413770076,
0.9697832413770097]

[5.071566226733419,
5.071566226733524]

[0.724654512108983,
0.7246545121089882]

[-2.007831411346909,
-2.0078314113469]

[6.257975350818948,
6.257975350818971]

[2.353331047150218,
2.353331047150238]

[-0.9958933752895709,
-0.9958933752895703]

[-0.09053388898278258,
-0.09053388898277812]

[16.22746477679033,
16.22746477679048]

[0.1479800462642943,
0.1479800462642971]

[-1.604135836056202,
-1.604135836056195]

[7.912567349176403,
7.912567349176411]

[1.179524457036575,
1.179524457036588]

[0.9890709186470505,
0.9890709186470513]

[0.1474405571295711,
0.1474405571295743]

[24.99999999999996,
25.00000000000003]

[0.6296139402821168,
0.6296139402821204]

[0.08968188640931876,
0.08968188640932787]

[8.259684894168872,
8.259684894168894]

[3.693070408800356,
3.693070408800381]

[0.4934502112526666,
0.4934502112526711]

[0.8697740448039905,
0.8697740448039933]

[20.74734200111457,
20.7473420011147]

[-0.1479800462642971,
-0.1479800462642943]

[1.604135836056195,
1.604135836056202]

[7.912567349176403,
7.912567349176411]

[-1.179524457036588,
-1.179524457036574]

[0.9890709186470505,
0.9890709186470513]

[-0.1474405571295742,
-0.1474405571295711]

[24.99999999999997,
25.00000000000003]

[-0.7246545121089883,
-0.7246545121089825]

[2.0078314113469,
2.007831411346909]

[6.257975350818947,
6.257975350818973]

[-2.353331047150239,
-2.353331047150217]

[-0.9958933752895711,
-0.9958933752895702]

[0.09053388898277769,
0.09053388898278265]

[16.22746477679031,
16.22746477679048]

[-0.6296139402821204,
-0.6296139402821161]

[-0.08968188640932837,
-0.08968188640931767]

[8.25968489416887,
8.259684894168895]

[-3.693070408800383,
-3.693070408800354]

[0.4934502112526664,
0.4934502112526716]

[-0.8697740448039935,
-0.8697740448039902]

[20.74734200111456,
20.7473420011147]

[-0.2478711625343014,
-0.2478711625342982]

[-1.428558711394765,
-1.428558711394758]

[5.74151763387491,
5.741517633874925]

[1.116840795820682,
1.116840795820698]

[0.8369179815425689,
0.8369179815425714]

[0.547328322098088,
0.5473283220980916]

[11.46016277422995,
11.46016277423008]

[-1.177649164806914,
-1.17764916480691]

[-1.604135836056201,
-1.604135836056196]

[3.064778929140735,
3.064778929140755]

[-7.389663734940515,
-7.389663734940504]

[-0.3830973661425941,
-0.3830973661425922]

[0.923707966867563,
0.9237079668675641]

[24.99999999999997,
25.00000000000004]

[-1.04565201719444,
-1.045652017194435]

[-2.408973115811954,
-2.408973115811948]

[2.926433957572022,
2.926433957572065]

[-9.971461240081863,
-9.97146124008183]

[0.9422126706172984,
0.942212670617301]

[-0.3350153478994925,
-0.3350153478994859]

[14.52522500702719,
14.52522500702741]

[0.2478711625342984,
0.2478711625343013]

[1.428558711394758,
1.428558711394765]

[5.741517633874912,
5.741517633874925]

[-1.116840795820698,
-1.116840795820683]

[0.836917981542569,
0.8369179815425712]

[-0.5473283220980913,
-0.5473283220980882]

[11.46016277422996,
11.46016277423007]

[-0.2207608354396332,
-0.2207608354396283]

[-2.609778324737186,
-2.609778324737173]

[12.13508501616866,
12.13508501616868]

[-0.6626714857892184,
-0.6626714857891686]

[0.2439681633826439,
0.2439681633826517]

[-0.9697832413770098,
-0.9697832413770076]

[5.071566226733406,
5.071566226733526]

Table 8.2: The list of certified nodes enclosure that enclosing_singularities returns,
where every row represents an enclosing box of a solution of Ball(P2). Notice that
enclosing_singularities returns exactly one solution of every pair of twin solutions.

130

8.3. Results

q1

q1

q1

q2

q2

q2

Figure 8.12: An illustration of enclosing_singularities output for the serial singu-
larity Sserial of the robot RRRRR. The projection is with respect to the (q1, q1)-
plane (the command variables). The certification of the geometric singularities is
done only where our strong assumptions are satisfied. The red boxes contain the
projections of the (geometric) singular points of Sserial.

131

Chapter 8. Applications in robotic mechanisms

132

Conclusion

133

9

Conclusion

We addressed in this thesis the problem of isolating the singularities of plane curves
using certified and numerical methods. This is motivated by the fundamental prob-
lem of approximating (drawing) plane curves with the correct topology. We specif-
ically considered the case of curves that are given as the plane projection of generic
implicit curves in Rn. The study of such curves was motivated by applications in
robotics design. Our contribution in this thesis has two parts:

Theoretical contributions. Given a generic curve C contained in an n-dimensional
closed box B, defined as the zero locus of a C∞-function from Rn to Rn−1, we
identified in Chapter 4 a regular square system, called the Ball system that encodes
the singularities of the plane projection πC(C) of C. The idea of the Ball system is
based on a theoretical analysis of generic curves in Rn that classifies the points of
C depending on the types of their projections. Thanks to its (square and regular)
structure, this system is solvable using efficient certified numerical methods such
as Interval Newton [Neu1991]. In Section 3.2, we precisely defined the conditions
that C must satisfy in order to guarantee the correctness of our results. Furthermore,
in the same section, we proved the genericity of these conditions via transversality
theory. In the same way, we studied whether the silhouette of a generic surface in
Rn satisfies our conditions. In this case, we only proved the genericity of some
of the assumptions and we stated the genericity of the missing part as Conjec-
ture 3.2.18.

Algorithmic contributions and applications. We presented semi-algorithms that
terminate if and only if the above-mentioned generic conditions are satisfied (Chap-
ter 5). Furthermore, under the same assumptions, the semi-algorithms provide a set
(or a superset) of isolating boxes of πC(C) singularities. We also presented an im-
plementation of our semi-algorithms which we modified (by adding a threshold
parameter epsmin) to ensure its termination even when our assumptions are not

135

Chapter 9. Conclusion

satisfied. Hence, given any curve C in Rn, our software provides two sets of 2D-
boxes: (i) a set of boxes each of which contains exactly one singularity, namely,
a node of πC(C) and (ii) a set of boxes of widths smaller than epsmin and above
which our software is unable to verify the assumptions, and where, the behavior of
πC(C) inside these boxes is thus unknown. Furthermore, any singularity of πC(C)

is ensured to be in the union of these two sets of boxes even when our assumptions
are not satisfied. We also discuss the performance of our software in Chapter 7 on
non-algebraic instances for which no certified methods used to exist and algebraic
instances that used to be out of reach by known certified methods. Finally, we
finished this thesis with an application in robotics in Chapters 8.

Strengths, weaknesses and open problems

Our approach considers not only algebraic curves, but also those that are defined by
C∞-functions as long as interval evaluations of the functions and their derivatives
are provided. Moreover, our approach is the first certified numerical method that
considers the curve C to be in Rn for an arbitrarily large n.

Our Ball-system-based approach is certified and appears to be efficient in sev-
eral examples (see Chapter 7). Furthermore, it allows to isolate πC(C) singularities
without computing an implicit equation of πC(C) in the plane for which the avail-
able approaches are usually restricted to the algebraic case and might increase the
complexity of the method used.

Although, for technical reasons, we restricted C to live in a closed box in Rn, we
believe that our theoretical results in Chapters 3 & 4 still hold for any compact sub-
set of Rn. We also expect that the semi-algorithms in Chapter 5 can be developed
to handle curves over compact sets as long as the membership problem17 over these
sets is solvable. This generalization is, of course, helpful to tackle some visualiza-
tion or robotics problems (that are similar to the ones that motivated us) where the
region of interest is as general as compact sets.

It might also be interesting to investigate the possibility of generalizing the con-
sidered type of functions to the class Ck, with k large enough, where Ck is the class
of functions that are differentiable k times with continuous derivatives. This gener-
alizations is expected to produce the same types of singularities in the projection.
In fact, our motivation behind this suggestion is purely mathematical.

Another interesting open problem is to investigate the possibility of computing a
certified approximation of singular plane curves by first lifting the input curve to a

17The membership problem asks whether a given point is in a given subset in Rn.

136

smooth curve in Rn, for some n, and then applying our approach. Even though it
seems unintuitive to first lift for then to project, this approach is similar in spirit to
blow-up techniques [JP2000, §5.3], although our lifting problem is global instead
of local. However, if possible, it might allow to use certified numerical methods
for computing the topology of implicit non-algebraic plane curves.

A similar idea of our approach has been already used by Diatta et al. [DMP2019].
The authors encoded the singularity of a surface in R3 that is the projection of a
generic surface in R4. This motivates the question of generalizing the idea of the
Ball system to higher-dimensional objects. In particular, to find a regular system
that encodes the singularities of the projection of a generic surface in Rn to R3,
with n > 4. If possible, this would help to address some problems raised when
designing robots of degrees of freedom larger than two (see Section 1.1).

The genericity of the assumptions implies that a randomly chosen curve in Rn

satisfies our assumption. In this regards, it would be interesting to continue the
investigation on whether the silhouette of a generic surface in Rn satisfies our weak
assumptions. We have already proved a part and we left the rest as a conjecture
(Conjecture 3.2.18). Such silhouette curves are relevant because they naturally
appear in parametric systems since they partition the parametric space with respect
to the number of solutions of the system.

Recall that we added a parameter epsmin in our semi-algorithm to enforce its ter-
mination. From a practical point of view, epsmin also makes the algorithm practical
with fixed-precision arithmetic since we can stop the refinements before we go be-
yond the limit of the fixed precision. In addition, it is useful if we want to ensure
the termination even when not all assumptions are satisfied, certifying πC(C) sin-
gularities only on the part above which C verifies the assumptions. In particular,
we can handle that way the projections of non-generic singular curves in Rn.

The software we provided does not only offer singularity detection but also a
visualization tool for πC(C). Figure 8.12 illustrates an example of how the output
of our software look likes. Although the provided visualization does not guarantee
the topology, the certified isolation of the singularities of πC(C) paves the way
towards drawing πC(C) with the correct topology. Indeed, note that, for a given
precision, if the drawing shows two branches that appear to intersect but without
any reported box that contains the intersection, it is ensured that the two branches
do not actually intersect; however, in order to determine the local topology (see
Figure 9.1), further refinements are needed in our approach. We expect that an
analogous approach to [IMP2018] might be found.

Our software handles only the functions that are implemented in the Minibex

137

http://www.ibex-lib.org/doc/minibex.html
http://www.ibex-lib.org/doc/minibex.html

Chapter 9. Conclusion

Boxes enclosing smooth parts of the projected curve

A

CB

Figure 9.1: An example where our visualization tool does not provide a correct
topology for some precision. A: Our software returns a set of boxes that encloses
the projected curve without reporting any node (or unknown-status boxes). B & C:
Two different scenarios of the plot in A after enough refinements.

language18 (e.g., sin, cos, exp. . .) which is the language used in our black-box
solver. In fact, we also developed another version of our software where the user
can implement interval evaluations of his/her own functions and their derivatives.
However, this version is too slow in practice. An interesting project would be
to investigate the possibilities of improving this version. For this goal, Python-
FLINT [Joh2012b] offers an interesting toolbox for interval arithmetic.

Another natural open question regarding the semi-algorithms is its complexity. It
is worth noticing that our semi-algorithms use a subdivision approach with diame-
ter distance tests as defined by Burr et al. [BGT2020]. As such, it should be pos-
sible to study our complexities using the method of continuous amortization. This

18http://www.ibex-lib.org/doc/minibex.html.

138

http://www.ibex-lib.org/doc/minibex.html
http://www.ibex-lib.org/doc/minibex.html
http://www.ibex-lib.org/doc/minibex.html

should yield explicit bounds for the case of polynomial input either in the worst
case (as in [BGT2020]), or in a smoothed complexity setting (as in [CETC2019]).

139

Chapter 9. Conclusion

140

Bibliography

[ABRW1996] M.-E. Alonso, E. Becker, M. F. Roy, and T. Wörmann, Zeros, multiplicities, and idempotents for zero-
dimensional systems, Algorithms in algebraic geometry and applications, 1996, pp. 1–15.

[AGZV2012] Vladimir Igorevich Arnold, Sabir Medgidovich Gusein-Zade, and Alexander Nikolaevich Varchenko,
Singularities of differentiable maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New
York, 2012. MR2896292

[Bôc1964] Maxime Bôcher, Introduction to higher algebra, Dover Publications, Inc., New York, 1964.

[BCR1998] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy, Real algebraic geometry, Springer, 1998.

[BES2011] E. Beberich, P. Emeliyanenko, and M. Sagraloff, An elimination method for solving bivariate polynomial
systems: eliminating the usual drawbacks., SIAM, Philadelphia (2011), 35–47. International Symposium
on Symbolic and Algebraic Computation.

[BGT2020] Michael Burr, Shuhong Gao, and Elias Tsigaridas, The complexity of subdivision for diameter-distance
tests, Journal of Symbolic Computation 101 (2020), 1 –27.

[BL1986] P. Borrel and A. Liegeois, A study of multiple manipulator inverse kinematic solutions with applications
to trajectory planning and workspace determination, Proceedings. 1986 ieee international conference on
robotics and automation, 1986, pp. 1180–1185.

[BL2013] Carlos Beltrán and Anton Leykin, Robust certified numerical homotopy tracking, Foundations of Compu-
tational Mathematics 13 (2013), no. 2, 253–295.

[BLM+2016] Yacine Bouzidi, Sylvain Lazard, Guillaume Moroz, Marc Pouget, Fabrice Rouillier, and Michael
Sagraloff, Solving bivariate systems using rational univariate representations, Journal of Complexity
37 (2016), 34 –75.

[Bou2014] Yacine Bouzidi, Solving bivariate algebraic systems and topology of plane curves, Theses, 2014.

[BSS2001] Alin Bostan, Bruno Salvy, and Éric Schost, Fast Algorithms for Zero-Dimensional Polynomial Systems
Using Duality, Technical Report RR-4291, INRIA, 2001.

[Buc1965] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal, 1965.

[BV1988] Winfried Bruns and Udo Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer-
Verlag, Berlin, 1988.

[CCG+2012] Stéphane Caro, Damien Chablat, Alexandre Goldsztejn, Daisuke Ishii, and Christophe Jermann, A Branch
and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots, 18th international
conference on Principles and Practice of Constraint Programming, 2012, pp. 867–882.

[CETC2019] Felipe Cucker, Alperen A. Ergür, and Josue Tonelli-Cueto, Plantinga-vegter algorithm takes average
polynomial time, Proceedings of the 2019 on international symposium on symbolic and algebraic compu-
tation, 2019, pp. 114–121.

[CGL2009] Jin-San Cheng, X. Gao, and J. Li, Root isolation for bivariate polynomial systems with local generic
position method, Issac ’09, 2009.

[Cha2010] Damien Chablat, Joint space and workspace analysis of a two-DOF closed-chain manipulator, RO-
MANSY 18 Robot Design, Dynamics and Control, 2010, pp. 81–90.

[CLO2005] David A. Cox, John Little, and Donal O’Shea, Using algebraic geometry, Second, Graduate Texts in
Mathematics, vol. 185, Springer, New York, 2005. MR2122859

141

BIBLIOGRAPHY

[CLO2007] , Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and
commutative algebra, Undergraduate texts in mathematics.Third Edition., Springer-Verlag New York-
Berlin-Paris, 2007.

[CLP+2010] Jinsan Cheng, Sylvain Lazard, Luis Peñaranda, Marc Pouget, Fabrice Rouillier, and Elias Tsigaridas, On
the topology of real algebraic plane curves, Mathematics in Computer Science 4 (2010Nov), no. 1, 113–
137.

[CW1998] Damien Chablat and Philippe Wenger, Working Modes and Aspects in Fully-Parallel Manipulator, Inter-
national Conference on Robotics and Automation, May 1998, pp. 1964–1969.

[Dem2000] Michel Demazure, Bifurcations and catastrophes, Universitext, Springer-Verlag, Berlin, 2000. Geometry
of solutions to nonlinear problems, Translated from the 1989 French original by David Chillingworth.

[DET2009] Dimitrios I. Diochnos, Ioannis Z. Emiris, and Elias P. Tsigaridas, On the asymptotic and practical com-
plexity of solving bivariate systems over the reals, Journal of Symbolic Computation 44 (2009), no. 7, 818
–835. International Symposium on Symbolic and Algebraic Computation.

[DL2014] Nicolas Delanoue and Sébastien Lagrange, A numerical approach to compute the topology of the apparent
contour of a smooth mapping from R2 to R2, Journal of Computational and Applied Mathematics 271
(2014), 267 –284.

[DLZ2011] Barry Dayton, Tien-Yien Li, and Zhonggang Zeng, Multiple zeros of nonlinear systems, Math. Comp. 80
(2011), no. 276, 2143–2168.

[DMP2019] Sény Diatta, Guillaume Moroz, and Marc Pouget, Reliable Computation of the Singularities of the Projec-
tion in R3 of a Generic Surface of R4, MACIS 2019 - Mathematical Aspects of Computer and Information
Sciences, November 2019.

[EH2004] G. William Walster Eldon Hansen, Global optimization using interval analysis, 2nd ed., revised and
expanded, Monographs and textbooks in pure and applied mathematics 264, Marcel Dekker, 2004.

[Epp2013] J.F. Epperson, An introduction to numerical methods and analysis, Wiley, 2013.

[FM2007] Dominique Faudot and Dominique Michelucci, A new robust algorithm to trace curves, Reliable Com-
puting 13 (2007Aug), no. 4, 309–324.

[GA1990] C. Gosselin and J. Angeles, Singularity analysis of closed-loop kinematic chains, IEEE Transactions on
Robotics and Automation 6 (1990), no. 3, 281–290.

[GG1973] Marty Golubitsky and Victor Guillemin, Stable mappings and their singularities, Springer-Verlag, New
York-Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14.

[GM1989] Patrizia Gianni and Teo Mora, Algebraic solution of systems of polynomial equations using gröbner bases,
Applied algebra, algebraic algorithms and error correcting codes, proceedings of aaecc-5, volume 356 of
lncs, 1989, pp. 247–257.

[GS2001a] Jürgen Garloff and Andrew P. Smith, Solution of systems of polynomial equations by using bernstein
expansion, Symbolic algebraic methods and verification methods, 2001, pp. 87–97.

[GS2001b] Jürgen Garloff and A.P. Smith, Investigation of a subdivision based algorithm for solving systems of
polynomial equations, Nonlinear Analysis: Theory, Methods & Applications 47 (2001), no. 1, 167 –178.
Proceedings of the Third World Congress of Nonlinear Analysts.

[GVJ+2009] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith, Implicit curves and surfaces: Mathematics,
data structures and algorithms, Springer London, 2009.

[GVK1996] Laureano González-Vega and M’hammed El Kahoui, An improved upper complexity bound for the topol-
ogy computation of a real algebraic plane curve, Journal of Complexity 12 (1996), no. 4, 527 –544.

[Hea2007] J. D. Hunter et al., Matplotlib: A 2d graphics environment, Computing in Science & Engineering 9 (2007),
no. 3, 90–95.

[HMS2015] Jonathan D. Hauenstein, Bernard Mourrain, and Agnes Szanto, Certifying isolated singular points and
their multiplicity structure, ISSAC’15, July 2015, pp. 213–220.

[HMvdW+2020] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo,
Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant, Array programming with NumPy, Nature 585
(September 2020), no. 7825, 357–362.

142

BIBLIOGRAPHY

[IMP2016a] Rémi Imbach, Guillaume Moroz, and Marc Pouget, A certified numerical algorithm for the topology of
resultant and discriminant curves, Journal of Symbolic Computation 80, Part 2 (2016), 285–306.

[IMP2016b] Rémi Imbach, Guillaume Moroz, and Marc Pouget, Numeric and certified isolation of the singularities
of the projection of a smooth space curve, Mathematical aspects of computer and information sciences,
2016, pp. 78–92.

[IMP2018] Rémi Imbach, Guillaume Moroz, and Marc Pouget, Reliable location with respect to the projection of a
smooth space curve, Reliab. Comput. 26 (2018), 13–55. MR3804276

[Joh2012a] Fredrik Johansson, Arb, 2012. https://arblib.org/.

[Joh2012b] , Python-flint, 2012. http://fredrikj.net/python-flint/.

[JP2000] T. D. Jong and G. Pfister, Local analytic geometry - basic theory and applications, Advanced lectures in
mathematics, 2000.

[Kal1993] M. Kalkbrener, A generalized euclidean algorithm for computing triangular representations of algebraic
varieties, J. Symb. Comput. 15 (1993), 143–167.

[Kea1997] Ralph Baker Kearfott, Empirical evaluation of innovations in interval branch and bound algorithms for
nonlinear systems, SIAM Journal on Scientific Computing 18 (1997), no. 2, 574–594.

[Kea2013] Baker Kearfott, Rigorous global search: continuous problems, Vol. 13, Springer Science Business Media,
2013.

[Kra2021a] George Krait, Demonstration of RRRRR robot, Zenodo, 2021. https://doi.org/10.5281/zenodo.4451292.

[Kra2021b] , planar robot PRRP, Zenodo, 2021. https://doi.org/10.5281/zenodo.4451257.

[Kul1997] Wladyslaw Kulpa, The poincaré-miranda theorem, The American Mathematical Monthly 104 (1997),
no. 6, 545–550, available at https://doi.org/10.1080/00029890.1997.11990676.

[KX1994] R. Baker Kearfott and Zhaoyun Xing, An interval step control for continuation methods, SIAM Journal
on Numerical Analysis 31 (1994), no. 3, 892–914.

[Laz1992] D. Lazard, Solving zero-dimensional algebraic systems, Journal of Symbolic Computation 13 (1992),
no. 2, 117 –131.

[LOD2001] H. Lopes, J. B. Oliveira, and L. H. De Figueiredo, Robust adaptive approximation of implicit curves,
Proceedings xiv brazilian symposium on computer graphics and image processing, 2001, pp. 10–17.

[LP2017] K. Lynch and F. Park, Modern robotics: Mechanics, planning, and control, 2017.

[LVZ2006] Anton Leykin, Jan Verschelde, and Ailing Zhao, Newton’s method with deflation for isolated singularities
of polynomial systems, Theoretical Computer Science 359 (2006), no. 1, 111 –122.

[LY2011] Long Lin and Chee Yap, Adaptive isotopic approximation of nonsingular curves: the parameterizability
and nonlocal isotopy approach, Discrete & Computational Geometry 45 (2011Jun), no. 4, 760–795.

[Mer2006] Merlet, Parallel robots, Springer Netherlands, 2006.

[MGGJ2013] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann, Certified parallelotope continuation for one-
manifolds, SIAM J. Numer. Anal. 51 (2013), 3373–3401.

[MKC2009] Ramon E Moore, R Baker Kearfott, and Michael J Cloud, Introduction to interval analysis, Siam, 2009.

[MM2011] Angelos Mantzaflaris and Bernard Mourrain, Deflation and Certified Isolation of Singular Zeros of Poly-
nomial Systems, International Symposium on Symbolic and Algebraic Computation (ISSAC), June 2011,
pp. 249–256.

[MP2009] B. Mourrain and J.P. Pavone, Subdivision methods for solving polynomial equations, Journal of Symbolic
Computation 44 (2009), no. 3, 292 –306. Polynomial System Solving in honor of Daniel Lazard.

[MPS+2006] Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsigaridas, and Nicola
Wolpert, Algebraic issues in computational geometry (Jean-Daniel Boissonnat and Monique Teil-
laud, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[MSP+2017] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson,
Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando,
Sumith Kulal, Robert Cimrman, and Anthony Scopatz, Sympy: symbolic computing in python, PeerJ Com-
puter Science 3 (January 2017), e103.

143

https://doi.org/10.1080/00029890.1997.11990676

BIBLIOGRAPHY

[Neu1991] Arnold Neumaier, Interval methods for systems of equations, Encyclopedia of Mathematics and its Ap-
plications, Cambridge University Press, 1991.

[Nin2015] Jordan Ninin, Global Optimization based on Contractor Programming: an Overview of the IBEX library,
MACIS, November 2015.

[OWM1983] Takeo Ojika, Satoshi Watanabe, and Taketomo Mitsui, Deflation algorithm for the multiple roots of a
system of nonlinear equations, Journal of Mathematical Analysis and Applications 96 (1983), no. 2, 463
–479.

[PV2004] Simon Plantinga and Gert Vegter, Isotopic Approximation of Implicit Curves and Surfaces, Symposium
on geometry processing, 2004.

[PV2006] , Computing contour generators of evolving implicit surfaces, ACM Trans. Graph. 25 (October
2006), no. 4, 1243–1280.

[PVHK1997] David McAllester Pascal Van Hentenryck and Deepak Kapur, Solving polynomial systems using a branch
and prune approach, SIAM Journal on Numerical Analysis 34 (1997).

[Ral1983] L. B. Rall, Mean value and taylor forms in interval analysis, SIAM Journal on Mathematical Analysis 14
(1983), no. 2, 223–238, available at https://doi.org/10.1137/0514019.

[Rou1998] Fabrice Rouillier, Solving Zero-dimensional Polynomial Systems through the Rational Univariate Repre-
sentation, Technical Report RR-3426, INRIA, 1998.

[Rum2010] Siegfried M. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica
19 (2010), 287–449.

[RZ2009] Greg Reid and Lihong Zhi, Solving polynomial systems via symbolic-numeric reduction to geometric
involutive form, Journal of Symbolic Computation 44 (2009), no. 3, 280 –291. Polynomial System Solving
in honor of Daniel Lazard.

[Sny1992] John M. Snyder, Interval analysis for computer graphics, SIGGRAPH Comput. Graph. 26 (July 1992),
no. 2, 121–130.

[SP1993] Evan C. Sherbrooke and Nicholas M. Patrikalakis, Computation of the solutions of nonlinear polynomial
systems, Computer Aided Geometric Design 10 (1993), no. 5, 379 –405.

[Sta1995] Volker Stahl, Interval methods for bounding the range of polynomials and solving systems of nonlinear
equations, Ph.D. Thesis, 1995.

[Sva2014] Jules Svartz, Solving zero-dimensional structured polynomial systems, Theses, 2014.

[SW2005] R. Seidel and N. Wolpert, On the exact computation of the topology of real algebraic curves, Proceedings
of the twenty-first annual symposium on Computational geometry (2005).

[TBV2019] Simon Telen, M. Barel, and J. Verschelde, A robust numerical path tracking algorithm for polynomial
homotopy continuation, ArXiv abs/1909.04984 (2019).

[VDH2015] Joris Van Der Hoeven, Reliable homotopy continuation, LIX, Ecole polytechnique, 2015.

[vdHL2018] Joris van der Hoeven and Robin Larrieu, Fast reduction of bivariate polynomials with respect to suffi-
ciently regular gröbner bases, Proceedings of the 2018 acm international symposium on symbolic and
algebraic computation, 2018, pp. 199–206.

[VGO+2020] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020), 261–272.

[Vil2018] Gilles Villard, On computing the resultant of generic bivariate polynomials, Proceedings of the 2018 acm
international symposium on symbolic and algebraic computation, 2018, pp. 391–398.

[WCB2001] D. Wang, G.E. Collins, and B. Buchberger, Elimination methods, Texts & Monographs in Symbolic Com-
putation, Springer, 2001.

[Whi1943] Hassler Whitney, Differentiable even functions, Duke Mathematical Journal 10 (1943), 159–160.

144

https://doi.org/10.1137/0514019

BIBLIOGRAPHY

[Whi1955] , On singularities of mappings of euclidean spaces. i. mappings of the plane into the plane, Annals
of Mathematics 62 (1955), no. 3, 374–410.

[Whi1965] , Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium
in Honor of Marston Morse), 1965, pp. 205–244. MR0188486

[XY2019] Juan Xu and Chee Yap, Effective subdivision algorithm for isolating zeros of real systems of equations,
with complexity analysis, Proceedings of the 2019 international symposium on symbolic and algebraic
computation, 2019, pp. 355–362.

[ZSP1993] Jingfang Zhou, Evan C. Sherbrooke, and Nicholas M. Patrikalakis, Computation of stationary points of
distance functions, Engineering with Computers 9 (1993Dec), no. 4, 231–246.

145

	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem statement
	Preserved properties when approximating plane curves
	Isolating singularities
	Formal statement of the problem

	 Related work
	 Curves and singularities
	Zero-dimensional systems
	Singularities of implicit plane curves
	Singularities of the plane projections of implicit space curves

	Contribution
	Generic assumptions
	Enclosing singularities by the Ball system
	Algorithmic contribution
	Implementation, experiments and applications

	Part I Singularity modelling
	Preliminaries in geometry and algebra
	Real algebraic geometry
	The ring of real polynomials
	Determinantal varieties

	Differential geometry
	Smooth functions and manifolds
	Germs of smooth functions
	The multiplicity of smooth systems of equations
	Transversality theorems

	Generic space curve
	Notation and assumptions
	Notation
	Assumptions

	 Genericity of the assumptions
	Genericity of the assumptions for a curve in Rn
	Genericity of the assumptions for the silhouette of a surface in Rn

	Modelling system
	Encoding the singular points of the plane projection
	Singularities induced by Ln
	Singularities induced by Lc
	Regularity of the Ball system

	Semi-algorithms to check the assumptions and isolate singularities
	Interval arithmetic
	 Semi-algorithms to check assumptions and isolate singularities
	 Semi-algorithms improvements
	Subdivision-based solver on a high-dimensional system
	Evaluating the operator D
	Improvement integration

	Part II Software, experiments and application in robotics
	Implementation
	Third-party libraries
	 The Python software Isolating_singularities

	Experiments
	Experiment 1: Analytic curve in R3 generating one node and one ordinary cusp
	Experiment 2: Analytic curve in R4 with many nodes
	Experiment 3: High degree algebraic curve in R4
	Experiment 4: Two close lines in R3 generating a node

	Applications in robotic mechanisms
	Preliminaries in robotics
	Description of RRRRR robot
	Results
	 The parallel singularity Sparallel
	The serial singularity Sserial

	Conclusion
	Conclusion
	Bibliography

